WorldWideScience

Sample records for tubular cored electrodes

  1. Three-Dimensional Tubular MoS2/PANI Hybrid Electrode for High Rate Performance Supercapacitor.

    Science.gov (United States)

    Ren, Lijun; Zhang, Gaini; Yan, Zhe; Kang, Liping; Xu, Hua; Shi, Feng; Lei, Zhibin; Liu, Zong-Huai

    2015-12-30

    By using three-dimensional (3D) tubular molybdenum disulfide (MoS2) as both an active material in electrochemical reaction and a framework to provide more paths for insertion and extraction of ions, PANI nanowire arrays with a diameter of 10-20 nm can be controllably grown on both the external and internal surface of 3D tubular MoS2 by in situ oxidative polymerization of aniline monomers and 3D tubular MoS2/PANI hybrid materials with different amounts of PANI are prepared. A controllable growth of PANI nanowire arrays on the tubular MoS2 surface provides an opportunity to optimize the capacitive performance of the obtained electrodes. When the loading amount of PANI is 60%, the obtained MoS2/PANI-60 hybrid electrode not only shows a high specific capacitance of 552 F/g at a current density of 0.5 A/g, but also gives excellent rate capability of 82% from 0.5 to 30 A/g. The remarkable rate performance can be mainly attributed to the architecture with synergistic effect between 3D tubular MoS2 and PANI nanowire arrays. Moreover, the MoS2/PANI-60 based symmetric supercapacitor also exhibits the excellent rate performance and good cycling stability. The specific capacitance based on the total mass of the two electrodes is 124 F/g at a current density of 1 A/g and 79% of its initial capacitance is remained after 6000 cycles. The 3D tubular structure provides a good and favorable method for improving the capacitance retention of PANI electrode.

  2. Gamma flux responsive self-powered detector with a tubular emitter

    International Nuclear Information System (INIS)

    Goldstein, N.P.; Todt, W.H.

    1982-01-01

    A gamma-sensitive flux detector comprises tubular emitter, an insulating core within the emitter and an insulating layer about the emitter, and a tubular conductive collector electrode about the insulating layer. The emitter material may be platinum, lead, bismuth, tantalum, tungsten; platinum preferred

  3. A tubular electrode for radiofrequency ablation therapy

    KAUST Repository

    Antunes, Carlos Lemos Lemos Lemos

    2012-07-06

    Purpose – Due to its good mechanical and biocompatibility characteristics, nitinol SEMS is a popular endoprothesis used for relieving stricture problems in hollow organs due to carcinomas. Besides its mechanical application, SEMS can be regarded as well as potential electrode for performing RF ablation therapy on the tumor. The purpose of this work is to perform numerical and experimental analyses in order to characterize the lesion volume induced in biological tissue using this kind of tubular electrode. Design/methodology/approach – Data concerning electrical conductivity and dimension of the damaged tissue after RF ablation procedure were obtained from ex vivo samples. Next, numerical models using 3D finite element method were obtained reassembling the conditions considered at experimentation setup and results were compared. Findings – Numerical and experimental results show that a regular volume of damaged tissue can be obtained considering this type of electrode. Also, results obtained from numerical simulation are close to those obtained by experimentation. Originality/value – SEMSs, commonly used as devices to minimize obstruction problems due to the growth of tumors, may still be considered as an active electrode for RF ablation procedures. A method considering this observation is presented in this paper. Also, numerical simulation can be regarded in this case as a tool for determining the lesion volume.

  4. Nitrogen- and oxygen-enriched carbon with square tubular structure prepared from polyaniline as electrode for supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Xiang, X.; Liu, E.; Wu, Y.; Tian, Y.; Xie, H.; Wu, Z.; Zhu, Y. [Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Hunan (China)

    2012-10-15

    Square tubular carbon with a large number of surface functional groups are prepared by carbonizing and activating polyaniline, which are synthesized by polymerization of aniline with a template-free self-assembly method in aqueous media. The physicochemical properties of the square tubular carbon is characterized by scanning and transmission electron microscopy, Brunauer-Emmett-Teller surface area measurements, Raman spectroscopy, and X-ray photoelectron spectroscopy measurements. When used as an electrode, the square tubular carbon exhibit a specific capacitance of 223 F g{sup -1} at a scan rate of 2 mV s{sup -1}, which could still stay over 90% when the scan rate increased by 10 times. The specific capacitance even hardly decrease at a current density of 3 A g{sup -1} after 10,000 cycles, which indicates that the square tubular carbon have good cycle durability and may be a promising candidate as an electrode for supercapacitors. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  5. The evaluation of the polarization resistance in a tubular electrode and its application to the hydrogen electrode reaction

    International Nuclear Information System (INIS)

    Montero, M.A.; Marozzi, C.A.; Chialvo, M.R. Gennero de; Chialvo, A.C.

    2007-01-01

    An alternative method for the determination of the kinetic parameters involved in the elementary steps of the reaction mechanism of the hydrogen electrode reaction is proposed. It is based on the determination of the variation of the polarization resistance in a tubular platinum electrode with a laminar flow of electrolyte as a function of the activity of protons of the electrolyte solution. A theoretical expression that relates the experimental variables and the equilibrium polarization resistance is developed, which takes into account the current distribution along the electrode surface. The results are compared with others obtained previously, contributing to the verification of the kinetic mechanism through a completely different experimental procedure

  6. A tubular dielectric elastomer actuator: Fabrication, characterization and active vibration isolation

    DEFF Research Database (Denmark)

    Sarban, R.; Jones, R. W.; Mace, B. R.

    2011-01-01

    This contribution reviews the fabrication, characterization and active vibration isolation performance of a core-free rolled tubular dielectric elastomer (DE) actuator, which has been designed and developed by Danfoss PolyPower A/S. PolyPower DE material, PolyPower (TM), is produced in thin sheets...... of 80 mu m thickness with corrugated metallic electrodes on both sides. Tubular actuators are manufactured by rolling the DE sheets in a cylindrical shape. The electromechanical characteristics of such actuators are modeled based on equilibrium pressure equation. The model is validated with experimental...... the dominant dynamic characteristics of the core-free tubular actuator. It has been observed that all actuators have similar dynamic characteristics in a frequency range up to 1 kHz. A tubular actuator is then used to provide active vibration isolation (AVI) of a 250 g mass subject to shaker generated 'ground...

  7. Device for filling tubular electrode plates for lead batteries. [German patent

    Energy Technology Data Exchange (ETDEWEB)

    Barth, P.U.; Kubis, C.; Weber, H.J.; Wiepen, R.

    1979-02-01

    The device applies the vibration principle and according to the invention it uses a filling cassette for accommodating tubular electrode plates. The filling cassette has a filling funnel and is suspended with its vibration drive by springs. The vibration drive consists either of two out-of-balance motors, which are rigidly connected to the lower frame of the cassette, and have opposite directions of rotation, or of one out-of-balance motor, which is connected to a joint below the frame of the cassette.

  8. Micro-Drilling of Polymer Tubular Ultramicroelectrode Arrays for Electrochemical Sensors

    Directory of Open Access Journals (Sweden)

    Niels B. Larsen

    2013-05-01

    Full Text Available We present a reproducible fast prototyping procedure based on micro-drilling to produce homogeneous tubular ultramicroelectrode arrays made from poly(3,4-ethylenedioxythiophene (PEDOT, a conductive polymer. Arrays of Ø 100 µm tubular electrodes each having a height of 0.37 ± 0.06 µm were reproducibly fabricated. The electrode dimensions were analyzed by SEM after deposition of silver dendrites to visualize the electroactive electrode area. The electrochemical applicability of the electrodes was demonstrated by voltammetric and amperometric detection of ferri-/ferrocyanide. Recorded signals were in agreement with results from finite element modelling of the system. The tubular PEDOT ultramicroelectrode arrays were modified by prussian blue to enable the detection of hydrogen peroxide. A linear sensor response was demonstrated for hydrogen peroxide concentrations from 0.1 mM to 1 mM.

  9. Device for filling tubular electrode plates for lead batteries. Vorrichtung zum Fuellen von Roehrchenelektrodenplatten fuer Bleiakkumulatoren

    Energy Technology Data Exchange (ETDEWEB)

    Barth, P.U.; Kubis, C.; Weber, H.J.; Wiepen, R.

    1984-11-22

    The device applies the vibration principle and according to the invention it uses a filling cassette for accommodating tubular electrode plates. The filling cassette has a filling funnel and is suspended with its vibration drive by springs. The vibration drive consists either of two out-of-balance motors, which are rigidly connected to the lower frame of the cassette, and have opposite directions of rotation, or of one out-of-balance motor, which is connected to a joint below the frame of the cassette.

  10. Electrochemical reduction of trinitrotoluene on core-shell tin-carbon electrodes

    International Nuclear Information System (INIS)

    Grigoriants, Irena; Markovsky, Boris; Persky, Rachel; Perelshtein, Ilana; Gedanken, Aharon; Aurbach, Doron; Filanovsky, Boris; Bourenko, Tatiana; Felner, Israel

    2008-01-01

    In this work, we studied the electrochemical process of 2,4,6-trinitrotoluene (TNT) reduction on a new type of electrodes based on a core-shell tin-carbon Sn(C) structure. The Sn(C) composite was prepared from the precursor tetramethyl-tin Sn(CH 3 ) 4 , and the product contained a core of submicron-sized tin particles uniformly enveloped with carbon shells. Cyclic voltammograms of Sn(C) electrodes in aqueous sodium chloride solutions containing TNT show three well-pronounced reduction waves in the potential range of -0.50 to -0.80 V (vs. an Ag/AgCl/Cl - reference electrode) that correspond to the multistep process of TNT reduction. Electrodes containing Sn(C) particles annealed at 800 deg. C under argon develop higher voltammetric currents of TNT reduction (comparing to the as-prepared tin-carbon material) due to stabilization of the carbon shell. It is suggested that the reduction of TNT on core-shell tin-carbon electrodes is an electrochemically irreversible process. A partial oxidation of the TNT reduction products occurred at around -0.20 V. The electrochemical response of TNT reduction shows that it is not controlled by the diffusion of the active species to/from the electrodes but rather by interfacial charge transfer and possible adsorption phenomena. The tin-carbon electrodes demonstrate significantly stable behavior for TNT reduction in NaCl solutions and provide sufficient reproducibility with no surface fouling through prolonged voltammetric cycling. It is presumed that tin nanoparticles, which constitute the core, are electrochemically inactive towards TNT reduction, but Sn or SnO 2 formed on the electrodes during TNT reduction may participate in this reaction as catalysts or carbon-modifying agents. The nitro-groups of TNT can be reduced irreversibly (via two possible paths) by three six-electron transfers, to 2,4,6-triaminotoluene, as follows from mass-spectrometric studies. The tin-carbon electrodes described herein may serve as amperometric sensors

  11. Effect of welding process, type of electrode and electrode core diameter on the tensile property of 304L austenitic stainless steel

    Directory of Open Access Journals (Sweden)

    Akinlabi OYETUNJI

    2014-11-01

    Full Text Available The effect of welding process, type of electrode and electrode core diameter on the tensile property of AISI 304L Austenitic Stainless Steel (ASS was studied. The tensile strength property of ASS welded samples was evaluated. Prepared samples of the ASS were welded under these three various variables. Tensile test was then carried out on the welded samples. It was found that the reduction in ultimate tensile strength (UTS of the butt joint samples increases with increase in core diameter of the electrode. Also, the best electrode for welding 304L ASS is 308L stainless steel-core electrode of 3.2 mm core diameter. It is recommended that the findings of this work can be applied in the chemical, food and oil industries where 304L ASS are predominantly used.

  12. Ni-NiO core-shell inverse opal electrodes for supercapacitors.

    Science.gov (United States)

    Kim, Jae-Hun; Kang, Soon Hyung; Zhu, Kai; Kim, Jin Young; Neale, Nathan R; Frank, Arthur J

    2011-05-14

    A general template-assisted electrochemical approach was used to synthesize three-dimensional ordered Ni core-NiO shell inverse opals (IOs) as electrodes for supercapacitors. The Ni-NiO IO electrodes displayed pseudo-capacitor behavior, good rate capability and cycling performance. © The Royal Society of Chemistry 2011

  13. Elastic stability of cylindrical shells with soft elastic cores: Biomimicking natural tubular structures

    Science.gov (United States)

    Karam, Gebran Nizar

    1994-01-01

    Thin walled cylindrical shell structures are widespread in nature: examples include plant stems, porcupine quills, and hedgehog spines. All have an outer shell of almost fully dense material supported by a low density, cellular core. In nature, all are loaded in combination of axial compression and bending: failure is typically by buckling. Natural structures are often optimized. Here we have analyzed the elastic buckling of a thin cylindrical shell supported by an elastic core to show that this structural configuration achieves significant weight saving over a hollow cylinder. The results of the analysis are compared with data from an extensive experimental program on uniaxial compression and four point bending tests on silicone rubber shells with and without compliant foam cores. The analysis describes the results of the mechanical tests well. Characterization of the microstructures of several natural tubular structures with foamlike cores (plant stems, quills, and spines) revealed them to be close to the optimal configurations predicted by the analytical model. Biomimicking of natural cylindrical shell structures and evolutionary design processes may offer the potential to increase the mechanical efficiency of engineering cylindrical shells.

  14. Fabrication and characterization of an all-diamond tubular flow microelectrode for electroanalysis.

    Science.gov (United States)

    Hutton, Laura A; Vidotti, Marcio; Iacobini, James G; Kelly, Chris; Newton, Mark E; Unwin, Patrick R; Macpherson, Julie V

    2011-07-15

    The development of the first all-diamond hydrodynamic flow device for electroanalytical applications is described. Here alternate layers of intrinsic (insulating), conducting (heavily boron doped), and intrinsic polycrystalline diamond are grown to create a sandwich structure. By laser cutting a hole through the material, it is possible to produce a tubular flow ring electrode of a characteristic length defined by the thickness of the conducting layer (for these studies ∼90 μm). The inside of the tube can be polished to 17 ± 10 nm surface roughness using a diamond impregnanted wire resulting in a coplanar, smooth, all-diamond surface. The steady-state limiting current versus volume flow rate characteristics for the one electron oxidation of FcTMA(+) are in agreement with those expected for laminar flow in a tubular electrode geometry. For dopamine detection, it is shown that the combination of the reduced fouling properties of boron doped diamond, coupled with the flow geometry design where the products of electrolysis are washed away downstream of the electrode, completely eradicates fouling during electrolysis. This paves the way for incorporation of this flow design into online electroanalytical detection systems. Finally, the all diamond tubular flow electrode system described here provides a platform for future developments including the development of ultrathin ring electrodes, multiple apertures for increased current response, and multiple, individually addressable ring electrodes incorporated into the same flow tube.

  15. Flexible, silver nanowire network nickel hydroxide core-shell electrodes for supercapacitors

    Science.gov (United States)

    Yuksel, Recep; Coskun, Sahin; Kalay, Yunus Eren; Unalan, Husnu Emrah

    2016-10-01

    We present a novel one-dimensional coaxial architecture composed of silver nanowire (Ag NW) network core and nickel hydroxide (Ni(OH)2) shell for the realization of coaxial nanocomposite electrode materials for supercapacitors. Ag NWs are formed conductive networks via spray coating onto polyethylene terephthalate (PET) substrates and Ni(OH)2 is gradually electrodeposited onto the Ag NW network to fabricate core-shell electrodes for supercapacitors. Synergy of highly conductive Ag NWs and high capacitive Ni(OH)2 facilitate ion and electron transport, enhance electrochemical properties and result in a specific capacitance of 1165.2 F g-1 at a current density of 3 A g-1. After 3000 cycles, fabricated nanocomposite electrodes show 93% capacity retention. The rational design explored in this study points out the potential of nanowire based coaxial energy storage devices.

  16. Preparation and characterization of coaxial halloysite/polypyrrole tubular nanocomposites for electrochemical energy storage

    International Nuclear Information System (INIS)

    Yang Chao; Liu Peng; Zhao Yongqing

    2010-01-01

    Halloysite nanotubes/polypyrrole (HNTs/PPy) nanocomposites with coaxial tubular morphology for use as electrode materials for supercapacitors were synthesized by the in situ chemical oxidative polymerization method based on self-assembled monolayer amine-functionalized HNTs. The HNTs/PPy coaxial tubular nanocomposites were characterized with transmission electron microscope (TEM), X-ray diffraction (XRD), thermogravimetric analysis (TGA), electrical conductivity measurement at different temperatures, cyclic voltammetry (CV), and galvanostatic charge-discharge measurements. The coaxial tubular nanocomposites showed their greatest conductivity at room temperature and a weak temperature dependence of the conductivity from 298 K to 423 K. A maximum discharge capacity of 522 F/g after correcting for the weight percent of the PPy phase at a current density of 5 mA cm -2 in a 0.5 M Na 2 SO 4 electrolyte could be achieved in a half-cell setup configuration for the HNTs/PPy composites electrode, suggesting its potential application in electrode materials for electrochemical capacitors.

  17. Preparation and characterization of coaxial halloysite/polypyrrole tubular nanocomposites for electrochemical energy storage

    Energy Technology Data Exchange (ETDEWEB)

    Yang Chao [State Key Laboratory of Applied Organic Chemistry and Institute of Polymer Science and Engineering, College of Chemistry and Chemical Engineering, Lanzhou University, Tianshui South Road 222, Lanzhou 730000 (China); Liu Peng, E-mail: pliu@lzu.edu.c [State Key Laboratory of Applied Organic Chemistry and Institute of Polymer Science and Engineering, College of Chemistry and Chemical Engineering, Lanzhou University, Tianshui South Road 222, Lanzhou 730000 (China); Zhao Yongqing [State Key Laboratory of Applied Organic Chemistry and Institute of Polymer Science and Engineering, College of Chemistry and Chemical Engineering, Lanzhou University, Tianshui South Road 222, Lanzhou 730000 (China)

    2010-09-01

    Halloysite nanotubes/polypyrrole (HNTs/PPy) nanocomposites with coaxial tubular morphology for use as electrode materials for supercapacitors were synthesized by the in situ chemical oxidative polymerization method based on self-assembled monolayer amine-functionalized HNTs. The HNTs/PPy coaxial tubular nanocomposites were characterized with transmission electron microscope (TEM), X-ray diffraction (XRD), thermogravimetric analysis (TGA), electrical conductivity measurement at different temperatures, cyclic voltammetry (CV), and galvanostatic charge-discharge measurements. The coaxial tubular nanocomposites showed their greatest conductivity at room temperature and a weak temperature dependence of the conductivity from 298 K to 423 K. A maximum discharge capacity of 522 F/g after correcting for the weight percent of the PPy phase at a current density of 5 mA cm{sup -2} in a 0.5 M Na{sub 2}SO{sub 4} electrolyte could be achieved in a half-cell setup configuration for the HNTs/PPy composites electrode, suggesting its potential application in electrode materials for electrochemical capacitors.

  18. Low-potential sensitive H2O2 detection based on composite micro tubular Te adsorbed on platinum electrode.

    Science.gov (United States)

    Guascito, M R; Chirizzi, D; Malitesta, C; Mazzotta, E; M Siciliano; Siciliano, T; Tepore, A; Turco, A

    2011-04-15

    In this work a new original amperometric sensor for H(2)O(2) detection based on a Pt electrode modified with Te-microtubes was developed. Te-microtubes, synthesized by the simple thermal evaporation of Te powder, have a tubular structure with a hexagonal cross-section and are open ended. Modified electrode was prepared by direct drop casting of the mixture of Te-microtubes dispersed in ethanol on Pt surface. The spectroscopic characterization of synthesized Te-microtubes and Pt/Te-microtubes modified electrodes was performed by scanning electron microscopy (SEM), energy-dispersive X-rays microanalysis (EDX), X-ray diffraction analysis (XRD) and X-ray photoelectron spectroscopy (XPS). Moreover a complete electrochemical characterization of the new composite material Pt/Te-microtubes was performed by cyclic voltammetry (CV) and cronoamperometry (CA) in phosphate buffer solution (PBS) at pH 7. Electrochemical experiments showed that the presence of Te-microtubes on modified electrode was responsible for an increment of both cathodic and anodic currents in presence of H(2)O(2) with respect to bare Pt. Specifically, data collected from amperometric experiments at -150 mV vs. SCE in batch and -200 mV vs. SCE in flow injection analysis (FIA) experiments show a remarkable increment of the cathodic current. The electrochemical performances of tested sensors make them suitable for the quantitative determination of H(2)O(2) substrate both in batch and in FIA. Copyright © 2011 Elsevier B.V. All rights reserved.

  19. Tungsten oxide@polypyrrole core-shell nanowire arrays as novel negative electrodes for asymmetric supercapacitors.

    Science.gov (United States)

    Wang, Fengmei; Zhan, Xueying; Cheng, Zhongzhou; Wang, Zhenxing; Wang, Qisheng; Xu, Kai; Safdar, Muhammad; He, Jun

    2015-02-11

    Among active pseudocapacitive materials, polypyrrole (PPy) is a promising electrode material in electrochemical capacitors. PPy-based materials research has thus far focused on its electrochemical performance as a positive electrode rather than as a negative electrode for asymmetric supercapacitors (ASCs). Here high-performance electrochemical supercapacitors are designed with tungsten oxide@PPy (WO3 @PPy) core-shell nanowire arrays and Co(OH)2 nanowires grown on carbon fibers. The WO3 @PPy core-shell nanowire electrode exhibits a high capacitance (253 mF/cm2) in negative potentials (-1.0-0.0 V). The ASCs packaged with CF-Co(OH)2 as a positive electrode and CF-WO3 @PPy as a negative electrode display a high volumetric capacitance up to 2.865 F/cm3 based on volume of the device, an energy density of 1.02 mWh/cm3 , and very good stability performance. These findings promote the application of PPy-based nanostructures as advanced negative electrodes for ASCs. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Advances in tubular solid oxide fuel cell technology

    Energy Technology Data Exchange (ETDEWEB)

    Singhal, S.C. [Westinghouse Electric Corp., Pittsburgh, PA (United States)

    1996-12-31

    The design, materials and fabrication processes for the earlier technology Westinghouse tubular geometry cell have been described in detail previously. In that design, the active cell components were deposited in the form of thin layers on a ceramic porous support tube (PST). The tubular design of these cells and the materials used therein have been validated by successful electrical testing for over 65,000 h (>7 years). In these early technology PST cells, the support tube, although sufficiently porous, presented an inherent impedance to air flow toward air electrode. In order to reduce such impedance to air flow, the wall thickness of the PST was first decreased from the original 2 mm (the thick-wall PST) to 1.2 mm (the thin-wall PST). The calcia-stabilized zirconia support tube has now been completely eliminated and replaced by a doped lanthanum manganite tube in state-of-the-art SOFCs. This doped lanthanum manganite tube is extruded and sintered to about 30 to 35 percent porosity, and serves as the air electrode onto which the other cell components are fabricated in thin layer form. These latest technology cells are designated as air electrode supported (AES) cells.

  1. The addition of red lead to flat plate and tubular valve regulated miners cap lamp lead-acid batteries

    Energy Technology Data Exchange (ETDEWEB)

    Ferg, E.E.; Loyson, P. [Department of Chemistry, Nelson Mandela Metropolitan University, P.O. Box 77000, Port Elizabeth 6031 (South Africa); Poorun, A. [Willard Batteries, P.O. Box 1844, Port Elizabeth 6000 (South Africa)

    2006-04-21

    The study looked at the use of red lead in the manufacturing of valve regulated lead acid (VRLA) miners cap lamp (MCL) batteries that were made with either flat plate or tubular positive electrodes. A problem with using only grey oxide in the manufacture of thick flat plate or tubular electrodes is the poor conversion of the active material to the desired lead dioxide. The addition of red lead to the initial starting material improves the formation efficiency but is considerably more expensive thereby increasing the cost of manufacturing. The study showed that by carefully controlling the formation conditions in terms of the voltage and temperature of a battery, good capacity performance can be achieved for cells made with flat plate electrodes that contain up to 25% red lead. The small amount of red lead in the active cured material reduces the effect of electrode surface sulphate formation and allows the battery to achieve its rated capacity within the first few cycles. Batteries made with flat plate positive electrodes that contained more that 50% red lead showed good initial capacity but had poor structural active material bonding. The study showed that MCL batteries made with tubular positive electrodes that contained less than 75% red lead resulted in a poorly formed electrode with limited capacity utilization. Pickling and soaking times of the tubular electrodes should be kept at a minimum thereby allowing higher active material utilization during subsequent capacity cycling. The study further showed that it is beneficial to use higher formation rates in order to reduce manufacturing time and to improve the active material characteristics. (author)

  2. General Formation of M(x)Co(3-x)S4 (M=Ni, Mn, Zn) Hollow Tubular Structures for Hybrid Supercapacitors.

    Science.gov (United States)

    Chen, Yu Ming; Li, Zhen; Lou, Xiong Wen David

    2015-09-01

    A simple and versatile method for general synthesis of uniform one-dimensional (1D) M(x)Co(3-x)S4 (M=Ni, Mn, Zn) hollow tubular structures (HTSs), using soft polymeric nanofibers as a template, is described. Fibrous core-shell polymer@M-Co acetate hydroxide precursors with a controllable molar ratio of M/Co are first prepared, followed by a sulfidation process to obtain core-shell polymer@M(x)Co(3-x)S4 composite nanofibers. The as-made M(x)Co(3-x)S4 HTSs have a high surface area and exhibit exceptional electrochemical performance as electrode materials for hybrid supercapacitors. For example, the MnCo2S4 HTS electrode can deliver specific capacitance of 1094 F g(-1) at 10 A g(-1), and the cycling stability is remarkable, with only about 6% loss over 20,000 cycles. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Silver-nickel oxide core-shell nanoparticle array electrode with enhanced lithium-storage performance

    International Nuclear Information System (INIS)

    Zhao, Wenjia; Du, Ning; Zhang, Hui; Yang, Deren

    2015-01-01

    We demonstrate the synthesis of Ag-NiO core-shell nanoparticle arrays via a one-step solution-immersion process and subsequent RF-sputtering technique. The Ag nanoparticle arrays on copper substrate are firstly prepared by a displacement reaction at mild temperature of 303K. Then, a NiO layer is deposited onto the surface of the Ag nanoparticles via RF-sputtering technique. When evaluated as an anode for lithium-ion batteries, the Ag-NiO core-shell electrode shows higher capacity and better cycling performance than the planar NiO electrode. The in-situ synthesized Ag nanoparticles can enhance the interfacial strength between the active material and substrate, andimprove the electrical conductivity of the electrode, which may be responsible for the enhanced performance

  4. Chemical insights into the roles of nanowire cores on the growth and supercapacitor performances of Ni-Co-O/Ni(OH)₂ core/shell electrodes.

    Science.gov (United States)

    Yin, Xuesong; Tang, Chunhua; Zhang, Liuyang; Yu, Zhi Gen; Gong, Hao

    2016-02-09

    Nanostructured core/shell electrodes have been experimentally demonstrated promising for high-performance electrochemical energy storage devices. However, chemical insights into the significant roles of nanowire cores on the growth of shells and their supercapacitor behaviors still remain as a research shortfall. In this work, by substituting 1/3 cobalt in the Co3O4 nanowire core with nickel, a 61% enhancement of the specific mass-loading of the Ni(OH)2 shell, a tremendous 93% increase of the volumetric capacitance and a superior cyclability were achieved in a novel NiCo2O4/Ni(OH)2 core/shell electrode in contrast to a Co3O4/Ni(OH)2 one. A comparative study suggested that not only the growth of Ni(OH)2 shells but also the contribution of cores were attributed to the overall performances. Importantly, their chemical origins were revealed through a theoretical simulation of the core/shell interfacial energy changes. Besides, asymmetric supercapacitor devices and applications were also explored. The scientific clues and practical potentials obtained in this work are helpful for the design and analysis of alternative core/shell electrode materials.

  5. Sensitive electrochemical sensor of tryptophan based on Ag-C core-shell nanocomposite modified glassy carbon electrode

    Energy Technology Data Exchange (ETDEWEB)

    Mao Shuxian [College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123 (China); Li Weifeng, E-mail: liweifeng@suda.edu.cn [College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123 (China); Long Yumei, E-mail: yumeilong@suda.edu.cn [College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123 (China); Tu Yifeng; Deng, Anping [College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123 (China)

    2012-08-13

    Graphical abstract: Ag-C and Colloidal carbon sphere modified glassy carbon electrodes were prepared. It was clear that the Ag-C/GCE exhibited enhanced electrocatalytic activity towards Trp, which could result from the synergistic effect between Ag core and carbon shell. The Ag-C/GCE showed excellent analytical properties in the determination of Trp. Highlights: Black-Right-Pointing-Pointer The electrochemical behavior of Ag-C core-shell nanocomposite was firstly proposed. Black-Right-Pointing-Pointer Ag-C/GC electrode exhibited favorable electrocatalytic properties towards Trp. Black-Right-Pointing-Pointer The good electrocatalysis was due to the synergistic effect of Ag-core and C-shell. Black-Right-Pointing-Pointer The Ag-C/GC electrode displayed excellent analytical properties in determining Trp. - Abstract: We here reported a simple electrochemical method for the detection of tryptophan (Trp) based on the Ag-C modified glassy carbon (Ag-C/GC) electrode. The Ag-C core-shell structured nanoparticles were synthesized using one-pot hydrothermal method and characterized by scanning electron microscope (SEM), transmission electron microscope (TEM), and Fourier transform-infrared spectroscopy (FTIR). The electrochemical behaviors of Trp on Ag-C/GC electrode were investigated and exhibited a direct electrochemical process. The favorable electrochemical properties of Ag-C/GC electrode were attributed to the synergistic effect of the Ag core and carbon shell. The carbon shell cannot only protect Ag core but also contribute to the enhanced substrate accessibility and Trp-substrate interactions, while nano-Ag core can display good electrocatalytic activity to Trp at the same time. Under the optimum experimental conditions the oxidation peak current was linearly dependent on the Trp concentration in the range of 1.0 Multiplication-Sign 10{sup -7} to 1.0 Multiplication-Sign 10{sup -4} M with a detection limit of 4.0 Multiplication-Sign 10{sup -8} M (S/N = 3). In addition

  6. Hierarchical ZnO@MnO2 Core-Shell Pillar Arrays on Ni Foam for Binder-Free Supercapacitor Electrodes

    KAUST Repository

    Huang, Ming; Li, Fei; Zhao, Xiao Li; Luo, Da; You, Xue Qiu; Zhang, Yu Xin; Li, Gang

    2015-01-01

    © 2014 Elsevier Ltd. All rights reserved. Hierarchical ZnO@MnO2 core-shell pillar arrays on Ni foam have been fabricated by a facile two-step hydrothermal approach and further investigated as the binder-free electrode for supercapacitors. The core-shell hybrid nanostructure is achieved by decorating ultrathin self-standing MnO2 nanosheets on ZnO pillar arrays grown radically on Nickel foam. This unique well-designed binder-free electrode exhibits a high specific capacitance (423.5 F g-1 at a current density of 0.5 A g-1), and excellent cycling stability (92% capacitance retention after 3000 cycles). The improved electrochemical results show that the ZnO@MnO2 core-shell nanostructure electrode is promising for high-performance supercapacitors. The facile design of the unique core-shell array architectures provides a new and effective approach to fabricate high-performance binder-free electrode for supercapacitors.

  7. Coaxial silver nanowire network core molybdenum oxide shell supercapacitor electrodes

    International Nuclear Information System (INIS)

    Yuksel, Recep; Coskun, Sahin; Unalan, Husnu Emrah

    2016-01-01

    We present a new hybrid material composed of molybdenum (IV) oxide (MoO 2 ) shell on highly conducting silver nanowire (Ag NW) core in the network form for the realization of coaxial Ag NW/MoO 2 nanocomposite supercapacitor electrodes. Ag NWs were simply spray coated onto glass substrates to form conductive networks and conformal MoO 2 layer was electrodeposited onto the Ag NW network to create binder-free coaxial supercapacitor electrodes. Combination of Ag NWs and pseudocapacitive MoO 2 generated an enhanced electrochemical energy storage capacity and a specific capacitance of 500.7 F/g was obtained at a current density of 0.25 A/g. Fabricated supercapacitor electrodes showed excellent capacity retention after 5000 cycles. The methods and the design investigated herein open a wide range of opportunities for nanowire based coaxial supercapacitors.

  8. Preparation and characterization of core-shell electrodes for application in gel electrolyte-based dye-sensitized solar cells

    International Nuclear Information System (INIS)

    Avellaneda, Cesar O.; Goncalves, Agnaldo D.; Benedetti, Joao E.; Nogueira, Ana F.

    2010-01-01

    Core-shell electrodes based on TiO 2 covered with different oxides were prepared and characterized. These electrodes were applied in gel electrolyte-based dye-sensitized solar cells (DSSC). The TiO 2 electrodes were prepared from TiO 2 powder (P25 Degussa) and coated with thin layers of Al 2 O 3 , MgO, Nb 2 O 5 , and SrTiO 3 prepared by the sol-gel method. The core-shell electrodes were characterized by X-ray diffraction, scanning electron microscopy and atomic force microscopy measurements. J-V curves in the dark and under standard AM 1.5 conditions and photovoltage decay measurements under open-circuit conditions were carried out in order to evaluate the influence of the oxide layer on the charge recombination dynamics and on the device's performance. The results indicated an improvement in the conversion efficiency as a result of an increase in the open circuit voltage. The photovoltage decay curves under open-circuit conditions showed that the core-shell electrodes provide longer electron lifetime values compared to uncoated TiO 2 electrodes, corroborating with a minimization in the recombination losses at the nanoparticle surface/electrolyte interface. This is the first time that a study has been applied to DSSC based on gel polymer electrolyte. The optimum performance was achieved by solar cells based on TiO 2 /MgO core-shell electrodes: fill factor of ∼0.60, short-circuit current density J sc of 12 mA cm -2 , open-circuit voltage V oc of 0.78 V and overall energy conversion efficiency of ∼5% (under illumination of 100 mW cm -2 ).

  9. Au@MnO2 core-shell nanomesh electrodes for transparent flexible supercapacitors.

    Science.gov (United States)

    Qiu, Tengfei; Luo, Bin; Giersig, Michael; Akinoglu, Eser Metin; Hao, Long; Wang, Xiangjun; Shi, Lin; Jin, Meihua; Zhi, Linjie

    2014-10-29

    A novel Au@MnO2 supercapacitor is presented. The sophisticated core-shell architecture combining an Au nanomesh core with a MnO2 shell on a flexible polymeric substrate is demonstrated as an electrode for high performance transparent flexible supercapacitors (TFSCs). Due to their unique structure, high areal/gravimetric capacitance and rate capability for TFSCs are achieved. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Quantum interferometer based on GaAs/InAs core/shell nanowires connected to superconducting contacts

    Science.gov (United States)

    Haas, F.; Dickheuer, S.; Zellekens, P.; Rieger, T.; Lepsa, M. I.; Lüth, H.; Grützmacher, D.; Schäpers, Th

    2018-06-01

    An interferometer structure was realized based on a GaAs/InAs core/shell nanowire and Nb superconducting electrodes. Two pairs of Nb contacts are attached to the side facets of the nanowire allowing for carrier transport in three different orientations. Owing to the core/shell geometry, the current flows in the tubular conductive InAs shell. In transport measurements with superconducting electrodes directly facing each other, indications of a Josephson supercurrent are found. In contrast for junctions in diagonal and longitudinal configuration a deficiency current is observed, owing to the weaker coupling on longer distances. By applying a magnetic field along the nanowires axis pronounced h/2e flux-periodic oscillations are measured in all three contact configurations. The appearance of these oscillations is explained in terms of interference effects in the Josephson supercurrent and long-range phase-coherent Andreev reflection.

  11. Enhanced Oxidation-Resistant Cu@Ni Core-Shell Nanoparticles for Printed Flexible Electrodes.

    Science.gov (United States)

    Kim, Tae Gon; Park, Hye Jin; Woo, Kyoohee; Jeong, Sunho; Choi, Youngmin; Lee, Su Yeon

    2018-01-10

    In this work, the fabrication and application of highly conductive, robust, flexible, and oxidation-resistant Cu-Ni core-shell nanoparticle (NP)-based electrodes have been reported. Cu@Ni core-shell NPs with a tunable Ni shell thickness were synthesized by varying the Cu/Ni molar ratios in the precursor solution. Through continuous spray coating and flash photonic sintering without an inert atmosphere, large-area Cu@Ni NP-based conductors were fabricated on various polymer substrates. These NP-based electrodes demonstrate a low sheet resistance of 1.3 Ω sq -1 under an optical energy dose of 1.5 J cm -2 . In addition, they exhibit highly stable sheet resistances (ΔR/R 0 flexible heater fabricated from the Cu@Ni film is demonstrated, which shows uniform heat distribution and stable temperature compared to those of a pure Cu film.

  12. High-temperature, high-pressure bonding of nested tubular metallic components

    International Nuclear Information System (INIS)

    Quinby, T.C.

    1980-01-01

    This invention is a tool for effecting high-temperature, high compression bonding between the confronting faces of nested, tubular, metallic components. In a typical application, the tool is used to produce tubular target assemblies for irradiation in nuclear reactors or particle accelerators, the target assembly comprising a uranium foil and an aluminum-alloy substrate. The tool preferably is composed throughout of graphite. It comprises a tubular restraining member in which a mechanically expandable tubular core is mounted to form an annulus with the member. The components to be bonded are mounted in nested relation in the annulus. The expandable core is formed of individually movable, axially elongated segments whose outer faces cooperatively define a cylindrical pressing surface and whose inner faces cooperatively define two opposed, inwardly tapered, axial bores. Tapered rams extend respectively into the bores. The loaded tool is mounted in a conventional hot-press provided with evacuation means, heaters for maintaining its interior at bonding temperature, and hydraulic cylinders for maintaining a selected inwardly directed pressure on the tapered rams. With the hotpress evacuated and the loaded tool at the desired temperature, the cylinders are actuated to apply the selected pressure to the rams. The rams in turn expand the segmented core to maintain the nested components in compression against the restraining member. These conditions are maintained until the confronting faces of the nested components are joined in a continuous, uniform bond characterized by high thermal conductivity

  13. High-temperature, high-pressure bonding of nested tubular metallic components

    Science.gov (United States)

    Quinby, T.C.

    A tool is described for effecting high-temperature, high-compression bonding between the confronting faces of nested, tubular, metallic components. In a typical application, the tool is used to produce tubular target assemblies for irradiation in nuclear reactors or particle accelerators. The target assembly comprising a uranum foil and an aluninum-alloy substrate. The tool is composed of graphite. It comprises a tubular restraining member in which a mechanically expandable tubular core is mounted to form an annulus. The components to be bonded are mounted in nested relation in the annulus. The expandable core is formed of individually movable, axially elongated segments whose outer faces cooperatively define a cylindrical pressing surface and whose inner faces cooperatively define two opposed, inwardly tapered, axial bores. Tapered rams extend into the bores. The loaded tool is mounted in a conventional hot-press provided with evacuation means, heaters for maintaining its interior at bonding temperature, and hydraulic cylinders for maintaining a selected inwardly directed pressure on the tapered rams. With the hot-press evacuated and the loaded tool at the desired temperature, the cylinders are actuated to apply the selected pressure to the rams. The rams in turn expand the segmented core to maintain the nested components in compression against the restraining member. These conditions are maintained until the confronting faces of the nested components are joined in a continuous, uniform bond characterized by high thermal conductivity.

  14. Power generation characteristics of tubular type SOFC by wet process

    Energy Technology Data Exchange (ETDEWEB)

    Tajiri, H.; Nakayama, T. [Kyushu Electric Power Company, Inc., Fukuoka (Japan); Kuroishi, M. [TOTO Ltd., Kanagawa (Japan)] [and others

    1996-12-31

    The development of a practical solid oxide fuel cell requires improvement of a cell performance and a cell manufacturing technology suitable for the mass production. In particular tubular type SOFC is thought to be superior in its reliability because its configuration can avoid the high temperature sealing and reduce the thermal stress resulting from the contact between cells. The authors have fabricated a tubular cell with an air electrode support by a wet processing technique, which is suitable for mass production in improving a power density. To enhance the power output of the module, the Integrated Tubular-Type (ITT) cell has been developed. This paper reports the performance of the single cells with various active anode areas and the bundle with series-connected 9-ITT cells with an active anode area of 840 cm{sup 2}.

  15. Highly stable supercapacitors with conducting polymer core-shell electrodes for energy storage applications

    KAUST Repository

    Xia, Chuan; Chen, Wei; Wang, Xianbin; Hedhili, Mohamed N.; Wei, Nini; Alshareef, Husam N.

    2015-01-01

    commercial application. Here, the development of nanostructured PAni-RuO2 core-shell arrays as electrodes for highly stable pseudocapacitors with excellent energy storage performance is reported. A thin layer of RuO2 grown by atomic layer deposition (ALD

  16. Highly stable supercapacitors with conducting polymer core-shell electrodes for energy storage applications

    KAUST Repository

    Xia, Chuan

    2015-01-14

    Conducting polymers such as polyaniline (PAni) show a great potential as pseudocapacitor materials for electrochemical energy storage applications. Yet, the cycling instability of PAni resulting from structural alteration is a major hurdle to its commercial application. Here, the development of nanostructured PAni-RuO2 core-shell arrays as electrodes for highly stable pseudocapacitors with excellent energy storage performance is reported. A thin layer of RuO2 grown by atomic layer deposition (ALD) on PAni nanofibers plays a crucial role in stabilizing the PAni pseudocapacitors and improving their energy density. The pseudocapacitors, which are based on optimized PAni-RuO2 core-shell nanostructured electrodes, exhibit very high specific capacitance (710 F g-1 at 5 mV s-1) and power density (42.2 kW kg-1) at an energy density of 10 Wh kg-1. Furthermore, they exhibit remarkable capacitance retention of ≈88% after 10 000 cycles at very high current density of 20 A g-1, superior to that of pristine PAni-based pseudocapacitors. This prominently enhanced electrochemical stability successfully demonstrates the buffering effect of ALD coating on PAni, which provides a new approach for the preparation of metal-oxide/conducting polymer hybrid electrodes with excellent electrochemical performance.

  17. Construction of cobalt sulfide/nickel core-branch arrays and their application as advanced electrodes for electrochemical energy storage

    International Nuclear Information System (INIS)

    Chen, Minghua; Zhang, Jiawei; Xia, Xinhui; Qi, Meili; Yin, Jinghua; Chen, Qingguo

    2016-01-01

    Graphical abstract: Self-supported CoS/Ni core-branch arrays prepared by the combination of hydrothermal and electrodeposition methods demonstrate with high specific capacity and good cycling stability. - Highlights: • Construct porous CoS/Ni core-branch arrays. • Core-branch arrays show high Li storage properties. • Core-branch structure is favorable for fast ion and electron transfer. • Porous conductive metal branch can keep structure stable. - Abstract: Design/fabrication of advanced electrodes with tailored functionality is critical for the development of advanced electrochemical devices. Herein, we report a powerful strategy for construction of high-quality cobalt sulfide (CoS)/Ni core-branch arrays via combined methods of hydrothermal and electro-deposition. Electrodeposited thin porous Ni branch is successfully decorated on the CoS nanowires arrays with the help of hydrothermal ZnO nanorods template. Enhanced mechanical stability and improved ion/electron transfer characteristics are achieved in this composite system. As compared to the pure CoS nanowires arrays, the CoS/Ni core-branch arrays show enhanced electrochemical performance with lower polarization, better high-rate capability and superior cycling life. A high capacity of 605 mAh g −1 at 2C and 371 mAh g −1 at 6C is obtained in the composite core-branch system, respectively. Our developed electrode design protocol can be applicable for fabrication of other advanced metal sulfides electrodes for applications in solar cells, batteries and supercapacitors.

  18. Construction of Core-Shell NiMoO4@Ni-Co-S Nanorods as Advanced Electrodes for High-Performance Asymmetric Supercapacitors.

    Science.gov (United States)

    Chen, Chao; Yan, Dan; Luo, Xin; Gao, Wenjia; Huang, Guanjie; Han, Ziwu; Zeng, Yan; Zhu, Zhihong

    2018-02-07

    In this work, hierarchical core-shell NiMoO 4 @Ni-Co-S nanorods were first successfully grown on nickel foam by a facile two-step method to fabricate a bind-free electrode. The well-aligned electrode wrapped by Ni-Co-S nanosheets displays excellent nanostructural properties and outstanding electrochemical performance, owing to the synergistic effects of both nickel molybdenum oxides and nickel cobalt sulfides. The prepared core-shell nanorods in a three-electrode cell yielded a high specific capacitance of 2.27 F cm -2 (1892 F g -1 ) at a current density of 5 mA cm -2 and retained 91.7% of the specific capacitance even after 6000 cycles. Their electrochemical performance was further investigated for their use as positive electrode for asymmetric supercapacitors. Notably, the energy density of the asymmetric supercapacitor device reached 2.45 mWh cm -3 at a power density of 0.131 W cm -3 , and still retained a remarkable 80.3% of the specific capacitance after 3500 cycles. There is great potential for the electrode composed of the core-shell NiMoO 4 @Ni-Co-S nanorods for use in an all-solid-state asymmetric supercapacitor device.

  19. Core-Shell Composite Fibers for High-Performance Flexible Supercapacitor Electrodes.

    Science.gov (United States)

    Lu, Xiaoyan; Shen, Chen; Zhang, Zeyang; Barrios, Elizabeth; Zhai, Lei

    2018-01-31

    Core-shell nanofibers containing poly(acrylic acid) (PAA) and manganese oxide nanoparticles as the core and polypyrrole (PPy) as the shell were fabricated through electrospinning the solution of PAA and manganese ions (PAA/Mn 2+ ). The obtained nanofibers were stabilized by Fe 3+ through the interaction between Fe 3+ ions and carboxylate groups. Subsequent oxidation of Mn 2+ by KMnO 4 produced uniform manganese dioxide (MnO 2 ) nanoparticles in the fibers. A PPy shell was created on the fibers by immersing the fibers in a pyrrole solution where the Fe 3+ ions in the fiber polymerized the pyrrole on the fiber surfaces. In the MnO 2 @PAA/PPy core-shell composite fibers, MnO 2 nanoparticles function as high-capacity materials, while the PPy shell prevents the loss of MnO 2 during the charge/discharge process. Such a unique structure makes the composite fibers efficient electrode materials for supercapacitors. The gravimetric specific capacity of the MnO 2 @PAA/PPy core-shell composite fibers was 564 F/g based on cyclic voltammetry curves at 10 mV/s and 580 F/g based on galvanostatic charge/discharge studies at 5 A/g. The MnO 2 @PAA/PPy core-shell composite fibers also present stable cycling performance with 100% capacitance retention after 5000 cycles.

  20. Three-dimensional hierarchical porous tubular carbon as a host matrix for long-term lithium-selenium batteries

    Science.gov (United States)

    Jia, Min; Lu, Shiyu; Chen, Yuming; Liu, Ting; Han, Jin; Shen, Bolei; Wu, Xiaoshuai; Bao, Shu-Juan; Jiang, Jian; Xu, Maowen

    2017-11-01

    Lithium-selenium (Li-Se) batteries are of great interest as a representative family of electrochemical energy storage systems because of their high theoretical volumetric capacity and considerable electronic conductivity. However, the main drawback of Se electrodes is the rapid capacity fading caused by the dissolution of polyselenides upon cycling. Here, we report a simple, economical, and effective method for the synthesis of three-dimensional (3D) hierarchical porous carbon with a hollow tubular structure as a host matrix for loading Se and trapping polyselenides. The as-obtained porous tubular carbon shows a superior specific surface area of 1786 m2 g-1, a high pore volume of 0.79 cm3 g-1, and many nanostructured pores. Benefiting from the unique structural characteristics, the resulting hierarchical porous carbon/Se composite exhibits a high capacity of 515 mAh g-1 at 0.2 C. More importantly, a remarkable cycling stability over 900 cycles at 2 C with a capacity fading rate of merely 0.02% per cycle can be achieved. The 3D hollow porous tubular carbon can be also used for other high-performance electrodes of electrochemical energy storage.

  1. Tubular combustion

    CERN Document Server

    Ishizuka, Satoru

    2014-01-01

    Tubular combustors are cylindrical tubes where flame ignition and propagation occur in a spatially confined, highly controlled environment, in a nearly flat, elongated geometry. This allows for some unique advantages where extremely even heat dispersion is required over a large surface while still maintaining fuel efficiency. Tubular combustors also allow for easy flexibility in type of fuel source, allowing for quick changeover to meet various needs and changing fuel pricing. This new addition to the MP sustainable energy series will provide the most up-to-date research on tubular combustion--some of it only now coming out of private proprietary protection. Plentiful examples of current applications along with a good explanation of background theory will offer readers an invaluable guide on this promising energy technology. Highlights include: * An introduction to the theory of tubular flames * The "how to" of maintaining stability of tubular flames through continuous combustion * Examples of both small-scal...

  2. PVDF core-free actuator for Braille displays: design, fabrication process, and testing

    Science.gov (United States)

    Levard, Thomas; Diglio, Paul J.; Lu, Sheng-Guo; Gorny, Lee J.; Rahn, Christopher D.; Zhang, Q. M.

    2011-04-01

    Refreshable Braille displays require many, small diameter actuators to move the pins. The electrostrictive P(VDF-TrFECFE) terpolymer can provide the high strain and actuation force under modest electric fields that are required of this application. In this paper, we develop core-free tubular actuators and integrate them into a 3 × 2 Braille cell. The films are solution cast, stretched to 6 μm thick, electroded, laminated into a bilayer, rolled into a 2 mm diameter tube, bonded, and provided with top and bottom contacts. Experimental testing of 17 actuators demonstrates significant strains (up to 4%). A novel Braille cell is designed and fabricated using six of these actuators.

  3. Sulfur tolerant composite cermet electrodes for solid oxide electrochemical cells

    Science.gov (United States)

    Isenberg, Arnold O.

    1987-01-01

    An electrochemical apparatus is made containing an exterior electrode bonded to the exterior of a tubular, solid, oxygen ion conducting electrolyte where the electrolyte is also in contact with an interior electrode, said exterior electrode comprising particles of an electronic conductor contacting the electrolyte, where a ceramic metal oxide coating partially surrounds the particles and is bonded to the electrolyte, and where a coating of an ionic-electronic conductive material is attached to the ceramic metal oxide coating and to the exposed portions of the particles.

  4. Oxidation-etching preparation of MnO2 tubular nanostructures for high-performance supercapacitors.

    Science.gov (United States)

    Zhu, Jixin; Shi, Wenhui; Xiao, Ni; Rui, Xianhong; Tan, Huiteng; Lu, Xuehong; Hng, Huey Hoon; Ma, Jan; Yan, Qingyu

    2012-05-01

    1D hierarchical tubular MnO(2) nanostructures have been prepared through a facile hydrothermal method using carbon nanofibres (CNFs) as sacrificial template. The morphology of MnO(2) nanostructures can be adjusted by changing the reaction time or annealing process. Polycrystalline MnO(2) nanotubes are formed with a short reaction time (e.g., 10 min) while hierarchical tubular MnO(2) nanostructures composed of assembled nanosheets are obtained at longer reaction times (>45 min). The polycrystalline MnO(2) nanotubes can be further converted to porous nanobelts and sponge-like nanowires by annealing in air. Among all the types of MnO(2) nanostructures prepared, tubular MnO(2) nanostructures composed of assembled nanosheets show optimized charge storage performance when tested as supercapacitor electrodes, for example, delivering an power density of 13.33 kW·kg(-1) and a energy density of 21.1 Wh·kg(-1) with a long cycling life over 3000 cycles, which is mainly related to their features of large specific surface area and optimized charge transfer pathway.

  5. In situ formation of a 3D core-shell and triple-conducting oxygen reduction reaction electrode for proton-conducting SOFCs

    Science.gov (United States)

    Zhang, Zhenbao; Wang, Jian; Chen, Yubo; Tan, Shaozao; Shao, Zongping; Chen, Dengjie

    2018-05-01

    BaZrxCeyY1-x-yO3-δ are recognized proton-conducting electrolyte materials for proton-conducting solid oxide fuel cells (H+-SOFCs) below 650 °C. Here Co cations are incorporated into the BaZr0.4Ce0.4Y0.2O3-δ (BZCY) scaffold to generate a 3D core-shell and triple-conducting (H+/O2-/e-) electrode in situ via infiltrating and reactive sintering. The core is the bulk BZCY scaffold, while the shell is composed of the cubic Ba(Zr0.4Ce0.4Y0.2)1-xCoxO3-δ, cubic spinel Co3O4 and cubic fluorite (Ce, Zr, Y)O2. The obtained electrode exhibits an excellent compatibility with the BZCY electrolyte, and performs well in yielding a low and stable polarization resistance for oxygen reduction reaction for intermediate-temperature H+-SOFCs. In particular, it achieves polarization resistances as low as 0.094 and 0.198 Ω cm2 at 650 and 600 °C in wet air (3% H2O) when the sintering temperature for the electrode is 900 °C. In addition, a symmetrical cell also exhibits operation stability of 70 h at 650 °C. Furthermore, a fuel cell assembled with the 3D core-shell and triple-conducting electrode delivers a peak power density of ∼330 mW cm-2 at 650 °C. The substantially improved electrochemical performance and high stability are ascribed to the unique core-shell structure and the formation of Ba(Zr0.4Ce0.4Y0.2)1-xCoxO3-δ in the shell.

  6. The Tubular Penetration Depth and Adaption of Four Sealers: A Scanning Electron Microscopic Study

    Directory of Open Access Journals (Sweden)

    Huan Chen

    2017-01-01

    Full Text Available Background. The tubular penetration and adaptation of the sealer are important factors for successful root canal filling. The aim of this study was to evaluate the tubular penetration depth of four different sealers in the coronal, middle, and apical third of root canals as well as the adaptation of these sealers to root canal walls. Materials and Methods. 50 single-rooted teeth were prepared in this study. Forty-eight of them were filled with different sealers (Cortisomol, iRoot SP, AH-Plus, and RealSeal SE and respective core filling materials. Then the specimens were sectioned and scanning electron microscopy was employed to assess the tubular penetration and adaptation of the sealers. Results. Our results demonstrated that the maximum penetration was exhibited by RealSeal SE, followed by AH-Plus, iRoot SP, and Cortisomol. As regards the adaptation property to root canal walls, AH-Plus has best adaptation capacity followed by iRoot SP, RealSeal SE, and Cortisomol. Conclusion. The tubular penetration and adaptation vary with the different sealers investigated. RealSeal SE showed the most optimal tubular penetration, whereas AH-Plus presented the best adaptation to the root canal walls.

  7. Expandable tubulars for use in geologic structures

    Science.gov (United States)

    Spray, Jeffery A.; Svedeman, Steven; Walter, David; Mckeighan, Peter; Siebanaler, Shane; Dewhurst, Peter; Hobson, Steven; Foss, Doug; Wirz, Holger; Sharpe, Aaron; Apostal, Michael

    2014-08-12

    An expandable tubular includes a plurality of leaves formed from sheet material that have curved surfaces. The leaves extend around a portion or fully around the diameter of the tubular structure. Some of the adjacent leaves of the tubular are coupled together. The tubular is compressed to a smaller diameter so that it can be inserted through previously deployed tubular assemblies. Once the tubular is properly positioned, it is deployed and coupled or not coupled to a previously deployed tubular assembly. The tubular is useful for all types of wells and boreholes.

  8. Proximal tubular hypertrophy and enlarged glomerular and proximal tubular urinary space in obese subjects with proteinuria.

    Directory of Open Access Journals (Sweden)

    Ana Tobar

    Full Text Available BACKGROUND: Obesity is associated with glomerular hyperfiltration, increased proximal tubular sodium reabsorption, glomerular enlargement and renal hypertrophy. A single experimental study reported an increased glomerular urinary space in obese dogs. Whether proximal tubular volume is increased in obese subjects and whether their glomerular and tubular urinary spaces are enlarged is unknown. OBJECTIVE: To determine whether proximal tubules and glomerular and tubular urinary space are enlarged in obese subjects with proteinuria and glomerular hyperfiltration. METHODS: Kidney biopsies from 11 non-diabetic obese with proteinuria and 14 non-diabetic lean patients with a creatinine clearance above 50 ml/min and with mild or no interstitial fibrosis were retrospectively analyzed using morphometric methods. The cross-sectional area of the proximal tubular epithelium and lumen, the volume of the glomerular tuft and of Bowman's space and the nuclei number per tubular profile were estimated. RESULTS: Creatinine clearance was higher in the obese than in the lean group (P=0.03. Proteinuria was similarly increased in both groups. Compared to the lean group, the obese group displayed a 104% higher glomerular tuft volume (P=0.001, a 94% higher Bowman's space volume (P=0.003, a 33% higher cross-sectional area of the proximal tubular epithelium (P=0.02 and a 54% higher cross-sectional area of the proximal tubular lumen (P=0.01. The nuclei number per proximal tubular profile was similar in both groups, suggesting that the increase in tubular volume is due to hypertrophy and not to hyperplasia. CONCLUSIONS: Obesity-related glomerular hyperfiltration is associated with proximal tubular epithelial hypertrophy and increased glomerular and tubular urinary space volume in subjects with proteinuria. The expanded glomerular and urinary space is probably a direct consequence of glomerular hyperfiltration. These effects may be involved in the pathogenesis of obesity

  9. 99mTc renal tubular function agents: Current status

    International Nuclear Information System (INIS)

    Eshima, D.; Fritzberg, A.R.; Taylor, A. Jr.

    1990-01-01

    Orthoiodohippuric (OIH) acid labeled with 131I is a widely used renal radiopharmaceutical agent and has been the standard radiopharmaceutical agent for the measurement of effective renal plasma flow (EPRF). Limitations to the routine clinical use of 131I OIH are related to the suboptimal imaging properties of the 131I radionuclide and its relatively high radiation dose. 123I has been substituted for 131I; however, its high cost and short shelf-life have limited its widespread use. Recent work has centered on the development of a new 99mTc renal tubular function agent, which would use the optimal radionuclidic properties and availability of 99mTc and combine the clinical information provided by OIH. The search for a suitable 99mTc renal tubular function agent has focused on the diamide dithiolate (N2S2), the paraaminohippuric iminodiacetic acid (PAHIDA), and the triamide mercaptide (N3S) donor ligand systems. To date, the most promising 99mTc tubular function agent is the N3S complex: 99mTc mercaptoacetyltriglycine (99mTc MAG3). Studies in animal models in diuresis, dehydration, acid or base imbalance, ischemia, and renal artery stenosis demonstrate that 99mTc MAG3 behaves similarly to 131I OIH. A simple kit formulation is available that yields the 99mTc MAG3 complex in high radiochemical purity. Studies in normal subjects and patients indicate that 99mTc MAG3 is an excellent 99mTc renal tubular agent, but its plasma clearance is only 50% to 60% that of OIH. In an effort to develop an improved 99mTc renal tubular function agent, changes have been made in the core N3S donor ligand system, but to date no agent has been synthesized that is clinically superior to 99mTc MAG3. 61 references

  10. Core-free rolled actuators for Braille displays using P(VDF-TrFE-CFE)

    Science.gov (United States)

    Levard, Thomas; Diglio, Paul J.; Lu, Sheng-Guo; Rahn, Christopher D.; Zhang, Q. M.

    2012-01-01

    Refreshable Braille displays require many small diameter actuators to move the pins. The electrostrictive P(VDF-TrFE-CFE) terpolymer can provide the high strain and actuation force under modest electric fields that are required for this application. In this paper, we develop core-free tubular actuators and integrate them into a 3 × 2 Braille cell. The terpolymer films are solution cast, stretched to 6 μm thick, electroded, laminated into a bilayer, rolled into a 2 mm diameter tube, bonded, and provided with top and bottom contacts. Experimental testing of 17 actuators demonstrates significant strains (up to 4%) and blocking forces (1 N) at moderate electric fields (100 MV m-1). A novel Braille cell is designed and fabricated using six of these actuators.

  11. Luminous effectiveness of tubular light-guides in tropics

    Energy Technology Data Exchange (ETDEWEB)

    Darula, Stanislav; Kittler, Richard; Kocifaj, Miroslav [ICA, Slovak Academy of Sciences, 9, Dubravska Road, 845 03 Bratislava (Slovakia)

    2010-11-15

    Novel tubular light-guides with a transparent hemispherical cupola placed on an unobstructed flat roof collect all sunlight and skylight available at ground level year round. This advantage is heightened in the dry and sunny tropical regions where the sun rises to very high altitudes and often the hours of sunshine last throughout the whole day. Hollow light-guides with very high inner specular reflectances can transport sunbeams downward into the windowless building core very effectively. Due to the tube's diameter and length and multiple reflections, complex illuminance patterns are produced on the underside of the tube, i.e. on top of the glazed ceiling aperture that illuminates the interior space or its working plane. This paper discusses several daylight conditions in tropical interiors illuminated by tubular light-guides. The recently published HOLIGILM calculation program and the user-friendly tool HOLIGILM 4.2 have facilitated the production of this paper. (author)

  12. Reliability of Tubular Joints

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard; Thoft-Christensen, Palle

    In this paper the preliminary results obtained by tests on tubular joints are presented. The joints are T-joints and the loading is static. It is the intention in continuation of these tests to perform tests on other types of joints (e.g. Y-joints) and also with dynamic loading. The purpose...... of the test is partly to obtain empirical data for the ultimate load-carrying capacity of tubular T-joints and partly to obtain some experience in performing tests with tubular joints. It is well known that tubular joints are usually designed in offshore engineering on the basis of empirical formulas obtained...... by experimental test results. Therefore, there is a need for performing experimental tests in this area....

  13. Robust electrodes based on coaxial TiC/C-MnO2 core/shell nanofiber arrays with excellent cycling stability for high-performance supercapacitors.

    Science.gov (United States)

    Zhang, Xuming; Peng, Xiang; Li, Wan; Li, Limin; Gao, Biao; Wu, Guosong; Huo, Kaifu; Chu, Paul K

    2015-04-17

    A coaxial electrode structure composed of manganese oxide-decorated TiC/C core/shell nanofiber arrays is produced hydrothermally in a KMnO4 solution. The pristine TiC/C core/shell structure prepared on the Ti alloy substrate provides the self-sacrificing carbon shell and highly conductive TiC core, thus greatly simplifying the fabrication process without requiring an additional reduction source and conductive additive. The as-prepared electrode exhibits a high specific capacitance of 645 F g(-1) at a discharging current density of 1 A g(-1) attributable to the highly conductive TiC/C and amorphous MnO2 shell with fast ion diffusion. In the charging/discharging cycling test, the as-prepared electrode shows high stability and 99% capacity retention after 5000 cycles. Although the thermal treatment conducted on the as-prepared electrode decreases the initial capacitance, the electrode undergoes capacitance recovery through structural transformation from the crystalline cluster to layered birnessite type MnO2 nanosheets as a result of dissolution and further electrodeposition in the cycling. 96.5% of the initial capacitance is retained after 1000 cycles at high charging/discharging current density of 25 A g(-1). This study demonstrates a novel scaffold to construct MnO2 based SCs with high specific capacitance as well as excellent mechanical and cycling stability boding well for future design of high-performance MnO2-based SCs. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Stressed waveguides with tubular depressed-cladding inscribed in phosphate glasses by femtosecond hollow laser beams.

    Science.gov (United States)

    Long, Xuewen; Bai, Jing; Zhao, Wei; Stoian, Razvan; Hui, Rongqing; Cheng, Guanghua

    2012-08-01

    We report on the single-step fabrication of stressed optical waveguides with tubular depressed-refractive-index cladding in phosphate glasses by the use of focused femtosecond hollow laser beams. Tubelike low index regions appear under direct exposure due to material rarefaction following expansion. Strained compacted zones emerged in domains neighboring the tubular track of lower refractive index, and waveguiding occurs mainly within the tube core fabricated by the engineered femtosecond laser beam. The refractive index profile of the optical waveguide was reconstructed from the measured transmitted near-field intensity.

  15. 78 FR 14361 - U.S. Steel Tubular Products, Inc., Mckeesport Tubular Operations Division, Subsidiary of United...

    Science.gov (United States)

    2013-03-05

    ... Products, Inc., Mckeesport Tubular Operations Division, Subsidiary of United States Steel Corporation, Mckeesport, PA; Notice of Initiation of Investigation To Terminate Certification of Eligibility Pursuant to... Tubular Products, McKeesport Tubular Operations Division, Subsidiary of United States Steel Corporation...

  16. Distal renal tubular acidosis

    Science.gov (United States)

    ... this disorder. Alternative Names Renal tubular acidosis - distal; Renal tubular acidosis type I; Type I RTA; RTA - distal; Classical RTA Images Kidney anatomy Kidney - blood and urine flow References Bose A, Monk RD, Bushinsky DA. Kidney ...

  17. 78 FR 37584 - U.S. Steel Tubular Products, Inc., Mckeesport Tubular Operations Division, Subsidiary of United...

    Science.gov (United States)

    2013-06-21

    ... make the following certification: All workers of U.S. Steel Tubular Products, McKeesport Tubular... Products, Inc., Mckeesport Tubular Operations Division, Subsidiary of United States Steel Corporation, Mckeesport, Pennsylvania; Notice of Amended Certification Pursuant to Section 221 of the Trade Act of 1974...

  18. Variables process effect in the pure ferritic metal contribution deposited with an tubular metal-cored E111T5-K3 wire

    International Nuclear Information System (INIS)

    Svoboda, Hernan G; Ramini de Rissone, N.M; Surian, E; De Vedia, L

    2004-01-01

    The welding deposit performed with an ANSI-AWS E111T5-K3 type from the system C-Mn-Ni-Mo metal coring tubular welding, with a low slag generation was studied. Different operatives configurations with two thermal contribution levels (1 kJ and 1.5 kJ) and two types of protector gases (CO 2 and Ar-20%CO 2 ) at two welding position (under hand and ascendant vertical) were analyzed. The resulting pure contributor metal from the different process configurations was chemical, mechanically and structural characterized and the effect of the different process conditions was evaluated. The microstructure is fundamentally composed by FS(NA) and AF. For similar values of hardness and strength, good values of tenacity were observed and they show little variation with the process variables studied (AG)

  19. Core-free rolled actuators for Braille displays using P(VDF–TrFE–CFE)

    International Nuclear Information System (INIS)

    Levard, Thomas; Diglio, Paul J; Rahn, Christopher D; Lu, Sheng-Guo; Zhang, Q M

    2012-01-01

    Refreshable Braille displays require many small diameter actuators to move the pins. The electrostrictive P(VDF–TrFE–CFE) terpolymer can provide the high strain and actuation force under modest electric fields that are required for this application. In this paper, we develop core-free tubular actuators and integrate them into a 3 × 2 Braille cell. The terpolymer films are solution cast, stretched to 6 μm thick, electroded, laminated into a bilayer, rolled into a 2 mm diameter tube, bonded, and provided with top and bottom contacts. Experimental testing of 17 actuators demonstrates significant strains (up to 4%) and blocking forces (1 N) at moderate electric fields (100 MV m −1 ). A novel Braille cell is designed and fabricated using six of these actuators. (fast track communication)

  20. Preparation of platinum-free tubular dye-sensitized solar cells by electrophoretic deposition

    Directory of Open Access Journals (Sweden)

    Khwanchit Wongcharee

    2016-10-01

    Full Text Available Tubular dye-sensitized solar cells (DSSCs were developed by replacing expensive materials with lower cost materials as follows: (1 replacing conductive glass electrodes with titanium (Ti wires and (2 replacing platinum (Pt catalyst with the mixture of multi-walled carbon nanotubes, MWCNTs and Poly(3,4-ethylenedioxythiophene-poly(styrenesulfonate, PEDOT-PSS. Platinized counter electrodes were used as the standard counter electrodes for comparison. The effects of the chemical treatment of titanium wire substrate and electrophoretic deposition condition on the efficiency of DSSCs were also investigated. The chemical treatment of titanium wires was carried out by soaking the wires in HF-HNO3 solutions at three different concentrations of 0.8, 1.6 and 2.4 M and three different soaking durations of 5, 10 and 15 min. The optimum condition was found at HF-HNO3 concentration of 0.8 M and soaking duration of 10 min. Film coating on working electrodes was performed using electrophoretic technique at three different voltages of 5, 8 and 10 V and four different coating durations of 1, 3, 5 and 7 min. Then, the optimum condition at deposition voltage of 5 V and deposition duration of 5 min was applied for film deposition on counter electrodes. The efficiency of DSSC with CNTs/TiO2 counter electrode was 0.03%. The addition of PEDOT-PSS improved the efficiency of DSSC to 0.08%.

  1. Ni/CdS bifunctional Ti@TiO2 core-shell nanowire electrode for high-performance nonenzymatic glucose sensing.

    Science.gov (United States)

    Guo, Chunyan; Huo, Huanhuan; Han, Xu; Xu, Cailing; Li, Hulin

    2014-01-07

    In this work, a Ni/CdS bifunctional Ti@TiO2 core-shell nanowire electrode with excellent electrochemical sensing property was successfully constructed through a hydrothermal and electrodeposition method. Field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM) were employed to confirm the synthesis and characterize the morphology of the as-prepared samples. The results revealed that the CdS layer between Ni and TiO2 plays an important role in the uniform nucleation and the following growth of highly dispersive Ni nanoparticle on the Ti@TiO2 core-shell nanowire surface. The bifunctional nanostructured electrode was applied to construct an electrochemical nonenzymatic sensor for the reliable detection of glucose. Under optimized conditions, this nonenzymatic glucose sensor displayed a high sensitivity up to 1136.67 μA mM(-1) cm(-2), a wider liner range of 0.005-12 mM, and a lower detection limit of 0.35 μM for glucose oxidation. The high dispersity of Ni nanoparticles, combined with the anti-poisoning faculty against the intermediate derived from the self-cleaning ability of CdS under the photoexcitation, was considered to be responsible for these enhanced electrochemical performances. Importantly, favorable reproducibility and long-term performance were also obtained thanks to the robust frameworks. All these results indicate this novel electrode is a promising candidate for nonenzymatic glucose sensing.

  2. A Role for Tubular Necroptosis in Cisplatin-Induced AKI

    Science.gov (United States)

    Xu, Yanfang; Ma, Huabin; Shao, Jing; Wu, Jianfeng; Zhou, Linying; Zhang, Zhirong; Wang, Yuze; Huang, Zhe; Ren, Junming; Liu, Suhuan; Chen, Xiangmei

    2015-01-01

    Cell death and inflammation in the proximal tubules are the hallmarks of cisplatin-induced AKI, but the mechanisms underlying these effects have not been fully elucidated. Here, we investigated whether necroptosis, a type of programmed necrosis, has a role in cisplatin-induced AKI. We found that inhibition of any of the core components of the necroptotic pathway—receptor-interacting protein 1 (RIP1), RIP3, or mixed lineage kinase domain-like protein (MLKL)—by gene knockout or a chemical inhibitor diminished cisplatin-induced proximal tubule damage in mice. Similar results were obtained in cultured proximal tubular cells. Furthermore, necroptosis of cultured cells could be induced by cisplatin or by a combination of cytokines (TNF-α, TNF-related weak inducer of apoptosis, and IFN-γ) that were upregulated in proximal tubules of cisplatin-treated mice. However, cisplatin induced an increase in RIP1 and RIP3 expression in cultured tubular cells in the absence of cytokine release. Correspondingly, overexpression of RIP1 or RIP3 enhanced cisplatin-induced necroptosis in vitro. Notably, inflammatory cytokine upregulation in cisplatin-treated mice was partially diminished in RIP3- or MLKL-deficient mice, suggesting a positive feedback loop involving these genes and inflammatory cytokines that promotes necroptosis progression. Thus, our data demonstrate that necroptosis is a major mechanism of proximal tubular cell death in cisplatin-induced nephrotoxic AKI. PMID:25788533

  3. Tubular nanostructured materials for bioapplications

    Science.gov (United States)

    Xie, Jining; Chen, Linfeng; Srivatsan, Malathi; Varadan, Vijay K.

    2009-03-01

    Tubular nanomaterials possess hollow structures as well as high aspect ratios. In addition to their unique physical and chemical properties induced by their nanoscale dimensions, their inner voids and outer surfaces make them ideal candidates for a number of biomedical applications. In this work, three types of tubular nanomaterials including carbon nanotubes, hematite nanotubes, and maghemite nanotubes, were synthesized by different chemical techniques. Their structural and crystalline properties were characterized. For potential bioapplications of tubular nanomaterials, experimental investigations were carried out to demonstrate the feasibility of using carbon nanotubes, hematite nanotubes, and maghemite nanotubes in glucose sensing, neuronal growth, and drug delivery, respectively. Preliminary results show the promise of tubular nanomaterials in future biomedical applications.

  4. Tubular manipulators: a new concept for intracochlear positioning of an auditory prosthesis

    Directory of Open Access Journals (Sweden)

    Rau Thomas S.

