WorldWideScience

Sample records for tuberculosis-derived lipid inhibits

  1. 2-Thiophenecarboxylic acid hydrazide Derivatives: Synthesis and Anti-Tuberculosis Studies

    Science.gov (United States)

    Fahmi, M. R. G.; Khumaidah, L.; Ilmiah, T. K.; Fadlan, A.; Santoso, M.

    2018-04-01

    One of the most frequent and widespread infectious diseases especially in developing countries is tuberculosis (TB). The number of TB drug resistant tend to increase, and there has been no new TB drug introduce since the 1960s. Six 2-Thiophenecarboxylic acid hydrazide derivatives were synthesized in 90-97% yields, and 2-thiophenecarbonylhydrazone-5, 7-dibromoisatin showed the highest activity in inhibiting M. tuberculosis H37Rv.

  2. Plant-derived phenolics inhibit the accrual of structurally characterised protein and lipid oxidative modifications.

    Directory of Open Access Journals (Sweden)

    Arantza Soler-Cantero

    Full Text Available Epidemiological data suggest that plant-derived phenolics beneficial effects include an inhibition of LDL oxidation. After applying a screening method based on 2,4-dinitrophenyl hydrazine-protein carbonyl reaction to 21 different plant-derived phenolic acids, we selected the most antioxidant ones. Their effect was assessed in 5 different oxidation systems, as well as in other model proteins. Mass-spectrometry was then used, evidencing a heterogeneous effect on the accumulation of the structurally characterized protein carbonyl glutamic and aminoadipic semialdehydes as well as for malondialdehyde-lysine in LDL apoprotein. After TOF based lipidomics, we identified the most abundant differential lipids in Cu(++-incubated LDL as 1-palmitoyllysophosphatidylcholine and 1-stearoyl-sn-glycero-3-phosphocholine. Most of selected phenolic compounds prevented the accumulation of those phospholipids and the cellular impairment induced by oxidized LDL. Finally, to validate these effects in vivo, we evaluated the effect of the intake of a phenolic-enriched extract in plasma protein and lipid modifications in a well-established model of atherosclerosis (diet-induced hypercholesterolemia in hamsters. This showed that a dietary supplement with a phenolic-enriched extract diminished plasma protein oxidative and lipid damage. Globally, these data show structural basis of antioxidant properties of plant-derived phenolic acids in protein oxidation that may be relevant for the health-promoting effects of its dietary intake.

  3. Bacterial immunostat: Mycobacterium tuberculosis lipids and their role in the host immune response

    Directory of Open Access Journals (Sweden)

    Adriano Queiroz

    Full Text Available Abstract: The lipid-rich cell wall of Mycobacterium tuberculosis is a dynamic structure that is involved in the regulation of the transport of nutrients, toxic host-cell effector molecules, and anti-tuberculosis drugs. It is therefore postulated to contribute to the long-term bacterial survival in an infected human host. Accumulating evidence suggests that M. tuberculosis remodels the lipid composition of the cell wall as an adaptive mechanism against host-imposed stress. Some of these lipid species (trehalose dimycolate, diacylated sulphoglycolipid, and mannan-based lipoglycans trigger an immunopathologic response, whereas others (phthiocerol dimycocerosate, mycolic acids, sulpholipid-1, and di-and polyacyltrehalose appear to dampen the immune responses. These lipids appear to be coordinately expressed in the cell wall of M. tuberculosis during different phases of infection, ultimately determining the clinical fate of the infection. This review summarizes the current state of knowledge on the metabolism, transport, and homeostatic or immunostatic regulation of the cell wall lipids, and their orchestrated interaction with host immune responses that results in bacterial clearance, persistence, or tuberculosis.

  4. Mycobacterium tuberculosis induces the miR-33 locus to reprogram autophagy and host lipid metabolism.

    Science.gov (United States)

    Ouimet, Mireille; Koster, Stefan; Sakowski, Erik; Ramkhelawon, Bhama; van Solingen, Coen; Oldebeken, Scott; Karunakaran, Denuja; Portal-Celhay, Cynthia; Sheedy, Frederick J; Ray, Tathagat Dutta; Cecchini, Katharine; Zamore, Philip D; Rayner, Katey J; Marcel, Yves L; Philips, Jennifer A; Moore, Kathryn J

    2016-06-01

    Mycobacterium tuberculosis (Mtb) survives in macrophages by evading delivery to the lysosome and promoting the accumulation of lipid bodies, which serve as a bacterial source of nutrients. We found that by inducing the microRNA (miRNA) miR-33 and its passenger strand miR-33*, Mtb inhibited integrated pathways involved in autophagy, lysosomal function and fatty acid oxidation to support bacterial replication. Silencing of miR-33 and miR-33* by genetic or pharmacological means promoted autophagy flux through derepression of key autophagy effectors (such as ATG5, ATG12, LC3B and LAMP1) and AMPK-dependent activation of the transcription factors FOXO3 and TFEB, which enhanced lipid catabolism and Mtb xenophagy. These data define a mammalian miRNA circuit used by Mtb to coordinately inhibit autophagy and reprogram host lipid metabolism to enable intracellular survival and persistence in the host.

  5. Differential inhibition of adenylylated and deadenylylated forms of M. tuberculosis glutamine synthetase as a drug discovery platform.

    Directory of Open Access Journals (Sweden)

    A Theron

    Full Text Available Glutamine synthetase is a ubiquitous central enzyme in nitrogen metabolism that is controlled by up to four regulatory mechanisms, including adenylylation of some or all of the twelve subunits by adenylyl transferase. It is considered a potential therapeutic target for the treatment of tuberculosis, being essential for the growth of Mycobacterium tuberculosis, and is found extracellularly only in the pathogenic Mycobacterium strains. Human glutamine synthetase is not regulated by the adenylylation mechanism, so the adenylylated form of bacterial glutamine synthetase is of particular interest. Previously published reports show that, when M. tuberculosis glutamine synthetase is expressed in Escherichia coli, the E. coli adenylyl transferase does not optimally adenylylate the M. tuberculosis glutamine synthetase. Here, we demonstrate the production of soluble adenylylated M. tuberulosis glutamine synthetase in E. coli by the co-expression of M. tuberculosis glutamine synthetase and M. tuberculosis adenylyl transferase. The differential inhibition of adenylylated M. tuberulosis glutamine synthetase and deadenylylated M. tuberulosis glutamine synthetase by ATP based scaffold inhibitors are reported. Compounds selected on the basis of their enzyme inhibition were also shown to inhibit M. tuberculosis in the BACTEC 460TB™ assay as well as the intracellular inhibition of M. tuberculosis in a mouse bone-marrow derived macrophage assay.

  6. Differential inhibition of adenylylated and deadenylylated forms of M. tuberculosis glutamine synthetase as a drug discovery platform.

    Science.gov (United States)

    Theron, A; Roth, R L; Hoppe, H; Parkinson, C; van der Westhuyzen, C W; Stoychev, S; Wiid, I; Pietersen, R D; Baker, B; Kenyon, C P

    2017-01-01

    Glutamine synthetase is a ubiquitous central enzyme in nitrogen metabolism that is controlled by up to four regulatory mechanisms, including adenylylation of some or all of the twelve subunits by adenylyl transferase. It is considered a potential therapeutic target for the treatment of tuberculosis, being essential for the growth of Mycobacterium tuberculosis, and is found extracellularly only in the pathogenic Mycobacterium strains. Human glutamine synthetase is not regulated by the adenylylation mechanism, so the adenylylated form of bacterial glutamine synthetase is of particular interest. Previously published reports show that, when M. tuberculosis glutamine synthetase is expressed in Escherichia coli, the E. coli adenylyl transferase does not optimally adenylylate the M. tuberculosis glutamine synthetase. Here, we demonstrate the production of soluble adenylylated M. tuberulosis glutamine synthetase in E. coli by the co-expression of M. tuberculosis glutamine synthetase and M. tuberculosis adenylyl transferase. The differential inhibition of adenylylated M. tuberulosis glutamine synthetase and deadenylylated M. tuberulosis glutamine synthetase by ATP based scaffold inhibitors are reported. Compounds selected on the basis of their enzyme inhibition were also shown to inhibit M. tuberculosis in the BACTEC 460TB™ assay as well as the intracellular inhibition of M. tuberculosis in a mouse bone-marrow derived macrophage assay.

  7. Lipids and Protein Peroxidation in Children and Teenager Patients with Pulmonary Tuberculosis

    Directory of Open Access Journals (Sweden)

    Yu.V. Poliakova

    2015-09-01

    Full Text Available A review of literature about the study of lipid and protein peroxidation in children and teenagers with pulmonary tuberculosis nowadays was carried out. It was established that there is a great number works dedicated to the lipid peroxidation and antioxidant protective system in various pathological conditions of the respiratory system, including pulmonary tuberculosis in children and teenagers today. Oxidative modification proteins products are the earliest markers of oxidative stress in patients. There is no information on the oxidative modification of proteins in children and teenagers suffering from pulmonary tuberculosis in the literature. The study of oxidative modification of proteins will facilitate the development of more efficient new diagnosis methods and pathogenetic treatment of children and teenagers with pulmonary tuberculosis, that will increase the treatment effectiveness.

  8. "Genetic regulation of Mycobacterium tuberculosis in a lipid-rich environment".

    Science.gov (United States)

    Aguilar-Ayala, Diana A; Palomino, Juan Carlos; Vandamme, Peter; Martin, Anandi; Gonzalez-Y-Merchand, Jorge A

    2017-11-01

    Tuberculosis (TB) remains as one of the leading causes of morbidity and mortality among infectious diseases worldwide. Although lipids (mainly fatty acids and cholesterol) have been reported to play an important role during active and latent infection of M. tuberculosis, there are other molecular aspects of bacterial response to those substrates that are not fully understood, involving gene regulation background. This review highlights recent insights on pathogen gene expression: regulation during its active growth, during survival in presence of lipids and under variable hostile host microenvironments. We also propose several application options of this knowledge that may contribute for improved TB control. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Diminished Adherence and/or Ingestion of Virulent Mycobacterium tuberculosis by Monocyte-Derived Macrophages from Patients with Tuberculosis

    Science.gov (United States)

    Zabaleta, J.; Arias, M.; Maya, J. R.; García, L. F.

    1998-01-01

    The interaction between the macrophage and Mycobacterium tuberculosis is mediated by a variety of macrophage membrane-associated proteins. Complement receptors have been implicated in the adherence of M. tuberculosis to macrophages. In the present work, the adherence and/or ingestion of M. tuberculosis H37Rv to human monocyte-derived macrophages (MDM) from patients with tuberculosis (TB) and healthy controls was measured by microscopical examination, [3H]uracil incorporation, and CFU. The adherence and/or ingestion was enhanced by fresh serum and inhibited by heat inactivation, EDTA treatment, and anti-CR1 and anti-CR3 antibodies. Comparison of MDM from TB patients and healthy controls showed that the former exhibited a significantly decreased capacity to adhere and/or ingest M. tuberculosis, as determined by the number of CFU and 3H incorporation. The expression of CR1 (CD35) and CR3 (CD11b/CD18) on MDM from TB patients and healthy controls, as determined by flow cytometry, did not show significant differences. These results suggest that the lower ingestion of M. tuberculosis by MDM from TB patients is not due to defects in complement receptors, and therefore, there might be other molecules involved in the adherence and/or ingestion process that render MDM from TB patients ingest less mycobacteria than those from healthy controls. PMID:9729537

  10. Inhibition of Mevalonate Pathway and Synthesis of the Storage Lipids in Human Liver-Derived and Non-liver Cell Lines by Lippia alba Essential Oils.

    Science.gov (United States)

    Montero-Villegas, Sandra; Polo, Mónica; Galle, Marianela; Rodenak-Kladniew, Boris; Castro, María; Ves-Losada, Ana; Crespo, Rosana; García de Bravo, Margarita

    2017-01-01

    The essential oils (EOs) of Lippia alba, an herb extensively used as a folk medicine in Latin America, are today promoted as an effective means of eliminating problems caused by hyperlipemia. We hypothesized that L.alba EOs inhibited cholesterol and triacylglycerols synthesis and decreased the intracellular depots of those lipids (lipid droplets), mechanisms involving the induction of a hypolipidemic response. Our aim was, therefore, to evaluate the hypolipogenic capability of the EOs of four L. alba chemotypes on liver-derived (HepG2) and non-liver (A549) human cell lines and to identify the potential biochemical targets of those chemotypes, particularly within the mevalonate pathway (MP). [ 14 C]Acetate was used as radioactive precursor for assays. Lipid analyses were performed by thin-layer and capillary gas chromatography, lipid droplets analyzed by fluorescence microscopy, and HMGCR levels determined by Western blot. In both cell lines, all four chemotypes exerted hypocholesterogenic effects within a concentration range of 3.2-32 µg/mL. Nonsaponifiable lipids manifested a decrease in incorporation of [ 14 C]acetate into squalene, lanosterol, lathosterol, and cholesterol, but not into ubiquinone, thus suggesting an inhibition of enzymes in the MP downstream from farnesyl pyrophosphate. The tagetenone chemotype, the most efficacious hypocholesterogenic L. alba EO, lowered HMGCR protein levels; inhibited triacylglycerols, cholesteryl esters, and phospholipids synthesis; and diminished lipid droplets in size and volume. These results revealed that L. alba EOs inhibited different lipogenic pathways and such lipid-lowering effects could prove essential to prevent cardiovascular diseases.

  11. Lipid containing nanodrug delivery system for the treatment of Tuberculosis

    CSIR Research Space (South Africa)

    Lemmer, Yolandy

    2010-09-01

    Full Text Available of the antibiotics in the cells, hence reducing the dose frequency and simultaneously improve patient compliance. The cell wall envelope of Mycobacterium tuberculosis (M.tb) contains unique high molecular weight lipids. Of these, the most abundant are mycolic acids...

  12. Nitazoxanide stimulates autophagy and inhibits mTORC1 signaling and intracellular proliferation of Mycobacterium tuberculosis.

    Directory of Open Access Journals (Sweden)

    Karen K Y Lam

    Full Text Available Tuberculosis, caused by Mycobacterium tuberculosis infection, is a major cause of morbidity and mortality in the world today. M. tuberculosis hijacks the phagosome-lysosome trafficking pathway to escape clearance from infected macrophages. There is increasing evidence that manipulation of autophagy, a regulated catabolic trafficking pathway, can enhance killing of M. tuberculosis. Therefore, pharmacological agents that induce autophagy could be important in combating tuberculosis. We report that the antiprotozoal drug nitazoxanide and its active metabolite tizoxanide strongly stimulate autophagy and inhibit signaling by mTORC1, a major negative regulator of autophagy. Analysis of 16 nitazoxanide analogues reveals similar strict structural requirements for activity in autophagosome induction, EGFP-LC3 processing and mTORC1 inhibition. Nitazoxanide can inhibit M. tuberculosis proliferation in vitro. Here we show that it inhibits M. tuberculosis proliferation more potently in infected human THP-1 cells and peripheral monocytes. We identify the human quinone oxidoreductase NQO1 as a nitazoxanide target and propose, based on experiments with cells expressing NQO1 or not, that NQO1 inhibition is partly responsible for mTORC1 inhibition and enhanced autophagy. The dual action of nitazoxanide on both the bacterium and the host cell response to infection may lead to improved tuberculosis treatment.

  13. Nitazoxanide stimulates autophagy and inhibits mTORC1 signaling and intracellular proliferation of Mycobacterium tuberculosis.

    Science.gov (United States)

    Lam, Karen K Y; Zheng, Xingji; Forestieri, Roberto; Balgi, Aruna D; Nodwell, Matt; Vollett, Sarah; Anderson, Hilary J; Andersen, Raymond J; Av-Gay, Yossef; Roberge, Michel

    2012-01-01

    Tuberculosis, caused by Mycobacterium tuberculosis infection, is a major cause of morbidity and mortality in the world today. M. tuberculosis hijacks the phagosome-lysosome trafficking pathway to escape clearance from infected macrophages. There is increasing evidence that manipulation of autophagy, a regulated catabolic trafficking pathway, can enhance killing of M. tuberculosis. Therefore, pharmacological agents that induce autophagy could be important in combating tuberculosis. We report that the antiprotozoal drug nitazoxanide and its active metabolite tizoxanide strongly stimulate autophagy and inhibit signaling by mTORC1, a major negative regulator of autophagy. Analysis of 16 nitazoxanide analogues reveals similar strict structural requirements for activity in autophagosome induction, EGFP-LC3 processing and mTORC1 inhibition. Nitazoxanide can inhibit M. tuberculosis proliferation in vitro. Here we show that it inhibits M. tuberculosis proliferation more potently in infected human THP-1 cells and peripheral monocytes. We identify the human quinone oxidoreductase NQO1 as a nitazoxanide target and propose, based on experiments with cells expressing NQO1 or not, that NQO1 inhibition is partly responsible for mTORC1 inhibition and enhanced autophagy. The dual action of nitazoxanide on both the bacterium and the host cell response to infection may lead to improved tuberculosis treatment.

  14. Mycobacterium tuberculosis complex lipid virulence factors preserved in the 17,000-year-old skeleton of an extinct bison, Bison antiquus.

    Directory of Open Access Journals (Sweden)

    Oona Y-C Lee

    Full Text Available Tracing the evolution of ancient diseases depends on the availability and accessibility of suitable biomarkers in archaeological specimens. DNA is potentially information-rich but it depends on a favourable environment for preservation. In the case of the major mycobacterial pathogens, Mycobacterium tuberculosis and Mycobacterium leprae, robust lipid biomarkers are established as alternatives or complements to DNA analyses. A DNA report, a decade ago, suggested that a 17,000-year-old skeleton of extinct Bison antiquus, from Natural Trap Cave, Wyoming, was the oldest known case of tuberculosis. In the current study, key mycobacterial lipid virulence factor biomarkers were detected in the same two samples from this bison. Fluorescence high-performance liquid chromatography (HPLC indicated the presence of mycolic acids of the mycobacterial type, but they were degraded and could not be precisely correlated with tuberculosis. However, pristine profiles of C(29, C(30 and C(32 mycocerosates and C(27 mycolipenates, typical of the Mycobacterium tuberculosis complex, were recorded by negative ion chemical ionization gas chromatography mass spectrometry of pentafluorobenzyl ester derivatives. These findings were supported by the detection of C(34 and C(36 phthiocerols, which are usually esterified to the mycocerosates. The existence of Pleistocene tuberculosis in the Americas is confirmed and there are many even older animal bones with well-characterised tuberculous lesions similar to those on the analysed sample. In the absence of any evidence of tuberculosis in human skeletons older than 9,000 years BP, the hypothesis that this disease evolved as a zoonosis, before transfer to humans, is given detailed consideration and discussion.

  15. Siderocalin inhibits the intracellular replication of Mycobacterium tuberculosis in macrophages

    DEFF Research Database (Denmark)

    Johnson, Erin E; Srikanth, Chittur V; Sandgren, Andreas

    2010-01-01

    Siderocalin is a secreted protein that binds to siderophores to prevent bacterial iron acquisition. While it has been shown to inhibit the growth of Mycobacterium tuberculosis (M.tb) in extracellular cultures, its effect on this pathogen within macrophages is not clear. Here, we show that sideroc......Siderocalin is a secreted protein that binds to siderophores to prevent bacterial iron acquisition. While it has been shown to inhibit the growth of Mycobacterium tuberculosis (M.tb) in extracellular cultures, its effect on this pathogen within macrophages is not clear. Here, we show...... findings are consistent with an important role for siderocalin in protection against M.tb infection and suggest that exogenously administered siderocalin may have therapeutic applications in tuberculosis....

  16. Mycobacterium tuberculosis nuoG is a virulence gene that inhibits apoptosis of infected host cells.

    Directory of Open Access Journals (Sweden)

    Kamalakannan Velmurugan

    2007-07-01

    Full Text Available The survival and persistence of Mycobacterium tuberculosis depends on its capacity to manipulate multiple host defense pathways, including the ability to actively inhibit the death by apoptosis of infected host cells. The genetic basis for this anti-apoptotic activity and its implication for mycobacterial virulence have not been demonstrated or elucidated. Using a novel gain-of-function genetic screen, we demonstrated that inhibition of infection-induced apoptosis of macrophages is controlled by multiple genetic loci in M. tuberculosis. Characterization of one of these loci in detail revealed that the anti-apoptosis activity was attributable to the type I NADH-dehydrogenase of M. tuberculosis, and was mainly due to the subunit of this multicomponent complex encoded by the nuoG gene. Expression of M. tuberculosis nuoG in nonpathogenic mycobacteria endowed them with the ability to inhibit apoptosis of infected human or mouse macrophages, and increased their virulence in a SCID mouse model. Conversely, deletion of nuoG in M. tuberculosis ablated its ability to inhibit macrophage apoptosis and significantly reduced its virulence in mice. These results identify a key component of the genetic basis for an important virulence trait of M. tuberculosis and support a direct causal relationship between virulence of pathogenic mycobacteria and their ability to inhibit macrophage apoptosis.

  17. Cyclipostins and cyclophostin analogs inhibit the antigen 85C from Mycobacterium tuberculosis both in vitro and in vivo.

    Science.gov (United States)

    Viljoen, Albertus; Richard, Matthias; Nguyen, Phuong Chi; Fourquet, Patrick; Camoin, Luc; Paudal, Rishi R; Gnawali, Giri R; Spilling, Christopher D; Cavalier, Jean-François; Canaan, Stéphane; Blaise, Mickael; Kremer, Laurent

    2018-02-23

    An increasing prevalence of cases of drug-resistant tuberculosis requires the development of more efficacious chemotherapies. We previously reported the discovery of a new class of cyclipostins and cyclophostin (CyC) analogs exhibiting potent activity against Mycobacterium tuberculosis both in vitro and in infected macrophages. Competitive labeling/enrichment assays combined with MS have identified several serine or cysteine enzymes in lipid and cell wall metabolism as putative targets of these CyC compounds. These targets included members of the antigen 85 (Ag85) complex ( i.e. Ag85A, Ag85B, and Ag85C), responsible for biosynthesis of trehalose dimycolate and mycolylation of arabinogalactan. Herein, we used biochemical and structural approaches to validate the Ag85 complex as a pharmacological target of the CyC analogs. We found that CyC 7β , CyC 8β , and CyC 17 bind covalently to the catalytic Ser 124 residue in Ag85C; inhibit mycolyltransferase activity ( i.e. the transfer of a fatty acid molecule onto trehalose); and reduce triacylglycerol synthase activity, a property previously attributed to Ag85A. Supporting these results, an X-ray structure of Ag85C in complex with CyC 8β disclosed that this inhibitor occupies Ag85C's substrate-binding pocket. Importantly, metabolic labeling of M. tuberculosis cultures revealed that the CyC compounds impair both trehalose dimycolate synthesis and mycolylation of arabinogalactan. Overall, our study provides compelling evidence that CyC analogs can inhibit the activity of the Ag85 complex in vitro and in mycobacteria, opening the door to a new strategy for inhibiting Ag85. The high-resolution crystal structure obtained will further guide the rational optimization of new CyC scaffolds with greater specificity and potency against M. tuberculosis . © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  18. Isolation and structure elucidation of avocado seed (Persea americana) lipid derivatives that inhibit Clostridium sporogenes endospore germination.

    Science.gov (United States)

    Rodríguez-Sánchez, Dariana Graciela; Pacheco, Adriana; García-Cruz, María Isabel; Gutiérrez-Uribe, Janet Alejandra; Benavides-Lozano, Jorge Alejandro; Hernández-Brenes, Carmen

    2013-07-31

    Avocado fruit extracts are known to exhibit antimicrobial properties. However, the effects on bacterial endospores and the identity of antimicrobial compounds have not been fully elucidated. In this study, avocado seed extracts were tested against Clostridium sporogenes vegetative cells and active endospores. Bioassay-guided purification of a crude extract based on inhibitory properties linked antimicrobial action to six lipid derivatives from the family of acetogenin compounds. Two new structures and four compounds known to exist in nature were identified as responsible for the activity. Structurally, most potent molecules shared features of an acetyl moiety and a trans-enone group. All extracts produced inhibition zones on vegetative cells and active endospores. Minimum inhibitory concentrations (MIC) of isolated molecules ranged from 7.8 to 15.6 μg/mL, and bactericidal effects were observed for an enriched fraction at 19.5 μg/mL. Identified molecules showed potential as natural alternatives to additives and antibiotics used by the food and pharmaceutical industries to inhibit Gram-positive spore-forming bacteria.

  19. Exploring Covalent Allosteric Inhibition of Antigen 85C from Mycobacterium tuberculosis by Ebselen Derivatives.

    Science.gov (United States)

    Goins, Christopher M; Dajnowicz, Steven; Thanna, Sandeep; Sucheck, Steven J; Parks, Jerry M; Ronning, Donald R

    2017-05-12

    Previous studies identified ebselen as a potent in vitro and in vivo inhibitor of the Mycobacterium tuberculosis (Mtb) antigen 85 (Ag85) complex, comprising three homologous enzymes required for the biosynthesis of the mycobacterial cell wall. In this study, the Mtb Ag85C enzyme was cocrystallized with azido and adamantyl ebselen derivatives, resulting in two crystallographic structures of 2.01 and 1.30 Å resolution, respectively. Both structures displayed the anticipated covalent modification of the solvent accessible, noncatalytic Cys209 residue forming a selenenylsulfide bond. Continuous difference density for both thiol modifiers allowed for the assessment of interactions that influence ebselen binding and inhibitor orientation that were unobserved in previous Ag85C ebselen structures. The k inact /K I values for ebselen, adamantyl ebselen, and azido ebselen support the importance of observed constructive chemical interactions with Arg239 for increased in vitro efficacy toward Ag85C. To better understand the in vitro kinetic properties of these ebselen derivatives, the energetics of specific protein-inhibitor interactions and relative reaction free energies were calculated for ebselen and both derivatives using density functional theory. These studies further support the different in vitro properties of ebselen and two select ebselen derivatives from our previously published ebselen library with respect to kinetics and protein-inhibitor interactions. In both structures, the α9 helix was displaced farther from the enzyme active site than the previous Ag85C ebselen structure, resulting in the restructuring of a connecting loop and imparting a conformational change to residues believed to play a role in substrate binding specific to Ag85C. These notable structural changes directly affect protein stability, reducing the overall melting temperature by up to 14.5 °C, resulting in the unfolding of protein at physiological temperatures. Additionally, this structural

  20. Lipids Derived from Virulent Francisella tularensis Broadly Inhibit Pulmonary Inflammation via Toll-Like Receptor 2 and Peroxisome Proliferator-Activated Receptor α

    Science.gov (United States)

    Crane, Deborah D.; Ireland, Robin; Alinger, Joshua B.; Small, Pamela

    2013-01-01

    Francisella tularensis is a Gram-negative facultative intracellular pathogen that causes an acute lethal respiratory disease in humans. The heightened virulence of the pathogen is linked to its unique ability to inhibit Toll-like receptor (TLR)-mediated inflammatory responses. The bacterial component and mechanism of this inhibition are unknown. Here we show that lipids isolated from virulent but not attenuated strains of F. tularensis are not detected by host cells, inhibit production of proinflammatory cytokines by primary macrophages in response to known TLR ligands, and suppress neutrophil recruitment in vivo. We further show that lipid-mediated inhibition of inflammation is dependent on TLR2, MyD88, and the nuclear hormone and fatty acid receptor peroxisome proliferator-activated receptor α (PPARα). Pathogen lipid-mediated interference with inflammatory responses through the engagement of TLR2 and PPARα represents a novel manipulation of host signaling pathways consistent with the ability of highly virulent F. tularensis to efficiently evade host immune responses. PMID:23925884

  1. Lipid-Lowering Pharmaceutical Clofibrate Inhibits Human Sweet Taste

    Science.gov (United States)

    Kochem, Matthew

    2017-01-01

    T1R2-T1R3 is a heteromeric receptor that binds sugars, high potency sweeteners, and sweet taste blockers. In rodents, T1R2-T1R3 is largely responsible for transducing sweet taste perception. T1R2-T1R3 is also expressed in non-taste tissues, and a growing body of evidence suggests that it helps regulate glucose and lipid metabolism. It was previously shown that clofibric acid, a blood lipid-lowering drug, binds T1R2-T1R3 and inhibits its activity in vitro. The purpose of this study was to determine whether clofibric acid inhibits sweetness perception in humans and is, therefore, a T1R2-T1R3 antagonist in vivo. Fourteen participants rated the sweetness intensity of 4 sweeteners (sucrose, sucralose, Na cyclamate, acesulfame K) across a broad range of concentrations. Each sweetener was prepared in solution neat and in mixture with either clofibric acid or lactisole. Clofibric acid inhibited sweetness of every sweetener. Consistent with competitive binding, inhibition by clofibric acid was diminished with increasing sweetener concentration. This study provides in vivo evidence that the lipid-lowering drug clofibric acid inhibits sweetness perception and is, therefore, a T1R carbohydrate receptor inhibitor. Our results are consistent with previous in vitro findings. Given that T1R2-T1R3 may in part regulate glucose and lipid metabolism, future studies should investigate the metabolic effects of T1R inhibition. PMID:27742692

  2. Inhibition of Glutamine Synthetase: A Potential Drug Target in Mycobacterium tuberculosis

    Directory of Open Access Journals (Sweden)

    Sherry L. Mowbray

    2014-08-01

    Full Text Available Tuberculosis is an infectious disease caused by Mycobacterium tuberculosis. Globally, tuberculosis is second only to AIDS in mortality and the disease is responsible for over 1.3 million deaths each year. The impractically long treatment schedules (generally 6–9 months and unpleasant side effects of the current drugs often lead to poor patient compliance, which in turn has resulted in the emergence of multi-, extensively- and totally-drug resistant strains. The development of new classes of anti-tuberculosis drugs and new drug targets is of global importance, since attacking the bacterium using multiple strategies provides the best means to prevent resistance. This review presents an overview of the various strategies and compounds utilized to inhibit glutamine synthetase, a promising target for the development of drugs for TB therapy.

  3. JAZF1 can regulate the expression of lipid metabolic genes and inhibit lipid accumulation in adipocytes

    Energy Technology Data Exchange (ETDEWEB)

    Ming, Guang-feng [Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha 410078, Hunan (China); Department of Critical Care Medicine, Xiangya Hospital, Central South University, Changsha 410008, Hunan (China); Xiao, Di; Gong, Wei-jing [Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha 410078, Hunan (China); Liu, Hui-xia; Liu, Jun [Department of Geriatrics, Xiangya Hospital, Central South University, Changsha 410008, Hunan (China); Zhou, Hong-hao [Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha 410078, Hunan (China); Liu, Zhao-qian, E-mail: liuzhaoqian63@126.com [Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha 410078, Hunan (China)

    2014-03-14

    Highlights: • JAZF1 was significantly upregulated during the differentiation of 3T3-L1 preadipocytes. • JAZF1 overexpression inhibited lipid accumulation in differentiated mature 3T3-L1 adipocytes. • JAZF1 overexpression inhibited the expression of SREBP1, ACC, and FAS. • JAZF1 overexpression upregulated the expression of HSL and ATGL. • SREBP1 and JAZF1 could regulate each other in adipocytes. - Abstract: JAZF1 is a newly identified gene with unknown functions. A recent genome-wide association study showed that JAZF1 is associated with type 2 diabetes and is highly expressed in liver and adipose tissue. Studies have demonstrated that JAZF1 is the co-repressor for nuclear orphan receptor TAK1, whereas most nuclear orphan receptor family members are involved in the regulation of lipid metabolism. Therefore, JAZF1 could be closely related to glycolipid metabolism. In this study, JAZF1 was significantly upregulated during the induced differentiation process of 3T3-L1 preadipocytes. The overexpression of JAZF1 inhibited lipid accumulation in differentiated mature 3T3-L1 adipocytes and significantly inhibited the expression of SREBPl, ACC, and FAS, which were important in lipid synthesis, while upregulating the expression of key enzyme hormone-sensitive lipase in lipoclasis. Moreover, SREBPl exhibited an inhibitory function on the expression of JAZF1. SREBP1 reversed the inhibitory action on lipid accumulation of JAZF1. SREBP1 and JAZF1 were observed to regulate each other in adipocytes. Therefore, JAZF1 could regulate the expression of particular genes related to lipid metabolism and inhibit lipid accumulation in adipocytes. This result suggests that JAZF1 may be a potential target for the treatment of diseases, such as obesity and lipid metabolism disorders.

  4. JAZF1 can regulate the expression of lipid metabolic genes and inhibit lipid accumulation in adipocytes

    International Nuclear Information System (INIS)

    Ming, Guang-feng; Xiao, Di; Gong, Wei-jing; Liu, Hui-xia; Liu, Jun; Zhou, Hong-hao; Liu, Zhao-qian

    2014-01-01

    Highlights: • JAZF1 was significantly upregulated during the differentiation of 3T3-L1 preadipocytes. • JAZF1 overexpression inhibited lipid accumulation in differentiated mature 3T3-L1 adipocytes. • JAZF1 overexpression inhibited the expression of SREBP1, ACC, and FAS. • JAZF1 overexpression upregulated the expression of HSL and ATGL. • SREBP1 and JAZF1 could regulate each other in adipocytes. - Abstract: JAZF1 is a newly identified gene with unknown functions. A recent genome-wide association study showed that JAZF1 is associated with type 2 diabetes and is highly expressed in liver and adipose tissue. Studies have demonstrated that JAZF1 is the co-repressor for nuclear orphan receptor TAK1, whereas most nuclear orphan receptor family members are involved in the regulation of lipid metabolism. Therefore, JAZF1 could be closely related to glycolipid metabolism. In this study, JAZF1 was significantly upregulated during the induced differentiation process of 3T3-L1 preadipocytes. The overexpression of JAZF1 inhibited lipid accumulation in differentiated mature 3T3-L1 adipocytes and significantly inhibited the expression of SREBPl, ACC, and FAS, which were important in lipid synthesis, while upregulating the expression of key enzyme hormone-sensitive lipase in lipoclasis. Moreover, SREBPl exhibited an inhibitory function on the expression of JAZF1. SREBP1 reversed the inhibitory action on lipid accumulation of JAZF1. SREBP1 and JAZF1 were observed to regulate each other in adipocytes. Therefore, JAZF1 could regulate the expression of particular genes related to lipid metabolism and inhibit lipid accumulation in adipocytes. This result suggests that JAZF1 may be a potential target for the treatment of diseases, such as obesity and lipid metabolism disorders

  5. Unanticipated Mycobacterium tuberculosis complex culture inhibition by immune modulators, immune suppressants, a growth enhancer, and vitamins A and D: clinical implications.