    2015-09-01

    Full Text Available The aim of this study was to investigate the applicability of tubular manipulators as an actuator mechanism for intracochlear positioning of the electrode array (EA of a cochlear implant (CI. This is motivated by the vision of an atraumatic insertion of the EA into the inner ear (cochlea without any damage to the intracochlear structures in combination with a well-defined final position. To realize this, an actuator mechanism is required which allows consideration of the patient-specific anatomy. We propose a tubular manipulator for this task. It consists of three concentric tubes: A straight outer tube serves as a guiding sleeve to enter the inner ear (cochlea and two additional telescoping, superelastic, helically precurved tubes. By selecting helical tube parameters of both tubes prior insertion, a patient-specific curling behaviour of the tubular manipulator can be achieved. For preliminary investigation, segmentation and skeletonization of 5 human scala tympani were performed to determine their centrelines. These centrelines were considered as individual ideal insertion paths. An optimization algorithm was developed to identify suitable tube set parameters (curvature, diameter, length, torsion, stiffness as well as configuration parameters (translation and rotation of the 2 inner tubes. Different error values describing the deviation of the shape of the tubes with respect to the insertion path were used to quantify the optimization results. In all cases tube set parameters for a final position within the cochlea were found, while keeping the maximum error below 1mm. These preliminary results are promising in terms of the potential applicability of tubular manipulators for positioning auditory prosthesis inside the scala tympani of the inner ear.

  5. Hierarchical core-shell NiCo2O4@NiMoO4 nanowires grown on carbon cloth as integrated electrode for high-performance supercapacitors

    Science.gov (United States)

    Huang, Liang; Zhang, Wei; Xiang, Jinwei; Xu, Henghui; Li, Guolong; Huang, Yunhui

    2016-08-01

    Hierarchical core-shell NiCo2O4@NiMoO4 nanowires were grown on carbon cloth (CC@NiCo2O4@NiMoO4) by a two-step hydrothermal route to fabricate a flexible binder-free electrode. The prepared CC@NiCo2O4@NiMoO4 integrated electrode was directly used as an electrode for faradaic supercapacitor. It shows a high areal capacitance of 2.917 F cm-2 at 2 mA cm-2 and excellent cycling stability with 90.6% retention over 2000 cycles at a high current density of 20 mA cm-2. The superior specific capacitance, rate and cycling performance can be ascribed to the fast transferring path for electrons and ions, synergic effect and the stability of the hierarchical core-shell structure.

  6. Flexible solid-state supercapacitors based on freestanding electrodes of electrospun polyacrylonitrile@polyaniline core-shell nanofibers

    International Nuclear Information System (INIS)

    Miao, Fujun; Shao, Changlu; Li, Xinghua; Lu, Na; Wang, Kexin; Zhang, Xin; Liu, Yichun

    2015-01-01

    Highlights: • Three-dimensional PAN@PANI nanofiberous networks as freestanding electrodes. • The novel architecture exhibits high specific capacitance of 577 F/g. • Influence of acid doping and mass loading of PANI on electrochemical properties. • Capacitor: an energy density of 12.6 Wh/kg at the power density of 2.3 kW/kg. • Excellent cycling stability: 98% capacitance retention after 1000 cycles - Abstract: Three-dimensional porous polyacrylonitrile/polyaniline core-shell (PAN@PANI) nanofibers are fabricated by electrospinning technique combining in situ chemical polymerization of aniline monomers. The obtained PAN@PANI nanofibers possess unique continuous and homogeneous core-shell nanostructures and high mass loading of PANI (∼60 wt%) as active materials, which have greatly improved the electrochemical performance with a specific capacitance up to 577 F/g at a scan rate of 5 mV/s. Moreover, the porous networks of randomly arrayed PAN@PANI nanofibers provide binder-free and freestanding electrodes for flexible solid-state supercapacitors. The obtained devices based on PAN@PANI networks present excellent electrochemical properties with an energy density of 12.6 Wh/kg at a power density of 2.3 kW/kg and good cycling stability with retaining more than 98% of the initial capacitance after 1000 charge/discharge cycles, showing the possibility for practical applications in flexible electronics

  7. Method Of Bonding A Metal Connection To An Electrode Including A Core Having A Fiber Or Foam Type Structure For An Electrochemical Cell, An

    Science.gov (United States)

    Loustau, Marie-Therese; Verhoog, Roelof; Precigout, Claude

    1996-09-24

    A method of bonding a metal connection to an electrode including a core having a fiber or foam-type structure for an electrochemical cell, in which method at least one metal strip is pressed against one edge of the core and is welded thereto under compression, wherein, at least in line with the region in which said strip is welded to the core, which is referred to as the "main core", a retaining core of a type analogous to that of the main core is disposed prior to the welding.

  8. Tubular inverse opal scaffolds for biomimetic vessels

    Science.gov (United States)

    Zhao, Ze; Wang, Jie; Lu, Jie; Yu, Yunru; Fu, Fanfan; Wang, Huan; Liu, Yuxiao; Zhao, Yuanjin; Gu, Zhongze

    2016-07-01

    There is a clinical need for tissue-engineered blood vessels that can be used to replace or bypass damaged arteries. The success of such grafts depends strongly on their ability to mimic native arteries; however, currently available artificial vessels are restricted by their complex processing, controversial integrity, or uncontrollable cell location and orientation. Here, we present new tubular scaffolds with specific surface microstructures for structural vessel mimicry. The tubular scaffolds are fabricated by rotationally expanding three-dimensional tubular inverse opals that are replicated from colloidal crystal templates in capillaries. Because of the ordered porous structure of the inverse opals, the expanded tubular scaffolds are imparted with circumferentially oriented elliptical pattern microstructures on their surfaces. It is demonstrated that these tailored tubular scaffolds can effectively make endothelial cells to form an integrated hollow tubular structure on their inner surface and induce smooth muscle cells to form a circumferential orientation on their outer surface. These features of our tubular scaffolds make them highly promising for the construction of biomimetic blood vessels.There is a clinical need for tissue-engineered blood vessels that can be used to replace or bypass damaged arteries. The success of such grafts depends strongly on their ability to mimic native arteries; however, currently available artificial vessels are restricted by their complex processing, controversial integrity, or uncontrollable cell location and orientation. Here, we present new tubular scaffolds with specific surface microstructures for structural vessel mimicry. The tubular scaffolds are fabricated by rotationally expanding three-dimensional tubular inverse opals that are replicated from colloidal crystal templates in capillaries. Because of the ordered porous structure of the inverse opals, the expanded tubular scaffolds are imparted with circumferentially

  9. A radially accessible tubular in situ X-ray cell for spatially resolved operando scattering and spectroscopic studies of electrochemical energy storage devices

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Hao; Allan, Phoebe K.; Borkiewicz, Olaf J.; Kurtz, Charles; Grey, Clare P.; Chapman, Karena W.; Chupas, Peter J.

    2016-09-16

    A tubularoperandoelectrochemical cell has been developed to allow spatially resolved X-ray scattering and spectroscopic measurements of individual cell components, or regions thereof, during device operation. These measurements are enabled by the tubular cell geometry, wherein the X-ray-transparent tube walls allow radial access for the incident and scattered/transmitted X-ray beam; by probing different depths within the electrode stack, the transformation of different components or regions can be resolved. The cell is compatible with a variety of synchrotron-based scattering, absorption and imaging methodologies. The reliability of the electrochemical cell and the quality of the resulting X-ray scattering and spectroscopic data are demonstrated for two types of energy storage: the evolution of the distribution of the state of charge of an Li-ion battery electrode during cycling is documented using X-ray powder diffraction, and the redistribution of ions between two porous carbon electrodes in an electrochemical double-layer capacitor is documented using X-ray absorption near-edge spectroscopy.

  10. Improving the electrode performance of Ge through Ge@C core-shell nanoparticles and graphene networks.

    Science.gov (United States)

    Xue, Ding-Jiang; Xin, Sen; Yan, Yang; Jiang, Ke-Cheng; Yin, Ya-Xia; Guo, Yu-Guo; Wan, Li-Jun

    2012-02-08

    Germanium is a promising high-capacity anode material for lithium ion batteries, but it usually exhibits poor cycling stability because of its huge volume variation during the lithium uptake and release process. A double protection strategy to improve the electrode performance of Ge through the use of Ge@C core-shell nanostructures and reduced graphene oxide (RGO) networks has been developed. The as-synthesized Ge@C/RGO nanocomposite showed excellent cycling performance and rate capability in comparison with Ge@C nanoparticles when used as an anode material for Li ion batteries, which can be attributed to the electronically conductive and elastic RGO networks in addition to the carbon shells and small particle sizes of Ge. The strategy is simple yet very effective, and because of its versatility, it may be extended to other high-capacity electrode materials with large volume variations and low electrical conductivities.

  11. Energy transfer dynamics in an RC-LH1-PufX tubular photosynthetic membrane

    International Nuclear Information System (INIS)

    Hsin, J; Sener, M; Schulten, K; Struempfer, J; Qian, P; Hunter, C N

    2010-01-01

    Light absorption and the subsequent transfer of excitation energy are the first two steps in the photosynthetic process, carried out by protein-bound pigments, mainly bacteriochlorophylls (BChls), in photosynthetic bacteria. BChls are anchored in light-harvesting (LH) complexes, such as light-harvesting complex I (LH1), which directly associates with the reaction center (RC), forming the RC-LH1 core complex. In Rhodobacter sphaeroides, RC-LH1 core complexes contain an additional protein, PufX, and assemble into dimeric RC-LH1-PufX core complexes. In the absence of LH complex II (LH2), the former complexes can aggregate into a helically ordered tubular photosynthetic membrane. We have examined the excitation transfer dynamics in a single RC-LH1-PufX core complex dimer using the hierarchical equations of motion for dissipative quantum dynamics that accurately, yet in a computationally costly manner, treat the coupling between BChls and their protein environment. A widely employed description, the generalized Foerster (GF) theory, was also used to calculate the transfer rates of the same excitonic system in order to verify the accuracy of this computationally cheap method. Additionally, in light of the structural uncertainties in the Rba. sphaeroides RC-LH1-PufX core complex, geometrical alterations were introduced into the BChl organization. It is shown that the energy transfer dynamics are not affected by the considered changes in the BChl organization and that the GF theory provides accurate transfer rates. An all-atom model for a tubular photosynthetic membrane is then constructed on the basis of electron microscopy data, and the overall energy transfer properties of this membrane are computed.

  12. Energy transfer dynamics in an RC-LH1-PufX tubular photosynthetic membrane

    Energy Technology Data Exchange (ETDEWEB)

    Hsin, J; Sener, M; Schulten, K [Department of Physics and Beckman Institute, University of Illinois at Urbana-Champaign, Urbana (United States); Struempfer, J [Center for Biophysics and Computational Biology and Beckman Institute, University of Illinois at Urbana-Champaign, Urbana (United States); Qian, P; Hunter, C N, E-mail: kschulte@ks.uiuc.ed [Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN (United Kingdom)

    2010-08-15

    Light absorption and the subsequent transfer of excitation energy are the first two steps in the photosynthetic process, carried out by protein-bound pigments, mainly bacteriochlorophylls (BChls), in photosynthetic bacteria. BChls are anchored in light-harvesting (LH) complexes, such as light-harvesting complex I (LH1), which directly associates with the reaction center (RC), forming the RC-LH1 core complex. In Rhodobacter sphaeroides, RC-LH1 core complexes contain an additional protein, PufX, and assemble into dimeric RC-LH1-PufX core complexes. In the absence of LH complex II (LH2), the former complexes can aggregate into a helically ordered tubular photosynthetic membrane. We have examined the excitation transfer dynamics in a single RC-LH1-PufX core complex dimer using the hierarchical equations of motion for dissipative quantum dynamics that accurately, yet in a computationally costly manner, treat the coupling between BChls and their protein environment. A widely employed description, the generalized Foerster (GF) theory, was also used to calculate the transfer rates of the same excitonic system in order to verify the accuracy of this computationally cheap method. Additionally, in light of the structural uncertainties in the Rba. sphaeroides RC-LH1-PufX core complex, geometrical alterations were introduced into the BChl organization. It is shown that the energy transfer dynamics are not affected by the considered changes in the BChl organization and that the GF theory provides accurate transfer rates. An all-atom model for a tubular photosynthetic membrane is then constructed on the basis of electron microscopy data, and the overall energy transfer properties of this membrane are computed.

  13. Braided Multi-Electrode Probes (BMEPs) for Neural Interfaces

    Science.gov (United States)

    Kim, Tae Gyo

    Although clinical use of invasive neural interfaces is very limited, due to safety and reliability concerns, the potential benefits of their use in brain machine interfaces (BMIs) seem promising and so they have been widely used in the research field. Microelectrodes as invasive neural interfaces are the core tool to record neural activities and their failure is a critical issue for BMI systems. Possible sources of this failure are neural tissue motions and their interactions with stiff electrode arrays or probes fixed to the skull. To overcome these tissue motion problems, we have developed novel braided multi-electrode probes (BMEPs). By interweaving ultra-fine wires into a tubular braid structure, we obtained a highly flexible multi-electrode probe. In this thesis we described BMEP designs and how to fabricate BMEPs, and explore experiments to show the advantages of BMEPs through a mechanical compliance comparison and a chronic immunohistological comparison with single 50microm nichrome wires used as a reference electrode type. Results from the mechanical compliance test showed that the bodies of BMEPs have 4 to 21 times higher compliance than the single 50microm wire and the tethers of BMEPs were 6 to 96 times higher compliance, depending on combinations of the wire size (9.6microm or 12.7microm), the wire numbers (12 or 24), and the length of tether (3, 5 or 10 mm). Results from the immunohistological comparison showed that both BMEPs and 50microm wires anchored to the skull caused stronger tissue reactions than unanchored BMEPs and 50microm wires, and 50microm wires caused stronger tissue reactions than BMEPs. In in-vivo tests with BMEPs, we succeeded in chronic recordings from the spinal cord of freely jumping frogs and in acute recordings from the spinal cord of decerebrate rats during air stepping which was evoked by mesencephalic locomotor region (MLR) stimulation. This technology may provide a stable and reliable neural interface to spinal cord

  14. Ti@δ-MnO_2 core-shell nanowire arrays as self-supported electrodes of supercapacitors and Li ion batteries

    International Nuclear Information System (INIS)

    Zhao, Guangyu; Zhang, Dong; Zhang, Li; Sun, Kening

    2016-01-01

    Highlights: • Ti@δ-MnO_2 core-shell nanowire arrays prepared by a electrochemical method. • Remarkable rate capability as both Li ion battery and supercapacitor electrodes. • Good electronic conductivity and facilitated mass transport. - Abstract: δ-MnO_2 is a promissing electrode material of supercapacitors and Li ion batteries (LIBs) owing to its low cost, layer structure and composite valence of Mn. However, the unfavorable electronic conductivity of δ-MnO_2 restricts its rate capability in both of the two devices. Herein, a vertically standing Ti nanowire array modified with δ-MnO_2 nanoflakes is prepared by a electrodeposition method, and the electrochemical properties of Ti@δ-MnO_2 nanowire arrays in supercapacitors and LIBs are investigated. The results show that, the arrays have a capacity of 195 F g"−"1 at 1.0 A g"−"1 and can cycle more than 10000 rounds at 10 A g"−"1 as electrodes of supercapacitors. On the other hand, the arrays behave good rate capability as LIB cathodes, which can release a capacity of 70 mAh g"−"1 at 10C rate charge/discharge. We suggest that, the good electronic conductivity owing to the core-shell structure and the facilitated mass transport supplied by the array architecture are responsible for the enhanced rate performances in the two devices.

  15. Tubular lining material for pipelines having bends

    Energy Technology Data Exchange (ETDEWEB)

    Moringa, A.; Sakaguchi, Y.; Hyodo, M.; Yagi, I.

    1987-03-24

    A tubular lining material for pipelines having bends or curved portions comprises a tubular textile jacket made of warps and wefts woven in a tubular form overlaid with a coating of a flexible synthetic resin. It is applicable onto the inner surface of a pipeline having bends or curved portions in such manner that the tubular lining material with a binder onto the inner surface thereof is inserted into the pipeline and allowed to advance within the pipeline, with or without the aid of a leading rope-like elongated element, while turning the tubular lining material inside out under fluid pressure. In this manner the tubular lining material is applied onto the inner surface of the pipeline with the binder being interposed between the pipeline and the tubular lining material. The lining material is characterized in that a part of all of the warps are comprised of an elastic yarn around which, over the full length thereof, a synthetic fiber yarn or yarns have been left-and/or right-handedly coiled. This tubular lining material is particularly suitable for lining a pipeline having an inner diameter of 25-200 mm and a plurality of bends, such as gas service pipelines or house pipelines, without occurrence of wrinkles in the lining material in a bend.

  16. Numerical analysis on seismic behavior of reinforced concrete beam to concrete filled steel tubular column connections with ring-beam

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Yi., E-mail: zhaoyi091218@163.com [School of Civil and Architectural Engineering, Zhongyuan University of Technology,Zhengzhou 450000 (China); Xu, Li. Hua. [School of Civil Engineering, Wuhan University, No.8, Donghu Road, WuHan 430072 (China)

    2016-06-08

    This paper presents numerical study of the seismic behavior of reinforced concrete beam to concrete filled steel tube column connections with ring-beam. The material stress-strain relations, element type and boundary condition are selected, which are consistent with actual situation. Then the seismic behavior of this type of joint are researched by ABAQUS, and finite element analyses are conducted under cyclic loading. Its parameters are discussed including thickness of steel tubular column wall, sectional dimension of the ring-beam and strength of the core concrete. The results show that the ultimate capacity of the connections is improved with sectional dimension of the ring-beam increased. In the meanwhile, the influence on skeleton curve of the joints is slight of which included thickness of steel tubular column wall and strength of the core concrete.

  17. Coaxial fiber supercapacitor using all-carbon material electrodes.

    Science.gov (United States)

    Le, Viet Thong; Kim, Heetae; Ghosh, Arunabha; Kim, Jaesu; Chang, Jian; Vu, Quoc An; Pham, Duy Tho; Lee, Ju-Hyuck; Kim, Sang-Woo; Lee, Young Hee

    2013-07-23

    We report a coaxial fiber supercapacitor, which consists of carbon microfiber bundles coated with multiwalled carbon nanotubes as a core electrode and carbon nanofiber paper as an outer electrode. The ratio of electrode volumes was determined by a half-cell test of each electrode. The capacitance reached 6.3 mF cm(-1) (86.8 mF cm(-2)) at a core electrode diameter of 230 μm and the measured energy density was 0.7 μWh cm(-1) (9.8 μWh cm(-2)) at a power density of 13.7 μW cm(-1) (189.4 μW cm(-2)), which were much higher than the previous reports. The change in the cyclic voltammetry characteristics was negligible at 180° bending, with excellent cycling performance. The high capacitance, high energy density, and power density of the coaxial fiber supercapacitor are attributed to not only high effective surface area due to its coaxial structure and bundle of the core electrode, but also all-carbon materials electrodes which have high conductivity. Our coaxial fiber supercapacitor can promote the development of textile electronics in near future.

  18. Method of making sulfur tolerant composite cermet electrodes for solid oxide electrochemical cells

    Science.gov (United States)

    Isenberg, Arnold O.

    1989-01-01

    An electrochemical apparatus is made containing an exterior electorde bonded to the exterior of a tubular, solid, oxygen ion conducting electrolyte where the electrolyte is also in contact with an interior electrode, said exterior electrode comprising particles of an electronic conductor contacting the electrolyte, where a ceramic metal oxide coating partially surrounds the particles and is bonded to the electrolyte, and where a coating of an ionic-electronic conductive material is attached to the ceramic metal oxide coating and to the exposed portions of the particles.

  19. Multilayer core-shell structured composite paper electrode consisting of copper, cuprous oxide and graphite assembled on cellulose fibers for asymmetric supercapacitors

    Science.gov (United States)

    Wan, Caichao; Jiao, Yue; Li, Jian

    2017-09-01

    An easily-operated and inexpensive strategy (pencil-drawing-electrodeposition-electro-oxidation) is proposed to synthesize a novel class of multilayer core-shell structured composite paper electrode, which consists of copper, cuprous oxide and graphite assembled on cellulose fibers. This interesting electrode structure plays a pivotal role in providing more active sites for electrochemical reactions, facilitating ion and electron transport and shorting their diffusion pathways. This electrode demonstrates excellent electrochemical properties with a high specific capacitance of 601 F g-1 at 2 A g-1 and retains 83% of this capacitance when operated at an ultrahigh current density of 100 A g-1. In addition, a high energy density of 13.4 W h kg-1 at the power density of 0.40 kW kg-1 and a favorable cycling stability (95.3%, 8000 cycles) were achieved for this electrode. When this electrode was assembled into an asymmetric supercapacitor with carbon paper as negative electrode, the device displays remarkable electrochemical performances with a large areal capacitances (122 mF cm-2 at 1 mA cm-2), high areal energy density (10.8 μW h cm-2 at 402.5 μW cm-2) and outstanding cycling stability (91.5%, 5000 cycles). These results unveil the potential of this composite electrode as a high-performance electrode material for supercapacitors.

  20. Iatrogenic Digital Compromise with Tubular Dressings

    Directory of Open Access Journals (Sweden)

    Corre, Kenneth A

    2009-08-01

    Full Text Available Objective: This case report describes a digit amputation resulting from an improperly applied tubular dressing. The safe application of digital tubular dressings, and the rationale behind it, is detailed to raise emergency physician (EP awareness.Methods: We present a case report of a recent iatrogenic-induced digit ischemia caused by improperly applied tube gauze. We review the literature on the subject and the likely sources of poor outcomes presented. The proper application of tubular gauze dressings is then outlined.Conclusion: EPs and emergency department personnel must be educated on the safe application of tubular gauze dressings to avoid dire outcomes associated with improper applications.[WestJEM. 2009;10:190-192.

  1. Superior performance asymmetric supercapacitors based on a directly grown commercial mass 3D Co3O4@Ni(OH)2 core-shell electrode.

    Science.gov (United States)

    Tang, Chun-hua; Yin, Xuesong; Gong, Hao

    2013-11-13

    Pseudocapacitors based on fast surface Faradaic reactions can achieve high energy densities together with high power densities. Usually, researchers develop a thin layer of active materials to increase the energy density by enhancing the surface area; meanwhile, this sacrifices the mass loading. In this work, we developed a novel 3D core-shell Co3O4@Ni(OH)2 electrode that can provide high energy density with very high mass loading. Core-shell porous nanowires (Co3O4@Ni(OH)2) were directly grown on a Ni current collector as an integrated electrode/collector for the supercapacitor anode. This Co3O4@Ni(OH)2 core-shell nanoarchitectured electrode exhibits an ultrahigh areal capacitance of 15.83 F cm(-2). The asymmetric supercapacitor prototypes, assembled using Co3O4@Ni(OH)2 as the anode, reduced graphene oxide (RGO) or active carbon (AC) as the cathode, and 6 M aqueous KOH as the electrolyte, exhibit very high energy densities falling into the energy-density range of Li-ion batteries. Because of the large mass loading and high energy density, the prototypes can drive a minifan or light a bulb even though the size is very small. These results indicate that our asymmetric supercapacitors have outstanding potential in commercial applications. Systematic study and scientific understanding were carried out.

  2. Glycated hemoglobin biosensing integration formed on Au nanoparticle-dotted tubular TiO{sub 2} nanoarray

    Energy Technology Data Exchange (ETDEWEB)

    Jain, Utkarsh [Amity Institute of Nanotechnology, Amity University, Noida, 201303, Uttar Pradesh (India); Singh, Anamika [Department of Biotechnology, UIET, Kurukshetra University, Kurukshetra, 136 119, Haryana (India); Kuchhal, Naresh Kumar [Clinical Biochemistry Department, Bio-Diagnostics, Rohini, Delhi, 110085 (India); Chauhan, Nidhi, E-mail: nidhichauhan2007@rediffmail.com [Amity Institute of Nanotechnology, Amity University, Noida, 201303, Uttar Pradesh (India)

    2016-11-16

    Excessive glucose present in the blood of diabetic patients binds with the hemoglobin of red blood cells resulting in the formation of glycated hemoglobin (HbA{sub 1c}). Measurement of HbA{sub 1c} levels may help in identifying the efficacy of the ongoing treatment and hence provide a better control over the disease. In the present study, we have synthesized a sensitive and stable scaffold, which consists of Au nanoparticles (GNPs)-dotted tubular TiO{sub 2}, for the construction of an electrochemical HbA{sub 1c} biosensor. 12-phosphotungstic acid has been used as a reducer after depositing well-dispersed GNPs on TiO{sub 2} nanotubes (TiO{sub 2} NTs) and an electron mediator by accelerating the electron transfer between the conductor and protein. The fabricated electrode was characterized using scanning electron microscopy (SEM), cyclic voltammetry (CV), Fourier transform infrared spectroscopy (FTIR) and electrochemical impedance spectroscopic analysis (EIS). Biosensor exhibited low detection limit (0.5 μM), fast response time (3 s) and wide linearity (from 0.5 to 2000 μM). The working electrode was used 100 times over 4 months, when stored at 4 °C. The HbA1c biosensor was then effectively used to measure the % of HbA{sub 1c} in the blood of apparently healthy persons and diabetic patients. - Highlights: • Fabrication of a highly sensitive and stable sensing interface consisting of gold nanoparticles (GNPs) and tubular TiO2. • Biosensor exhibited low detection limit (0.5 μM). • The half life of electrode was 4 months. • Biosensor was suitable for detection of glycated hemoglobin in whole blood.

  3. Next generation self-shielded flux cored electrode with improved toughness for off shore oil well platform structures

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Daya; Soltis, Patrick; Narayanan, Badri; Quintana, Marie; Fox, Jeff [The Lincoln Electric Company (United States)

    2005-07-01

    Self-shielded flux cored arc welding electrodes (FCAW-S) are ideal for outdoor applications, particularly open fabrication yards where high winds are a possibility. Development work was carried out on a FCAW-S electrode for welding 70 and 80 ksi yield strength base materials with a required minimum average Charpy V-Notch (CVN) absorbed energy value of 35 ft-lb at -40 deg F in the weld metal. The effect of Al, Mg, Ti, and Zr on CVN toughness was evaluated by running a Design of Experiments approach to systematically vary the levels of these components in the electrode fill and, in turn, the weld metal. These electrodes were used to weld simulated pipe joints. Over the range of compositions tested, 0.05% Ti in the weld metal was found to be optimum for CVN toughness. Ti also had a beneficial effect on the usable voltage range. Simulated offshore joints were welded to evaluate the effect of base metal dilution, heat input, and welding procedure on the toughness of weld metal. CVN toughness was again measured at -40 deg F on samples taken from the root and the cap pass regions. The root pass impact toughness showed strong dependence on the base metal dilution and the heat input used to weld the root and fill passes. (author)

  4. Continuous API-crystal coating via coacervation in a tubular reactor.

    Science.gov (United States)

    Besenhard, M O; Thurnberger, A; Hohl, R; Faulhammer, E; Rattenberger, J; Khinast, J G

    2014-11-20

    We present a proof-of-concept study of a continuous coating process of single API crystals in a tubular reactor using coacervation as a microencapsulation technique. Continuous API crystal coating can have several advantages, as in a single step (following crystallization) individual crystals can be prepared with a functional coating, either to change the release behavior, to protect the API from gastric juice or to modify the surface energetics of the API (i.e., to tailor the hydrophobic/hydrophilic characteristics, flowability or agglomeration tendency, etc.). The coating process was developed for the microencapsulation of a lipophilic core material (ibuprofen crystals of 20 μm- to 100 μm-size), with either hypromellose phthalate (HPMCP) or Eudragit L100-55. The core material was suspended in an aqueous solution containing one of these enteric polymers, fed into the tubing and mixed continuously with a sodium sulfate solution as an antisolvent to induce coacervation. A subsequent temperature treatment was applied to optimize the microencapsulation of crystals via the polymer-rich coacervate phase. Cross-linking of the coating shell was achieved by mixing the processed material with an acidic solution (pH<3). Flow rates, temperature profiles and polymer-to-antisolvent ratios had to be tightly controlled to avoid excessive aggregation, leading to pipe plugging. This work demonstrates the potential of a tubular reactor design for continuous coating applications and is the basis for future work, combining continuous crystallization and coating. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Manufacturing process and electrode properties of palladium-electroded ionic polymer–metal composite

    International Nuclear Information System (INIS)

    Chang, Longfei; Chen, Hualing; Zhu, Zicai; Li, Bo

    2012-01-01

    This paper primarily focuses on the manufacturing process of palladium-electroded ionic polymer–metal composite (IPMC). First, according to the special properties of Pd, many experiments were done to determine several specific procedures, including the addition of a reducing agent and the time consumed. Subsequently, the effects of the core manufacturing steps on the electrode morphology were revealed by scanning electron microscopy studies of 22 IPMC samples treated with different combinations of manufacturing steps. Finally, the effects of electrode characteristics on the electromechanical properties, including the sheet resistivity, the elastic modulus and the electro-active performance, of IPMCs were evaluated experimentally and analyzed according to the electrode morphology. (paper)

  6. Sistema automático para determinação seqüencial de cianeto livre e total empregando eletrodo tubular íon-seletivo de membrana homogênea

    Directory of Open Access Journals (Sweden)

    Marin Maria Angélica Bonadiman

    2000-01-01

    Full Text Available This study presents an automated system for potentiometric determination of free and total cyanide which employs a homogeneous membrane tubular ion-selective electrode. After the electrode is assembled, it is connected to a system composed of 3 three-way solenoid valves, sample line, carrier line, acid stream, and gas diffusion chamber. A Turbo Pascal® computer program, developed specifically for this task, automatically performs all the steps involved in data acquisition and processing. The proposed analytical procedure offers operational simplicity, since detection is performed by a tubular electrode, whose assembly is fast and easy. The system has shown reproducibility (r.s.d. < 0.5%, n=6 and high speed (30 readings/hour; it is efficient for determination of free and total cyanide in waste waters of starch processing plants. The detection limit was 1.2x10-5 and 1.5x10-5 mol L-1, for determination of free and total cyanide, respectively. The linear response range was between 1.2x10-5 and 1.0x10-2 mol L-1 for free cyanide and between 1.5x10-5 and 1.0x10-2 for total cyanide.

  7. Drill pipes and casings utilizing multi-conduit tubulars

    Energy Technology Data Exchange (ETDEWEB)

    Curlett, H.B.

    1989-01-24

    A seal adapted for use with a multi-conduit well tubular, or the like, is described which consists of: a plate with fluid passages, each passage corresponding to an opening of a conduit of the multiconduit tubular, and a groove on the plate around each passage; and elastomer means partially embeddable into each groove for sealing each conduit of a tubular to a corresponding conduit of another similar tubular.

  8. Monodisperse MnO2@NiCo2O4 core/shell nanospheres with highly opened structures as electrode materials for good-performance supercapacitors

    Science.gov (United States)

    Zhou, You; Ma, Li; Gan, Mengyu; Ye, Menghan; Li, Xiurong; Zhai, Yanfang; Yan, Fabing; Cao, Feifei

    2018-06-01

    The monodisperse MnO2@NiCo2O4 core/shell nanospheres for good-performance supercapacitors are designed and synthesized by a two-step solution-based method and a simple post annealing process. In the composite, both MnO2 (the "core") and NiCo2O4 (the "shell") are formed by the accumulation of nanoflakes. Thus, nearly all the core/shell nanoflakes are highly opened and accessible to electrolyte, making them give full play to the Faradaic reaction. Our results demonstrate that the composite electrode exhibits desirable pseudocapacitive behaviors with higher specific capacitance (1127.27 F g-1 at a current density of 1 A g-1), better rate capability (81.0% from 1 to 16 A g-1) and superior cycling stability (actually 126.8% capacitance retention after 1000 cycles and only 3.7% loss after 10,000 cycles at 10 A g-1) in 3 M KOH aqueous solution. Moreover, it offers the excellent specific energy density of 26.6 Wh kg-1 at specific power density of 800 W kg-1. The present MnO2@NiCo2O4 core/shell nanospheres with remarkable electrochemical properties are considered as potential electrode materials for the next generation supercapacitors.

  9. Optimization Study of Shaft Tubular Turbine in a Bidirectional Tidal Power Station

    Directory of Open Access Journals (Sweden)

    Xinfeng Ge

    2013-01-01

    Full Text Available The shaft tubular turbine is a form of tidal power station which can provide bidirectional power. Efficiency is an important turbine performance indicator. To study the influence of runner design parameters on efficiency, a complete 3D flow-channel model of a shaft tubular turbine was developed, which contains the turbine runner, guide vanes, and flow passage and was integrated with hybrid grids calculated by steady-state calculation methods. Three aspects of the core component (turbine runner were optimized by numerical simulation. All the results were then verified by experiments. It was shown that curved-edge blades are much better than straight-edge blades; the optimal blade twist angle is 7°, and the optimal distance between the runner and the blades is 0.75–1.25 times the diameter of the runner. Moreover, the numerical simulation results matched the experimental data very well, which also verified the correctness of the optimal results.

  10. Performance improvement of the circular tubular PEMFC by using different architectures and number of layers

    International Nuclear Information System (INIS)

    Mohammadi-Ahmar, Akbar; Osanloo, Behzad; Solati, Ali; Ghasemi, Jalal

    2016-01-01

    Highlights: • A full three-dimensional model was developed for cylindrical PEMFC. • CFD study on reactants distribution, current density and final power was performed. • Five cylindrical configurations were investigated (CP, C2C, C4C, C6C and C8C). - Abstract: The effects of arrangement and number of Membrane, Catalyst layer (CL) and Gas Diffusion layer (GDL) is investigated in present study. A full three-dimensional model was developed for tubular shaped PEMFC and the distribution of reactant concentration along anode and cathode channels, current density, power consumption and production were studied through computational Fluid dynamics (CFD). In order to do so, five arrangements of the tubular-shaped PEMFC namely: circular peripheral (CP), circular with two channels (C2C), circular with four channels (C4C), circular with six channels (C6C) and circular with eight channels (C8C) are presented. Comparison was made for new arrangements of layers, for the same active area and input mass flow in the anode and cathode. The results of polarization curve and power density shows that via increasing the number of layers, and thereby reducing the length of the fuel cell, more reactants are consumed along the tubular-shaped PEMFC. Among the five new arrangements, the CP case due to having high flow velocity for the same flow rate, has lower consumption along the channel and demonstrates undesirable results. Also in the dual-channel case (C2C) the core of the reacting flow is far from the reaction location (i.e. CL) therefor showed the lowest consumption and thus lowest power density. Whereas the eight-channel (C8C) configuration because of the appropriate distance between Membrane, CL and GDL layers and the core of the flow, increases the power output and reduces the cost, simultaneously due to shortest length in comparison to other cases. The results of present study can be employed for the manufacturing of new tubular-shaped PEMFC.

  11. Hierarchical top-porous/bottom-tubular TiO 2 nanostructures decorated with Pd nanoparticles for efficient photoelectrocatalytic decomposition of synergistic pollutants

    KAUST Repository

    Zhang, Zhonghai

    2012-02-22

    In this paper, top-porous and bottom-tubular TiO 2 nanotubes (TiO 2 NTs) loaded with palladium nanoparticles (Pd/TiO 2 NTs) were fabricated as an electrode for an enhanced photoelectrocatalytic (PEC) activity toward organic dye decomposition. TiO 2 NTs with a unique hierarchical top-porous and bottom-tubular structure were prepared by a facile two-step anodization method and Pd nanoparticles were decorated onto the TiO 2 NTs via a photoreduction process. The PEC activity of Pd/TiO 2 NTs was investigated by decomposition of methylene blue (MB) and Rhodamine B (RhB). Because of formation Schottky junctions between TiO 2 and Pd, which significantly promoted the electron transfer and reduced the recombination of photogenerated electrons and holes, the Pd/TiO 2 NT electrode showed significantly higher PEC activities than TiO 2 NTs. Interestingly, an obvious synergy between two dyes was observed and corresponding mechanism based on facilitated transfer of electrons and holes as a result of a suitable energy level alignment was suggested. The findings of this work provide a fundamental insight not only into the fabrication but also utility of Schottky junctions for enhanced environmental remediation processes. © 2012 American Chemical Society.

  12. Investigation on power discharge in micro-EDM stainless steel drilling using different electrodes

    Energy Technology Data Exchange (ETDEWEB)

    D' Urso, G.; Maccarini, G.; Quarto, M.; Ravasio, C. [University of Bergamo, Bergamo (Italy)

    2015-10-15

    The present work deals with the execution of through micro-holes on stainless steel plates using a micro-EDM (Electrical discharge machining) machine. The investigation focuses on the influence of different electrodes' materials and power discharge on both the process performance and the dimensional characteristics of the holes. The experimental campaign was carried out by varying peak current and voltage in order to achieve both high and low power discharge conditions. Tubular electrodes made of three different materials (tungsten carbide, brass and copper) were used. The indexes taken into account were Material removal rate (MRR), Tool wear ratio (TWR), Diametral overcut (DOC) and Taper rate (TR). Brass and copper electrodes always resulted to be the best solution in terms of drilling speed even though the wear of these electrode types is remarkable higher than the tungsten one. On the opposite, tungsten carbide electrodes resulted to be the best solution when high dimensional and geometrical precision is required. Concerning the finishing of the hole inner surface, the best results were achieved using tungsten carbide electrode.

  13. Investigation on power discharge in micro-EDM stainless steel drilling using different electrodes

    International Nuclear Information System (INIS)

    D'Urso, G.; Maccarini, G.; Quarto, M.; Ravasio, C.

    2015-01-01

    The present work deals with the execution of through micro-holes on stainless steel plates using a micro-EDM (Electrical discharge machining) machine. The investigation focuses on the influence of different electrodes' materials and power discharge on both the process performance and the dimensional characteristics of the holes. The experimental campaign was carried out by varying peak current and voltage in order to achieve both high and low power discharge conditions. Tubular electrodes made of three different materials (tungsten carbide, brass and copper) were used. The indexes taken into account were Material removal rate (MRR), Tool wear ratio (TWR), Diametral overcut (DOC) and Taper rate (TR). Brass and copper electrodes always resulted to be the best solution in terms of drilling speed even though the wear of these electrode types is remarkable higher than the tungsten one. On the opposite, tungsten carbide electrodes resulted to be the best solution when high dimensional and geometrical precision is required. Concerning the finishing of the hole inner surface, the best results were achieved using tungsten carbide electrode.

  14. Development of Partial Tubular Flat Knitting Fabric Composite Preform

    Directory of Open Access Journals (Sweden)

    Jiang Wei Qing

    2016-01-01

    Full Text Available After building some structures of partial tubular flat knitting fabric composite preform, the influencing factor on tubular section was analyzed and the fabric was knitted selectively. The partial tubular flat knitting fabric composite preform were Knitted by changing different yarn, row number and two-sided partial tubular flat knitting fabric. Multilayer sheet would be got after hot pressing and it has big market prospects and good application value.

  15. Reliability Analysis of Tubular Joints in Offshore Structures

    DEFF Research Database (Denmark)

    Thoft-Christensen, Palle; Sørensen, John Dalsgaard

    1987-01-01

    Reliability analysis of single tubular joints and offshore platforms with tubular joints is" presented. The failure modes considered are yielding, punching, buckling and fatigue failure. Element reliability as well as systems reliability approaches are used and illustrated by several examples....... Finally, optimal design of tubular.joints with reliability constraints is discussed and illustrated by an example....

  16. Drill pipes and casings utilizing multi-conduit tubular; Flerkanals roerstreng

    Energy Technology Data Exchange (ETDEWEB)

    Curlett, H.B.

    1997-04-23

    The invention relates to a multi-conduit tubular having fluid conduits and electrical conduits, with associated surface fluid and electrical commutators, and downhole sensors for providing surface monitors with instantaneous formation data. Each tubular includes a plurality of uniform linear conduits there through, with a gasket seal plate interposed between joined tubular for assuring a high pressure seal between joined conduits. the seal plate includes an intermediate electrical connector for connecting electrical conduit connectors of one tubular to another. A coupling collar with uniform diameter internal coarse and fine threads joins the tubular ends having similar threads by differential thread action without respective tubular rotation. Each tubular end includes an inter-engaging index recess and index lug, and drive recesses and lugs for maintaining angular registry of the tubular string and for driving one drill tubular with another. A fluid commutator includes a rotating shaft with passages connected to the tubular conduits, and rotating in a manifold having annular grooves in communication with the shaft passages and external fluid sources. An adaptor couples each commutator shaft passage to one or more tubular conduits. Slip rings on a quill shaft and stationary brush means provide electrical continuity from the electrical conduit wires to surface equipment. A cross-over sub includes formation parameter sensors and telemetry equipment in a blocked off portion of a fluid conduit. An annular accumulator connected with the well bore annulus applies a pressure thereto in response to downhole sensors to change the effective density of the drill mud. The multi-conduit tubular is further adapted for use as a well casing to provide downhole access of a plurality of fluids and electrical parameter sensors. 28 figs.

  17. Nitrogen-doped amorphous carbon-silicon core-shell structures for high-power supercapacitor electrodes.

    Science.gov (United States)

    Tali, S A Safiabadi; Soleimani-Amiri, S; Sanaee, Z; Mohajerzadeh, S

    2017-02-10

    We report successful deposition of nitrogen-doped amorphous carbon films to realize high-power core-shell supercapacitor electrodes. A catalyst-free method is proposed to deposit large-area stable, highly conformal and highly conductive nitrogen-doped amorphous carbon (a-C:N) films by means of a direct-current plasma enhanced chemical vapor deposition technique (DC-PECVD). This approach exploits C 2 H 2 and N 2 gases as the sources of carbon and nitrogen constituents and can be applied to various micro and nanostructures. Although as-deposited a-C:N films have a porous surface, their porosity can be significantly improved through a modification process consisting of Ni-assisted annealing and etching steps. The electrochemical analyses demonstrated the superior performance of the modified a-C:N as a supercapacitor active material, where specific capacitance densities as high as 42 F/g and 8.5 mF/cm 2 (45 F/cm 3 ) on silicon microrod arrays were achieved. Furthermore, this supercapacitor electrode showed less than 6% degradation of capacitance over 5000 cycles of a galvanostatic charge-discharge test. It also exhibited a relatively high energy density of 2.3 × 10 3  Wh/m 3 (8.3 × 10 6  J/m 3 ) and ultra-high power density of 2.6 × 10 8  W/m 3 which is among the highest reported values.

  18. Stem cell factor expression after renal ischemia promotes tubular epithelial survival.

    Directory of Open Access Journals (Sweden)

    Geurt Stokman

    Full Text Available BACKGROUND: Renal ischemia leads to apoptosis of tubular epithelial cells and results in decreased renal function. Tissue repair involves re-epithelialization of the tubular basement membrane. Survival of the tubular epithelium following ischemia is therefore important in the successful regeneration of renal tissue. The cytokine stem cell factor (SCF has been shown to protect the tubular epithelium against apoptosis. METHODOLOGY/PRINCIPAL FINDINGS: In a mouse model for renal ischemia/reperfusion injury, we studied how expression of c-KIT on tubular epithelium and its ligand SCF protect cells against apoptosis. Administration of SCF specific antisense oligonucleotides significantly decreased specific staining of SCF following ischemia. Reduced SCF expression resulted in impaired renal function, increased tubular damage and increased tubular epithelial apoptosis, independent of inflammation. In an in vitro hypoxia model, stimulation of tubular epithelial cells with SCF activated survival signaling and decreased apoptosis. CONCLUSIONS/SIGNIFICANCE: Our data indicate an important role for c-KIT and SCF in mediating tubular epithelial cell survival via an autocrine pathway.

  19. Nanostructured core-shell electrode materials for electrochemical capacitors

    Science.gov (United States)

    Jiang, Long-bo; Yuan, Xing-zhong; Liang, Jie; Zhang, Jin; Wang, Hou; Zeng, Guang-ming

    2016-11-01

    Core-shell nanostructure represents a unique system for applications in electrochemical energy storage devices. Owing to the unique characteristics featuring high power delivery and long-term cycling stability, electrochemical capacitors (ECs) have emerged as one of the most attractive electrochemical storage systems since they can complement or even replace batteries in the energy storage field, especially when high power delivery or uptake is needed. This review aims to summarize recent progress on core-shell nanostructures for advanced supercapacitor applications in view of their hierarchical architecture which not only create the desired hierarchical porous channels, but also possess higher electrical conductivity and better structural mechanical stability. The core-shell nanostructures include carbon/carbon, carbon/metal oxide, carbon/conducting polymer, metal oxide/metal oxide, metal oxide/conducting polymer, conducting polymer/conducting polymer, and even more complex ternary core-shell nanoparticles. The preparation strategies, electrochemical performances, and structural stabilities of core-shell materials for ECs are summarized. The relationship between core-shell nanostructure and electrochemical performance is discussed in detail. In addition, the challenges and new trends in core-shell nanomaterials development have also been proposed.

  20. Estimation of cerium and lanthanum content in core material of high intensity carbon arc electrodes by x-ray fluorescence method

    International Nuclear Information System (INIS)

    Nagpal, K.C.; Bhavalkar, R.H.

    1977-01-01

    The X-ray fluorescence method has been used to determine the weight percentages of cerium and lanthanum in the core material of high intensity carbon arc electrodes from the calibration curves plotted between the weight percentages of these elements and the peak-intensity ratios of CeLsub(α1), and LaLsub(α1) peaks to the neighbouring peak SnLsub(α1) due to an internal standard element. (author)

  1. A CFD analysis of transport phenomena and electrochemical reactions in a tubular-shaped PEM fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Sadiq Al-Baghdadi, Maher A.R. [Fuel Cell Research Center, International Energy and Environment Foundation, Al-Najaf, P.O.Box 39 (Iraq)

    2013-07-01

    A fuel cell is most interesting new power source because it solves not only the environment problem but also natural resource exhaustion problem. CFD modeling and simulation for heat and mass transport in PEM fuel cells are being used extensively in researches and industrial applications to gain better understanding of the fundamental processes and to optimize fuel cell designs before building a prototype for engineering application. In this research, full three-dimensional, non-isothermal computational fluid dynamics model of a tubular-shaped proton exchange membrane (PEM) fuel cell has been developed. This comprehensive model accounts for the major transport phenomena such as convective and diffusive heat and mass transfer, electrode kinetics, transport and phase-change mechanism of water, and potential fields in a tubular-shaped PEM fuel cell. The model explains many interacting, complex electrochemical, and transport phenomena that cannot be studied experimentally. Three-dimensional results of the species profiles, temperature distribution, potential distribution, and local current density distribution are presented and analysed, with the focus on the physical insight and fundamental understanding.

  2. Three-dimensional electrodes for dye-sensitized solar cells: synthesis of indium-tin-oxide nanowire arrays and ITO/TiO2 core-shell nanowire arrays by electrophoretic deposition

    International Nuclear Information System (INIS)

    Wang, H-W; Ting, C-F; Hung, M-K; Chiou, C-H; Liu, Y-L; Liu Zongwen; Ratinac, Kyle R; Ringer, Simon P

    2009-01-01

    Dye-sensitized solar cells (DSSCs) show promise as a cheaper alternative to silicon-based photovoltaics for specialized applications, provided conversion efficiency can be maximized and production costs minimized. This study demonstrates that arrays of nanowires can be formed by wet-chemical methods for use as three-dimensional (3D) electrodes in DSSCs, thereby improving photoelectric conversion efficiency. Two approaches were employed to create the arrays of ITO (indium-tin-oxide) nanowires or arrays of ITO/TiO 2 core-shell nanowires; both methods were based on electrophoretic deposition (EPD) within a polycarbonate template. The 3D electrodes for solar cells were constructed by using a doctor-blade for coating TiO 2 layers onto the ITO or ITO/TiO 2 nanowire arrays. A photoelectric conversion efficiency as high as 4.3% was achieved in the DSSCs made from ITO nanowires; this performance was better than that of ITO/TiO 2 core-shell nanowires or pristine TiO 2 films. Cyclic voltammetry confirmed that the reaction current was significantly enhanced when a 3D ITO-nanowire electrode was used. Better separation of charge carriers and improved charge transport, due to the enlarged interfacial area, are thought to be the major advantages of using 3D nanowire electrodes for the optimization of DSSCs.

  3. Polypyrrole shell@3D-Ni metal core structured electrodes for high-performance supercapacitors.

    Science.gov (United States)

    Chen, Gao-Feng; Su, Yu-Zhi; Kuang, Pan-Yong; Liu, Zhao-Qing; Chen, Dao-Yi; Wu, Xu; Li, Nan; Qiao, Shi-Zhang

    2015-03-16

    Three-dimensional (3D) nanometal films serving as current collectors have attracted much interest recently owing to their promising application in high-performance supercapacitors. In the process of the electrochemical reaction, the 3D structure can provide a short diffusion path for fast ion transport, and the highly conductive nanometal may serve as a backbone for facile electron transfer. In this work, a novel polypyrrole (PPy) shell@3D-Ni-core composite is developed to enhance the electrochemical performance of conventional PPy. With the introduction of a Ni metal core, the as-prepared material exhibits a high specific capacitance (726 F g(-1) at a charge/discharge rate of 1 A g(-1)), good rate capability (a decay of 33% in Csp with charge/discharge rates increasing from 1 to 20 A g(-1)), and high cycle stability (only a small decrease of 4.2% in Csp after 1000 cycles at a scan rate of 100 mV s(-1)). Furthermore, an aqueous symmetric supercapacitor device is fabricated by using the as-prepared composite as electrodes; the device demonstrates a high energy density (≈21.2 Wh kg(-1)) and superior long-term cycle ability (only 4.4% and 18.6% loss in Csp after 2000 and 5000 cycles, respectively). © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Immobilization of Ni-Pd/core-shell nanoparticles through thermal polymerization of acrylamide on glassy carbon electrode for highly stable and sensitive glutamate detection.

    Science.gov (United States)

    Yu, Huicheng; Ma, Zhenzhen; Wu, Zhaoyang

    2015-10-08

    The preparation of a persistently stable and sensitive biosensor is highly important for practical applications. To improve the stability and sensitivity of glutamate sensors, an electrode modified with glutamate dehydrogenase (GDH)/Ni-Pd/core-shell nanoparticles was developed using the thermal polymerization of acrylamide (AM) to immobilize the synthesized Ni-Pd/core-shell nanoparticles onto a glassy carbon electrode (GCE). The modified electrode was characterized by scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectroscopy, cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS). Electrochemical data showed that the prepared biosensor had remarkably enhanced electrocatalytic activity toward glutamate. Moreover, superior reproducibility and excellent stability were observed (relative average deviation was 2.96% after continuous use of the same sensor for 60 times, and current responses remained at 94.85% of the initial value after 60 d). The sensor also demonstrated highly sensitive amperometric detection of glutamate with a low limit of detection (0.052 μM, S/N = 3), high sensitivity (4.768 μA μM(-1) cm(-2)), and a wide, useful linear range (0.1-500 μM). No interference from potential interfering species such as l-cysteine, ascorbic acid, and l-aspartate were noted. The determination of glutamate levels in actual samples achieved good recovery percentages. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Thermal CFD Analysis of Tubular Light Guides

    Directory of Open Access Journals (Sweden)

    Ondřej Šikula

    2013-12-01

    Full Text Available Tubular light guides are applicable for daylighting of windowless areas in buildings. Despite their many positive indoor climate aspects they can also present some problems with heat losses and condensation. A computer CFD model focused on the evaluation of temperature distribution and air flow inside tubular light guides of different dimensions was studied. The physical model of the tested light guides of lengths more than 0.60 m proves shows that Rayleigh numbers are adequate for a turbulent air flow. The turbulent model was applied despite the small heat flux differences between the turbulent and laminar model. The CFD simulations resulted into conclusions that the growing ratio of length/diameter increases the heat transmission loss/linear transmittance as much as by 50 percent. Tubular light guides of smaller diameters have lower heat transmission losses compared to the wider ones of the same lengths with the same outdoor temperature being taken into account. The simulation results confirmed the thermal bridge effect of the tubular light guide tube inside the insulated flat roof details. The thermal transmittance of the studied light guides in the whole roof area was substituted with the point thermal bridges. This substitution gives possibility for simple thermal evaluation of the tubular light pipes in roof constructions.

  6. Luminal nucleotides are tonic inhibitors of renal tubular transport

    DEFF Research Database (Denmark)

    Leipziger, Jens Georg

    2011-01-01

    PURPOSE OF REVIEW: Extracellular ATP is an essential local signaling molecule in all organ systems. In the kidney, purinergic signaling is involved in an array of functions and this review highlights those of relevance for renal tubular transport. RECENT FINDINGS: Purinergic receptors are express...... discovered as an important signaling compartment in which local purinergic signaling determines an inhibitory tone for renal tubular transport. Blocking components of this system leads to tubular hyper-absorption, volume retention and elevated blood pressure.......PURPOSE OF REVIEW: Extracellular ATP is an essential local signaling molecule in all organ systems. In the kidney, purinergic signaling is involved in an array of functions and this review highlights those of relevance for renal tubular transport. RECENT FINDINGS: Purinergic receptors are expressed...... in all renal tubular segments and their stimulation generally leads to transport inhibition. Recent evidence has identified the tubular lumen as a restricted space for purinergic signaling. The concentrations of ATP in the luminal fluids are sufficiently high to inflict a tonic inhibition of renal...

  7. Real-Time Intracellular Measurements of ROS and RNS in Living Cells with Single Core-Shell Nanowire Electrodes.

    Science.gov (United States)

    Zhang, Xin-Wei; Qiu, Quan-Fa; Jiang, Hong; Zhang, Fu-Li; Liu, Yan-Lin; Amatore, Christian; Huang, Wei-Hua

    2017-10-09

    Nanoelectrodes allow precise and quantitative measurements of important biological processes at the single living-cell level in real time. Cylindrical nanowire electrodes (NWEs) required for intracellular measurements create a great challenge for achieving excellent electrochemical and mechanical performances. Herein, we present a facile and robust solution to this problem based on a unique SiC-core-shell design to produce cylindrical NWEs with superior mechanical toughness provided by the SiC nano-core and an excellent electrochemical performance provided by the ultrathin carbon shell that can be used as such or platinized. The use of such NWEs for biological applications is illustrated by the first quantitative measurements of ROS/RNS in individual phagolysosomes of living macrophages. As the shell material can be varied to meet any specific detection purpose, this work opens up new opportunities to monitor quantitatively biological functions occurring inside cells and their organelles. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Method of bonding a conductive layer on an electrode of an electrochemical cell

    Science.gov (United States)

    Bowker, Jeffrey C.; Singh, Prabhakar

    1989-01-01

    A dense, electronically conductive interconnection layer 26 is bonded onto a porous, tubular, electronically conductive air electrode structure 16, optionally supported by a ceramic support 22, by (A) providing an air electrode surface, (B) forming on a selected portion of the electrode surface 24, without the use of pressure, particles of LaCrO.sub.3 doped with an element selected from the group consisting of Sr, Mg, Ca, Ba, Co, and mixtures thereof, where the particles have a deposit on their surface comprising calcium oxide and chromium oxide; (C) heating the particles with the oxide surface deposit in an oxidizing atmosphere at from 1,300.degree. C. to 1,550.degree. C., without the application of pressure, to provide a dense, sintered, interconnection material 26 bonded to the air electrode 16, where calcium and chromium from the surface deposit are incorporated into the structure of the LaCrO.sub.3. A solid electrolyte layer 18 can be applied to the uncovered portion of the air electrode, and a fuel electrode 20 can be applied to the solid electrolyte, to provide an electrochemical cell 10.

  9. Electrolyte composition of renal tubular cells in gentamicin nephrotoxicity

    International Nuclear Information System (INIS)

    Matsuda, O.; Beck, F.X.; Doerge, A.T.; Thurau, K.

    1988-01-01

    The effect of long-term gentamicin administration on sodium, potassium, chloride and phosphorus concentrations was studied in individual rat renal tubular cells using electron microprobe analysis. Histological damage was apparent only in proximal tubular cells. The extent of damage was only mild after 7 days of gentamicin administration (60 mg/kg body wt/day) but much more pronounced after 10 days. GFR showed a progressive decline during gentamicin treatment. In non-necrotic proximal tubular cells, sodium was increased from 14.6 +/- 0.3 (mean +/- SEM) in controls to 20.6 +/- 0.4 after 7 and 22.0 +/- 0.8 mmol/kg wet wt after 10 days of gentamicin administration. Chloride concentration was higher only after 10 days (20.6 +/- 0.6 vs. 17.3 +/- 0.2 mmol/kg wet wt). Both cell potassium and phosphorus concentrations were diminished by 6 and 15, and by 8 and 25 mmol/kg wet wt after 7 and 10 days of treatment, respectively. In contrast, no major alterations in distal tubular cell electrolyte concentrations could be observed after either 7 or 10 days of gentamicin administration. As in proximal tubular cells, distal tubular cell phosphorus concentrations were, however, lowered by gentamicin treatment. These results clearly indicate that gentamicin exerts its main effect on proximal tubular cells. Decreased potassium and increased sodium and chloride concentrations were observed in proximal tubular cells exhibiting only mild histological damage prior to the onset of advanced tissue injury. Necrotic cells, on the other hand, showed widely variable intracellular electrolyte concentration patterns

  10. High power nickel - cadmium cells with fiber electrodes (FNC)

    International Nuclear Information System (INIS)

    Haschka, F.; Schlieck, D.

    1986-01-01

    Nickel cadmium batteries differ greatly in their mechanical design and construction of the electrodes. Using available electrode constructions, batteries are designed which meet the requirements of specific applications and offer optimum performance. Pocket- and tubular cells are basically developed with the technology of the year 1895. Since then some improvements with todays technology have been made. The sintered cells use the technology of the 1930's and they are still limited to high power application. With this knowledge and the technology of today the fiber-structured nickel electrode (FNC) was developed at DAUG laboratory, a subsidiary company of Mercedes-Benz and Volkswagen. After ten years of experience in light weight prototype batteries for electric vehicles (1-2), the system was brought into production by a new company, DAUG-HOPPECKE. Characteristics of fiber electrodes: thickness and size can be easily changed; pure active materials are used; high conductor density; high elasticity of the structure; high porosity. Since 1983 NiCd-batteries with fiber-structured nickel electrodes (FNC) have been in production. Starting with the highly demanded cell-types for low, medium and high performance called L, M and H according to IEC 623 for low, medium and high performance applications, the program was recently completed with the X-type cell for very high power, as an alternative to sintered cells

  11. Study of technological features of tubular compressed concrete members in concreting

    Directory of Open Access Journals (Sweden)

    Voskobiinyk Olena

    2017-01-01

    Full Text Available The technological features of core concreting were analyzed as the main factor in ensuring of strength and reliability of compressed concrete-filled steel tubular (CFST members. We have conducted the analysis of existing concreting methods of CFST members. In this respect, the most dangerous types of possible technological defects of concrete core of CFST members are inhomogeneity along the height, voids, caverns, and concrete “weak spots”. The authors considered the influence of such technological factors of concreting: placeability, time, concrete mixture compaction method, concreting height on the concrete core strength of CFST members. Based on the experimental studies conducted we suggested the regression correlations for determining the concrete strength of CFST members of different length depending on the movability of concrete mixture and a time for its compaction. The authors performed the correlation analysis of technological factors of concreting on the strength of the concrete core. We carried out the comparison of data on the concrete core strength of CFST members, that were determined by non-destructive methods (sclerometer test results, ultrasonic method and direct compression strength tests. We experimentally proved that using movable mixtures with the slump of about 4 – 9 cm the overall variation coefficient of concrete core strength of CFST members along the height reaches nearly 13%. Based on the experimental studies conducted we suggested the guidelines on optimal regimes of concrete compaction during manufacturing CFST members at a construction site environment.

  12. Solar Heating Systems with Evacuated Tubular Solar Collector

    DEFF Research Database (Denmark)

    Qin, Lin; Furbo, Simon

    1998-01-01

    Recently different designed evacuated tubular solar collectors were introduced on the market by different Chinese companies. In the present study, investigations on the performance of four different Chinese evacuated tubular collectors and of solar heating systems using these collectors were...... carried out, employing both laboratory test and theoretical calculations. The collectors were tested in a small solar domestic hot water (SDHW) system in a laboratory test facility under realistic conditions. The yearly thermal performance of solar heating systems with these evacuated tubular collectors......, as well as with normal flat-plate collectors was calculated under Danish weather conditions. It is found that, for small SDHW systems with a combi tank design, an increase of 25% -55% net utilized solar energy can be achieved by using these evacuated tubular collectors instead of normal flat...

  13. Electrode for welding steel for WWER-1000 reactor pressure vessel

    International Nuclear Information System (INIS)

    Lakatos, L.

    Of two types of electrodes, ie., with an alloyed core and with an unalloyed core, an electrode was chosen consisting of a basic coat and an unalloyed core. Fluctuations are shown of shear strength, tensile strenght and contraction with the welding mode and annealing temperature. It was found that pre-heating to 250 and 350 degC, respectively, was most suitable for welding a pressure vessel manufactured from material designated SKODA A3/II. Annealing aimed at removing stress was chosen at 650 to 700 degC. (H.S.)

  14. Tubular closure device

    International Nuclear Information System (INIS)

    Klahn, F.C.; Nolan, J.H.; Wills, C.

    1982-01-01

    This invention relates to a closure mechanism for closing openings such as the bore of a conduit and for releasably securing members within the bore. More particularly, this invention relates to a closure mechanism for tubular irradiation surveillance specimen assembly holders used in nuclear reactors

  15. Perfis tubulares : aspectos arquitetônicos e estruturais.

    OpenAIRE

    Gerken, Fernanda de Sousa

    2003-01-01

    Programa de Pós Graduação em Engenharia Civil. Departamento de Engenharia Civil, Escola de Minas, Universidade Federal de Ouro Preto. O presente trabalho tem como objetivo apresentar uma visão geral da utilização das estruturas tubulares no contexto da evolução das estruturas metálicas em geral, com destaque para o estudo de obras que mostram o estado da arte da construção tubular no Brasil. A utilização dos perfis tubulares estruturais é abordada tanto do ponto de vista da ...

  16. Ranitidine has no influence on tubular creatinine secretion

    NARCIS (Netherlands)

    van den Berg, J. G.; Koopman, M. G.; Arisz, L.

    1996-01-01

    Oral cimetidine competitively inhibits tubular secretion of creatinine. We investigated the potential of oral ranitidine, a comparable H2-receptor antagonist, to block tubular creatinine secretion. In 10 healthy subjects, clearances of inulin and endogenous creatinine were simultaneously measured

  17. SOFC mini-tubulares basadas en YSZ

    Directory of Open Access Journals (Sweden)

    Campana, R.

    2008-08-01

    Full Text Available Tubular SOFC have the advantage over planar SOFC of the low temperature sealing and more resistance to thermal shock. On the other hand the volumetric power density of tubular Fuel Cells goes with the inverse of the tube diameter which added to the faster warm-up kinetics makes low diameter tubular SOFC favorable for low power applications. Anode supported tubular SOFC of 3mm diameter and 150 mm length with YSZ electrolyte were fabricated and tested by V-I measurements using H2-Ar (5, 10, 100 vol% as fuel and air for the cathode. The NiO-YSZ tubes of about 400 μm thickness were produced by hydrostatic pressure and then coated with an YSZ film of 15-20 μm. The electrolyte was deposited using a manual aerograph. After sintering either Pt paste or LSF (with YSZ or SDC coatings of about 20-50 μm thickness were deposited for the cathode. The OCV of the cells were excellent, very close to the expected Nernst law prediction indicating that there were not gas leaks. The maximun electrical power of the cell was near to 500mW/cm2 at 850ºC operation temperature. Complex impedance measurements of the cells were performed in order to determine the resistance of the different cell components.

    La principal ventaja de las SOFC tubulares frente a las planares es el sellado de la cámara anódica y catódica a bajas temperaturas. Además la densidad de energía volumétrica de las pilas tubulares es inversamente proporcional al diámetro del tubo, que añadido a los tiempos cortos de encendido y apagado hacen que las mini-tubulares sean interesantes para usos de baja potencia. Se han fabricado y caracterizado SOFC tubulares soportadas en ánodo de 3mm de diámetro y de 150 mm de longitud, 400μm de espesor, con electrolito de YSZ depositado por spray de 15-20 μm. Los tubos de NiO-YSZ son producidos por prensado isostático. La caracterización eléctrica se ha realizado empleando H2-Ar como combustible an

  18. DEVELOPMENT OF TECHNICAL DECISIONS FOR HEAT SUPPLY WITH TUBULAR GAS HEATERS

    Directory of Open Access Journals (Sweden)

    IRODOV V. F.

    2017-05-01

    Full Text Available Annotation. Problems formulation. The problem that is solved is the development of autonomous heat supply systems that reduce the capital costs of construction and increase the efficiency of the use of energy resources. One of the ways to solve this problem is the use of tubular gas heaters. For this, it is necessary to develop new technical solutions for heat supply with tubular gas heaters, as well as scientific and methodological support for the development, construction and operation of heat supply systems with tubular gas heaters. Analysis of recent research. Preliminary studies of infrared tubular gas heaters are considered, which were used to heat industrial enterprises with sufficiently high premises. The task was to extend the principles of heat supply by means of tubular heaters for heating air, water and heating medium in relatively low rooms. Goal and tasks. To lay out the development of technical solutions for heat supply with tubular gas heaters, which increase the efficiency and reliability of heat supply systems and extend the use of tubular gas heaters in heat supply. Results. Technical solutions for heat supply with tubular gas heaters have made it possible to extend their applications for heating air, water and heating medium in relatively low rooms. Scientific novelty. New technical solutions for heat supply with tubular gas heaters increase the efficiency of using fuel and energy resources at low capital costs. Practical significance. Technical solutions for heat supply using tubular heaters have the potential for wide application in the heat supply of industrial, public and residential facilities. Conclusions. For two decades, new technical solutions for heat supply with tubular gas heaters have been developed, which increase the efficiency and reliability of heat supply systems and can be widely used for autonomous heating.

  19. Urinary excretion of beta 2-glycoprotein-1 (apolipoprotein H) and other markers of tubular malfunction in "non-tubular" renal disease.

    Science.gov (United States)

    Flynn, F V; Lapsley, M; Sansom, P A; Cohen, S L

    1992-07-01

    To determine whether urinary beta 2-glycoprotein-1 assays can provide improved discrimination between chronic renal diseases which are primarily of tubular or glomerular origin. Urinary beta 2-glycoprotein-1, retinol-binding protein, alpha 1-microglobulin, beta 2-microglobulin, N-acetyl-beta-D-glucosa-minidase and albumin were measured in 51 patients with primary glomerular disease, 23 with obstructive nephropathy, and 15 with polycystic kidney disease, and expressed per mmol of creatinine. Plasma beta 2-glycoprotein-1 was assayed in 52 patients and plasma creatinine in all 89. The findings were compared between the diagnostic groups and with previously published data relating to primary tubular disorders. All 31 patients with plasma creatinine greater than 200 mumol/l excreted increased amounts of beta 2-glycoprotein-1, retinol-binding protein, and alpha 1-microglobulin, and 29 had increased N-acetyl-beta-D-glucosaminidase; the quantities were generally similar to those found in comparable patients with primary tubular pathology. Among 58 with plasma creatinine concentrations under 200 mumol/l, increases in beta 2-glycoprotein-1, retinol-binding protein, and alpha 1-microglobulin excretion were less common and much smaller, especially in those with obstructive nephropathy and polycystic disease. The ratios of the excretion of albumin to the other proteins provided the clearest discrimination between the patients with glomerular or tubular malfunction, but an area of overlap was present which embraced those with obstructive nephropathy and polycystic disease. Increased excretion of beta 2-glycoprotein-1 due to a raised plasma concentration or diminution of tubular reabsorption, or both, is common in all the forms of renal disease investigated, and both plasma creatinine and urinary albumin must be taken into account when interpreting results. Ratios of urinary albumin: beta 2-glycoprotein-1 greater than 1000 are highly suggestive of primary glomerular disease and

  20. Simulation and optimization of a polymer directional coupler electro-optic switch with push pull electrodes

    Science.gov (United States)

    Zheng, Chuan-Tao; Ma, Chun-Sheng; Yan, Xin; Wang, Xian-Yin; Zhang, Da-Ming

    2008-07-01

    Structural model and design technique are proposed for a polymer directional coupler electro-optic switch with rib waveguides and push-pull electrodes, of which the electric field distribution is analyzed by the conformal transforming method and image method. In order to get the minimum mode loss and the minimum switching voltage, the parameters of the waveguide and electrode are optimized, such as the core with, core thickness, buffer layer between the core and the electrode, coupling gap between the waveguides, electrode thickness, electrode width and electrode gap. Switching Characteristics are analyzed, which include the output power, insertion loss, and crosstalk. To realize normal switching function, the fabrication error, spectrum shift, and coupling loss between a single mode fiber (SMF) and the waveguide are discussed. Simulation results show that the coupling length is 3082 μm, push-pull switching voltage is 2.14 V, insertion loss is less than 1.17 dB, and crosstalk is less than -30 dB for the designed device.

  1. Diffraction patterns from 7-Angstroms tubular halloysite

    International Nuclear Information System (INIS)

    Eggleton, T.

    1998-01-01

    Full text: The diffraction patterns from 7-Angstroms tubular halloysite are superficially like those from kaolinite. Diffraction from a tubular aggregate of atoms, however, differs from that from a crystal because there is no linear repetition in two of the three conventional crystallographic directions. In tubular halloysite, the tube axis is [010] or [110] and in this direction the unit cell repeats in the normal linear fashion. The x-axis, by contrast, changes direction tangentially around the tube circumference, and there can be no true z-axis, because unit cells in the radial direction do not superimpose, since each successive tubular layer has a larger radius than its predecessor and therefore must contain more unit cells than its predecessor. Because tubular 'crystals' do not have a lattice repeat, use of Bragg 'hkl' indices is not appropriate. In the xy plane, a small area of the structure approximates a flat layer silicate, and hk indices may been used to label diffraction maxima. Similarly, successive 1:1 layers tangential to the tube walls yield a series of apparent 001 diffraction maxima. Measurement of these shows that the d-spacings do not form an exact integral series. The reason for this lies in the curvature of the structure. Calculated electron and powder X-ray diffraction patterns, based on a model of concentric 1:1 layers with no regular relation between them other than the 7.2 Angstroms spacing, closely simulate the observed data. Evidence for the 2-layer structure that is generally accepted may need to be reassessed in the light of these results

  2. Control of electrode processes in electrokinetic soil remediation

    Energy Technology Data Exchange (ETDEWEB)

    Schmid, M.; Marb, C. [Bavarian State Office for Environmental Protection, Waste Technology Centre, Augsburg (Germany)

    2001-07-01

    Technical control of electrode processes induced by water electrolysis is crucial for the effectiveness of electrokinetic soil remediation. A calculation method for the quantification of electrolysis products is derived and its validity by the consumption of neutralizing agents verified. Steel rods used as sacrificial anodes instead of inert materials cannot counteract the acidification of the anolyte due to the acidic property of Fe-cations released as oxidation products. An an alternative to ordinary porous well materials a tubular cation exchange membrane was used as a cathode well. Thereby the migration of anions stemming from the catholyte neutralisation was hampered and no loss in the electric field strength occured. (orig.)

  3. Inner Surface Chirality of Single-Handed Twisted Carbonaceous Tubular Nanoribbons.

    Science.gov (United States)

    Liu, Dan; Li, Baozong; Guo, Yongmin; Li, Yi; Yang, Yonggang

    2015-11-01

    Single-handed twisted 4,4'-biphenylene-bridged polybissilsesquioxane tubular nanoribbons and single-layered nanoribbons were prepared by tuning the water/ethanol volume ratio in the reaction mixture at pH = 11.6 through a supramolecular templating approach. The single-layered nanoribbons were formed by shrinking tubular nanoribbons after the removal of the templates. In addition, solvent-induced handedness inversion was achieved. The handedness of the polybissilsesquioxanes could be controlled by changing the ethanol/water volume ratio in the reaction mixture. After carbonization at 900 °C for 4.0 h and removal of silica, single-handed twisted carbonaceous tubular nanoribbons and single-layered nanoribbons with micropores in the walls were obtained. X-ray diffraction and Raman spectroscopy analyses indicated that the carbon is predominantly amorphous. The circular dichroism spectra show that the twisted tubular nanoribbons exhibit optical activity, while the twisted single-layered nanoribbons do not. The results shown here indicate that chirality is transferred from the organic self-assemblies to the inner surfaces of the 4,4'-biphenylene-bridged polybissilsesquioxane tubular nanoribbons and subsequently to those of the carbonaceous tubular nanoribbons. © 2015 Wiley Periodicals, Inc.

  4. Fatigue Life of High-Strength Steel Offshore Tubular Joints

    DEFF Research Database (Denmark)

    Petersen, Rasmus Ingomar; Agerskov, Henning; Lopez Martinez, Luis

    1996-01-01

    In the present investigation, the fatigue life of tubular joints in offshore steel structures is studied. Two test series on full-scale tubular joints have been carried through. One series was on joints in conventional offshore structural steel, and the other series was on joints in high-strength......In the present investigation, the fatigue life of tubular joints in offshore steel structures is studied. Two test series on full-scale tubular joints have been carried through. One series was on joints in conventional offshore structural steel, and the other series was on joints in high......-strength steel with a yield stress of 820-830 MPa and with high weldability and toughness properties. The test specimens of both series had the same geometry. The present report concentrates on the results obtained in the investigation on the high-strength steel tubular joints.The test specimens were fabricated...... from Ø 324-610 mm tubes, and the joints were loaded in in-plane bending. Both fatigue tests under constant amplitude loading and tests with a stochastic loading that is realistic in relation to offshore structures, are included in the investigation.A comparison between constant amplitude and variable...