    Science.gov (United States)

    Greenstein, Robert J; Su, Liya; Shahidi, Azra; Brown, William D; Clifford, Anya; Brown, Sheldon T

    2014-09-01

    The development of novel antibiotics to treat multidrug-resistant (MDR) tuberculosis is time-consuming and expensive. Multiple immune modulators, immune suppressants, anti-inflammatories, and growth enhancers, and vitamins A and D, inhibit Mycobacterium avium subspecies paratuberculosis (MAP) in culture. We studied the culture inhibition of Mycobacterium tuberculosis complex by these agents. Biosafety level two M. tuberculosis complex (ATCC 19015 and ATCC 25177) was studied in radiometric Bactec or MGIT culture. Agents evaluated included clofazimine, methotrexate, 6-mercaptopurine, cyclosporine A, rapamycin, tacrolimus, monensin, and vitamins A and D. All the agents mentioned above caused dose-dependent inhibition of the M. tuberculosis complex. There was no inhibition by the anti-inflammatory 5-aminosalicylic acid, which causes bacteriostatic inhibition of MAP. We conclude that, at a minimum, studies with virulent M. tuberculosis are indicated with the agents mentioned above, as well as with the thioamide 5-propothiouricil, which has previously been shown to inhibit the M. tuberculosis complex in culture. Our data additionally emphasize the importance of vitamins A and D in treating mycobacterial diseases. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  6. Design of a nanostructured lipid carrier intended to improve the treatment of tuberculosis

    Directory of Open Access Journals (Sweden)

    Pinheiro M

    2016-08-01

    Full Text Available Marina Pinheiro,1,* Ricardo Ribeiro,1,* Alexandre Vieira,1,* Fernanda Andrade,2 Salette Reis1 1IUCIBIO, REQUIMTE, Chemistry Department, Faculty of Pharmacy, 2Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal *These authors contributed equally to this work Abstract: This work aimed to design, develop, and characterize a lipid nanocarrier system for the selective delivery of rifabutin (RFB to alveolar macrophages. Lipid nanoparticles, specifically nanostructured lipid carriers (NLC, were synthetized by the high-shear homogenization and ultrasonication techniques. These nanoparticles were designed to exhibit both passive and active targeting strategies to be efficiently internalized by the alveolar macrophages, traffic to the acidified phagosomes and phagolysosomes, and release bactericidal concentrations of the antituberculosis drug intracellularly. NLC that could entrap RFB were prepared, characterized, and further functionalized with mannose. Particles’ diameter, zeta potential, morphology, drug% entrapping efficiency, and drug release kinetics were evaluated. The mannose coating process was confirmed by Fourier transform infrared. Further, the cytotoxicity of the formulations was evaluated by 3-(4,5-dimethylthiazol-2-yl-2,5 diphenyltetrazolium bromide (MTT assay in A549, Calu-3, and Raw 264.7 cells. The diameter of NLC formulations was found to be in the range of 175–213 nm, and drug entrapping efficiency was found to be above 80%. In addition, high storage stability for the formulations was expected since they maintained the initial characteristics for 6 months. Moreover, the drug release was pH-sensitive, with a faster drug release at acidic pH than at neutral pH. These results pose a strong argument that the developed nanocarrier can be explored as a promising carrier for safer and more efficient management of tuberculosis by exploiting the pulmonary route of

  7. Study of inhibition on lipid oxidation of irradiated pork

    International Nuclear Information System (INIS)

    Ha Yiming

    2006-03-01

    It was studied that the effect factors of irradiation dose, preservation temperature, oxygen content and antioxidant on lipid oxidation of irradiated pork. A mechanism was explained on lipid oxidation of irradiated pork. The results showed that irradiation might aggravate lipid oxidation of pork and that decreased preservation temperature and oxygen content of the packaging, added antioxidant also could effectively inhibit lipid oxidation of irradiated pork. (authors)

  8. In Vivo Inhibition of Lipid Accumulation in Caenorhabditis elegans

    Science.gov (United States)

    Sulistiyani; Purwakusumah, E. P.; Andrianto, D.

    2017-03-01

    This is a preliminary research report on the use of Caenorhabditis elegans as a model to establish anti-obesity screening assay of the natural plant resources. Nematode C. elegans has been used as experimental animal model for understanding lipid accumulation. The objective of this research was to investigate the effect of selected plant extracts on lipid accumulation in C. elegans. Currently no report could be found regarding lipid accumulation in C.elegans treated with ethanolic leaf extracts of jabon merah (Anthocephalus macrophyllus), jati belanda (Guazuma ulmifolia), and Mindi (Melia Azedarach) plants. Lipid accumulation was determined qualitatively using lipid staining method and quantitatively by colorimetry using sulpho-phospho-vanillin reagent. Data showed that lipid accumulation was inhibited up to 72% by extract of M. azedarach, about 35% by both of A. macrophyllus and G. ulmifolia extracts, and up to 25% by orlistat (a synthetic slimming drug). Ethanolic extract of A. macrophyllus, G. ulmifolia, and M. azedarach leaves were shown to inhibit lipid accumulation in C. elegans and M. azedarach leaves extracts was the most effective inhibitor. C.elegans were shown to be an effective model for in vivo lipid accumulation mechanism and potential to be used as a rapid screening assay for bioactive compounds with lipid accumulation inhibitory activity.

  9. Siderocalin inhibits the intracellular replication of Mycobacterium tuberculosis in macrophages

    DEFF Research Database (Denmark)

    Johnson, Erin E; Srikanth, Chittur V; Sandgren, Andreas

    2010-01-01

    Siderocalin is a secreted protein that binds to siderophores to prevent bacterial iron acquisition. While it has been shown to inhibit the growth of Mycobacterium tuberculosis (M.tb) in extracellular cultures, its effect on this pathogen within macrophages is not clear. Here, we show that sideroc...

  10. Inhibition of radiation-induced lipid peroxidation by means of gallic polydisulphide

    International Nuclear Information System (INIS)

    Losev, Yu.P.; Amadyan, M.G.; Oganesyan, N.M.; Fedulov, A.S.; Abramyan, A.K.; Shagoyan, A.G.; Khachkavanktsyan, A.S.

    1999-01-01

    Inhibition of radiation-induced lipid peroxidation by means of gallic polydisulphade has been studied. Rats were exposed to X-rays in doses 4,8 and 5,25 Gy. Lipid peroxidation was analysed in blood plasma, membranes of erythrocytes and homogenates of liver and spleen tissues of rats. Polydisulphide of gallic acid was used as inhibitor of lipid peroxidation because of its effective antioxidant properties as have been reported previously. It has been demonstrated that gallic disulphide exhibited high inhibition efficiency in conditions of radiation-induced lipid peroxidation due to the effect of intra-molecular synergism

  11. Cell-based lipid flippase assay employing fluorescent lipid derivatives

    DEFF Research Database (Denmark)

    Jensen, Maria Stumph; Costa, Sara; Günther-Pomorski, Thomas

    2016-01-01

    P-type ATPases in the P4 subfamily (P4-ATPases) are transmembrane proteins unique for eukaryotes that act as lipid flippases, i.e., to translocate phospholipids from the exofacial to the cytofacial monolayer of cellular membranes. While initially characterized as aminophospholipid translocases, s...... flippase activities in the plasma membrane of cells, using yeast as an example.......P-type ATPases in the P4 subfamily (P4-ATPases) are transmembrane proteins unique for eukaryotes that act as lipid flippases, i.e., to translocate phospholipids from the exofacial to the cytofacial monolayer of cellular membranes. While initially characterized as aminophospholipid translocases......, studies of individual P4-ATPase family members from fungi, plants, and animals show that P4-ATPases differ in their substrate specificities and mediate transport of a broader range of lipid substrates. Here, we describe an assay based on fluorescent lipid derivatives to monitor and characterize lipid...

  12. Inhibition of prenylated KRAS in a lipid environment.

    Directory of Open Access Journals (Sweden)

    Johanna M Jansen

    Full Text Available RAS mutations lead to a constitutively active oncogenic protein that signals through multiple effector pathways. In this chemical biology study, we describe a novel coupled biochemical assay that measures activation of the effector BRAF by prenylated KRASG12V in a lipid-dependent manner. Using this assay, we discovered compounds that block biochemical and cellular functions of KRASG12V with low single-digit micromolar potency. We characterized the structural basis for inhibition using NMR methods and showed that the compounds stabilized the inactive conformation of KRASG12V. Determination of the biophysical affinity of binding using biolayer interferometry demonstrated that the potency of inhibition matches the affinity of binding only when KRAS is in its native state, namely post-translationally modified and in a lipid environment. The assays we describe here provide a first-time alignment across biochemical, biophysical, and cellular KRAS assays through incorporation of key physiological factors regulating RAS biology, namely a negatively charged lipid environment and prenylation, into the in vitro assays. These assays and the ligands we discovered are valuable tools for further study of KRAS inhibition and drug discovery.

  13. Changes in mitochondrial function by lipid peroxidation and their inhibition by biscoclaurin alkaloid

    International Nuclear Information System (INIS)

    Aono, K.; Shiraishi, N.; Arita, T.; Inouye, B.; Nakazawa, T.; Utsumi, K.

    1981-01-01

    During in vitro investigation of changes in mitochondrial function accompanying lipid peroxidation, it was found that cepharanthine, a biscoclaurin alkaloid, protects against such change. Results obtained were as follows: (1) Fe2+ induces lipid peroxidation of isolated mitochondria, resulting in diminished oxidative phosphorylation. (2) This diminishment largely depends on deterioration of ion compartmentation of the membrane and an increase in latent ATPase activity. (3) The Fe2+-induced deterioration in ion compartmentation is inhibited by cepharanthine. (4) Cepharanthine inhibits the mitochondrial lipid peroxidation induced by Fe2+. (5) Cepharanthine inhibits the lipid peroxidation of soybean lecithin liposomes by 60Co-irradiation

  14. Comparative metabolic profiling of mce1 operon mutant vs wild-type Mycobacterium tuberculosis strains.

    Science.gov (United States)

    Queiroz, Adriano; Medina-Cleghorn, Daniel; Marjanovic, Olivera; Nomura, Daniel K; Riley, Lee W

    2015-11-01

    Mycobacterium tuberculosis disrupted in a 13-gene operon (mce1) accumulates free mycolic acids (FM) in its cell wall and causes accelerated death in mice. Here, to more comprehensively analyze differences in their cell wall lipid composition, we used an untargeted metabolomics approach to compare the lipid profiles of wild-type and mce1 operon mutant strains. By liquid chromatography-mass spectrometry, we identified >400 distinct lipids significantly altered in the mce1 mutant compared to wild type. These lipids included decreased levels of saccharolipids and glycerophospholipids, and increased levels of alpha-, methoxy- and keto mycolic acids (MA), and hydroxyphthioceranic acid. The mutant showed reduced expression of mmpL8, mmpL10, stf0, pks2 and papA2 genes involved in transport and metabolism of lipids recognized to induce proinflammatory response; these lipids were found to be decreased in the mutant. In contrast, the transcripts of mmpL3, fasI, kasA, kasB, acpM and RV3451 involved in MA transport and metabolism increased; MA inhibits inflammatory response in macrophages. Since the mce1 operon is known to be regulated in intracellular M. tuberculosis, we speculate that the differences we observed in cell wall lipid metabolism and composition may affect host response to M. tuberculosis infection and determine the clinical outcome of such an infection. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  15. Protective Effect of a Lipid-Based Preparation from Mycobacterium smegmatis in a Murine Model of Progressive Pulmonary Tuberculosis

    Directory of Open Access Journals (Sweden)

    Maria de los Angeles García

    2014-01-01

    Full Text Available A more effective vaccine against tuberculosis (TB is urgently needed. Based on its high genetic homology with Mycobacterium tuberculosis (Mtb, the nonpathogenic mycobacteria, Mycobacterium smegmatis (Ms, could be an attractive source of potential antigens to be included in such a vaccine. We evaluated the capability of lipid-based preparations obtained from Ms to provide a protective response in Balb/c mice after challenge with Mtb H37Rv strain. The intratracheal model of progressive pulmonary TB was used to assess the level of protection in terms of bacterial load as well as the pathological changes in the lungs of immunized Balb/c mice following challenge with Mtb. Mice immunized with the lipid-based preparation from Ms either adjuvanted with Alum (LMs-AL or nonadjuvanted (LMs showed significant reductions in bacterial load (P<0.01 compared to the negative control group (animals immunized with phosphate buffered saline (PBS. Both lipid formulations showed the same level of protection as Bacille Calmette and Guerin (BCG. Regarding the pathologic changes in the lungs, mice immunized with both lipid formulations showed less pneumonic area when compared with the PBS group (P<0.01 and showed similar results compared with the BCG group. These findings suggest the potential of LMs as a promising vaccine candidate against TB.

  16. A systems biology framework for modeling metabolic enzyme inhibition of Mycobacterium tuberculosis

    Directory of Open Access Journals (Sweden)

    Reifman Jaques

    2009-09-01

    Full Text Available Abstract Background Because metabolism is fundamental in sustaining microbial life, drugs that target pathogen-specific metabolic enzymes and pathways can be very effective. In particular, the metabolic challenges faced by intracellular pathogens, such as Mycobacterium tuberculosis, residing in the infected host provide novel opportunities for therapeutic intervention. Results We developed a mathematical framework to simulate the effects on the growth of a pathogen when enzymes in its metabolic pathways are inhibited. Combining detailed models of enzyme kinetics, a complete metabolic network description as modeled by flux balance analysis, and a dynamic cell population growth model, we quantitatively modeled and predicted the dose-response of the 3-nitropropionate inhibitor on the growth of M. tuberculosis in a medium whose carbon source was restricted to fatty acids, and that of the 5'-O-(N-salicylsulfamoyl adenosine inhibitor in a medium with low-iron concentration. Conclusion The predicted results quantitatively reproduced the experimentally measured dose-response curves, ranging over three orders of magnitude in inhibitor concentration. Thus, by allowing for detailed specifications of the underlying enzymatic kinetics, metabolic reactions/constraints, and growth media, our model captured the essential chemical and biological factors that determine the effects of drug inhibition on in vitro growth of M. tuberculosis cells.

  17. miR-223 is upregulated in monocytes from patients with tuberculosis and regulates function of monocyte-derived macrophages.

    Science.gov (United States)

    Liu, Yanhua; Wang, Ruo; Jiang, Jing; Yang, Bingfen; Cao, Zhihong; Cheng, Xiaoxing

    2015-10-01

    Tuberculosis (TB) is a serious infectious disease that most commonly affects the lungs. Macrophages are among the first line defenders against establishment of Mycobacterium tuberculosis infection in the lungs. In this study, we found that activation and cytokine production in monocyte-derived macrophages (MDM) from patients with active TB was impaired. miR-223 expression was significantly elevated in monocytes and MDM from patients with TB compared with healthy controls. To determine the functional role of miR-223 in macrophages, stable miR-223-expressing and miR-223 antisense-expressing U937 cells were established. Compared with empty vector controls, expression of IL-1β, IL-6, TNF-α and IL-12p40 genes was significantly higher in miR-223 antisense-expressing U937 cells, but lower in miR-223-expressing U937 cells. miR-223 can negatively regulate activation of NF-κB by inhibition of p65 phosphorylation and nuclear translocation. It is concluded that miR-223 can regulate macrophage function by inhibition of cytokine production and NF-κB activation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Inhibition effect on lipid oxidation of irradiated pork by adding hawthorn flavonoid extract

    International Nuclear Information System (INIS)

    Wang Xiaoming; Liu Chao; Cao Lei; Li Kexi

    2011-01-01

    The antioxidant activity of hawthorn flavonoid extract and its inhibition effect on irradiated pork lipid oxidant were investigated. The results showed that hawthorn flavonoids had efficient scavenging effect on DPPH free radicals (DPPH ·), and the scavenging rate reached 56% while 2 ml of 0.035 mg/ml hawthorn flavonoid extract was added. Hawthorn flavonoid extract can inhibition the lipid oxidation of irradiated pork effectively and it showed a stronger inhibition ability while the hawthorn flavonoid extract were used together with Vc. It is concluded that can decrease the lipid oxidation of pork, hawthorn flavonoid extract is a remarkable natural antioxidant. (authors)

  19. Tofacitinib restores the inhibition of reverse cholesterol transport induced by inflammation: understanding the lipid paradox associated with rheumatoid arthritis.

    Science.gov (United States)

    Pérez-Baos, S; Barrasa, J I; Gratal, P; Larrañaga-Vera, A; Prieto-Potin, I; Herrero-Beaumont, G; Largo, R

    2017-09-01

    Patients with active rheumatoid arthritis (RA) have increased cardiovascular mortality, paradoxically associated with reduced circulating lipid levels. The JAK inhibitor tofacitinib ameliorates systemic and joint inflammation in RA with a concomitant increase in serum lipids. We analysed the effect of tofacitinib on the lipid profile of hyperlipidaemic rabbits with chronic arthritis (CA) and on the changes in reverse cholesterol transport (RCT) during chronic inflammation. CA was induced in previously immunized rabbits, fed a high-fat diet, by administering four intra-articular injections of ovalbumin. A group of rabbits received tofacitinib (10 mg·kg -1 ·day -1 ) for 2 weeks. Systemic and synovial inflammation and lipid content were evaluated. For in vitro studies, THP-1-derived macrophages were exposed to high lipid concentrations and then stimulated with IFNγ in the presence or absence of tofacitinib in order to study mediators of RCT. Tofacitinib decreased systemic and synovial inflammation and increased circulating lipid levels. Although it did not modify synovial macrophage density, it reduced the lipid content within synovial macrophages. In foam macrophages in culture, IFNγ further stimulated intracellular lipid accumulation, while the JAK/STAT inhibition provoked by tofacitinib induced lipid release by increasing the levels of cellular liver X receptor α and ATP-binding cassette transporter (ABCA1) synthesis. Active inflammation could be associated with lipid accumulation within macrophages of CA rabbits. JAK inhibition induced lipid release through RCT activation, providing a plausible explanation for the effect of tofacitinib on the lipid profile of RA patients. © 2017 The British Pharmacological Society.