  5. Distal renal tubular acidosis and hepatic lipidosis in a cat.

    Science.gov (United States)

    Brown, S A; Spyridakis, L K; Crowell, W A

    1986-11-15

    Clinical and laboratory evidence of hepatic failure was found in a chronically anorectic cat. Simultaneous blood and urine pH determinations established a diagnosis of distal renal tubular acidosis. The cat did not respond to treatment. Necropsy revealed distal tubular nephrosis and hepatic lipidosis. The finding of distal renal tubular acidosis in a cat with hepatic lipidosis emphasizes the importance of complete evaluation of acid-base disorders in patients.

  6. Ni foam supported quasi-core-shell structure of ultrathin Ti3C2 nanosheets through electrostatic layer-by-layer self-assembly as high rate-performance electrodes of supercapacitors

    Science.gov (United States)

    Tian, Yapeng; Yang, Chenhui; Que, Wenxiu; He, Yucheng; Liu, Xiaobin; Luo, Yangyang; Yin, Xingtian; Kong, Ling Bing

    2017-11-01

    Supercapacitor, as an important energy storage device, is a critical component for next generation electric power system, due to its high power density and long cycle life. In this study, a novel electrode material with quasi-core-shell structure, consisting of negatively charged few layer Ti3C2 nanosheets (FL-Ti3C2) and positively charged polyethyleneimine as building blocks, has been prepared by using an electrostatic layer-by-layer self-assembly method, with highly conductive Ni foam to be used as the skeleton. The unique quasi-core-shell structured ultrathin Ti3C2 nanosheets provide an excellent electron channel, ion transport channel and large effective contact area, thus leading to a great improvement in electrochemical performance of the material. The specific capacitance of the binder-free FL-Ti3C2@Ni foam electrodes reaches 370 F g-1 at the scan rate of 2 mV s-1 and a specific capacitance of 117 F g-1 is obtained even at the scan rate of 1000 mV s-1 in the electrolyte of Li2SO4, indicating a high rate performance. In addition, this electrode shows a long-term cyclic stability with a loss of only 13.7% after 10,000 circles. Furthermore, quantitative analysis has been conducted to ensure the relationship between the capacitive contribution and the rate performance of the as-fabricated electrode.

  7. Transition piece for joining together tubular pieces

    International Nuclear Information System (INIS)

    Holko, K.H.

    1981-01-01

    A transition piece for joining together tubular pieces formed respectively from a low alloy or carbon steel and a high temperature alloy containing at least 16% chromium includes a plurality of tubular parts welded together and formed from materials of selected composition with a maximum chromium content difference of 5% between adjacent parts when the chromium content of each part is below 10% and a maximum chromium difference of 7% between adjacent parts when the chromium content of either part is above 10%. The transition parts are also graded as to such characteristics as thermal expansion coefficient. The transition parts at opposite ends of the transition joint have chromium percentages similar to the tubular pieces to which they are to be joined. The parts may be joined by fusion and/or friction welding and parts may be formed by fusion weld deposition. (author)

  8. Hierarchical NiCo-LDH@NiOOH core-shell heterostructure on carbon fiber cloth as battery-like electrode for supercapacitor

    Science.gov (United States)

    Liang, Haoyan; Lin, Jinghuang; Jia, Henan; Chen, Shulin; Qi, Junlei; Cao, Jian; Lin, Tiesong; Fei, Weidong; Feng, Jicai

    2018-02-01

    Constructing rational structure and utilizing distinctive components are two important keys to promote the development of high performance supercapacitor. Herein, we adopt a facile two-step method to develop an in-situ heterostructure with NiCo-LDH nanowire as core and NiOOH nanosheets as shell on carbon fiber cloth. The resultant NiCo-LDH@NiOOH electrode exhibites a high specific capacitance of about 2622 F g-1 at 1 A g-1 and good cycling stability (88.5% remain after 10000 cycles). This reinforced electrochemical performance is benefit from the distinct core-shell structure, and takes advantage of the synergetic effect to supply more electrochemical active spots and pathways to accelerate electron and ion transport. Furthermore, the fabricated asymmetric supercapacitor of optimized NiCo-LDH@NiOOH//AC device displays a high energy density of 51.7 Wh kg-1 while the power density is 599 W kg-1 and presents a satisfying cycling performance.

  9. A neglected case of Renal Tubular Acidosis

    International Nuclear Information System (INIS)

    Derakhshan, A.; Basiratnia, M.; Fallahzadeh, M.H.; Al-Hashemi, G.H.

    2007-01-01

    In this report, we present a case of a child with distal renal tubular acidosis, severe failure to thrive and profound rickets, who was only 7.8 Kg when presented at 6 years of age. His response to treatment and his follow up for four years is discussed. Although failure to thrive is a common finding in renal tubular acidosis but the physical and x-ray findings in our case were unique. (author)

  10. A young woman with recurrent kidney stones: questions on hypokalaemic tubular acidosis

    Directory of Open Access Journals (Sweden)

    Jill Vanmassenhove

    2017-04-01

    Full Text Available This paper discusses the diagnostic and therapeutic approach to the problem of a young woman presenting with recurrent kidney stones. In the clinical work-up, a hypokalaemic normal anion gap metabolic acidosis was found. The diagnostic tests to solve this common clinical problem and some therapeutic recommendations are discussed. Question on hypokalaemic tubular acidosis: 1. What is the significance of the plasma anion gap (PAG? 2. How does one appreciate the respiratory component of the acid base status? 3. How does one perform tests for tubular acidification disturbances? 4. What is the pathogenesis of distal tubular acidification ­disturbances? 5. What is the explanation of the hypokalaemia in distal ­tubular acidosis? 6. What is the pathogenesis of nephrolithiasis in distal tubular acidosis? 7. How does one treat a patient with distal tubular acidosis and recurrent nephrolithiasis?

  11. Cyclosporine A induces senescence in renal tubular epithelial cells

    NARCIS (Netherlands)

    Jennings, Paul; Koppelstaetter, Christian; Aydin, Sonia; Abberger, Thomas; Wolf, Anna Maria; Mayer, Gert; Pfaller, Walter

    The nephrotoxic potential of the widely used immunosuppressive agent cyclosporine A (CsA) is well recognized. However, the mechanism of renal tubular toxicity is not yet fully elucidated. Chronic CsA nephropathy and renal organ aging share some clinical features, such as renal fibrosis and tubular

  12. New methods for the geometrical analysis of tubular organs.

    Science.gov (United States)

    Grélard, Florent; Baldacci, Fabien; Vialard, Anne; Domenger, Jean-Philippe

    2017-12-01

    This paper presents new methods to study the shape of tubular organs. Determining precise cross-sections is of major importance to perform geometrical measurements, such as diameter, wall-thickness estimation or area measurement. Our first contribution is a robust method to estimate orthogonal planes based on the Voronoi Covariance Measure. Our method is not relying on a curve-skeleton computation beforehand. This means our orthogonal plane estimator can be used either on the skeleton or on the volume. Another important step towards tubular organ characterization is achieved through curve-skeletonization, as skeletons allow to compare two tubular organs, and to perform virtual endoscopy. Our second contribution is dedicated to correcting common defects of the skeleton by new pruning and recentering methods. Finally, we propose a new method for curve-skeleton extraction. Various results are shown on different types of segmented tubular organs, such as neurons, airway-tree and blood vessels. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. A PVDF-Based Sensor for Internal Stress Monitoring of a Concrete-Filled Steel Tubular (CFST) Column Subject to Impact Loads.

    Science.gov (United States)

    Du, Guofeng; Li, Zhao; Song, Gangbing

    2018-05-23

    Impact loads can have major adverse effects on the safety of civil engineering structures, such as concrete-filled steel tubular (CFST) columns. The study of mechanical behavior and stress analysis of CFST columns under impact loads is very important to ensure their safety against such loads. At present, the internal stress monitoring of the concrete cores CFST columns under impact loads is still a very challenging subject. In this paper, a PVDF (Polyvinylidene Fluoride) piezoelectric smart sensor was developed and successfully applied to the monitoring of the internal stress of the concrete core of a CFST column under impact loads. The smart sensor consists of a PVDF piezoelectric film sandwiched between two thin steel plates through epoxy. The protection not only prevents the PVDF film from impact damages but also ensures insulation and waterproofing. The smart sensors were embedded into the circular concrete-filled steel tube specimen during concrete pouring. The specimen was tested against impact loads, and testing data were collected. The time history of the stress obtained from the PVDF smart sensor revealed the evolution of core concrete internal stress under impact loads when compared with the impact force⁻time curve of the hammer. Nonlinear finite element simulations of the impact process were also carried out. The results of FEM simulations had good agreement with the test results. The results showed that the proposed PVDF piezoelectric smart sensors can effectively monitor the internal stress of concrete-filled steel tubular columns under impact loads.

  14. Vibration analysis and sound field characteristics of a tubular ultrasonic radiator.

    Science.gov (United States)

    Liang, Zhaofeng; Zhou, Guangping; Zhang, Yihui; Li, Zhengzhong; Lin, Shuyu

    2006-12-01

    A sort of tubular ultrasonic radiator used in ultrasonic liquid processing is studied. The frequency equation of the tubular radiator is derived, and its radiated sound field in cylindrical reactor is calculated using finite element method and recorded by means of aluminum foil erosion. The results indicate that sound field of tubular ultrasonic radiator in cylindrical reactor appears standing waves along both its radial direction and axial direction, and amplitudes of standing waves decrease gradually along its radial direction, and the numbers of standing waves along its axial direction are equal to the axial wave numbers of tubular radiator. The experimental results are in good agreement with calculated results.

  15. Nerve regeneration using tubular scaffolds from biodegradable polyurethane.

    Science.gov (United States)

    Hausner, T; Schmidhammer, R; Zandieh, S; Hopf, R; Schultz, A; Gogolewski, S; Hertz, H; Redl, H

    2007-01-01

    In severe nerve lesion, nerve defects and in brachial plexus reconstruction, autologous nerve grafting is the golden standard. Although, nerve grafting technique is the best available approach a major disadvantages exists: there is a limited source of autologous nerve grafts. This study presents data on the use of tubular scaffolds with uniaxial pore orientation from experimental biodegradable polyurethanes coated with fibrin sealant to regenerate a 8 mm resected segment of rat sciatic nerve. Tubular scaffolds: prepared by extrusion of the polymer solution in DMF into water coagulation bath. The polymer used for the preparation of tubular scaffolds was a biodegradable polyurethane based on hexamethylene diisocyanate, poly(epsilon-caprolactone) and dianhydro-D-sorbitol. EXPERIMENTAL MODEL: Eighteen Sprague Dawley rats underwent mid-thigh sciatic nerve transection and were randomly assigned to two experimental groups with immediate repair: (1) tubular scaffold, (2) 180 degrees rotated sciatic nerve segment (control). Serial functional measurements (toe spread test, placing tests) were performed weekly from 3rd to 12th week after nerve repair. On week 12, electrophysiological assessment was performed. Sciatic nerve and scaffold/nerve grafts were harvested for histomorphometric analysis. Collagenic connective tissue, Schwann cells and axons were evaluated in the proximal nerve stump, the scaffold/nerve graft and the distal nerve stump. The implants have uniaxially-oriented pore structure with a pore size in the range of 2 micorm (the pore wall) and 75 x 700 microm (elongated pores in the implant lumen). The skin of the tubular implants was nonporous. Animals which underwent repair with tubular scaffolds of biodegradable polyurethanes coated with diluted fibrin sealant had no significant functional differences compared with the nerve graft group. Control group resulted in a trend-wise better electrophysiological recovery but did not show statistically significant

  16. Tubular membrane bioreactors for biotechnological processes.

    Science.gov (United States)

    Wolff, Christoph; Beutel, Sascha; Scheper, Thomas

    2013-02-01

    This article is an overview of bioreactors using tubular membranes such as hollow fibers or ceramic capillaries for cultivation processes. This diverse group of bioreactor is described here in regard to the membrane materials used, operational modes, and configurations. The typical advantages of this kind of system such as environments with low shear stress together with high cell densities and also disadvantages like poor oxygen supply are summed up. As the usage of tubular membrane bioreactors is not restricted to a certain organism, a brief overview of various applications covering nearly all types of cells from prokaryotic to eukaryotic cells is also given here.

  17. Mathematical modeling of methyl ester concentration distribution in a continuous membrane tubular reactor and comparison with conventional tubular reactor

    Science.gov (United States)

    Talaghat, M. R.; Jokar, S. M.; Modarres, E.

    2017-10-01

    The reduction of fossil fuel resources and environmental issues made researchers find alternative fuels include biodiesels. One of the most widely used methods for production of biodiesel on a commercial scale is transesterification method. In this work, the biodiesel production by a transesterification method was modeled. Sodium hydroxide was considered as a catalyst to produce biodiesel from canola oil and methanol in a continuous tubular ceramic membranes reactor. As the Biodiesel production reaction from triglycerides is an equilibrium reaction, the reaction rate constants depend on temperature and related linearly to catalyst concentration. By using the mass balance for a membrane tubular reactor and considering the variation of raw materials and products concentration with time, the set of governing equations were solved by numerical methods. The results clearly show the superiority of membrane reactor than conventional tubular reactors. Afterward, the influences of molar ratio of alcohol to oil, weight percentage of the catalyst, and residence time on the performance of biodiesel production reactor were investigated.

  18. Generation of Urinary Albumin Fragments Does Not Require Proximal Tubular Uptake

    OpenAIRE

    Weyer, K.; Nielsen, R.; Christensen, E. I.; Birn, H.

    2012-01-01

    Urinary albumin excretion is an important diagnostic and prognostic marker of renal function. Both animal and human urine contain large amounts of albumin fragments, but whether these fragments originate from renal tubular degradation of filtered albumin is unknown. Here, we used mice with kidneys lacking megalin and cubilin, the coreceptors that mediate proximal tubular endocytosis of albumin, to determine whether proximal tubular degradation of albumin forms the detectable urinary albumin f...

  19. Proximal tubular dysfunction as an indicator of chronic graft dysfunction

    Directory of Open Access Journals (Sweden)

    N.O.S. Câmara

    2009-03-01

    Full Text Available New strategies are being devised to limit the impact of renal sclerosis on graft function. Individualization of immunosuppression, specifically the interruption of calcineurin-inhibitors has been tried in order to promote better graft survival once chronic graft dysfunction has been established. However, the long-term impact of these approaches is still not totally clear. Nevertheless, patients at higher risk for tubular atrophy and interstitial fibrosis (TA/IF development should be carefully monitored for tubular function as well as glomerular performance. Since tubular-interstitial impairment is an early event in TA/IF pathogenesis and associated with graft function, it seems reasonable that strategies directed at assessing tubular structural integrity and function would yield important functional and prognostic data. The measurement of small proteins in urine such as α-1-microglobulin, N-acetyl-beta-D-glucosaminidase, alpha/pi S-glutathione transferases, β-2 microglobulin, and retinol binding protein is associated with proximal tubular cell dysfunction. Therefore, its straightforward assessment could provide a powerful tool in patient monitoring and ongoing clinical assessment of graft function, ultimately helping to facilitate longer patient and graft survival associated with good graft function.

  20. Modeling constrained sintering of bi-layered tubular structures

    DEFF Research Database (Denmark)

    Tadesse Molla, Tesfaye; Kothanda Ramachandran, Dhavanesan; Ni, De Wei

    2015-01-01

    Constrained sintering of tubular bi-layered structures is being used in the development of various technologies. Densification mismatch between the layers making the tubular bi-layer can generate stresses, which may create processing defects. An analytical model is presented to describe the densi...... and thermo-mechanical analysis. Results from the analytical model are found to agree well with finite element simulations as well as measurements from sintering experiment....

  1. Intrarenal purinergic signaling in the control of renal tubular transport

    DEFF Research Database (Denmark)

    Prætorius, Helle; Leipziger, Jens Georg

    2010-01-01

    Renal tubular epithelial cells receive hormonal input that regulates volume and electrolyte homeostasis. In addition, numerous intrarenal, local signaling agonists have appeared on the stage of renal physiology. One such system is that of intrarenal purinergic signaling. This system involves all......-reaching advances indicate that ATP is often used as a local transmitter for classical sensory transduction. This transmission apparently also applies to sensory functions in the kidney. Locally released ATP is involved in sensing of renal tubular flow or in detecting the distal tubular load of NaCl at the macula...

  2. In core monitor having multi-step seals

    International Nuclear Information System (INIS)

    Kasai, Makoto; Ono, Susumu.

    1976-01-01

    Purpose: To completely prevent a sensor gas sealed in a pipe from leaking in an in-core neutron detector for use with a bwr type reactor. Constitution: In an in core monitor fabricated by disposing inner and outer electrodes in a housing, forming a layer of neutron conversion material on the outer electrode, filling an ionizing gas within the space between the layer and the inner electrode and, thereafter, attaching an insulation cable and an exhaust pipe respectively by way of insulators to both ends of the housing, the exhaust pipe is sealed in two-steps through pressure bonding using a multi-stepped pincher tool having two pressure bonding bits of a step shape and the outer sealing portion is further welded. The sensor gas sealed in the pipe can thus be prevented from leaking upon pressure bonding and welding. (Horiuchi, T.)

  3. In core monitor having multi-step seals

    Energy Technology Data Exchange (ETDEWEB)

    Kasai, M; Ono, S

    1976-12-09

    A method to completely prevent a sensor gas sealed in a pipe from leaking in an in-core neutron detector for use with a BWR type reactor is described. In an in core monitor fabricated by disposing inner and outer electrodes in a housing, forming a layer of neutron conversion material on the outer electrode, filling an ionizing gas within the space between the layer and the inner electrode and, thereafter, attaching an insulation cable and an exhaust pipe respectively by way of insulators to both ends of the housing, the exhaust pipe is sealed in two-steps through pressure bonding using a multi-stepped pincher tool having two pressure bonding bits of a step shape and the outer sealing portion is further welded. The sensor gas sealed in the pipe can thus be prevented from leaking upon pressure bonding and welding.

  4. Elevated oxidized glutathione in cystinotic proximal tubular epithelial cells.

    Science.gov (United States)

    Wilmer, Martijn J G; de Graaf-Hess, Adriana; Blom, Henk J; Dijkman, Henry B P M; Monnens, Leo A; van den Heuvel, Lambertus P; Levtchenko, Elena N

    2005-11-18

    Cystinosis, the most frequent cause of inborn Fanconi syndrome, is characterized by the lysosomal cystine accumulation, caused by mutations in the CTNS gene. To elucidate the pathogenesis of cystinosis, we cultured proximal tubular cells from urine of cystinotic patients (n = 9) and healthy controls (n = 9), followed by immortalization with human papilloma virus (HPV E6/E7). Obtained cell lines displayed basolateral polarization, alkaline phosphatase activity, and presence of aminopeptidase N (CD-13) and megalin, confirming their proximal tubular origin. Cystinotic cell lines exhibited elevated cystine levels (0.86 +/- 0.95 nmol/mg versus 0.09 +/- 0.01 nmol/mg protein in controls, p = 0.03). Oxidized glutathione was elevated in cystinotic cells (1.16 +/- 0.83 nmol/mg versus 0.29 +/- 0.18 nmol/mg protein, p = 0.04), while total glutathione, free cysteine, and ATP contents were normal in these cells. In conclusion, elevated oxidized glutathione in cystinotic proximal tubular epithelial cell lines suggests increased oxidative stress, which may contribute to tubular dysfunction in cystinosis.

  5. Urinary Markers of Tubular Injury in Early Diabetic Nephropathy

    Directory of Open Access Journals (Sweden)

    Temesgen Fiseha

    2016-01-01

    Full Text Available Diabetic nephropathy (DN is a common and serious complication of diabetes associated with adverse outcomes of renal failure, cardiovascular disease, and premature mortality. Early and accurate identification of DN is therefore of critical importance to improve patient outcomes. Albuminuria, a marker of glomerular involvement in early renal damage, cannot always detect early DN. Thus, more sensitive and specific markers in addition to albuminuria are needed to predict the early onset and progression of DN. Tubular injury, as shown by the detection of tubular injury markers in the urine, is a critical component of the early course of DN. These urinary tubular markers may increase in diabetic patients, even before diagnosis of microalbuminuria representing early markers of normoalbuminuric DN. In this review we summarized some new and important urinary markers of tubular injury, such as neutrophil gelatinase associated lipocalin (NGAL, kidney injury molecule-1 (KIM-1, liver-type fatty acid binding protein (L-FABP, N-acetyl-beta-glucosaminidase (NAG, alpha-1 microglobulin (A1M, beta 2-microglobulin (B2-M, and retinol binding protein (RBP associated with early DN.

  6. Hemodynamic and tubular changes induced by contrast media.

    Science.gov (United States)

    Caiazza, Antonella; Russo, Luigi; Sabbatini, Massimo; Russo, Domenico

    2014-01-01

    The incidence of acute kidney injury induced by contrast media (CI-AKI) is the third cause of AKI in hospitalized patients. Contrast media cause relevant alterations both in renal hemodynamics and in renal tubular cell function that lead to CI-AKI. The vasoconstriction of intrarenal vasculature is the main hemodynamic change induced by contrast media; the vasoconstriction is accompanied by a cascade of events leading to ischemia and reduction of glomerular filtration rate. Cytotoxicity of contrast media causes apoptosis of tubular cells with consequent formation of casts and worsening of ischemia. There is an interplay between the negative effects of contrast media on renal hemodynamics and on tubular cell function that leads to activation of renin-angiotensin system and increased production of reactive oxygen species (ROS) within the kidney. Production of ROS intensifies cellular hypoxia through endothelial dysfunction and alteration of mechanisms regulating tubular cells transport. The physiochemical characteristics of contrast media play a critical role in the incidence of CI-AKI. Guidelines suggest the use of either isoosmolar or low-osmolar contrast media rather than high-osmolar contrast media particularly in patients at increased risk of CI-AKI. Older age, presence of atherosclerosis, congestive heart failure, chronic renal disease, nephrotoxic drugs, and diuretics may multiply the risk of CI-AKI.

  7. Renal pathophysiologic role of cortical tubular inclusion bodies.

    Science.gov (United States)

    Radi, Zaher A; Stewart, Zachary S; Grzemski, Felicity A; Bobrowski, Walter F

    2013-01-01

    Renal tubular inclusion bodies are rarely associated with drug administration. The authors describe the finding of renal cortical tubular intranuclear and intracytoplasmic inclusion bodies associated with the oral administration of a norepinephrine/serotonin reuptake inhibitor (NSRI) test article in Sprague-Dawley (SD) rats. Rats were given an NSRI daily for 4 weeks, and kidney histopathologic, ultrastructural pathology, and immunohistochemical examinations were performed. Round eosinophilic intranuclear inclusion bodies were observed histologically in the tubular epithelial cells of the renal cortex in male and female SD rats given the NSRI compound. No evidence of degeneration or necrosis was noted in the inclusion-containing renal cells. By ultrastructural pathology, inclusion bodies consisted of finely granular, amorphous, and uniformly stained nonmembrane-bound material. By immunohistochemistry, inclusion bodies stained positive for d-amino acid oxidase (DAO) protein. In addition, similar inclusion bodies were noted in the cytoplasmic tubular epithelial compartment by ultrastructural and immunohistochemical examination.  This is the first description of these renal inclusion bodies after an NSRI test article administration in SD rats. Such drug-induced renal inclusion bodies are rat-specific, do not represent an expression of nephrotoxicity, represent altered metabolism of d-amino acids, and are not relevant to human safety risk assessment.

  8. MODELING OF TUBULAR ELECTROCHEMICAL REACTOR FOR DYE REMOVAL

    Directory of Open Access Journals (Sweden)

    V. VIJAYAKUMAR

    2017-06-01

    Full Text Available The aim of the present investigation is to model a tubular electrochemical reactor for the treatment of synthetic dye wastewater. The tubular reactor was modeled and solved by finite difference method. For the model solution, the column was divided into 11 nodes in the axial direction and the variation in the radial direction has been neglected. An initial dye concentration of 200 mg L-1was taken in the reservoir. The reactor was operated in a batch with recirculation operation. Based on preliminary experiments all parameters have been optimized. The model simulation is compared with the experimental value and it is observed that the model fairly matches well with the experiment. The modeling of tubular electrochemical reactors for dye waste water treatment could be useful in the design and scale up of electrochemical process.

  9. Chitosan mediated synthesis of core/double shell ternary polyaniline/Chitosan/cobalt oxide nano composite-as high energy storage electrode material in supercapacitors

    International Nuclear Information System (INIS)

    Vellakkat, Mini; Hundekkal, Devendrappa

    2016-01-01

    Nanostructured ternary composite of polyaniline (PANI), Co 3 O 4 nanoparticles, and Chitosan (CS) has been prepared by an in situ chemical oxidation method, and the nanocomposites (CPAESCO) were used as supercapacitor electrodes. The Co 3 O 4 nanoparticles are uniformly coated with CS and PANI layers in it. Different techniques (Fourier transform infrared spectrophotometry, x-ray diffraction, thermal gravimetric analysis, UV−visible spectroscopy, scanning electron microscopy, transmission electron microscopy and electro chemical analysis-cyclic voltammetry, galvanostatic charge/discharge (GCD), and electrochemical impedance spectroscopy) were used to analyse the optical, structural, thermal, chemical and supercapacitive aspects of the nanocomposites. Core/double shell ternary composite electrode exhibits significantly increased specific capacitance than PANI/Co 3 O 4 or PANI/CS binary composites in supercapacitors. The ternary nanocomposite with 40% nanoparticle exhibits a highest specific capacitance reaching 687 F g −1 , Energy density of (95.42 Wh kg −1 at 1 A g −1 ) and power density of (1549 W kg −1 at 3 A g −1 ) and outstanding cycling performance, with, 91% capacitance retained over 5000 cycles. It is found that this unique bio compatible nano composite with synergy is a new multifunctional material which will be useful in the design of supercapacitor electrodes and other energy conversion devices too. (paper)

  10. Carbon−Silicon Core−Shell Nanowires as High Capacity Electrode for Lithium Ion Batteries

    KAUST Repository

    Cui, Li-Feng; Yang, Yuan; Hsu, Ching-Mei; Cui, Yi

    2009-01-01

    We introduce a novel design of carbon-silicon core-shell nanowires for high power and long life lithium battery electrodes. Amorphous silicon was coated onto carbon nanofibers to form a core-shell structure and the resulted core-shell nanowires

  11. Factor H and Properdin Recognize Different Epitopes on Renal Tubular Epithelial Heparan Sulfate

    NARCIS (Netherlands)

    Zaferani, Azadeh; Vives, Romain R.; van der Pol, Pieter; Navis, Gerjan J.; Daha, Mohamed R.; van Kooten, Cees; Lortat-Jacob, Hugues; Seelen, Marc A.; van den Born, Jacob

    2012-01-01

    During proteinuria, renal tubular epithelial cells become exposed to ultrafiltrate-derived serum proteins, including complement factors. Recently, we showed that properdin binds to tubular heparan sulfates (HS). We now document that factor H also binds to tubular HS, although to a different epitope

  12. Nanomechanical Optical Fiber with Embedded Electrodes Actuated by Joule Heating.

    Science.gov (United States)

    Lian, Zhenggang; Segura, Martha; Podoliak, Nina; Feng, Xian; White, Nicholas; Horak, Peter

    2014-07-31

    Nanomechanical optical fibers with metal electrodes embedded in the jacket were fabricated by a multi-material co-draw technique. At the center of the fibers, two glass cores suspended by thin membranes and surrounded by air form a directional coupler that is highly temperature-dependent. We demonstrate optical switching between the two fiber cores by Joule heating of the electrodes with as little as 0.4 W electrical power, thereby demonstrating an electrically actuated all-fiber microelectromechanical system (MEMS). Simulations show that the main mechanism for optical switching is the transverse thermal expansion of the fiber structure.

  13. Nanomechanical Optical Fiber with Embedded Electrodes Actuated by Joule Heating

    Science.gov (United States)

    Lian, Zhenggang; Segura, Martha; Podoliak, Nina; Feng, Xian; White, Nicholas; Horak, Peter

    2014-01-01

    Nanomechanical optical fibers with metal electrodes embedded in the jacket were fabricated by a multi-material co-draw technique. At the center of the fibers, two glass cores suspended by thin membranes and surrounded by air form a directional coupler that is highly temperature-dependent. We demonstrate optical switching between the two fiber cores by Joule heating of the electrodes with as little as 0.4 W electrical power, thereby demonstrating an electrically actuated all-fiber microelectromechanical system (MEMS). Simulations show that the main mechanism for optical switching is the transverse thermal expansion of the fiber structure. PMID:28788148

  14. Mathematical rationalization for the renal tubular transport: revised concepts.

    Science.gov (United States)

    Mioni, Roberto; Marega, Alessandra; Romano, Giulio; Montanaro, Domenico

    2017-09-01

    The current emphasis on kinetics and in situ control of molecular exchanges, across the tubular membrane, has not been paralleled by corresponding improvements in our understanding of tubular behaviour at the macroscopic level of classical physiology. In this paper, we propose a mathematical rationalization of macroscopic tubular transport by means of a principal transport equation, originating from the law of mass action between substrate and carrier. The other equations, derived from the main one, demonstrate the possibility of distinguishing between transporters with low affinity and high capacity and transporters with high affinity and low capacity. Moreover, our model formalizes both tubular reabsorption and tubular secretion. Regarding the renal calcium handling, our model confirms the two-compartment system proposed by Mioni in 1971, with some important variants, which are in agreement with the fractional reabsorptions of this cation along the tubule, as verified by micro-puncture technique. To obtain the frequency distribution of saturated tubules, we have utilized the infinitesimal analysis method, starting from the equations proposed by Smith in 1943, concluding that all titration curves result from the combined effect of enzymatic approach and anatomical heterogeneity of the nephrons. The theoretical equations included in our manuscript reflect substantial and palpable physiological mechanisms able to suggest diagnosis and therapy of some electrolyte and hormonal disorders. At the end of this paper, we highlight advantages and disadvantages detectable by comparing our mathematical approach with Marshall's and Bijvoet's methods, proposed, respectively, in 1976 and 1984.

  15. pH measurement of tubular vacuoles of an arbuscular mycorrhizal fungus, Gigaspora margarita.

    Science.gov (United States)

    Funamoto, Rintaro; Saito, Katsuharu; Oyaizu, Hiroshi; Aono, Toshihiro; Saito, Masanori

    2015-01-01

    Arbuscular mycorrhizal fungi play an important role in phosphate supply to the host plants. The fungal hyphae contain tubular vacuoles where phosphate compounds such as polyphosphate are accumulated. Despite their importance for the phosphate storage, little is known about the physiological properties of the tubular vacuoles in arbuscular mycorrhizal fungi. As an indicator of the physiological state in vacuoles, we measured pH of tubular vacuoles in living hyphae of arbuscular mycorrhizal fungus Gigaspora margarita using ratio image analysis with pH-dependent fluorescent probe, 6-carboxyfluorescein. Fluorescent images of the fine tubular vacuoles were obtained using a laser scanning confocal microscope, which enabled calculation of vacuolar pH with high spatial resolution. The tubular vacuoles showed mean pH of 5.6 and a pH range of 5.1-6.3. These results suggest that the tubular vacuoles of arbuscular mycorrhizal fungi have a mildly acidic pH just like vacuoles of other fungal species including yeast and ectomycorrhizal fungi.

  16. Pipeline welding with Flux Cored and Metal Cored Wire; Soldagem de dutos com processos Arame Tubular e de Alma Metalica

    Energy Technology Data Exchange (ETDEWEB)

    Costa, Ubirajara Pereira da [ITW Soldagem Brasil Miller-Hobart, Sao Paulo, SP (Brazil)

    2003-07-01

    Different welding process like SMAW, Semi-Automatic FCAW Gas-shielded and Self-shielded and Mechanized GMAW-MAG with Solid Wire are suggested to weld Transmission Pipelines. Presently, the largest extensions of Transmission Pipelines under construction, are in China like Lines West-East, Zong-Wu, Shan-Jing Fuxian and some others, totalizing about 8.000 km, and all using Semi-Automatic Self Shielded Flux Cored Arc Welding Process. Also, several papers and magazines that covers Transmission Pipelines Welding, not frequently mention Operational aspects of the process and some other variables like environment and site geography. This presentation intends to cover some of the Operational aspects of the Flux Cored Arc Welding and GMAW-Metal Cored in order to give sufficient information for Construction, Engineering, Projects e Contractors so they can evaluate these Process against the SMAW or even Mechanized Systems, considering the Operation Factor, Efficiency and Deposition Rate. We will not cover operational details of the GMAW Mechanized Systems but only suggest that be evaluated the possibility to replace the GMAW-Solid Wire by the GMAW-Metal Cored Wire. (author)

  17. Expansion of Tubular with Elastomers in Multilateral Wells

    Directory of Open Access Journals (Sweden)

    Md Velden

    2013-06-01

    Full Text Available The use of solid expandable tubular technology during the last decade has focused on solving many challenges in well drilling and delivery including zonal isolation, deep drilling, conservation of hole sizes, etc. not only as pioneered solution but also providing cost effective and long lasting solutions. Concurrently, the technology was extended for construction of multilateral in typical wells. The process of horizontal tubular expansion is similar to the vertical expansion of expandable tubular in down-hole environment with the addition of uniformly distributed force due to its weight. The expansion is targeted to increase its diameter such that post expansion characteristics remain within allowable limits. In this study a typical expandable tubular of 57.15 mm outer diameter and 6.35 mm wall thickness was used with two different elastomer seals of 5 and 7 mm thickness placed at equal spacing of 200 mm. The developed stress contours during expansion process clearly showed the high stress areas in the vicinity of expansion region which lies around the mandrel. These high stresses may result in excessive wear of the mandrel. It was also found out that the drawing force increases as the mandrel angle, expansion ratio, and friction coefficient increases. A mandrel angle of 20o  requires minimum expansion force and can be considered as an optimum geometrical parameter to lower the power required for expansion.

  18. Tubular lysosome morphology and distribution within macrophages depend on the integrity of cytoplasmic microtubules

    International Nuclear Information System (INIS)

    Swanson, J.; Bushnell, A.; Silverstein, S.C.

    1987-01-01

    Pinocytosis of the fluorescent dye lucifer yellow labels elongated, membrane-bound tubular organelles in several cell types, including cultured human monocytes, thioglycolate-elicited mouse peritoneal macrophages, and the macrophage-like cell line J774.2. These tubular structures can be identified as lysosomes by acid phosphatase histochemistry and immunofluorescence localization of cathepsin L. The abundance of tubular lysosomes is markedly increased by treatment with phorbol 12-myristate 13-acetate. When labeled by pinocytosis of microperoxidase and examined by electron microscopic histochemistry, the tubular lysosomes have an outside diameter of ≅ 75 nm and a length of several micrometers; they radiate from the cell's centrosphere in alignment with cytoplasmic microtubules and intermediate filaments. Incubation of phorbol myristate acetate-treated macrophages at 4 0 C or in medium containing 5 μM colchicine or nocodazole at 37 0 C leads to disassembly of microtubules and fragmentation of the tubular lysosomes. Return of the cultures to 37 0 C or removal of nocodazole from the medium leads to reassembly of microtubules and the reappearance of tubular lysosomes within 10-20 min. The authors conclude that microtubules are essential for the maintenance of tubular lysosome morphology and that, in macrophages, a significant proportion of the lysosomal compartment is contained within these tubular structures

  19. Intrarenal purinergic signaling in the control of renal tubular transport

    DEFF Research Database (Denmark)

    Prætorius, Helle; Leipziger, Jens Georg

    2010-01-01

    -reaching advances indicate that ATP is often used as a local transmitter for classical sensory transduction. This transmission apparently also applies to sensory functions in the kidney. Locally released ATP is involved in sensing of renal tubular flow or in detecting the distal tubular load of NaCl at the macula...

  20. Prevalence of renal tubular dysfunction in beta thalassemia minor in shiraz

    Directory of Open Access Journals (Sweden)

    Ali Moradi Nakhodcheri

    2012-02-01

    Full Text Available  Background & objective: β-Thalassemia minor is an asymptomatic hereditary disease. The first study on the relation of renal tubular dysfunction and β-thalassemia minor was performed in 2002 but those studies seem inadequate.The main goal of this study is through evaluation of renal tubular function in 100 patients with thalassemia minor. Materials & Methods: 100 patients with β- thalassemia which confirmed by hemoglobin electrophoresis and CBC as well as RBC indices were studied.14 out of 100 cases exit because of Urinary Tract Infection, diabetes mellitus or hypertension.Complete chemistry profile was performed on serum and urine of all reminder 86 patients (46 female and 40 male. Patients classified into two groups: β-thalassemia minor with anemia and without anemia. Another control group include 50 healthy individuals also considered.Then data analyzed by proper statistical methods. Results: 20 out of 86 reminder cases e.g. 24% showed at least one index of renal tubular dysfunction.58% of patients was been anemic and 42% non anemic. The most prominent tubular dysfunction was seen in a 29 years old lady with glucosuria and without anemia. conclusion: β-Thalassemia minor is common in Iran specially in Fars province. This study revealed significant renal tubular dysfunction in patient with β-thalassemia minor. So it is necessary to check out thalassemic patients for renal function tests periodically. Key words: β-thalassemia, minor,renal tubular dysfunction

  1. Modified tubularized incised plate urethroplasty

    Directory of Open Access Journals (Sweden)

    Shivaji Mane

    2013-01-01

    Full Text Available Aim: To share our experience of doing tubularized incised plate urethroplasty with modifications. Materials and Methods: This is a single surgeon personal series from 2004 to 2009. One hundred patients of distal hypospadias were subjected for Snodgrass urethroplasty with preputioplasty. The age range was 1 to 5 year with mean age of 2.7 years. Selection criteria were good urethral plate, without chordee and torsion needing complete degloving. Main technical modification from original Snodgrass procedure was spongioplasty, preputioplasty, and dorsal slit when inability to retract prepuce during surgery. Results: Average follow-up period is 23 months. Seven (7% patients developed fistula and one patient had complete preputial dehiscence. Phimosis developed in three (3% patients and required circumcision. Dorsal slit was required in seven patients. One patient developed meatal stenosis in postoperative period. All other patients are passing single urinary stream and have cosmesis that is acceptable. Conclusions: Modified tubularized incised plate urethroplasty with preputioplasty effectively gives cosmetically normal looking penis with low complications.

  2. Miniature ionization chamber

    International Nuclear Information System (INIS)

    Alexeev, V.I.; Emelyanov, I.Y.; Ivanov, V.M.; Konstantinov, L.V.; Lysikov, B.V.; Postnikov, V.V.; Rybakov, J.V.

    1976-01-01

    A miniature ionization chamber having a gas-filled housing which accommodates a guard electrode made in the form of a hollow perforated cylinder is described. The cylinder is electrically associated with the intermediate coaxial conductor of a triaxial cable used as the lead-in of the ionization chamber. The gas-filled housing of the ionization chamber also accommodates a collecting electrode shaped as a rod electrically connected to the center conductor of the cable and to tubular members. The rod is disposed internally of the guard electrode and is electrically connected, by means of jumpers passing through the holes in the guard electrode, to the tubular members. The tubular members embrace the guard electrode and are spaced a certain distance apart along its entire length. Arranged intermediate of these tubular members are spacers secured to the guard electrode and fixing the collecting electrode throughout its length with respect to the housing of the ionization chamber

  3. Computer simulation of migration atomic mechanism and substitutional impurity interaction with screw dislocation core in bcc lattice

    International Nuclear Information System (INIS)

    Klyavin, O.V.; Likhodedov, N.P.; Orlov, A.N.

    1986-01-01

    Distribution and migration of substitutional impurity atoms (He and C) in the screw dislocation core of the 1/2 type is studied in α-Fe. The atomic mechanism of impurity atom diffusion over screw dislocation core, consisting in the fact that impurity migration proceeds in a screw trajectory, is discovered and analyzed. It is shown that tubular He diffusion over screw dislocation may proceed at T <= 300 K

  4. Sensitive electrochemical sensor of tryptophan based on Ag-C core–shell nanocomposite modified glassy carbon electrode

    International Nuclear Information System (INIS)

    Mao Shuxian; Li Weifeng; Long Yumei; Tu Yifeng; Deng, Anping

    2012-01-01

    Graphical abstract: Ag-C and Colloidal carbon sphere modified glassy carbon electrodes were prepared. It was clear that the Ag-C/GCE exhibited enhanced electrocatalytic activity towards Trp, which could result from the synergistic effect between Ag core and carbon shell. The Ag-C/GCE showed excellent analytical properties in the determination of Trp. Highlights: ► The electrochemical behavior of Ag-C core–shell nanocomposite was firstly proposed. ► Ag-C/GC electrode exhibited favorable electrocatalytic properties towards Trp. ► The good electrocatalysis was due to the synergistic effect of Ag-core and C-shell. ► The Ag-C/GC electrode displayed excellent analytical properties in determining Trp. - Abstract: We here reported a simple electrochemical method for the detection of tryptophan (Trp) based on the Ag-C modified glassy carbon (Ag-C/GC) electrode. The Ag-C core–shell structured nanoparticles were synthesized using one-pot hydrothermal method and characterized by scanning electron microscope (SEM), transmission electron microscope (TEM), and Fourier transform-infrared spectroscopy (FTIR). The electrochemical behaviors of Trp on Ag-C/GC electrode were investigated and exhibited a direct electrochemical process. The favorable electrochemical properties of Ag-C/GC electrode were attributed to the synergistic effect of the Ag core and carbon shell. The carbon shell cannot only protect Ag core but also contribute to the enhanced substrate accessibility and Trp-substrate interactions, while nano-Ag core can display good electrocatalytic activity to Trp at the same time. Under the optimum experimental conditions the oxidation peak current was linearly dependent on the Trp concentration in the range of 1.0 × 10 −7 to 1.0 × 10 −4 M with a detection limit of 4.0 × 10 −8 M (S/N = 3). In addition, the proposed electrode was applied for the determination of Trp concentration in real samples and satisfactory results were obtained. The technique offers

  5. Process for the fixing of a metallic end piece on a tubular component

    International Nuclear Information System (INIS)

    Charpin, Jean.

    1975-01-01

    Under this invention the process makes it possible to joint a tubular component and in particular a tubular filter and an end piece, with a connection of great mechanical strength, perfectly leak proof and with excellent corrosion resistance, particularly with respect to fluorinated by-products. This process is therefore of great worth in fixing to a bearer a thin ceramic compound tubular filter element, since such a filter can be used in particular for the separation of uranium isotopes by gaseous diffusion and for the separation of hydrocarbons in petrochemicals. To this end, the process under consideration is characterised in that it consists in depositing a layer of ceramic material, by hot projection, at the end of the tubular element and in sealing the end piece to the end of the tubular element by the hot projection of a ceramic or metallic substance [fr

  6. Boundary element analysis of the directional sensitivity of the concentric EMG electrode.

    Science.gov (United States)

    Henneberg, K A; Plonsey, R

    1993-07-01

    Assessment of the motor unit architecture based on concentric electrode motor unit potentials requires a thorough understanding of the recording characteristics of the concentric EMG electrode. Previous simulation studies have attempted to include the effect of EMG electrodes on the recorded waveforms by uniformly averaging the tissue potential at the coordinates of one- or two-dimensional electrode models. By employing the boundary element method, this paper improves earlier models of the concentric EMG electrode by including an accurate geometric representation of the electrode, as well as the mutual electrical influence between the electrode surfaces. A three-dimensional sensitivity function is defined from which information about the preferential direction of sensitivity, blind spots, phase changes, rate of attenuation, and range of pick-up radius can be derived. The study focuses on the intrinsic features linked to the geometry of the electrode. The results show that the cannula perturbs the potential distribution significantly. The core and the cannula electrodes measure potentials of the same order of magnitude in all of the pick-up range, except adjacent to the central wire, where the latter dominates the sensitivity function. The preferential directions of sensitivity are determined by the amount of geometric offset between the individual sensitivity functions of the core and the cannula. The sensitivity function also reveals a complicated pattern of phase changes in the pick-up range. Potentials from fibers located behind the tip or along the cannula are recorded with reversed polarity compared to those located in front of the tip. Rotation of the electrode about its axis was found to alter the duration, the peak-to-peak amplitude, and the rise time of waveforms recorded from a moving dipole.

  7. Rectosigmoid tubular duplication presenting as perineal sepsis in a neonate.

    Science.gov (United States)

    Zhang, Zhibo; Huang, Ying; Wang, Dajia; Su, Pengjun

    2010-03-01

    Tubular rectal duplication is a very rare congenital anomaly. We report a case of tubular rectal duplication in a newborn baby who presented with perianal sepsis. The diagnosis was confirmed by barium enema, magnetic resonance imaging, and at operation. We performed total mucosectomy through a posterior sagittal incision combined with laparotomy. The patient was doing quite well at 17-month follow-up examination.

  8. Boron--epoxy tubular structure members

    Science.gov (United States)

    Shakespeare, W. B. J.; Nelson, P. T.; Lindkvist, E. C.

    1973-01-01

    Composite materials fabricate thin-walled tubular members which have same load-carrying capabilities as aluminum, titanium, or other metals, but are lighter. Interface between stepped end fitting and tube lends itself to attachments by primary as well as secondary bonding. Interlaminar shear and hoop stress buildup in attachment at end fitting is avoided.

  9. Co3O4@CoS Core-Shell Nanosheets on Carbon Cloth for High Performance Supercapacitor Electrodes

    Directory of Open Access Journals (Sweden)

    Jinfeng Ning

    2017-06-01

    Full Text Available In this work, a two-step electrodeposition strategy is developed for the synthesis of core-shell Co3O4@CoS nanosheet arrays on carbon cloth (CC for supercapacitor applications. Porous Co3O4 nanosheet arrays are first directly grown on CC by electrodeposition, followed by the coating of a thin layer of CoS on the surface of Co3O4 nanosheets via the secondary electrodeposition. The morphology control of the ternary composites can be easily achieved by altering the number of cyclic voltammetry (CV cycles of CoS deposition. Electrochemical performance of the composite electrodes was evaluated by cyclic voltammetry, galvanostatic charge–discharge and electrochemical impedance spectroscopy techniques. The results demonstrate that the Co3O4@CoS/CC with 4 CV cycles of CoS deposition possesses the largest specific capacitance 887.5 F·g−1 at a scan rate of 10 mV·s−1 (764.2 F·g−1 at a current density of 1.0 A·g−1, and excellent cycling stability (78.1% capacitance retention at high current density of 5.0 A·g−1 after 5000 cycles. The porous nanostructures on CC not only provide large accessible surface area for fast ions diffusion, electron transport and efficient utilization of active CoS and Co3O4, but also reduce the internal resistance of electrodes, which leads to superior electrochemical performance of Co3O4@CoS/CC composite at 4 cycles of CoS deposition.

  10. VALIDATION OF SIMULATION MODELS FOR DIFFERENTLY DESIGNED HEAT-PIPE EVACUATED TUBULAR COLLECTORS

    DEFF Research Database (Denmark)

    Fan, Jianhua; Dragsted, Janne; Furbo, Simon

    2007-01-01

    Differently designed heat-pipe evacuated tubular collectors have been investigated theoretically and experimentally. The theoretical work has included development of two TRNSYS [1] simulation models for heat-pipe evacuated tubular collectors utilizing solar radiation from all directions. One model...... coating on both sides. The input to the models is thus not a simple collector efficiency expression but the actual collector geometry. In this study, the TRNSYS models are validated with measurements for four differently designed heat-pipe evacuated tubular collectors. The collectors are produced...

  11. Interferon-γ Reduces the Proliferation of Primed Human Renal Tubular Cells

    Directory of Open Access Journals (Sweden)

    Omar García-Sánchez

    2014-01-01

    Full Text Available Background/Aims: Chronic kidney disease (CKD is a progressive deterioration of the kidney function, which may eventually lead to renal failure and the need for dialysis or kidney transplant. Whether initiated in the glomeruli or the tubuli, CKD is characterized by progressive nephron loss, for which the process of tubular deletion is of key importance. Tubular deletion results from tubular epithelial cell death and defective repair, leading to scarring of the renal parenchyma. Several cytokines and signaling pathways, including transforming growth factor-β (TGF-β and the Fas pathway, have been shown to participate in vivo in tubular cell death. However, there is some controversy about their mode of action, since a direct effect on normal tubular cells has not been demonstrated. We hypothesized that epithelial cells would require specific priming to become sensitive to TGF-β or Fas stimulation and that this priming would be brought about by specific mediators found in the pathological scenario. Methods: Herein we studied whether the combined effect of several stimuli known to take part in CKD progression, namely TGF-β, tumor necrosis factor-α, interferon-γ (IFN-γ, and Fas stimulation, on primed resistant human tubular cells caused cell death or reduced proliferation. Results: We demonstrate that these cytokines have no synergistic effect on the proliferation or viability of human kidney (HK2 cells. We also demonstrate that IFN-γ, but not the other stimuli, reduces the proliferation of cycloheximide-primed HK2 cells without affecting their viability. Conclusion: Our results point at a potentially important role of IFN-γ in defective repair, leading to nephron loss during CKD.

  12. Merging of Kirkendall Growth and Ostwald Ripening: CuO@MnO2 Core-shell Architectures for Asymmetric Supercapacitors

    Science.gov (United States)

    Huang, Ming; Zhang, Yuxin; Li, Fei; Wang, Zhongchang; Alamusi; Hu, Ning; Wen, Zhiyu; Liu, Qing

    2014-01-01

    Fabricating hierarchical core-shell nanostructures is currently the subject of intensive research in the electrochemical field owing to the hopes it raises for making efficient electrodes for high-performance supercapacitors. Here, we develop a simple and cost-effective approach to prepare CuO@MnO2 core-shell nanostructures without any surfactants and report their applications as electrodes for supercapacitors. An asymmetric supercapacitor with CuO@MnO2 core-shell nanostructure as the positive electrode and activated microwave exfoliated graphite oxide (MEGO) as the negative electrode yields an energy density of 22.1 Wh kg−1 and a maximum power density of 85.6 kW kg−1; the device shows a long-term cycling stability which retains 101.5% of its initial capacitance even after 10000 cycles. Such a facile strategy to fabricate the hierarchical CuO@MnO2 core-shell nanostructure with significantly improved functionalities opens up a novel avenue to design electrode materials on demand for high-performance supercapacitor applications. PMID:24682149

  13. Syngas (CO-H2) production using high temperature micro-tubular solid oxide electrolysers

    International Nuclear Information System (INIS)

    Kleiminger, L.; Li, T.; Li, K.; Kelsall, G.H.

    2015-01-01

    Highlights: • CO 2 and/or H 2 O reduced to CO/H 2 in micro-tubular solid oxide electrolyser (MT-SOE). • MT-SOE: CO 2 , H 2 O | Ni-(ZrO 2 ) 0.92 (Y 2 O 3 ) 0.08 (YSZ) | YSZ | YSZ- La 0.8 Sr 0.2 MnO 3-δ |O 2. • −0.76 A cm −2 achieved at 1.5V and ca. 820°C for H 2 O electrolysis. • Ni wire cathode current collector gave better performance than (Ag wire+Ag paste). • C 18 O 2 in co-electrolysis could not distinguish cathodic and chemical reduction. - Abstract: CO 2 and/or H 2 O were reduced to CO/H 2 in micro-tubular solid oxide electrolysers with yttria-stabilized zirconia (YSZ) electrolyte, Ni-YSZ cermet cathode and strontium(II)-doped lanthanum manganite (LSM) oxygen-evolving anode. At 822 °C, the kinetics of CO 2 reduction were slower (ca. −0.49 A cm −2 at 1.8 V) than H 2 O reduction or co-reduction of CO 2 and H 2 O, which were comparable (ca. −0.83 to −0.77 A cm −2 at 1.8 V). Performances were improved (−0.85 and −1.1 A cm −2 for CO 2 and H 2 O electrolysis, respectively) by substituting the silver current collector with nickel and avoiding blockage of entrances to pores on the inner lumen of micro-tubes induced by silver paste applied previously to decrease contact losses. The change in current collector materials increased ohmic potential losses due to substituting the lower resistance Ag with Ni wire, but decreased electrode polarization losses by 80–93%. For co-electrolysis of CO 2 and H 2 O, isotopically-labelled C 18 O 2 was used to try to distinguish between direct cathodic reduction of CO 2 and its Ni-catalysed chemical reaction with hydrogen from reduction of steam. Unfortunately, oxygen was exchanged between C 18 O 2 and H 2 16 O, enriching oxygen-18 in the steam and substituting oxygen-16 in the carbon dioxide, so the anode off-gas isotopic fractions were meaningless. This occurred even in alumina and YSZ tubes without the micro-tubular reactor, i.e. in the absence of Ni catalyst, though not in quartz tubes

  14. The effect of acyclovir on the tubular secretion of creatinine in vitro

    Directory of Open Access Journals (Sweden)

    Aleksa Katarina

    2010-12-01

    Full Text Available Abstract Background While generally well tolerated, severe nephrotoxicity has been observed in some children receiving acyclovir. A pronounced elevation in plasma creatinine in the absence of other clinical manifestations of overt nephrotoxicity has been frequently documented. Several drugs have been shown to increase plasma creatinine by inhibiting its renal tubular secretion rather than by decreasing glomerular filtration rate (GFR. Creatinine and acyclovir may be transported by similar tubular transport mechanisms, thus, it is plausible that in some cases, the observed increase in plasma creatinine may be partially due to inhibition of tubular secretion of creatinine, and not solely due to decreased GFR. Our objective was to determine whether acyclovir inhibits the tubular secretion of creatinine. Methods Porcine (LLC-PK1 and human (HK-2 renal proximal tubular cell monolayers cultured on microporous membrane filters were exposed to [2-14C] creatinine (5 μM in the absence or presence of quinidine (1E+03 μM, cimetidine (1E+03 μM or acyclovir (22 - 89 μM in incubation medium. Results Results illustrated that in evident contrast to quinidine, acyclovir did not inhibit creatinine transport in LLC-PK1 and HK-2 cell monolayers. Conclusions The results suggest that acyclovir does not affect the renal tubular handling of creatinine, and hence, the pronounced, transient increase in plasma creatinine is due to decreased GFR, and not to a spurious increase in plasma creatinine.

  15. Low-Temperature Preparation of Amorphous-Shell/Nanocrystalline-Core Nanostructured TiO2 Electrodes for Flexible Dye-Sensitized Solar Cells

    Directory of Open Access Journals (Sweden)

    Dongshe Zhang

    2008-01-01

    Full Text Available An amorphous shell/nanocrystalline core nanostructured TiO2 electrode was prepared at low temperature, in which the mixture of TiO2 powder and TiCl4 aqueous solution was used as the paste for coating a film and in this film amorphous TiO2 resulted from direct hydrolysis of TiCl4 at 100∘C sintering was produced to connect the particles forming a thick crack-free uniform nanostructured TiO2 film (12 μm, and on which a photoelectrochemical solar cell-based was fabricated, generating a short-circuit photocurrent density of 13.58 mA/cm2, an open-circuit voltage of 0.647 V, and an overall 4.48% light-to-electricity conversion efficiency under 1 sun illumination.

  16. Review: peripheral nerve regeneration using non-tubular alginate gel crosslinked with covalent bonds.

    Science.gov (United States)

    Hashimoto, Tadashi; Suzuki, Yoshihisa; Suzuki, Kyoko; Nakashima, Toshihide; Tanihara, Masao; Ide, Chizuka

    2005-06-01

    We have developed a nerve regeneration material consisting of alginate gel crosslinked with covalent bonds. in the first part of this study, we attempted to analyze nerve regeneration through alginate gel in the early stages within 2 weeks. in the second part, we tried to regenerate cat peripheral nerve by using alginate tubular or non-tubular nerve regeneration devices, and compared their efficacies. Four days after surgery, regenerating axons grew without Schwann cell investment through the partially degraded alginate gel, being in direct contact with the alginate without a basal lamina covering. One to 2 weeks after surgery, regenerating axons were surrounded by common Schwann cells, forming small bundles, with some axons at the periphery being partly in direct contact with alginate. At the distal stump, numerous Schwann cells had migrated into the alginate 8-14 days after surgery. Remarkable restorations of the 50-mm gap in cat sciatic nerve were obtained after a long term by using tubular or non-tubular nerve regeneration material consisting mainly of alginate gel. However, there was no significant difference between both groups at electrophysiological and morphological evaluation. Although, nowadays, nerve regeneration materials being marketed mostly have a tubular structure, our results suggest that the tubular structure is not indispensable for peripheral nerve regeneration.

  17. Boundary element analysis of the directional sensitivity of the concentric EMG electrode

    DEFF Research Database (Denmark)

    Henneberg, Kaj-åge; R., Plonsey

    1993-01-01

    on the intrinsic features linked to the geometry of the electrode. The results show that the cannula perturbs the potential distribution significantly. The core and the cannula electrodes measure potentials of the same order of magnitude in all of the pick-up range, except adjacent to the central wire, where...... as the mutual electrical influence between the electrode surfaces. A three-dimensional sensitivity function is defined from which information about the preferential direction of sensitivity, blind spots, phase changes, rate of attenuation, and range of pick-up radius can be derived. The study focuses...... the latter dominates the sensitivity function. The preferential directions of sensitivity are determined by.the amount of geometric offset between the individual sensitivity functions of the core and the cannula. The sensitivity function also reveals a complicated pattern of phase changes in the pick...

  18. Braided multi-electrode probes: mechanical compliance characteristics and recordings from spinal cords

    Science.gov (United States)

    Kim, Taegyo; Branner, Almut; Gulati, Tanuj; Giszter, Simon F.

    2013-08-01

    Objective. To test a novel braided multi-electrode probe design with compliance exceeding that of a 50 µm microwire, thus reducing micromotion- and macromotion-induced tissue stress. Approach. We use up to 24 ultra-fine wires interwoven into a tubular braid to obtain a highly flexible multi-electrode probe. The tether-portion wires are simply non-braided extensions of the braid structure, allowing the microprobe to follow gross neural tissue movements. Mechanical calculation and direct measurements evaluated bending stiffness and axial compression forces in the probe and tether system. These were compared to 50 µm nichrome microwire standards. Recording tests were performed in decerebrate animals. Main results. Mechanical bending tests on braids comprising 9.6 or 12.7 µm nichrome wires showed that implants (braided portions) had 4 to 21 times better mechanical compliance than a single 50 µm wire and non-braided tethers were 6 to 96 times better. Braided microprobes yielded robust neural recordings from animals' spinal cords throughout cord motions. Significance. Microwire electrode arrays that can record and withstand tissue micro- and macromotion of spinal cord tissues are demonstrated. This technology may provide a stable chronic neural interface into spinal cords of freely moving animals, is extensible to various applications, and may reduce mechanical tissue stress.

  19. Tubular transport and metabolism of cimetidine in chicken kidneys

    International Nuclear Information System (INIS)

    Rennick, B.; Ziemniak, J.; Smith, I.; Taylor, M.; Acara, M.

    1984-01-01

    Renal tubular transport and renal metabolism of [ 14 C]cimetidine (CIM) were investigated by unilateral infusion into the renal portal circulation in chickens (Sperber technique). [ 14 C]CIM was actively transported at a rate 88% that of simultaneously infused p-aminohippuric acid, and its transport was saturable. The following organic cations competitively inhibited the tubular transport of [ 14 C]CIM with decreasing potency: CIM, ranitidine, thiamine, procainamide, guanidine and choline. CIM inhibited the transport of [ 14 C]thiamine, [ 14 C]amiloride and [ 14 C]tetraethylammonium. During CIM infusion, two renal metabolites, CIM sulfoxide and hydroxymethylcimetidine, were found in urine. When CIM sulfoxide was infused, its transport efficiency was 32% and not saturable. CIM sulfoxide did ot inhibit the simultaneous renal tubular transport of p-aminohippuric acid or tetraethylammonium. CIM is transported by the organic cation transport system and the kidney metabolizes CIM. Transport of CIM and other cationic drugs could produce a drug interaction to alter drug excretion

  20. Emergent patterns of collective cell migration under tubular confinement.

    Science.gov (United States)

    Xi, Wang; Sonam, Surabhi; Beng Saw, Thuan; Ladoux, Benoit; Teck Lim, Chwee

    2017-11-15

    Collective epithelial behaviors are essential for the development of lumens in organs. However, conventional assays of planar systems fail to replicate cell cohorts of tubular structures that advance in concerted ways on out-of-plane curved and confined surfaces, such as ductal elongation in vivo. Here, we mimic such coordinated tissue migration by forming lumens of epithelial cell sheets inside microtubes of 1-10 cell lengths in diameter. We show that these cell tubes reproduce the physiological apical-basal polarity, and have actin alignment, cell orientation, tissue organization, and migration modes that depend on the extent of tubular confinement and/or curvature. In contrast to flat constraint, the cell sheets in a highly constricted smaller microtube demonstrate slow motion with periodic relaxation, but fast overall movement in large microtubes. Altogether, our findings provide insights into the emerging migratory modes for epithelial migration and growth under tubular confinement, which are reminiscent of the in vivo scenario.

  1. HER-2 amplification in tubular carcinoma of the breast.

    Science.gov (United States)

    Oakley, Gerard J; Tubbs, Raymond R; Crowe, Joseph; Sebek, Bruce; Budd, G Thomas; Patrick, Rebecca J; Procop, Gary W

    2006-07-01

    The prognostic and therapeutic implications of HER-2 gene amplification and estrogen and progesterone receptor status in breast cancer are well described. To address the relative paucity of information concerning HER-2 amplification for tubular carcinomas, we assessed the frequency of gene amplification in 55 tubular carcinomas of the breast from 54 patients, 5 of which had axillary node metastases. The HER-2 gene copy number was assessed by fluorescence in situ hybridization for the majority of tumors analyzed, whereas estrogen and progesterone receptor status was achieved by immunohistochemical analysis. HER-2 gene amplification was not observed in any of the tumors examined, and most were estrogen receptor-positive. This HER-2 gene amplification frequency was significantly lower than the frequency of gene amplification previously reported for all invasive ductal carcinoma of no special type (P < .01). HER-2 gene amplification likely occurs infrequently, or not at all, in tubular carcinomas of the breast, whereas most express estrogen receptors.

  2. Work tool in a tubular element

    International Nuclear Information System (INIS)

    Griffaton, J.

    1991-01-01

    The stand, which is positioned in relation with the tubular element, has clutch disengagement means for a working rod in rotation, with at least two positioning regions on the rod. Application for laser welding a sleeve into PWR steam generator tubes [fr

  3. Renal Tubular Function in Systemic Lupus Erythematosus*

    African Journals Online (AJOL)

    immune' diseases such as. Sjogren's syndrome,'" systemic lupus erythematosus. (SLE),3 alveolitis' and chronic active hepatitis.' The reported abnormalities of renal tubular function include impairment of acid excretion and urinary concentration.

  4. Pointlike Inclusion Interactions in Tubular Membranes

    NARCIS (Netherlands)

    Vahid Belarghou, A.; Idema, T.

    2016-01-01

    Membrane tubes and tubular networks are ubiquitous in living cells. Inclusions like proteins are vital for both the stability and the dynamics of such networks. These inclusions interact via the curvature deformations they impose on the membrane. We analytically study the resulting membrane

  5. Plastic deformation of tubular crystals by dislocation glide.

    Science.gov (United States)

    Beller, Daniel A; Nelson, David R

    2016-09-01

    Tubular crystals, two-dimensional lattices wrapped into cylindrical topologies, arise in many contexts, including botany and biofilaments, and in physical systems such as carbon nanotubes. The geometrical principles of botanical phyllotaxis, describing the spiral packings on cylinders commonly found in nature, have found application in all these systems. Several recent studies have examined defects in tubular crystals associated with crystalline packings that must accommodate a fixed tube radius. Here we study the mechanics of tubular crystals with variable tube radius, with dislocations interposed between regions of different phyllotactic packings. Unbinding and separation of dislocation pairs with equal and opposite Burgers vectors allow the growth of one phyllotactic domain at the expense of another. In particular, glide separation of dislocations offers a low-energy mode for plastic deformations of solid tubes in response to external stresses, reconfiguring the lattice step by step. Through theory and simulation, we examine how the tube's radius and helicity affects, and is in turn altered by, the mechanics of dislocation glide. We also discuss how a sufficiently strong bending rigidity can alter or arrest the deformations of tubes with small radii.

  6. Tubular Carcinoma of the Breast: Advantages and Limitations of Breast Tomosynthesis

    Directory of Open Access Journals (Sweden)

    Filipa Vilaverde

    2016-01-01

    Full Text Available Tubular carcinoma of the breast is a rare variant of invasive ductal carcinoma. We report a case of 42-year-old asymptomatic female with a histopathological proven multifocal tubular carcinoma, studied by mammography, Tomosynthesis, Ultrasound, and Magnetic Resonance. Herein, we discuss the advantages and limitations of Tomosynthesis, an emerging imaging technique, in this particular case.

  7. Tubular Carcinoma of the Breast: Advantages and Limitations of Breast Tomosynthesis

    Science.gov (United States)

    Rocha, Ana; Reis, Alcinda

    2016-01-01

    Tubular carcinoma of the breast is a rare variant of invasive ductal carcinoma. We report a case of 42-year-old asymptomatic female with a histopathological proven multifocal tubular carcinoma, studied by mammography, Tomosynthesis, Ultrasound, and Magnetic Resonance. Herein, we discuss the advantages and limitations of Tomosynthesis, an emerging imaging technique, in this particular case. PMID:28116205

  8. Effect of section shape on frequencies of natural oscillations of tubular springs

    Science.gov (United States)

    Pirogov, S. P.; Chuba, A. Yu; Cherentsov, D. A.

    2018-05-01

    The necessity of determining the frequencies of natural oscillations of manometric tubular springs is substantiated. Based on the mathematical model and computer program, numerical experiments were performed that allowed us to reveal the effect of geometric parameters on the frequencies of free oscillations of manometric tubular springs.

  9. Compressibility effects in packed and open tubular gas and supercritical fluid chromatography

    NARCIS (Netherlands)

    Janssen, J.G.M.; Snijders, H.M.J.; Cramers, C.A.; Schoenmakers, P.J.

    1992-01-01

    The influence of the pressure drop on the efficiency and speed of anal. in packed and open tubular supercrit. fluid chromatog. (SFC) is described: methods previously developed to describe the effects of mobile phase compressibility on the performance of open tubular columns in SFC have been extended

  10. Electrode design for direct-methane micro-tubular solid oxide fuel cell (MT-SOFC)

    Science.gov (United States)

    Rabuni, Mohamad Fairus; Li, Tao; Punmeechao, Puvich; Li, Kang

    2018-04-01

    Herein, a micro-structured electrode design has been developed via a modified phase-inversion method. A thin electrolyte integrated with a highly porous anode scaffold has been fabricated in a single-step process and developed into a complete fuel cell for direct methane (CH4) utilisation. A continuous and well-dispersed layer of copper-ceria (Cu-CeO2) was incorporated inside the micro-channels of the anode scaffold. A complete cell was investigated for direct CH4 utilisation. The well-organised micro-channels and nano-structured Cu-CeO2 anode contributed to an increase in electrochemical reaction sites that promoted charge-transfer as well as facilitating gaseous fuel distribution, resulting in outstanding performances. Excellent electrochemical performances have been achieved in both hydrogen (H2) and CH4 operation. The power density of 0.16 Wcm-2 at 750 °C with dry CH4 as fuel is one of the highest ever reported values for similar anode materials.

  11. Bioinspired coupled helical coils for soft tissue engineering of tubular structures - Improved mechanical behavior of tubular collagen type I templates.

    Science.gov (United States)

    Janke, H P; Bohlin, J; Lomme, R M L M; Mihaila, S M; Hilborn, J; Feitz, W F J; Oosterwijk, E

    2017-09-01

    The design of constructs for tubular tissue engineering is challenging. Most biomaterials need to be reinforced with supporting structures such as knittings, meshes or electrospun material to comply with the mechanical demands of native tissues. In this study, coupled helical coils (CHCs) were manufactured to mimic collagen fiber orientation as found in nature. Monofilaments of different commercially available biodegradable polymers were wound and subsequently fused, resulting in right-handed and left-handed polymer helices fused together in joints where the filaments cross. CHCs of different polymer composition were tested to determine the tensile strength, strain recovery, hysteresis, compressive strength and degradation of CHCs of different composition. Subsequently, seamless and stable hybrid constructs consisting of PDSII® USP 2-0 CHCs embedded in porous collagen type I were produced. Compared to collagen alone, this hybrid showed superior strain recovery (93.5±0.9% vs 71.1±12.6% in longitudinal direction; 87.1±6.6% vs 57.2±4.6% in circumferential direction) and hysteresis (18.9±2.7% vs 51.1±12.0% in longitudinal direction; 11.5±4.6% vs 46.3±6.3% in circumferential direction). Furthermore, this hybrid construct showed an improved Young's modulus in both longitudinal (0.5±0.1MPavs 0.2±0.1MPa; 2.5-fold) and circumferential (1.65±0.07MPavs (2.9±0.3)×10 -2 MPa; 57-fold) direction, respectively, compared to templates created from collagen alone. Moreover, hybrid template characteristics could be modified by changing the CHC composition and CHCs were produced showing a mechanical behavior similar to the native ureter. CHC-enforced templates, which are easily tunable to meet different demands may be promising for tubular tissue engineering. Most tubular constructs lack sufficient strength and tunability to comply with the mechanical demands of native tissues. Therefore, we embedded coupled helical coils (CHCs) produced from biodegradable polymers - to

  12. Fabrication of cathode supported tubular solid oxide electrolysis cell for high temperature steam electrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Shao, Le; Wang, Shaorong; Qian, Jiqin; Xue, Yanjie; Liu, Renzhu

    2011-01-15

    In recent years, hydrogen has been identified as a potential alternative fuel and energy carrier for the future energy supply. Water electrolysis is one of the important hydrogen production technologies which do not emit carbon dioxide. High temperature steam electrolysis (HTSE) consumes even less electrical energy than low temperature water electrolysis. Theoretically, HTSE using solid oxide electrolysis cells (SOEC) can efficiently utilize renewable energy to produce hydrogen, and it is also possible to operate the SOEC in reverse mode as the solid oxide fuel cell (SOFC) to produce electricity. Tubular SOFC have been widely investigated. In this study, tubular solid oxide cells were fabricated by dip-coating and cosintering techniques. In SOEC mode, results suggested that steam ratio had a strong impact on the performance of the tubular cell; the tubular SOEC preferred to be operated at high steam ratio in order to avoid concentration polarization. The microstructure of the tubular SOEC should therefore be optimized for high temperature steam electrolysis.

  13. Research on typical topologies of a tubular horizontal-gap passive magnetic levitation vibration isolator

    Directory of Open Access Journals (Sweden)

    Zhou Yiheng

    2017-01-01

    Full Text Available Magnetic levitation vibration isolators have attracted more and more attention in the field of high-precision measuring and machining equipment. In this paper, we describe a tubular horizontal-gap passive magnetic levitation vibration isolator. Four typical topologies of the tubular horizontal-gap passive magnetic levitation vibration isolator are proposed. The analytical expression of magnetic force is derived. The relationship between levitation force, force density, force ripple and major structural parameters are analysed by finite element method, which is conductive to the design and optimization of the tubular horizontal-gap passive magnetic levitation vibration isolator. The force characteristics of different topologies of the tubular horizontal-gap passive magnetic levitation vibration isolator are compared and evaluated from the aspect of force density, force ripple and manufacturability. In comparison with conventional passive magnetic levitation vibration isolators, the proposed tubular horizontal-gap passive magnetic levitation vibration isolator shows advantage in higher force density.

  14. On Energy Balance and Production Costs in Tubular and Flat Panel Photobioreactors

    NARCIS (Netherlands)

    Norsker, N.H.; Barbosa, M.J.; Vermue, M.H.; Wijffels, R.H.

    2012-01-01

    Reducing mixing in both flat panel and tubular photobioreactors can result in a positive net energy balance with state-of-the-art technology and Dutch weather conditions. In the tubular photobioreactor, the net energy balance becomes positive at velocities <0.3 ms-1, at which point the biomass

  15. Hyperammonemia associated with distal renal tubular acidosis or urinary tract infection: a systematic review.

    Science.gov (United States)

    Clericetti, Caterina M; Milani, Gregorio P; Lava, Sebastiano A G; Bianchetti, Mario G; Simonetti, Giacomo D; Giannini, Olivier

    2018-03-01

    Hyperammonemia usually results from an inborn error of metabolism or from an advanced liver disease. Individual case reports suggest that both distal renal tubular acidosis and urinary tract infection may also result in hyperammonemia. A systematic review of the literature on hyperammonemia secondary to distal renal tubular acidosis and urinary tract infection was conducted. We identified 39 reports on distal renal tubular acidosis or urinary tract infections in association with hyperammonemia published between 1980 and 2017. Hyperammonemia was detected in 13 children with distal renal tubular acidosis and in one adult patient with distal renal tubular acidosis secondary to primary hyperparathyroidism. In these patients a negative relationship was observed between circulating ammonia and bicarbonate levels (P urinary tract infection was complicated by acute hyperammonemia and symptoms and signs of acute neuronal dysfunction, such as an altered level of consciousness, convulsions and asterixis, often associated with signs of brain edema, such as anorexia and vomiting. Urea-splitting bacteria were isolated in 28 of the 31 cases. The urinary tract was anatomically or functionally abnormal in 30 of these patients. This study reveals that both altered distal renal tubular acidification and urinary tract infection may be associated with relevant hyperammonemia in both children and adults.