  20. Inhibition of lipase and inflammatory mediators by Chlorella lipid extracts for antiacne treatment.

    Science.gov (United States)

    Sibi, G

    2015-01-01

    Acne vulgaris is a chronic inflammatory disease, and its treatment is challenging due to the multifactorial etiology and emergence of antibiotic-resistant Propionibacterium acnes strains. This study was focused to reduce antibiotics usage and find an alternate therapeutic source for treating acne. Lipid extracts of six Chlorella species were tested for inhibition of lipase, reactive oxygen species (ROS) production, cytokine production using P. acnes (Microbial Type Culture Collection 1951). Lipase inhibitory assay was determined by dimercaprol Tributyrate - 5, 5'- dithiobis 2-nitrobenzoic acid method and ROS production assay was performed using nitro-blue tetrazolium test. The anti-inflammatory activity of algal lipid extracts was determined by in vitro screening method based on inhibition of pro-inflammatory cytokines, tumor necrosis factor-alpha (TNF-α) produced by human peripheral blood mononuclear cells. Minimum inhibitory concentration (MIC) values of lipid extracts were determined by microdilution method, and the fatty acid methyl esters (FAME) were analyzed by gas chromatography-mass spectroscopy. Chlorella ellipsoidea has the highest lipase inhibitory activity with 61.73% inhibition, followed by Chlorella vulgaris (60.31%) and Chlorella protothecoides (58.9%). Lipid extracts from C. protothecoides and C. ellipsoidea has significantly reduced the ROS production by 61.27% and 58.34% respectively. Inhibition of pro-inflammatory cytokines TNF-α showed the inhibition ranging from 58.39% to 78.67%. C. vulgaris has exhibited the MICvalue of 10 μg/ml followed by C. ellipsoidea, C. protothecoides and Chlorella pyrenoidosa (20 μg/ml). FAME analysis detected 19 fatty acids of which 5 were saturated fatty acids, and 14 were unsaturated fatty acids ranging from C14 to C24. The results suggest that lipid extracts of Chlorella species has significant inhibitory activity on P. acnes by inhibiting lipase activity. Further, anti-inflammatory reaction caused by the

  1. Inhibition of lipase and inflammatory mediators by Chlorella lipid extracts for antiacne treatment

    Directory of Open Access Journals (Sweden)

    G Sibi

    2015-01-01

    Full Text Available Acne vulgaris is a chronic inflammatory disease, and its treatment is challenging due to the multifactorial etiology and emergence of antibiotic-resistant Propionibacterium acnes strains. This study was focused to reduce antibiotics usage and find an alternate therapeutic source for treating acne. Lipid extracts of six Chlorella species were tested for inhibition of lipase, reactive oxygen species (ROS production, cytokine production using P. acnes (Microbial Type Culture Collection 1951. Lipase inhibitory assay was determined by dimercaprol Tributyrate - 5, 5′- dithiobis 2-nitrobenzoic acid method and ROS production assay was performed using nitro-blue tetrazolium test. The anti-inflammatory activity of algal lipid extracts was determined by in vitro screening method based on inhibition of pro-inflammatory cytokines, tumor necrosis factor-alpha (TNF-α produced by human peripheral blood mononuclear cells. Minimum inhibitory concentration (MIC values of lipid extracts were determined by microdilution method, and the fatty acid methyl esters (FAME were analyzed by gas chromatography-mass spectroscopy. Chlorella ellipsoidea has the highest lipase inhibitory activity with 61.73% inhibition, followed by Chlorella vulgaris (60.31% and Chlorella protothecoides (58.9%. Lipid extracts from C. protothecoides and C. ellipsoidea has significantly reduced the ROS production by 61.27% and 58.34% respectively. Inhibition of pro-inflammatory cytokines TNF-α showed the inhibition ranging from 58.39% to 78.67%. C. vulgaris has exhibited the MICvalue of 10 μg/ml followed by C. ellipsoidea, C. protothecoides and Chlorella pyrenoidosa (20 μg/ml. FAME analysis detected 19 fatty acids of which 5 were saturated fatty acids, and 14 were unsaturated fatty acids ranging from C14 to C24. The results suggest that lipid extracts of Chlorella species has significant inhibitory activity on P. acnes by inhibiting lipase activity. Further, anti-inflammatory reaction caused

  2. Phenotypic assays for Mycobacterium tuberculosis infection.

    Science.gov (United States)

    Song, Ok-Ryul; Deboosere, Nathalie; Delorme, Vincent; Queval, Christophe J; Deloison, Gaspard; Werkmeister, Elisabeth; Lafont, Frank; Baulard, Alain; Iantomasi, Raffaella; Brodin, Priscille

    2017-10-01

    Tuberculosis (TB) is still a major global threat, killing more than one million persons each year. With the constant increase of Mycobacterium tuberculosis strains resistant to first- and second-line drugs, there is an urgent need for the development of new drugs to control the propagation of TB. Although screenings of small molecules on axenic M. tuberculosis cultures were successful for the identification of novel putative anti-TB drugs, new drugs in the development pipeline remains scarce. Host-directed therapy may represent an alternative for drug development against TB. Indeed, M. tuberculosis has multiple specific interactions within host phagocytes, which may be targeted by small molecules. In order to enable drug discovery strategies against microbes residing within host macrophages, we developed multiple fluorescence-based HT/CS phenotypic assays monitoring the intracellular replication of M. tuberculosis as well as its intracellular trafficking. What we propose here is a population-based, multi-parametric analysis pipeline that can be used to monitor the intracellular fate of M. tuberculosis and the dynamics of cellular events such as phagosomal maturation (acidification and permeabilization), zinc poisoning system or lipid body accumulation. Such analysis allows the quantification of biological events considering the host-pathogen interplay and may thus be derived to other intracellular pathogens. © 2017 International Society for Advancement of Cytometry. © 2017 International Society for Advancement of Cytometry.

  3. Inhibition of nuclear factor-kappa B activation decreases survival of Mycobacterium tuberculosis in human macrophages.

    Directory of Open Access Journals (Sweden)

    Xiyuan Bai

    Full Text Available Nuclear factor-kappa B (NFκB is a ubiquitous transcription factor that mediates pro-inflammatory responses required for host control of many microbial pathogens; on the other hand, NFκB has been implicated in the pathogenesis of other inflammatory and infectious diseases. Mice with genetic disruption of the p50 subunit of NFκB are more likely to succumb to Mycobacterium tuberculosis (MTB. However, the role of NFκB in host defense in humans is not fully understood. We sought to examine the role of NFκB activation in the immune response of human macrophages to MTB. Targeted pharmacologic inhibition of NFκB activation using BAY 11-7082 (BAY, an inhibitor of IκBα kinase or an adenovirus construct with a dominant-negative IκBα significantly decreased the number of viable intracellular mycobacteria recovered from THP-1 macrophages four and eight days after infection. The results with BAY were confirmed in primary human monocyte-derived macrophages and alveolar macrophages. NFκB inhibition was associated with increased macrophage apoptosis and autophagy, which are well-established killing mechanisms of intracellular MTB. Inhibition of the executioner protease caspase-3 or of the autophagic pathway significantly abrogated the effects of BAY. We conclude that NFκB inhibition decreases viability of intracellular MTB in human macrophages via induction of apoptosis and autophagy.

  4. The Inhibition of Folylpolyglutamate Synthetase (folC in the Prevention of Drug Resistance in Mycobacterium tuberculosis by Traditional Chinese Medicine

    Directory of Open Access Journals (Sweden)

    Tzu-Chieh Hung

    2014-01-01

    Full Text Available Tuberculosis (TB is an infectious disease caused by many strains of mycobacteria, but commonly Mycobacterium tuberculosis. As a possible method of reducing the drug resistance of M. tuberculosis, this research investigates the inhibition of Folylpolyglutamate synthetase, a protein transcript from the resistance association gene folC. After molecular docking to screen the traditional Chinese medicine (TCM database, the candidate TCM compounds, with Folylpolyglutamate synthetase, were selected by molecular dynamics. The 10,000 ps simulation in association with RMSD analysis and total energy and structural variation defined the protein-ligand interaction. The selected TCM compounds Saussureamine C, methyl 3-O-feruloylquinate, and Labiatic acid have been found to inhibit the activity of bacteria and viruses and to regulate immunity. We also suggest the possible pathway in protein for each ligand. Compared with the control, similar interactions and structural variations indicate that these compounds might have an effect on Folylpolyglutamate synthetase. Finally, we suggest Saussureamine C is the best candidate compound as the complex has a high score, maintains its structural composition, and has a larger variation value than the control, thus inhibiting the drug resistance ability of Mycobacterium tuberculosis.

  5. Antitumor and antimicrobial activities and inhibition of in-vitro lipid ...

    African Journals Online (AJOL)

    The antitumor activity was measured in DLA cell line induced mice. Inhibition of in vitro lipid peroxidation activity of the D. nobile in both liver homogenate and RBC ghosts was also carried out. The aqueous extracts of stem and flower of D. nobile showed better zone of bacterial inhibition than that of ethanol and chloroform

  6. Perilipin 1 Mediates Lipid Metabolism Homeostasis and Inhibits Inflammatory Cytokine Synthesis in Bovine Adipocytes.

    Science.gov (United States)

    Zhang, Shiqi; Liu, Guowen; Xu, Chuang; Liu, Lei; Zhang, Qiang; Xu, Qiushi; Jia, Hongdou; Li, Xiaobing; Li, Xinwei

    2018-01-01

    Dairy cows with ketosis displayed lipid metabolic disorder and high inflammatory levels. Adipose tissue is an active lipid metabolism and endocrine tissue and is closely related to lipid metabolism homeostasis and inflammation. Perilipin 1 (PLIN1), an adipocyte-specific lipid-coated protein, may be involved in the above physiological function. The aim of this study is to investigate the role of PLIN1 in lipid metabolism regulation and inflammatory factor synthesis in cow adipocytes. The results showed that PLIN1 overexpression upregulated the expression of fatty acid and triglyceride (TAG) synthesis molecule sterol regulator element-binding protein-1c (SREBP-1c) and its target genes, diacylglycerol acyltransferase (DGAT) 1, and DGAT2, but inhibited the expression of lipolysis enzymes hormone-sensitive lipase (HSL) and CGI-58 for adipose triglyceride lipase (ATGL), thus augmenting the fatty acids and TAG synthesis and inhibiting lipolysis. Importantly, PLIN1 overexpression inhibited the activation of the NF-κB inflammatory pathway and decreased the expression and content of tumor necrosis factor alpha (TNF-α), interleukin 1 beta (IL-1β), and interleukin 6 (IL-6) induced by lipopolysaccharide. Conversely, PLIN1 silencing inhibited TAG synthesis, promoted lipolysis, and overinduced the activation of the NF-κB inflammatory pathway in cow adipocytes. In ketotic cows, the expression of PLIN1 was markedly decreased, whereas lipid mobilization, NF-κB pathway, and downstream inflammatory cytokines were overinduced in adipose tissue. Taken together, these results indicate that PLIN1 can maintain lipid metabolism homeostasis and inhibit the NF-κB inflammatory pathway in adipocytes. However, low levels of PLIN1 reduced the inhibitory effect on fat mobilization, NF-κB pathway, and inflammatory cytokine synthesis in ketotic cows.

  7. Perilipin 1 Mediates Lipid Metabolism Homeostasis and Inhibits Inflammatory Cytokine Synthesis in Bovine Adipocytes

    Directory of Open Access Journals (Sweden)

    Shiqi Zhang

    2018-03-01

    Full Text Available Dairy cows with ketosis displayed lipid metabolic disorder and high inflammatory levels. Adipose tissue is an active lipid metabolism and endocrine tissue and is closely related to lipid metabolism homeostasis and inflammation. Perilipin 1 (PLIN1, an adipocyte-specific lipid-coated protein, may be involved in the above physiological function. The aim of this study is to investigate the role of PLIN1 in lipid metabolism regulation and inflammatory factor synthesis in cow adipocytes. The results showed that PLIN1 overexpression upregulated the expression of fatty acid and triglyceride (TAG synthesis molecule sterol regulator element-binding protein-1c (SREBP-1c and its target genes, diacylglycerol acyltransferase (DGAT 1, and DGAT2, but inhibited the expression of lipolysis enzymes hormone-sensitive lipase (HSL and CGI-58 for adipose triglyceride lipase (ATGL, thus augmenting the fatty acids and TAG synthesis and inhibiting lipolysis. Importantly, PLIN1 overexpression inhibited the activation of the NF-κB inflammatory pathway and decreased the expression and content of tumor necrosis factor alpha (TNF-α, interleukin 1 beta (IL-1β, and interleukin 6 (IL-6 induced by lipopolysaccharide. Conversely, PLIN1 silencing inhibited TAG synthesis, promoted lipolysis, and overinduced the activation of the NF-κB inflammatory pathway in cow adipocytes. In ketotic cows, the expression of PLIN1 was markedly decreased, whereas lipid mobilization, NF-κB pathway, and downstream inflammatory cytokines were overinduced in adipose tissue. Taken together, these results indicate that PLIN1 can maintain lipid metabolism homeostasis and inhibit the NF-κB inflammatory pathway in adipocytes. However, low levels of PLIN1 reduced the inhibitory effect on fat mobilization, NF-κB pathway, and inflammatory cytokine synthesis in ketotic cows.

  8. Lauric acid and myristic acid from Allium sativum inhibit the growth of Mycobacterium tuberculosis H37Ra: in silico analysis reveals possible binding to protein kinase B.

    Science.gov (United States)

    Muniyan, Rajiniraja; Gurunathan, Jayaraman

    2016-12-01

    The bulb of Allium sativum Linn (Alliaceae) has numerous medicinal values. Though the petroleum ether extract of the bulb has shown to exhibit antimycobacterial activity, the phytochemical(s) responsible for this inhibitory activity is not known. To characterize the bioactive compounds in the petroleum ether extract of Allium sativum (garlic) that inhibit the growth of Mycobacterium tuberculosis H37Ra. Bioactivity-guided fractionation was employed to isolate the bioactive compounds. Antimycobacterial activity was evaluated by well-diffusion method and microplate alamar blue assay (MABA). Infrared spectroscopy, mass spectrometry and nuclear magnetic resonance spectroscopy were used to characterize the bioactive compounds. Autodock was used to obtain information on molecular recognition, and molecular dynamics simulation was performed using GROMACS. The bioactive compounds that inhibited the growth of M. tuberculosis H37Ra were found to be lauric acid (LA) and myristic acid (MA). The minimal inhibitory concentration of LA and MA was found to be 22.2 and 66.7 μg/mL, respectively. In silico analysis revealed that these fatty acids could bind at the cleft between the N-terminal and C-terminal lobes of the cytosolic domain of serine/threonine protein kinase B (PknB). The inhibition activity was dependent on the alkyl chain length of the fatty acid, and the amino acid residues involved in binding to fatty acid was found to be conserved across the Pkn family of proteins. The study indicates the possibility of using fatty acid derivatives, involving Pkn family of proteins, to inhibit the signal transduction processes in M. tuberculosis.

  9. Phosphorylation of InhA inhibits mycolic acid biosynthesis and growth of Mycobacterium tuberculosis

    Energy Technology Data Exchange (ETDEWEB)

    Molle, Virginie; Gulten, Gulcin; Vilchèze, Catherine; Veyron-Churlet, Romain; Zanella-Cléon, Isabelle; Sacchettini, James C.; Jacobs, Jr, William R.; Kremer, Laurent (CNRS-UMR); (Einstein); (TAM)

    2011-08-24

    The remarkable survival ability of Mycobacterium tuberculosis in infected hosts is related to the presence of cell wall-associated mycolic acids. Despite their importance, the mechanisms that modulate expression of these lipids in response to environmental changes are unknown. Here we demonstrate that the enoyl-ACP reductase activity of InhA, an essential enzyme of the mycolic acid biosynthetic pathway and the primary target of the anti-tubercular drug isoniazid, is controlled via phosphorylation. Thr-266 is the unique kinase phosphoacceptor, both in vitro and in vivo. The physiological relevance of Thr-266 phosphorylation was demonstrated using inhA phosphoablative (T266A) or phosphomimetic (T266D/E) mutants. Enoyl reductase activity was severely impaired in the mimetic mutants in vitro, as a consequence of a reduced binding affinity to NADH. Importantly, introduction of inhA{_}T266D/E failed to complement growth and mycolic acid defects of an inhA-thermosensitive Mycobacterium smegmatis strain, in a similar manner to what is observed following isoniazid treatment. This study suggests that phosphorylation of InhA may represent an unusual mechanism that allows M. tuberculosis to regulate its mycolic acid content, thus offering a new approach to future anti-tuberculosis drug development.

  10. Phosphorylation of InhA inhibits mycolic acid biosynthesis and growth of Mycobacterium tuberculosis.

    Science.gov (United States)

    Molle, Virginie; Gulten, Gulcin; Vilchèze, Catherine; Veyron-Churlet, Romain; Zanella-Cléon, Isabelle; Sacchettini, James C; Jacobs, William R; Kremer, Laurent

    2010-12-01

    The remarkable survival ability of Mycobacterium tuberculosis in infected hosts is related to the presence of cell wall-associated mycolic acids. Despite their importance, the mechanisms that modulate expression of these lipids in response to environmental changes are unknown. Here we demonstrate that the enoyl-ACP reductase activity of InhA, an essential enzyme of the mycolic acid biosynthetic pathway and the primary target of the anti-tubercular drug isoniazid, is controlled via phosphorylation. Thr-266 is the unique kinase phosphoacceptor, both in vitro and in vivo. The physiological relevance of Thr-266 phosphorylation was demonstrated using inhA phosphoablative (T266A) or phosphomimetic (T266D/E) mutants. Enoyl reductase activity was severely impaired in the mimetic mutants in vitro, as a consequence of a reduced binding affinity to NADH. Importantly, introduction of inhA_T266D/E failed to complement growth and mycolic acid defects of an inhA-thermosensitive Mycobacterium smegmatis strain, in a similar manner to what is observed following isoniazid treatment. This study suggests that phosphorylation of InhA may represent an unusual mechanism that allows M. tuberculosis to regulate its mycolic acid content, thus offering a new approach to future anti-tuberculosis drug development. © 2010 Blackwell Publishing Ltd.