  16. Ground Vibration Isolation of Multiple Scattering by Using Rows of Tubular Piles as Barriers

    Directory of Open Access Journals (Sweden)

    Miao-miao Sun

    2014-01-01

    Full Text Available A new formal solution for the multiple scattering of plane harmonic waves by a group of arbitrary configuration tubular piles in an elastic total space is derived. Each order of scattering satisfies prescribed boundary conditions at the interface of tubular piles, which is delivered as the sum of incident and scattering waves. The first order performs the scattering wave by each scattered pile and the subsequent orders resulted from the excitation of each pile of first order of scattering from the remaining tubular piles. Advanced scattering orders can be regarded as the same manners. Several series of scattering coefficients are figured out with the aids of addition theorem so that the exact steady-state solution for the scattered displacement and stress is obtained. Particularly, when internal diameter of tubular piles tends to be infinitely small, it degenerates to a solid pile problem. By imposing the normalized displacement amplitudes and transmissibility indices, the influences of specific parameters such as scattering orders, internal and external diameter ratio of piles, pile material rigidity, position and distances between tubular pile and pile rows, and pile numbers are discussed. Certain recommended conclusions have been drawn as the guidelines of practical engineering design for discontinuous barrier of tubular piles.

  17. A Tubular Biomaterial Construct Exhibiting a Negative Poisson's Ratio.

    Directory of Open Access Journals (Sweden)

    Jin Woo Lee

    Full Text Available Developing functional small-diameter vascular grafts is an important objective in tissue engineering research. In this study, we address the problem of compliance mismatch by designing and developing a 3D tubular construct that has a negative Poisson's ratio νxy (NPR. NPR constructs have the unique ability to expand transversely when pulled axially, thereby resulting in a highly-compliant tubular construct. In this work, we used projection stereolithography to 3D-print a planar NPR sheet composed of photosensitive poly(ethylene glycol diacrylate biomaterial. We used a step-lithography exposure and a stitch process to scale up the projection printing process, and used the cut-missing rib unit design to develop a centimeter-scale NPR sheet, which was rolled up to form a tubular construct. The constructs had Poisson's ratios of -0.6 ≤ νxy ≤ -0.1. The NPR construct also supports higher cellular adhesion than does the construct that has positive νxy. Our NPR design offers a significant advance in the development of highly-compliant vascular grafts.

  18. Undulating tubular liposomes through incorporation of a synthetic skin ceramide into phospholipid bilayers.

    Science.gov (United States)

    Xu, Peng; Tan, Grace; Zhou, Jia; He, Jibao; Lawson, Louise B; McPherson, Gary L; John, Vijay T

    2009-09-15

    Nonspherical liposomes were prepared by doping L-alpha-phosphatidylcholine (PC) with ceramide VI (a skin lipid). Cryo-transmission electron microscopy shows the liposome shape changing from spherical to an undulating tubular morphology, when the amount of ceramide VI is increased. The formation of tubular liposomes is energetically favorable and is attributed to the association of ceramide VI with PC creating regions of lower curvature. Since ceramides are the major component of skin lipids in the stratum corneum, tubular liposomes containing ceramide may potentially serve as self-enhanced nanocarriers for transdermal delivery.

  19. Electro-chemical deposition of zinc oxide nanostructures by using two electrodes

    Directory of Open Access Journals (Sweden)

    B. A. Taleatu

    2011-09-01

    Full Text Available One of the most viable ways to grow nanostructures is electro deposition. However, most electrodeposited samples are obtained by three-electrode electrochemical cell. We successfully use a much simpler two-electrode cell to grow different ZnO nanostructures from common chemical reagents. Concentration, pH of the electrolytes and growth parameters like potentials at the electrodes, are tailored to allow fast growth without complexity. Morphology and surface roughness are investigated by Scanning Electron and Air Force Microscopy (SEM and AFM respectively, crystal structure by X-Ray Diffraction measurements (XRD and ZnO stoichiometry by core level photoemission spectroscopy (XPS.

  20. Tumor-promoting phorbol esters effect alkalinization of canine renal proximal tubular cells

    International Nuclear Information System (INIS)

    Mellas, J.; Hammerman, M.R.

    1986-01-01

    We have demonstrated the presence of specific receptors for tumor-promoting phorbol esters in the plasma membrane of the canine renal proximal tubular cell. These compounds affect proximal tubular metabolism in vitro. For example, we have shown that they inhibit gluconeogenesis in canine renal proximal tubular segments. Tumor-promoting phorbol esters have been shown to effect alkalinization of non-renal cells, by enhancing Na + -H + exchange across the plasma membrane. To determine whether the actions of tumor-promoting phorbol esters in proximal tubular segments might be mediated by a similar process, we incubated suspensions of segments from dog kidney with these compounds and measured changes in intracellular pH using [ 14 C]-5,5-dimethoxazoladine-2-4-dione (DMO) and flow dialysis. Incubation of segments with phorbol 12,13 dibutyrate, but not inactive phorbol ester, 4 γ phorbol, effected alkalinization of cells within the segments in a concentration-dependent manner. Alkalinization was dependent upon the presence of extracellular [Na + ] > intracellular [Na + ], was prevented by amiloride and was demonstrable in the presence of SITS. Our findings suggest that tumor-promoting esters stimulate the Na + -H + exchanger known to be present in the brush border membrane of the renal proximal tubular cell. It is possible that the stimulation reflects a mechanism by which phorbol esters affect metabolic processes in these cells

  1. Hypokalaemia and Renal Tubular Acidosis due to Abuse of Nurofen Plus

    Directory of Open Access Journals (Sweden)

    M. J. Blackstock

    2012-01-01

    Full Text Available Nurofen Plus is a common analgesic containing ibuprofen and codeine. We present a case of a 38-year-old lady who developed renal tubular acidosis with severe hypokalaemia, after chronic abuse of Nurofen Plus tablets. She presented with confusion and profound biochemical abnormalities requiring critical care admission for electrolyte replacement. Ibuprofen causes renal tubular acidosis due to its effects on carbonic anhydrase activity.

  2. Particle detector and its construction process

    International Nuclear Information System (INIS)

    Farcy, Paul.

    1980-01-01

    This invention refers to a detector of particles that enables accurate determinations to be effected at high temperature, irrespective of the particle flux to which it is subjected (for example, a neutron flux in the core of a reactor) and preferentially is of elongated shape and particularly reduced radial section. According to the invention, the specifications of this detector include a body in a single piece, made of a ceramic material, in which are embedded and sealed two concentric tubular electrodes forming between them an annular chamber filled with a gas under pressure and electric wires connecting the electrodes to the outside of the body [fr

  3. Testing of tubular goods - a critical review of past and actual testing procedures

    Energy Technology Data Exchange (ETDEWEB)

    Teodoriu, C. [Texas A and M Univ., Houston, TX (United States); Holzmann, J.; Klaws, M. [TU Clausthal (Germany). Inst. fuer Erdoel- und Erdgastechnik

    2007-09-13

    Testing of oil country tubular goods (OCTG) is based on standards and offers the user a comparison platform between products of different manufacturers. But, do the standard based testing procedures assume the real loads on OCTG? More likely, the existing standards or recommendations on tubular testing have been evolving together with the new demands on OCTG loading. Since nowadays the oil and gas industry is looking to develop extreme reservoir types (deep water, HP/HT), there is a need of a better understanding and continuous improvement of testing procedures. The following poster proposes an analysis of existing procedures to test tubular goods and then will focus on the future demands on OCTG testing. New loads, as casing fatigue, will be discussed and analyzed based on the authors experience gained during more than 8 years of testing tubular goods at the Clausthal University of Technology, Institute of Petroleum Engineering. (orig.)

  4. Effect of corrosion on the buckling capacity of tubular members

    Science.gov (United States)

    Øyasæter, F. H.; Aeran, A.; Siriwardane, S. C.; Mikkelsen, O.

    2017-12-01

    Offshore installations are subjected to harsh marine environment and often have damages from corrosion. Several experimental and numerical studies were performed in the past to estimate buckling capacity of corroded tubular members. However, these studies were either based on limited experimental tests or numerical analyses of few cases resulting in semi-empirical relations. Also, there are no guidelines and recommendations in the currently available design standards. To fulfil this research gap, a new formula is proposed to estimate the residual strength of tubular members considering corrosion and initial geometrical imperfections. The proposed formula is verified with results from finite element analyses performed on several members and for varying corrosion patch parameters. The members are selected to represent the most relevant Eurocode buckling curve for tubular members. It is concluded that corrosion reduces the buckling capacity significantly and the proposed formula can be easily applied by practicing engineers without performing detailed numerical analyses.

  5. Dynamics of catalytic tubular microjet engines: dependence on geometry and chemical environment.

    Science.gov (United States)

    Li, Jinxing; Huang, Gaoshan; Ye, Mengmeng; Li, Menglin; Liu, Ran; Mei, Yongfeng

    2011-12-01

    Strain-engineered tubular microjet engines with various geometric dimensions hold interesting autonomous motions in an aqueous fuel solution when propelled by catalytic decomposition of hydrogen peroxide to oxygen and water. The catalytically-generated oxygen bubbles expelled from microtubular cavities propel the microjet step by step in discrete increments. We focus on the dynamics of our tubular microjets in one step and build up a body deformation model to elucidate the interaction between tubular microjets and the bubbles they produce. The average microjet velocity is calculated analytically based on our model and the obtained results demonstrate that the velocity of the microjet increases linearly with the concentration of hydrogen peroxide. The geometric dimensions of the microjet, such as length and radius, also influence its dynamic characteristics significantly. A close consistency between experimental and calculated results is achieved despite a small deviation due to the existence of an approximation in the model. The results presented in this work improve our understanding regarding catalytic motions of tubular microjets and demonstrate the controllability of the microjet which may have potential applications in drug delivery and biology.

  6. Tubular permanent magnet actuators: cogging forces characterization

    NARCIS (Netherlands)

    Paulides, J.J.H.; Janssen, J.L.G.; Encica, L.; Lomonova, E.A.

    2009-01-01

    Tubular permanent magnet actuators are evermore used in demanding industrial and automotive applications. However, these actuators can suffer from large cogging forces, which have a destabilizing effect on the servo control system and compromise position and speed control accuracy. This paper

  7. Facile Fabrication of Uniform Polyaniline Nanotubes with Tubular Aluminosilicates as Templates

    OpenAIRE

    Zhang, Long; Liu, Peng

    2008-01-01

    AbstractThe uniform polyaniline (PANI) nanotubes, with inner diameter, outer diameter, and tubular thickness of 40, 60, and 10 nm, respectively, were prepared successfully by using natural tubular aluminosilicates as templates. The halloysite nanotubes were coated with PANI via the in situ chemical oxidation polymerization. Then the templates were etched with HCl/HF solution. The PANI nanotubes were characterized using FTIR, X-ray diffraction, and transmission electron microscopy. The conduct...

  8. Involvement of caspase-12-dependent apoptotic pathway in ionic radiocontrast urografin-induced renal tubular cell injury

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Cheng Tien [Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan (China); Weng, Te I. [Department of Forensic Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan (China); Chen, Li Ping [Department of Dentistry, Chang Gang Memorial Hospital, Chang Gang University, Taoyuan, Taiwan (China); Chiang, Chih Kang [Department of Integrated Diagnostics and Therapeutics, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan (China); Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan (China); Liu, Shing Hwa, E-mail: shinghwaliu@ntu.edu.tw [Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan (China); Department of Urology, National Taiwan University Hospital, Taipei, Taiwan (China)

    2013-01-01

    Contrast medium (CM) induces a direct toxic effect on renal tubular cells. This toxic effect subjects in the disorder of CM-induced nephropathy. Our previous work has demonstrated that CM shows to activate the endoplasmic reticulum (ER)-related adaptive unfolding protein response (UPR) activators. Glucose-regulated protein 78 (GRP78)/eukaryotic initiation factor 2α (eIF2α)-related pathways play a protective role during the urografin (an ionic CM)-induced renal tubular injury. However, the involvement of ER stress-related apoptotic signals in the urografin-induced renal tubular cell injury remains unclear. Here, we examined by the in vivo and in vitro experiments to explore whether ER stress-regulated pro-apoptotic activators participate in urografin-induced renal injury. Urografin induced renal tubular dilation, tubular cells detachment, and necrosis in the kidneys of rats. The tubular apoptosis, ER stress-related pro-apoptotic transcriptional factors, and kidney injury marker-1 (kim-1) were also conspicuously up-regulated in urografin-treated rats. Furthermore, treatment of normal rat kidney (NRK)-52E tubular cells with urografin augmented the expressions of activating transcription factor-6 (ATF-6), C/EBP homologous protein (CHOP), Bax, caspase-12, JNK, and inositol-requiring enzyme (IRE) 1 signals. Urografin-induced renal tubular cell apoptosis was not reversed by the inhibitors of ATF-6, JNK signals or CHOP siRNA transfection, but it could be partially reversed by the inhibitor of caspase-12. Taken together, the present results and our previous findings suggest that exposure of CM/urografin activates the ER stress-regulated survival- and apoptosis-related signaling pathways in renal tubular cells. Caspase-12-dependent apoptotic pathway may be partially involved in the urografin-induced nephropathy. -- Highlights: ► Ionic contrast medium-urografin induces renal tubular cell apoptosis. ► Urografin induces the ER stress-regulated survival and apoptosis

  9. Tubular and endothelial chimerism in renal allografts using fluorescence and chromogenic in situ hybridization (FISH, CISH) technology.

    Science.gov (United States)

    Varga, Zsuzsanna; Gaspert, Ariana; Behnke, Silvia; von Teichman, Adriana; Fritzsche, Florian; Fehr, Thomas

    2012-04-01

    The role of endothelial and tubular chimerism in renal allograft adaptation and rejection varies in different studies. We addressed the correlation between different clinico-pathological settings and sex-chromosomal endothelial and/or tubular chimerism in renal allografts. We examined the presence or absence of the X and Y chromosomes by fluorescence and chromogenic in situ hybridization (FISH, CISH) methodology on paraffin embedded kidney biopsies in 16 gender mismatched renal transplants (1 to 12 years post-transplantation). Twelve patients were male, four female. Four groups were selected: (i) Vascular calcineurin inhibitor toxicity without rejection; (ii) T-cell mediated vascular rejection; (iii) antibody mediated rejection; and (iv) C4d-positivity in AB0-incompatible transplants with or without rejection. Twelve non-transplant kidney biopsies (8 female, 4 male) were used as controls. Tubular chimerism was detected more frequently (69%) than endothelial chimerism (12%) in renal transplants. One of 12 control patients had tubular and endothelial chimeric cells (8%). The Y chromosome occurred in 8/12 male recipients (67%) in tubular epithelial cells and in 5/12 male recipients (42%) in endothelial cells. Double X chromosomes were detected in 3/4 female recipients in tubular epithelium. Tubular chimerism occurred more often with endothelial chimerism and capillaritis without correlation with other parameters, such as rejection. Combined Y chromosomal tubular and lymphatic endothelial chimerism correlated with T-cell mediated vascular rejection in two out of three patients (66%). Combined Y chromosomal tubular and peritubular capillary chimerism correlated with antibody mediated C4d+ rejection in one out of two patients (50%). Tubular and/or endothelial chimerism occur frequently in gender mismatched renal allografts and, when combined, this is associated with T-cell mediated rejection. © 2012 The Authors. Pathology International © 2012 Japanese Society of

  10. Large tubular colonic duplication in an adult treated with a small midline incision

    Science.gov (United States)

    Yong, Yuen Geng; Jung, Kyung Uk; Cho, Yong Beom; Yun, Seong Hyeon; Kim, Hee Cheol; Lee, Woo Yong

    2012-01-01

    Tubular colonic duplication presenting in adults is rare and difficult to diagnose preoperatively. Only a few cases have been reported in the literature. We report a case of a 29-year-old lady presenting with a long history of chronic constipation, abdominal mass and repeated episodes of abdominal pain. The abdominal-pelvic computed tomography scan showed segmental bowel wall thickening thought to be small bowel, and dilatation with stasis of intraluminal content. The provisional diagnosis was small bowel duplication. She was scheduled for single port laparoscopic resection. However, a T-shaped tubular colonic duplication at sigmoid colon was found intraoperatively. Resection of the large T-shaped tubular colonic duplication containing multiple impacted large fecaloma and primary anastomosis was performed. There was no perioperative complication. We report, herein, the case of a T-shaped tubular colonic duplication at sigmoid colon in an adult who was successfully treated through mini-laparotomy assisted by single port laparoscopic surgery. PMID:22403754

  11. Importance of early audiologic assessment in distal renal tubular acidosis

    Directory of Open Access Journals (Sweden)

    Elizabeth Norgett

    2010-12-01

    Full Text Available Anand P Swayamprakasam1, Elizabeth Stover1, Elizabeth Norgett1, Katherine G Blake-Palmer1, Michael J Cunningham2, Fiona E Karet11Department of Medical Genetics, Cambridge Institute for Medical Research, Cambridge, UK; 2Department of Otolaryngology, Massachusetts Eye and Ear Infirmary, Boston, MA, USAAbstract: Autosomal recessive distal renal tubular acidosis is usually a severe disease of childhood, often presenting as failure to thrive in infancy. It is often, but not always, accompanied by sensorineural hearing loss, the clinical severity and age of onset of which may be different from the other clinical features. Mutations in either ATP6V1B1 or ATP6V0A4 are the chief causes of primary distal renal tubular acidosis with or without hearing loss, although the loss is often milder in the latter. We describe a kindred with compound heterozygous alterations in ATP6V0A4, where hearing loss was formally diagnosed late in both siblings such that they missed early opportunities for hearing support. This kindred highlights the importance of routine audiologic assessments of all children with distal renal tubular acidosis, irrespective either of age at diagnosis or of which gene is mutated. In addition, when diagnostic genetic testing is undertaken, both genes should be screened irrespective of current hearing status. A strategy for this is outlined.Keywords: sensorineural hearing loss, renal tubular acidosis, recessive, genetics, mutation

  12. Tubular closure mechanism

    International Nuclear Information System (INIS)

    Kalen, D.D.; Mitchem, J.W.

    1982-01-01

    This invention relates to a closure mechanism for tubular irradiation surveillance specimen assembly holder used in nuclear reactors. The closure mechanism is composed of a latching member which includes a generally circular chamber with a plurality of elongated latches depending therefrom. The latching member circumscribes part of an actuator member which is disposed within the latching member so as to be axially movable. The axial movement of the actuator actuates positioning of the latches between positions in which the latches are locked and secured within the actuator member. Means, capable of being remotely manipulated, are provided to move the actuator in order to position the latches and load the articles within the tube

  13. Preparation and electrochemical characteristics of porous hollow spheres of NiO nanosheets as electrodes of supercapacitors

    Science.gov (United States)

    Yu, Wei; Jiang, Xinbing; Ding, Shujiang; Li, Ben Q.

    2014-06-01

    Porous hollow nanospheres (or spherical shells) made of NiO nanosheets are synthesized and tested for the electrochemical performance of the electrodes made of these materials for supercapacitors. Preparation of the NiO sheet hollow spheres starts with synthesis of polystyrene nanospheres with carboxyl groups (CPS), followed by a two-step activation procedure and the subsequent nucleation and growth by electroless deposition of Ni on the CPS core to obtain CPS@Ni core-shell nanoparticles. The CPS core is eliminated and metallic Ni nanoshell is converted into NiO by calcinations at high temperatures. The material properties of as-prepared hollow NiO nanospheres are characterized by TEM, XRD and N2-absorption measurements. The electrochemical characteristics of the electrodes made of these nanostructured NiO materials are determined by the CV and galvanostatic measurements. These electrochemical tests indicate that electrodes made of the NiO nanosheet hollow spheres exhibit an improved reversible capacitance of 600 F g-1 after 1000 cycles at a high current density of 10 A g-1. It is believed that the good electrochemical performance of these electrodes is attributed to the improved OH- transport in the porous network structures associated with the hollow spheres of randomly oriented NiO nanosheets.

  14. Design and performance of tubular flat-plate solid oxide fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Matsushima, T.; Ikeda, D.; Kanagawa, H. [NTT Integrated Information & Energy Systems Labs., Tokyo (Japan)] [and others

    1996-12-31

    With the growing interest in conserving the environmental conditions, much attention is being paid to Solid Oxide Fuel Cell (SOFC), which has high energy-conversion efficiency. Many organizations have conducted studies on tubular and flat type SOFCs. Nippon Telegraph and Telephone Corporation (NTT) has studied a combined tubular flat-plate SOFC, and already presented the I-V characteristics of a single cell. Here, we report the construction of a stack of this SOFC cell and successful generation tests results.

  15. Polydopamine-coated open tubular column for the separation of proteins by capillary electrochromatography.

    Science.gov (United States)

    Xiao, Xing; Wang, Wentao; Chen, Jia; Jia, Li

    2015-08-01

    The separation and determination of proteins in food is an important aspect in food industry. Inspired by the self-polymerization of dopamine under alkaline conditions and the natural adhesive properties of polydopamine, in this paper, a simple and economical method was developed for the preparation of polydopamine-coated open tubular column, in which ammonium persulfate was used as the source of oxygen to induce and facilitate the polymerization of dopamine to form polydopamine. In comparison with a naked fused-silica capillary, the direction and magnitude of the electro-osmotic flow of the as-prepared polydopamine-coated open tubular column could be manipulated by varying the pH values of background solutions due to the existence of amine and phenolic hydroxyl groups on polydopamine coating. The surface morphology of the polydopamine-coated open tubular column was studied by scanning electron microscopy, and the thickness of polydopamine coating was 106 nm. The performance of the polydopamine-coated open tubular column was validated by analysis of proteins. The relative standard deviations of migration times of proteins representing run-to-run, day-to-day, and column-to-column were less than 3.5%. In addition, the feasibility of the polydopamine-coated open tubular column for real samples was verified by the separation of proteins in chicken egg white and pure milk. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Measurement of the Velocity and Pressure Drop in a Tubular Type Fuel

    International Nuclear Information System (INIS)

    Jonghark Park; Heetaek Chae; Cheol Park; Heonil Kim

    2006-01-01

    We have developed a tubular type fuel assembly design as one of candidates for fuel to be used in the Advanced HANARO Reactor (AHR). The tubular type fuel has several merits over a rod type fuel with respect to the thermal-hydraulic and structural safety; the larger ratio of surface area to volume makes the surface temperature of a fuel element become lower, and curved plate is stronger against longitudinal bending and vibration. In the other side, a disadvantage is expected such that the flow velocity can be distributed unevenly channel by channel because the flow channels are isolated from each other in a tubular type fuel assembly. In addition to the design development, we also investigated the flow characteristics of the tubular fuel experimentally. To examine the flow velocity distribution and pressure drop, we made an experiment facility and a mockup of the tubular fuel assembly. The fuel assembly consists of 6 concentric fuel tubes so that 7 layers are made between fuel tubes. Since each layer is divided into three sections by stiffeners, 21 isolated flow channels are made in total. We employed pitot-tubes to measure the coolant velocity in each channel. The maximum velocity was measured as large as about 28% of the average velocity. It was observed in the innermost channel contrarily to the expectation from the hydraulic diameter. A change in the total flow rate did not affect the flow distribution. Meanwhile, the pressure drop was measured as about 70% of the drop in the rod type fuel assembly in use in HANARO. (authors)

  17. Genetics Home Reference: renal tubular acidosis with deafness

    Science.gov (United States)

    ... adults with renal tubular acidosis with deafness have short stature, and many develop kidney stones. The metabolic acidosis ... enlarged vestibular aqueduct, can be seen with medical imaging. The vestibular aqueduct is a bony canal that ...

  18. Nano-tubular cellulose for bioprocess technology development.

    Science.gov (United States)

    Koutinas, Athanasios A; Sypsas, Vasilios; Kandylis, Panagiotis; Michelis, Andreas; Bekatorou, Argyro; Kourkoutas, Yiannis; Kordulis, Christos; Lycourghiotis, Alexis; Banat, Ibrahim M; Nigam, Poonam; Marchant, Roger; Giannouli, Myrsini; Yianoulis, Panagiotis

    2012-01-01

    Delignified cellulosic material has shown a significant promotional effect on the alcoholic fermentation as yeast immobilization support. However, its potential for further biotechnological development is unexploited. This study reports the characterization of this tubular/porous cellulosic material, which was done by SEM, porosimetry and X-ray powder diffractometry. The results showed that the structure of nano-tubular cellulose (NC) justifies its suitability for use in "cold pasteurization" processes and its promoting activity in bioprocessing (fermentation). The last was explained by a glucose pump theory. Also, it was demonstrated that crystallization of viscous invert sugar solutions during freeze drying could not be otherwise achieved unless NC was present. This effect as well as the feasibility of extremely low temperature fermentation are due to reduction of the activation energy, and have facilitated the development of technologies such as wine fermentations at home scale (in a domestic refrigerator). Moreover, NC may lead to new perspectives in research such as the development of new composites, templates for cylindrical nano-particles, etc.

  19. A novel temperature-gradient Na±β-alumina solid electrolyte based SOx gas sensor without gaseous reference electrode

    DEFF Research Database (Denmark)

    Rao, N.; Bleek, C.M. Van den; Schoonman, J.

    1992-01-01

    An electrochemical SOx ps sensor with a tubular Na+-beta"-alumina solid electrolyte has been fabricated and tested under non-isothermal conditions. The temperature difference between the reference and working electrode of the sensor cell is about 100-degrees-C, which causes a serious deviation...... of the experimental EMF response from the value as calculated using the Nernst equation for an isothermal system. The experimental results are Consistent with the theoretical prediction for a non-isothermal system. The response time is usually less then 10 min. SEM and EDX have been employed to investigate the sensor...... material before and after use, confirming the formation of a glassy phase of Na2SO4 by an electrochemical reaction at the interface of the platinum electrodes and Na+-beta"-alumina. According to this new theoretical derivation, the sensor design could be simplified by applying the same SO2 ps at the two...

  20. Examining the sensitivity of ultrasound-guided large core biopsy for invasive breast carcinoma in a population screening programme

    International Nuclear Information System (INIS)

    Rouse, Hannah C.; Ussher, Simon; Cawson, Jennifer N.; Kavanagh, Anne M.

    2013-01-01

    To evaluate the sensitivity of ultrasound-guided core-needle biopsy (UCB) in invasive breast carcinoma and to establish causes of false-negative biopsy in a population screening programme. We identified 571 consecutive women diagnosed with surgically proven invasive breast cancer. Histology from 14-gauge UCB was compared with surgical histology to identify true-positive and false-negative ultrasound core biopsies. True-positive and false-negative groups were compared for tumour size and histology. On blinded review of UCB images and pathology reports from false negative (n=20) and a random sample of true-positive cases (n=80), we compared core sample number and needle visualisation in the lesion. Of 571 carcinomas sampled with UCB, 551 (96.5%) were true positive and 20 (3.5%) were false negative. The mean core number was 2.0 (range 1–3) for false negatives and 2.25 (range 1–4) for true positives (P=0.27). Mean tumour sizes were 13.3 and 16.2mm for the false-negative and true-positive groups, respectively (P=0.25). Tubular carcinomas represented 30% (6/20) of false-negative cases compared with 5.1% (28/551) of the true-positive cases (P<0.001). On blinded review, needle visualisation within the lesion was demonstrated in 47.4% (9/19) of false-negative cases and 76.3% (61/80) of true-positive cases (P=0.02).We demonstrated a sensitivity of 96.5% with a mean of 2.21 cores. False-negative results were more likely in the absence of post-fire needle position verification and with tubular carcinomas. Neither tumour size nor core number predicted diagnostic accuracy.

  1. Electrode-electrolyte interface model of tripolar concentric ring electrode and electrode paste.

    Science.gov (United States)

    Nasrollaholhosseini, Seyed Hadi; Steele, Preston; Besio, Walter G

    2016-08-01

    Electrodes are used to transform ionic currents to electrical currents in biological systems. Modeling the electrode-electrolyte interface could help to optimize the performance of the electrode interface to achieve higher signal to noise ratios. There are previous reports of accurate models for single-element biomedical electrodes. In this paper we develop a model for the electrode-electrolyte interface for tripolar concentric ring electrodes (TCRE) that are used to record brain signals.

  2. Muscle imaging in patients with tubular aggregate myopathy caused by mutations in STIM1

    DEFF Research Database (Denmark)

    Tasca, Giorgio; D'Amico, Adele; Monforte, Mauro

    2015-01-01

    Tubular aggregate myopathy is a genetically heterogeneous disease characterized by tubular aggregates as the hallmark on muscle biopsy. Mutations in STIM1 have recently been identified as one genetic cause in a number of tubular aggregate myopathy cases. To characterize the pattern of muscle...... involvement in this disease, upper and lower girdles and lower limbs were imaged in five patients with mutations in STIM1, and the scans were compared with two patients with tubular aggregate myopathy not caused by mutations in STIM1. A common pattern of involvement was found in STIM1-mutated patients...... of thigh and posterior leg with sparing of gracilis, tibialis anterior and, to a lesser extent, short head of biceps femoris. Mutations in STIM1 are associated with a homogeneous involvement on imaging despite variable clinical features. Muscle imaging can be useful in identifying STIM1-mutated patients...

  3. Experiment study on four button electrode used to monitor position of high current electron-beam

    International Nuclear Information System (INIS)

    Xu Tiezheng; Wang Huacen; Xie Yutong; Zhang Wenwei

    2004-01-01

    The button electrode is one that widely used in high energy accelerators, such as storage ring, and the button electrode has many merit like high accuracy, high resolution, resisting magnetic field, simple machinery, without magnetic core and low cost, etc. It's helpful that the button electrode is used as the beam position monitor in the linear induction accelerator. The experimental facilities have been designed and set up and it can simulate the beam of linear induction accelerator. The button electrode beam position monitor experiment have been done on the experimental facilities. The result of the experiment prove that the button electrode has an accuracy of 0.5 mm, and can reflect the wave of electron-beam accurately

  4. In-Situ TEM-STM Observations of SWCNT Ropes/Tubular Transformations

    Science.gov (United States)

    Sola, F.; Lebron-Colon, M.; Ferreira, P. J.; Fonseca, L. F.; Meador, M. A.; Marin, C.

    2010-01-01

    Single-walled carbon nanotubes (SWCNTs) prepared by the HiPco process were purified using a modified gas phase purification technique. A TEM-STM holder was used to study the morphological changes of SWCNT ropes as a function of applied voltage. Kink formation, buckling behavior, tubular transformation and eventual breakdown of the system were observed. The tubular formation was attributed to a transformation from SWCNT ropes to multi-walled carbon nanotube (MWCNT) structures. It is likely mediated by the patching and tearing mechanism which is promoted primarily by the mobile vacancies generated due to current-induced heating and, to some extent, by electron irradiation.

  5. 78 FR 77421 - Certain Oil Country Tubular Goods From India: Preliminary Affirmative Countervailing Duty...

    Science.gov (United States)

    2013-12-23

    ..., Saudi Arabia, Taiwan, Thailand, the Republic of Turkey, Ukraine, and the Socialist Republic of Vietnam... DEPARTMENT OF COMMERCE International Trade Administration [C-533-858] Certain Oil Country Tubular... producers and exporters of certain oil tubular goods (OCTG) from India. The period of investigation is...

  6. The Design and Performance Evaluation of Hydroformed Tubular Torsion Beam Axle

    Science.gov (United States)

    Kim, Jaehyun; Oh, Jinho; Choi, Hanho

    2010-06-01

    Suspensions for vehicles are structural devices used for suspending a vehicle body and absorbing shocks from the road. Thus, the suspensions must be designed such that they can attenuate shocks from a road and make passengers feel comfortable despite the shocks, and improve steering stability, determined by the ground contact force of tires during running of vehicles. Another important factor to be considered while designing suspensions is that the suspensions must maintain desired stiffness and desired durability despite the repeated application of shocks from roads thereto. The present relates, in general, to a tubular torsion beam for rear suspensions of vehicles and a manufacturing method thereof and, more particularly, to the provision of tubular torsion beams having excellent roll stiffness and excellent roll strength, produced through hydroforming. The hydroforming technology has a lot of benefit which is shape accuracy, good durability caused by compressive pressure, and good forming quality. In this study, the performance evaluation of the hydroformed tubular torsion beam axle is evaluated.

  7. Investigations on a new internally-heated tubular packed-bed methanol–steam reformer

    KAUST Repository

    Nehe, Prashant

    2015-05-01

    Small-scale reformers for hydrogen production through steam reforming of methanol can provide an alternative solution to the demand of continuous supply of hydrogen gas for the operation of Proton Exchange Membrane Fuel Cells (PEMFCs). A packed-bed type reformer is one of the potential designs for such purpose. An externally heated reformer has issues of adverse lower temperature in the core of the reformer and significant heat loss to the environment thus impacting its performance. Experimental and numerical studies on a new concept of internally heated tubular packed-bed methanol-steam reformer have been reported in this paper with improved performance in terms of higher methanol conversion and reduced heat losses to surroundings. CuO/ZnO/Al2O3 is used as the catalyst for the methanol-steam reforming reaction and a rod-type electric heater at the center of the reactor is used for supplying necessary heat for endothermic steam reforming reaction. The vaporizer and the reformer unit with a constant volume catalyst bed are integrated in the annular section of a tubular reformer unit. The performance of the reformer was investigated at various operating conditions like feed rate of water-methanol mixture, mass of the catalyst and reforming temperature. The experimental and numerical results show that the methanol conversion and CO concentration increase with internal heating for a wide range of operating conditions. The developed reformer unit generates 50-80W (based on lower heating value) of hydrogen gas for applications in PEMFCs. For optimized design and operating conditions, the reformer unit produced 298sccm reformed gas containing 70% H2, 27% CO2 and 3% CO at 200-240°C which can produce a power output of 25-32W assuming 60% fuel cell efficiency and 80% of hydrogen utilization in a PEMFC. © 2015 Hydrogen Energy Publications, LLC.

  8. A technical case report on use of tubular retractors for anterior cervical spine surgery.

    Science.gov (United States)

    Kulkarni, Arvind G; Patel, Ankit; Ankith, N V

    2017-12-19

    The authors put-forth this technical report to establish the feasibility of performing an anterior cervical corpectomy and fusion (ACCF) and a two-level anterior cervical discectomy and fusion (ACDF) using a minimally invasive approach with tubular retractors. First case: cervical spondylotic myelopathy secondary to a large postero-inferiorly migrated disc treated with corpectomy and reconstruction with a mesh cage and locking plate. Second case: cervical disc herniation with radiculopathy treated with a two-level ACDF. Both cases were operated with minimally invasive approach with tubular retractor using a single incision. Technical aspects and clinical outcomes have been reported. No intra or post-operative complications were encountered. Intra-operative blood loss was negligible. The patients had a cosmetic scar on healing. Standard procedure of placement of tubular retractors is sufficient for adequate surgical exposure with minimal invasiveness. Minimally invasive approach to anterior cervical spine with tubular retractors is feasible. This is the first report on use of minimally invasive approach for ACCF and two-level ACDF.

  9. ANALYSIS OF ELASTIC DEFORMATION OF BRAIDED TUBULAR STRUCTURES FOR MEDICAL APPLICATIONS

    Directory of Open Access Journals (Sweden)

    Mehmet Emin YÜKSEKKAYA

    2001-02-01

    Full Text Available In this study, self-expanding stents were fabricated and analyzed. These stents are in the form of 3-D tubular braided structures made of polymeric materials. This type of structures is used in medicine to open clogged artheries and veins by exerting radial force. The amount of radial force exerted into the membrane should not give any damage to the veins. Therefore, the geometry of the three dimensional tubular braided fabric is analyzed to give an optimum radial force for medical applications.

  10. Self-assembly of versatile tubular-like In2O3 nanostructures

    International Nuclear Information System (INIS)

    Zhong Miao; Zheng Maojun; Ma Li; Li Yanbo

    2007-01-01

    Versatile indium oxide tubular nanostructures (well-aligned nanotube arrays, flower-like tubular structures, and square nanotubes) were fabricated by a facile and reliable chemical vapor deposition (CVD) technique, taking advantage of the self-assembly property and substrate-induced epitaxial growth mechanism. The technique has a few advantages, such as low growth temperature, nonexistence of catalyst, template-free synthesis, direct bonding to the semiconductor substrates, etc. This strategy might extend the approach of synthesizing desirable nanostructures of other important low-melting metal oxides for potential applications

  11. Facile Fabrication of Uniform Polyaniline Nanotubes with Tubular Aluminosilicates as Templates

    Science.gov (United States)

    Zhang, Long; Liu, Peng

    2008-08-01

    The uniform polyaniline (PANI) nanotubes, with inner diameter, outer diameter, and tubular thickness of 40, 60, and 10 nm, respectively, were prepared successfully by using natural tubular aluminosilicates as templates. The halloysite nanotubes were coated with PANI via the in situ chemical oxidation polymerization. Then the templates were etched with HCl/HF solution. The PANI nanotubes were characterized using FTIR, X-ray diffraction, and transmission electron microscopy. The conductivity of the PANI nanotubes was found to be 1.752 × 10-5 (Ω·cm)-1.

  12. Biosensor based on laccase immobilized on plasma polymerized allylamine/carbon electrode

    Energy Technology Data Exchange (ETDEWEB)

    Ardhaoui, Malika, E-mail: malika.ardhaoui@ucd.ie [Laboratoire de Génie des Procédés Plasma et Traitements de Surface, Université Pierre et Marie Curie-Chimie ParisTech, 11 rue Pierre et Marie Curie, 75231 Paris (France); Laboratoire Charles Friedel, CNRS UMR 7223, Chimie ParisTech, 11 rue Pierre et Marie Curie, 75231 Paris Cedex 05 (France); Surface Engineering Research Group, School of Electrical, Electronic and Mechanical Engineering, University College Dublin, Belfield, Dublin 4 (Ireland); Bhatt, Sudhir [Laboratoire de Génie des Procédés Plasma et Traitements de Surface, Université Pierre et Marie Curie-Chimie ParisTech, 11 rue Pierre et Marie Curie, 75231 Paris (France); Zheng, Meihui [Laboratoire Charles Friedel, CNRS UMR 7223, Chimie ParisTech, 11 rue Pierre et Marie Curie, 75231 Paris Cedex 05 (France); Dowling, Denis [Surface Engineering Research Group, School of Electrical, Electronic and Mechanical Engineering, University College Dublin, Belfield, Dublin 4 (Ireland); Jolivalt, Claude [Laboratoire Charles Friedel, CNRS UMR 7223, Chimie ParisTech, 11 rue Pierre et Marie Curie, 75231 Paris Cedex 05 (France); Khonsari, Farzaneh Arefi [Laboratoire de Génie des Procédés Plasma et Traitements de Surface, Université Pierre et Marie Curie-Chimie ParisTech, 11 rue Pierre et Marie Curie, 75231 Paris (France)

    2013-08-01

    In this work, a simple and rapid method was used to functionalize carbon electrode in order to efficiently immobilize laccase for biosensor application. A stable allylamine coating was deposited using a low pressure inductively excited RF tubular plasma reactor under mild plasma conditions (low plasma power (10 W), few minutes) to generate high density amine groups (N/C ratio up to 0.18) on rough carbon surface electrodes. The longer was the allylamine plasma deposition time; the better was the surface coverage. Laccase from Trametes versicolor was physisorbed and covalently bound to these allylamine modified carbon surfaces. The laccase activities and current outputs measured in the presence of 2,2′-azinobis-(3-ethylbenzothiazole-6-sulfonic acid) (ABTS) showed that the best efficiency was obtained for electrode plasma coated during 30 min. They showed also that for all the tested electrodes, the activities and current outputs of the covalently immobilized laccases were twice higher than the physically adsorbed ones. The sensitivity of these biocompatible bioelectrodes was evaluated by measuring their catalytic efficiency for oxygen reduction in the presence of ABTS as non-phenolic redox substrate and 2,6-dimethoxyphenol (DMP) as phenolic one. Sensitivities of around 4.8 μA mg{sup −1} L and 2.7 μA mg{sup −1} L were attained for ABTS and DMP respectively. An excellent stability of this laccase biosensor was observed for over 6 months. - Highlights: • Low pressure plasma was used to generate stable allylamine coating. • Laccase from Trametes versicolor was physisorbed and covalently immobilized. • Best biosensor efficiency obtained for the covalently immobilized laccases • Sensitivities of 4.8 μA mg{sup −1} L and 2.7 μA mg{sup −1} L for ABTS and DMP respectively.

  13. Effect of cyclosporine therapy in transplanted patients-diagnostic values of tubular markers

    Directory of Open Access Journals (Sweden)

    Todor Gruev

    2003-09-01

    Full Text Available The introduction of cyclosporine A (CsA into the clinical practice has resulted in a major improvement in the short-term outcomes of solid organ transplantation and treatment of autoimune diseases. Chronic ScA nephrotoxicity has been described in kidneys of recepients of renal and other organ allografts. However, the exact mechanism underlying the development of fibrosis in chronic CsA nephrotoxicity has remained poorly understood. Evaluation with the validation data set showed that noninvasive urine protein differentiation might be a useful diagnostic strategy in nephrology. Over the past decade numerous studies in patients after transplantation have demonstrated that renal tubular cell injury after a toxic insult, results in sloughing of tubular debris and cell into the tubular lumen with eventual obstruction of tubular flow, increased intratubular pressure and backleak of glomerular filtrate out of the tubule. Urinary enzymes and low molecular proteins have been recommended as useful markers for the detection of changes in the kidney tissue in cases after renal transplantation. The aim of our study was to monitor the concentration and eventual nephrotoxic effect of Cyclosporine A using the concentration of low molecular proteins α-1-microglobulin and β−2-microglobulin, serum Cystatin C, as well as the concentration of isoform of GST-α and π.

  14. Autoimmune Hepatitis with Distal Renal Tubular Acidosis and Small Bowel Partial Malrotation.

    Science.gov (United States)

    Kanaiyalal Modi, Tejas; Parikh, Hardik; Sadalge, Abhishek; Gupte, Amit; Bhatt, Pratin; Shukla, Akash

    2015-01-01

    Renal tubular acidosis (RTA) is not uncommon in patient with chronic autoimmune hepatitis (AIH), but usually remains latent. Here, we report a case of renal tubular acidosis RTA who presented with AIH. She was also diagnosed to have partial bowel malrotation. A 9-year-old girl, a case of distal RTA, presented with jaundice, abdominal distension and altered sensorium. She was diagnosed to be AIH, which was successfully treated with steroids and azathioprine. Coexistent midgut partial malrotation with volvulus was diagnosed during the treatment. She was treated successfully with anti-tuberculous treatment for cervical lymphadenitis. Autoimmune hepatitis should not be ruled out in each case of RTA presenting with jaundice. Modi TK, Parikh H, Sadalge A, Gupte A, Bhatt P, Shukla A. Autoimmune Hepatitis with Distal Renal Tubular Acidosis and Small Bowel Partial Malrotation. Euroasian J Hepato-Gastroenterol 2015;5(2):107-109.

  15. Cellular interactions via conditioned media induce in vivo nephron generation from tubular epithelial cells or mesenchymal stem cells

    International Nuclear Information System (INIS)

    Machiguchi, Toshihiko; Nakamura, Tatsuo

    2013-01-01

    Highlights: •We have attempted in vivo nephron generation using conditioned media. •Vascular and tubular cells do cross-talks on cell proliferation and tubular changes. •Tubular cells suppress these changes in mesenchymal stem cells. •Tubular cells differentiate mesenchymal stem cells into tubular cells. •Nephrons can be created from implanted tubular cells or mesenchymal stem cells. -- Abstract: There are some successful reports of kidney generation by utilizing the natural course of kidney development, namely, the use of an artificially treated metanephros, blastocyst or ureteric bud. Under a novel concept of cellular interactions via conditioned media (CMs), we have attempted in vivo nephron generation from tubular epithelial cells (TECs) or mesenchymal stem cells (MSCs). Here we used 10× CMs of vascular endothelial cells (VECs) and TECs, which is the first to introduce a CM into the field of organ regeneration. We first present stimulative cross-talks induced by these CMs between VECs and TECs on cell proliferation and morphological changes. In MSCs, TEC-CM suppressed these changes, however, induced cytokeratin expression, indicating the differentiation of MSCs into TECs. As a result, glomerular and tubular structures were created following the implantation of TECs or MSCs with both CMs. Our findings suggest that the cellular interactions via CMs might induce in vivo nephron generation from TECs or MSCs. As a promoting factor, CMs could also be applied to the regeneration of other organs and tissues

  16. Mechanical testing of adherence of stacked layers in tubular geometry

    Energy Technology Data Exchange (ETDEWEB)

    Correia, L.A.; Schuring, E.W.; Van Delft, Y.C. [ECN Energy Efficiency in the Industry, Petten (Netherlands)

    2007-09-15

    For the development of new molecular separation technologies strong robust tubular membrane systems are required. The fragile membranes, however, need a strong defect free support such as a porous asymmetric ceramic tube. Mechanical failure of these ceramic membrane systems during manufacturing and operation is mainly caused by delamination of the stacked layers. Therefore development is focused on improving the adherence. As no standard mechanical test for tubular samples is available yet, a new tensile test was developed to facilitate the current research. The most important components in the new equipment is a test tool with a curvature matching that of the test sample and a sample casing that align and guide the test tool during the tensile test. With this tensile test the manufacturing procedure for the ECN standard tubular {alpha}-alumina support was optimized. Firing the asymmetric support at 1300C resulted in the highest mechanical strength for the support system with cohesive fracture in the support tube. With the test developed the process condition could be identified where the material of the support tube is the weakest link in the support system.

  17. Strain-Induced Rolled Thin Films for Lightweight Tubular Thermoelectric Generators

    KAUST Repository

    Singh, Devendra

    2017-11-24

    Thermoelectric generators (TEGs) are interesting energy harvesters of otherwise wasted heat. Here, a polymer-assisted generic process and its mechanics to obtain sputtered thermoelectric (TE) telluride material-based 3D tubular structures with unprecedented length (up to seamless 4 cm and further expandable) are shown. This length allows for large temperature differences between the hot and the cold ends, a critical but untapped enabler for high power generation. Compared with a flat slab, better area efficiency is observed for a rolled tube and compared with a solid rod architecture, a rolled tube uses less material (thus making it lightweight and cost effective) and has competitive performance advantage due to a smaller contact area. It is also shown that a tubular architecture thermopile-based TEG is able to generate up to 5 μW of power (eight pairs of p- and n-type thermopiles) through a temperature difference of 60 °C. The demonstrated process can play an important role in transforming 2D atomic crystal structure TE materials into 3D tubular thermopiles for effective TEG application, which can maintain higher temperature differences by longer distances between hot and cold ends.

  18. Filament winding technique, experiment and simulation analysis on tubular structure

    Science.gov (United States)

    Quanjin, Ma; Rejab, M. R. M.; Kaige, Jiang; Idris, M. S.; Harith, M. N.

    2018-04-01

    Filament winding process has emerged as one of the potential composite fabrication processes with lower costs. Filament wound products involve classic axisymmetric parts (pipes, rings, driveshafts, high-pressure vessels and storage tanks), non-axisymmetric parts (prismatic nonround sections and pipe fittings). Based on the 3-axis filament winding machine has been designed with the inexpensive control system, it is completely necessary to make a relative comparison between experiment and simulation on tubular structure. In this technical paper, the aim of this paper is to perform a dry winding experiment using the 3-axis filament winding machine and simulate winding process on the tubular structure using CADWIND software with 30°, 45°, 60° winding angle. The main result indicates that the 3-axis filament winding machine can produce tubular structure with high winding pattern performance with different winding angle. This developed 3-axis winding machine still has weakness compared to CAWIND software simulation results with high axes winding machine about winding pattern, turnaround impact, process error, thickness, friction impact etc. In conclusion, the 3-axis filament winding machine improvements and recommendations come up with its comparison results, which can intuitively understand its limitations and characteristics.

  19. Thermodynamic model and parametric analysis of a tubular SOFC module

    Science.gov (United States)

    Campanari, Stefano

    Solid oxide fuel cells (SOFCs) have been considered in the last years as one of the most promising technologies for very high-efficiency electric energy generation from natural gas, both with simple fuel cell plants and with integrated gas turbine-fuel cell systems. Among the SOFC technologies, tubular SOFC stacks with internal reforming have emerged as one of the most mature technology, with a serious potential for a future commercialization. In this paper, a thermodynamic model of a tubular SOFC stack, with natural gas feeding, internal reforming of hydrocarbons and internal air preheating is proposed. In the first section of the paper, the model is discussed in detail, analyzing its calculating equations and tracing its logical steps; the model is then calibrated on the available data for a recently demonstrated tubular SOFC prototype plant. In the second section of the paper, it is carried out a detailed parametric analysis of the stack working conditions, as a function of the main operating parameters. The discussion of the results of the thermodynamic and parametric analysis yields interesting considerations about partial load SOFC operation and load regulation, and about system design and integration with gas turbine cycles.

  20. Facile Fabrication of Uniform Polyaniline Nanotubes with Tubular Aluminosilicates as Templates

    Directory of Open Access Journals (Sweden)

    Zhang Long

    2008-01-01

    Full Text Available AbstractThe uniform polyaniline (PANI nanotubes, with inner diameter, outer diameter, and tubular thickness of 40, 60, and 10 nm, respectively, were prepared successfully by using natural tubular aluminosilicates as templates. The halloysite nanotubes were coated with PANI via the in situ chemical oxidation polymerization. Then the templates were etched with HCl/HF solution. The PANI nanotubes were characterized using FTIR, X-ray diffraction, and transmission electron microscopy. The conductivity of the PANI nanotubes was found to be 1.752 × 10−5(Ω·cm−1.

  1. Engineering Silver Nanowire Networks: From Transparent Electrodes to Resistive Switching Devices.

    Science.gov (United States)

    Du, Haiwei; Wan, Tao; Qu, Bo; Cao, Fuyang; Lin, Qianru; Chen, Nan; Lin, Xi; Chu, Dewei

    2017-06-21

    Metal nanowires (NWs) networks with high conductance have shown potential applications in modern electronic components, especially the transparent electrodes over the past decade. In metal NW networks, the electrical connectivity of nanoscale NW junction can be modulated for various applications. In this work, silver nanowire (Ag NW) networks were selected to achieve the desired functions. The Ag NWs were first synthesized by a classic polyol process, and spin-coated on glass to fabricate transparent electrodes. The as-fabricated electrode showed a sheet resistance of 7.158 Ω □ -1 with an optical transmittance of 79.19% at 550 nm, indicating a comparable figure of merit (FOM, or Φ TC ) (13.55 × 10 -3 Ω -1 ). Then, two different post-treatments were designed to tune the Ag NWs for not only transparent electrode but also for threshold resistive switching (RS) application. On the one hand, the Ag NW film was mechanically pressed to significantly improve the conductance by reducing the junction resistance. On the other hand, an Ag@AgO x core-shell structure was deliberately designed by partial oxidation of Ag NWs through simple ultraviolet (UV)-ozone treatment. The Ag core can act as metallic interconnect and the insulating AgO x shell acts as a switching medium to provide a conductive pathway for Ag filament migration. By fabricating Ag/Ag@AgO x /Ag planar structure, a volatile threshold switching characteristic was observed and an on/off ratio of ∼100 was achieved. This work showed that through different post-treatments, Ag NW network can be engineered for diverse functions, transforming from transparent electrodes to RS devices.

  2. Fabrication of a polyvinylidene difluoride fiber with a metal core and its application as directional air flow sensor

    Science.gov (United States)

    Bian, Yixiang; Liu, Rongrong; Hui, Shen

    2016-09-01

    We fabricated a sensitive air flow detector that mimic the sensing mechanism found at the tail of some insects. [see Y. Yang, A. Klein, H. Bleckmann and C. Liu, Appl. Phys. Lett. 99(2) (2011); J. J. Heys, T. Gedeon, B. C. Knott and Y. Kim, J. Biomech. 41(5), 977 (2008); J. Tao and X. Yu, Smart Mat. Struct. 21(11) (2012)]. Our bionic airflow sensor uses a polyvinylidene difluoride (PVDF) microfiber with a molybdenum core which we produced with the hot extrusion tensile method. The surface of the fiber is partially coated with conductive silver adhesive that serve as surface electrodes. A third electrode, the metal core is used to polarize polyvinylidene difluoride (PVDF) under the surface electrodes. The cantilever beam structure of the prepared symmetric electrodes of metal core piezoelectric fiber (SMPF) is used as the artificial hair airflow sensor. The surface electrodes are used to measure output voltage. Our theoretical and experimental results show that the SMPF responds fast to air flow changes, the output charge has an exponential correlation with airflow velocity and a cosine relation with the direction of airflow. Our bionic airflow sensor with directional sensing ability can also measure air flow amplitude. [see H. Droogendijk, R. G. P. Sanders and G. J. M. Krijnen, New J. Phys. 15 (2013)]. By using two surface electrodes, our sensing circuit further improves sensitivity.

  3. Virtual electrodes for high-density electrode arrays

    Science.gov (United States)

    Cela, Carlos J.; Lazzi, Gianluca

    2015-10-13

    The present embodiments are directed to implantable electrode arrays having virtual electrodes. The virtual electrodes may improve the resolution of the implantable electrode array without the burden of corresponding complexity of electronic circuitry and wiring. In a particular embodiment, a virtual electrode may include one or more passive elements to help steer current to a specific location between the active electrodes. For example, a passive element may be a metalized layer on a substrate that is adjacent to, but not directly connected to an active electrode. In certain embodiments, an active electrode may be directly coupled to a power source via a conductive connection. Beneficially, the passive elements may help to increase the overall resolution of the implantable array by providing additional stimulation points without requiring additional wiring or driver circuitry for the passive elements.

  4. Nano-tubular cellulose for bioprocess technology development.

    Directory of Open Access Journals (Sweden)

    Athanasios A Koutinas

    Full Text Available Delignified cellulosic material has shown a significant promotional effect on the alcoholic fermentation as yeast immobilization support. However, its potential for further biotechnological development is unexploited. This study reports the characterization of this tubular/porous cellulosic material, which was done by SEM, porosimetry and X-ray powder diffractometry. The results showed that the structure of nano-tubular cellulose (NC justifies its suitability for use in "cold pasteurization" processes and its promoting activity in bioprocessing (fermentation. The last was explained by a glucose pump theory. Also, it was demonstrated that crystallization of viscous invert sugar solutions during freeze drying could not be otherwise achieved unless NC was present. This effect as well as the feasibility of extremely low temperature fermentation are due to reduction of the activation energy, and have facilitated the development of technologies such as wine fermentations at home scale (in a domestic refrigerator. Moreover, NC may lead to new perspectives in research such as the development of new composites, templates for cylindrical nano-particles, etc.

  5. Estudo comparativo da resistência ao desgaste abrasivo do revestimento de três ligas metálicas utilizadas na indústria, aplicadas por soldagem com arames tubulares Comparative study of the wear resistance of three metal cored wire welded coatings used in industry

    Directory of Open Access Journals (Sweden)

    Ricardo Vinícius de Melo Leite

    2009-12-01

    expenditure on maintenance in industries. For the application of the coating by welding, cored wire have been a viable alternative, because of its high productivity and high weld quality, replacing in part, the use of the stick electrode. The objective of this work is to make a comparative study of the abrasive wear resistant coating deposited by welding with selfshielded cored wires of three metal alloys used in industry, first the Fe-Cr-C alloy, the second the Fe-Cr-C alloy with niobium and boron addition, and the third the Fe-Cr-C with niobium addition. The wear resistant coatings, known as hardfacing were deposited on carbon steel plates, with the same parameters and procedures of welding. The samples were obtained by cutting and grinding and were subjected to abrasive wear tests, in a Rubber Wheel apparatus, according to procedure established by ASTM G65-91. The results showed that the Fe-Cr-C alloy with Niobium and Boron addition presented superiority in terms of wear resistence.

  6. Flow analysis of tubular fuel assembly using CFD code

    International Nuclear Information System (INIS)

    Park, J. H.; Park, C.; Chae, H. T.

    2004-01-01

    Based on the experiences of HANARO, a new research reactor is under conceptual design preparing for future needs of research reactor. Considering various aspects such as nuclear physics, thermal-hydraulics, mechanical structure and the applicability of HANARO technology, a tubular type fuel has been considered as that of a new research reactor. Tubular type fuel has several circular fuel layers, and each layer consists of 3 curved fuel plates arranged with constant small gap to build up cooling channels. In the thermal-hydraulic point, it is very important to maintain each channel flow velocity be equal as much as possible, because the small gaps between curved thin fuel plates independently forms separate coolant channels, which may cause a thermal-hydraulic problem in certain conditions. In this study, commercial CFD(Computational Fluid Dynamics) code, Fluent, has been used to investigate flow characteristics of tubular type fuel assembly. According to the computation results for the preliminary conceptual design, there is a serious lack of uniformity of average velocity on the each coolant channel. Some changes for initial conceptual design were done to improve the balance of velocity distribution, and analysis was done again, too. The results for the revised design showed that the uniformity of each channel velocity was improved significantly. The influence of outermost channel gap width on the velocity distribution was also examined

  7. Status report on the development of a tubular electron beam ion source

    International Nuclear Information System (INIS)

    Donets, E.D.; Donets, E.E.; Becker, R.; Liljeby, L.; Rensfelt, K.-G.; Beebe, E.N.; Pikin, A.I.

    2004-01-01

    The theoretical estimations and numerical simulations of tubular electron beams in both beam and reflex mode of source operation as well as the off-axis ion extraction from a tubular electron beam ion source (TEBIS) are presented. Numerical simulations have been done with the use of the IGUN and OPERA-3D codes. Numerical simulations with IGUN code show that the effective electron current can reach more than 100 A with a beam current density of about 300-400 A/cm 2 and the electron energy in the region of several KeV with a corresponding increase of the ion output. Off-axis ion extraction from the TEBIS, being the nonaxially symmetric problem, was simulated with OPERA-3D (SCALA) code. The conceptual design and main parameters of new tubular sources which are under consideration at JINR, MSL, and BNL are based on these simulations

  8. Glomerular filtration and tubular secretion of MAG-3 in the rat kidney

    International Nuclear Information System (INIS)

    Mueller-Suur, R.M.; Mueller-Suur, C.

    1989-01-01

    Technetium-99m mercaptoacetyltriglycine (MAG-3) has recently been introduced as a new radiopharmaceutical for dynamic renal scintigraphy. To elucidate the mechanism of renal excretion, micropuncture experiments were performed in rat kidneys for direct measurements of glomerular filtration and tubular secretory capacity. Fluid of Bowman space was collected from superficial glomeruli and analyzed for its contents of [99mTc]MAG-3, [125I]hippurate and [3H]inulin during constant infusion of these compounds. The ratio of activity of ultrafiltrate to that of arterial plasma was 0.23 for MAG-3, 0.68 for hippurate and 1.04 for inulin which demonstrates that the filtrated amount of MAG-3 is only 23% of that of inulin, presumably because of higher plasma protein binding which was also measured in vitro and found to be 80 +/- 1.5% for MAG-3 and 32 +/- 2% for [125I]hippurate. Proximal and distal tubules were also micropunctured and their tubular fluid as well as the final urine analyzed for the activity of hippurate and MAG-3. The tubular fluid to plasma ratio values along the nephron and in the final urine were all lower for MAG-3 than for hippurate, indicating a lower secretory capacity. From measurements of whole renal clearance, GFR and plasma protein binding the filtered amount of MAG-3 was 0.26 and of hippurate 0.87 ml/min.g kidney weight (p less than 0.001) and the secreted amount 2.01 and 2.38 ml/min.g kidney weight (p less than 0.05), respectively. We conclude that MAG-3 is predominantly excreted by tubular secretion and that the lower renal clearance of MAG-3 as compared with that of hippurate is a result both of a substantially decreased glomerular filtration and of a lower tubular secretion

  9. The rebirth of interest in renal tubular function.

    Science.gov (United States)

    Lowenstein, Jerome; Grantham, Jared J

    2016-06-01

    The measurement of glomerular filtration rate by the clearance of inulin or creatinine has evolved over the past 50 years into an estimated value based solely on plasma creatinine concentration. We have examined some of the misconceptions and misunderstandings of the classification of renal disease and its course, which have followed this evolution. Furthermore, renal plasma flow and tubular function, which in the past were estimated by the clearance of the exogenous aryl amine, para-aminohippurate, are no longer measured. Over the past decade, studies in experimental animals with reduced nephron mass and in patients with reduced renal function have identified small gut-derived, protein-bound uremic retention solutes ("uremic toxins") that are poorly filtered but are secreted into the lumen by organic anion transporters (OATs) in the proximal renal tubule. These are not effectively removed by conventional hemodialysis or peritoneal dialysis. Residual renal function, urine produced in patients with advanced renal failure or undergoing dialysis treatment, may represent, at least in part, secretion of fluid and uremic toxins, such as indoxyl sulfate, mediated by proximal tubule OATs and might serve as a useful survival function. In light of this new evidence of the physiological role of proximal tubule OATs, we suggest that measurement of renal tubular function and renal plasma flow may be of considerable value in understanding and managing chronic kidney disease. Data obtained in normal subjects indicate that renal plasma flow and renal tubular function might be measured by the clearance of the endogenous aryl amine, hippurate. Copyright © 2016 the American Physiological Society.

  10. Facile synthesis of hierarchical Co3O4@MnO2 core-shell arrays on Ni foam for asymmetric supercapacitors

    Science.gov (United States)

    Huang, Ming; Zhang, Yuxin; Li, Fei; Zhang, Lili; Wen, Zhiyu; Liu, Qing

    2014-04-01

    Hierarchical Co3O4@MnO2 core-shell arrays on Ni foam have been fabricated by a facile hydrothermal approach and further investigated as the electrode for high-performance supercapacitors. Owing to the high conductivity of the well-defined mesoporous Co3O4 nanowire arrays in combination with the large surface area provided by the ultrathin MnO2 nanosheets, the unique designed Co3O4@MnO2 core-shell arrays on Ni foam have exhibited a high specific capacitance (560 F g-1 at a current density of 0.2 A g-1), good rate capability, and excellent cycling stability (95% capacitance retention after 5000 cycles). An asymmetric supercapacitor with Co3O4@MnO2 core-shell nanostructure as the positive electrode and activated microwave exfoliated graphite oxide activated graphene (MEGO) as the negative electrode yielded an energy density of 17.7 Wh kg-1 and a maximum power density of 158 kW kg-1. The rational design of the unique core-shell array architectures demonstrated in this work provides a new and facile approach to fabricate high-performance electrode for supercapacitors.

  11. The Test for Flow Characteristics of Tubular Fuel Assembly(II) - Experimental results and CFD analysis

    International Nuclear Information System (INIS)

    Park, Jong Hark; Chae, H. T.; Park, C.; Kim, H.

    2006-12-01

    A test facility had been established for the experiment of velocity distribution and pressure drop in a tubular fuel. A basic test had been conducted to examine the performance of the test loop and to verify the accuracy of measurement by pitot-tube. In this report, test results and CFD analysis for the hydraulic characteristics of a tubular fuel, following the previous tests, are described. Coolant velocities in all channels were measured using pitot-tube and the effect of flow rate change on the velocity distribution was also examined. The pressure drop through the tubular fuel was measured for various flow rates in range of 1 kg/s to 21 kg/s to obtain a correlation of pressure drop with variation of flow rate. In addition, a CFD(Computational Fluid Dynamics) analysis was also done to find out the hydraulic characteristics of tubular fuel such as velocity distribution and pressure drop. As the results of CFD analysis can give us a detail insight on coolant flow in the tubular fuel, the CFD method is a very useful tool to understand the flow structure and phenomena induced by fluid flow. The CFX-10, a commercial CFD code, was used in this study. The two results by the experiment and the CFD analysis were investigated and compared with each other. Overall trend of velocity distribution by CFD analysis was somewhat different from that of experiment, but it would be reasonable considering measurement uncertainties. The CFD prediction for pressure drop of a tubular fuel shows a tolerably good agreement with experiment within 8% difference

  12. Microstructure and mechanical properties of AZ91 tubes fabricated by Multi-pass Parallel Tubular Channel Angular Pressing

    OpenAIRE

    Hooman Abdolvand; Ghader Faraji; Javad Shahbazi Karami

    2017-01-01

    Parallel Tubular Channel Angular Pressing (PTCAP) process is a novel recently developed severe plastic deformation (SPD) method for producing ultrafine grained (UFG) and nanograined (NG) tubular specimens with excellent mechanical and physical properties. This process has several advantageous compared to its TCAP counterparts. In this paper, a fine grained AZ91 tube was fabricated via multi pass parallel tubular channel angular pressing (PTCAP) process. Tubes were processed up to three passes...

  13. Furosemide/Fludrocortisone Test and Clinical Parameters to Diagnose Incomplete Distal Renal Tubular Acidosis in Kidney Stone Formers.

    Science.gov (United States)

    Dhayat, Nasser A; Gradwell, Michael W; Pathare, Ganesh; Anderegg, Manuel; Schneider, Lisa; Luethi, David; Mattmann, Cedric; Moe, Orson W; Vogt, Bruno; Fuster, Daniel G

    2017-09-07

    Incomplete distal renal tubular acidosis is a well known cause of calcareous nephrolithiasis but the prevalence is unknown, mostly due to lack of accepted diagnostic tests and criteria. The ammonium chloride test is considered as gold standard for the diagnosis of incomplete distal renal tubular acidosis, but the furosemide/fludrocortisone test was recently proposed as an alternative. Because of the lack of rigorous comparative studies, the validity of the furosemide/fludrocortisone test in stone formers remains unknown. In addition, the performance of conventional, nonprovocative parameters in predicting incomplete distal renal tubular acidosis has not been studied. We conducted a prospective study in an unselected cohort of 170 stone formers that underwent sequential ammonium chloride and furosemide/fludrocortisone testing. Using the ammonium chloride test as gold standard, the prevalence of incomplete distal renal tubular acidosis was 8%. Sensitivity and specificity of the furosemide/fludrocortisone test were 77% and 85%, respectively, yielding a positive predictive value of 30% and a negative predictive value of 98%. Testing of several nonprovocative clinical parameters in the prediction of incomplete distal renal tubular acidosis revealed fasting morning urinary pH and plasma potassium as the most discriminative parameters. The combination of a fasting morning urinary threshold pH 3.8 mEq/L yielded a negative predictive value of 98% with a sensitivity of 85% and a specificity of 77% for the diagnosis of incomplete distal renal tubular acidosis. The furosemide/fludrocortisone test can be used for incomplete distal renal tubular acidosis screening in stone formers, but an abnormal furosemide/fludrocortisone test result needs confirmation by ammonium chloride testing. Our data furthermore indicate that incomplete distal renal tubular acidosis can reliably be excluded in stone formers by use of nonprovocative clinical parameters. Copyright © 2017 by the American

  14. Smart concrete slabs with embedded tubular PZT transducers for damage detection

    Science.gov (United States)

    Gao, Weihang; Huo, Linsheng; Li, Hongnan; Song, Gangbing

    2018-02-01

    The objective of this study is to develop a new concept and methodology of smart concrete slab (SCS) with embedded tubular lead zirconate titanate transducer array for image based damage detection. Stress waves, as the detecting signals, are generated by the embedded tubular piezoceramic transducers in the SCS. Tubular piezoceramic transducers are used due to their capacity of generating radially uniform stress waves in a two-dimensional concrete slab (such as bridge decks and walls), increasing the monitoring range. A circular type delay-and-sum (DAS) imaging algorithm is developed to image the active acoustic sources based on the direct response received by each sensor. After the scattering signals from the damage are obtained by subtracting the baseline response of the concrete structures from those of the defective ones, the elliptical type DAS imaging algorithm is employed to process the scattering signals and reconstruct the image of the damage. Finally, two experiments, including active acoustic source monitoring and damage imaging for concrete structures, are carried out to illustrate and demonstrate the effectiveness of the proposed method.

  15. 78 FR 77420 - Certain Oil Country Tubular Goods From the Republic of Turkey: Preliminary Negative...

    Science.gov (United States)

    2013-12-23

    ..., the Republic of the Philippines, Saudi Arabia, Taiwan, Thailand, the Republic of Turkey, Ukraine, and... DEPARTMENT OF COMMERCE International Trade Administration [C-489-817] Certain Oil Country Tubular... provided to producers and exporters of certain oil tubular goods (OCTG) from the Republic of Turkey (Turkey...

  16. Fabrication of Stretchable Copper Coated Carbon Nanotube Conductor for Non-Enzymatic Glucose Detection Electrode with Low Detection Limit and Selectivity

    Directory of Open Access Journals (Sweden)

    Dawei Jiang

    2018-03-01

    Full Text Available The increasing demand for wearable glucose sensing has stimulated growing interest in stretchable electrodes. The development of the electrode materials having large stretchability, low detection limit, and good selectivity is the key component for constructing high performance wearable glucose sensors. In this work, we presented fabrication of stretchable conductor based on the copper coated carbon nanotube sheath-core fiber, and its application as non-enzymatic electrode for glucose detection with high stretchability, low detection limit, and selectivity. The sheath-core fiber was fabricated by coating copper coated carbon nanotube on a pre-stretched rubber fiber core followed by release of pre-stretch, which had a hierarchically buckled structure. It showed a small resistance change as low as 27% as strain increasing from 0% to 500% strain, and a low resistance of 0.4 Ω·cm−1 at strain of 500%. This electrode showed linear glucose concentration detection in the range between 0.05 mM and 5 mM and good selectivity against sucrose, lactic acid, uric acid, acrylic acid in phosphate buffer saline solution, and showed stable signal in high salt concentration. The limit of detection (LOD was 0.05 mM, for the range of 0.05–5 mM, the sensitivity is 46 mA·M−1. This electrode can withstand large strain of up to 60% with negligible influence on its performance.

  17. Method of fabricating self-powered nuclear radiation detector assemblies

    International Nuclear Information System (INIS)

    Playfoot, K.; Bauer, R.F.; Sekella, Y.M.

    1982-01-01

    In a method of fabricating a self-powered nuclear radiation detector assembly an emitter electrode wire and signal cable center wire are connected and disposed within the collector electrode tubular sheath with compressible insulating means disposed between the wires and the tubular sheath. The above assembly is reduced in diameter while elongating the tubular sheath and the emitter wire and signal cable wire. The emitter wire is reduced to a predetermined desired diameter, and is trimmed to a predetermined length. An end cap is hermetically sealed to the tubular sheath at the extending end of the emitter with insulating means between the emitter end and the end cap. (author)

  18. Renal tubular dysfunction in pediatric patients with beta-thalassemia major

    Directory of Open Access Journals (Sweden)

    Ali Ahmadzadeh

    2011-01-01

    Full Text Available To evaluate the prevalence of renal tubular dysfunction in children with β-thalassemia (β-T major, we studied the glomerular and tubular function in 140 children with β-T major and compared them to a healthy control group at our center from May 2007 to April 2008. Fresh first morning samples were collected from each patient and analyzed for sodium, potassium, calcium (Ca, protein, uric acid (UA, creatinine (Cr, urine osmolality and urinary N-acetyl-β-D-glucosaminidase (UNAG activity. Blood samples were also collected for complete blood count, blood urea nitrogen (BUN, fasting blood sugar, serum creatinine (SCr, electrolytes, and ferritin before transfusion. Among the study patients, 72 were males, and the mean age was 11.5 (ranging 7-16 years. SCr levels were all within normal limits and all of them had normal glomerular filtration rate (GFR. The mean UNAG was 17.8 IU/L in the study patients (normal 0.15-11.5 IU/L and 3.2 IU/L in the control group (P 0.21 (P = 0.006. Nine (6.4% thalassemic patients with a mean age of 12 years had proteinuria (Upr/UCr > 0.2. Sixty-nine (49.3% out of the 140 patients and 45 (65.2% of the patients having UNAG had uricosuria also (UUA/UCr > 0.26. Ten (7% patients had microscopic hematuria and 10 (7% patients with a mean age of 13.5 years had glucosuria or diabetes mellitus. We conclude that tubular dysfunction is a relative common complication of the β-T major; UNAG and its index are the best to detect renal tubular dysfunction in these patients. Currently, periodic measurement of UCa/UCr and UUA/UCr ratios as well as urinalysis are recommended.

  19. High-performance asymmetric supercapacitors based on core/shell cobalt oxide/carbon nanowire arrays with enhanced electrochemical energy storage

    International Nuclear Information System (INIS)

    Pan, G.X.; Xia, X.H.; Cao, F.; Chen, J.; Tang, P.S.; Zhang, Y.J.; Chen, H.F.

    2014-01-01

    Graphical abstract: - Highlights: • We prepared a self-supported porous Co 3 O 4 /C core/shell nanowire array. • Core/shell nanowire array showed high pseudo-capacitive properties. • Core/shell array structure was favorable for fast ion and electron transfer. - Abstract: High-reactivity electrode materials are indispensible for developing high-performance electrochemical energy storage devices. Herein, we report self-supported core/shell Co 3 O 4 /C nanowire arrays by using hydrothermal synthesis and chemical vapor deposition methods. A uniform and thin carbon shell is coated on the surface of Co 3 O 4 nanowire forming core/shell nanowires with diameters of ∼100 nm. Asymmetric supercapacitors have been assembled with the core/shell Co 3 O 4 /C nanowire arrays as the positive electrode and activated carbon (AC) as the negative electrode. The core/shell Co 3 O 4 /C nanowire arrays exhibit a specific capacity of 116 mAh g −1 at the working current of 100 mA (4 A g −1 ), and a long cycle life along with ∼ 92% retention after 8000 cycles at 4 A g −1 , higher than the unmodified Co 3 O 4 nanowire arrays (81 mAh g −1 at 4 A g −1 ). The introduction of uniform carbon layer into the core/shell structure is favorable for the enhancement of supercapacitor due to the improved electrical conductivity and reaction kinetics

  20. Effect of cisplatin on renal haemodynamics and tubular function in the dog kidney

    DEFF Research Database (Denmark)

    Daugaard, G; Abildgaard, U; Holstein-Rathlou, N H

    1987-01-01

    Administration of cisplatin (5 mg/kg) to dogs results in polyuric renal failure due initially to a proximal tubular functional impairment. 48-72 h after the cisplatin administration the depressed renal function can be attributed to impairment of proximal as well as distal tubular reabsorptive cap...... capacities associated with increased renal vascular resistance. The polyuria seems to be due to the impaired reabsorption rate in the distal nephron segments....

  1. Binder-free ZnO@ZnSnO3 quantum dots core-shell nanorod array anodes for lithium-ion batteries

    Science.gov (United States)

    Tan, Hsiang; Cho, Hsun-Wei; Wu, Jih-Jen

    2018-06-01

    In this work, ZnSnO3 quantum dots (QDs), instead of commonly used conductive carbon, are grown on the ZnO nanorod (NR) array to construct the binder-free ZnO@ZnSnO3 QDs core-shell NR array electrode on carbon cloth for lithium-ion battery. The ZnO@ZnSnO3 QDs core-shell NR array electrode exhibits excellent lithium storage performance with an improved cycling performance and superior rate capability compared to the ZnO NR array electrode. At a current density of 200 mAg-1, 15.8% capacity loss is acquired in the ZnO@ZnSnO3 QDs core-shell NR array electrode after 110 cycles with capacity retention of 1073 mAhg-1. Significant increases in reversible capacities from 340 to 545 mAhg-1 and from 95 to 390 mAhg-1 at current densities of 1000 and 2000 mAg-1, respectively, are achieved as the ZnO NR arrays are coated with the ZnSnO3 QD shells. The remarkably improved electrochemical performances result from that the configuration of binder-free ZnO@ZnSnO3 QDs core-shell NR array electrode not only facilitates the charge transfer through the solid electrolyte interface and the electronic/ionic conduction boundary as well as lithium ion diffusion but also effectively accommodates the volume change during repeated charge/discharge processes.

  2. Evacuated, displacement compression mold. [of tubular bodies from thermosetting plastics

    Science.gov (United States)

    Heier, W. C. (Inventor)

    1974-01-01

    A process of molding long thin-wall tubular bodies from thermosetting plastic molding compounds is described wherein the tubular body lengths may be several times the diameters. The process is accomplished by loading a predetermined quantity of molding compound into a female mold cavity closed at one end by a force mandrel. After closing the other end of the female mold with a balance mandrel, the loaded cavity is evacuated by applying a vacuum of from one-to-five mm pressure for a period of fifteen-to-thirty minutes. The mold temperature is raised to the minimum temperature at which the resin constituent of the compound will soften or plasticize and a pressure of 2500 psi is applied.

  3. Results of the LIRES Round Robin test on high temperature reference electrodes for LWR applications

    Energy Technology Data Exchange (ETDEWEB)

    Bosch, R.W. [SCK.CEN, Nuclear Research Centre Belgium, Boeretang 200, B-2400 Mol (Belgium); Nagy, G. [Magyar Tudomanyos Akademia KFKI Atomenergia Kutatointezet, AEKI, Konkoly Thege ut 29-33, 1121 Budapest (Hungary); Feron, D. [CEA Saclay, 91191 Gif-Sur-Yvette Cedex (France); Navas, M. [CIEMAT, Edificio 30, Dpto. Fision Nuclear, Avda. Complutense 22, 28040 Madrid, (Spain); Bogaerts, W. [KU Leuven, Kasteelpark Arenberg 31, B-3001 Leuven (Belgium); Karnik, D. [Nuclear Research Institute, NRI, Rez (Czech Republic); Dorsch, T. [Framatone ANP, Inc., Charlotte, North Carolina (United States); Molander, A. [Studsvik AB SE-611 82 Nykoeping (Sweden); Maekelae, K. [Materials and Structural Integrity, VTT Technical Research Centre of Finland, Kemistintie 3, P.O. Box 1704, FIN-02044 VTT (Finland)

    2004-07-01

    A European sponsored research project has been started on 1 October 2000 to develop high temperature reference electrodes that can be used for in-core electrochemical measurements in Light Water Reactors (LWR's). This LIRES-project (Development of Light Water Reactor Reference Electrodes) consists of 9 partners (SCK-CEN, AEKI, CEA, CIEMAT, KU Leuven, NRI Rez, Framatone ANP, Studsvik Nuclear and VTT) and will last for four years. The main objective of this LIRES project is to develop a reference electrode, which is robust enough to be used inside a LWR. Emphasize is put on the radiation hardness of both the mechanical design of the electrode as the proper functioning of the electrode. A four steps development trajectory is foreseen: (1) To set a testing standard for a Round Robin, (2) To develop different reference electrodes, (3) To perform a Round Robin test of these reference electrodes followed by selection of the best reference electrode(s), (4) To perform irradiation tests under appropriate LWR conditions in a Material Test Reactor (MTR). Four different high temperature reference electrodes have been developed and are being tested in a Round Robin test. These electrodes are: A Ceramic Membrane Electrode (CME), a Rhodium electrode, an external Ag/AgCl electrode and a Palladium electrode. The presentation will focus on the results obtained with the Round Robin test. (authors)

  4. Hydrogenated CoOx nanowire@Ni(OH)2 nanosheet core-shell nanostructures for high-performance asymmetric supercapacitors

    Science.gov (United States)

    Zhu, Jianxiao; Huang, Lei; Xiao, Yuxiu; Shen, Leo; Chen, Qi; Shi, Wangzhou

    2014-05-01

    We report a facile strategy to prepare 3D core-shell nanowire heterostructures with microporous hydrogenated CoOx (H-CoOx) nanowires as the conducting scaffold to support Ni(OH)2 nanosheets. Benefiting from the H-CoOx nanowire core to provide the effective pathway for charge transport and the core-shell heterostructures with synergistic effects, the H-CoOx@Ni(OH)2 core-shell nanowire electrode achieved the specific capacitance of 2196 F g-1 (areal capacitance of 5.73 F cm-2), which is approximately a 1.4-fold enhancement compared with the Co3O4@Ni(OH)2 core-shell nanowires. An aqueous asymmetric supercapacitor (ASC) device was fabricated by using H-CoOx@Ni(OH)2 nanowires as the positive electrode and reduced graphene oxide @Fe3O4 nanocomposites as the negative electrode. The ASCs achieved high energy density (~45.3 W h kg-1 at 1010 W kg-1), high power density (~7080 W kg-1 at 23.4 W h kg-1) and high cycling stability. Furthermore, after charging for ~1 min, one such 22 cm2 ASC device demonstrated to be able to drive a small windmill (0.8 V, 0.1 W) for 20 min. Two such ASCs connected in series can power up a seven-color LED (3.2 V) efficiently.We report a facile strategy to prepare 3D core-shell nanowire heterostructures with microporous hydrogenated CoOx (H-CoOx) nanowires as the conducting scaffold to support Ni(OH)2 nanosheets. Benefiting from the H-CoOx nanowire core to provide the effective pathway for charge transport and the core-shell heterostructures with synergistic effects, the H-CoOx@Ni(OH)2 core-shell nanowire electrode achieved the specific capacitance of 2196 F g-1 (areal capacitance of 5.73 F cm-2), which is approximately a 1.4-fold enhancement compared with the Co3O4@Ni(OH)2 core-shell nanowires. An aqueous asymmetric supercapacitor (ASC) device was fabricated by using H-CoOx@Ni(OH)2 nanowires as the positive electrode and reduced graphene oxide @Fe3O4 nanocomposites as the negative electrode. The ASCs achieved high energy density (~45.3 W h kg-1 at

  5. Characterization of Foam Catalysts as Packing for Tubular Reactors.

    Czech Academy of Sciences Publication Activity Database

    Lali, Farzad

    2016-01-01

    Roč. 105, JUL 2016 (2016), s. 1-9 ISSN 0255-2701 Institutional support: RVO:67985858 Keywords : overall mass transfer * foam catalyst * tubular reactor Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 2.234, year: 2016

  6. Species diversity regarding the presence of proximal tubular progenitor cells of the kidney

    Directory of Open Access Journals (Sweden)

    J. Hansson

    2016-02-01

    Full Text Available The cellular source for tubular regeneration following kidney injury is a matter of dispute, with reports suggesting a stem or progenitor cells as the regeneration source while linage tracing studies in mice seemingly favor the classical theory, where regeneration is performed by randomly surviving cells. We, and others have previously described a scattered cell population localized to the tubules of human kidney, which increases in number following injury. Here we have characterized the species distribution of these proximal tubular progenitor cells (PTPCs in kidney tissue from chimpanzee, pig, rat and mouse using a set of human PTPC markers. We detected PTPCs in chimpanzee and pig kidneys, but not in mouse tissue. Also, subjecting mice to the unilateral urethral obstruction model, caused clear signs of tubular injury, but failed to induce the PTPC phenotype in renal tubules.

  7. Recent advances in metal oxide-based electrode architecture design for electrochemical energy storage.

    Science.gov (United States)

    Jiang, Jian; Li, Yuanyuan; Liu, Jinping; Huang, Xintang; Yuan, Changzhou; Lou, Xiong Wen David

    2012-10-02

    Metal oxide nanostructures are promising electrode materials for lithium-ion batteries and supercapacitors because of their high specific capacity/capacitance, typically 2-3 times higher than that of the carbon/graphite-based materials. However, their cycling stability and rate performance still can not meet the requirements of practical applications. It is therefore urgent to improve their overall device performance, which depends on not only the development of advanced electrode materials but also in a large part "how to design superior electrode architectures". In the article, we will review recent advances in strategies for advanced metal oxide-based hybrid nanostructure design, with the focus on the binder-free film/array electrodes. These binder-free electrodes, with the integration of unique merits of each component, can provide larger electrochemically active surface area, faster electron transport and superior ion diffusion, thus leading to substantially improved cycling and rate performance. Several recently emerged concepts of using ordered nanostructure arrays, synergetic core-shell structures, nanostructured current collectors, and flexible paper/textile electrodes will be highlighted, pointing out advantages and challenges where appropriate. Some future electrode design trends and directions are also discussed. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Layered manganese oxides-decorated and nickel foam-supported carbon nanotubes as advanced binder-free supercapacitor electrodes

    KAUST Repository

    Huang, Ming

    2014-12-01

    Three-dimensional carbon nanotubes@MnO2 core-shell nanostructures grown on Ni foam for binder-free capacitor electrodes have been fabricated by a floating catalyst chemical vapor deposition process and a facile hydrothermal approach. Ultrathin layered MnO2 nanosheets are uniformly coated on the surface of the carbon nanotubes (CNTs), directly grown on Ni foam. This unique well-designed binder-free electrode exhibits a high specific capacitance (325.5 F g-1 at a current density of 0.3 A g-1), good rate capability (70.7% retention), and excellent cycling stability (90.5% capacitance retention after 5000 cycles), due to the high conductivity of the close contact between CNTs and Ni foam, as well as the moderate specific surface area of the CNTs@MnO2 core-shell nanostructures. The developed synthetic strategy may provide design guidelines for constructing advanced binder-free supercapacitors electrode. © 2014 Elsevier B.V. All rights reserved.

  9. Layered manganese oxides-decorated and nickel foam-supported carbon nanotubes as advanced binder-free supercapacitor electrodes

    KAUST Repository

    Huang, Ming; Mi, Rui; Liu, Hao; Li, Fei; Zhao, Xiao Li; Zhang, Wei; He, Shi Xuan; Zhang, Yu Xin

    2014-01-01

    Three-dimensional carbon nanotubes@MnO2 core-shell nanostructures grown on Ni foam for binder-free capacitor electrodes have been fabricated by a floating catalyst chemical vapor deposition process and a facile hydrothermal approach. Ultrathin layered MnO2 nanosheets are uniformly coated on the surface of the carbon nanotubes (CNTs), directly grown on Ni foam. This unique well-designed binder-free electrode exhibits a high specific capacitance (325.5 F g-1 at a current density of 0.3 A g-1), good rate capability (70.7% retention), and excellent cycling stability (90.5% capacitance retention after 5000 cycles), due to the high conductivity of the close contact between CNTs and Ni foam, as well as the moderate specific surface area of the CNTs@MnO2 core-shell nanostructures. The developed synthetic strategy may provide design guidelines for constructing advanced binder-free supercapacitors electrode. © 2014 Elsevier B.V. All rights reserved.

  10. 76 FR 39071 - Certain Oil Country Tubular Goods From the People's Republic of China: Rescission of...

    Science.gov (United States)

    2011-07-05

    ... DEPARTMENT OF COMMERCE International Trade Administration [C-570-944] Certain Oil Country Tubular... administrative review of the countervailing duty order on certain oil country tubular goods (``OCTG'') from the... subject to administrative protective order (``APO'') of their responsibility concerning the disposition of...

  11. MATHEMATICAL MODELLING OF PREFERED SOLUTIONS CHOICE FUNCTION FOR TUBULAR GAS HEATERS BY EXPERIMENTAL INFORMATIONS

    Directory of Open Access Journals (Sweden)

    BARSUK R. V.

    2016-08-01

    Full Text Available Annotation. Problems formulation. The article deals with choice functions building of preferred solutions by experimental information for tubular gas heater working on fuel granules - pellets.Further choice functions using for making technical solutions by tubular gas heaters construction and designing. Recently research analysis. There are works about choice functions construction by separate presents are examined. But full chose functions building by separate presents are not examined. Aims and tasks. There are setting aim to develop full choice functions mathematical model on separate presents by authors. The expert are connect to primary experimental data’s evaluation that estimates separate results by output functions (criteria. Its evaluations issue in experimental points paired comparison’s table form. Thus, there are necessary construct binary choice relations presents on experimental “points” set by expert that then using for full choice function’s constructing. Conclusions. There are choice function’s construction’s sequence are sets. There are posed point comparison results that characterized tubular gas heater’s condition with expert’s evaluation using. Also posed output functions comparisons by which can be characterized improving tubular gas heater’s performance or vice versa.

  12. Tubularized incised plate technique for recurrent hypospadias: a ...

    African Journals Online (AJOL)

    management of recurrent hypospadias. Summary background ... The potential advantages of tubularized incised plate .... after a mean duration of 4.9 ± 3.1 years from the previous repair (Table 2). .... erection and the risk of infection, especially in patients older than 15 .... However, previous surgery often limits the availability ...

  13. Increase of efficiency of plant materials heat treatment in tubular reactors

    Directory of Open Access Journals (Sweden)

    A. V. Golubkovich

    2016-01-01

    Full Text Available In agriculture products of pyrolysis of plant materials in the form of waste of the main production can be applied as a source of heat and electric power. Besides, their use prevents ecological pollution of the soil and the atmosphere. Pyrolysis plants can be used for work with tubular reactors anywhere. Due to them farmers can dry grain, using waste heat of diesel generators, heatgenerators, boiler plants and receiving thus gaseous products, liquid and firm fractions. A technology based on cyclic and continuous plant mass movement by a piston in a pipe from a loading site to a place of unloading of a firm phase consistently through cameras of drying, pyrolysis, condensation of gaseous products. Exhaust furnace gases with a temperature up to 600 degrees Celsius are given countercurrent material movement from a power equipment. The gaseous, liquid and firm products from the pyrolysis camera are used for heat and electric power generation. Calculation of parameters of subdrying and pyrolysis cameras is necessary for effective and steady operation of the tubular reactor. The authors determined the speed of raw materials movement, and also duration of drying and pyrolysis in working chambers. An analysis of a simplified mathematical model of process was confirmed with results of experiments. Models of heat treatment of wet plant materials in tubular reactors are worked out on a basis of equality of speeds of material movement in the reactor and distribution of a temperature front in material on radius. The authors defined estimated characteristic for determination of tubular reactor productivity and size of heat, required for drying and pyrolysis.

  14. Nonimaging secondary concentrators for large rim angle parabolic troughs with tubular absorbers.

    Science.gov (United States)

    Ries, H; Spirkl, W

    1996-05-01

    For parabolic trough solar collectors with tubular absorbers, we design new tailored secondary concentrators. The design is applicable for any rim angle of a parabolic reflector. With the secondary, the concentration can be increased by a factor of more than 2 with a compact secondary reflector consisting of a single piece, even for the important case of a rim angle of 90 deg. The parabolic reflector can be used without changes; the reduced absorber is still tubular but smaller than the original absorber and slightly displaced toward the primary.

  15. Distal renal tubular acidosis and hypokalemic paralysis in a patient with hypothyroidism

    Directory of Open Access Journals (Sweden)

    Parvaiz Ahmad Koul

    2011-01-01

    Full Text Available A 43- year- old woman on treatment for primary hypothyroidism presented with 1- day progressive weakness of all her limbs and history of similar episodes in the past. Clinical examination revealed grade 2 hyporeflexive weakness. Investigations revealed features of hypokalemia, metabolic acidosis, alkaline urine, and a fractional bicarbonate excretion of 3.5%, consistent with distal renal tubular acidosis. Antithyroid peroxidase and antithroglobulin antibodies were positive, suggesting an autoimmune basis for the pathogenesis of the functional tubular defect. Bicarbonate therapy resulted in a sustained clinical recovery.

  16. Tubular forms of papova viruses in human laryngeal papilloma.

    Science.gov (United States)

    Arnold, W

    1979-01-01

    In two cases of recurrent laryngeal papillomatosis tubular forms of papova viruses could be observed. The same material revealed the close relation between nuclear chromatine and the release of particles, as well as a capsomere like substructure of the virions.

  17. In vivo antibody-mediated modulation of aminopeptidase A in mouse proximal tubular epithelial cells.

    Science.gov (United States)

    Mentzel, S; Dijkman, H B; van Son, J P; Wetzels, J F; Assmann, K J

    1999-07-01

    Aminopeptidase A (APA) is one of the many renal hydrolases. In mouse kidney, APA is predominantly expressed on the brush borders and sparsely on the basolateral membranes of proximal tubular epithelial cells. However, when large amounts of monoclonal antibodies (MAbs) against APA were injected into mice, we observed strong binding of the MAbs to the basolateral membranes, whereas the MAbs bound only transiently to the brush borders of the proximal tubular epithelial cells. In parallel, APA itself disappeared from the brush borders by both endocytosis and shedding, whereas it was increasingly expressed on the basolateral sides. Using ultrastructural immunohistology, we found no evidence for transcellular transport of endocytosed APA to the basolateral side of the proximal tubular epithelial cells. The absence of transcellular transport was confirmed by experiments in which we used a low dose of the MAbs. Such a low dose did not result in binding of the MAbs to the brush borders and had no effect on the presence of APA in the brush borders of the proximal tubular epithelial cells. In these experiments we still could observe binding of the MAbs to the basolateral membranes in parallel with the local appearance of APA. In addition, treatment of mice with chlorpromazine, a calmodulin antagonist that interferes with cytoskeletal function, largely inhibited the MAb-induced modulation of APA. Our studies suggest that injection of MAbs to APA specifically interrupts the normal intracellular traffic of this enzyme in proximal tubular epithelial cells. This intracellular transport is dependent on the action of cytoskeletal proteins.

  18. Tubular closure mechanism

    International Nuclear Information System (INIS)

    Kalen, D.D.; Mitchem, J.W.

    1981-01-01

    An apparatus is provided for closing the bore of a tube and releasably securing articles within the tube under longitudinal load. A latching member has a cylindrical section and several circumferentially-spaced elongated latches hanging down from one end of the cylinder. An elongated actuator has integral cam and spline and is partly located within the latch with the cam radially contacting the latches and the spline projecting into the circumferential spaces between the latches. The actuator is axially movable between a position in which the latches are locked to the tube walls and a position in which the latches are secured from contact with the tube walls. Means are provided for axially moving the actuator such that the cam positions the latches; and means are also provided for engaging the articles within the tube. The closure is particularly applicable to tubular irradiation surveillance specimen assembly holders used in reactors

  19. Electrochemical synthesis of 1D core-shell Si/TiO2 nanotubes for lithium ion batteries

    Science.gov (United States)

    Kowalski, Damian; Mallet, Jeremy; Thomas, Shibin; Nemaga, Abirdu Woreka; Michel, Jean; Guery, Claude; Molinari, Michael; Morcrette, Mathieu

    2017-09-01

    Silicon negative electrode for lithium ion battery was designed in the form of self-organized 1D core-shell nanotubes to overcome shortcomings linked to silicon volume expansion upon lithiation/delithiation typically occurring with Si nanoparticles. The negative electrode was formed on TiO2 nanotubes in two step electrochemical synthesis by means of anodizing of titanium and electrodeposition of silicon using ionic liquid electrolytes. Remarkably, it was found that the silicon grows perpendicularly to the z-axis of nanotube and therefore its thickness can be precisely controlled by the charge passed in the electrochemical protocol. Deposited silicon creates a continuous Si network on TiO2 nanotubes without grain boundaries and particle-particle interfaces, defining its electrochemical characteristics under battery testing. In the core-shell system the titania nanotube play a role of volume expansion stabilizer framework holding the nanostructured silicon upon lithiation/delithiation. The nature of Si shell and presence of titania core determine stable performance as negative electrode tested in half cell of CR2032 coin cell battery.

  20. Characterization of Chiral Carbonaceous Nanotubes Prepared from Four Coiled Tubular 4,4'-biphenylene-silica Nanoribbons

    Directory of Open Access Journals (Sweden)

    Shuwei Lin

    2014-04-01

    Full Text Available Four dipeptides derived from phenylalanine were synthesized, which can self-assemble into twisted nanoribbon in deionized water. The handedness of the organic self-assemblies was controlled by the chirality of the phenylalanine at the terminals. Coiled 4,4'-biphenylene bridged polybissilsesquioxane tubular nanoribbons were prepared using the organic self-assemblies as the templates. The circular dichroism spectra indicated that the biphenylene rings preferred to twist in one-handedness within the walls of the samples. After carbonization and removal of silica, single-handed coiled carbonaceous tubular nanoribbons were obtained. The Raman spectra indicated that the carbon was amorphous. The diffuse reflectance circular dichroism spectra indicated the tubular carbonaceous nanoribbons exhibited optical activity.

  1. Hot Firing of a Full Scale Copper Tubular Combustion Chamber

    National Research Council Canada - National Science Library

    Cooley, C

    2002-01-01

    This paper describes the chamber design and hot firing test results for a full-scale copper tubular combustion chamber that has future application in a high-thrust, upper-stage expander cycle engine...

  2. Review of the micro-tubular solid oxide fuel cell. Part I. Stack design issues and research activities

    Energy Technology Data Exchange (ETDEWEB)

    Lawlor, V. [Department of Eco-Energy Engineering, Upper Austrian University of Applied Sciences, A-4600 Wels (Austria); Department of Manufacturing and Mechanical Engineering, Dublin City University, Dublin 9 (Ireland); Griesser, S. [Department of Eco-Energy Engineering, Upper Austrian University of Applied Sciences, A-4600 Wels (Austria); Buchinger, G. [eZelleron GmbH, Collenbusch str. 22, 01324 Dresden (Germany); Olabi, A.G. [Department of Manufacturing and Mechanical Engineering, Dublin City University, Dublin 9 (Ireland); Cordiner, S. [Dipartimento di Ingegneria Meccanica - Universita di Roma Tor Vergata (Italy); Meissner, D. [Department of Eco-Energy Engineering, Upper Austrian University of Applied Sciences, A-4600 Wels (Austria); Department of Material Science, Tallinn University of Technology, Ehitajate 19086 (Estonia)

    2009-09-05

    Fuel cells are devices that convert chemical energy in hydrogen enriched fuels into electricity electrochemically. Micro-tubular solid oxide fuel cells (MT-SOFCs), the type pioneered by K. Kendall in the early 1990s, are a variety of SOFCs that are on the scale of millimetres compared to their much larger SOFC relatives that are typically on the scale of tens of centimetres. The main advantage of the MT-SOFC, over its larger predecessor, is that it is smaller in size and is more suitable for rapid start up. This may allow the SOFC to be used in devices such as auxiliary power units, automotive power supplies, mobile electricity generators and battery re-chargers. The following paper is Part I of a two part series. Part I will introduce the reader to the MT-SOFC stack and its applications, indicating who is researching what in this field and also specifically investigate the design issues related to multi-cell reactor systems called stacks. Part II will review in detail the combinations of materials and methods used to produce the electrodes and electrolytes of MT-SOFC's. Also the role of modelling and validation techniques used in the design and improvement of the electrodes and electrolytes will be investigated. A broad range of scientific and engineering disciplines are involved in a stack design. Scientific and engineering content has been discussed in the areas of thermal-self-sustainability and efficiency, sealing technologies, manifold design, electrical connections and cell performance optimisation. (author)

  3. Modeling of Unidirectional-Overloaded Transition in Catalytic Tubular Microjets

    NARCIS (Netherlands)

    Klingner, Anke; Khalil, Islam S. M.; Magdanz, Veronika; Fomin, Vladimir M.; Schmidt, Oliver G.; Misra, Sarthak

    2017-01-01

    A numerical time-resolved model is presented for predicting the transition between unidirectional and overloaded motion of catalytic tubular microjets (Ti/Fe/Pt rolled-up microtubes) in an aqueous solution of hydrogen peroxide. Unidirectional movement is achieved by periodic ejection of gas bubbles

  4. Torsional stresses in the transverse fillet weld tubular joints

    NARCIS (Netherlands)

    Gunay, D.; Aydemir, A.; Özer, H.

    1996-01-01

    Torsional stresses, 'tre and tel , in tbe transverse fillet tubular weld joint subjected to torsional load have been analyzed by the finite element method using triangular and quadrilateral izoparametric axisymmetric fourier type torus finite elements. There is an axisymmetry with respect to

  5. Rocket-inspired tubular catalytic microjets with grating-structured walls as guiding empennages.

    Science.gov (United States)

    Huang, Gaoshan; Wang, Jiyuan; Liu, Zhaoqian; Zhou, Dekai; Tian, Ziao; Xu, Borui; Li, Longqiu; Mei, Yongfeng

    2017-12-07

    Controllable locomotion in the micro-/nanoscale is challenging and attracts increasing research interest. Tubular microjets self-propelled by microbubbles are intensively investigated due to their high energy conversion efficiency, but the imperfection of the tubular geometry makes it harder to realize linear motion. Inspired by the macro rocket, we designed a tubular microjet with a grating-structured wall which mimics the guiding empennage of the macro rocket, and we found that the fluid can be effectively guided by the grooves. Both theoretical simulation and experimental work have been carried out, and the obtained results demonstrate that the stability margin of the grating-structured microjet can be enhanced. Compared with microjets with smooth walls, the structured microjets show an enhanced ability of moving linearly. In 10% H 2 O 2 , only 20% of the smooth microjets demonstrate linear trajectories, while 80% of the grating-structured microjets keep moving straight. The grating-structured microjet can maintain linear motion under external disturbance. We further propose to increase the stability by introducing a helical grating structure.

  6. Connecting small ligands to generate large tubular metal-organic architectures

    International Nuclear Information System (INIS)

    Goforth, Andrea M.; Su, Cheng-Yong; Hipp, Rachael; Macquart, Rene B.; Smith, Mark D.; Loye, Hans-Conrad zur

    2005-01-01

    The new metal-organic framework materials, ZnF(Am 2 TAZ).solvents and ZnF(TAZ).solvents (Am 2 TAZ=3,5-diamino-1,2,4-triazole, TAZ=1,2,4-triazole), have been synthesized solvothermally and structurally characterized by either Rietveld refinement from powder XRD data or by single crystal X-ray diffraction. The three-dimensional structures of the compounds display open-ended, tubular channels, which are constituted of covalently bonded hexanuclear metallamacrocycles (Zn 6 F 6 (ligand) 6 ). The tubular channels are subsequently covalently joined into a honeycomb-like hexagonal array to generate the three-dimensional porous framework. In the case of ZnF(Am 2 TAZ).solvents, hydrophilic -NH 2 groups point into the channels, effectively reducing their inner diameter relative to ZnF(TAZ).solvents. The present compounds are isostructural to one another and to the previously reported ZnF(AmTAZ).solvents (AmTAZ=3-amino-1,2,4-triazole), illustrative of the fact that the internal size and chemical properties of the framework may be altered by modification of the small, heterocyclic ligand. In addition to demonstrating the ability to modify the basic framework, ZnF(TAZ).solvents and ZnF(Am 2 TAZ).solvents are two of the most thermally stable coordination frameworks known to date. - Graphical abstract: Top view of the open-ended, honeycomb tubular architecture of ZnF(Am 2 TAZ)

  7. Eco-friendly synthesis of core-shell structured (TiO2/Li2CO3) nanomaterials for low cost dye-sensitized solar cells.

    Science.gov (United States)

    Karuppuchamy, S; Brundha, C

    2016-12-01

    Core-shell structured TiO 2 /Li 2 CO 3 electrode was successfully synthesized by eco-friendly solution growth technique. TiO 2 /Li 2 CO 3 electrodes were characterized using X-ray Diffractometer (XRD), Scanning electron microscopy (SEM) and photocurrent-voltage measurements. The synthesized core-shell electrode material was sensitized with tetrabutylammonium cis-di(thiocyanato)-N,N'-bis(4-carboxylato-4'-carboxylic acid-2,2'-bipyridine)ruthenate(II) (N-719). The performance of dye-sensitized solar cells (DSCs) based on N719 dye modified TiO 2 /Li 2 CO 3 electrodes was investigated. The effect of various shell thickness on the photovoltaic performance of the core-shell structured electrode is also investigated. We found that Li 2 CO 3 shells of all thicknesses perform as inert barriers which improve open-circuit voltage (V oc ) of the DSCs. The energy conversion efficiency was greatly dependent on the thickness of Li 2 CO 3 on TiO 2 film, and the highest efficiency of 3.7% was achieved at the optimum Li 2 CO 3 shell layer. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Preparation of β-cyclodextrin-gold nanoparticles modified open tubular column for capillary electrochromatographic separation of chiral drugs.

    Science.gov (United States)

    Zhou, Li; Jiang, Shenmeng; Zhang, Xue; Fang, Linlin; Guo, Xingjie

    2018-04-01

    In this paper, β-cyclodextrin (β-CD) modified gold nanoparticles (AuNPs) coated open tubular column (OT column) was prepared for capillary electrochromatography. The open tubular column was constructed through self-assembly of gold nanoparticles on 3-mercaptopropyl-trimethoxysilane (MPTMS) prederivatized capillary and subsequent modification of thiols β-cyclodextrin (SH-β-CD). Scanning electron microscopy (SEM), transmission electron microscopy (TEM) and ultraviolet visible spectroscopy were carried out to characterize the prepared open tubular column and synthesized gold nanoparticles. By comparing different coating times of gold nanoparticles and thiols β-cyclodextrin, we got the optimal conditions for preparing the open tubular column. Also, the separation parameters were optimized including buffer pH, buffer concentration and applied voltage. Separation effectiveness of open tubular column was verified by the separation of four pairs of drug enantiomers including bifonazole, fexofenadine, omeprazole and lansoprazole, and satisfactory separation results were achieved for these analytes studied. In addition, the column showed good stability and repeatability. The relative standard deviation values less than 5% were obtained through intra-day, inter-day, and column-to-column investigations. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Renal tubular dysfunction presenting as recurrent hypokalemic periodic quadriparesis in systemic lupus erythematosus

    Directory of Open Access Journals (Sweden)

    D Prasad

    2014-01-01

    Full Text Available We report recurrent hypokalemic periodic quadriparesis in a 30-year-old woman. Patient had also symptoms of multiple large and small joint pain, recurrent oral ulceration, photosensitivity and hair loss that were persisting since last 6 months and investigations revealed systemic lupus erythematosus (SLE with distal tubular acidosis. Our patient was successfully treated with oral potassium chloride, sodium bicarbonate, hydroxychloroquine and a short course of steroids. Thus, tubular dysfunction should be carefully assessed in patients with SLE.

  10. Radiologic findings of tubular adenoma of the breast

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Mi Gyoung; Oh, Ki Keun [Yonsei Univ. College of Medicine, Seoul (Korea, Republic of)

    1996-10-01

    Tubular adenoma (TA) is known as a rare lesion of the breast which is difficult to diagnosis preoperatively because of its rarity and similarity to fibroadenoma. Hence, our purpose is to suggest the characteristic sonographic features for its correct diagnosis. We retrospectively analyzed the clinical data and mammographic and sonographic findings. of seven patients(mean age, 23) who during the previous five years had presented at our hospital with pathologically-proven tubular adenoma. TA was misdiagnosed as fibroadenoma, since on physical examination of these young females, the lesions presented a palpable, non-tender mass. Mammographically, they showed a well defined mass similar to fibroadenoma. However, sonographic findings were characteristic of TA and compared to fibroadenoma, showed a well demarcated and smooth bordered mass with transverse long axis, posterior enhancement and homogeneous lower internal echogenecity. No case showed lateral wall refractive shadowing. In young females, the clinical and mammographic findings of TA are similar to those of fibroadenoma. However, sonographic findings of TA can, be helpful in the differential diagnosis of this entity and fibroadenoma.

  11. Radiologic findings of tubular adenoma of the breast

    International Nuclear Information System (INIS)

    Jeong, Mi Gyoung; Oh, Ki Keun

    1996-01-01

    Tubular adenoma (TA) is known as a rare lesion of the breast which is difficult to diagnosis preoperatively because of its rarity and similarity to fibroadenoma. Hence, our purpose is to suggest the characteristic sonographic features for its correct diagnosis. We retrospectively analyzed the clinical data and mammographic and sonographic findings. of seven patients(mean age, 23) who during the previous five years had presented at our hospital with pathologically-proven tubular adenoma. TA was misdiagnosed as fibroadenoma, since on physical examination of these young females, the lesions presented a palpable, non-tender mass. Mammographically, they showed a well defined mass similar to fibroadenoma. However, sonographic findings were characteristic of TA and compared to fibroadenoma, showed a well demarcated and smooth bordered mass with transverse long axis, posterior enhancement and homogeneous lower internal echogenecity. No case showed lateral wall refractive shadowing. In young females, the clinical and mammographic findings of TA are similar to those of fibroadenoma. However, sonographic findings of TA can, be helpful in the differential diagnosis of this entity and fibroadenoma

  12. Engineering tubular bone using mesenchymal stem cell sheets and coral particles

    Energy Technology Data Exchange (ETDEWEB)

    Geng, Wenxin [Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University, No.229 North Taibai Road, Xi’an 710069 (China); Ma, Dongyang [Department of Oral and Maxillofacial Surgery, Lanzhou General Hospital, Lanzhou Command of PLA, BinHe 333 South Road, Lanzhou 730052 (China); Yan, Xingrong; Liu, Liangqi; Cui, Jihong; Xie, Xin; Li, Hongmin [Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University, No.229 North Taibai Road, Xi’an 710069 (China); Chen, Fulin, E-mail: chenfl@nwu.edu.cn [Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University, No.229 North Taibai Road, Xi’an 710069 (China)

    2013-04-19

    Highlights: • We developed a novel engineering strategy to solve the limitations of bone grafts. • We fabricated tubular constructs using cell sheets and coral particles. • The composite constructs showed high radiological density and compressive strength. • These characteristics were similar to those of native bone. -- Abstract: The development of bone tissue engineering has provided new solutions for bone defects. However, the cell-scaffold-based approaches currently in use have several limitations, including low cell seeding rates and poor bone formation capacity. In the present study, we developed a novel strategy to engineer bone grafts using mesenchymal stem cell sheets and coral particles. Rabbit bone marrow mesenchymal stem cells were continuously cultured to form a cell sheet with osteogenic potential and coral particles were integrated into the sheet. The composite sheet was then wrapped around a cylindrical mandrel to fabricate a tubular construct. The resultant tubular construct was cultured in a spinner-flask bioreactor and subsequently implanted into a subcutaneous pocket in a nude mouse for assessment of its histological characteristics, radiological density and mechanical property. A similar construct assembled from a cell sheet alone acted as a control. In vitro observations demonstrated that the composite construct maintained its tubular shape, and exhibited higher radiological density, compressive strength and greater extracellular matrix deposition than did the control construct. In vivo experiments further revealed that new bone formed ectopically on the composite constructs, so that the 8-week explants of the composite sheets displayed radiological density similar to that of native bone. These results indicate that the strategy of using a combination of a cell sheet and coral particles has great potential for bone tissue engineering and repairing bone defects.

  13. Engineering tubular bone using mesenchymal stem cell sheets and coral particles

    International Nuclear Information System (INIS)

    Geng, Wenxin; Ma, Dongyang; Yan, Xingrong; Liu, Liangqi; Cui, Jihong; Xie, Xin; Li, Hongmin; Chen, Fulin

    2013-01-01

    Highlights: • We developed a novel engineering strategy to solve the limitations of bone grafts. • We fabricated tubular constructs using cell sheets and coral particles. • The composite constructs showed high radiological density and compressive strength. • These characteristics were similar to those of native bone. -- Abstract: The development of bone tissue engineering has provided new solutions for bone defects. However, the cell-scaffold-based approaches currently in use have several limitations, including low cell seeding rates and poor bone formation capacity. In the present study, we developed a novel strategy to engineer bone grafts using mesenchymal stem cell sheets and coral particles. Rabbit bone marrow mesenchymal stem cells were continuously cultured to form a cell sheet with osteogenic potential and coral particles were integrated into the sheet. The composite sheet was then wrapped around a cylindrical mandrel to fabricate a tubular construct. The resultant tubular construct was cultured in a spinner-flask bioreactor and subsequently implanted into a subcutaneous pocket in a nude mouse for assessment of its histological characteristics, radiological density and mechanical property. A similar construct assembled from a cell sheet alone acted as a control. In vitro observations demonstrated that the composite construct maintained its tubular shape, and exhibited higher radiological density, compressive strength and greater extracellular matrix deposition than did the control construct. In vivo experiments further revealed that new bone formed ectopically on the composite constructs, so that the 8-week explants of the composite sheets displayed radiological density similar to that of native bone. These results indicate that the strategy of using a combination of a cell sheet and coral particles has great potential for bone tissue engineering and repairing bone defects

  14. Some asymptotic properties of functions holomorphic in tubular domains

    International Nuclear Information System (INIS)

    Zavialov, B.I.

    1988-10-01

    For the function holomorphic in curved tubular domain the connection between asymptotic behaviour of real part of its boundary value at a given point of base manifold and asymptotic behaviour of the whole function from the inside of this domain is studied. (author). 3 refs

  15. The urinary excretion of metformin, ceftizoxime and ofloxacin in high serum creatinine rats: Can creatinine predict renal tubular elimination?

    Science.gov (United States)

    Ma, Yan-Rong; Zhou, Yan; Huang, Jing; Qin, Hong-Yan; Wang, Pei; Wu, Xin-An

    2018-03-01

    The renal excretion of creatinine and most drugs are the net result of glomerular filtration and tubular secretion, and their tubular secretions are mediated by individual transporters. Thus, we hypothesized that the increase of serum creatinine (SCr) levels attributing to inhibiting tubular transporters but not glomerular filtration rate (GFR) could be used to evaluate the tubular excretion of drugs mediated by identical or partial overlap transporter with creatinine. In this work, we firstly developed the creatinine excretion inhibition model with normal GFR by competitively inhibiting tubular transporters, and investigated the renal excretion of metformin, ceftizoxime and ofloxacin in vivo and in vitro. The results showed that the 24-hour urinary excretion of metformin and ceftizoxime in model rats were decreased by 25% and 17% compared to that in control rats, respectively. The uptake amount and urinary excretion of metformin and ceftizoxime could be inhibited by creatinine in renal cortical slices and isolated kidney perfusion. However, the urinary excretion of ofloxacin was not affected by high SCr. These results showed that the inhibition of tubular creatinine transporters by high SCr resulted to the decrease of urinary excretion of metformin and ceftizoxime, but not ofloxacin, which implied that the increase of SCr could also be used to evaluate the tubular excretion of drugs mediated by identical or partial overlap transporter with creatinine in normal GFR rats. Copyright © 2018 Elsevier Inc. All rights reserved.

  16. Strength characterization of tubular ceramic materials by flexure of semi-cylindrical specimens

    DEFF Research Database (Denmark)

    Kwok, Kawai; Kiesel, Lutz; Frandsen, Henrik Lund

    2014-01-01

    Mechanical strength at elevated temperatures and operating atmospheres needs to be characterized during development of tubular ceramic components for advanced energy technologies. Typical procedures are time-consuming because a large number of tests are required for a reliable statistical strength...... characterization and every specimen has to be subjected to the process conditions individually. This paper presents an efficient strength characterization methodology for tubular ceramics. The methodology employs flexure of semi-cylindrical specimens as the strength test and implements the tests within a facility...... conducted on oxygen transport membrane materials at room temperature and 850°C....

  17. Utility of a tripolar stimulating electrode for eliciting dopamine release in the rat striatum.

    Science.gov (United States)

    Bergstrom, B P; Garris, P A

    1999-03-01

    The present study evaluated tripolar stimulating electrodes for eliciting dopamine release in the rat brain in vivo. Stimulating electrodes were placed either in the medial forebrain bundle or in the ventral mesencephalon associated with the ventral tegmental area and substantia nigra. The concentration of extracellular dopamine was monitored in dopamine terminal fields at 100-ms intervals using fast-scan cyclic voltammetry at carbon-fiber microelectrodes. To characterize the stimulated area, recordings were collected in several striatal regions including the caudate putamen and the core and shell of the nucleus accumbens. The tripolar electrode was equally effective in stimulating dopamine release in medial and lateral regions of the striatum. In contrast, responses evoked by a bipolar electrode were typically greater in one mediolateral edge versus the other. The added size of the tripolar electrode did not appear to cause complications as signals were stable over the course of the experiment (3 h). Subsets of mesostriatal dopamine neurons could also be selectively activated using the tripolar electrode in excellent agreement with previously described topography. Taken together, these results suggested that the tripolar stimulating electrode is well suited for studying the regulation of midbrain dopamine neurons in vivo.

  18. TUBULAR DISORDERS WITH RICKETS-LIKE SYNDROME

    Directory of Open Access Journals (Sweden)

    N.N. Kartamysheva

    2011-01-01

    Full Text Available Often under the guise of «ordinary» Rickets are more severe kidney diseases, developing as a result of inherited or acquired, primary or secondary defects in the renal tubules. Incorrect diagnosis leads to an inadequate therapy, rapid progression of disease and renal failure. The article describes the main approaches to the diagnosis and treatment of disorders of tubular rachitis similar syndrome, presents a number of clinical cases in author's practice.Key words: tubulopathy, acidosis, electrolyte disorders, rickets, rickets-like syndrome, diagnostics, treatment, children.

  19. Cultivation of micro-algae in closed tubular reactor

    Energy Technology Data Exchange (ETDEWEB)

    Gudin, C.; Bernard, A.; Chaumont, D.

    1983-11-01

    A description is presented of the three culture pilot utilities in activity under natural light, including glass tubular solar collector (30 mm diameter) in which the microalgae culture circulates. The utility is controled automatically (thermal regulation, gaseous transfers, continuous culture organization). The tests were conducted for the production of polysaccharides (Porphyridium cruentum, chlamydomonas mexicana) or hydrocarbons (Botriococcus braunii).

  20. A narrow open tubular column for high efficiency liquid chromatographic separation.

    Science.gov (United States)

    Chen, Huang; Yang, Yu; Qiao, Zhenzhen; Xiang, Piliang; Ren, Jiangtao; Meng, Yunzhu; Zhang, Kaiqi; Juan Lu, Joann; Liu, Shaorong

    2018-04-30

    We report a great feature of open tubular liquid chromatography when it is run using an extremely narrow (e.g., 2 μm inner diameter) open tubular column: more than 10 million plates per meter can be achieved in less than 10 min and under an elution pressure of ca. 20 bar. The column is coated with octadecylsilane and both isocratic and gradient separations are performed. We reveal a focusing effect that may be used to interpret the efficiency enhancement. We also demonstrate the feasibility of using this technique for separating complex peptide samples. This high-resolution and fast separation technique is promising and can lead to a powerful tool for trace sample analysis.

  1. Tubular bending and pull-out forces in high-curvature well bores

    International Nuclear Information System (INIS)

    Dareing, D.W.; Ahlers, C.A.

    1991-01-01

    This paper is concerned with drag forces developed on tubulars in high-curvature well bores typically found in drainhole and horizontal drilling. The dog-leg severity of these types of boreholes are considerably higher than those typically found in conventional directional drilling. The objective of the study was to determine the significance of bending stiffness on drag forces in the pull-out mode. The method of analysis treats the tubular as a multi-spanned curved beam under tension and solves for radial displacements, slope, shear and bending moment over each span. Calculations show that bending stiffness is a minor factor provided there are no locally severe dog legs superimposed in the high-curvature well bore

  2. Facile Synthesis of Free-Standing NiO/MnO2 Core-Shell Nanoflakes on Carbon Cloth for Flexible Supercapacitors.

    Science.gov (United States)

    Xi, Shuang; Zhu, Yinlong; Yang, Yutu; Jiang, Shulan; Tang, Zirong

    2017-12-01

    Free-standing NiO/MnO 2 core-shell nanoflake structure was deposited on flexible carbon cloth (CC) used as electrode for high-performance supercapacitor (SC). The NiO core was grown directly on CC by hydrothermal process and the following annealing treatment. MnO 2 thin film was then covered on NiO structures via a self-limiting process in aqueous solution of 0.5 M KMnO 4 and 0.5 M Na 2 SO 4 with a carbon layer serving as the sacrificial layer. Both the core and shell materials are good pseudocapacitive materials, the compounds of binary metal oxides can provide the synergistic effect of all individual constituents, and thus enhance the performance of SC electrode. The obtained CC/NiO/MnO 2 heterostructure was directly used as SC electrodes, showing an enhanced electrochemical performance including areal capacitance of 316.37 mF/cm 2 and special gravimetric capacitance of 204.3 F/g at the scan rate of 50 mV/s. The electrode also shows excellent cycling stability, which retains 89% of its initial discharge capacitance after 2200 cycles with >97% Coulombic efficiency. The synthesized binder-free hierarchical composite electrode with superior electrochemical properties demonstrates enormous potential in the application of flexible SCs.

  3. Recent advances in metal oxide-based electrode architecture design for electrochemical energy storage

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Jian; Liu, Jinping; Huang, Xintang [Institute of Nanoscience and Nanotechnology, Department of Physics, Central China Normal University, Wuhan, Hubei (China); Li, Yuanyuan [School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan (China); Yuan, Changzhou; Lou, Xiong Wen [School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore (China)

    2012-10-02

    Metal oxide nanostructures are promising electrode materials for lithium-ion batteries and supercapacitors because of their high specific capacity/capacitance, typically 2-3 times higher than that of the carbon/graphite-based materials. However, their cycling stability and rate performance still can not meet the requirements of practical applications. It is therefore urgent to improve their overall device performance, which depends on not only the development of advanced electrode materials but also in a large part ''how to design superior electrode architectures''. In the article, we will review recent advances in strategies for advanced metal oxide-based hybrid nanostructure design, with the focus on the binder-free film/array electrodes. These binder-free electrodes, with the integration of unique merits of each component, can provide larger electrochemically active surface area, faster electron transport and superior ion diffusion, thus leading to substantially improved cycling and rate performance. Several recently emerged concepts of using ordered nanostructure arrays, synergetic core-shell structures, nanostructured current collectors, and flexible paper/textile electrodes will be highlighted, pointing out advantages and challenges where appropriate. Some future electrode design trends and directions are also discussed. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  4. Bi2212 HTS Tubular Bulk with Conical Shape for Current Lead

    International Nuclear Information System (INIS)

    Tamura, H; Mito, T; Yamada, Y; Watanabe, M; Ohkubo, J; Heller, R

    2006-01-01

    Current leads using HTS material have been developed for application in a large scale superconducting magnet system. Tokai University and NIFS have developed Bi2212 tubular bulk which was prepared by a diffusion process. 8 kA of maximum transport current was achieved by a tubular bulk with a cylindrical shape. The maximum current was estimated to be 2 kA at 50 K for this tubular bulk. A current lead can be designed with this bulk the warm end of the HTS part being at 50 K and the cold end at 4.2 K. Under this condition, the cross section of the cold end of the bulk can be reduced. This type of HTS bulk has a great potential for flexible design since the Bi2212 layer can be reacted on the surface of any shapes of substrate. If a conical shaped HTS bulk was made, it could be an advantage for heat leakage to the cold end. To confirm this effect, we have made two types of conical bulk. The transport current of the specimen exceeds 7 kA at 4.2 K and 4 kA of stable current flow was achieved with a warm end temperature of 50 K

  5. Geometric screening of core/shell hydrogel microcapsules using a tapered microchannel with interdigitated electrodes.

    Science.gov (United States)

    Niu, Ye; Qi, Lin; Zhang, Fen; Zhao, Yi

    2018-07-30

    Core/shell hydrogel microcapsules attract increasing research attention due to their potentials in tissue engineering, food engineering, and drug delivery. Current approaches for generating core/shell hydrogel microcapsules suffer from large geometric variations. Geometrically defective core/shell microcapsules need to be removed before further use. High-throughput geometric characterization of such core/shell microcapsules is therefore necessary. In this work, a continuous-flow device was developed to measure the geometric properties of microcapsules with a hydrogel shell and an aqueous core. The microcapsules were pumped through a tapered microchannel patterned with an array of interdigitated microelectrodes. The geometric parameters (the shell thickness and the diameter) were derived from the displacement profiles of the microcapsules. The results show that this approach can successfully distinguish all unencapsulated microparticles. The geometric properties of core/shell microcapsules can be determined with high accuracy. The efficacy of this method was demonstrated through a drug releasing experiment where the optimization of the electrospray process based on geometric screening can lead to controlled and extended drug releasing profiles. This method does not require high-speed optical systems, simplifying the system configuration and making it an indeed miniaturized device. The throughput of up to 584 microcapsules per minute was achieved. This study provides a powerful tool for screening core/shell hydrogel microcapsules and is expected to facilitate the applications of these microcapsules in various fields. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Core/Shell Structured TiO2/CdS Electrode to Enhance the Light Stability of Perovskite Solar Cells.

    Science.gov (United States)

    Hwang, Insung; Baek, Minki; Yong, Kijung

    2015-12-23

    In this work, enhanced light stability of perovskite solar cell (PSC) achieved by the introduction of a core/shell-structured CdS/TiO2 electrode and the related mechanism are reported. By a simple solution-based process (SILAR), a uniform CdS shell was coated onto the surface of a TiO2 layer, suppressing the activation of intrinsic trap sites originating from the oxygen vacancies of the TiO2 layer. As a result, the proposed CdS-PSC exhibited highly improved light stability, maintaining nearly 80% of the initial efficiency after 12 h of full sunlight illumination. From the X-ray diffraction analyses, it is suggested that the degradation of the efficiency of PSC during illumination occurs regardless of the decomposition of the perovskite absorber. Considering the light-soaking profiles of the encapsulated cells and the OCVD characteristics, it is likely that the CdS shell had efficiently suppressed the undesirable electron kinetics, such as trapping at the surface defects of the TiO2 and preventing the resultant charge losses by recombination. This study suggests that further complementary research on various effective methods for passivation of the TiO2 layer would be highly meaningful, leading to insight into the fabrication of PSCs stable to UV-light for a long time.

  7. Modeling of heat transfer in wall-cooled tubular reactors

    NARCIS (Netherlands)

    Koning, G.W.; Westerterp, K.R.

    1999-01-01

    In a pilot scale wall-cooled tubular reactor, temperature profiles have been measured with and without reaction. As a model reaction oxidation of carbon monoxide in air over a copper chromite catalyst has been used. The kinetics of this reaction have been determined separately in two kinetic

  8. Simulação numérica aplicada para avaliar o efeito da pré-polimerização no comportamento de reatores tubulares Numerical simulation to evaluate the effect from pre-polymerization on the behavior of tubular reactors

    Directory of Open Access Journals (Sweden)

    André L. Nogueira

    2007-09-01

    Full Text Available O presente estudo utiliza um modelo matemático fenomenológico para simular um sistema de polimerização contínuo em dois estágios. Este sistema é composto por um reator contínuo tipo tanque agitado (CSTR, para pré-polimerização do monômero (primeiro estágio, associado em série a um reator tubular para conduzir a reação até elevados valores de conversão (segundo estágio. Um modelo detalhado, considerando variações axiais e radiais, assim como operação não-isotérmica, foi utilizado para simular o comportamento do reator tubular em diferentes situações. Um modelo de caracterização também foi desenvolvido para fornecer estimativas do peso molecular médio e do índice de polidispersão do polímero. Os resultados mostram que reações de polimerização conduzidas em sistemas contínuos de dois estágios fornecem um polímero com propriedades menos heterogêneas do que um polímero obtido em um sistema reacional composto por apenas um reator tubular. Além disso, quanto maior a viscosidade da mistura reacional alimentada ao reator tubular, mais homogêneo é o polímero obtido.The present study uses a phenomenological model to simulate a continuous, two-stage polymerization process. This system is composed by a continuous stirred tank reactor (CSTR for monomer pre-polymerization (first stage, connected to a tubular reactor (second stage to carry out the reaction up to high conversion values. A comprehensive non-isothermal 2-D model (axial and radial variations was used to predict the tubular reactor behavior. A polymer characterization model was also developed to provide estimates of the polymer average molecular weight and polydispersity. According to the results, polymerization reactions carried out in a continuous two-stage system provide a polymer with less heterogeneous properties than the one obtained in a single tubular reactor. Besides, it is possible to produce a more homogeneous polymer increasing the viscosity

  9. Understanding shape and morphology of unusual tubular starch nanocrystals.

    Science.gov (United States)

    Gong, Bei; Liu, Wenxia; Tan, Hua; Yu, Dehai; Song, Zhaoping; Lucia, Lucian A

    2016-10-20

    Starch nanocrystals (SNC) are aptly described as the insoluble degradation byproducts of starch granules that purportedly display morphologies that are platelet-like, round, square, and oval-like. In this work, we reported the preparation of SNC with unprecedented tubular structures through sulfuric acid hydrolysis of normal maize starch, subsequent exposure to ammonia and relaxation at 4°C. High-resolution transmission electron microscopy observation clearly proved that the SNCs possess tubular nanostructures with polygonal cross-section. After further reviewing the transformations of SNC by acid hydrolysis, ammonia treatment, and curing time at 4°C, a mechanism for T-SNC formation is suggested. It is conjectured that T-SNC gradually self-assembles by combination of smaller platelet-like/square nanocrystals likely loosely aggregated by starch molecular chains from residual amorphous regions. This work paves the way for the pursuit of new approaches for the preparation of starch-based nanomaterials possessing unique morphologies. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Carbohydrates in Ankistrodesmus braunii biomass cultivated in tubular photobioreactors

    Directory of Open Access Journals (Sweden)

    Ana Lucía Morocho-Jácome

    2017-12-01

    Full Text Available The great need for microalgae biomass production in tubular photobioreactors has increased for use in biofuels, pharmaceuticals and even cosmetic applications. In order to better understand the potential applications of this material, it is imperative to know in detail its composition. Ankistrodesmus braunii was cultivated in 3.5 L tubular air-lift photobioreactors using 10 mM sodium nitrate as nitrogen source in batch mode at 60 µmol photons m-2 s-1. The maximum biomass concentration (Xm and the biomass productivity (PX reached at 6th day of cultivation was 1249 ± 72 mg L-1 and 165 ± 13 mg L-1 d-1, respectively. Carbohydrates productivity expressed in terms of glucose, galactose and glucose+galactose (1:1 were 2.57 ± 0.04, 4.12 ± 0.06 and 3.22 ± 0.05 mg L-1 d-1, respectively. Results show a statistical difference that was found between carbohydrate productivity values expressed as glucose, galactose and glucose+galactose (1:1.

  11. In-situ synthetize multi-walled carbon nanotubes@MnO2 nanoflake core-shell structured materials for supercapacitors

    Science.gov (United States)

    Zheng, Huajun; Wang, Jiaoxia; Jia, Yi; Ma, Chun'an

    2012-10-01

    A new type of core-shell structured material consisting of multi-walled carbon nanotubes (MWCNTs) and manganese dioxide (MnO2) nanoflake is synthesized using an in-situ co-precipitation method. By scanning electron microscopy and transition electron microscope, it is confirmed that the core-shell nanostructure is formed by the uniform incorporation of birnessite-type MnO2 nanoflake growth round the surface of the activated-MWCNTs. That core-shell structured material electrode presents excellent electrochemical capacitance properties with the specific capacitance reaching 380 F g-1 at the current density of 5 A g-1 in 0.5 M Na2SO4 electrolyte. In addition, the electrode also exhibits good performance (the power density: 11.28 kW kg-1 at 5 A g-1) and long-term cycling stability (retaining 82.7% of its initial capacitance after 3500 cycles at 5 A g-1). It mainly attributes to MWCNTs not only providing considerable specific surface area for high mass loading of MnO2 nanoflakes to ensure effective utilization of MnO2 nanoflake, but also offering an electron pathway to improve electrical conductivity of the electrode materials. It is clearly indicated that such core-shell structured materials including MWCNTs and MnO2 nanoflake may find important applications for supercapacitors.

  12. Flexible electrode belt for EIT using nanofiber web dry electrodes.

    Science.gov (United States)

    Oh, Tong In; Kim, Tae Eui; Yoon, Sun; Kim, Kap Jin; Woo, Eung Je; Sadleir, Rosalind J

    2012-10-01

    Efficient connection of multiple electrodes to the body for impedance measurement and voltage monitoring applications is of critical importance to measurement quality and practicality. Electrical impedance tomography (EIT) experiments have generally required a cumbersome procedure to attach the multiple electrodes needed in EIT. Once placed, these electrodes must then maintain good contact with the skin during measurements that may last several hours. There is usually also the need to manage the wires that run between the electrodes and the EIT system. These problems become more severe as the number of electrodes increases, and may limit the practicality and portability of this imaging method. There have been several trials describing human-electrode interfaces using configurations such as electrode belts, helmets or rings. In this paper, we describe an electrode belt we developed for long-term EIT monitoring of human lung ventilation. The belt included 16 embossed electrodes that were designed to make good contact with the skin. The electrodes were fabricated using an Ag-plated PVDF nanofiber web and metallic threads. A large contact area and padding were used behind each electrode to improve subject comfort and reduce contact impedances. The electrodes were incorporated, equally spaced, into an elasticated fabric belt. We tested the electrode belt in conjunction with the KHU Mark1 multi-frequency EIT system, and demonstrate time-difference images of phantoms and human subjects during normal breathing and running. We found that the Ag-plated PVDF nanofiber web electrodes were suitable for long-term measurement because of their flexibility and durability. Moreover, the contact impedance and stability of the Ag-plated PVDF nanofiber web electrodes were found to be comparable to similarly tested Ag/AgCl electrodes.

  13. A tubular flux-switching permanent magnet machine

    Science.gov (United States)

    Wang, J.; Wang, W.; Clark, R.; Atallah, K.; Howe, D.

    2008-04-01

    The paper describes a novel tubular, three-phase permanent magnet brushless machine, which combines salient features from both switched reluctance and permanent magnet machine technologies. It has no end windings and zero net radial force and offers a high power density and peak force capability, as well as the potential for low manufacturing cost. It is, therefore, eminently suitable for a variety of applications, ranging from free-piston energy converters to active vehicle suspensions.

  14. Tubular bioreactor and its application; Tubular bioreactor to sono tekiyo

    Energy Technology Data Exchange (ETDEWEB)

    Endo, I.; Nagamune, T. [The University of Tokyo, Tokyo (Japan). Faculty of Engineering; Yuki, K. [Nikka Whisky Distilling Co. Ltd. Tokyo (Japan); Inaba, H. [Sumitomo Heavy Industries, Ltd., Tokyo (Japan)

    1994-09-05

    The loop type tubular bioreactor (TBR) was developed where biocatalysts are trapped in the reactor by membrane module. A UF membrane or MF membrane and crossflow filtration were adopted for the membrane module, and the reactor loop was composed of four membrane modules. The reactor was operated at 2-4 m/s in membrane surface velocity and 300-400 kPa in filtration pressure. As the result of the high-density culture of lactic acid bacteria and yeast, a biomass concentration was more than 10 times that in batch culture, suggesting the remarkable enhancement of a production efficiency. As the result of the continuous fermentation of cider, the fast fermentation more than 60 times that in conventional ones was obtained together with the same quality as conventional ones. Such a fast fermentation was probably achieved by yeast suspended in the fermenter of TBR, by yeast hardly affected physico-chemically as compared with immobilized reactors, and by small effect of mass transfer on reaction systems. 4 refs., 6 figs.

  15. CD47 regulates renal tubular epithelial cell self-renewal and proliferation following renal ischemia reperfusion.

    Science.gov (United States)

    Rogers, Natasha M; Zhang, Zheng J; Wang, Jiao-Jing; Thomson, Angus W; Isenberg, Jeffrey S

    2016-08-01

    Defects in renal tubular epithelial cell repair contribute to renal ischemia reperfusion injury, cause acute kidney damage, and promote chronic renal disease. The matricellular protein thrombospondin-1 and its receptor CD47 are involved in experimental renal ischemia reperfusion injury, although the role of this interaction in renal recovery is unknown. We found upregulation of self-renewal genes (transcription factors Oct4, Sox2, Klf4 and cMyc) in the kidney of CD47(-/-) mice after ischemia reperfusion injury. Wild-type animals had minimal self-renewal gene expression, both before and after injury. Suggestive of cell autonomy, CD47(-/-) renal tubular epithelial cells were found to increase expression of the self-renewal genes. This correlated with enhanced proliferative capacity compared with cells from wild-type mice. Exogenous thrombospondin-1 inhibited self-renewal gene expression in renal tubular epithelial cells from wild-type but not CD47(-/-) mice, and this was associated with decreased proliferation. Treatment of renal tubular epithelial cells with a CD47 blocking antibody or CD47-targeting small interfering RNA increased expression of some self-renewal transcription factors and promoted cell proliferation. In a syngeneic kidney transplant model, treatment with a CD47 blocking antibody increased self-renewal transcription factor expression, decreased tissue damage, and improved renal function compared with that in control mice. Thus, thrombospondin-1 via CD47 inhibits renal tubular epithelial cell recovery after ischemia reperfusion injury through inhibition of proliferation/self-renewal. Copyright © 2016 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.

  16. A chemo-mechanical model coupled with thermal effect on the hollow core–shell electrodes in lithium-ion batteries

    Directory of Open Access Journals (Sweden)

    Bin Hu

    2017-07-01

    Full Text Available Electrode is a key component to remain durability and safety of lithium-ion (Li-ion batteries. Li-ion insertion/removal and thermal expansion mismatch may induce high stress in electrode during charging and discharging processes. In this paper, we present a continuum model based on COMSOL Multiphysics software, which involves thermal, chemical and mechanical behaviors of electrodes. The results show that, because of diffusion-induced stress and thermal mismatch, the electrode geometry plays an important role in diffusion kinetics of Li-ions. A higher local compressive stress results in a lower Li-ion concentration and thus a lower capacity when a particle is embedded another, which is in agreement with experimental observations. Keywords: Lithium-ion battery, Diffusion-induced stress, COMSOL, Chemo-mechanical, Electrode

  17. Construction of Hierarchical CuO/Cu₂O@NiCo₂S₄ Nanowire Arrays on Copper Foam for High Performance Supercapacitor Electrodes.

    Science.gov (United States)

    Zhou, Luoxiao; He, Ying; Jia, Congpu; Pavlinek, Vladimir; Saha, Petr; Cheng, Qilin

    2017-09-15

    Hierarchical copper oxide @ ternary nickel cobalt sulfide (CuO/Cu₂O@NiCo₂S₄) core-shell nanowire arrays on Cu foam have been successfully constructed by a facile two-step strategy. Vertically aligned CuO/Cu₂O nanowire arrays are firstly grown on Cu foam by one-step thermal oxidation of Cu foam, followed by electrodeposition of NiCo₂S₄ nanosheets on the surface of CuO/Cu₂O nanowires to form the CuO/Cu₂O@NiCo₂S₄ core-shell nanostructures. Structural and morphological characterizations indicate that the average thickness of the NiCo₂S₄ nanosheets is ~20 nm and the diameter of CuO/Cu₂O core is ~50 nm. Electrochemical properties of the hierarchical composites as integrated binder-free electrodes for supercapacitor were evaluated by various electrochemical methods. The hierarchical composite electrodes could achieve ultrahigh specific capacitance of 3.186 F cm -2 at 10 mA cm -2 , good rate capability (82.06% capacitance retention at the current density from 2 to 50 mA cm -2 ) and excellent cycling stability, with capacitance retention of 96.73% after 2000 cycles at 10 mA cm -2 . These results demonstrate the significance of optimized design and fabrication of electrode materials with more sufficient electrolyte-electrode interface, robust structural integrity and fast ion/electron transfer.

  18. Investigation and Calculation of Magnetic Field in Tubular Linear Reluctance Motor Using FEM

    Directory of Open Access Journals (Sweden)

    MOSALLANEJAD, A.

    2010-11-01

    Full Text Available In this paper the magnetic flux density of tubular linear reluctance motor (TLRM in open type magnetic circuit is studied. Also, all magnetic flux density calculation methods in winding of tubular linear reluctance motor are described. The effect of structure parameters on magnetic flux density is also discussed. Electromagnetic finite-element analysis is used for simulation of magnetic field, and simulation results of the magnetic field analysis with DC voltage excitation are compared with results obtained from calculation methods. The comparison yields a good agreement.

  19. Scenario analysis of large scale algae production in tubular photobioreactors

    NARCIS (Netherlands)

    Slegers, P.M.; Beveren, van P.J.M.; Wijffels, R.H.; Straten, van G.; Boxtel, van A.J.B.

    2013-01-01

    Microalgae productivity in tubular photobioreactors depends on algae species, location, tube diameter, biomass concentration, distance between tubes and for vertically stacked systems, the number of horizontal tubes per stack. A simulation model for horizontal and vertically stacked horizontal

  20. Use and benefit summary of General Electric Company thermocase insulated tubulars for steam enhanced oil recovery

    Energy Technology Data Exchange (ETDEWEB)

    Traynor, B.V. Jr.; Hawley, J.R.; Marziani, V.J.; Prevost, W.M.

    1982-01-01

    General Electric Co.'s (GE) first well-bore insulation in 1969 resulted from the industry's need to produce hot oil on Alaska's North Slope without damaging the permafrost. In the past 3 yr, over 500,000 linear ft of GE's Thermocase has been sold. Thermocase tubulars are in use in California, Wyoming, Texas, Canada, Venezuela, and the USSR. Thermocase insulated tubulars are being used in a wide range of reservoirs under a variety of completion designs. This study discusses field experience, thermal completion benefits afforded by Thermocase tubulars, a quantified economic evaluation in a 1000-ft application, as well as GE's product verification, test and rigid quality control program.

  1. A tubular hybrid Halbach/axially-magnetized permanent-magnet linear machine

    Directory of Open Access Journals (Sweden)

    Yi Sui

    2017-05-01

    Full Text Available A single-phase tubular permanent-magnet linear machine (PMLM with hybrid Halbach/axially-magnetized PM arrays is proposed for free-piston Stirling power generation system. Machine topology and operating principle are elaborately illustrated. With the sinusoidal speed characteristic of the free-piston Stirling engine considered, the proposed machine is designed and calculated by finite-element analysis (FEA. The main structural parameters, such as outer radius of the mover, radial length of both the axially-magnetized PMs and ferromagnetic poles, axial length of both the middle and end radially-magnetized PMs, etc., are optimized to improve both the force capability and power density. Compared with the conventional PMLMs, the proposed machine features high mass and volume power density, and has the advantages of simple control and low converter cost. The proposed machine topology is applicable to tubular PMLMs with any phases.

  2. A tubular hybrid Halbach/axially-magnetized permanent-magnet linear machine

    Science.gov (United States)

    Sui, Yi; Liu, Yong; Cheng, Luming; Liu, Jiaqi; Zheng, Ping

    2017-05-01

    A single-phase tubular permanent-magnet linear machine (PMLM) with hybrid Halbach/axially-magnetized PM arrays is proposed for free-piston Stirling power generation system. Machine topology and operating principle are elaborately illustrated. With the sinusoidal speed characteristic of the free-piston Stirling engine considered, the proposed machine is designed and calculated by finite-element analysis (FEA). The main structural parameters, such as outer radius of the mover, radial length of both the axially-magnetized PMs and ferromagnetic poles, axial length of both the middle and end radially-magnetized PMs, etc., are optimized to improve both the force capability and power density. Compared with the conventional PMLMs, the proposed machine features high mass and volume power density, and has the advantages of simple control and low converter cost. The proposed machine topology is applicable to tubular PMLMs with any phases.

  3. Significance of downregulation of renal organic cation transporter (SLC47A1 in cisplatin-induced proximal tubular injury

    Directory of Open Access Journals (Sweden)

    Mizuno T

    2015-07-01

    Full Text Available Tomohiro Mizuno,1–3 Waichi Sato,2,3 Kazuhiro Ishikawa,4 Yuki Terao,1 Kazuo Takahashi,2 Yukihiro Noda,5 Yukio Yuzawa,2 Tadashi Nagamatsu1 1Department of Analytical Pharmacology, Meijo University Faculty of Pharmacy, Nagoya, 2Department of Nephrology, School of Medicine, Fujita Health University, Toyoake, 3Department of Nephrology, Nagoya University School of Medicine, Nagoya, 4Department of Neuropsychopharmacology and Hospital Pharmacy, Nagoya University Graduate School of Medicine, Nagoya, 5Division of Clinical Sciences and Neuropsychopharmacology, Meijo University Faculty of Pharmacy, Nagoya, Japan Background/aim: To elucidate the mechanism responsible for developing acute kidney injury in patients with diabetes mellitus, we also evaluated the issue of whether advanced glycation endproducts (AGEs influence the expressions of multi antimicrobial extrusion protein (MATE1/SLC47A1 in tubular cells. Materials and methods: To detect changing expression of MATE1/SLC47A1 in dose- and time-dependent manners, human proximal tubular epithelial cells were incubated with AGE-aggregated-human serum albumin. As a function assay for MATE1/SLC47A1, human proximal tubular epithelial cells were incubated with cisplatin or carboplatin. Results: On incubation with AGEs, the expressions of MATE1/SLC47A1 were decreased in tubular cells. In addition, the toxicities of cisplatin were increased in tubular cells that had been pretreated with AGEs. However, the toxicities of carboplatin were smaller than that of cisplatin in proximal tubular epithelial cells. Conclusion: The expression of the MATE1/SLC47A1 is decreased by AGEs, which increases the risk for proximal tubular injury. Keywords: advanced glycation endproducts, cisplatin, SLC47A1, diabetes mellitus, acute kidney injury

  4. A glassy carbon electrode modified with a multiwalled carbon nanotube-reduced graphene oxide nanoribbon core-shell structure for electrochemical sensing of p-dihydroxybenzene

    International Nuclear Information System (INIS)

    Zhu, Gangbing; Yi, Yinhui; Liu, Zhenjiang; Sun, Jianfan; Wu, Xiangyang; Zou, Bin

    2015-01-01

    Multiwalled carbon nanotubes (MWCNT) were covered with reduced graphene oxide nanoribbons (rGONR) to give a material with a core-shell heterostructure of the type MWCNT-rGONR. It was obtained by (a) longitudinal partial unzipping of MWCNT to form MWCNT-GONR, and (b) subsequent chemical reduction with hydrazine to give MWCNT-rGONR. The MWCNT-rGONR heterostructure was used to modify a glassy carbon electrode (GCE) to obtain an electrochemical sensor for p-dihydroxybenzene (DHB). The synergistic effects of the MWCNT and the rGONR results in a distinctly improved redox current towards DHB compared to a bare GCE, an MWCNT/GCE, and an MWCNT-GONR/GCE. At the working voltage range from −1 00 to 400 mV, it displays a linear response to DHB in the 80 to 3000 nM concentration range with a 20 nM detection limit. (author)

  5. Surface wave resonance and chirality in a tubular cavity with metasurface design

    Science.gov (United States)

    Qin, Yuzhou; Fang, Yangfu; Wang, Lu; Tang, Shiwei; Sun, Shulin; Liu, Zhaowei; Mei, Yongfeng

    2018-06-01

    Optical microcavities with whispering-gallery modes (WGMs) have been indispensable in both photonic researches and applications. Besides, metasurfaces, have attracted much attention recently due to their strong abilities to manipulate electromagnetic waves. Here, combining these two optical elements together, we show a tubular cavity can convert input propagating cylindrical waves into directed localized surface waves (SWs), enabling the circulating like WGMs along the wall surface of the designed tubular cavity. Finite element method (FEM) simulations demonstrate that such near-field WGM shows both large chirality and high local field. This work may stimulate interesting potential applications in e.g. directional emission, sensing, and lasing.