  11. Macrophage immunoregulatory pathways in tuberculosis.

    Science.gov (United States)

    Rajaram, Murugesan V S; Ni, Bin; Dodd, Claire E; Schlesinger, Larry S

    2014-12-01

    Macrophages, the major host cells harboring Mycobacterium tuberculosis (M.tb), are a heterogeneous cell type depending on their tissue of origin and host they are derived from. Significant discord in macrophage responses to M.tb exists due to differences in M.tb strains and the various types of macrophages used to study tuberculosis (TB). This review will summarize current concepts regarding macrophage responses to M.tb infection, while pointing out relevant differences in experimental outcomes due to the use of divergent model systems. A brief description of the lung environment is included since there is increasing evidence that the alveolar macrophage (AM) has immunoregulatory properties that can delay optimal protective host immune responses. In this context, this review focuses on selected macrophage immunoregulatory pattern recognition receptors (PRRs), cytokines, negative regulators of inflammation, lipid mediators and microRNAs (miRNAs). Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Lipid-Lowering Pharmaceutical Clofibrate Inhibits Human Sweet Taste

    OpenAIRE

    Kochem, Matthew; Breslin, Paul A.S.

    2016-01-01

    T1R2-T1R3 is a heteromeric receptor that binds sugars, high potency sweeteners, and sweet taste blockers. In rodents, T1R2-T1R3 is largely responsible for transducing sweet taste perception. T1R2-T1R3 is also expressed in non-taste tissues, and a growing body of evidence suggests that it helps regulate glucose and lipid metabolism. It was previously shown that clofibric acid, a blood lipid-lowering drug, binds T1R2-T1R3 and inhibits its activity in vitro. The purpose of this study was to dete...

  13. Assay of flippase activity in proteoliposomes using fluorescent lipid derivatives

    DEFF Research Database (Denmark)

    Marek, Magdalena; Günther-Pomorski, Thomas

    2016-01-01

    Specific membrane proteins, termed lipid flippases, play a central role in facilitating the movement of lipids across cellular membranes. In this protocol, we describe the reconstitution of ATP-driven lipid flippases in liposomes and the analysis of their in vitro flippase activity based on the use...... of fluorescent lipid derivatives. Working with purified and reconstituted systems provides a well-defined experimental setup and allows to directly characterize these membrane proteins at the molecular level....

  14. Inhibition of Lipid Peroxidation by Enzymatic Hydrolysates from Wheat Bran

    Directory of Open Access Journals (Sweden)

    Yanping Cao

    2011-01-01

    Full Text Available Wheat bran, an important by-product of the cereal industry, is rich in potentially health-promoting phenolic compounds. The phenolics are mainly esterified to the cell wall polysaccharides. In our previous paper, wheat bran was destarched and deproteinated by α-amylase, protease and amyloglucosidase successively and further hydrolyzed using Bacillus subtilis xylanases, and the enzymatic hydrolysates from wheat bran (EHWB showed good scavenging activity in vitro. The aim of this study is to further characterize the antioxidant potential of EHWB against various systems, both ex vivo and in vivo, namely, rat liver microsomal lipid peroxidation systems induced by Fe2+/H2O2 and Fe3+-adenosine diphosphate (ADP/dihydronicotinamide adenine dinucleotide phosphate (NADPH, copper- and 2,2’-azo-bis(2-amidinopropane dihydrochloride (AAPH-induced human low-density lipoprotein (LDL oxidation systems, and alloxan-induced in vivo lipid peroxidation in mice. EHWB inhibited lipid peroxidation in rat liver microsomes induced by Fe2+/H2O2 and Fe3+-ADP/NADPH in a concentration-dependent manner with 90.3 and 87 % inhibition of lipid peroxidation at 50 mg/L, respectively, which were similar to that of butylated hydroxytoluene (BHT at 20 mg/L. The antioxidant potential of EHWB at a concentration ranging from 10 to 20 mg/L in the nonenzymatic system was more effective than in the enzymatic system. EHWB strongly inhibited in vitro copper- and AAPH-mediated oxidation of LDL in a concentration- and time-dependent manner with 52.41 and 63.03 % inhibition at 20 mg/L, respectively, which were similar to that of ascorbate at 10 mg/L. EHWB significantly decreased the level of thiobarbituric acid reactive substances (TBARS and increased the activities of glutathione peroxidase (GSH-Px, catalase (CAT and superoxide dismutase (SOD in serum and liver of alloxan-treated mice compared with the control. These results demonstrated that EHWB might be efficient in the protection of

  15. Programmed death-1 receptor suppresses γ-IFN producing NKT cells in human tuberculosis.

    Science.gov (United States)

    Singh, Amar; Dey, Aparajit Ballav; Mohan, Anant; Mitra, Dipendra Kumar

    2014-05-01

    IFN-γ biased Th1 effector immune response is crucial for containment of Mycobacterium tuberculosis infection. Various T cell subsets with regulatory function dictate the generation of Th1 like cells. NKT cells are a specialized T cell subset known to be activated early in immune response and control T cell response via release of immunoregulatory cytokines like IFN-γ, IL-4 and IL-10. M. tuberculosis, with abundance of its cell wall lipids may potently activate NKT cells resulting in cytokine production and PD-1 expression. In this study, among 49 treatment naive active pulmonary tuberculosis patients, we found a higher percentage of PD1(+) NKT cells correlating with sputum bacillary load. Furthermore, blocking PD-1 increased the number of IFN-γ producing NKT cells by inhibiting their apoptosis. Moreover, peripheral frequency of NKT cells declined with therapy suggesting their role in host T cell response. In this study, we concluded that PD-1 preferentially induces apoptosis of IFN-γ producing NKT cells while sparing NKT cells that produce IL-4. Such a polarized NKT cell function may impose a Th2 bias on the ensuing effector T cell response leading to inefficient clearance of M. tuberculosis. Inhibiting PD-1 may therefore alter the T cell response in favor of the host by rescuing type 1 NKT cells from apoptosis and boosting Th1 effector T cell functions against M. tuberculosis. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Naphthoquinone Derivatives as Scaffold to Develop New Drugs for Tuberculosis Treatment.

    Science.gov (United States)

    Halicki, Priscila C B; Ferreira, Laís A; De Moura, Kelly C G; Carneiro, Paula F; Del Rio, Karina P; Carvalho, Tatiane Dos S C; Pinto, Maria do C F R; da Silva, Pedro E A; Ramos, Daniela F

    2018-01-01

    Despite being a curable disease, tuberculosis (TB) remains a public health problem worldwide mainly due to lengthy treatment, as well as its toxic effects, TB/HIV co-infection and the emergence of resistant Mycobacterium tuberculosis strains. These barriers reinforcing the need for development of new antimicrobial agents, that ideally should reduce the time of treatment and be active against susceptible and resistant strains. Quinones are compounds found in natural sources and among them, the naphthoquinones show antifungal, antiparasitic, and antimycobacterial activity. Thus, we evaluated the potential antimycobacterial activity of six 1,4-naphthoquinones derivatives. We determined the minimum inhibitory concentration (MIC) of the compounds against three M. tuberculosis strains: a pan-susceptible H37Rv (ATCC 27294); one mono-resistant to isoniazid (ATCC 35822); and one mono-resistant to rifampicin (ATCC 35838); the cytotoxicity in the J774A.1 (ATCC TIB-67) macrophage lineage; performed in silico analysis about absorption, distribution, metabolism, and excretion (ADME) and docking sites. All evaluated naphthoquinones were active against the three strains with MIC between 206.6 and 12.5 μM, and the compounds with lower MIC values have also showed low cytotoxicity. Moreover, two naphthoquinones derivatives 5 and 6 probably do not exhibit cross resistance with isoniazid and rifampicin, respectively, and regarding ADME analysis, no compound violated the Lipinski's rule-of-five. Considering the set of findings in this study, we conclude that these naphthoquinones could be promising scaffolds to develop new therapeutic strategies to TB.

  17. INTERACTION OF ALDEHYDES DERIVED FROM LIPID PEROXIDATION AND MEMBRANE PROTEINS.

    Directory of Open Access Journals (Sweden)

    Stefania ePizzimenti

    2013-09-01

    Full Text Available A great variety of compounds are formed during lipid peroxidation of polyunsaturated fatty acids of membrane phospholipids. Among them, bioactive aldehydes, such as 4-hydroxyalkenals, malondialdehyde (MDA and acrolein, have received particular attention since they have been considered as toxic messengers that can propagate and amplify oxidative injury. In the 4-hydroxyalkenal class, 4-hydroxy-2-nonenal (HNE is the most intensively studied aldehyde, in relation not only to its toxic function, but also to its physiological role. Indeed, HNE can be found at low concentrations in human tissues and plasma and participates in the control of biological processes, such as signal transduction, cell proliferation and differentiation. Moreover, at low doses, HNE exerts an anti-cancer effect, by inhibiting cell proliferation, angiogenesis, cell adhesion and by inducing differentiation and/or apoptosis in various tumor cell lines. It is very likely that a substantial fraction of the effects observed in cellular responses, induced by HNE and related aldehydes, be mediated by their interaction with proteins, resulting in the formation of covalent adducts or in the modulation of their expression and/or activity. In this review we focus on membrane proteins affected by lipid peroxidation-derived aldehydes, under physiological and pathological conditions.

  18. Oleaginous yeast Yarrowia lipolytica culture with synthetic and food waste-derived volatile fatty acids for lipid production.

    Science.gov (United States)

    Gao, Ruiling; Li, Zifu; Zhou, Xiaoqin; Cheng, Shikun; Zheng, Lei

    2017-01-01

    The sustainability of microbial lipids production from traditional carbon sources, such as glucose or glycerol, is problematic given the high price of raw materials. Considerable efforts have been directed to minimize the cost and find new alternative carbon sources. Volatile fatty acids (VFAs) are especially attractive raw materials, because they can be produced from a variety of organic wastes fermentation. Therefore, the use of volatile fatty acids as carbon sources seems to be a feasible strategy for cost-effective microbial lipid production. Lipid accumulation in Y. lipolytica using synthetic and food waste-derived VFAs as substrates was systematically compared and evaluated in batch cultures. The highest lipid content obtained with acetic, butyric, and propionic acids reached 31.62 ± 0.91, 28.36 ± 0.74, and 28.91 ± 0.66%, respectively. High concentrations of VFA inhibited cell growth in the following order: butyric acid > propionic acid > acetic acid. Within a 30-day experimental period, Y. lipolytica could adapt up to 20 g/L acetic acid, whereas the corresponding concentration of propionic acid and butyric acid were 10 and 5 g/L, respectively. Cultures on a VFA mixture showed that the utilization of different types of VFA by Y. lipolytica was not synchronized but rather performed in a step-wise manner. Although yeast fermentation is an exothermic process, and the addition of VFA will directly affect the pH of the system by increasing environmental acidity, cultures at a cultivation temperature of 38 °C and uncontrolled pH demonstrated that Y. lipolytica had high tolerance in the high temperature and acidic environment when a low concentration (2.5 g/L) of either synthetic or food waste-derived VFA was used. However, batch cultures fed with food fermentate yielded lower lipid content (18.23 ± 1.12%) and lipid productivity (0.12 ± 0.02 g/L/day). The lipid composition obtained with synthetic and food waste-derived VFA was similar to

  19. GABA and Topiramate Inhibit the Formation of Human Macrophage-Derived Foam Cells by Modulating Cholesterol-Metabolism-Associated Molecules

    Directory of Open Access Journals (Sweden)

    Ying Yang

    2014-04-01

    Full Text Available Aims: γ-aminobutyric acid (GABA, the principal inhibitory neurotransmitter, acts on GABA receptors to play an important role in the modulation of macrophage functions. The present study examined the effects of GABA and a GABA receptor agonist on modulating cholesterol-metabolism-associated molecules in human monocyte-derived macrophages (HMDMs. Methods: ORO stain, HPLC, qRT-PCR, Western blot and EMSA were carried out using HMDMs exposed to ox-LDL with or without GABAergic agents as the experimental model. Results: GABA and topiramate reduced the percentage of cholesterol ester in lipid-laden HMDMs by down-regulating SR-A, CD36 and LOX-1 expression and up-regulating ABCA1, ABCG1 and SR-BI expression in lipid-laden HMDMs. The production of TNF-a was decreased in GABA-and topiramate-treated lipid-laden HMDMs, and levels of interleukin (IL-6 did not change. The activation of two signaling pathways, p38MAPK and NF-γB, was repressed by GABA and topiramate in lipid-laden HMDMs. Conclusion: GABA and topiramate inhibit the formation of human macrophage-derived foam cells and may be a possibility for macrophage targeted therapy of atherosclerotic lesions.

  20. Gly[14]-humanin inhibits ox-LDL uptake and stimulates cholesterol efflux in macrophage-derived foam cells.

    Science.gov (United States)

    Zhu, Wa-Wa; Wang, Shu-Rong; Liu, Zhi-Hua; Cao, Yong-Jun; Wang, Fen; Wang, Jing; Liu, Chun-Feng; Xie, Ying; Xie, Ying; Zhang, Yan-Lin

    2017-01-01

    Foam cell formation, which is caused by imbalanced cholesterol influx and efflux by macrophages, plays a vital role in the occurrence and development of atherosclerosis. Humanin (HN), a mitochondria-derived peptide, can prevent the production of reactive oxygen species and death of human aortic endothelial cells exposed to oxidized low-density lipoprotein (ox-LDL) and has a protective effect on patients with in early atherosclerosis. However, the effects of HN on the regulation of cholesterol metabolism in RAW 264.7 macrophages are still unknown. This study was designed to investigate the role of [Gly14]-humanin (HNG) in lipid uptake and cholesterol efflux in RAW 264.7 macrophages. Flow cytometry and live cell imaging results showed that HNG reduced Dil-ox-LDL accumulation in the RAW 264.7 macrophages. A similar result was obtained for lipid accumulation by measuring cellular cholesterol content. Western blot analysis showed that ox-LDL treatment upregulated not only the protein expression of CD36 and LOX-1, which mediate ox-LDL endocytosis, but also ATP-binding cassette (ABC) transporter A1 and ABCG1, which mediate ox-LDL exflux. HNG pretreatment inhibited the upregulation of CD36 and LOX-1 levels, prompting the upregulation of ABCA1 and ABCG1 levels induced by ox-LDL. Therefore we concluded that HNG could inhibit ox-LDL-induced macrophage-derived foam cell formation, which occurs because of a decrease in lipid uptake and an increase in cholesterol efflux from macrophage cells. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Susceptibility of Mycobacterium tuberculosis to sulfamethoxazole, trimethoprim and their combination over a 12 year period in Taiwan.

    Science.gov (United States)

    Huang, Tsi-Shu; Kunin, Calvin M; Yan, Bo-Shiun; Chen, Yao-Shen; Lee, Susan Shin-Jung; Syu, Wan

    2012-03-01

    This study was designed to determine the susceptibility of clinical isolates of multidrug-resistant (MDR) and non-MDR Mycobacterium tuberculosis to sulfamethoxazole, trimethoprim and trimethoprim/sulfamethoxazole over a 12 year period in Taiwan. We examined a total of 117 clinical isolates of M. tuberculosis collected from Southern Taiwan, 116 from 1995 to 2006 and an extensively drug-resistant (XDR) isolate in 2009. These included 28 isolates susceptible to all four first-line agents, 52 MDR isolates and 36 isolates with a mixed combination of drug resistance patterns other than MDR and 1 XDR isolate. Sulfamethoxazole inhibited 80% growth of all 117 isolates regardless of their susceptibility to the first-line agents at an MIC(90) of 9.5 mg/L. The concentration required to inhibit 99% growth was 38 mg/L. There were no significant changes in the MIC(50) or MIC(90) of sulfamethoxazole over a 12 year period. All 117 isolates were resistant to trimethoprim at >8 mg/L. The combination of trimethoprim/sulfamethoxazole at a ratio of 1:19 had no additive or synergistic effects. Sulfamethoxazole inhibited the growth of clinical isolates of M. tuberculosis at achievable concentrations in plasma after oral administration. Susceptibility to sulfamethoxazole remained constant over a 12 year period. Trimethoprim was inactive against M. tuberculosis and trimethoprim/sulfamethoxazole provided no additional activity. Although the current and prior studies demonstrate that sulfamethoxazole is active against M. tuberculosis the search needs to continue for more active, lipid-soluble sulphonamides that are better absorbed into tissues and have improved therapeutic efficacy.

  2. Unanticipated Mycobacterium tuberculosis complex culture inhibition by immune modulators, immune suppressants, a growth enhancer, and vitamins A and D: clinical implications

    Directory of Open Access Journals (Sweden)

    Robert J. Greenstein

    2014-09-01

    Conclusions: We conclude that, at a minimum, studies with virulent M. tuberculosis are indicated with the agents mentioned above, as well as with the thioamide 5-propothiouricil, which has previously been shown to inhibit the M. tuberculosis complex in culture. Our data additionally emphasize the importance of vitamins A and D in treating mycobacterial diseases.