  6. Normalized Urinary Flow at Puberty after Tubularized Incised Plate Urethroplasty for Hypospadias in Childhood.

    Science.gov (United States)

    Andersson, Marie; Doroszkiewicz, Monika; Arfwidsson, Charlotte; Abrahamsson, Kate; Sillén, Ulla; Holmdahl, Gundela

    2015-11-01

    An obstructive urinary flow pattern is frequently seen after tubularized incised plate urethroplasty for hypospadias. However, the significance of this finding has not been determined and long-term results are few. We describe postoperative long-term uroflowmetry results after puberty in males who underwent tubularized incised plate urethroplasty in childhood. A total of 126 boys underwent tubularized incised plate urethroplasty for distal penile to mid shaft hypospadias at Queen Silvia Children's Hospital in Gothenburg between 1999 and 2003. Of the patients 48 were toilet trained at surgery. We report on 40 patients who had data available at 2 and 12 months postoperatively, 7 years postoperatively and at puberty (median age 15.0 years, range 13.7 to 17.1). Of the patients 31 had distal and 9 had mid penile hypospadias. Clinical examination, urinary medical history, uroflowmetry and ultrasound measuring residual urine were performed. Maximum urinary flow was correlated to age and voided volume, using Miskolc nomograms for comparison of percentiles. At 1 year postoperatively 15 boys (37.5%) had normal urinary flow (above 25th percentile), compared to 16 (40%) at 7 years and 38 (95%) at puberty (p puberty for boys with hypospadias treated with tubularized incised plate urethroplasty. Unless symptoms occur, a conservative approach seems preferable. Copyright © 2015 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  7. Uric Acid Induces Renal Inflammation via Activating Tubular NF-κB Signaling Pathway

    Science.gov (United States)

    Zhou, Yang; Fang, Li; Jiang, Lei; Wen, Ping; Cao, Hongdi; He, Weichun; Dai, Chunsun; Yang, Junwei

    2012-01-01

    Inflammation is a pathologic feature of hyperuricemia in clinical settings. However, the underlying mechanism remains unknown. Here, infiltration of T cells and macrophages were significantly increased in hyperuricemia mice kidneys. This infiltration of inflammatory cells was accompanied by an up-regulation of TNF-α, MCP-1 and RANTES expression. Further, infiltration was largely located in tubular interstitial spaces, suggesting a role for tubular cells in hyperuricemia-induced inflammation. In cultured tubular epithelial cells (NRK-52E), uric acid, probably transported via urate transporter, induced TNF-α, MCP-1 and RANTES mRNA as well as RANTES protein expression. Culture media of NRK-52E cells incubated with uric acid showed a chemo-attractive ability to recruit macrophage. Moreover uric acid activated NF-κB signaling. The uric acid-induced up-regulation of RANTES was blocked by SN 50, a specific NF-κB inhibitor. Activation of NF-κB signaling was also observed in tubule of hyperuricemia mice. These results suggest that uric acid induces renal inflammation via activation of NF-κB signaling. PMID:22761883

  8. Additive manufacturing of patient-specific tubular continuum manipulators

    Science.gov (United States)

    Amanov, Ernar; Nguyen, Thien-Dang; Burgner-Kahrs, Jessica

    2015-03-01

    Tubular continuum robots, which are composed of multiple concentric, precurved, elastic tubes, provide more dexterity than traditional surgical instruments at the same diameter. The tubes can be precurved such that the resulting manipulator fulfills surgical task requirements. Up to now the only material used for the component tubes of those manipulators is NiTi, a super-elastic shape-memory alloy of nickel and titan. NiTi is a cost-intensive material and fabrication processes are complex, requiring (proprietary) technology, e.g. for shape setting. In this paper, we evaluate component tubes made of 3 different thermoplastic materials (PLA, PCL and nylon) using fused filament fabrication technology (3D printing). This enables quick and cost-effective production of custom, patient-specific continuum manipulators, produced on site on demand. Stress-strain and deformation characteristics are evaluated experimentally for 16 fabricated tubes of each thermoplastic with diameters and shapes equivalent to those of NiTi tubes. Tubes made of PCL and nylon exhibit properties comparable to those made of NiTi. We further demonstrate a tubular continuum manipulator composed of 3 nylon tubes in a transnasal, transsphenoidal skull base surgery scenario in vitro.

  9. Low-bias negative differential conductance controlled by electrode separation

    International Nuclear Information System (INIS)

    Yi Xiao-Hua; Liu Ran; Bi Jun-Jie; Jiao Yang; Wang Chuan-Kui; Li Zong-Liang

    2016-01-01

    The electronic transport properties of a single thiolated arylethynylene molecule with 9,10-dihydroanthracene core, denoted as TADHA, is studied by using non-equilibrium Green’s function formalism combined with ab initio calculations. The numerical results show that the TADHA molecule exhibits excellent negative differential conductance (NDC) behavior at lower bias regime as probed experimentally. The NDC behavior of TADHA molecule originates from the Stark effect of the applied bias voltage, by which the highest occupied molecular orbital (HOMO) and the HOMO-1 are pulled apart and become localized. The NDC behavior of TADHA molecular system is tunable by changing the electrode distance. Shortening the electrode separation can enhance the NDC effect which is attributed to the possible increase of coupling between the two branches of TADHA molecule. (paper)

  10. Detectors for hydrodynamical processes in the reactor core

    International Nuclear Information System (INIS)

    Strube, D.

    1976-01-01

    The method described in this report is based on noise analytical measurements of electrical conductivity fluctuations of the cooling water stream in the reactor core. The conductivity fluctuations have their origin in steam and air bubbles and in cooling water mixing effects in regard to temperature and ionisation by gamma and neutron fields. The fluctuations are transformed into voltage signals by two electrodes in direction of the cooling water stream and then crosscorrelated. From the known distance of the two electrodes and the shift of the crosscorrelation function one can compute the velocity of the cooling medium and the bubbles. Void fractions were also determined with this detection device in out of pile experiments. (author)

  11. Effect of tubular damage by mercuric chloride on kidney function and some urinary enzymes in the dog

    Energy Technology Data Exchange (ETDEWEB)

    Ellis, B G; Price, R G; Topham, J C

    1973-01-01

    Alkaline and acid phosphatases, ..beta..-glucosidase, ..beta..-galactosidase, N-acetyl-..beta..-glucosaminidase and lactate dehydrogenase were monitored in the urine and serum of dogs with renal tubular damage induced by a series of increasing doses of mercuric chloride. Evidence is presented that the assay of urinary alkaline and acid phosphatase is the most sensitive method of detecting renal tubular damage in the dog. The clearance of (/sup 14/C)-propranolol was compared before and after the administration of mercuric chloride. In the presence of tubular damage the blood half-life of propranolol and the rate of excretion of metabolites in the urine were increased. 35 references, 7 tables.

  12. High Glucose Increases Metallothionein Expression in Renal Proximal Tubular Epithelial Cells

    Directory of Open Access Journals (Sweden)

    Daisuke Ogawa

    2011-01-01

    Full Text Available Metallothionein (MT is an intracellular metal-binding, cysteine-rich protein, and is a potent antioxidant that protects cells and tissues from oxidative stress. Although the major isoforms MT-1 and -2 (MT-1/-2 are highly inducible in many tissues, the distribution and role of MT-1/-2 in diabetic nephropathy are poorly understood. In this study, diabetes was induced in adult male rats by streptozotocin, and renal tissues were stained with antibodies for MT-1/-2. MT-1/-2 expression was also evaluated in mProx24 cells, a mouse renal proximal tubular epithelial cell line, stimulated with high glucose medium and pretreated with the antioxidant vitamin E. MT-1/-2 expression was gradually and dramatically increased, mainly in the proximal tubular epithelial cells and to a lesser extent in the podocytes in diabetic rats, but was hardly observed in control rats. MT-1/-2 expression was also increased by high glucose stimulation in mProx24 cells. Because the induction of MT was suppressed by pretreatment with vitamin E, the expression of MT-1/-2 is induced, at least in part, by high glucose-induced oxidative stress. These observations suggest that MT-1/-2 is induced in renal proximal tubular epithelial cells as an antioxidant to protect the kidney from oxidative stress, and may offer a novel therapeutic target against diabetic nephropathy.

  13. Confined diffusion in tubular structures analyzed by fluorescence correlation spectroscopy on a mirror

    International Nuclear Information System (INIS)

    Etienne, Emilien; Lenne, Pierre-Francois; Sturgis, James N.; Rigneault, Herve

    2006-01-01

    In fluorescence correlation spectroscopy (FCS) analysis it is generally assumed that molecular species diffuse freely in volumes much larger than the three-dimensional FCS observation volume. However, this standard assumption is not valid in many measurement conditions, particularly in tubular structures with diameters in the micrometer range, such as those found in living cells (organelles, dendrites) and microfluidic devices (capillaries,reaction chambers). As a result the measured autocorrelation functions (ACFs) deviate from those predicted for free diffusion, and this can shift the measured diffusion coefficient by as much as ∼50% when the tube diameter is comparable with the axial extension of the FCS observation volume. We show that the range of validity of the FCS measurements can be drastically improved if the tubular structures are located in the close vicinity of a mirror on which FCS is performed. In this case a new fluctuation time in the ACF, arising from the diffusion of fluorescent probes in optical fringes,permits measurement of the real diffusion coefficient within the tubular structure without assumptions about either the confined geometry orthe FCS observation volume geometry. We show that such a measurement can be done when the tubular structure contains at least one pair of dark and bright fringes resulting from interference between the incoming and the reflected excitation beams on the mirror surface. Measurement of the diffusion coefficient of the enhanced green fluorescent protein (EGFP) and IscS-EGFP in the cytoplasm of living Escherichiacoli illustrates the capabilities of the technique

  14. The H^{-1}-norm of tubular neighbourhoods of curves

    NARCIS (Netherlands)

    Gennip, van Y.; Peletier, M.A.

    2011-01-01

    We study the H^{-1}-norm of the function 1 on tubular neighbourhoods of curves in R^2. We take the limit of small thickness epsilon, and we prove two different asymptotic results. The first is an asymptotic development for a fixed curve in the limit epsilon to 0, containing contributions from the

  15. Tolerance-based Structural Design of Tubular-Structure Loading Equipments

    Directory of Open Access Journals (Sweden)

    Jiping Lu

    2011-05-01

    is worked out under different ball screws, trapezoidal screw threads, worm and worm gears. To meet the requirement of tolerance in tubular-structure assembly, mechanisms for all motions are defined. The design of loading equipment is tested and assessed by experiments, and the result shows the design is highly qualified for its assembly.

  16. Finite element analysis of tubular joints in offshore structures ...

    African Journals Online (AJOL)

    ... representing a 2-D model of the joint between the brace and the chord walls. This was subsequently followed but finite element analysis of six tubular joints. A global analysis was initially undertaken, then the submodel analysis carried in the areas of stress concentration. Journal of Civil Engineering, JKUAT (2001) Vol 6, ...

  17. Catoptric electrodes: transparent metal electrodes using shaped surfaces.

    Science.gov (United States)

    Kik, Pieter G

    2014-09-01

    An optical electrode design is presented that theoretically allows 100% optical transmission through an interdigitated metallic electrode at 50% metal areal coverage. This is achieved by redirection of light incident on embedded metal electrode lines to an angle beyond that required for total internal reflection. Full-field electromagnetic simulations using realistic material parameters demonstrate 84% frequency-averaged transmission for unpolarized illumination across the entire visible spectral range using a silver interdigitated electrode at 50% areal coverage. The redirection is achieved through specular reflection, making it nonresonant and arbitrarily broadband, provided the electrode width exceeds the optical wavelength. These findings could significantly improve the performance of photovoltaic devices and optical detectors that require high-conductivity top contacts.

  18. An Implantable Versatile Electrode-Driving ASIC for Chronic Epidural Stimulation in Rats.

    Science.gov (United States)

    Giagka, Vasiliki; Eder, Clemens; Donaldson, Nick; Demosthenous, Andreas

    2015-06-01

    This paper presents the design and testing of an electrode driving application specific integrated circuit (ASIC) intended for epidural spinal cord electrical stimulation in rats. The ASIC can deliver up to 1 mA fully programmable monophasic or biphasic stimulus current pulses, to 13 electrodes selected in any possible configuration. It also supports interleaved stimulation. Communication is achieved via only 3 wires. The current source and the control of the stimulation timing were kept off-chip to reduce the heat dissipation close to the spinal cord. The ASIC was designed in a 0.18- μm high voltage CMOS process. Its output voltage compliance can be up to 25 V. It features a small core area (ASIC was developed to be suitable for integration on the epidural electrode array, and two different versions were fabricated and electrically tested. Results from both versions were almost indistinguishable. The performance of the system was verified for different loads and stimulation parameters. Its suitability to drive a passive epidural 12-electrode array in saline has also been demonstrated.

  19. Acute tubular necrosis in a patient with paroxysmal nocturnal hemoglobinuria

    Directory of Open Access Journals (Sweden)

    Eranga S Wijewickrama

    2013-01-01

    Full Text Available Acute renal failure (ARF is a well-recognized complication of paroxysmal nocturnal hemoglobinuria (PNH. The predominant mechanism is intravascular hemolysis resulting in massive hemoglobinuria ARF. We report a case of acute tubular necrosis (ATN developed in the absence of overwhelming evidence of intravascular hemolysis in a 21-year-old man with anemia, who was eventually diagnosed to have PNH. The patient presented with rapidly deteriorating renal functions in the background of iron deficiency anemia, which was attributed to reflux esophagitis. There was no clinical or laboratory evidence of intravascular hemolysis. Renal biopsy revealed ATN with deposition of hemosiderin in the proximal tubular epithelial cells. Diagnosis of PNH was confirmed with a positive Ham′s test and flow cytometry. Our case emphasizes the need to consider ATN as a possible cause for ARF in patients suspected to have PNH even in the absence of overwhelming evidence of intravascular hemolysis.

  20. Evaluation of seismic behavior of a braced tubular steel structure by pseudodynamic testing

    International Nuclear Information System (INIS)

    Shiny, P.B.; Javadian-Gilani, A.S.; Mahin, S.A.

    1984-01-01

    The inelastic seismic behavior of an X-braced, tubular steel frame is studied experimentally by means of pseudodynamic testing. The pseudodynamic method, which utilizes a numerical algorithm in the on-line computer control of a test specimen, can realistically simulate the seismic response of a structural model. This paper presents a brief outline of the experimental procedure and the results of the tubular frame tests, including the global responses, the inelastic energy-dissipation capabilities, and the failure mechanism of the frame at various excitation levels. Correlation of these results with previous experimental studies illustrates the feasibility and accuracy of the new test method

  1. Relationship between vibrations of tubular elements of power equipment and dynamic characteristics of longitudinal two-phase flow

    International Nuclear Information System (INIS)

    Fokin, B.S.; Gol'dberg, E.N.

    1979-01-01

    Analytical results of statistical nature of forces exciting vibrations of tubular elements, which are flown around with two-phase flows, are given. Relationships for the calculation of a mean-square amplitude and vibration frequency of a tubular element flown around with a two-phase mixture have been obtained. The relationships are confirmed experimentally

  2. The role of duplex stainless steels for downhole tubulars

    International Nuclear Information System (INIS)

    Francis, R.

    1993-01-01

    In sour conditions there is an increasing trend to turn to corrosion resistant alloys for downhole tubulars. The most commonly used CRA tubular is 13Cr, and there are thousands of feet in service. However, there are limits to the use of 13Cr, ie., the risk of sulphide stress corrosion cracking at high H 2 S levels, and the possibility of pitting or high corrosion rates in waters with high chloride contents. Where the service conditions are felt to be too severe for 13Cr alloys it has been traditional to switch to nickel base alloys such as alloys 825 and C-276 (UNS N08825 and N10276). The alloys are much more expensive than 13Cr, and in recent years the duplex stainless steels have been selected as alloys with superior corrosion and SSCC resistance compared with 13Cr, and having lower cost than nickel alloys. Originally the 22Cr duplex alloy (UNS 31803) was used, but more recently the 25Cr super duplex alloys (UNS S32760 and S32750) have become more available. The present paper reviews the data available for 13Cr and the limits of applicability. Data is also presented for laboratory tests for both the 22Cr and 25Cr super duplex alloys. There is extensive service experience with both 22Cr and 25Cr super duplex in the North Sea, covering both downhole tubulars, manifold and post wellhead equipment. Data is presented showing some of the sour condition being experienced in the North Sea by super duplex alloys. These results show that there is a substantial gap between the limits of use for 13Cr and the 25Cr super duplex stainless steel alloys. This means that in many sour environments super duplex stainless steel provides a cost effective alternative to nickel-base alloys

  3. Fractal solutions of recirculation tubular chemical reactors

    International Nuclear Information System (INIS)

    Berezowski, Marek

    2003-01-01

    Three kinds of fractal solutions of model of recirculation non-adiabatic tubular chemical reactors are presented. The first kind concerns the structure of Feigenbaum's diagram on the limit of chaos. The second kind and the third one concern the effect of initial conditions on the dynamic solutions of models. In the course of computations two types of recirculation were considered, viz. the recirculation of mass (return of a part of products' stream) and recirculation of heat (heat exchange in the external heat exchanger)

  4. PENGURANGAN KADAR CO2 MENGGUNAKAN SPIRULINA PLATENSIS DALAM TUBULAR BIOREACTOR

    Directory of Open Access Journals (Sweden)

    Zainal Syam Arifin

    2015-06-01

    Full Text Available Increasing the population impact on increasing energy demand. On the other hand, the energy generation industry has been blamed as one of the contributors of carbon dioxide about 25% of total CO2 emissions worldwide. Meanwhile, the production of biogas, which aims to address the increasing need of energy, produces carbon dioxide in the range of 25–50% by volume. To overcome this, a cheap method, optimum and efficient as well as environmentally friendly in reducing CO2 levels by using Spirulina platensis is needed. This research aims to created a mathematical models and found the optimum flow rate to reduced levels of CO2 by using Spirulina platensis. This study used a glass tubular bioreactor (D = 2.6 cm at a temperature of 30°C and irradiated with a fluorescent lamp Philips TL 36 Watt, color temperature: 6,200K cool daylight, light output: 2,600 lm, 72 lm/W. Tubular reactor was placed in a box lined with silver foil walls on three sides. With mathematical models of tubular reactor, the reaction rate constants could be predicted. Based on calculations of data and graphs, optimum volumetric velocity could also be predicted. Variation of flowrate to observed the reduction rate of CO2 was 0.25 mL/sec, 0.35 mL/sec, 0.5 mL/sec, 0.75 mL/sec, 1 mL/sec. Carbon source was 99.99% CO2.Observations of Spirulina growth was made on the flow rate of 0.25 mL/sec at the initial levels of dry weight 2.1208 g/L. The results of this study indicated that the low flowratewas a more effective way to reduced carbon dioxide levels using Spirulina platensis (= 2.82×10-4 sec-1. The highest conversion was obtained at a volumetric flow rate of 0.25 mL/sec and optimum speeds in the range of 0.3 to 0.4 mL/sec. The rate of incoming CO2 flux should be less than 0.047 mL/cm2.detik. Specific Growth Rate (µ of Spirulina platensis in this study was 2.56×10-2 minute-1.   Keywords: Spirulina platensis, a vertical tubular bioreactor, CO2 reduction     ABSTRAK

  5. Toward Superior Capacitive Energy Storage: Recent Advances in Pore Engineering for Dense Electrodes.

    Science.gov (United States)

    Liu, Congcong; Yan, Xiaojun; Hu, Fei; Gao, Guohua; Wu, Guangming; Yang, Xiaowei

    2018-04-01

    With the rapid development of mobile electronics and electric vehicles, future electrochemical capacitors (ECs) need to store as much energy as possible in a rather limited space. As the core component of ECs, dense electrodes that have a high volumetric energy density and superior rate capability are the key to achieving improved energy storage. Here, the significance of and recent progress in the high volumetric performance of dense electrodes are presented. Furthermore, dense yet porous electrodes, as the critical precondition for realizing superior electrochemical capacitive energy, have become a scientific challenge and an attractive research focus. From a pore-engineering perspective, insight into the guidelines of engineering the pore size, connectivity, and wettability is provided to design dense electrodes with different porous architectures toward high-performance capacitive energy storage. The current challenges and future opportunities toward dense electrodes are discussed and include the construction of an orderly porous structure with an appropriate gradient, the coupling of pore sizes with the solvated cations and anions, and the design of coupled pores with diverse electrolyte ions. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. All 2D materials as electrodes for high power hybrid energy storage applications

    Science.gov (United States)

    Kato, Keiko; Sayed, Farheen N.; Babu, Ganguli; Ajayan, Pulickel M.

    2018-04-01

    Achieving both high energy and power densities from energy storage devices is a core strategy to meet the increasing demands of high performance portable electronics and electric transportation systems. Li-ion capacitor is a promising hybrid technology that strategically exploits high energy density from a Li-ion battery electrode and high power density from a supercapacitor electrode. However, the performance and safety of hybrid devices are still major concerns due to the use of graphite anodes which form passivation layers with organic electrolytes at lower potentials. Here, we explore 2D nanosheets as both anode and cathode electrodes to build a high power system without compromising energy density. Owing to the high electrical conductivity and multivalent redox activity at higher potentials, the Li-ion intercalation electrode is capable of maintaining large energy density at higher current rates with less safety risk than conventional systems. Hybrid devices consisting of all in all 2D electrodes deliver energy density as high as 121 Wh g-1 (at 240 W kg-1) and retains 29 Wh g-1 at high power density of 3600 W kg-1.

  7. Specific estrogen-induced cell proliferation of cultured Syrian hamster renal proximal tubular cells in serum-free chemically defined media

    International Nuclear Information System (INIS)

    Oberley, T.D.; Lauchner, L.J.; Pugh, T.D.; Gonzalez, A.; Goldfarb, S.; Li, S.A.; Li, J.J.

    1989-01-01

    It has long been recognized that the renal proximal tubular epithelium of the hamster is a bona fide estrogen target tissue. The effect of estrogens on the growth of proximal tubule cell explants and dissociated single cells derived from these explant outgrowths has been studied in culture. Renal tubular cells were grown on a PF-HR-9 basement membrane under serum-free chemically defined culture conditions. At 7-14 days in culture, cell number was enhanced 3-fold in the presence of either 17β-estradiol or diethylstilbestrol. A similar 3-fold increase in cell number was also seen at 1 nM 17β-estradiol in subcultured dissociated single tubular cells derived from hamster renal tubular explant outgrowths at 21 days in culture. Concomitant exposure of tamoxifen at 3-fold molar excess in culture completely abolished the increase in cell number seen with 17β-estradiol. The proliferation effect of estrogens on proximal tubular cell growth appears to be species specific since 17β-estradiol did not alter the growth of either rat or guinea pig proximal tubules in culture. In addition, at 7-10 days in culture in the presence of 17β-estradiol, [ 3 H]thymidine labeling of hamster tubular cells was enhanced 3-fold. These results clearly indicate that estrogens can directly induce primary epithelial cell proliferation at physiologic concentrations and provide strong additional evidence for an important hormonal role in the neoplastic transformation of the hamster kidney

  8. Transcatheter closure of tubular type patent ductus arteriosus using Amplatzer® ductal occluder II: a case report

    Directory of Open Access Journals (Sweden)

    Mulyadi M Djer

    2013-10-01

    In recent years, interventional cardiology has become a gold standard therapy for the majority of PDA cases beyond neonatal age. Since its introduction in 1967, many devices and methods have been developed to allow transcatheter closure of virtually all PDAs, regardless of size or configuration. Nevertheless, the tubular shape (type C PDA, which has the highest residual shunt rate, still poses a great challenge for the interventionist.8-10 The second generation of Amplatzer® device occluders (ADO II, released in 2007, has been suggested to be effective in closing tubular PDAs.10 The purpose of this study was to report the initial clinical experience using ADO II to close a tubular type PDA in Indonesia.

  9. Cobalt phthalocyanine modified electrodes utilised in electroanalysis: nano-structured modified electrodes vs. bulk modified screen-printed electrodes.

    Science.gov (United States)

    Foster, Christopher W; Pillay, Jeseelan; Metters, Jonathan P; Banks, Craig E

    2014-11-19

    Cobalt phthalocyanine (CoPC) compounds have been reported to provide electrocatalytic performances towards a substantial number of analytes. In these configurations, electrodes are typically constructed via drop casting the CoPC onto a supporting electrode substrate, while in other cases the CoPC complex is incorporated within the ink of a screen-printed sensor, providing a one-shot economical and disposable electrode configuration. In this paper we critically compare CoPC modified electrodes prepared by drop casting CoPC nanoparticles (nano-CoPC) onto a range of carbon based electrode substrates with that of CoPC bulk modified screen-printed electrodes in the sensing of the model analytes L-ascorbic acid, oxygen and hydrazine. It is found that no "electrocatalysis" is observed towards L-ascorbic acid using either of these CoPC modified electrode configurations and that the bare underlying carbon electrode is the origin of the obtained voltammetric signal, which gives rise to useful electroanalytical signatures, providing new insights into literature reports where "electrocatalysis" has been reported with no clear control experiments undertaken. On the other hand true electrocatalysis is observed towards hydrazine, where no such voltammetric features are witnessed on the bare underlying electrode substrate.

  10. One-Pot Synthesis of Tunable Crystalline Ni3 S4 @Amorphous MoS2 Core/Shell Nanospheres for High-Performance Supercapacitors.

    Science.gov (United States)

    Zhang, Yu; Sun, Wenping; Rui, Xianhong; Li, Bing; Tan, Hui Teng; Guo, Guilue; Madhavi, Srinivasan; Zong, Yun; Yan, Qingyu

    2015-08-12

    Transition metal sulfides gain much attention as electrode materials for supercapacitors due to their rich redox chemistry and high electrical conductivity. Designing hierarchical nanostructures is an efficient approach to fully utilize merits of each component. In this work, amorphous MoS(2) is firstly demonstrated to show specific capacitance 1.6 times as that of the crystalline counterpart. Then, crystalline core@amorphous shell (Ni(3)S(4)@MoS(2)) is prepared by a facile one-pot process. The diameter of the core and the thickness of the shell can be independently tuned. Taking advantages of flexible protection of amorphous shell and high capacitance of the conductive core, Ni(3)S(4) @amorphous MoS(2) nanospheres are tested as supercapacitor electrodes, which exhibit high specific capacitance of 1440.9 F g(-1) at 2 A g(-1) and a good capacitance retention of 90.7% after 3000 cycles at 10 A g(-1). This design of crystalline core@amorphous shell architecture may open up new strategies for synthesizing promising electrode materials for supercapacitors. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. A case of Fanconi syndrome accompanied by crystal depositions in tubular cells in a patient with multiple myeloma

    Directory of Open Access Journals (Sweden)

    Do Hee Kim

    2014-06-01

    Full Text Available Fanconi syndrome (FS is a rare condition that is characterized by defects in the proximal tubular function. A 48-year-old woman was admitted for evaluation of proteinuria. The patient showed normal anion gap acidosis, normoglycemic glycosuria, hypophosphatemia, and hypouricemia. Thus, her condition was compatible with FS. The M peak was found behind the beta globulin region in urine protein electrophoresis. Upon bone marrow examination, we found that 24% of cells were CD138+ plasma cells with kappa restriction. From a kidney biopsy, we found crystalline inclusions within proximal tubular epithelial cells. Thereafter, she was diagnosed with FS accompanied by multiple myeloma. The patient received chemotherapy and autologous stem cell transplantation, and obtained very good partial hematologic response. However, proximal tubular dysfunction was persistent until 1 year after autologous stem cell transplantation. In short, we report a case of FS accompanied by multiple myeloma, demonstrating crystalline inclusion in proximal tubular cells on kidney biopsy.

  12. Surface modification of positive electrode materials for lithium-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Julien, C.M., E-mail: Christian.Julien@upmc.fr [Sorbonne Universités, UPMC Univ. Paris 6, Physicochimie des Electrolytes et Nanosystèmes Interfaciaux (PHENIX), UMR 8234, 75005 Paris (France); Mauger, A. [Institut de Minéralogie de Physique des Matériaux et de Cosmochimie (IMPMC), UPMC Univ. Paris 6, 4 place Jussieu, 75005 Paris (France); Groult, H. [Sorbonne Universités, UPMC Univ. Paris 6, Physicochimie des Electrolytes et Nanosystèmes Interfaciaux (PHENIX), UMR 8234, 75005 Paris (France); Zaghib, K. [Energy Storage and Conversion, Research Institute of Hydro-Québec, Varennes, Québec J3X 1S1 (Canada)

    2014-12-01

    The advanced lithium-ion batteries are critically important for a wide range of applications, from portable electronics to electric vehicles. The research on their electrodes aims to increase the energy density and the power density, improve the calendar and the cycling life, without sacrificing the safety issues. A constant progress through the years has been obtained owing to the surface treatment of the particles, in particular the coating of the nanoparticles with a layer that protects the core region from side reactions with the electrolyte, prevents the loss of oxygen, and the dissolution of the metal ions in the electrolyte, or simply improve the conductivity of the powder. The purpose of the present work is to present the different surface modifications that have been tried for three families of positive electrodes: layered, spinel and olivine frameworks that are currently considered as promising materials. The role of the different coats used to improve either the surface conductivity, or the thermal stability, or the structural integrity is discussed. - Highlights: • Report the various surface modifications tried for the positive electrodes of Li-ion batteries. • The role of different coats used to improve the conductivity, or the thermal stability, or the structural integrity. • Improvement of electrochemical properties of electrodes after coating or surface treatment.

  13. Support and tool displacement device for the attachment of a tube bundle on a tubular plate of a steam generator

    International Nuclear Information System (INIS)

    Morisot, M.; Werle, R.; Michaud, J.P.

    1983-01-01

    The steam generator is being assembled, disposed with its axis horizontal and its tubular plate vertical; the device described in this patent, allows to automatize the preparation stages of the tubular plate and the attachment of the bundle, to shorten the construction of the steam generator and to remove drudgeries done by hand on the tubular plate or the tubes of the bundle. The invention can be applied to the construction of PWR steam generators [fr

  14. Transient acute tubular dysfunction in the newborn: CT findings

    International Nuclear Information System (INIS)

    McLaughlin, M.G.; Schwartz, J.R.; Swayne, L.C.; Columbia Univ., New York; Rubenstein, J.B.; University of Medicine and Dentistry of New Jersey, Newark, NJ; Block, D.C.

    1990-01-01

    We report the CT and sonographic findings of transient acute tubular disease in a newborn infant, who was dehydrated at birth. The initial CT scan demonstrated focal areas of increased attenuation within the central portions of both kidneys, and sonography showed echogenic medullary pyramids. After adequate hydration, a follow-up examination demonstrated complete spontaneous resolution. (orig.)

  15. Single-step fabrication of stressed waveguides with tubular depressed-cladding in phosphate glasses using ultrafast vortex laser beams

    Directory of Open Access Journals (Sweden)

    Cheng Guanghua

    2013-11-01

    Full Text Available We report on the fabrication of the stressed optical waveguide with tubular depressed-refractive-index cladding in phosphate glasses by use of femtosecond vortex beam. Strained regions were emerged in domains surrounding the tubular track. Waveguiding occurs mainly within the tube induced by femtosecond laser.

  16. Effect of non-uniform Hall parameter on the electrode voltage drop in Faraday-type combustion MHD generators

    International Nuclear Information System (INIS)

    Gupta, G.P.; Rohatgi, V.K.

    1982-01-01

    Following a simplified approach, an expression is derived for the gas-dynamic voltage drop in a finitely segmented Faraday-type combustion MHD generator, taking into account the non-uniform Hall parameter across the channel. Combining the electrical sheath voltage drop, discussed briefly, with the gas-dynamic voltage drop, the effect of a non-uniform Hall parameter on the electrode voltage drop is studied using the theoretical and experimental input parameters of the Indian MHD channel test. The condition for the validity of the usual assumption of uniform Hall parameter across the channel is pointed out. Analysis of the measured electrode voltage drop predicts the real gas conductivity in the core to be in the range of 60 to 75 per cent of the theoretically calculated core conductivity. (author)

  17. Multiple metabolic hits converge on CD36 as novel mediator of tubular epithelial apoptosis in diabetic nephropathy.

    Directory of Open Access Journals (Sweden)

    Katalin Susztak

    2005-02-01

    Full Text Available Diabetic nephropathy (DNP is a common complication of type 1 and type 2 diabetes mellitus and the most common cause of kidney failure. While DNP manifests with albuminuria and diabetic glomerulopathy, its progression correlates best with tubular epithelial degeneration (TED and interstitial fibrosis. However, mechanisms leading to TED in DNP remain poorly understood.We found that expression of scavenger receptor CD36 coincided with proximal tubular epithelial cell (PTEC apoptosis and TED specifically in human DNP. High glucose stimulated cell surface expression of CD36 in PTECs. CD36 expression was necessary and sufficient to mediate PTEC apoptosis induced by glycated albumins (AGE-BSA and CML-BSA and free fatty acid palmitate through sequential activation of src kinase, and proapoptotic p38 MAPK and caspase 3. In contrast, paucity of expression of CD36 in PTECs in diabetic mice with diabetic glomerulopathy was associated with normal tubular epithelium and the absence of tubular apoptosis. Mouse PTECs lacked CD36 and were resistant to AGE-BSA-induced apoptosis. Recombinant expression of CD36 in mouse PTECs conferred susceptibility to AGE-BSA-induced apoptosis.Our findings suggest a novel role for CD36 as an essential mediator of proximal tubular apoptosis in human DNP. Because CD36 expression was induced by glucose in PTECs, and because increased CD36 mediated AGE-BSA-, CML-BSA-, and palmitate-induced PTEC apoptosis, we propose a two-step metabolic hit model for TED, a hallmark of progression in DNP.

  18. A Mathematical Model of Renal Blood Distribution Coupling TGF, MR and Tubular System

    Institute of Scientific and Technical Information of China (English)

    GAO Ci-xiu; YANG Lin; WANG Ke-qiang; XU Shi-xiong; DAI Pei-dong

    2009-01-01

    Objective:To investigate the relationship between renal blood distribution and the physiological activities of the kidney. Methods:A mathematical model is developed based on Hagan-Poiseuille law and mass transport, coupling mechanics of myogenic response (MR), tubuloglomerular feedback (TGF) and the tubular system in the renal medulla. The model parameters, including the permeability coefficients, the vascular lumen radius and the solute concentration at the inlet of the tubes, are derived from the experimental results. Simulations of the blood and water flow in the loop of Henel, the collecting duct and vas rectum, are carried out by the model of the tubular system in the renal medulla, based on conservations of water and solutes for transmural transport. Then the tubular model is coupled with MR and TGF mechanics. Results:The results predict the dynamics of renal autoregulation on its blood pressure and flow,and the distributions are 88.5% in the cortex, 10.3% in the medulla, and 1.2% at papilla,respectively. The fluid flow and solute concentrations along the tubules and vasa recta are obtained. Conclusion:The present model could assess renal functions qualitatively and quantitatively and provide a methodological approach for clinical research.

  19. Tubular solid oxide fuel cell development program

    Energy Technology Data Exchange (ETDEWEB)

    Ray, E.R.; Cracraft, C.

    1995-12-31

    This paper presents an overview of the Westinghouse Solid Oxide Fuel Cell (SOFC) development activities and current program status. The Westinghouse goal is to develop a cost effective cell that can operate for 50,000 to 100,000 hours. Progress toward this goal will be discussed and test results presented for multiple single cell tests which have now successfully exceeded 56,000 hours of continuous power operation at temperature. Results of development efforts to reduce cost and increase power output of tubular SOFCs are described.

  20. Gremlin Activates the Smad Pathway Linked to Epithelial Mesenchymal Transdifferentiation in Cultured Tubular Epithelial Cells

    Directory of Open Access Journals (Sweden)

    Raquel Rodrigues-Diez

    2014-01-01

    Full Text Available Gremlin is a developmental gene upregulated in human chronic kidney disease and in renal cells in response to transforming growth factor-β (TGF-β. Epithelial mesenchymal transition (EMT is one process involved in renal fibrosis. In tubular epithelial cells we have recently described that Gremlin induces EMT and acts as a downstream TGF-β mediator. Our aim was to investigate whether Gremlin participates in EMT by the regulation of the Smad pathway. Stimulation of human tubular epithelial cells (HK2 with Gremlin caused an early activation of the Smad signaling pathway (Smad 2/3 phosphorylation, nuclear translocation, and Smad-dependent gene transcription. The blockade of TGF-β, by a neutralizing antibody against active TGF-β, did not modify Gremlin-induced early Smad activation. These data show that Gremlin directly, by a TGF-β independent process, activates the Smad pathway. In tubular epithelial cells long-term incubation with Gremlin increased TGF-β production and caused a sustained Smad activation and a phenotype conversion into myofibroblasts-like cells. Smad 7 overexpression, which blocks Smad 2/3 activation, diminished EMT changes observed in Gremlin-transfected tubuloepithelial cells. TGF-β neutralization also diminished Gremlin-induced EMT changes. In conclusion, we propose that Gremlin could participate in renal fibrosis by inducing EMT in tubular epithelial cells through activation of Smad pathway and induction of TGF-β.

  1. In vivo guided vascular regeneration with a non-porous elastin-like polypeptide hydrogel tubular scaffold.

    Science.gov (United States)

    Mahara, Atsushi; Kiick, Kristi L; Yamaoka, Tetsuji

    2017-06-01

    Herein, we demonstrate a new approach for small-caliber vascular reconstruction using a non-porous elastin-like polypeptide hydrogel tubular scaffold, based on the concept of guided vascular regeneration (GVR). The scaffolds are composed of elastin-like polypeptide, (Val-Pro-Gly-Ile-Gly) n , for compliance matching and antithrombogenicity and an Arg-Gly-Asp (RGD) motif for connective tissue regeneration. When the polypeptide was mixed with an aqueous solution of β-[Tris(hydroxymethyl)phosphino]propionic acid at 37°C, the polypeptide hydrogel was rapidly formed. The elastic modulus of the hydrogel was 4.4 kPa. The hydrogel tubular scaffold was formed in a mold and reinforced with poly(lactic acid) nanofibers. When tubular scaffolds with an inner diameter of 1 mm and length of 5 mm were implanted into rat abdominal aortae, connective tissue grew along the scaffold luminal surface from the flanking native tissues, resulting in new blood vessel tissue with a thickness of 200 μm in 1 month. In contrast, rats implanted with control scaffolds without the RGD motif died. These results indicate that the non-porous hydrogel tubular scaffold containing the RGD motif effectively induced rapid tissue regeneration and that GVR is a promising strategy for the regeneration of small-diameter blood vessels. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 1746-1755, 2017. © 2017 Wiley Periodicals, Inc.

  2. Renal tubular dysfunction nephrocalcinosis in a patient with BetaThalassemia Minor

    International Nuclear Information System (INIS)

    Prabahar, M.R.; Jain, M.; Chandrasekaran, V.; Indumathi, E.; Soundrarajan, P.

    2008-01-01

    Thalassemia is a hereditary anemia resulting from defect in hemoglobinproduction. Beta thalassemia is due to impaired production. Beta thalassemiais due to impaired production of beta globin chains, leading to a relativeexcess of alpha globin chains. The term beta thalassemia minor is used todescribe heterozygotes, who carry one normal beta globin and one betathalassemic allele. The vast majority of these patients are asymptomatic.However, a variety of renal tubular abnormalities including hypercaliuria,hypomagnesemia with renal magnesium wasting, decreased tubular absorption ofphosphorous, hypouricemia with renal uric acid wasting, renal glycosuria andtubular proteinuria have been described even in patients with betathalassemia minor. We here in report a 24-year old patient who was found tohave thalassemia minor and nephrocalcinosis with evidence of renal tubulardysfunction. Investigations revealed normal renal function, hypercalciuria,reduced tubular reabsorption of phosphorous, hypomagnesemia and renalmagnesium wasting. Screening for aminoaciduria was found to be negative. Anacid loading test revealed normal urinary acidification. Ultrasonogram of theabdomen revealed nephrocalcinosis and splenomegaly. Detailed work up foranemia showed normal white cell and platelet count while peripheral smearshowed microcytic hypochromic anemia with few target cells. Hemoglobinelectrophoresis revealed hemoglobin A of 92%, hemoglobin A2 of 6.2% andhemoglobin F of 1.8% consistent with beta thalassemia minor. Her parentalscreening was normal. A diagnosis of beta thalassemia minor with renaltubular dysfunction was made and the patient was started on thiazidediuretics to reduce hypercalciuria and advised regular follow-up. (author)

  3. Cobalt Phthalocyanine Modified Electrodes Utilised in Electroanalysis: Nano-Structured Modified Electrodes vs. Bulk Modified Screen-Printed Electrodes

    Directory of Open Access Journals (Sweden)

    Christopher W. Foster

    2014-11-01

    Full Text Available Cobalt phthalocyanine (CoPC compounds have been reported to provide electrocatalytic performances towards a substantial number of analytes. In these configurations, electrodes are typically constructed via drop casting the CoPC onto a supporting electrode substrate, while in other cases the CoPC complex is incorporated within the ink of a screen-printed sensor, providing a one-shot economical and disposable electrode configuration. In this paper we critically compare CoPC modified electrodes prepared by drop casting CoPC nanoparticles (nano-CoPC onto a range of carbon based electrode substrates with that of CoPC bulk modified screen-printed electrodes in the sensing of the model analytes L-ascorbic acid, oxygen and hydrazine. It is found that no “electrocatalysis” is observed towards L-ascorbic acid using either of these CoPC modified electrode configurations and that the bare underlying carbon electrode is the origin of the obtained voltammetric signal, which gives rise to useful electroanalytical signatures, providing new insights into literature reports where “electrocatalysis” has been reported with no clear control experiments undertaken. On the other hand true electrocatalysis is observed towards hydrazine, where no such voltammetric features are witnessed on the bare underlying electrode substrate.

  4. Isolation and characterization of a primary proximal tubular epithelial cell model from human kidney by CD10/CD13 double labeling.

    Directory of Open Access Journals (Sweden)

    Cynthia Van der Hauwaert

    Full Text Available Renal proximal tubular epithelial cells play a central role in renal physiology and are among the cell types most sensitive to ischemia and xenobiotic nephrotoxicity. In order to investigate the molecular and cellular mechanisms underlying the pathophysiology of kidney injuries, a stable and well-characterized primary culture model of proximal tubular cells is required. An existing model of proximal tubular cells is hampered by the cellular heterogeneity of kidney; a method based on cell sorting for specific markers must therefore be developed. In this study, we present a primary culture model based on the mechanical and enzymatic dissociation of healthy tissue obtained from nephrectomy specimens. Renal epithelial cells were sorted using co-labeling for CD10 and CD13, two renal proximal tubular epithelial markers, by flow cytometry. Their purity, phenotypic stability and functional properties were evaluated over several passages. Our results demonstrate that CD10/CD13 double-positive cells constitute a pure, functional and stable proximal tubular epithelial cell population that displays proximal tubule markers and epithelial characteristics over the long term, whereas cells positive for either CD10 or CD13 alone appear to be heterogeneous. In conclusion, this study describes a method for establishing a robust renal proximal tubular epithelial cell model suitable for further experimentation.

  5. Tubular foreign body or stent: safe retrieval or repositioning using the coaxial snare technique

    International Nuclear Information System (INIS)

    Seong, Chang Kyu; Kim, Yong Joo; Chung, Jin Wook; Kim, Seung Hyup; Han, Joon Koo; Kim, Hyun Beom; Park, Jae Hyung

    2002-01-01

    To evaluate the utility and advantages of the coaxial snare technique in the retrieval of tubular foreign bodies. Using the coaxial snare technique, we attempted to retrieve tubular foreign bodies present in seven patients. The bodies were either stents which were malpositioned or had migrated from their correct position in the vascular system (n=2), a fragmented venous introducer sheath (n=1), fragmented drainage catheters in the biliary tree (n=2), or fractured external drainage catheters in the urinary tract (n=2). After passing a guidewire and/or a dilator through the lumina of these foreign bodies, we introduced a loop snare over the guidewire or dilator, thus capturing and retrieving them. In all cases, it was possible to retrieve or reposition the various items, using a minimum-sized introducer sheath or a tract. No folding was involved. In no case were surgical procedures required, and no complications were encountered. The coaxial snare technique, an application of the loop snare technique, is a useful and safe method for the retrieval of tubular foreign bodies, and one which involves minimal injury to the patient

  6. Enhanced Performance of Photoelectrochemical Water Splitting with ITO@α-Fe2O3 Core-Shell Nanowire Array as Photoanode.

    Science.gov (United States)

    Yang, Jie; Bao, Chunxiong; Yu, Tao; Hu, Yingfei; Luo, Wenjun; Zhu, Weidong; Fu, Gao; Li, Zhaosheng; Gao, Hao; Li, Faming; Zou, Zhigang

    2015-12-09

    Hematite (α-Fe2O3) is one of the most promising candidates for photoelectrodes in photoelectrochemical water splitting system. However, the low visible light absorption coefficient and short hole diffusion length of pure α-Fe2O3 limits the performance of α-Fe2O3 photoelectrodes in water splitting. Herein, to overcome these drawbacks, single-crystalline tin-doped indium oxide (ITO) nanowire core and α-Fe2O3 nanocrystal shell (ITO@α-Fe2O3) electrodes were fabricated by covering the chemical vapor deposited ITO nanowire array with compact thin α-Fe2O3 nanocrystal film using chemical bath deposition (CBD) method. The J-V curves and IPCE of ITO@α-Fe2O3 core-shell nanowire array electrode showed nearly twice as high performance as those of the α-Fe2O3 on planar Pt-coated silicon wafers (Pt/Si) and on planar ITO substrates, which was considered to be attributed to more efficient hole collection and more loading of α-Fe2O3 nanocrystals in the core-shell structure than planar structure. Electrochemical impedance spectra (EIS) characterization demonstrated a low interface resistance between α-Fe2O3 and ITO nanowire arrays, which benefits from the well contact between the core and shell. The stability test indicated that the prepared ITO@α-Fe2O3 core-shell nanowire array electrode was stable under AM1.5 illumination during the test period of 40,000 s.

  7. TEOA-mediated formation of hollow core-shell structured CoNi2S4 nanospheres as a high-performance electrode material for supercapacitors

    Science.gov (United States)

    Liang, Jun; Li, Meng; Chai, Yao; Luo, Min; Li, Li

    2017-09-01

    In this study, we report for the first time a cost-effective and general approach for the high-yield synthesis of a hierarchical core-shell and hollow structure of ternary CoNi2S4 in a triethanolamine (TEOA)-assisted hydrothermal system. It is found that a continuous increase in TEOA usages facilitates the formation and transformation of hierarchical CoNi2S4 hollow nanospheres, and the formation mechanism of the unique structure is revealed to be assembly-then-inside-out evacuation and Ostwald ripening mechanism during the sulfidation process. More importantly, when used as faradaic electrode for supercapacitors, the hierarchical hollow CoNi2S4 nanospheres display not only exceptional pseudocapacitve performance with high specific capacitance (2035 Fg-1 at 1 Ag-1) and excellent rate capability (1215 Fg-1 at 20 Ag-1), but also superior cycling stability, with only about 8.7% loss over 3000 cycles at 10 Ag-1. This work can provide some guidance for us in the structural and compositional tuning of mixed binary-metal sulfides toward many desired applications.

  8. Tubular fluoropolymer arrays with high piezoelectric response

    Science.gov (United States)

    Zhukov, Sergey; Eder-Goy, Dagmar; Biethan, Corinna; Fedosov, Sergey; Xu, Bai-Xiang; von Seggern, Heinz

    2018-01-01

    Polymers with electrically charged internal air cavities called ferroelectrets exhibit a pronounced piezoelectric effect and are regarded as soft functional materials suitable for sensor and actuator applications. In this work, a simple method for fabricating piezoelectret arrays with open-tubular channels is introduced. A set of individual fluoroethylenepropylene (FEP) tubes is compressed between two heated metal plates. The squeezed FEP tubes are melted together at +270 °C. The resulting structure is a uniform, multi-tubular, flat array that reveals a strong piezoelectric response after a poling step. The fabricated arrays have a high ratio between piezoelectrically active and non-active areas. The optimal charging voltage and stability of the piezoelectric coefficients with pressures and frequency were experimentally investigated for two specific array structures with wall thickness of 50 and 120 μm. The array fabricated from 50 μm thick FEP tubes reveals a stable and high piezoelectric coefficient of {d}33 = 120-160 pC N-1 with a flat frequency response between 0.1 Hz and 10 kHz for pressures between 1 and 100 kPa. An increase of wall thickness to 120 μm is accompanied by a more than twofold decrease in the piezoelectric coefficient as a result of a simultaneously higher effective array stiffness and lower remanent polarization. The obtained experimental results can be used to optimize the array design with regard to the electromechanical performance.

  9. Forming of Polymeric Tubular Micro-components

    DEFF Research Database (Denmark)

    Qin, Yi; Zhao, Jie; Anyasodor, Gerald

    2015-01-01

    platform for the production of functional polymeric tubular micro-components. The chapter gives background on the current market and process development trends, followed by description of materials, process configuration, tool design and machine development for each processing technology as well......This chapter is intended to provide an overview of three nontraditional shaping technologies for the forming of polymeric micro-tubes, which are hot embossing, blow molding, and cross rolling, as well as realization of a process chain and the integration of a modular machine-based manufacturing...... as strategy for integration of the technologies and equipment into a common platform. Finally, potential applications of the technologies and facilities developed are highlighted....

  10. Defective proximal tubular function in a patient with I-cell disease.

    NARCIS (Netherlands)

    Bocca, G.; Monnens, L.A.H.

    2003-01-01

    A girl with a proven diagnosis of I-cell disease is presented. Proximal tubular dysfunction was characterized by increased excretion of low molecular proteins, aminoaciduria, hyperphosphaturia, and high/slightly increased urinary calcium. The concentration of 1,25-dihydroxycalciferol in serum was

  11. High-temperature electrochemical characterization of Ru core Pt shell fuel cell catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Bokach, D.; Fuente, J.L.G. de la; Tsypkin, M.; Ochal, P.; Tunold, R.; Sunde, S.; Seland, F. [Department of Materials Science and Engineering, Norwegian University of Science and Technology (NTNU), Sem Saelands veg 12, N-7491 Trondheim (Norway); Endsjoe, I.C. [Washington Mills AS, NO-7300 Orkanger (Norway)

    2011-12-15

    The electrooxidation of methanol was studied at elevated temperature and pressure by cyclic voltammetry and constant potential experiments at real fuel cell electrocatalysts. Ruthenium core and platinum shell nanoparticles were synthesized by a sequential polyol route, and characterized electrochemically by CO stripping at room temperature to quickly confirm the structure of the synthesized core-shell structure as compared to pure commercial Pt/C and Pt-Ru/C alloy catalysts. A significant promotional effect of Pt decorated Ru cores in the methanol oxidation was found at elevated temperatures and rather high-electrode potentials. A negative potential shift of the methanol oxidation peak is observed for the Ru rate at Pt/C core-shell catalyst at moderate temperatures, while a significant shift to positive potentials of the methanol oxidation peak occurs for Pt/C catalysts. The onset potential for methanol oxidation is lowered some 200 mV from room temperature and up to 120 C for all electrocatalysts, indicating that it is the thermal activity of water adsorption that dictates the onset potential. Direct methanol fuel cell experiments showed only small performance differences between Ru rate at Pt/C and Pt/C anode electrocatalysts, suggesting the necessity of render possible the formation of surface oxygen species at lower electrode potentials. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  12. Design, Fabrication and Test of a Full Scale Copper Tubular Combustion Chamber

    National Research Council Canada - National Science Library

    Cooley, Christine

    2002-01-01

    This paper presents the design fabrication and test of a full scale copper tubular combustion chamber as an enabling technology for future application in a high thrust upper-stage expander-cycle engine...

  13. Autophagy activation promotes removal of damaged mitochondria and protects against renal tubular injury induced by albumin overload.

    Science.gov (United States)

    Tan, Jin; Wang, Miaohong; Song, Shuling; Miao, Yuyang; Zhang, Qiang

    2018-01-10

    Proteinuria (albuminuria) is an important cause of aggravating tubulointerstitial injury. Previous studies have shown that autophagy activation can alleviate renal tubular epithelial cell injury caused by urinary protein, but the mechanism is not clear. Here, we investigated the role of clearance of damaged mitochondria in this protective effect. We found that albumin overload induces a significant increase in turnover of LC3-II and decrease in p62 protein level in renal proximal tubular (HK-2) cells in vitro. Albumin overload also induces an increase in mitochondrial damage. ALC, a mitochondrial torpent, alleviates mitochondrial damage induced by albumin overload and also decreases autophagy, while mitochondrial damage revulsant CCCP further increases autophagy. Furthermore, pretreatment of HK-2 cells with rapamycin reduced the amount of damaged mitochondria and the level of apoptosis induced by albumin overload. In contrast, blocking autophagy with chloroquine exerted an opposite effect. Taken together, our results indicated autophagy activation promotes removal of damaged mitochondria and protects against renal tubular injury caused by albumin overload. This further confirms previous research that autophagy activation is an adaptive response in renal tubular epithelial cells after urinary protein overload.

  14. Hyperuricemia Induces Wnt5a/Ror2 Gene Expression, Epithelial–Mesenchymal Transition, and Kidney Tubular Injury in Mice

    Directory of Open Access Journals (Sweden)

    Wiwit Ananda Wahyu Setyaningsih

    2018-03-01

    Full Text Available Background: Hyperuricemia contributes to kidney injury, characterized by tubular injury with epithelial–mesenchymal transition (EMT. Wnt5a/Ror2 signaling drives EMT in many kidney pathologies. This study sought to evaluate the involvement of Wnt5a/Ror2 in hyperuricemia-induced EMT in kidney tubular injury. Methods: A hyperuricemia model was performed in male Swiss background mice (3 months old, 30–40 g with daily intraperitoneal injections of 125 mg/kg body weight (BW of uric acid. The mice were terminated on day 7 (UA7, n=5 and on day 14 (UA14, n=5. Allopurinol groups (UAl7 and UAl14, each n=5 were added with oral 50 mg/kg BW of allopurinol treatment. The serum uric acid level was quantified, and tubular injury was assessed based on PAS staining. Reverse transcriptase-PCR was done to quantify Wnt5a, Ror2, E-cadherin, and vimentin expressions. IHC staining was done for E-cadherin and collagen I. We used the Shapiro–Wilk for normality testing and one-way ANOVA for variance analysis with a P<0.05 as significance level using SPSS 22 software. Results: The hyperuricemia groups had a higher uric acid level, which was associated with a higher tubular injury score. Meanwhile, the allopurinol groups had a significantly lower uric acid level and tubular injury than the uric acid groups. Reverse transcriptase-PCR revealed downregulation of the E-cadherin expression. While vimentin and collagen I expression are upregulated, which was associated with a higher Wnt5a expression. However, the allopurinol groups had reverse results. Immunostaining revealed a reduction in E-cadherin staining in the epithelial cells and collagen I positive staining in the epithelial cells and the interstitial areas. Conclusion: Hyperuricemia induced tubular injury, which might have been mediated by EMT through the activation of Wnt5a.

  15. Synthesis and Microstructural Characterization of Manganese Oxide Electrodes for Application as Electrochemical Supercapacitors

    Science.gov (United States)

    Babakhani, Banafsheh

    by the composition and pH of the electrolyte, temperature, current density and polymer deposition time. Mn oxide/PEDOT coaxial core/shell rods consisted of MnO2 with an antifluorite-type structure coated with amorphous PEDOT. The Mn oxide/PEDOT coaxial core/shell electrodes prepared by the sequential method showed significantly better specific capacity and redox performance properties relative to both uncoated Mn oxide rods and co- electrodeposited Mn oxide/PEDOT electrodes. The best specific capacitance for Mn oxide/PEDOT rods produced sequentially was ˜295 F g-1 with ˜92% retention after 250 cycles in 0.5 M Na2SO4 at 100 mV s-1. To further improve the electrochemical capacitive behavior of Mn oxide electrodes, Co-doped and Fe-doped Mn oxide electrodes with a rod-like morphology and antifluorite-type crystal structure were synthesized by anodic electrodeposition, on Au coated Si substrates, from dilute solutions of Mn acetate and Co sulphate and Mn acetate and Fe chloride. Also, Mn-Co oxide/PEDOT coaxial core/shell rods were synthesized by applying a shell of PEDOT on Mn-Co oxide electrodes. Mn-Co oxide/PEDOT electrodes consisted of MnO2, with partial Co 2+ and Co3+ ion substitution for Mn4+, and amorphous PEDOT. Mn-Fe oxide electrodes consisted of MnO2, with partial Fe2+ and Fe3+ ion substitution for Mn4+. Electrochemical analysis showed that the capacitance values for all deposits increased with increasing scan rate to 100 mVs -1, and then decreased after 100 mVs-1. The Mn-Co oxide/PEDOT electrodes showed improved specific capacity and electrochemical cyclability relative to uncoated Mn-Co oxides and Mn-Fe oxides. Mn-Co oxide/PEDOT electrodes with rod-like structures had high capacitances (up to 310 Fg -1) at a scan rate of 100 mVs-1 and maintained their capacitance after 500 cycles in 0.5 M Na2SO4 (91% retention). Capacitance reduction for the deposits was mainly due to the loss of Mn ions by dissolution in the electrolyte solution. To better understand the

  16. Electrochemical performance and structure evolution of core-shell nano-ring α-Fe_2O_3@Carbon anodes for lithium-ion batteries

    International Nuclear Information System (INIS)

    Sun, Yan-Hui; Liu, Shan; Zhou, Feng-Chen; Nan, Jun-Min

    2016-01-01

    Core-shell nano-ring α-Fe_2O_3@Carbon (CSNR) composites with different carbon content (CSNR-5%C and CSNR-13%C) are synthesized using a hydrothermal method by controlling different amounts of glucose and α-Fe_2O_3 nano-rings with further annealing. The CSNR electrodes exhibit much improved specific capacity, cycling stability and rate capability compared with that of bare nano-ring α-Fe_2O_3 (BNR), which is attributed to the core-shell nano-ring structure of CSNR. The carbon shell in the inner and outer surface of CSNR composite can increase electron conductivity of the electrode and inhibit the volume change of α-Fe_2O_3 during discharge/charge processes, and the nano-ring structure of CSNR can buffer the volume change too. The CSNR-5%C electrode shows super high initial discharge/charge capacities of 1570/1220 mAh g"−"1 and retains 920/897 mAh g"−"1 after 200 cycles at 500 mA g"−"1 (0.5C). Even at 2000 mA g"−"1 (2C), the electrode delivers the initial capacities of 1400/900 mAh g"−"1, and still maintains 630/610 mAh g"−"1 after 200 cycles. The core-shell nano-rings opened during cycling and rebuilt a new flower-like structure consisting of α-Fe_2O_3@Carbon nano-sheets. The space among the nano-sheet networks can further buffer the volume expansion of α-Fe_2O_3 and facilitate the transportation of electrons and Li"+ ions during the charge/discharge processes, which increases the capacity and rate capability of the electrode. It is the first time that the evolution of core-shell α-Fe_2O_3@Carbon changing to flower-like networks during lithiation/de-lithiation has been reported.

  17. Electrochemical performance and structure evolution of core-shell nano-ring α-Fe2O3@Carbon anodes for lithium-ion batteries

    Science.gov (United States)

    Sun, Yan-Hui; Liu, Shan; Zhou, Feng-Chen; Nan, Jun-Min

    2016-12-01

    Core-shell nano-ring α-Fe2O3@Carbon (CSNR) composites with different carbon content (CSNR-5%C and CSNR-13%C) are synthesized using a hydrothermal method by controlling different amounts of glucose and α-Fe2O3 nano-rings with further annealing. The CSNR electrodes exhibit much improved specific capacity, cycling stability and rate capability compared with that of bare nano-ring α-Fe2O3 (BNR), which is attributed to the core-shell nano-ring structure of CSNR. The carbon shell in the inner and outer surface of CSNR composite can increase electron conductivity of the electrode and inhibit the volume change of α-Fe2O3 during discharge/charge processes, and the nano-ring structure of CSNR can buffer the volume change too. The CSNR-5%C electrode shows super high initial discharge/charge capacities of 1570/1220 mAh g-1 and retains 920/897 mAh g-1 after 200 cycles at 500 mA g-1 (0.5C). Even at 2000 mA g-1 (2C), the electrode delivers the initial capacities of 1400/900 mAh g-1, and still maintains 630/610 mAh g-1 after 200 cycles. The core-shell nano-rings opened during cycling and rebuilt a new flower-like structure consisting of α-Fe2O3@Carbon nano-sheets. The space among the nano-sheet networks can further buffer the volume expansion of α-Fe2O3 and facilitate the transportation of electrons and Li+ ions during the charge/discharge processes, which increases the capacity and rate capability of the electrode. It is the first time that the evolution of core-shell α-Fe2O3@Carbon changing to flower-like networks during lithiation/de-lithiation has been reported.

  18. Systemic lupus erythematosus associated with type 4 renal tubular acidosis: a case report and review of the literature

    Directory of Open Access Journals (Sweden)

    Young Larry

    2011-03-01

    Full Text Available Abstract Introduction Type 4 renal tubular acidosis is an uncommon clinical manifestation of systemic lupus erythematosus and has been reported to portend a poor prognosis. To the best of our knowledge, this is the first case report which highlights the successful management of a patient with systemic lupus erythematosus complicated by type 4 renal tubular acidosis who did not do poorly. Case presentation A 44-year-old Hispanic woman developed a non-anion gap hyperkalemic metabolic acidosis consistent with type 4 renal tubular acidosis while being treated in the hospital for recently diagnosed systemic lupus erythematosus with multi-organ involvement. She responded well to treatment with corticosteroids, hydroxychloroquine and mycophenolate mofetil. Normal renal function was achieved prior to discharge and remained normal at the patient's one-month follow-up examination. Conclusion This case increases awareness of an uncommon association between systemic lupus erythematosus and type 4 renal tubular acidosis and suggests a positive impact of early diagnosis and appropriate immunosuppressive treatment on the patient's outcome.

  19. Overendocytosis of gold nanoparticles increases autophagy and apoptosis in hypoxic human renal proximal tubular cells

    Directory of Open Access Journals (Sweden)

    Ding F

    2014-09-01

    Full Text Available Fengan Ding,1 Yiping Li,1 Jing Liu,1 Lei Liu,1 Wenmin Yu,1 Zhi Wang,1 Haifeng Ni,2 Bicheng Liu,2 Pingsheng Chen1,2 1School of Medicine, Southeast University, Nanjing, People’s Republic of China; 2Institute of Nephrology, The Affiliated Zhongda Hospital, Southeast University, Nanjing, People’s Republic of China Background: Gold nanoparticles (GNPs can potentially be used in biomedical fields ranging from therapeutics to diagnostics, and their use will result in increased human exposure. Many studies have demonstrated that GNPs can be deposited in the kidneys, particularly in renal tubular epithelial cells. Chronic hypoxic is inevitable in chronic kidney diseases, and it results in renal tubular epithelial cells that are susceptible to different types of injuries. However, the understanding of the interactions between GNPs and hypoxic renal tubular epithelial cells is still rudimentary. In the present study, we characterized the cytotoxic effects of GNPs in hypoxic renal tubular epithelial cells.Results: Both 5 nm and 13 nm GNPs were synthesized and characterized using various biophysical methods, including transmission electron microscopy, dynamic light scattering, and ultraviolet–visible spectrophotometry. We detected the cytotoxicity of 5 and 13 nm GNPs (0, 1, 25, and 50 nM to human renal proximal tubular cells (HK-2 by Cell Counting Kit-8 assay and lactate dehydrogenase release assay, but we just found the toxic effect in the 5 nm GNP-treated cells at 50 nM dose under hypoxic condition. Furthermore, the transmission electron microscopy images revealed that GNPs were either localized in vesicles or free in the lysosomes in 5 nm GNPs-treated HK-2 cells, and the cellular uptake of the GNPs in the hypoxic cells was significantly higher than that in normoxic cells. In normoxic HK-2 cells, 5 nm GNPs (50 nM treatment could cause autophagy and cell survival. However, in hypoxic conditions, the GNP exposure at the same condition led to the

  20. Performance evaluation of fractional-slot tubular permanent magnet machines with low space harmonics

    Directory of Open Access Journals (Sweden)

    Wang Jiabin

    2015-12-01

    Full Text Available This paper evaluates the perforamnce of fractional-slot per pole winding configurations for tubular permanent magnet (PM machines that can effectively eliminate the most undesirable space harmonics in a simple and cost-effective manner. The benefits of the proposed machine topology winding configurations are illustrated through comparison with 9-slot, 10-pole tubular PM machine developed for a free piston energy converter under the same specification and volumetric constraints. It has been shown that the proposed machine topology results in more than 7 times reduction in the eddy current loss in the mover magnets and supporting tube, and hence avoids potential problem of excessive mover temperature and risk of demagnetization.

  1. Ag/Au/Polypyrrole Core-shell Nanowire Network for Transparent, Stretchable and Flexible Supercapacitor in Wearable Energy Devices

    Science.gov (United States)

    Moon, Hyunjin; Lee, Habeom; Kwon, Jinhyeong; Suh, Young Duk; Kim, Dong Kwan; Ha, Inho; Yeo, Junyeob; Hong, Sukjoon; Ko, Seung Hwan

    2017-02-01

    Transparent and stretchable energy storage devices have attracted significant interest due to their potential to be applied to biocompatible and wearable electronics. Supercapacitors that use the reversible faradaic redox reaction of conducting polymer have a higher specific capacitance as compared with electrical double-layer capacitors. Typically, the conducting polymer electrode is fabricated through direct electropolymerization on the current collector. However, no research have been conducted on metal nanowires as current collectors for the direct electropolymerization, even though the metal nanowire network structure has proven to be superior as a transparent, flexible, and stretchable electrode platform because the conducting polymer’s redox potential for polymerization is higher than that of widely studied metal nanowires such as silver and copper. In this study, we demonstrated a highly transparent and stretchable supercapacitor by developing Ag/Au/Polypyrrole core-shell nanowire networks as electrode by coating the surface of Ag NWs with a thin layer of gold, which provide higher redox potential than the electropolymerizable monomer. The Ag/Au/Polypyrrole core-shell nanowire networks demonstrated superior mechanical stability under various mechanical bending and stretching. In addition, proposed supercapacitors showed fine optical transmittance together with fivefold improved areal capacitance compared to pristine Ag/Au core-shell nanowire mesh-based supercapacitors.

  2. Oscillations of manometric tubular springs with rigid end

    Science.gov (United States)

    Cherentsov, D. A.; Pirogov, S. P.; Dorofeev, S. M.; Ryabova, Y. S.

    2018-05-01

    The paper presents a mathematical model of attenuating oscillations of manometric tubular springs (MTS) taking into account the rigid tip. The dynamic MTS model is presented in the form of a thin-walled curved rod oscillating in the plane of curvature of the central axis. Equations for MTS oscillations are obtained in accordance with the d’Alembert principle in projections onto the normal and tangential. The Bubnov-Galerkin method is used to solve the equations obtained.

  3. Proliferative capacity of stem/progenitor-like cells in the kidney may associate with the outcome of patients with acute tubular necrosis.

    Science.gov (United States)

    Ye, Youxin; Wang, Bingyin; Jiang, Xinxin; Hu, Weiming; Feng, Jian; Li, Hua; Jin, Mei; Ying, Yingjuan; Wang, Wenjuan; Mao, Xiaoou; Jin, Kunlin

    2011-08-01

    Animal studies indicate that adult renal stem/progenitor cells can undergo rapid proliferation in response to renal injury, but whether the same is true in humans is largely unknown. To examine the profile of renal stem/progenitor cells responsible for acute tubular necrosis in human kidney, double and triple immunostaining was performed using proliferative marker and stem/progenitor protein markers on sections from 10 kidneys with acute tubular necrosis and 4 normal adult kidneys. The immunopositive cells were recorded using 2-photon confocal laser scanning microscopy. We found that dividing cells were present in the tubules of the cortex and medulla, as well as the glomerulus in normal human kidney. Proliferative cells in the parietal layer of Bowman capsule expressed CD133, and dividing cells in the tubules expressed immature cell protein markers paired box gene 2, vimentin, and nestin. After acute tubular necrosis, Ki67-positive cells in the cortex tubules significantly increased compared with normal adult kidney. These Ki67-positive cells expressed CD133 and paired box gene 2, but not the cell death marker, activated caspase-3. In addition, the number of dividing cells increased significantly in patients with acute tubular necrosis who subsequently recovered, compared with patients with acute tubular necrosis who consequently developed protracted acute tubular necrosis or died. Our data suggest that renal stem/progenitor cells may reside not only in the parietal layer of Bowman capsule but also in the cortex and medulla in normal human kidney, and the proliferative capacity of renal stem/progenitor cells after acute tubular necrosis may be an important determinant of a patient's outcome. Copyright © 2011 Elsevier Inc. All rights reserved.

  4. Treatment of wastewater containing phenol using a tubular ceramic membrane bioreactor.

    Science.gov (United States)

    Ersu, C B; Ong, S K

    2008-02-01

    The performance of a membrane bioreactor (MBR) with a tubular ceramic membrane for phenol removal was evaluated under varying hydraulic retention times (HRT) and a fixed sludge residence time (SRT) of 30 days. The tubular ceramic membrane was operated with a mode of 15 minutes of filtration followed by 15 seconds of permeate backwashing at a flux of 250 l m(-2)hr(-1) along with an extended backwashing of 30 seconds every 3 hours of operation, which maintained the transmembrane pressure (TMP) below 100 kPa. Using a simulated municipal wastewater with varying phenol concentrations, the chemical oxygen demand (COD) and phenol removals observed were greater than 88% with excellent suspended solids (SS) removal of 100% at low phenol concentrations (approx. 100 mg l(-1) of phenol). Step increases in phenol concentration showed that inhibition was observed between 600 to 800 mg l(-1) of phenol with decreased sludge production rate, mixed liquor suspended solids (MLSS) concentration, and removal performance. The sludge volume index (SVI) of the biomass increased to about 450 ml g(-1) for a phenol input concentration of 800 mg l(-1). When the phenol concentration was decreased to 100 mg l(-1), the ceramic tubular MBR was found to recover rapidly indicating that the MBR is a robust system retaining most of the biomass. Experimental runs using wastewater containing phenol indicated that the MBR can be operated safely without upsets for concentrations up to 600 mg l(-1) of phenol at 2-4 hours HRT and 30 days SRT.

  5. Distal renal tubular acidosis in recurrent renal stone formers

    DEFF Research Database (Denmark)

    Osther, P J; Hansen, A B; Røhl, H F

    1989-01-01

    Renal acidification ability was examined in 90 recurrent renal stone formers, using fasting morning urinary pH levels followed by a short ammonium chloride loading test in subjects with pH levels above 6.0. Fifteen patients (16.6%) revealed a distal renal tubular acidification defect: one patient......, this has important therapeutic implications. The pathological sequence in renal stone formers with dRTA is discussed....