  3. Linezolid for Infants and Toddlers With Disseminated Tuberculosis: First Steps.

    Science.gov (United States)

    Deshpande, Devyani; Srivastava, Shashikant; Pasipanodya, Jotam G; Bush, Stephen J; Nuermberger, Eric; Swaminathan, Soumya; Gumbo, Tawanda

    2016-11-01

     Infants and toddlers often present with disseminated and lymph node tuberculosis, in which Mycobacterium tuberculosis (Mtb) is predominantly intracellular. Linezolid, used to treat tuberculosis in adults, has not been formally studied in infants. Infants clear linezolid 5 times faster than adults and achieve lower 0- to 24-hour area under the concentration-time curves (AUC 0-24 ).  To mimic intracellular disease, we infected human-derived THP-1 macrophages with Mtb and inoculated hollow fiber systems. We performed dose-effect and dose-scheduling studies in which we recapitulated the linezolid half-life of 3 hours encountered in infants. Repetitive sampling for linezolid pharmacokinetics, Mtb intracellular burden, viable monocyte count, and RNA sequencing reads were performed up to 28 days.  The linezolid extracellular half-life was 2.64 ± 0.38 hours, whereas intracellular half-life was 8.93 ± 1.30 hours (r 2 = 0.89). Linezolid efficacy was linked to the AUC 0-24 to minimum inhibitory concentration (MIC) ratio (r 2 = 0.98). The exposure associated with maximal Mtb kill was an AUC 0-24 /MIC of 23.37 ± 1.16. We identified a 414-gene transcript on exposure to toxic linezolid doses. The largest number of genes mapped to ribosomal proteins, a signature hitherto not associated with linezolid toxicity. The second-largest number of differentially expressed genes mapped to mitochondrial enzyme inhibition. Linezolid AUC 0-24 best explained the mitochondrial gene inhibition, with 50% inhibition at 94 mg × hour/L (highest r 2 = 0.98).  We identified the linezolid AUC 0-24 /MIC target for optimal efficacy against pediatric intracellular tuberculosis, and an AUC 0-24 threshold associated with mitochondrial inhibition. These constitute a therapeutic window to be targeted for optimal linezolid doses in children with tuberculosis. © The Author 2016. Published by Oxford University Press for the Infectious Diseases Society of America.

  4. Proteomic characterisation of bovine and avian purified protein derivatives and identification of specific antigens for serodiagnosis of bovine tuberculosis

    OpenAIRE

    Infantes-Lorenzo, José Antonio; Moreno, Inmaculada; Risalde, María de los Ángeles; Roy, Álvaro; Villar, Margarita; Romero, Beatriz; Ibarrola, Nieves; de la Fuente, José; Puentes, Eugenia; de Juan, Lucía; Gortázar, Christian; Bezos, Javier; Domínguez, Lucas; Domínguez, Mercedes

    2017-01-01

    Background Bovine purified protein derivative (bPPD) and avian purified protein derivative (aPPD) are widely used for bovine tuberculosis diagnosis. However, little is known about their qualitative and quantitative characteristics, which makes their standardisation difficult. In addition, bPPD can give false-positive tuberculosis results because of sequence homology between Mycobacterium bovis (M. bovis) and M. avium proteins. Thus, the objective of this study was to carry out a proteomic cha...

  5. Suppressing the formation of lipid raft-associated Rac1/PI3K/Akt signaling complexes by curcumin inhibits SDF-1α-induced invasion of human esophageal carcinoma cells.

    Science.gov (United States)

    Lin, Meng-Liang; Lu, Yao-Cheng; Chen, Hung-Yi; Lee, Chuan-Chun; Chung, Jing-Gung; Chen, Shih-Shun

    2014-05-01

    Stromal cell-derived factor-1α (SDF-1α) is a ligand for C-X-C chemokine receptor type 4 (CXCR4), which contributes to the metastasis of cancer cells by promoting cell migration. Here, we show that the SDF-1α/CXCR4 axis can significantly increase invasion of esophageal carcinoma (EC) cells. We accomplished this by examining the effects of CXCR4 knockdown as well as treatment with a CXCR4-neutralizing antibody and the CXCR4-specific inhibitor AMD3100. Curcumin suppressed SDF-1α-induced cell invasion and matrix metalloproteinase-2 (MMP-2) promoter activity, cell surface localization of CXCR4 at lipid rafts, and lipid raft-associated ras-related C3 botulinum toxin substrate 1 (Rac1)/phosphatidylinositol 3-kinase (PI3K) p85α/Akt signaling. Curcumin inhibited SDF-1α-induced cell invasion by suppressing the Rac1-PI3K signaling complex at lipid rafts but did not abrogate lipid raft formation. We further demonstrate that the attenuation of lipid raft-associated Rac1 activity by curcumin was critical for the inhibition of SDF-1α-induced PI3K/Akt/NF-κB activation, cell surface localization of CXCR4 at lipid rafts, MMP-2 promoter activity, and cell invasion. Collectively, our results indicate that curcumin inhibits SDF-1α-induced EC cell invasion by suppressing the formation of the lipid raft-associated Rac1-PI3K-Akt signaling complex, the localization of CXCR4 with lipid rafts at the cell surface, and MMP-2 promoter activity, likely through the inhibition of Rac1 activity. © 2012 Wiley Periodicals, Inc.

  6. Lipid peroxidation inhibition and antiradical activities of some leaf fractions of Mangifera indica.

    Science.gov (United States)

    Badmus, Jelili A; Adedosu, Temitope O; Fatoki, John O; Adegbite, Victor A; Adaramoye, Oluwatosin A; Odunola, Oyeronke A

    2011-01-01

    This study was undertaken to assess in vitro lipid peroxidation inhibitions and anti-radical activities of methanolic, chloroform, ethyl acetate and water fractions of Mangifera indica leaf. Inhibition of Fe(2+)-induced lipid peroxidation (LPO) in egg, brain, and liver homogenates, 1,1-diphenyl-2-picrylhydrazyl (DPPH) and hydroxyl (OH-) radical scavenging activities were evaluated. Total phenol was assessed in all fractions, and the reducing power of methanolic fraction was compared to gallic acid and ascorbic acid. The results showed that Fe2+ induced significant lipid peroxidation (LPO) in all the homogenates. Ethyl acetate fraction showed the highest percentage inhibition of LPO in both egg yolk (68.3%) and brain (66.3%), while the aqueous fraction exerted the highest inhibition in liver homogenate (89.1%) at a concentration of 10 microg/mL. These observed inhibitions of LPO by these fractions were higher than that of ascorbic acid used as a standard. The DPPH radical scavenging ability exhibited by ethyl acetate fraction was found to be the highest with IC50 value of 1.5 microg/mL. The ethyl acetate and methanolic fractions had the highest OH- radical scavenging ability with the same IC50 value of 5 microg/mL. The total phenol content of ethyl acetate fraction was the highest with 0.127 microg/mg gallic acid equivalent (GAE). The reductive potential of methanolic fraction showed a concentration-dependent increase. This study showed that inhibition of LPO and the DPPH and OH- radicals scavenging abilities of Mangifera indica leaf could be related to the presence of phenolic compounds. Therefore, the ethyl acetate fraction of the leaf may be a good source of natural antioxidative agent.

  7. Periodontitis in patients with focal tuberculosis

    Directory of Open Access Journals (Sweden)

    Alexandrova Е.А.

    2010-12-01

    Full Text Available The research goal is to investigate the mechanisms of formation and peculiarities of periodontitis in patients with focal tuberculosis. Patients with periodontitis and focal tuberculosis are proved to develop local inflammatory reaction with increased infection and activation of proinflammatory cytokines in parodontal pockets fluid. The main risk factor of frequent and durable recurrence of parodontal pathology in case of focal tuberculosis was the development of pathologic process as a cause of disbalance of lipid peroxidation and antioxidant system, endotoxicosis syndrome

  8. Vitamin D inhibits human immunodeficiency virus type 1 and Mycobacterium tuberculosis infection in macrophages through the induction of autophagy.

    Directory of Open Access Journals (Sweden)

    Grant R Campbell

    Full Text Available Low vitamin D levels in human immunodeficiency virus type-1 (HIV infected persons are associated with more rapid disease progression and increased risk for Mycobacterium tuberculosis infection. We have previously shown that 1α,25-dihydroxycholecalciferol (1,25D3, the active form of vitamin D, inhibits HIV replication in human macrophages through the induction of autophagy. In this study, we report that physiological concentrations of 1,25D3 induce the production of the human cathelicidin microbial peptide (CAMP and autophagic flux in HIV and M. tuberculosis co-infected human macrophages which inhibits mycobacterial growth and the replication of HIV. Using RNA interference for Beclin-1 and the autophagy-related 5 homologue, combined with the chemical inhibitors of autophagic flux, bafilomycin A₁, an inhibitor of autophagosome-lysosome fusion and subsequent acidification, and SID 26681509 an inhibitor of the lysosome hydrolase cathepsin L, we show that the 1,25D3-mediated inhibition of HIV replication and mycobacterial growth during single infection or dual infection is dependent not only upon the induction of autophagy, but also through phagosomal maturation. Moreover, through the use of RNA interference for CAMP, we demonstrate that cathelicidin is essential for the 1,25D3 induced autophagic flux and inhibition of HIV replication and mycobacterial growth. The present findings provide a biological explanation for the benefits and importance of vitamin D sufficiency in HIV and M. tuberculosis-infected persons, and provide new insights into novel approaches to prevent and treat HIV infection and related opportunistic infections.

  9. Inhibition of adipogenesis and leptin production in 3T3-L1 adipocytes by a derivative of meridianin C

    Energy Technology Data Exchange (ETDEWEB)

    Park, Yu-Kyoung [Department of Molecular Medicine, College of Medicine, Keimyung University, 1095 Dalgubeoldaero, Dalseo-gu, Daegu 704-701 (Korea, Republic of); Lee, Tae-Yoon [Department of Microbiology, College of Medicine, Yeungnam University, 170 Hyunchung-Ro, Nam-gu, Daegu 705-717 (Korea, Republic of); Choi, Jong-Soon [Division of Life Science, Korea Basic Science Institute, 169-148 Gwahakro, Yuseong-gu, Daejeon 305-333 (Korea, Republic of); Hong, Victor Sukbong [Department of Chemistry, College of Natural Sciences, Keimyung University, 1095 Dalgubeoldaero, Dalseo-gu, Daegu 704-701 (Korea, Republic of); Lee, Jinho, E-mail: jinho@gw.kmu.ac.kr [Department of Chemistry, College of Natural Sciences, Keimyung University, 1095 Dalgubeoldaero, Dalseo-gu, Daegu 704-701 (Korea, Republic of); Park, Jong-Wook, E-mail: j303nih@dsmc.or.kr [Department of Immunology, College of Medicine, Keimyung University, 1095 Dalgubeoldaero, Dalseo-gu, Daegu 704-701 (Korea, Republic of); Jang, Byeong-Churl, E-mail: jangbc123@gw.kmu.ac.kr [Department of Molecular Medicine, College of Medicine, Keimyung University, 1095 Dalgubeoldaero, Dalseo-gu, Daegu 704-701 (Korea, Republic of)

    2014-10-03

    Highlights: • Compound 7b, a meridianin C derivative, inhibits adipogenesis. • Compound 7b inhibits C/EBP-α, PPAR-γ, FAS, STAT-3, and STAT-5 in 3T3-L1 adipocytes. • Compound 7b inhibits leptin, but not adiponectin, expression in 3T3-L1 adipocytes. • Compound 7b thus may have therapeutic potential against obesity. - Abstract: Meridianin C, a marine alkaloid, is a potent protein kinase inhibitor and has anti-cancer activity. We have recently developed a series of meridianin C derivatives (compound 7a–7j) and reported their proviral integration Moloney Murine Leukemia Virus (pim) kinases’ inhibitory and anti-proliferative effects on human leukemia cells. Here we investigated the effect of these meridianin C derivatives on adipogenesis. Strikingly, among the derivatives tested, compound 7b most strongly inhibited lipid accumulation during the differentiation of 3T3-L1 preadipocytes into adipocytes. However, meridianin C treatment was largely cytotoxic to 3T3-L1 adipocytes. On mechanistic levels, compound 7b reduced not only the expressions of CCAAT/enhancer-binding protein-α (C/EBP-α), peroxisome proliferator-activated receptor-γ (PPAR-γ), and fatty acid synthase (FAS) but also the phosphorylation levels of signal transducer and activator of transcription-3 (STAT-3) and STAT-5 during adipocyte differentiation. Moreover, compound 7b repressed leptin, but not adiponectin, expression during adipocyte differentiation. Collectively, these findings demonstrate that a meridianin C derivative inhibits adipogenesis by down-regulating expressions and/or phosphorylations of C/EBP-α, PPAR-γ, FAS, STAT-3 and STAT-5.

  10. Exosomes derived from tumor cells genetically modified to express Mycobacterium tuberculosis antigen: a novel vaccine for cancer therapy.

    Science.gov (United States)

    Koyama, Yoshiyuki; Ito, Tomoko; Hasegawa, Aya; Eriguchi, Masazumi; Inaba, Toshio; Ushigusa, Takahiro; Sugiura, Kikuya

    2016-11-01

    To examine the potential of exosomes derived from the tumor cells, which had been genetically modified to express a Mycobacterium tuberculosis antigen, as a cancer vaccine aimed at overcoming the weak immunogenicity of tumor antigens. We transfected B16 melanoma cells with a plasmid encoding the M. tuberculosis antigen, early secretory antigenic target-6 (ESAT-6). The secreted exosomes bearing both tumor-associated antigens and the pathogenic antigen (or their epitopes) were collected. When the exosomes were injected into foot pads of mice, they significantly (p exosomes significantly suppressed (p exosomes derived from the non-transfected B16 cells showed no effect on tumor growth, although both exosomes should have similar tumor antigens. Exosomes bearing both tumor antigens and the M. tuberculosis antigen (or their epitopes) have a high potential as a candidate for cancer vaccine to overcome the immune escape by tumor cells.

  11. Marine Bromophenol Derivative 3,4-Dibromo-5-(2-bromo-3,4-dihydroxy-6-isopropoxymethyl benzylbenzene-1,2-diol Protects Hepatocytes from Lipid-Induced Cell Damage and Insulin Resistance via PTP1B Inhibition

    Directory of Open Access Journals (Sweden)

    Jiao Luo

    2015-07-01

    Full Text Available 3,4-Dibromo-5-(2-bromo-3,4-dihydroxy-6-isopropoxymethyl benzylbenzene-1,2-diol (HPN is a bromophenol derivative from the marine red alga Rhodomela confervoides. We have previously found that HPN exerted an anti-hyperglycemic property in db/db mouse model. In the present study, we found that HPN could protect HepG2 cells against palmitate (PA-induced cell death. Data also showed that HPN inhibited cell death mainly by blocking the cell apoptosis. Further studies demonstrated that HPN (especially at 1.0 μM significantly restored insulin-stimulated tyrosine phosphorylation of IR and IRS1/2, and inhibited the PTP1B expression level in HepG2 cells. Furthermore, the expression of Akt was activated by HPN, and glucose uptake was significantly increased in PA-treated HepG2 cells. Our results suggest that HPN could protect hepatocytes from lipid-induced cell damage and insulin resistance via PTP1B inhibition. Thus, HPN can be considered to have potential for the development of anti-diabetic agent that could protect both hepatic cell mass and function.

  12. Tuberculosis: finding a new potential antimycobacterium derivative in a aldehyde-arylhydrazone-oxoquinoline series.

    Science.gov (United States)

    da C Santos, Fernanda; Castro, Helena C; Lourenço, Maria Cristina S; Abreu, Paula A; Batalha, Pedro N; Cunha, Anna C; Carvalho, Guilherme S L; Rodrigues, Carlos R; Medeiros, Cid A; Souza, Simone D; Ferreira, Vitor F; de Souza, Maria C B V

    2012-10-01

    Tuberculosis (TB) is a contagious disease caused by Mycobacterium tuberculosis, which remains a serious public health problem. The emergence of resistant bacterial strains has continuously increased and new treatment options are currently in need. In this work, we identified a new potential aldehyde-arylhydrazone-oxoquinoline derivative (4e) with interesting chemical structural features that may be important for designing new anti-TB agents. This 1-ethyl-N'-[(1E)-(5-nitro-2-furyl)methylene]-4-oxo-1,4-dihydroquinoline-3-carbohydrazide (4e) presented an in vitro active profile against M. tuberculosis H37Rv strain (minimum inhibitory concentration, MIC = 6.25 μg/mL) better than other acylhydrazones described in the literature (MIC = 12.5 μg/mL) and close to other antitubercular agents currently on the market. The theoretical analysis showed the importance of several structural features that together with the 5-nitro-2-furyl group generated this active compound (4e). This new compound and the analysis of its molecular properties may be useful for designing new and more efficient antibacterial drugs.

  13. Inhibition of human pancreatic and biliary output but not intestinal motility by physiological intraileal lipid loads

    DEFF Research Database (Denmark)

    Keller, Jutta; Holst, Jens Juul; Layer, Peter

    2005-01-01

    Lipid perfusion into the distal ileal lumen at supraphysiological loads inhibits pancreatic exocrine secretion and gastrointestinal motility in humans. In the present study, we sought to determine the effects of physiological postprandial intraileal lipid concentrations on endogenously stimulated...

  14. Inhibition of rat microsomal lipid peroxidation by the oral administration of D002

    Directory of Open Access Journals (Sweden)

    Menéndez R.

    2000-01-01

    Full Text Available The effect of D002, a defined mixture of higher primary alcohols purified from bee wax, on in vivo and in vitro lipid peroxidation was studied. The extent of lipid peroxidation was measured on the basis of the levels of thiobarbituric acid reactive substances (TBARS. When D002 (5-100 mg/kg body weight was administered orally to rats for two weeks, a partial inhibition of the in vitro enzymatic and non-enzymatic lipid peroxidation was observed in liver and brain microsomes. Maximal protection (46% occurred at a dose of 25 mg/kg. D002 behaved differently depending on both the presence of NADPH and the integrity of liver microsomes, which suggests that under conditions where microsomal metabolism was favored the protective effect of D002 was increased. D002 (25 mg/kg also completely inhibited carbon tetrachloride- and toluene-induced in vivo lipid peroxidation in liver and brain. Also, D002 significantly lowered in a dose-dependent manner the basal level of TBARS in liver (19-40% and brain (28-44% microsomes. We conclude that the oral administration of D002 (5, 25 and 100 mg/kg for two weeks protected rat liver and brain microsomes against microsomal lipid peroxidation in vitro and in vivo. Thus, D002 could be useful as a dietary natural antioxidant supplement. More studies are required before these data can be extrapolated to the recommendation for the use of D002 as a dietary antioxidant supplement for humans.

  15. The Anti-Inflammatory Effect of Algae-Derived Lipid Extracts on Lipopolysaccharide (LPS)-Stimulated Human THP-1 Macrophages.

    Science.gov (United States)

    Robertson, Ruairi C; Guihéneuf, Freddy; Bahar, Bojlul; Schmid, Matthias; Stengel, Dagmar B; Fitzgerald, Gerald F; Ross, R Paul; Stanton, Catherine

    2015-08-20

    Algae contain a number of anti-inflammatory bioactive compounds such as omega-3 polyunsaturated fatty acids (n-3 PUFA) and chlorophyll a, hence as dietary ingredients, their extracts may be effective in chronic inflammation-linked metabolic diseases such as cardiovascular disease. In this study, anti-inflammatory potential of lipid extracts from three red seaweeds (Porphyra dioica, Palmaria palmata and Chondrus crispus) and one microalga (Pavlova lutheri) were assessed in lipopolysaccharide (LPS)-stimulated human THP-1 macrophages. Extracts contained 34%-42% total fatty acids as n-3 PUFA and 5%-7% crude extract as pigments, including chlorophyll a, β-carotene and fucoxanthin. Pretreatment of the THP-1 cells with lipid extract from P. palmata inhibited production of the pro-inflammatory cytokines interleukin (IL)-6 (p lipid extracts. The lipid extracts effectively inhibited the LPS-induced pro-inflammatory signaling pathways mediated via toll-like receptors, chemokines and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) signaling molecules. These results suggest that lipid extracts from P. lutheri, P. palmata, P. dioica and C. crispus can inhibit LPS-induced inflammatory pathways in human macrophages. Therefore, algal lipid extracts should be further explored as anti-inflammatory ingredients for chronic inflammation-linked metabolic diseases.

  16. Bacterial subversion of cAMP signalling inhibits cathelicidin expression, which is required for innate resistance to Mycobacterium tuberculosis

    Science.gov (United States)

    Gupta, Shashank; Winglee, Kathryn; Gallo, Richard; Bishai, William R

    2017-01-01

    Antimicrobial peptides such as cathelicidins are an important component of innate immune defence against inhaled microorganisms and have demonstrated antimicrobial activity against Mycobacterium tuberculosis with in vitro models. Despite this, little is known about the regulation and expression of cathelicidin during tuberculosis in vivo. We sought to determine whether the cathelicidin-related antimicrobial peptide (Cramp) gene, the murine functional homologue of the human cathelicidin gene (CAMP or LL-37), is required for regulating protective immunity during M. tuberculosis infection in vivo. We used Cramp−/− mice in a validated model of pulmonary tuberculosis and conducted cell-based assays with macrophages from these mice. We evaluated the in vivo susceptibility of Cramp−/− mice to infection and further dissected various pro-inflammatory immune responses against M. tuberculosis. We observed increased susceptibility of Cramp−/− mice to M. tuberculosis compared to wild type mice. Macrophages from Cramp−/− mice were unable to control M. tuberculosis growth in an in vitro infection model, were deficient in intracellular calcium influx and were defective in stimulating T-cells. Additionally, CD4 and CD8 T-cells from Cramp−/− mice produced less IFNβ upon stimulation. Furthermore, bacterial-derived cyclic-AMP modulated cathelicidin expression in macrophages. Our results demonstrate that cathelicidin is required for innate resistance to M. tuberculosis in a relevant animal model and is a key mediator in regulating the levels of pro-inflammatory cytokines by calcium and cyclic nucleotides. PMID:28097645

  17. Identification of 2-aminothiazole-4-carboxylate derivatives active against Mycobacterium tuberculosis H37Rv and the beta-ketoacyl-ACP synthase mtFabH.

    Directory of Open Access Journals (Sweden)

    Qosay Al-Balas

    Full Text Available BACKGROUND: Tuberculosis (TB is a disease which kills two million people every year and infects approximately over one-third of the world's population. The difficulty in managing tuberculosis is the prolonged treatment duration, the emergence of drug resistance and co-infection with HIV/AIDS. Tuberculosis control requires new drugs that act at novel drug targets to help combat resistant forms of Mycobacterium tuberculosis and reduce treatment duration. METHODOLOGY/PRINCIPAL FINDINGS: Our approach was to modify the naturally occurring and synthetically challenging antibiotic thiolactomycin (TLM to the more tractable 2-aminothiazole-4-carboxylate scaffold to generate compounds that mimic TLM's novel mode of action. We report here the identification of a series of compounds possessing excellent activity against M. tuberculosis H(37R(v and, dissociatively, against the beta-ketoacyl synthase enzyme mtFabH which is targeted by TLM. Specifically, methyl 2-amino-5-benzylthiazole-4-carboxylate was found to inhibit M. tuberculosis H(37R(v with an MIC of 0.06 microg/ml (240 nM, but showed no activity against mtFabH, whereas methyl 2-(2-bromoacetamido-5-(3-chlorophenylthiazole-4-carboxylate inhibited mtFabH with an IC(50 of 0.95+/-0.05 microg/ml (2.43+/-0.13 microM but was not active against the whole cell organism. CONCLUSIONS/SIGNIFICANCE: These findings clearly identify the 2-aminothiazole-4-carboxylate scaffold as a promising new template towards the discovery of a new class of anti-tubercular agents.

  18. Fluorescence and computational studies of thymidine phosphorylase affinity toward lipidated 5-FU derivatives

    Science.gov (United States)

    Lettieri, R.; D'Abramo, M.; Stella, L.; La Bella, A.; Leonelli, F.; Giansanti, L.; Venanzi, M.; Gatto, E.

    2018-04-01

    Thymidine phosphorylase (TP) is an enzyme that is up-regulated in a wide variety of solid tumors, including breast and colorectal cancers. It is involved in tumor growth and metastasis, for this reason it is one of the key enzyme to be inhibited, in an attempt to prevent tumor proliferation. However, it also plays an active role in cancer treatment, through its contribution in the conversion of the anti-cancer drug 5-fluorouracil (5-FU) to an irreversible inhibitor of thymidylate synthase (TS), responsible of the inhibition of the DNA synthesis. In this work, the intrinsic TP fluorescence has been investigated for the first time and exploited to study TP binding affinity for the unsubstituted 5-FU and for two 5-FU derivatives, designed to expose this molecule on liposomal membranes. These molecules were obtained by functionalizing the nitrogen atom with a chain consisting of six (1) or seven (2) units of glycol, linked to an alkyl moiety of 12 carbon atoms. Derivatives (1) and (2) exhibited an affinity for TP in the micromolar range, 10 times higher than the parent compound, irrespective of the length of the polyoxyethylenic spacer. This high affinity was maintained also when the compounds were anchored in liposomal membranes. Experimental results were supported by molecular dynamics simulations and docking calculations, supporting a feasible application of the designed supramolecular lipid structure in selective targeting of TP, to be potentially used as a drug delivery system or sensor device.

  19. Mixed metal oxide nanoparticles inhibit growth of Mycobacterium tuberculosis into THP-1 cells.

    Science.gov (United States)

    Jafari, A R; Mosavi, T; Mosavari, N; Majid, A; Movahedzade, F; Tebyaniyan, M; Kamalzadeh, M; Dehgan, M; Jafari, S; Arastoo, S

    2016-12-01

    Humans have been in a constant battle with tuberculosis (TB). Currently, overuse of antibiotics has resulted in the spread of multidrug-resistant Mycobacterium tuberculosis (MDR), leading to antibiotic ineffectiveness at controlling the spread of TB infection in host cells and especially macrophages. Additionally, the Mycobacterium tuberculosis (Mtb) has developed methods to evade the immune system and survive. With the discovery of nanoparticle (NP)-based drugs, it is necessary to research their anti-mycobacterial properties and bactericidal mechanisms. In this study, we synthesized mixed metal oxide NPs and tested their ability to inhibit Mtb growth into macrophages and investigated the cytotoxic effects of NPs in THP-1 cells. Silver (Ag) NPs and zinc oxide (ZnO) NPs were synthesized by chemical reduction and chemical deposition in aqueous solution, and the diffraction light scattering, scanning electron microscopy, transmission electron microscopy, and ultraviolet-visible light-absorption spectra were used to identify NP properties. Ag and ZnO NPs were mixed together at a ratio of 8 ZnO /2 Ag and diluted into Löwenstein-Jensen medium followed by the addition of bacteria and incubation for 28days at 37°C. The toxicity of NPs to THP-1 cells was assessed by MTT test, and macrophages were infected with Mtb for 4h at 37°C under 5% CO 2 . Nano-sized particles were estimated at ∼30-80nm, and the initial concentration of Ag NPs and ZnO NPs were estimated at ∼20ppm and ∼60ppm. The minimal inhibitory concentration ratio of 8 ZnO /2 Ag NPs against Mtb was detected at ∼1/32 of the initial concentration. Ag NPs in the range of concentrations exhibited no anti-Mtb effects, whereas ZnO NPs showed potent antibacterial activity at ∼1/128 of the initial concentration. ZnO NPs at all concentrations showed cytotoxic activity, whereas 100% of THP-1 cells remained viable in the presence of Ag NPs at ∼1/32 and ∼1/64 of the initial concentrations. However, at ratios of

  20. Strategies to Improve Vaccine Efficacy against Tuberculosis by Targeting Innate Immunity

    Directory of Open Access Journals (Sweden)

    Ulrich E. Schaible

    2017-12-01

    Full Text Available The global tuberculosis epidemic is the most common cause of death after infectious disease worldwide. Increasing numbers of infections with multi- and extensively drug-resistant variants of the Mycobacterium tuberculosis complex, resistant even to newly discovered and last resort antibiotics, highlight the urgent need for an efficient vaccine. The protective efficacy to pulmonary tuberculosis in adults of the only currently available vaccine, M. bovis BCG, is unsatisfactory and geographically diverse. More importantly, recent clinical studies on new vaccine candidates did not prove to be better than BCG, yet. Here, we propose and discuss novel strategies to improve efficacy of existing anti-tuberculosis vaccines. Modulation of innate immune responses upon vaccination already provided promising results in animal models of tuberculosis. For instance, neutrophils have been shown to influence vaccine efficacy, both, positively and negatively, and stimulate specific antibody secretion. Modulating immune regulatory properties after vaccination such as induction of different types of innate immune cell death, myeloid-derived suppressor or regulatory T cells, production of anti-inflammatory cytokines such as IL-10 may have beneficial effects on protection efficacy. Incorporation of lipid antigens presented via CD1 molecules to T cells have been discussed as a way to enhance vaccine efficacy. Finally, concepts of dendritic cell-based immunotherapies or training the innate immune memory may be exploitable for future vaccination strategies against tuberculosis. In this review, we put a spotlight on host immune networks as potential targets to boost protection by old and new tuberculosis vaccines.

  1. Inhibition of apoptosis by Rv2456c through nuclear factor-κB extends the survival of Mycobacterium tuberculosis

    Directory of Open Access Journals (Sweden)

    Kristen L. Jurcic Smith

    2016-01-01

    Full Text Available Mycobacterium tuberculosis, the causative agent of tuberculosis, is an intracellular pathogen with several survival mechanisms aimed at subverting the host immune system. Apoptosis has been shown to be mycobactericidal, to activate CD8+ T cells, and to be modulated by mycobacterial proteins. Since few mycobacterial proteins have so far been directly implicated in the interactions between M. Tuberculosis and host cell apoptosis, we screened M. Tuberculosis H37Rv transposon mutants to identify mutants that fail to inhibit cell death (FID. One of these FID mutants, FID19, had a transposon insertion in Rv2456c and is important for survival in host cells. The lack of the protein resulted in enhanced caspase-3 mediated apoptosis, which is probably due to an inability to activate nuclear factor-κB. Additionally, FID19 infection enhanced polyfunctional CD8+ T cells and induced a higher frequency of interferon-γ secreting immune cells in a murine model. Taken together, our data suggest that Rv2456c is important for the survival of H37Rv by subduing the innate and ultimately adaptive immune responses of its host by preventing apoptosis of the infected cell. Better understanding of the host-mycobacterial interactions may be beneficial to develop novel drug targets and engineer more efficacious vaccine strains against tuberculosis.

  2. Role of Granulocyte-Macrophage Colony-Stimulating Factor Production by T Cells during Mycobacterium tuberculosis Infection.

    Science.gov (United States)

    Rothchild, Alissa C; Stowell, Britni; Goyal, Girija; Nunes-Alves, Cláudio; Yang, Qianting; Papavinasasundaram, Kadamba; Sassetti, Christopher M; Dranoff, Glenn; Chen, Xinchun; Lee, Jinhee; Behar, Samuel M

    2017-10-24

    Mice deficient for granulocyte-macrophage colony-stimulating factor (GM-CSF -/- ) are highly susceptible to infection with Mycobacterium tuberculosis , and clinical data have shown that anti-GM-CSF neutralizing antibodies can lead to increased susceptibility to tuberculosis in otherwise healthy people. GM-CSF activates human and murine macrophages to inhibit intracellular M. tuberculosis growth. We have previously shown that GM-CSF produced by iNKT cells inhibits growth of M. tuberculosis However, the more general role of T cell-derived GM-CSF during infection has not been defined and how GM-CSF activates macrophages to inhibit bacterial growth is unknown. Here we demonstrate that, in addition to nonconventional T cells, conventional T cells also produce GM-CSF during M. tuberculosis infection. Early during infection, nonconventional iNKT cells and γδ T cells are the main source of GM-CSF, a role subsequently assumed by conventional CD4 + T cells as the infection progresses. M. tuberculosis -specific T cells producing GM-CSF are also detected in the peripheral blood of infected people. Under conditions where nonhematopoietic production of GM-CSF is deficient, T cell production of GM-CSF is protective and required for control of M. tuberculosis infection. However, GM-CSF is not required for T cell-mediated protection in settings where GM-CSF is produced by other cell types. Finally, using an in vitro macrophage infection model, we demonstrate that GM-CSF inhibition of M. tuberculosis growth requires the expression of peroxisome proliferator-activated receptor gamma (PPARγ). Thus, we identified GM-CSF production as a novel T cell effector function. These findings suggest that a strategy augmenting T cell production of GM-CSF could enhance host resistance against M. tuberculosis IMPORTANCE Mycobacterium tuberculosis is the bacterium that causes tuberculosis, the leading cause of death by any infection worldwide. T cells are critical components of the immune

  3. Identification and development of novel indazole derivatives as potent bacterial peptidoglycan synthesis inhibitors

    Directory of Open Access Journals (Sweden)

    Prasanthi Malapati

    2018-01-01

    Full Text Available Background: Tuberculosis is well-known airborne disease caused by Mycobacterium tuberculosis. Available treatment regimen was unsuccessful in eradicating the deaths caused by the disease worldwide. Owing to the drawbacks such as prolonged treatment period, side effects, and drug tolerance, there resulted in patient noncompliance. In the current study, we attempted to develop inhibitors against unexplored key target glutamate racemase. Methods: Lead identification was done using thermal shift assay from in-house library; inhibitors were developed by lead derivatization technique and evaluated using various biological assays. Results: In indazole series, compounds 11 (6.32 ± 0.35 μM and 22 (6.11 ± 0.51 μM were found to be most promising potent inhibitors among all. These compounds also showed their inhibition on replicating and nonreplicating bacteria. Conclusion: We have developed the novel inhibitors against M. tuberculosis capable of inhibiting active and dormant bacteria, further optimization of inhibitor derivatives can results in better compounds for eradicating tuberculosis.

  4. Interaction between Polyketide Synthase and Transporter Suggests Coupled Synthesis and Export of Virulence Lipid in M. tuberculosis.

    Directory of Open Access Journals (Sweden)

    2005-09-01

    Full Text Available Virulent mycobacteria utilize surface-exposed polyketides to interact with host cells, but the mechanism by which these hydrophobic molecules are transported across the cell envelope to the surface of the bacteria is poorly understood. Phthiocerol dimycocerosate (PDIM, a surface-exposed polyketide lipid necessary for Mycobacterium tuberculosis virulence, is the product of several polyketide synthases including PpsE. Transport of PDIM requires MmpL7, a member of the MmpL family of RND permeases. Here we show that a domain of MmpL7 biochemically interacts with PpsE, the first report of an interaction between a biosynthetic enzyme and its cognate transporter. Overexpression of the interaction domain of MmpL7 acts as a dominant negative to PDIM synthesis by poisoning the interaction between synthase and transporter. This suggests that MmpL7 acts in complex with the synthesis machinery to efficiently transport PDIM across the cell membrane. Coordination of synthesis and transport may not only be a feature of MmpL-mediated transport in M. tuberculosis, but may also represent a general mechanism of polyketide export in many different microorganisms.