  6. Au-CuO core-shell nanoparticles design and development for the selective determination of Vitamin B6

    International Nuclear Information System (INIS)

    Kumar, Deivasigamani Ranjith; Manoj, Devaraj; Santhanalakshmi, Jayadevan; Shim, Jae-Jin

    2015-01-01

    Highlights: • Seed mediated growth of Au-CuO core-shell nanoparticle. • Au-CuO core-shell nanoparticle provided good peak current for pyridoxine. • Au-CuO/MWCNTs/GC exhibited excellent vitamin B 6 peak separation with other vitamin. - Abstract: This paper reports the synthesis of gold (core)-copper oxide (shell) nanoparticles using a simple seed mediated growth method. Pre-synthesized Au nanoparticles were used as seed materials for copper oxide shell growth, which were shown to be effective for Au-CuO core-shell formation. The novelty of this assembly strategy is that the exploitation of the Cu-ligand, which is thermolyzed on the Au nanoseed surface, results in the formation of CuO. Au-CuO core-shell nanoparticles were characterized by UV-visible spectroscopy, high resolution transmission electron microscopy (HRTEM) and X-ray photoelectron spectroscopy (XPS). The as prepared Au-CuO was used to fabricate a Au-CuO/MWCNTs/GC-modified electrode, which was applied to Vitamin B 6 (pyridoxine) determination by cyclic voltammetry (CV) and differential pulse voltammetry (DPV). The MWCNTs enhance the pyridoxine oxidation rate by increasing the peak current with Au-CuO, hence pyridoxine oxidized lower operating potentials. The Au-CuO/MWCNTs/GC-modified electrode showed excellent electrochemical performance towards pyridoxine (PY) in the presence of other typical vitamins, such as riboflavin, ascorbic acid and uric acid. The linear calibration graph was obtained over the PY concentration range of 0.79 μM–18.4 μM and the detection limit (S/N = 3) was 0.15 μM. The Au-CuO/MWCNTs/GC-modified electrode showed good stability, repeatability and recovery of real sample analysis

  7. Hierarchical shell/core CuO nanowire/carbon fiber composites as binder-free anodes for lithium-ion batteries

    International Nuclear Information System (INIS)

    Yuan, Wei; Luo, Jian; Pan, Baoyou; Qiu, Zhiqiang; Huang, Shimin; Tang, Yong

    2017-01-01

    Highlights: •The composite anode is composed of CuO nanowire shell and carbon fiber core. •The composite anode avoids completely the use of binders. •Synergistic effect of carbon fibers and CuO nanowires enhances performance. •Carbon fibers improve electrical conductivity and buffer volume change. •CuO nanowires shorten diffusion length and alleviate structural strain. -- Abstract: Developing high-performance electrode structures is of great importance for advanced lithium-ion batteries. This study reports an efficient method to fabricate hierarchical shell/core CuO nanowire/carbon fiber composites via electroless plating and thermal oxidation processes. With this method, a binder-free CuO nanowire/carbon fiber shell/core hierarchical network composite anode for lithium-ion batteries is successfully fabricated. The morphology and chemical composition of the anode are characterized, and the electrochemical performance of the anode is investigated by standard electrochemical tests. Owing to the superior properties of carbon fibers and the morphological advantages of CuO nanowires, this composite anode still retains an excellent reversible capacity of 598.2 mAh g −1 with a capacity retention rate above 86%, even after 50 cycles, which is much higher than the CuO anode without carbon fibers. Compared to the typical CuO/C electrode systems, the novel binder-free anode yields a performance close to that of the typical core/shell electrode systems and a much higher reversible capacity and capacity retention than the similar shell/core patterns as well as the anodes with binders. It is believed that this novel anode will pave the way to the development of binder-free anodes in response to the increasing demands for high-power energy storage.

  8. Enhanced cycling stability of NiCo2S4@NiO core-shell nanowire arrays for all-solid-state asymmetric supercapacitors

    Science.gov (United States)

    Huang, Yuanyuan; Shi, Tielin; Jiang, Shulan; Cheng, Siyi; Tao, Xiangxu; Zhong, Yan; Liao, Guanglan; Tang, Zirong

    2016-12-01

    As a new class of pseudocapacitive material, metal sulfides possess high electrochemical performance. However, their cycling performance as conventional electrodes is rather poor for practical applications. In this article, we report an original composite electrode based on NiCo2S4@NiO core-shell nanowire arrays (NWAs) with enhanced cycling stability. This three-dimensional electrode also has a high specific capacitance of 12.2 F cm-2 at the current density of 1 mA cm-2 and excellent cycling stability (about 89% retention after 10,000 cycles). Moreover, an all-solid-state asymmetric supercapacitor (ASC) device has been assembled with NiCo2S4@NiO NWAs as the positive electrode and active carbon (AC) as the negative electrode, delivering a high energy density of 30.38 W h kg-1 at 0.288 KW kg-1 and good cycling stability (about 109% retention after 5000 cycles). The results show that NiCo2S4@NiO NWAs are promising for high-performance supercapacitors with stable cycling based on the unique core-shell structure and well-designed combinations.

  9. Carbon−Silicon Core−Shell Nanowires as High Capacity Electrode for Lithium Ion Batteries

    KAUST Repository

    Cui, Li-Feng

    2009-09-09

    We introduce a novel design of carbon-silicon core-shell nanowires for high power and long life lithium battery electrodes. Amorphous silicon was coated onto carbon nanofibers to form a core-shell structure and the resulted core-shell nanowires showed great performance as anode material. Since carbon has a much smaller capacity compared to silicon, the carbon core experiences less structural stress or damage during lithium cycling and can function as a mechanical support and an efficient electron conducting pathway. These nanowires have a high charge storage capacity of ∼2000 mAh/g and good cycling life. They also have a high Coulmbic efficiency of 90% for the first cycle and 98-99.6% for the following cycles. A full cell composed of LiCoO2 cathode and carbon-silicon core-shell nanowire anode is also demonstrated. Significantly, using these core-shell nanowires we have obtained high mass loading and an area capacity of ∼4 mAh/cm2, which is comparable to commercial battery values. © 2009 American Chemical Society.

  10. Nifedipine inhibits advanced glycation end products (AGEs) and their receptor (RAGE) interaction-mediated proximal tubular cell injury via peroxisome proliferator-activated receptor-gamma activation

    Energy Technology Data Exchange (ETDEWEB)

    Matsui, Takanori [Department of Pathophysiology and Therapeutics of Diabetic Vascular Complications, Kurume University School of Medicine, Kurume (Japan); Yamagishi, Sho-ichi, E-mail: shoichi@med.kurume-u.ac.jp [Department of Pathophysiology and Therapeutics of Diabetic Vascular Complications, Kurume University School of Medicine, Kurume (Japan); Takeuchi, Masayoshi [Department of Pathophysiological Science, Faculty of Pharmaceutical Science, Hokuriku University, Kanazawa (Japan); Ueda, Seiji; Fukami, Kei; Okuda, Seiya [Department of Medicine, Kurume University School of Medicine, Kurume (Japan)

    2010-07-23

    Research highlights: {yields} Nifedipine inhibited the AGE-induced up-regulation of RAGE mRNA levels in tubular cells, which was prevented by GW9662, an inhibitor of peroxisome proliferator-activated receptor-{gamma}. {yields} GW9662 treatment alone increased RAGE mRNA levels in tubular cells. {yields} Nifedipine inhibited the AGE-induced reactive oxygen species generation, NF-{kappa}B activation and increases in intercellular adhesion molecule-1 and transforming growth factor-{beta} gene expression in tubular cells, all of which were blocked by GW9662. -- Abstract: There is a growing body of evidence that advanced glycation end products (AGEs) and their receptor (RAGE) interaction evokes oxidative stress generation and subsequently elicits inflammatory and fibrogenic reactions, thereby contributing to the development and progression of diabetic nephropathy. We have previously found that nifedipine, a calcium-channel blocker (CCB), inhibits the AGE-induced mesangial cell damage in vitro. However, effects of nifedipine on proximal tubular cell injury remain unknown. We examined here whether and how nifedipine blocked the AGE-induced tubular cell damage. Nifedipine, but not amlodipine, a control CCB, inhibited the AGE-induced up-regulation of RAGE mRNA levels in tubular cells, which was prevented by the simultaneous treatment of GW9662, an inhibitor of peroxisome proliferator-activated receptor-{gamma} (PPAR{gamma}). GW9662 treatment alone was found to increase RAGE mRNA levels in tubular cells. Further, nifedipine inhibited the AGE-induced reactive oxygen species generation, NF-{kappa}B activation and increases in intercellular adhesion molecule-1 and transforming growth factor-beta gene expression in tubular cells, all of which were blocked by GW9662. Our present study provides a unique beneficial aspect of nifedipine on diabetic nephropathy; it could work as an anti-oxidative and anti-inflammatory agent against AGEs in tubular cells by suppressing RAGE expression

  11. Nifedipine inhibits advanced glycation end products (AGEs) and their receptor (RAGE) interaction-mediated proximal tubular cell injury via peroxisome proliferator-activated receptor-gamma activation

    International Nuclear Information System (INIS)

    Matsui, Takanori; Yamagishi, Sho-ichi; Takeuchi, Masayoshi; Ueda, Seiji; Fukami, Kei; Okuda, Seiya

    2010-01-01

    Research highlights: → Nifedipine inhibited the AGE-induced up-regulation of RAGE mRNA levels in tubular cells, which was prevented by GW9662, an inhibitor of peroxisome proliferator-activated receptor-γ. → GW9662 treatment alone increased RAGE mRNA levels in tubular cells. → Nifedipine inhibited the AGE-induced reactive oxygen species generation, NF-κB activation and increases in intercellular adhesion molecule-1 and transforming growth factor-β gene expression in tubular cells, all of which were blocked by GW9662. -- Abstract: There is a growing body of evidence that advanced glycation end products (AGEs) and their receptor (RAGE) interaction evokes oxidative stress generation and subsequently elicits inflammatory and fibrogenic reactions, thereby contributing to the development and progression of diabetic nephropathy. We have previously found that nifedipine, a calcium-channel blocker (CCB), inhibits the AGE-induced mesangial cell damage in vitro. However, effects of nifedipine on proximal tubular cell injury remain unknown. We examined here whether and how nifedipine blocked the AGE-induced tubular cell damage. Nifedipine, but not amlodipine, a control CCB, inhibited the AGE-induced up-regulation of RAGE mRNA levels in tubular cells, which was prevented by the simultaneous treatment of GW9662, an inhibitor of peroxisome proliferator-activated receptor-γ (PPARγ). GW9662 treatment alone was found to increase RAGE mRNA levels in tubular cells. Further, nifedipine inhibited the AGE-induced reactive oxygen species generation, NF-κB activation and increases in intercellular adhesion molecule-1 and transforming growth factor-beta gene expression in tubular cells, all of which were blocked by GW9662. Our present study provides a unique beneficial aspect of nifedipine on diabetic nephropathy; it could work as an anti-oxidative and anti-inflammatory agent against AGEs in tubular cells by suppressing RAGE expression via PPARγ activation.

  12. Template-based fluoroethylenepropylene piezoelectrets with tubular channels for transducer applications

    Science.gov (United States)

    Altafim, Ruy Alberto Pisani; Qiu, Xunlin; Wirges, Werner; Gerhard, Reimund; Altafim, Ruy Alberto Corrêa; Basso, Heitor Cury; Jenninger, Werner; Wagner, Joachim

    2009-07-01

    We describe the concept, the fabrication, and the most relevant properties of a piezoelectric-polymer system: Two fluoroethylenepropylene (FEP) films with good electret properties are laminated around a specifically designed and prepared polytetrafluoroethylene (PTFE) template at 300 °C. After removing the PTFE template, a two-layer FEP film with open tubular channels is obtained. For electric charging, the two-layer FEP system is subjected to a high electric field. The resulting dielectric barrier discharges inside the tubular channels yield a ferroelectret with high piezoelectricity. d33 coefficients of up to 160 pC/N have already been achieved on the ferroelectret films. After charging at suitable elevated temperatures, the piezoelectricity is stable at temperatures of at least 130 °C. Advantages of the transducer films include ease of fabrication at laboratory or industrial scales, a wide range of possible geometrical and processing parameters, straightforward control of the uniformity of the polymer system, flexibility, and versatility of the soft ferroelectrets, and a large potential for device applications e.g., in the areas of biomedicine, communications, production engineering, sensor systems, environmental monitoring, etc.

  13. Rhabdomyolysis with acute tubular necrosis following occupational inhalation of thinners.

    Science.gov (United States)

    Ngajilo, D; Ehrlich, R

    2017-07-01

    Thinners are mixtures of organic solvents commonly containing toluene, xylene, acetone, hexane, benzene and methyl isobutyl ketone. This report describes a case of rhabdomyolysis with acute tubular necrosis and renal failure, most likely attributable to toluene, following occupational exposure to thinners while cleaning a steel water tank. These adverse health effects have previously been reported following acute poisoning or intentional inhalation by drug abusers, but rarely in the occupational setting. Poor working conditions, lack of health and safety training and delayed treatment contributed to the onset and severity of the patient's complications. This case emphasizes the need for strict control measures, including adequate ventilation, training on working in confined spaces, appropriate personal protective equipment and emergency rescue procedures in such settings. In addition, rhabdomyolysis, acute tubular necrosis and renal failure should be added to safety data material as possible complications of excessive inhalation of thinners. © The Author 2017. Published by Oxford University Press on behalf of the Society of Occupational Medicine. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  14. Clinical profile and outcome of renal tubular disorders in children: A single center experience

    Directory of Open Access Journals (Sweden)

    B Vijay Kiran

    2014-01-01

    Full Text Available Tubular disorders form a significant proportion of pediatric kidney diseases and are an important differential diagnosis of failure to thrive (FTT in children. Data regarding their outcome is scarce from India. We evaluated the clinical profile of these children and studied the outcome in terms of their growth and renal failure. This is a retrospective longitudinal study of all children with renal tubular disorders attending a tertiary care pediatric nephrology center from 2005 to 2010. Growth and renal outcomes were assessed by Z scores and estimated glomerular filtration rate at diagnosis and. The common disorders encountered were distal renal tubular acidosis (d-RTA (44%, Bartter-like (Bartter′s and Gitelman syndromes (22% followed by hereditary Fanconi syndrome (cystinosis and idiopathic Fanconi syndrome (13% and few cases of nephrogenic diabetes insipidus, hypophosphatemic rickets and idiopathic hypercalciuria. Male: female ratio was 1.22. The median age at diagnosis was 1.5 (range 0.13-11 years. Growth failure was the presenting feature in 86% of children followed by polyuria (60% and bone deformities (47%. In 60% of children with hereditary Fanconi syndrome, nephropathic cystinosis was diagnosed, all of whom progressed to stage III chronic kidney disease (CKD within 3.41 ± 1.42 years. With appropriate therapy, catch-up growth was noted in d-RTA and Bartter syndrome. Renal tubular disorders usually present with FTT. d-RTA is the most common etiology followed by Bartter-like syndrome. Renal function is preserved in all these disorders except for nephropathic cystinosis, who ultimately progressed to CKD. With appropriate and inexpensive therapy, these children do grow well.

  15. Toxicogenomic multigene biomarker for predicting the future onset of proximal tubular injury in rats

    International Nuclear Information System (INIS)

    Minowa, Yohsuke; Kondo, Chiaki; Uehara, Takeki; Morikawa, Yuji; Okuno, Yasushi; Nakatsu, Noriyuki; Ono, Atsushi; Maruyama, Toshiyuki; Kato, Ikuo; Yamate, Jyoji; Yamada, Hiroshi; Ohno, Yasuo; Urushidani, Tetsuro

    2012-01-01

    Drug-induced renal tubular injury is a major concern in the preclinical safety evaluation of drug candidates. Toxicogenomics is now a generally accepted tool for identifying chemicals with potential safety problems. The specific aim of the present study was to develop a model for use in predicting the future onset of drug-induced proximal tubular injury following repeated dosing with various nephrotoxicants. In total, 41 nephrotoxic and nonnephrotoxic compounds were used for the present analysis. Male Sprague-Dawley rats were dosed orally or intravenously once daily. Animals were exposed to three different doses (low, middle, and high) of each compound, and kidney tissue was collected at 3, 6, 9, and 24 h after single dosing, and on days 4, 8, 15, and 29 after repeated dosing. Gene expression profiles were generated from kidney total RNA using Affymetrix DNA microarrays. Filter-type gene selection and linear classification algorithms were employed to discriminate future onset of proximal tubular injury. We identified genomic biomarkers for use in future onset prediction using the gene expression profiles determined on day 1, when most of the nephrotoxicants had yet to produce detectable histopathological changes. The model was evaluated using a five-fold cross validation, and achieved a sensitivity of 93% and selectivity of 90% with 19 probes. We also found that the prediction accuracy of the optimized model was substantially higher than that produced by any of the single genomic biomarkers or histopathology. The genes included in our model were primarily involved in DNA replication, cell cycle control, apoptosis, and responses to oxidative stress and chemical stimuli. In summary, our toxicogenomic model is particularly useful for predicting the future onset of proximal tubular injury.

  16. Scaffold-Free Tubular Tissues Created by a Bio-3D Printer Undergo Remodeling and Endothelialization when Implanted in Rat Aortae

    Science.gov (United States)

    Itoh, Manabu; Nakayama, Koichi; Noguchi, Ryo; Kamohara, Keiji; Furukawa, Kojirou; Uchihashi, Kazuyoshi; Toda, Shuji; Oyama, Jun-ichi; Node, Koichi; Morita, Shigeki

    2015-01-01

    Background Small caliber vascular prostheses are not clinically available because synthetic vascular prostheses lack endothelial cells which modulate platelet activation, leukocyte adhesion, thrombosis, and the regulation of vasomotor tone by the production of vasoactive substances. We developed a novel method to create scaffold-free tubular tissue from multicellular spheroids (MCS) using a “Bio-3D printer”-based system. This system enables the creation of pre-designed three-dimensional structures using a computer controlled robotics system. With this system, we created a tubular structure and studied its biological features. Methods and Results Using a “Bio-3D printer,” we made scaffold-free tubular tissues (inner diameter of 1.5 mm) from a total of 500 MCSs (2.5× 104 cells per one MCS) composed of human umbilical vein endothelial cells (40%), human aortic smooth muscle cells (10%), and normal human dermal fibroblasts (50%). The tubular tissues were cultured in a perfusion system and implanted into the abdominal aortas of F344 nude rats. We assessed the flow by ultrasonography and performed histological examinations on the second (n = 5) and fifth (n = 5) day after implantation. All grafts were patent and remodeling of the tubular tissues (enlargement of the lumen area and thinning of the wall) was observed. A layer of endothelial cells was confirmed five days after implantation. Conclusions The scaffold-free tubular tissues made of MCS using a Bio-3D printer underwent remodeling and endothelialization. Further studies are warranted to elucidate the underlying mechanism of endothelialization and its function, as well as the long-term results. PMID:26325298

  17. Scaffold-Free Tubular Tissues Created by a Bio-3D Printer Undergo Remodeling and Endothelialization when Implanted in Rat Aortae.

    Science.gov (United States)

    Itoh, Manabu; Nakayama, Koichi; Noguchi, Ryo; Kamohara, Keiji; Furukawa, Kojirou; Uchihashi, Kazuyoshi; Toda, Shuji; Oyama, Jun-Ichi; Node, Koichi; Morita, Shigeki

    2015-01-01

    Small caliber vascular prostheses are not clinically available because synthetic vascular prostheses lack endothelial cells which modulate platelet activation, leukocyte adhesion, thrombosis, and the regulation of vasomotor tone by the production of vasoactive substances. We developed a novel method to create scaffold-free tubular tissue from multicellular spheroids (MCS) using a "Bio-3D printer"-based system. This system enables the creation of pre-designed three-dimensional structures using a computer controlled robotics system. With this system, we created a tubular structure and studied its biological features. Using a "Bio-3D printer," we made scaffold-free tubular tissues (inner diameter of 1.5 mm) from a total of 500 MCSs (2.5× 104 cells per one MCS) composed of human umbilical vein endothelial cells (40%), human aortic smooth muscle cells (10%), and normal human dermal fibroblasts (50%). The tubular tissues were cultured in a perfusion system and implanted into the abdominal aortas of F344 nude rats. We assessed the flow by ultrasonography and performed histological examinations on the second (n = 5) and fifth (n = 5) day after implantation. All grafts were patent and remodeling of the tubular tissues (enlargement of the lumen area and thinning of the wall) was observed. A layer of endothelial cells was confirmed five days after implantation. The scaffold-free tubular tissues made of MCS using a Bio-3D printer underwent remodeling and endothelialization. Further studies are warranted to elucidate the underlying mechanism of endothelialization and its function, as well as the long-term results.

  18. Sunscope natural light systems : tubular skylights

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-07-01

    This brochure described a tubular skylight designed by Sunscope Natural Light Systems. The Sunscope is a super-reflective light system in which daylight is reflected down a cylinder to a translucent ceiling fixture that diffuses natural light throughout the room in which it is placed. The Sunscope requires no structure changes, is installed in less than 3 hours, and requires no drywall repairs or repainting. The system eliminates the need for daytime electric lighting, and causes no winter heat losses or summer heat gains. Available in 3 sizes, the Sunscope has no moving parts and is fully maintenance-free. The system was designed for use in commercial and residential applications. 7 figs.

  19. Cytocompatibility of a silk fibroin tubular scaffold

    International Nuclear Information System (INIS)

    Wang, Jiannan; Wei, Yali; Yi, Honggen; Liu, Zhiwu; Sun, Dan; Zhao, Huanrong

    2014-01-01

    Regenerated silk fibroin (SF) materials are increasingly used for tissue engineering applications. In order to explore the feasibility of a novel biomimetic silk fibroin tubular scaffold (SFTS) crosslinked by poly(ethylene glycol) diglycidyl ether (PEG-DE), biocompatibility with cells was evaluated. The novel biomimetic design of the SFTS consisted of three distinct layers: a regenerated SF intima, a silk braided media and a regenerated SF adventitia. The SFTS exhibited even silk fibroin penetration throughout the braid, forming a porous layered tube with superior mechanical, permeable and cell adhesion properties that are beneficial to vascular regeneration. Cytotoxicity and cell compatibility were tested on L929 cells and human umbilical vein endothelial cells (EA.hy926). DNA content analysis, scanning electron and confocal microscopies and MTT assay showed no inhibitory effects on DNA replication. Cell morphology, viability and proliferation were good for L929 cells, and satisfactory for EA.hy926 cells. Furthermore, the suture retention strength of the SFTS was about 23 N and the Young's modulus was 0.2–0.3 MPa. Collectively, these data demonstrate that PEG-DE crosslinked SFTS possesses the appropriate cytocompatibility and mechanical properties for use as vascular scaffolds as an alternative to vascular autografts. - Highlights: • A PEG-DE cross-linked small caliber porous silk fibroin tubular scaffold (SFTS) • PEG-DE cross-linked SF film had no inhibitory effect on DNA replication of cells. • Cells cultured on the SFTS showed good morphology, cell viability and proliferative activity. • SFTS would be beneficial to endothelialization. • SFTS had good suture retention strength and flexibility

  20. Long Life Nickel Electrodes for Nickel-Hydrogen Cells: Fiber Substrates Nickel Electrodes

    Science.gov (United States)

    Rogers, Howard H.

    2000-01-01

    Samples of nickel fiber mat electrodes were investigated over a wide range of fiber diameters, electrode thickness, porosity and active material loading levels. Thickness' were 0.040, 0.060 and 0.080 inches for the plaque: fiber diameters were primarily 2, 4, and 8 micron and porosity was 85, 90, and 95%. Capacities of 3.5 in. diameter electrodes were determined in the flooded condition with both 26 and 31% potassium hydroxide solution. These capacity tests indicated that the highest capacities per unit weight were obtained at the 90% porosity level with a 4 micron diameter fiber plaque. It appeared that the thinner electrodes had somewhat better performance, consistent with sintered electrode history. Limited testing with two-positive-electrode boiler plate cells was also carried out. Considerable difficulty with constructing the cells was encountered with short circuits the major problem. Nevertheless, four cells were tested. The cell with 95% porosity electrodes failed during conditioning cycling due to high voltage during charge. Discharge showed that this cell had lost nearly all of its capacity. The other three cells after 20 conditioning cycles showed capacities consistent with the flooded capacities of the electrodes. Positive electrodes made from fiber substrates may well show a weight advantage of standard sintered electrodes, but need considerably more work to prove this statement. A major problem to be investigated is the lower strength of the substrate compared to standard sintered electrodes. Problems with welding of leads were significant and implications that the electrodes would expand more than sintered electrodes need to be investigated. Loading levels were lower than had been expected based on sintered electrode experiences and the lower loading led to lower capacity values. However, lower loading causes less expansion and contraction during cycling so that stress on the substrate is reduced.

  1. Glomerular and tubular damage markers are elevated in patients with diabetes

    NARCIS (Netherlands)

    Nauta, Ferdau L.; Boertien, Wendy E.; Bakker, Stephan J. L.; van Goor, Harry; van Oeveren, Wim; de Jong, Paul E.; Bilo, Henk; Gansevoort, Ron T.

    OBJECTIVE: We investigated in a cross-sectional study the levels of serum and urinary damage markers in diabetic patients (n = 94) and nondiabetic control subjects (n = 45) to study the association of glomerular (IgG), proximal tubular (kidney injury molecule [KIM]-1, N-acetyl-β-d-glucosaminidase

  2. Micro-drilling of polymer tubular ultramicroelectrode arrays for electrochemical sensors

    DEFF Research Database (Denmark)

    Kafka, Jan Robert; Skaarup, Steen; Geschke, Oliver

    2013-01-01

    reproducibly fabricated. The electrode dimensions were analyzed by SEM after deposition of silver dendrites to visualize the electroactive electrode area. The electrochemical applicability of the electrodes was demonstrated by voltammetric and amperometric detection of ferri-/ferrocyanide. Recorded signals...

  3. Spectroscopic and electrochemical characterization of nanostructured optically transparent carbon electrodes.

    Science.gov (United States)

    Benavidez, Tomás E; Garcia, Carlos D

    2013-07-01

    The present paper describes the results related to the optical and electrochemical characterization of thin carbon films fabricated by spin coating and pyrolysis of AZ P4330-RS photoresist. The goal of this paper is to provide comprehensive information allowing for the rational selection of the conditions to fabricate optically transparent carbon electrodes (OTCE) with specific electrooptical properties. According to our results, these electrodes could be appropriate choices as electrochemical transducers to monitor electrophoretic separations. At the core of this manuscript is the development and critical evaluation of a new optical model to calculate the thickness of the OTCE by variable angle spectroscopic ellipsometry. Such data were complemented with topography and roughness (obtained by atomic force microscopy), electrochemical properties (obtained by cyclic voltammetry), electrical properties (obtained by electrochemical impedance spectroscopy), and structural composition (obtained by Raman spectroscopy). Although the described OTCE were used as substrates to investigate the effect of electrode potential on the real-time adsorption of proteins by ellipsometry, these results could enable the development of other biosensors that can be then integrated into various CE platforms. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Distribution of IGF receptors in the plasma membrane of proximal tubular cells

    International Nuclear Information System (INIS)

    Hammerman, M.R.; Rogers, S.

    1987-01-01

    To characterize the distribution of receptors for insulin-like growth factors I and II (IGF I and II) in the plasma membrane of the renal proximal tubular cell, the authors measured binding of 125 I-labeled IGF I and 125 I-labeled IGF II to proximal tubular basolateral and brush-border membranes and characterized IGF I-stimulated phosphorylation of detergent-solubilized membranes. 125 I-IGF bound primarily to a 135,000 relative molecular weight (M r ) protein and IGF II to a 260,000 M r protein in isolated membranes. Binding of 125 I-IGF I was severalfold greater in basolateral than in brush-border membranes. IGF I-stimulated phosphorylation of the 92,000 M r β-subunit of its receptors could be demonstrated only in basolateral membranes. These findings are consistent with an asymmetrical distribution of receptors for IGF I in the plasma membrane of the renal proximal tubular cell, localization being primary on the basolateral side. In contrast, binding of 125 I-IGF II to isolated basolateral and brush-border membranes was equivalent, suggesting that receptors for this peptide are distributed more symmetrically in the plasma membrane. The findings suggest that the action of IGF I in proximal tubule are mediated via interaction of circulating peptide with specific receptors in the basolateral membrane. However, the findings established the potential for actions of IGF II to be exerted in proximal tubule via interaction with both basolateral and/or brush-border membrane receptors

  5. Hierarchical Fe₃O₄@Fe₂O₃ Core-Shell Nanorod Arrays as High-Performance Anodes for Asymmetric Supercapacitors.

    Science.gov (United States)

    Tang, Xiao; Jia, Ruyue; Zhai, Teng; Xia, Hui

    2015-12-16

    Anode materials with relatively low capacitance remain a great challenge for asymmetric supercapacitors (ASCs) to pursue high energy density. Hematite (α-Fe2O3) has attracted intensive attention as anode material for ASCs, because of its suitable reversible redox reactions in a negative potential window (from 0 V to -1 V vs Ag/AgCl), high theoretical capacitance, rich abundance, and nontoxic features. Nevertheless, the Fe2O3 electrode cannot deliver large volumetric capacitance at a high rate, because of its poor electrical conductivity (∼10(-14) S/cm), resulting in low power density and low energy density. In this work, a hierarchical heterostructure comprising Fe3O4@Fe2O3 core-shell nanorod arrays (NRAs) is presented and investigated as the negative electrode for ASCs. Consequently, the Fe3O4@Fe2O3 electrode exhibits superior supercapacitive performance, compared to the bare Fe2O3 and Fe3O4 NRAs electrodes, demonstrating large volumetric capacitance (up to 1206 F/cm(3) with a mass loading of 1.25 mg/cm(2)), as well as good rate capability and cycling stability. The hybrid electrode design is also adopted to prepare Fe3O4@MnO2 core-shell NRAs as the positive electrode for ASCs. Significantly, the as-assembled 2 V ASC device delivered a high energy density of 0.83 mWh/cm(3) at a power density of 15.6 mW/cm(3). This work constitutes the first demonstration of Fe3O4 as the conductive supports for Fe2O3 to address the concerns about its poor electronic and ionic transport.

  6. CT diagnosis of intramedulear lesions of the tubular bone

    International Nuclear Information System (INIS)

    Wagner-Manslau, C.; Feuerbach, S.; Biehl, T.

    1985-01-01

    Three cases are used to demonstrate that intramedullary masses of the tubular bones can be discovered using computered tomography even when changes in the plain film are lacking or discrete. However, it was not possible to differentiate between osteomyelitis, chondrosarcoma and enchondroma owing to the identical morphology of these three diseases. Consequently, CT does not allow any statement on type and dignity and histological clarification is indispensable. (orig./WU) [de

  7. The effect of thermal treatment on the mechanical properties of PLLA tubular specimens

    Directory of Open Access Journals (Sweden)

    Arbeiter Daniela

    2016-09-01

    Full Text Available Conventional permanent stent systems for vascular applications are associated with long-term risks, such as restenosis and thrombosis. To overcome these limitations, novel approaches using various biodegradable materials for stent construction have been investigated. In this context, thermal treatment of polymer materials is investigated to adjust the mechanical properties of biodegradable stents. In this work polymeric tubular specimens of biodegradable poly(L-lactide (PLLA were extruded and subjected to a molding process using different temperatures above glass transition temperature TG. Physicochemical properties of the molded samples were analyzed using DSC measurements and uniaxial tensile tests. The molding process resulted in a weakening of the PLLA tubular specimens with a simultaneous increase in the degree of crystallinity (χ.

  8. Copper recovery in a bench-scale carrier facilitated tubular supported liquid membrane system

    Directory of Open Access Journals (Sweden)

    Makaka S.

    2010-01-01

    Full Text Available The extraction of copper ions in a tubular supported liquid membrane using LIX 984NC as a mobile carrier was studied, evaluating the effect of the feed characteristics (flowrate, density, viscosity on the feedside laminar layer of the membrane. A vertical countercurrent, double pipe perspex benchscale reactor consisting of a single hydrophobic PVDF tubular membrane mounted inside was used in all test work. The membrane was impregnated with LIX 984NC and became the support for this organic transport medium. Dilute Copper solution passed through the centre pipe and sulphuric acid as strippant passed through the shell side. Copper was successfully transported from the feedside to the stripside and from the data obtained, a relationship between Schmidt, Reynolds and Sherwood number was achieved of.

  9. The use of tubular subdermal and axial flaps in the correction of four cases of extensive lesions

    OpenAIRE

    Rafael Ricardo Huppes; Josiane Morais Pazzini; Andrigo Barboza De Nardi²; Jorge Luiz Costa Castro; Cristiano Gomes; Arícia Gomes Sprada²; Ana Lúcia Pascolli²

    2017-01-01

    ABSTRACT: The most common skin lesions in small animals result from trauma, burns, or surgical resection of large tumors. Given the high importance of reconstructive surgery associated with tumors in small animals, this study reports four cases of reconstructive surgery using subcutaneous and axial tubular flaps in animals with neoplastic lesions. Subdermal and axial tubular flaps are healthy alternatives for reconstructing wounds caused by large tumor resection in areas with poor tissue elas...

  10. Construction of Hierarchical CuO/Cu2O@NiCo2S4 Nanowire Arrays on Copper Foam for High Performance Supercapacitor Electrodes

    Science.gov (United States)

    Zhou, Luoxiao; He, Ying; Jia, Congpu; Pavlinek, Vladimir; Saha, Petr; Cheng, Qilin

    2017-01-01

    Hierarchical copper oxide @ ternary nickel cobalt sulfide (CuO/Cu2O@NiCo2S4) core-shell nanowire arrays on Cu foam have been successfully constructed by a facile two-step strategy. Vertically aligned CuO/Cu2O nanowire arrays are firstly grown on Cu foam by one-step thermal oxidation of Cu foam, followed by electrodeposition of NiCo2S4 nanosheets on the surface of CuO/Cu2O nanowires to form the CuO/Cu2O@NiCo2S4 core-shell nanostructures. Structural and morphological characterizations indicate that the average thickness of the NiCo2S4 nanosheets is ~20 nm and the diameter of CuO/Cu2O core is ~50 nm. Electrochemical properties of the hierarchical composites as integrated binder-free electrodes for supercapacitor were evaluated by various electrochemical methods. The hierarchical composite electrodes could achieve ultrahigh specific capacitance of 3.186 F cm−2 at 10 mA cm−2, good rate capability (82.06% capacitance retention at the current density from 2 to 50 mA cm−2) and excellent cycling stability, with capacitance retention of 96.73% after 2000 cycles at 10 mA cm−2. These results demonstrate the significance of optimized design and fabrication of electrode materials with more sufficient electrolyte-electrode interface, robust structural integrity and fast ion/electron transfer. PMID:28914819

  11. Construction of Hierarchical CuO/Cu2O@NiCo2S4 Nanowire Arrays on Copper Foam for High Performance Supercapacitor Electrodes

    Directory of Open Access Journals (Sweden)

    Luoxiao Zhou

    2017-09-01

    Full Text Available Hierarchical copper oxide @ ternary nickel cobalt sulfide (CuO/Cu2O@NiCo2S4 core-shell nanowire arrays on Cu foam have been successfully constructed by a facile two-step strategy. Vertically aligned CuO/Cu2O nanowire arrays are firstly grown on Cu foam by one-step thermal oxidation of Cu foam, followed by electrodeposition of NiCo2S4 nanosheets on the surface of CuO/Cu2O nanowires to form the CuO/Cu2O@NiCo2S4 core-shell nanostructures. Structural and morphological characterizations indicate that the average thickness of the NiCo2S4 nanosheets is ~20 nm and the diameter of CuO/Cu2O core is ~50 nm. Electrochemical properties of the hierarchical composites as integrated binder-free electrodes for supercapacitor were evaluated by various electrochemical methods. The hierarchical composite electrodes could achieve ultrahigh specific capacitance of 3.186 F cm−2 at 10 mA cm−2, good rate capability (82.06% capacitance retention at the current density from 2 to 50 mA cm−2 and excellent cycling stability, with capacitance retention of 96.73% after 2000 cycles at 10 mA cm−2. These results demonstrate the significance of optimized design and fabrication of electrode materials with more sufficient electrolyte-electrode interface, robust structural integrity and fast ion/electron transfer.

  12. Modelling of alcohol fermentation in a tubular reactor with high biomass recycle

    Energy Technology Data Exchange (ETDEWEB)

    Narodoslawsky, M; Mittmannsgruber, H; Nagl, W; Moser, A

    1988-05-30

    Fermentation in tubular recycle reactors with high biomass concentrations is a way to boost productivity in alcohol production. A computer model has been developed to investigate the potential as well as to establish the limits of this process from a chemical engineering point of view. The model takes into account the kinetics of the reaction, the nonideality of flow and the segregation in the bioreactor. In accordance with literature, it is shown that tubular reactors with biomass recycle can improve productivity of alcohol fermentation substantially. With the help of the computer based reactor model it was also possible to estimate the detrimental effects of cell damage due to pumping. These effects are shown to play a major role, if the biomass separation is performed by filtration units which need high flow rates, e.g. tangential flow filters.

  13. THE USE OF A NOVEL ALDEHYDE-FUNCTIONALIZED CHITOSAN HYDROGEL TO PREPARE POROUS TUBULAR SCAFFOLDS FOR VASCULAR TISSUE ENGINEERING APPLICATIONS

    Directory of Open Access Journals (Sweden)

    Eduardo P. Azevedo

    Full Text Available In this work, porous tubular scaffolds were prepared from a novel water soluble aldehyde-functionalized chitosan (ALDCHIT hydrogel, which was obtained by dissolving this chitosan derivative in water and using oxidized dextrose (OXDEXT as the crosslinking agent at different ALDCHIT:OXDEXT mole ratios (10:1, 10:2 and 10:4. By increasing the amount of OXDEXT in respect to ALDCHIT the hydrogels became more rigid and could absorb more than 200% of its weight in water. Since the ALDCHIT:OXDEXT 10:4 was the most stable hydrogel, its ability to form porous tubular scaffolds was investigated. The tubular scaffolds were prepared by the lyophilization method, where the orientation of the pores was controlled by exposing either the internal or the external surface of the frozen hydrogel during the sublimation step. When only the inner surface of the frozen hydrogel was exposed, tubular scaffolds with a highly porous lumen and a sealed outer surface were obtained, where the orientation of the pores, their sizes and interconnectivity seem to be optimum for vascular tissue engineering application.

  14. Growth of highly mesoporous CuCo2O4@C core-shell arrays as advanced electrodes for high-performance supercapacitors

    Science.gov (United States)

    Yan, Hailong; Lu, Yang; Zhu, Kejia; Peng, Tao; Liu, Xianming; Liu, Yunxin; Luo, Yongsong

    2018-05-01

    A series of CuCo2O4 nanostructures with different morphologies were prepared by a hydrothermal method in combination with thermal treatment. The morphology, structure and composition were investigated by scanning electron microscopy, transmission electron microscopy, X-ray diffraction and X-ray photoelectron spectroscopy. As the electrode materials for supercapacitors, CuCo2O4 nanoneedles delivered the highest specific capacitance compared with other CuCo2O4 nanostructures. Electrochemical performance measurements demonstrate that the carbon layer can improve the electrochemical stability of CuCo2O4 nanoneedles. The CuCo2O4@C electrode exhibits a high specific capacitance of 1432.4 F g-1 at a current density of 1 A g-1, with capacitance retention of 98.2% after 3000 circles. These characteristics of CuCo2O4@C composite are mainly due to the unique one dimensional needle-liked architecture and the conducting carbon, which provide a faster ion/electron transfer rate. These excellent performances of the CuCo2O4@C electrode confirmed the material as a positive electrode for hybrid supercapacitor application.

  15. Effects of modifiers in packed and open-tubular supercritical fluid chromatography

    NARCIS (Netherlands)

    Janssen, J.G.M.; Schoenmakers, P.J.; Cramers, C.A.M.G.

    1991-01-01

    The applicability of packed and open columns for supercritical fluid chromatography using pure carbon dioxide for the elution of a number of selected test components was investigated. It is showns that the number of solutes that can be eluted as symmetrical peaks is much larger in open-tubular

  16. Low-bias negative differential conductance controlled by electrode separation

    Science.gov (United States)

    Yi, Xiao-Hua; Liu, Ran; Bi, Jun-Jie; Jiao, Yang; Wang, Chuan-Kui; Li, Zong-Liang

    2016-12-01

    The electronic transport properties of a single thiolated arylethynylene molecule with 9,10-dihydroanthracene core, denoted as TADHA, is studied by using non-equilibrium Green’s function formalism combined with ab initio calculations. The numerical results show that the TADHA molecule exhibits excellent negative differential conductance (NDC) behavior at lower bias regime as probed experimentally. The NDC behavior of TADHA molecule originates from the Stark effect of the applied bias voltage, by which the highest occupied molecular orbital (HOMO) and the HOMO-1 are pulled apart and become localized. The NDC behavior of TADHA molecular system is tunable by changing the electrode distance. Shortening the electrode separation can enhance the NDC effect which is attributed to the possible increase of coupling between the two branches of TADHA molecule. Project supported by the National Natural Science Foundation of China (Grant Nos. 11374195 and 11405098) and the Natural Science Foundation of Shandong Province, China (Grant No. ZR2013FM006).

  17. Development of conceptual nuclear design of 10MWt research reactor core

    International Nuclear Information System (INIS)

    Kim, M. H.; Lim, J. Y.; Win, Naing; Park, J. M.

    2008-03-01

    KAERI has been devoted to develop export-oriented research reactors for a growing world-wide demand of new research reactor construction. Their ambition is that design of Korean research reactor must be competitive in commercial and technological based on the experience of the HANARO core design concept with thermal power of 30MW. They are developing a new research reactor named Advanced HANARO research Reactor (AHR) with thermal power of 20 MW. KAERI has export records of nuclear technology. In 1954-1967 two series of pool type research reactors based on the Russian design, VVR type and IRT type, have been constructed and commissioned in some countries as well as Russia. Nowadays Russian design is introducing again for export to developing countries such as Union of Myanmar. Therefore the objective of this research is that to build and innovative 10 MW research reactor core design based on the concept of HANARO core design to be competitive with Russian research reactor core design. system tool of HELIOS was used at the first stage in both cases which are research reactor using tubular type fuel assemblies and that reactor using pin type fuel assemblies. The reference core design of first kind of research reactor includes one in-core irradiation site at the core center. The neutron flux evaluations for core as well as reflector region were done through logical consistency of neutron flux distributions for individual assemblies. In order to find the optimum design, the parametric studies were carried out for assembly pitch, active fuel length, number of fuel ring in each assembly and so on. Design result shows the feasibility to have high neutron flux at in-core irradiation site. The second kind of research reactor is used the same kind of assemblies as HANARO and hence there is no optimization about basic design parameters. That core has only difference composition of assemblies and smaller specific power than HANARO. Since it is a reference core at first stage

  18. The Kenny syndrome, a rare type of growth deficiency with tubular stenosis, transient hypoparathyroidism and anomalies of refraction.

    Science.gov (United States)

    Majewski, F; Rosendahl, W; Ranke, M; Nolte, K

    1981-03-01

    One family (3 cases) with the Kenny syndrome and a second family (3 cases) with features of Kenny syndrome but lacking medullary stenosis are reported. The main symptoms in both families are proportionate dwarfism, cortical thickening of tubular bones, variable anomalies of the calvaria, anemia, transient hypoparathyroidism and variable ocular anomalies. The latter include microphthalmia, and moderate-to-severe myopia or hyperopia. In the first family there was medullary stenosis of most tubular bones. In the second family two cases exhibited mild-to-moderate cortical thickening of tubular bones, but absent or mild medullary stenosis. Possible variability of the Kenny syndrome is discussed. Endocrine studies failed to demonstrate any permanent disturbance of parathormone or calcitonin metabolism, or GH deficiency. Pathogenesis remains unclear. Autosomal dominant inheritance seems to be likely.

  19. Three-dimensional graphene anchored Fe2O3@C core-shell nanoparticles as supercapacitor electrodes

    DEFF Research Database (Denmark)

    Zhang, Miao; Sha, Junwei; Miao, Xiaoying

    2017-01-01

    as remarkable specific surface area. The electrochemical performance in supercapacitor has been characterized, and the as-prepared Fe2O3@C-rGO electrode shows a significant high specific capacitance of 211.4 F/g at 0.5 A/g and 177.2 F/g at 20 A/g with no visible performance decay even after 2500 cycles testing...

  20. Expanding the histologic spectrum of mucinous tubular and spindle cell carcinoma of the kidney.

    Science.gov (United States)

    Fine, Samson W; Argani, Pedram; DeMarzo, Angelo M; Delahunt, Brett; Sebo, Thomas J; Reuter, Victor E; Epstein, Jonathan I

    2006-12-01

    Mucinous tubular and spindle cell carcinomas (MTSCs) are polymorphic neoplasms characterized by small, elongated tubules lined by cuboidal cells and/or cords of spindled cells separated by pale mucinous stroma. Nonclassic morphologic variants and features of MTSC have not been well studied. We identified 17 previously unreported MTSCs from Surgical Pathology and consultative files of the authors and their respective institutions and studied their morphologic features. A total of 10/17 cases were considered "classic," as described above, with 5/10 showing at least focal (20% to 50%) tubular predominance without apparent mucinous matrix. Alcian blue staining revealed abundant (>50%) mucin in all classic cases. Seven of 17 MTSCs were classified as "mucin-poor," with little to no extracellular mucin appreciable by hematoxylin and eosin. Four of these cases showed equal tubular and spindled morphology, 2 cases showed spindle cell predominance (70%; 95%), and 1 case showed tubular predominance (90%). In 5/7 mucin-poor cases, staining for Alcian blue revealed scant (<10%) mucin in cellular areas with the other 2 cases having 30% mucin. Unusual histologic features identified in the 17 cases were: foamy macrophages (n=8), papillations/well formed papillae (n=6/n=1), focal clear cells in tubules (n=3), necrosis (n=3), oncocytic tubules (n=2; 40%, 5%), numerous small vacuoles (n=2), heterotopic bone (n=1), psammomatous calcification (n=1), and nodular growth with lymphocytic cuffing (n=1). An exceptional case contained a well-circumscribed, HMB45-positive angiomyolipoma within the MTSC. MTSCs may be "mucin-poor" and show a marked predominance of either of its principal morphologic components, which coupled with the presence of other unusual features such as clear cells, papillations, foamy macrophages, and necrosis, may mimic other forms of renal cell carcinoma. Pathologists must be aware of the spectrum of histologic findings within MTSCs to ensure their accurate diagnosis.

  1. Renal Impairment with Sublethal Tubular Cell Injury in a Chronic Liver Disease Mouse Model.

    Directory of Open Access Journals (Sweden)

    Tokiko Ishida

    Full Text Available The pathogenesis of renal impairment in chronic liver diseases (CLDs has been primarily studied in the advanced stages of hepatic injury. Meanwhile, the pathology of renal impairment in the early phase of CLDs is poorly understood, and animal models to elucidate its mechanisms are needed. Thus, we investigated whether an existing mouse model of CLD induced by 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC shows renal impairment in the early phase. Renal injury markers, renal histology (including immunohistochemistry for tubular injury markers and transmission electron microscopy, autophagy, and oxidative stress were studied longitudinally in DDC- and standard diet-fed BALB/c mice. Slight but significant renal dysfunction was evident in DDC-fed mice from the early phase. Meanwhile, histological examinations of the kidneys with routine light microscopy did not show definitive morphological findings, and electron microscopic analyses were required to detect limited injuries such as loss of brush border microvilli and mitochondrial deformities. Limited injuries have been recently designated as sublethal tubular cell injury. As humans with renal impairment, either with or without CLD, often show almost normal tubules, sublethal injury has been of particular interest. In this study, the injuries were associated with mitochondrial aberrations and oxidative stress, a possible mechanism for sublethal injury. Intriguingly, two defense mechanisms were associated with this injury that prevent it from progressing to apparent cell death: autophagy and single-cell extrusion with regeneration. Furthermore, the renal impairment of this model progressed to chronic kidney disease with interstitial fibrosis after long-term DDC feeding. These findings indicated that DDC induces renal impairment with sublethal tubular cell injury from the early phase, leading to chronic kidney disease. Importantly, this CLD mouse model could be useful for studying the

  2. Folded tubular photometer for atmospheric measurements of NO2 and NO

    Science.gov (United States)

    Birks, John W.; Andersen, Peter C.; Williford, Craig J.; Turnipseed, Andrew A.; Strunk, Stanley E.; Ennis, Christine A.; Mattson, Erick

    2018-05-01

    We describe and characterize a modular folded tubular photometer for making direct measurements of the concentrations of nitrogen dioxide (NO2) and specify how this method could be extended to measure other pollutants such as sulfur dioxide (SO2), ozone (O3), and black carbon particulate matter. Direct absorbance measurements using this photometer can be made across the spectral range from the ultraviolet (UV) to the near infrared. The absorbance cell makes use of modular components (tubular detection cells and mirror cubes) that allow construction of path lengths of up to 2 m or more while maintaining low cell volumes. The long path lengths and low cell volumes enable sensitive detection of ambient air pollutants down to low part-per-billion levels for gas species and aerosol extinctions down to 1 Mm-1, corresponding to ˜ 0.1 µg m-3 for black carbon particulates. Pressure equalization throughout the stages of the absorbance measurement is shown to be critical to accurate measurements of analyte concentrations. The present paper describes the application of this photometer to direct measurements of nitrogen dioxide (NO2) and the incorporation of design features that also enable measurement of nitric oxide (NO) in the same instrument. Excellent agreement for ambient measurements along an urban roadside was found for both NO2 and NO measured by the folded tubular photometer compared to existing standard techniques. Compared to commonly used methods for measurements of NOx species, the advantages of this approach include (1) an absolute quantification for NO2 based on the Beer-Lambert law, thereby greatly reducing the frequency at which calibrations are required; (2) the direct measurement of NO2 concentration without prior conversion to NO as is required for the commonly used chemiluminescence method; (3) the use of modular components that allow construction of absorbance detection cells of varying lengths for extending the dynamic range of concentrations that can

  3. The use of tubular subdermal and axial flaps in the correction of four cases of extensive lesions

    Directory of Open Access Journals (Sweden)

    Rafael Ricardo Huppes

    2017-10-01

    Full Text Available ABSTRACT: The most common skin lesions in small animals result from trauma, burns, or surgical resection of large tumors. Given the high importance of reconstructive surgery associated with tumors in small animals, this study reports four cases of reconstructive surgery using subcutaneous and axial tubular flaps in animals with neoplastic lesions. Subdermal and axial tubular flaps are healthy alternatives for reconstructing wounds caused by large tumor resection in areas with poor tissue elasticity.

  4. Experiments in MARIUS on HTR tubular fuel with loose particles

    Energy Technology Data Exchange (ETDEWEB)

    Bosser, R; Langlet, G

    1972-06-15

    The work described on HTR tubular fuel with loose particles is the first part of a program in three points. The cell is the same in the three experiments, only particles in the fuel container are changed. The aim of the experiment is to achieve the buckling in a critical facility. A description of the techniques of measurements, calculations, and results are presented.

  5. Dynamic stress of impeller blade of shaft extension tubular pump device based on bidirectional fluid-structure interaction

    Energy Technology Data Exchange (ETDEWEB)

    Kan, Kan; Liu, Huiwen; Yang, Chunxia [Hohai University, Nanjing (China); Zheng, Yuan [National Engineering Research Center of Water Resources Efficient Utilization and Engineering Safety, Nanjing (China); Fu, Shifeng; Zhang, Xin [Power China Huadong Engineering Corporation, Hangzhou (China)

    2017-04-15

    Current research on the stability of tubular pumps is mainly concerned with the transient hydrodynamic characteristics. However, the structural response under the influence of fluid-structure interaction hasn't been taken fully into consideration. The instability of the structure can cause vibration and cracks, which may threaten the safety of the unit. We used bidirectional fluid-structure interaction to comprehensively analyze the dynamic stress characteristics of the impeller blades of the shaft extension tubular pump device. Furthermore, dynamic stress of impeller blade of shaft extension tubular pump device was solved under different lift conditions of 0° blade angle. Based on Reynolds-average N-S equation and SST k-ω turbulence model, numerical simulation was carried out for three-dimensional unsteady incompressible turbulent flow field of the pump device whole flow passage. Meanwhile, the finite element method was used to calculate dynamic characteristics of the blade structure. The blade dynamic stress distribution was obtained on the basis of fourth strength theory. The research results indicate that the maximum blade dynamic stress appears at the joint between root of inlet side of the blade suction surface and the axis. Considering the influence of gravity, the fluctuation of the blade dynamic stress increases initially and decreases afterwards within a rotation period. In the meantime, the dynamic stress in the middle part of inlet edge presents larger relative fluctuation amplitude. Finally, a prediction method for dynamic stress distribution of tubular pump considering fluid-structure interaction and gravity effect was proposed. This method can be used in the design stage of tubular pump to predict dynamic stress distribution of the structure under different operating conditions, improve the reliability of pump impeller and analyze the impeller fatigue life.

  6. A novel direct carbon fuel cell by approach of tubular solid oxide fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Renzhu; Zhao, Chunhua; Li, Junliang; Zeng, Fanrong; Wang, Shaorong; Wen, Tinglian; Wen, Zhaoyin [CAS Key Laboratory of Materials for Energy Conversion, Shanghai Inorganic Energy Materials and Power Source Engineering Center, Shanghai Institute of Ceramics, Chinese Academy of Sciences (SICCAS), 1295 Dingxi Road, Shanghai 200050 (China)

    2010-01-15

    A direct carbon fuel cell based on a conventional anode-supported tubular solid oxide fuel cell, which consisted of a NiO-YSZ anode support tube, a NiO-ScSZ anode functional layer, a ScSZ electrolyte film, and a LSM-ScSZ cathode, has been successfully achieved. It used the carbon black as fuel and oxygen as the oxidant, and a preliminary examination of the DCFC has been carried out. The cell generated an acceptable performance with the maximum power densities of 104, 75, and 47 mW cm{sup -2} at 850, 800, and 750 C, respectively. These results demonstrate the feasibility for carbon directly converting to electricity in tubular solid oxide fuel cells. (author)

  7. Proximal renal tubular injury in rats sub-chronically exposed to low fluoride concentrations

    Energy Technology Data Exchange (ETDEWEB)

    Cárdenas-González, Mariana C.; Del Razo, Luz M. [Departmento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), México, D. F., México (Mexico); Barrera-Chimal, Jonatan [Unidad de Fisiología Molecular, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México and Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México, D. F., México (Mexico); Jacobo-Estrada, Tania [Departmento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), México, D. F., México (Mexico); López-Bayghen, Esther [Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), México, D. F., México (Mexico); and others

    2013-11-01

    Fluoride is usually found in groundwater at a very wide range of concentration between 0.5 and 25 ppm. At present, few studies have assessed the renal effects of fluoride at environmentally relevant concentrations. Furthermore, most of these studies have used insensitive and nonspecific biomarkers of kidney injury. The aim of this study was to use early and sensitive biomarkers to evaluate kidney injury after fluoride exposure to environmentally relevant concentrations. Recently weaned male Wistar rats were exposed to low (15 ppm) and high (50 ppm) fluoride concentrations in drinking water for a period of 40 days. At the end of the exposure period, kidney injury biomarkers were measured in urine and renal mRNA expression levels were assessed by real time RT-PCR. Our results showed that the urinary kidney injury molecule (Kim-1), clusterin (Clu), osteopontin (OPN) and heat shock protein 72 excretion rate significantly increased in the group exposed to the high fluoride concentration. Accordingly, fluoride exposure increased renal Kim-1, Clu and OPN mRNA expression levels. Moreover, there was a significant dose-dependent increase in urinary β-2-microglobulin and cystatin-C excretion rate. Additionally, a tendency towards a dose dependent increase of tubular damage in the histopathological light microscopy findings confirmed the preferential impact of fluoride on the tubular structure. All of these changes occurred at early stages in which, the renal function was not altered. In conclusion using early and sensitive biomarkers of kidney injury, we were able to found proximal tubular alterations in rats sub-chronically exposed to fluoride. - Highlights: • Exposure to low concentrations of fluoride induced proximal tubular injury • Increase in urinary Kim-1, Clu, OPN and Hsp72 in 50 ppm fluoride-exposed group • Increase in urinary B2M and CysC in 15 and 50 ppm fluoride-exposed groups • Fluoride exposure increased renal Kim, Clu and OPN mRNA expression levels.

  8. Inherited renal tubular defects with hypokalemia

    Directory of Open Access Journals (Sweden)

    Muthukrishnan J

    2009-01-01

    Full Text Available Bartter′s and Gitelman′s syndrome are two ends of a spectrum of inherited renal tubular disorders that present with hypokalemic metabolic alkalosis of varying severity. Clinical features and associated calcium and magnesium ion abnormalities are used to diagnose these cases after excluding other commoner causes. We report on two cases, the first being a young boy, born of pregnancy complicated by polyhydramnios, who had classical dysmorphic features, polyuria, hypokalemia and hypercalciuria and was diagnosed as having Bartter′s syndrome. The second patient is a lady who had recurrent tetany as the only manifestation of Gitelman′s syndrome, which is an unusual presentation. Potassium replacement with supplementation of other deficient ions led to satisfactory clinical and biochemical response.

  9. Early segmental changes in ischemic acute tubular necrosis of the rat kidney

    DEFF Research Database (Denmark)

    Faarup, Poul; Nørgaard, Tove; Hegedüs, Viktor

    2004-01-01

    The background and mechanisms of ischemic acute tubular necrosis are still essentially unclarified. Therefore a quantitative morphological technique was applied for evaluation of the early structural changes in different fractions of the proximal convoluted tubule in the rat renal cortex. In male...

  10. Ex vivo hyperpolarized MR spectroscopy on isolated renal tubular cells: A novel technique for cell energy phenotyping.

    Science.gov (United States)

    Juul, Troels; Palm, Fredrik; Nielsen, Per Mose; Bertelsen, Lotte Bonde; Laustsen, Christoffer

    2017-08-01

    It has been demonstrated that hyperpolarized 13 C MR is a useful tool to study cultured cells. However, cells in culture can alter phenotype, which raises concerns regarding the in vivo significance of such findings. Here we investigate if metabolic phenotyping using hyperpolarized 13 C MR is suitable for cells isolated from kidney tissue, without prior cell culture. Isolation of tubular cells from freshly excised kidney tissue and treatment with either ouabain or antimycin A was investigated with hyperpolarized MR spectroscopy on a 9.4 Tesla preclinical imaging system. Isolation of tubular cells from less than 2 g of kidney tissue generally resulted in more than 10 million live tubular cells. This amount of cells was enough to yield robust signals from the conversion of 13 C-pyruvate to lactate, bicarbonate and alanine, demonstrating that metabolic flux by means of both anaerobic and aerobic pathways can be quantified using this technique. Ex vivo metabolic phenotyping using hyperpolarized 13 C MR in a preclinical system is a useful technique to study energy metabolism in freshly isolated renal tubular cells. This technique has the potential to advance our understanding of both normal cell physiology as well as pathological processes contributing to kidney disease. Magn Reson Med 78:457-461, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  11. A tubular electrode for radiofrequency ablation therapy

    KAUST Repository

    Antunes, Carlos Lemos Lemos Lemos; Almeida, Tony Richard O; Raposeiro, Né lia; Gonç alves, Belarmino; Á lmeida, Paulo E M

    2012-01-01

    – Due to its good mechanical and biocompatibility characteristics, nitinol SEMS is a popular endoprothesis used for relieving stricture problems in hollow organs due to carcinomas. Besides its mechanical application, SEMS can be regarded

  12. Additive Manufacturing of Patient-Customizable Scaffolds for Tubular Tissues Using the Melt-Drawing Method.

    Science.gov (United States)

    Tan, Yu Jun; Tan, Xipeng; Yeong, Wai Yee; Tor, Shu Beng

    2016-11-03

    Polymeric fibrous scaffolds for guiding cell growth are designed to be potentially used for the tissue engineering (TE) of tubular organs including esophagi, blood vessels, tracheas, etc. Tubular scaffolds were fabricated via melt-drawing of highly elastic poly(l-lactide-co-ε-caprolactone) (PLC) fibers layer-by-layer on a cylindrical mandrel. The diameter and length of the scaffolds are customizable via 3D printing of the mandrel. Thickness of the scaffolds was varied by changing the number of layers of the melt-drawing process. The morphology and tensile properties of the PLC fibers were investigated. The fibers were highly aligned with a uniform diameter. Their diameters and tensile properties were tunable by varying the melt-drawing speeds. These tailorable topographies and tensile properties show that the additive-based scaffold fabrication technique is customizable at the micro- and macro-scale for different tubular tissues. The merits of these scaffolds in TE were further shown by the finding that myoblast and fibroblast cells seeded onto the scaffolds in vitro showed appropriate cell proliferation and distribution. Human mesenchymal stem cells (hMSCs) differentiated to smooth muscle lineage on the microfibrous scaffolds in the absence of soluble induction factors, showing cellular shape modulation and scaffold elasticity may encourage the myogenic differentiation of stem cells.

  13. Effect of benazepril on the transdifferentiation of renal tubular epithelial cells from diabetic rats.

    Science.gov (United States)

    Peng, Tao; Wang, Jie; Zhen, Junhui; Hu, Zhao; Yang, Xiangdong

    2014-07-01

    The aim of this study was to investigate the effect of benazepril on the transdifferentiation of renal tubular epithelial cells from diabetic rats. Thirty male Sprague-Dawley rats were included in the present study. Eight of the 30 rats were randomly selected and served as the normal control group (N group), while the remaining 22 rats, injected with streptozotocin (STZ), comprised the diabetic rat model. Rats with diabetes were randomly divided into the diabetic (DM group) and benazepril (B group) groups. The total course was conducted over 12 weeks. Blood glucose, body weight, kidney/body weight, 24-h urinary protein, serum creatinine and blood urea nitrogen were measured at the start and end of the study. We observed the tubulointerstitial pathological changes, and applied immunohistochemistry and western blotting to detect the expression of α-smooth muscle actin (α-SMA) in renal tissue. The levels of blood glucose, kidney/body weight, 24-h urinary protein, serum creatinine, blood urea nitrogen and tubulointerstitial damage index (TII) in the DM group were significantly higher than that in the N group (pbenazepril significantly reduced the expression of α-SMA in renal tubular epithelial cells obtained from diabetic rats, inhibited the transdifferentiation of renal tubular epithelial cells and played an important role in kidney protection.

  14. Exosome production and its regulation of EGFR during wound healing in renal tubular cells.

    Science.gov (United States)

    Zhou, Xiangjun; Zhang, Wei; Yao, Qisheng; Zhang, Hao; Dong, Guie; Zhang, Ming; Liu, Yutao; Chen, Jian-Kang; Dong, Zheng

    2017-06-01

    Kidney repair following injury involves the reconstitution of a structurally and functionally intact tubular epithelium. Growth factors and their receptors, such as EGFR, are important in the repair of renal tubules. Exosomes are cell-produced small (~100 nm in diameter) vesicles that contain and transfer proteins, lipids, RNAs, and DNAs between cells. In this study, we examined the relationship between exosome production and EGFR activation and the potential role of exosome in wound healing. EGFR activation occurred shortly after scratch wounding in renal tubular cells. Wound repair after scratching was significantly promoted by EGF and suppressed by EGFR inhibitor gefitinib. Interestingly, scratch wounding induced a significant increase of exosome production. The exosome production was decreased by EGF and increased by gefitinib, suggesting a suppressive role of EGFR signaling in exosome production. Conversely, inhibition of exosome release by GW4869 and manumycin A markedly increased EGFR activation and promoted wound healing. Moreover, exosomes derived from scratch-wounding cells could inhibit wound healing. Collectively, the results indicate that wound healing in renal tubular cells is associated with EGFR activation and exosome production. Although EGFR activation promotes wound healing, released exosomes may antagonize EGFR activation and wound healing. Copyright © 2017 the American Physiological Society.

  15. Fabrication and characterization of a cathode-supported tubular solid oxide fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Chunhua; Liu, Renzhu; Wang, Shaorong; Wang, Zhenrong; Qian, Jiqin; Wen, Tinglian [CAS Key Laboratory of Materials for Energy Conversion, Shanghai Institute of Ceramics, Chinese Academy of Sciences (SICCAS), 1295 Dingxi Road, Shanghai 200050 (China)

    2009-07-15

    A cathode-supported tubular solid oxide fuel cell (CTSOFC) with the length of 6.0 cm and outside diameter of 1.0 cm has been successfully fabricated via dip-coating and co-sintering techniques. A crack-free electrolyte film with a thickness of {proportional_to}14 {mu}m was obtained by co-firing of cathode/cathode active layer/electrolyte/anode at 1250 C. The relative low densifying temperature for electrolyte was attributed to the large shrinkage of the green tubular which assisted the densification of electrolyte. The assembled cell was electrochemically characterized with humidified H{sub 2} as fuel and O{sub 2} as oxidant. The open circuit voltages (OCV) were 1.1, 1.08 and 1.06 V at 750, 800 and 850 C, respectively, with the maximum power densities of 157, 272 and 358 mW cm{sup -2} at corresponding temperatures. (author)

  16. Utilidad de la recolección de orina de dos horas para el diagnóstico del tipo de acidosis tubular renal

    Directory of Open Access Journals (Sweden)

    Margarita Irene Rocha-Gómez

    2015-08-01

    Full Text Available La acidosis tubular renal se caracteriza por acidosis metabólica hiperclorémica. El diagnóstico del tipo de acidosis tubular renal se realiza mediante la medición del transporte tubular máximo de bicarbonato y de la capacidad de acidificación urinaria; sin embargo, estas pruebas son invasivas y requieren determinaciones especializadas. Objetivo: comparar la utilidad de la recolección urinaria de dos horas, una prueba relativamente simple y al alcance de muchos laboratorios, con la medición del transporte tubular máximo de bicarbonato y con la capacidad de acidificación urinaria (procedimientos de referencia para clasificar el tipo de acidosis tubular renal en pacientes pediátricos. Material y método: el estudio se realizó en niños con diagnóstico de acidosis tubular renal. El primer día se recolectó la muestra sérica y urinaria de dos horas. Al día siguiente se efectuaron los procedimientos de referencia administrando bicarbonato de sodio en 8 horas; las muestras se colectaron cada hora y se determinaron la reabsorción de bicarbonato y la acidificación urinaria.  Resultados: se incluyeron 19 pacientes y en 17 casos la colección urinaria de dos horas confirmó el diagnóstico de los procedimientos de referencia. La recolección urinaria de dos horas tuvo sensibilidad de 0.94 y especificidad de 0.67 para el diagnóstico de acidosis tubular renal distal. Conclusión: la recolección de orina de dos horas se realiza en forma menos invasiva y ofrece resultados semejantes a los procedimientos de referencia.

  17. Design, fabrication and skin-electrode contact analysis of polymer microneedle-based ECG electrodes

    Science.gov (United States)

    O'Mahony, Conor; Grygoryev, Konstantin; Ciarlone, Antonio; Giannoni, Giuseppe; Kenthao, Anan; Galvin, Paul

    2016-08-01

    Microneedle-based ‘dry’ electrodes have immense potential for use in diagnostic procedures such as electrocardiography (ECG) analysis, as they eliminate several of the drawbacks associated with the conventional ‘wet’ electrodes currently used for physiological signal recording. To be commercially successful in such a competitive market, it is essential that dry electrodes are manufacturable in high volumes and at low cost. In addition, the topographical nature of these emerging devices means that electrode performance is likely to be highly dependent on the quality of the skin-electrode contact. This paper presents a low-cost, wafer-level micromoulding technology for the fabrication of polymeric ECG electrodes that use microneedle structures to make a direct electrical contact to the body. The double-sided moulding process can be used to eliminate post-process via creation and wafer dicing steps. In addition, measurement techniques have been developed to characterize the skin-electrode contact force. We perform the first analysis of signal-to-noise ratio dependency on contact force, and show that although microneedle-based electrodes can outperform conventional gel electrodes, the quality of ECG recordings is significantly dependent on temporal and mechanical aspects of the skin-electrode interface.

  18. Design, fabrication and skin-electrode contact analysis of polymer microneedle-based ECG electrodes

    International Nuclear Information System (INIS)

    O’Mahony, Conor; Grygoryev, Konstantin; Ciarlone, Antonio; Giannoni, Giuseppe; Kenthao, Anan; Galvin, Paul

    2016-01-01

    Microneedle-based ‘dry’ electrodes have immense potential for use in diagnostic procedures such as electrocardiography (ECG) analysis, as they eliminate several of the drawbacks associated with the conventional ‘wet’ electrodes currently used for physiological signal recording. To be commercially successful in such a competitive market, it is essential that dry electrodes are manufacturable in high volumes and at low cost. In addition, the topographical nature of these emerging devices means that electrode performance is likely to be highly dependent on the quality of the skin-electrode contact.This paper presents a low-cost, wafer-level micromoulding technology for the fabrication of polymeric ECG electrodes that use microneedle structures to make a direct electrical contact to the body. The double-sided moulding process can be used to eliminate post-process via creation and wafer dicing steps. In addition, measurement techniques have been developed to characterize the skin-electrode contact force. We perform the first analysis of signal-to-noise ratio dependency on contact force, and show that although microneedle-based electrodes can outperform conventional gel electrodes, the quality of ECG recordings is significantly dependent on temporal and mechanical aspects of the skin-electrode interface. (paper)

  19. Cisplatin toxicity reduced in human cultured renal tubular cells by oxygen pretreatment.

    Science.gov (United States)

    Kaeidi, Ayat; Rasoulian, Bahram; Hajializadeh, Zahra; Pourkhodadad, Soheila; Rezaei, Maryam

    2013-01-01

    Cisplatin is an effective and widely used chemotherapy agent and its side effects, particularly nephrotoxicity, limit its usage and related platinum-based drugs. Cisplatin nephrotoxicity is mainly due to extremely increase in reactive oxygen species (ROS) generation leading to kidney tubular cell death. Preconditioning with oxidative stress has been demonstrated to stimulate the cellular adaptation to subsequent severe oxidative stress. Short term oxygen pre-exposure as a mild oxidative stress may enhance some endogenous defense mechanisms, so its effect on Cisplatin induced cell death was investigated in present research. We studied the effects of hyperoxic environment pre-exposure on Cisplatin toxicity in an in-vitro model of cultured human embryonic tubular epithelial cells (AD293). Viability of AD293 cells, as evaluated by MTT-assay, was affected by Cisplatin in a time (1-4 h) dependent model. Biochemical markers of cell apoptosis were evaluated using immunoblotting. Pretreatment with nearly pure oxygen (≥90%) for 2 h significantly reduced the level of cell damage. Activated caspase 3 and Bax/Bcl-2 ratio were significantly increased in Cisplatin-treated cells. Oxygen pretreatment inhibited caspase 3 activation and decreased Bax/Bcl-2 ratio. Oxygen pre-treatment itself not showed any cytotoxicity in exposure times up to 3 h. Our data indicate that hyperoxic preconditioning reduces Cisplatin toxicity in cultured human tubular epithelial cells. The exact mechanism of protection is unclear, though enhancement of some endogenous defense mechanisms and subsequently scavenging of free oxygen radicals may play an important role.

  20. Ideal heat transfer conditions for tubular solar receivers with different design constraints

    Science.gov (United States)

    Kim, Jin-Soo; Potter, Daniel; Gardner, Wilson; Too, Yen Chean Soo; Padilla, Ricardo Vasquez

    2017-06-01

    The optimum heat transfer condition for a tubular type solar receiver was investigated for various receiver pipe size, heat transfer fluid, and design requirement and constraint(s). Heat transfer of a single plain receiver pipe exposed to concentrated solar energy was modelled along the flow path of the heat transfer fluid. Three different working fluids, molten salt, sodium, and supercritical carbon dioxide (sCO2) were considered in the case studies with different design conditions. The optimized ideal heat transfer condition was identified through fast iterative heat transfer calculations solving for all relevant radiation, conduction and convection heat transfers throughout the entire discretized tubular receiver. The ideal condition giving the best performance was obtained by finding the highest acceptable solar energy flux optimally distributed to meet different constraint(s), such as maximum allowable material temperature of receiver, maximum allowable film temperature of heat transfer fluid, and maximum allowable stress of receiver pipe material. The level of fluid side turbulence (represented by pressure drop in this study) was also optimized to give the highest net power production. As the outcome of the study gives information on the most ideal heat transfer condition, it can be used as a useful guideline for optimal design of a real receiver and solar field in a combined manner. The ideal heat transfer condition is especially important for high temperature tubular receivers (e.g. for supplying heat to high efficiency Brayton cycle turbines) where the system design and performance is tightly constrained by the receiver pipe material strength.

  1. Closure of tubular patent ductus arteriosus with the Amplatzer Vascular Plug IV: feasibility and safety.

    Science.gov (United States)

    Baruteau, Alban-Elouen; Lambert, Virginie; Riou, Jean-Yves; Angel, Claude-Yves; Belli, Emre; Petit, Jérôme

    2015-01-01

    Closure of tubular patent ductus arteriosus remains a challenging procedure. Anecdotal use of Amplatzer Vascular Plug IV for tubular ductus closure has been reported but feasibility and safety in a consecutive patients' series remain unknown. We performed a monocenter prospective study at the Marie Lannelongue Hospital in Paris, France. From 2009 to 2014, a total of 47 patients (39 infants, 3 children, and 5 adults) underwent ductus closure with the Plug IV. Ductus morphology was a type E in 34 (72.3%) patients and a type C in 13 (27.7%) patients. Ductus closure occurred in 39 (83.0%) infants at a median age of seven months (range: 3-23 months) and a median weight of 6.9 kg (range: 4.1-17.0 kg). A past history of prematurity and very low birth weight was found in 33 (70.2%) of them. Twelve (25.5%) patients had pulmonary hypertension. Mean Plug IV diameter was 1.9 ± 0.1 mm larger than the mean maximal ductus diameter. Early complete closure of the ductus was obtained in all patients. Early migration of an undersized Plug IV occurred in one (2.1%) patient and was suitable for percutaneous device retrieval. After a mean follow-up of 3.4 ± 1.4 years, all patients are alive and asymptomatic, no late complication occurred. Transcatheter closure of tubular ductus with the Amplatzer Vascular Plug IV can be safe and effective, with a 100% early occlusion rate. This device, suitable for a 4F sheath, is a new alternative for tubular ductus closure in low-body-weight infants. © The Author(s) 2014.

  2. Modelling effects of current distributions on performance of micro-tubular hollow fibre solid oxide fuel cells

    International Nuclear Information System (INIS)

    Doraswami, U.; Droushiotis, N.; Kelsall, G.H.

    2010-01-01

    A three-dimensional model, considering mass, momentum, energy and charge conservation, was developed and the equations solved to describe the physico-chemical phenomena occurring within a single, micro-tubular hollow fibre solid oxide fuel cell (HF-SOFC). The model was used to investigate the spatial distributions of potential, current and reactants in a 10 mm long HF-SOFC. The predicted effects of location of current collectors, electrode conductivities, cathode thickness and porosity were analysed to minimise the ranges of current density distributions and maximise performance by judicious design. To decrease the computational load, azimuthal symmetry was assumed to model 50 and 100 mm long reactors in 2-D. With connectors at the same end of the HF-SOFC operating at a cell voltage of 0.5 V and a mean 5 kA m -2 , axial potential drops of ca. 0.14 V in the cathode were predicted, comparable to the cathode activation overpotential. Those potential drops caused average current densities to decrease from ca. 6.5 to ca.1 kA m -2 as HF-SOFC length increased from 10 to 100 mm, at which much of the length was inactive. Peak power densities were predicted to vary from 3.8 to -2 , depending on the location of the current collectors; performance increased with increasing cathode thickness and decreasing porosity.

  3. High performance cermet electrodes

    Science.gov (United States)

    Isenberg, Arnold O.; Zymboly, Gregory E.

    1986-01-01

    Disclosed is a method of increasing the operating cell voltage of a solid oxide electrochemical cell having metal electrode particles in contact with an oxygen-transporting ceramic electrolyte. The metal electrode is heated with the cell, and oxygen is passed through the oxygen-transporting ceramic electrolyte to the surface of the metal electrode particles so that the metal electrode particles are oxidized to form a metal oxide layer between the metal electrode particles and the electrolyte. The metal oxide layer is then reduced to form porous metal between the metal electrode particles and the ceramic electrolyte.

  4. Tubularized Penile-Flap Urethroplasty Using a Fasciocutaneous Random Pedicled Flap for Recurrent Anterior Urethral Stricture

    Directory of Open Access Journals (Sweden)

    Yong Jig Lee

    2012-05-01

    Full Text Available This report describes the use of a tubularized random flap for the curative treatment of recurrent anterior urethral stricture. Under the condition of pendulous lithotomy and suprapubic cystostomy, the urethral stricture was removed via a midline ventral penile incision followed by elevation of the flap and insertion of an 18-Fr catheter. Subcutaneous buried interrupted sutures were used to reapproximate the waterproof tubularized neourethra and to coapt with the neourethra and each stump of the urethra, first proximally and then distally. The defect of the penile shaft was covered by advancement of the surrounding scrotal flap. The indwelling catheter was maintained for 21 days. A 9 month postoperative cystoscopy showed no flap necrosis, no mechanical stricture, and no hair growth on the lumen of the neourethra. The patient showed no voiding discomfort 6 months after the operation. The advantages of this procedure are the lack of need for microsurgery, shortening of admission, the use of only spinal anesthesia (no general anesthesia, and a relatively short operative time. The tubularized unilateral penile fasciocutaneous flap should be considered an option for initial flap urethroplasty as a curative technique.

  5. Nickel Nanowire@Porous NiCo2O4 Nanorods Arrays Grown on Nickel Foam as Efficient Pseudocapacitor Electrode

    Directory of Open Access Journals (Sweden)

    Houzhao Wan

    2017-12-01

    Full Text Available A three dimensional hierarchical nanostructure composed of nickel nanowires and porous NiCo2O4 nanorods arrays on the surface of nickel foam is successfully fabricated by a facile route. In this structure, the nickel nanowires are used as core materials to support high-pseudocapacitance NiCo2O4 nanorods and construct the well-defined NiCo2O4 nanorods shell/nickel nanowires core hierarchical structure on nickel foam. Benefiting from the participation of nickel nanowires, the nickel nanowire@NiCo2O4/Ni foam electrode shows a high areal specific capacitance (7.4 F cm−2 at 5 mA cm−2, excellent rate capability (88.04% retained at 100 mA cm−2, and good cycling stability (74.08% retained after 1,500 cycles. The superior electrochemical properties made it promising as electrode for supercapacitors.

  6. Hypertrophy of proximal tubular epithelial cells induced by low pH in vitro is independent of ammoniagenesis.

    Science.gov (United States)

    Bevington, A; Millwater, C J; Walls, J

    1994-01-01

    Metabolic acidosis can lead to tubular hypertrophy in vivo. This is thought to arise from stimulation of renal production of ammonia, a known hypertrophic agent. To examine this effect in vitro, confluent opossum (OK) proximal tubular epithelial cells were cultured at acidic pH (7.21 +/- 0.02) or at control pH (7.37 +/- 0.01) for 4 days. Protein content was 9% higher at acidic pH whereas DNA content was unaffected. The resulting increase in mean cell size (protein/DNA ratio) was 10% but correlated inversely with the mass of cells in control wells, varying from +48% at low cell mass to -14% at high cell mass. In contrast, low pH decreased 3H-thymidine incorporation by 9%. However, ammonia production was unaffected. These changes in protein/DNA ratio and 3H-thymidine incorporation cannot therefore be attributed to acid-induced ammoniagenesis and imply that low pH exerts a more direct effect on tubular cell growth than previously envisaged.

  7. Liquid electrode

    Science.gov (United States)

    Ekechukwu, A.A.

    1994-07-05

    A dropping electrolyte electrode is described for use in electrochemical analysis of non-polar sample solutions, such as benzene or cyclohexane. The liquid electrode, preferably an aqueous salt solution immiscible in the sample solution, is introduced into the solution in dropwise fashion from a capillary. The electrolyte is introduced at a known rate, thus, the droplets each have the same volume and surface area. The electrode is used in making standard electrochemical measurements in order to determine properties of non-polar sample solutions. 2 figures.

  8. Tubular overexpression of gremlin induces renal damage susceptibility in mice.

    Directory of Open Access Journals (Sweden)

    Alejandra Droguett

    Full Text Available A growing number of patients are recognized worldwide to have chronic kidney disease. Glomerular and interstitial fibrosis are hallmarks of renal progression. However, fibrosis of the kidney remains an unresolved challenge, and its molecular mechanisms are still not fully understood. Gremlin is an embryogenic gene that has been shown to play a key role in nephrogenesis, and its expression is generally low in the normal adult kidney. However, gremlin expression is elevated in many human renal diseases, including diabetic nephropathy, pauci-immune glomerulonephritis and chronic allograft nephropathy. Several studies have proposed that gremlin may be involved in renal damage by acting as a downstream mediator of TGF-β. To examine the in vivo role of gremlin in kidney pathophysiology, we generated seven viable transgenic mouse lines expressing human gremlin (GREM1 specifically in renal proximal tubular epithelial cells under the control of an androgen-regulated promoter. These lines demonstrated 1.2- to 200-fold increased GREM1 expression. GREM1 transgenic mice presented a normal phenotype and were without proteinuria and renal function involvement. In response to the acute renal damage cause by folic acid nephrotoxicity, tubule-specific GREM1 transgenic mice developed increased proteinuria after 7 and 14 days compared with wild-type treated mice. At 14 days tubular lesions, such as dilatation, epithelium flattening and hyaline casts, with interstitial cell infiltration and mild fibrosis were significantly more prominent in transgenic mice than wild-type mice. Tubular GREM1 overexpression was correlated with the renal upregulation of profibrotic factors, such as TGF-β and αSMA, and with increased numbers of monocytes/macrophages and lymphocytes compared to wild-type mice. Taken together, our results suggest that GREM1-overexpressing mice have an increased susceptibility to renal damage, supporting the involvement of gremlin in renal damage

  9. Optimal hydraulic design of new-type shaft tubular pumping system

    International Nuclear Information System (INIS)

    Zhu, H G; Zhang, R T; Zhou, J R

    2012-01-01

    Based on the characteristics of large flow rate, low-head, short annual operation time and high reliability of city flood-control pumping stations, a new-type shaft tubular pumping system featuring shaft suction box, siphon-type discharge passage with vacuum breaker as cutoff device was put forward, which possesses such advantages as simpler structure, reliable cutoff and higher energy performance. According to the design parameters of a city flood control pumping station, a numerical computation model was set up including shaft-type suction box, siphon-type discharge passage, pump impeller and guide vanes. By using commercial CFD software Fluent, RNG κ-ε turbulence model was adopted to close the three-dimensional time-averaged incompressible N-S equations. After completing optimal hydraulic design of shaft-type suction box, and keeping the parameters of total length, maximum width and outlet section unchanged, siphon-type discharge passages of three hump locations and three hump heights were designed and numerical analysis on the 9 hydraulic design schemes of pumping system were proceeded. The computational results show that the changing of hump locations and hump heights directly affects the internal flow patterns of discharge passages and hydraulic performances of the system, and when hump is located 3.66D from the inlet section and hump height is about 0.65D (D is the diameter of pump impeller), the new-type shaft tubular pumping system achieves better energy performances. A pumping system model test of the optimal designed scheme was carried out. The result shows that the highest pumping system efficiency reaches 75.96%, and when at design head of 1.15m the flow rate and system efficiency were 0.304m 3 /s and 63.10%, respectively. Thus, the validity of optimal design method was verified by the model test, and a solid foundation was laid for the application and extension of the new-type shaft tubular pumping system.

  10. Gas-permeable hydrophobic tubular membranes for ammonia recovery in bio-electrochemical systems

    NARCIS (Netherlands)

    Kuntke, P.; Zamora, P.; Saakes, M.; Buisman, C.J.N.; Hamelers, H.V.M.

    2016-01-01

    The application of a gas-permeable hydrophobic tubular membrane in bio-electrochemical systems enables efficient recovery of ammonia (NH3) from their cathode compartments. Due to a hydrogen evolution reaction at the cathode, no chemical addition was required to increase the pH for

  11. Whole‐exome sequencing as a diagnostic tool for distal renal tubular acidosis

    Directory of Open Access Journals (Sweden)

    Paula Cristina Barros Pereira

    2015-11-01

    Conclusion: These results confirm the value of whole‐exome sequencing for the study of rare and complex genetic nephropathies, allowing the identification of novel and recurrent mutations. Furthermore, for the first time the application of this molecular method in renal tubular diseases has been clearly demonstrated.

  12. Ion-selective electrode reviews

    CERN Document Server

    Thomas, J D R

    1983-01-01

    Ion-Selective Electrode Reviews, Volume 5 is a collection of articles that covers ion-speciation. The book aims to present the advancements of the range and capabilities of selective ion-sensors. The topics covered in the selection are neutral carrier based ion-selective electrodes; reference electrodes and liquid junction effects in ion-selective electrode potentiometry; ion transfer across water/organic phase boundaries and analytical; and carbon substrate ion-selective electrodes. The text will be of great use to chemists and chemical engineers.

  13. Tubular adenoma of the breast in a pregnant girl: report on a case.

    Science.gov (United States)

    Palnaes Hansen, C; Fahrenkrug, L; Hastrup, N

    1991-12-01

    A rare case of a tubular breast adenoma in a 13-year-old pregnant girl is presented. The tumor which developed during pregnancy measured 10 x 8 x 4 cm, was well demarcated and could be totally removed.

  14. Characterisation of nano-interdigitated electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Skjolding, L H D; Ribayrol, A; Montelius, L [Division of Solid State Physics, Lund University, Box 118, SE-221 00 Lund (Sweden); Spegel, C [Department of Analytical Chemistry Lund University, Box 124, SE-221 00 Lund (Sweden); Emneus, J [MIC - Department of Micro and Nanotechnology, DTU - Building 345 East, DK-2800 Kgs. Lyngby (Denmark)], E-mail: lars_henrik.daehli_skjolding@ftf.lth.se

    2008-03-15

    Interdigitated electrodes made up of two individually addressable interdigitated comb-like electrode structures have frequently been suggested as ultra sensitive electrochemical biosensors. Since the signal enhancement effects due to cycling of the reduced and oxidized species are strongly dependent on the inter electrode distances, since the nature of the enhancement is due to overlying diffusion layers, interdigitated electrodes with an electrode separation of less then one micrometer are desired for maximum signal amplification. Fabrication of submicron structures can only be made by advanced lithography techniques. By use of electron beam lithography we have fabricated arrays of interdigitated electrodes with an electrode separation distance of 200 nm and an electrode finger width of likewise 200 nm. The entire electrode structure is 100 micrometre times 100 micrometre, and the active electrode area is dictated by the opening in the passivation layer, that is defined by UV lithography. Here we report measurements of redox cycling of ferrocyanide by coupled cyclic voltammograms, where the potential at one of the working electrodes are varied and either an oxidising or reducing potential is applied to the complimentary interdigitated electrode. The measurements show fast conversion and high collection efficiency round 87% as expected for nano-interdigitated electrodes.

  15. Cu removal and response mechanisms of periphytic biofilms in a tubular bioreactor.

    Science.gov (United States)

    Ma, Lan; Wang, Fengwu; Yu, Yuanchun; Liu, Junzhuo; Wu, Yonghong

    2018-01-01

    This work studied Cu removal and response mechanisms of periphytic biofilms in a tubular bioreactor. Periphytic biofilms immobilized in a tubular bioreactor were used to remove Cu from wastewater with different Cu concentrations. Results showed that periphytic biofilms had a high removal efficiency (max. 99%) at a hydraulic retention time (HRT) of 12h under initial Cu concentrations of 2.0 and 10.0mgL -1 . Periphyton quickly adapted to Cu stress by regulating the community composition. Species richness, evenness and carbon metabolic diversity of the periphytic community increased when exposed to Cu. Diatoms, green algae, and bacteria (Gammaproteobacteria and Bacteroidia) were the dominant microorganisms and responsible for Cu removal. This study indicates that periphytic biofilms are promising in Cu removal from wastewater due to their strong adaptation capacity to Cu toxicity and also provides valuable information for understanding the relationships between microbial communities and heavy metal stress. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Hyperactivation of Nrf2 in early tubular development induces nephrogenic diabetes insipidus

    Science.gov (United States)

    Suzuki, Takafumi; Seki, Shiori; Hiramoto, Keiichiro; Naganuma, Eriko; Kobayashi, Eri H.; Yamaoka, Ayaka; Baird, Liam; Takahashi, Nobuyuki; Sato, Hiroshi; Yamamoto, Masayuki

    2017-01-01

    NF-E2-related factor-2 (Nrf2) regulates cellular responses to oxidative and electrophilic stress. Loss of Keap1 increases Nrf2 protein levels, and Keap1-null mice die of oesophageal hyperkeratosis because of Nrf2 hyperactivation. Here we show that deletion of oesophageal Nrf2 in Keap1-null mice allows survival until adulthood, but the animals develop polyuria with low osmolality and bilateral hydronephrosis. This phenotype is caused by defects in water reabsorption that are the result of reduced aquaporin 2 levels in the kidney. Renal tubular deletion of Keap1 promotes nephrogenic diabetes insipidus features, confirming that Nrf2 activation in developing tubular cells causes a water reabsorption defect. These findings suggest that Nrf2 activity should be tightly controlled during development in order to maintain renal homeostasis. In addition, tissue-specific ablation of Nrf2 in Keap1-null mice might create useful animal models to uncover novel physiological functions of Nrf2. PMID:28233855

  17. Overall renal and tubular function during infusion of amino acids in normal man

    DEFF Research Database (Denmark)

    Olsen, Niels Vidiendal; Hansen, J M; Ladefoged, S D

    1990-01-01

    sodium concentration] increased by 40% (P less than 0.001). Plasma renin concentration did not change significantly. 4. The results suggest that amino acids increase GFR by a primary effect on renal haemodynamics or, less likely, by reducing the signal to the tubuloglomerular feedback mechanism......1. Amino acids have been used to test renal reserve filtration capacity. Previous studies suggest that amino acids increase glomerular filtration rate (GFR) by reducing distal tubular flow and tubuloglomerular feedback activity. 2. Glomerular function and the renal tubular handling of sodium during...... infusion of amino acids was studied in 12 normal volunteers. 3. Clearance of sodium (CNa) was unchanged. Effective renal plasma flow increased slightly, but significantly, by 9% (P less than 0.05). GFR was increased by 13% (P less than 0.001). Clearance of lithium (CLi) (used as an index of proximal...

  18. TWEAK activates the non-canonical NFkappaB pathway in murine renal tubular cells: modulation of CCL21.

    Directory of Open Access Journals (Sweden)

    Ana B Sanz

    2010-01-01

    Full Text Available TWEAK is a member of the TNF superfamily of cytokines that contribute to kidney tubulointerstitial injury. It has previously been reported that TWEAK induces transient nuclear translocation of RelA and expression of RelA-dependent cytokines in renal tubular cells. Additionally, TWEAK induced long-lasting NFkappaB activation suggestive of engagement of the non-canonical NFkappaB pathway. We now explore TWEAK-induced activation of NFkappaB2 and RelB, as well as expression of CCL21, a T-cell chemotactic factor, in cultured murine tubular epithelial cells and in healthy kidneys in vivo. In cultured tubular cells, TWEAK and TNFalpha activated different DNA-binding NFkappaB complexes. TWEAK-induced sustained NFkappaB activation was associated with NFkappaB2 p100 processing to p52 via proteasome and nuclear translocation and DNA-binding of p52 and RelB. TWEAK, but not TNFalpha used as control, induced a delayed increase in CCL21a mRNA (3.5+/-1.22-fold over control and CCL21 protein (2.5+/-0.8-fold over control, which was prevented by inhibition of the proteasome, or siRNA targeting of NIK or RelB, but not by RelA inhibition with parthenolide. A second NFkappaB2-dependent chemokine, CCL19, was upregulates by TWEAK, but not by TNFalpha. However, both cytokines promoted chemokine RANTES expression (3-fold mRNA at 24 h. In vivo, TWEAK induced nuclear NFkappaB2 and RelB translocation and CCL21a mRNA (1.5+/-0.3-fold over control and CCL21 protein (1.6+/-0.5-fold over control expression in normal kidney. Increased tubular nuclear RelB and tubular CCL21 expression in acute kidney injury were decreased by neutralization (2+/-0.9 vs 1.3+/-0.6-fold over healthy control or deficiency of TWEAK (2+/-0.9 vs 0.8+/-0.6-fold over healthy control. Moreover, anti-TWEAK treatment prevented the recruitment of T cells to the kidney in this model (4.1+/-1.4 vs 1.8+/-1-fold over healthy control. Our results thus identify TWEAK as a regulator of non-canonical NFkappa

  19. Electrode assemblies, plasma apparatuses and systems including electrode assemblies, and methods for generating plasma

    Science.gov (United States)

    Kong, Peter C; Grandy, Jon D; Detering, Brent A; Zuck, Larry D

    2013-09-17

    Electrode assemblies for plasma reactors include a structure or device for constraining an arc endpoint to a selected area or region on an electrode. In some embodiments, the structure or device may comprise one or more insulating members covering a portion of an electrode. In additional embodiments, the structure or device may provide a magnetic field configured to control a location of an arc endpoint on the electrode. Plasma generating modules, apparatus, and systems include such electrode assemblies. Methods for generating a plasma include covering at least a portion of a surface of an electrode with an electrically insulating member to constrain a location of an arc endpoint on the electrode. Additional methods for generating a plasma include generating a magnetic field to constrain a location of an arc endpoint on an electrode.

  20. Multi-Scaled Modeling the Mechanical Properties of Tubular Composites Reinforced with Innovated 3D Weft Knitted Spacer Fabrics

    Science.gov (United States)

    Omrani, Elahe; Hasani, Hossein; Dibajian, Sayed Houssain

    2018-02-01

    Textile composites of 3D integrated spacer configurations have been recently focused by several researchers all over the world. In the present study, newly-designed tubular composites reinforced with 3D spacer weft knitted fabrics were considered and the effects of their structural parameters on some applicable mechanical properties were investigated. For this purpose, two different samples of 3D spacer weft knitted textile types in tubular form were produced on an electronic flat knitting machine, using glass/nylon hybrid yarns. Thermoset tubular-shaped composite parts were manufactured via vacuum infusion molding process using epoxy resin. The mechanical properties of the produced knitted composites in term of external static and internal hydrostatic pressures were evaluated. Resistance of the produced composites against the external static and internal hydrostatic pressures was numerically simulated using multi-scale modeling method. The finding revealed that there is acceptable correlation between experimental and theoretical results.

  1. Near-Electrode Imager

    Energy Technology Data Exchange (ETDEWEB)

    Rathke, Jerome W.; Klingler, Robert J.; Woelk, Klaus; Gerald, Rex E.,II

    1999-05-01

    An apparatus, near-electrode imager, for employing nuclear magnetic resonance imaging to provide in situ measurements of electrochemical properties of a sample as a function of distance from a working electrode. The near-electrode imager use the radio frequency field gradient within a cylindrical toroid cavity resonator to provide high-resolution nuclear magnetic resonance spectral information on electrolyte materials.

  2. Dragon (repulsive guidance molecule RGMb) inhibits E-cadherin expression and induces apoptosis in renal tubular epithelial cells.

    Science.gov (United States)

    Liu, Wenjing; Li, Xiaoling; Zhao, Yueshui; Meng, Xiao-Ming; Wan, Chao; Yang, Baoxue; Lan, Hui-Yao; Lin, Herbert Y; Xia, Yin

    2013-11-01

    Dragon is one of the three members of the repulsive guidance molecule (RGM) family, i.e. RGMa, RGMb (Dragon), and RGMc (hemojuvelin). We previously identified the RGM members as bone morphogenetic protein (BMP) co-receptors that enhance BMP signaling. Our previous studies found that Dragon is highly expressed in the tubular epithelial cells of mouse kidneys. However, the roles of Dragon in renal epithelial cells are yet to be defined. We now show that overexpression of Dragon increased cell death induced by hypoxia in association with increased cleaved poly(ADP-ribose) polymerase and cleaved caspase-3 levels in mouse inner medullary collecting duct (IMCD3) cells. Dragon also inhibited E-cadherin expression but did not affect epithelial-to-mesenchymal transition induced by TGF-β in IMCD3 cells. Previous studies suggest that the three RGM members can function as ligands for the receptor neogenin. Interestingly, our present study demonstrates that the Dragon actions on apoptosis and E-cadherin expression in IMCD3 cells were mediated by the neogenin receptor but not through the BMP pathway. Dragon expression in the kidney was up-regulated by unilateral ureteral obstruction in mice. Compared with wild-type mice, heterozygous Dragon knock-out mice exhibited 45-66% reduction in Dragon mRNA expression, decreased epithelial apoptosis, and increased tubular E-cadherin expression and had attenuated tubular injury after unilateral ureteral obstruction. Our results suggest that Dragon may impair tubular epithelial integrity and induce epithelial apoptosis both in vitro and in vivo.

  3. GSTA3 Attenuates Renal Interstitial Fibrosis by Inhibiting TGF-Beta-Induced Tubular Epithelial-Mesenchymal Transition and Fibronectin Expression.

    Directory of Open Access Journals (Sweden)

    Yun Xiao

    Full Text Available Tubular epithelial-mesenchymal transition (EMT has been widely accepted as the underlying mechanisms of renal interstitial fibrosis (RIF. The production of reactive oxygen species (ROS plays a vital role in tubular EMT process. The purpose of this study was to investigate the involved molecular mechanisms in TGF-beta-induced EMT and identify the potential role of glutathione S-transferase alpha 3 (GSTA3 in this process. The iTRAQ screening was performed to identify protein alterations of the rats underwent unilateral-ureteral obstruction (UUO. Protein expression of GSTA3 in patients with obstructive nephropathy and UUO rats was detected by immunohistochemistry. Protein and mRNA expression of GSTA3 in UUO rats and NRK-52E cells were determined by Western blot and RT-PCR. siRNA and overexpression plasmid were transfected specifically to assess the role of GSTA3 in RIF. The generation of ROS was measured by dichlorofluorescein fluorescence analysis. GSTA3 protein and mRNA expression was significantly reduced in UUO rats. Immunohistochemical analysis revealed that GSTA3 expression was reduced in renal cortex in UUO rats and patients with obstructive nephropathy. Treating with TGF-β1 down-regulated GSTA3 expression in NRK-52E cells, which have been found to be correlated with the decreased expression in E-cadherin and megalin and increased expression in α-smooth muscle actin. Furthermore, knocking down GSTA3 in NRK-52 cells led to increased production of ROS and tubular EMT, whereas overexpressing GSTA3 ameliorated ROS production and prevented the occurrence of tubular EMT. GSTA3 plays a protective role against tubular EMT in renal fibrosis, suggesting GSTA3 is a potential therapeutic target for RIF.

  4. Three-dimensional TiO2 nanowire@NiMoO4 ultrathin nanosheet core-shell arrays for lithium ion batteries

    Science.gov (United States)

    Cao, Minglei; Bu, Yi; Lv, Xiaowei; Jiang, Xingxing; Wang, Lichuan; Dai, Sirui; Wang, Mingkui; Shen, Yan

    2018-03-01

    This study reports a general and rational two-step hydrothermal strategy to fabricate three-dimensional (3D) TiO2 nanowire@NiMoO4 ultrathin nanosheet core-shell arrays (TNAs-NMO) as additives-free anodes for lithium-ion batteries (LIBs). The TNAs-NMO electrode delivers a reversible capacity of up to 446.6 mA h g-1 over 120 cycles at the current density of 0.2 A g-1 and a high rate capacity of 234.2 mA h g-1 at 2.0 A g-1. Impressively, the capacity retention efficiency is 74.7% after 2500 cycles at the high rate of 2.0 A g-1. In addition, the full cell consisting of TNAs-NMO anode and LCO cathode can afford a specific energy of up to 220.3 W h kg-1 (based on the entire mass of both electrodes). The high electrochemical performance of the TNAs-NMO electrode is ascribed to its 3D core-shell nanowire array architecture, in which the TiO2 nanowire arrays (TNAs) and the ultrathin NiMoO4 nanosheets exhibit strong synergistic effects. The TNAs maintain mechanical integrity of the electrode and the ultrathin NiMoO4 nanosheets contribute to high capacity and favorable electronic conductivity.

  5. Augmenter of liver regeneration inhibits TGF-β1-induced renal tubular epithelial-to-mesenchymal transition via suppressing TβR II expression in vitro

    International Nuclear Information System (INIS)

    Liao, Xiao-hui; Zhang, Ling; Chen, Guo-tao; Yan, Ru-yu; Sun, Hang; Guo, Hui; Liu, Qi

    2014-01-01

    Tubular epithelial-to-mesenchymal transition (EMT) plays a crucial role in the progression of renal tubular interstitial fibrosis (TIF), which subsequently leads to chronic kidney disease (CKD) and eventually, end-stage renal disease (ESRD). We propose that augmenter of liver regeneration (ALR), a member of the newly discovered ALR/Erv1 protein family shown to ameliorate hepatic fibrosis, plays a similar protective role in renal tubular cells and has potential as a new treatment option for CKD. Here, we showed that recombinant human ALR (rhALR) inhibits EMT in renal tubular cells by antagonizing activation of the transforming growth factor-β1 (TGF-β1) signaling pathway. Further investigation revealed that rhALR suppresses the expression of TGF-β receptor type II (TβR II) and significantly alleviates TGF-β1-induced phosphorylation of Smad2 and nuclear factor-κB (NF-κB). No apparent adverse effects were observed upon the addition of rhALR alone to cells. These findings collectively suggest that ALR plays a role in inhibiting progression of renal tubular EMT, supporting its potential utility as an effective antifibrotic strategy to reverse TIF in CKD. - Highlights: • ALR is involved in the pathological progression of renal EMT in NRK-52E cells. • ALR suppresses the expression of TβRII and the phosphorylation of Smad2 and NF-κB. • ALR plays a role in inhibiting progression of renal tubular EMT

  6. Augmenter of liver regeneration inhibits TGF-β1-induced renal tubular epithelial-to-mesenchymal transition via suppressing TβR II expression in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Liao, Xiao-hui [Department of Nephrology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400010 (China); Zhang, Ling, E-mail: lindazhang8508@hotmail.com [Department of Nephrology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400010 (China); Chen, Guo-tao; Yan, Ru-yu [Department of Nephrology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400010 (China); Sun, Hang; Guo, Hui [Institute for Viral Hepatitis, Key Laboratory of Molecular Biology for Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400010 (China); Liu, Qi, E-mail: txzzliuqi@163.com [Institute for Viral Hepatitis, Key Laboratory of Molecular Biology for Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400010 (China)

    2014-10-01

    Tubular epithelial-to-mesenchymal transition (EMT) plays a crucial role in the progression of renal tubular interstitial fibrosis (TIF), which subsequently leads to chronic kidney disease (CKD) and eventually, end-stage renal disease (ESRD). We propose that augmenter of liver regeneration (ALR), a member of the newly discovered ALR/Erv1 protein family shown to ameliorate hepatic fibrosis, plays a similar protective role in renal tubular cells and has potential as a new treatment option for CKD. Here, we showed that recombinant human ALR (rhALR) inhibits EMT in renal tubular cells by antagonizing activation of the transforming growth factor-β1 (TGF-β1) signaling pathway. Further investigation revealed that rhALR suppresses the expression of TGF-β receptor type II (TβR II) and significantly alleviates TGF-β1-induced phosphorylation of Smad2 and nuclear factor-κB (NF-κB). No apparent adverse effects were observed upon the addition of rhALR alone to cells. These findings collectively suggest that ALR plays a role in inhibiting progression of renal tubular EMT, supporting its potential utility as an effective antifibrotic strategy to reverse TIF in CKD. - Highlights: • ALR is involved in the pathological progression of renal EMT in NRK-52E cells. • ALR suppresses the expression of TβRII and the phosphorylation of Smad2 and NF-κB. • ALR plays a role in inhibiting progression of renal tubular EMT.

  7. The choice between cooled tubular reactor models: analysis of the hot spot

    NARCIS (Netherlands)

    Westerink, E.J.; Koster, N.; Westerterp, K.R.

    1990-01-01

    The applicability of the one-dimensional pseudo-homogeneous model of the cooled tubular reactor is studied. Using the two-dimensional model as the more accurate one we compared both models by studying the influence of the design and operating variables on the conditions in the hot spot of the

  8. Self-powered radiation detector

    International Nuclear Information System (INIS)

    Playfoot, K.C.; Bauer, R.F.; Goldstein, N.P.

    1980-01-01

    This invention relates to a self powered radiation detector requiring no excitation potential to generate a signal indicating a radiation flux. Such detectors comprise two electrically insulated electrodes, at a distance from each other. These electrodes are made of conducting materials having a different response for neutron and/or gamma ray radiation flux levels, as in nuclear power stations. This elongated detector generates an electric signal in terms of an incident flux of radiations cooperating with coaxial conductors insulated from each other and with different radiation reaction characteristics. The conductor with the greatest reaction to the radiations forms the central emitting electrode and the conductor with the least reaction to the radiations forms a tubular coaxial collecting electrode. The rhodium or cobalt tubular emitting electrode contains a ductile central conducting cable placed along the longitudinal axis of the detector. The latter is in high nickel steel with a low reaction to radiation [fr

  9. CHARACTERISTICS OF CORN STALK HEMICELLULOSE PYROLYSIS IN A TUBULAR REACTOR

    OpenAIRE

    Gao-Jin Lv; Shu-Bin Wu; Rui Lou

    2010-01-01

    Pyrolysis characteristics of corn stalk hemicellulose were investigated in a tubular reactor at different temperatures, with focus mainly on the releasing profiles and forming behaviors of pyrolysis products (gas, char, and tar). The products obtained were further identified using various approaches (including GC, SEM, and GC-MS) to understand the influence of temperature on product properties and compositions. It was found that the devolatilization of hemicellulose mainly occurred at low tem...

  10. Multiscale phase mapping of LiFePO4-based electrodes by transmission electron microscopy and electron forward scattering diffraction.

    Science.gov (United States)

    Robert, Donatien; Douillard, Thierry; Boulineau, Adrien; Brunetti, Guillaume; Nowakowski, Pawel; Venet, Denis; Bayle-Guillemaud, Pascale; Cayron, Cyril

    2013-12-23

    LiFePO4 and FePO4 phase distributions of entire cross-sectioned electrodes with various Li content are investigated from nanoscale to mesoscale, by transmission electron microscopy and by the new electron forward scattering diffraction technique. The distributions of the fully delithiated (FePO4) or lithiated particles (LiFePO4) are mapped on large fields of view (>100 × 100 μm(2)). Heterogeneities in thin and thick electrodes are highlighted at different scales. At the nanoscale, the statistical analysis of 64 000 particles unambiguously shows that the small particles delithiate first. At the mesoscale, the phase maps reveal a core-shell mechanism at the scale of the agglomerates with a preferential pathway along the electrode porosities. At larger scale, lithiation occurs in thick electrodes "stratum by stratum" from the surface in contact with electrolyte toward the current collector.

  11. Folded tubular photometer for atmospheric measurements of NO2 and NO

    Directory of Open Access Journals (Sweden)

    J. W. Birks

    2018-05-01

    Full Text Available We describe and characterize a modular folded tubular photometer for making direct measurements of the concentrations of nitrogen dioxide (NO2 and specify how this method could be extended to measure other pollutants such as sulfur dioxide (SO2, ozone (O3, and black carbon particulate matter. Direct absorbance measurements using this photometer can be made across the spectral range from the ultraviolet (UV to the near infrared. The absorbance cell makes use of modular components (tubular detection cells and mirror cubes that allow construction of path lengths of up to 2 m or more while maintaining low cell volumes. The long path lengths and low cell volumes enable sensitive detection of ambient air pollutants down to low part-per-billion levels for gas species and aerosol extinctions down to 1 Mm−1, corresponding to  ∼  0.1 µg m−3 for black carbon particulates. Pressure equalization throughout the stages of the absorbance measurement is shown to be critical to accurate measurements of analyte concentrations. The present paper describes the application of this photometer to direct measurements of nitrogen dioxide (NO2 and the incorporation of design features that also enable measurement of nitric oxide (NO in the same instrument. Excellent agreement for ambient measurements along an urban roadside was found for both NO2 and NO measured by the folded tubular photometer compared to existing standard techniques. Compared to commonly used methods for measurements of NOx species, the advantages of this approach include (1 an absolute quantification for NO2 based on the Beer–Lambert law, thereby greatly reducing the frequency at which calibrations are required; (2 the direct measurement of NO2 concentration without prior conversion to NO as is required for the commonly used chemiluminescence method; (3 the use of modular components that allow construction of absorbance detection cells of varying lengths for extending the

  12. Modelling Particulate Removal in Tubular Wet Electrostatic Precipitators Using a Modified Drift Flux Model

    Directory of Open Access Journals (Sweden)

    S Ramechecandane

    2016-09-01

    Full Text Available Tubular electrostatic precipitators (ESP have been used in a number of chemical processing industries. The tubular ESPs have many advantages over conventional plate-plate and wire-plate ESPs. The present study is concerned with the numerical modeling of particulate removal in a tubular wet single-stage electrostatic precipitator (wESP. The geometric parameters of a model wESP and the corresponding inlet gas velocities for the wESP are chosen from available experimental data. In addition to the RNG k - ε model for the mean turbulent flow field inside the wESP, the Poisson equation for the electric field, the charge continuity equation and the concentration equation are solved sequentially to obtain a full-fledged solution to the problem under investigation. The proposed drift flux model is implemented in the opensource CFD code OpenFOAM®. The paper discusses the influence of the number of charges acquired by the particles and the corresponding inlet gas velocities on particle concentration distribution within the wESP. Two representative cases with monodispersed particles of 1 μm and 10 μm diameter are considered for the numerical analysis. It is seen from the present analysis that the number of units of charge on particles, the particle size and the inlet gas velocities play a vital role in determining the efficiency of electrostatic precipitation.

  13. Maximum production rate optimization for sulphuric acid decomposition process in tubular plug-flow reactor

    International Nuclear Information System (INIS)

    Wang, Chao; Chen, Lingen; Xia, Shaojun; Sun, Fengrui

    2016-01-01

    A sulphuric acid decomposition process in a tubular plug-flow reactor with fixed inlet flow rate and completely controllable exterior wall temperature profile and reactants pressure profile is studied in this paper by using finite-time thermodynamics. The maximum production rate of the aimed product SO 2 and the optimal exterior wall temperature profile and reactants pressure profile are obtained by using nonlinear programming method. Then the optimal reactor with the maximum production rate is compared with the reference reactor with linear exterior wall temperature profile and the optimal reactor with minimum entropy generation rate. The result shows that the production rate of SO 2 of optimal reactor with the maximum production rate has an increase of more than 7%. The optimization of temperature profile has little influence on the production rate while the optimization of reactants pressure profile can significantly increase the production rate. The results obtained may provide some guidelines for the design of real tubular reactors. - Highlights: • Sulphuric acid decomposition process in tubular plug-flow reactor is studied. • Fixed inlet flow rate and controllable temperature and pressure profiles are set. • Maximum production rate of aimed product SO 2 is obtained. • Corresponding optimal temperature and pressure profiles are derived. • Production rate of SO 2 of optimal reactor increases by 7%.

  14. Analysis of mass transfer characteristics in a tubular membrane using CFD modeling.

    Science.gov (United States)

    Yang, Jixiang; Vedantam, Sreepriya; Spanjers, Henri; Nopens, Ingmar; van Lier, Jules B

    2012-10-01

    In contrast to the large amount of research into aerobic membrane bioreactors, little work has been reported on anaerobic membrane bioreactors (AMBRs). As to the application of membrane bioreactors, membrane fouling is a key issue. Membrane fouling generally occurs more seriously in AMBRs than in aerobic membrane bioreactors. However, membrane fouling could be managed through the application of suitable shear stress that can be introduced by the application of a two-phase flow. When the two-phase flow is applied in AMBRs, little is known about the mass transfer characteristics, which is of particular importance, in tubular membranes of AMBRs. In our present work, we have employed fluid dynamic modeling to analyze the mass transfer characteristics in the tubular membrane of a side stream AMBR in which, gas-lift two-phase flow was applied. The modeling indicated that the mass transfer capacity at the membrane surface at the noses of gas bubbles was higher than the mass transfer capacity at the tails of the bubbles, which is in contrast to the results when water instead of sludge is applied. At the given mass transfer rate, the filterability of the sludge was found to have a strong influence on the transmembrane pressure at a steady flux. In addition, the model also showed that the shear stress in the internal space of the tubular membrane was mainly around 20 Pa but could be as high as about 40 Pa due to gas bubble movements. Nonetheless, at these shear stresses a stable particle size distribution was found for sludge particles. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. Detection of Acute Tubular Necrosis Using Blood Oxygenation Level-Dependent (BOLD MRI

    Directory of Open Access Journals (Sweden)

    Frederic Bauer

    2017-12-01

    Full Text Available Background/Aims: To date, there is no imaging technique to assess tubular function in vivo. Blood oxygen level-dependent magnetic resonance imaging (BOLD MRI measures tissue oxygenation based on the transverse relaxation rate (R2*. The present study investigates whether BOLD MRI can assess tubular function using a tubule-specific pharmacological maneuver. Methods: Cross sectional study with 28 participants including 9 subjects with ATN-induced acute kidney injury (AKI, 9 healthy controls, and 10 subjects with nephron sparing tumor resection (NSS with clamping of the renal artery serving as a model of ischemia/reperfusion (I/R-induced subclinical ATN (median clamping time 15 min, no significant decrease of eGFR, p=0.14. BOLD MRI was performed before and 5, 7, and 10 min after intravenous administration of 40 mg furosemide. Results: Urinary neutrophil gelatinase-associated lipocalin was significantly higher in ATN-induced AKI and NSS subjects than in healthy controls (p=0.03 and p=0.01, respectively. Before administration of furosemide, absolute medullary R2*, cortical R2*, and medullary/cortical R2* ratio did not significantly differ between ATN-induced AKI vs. healthy controls and between NSS-I/R vs. contralateral healthy kidneys (p>0.05 each. Furosemide led to a significant decrease in the medullary and cortical R2* of healthy subjects and NSS contralateral kidneys (p<0.05 each, whereas there was no significant change of R2* in ATN-induced AKI and the NSS-I/R kidneys (p>0.05 each. Conclusion: BOLD-MRI is able to detect even mild tubular injury but necessitates a tubule-specific pharmacological maneuver, e.g. blocking the Na+-K+-2Cl- transporter by furosemide.

  16. Aligned TiO₂ nanotube/nanoparticle heterostructures with enhanced electrochemical performance as three-dimensional anode for lithium-ion microbatteries.

    Science.gov (United States)

    Xie, Keyu; Guo, Min; Lu, Wei; Huang, Haitao

    2014-11-14

    A novel TiO₂ three-dimensional (3D) anode with an aligned TiO₂ nanotube/nanoparticle heterostructure (TiO₂ NTs/NPs) is developed by simply immersing as-anodized TiO₂ NTs into water and further crystallizing the TiO₂ NTs by post-annealing. The heterostructure, with its core in a tubular morphology and with both the outer and inner surface consisting of nanoparticles, is confirmed by FESEM and TEM. A reversible areal capacity of 0.126 mAh · cm(-2) is retained after 50 cycles for the TiO₂ NTs/NPs heterostructure electrode, which is higher than that of the TiO₂ NTs electrode (0.102 mAh · cm(-2) after 50 cycles). At the current densities of 0.02, 0.04, 0.06, 0.08, 0.10 and 0.20 mA · cm(-2), the areal capacities are 0.142, 0.127, 0.117, 0.110, 0.104 and 0.089 mAh · cm(-2), respectively, for the TiO₂ NTs/NPs heterostructure electrode compared to the areal capacities of 0.123, 0.112, 0.105, 0.101, 0.094 and 0.083 mAh · cm(-2), respectively, for the the TiO₂ NTs electrode. The enhanced electrochemical performance is attributed to the unique microstructure of the TiO₂ NTs/NPs heterostructure electrode with the TiO₂ NT core used as a straight pathway for electronic transport and with TiO₂ NP offering enhanced surface areas for facile Li+ insertion/extraction. The results described here inspire a facile approach to fabricate a 3D anode with an enhanced electrochemical performance for lithium-ion microbattery applications.

  17. Tubular depressed cladding waveguide laser realized in Yb: YAG by direct inscription of femtosecond laser

    International Nuclear Information System (INIS)

    Tang, Wenlong; Zhang, Wenfu; Liu, Xin; Liu, Shuang; Cheng, Guanghua; Stoian, Razvan

    2015-01-01

    We report on the fabrication of tubular depressed cladding waveguides in single crystalline Yb:YAG by the direct femtosecond laser writing technique. Full control over the confined light spatial distribution is demonstrated by the photoinscription of high index contrast waveguides with tubular configuration. Under optical pumping, highly efficient laser oscillation in depressed cladding waveguide at 1030 nm is demonstrated. The maximum output power obtained is 68 mW with a slope efficiency of 35% for an outcoupling transmission of 50%. A slope efficiency as high as 44% is realized when the coupling output ratio is 91% and a low lasing threshold of 70 mW is achieved with the output coupling mirror of 10%. (paper)

  18. Construction and characterization of an electrospun tubular scaffold for small-diameter tissue-engineered vascular grafts: a scaffold membrane approach.

    Science.gov (United States)

    Hu, Jin-Jia; Chao, Wei-Chih; Lee, Pei-Yuan; Huang, Chih-Hao

    2012-09-01

    Based on a postulate that the microstructure of a scaffold can influence that of the resulting tissue and hence its mechanical behavior, we fabricated a small-diameter tubular scaffold (∼3 mm inner diameter) that has a microstructure similar to the arterial media using a scaffold membrane approach. Scaffold membranes that contain randomly oriented, moderately aligned, or highly aligned fibers were fabricated by collecting electrospun poly([epsilon]-caprolactone) fibers on a grounded rotating drum at three different drum rotation speeds (250, 1000, and 1500 rpm). Membranes of each type were wrapped around a small-diameter mandrel to form the tubular scaffolds. Particularly, the tubular scaffolds with three different off-axis fiber angles (30, 45, and 60 degree) were formed using membranes that contain aligned fibers. These scaffolds were subjected to biaxial mechanical testing to examine the effects of fiber directions as well as the distribution of fiber orientations on their mechanical properties. The circumferential elastic modulus of the tubular scaffold was closely related to the fiber directions; the larger the off-axis fiber angle the greater the circumferential elastic modulus. The distribution of fiber orientations, on the other hand, manifested itself in the mechanical behavior via the Poisson effect. Similar to cell sheet-based vascular tissue engineering, tubular cell-seeded constructs were prepared by wrapping cell-seeded scaffold membranes, alleviating the difficulty associated with cell seeding in electrospun scaffolds. Histology of the construct illustrated that cells were aligned to the fiber directions in the construct, demonstrating the potential to control the microstructure of tissue-engineered vascular grafts using the electrospun scaffold membrane. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. Insulating electrodes: a review on biopotential front ends for dielectric skin–electrode interfaces

    International Nuclear Information System (INIS)

    Spinelli, Enrique; Haberman, Marcelo

    2010-01-01

    Insulating electrodes, also known as capacitive electrodes, allow acquiring biopotentials without galvanic contact with the body. They operate with displacement currents instead of real charge currents, and the electrolytic electrode–skin interface is replaced by a dielectric film. The use of insulating electrodes is not the end of electrode interface problems but the beginning of new ones: coupling capacitances are of the order of pF calling for ultra-high input impedance amplifiers and careful biasing, guarding and shielding techniques. In this work, the general requirements of front ends for capacitive electrodes are presented and the different contributions to the overall noise are discussed and estimated. This analysis yields that noise bounds depend on features of the available devices as current and voltage noise, but the final noise level also depends on parasitic capacitances, requiring a careful shield and printed circuit design. When the dielectric layer is placed on the skin, the present-day amplifiers allow achieving noise levels similar to those provided by wet electrodes. Furthermore, capacitive electrode technology allows acquiring high quality ECG signals through thin clothes. A prototype front end for capacitive electrodes was built and tested. ECG signals were acquired with these electrodes in direct contact with the skin and also through cotton clothes 350 µm thick. They were compared with simultaneously acquired signals by means of wet electrodes and no significant differences were observed between both output signals

  20. Schiff Base modified on CPE electrode and PCB gold electrode for selective determination of silver ion

    Science.gov (United States)

    Leepheng, Piyawan; Suramitr, Songwut; Phromyothin, Darinee

    2017-09-01

    The schiff base was synthesized by 2,5-thiophenedicarboxaldehyde and 1,2,4-thiadiazole-3,5-diamine with condensation method. There was modified on carbon paste electrode (CPE) and Printed circuit board (PCB) gold electrode for determination silver ion. The schiff base modified electrodes was characterized by atomic force microscopy (AFM) and scanning electron microscopy (SEM), respectively. The electrochemical study was reported by cyclic voltammetry method and impedance spectroscopy using modified electrode as working electrode, platinum wire and Ag/AgCl as counter electrode and reference electrode, respectively. The modified electrodes have suitable detection for Ag+. The determination of silver ions using the modified electrodes depended linearly on Ag+ concentration in the range 1×10-10 M to 1×10-7 M, with cyclic voltammetry sensitivity were 2.51×108 μAM-1 and 1.88×108 μAM-1 for PCB gold electrode and CPE electrode, respectively, limits of detection were 5.33×10-9 M and 1.99×10-8 M for PCB gold electrode and CPE electrode, respectively. The modified electrodes have high accuracy, inexpensive and can applied to detection Ag+ in real samples.

  1. Bmi-1 plays a critical role in the protection from acute tubular necrosis by mobilizing renal stem/progenitor cells

    International Nuclear Information System (INIS)

    Lv, Xianhui; Yu, Zhenzhen; Xie, Chunfeng; Dai, Xiuliang; Li, Qing; Miao, Dengshun; Jin, Jianliang

    2017-01-01

    The regeneration of injured tubular cell occurs primarily from intrinsic renal stem/progenitor cells (RSCs) labeled with CD24 and CD133 after acute tubular necrosis (ATN). Bmi-1 plays a crucial role in regulating self-renewal, differentiation and aging of multiple adult stem cells and progenitor cells. Bmi-1 was rapidly elevated in the induction of adult kidney regeneration by renal injury. To determine whether Bmi-1 maintained mobilization of RSCs in the protection from ATN, glycerol-rhabdomyolysis-induced ATN were performed in wild type (WT) and Bmi-1-deficient (Bmi-1 −/− ) mice. Their ATN phenotypes were analyzed; CD24 and CD133 double positive (CD24 + CD133 + ) cells were measured; and the levels of serum urea nitrogen (SUN) and serum creatinine (SCr) were detected. We found that CD24 + CD133 + RSCs were mobilized in WT ATN mice with the increased expression of Bmi-1; Bmi-1 deficiency led to increased tubular cast formation and necrosis, elevated levels of SUN and SCr, decreased tubular proliferation, and immobilized ratio of RSCs in ATN. These findings indicated that Bmi-1 played a critical role in the protection from ATN by maintaining mobilization of RSCs and would be a novel therapeutic target for preventing the progression of ATN.

  2. Voltammetry at micro-mesh electrodes

    Directory of Open Access Journals (Sweden)

    Wadhawan Jay D.

    2003-01-01

    Full Text Available The voltammetry at three micro-mesh electrodes is explored. It is found that at sufficiently short experimental durations, the micro-mesh working electrode first behaves as an ensemble of microband electrodes, then follows the behaviour anticipated for an array of diffusion-independent micro-ring electrodes of the same perimeter as individual grid-squares within the mesh. During prolonged electrolysis, the micro-mesh electrode follows that behaviour anticipated theoretically for a cubically-packed partially-blocked electrode. Application of the micro-mesh electrode for the electrochemical determination of carbon dioxide in DMSO electrolyte solutions is further illustrated.

  3. Endo-lysosomal dysfunction in human proximal tubular epithelial cells deficient for lysosomal cystine transporter cystinosin.

    Directory of Open Access Journals (Sweden)

    Ekaterina A Ivanova

    Full Text Available Nephropathic cystinosis is a lysosomal storage disorder caused by mutations in the CTNS gene encoding cystine transporter cystinosin that results in accumulation of amino acid cystine in the lysosomes throughout the body and especially affects kidneys. Early manifestations of the disease include renal Fanconi syndrome, a generalized proximal tubular dysfunction. Current therapy of cystinosis is based on cystine-lowering drug cysteamine that postpones the disease progression but offers no cure for the Fanconi syndrome. We studied the mechanisms of impaired reabsorption in human proximal tubular epithelial cells (PTEC deficient for cystinosin and investigated the endo-lysosomal compartments of cystinosin-deficient PTEC by means of light and electron microscopy. We demonstrate that cystinosin-deficient cells had abnormal shape and distribution of the endo-lysosomal compartments and impaired endocytosis, with decreased surface expression of multiligand receptors and delayed lysosomal cargo processing. Treatment with cysteamine improved surface expression and lysosomal cargo processing but did not lead to a complete restoration and had no effect on the abnormal morphology of endo-lysosomal compartments. The obtained results improve our understanding of the mechanism of proximal tubular dysfunction in cystinosis and indicate that impaired protein reabsorption can, at least partially, be explained by abnormal trafficking of endosomal vesicles.

  4. In vitro precultivation alleviates post-implantation inflammation and enhances development of tissue-engineered tubular cartilage

    Energy Technology Data Exchange (ETDEWEB)

    Luo Xusong; Zhou Guangdong; Liu Wei; Zhang Wenjie; Cui Lei; Cao Yilin [Department of Plastic and Reconstructive Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai 9th People' s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011 (China); Cen Lian, E-mail: guangdongzhou@126.co, E-mail: yilincao@yahoo.co [National Tissue Engineering Center of China, Shanghai 200011 (China)

    2009-04-15

    Tissue-engineered tubular cartilage is a promising graft for tracheal reconstruction. But polylactic acid/polyglycolic acid (PLA/PGA) fibers, the frequently used scaffolds for cartilage engineering, often elicit an obvious inflammation response following implantation into immunocompetent animals. We propose that the inflammation could be alleviated by in vitro precultivation. In this study, after in vitro culture for either 2 days (direct implantation group (DI)) or for 2 weeks (precultivation implantation group (PI)), autologous tubular chondrocyte-PLA/PGA constructs were subcutaneously implanted into rabbits. In the PI group, after 2 weeks of precultivation, most of the fibers were found to be completely embedded in an extracellular matrix (ECM) produced by the chondrocytes. Importantly, no obvious inflammatory reaction was observed after in vivo implantation and homogeneous cartilage-like tissue was formed with biomechanical properties close to native tracheal cartilage at 4 weeks post-implantation. In the DI group, however, an obvious inflammatory reaction was observed within and around the cell-scaffold constructs at 1 week implantation and only sporadic cartilage islands separated by fibrous tissue were observed at 4 weeks. These results demonstrated that the post-implantation inflammatory reaction could be alleviated by in vitro precultivation, which contributes to the formation of satisfactory tubular cartilage for tracheal reconstruction.

  5. Enhancing results : solid expandable tubulars facilitate high-temperature oil recovery

    Energy Technology Data Exchange (ETDEWEB)

    Noel, G.; Nylund, J.; Flaming, S. [Enventure Global Technology LLC, Calgary, AB (Canada)

    2010-07-01

    Steam-based recovery methods can provide a cost-effective approach to developing heavy oil and oil sands energy resources. This paper described a solid expandable tubular system designed to prevent damage without decreases in hole size. The pipe's permanent deformation creates an energized seal that cases off damaged tubulars. The new sealing systems allow for operations in the range of 270 degrees C. The system was comprised of mechanical retainers designed to hold the multi-component, high-temperature seal in place on the expandable casing. The seals are held in place by retainer rings designed to protect the seal in the hole as well as to provide increased anchoring capacity when the pipe is expanded and clad onto the base casing. The retainers are wrapped with a redundant standard seal material. The weight and size of the casings are individually configured for specific wells and are also designed to maintain consistency across multiple weight ranges. Details of the testing protocol used to ensure that the sealing system operated well in various oil production scenarios were presented, as well as the results of case studies conducted to demonstrate the system in the field. 6 refs., 1 tab., 2 figs.

  6. Endocytosis of wheat germ agglutinin binding sites from the cell surface into a tubular endosomal network.

    Science.gov (United States)

    Raub, T J; Koroly, M J; Roberts, R M

    1990-04-01

    By using fluorescence and electron microscopy, the endocytic pathway encountered by cell surface components after they had bound wheat germ agglutinin (WGA) was visualized. The majority of these components are thought to consist of sialylated glycoproteins (HMWAG) that represent a subpopulation of the total cell surface proteins but most of the externally disposed plasma membrane proteins of the cell. Examination of semi-thin sections by medium- and high-voltage electron microscopy revealed the three-dimensional organization of vesicular and tubular endosomes. Binding of either fluorescein isothiocyanate-, horseradish peroxidase-, or ferritin-conjugated WGA to cells at 4 degrees C showed that the HMWAG were distributed uniformly over the cell surface. Warming of surface-labeled cells to 37 degrees C resulted in the endocytosis of WGA into peripheral endosomes via invagination of regions of both coated and uncoated membrane. The peripheral endosome appeared as isolated complexes comprising a vesicular element (300-400 nm diam.) surrounded by and continuous with tubular cisternae (45-60 nm diam.), which did not interconnect the endosomes. After 30 min or more label also became localized in a network of anastomosing tubules (45-60 nm diam.) that were located in the centrosomal region of the cell. Endocytosed WGA-HMWAG complexes did not become associated with cisternae of the Golgi apparatus, although tubular and vesicular endosomes were noted in the vicinity of the trans-Golgi region. The accumulation of WGA-HMWAG in the endosomes within the centrosomal region was inhibited when cells were incubated at 18 degrees C. None of these compartments contained acid phosphatase activity, a result that is consistent with other data that the HMWAG do not pass through lysosomes initially. The kinetics of labeling were consistent with the interpretation that recycling of most of the WGA binding surface glycoproteins occurred rapidly from early peripheral endosomes followed by the

  7. PROCESSING AND CHARACTERIZATION OF TUBULAR CERAMIC SUPPORT FOR MICROFILTRATION MEMBRANE PREPARED FROM PYROPHYLLITE CLAY

    Directory of Open Access Journals (Sweden)

    Abedallah Talidi

    2011-09-01

    Full Text Available Tubular macroporous support for ceramic microfiltration membranes were prepared by extrusion followed by sintering of the low cost pyrophyllite clay. Clay powders mixed with some organic additives can be extruded to form a porous tubular support. The average pore size of the membrane is observed to increase from 5 µm to 10.8 µm when sintering temperature increase from 900 °C to 1200 °C. However, with the increase in temperature from 900 °C to 1200 °C, the support porosity is reduced from 47% to 30% and flexural strength is increased from 4 MPa to 17 MPa. The fabricated macro-porous supports are expected to have potential applications in the pre-treatment and also can be used like support for membranes of ultra-filtration.

  8. The fine structure of sheep myocardial cells; sarcolemmal invaginations and the transverse tubular system.

    Science.gov (United States)

    SIMPSON, F O; OERTELIS, S J

    1962-01-01

    An electron microscope study of sheep myocardial cells has demonstrated the presence of a transverse tubular system, apparently forming a network across the cell at each Z band level. The walls of these tubules resemble the sarcolemma in consisting of two dense layers-plasma membrane and basement menbrane; continuity of the tubule walls with the sarcolemma can be seen when longitudinal sections of a cell are obtained between two subsarcolemmal myofibrils and at the same time perpendicular to the cell surface. The demonstration of communication between the lumen of the transverse tubular system and the extracellular space appears to be more definite in this study than in any work hitherto published. It provides anatomical evidence of a possible direct pathway for transmission of the activating impulse from the sarcolemma to the myofibril Z bands.

  9. Silver-nickel oxide core-shell nanoflower arrays as high-performance anode for lithium-ion batteries

    Science.gov (United States)

    Zhao, Wenjia; Du, Ning; Zhang, Hui; Yang, Deren

    2015-07-01

    We demonstrate the synthesis of Ag-NiO core-shell nanoflower arrays via a one-step solution-immersion process and subsequent RF-sputtering method. The aligned Ag nanoflower arrays on copper substrate are prepared by a facile displacement reaction in absence of any surfactant at a mild temperature. When used as anode materials for lithium-ion batteries, the Ag-NiO core-shell nanoflower arrays show better cycling performance and higher capacity than the planar NiO electrodes. The improved performance should be attributed to the core-shell structures that can enhance the conductivity and accommodate the volume change during the charge-discharge process.

  10. A miniature implantable coil that can be wrapped around a tubular organ within the human body

    Science.gov (United States)

    Mao, Shitong; Wang, Hao; Mao, Zhi-Hong; Sun, Mingui

    2018-05-01

    There are many tubular or rod-shaped organs and tissues within the human body. A miniature medical implant that wraps around such a biological structure can monitor or modulate its function. In order to provide the wrap-around implant with power, a solenoidal coil coupled wirelessly with a planar coil outside the human body can be used. Unfortunately, there is a serious practical problem that this configuration cannot be realized easily because the implantable solenoidal coil cannot be positioned around the tubular biological structure unless either the structure or the coil is cut and reconnected, which is impermissible in most cases. In addition, when a planner exterior coil is used for wireless power transfer and communication, its maximum magnetic coupling with the implanted solenoidal coil is achieved when the tubular structure is perpendicular to the surface of the body. However, in human anatomy, most tubular/rod structures are oriented horizontally. In order to solve these problems, we present a new flexible coil for the class of wrapped-around implantable devices. Our multilayer coil has specially designed windings in cross patterns. The new coil can be made conveniently in high precision at low cost on a flat substrate using the same technology for making the flexible multilayer printed circuit boards along with miniature sensors and electronic circuits. This allows the implant to be made in a flat form and then wrapped around the biostructure during surgery. We present the design of this new coil, perform theoretical analysis with respect to its wireless power transfer efficiency, discuss the effects of coil parameters, and conduct experiments using constructed miniature prototypes. Our results confirm the validity of the new coil.

  11. A miniature implantable coil that can be wrapped around a tubular organ within the human body

    Directory of Open Access Journals (Sweden)

    Shitong Mao

    2018-05-01

    Full Text Available There are many tubular or rod-shaped organs and tissues within the human body. A miniature medical implant that wraps around such a biological structure can monitor or modulate its function. In order to provide the wrap-around implant with power, a solenoidal coil coupled wirelessly with a planar coil outside the human body can be used. Unfortunately, there is a serious practical problem that this configuration cannot be realized easily because the implantable solenoidal coil cannot be positioned around the tubular biological structure unless either the structure or the coil is cut and reconnected, which is impermissible in most cases. In addition, when a planner exterior coil is used for wireless power transfer and communication, its maximum magnetic coupling with the implanted solenoidal coil is achieved when the tubular structure is perpendicular to the surface of the body. However, in human anatomy, most tubular/rod structures are oriented horizontally. In order to solve these problems, we present a new flexible coil for the class of wrapped-around implantable devices. Our multilayer coil has specially designed windings in cross patterns. The new coil can be made conveniently in high precision at low cost on a flat substrate using the same technology for making the flexible multilayer printed circuit boards along with miniature sensors and electronic circuits. This allows the implant to be made in a flat form and then wrapped around the biostructure during surgery. We present the design of this new coil, perform theoretical analysis with respect to its wireless power transfer efficiency, discuss the effects of coil parameters, and conduct experiments using constructed miniature prototypes. Our results confirm the validity of the new coil.

  12. Impact-friction vibrations of tubular systems. Numerical simulation and experimental validation

    International Nuclear Information System (INIS)

    Jacquart, G.

    1993-05-01

    This note presents a summary on the numerical developments made to simulate impact-friction vibrations of tubular systems, detailing the algorithms used and the expression of impact and friction forces. A synthesis of the experimental results obtained on MASSIF workbench is also presented, as well as their comparison with numerical computations in order to validate the numerical approach. (author). 5 refs

  13. Electrode assembly for a lithium ion battery, process for the production of such electrode assembly, and lithium ion battery comprising such electrode assemblies

    NARCIS (Netherlands)

    Mulder, F.M.; Wagemaker, M.

    2013-01-01

    The invention provides an electrode assembly for a lithium ion battery, the electrode assembly comprising a lithium storage electrode layer on a current collector, wherein the lithium storage electrode layer is a porous layer having a porosity in the range of -35 %, with pores having pore widths in

  14. Electrochemical performance and structure evolution of core-shell nano-ring α-Fe{sub 2}O{sub 3}@Carbon anodes for lithium-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Yan-Hui, E-mail: sunyanhui0102@163.com; Liu, Shan; Zhou, Feng-Chen; Nan, Jun-Min

    2016-12-30

    Core-shell nano-ring α-Fe{sub 2}O{sub 3}@Carbon (CSNR) composites with different carbon content (CSNR-5%C and CSNR-13%C) are synthesized using a hydrothermal method by controlling different amounts of glucose and α-Fe{sub 2}O{sub 3} nano-rings with further annealing. The CSNR electrodes exhibit much improved specific capacity, cycling stability and rate capability compared with that of bare nano-ring α-Fe{sub 2}O{sub 3} (BNR), which is attributed to the core-shell nano-ring structure of CSNR. The carbon shell in the inner and outer surface of CSNR composite can increase electron conductivity of the electrode and inhibit the volume change of α-Fe{sub 2}O{sub 3} during discharge/charge processes, and the nano-ring structure of CSNR can buffer the volume change too. The CSNR-5%C electrode shows super high initial discharge/charge capacities of 1570/1220 mAh g{sup −1} and retains 920/897 mAh g{sup −1} after 200 cycles at 500 mA g{sup −1} (0.5C). Even at 2000 mA g{sup −1} (2C), the electrode delivers the initial capacities of 1400/900 mAh g{sup −1}, and still maintains 630/610 mAh g{sup −1} after 200 cycles. The core-shell nano-rings opened during cycling and rebuilt a new flower-like structure consisting of α-Fe{sub 2}O{sub 3}@Carbon nano-sheets. The space among the nano-sheet networks can further buffer the volume expansion of α-Fe{sub 2}O{sub 3} and facilitate the transportation of electrons and Li{sup +} ions during the charge/discharge processes, which increases the capacity and rate capability of the electrode. It is the first time that the evolution of core-shell α-Fe{sub 2}O{sub 3}@Carbon changing to flower-like networks during lithiation/de-lithiation has been reported.

  15. Whole-exome sequencing as a diagnostic tool for distal renal tubular acidosis

    Directory of Open Access Journals (Sweden)

    Paula Cristina Barros Pereira

    2015-11-01

    Full Text Available Objective: Distal renal tubular acidosis (dRTA is characterized by metabolic acidosis due to impaired renal acid excretion. The aim of this study was to demonstrate the genetic diagnosis of four children with dRTA through use of whole-exome sequencing. Methods: Two unrelated families were selected; a total of four children with dRTA and their parents, in order to perform whole-exome sequencing. Hearing was preserved in both children from the first family, but not in the second, wherein a twin pair had severe deafness. Whole-exome sequencing was performed in two pooled samples and findings were confirmed with Sanger sequencing method. Results: Two mutations were identified in the ATP6V0A4 and ATP6V1B1 genes. In the first family, a novel mutation in the exon 13 of the ATP6V0A4 gene with a single nucleotide change GAC → TAC (c.1232G>T was found, which caused a substitution of aspartic acid to tyrosine in position 411. In the second family, a homozygous recurrent mutation with one base-pair insertion (c.1149_1155insC in exon 12 of the ATP6V1B1 gene was detected. Conclusion: These results confirm the value of whole-exome sequencing for the study of rare and complex genetic nephropathies, allowing the identification of novel and recurrent mutations. Furthermore, for the first time the application of this molecular method in renal tubular diseases has been clearly demonstrated. Resumo: Objetivo: A acidose tubular renal distal (ATRd é caracterizada por acidose metabólica devido a excreção renal de ácido prejudicada. O objetivo deste artigo é apresentar o diagnóstico genético de quatro crianças com ATRd utilizando o sequenciamento total do exoma. Métodos: Selecionamos duas famílias não relacionadas, totalizando quatro crianças com ATRd e seus pais, para realizar o sequenciamento total do exoma. A audição foi preservada em ambas as crianças da família um, porém em nenhuma criança da família dois, na qual um par de gêmeas teve

  16. Automation of Hessian-Based Tubularity Measure Response Function in 3D Biomedical Images.

    Science.gov (United States)

    Dzyubak, Oleksandr P; Ritman, Erik L

    2011-01-01

    The blood vessels and nerve trees consist of tubular objects interconnected into a complex tree- or web-like structure that has a range of structural scale 5 μm diameter capillaries to 3 cm aorta. This large-scale range presents two major problems; one is just making the measurements, and the other is the exponential increase of component numbers with decreasing scale. With the remarkable increase in the volume imaged by, and resolution of, modern day 3D imagers, it is almost impossible to make manual tracking of the complex multiscale parameters from those large image data sets. In addition, the manual tracking is quite subjective and unreliable. We propose a solution for automation of an adaptive nonsupervised system for tracking tubular objects based on multiscale framework and use of Hessian-based object shape detector incorporating National Library of Medicine Insight Segmentation and Registration Toolkit (ITK) image processing libraries.

  17. Evaluation of tubular reactor designs for supercritical water oxidation of U.S. Department of Energy mixed waste

    International Nuclear Information System (INIS)

    Barnes, C.M.

    1994-12-01

    Supercritical water oxidation (SCWO) is an emerging technology for industrial waste treatment and is being developed for treatment of the US Department of Energy (DOE) mixed hazardous and radioactive wastes. In the SCWO process, wastes containing organic material are oxidized in the presence of water at conditions of temperature and pressure above the critical point of water, 374 C and 22.1 MPa. DOE mixed wastes consist of a broad spectrum of liquids, sludges, and solids containing a wide variety of organic components plus inorganic components including radionuclides. This report is a review and evaluation of tubular reactor designs for supercritical water oxidation of US Department of Energy mixed waste. Tubular reactors are evaluated against requirements for treatment of US Department of Energy mixed waste. Requirements that play major roles in the evaluation include achieving acceptable corrosion, deposition, and heat removal rates. A general evaluation is made of tubular reactors and specific reactors are discussed. Based on the evaluations, recommendations are made regarding continued development of supercritical water oxidation reactors for US Department of Energy mixed waste

  18. Guide tube insert assembly for use in a nuclear reactor

    International Nuclear Information System (INIS)

    Hopkins, R.J.; Land, J.T.

    1992-01-01

    This patent describes an internals assembly for a nuclear reactor of the type including an upper support plate and an upper core plate, each having apertures for conducting control rod assemblies into an out of fuel assemblies with the apertures of the upper support plate being aligned with the apertures of the upper core plate, a guide tube insert assembly comprising: an elongated tubular body extending between at least one of the aligned apertures formed in the upper support plate and the upper core plate; guide plates within the elongated tubular body, each of the guide plates having a planar surface extending substantially perpendicular to an axial direction of the tubular body; at least one interconnecting means for interconnecting the guide plates into a guide tube insert assembly such that the guide plates are simultaneously mountable within and removable from the elongated body, and the periphery of each of the guide plates is spaced apart from the inner walls of the elongated tubular body at every point when the insert assembly is mounted within the tubular body, and a stabilizing means for securing the lowermost guide plate of the guide tube insert assembly within the elongated tubular body to prevent rotational and lateral movement between the guide tube insert assembly and the tubular body

  19. Radiation-induced changes in glomerular and tubular cell kinetics and morphology following irradiation of a single kidney in the pig

    International Nuclear Information System (INIS)

    Robbins, Mike E. C.; Bonsib, Stephen M.; Ikeda, Andrea; Soranson, Julie A.; Wilson, George D.; Rezvani, Mohi; Golding, Stephen J.; Whitehouse, Elizabeth; Hopewell, John W.

    1995-01-01

    Purpose: Radiation-induced changes in glomerular and tubular cell kinetics and morphology following irradiation of a single pig kidney were assessed. Methods and Materials: The right kidney of 13 adult female Large White pigs was irradiated with a single dose of 9.8 Gy γ rays. Animals were serially killed between 2 and 24 weeks postirradiation (PI); 1 h prior to postmortem each pig received 500 mg bromodeoxyuridine (BrdUrd). At postmortem, both kidneys were removed and tissue taken to prepare cell suspensions. The labeling index (LI) of these suspensions was measured using flow cytometry; in vivo BrdUrd incorporation in glomerular and tubular cells was determined immunohistochemically. The kidneys were also assessed histologically. Results: Irradiation of the right kidney alone resulted in a significant increase in renal cell LI in both the irradiated and the contralateral unirradiated kidney within 2 weeks of irradiation; peak values of 1.57 ± 0.32% and 1.04 ± 0.13%, respectively, were seen 4 weeks PI, significantly greater p < 0.001) than the preirradiation value of 0.18 ± 0.01%. The LI values then declined with time, but remained greater than those seen prior to irradiation. A similar pattern of response was determined from counts of labeled glomerular and tubular cells identified immunohistochemically. The increase in labeled glomerular cells was seen 2 weeks PI, whereas that for the tubular cells did not occur until 4 weeks PI. The irradiated kidney exhibited diffuse, progressive glomerular alterations. In contrast, tubular damage was focal; the irradiated kidney also exhibited a prominent vasculopathy, involving arteriolar and peripheral interlobular artery thickening. The contralateral unirradiated kidney appeared unchanged. Conclusion: These findings confirm the hypothesis that the morphologic and kinetic responses observed after irradiation of a single kidney are similar to those observed after irradiation of both kidneys. Renal irradiation results in

  20. Multi-electrode double layer capacitor having single electrolyte seal and aluminum-impregnated carbon cloth electrodes

    Science.gov (United States)

    Farahmandi, C. Joseph; Dispennette, John M.; Blank, Edward; Kolb, Alan C.

    1999-01-19

    A single cell, multi-electrode high performance double layer capacitor includes first and second flat stacks of electrodes adapted to be housed in a closeable two-part capacitor case which includes only a single electrolyte seal. Each electrode stack has a plurality of electrodes connected in parallel, with the electrodes of one stack being interleaved with the electrodes of the other stack to form an interleaved stack, and with the electrodes of each stack being electrically connected to respective capacitor terminals. A porous separator sleeve is inserted over the electrodes of one stack before interleaving to prevent electrical shorts between the electrodes. The electrodes are made by folding a compressible, low resistance, aluminum-impregnated carbon cloth, made from activated carbon fibers, around a current collector foil, with a tab of the foils of each electrode of each stack being connected in parallel and connected to the respective capacitor terminal. The height of the interleaved stack is somewhat greater than the inside height of the closed capacitor case, thereby requiring compression of the interleaved electrode stack when placed inside of the case, and thereby maintaining the interleaved electrode stack under modest constant pressure. The closed capacitor case is filled with an electrolytic solution and sealed. A preferred electrolytic solution is made by dissolving an appropriate salt into acetonitrile (CH.sub.3 CN). In one embodiment, the two parts of the capacitor case are conductive and function as the capacitor terminals.