  5. An oral Mycobacterium bovis BCG vaccine for wildlife produced in the absence of animal-derived reagents.

    Science.gov (United States)

    Cross, Martin L; Lambeth, Matthew R; Aldwell, Frank E

    2009-09-01

    Cultures of Mycobacterium bovis BCG, comprising predominantly single-cell bacilli, were prepared in broth without animal-derived reagents. When formulated into a vegetable-derived lipid matrix, the vaccine was stable in vitro and was immunogenic in vivo upon feeding it to mice. This formulation could be useful for oral vaccination of wildlife against tuberculosis, where concern over transmissible prions may preclude the field use of vaccines containing animal products.

  6. Novel Eicosapentaenoic Acid-derived F3-isoprostanes as Biomarkers of Lipid Peroxidation*

    Science.gov (United States)

    Song, Wen-Liang; Paschos, Georgios; Fries, Susanne; Reilly, Muredach P.; Yu, Ying; Rokach, Joshua; Chang, Chih-Tsung; Patel, Pranav; Lawson, John A.; FitzGerald, Garret A.

    2009-01-01

    Isoprostanes (iPs) are prostaglandin (PG) isomers generated by free radical-catalyzed peroxidation of polyunsaturated fatty acids (PUFAs). Urinary F2-iPs, PGF2α isomers derived from arachidonic acid (AA) are used as indices of lipid peroxidation in vivo. We now report the characterization of two major F3-iPs, 5-epi-8,12-iso-iPF3α-VI and 8,12-iso-iPF3α-VI, derived from the ω-3 fatty acid, eicosapentaenoic acid (EPA). Although the potential therapeutic benefits of EPA receive much attention, a shift toward a diet rich in ω-3 PUFAs may also predispose to enhanced lipid peroxidation. Urinary 5-epi-8,12-iso-iPF3α-VI and 8,12-iso-iPF3α-VI are highly correlated and unaltered by cyclooxygenase inhibition in humans. Fish oil dose-dependently elevates urinary F3-iPs in mice and a shift in dietary ω-3/ω-6 PUFAs is reflected by an increasing slope [m] of the line relating urinary 8, 12-iso-iPF3α-VI and 8,12-iso-iPF2α-VI. Administration of bacterial lipopolysaccharide evokes a reversible increase in both urinary 8,12-iso-iPF3α-VI and 8,12-iso-iPF2α-VI in humans on an ad lib diet. However, while excretion of the iPs is highly correlated (R2 median = 0.8), [m] varies by an order of magnitude, reflecting marked inter-individual variability in the relative peroxidation of ω-3 versus ω-6 substrates. Clustered analysis of F2- and F3-iPs refines assessment of the oxidant stress response to an inflammatory stimulus in vivo by integrating variability in dietary intake of ω-3/ω-6 PUFAs. PMID:19520854

  7. Functional self-assembled lipidic systems derived from renewable resources.

    Science.gov (United States)

    Silverman, Julian R; Samateh, Malick; John, George

    2016-01-01

    Self-assembled lipidic amphiphile systems can create a variety of multi-functional soft materials with value-added properties. When employing natural reagents and following biocatalytic syntheses, self-assembling monomers may be inherently designed for degradation, making them potential alternatives to conventional and persistent polymers. By using non-covalent forces, self-assembled amphiphiles can form nanotubes, fibers, and other stimuli responsive architectures prime for further applied research and incorporation into commercial products. By viewing these lipid derivatives under a lens of green principles, there is the hope that in developing a structure-function relationship and functional smart materials that research may remain safe, economic, and efficient.

  8. Host-directed strategies using lipid nanoparticles to reduce mycobacteria survival

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, L. [Faculty of Sciences and Technology of the New University of Lisbon (Portugal); Diogo, J.; Mateus, R.; Pimentel, M.; Videira, M., E-mail: mvideira@ff.ul.pt [iMed.UL - Research Institute for Medicines and Pharmaceutical Sciences, Faculty of Pharmacy of the University of Lisbon, Intracellular Trafficking Modulation for Advanced Drug Delivery InTraCell-ADD Research Group (Portugal)

    2015-02-15

    Antibiotic-resistant infections and the stagnations in the development of new drugs have increased the demand for new therapeutic approaches against Mycobacterium tuberculosis. Innovative systems that are able to target and eradicate the bacteria in the infected host cells may represent a therapeutic breakthrough while avoiding latency. The development of nanosystems aiming a controlled and targeted intracellular drug release, have proved to increase cytosolic therapeutic concentration while reducing undesired side effects. This work’s main goal was to develop a host-directed strategy against mycobacterial infection through the design of a biocompatible nanocarrier for phage-derived protein delivery, using M. smegmatis as model. Since mycobacterial pathogenicity is strongly supported by the presence of lipids in the cell wall, their degradation induces bacterial destruction through cell wall hydrolysis. Phage-based lipolytic enzymes such as, LysB a mycolylarabinogalactan esterase, represent an appealing therapeutic approach. The herein proposed Ms6 LysB-containing lipid nanocarrier (SLN-LysB) explores the known advantages of nanomedicine-based systems for phagocytic cells selectively targeting thus allowing LysB intracellular accumulation and a more pronounced mycobacterial infection eradication. Adsorption efficiency value indicates the potential of this system as a protein nanocarrier. Moreover, promising outcomes were obtained in host-infected macrophages treated with SLN-LysB. The results show that the herein proposed strategy was more effective in inhibiting the growth of M. smegmatis than free LysB, which might be related to the nanocarrier internalization. Acting as effective protein nanocarriers, the protein-guided delivery in the infected phagocytic cells allows it to exert its hydrolytic action on the lipid layer of the Mycobacterium.

  9. Host-directed strategies using lipid nanoparticles to reduce mycobacteria survival

    Science.gov (United States)

    Pereira, L.; Diogo, J.; Mateus, R.; Pimentel, M.; Videira, M.

    2015-02-01

    Antibiotic-resistant infections and the stagnations in the development of new drugs have increased the demand for new therapeutic approaches against Mycobacterium tuberculosis. Innovative systems that are able to target and eradicate the bacteria in the infected host cells may represent a therapeutic breakthrough while avoiding latency. The development of nanosystems aiming a controlled and targeted intracellular drug release, have proved to increase cytosolic therapeutic concentration while reducing undesired side effects. This work's main goal was to develop a host-directed strategy against mycobacterial infection through the design of a biocompatible nanocarrier for phage-derived protein delivery, using M. smegmatis as model. Since mycobacterial pathogenicity is strongly supported by the presence of lipids in the cell wall, their degradation induces bacterial destruction through cell wall hydrolysis. Phage-based lipolytic enzymes such as, LysB a mycolylarabinogalactan esterase, represent an appealing therapeutic approach. The herein proposed Ms6 LysB-containing lipid nanocarrier (SLN_LysB) explores the known advantages of nanomedicine-based systems for phagocytic cells selectively targeting thus allowing LysB intracellular accumulation and a more pronounced mycobacterial infection eradication. Adsorption efficiency value indicates the potential of this system as a protein nanocarrier. Moreover, promising outcomes were obtained in host-infected macrophages treated with SLN_LysB. The results show that the herein proposed strategy was more effective in inhibiting the growth of M. smegmatis than free LysB, which might be related to the nanocarrier internalization. Acting as effective protein nanocarriers, the protein-guided delivery in the infected phagocytic cells allows it to exert its hydrolytic action on the lipid layer of the Mycobacterium.

  10. Host-directed strategies using lipid nanoparticles to reduce mycobacteria survival

    International Nuclear Information System (INIS)

    Pereira, L.; Diogo, J.; Mateus, R.; Pimentel, M.; Videira, M.

    2015-01-01

    Antibiotic-resistant infections and the stagnations in the development of new drugs have increased the demand for new therapeutic approaches against Mycobacterium tuberculosis. Innovative systems that are able to target and eradicate the bacteria in the infected host cells may represent a therapeutic breakthrough while avoiding latency. The development of nanosystems aiming a controlled and targeted intracellular drug release, have proved to increase cytosolic therapeutic concentration while reducing undesired side effects. This work’s main goal was to develop a host-directed strategy against mycobacterial infection through the design of a biocompatible nanocarrier for phage-derived protein delivery, using M. smegmatis as model. Since mycobacterial pathogenicity is strongly supported by the presence of lipids in the cell wall, their degradation induces bacterial destruction through cell wall hydrolysis. Phage-based lipolytic enzymes such as, LysB a mycolylarabinogalactan esterase, represent an appealing therapeutic approach. The herein proposed Ms6 LysB-containing lipid nanocarrier (SLN-LysB) explores the known advantages of nanomedicine-based systems for phagocytic cells selectively targeting thus allowing LysB intracellular accumulation and a more pronounced mycobacterial infection eradication. Adsorption efficiency value indicates the potential of this system as a protein nanocarrier. Moreover, promising outcomes were obtained in host-infected macrophages treated with SLN-LysB. The results show that the herein proposed strategy was more effective in inhibiting the growth of M. smegmatis than free LysB, which might be related to the nanocarrier internalization. Acting as effective protein nanocarriers, the protein-guided delivery in the infected phagocytic cells allows it to exert its hydrolytic action on the lipid layer of the Mycobacterium

  11. Amphiphilic lipid derivatives of 3'-hydroxyurea-deoxythymidine: preparation, properties, molecular self-assembly, simulation and in vitro anticancer activity.

    Science.gov (United States)

    Li, Miao; Qi, Shuo; Jin, Yiguang; Yao, Weishang; Zhang, Sa; Zhao, Jingyu

    2014-11-01

    Lipid derivatives of nucleoside analogs and their nanoassemblies have become the research hotspot due to their unique function in cancer therapy. Six lipid derivatives of 3'-hydroxyurea-deoxythymidine were prepared with zidovudine as the raw material. The 5'-substituted lipid chains in the derivatives were from the various fatty acids including octanoic acid, decanoic acid, dodecanoic acid, tetradecanoic acid, hexadecanoic acid and octadecanoic acid corresponding to the derivatives OHT, DHT, DDHT, TDHT, HDHT and ODHT. The amphiphilic derivatives formed Langmuir monolayers at the air/water interface with different surface pressure-molecular area isotherms depending on the length of lipid chains. The nanoassemblies of OHT, DHT, DDHT, TDHT and HDHT and the nanoscale precipitates of ODHT were obtained after we injected their tetrahydrofuran solutions doped with hydrophilic long chained polymers into water. Electron microscopy showed that the morphology of nanoassemblies may be vesicles or nanotubes depending on the length of lipid chains. The shorter the lipid chains were, the softer the nanoassemblies. Computer simulation supported the experimental results. The nanoassemblies and the nanoscale precipitates showed much higher anticancer effects on SW620 cells than the parent drug hydroxyurea. The nanostructures of the derivatives are promising anticancer nanomedicines. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Inhibition of rat liver microsomal lipid peroxidation by N-acyldehydroalanines: An in vitro comparative study

    Energy Technology Data Exchange (ETDEWEB)

    Buc-Calderon, P.; Roberfroid, M. (Universite Catholique de Louvain, Brussels (Belgium))

    1989-09-01

    Captodative substituted olefins are radical scavengers which react with free radicals to form stabilized radical adducts. One of those compounds, N-(paramethoxyphenylacetyl)dehydroalanine (AD-5), may react and scavenge both superoxide anion (O-2) and alk-oxyl radicals (RO.), and in this way prevent the appearance of their mediated biological effects. Nitrofurantoin and tert-butyl hydroperoxide were used as model compounds to stimulate free radical production and their mediated lipid peroxidation in rat liver microsomes. In addition, lipid peroxidation was also initiated by exposure of rat liver microsomal suspensions to ionizing radiation (gamma rays). The microsomal lipid peroxidation induced by these chemicals and physical agents was inhibited by the addition of AD-5. These effects were dose-dependent in a millimolar range of concentration. In addition, AD-5 has no effect on microsomal electron transport, showing that NADPH-cytochrome P450 reductase activity was not modified. These data, together with the comparisons of the effects of AD-5 and some antioxidant molecules such as superoxide dismutase, uric acid, and mannitol, support the conclusion that inhibition of lipid peroxidation by AD-5 is the result of its free radical scavenger activity. In addition, the inhibitory effect of AD-5 on microsomal lipid peroxidation was dependent of the nature of the free radical species involved in the initiation of the process, suggesting that O-2 is scavenged more efficiently than RO.

  13. Pharmacological Inhibition of Host Heme Oxygenase-1 Suppresses Mycobacterium tuberculosis Infection In Vivo by a Mechanism Dependent on T Lymphocytes

    Directory of Open Access Journals (Sweden)

    Diego L. Costa

    2016-10-01

    Full Text Available Heme oxygenase-1 (HO-1 is a stress response antioxidant enzyme which catalyzes the degradation of heme released during inflammation. HO-1 expression is upregulated in both experimental and human Mycobacterium tuberculosis infection, and in patients it is a biomarker of active disease. Whether the enzyme plays a protective versus pathogenic role in tuberculosis has been the subject of debate. To address this controversy, we administered tin protoporphyrin IX (SnPPIX, a well-characterized HO-1 enzymatic inhibitor, to mice during acute M. tuberculosis infection. These SnPPIX-treated animals displayed a substantial reduction in pulmonary bacterial loads comparable to that achieved following conventional antibiotic therapy. Moreover, when administered adjunctively with antimycobacterial drugs, the HO-1 inhibitor markedly enhanced and accelerated pathogen clearance. Interestingly, both the pulmonary induction of HO-1 expression and the efficacy of SnPPIX treatment in reducing bacterial burden were dependent on the presence of host T lymphocytes. Although M. tuberculosis expresses its own heme-degrading enzyme, SnPPIX failed to inhibit its enzymatic activity or significantly restrict bacterial growth in liquid culture. Together, the above findings reveal mammalian HO-1 as a potential target for host-directed monotherapy and adjunctive therapy of tuberculosis and identify the immune response as a critical regulator of this function.

  14. In Silico-Based High-Throughput Screen for Discovery of Novel Combinations for Tuberculosis Treatment

    Science.gov (United States)

    Singh, Ragini; Ramachandran, Vasanthi; Shandil, Radha; Sharma, Sreevalli; Khandelwal, Swati; Karmarkar, Malancha; Kumar, Naveen; Solapure, Suresh; Saralaya, Ramanatha; Nanduri, Robert; Panduga, Vijender; Reddy, Jitendar; Prabhakar, K. R.; Rajagopalan, Swaminathan; Rao, Narasimha; Narayanan, Shridhar; Anandkumar, Anand; Datta, Santanu

    2015-01-01

    There are currently 18 drug classes for the treatment of tuberculosis, including those in the development pipeline. An in silico simulation enabled combing the innumerably large search space to derive multidrug combinations. Through the use of ordinary differential equations (ODE), we constructed an in silico kinetic platform in which the major metabolic pathways in Mycobacterium tuberculosis and the mechanisms of the antituberculosis drugs were integrated into a virtual proteome. The optimized model was used to evaluate 816 triplets from the set of 18 drugs. The experimentally derived cumulative fractional inhibitory concentration (∑FIC) value was within twofold of the model prediction. Bacterial enumeration revealed that a significant number of combinations that were synergistic for growth inhibition were also synergistic for bactericidal effect. The in silico-based screen provided new starting points for testing in a mouse model of tuberculosis, in which two novel triplets and five novel quartets were significantly superior to the reference drug triplet of isoniazid, rifampin, and ethambutol (HRE) or the quartet of HRE plus pyrazinamide (HREZ). PMID:26149995

  15. Use of recombinant purified protein derivative (PPD) antigens as specific skin test for tuberculosis.

    Science.gov (United States)

    Stavri, Henriette; Bucurenci, Nadia; Ulea, Irina; Costache, Adriana; Popa, Loredana; Popa, Mircea Ioan

    2012-11-01

    Purified protein derivative (PPD) is currently the only available skin test reagent used worldwide for the diagnosis of tuberculosis (TB). The aim of this study was to develop a Mycobacterium tuberculosis specific skin test reagent, without false positive results due to Bacillus Calmette-Guerin (BCG) vaccination using recombinant antigens. Proteins in PPD IC-65 were analyzed by tandem mass spectrometry and compared to proteins in M. tuberculosis culture filtrate; 54 proteins were found in common. Top candidates MPT64, ESAT 6, and CFP 10 were overexpressed in Escherichia coli expression strains and purified as recombinant proteins. To formulate optimal immunodiagnostic PPD cocktails, the antigens were evaluated by skin testing guinea pigs sensitized with M. tuberculosis H37Rv and BCG. For single antigens and a cocktail mixture of these antigens, best results were obtained using 3 μg/0.1 ml, equivalent to 105 TU (tuberculin units). Each animal was simultaneously tested with PPD IC-65, 2 TU/0.1 ml, as reference. Reactivity of the multi-antigen cocktail was greater than that of any single antigen. The skin test results were between 34.3 and 76.6 per cent the level of reactivity compared to that of the reference when single antigens were tested and 124 per cent the level of reactivity compared to the reference for the multi-antigen cocktail. Our results showed that this specific cocktail could represent a potential candidate for a new skin diagnostic test for TB.

  16. Targeting Mycobacterium tuberculosis nucleoid-associated protein HU with structure-based inhibitors

    Science.gov (United States)

    Bhowmick, Tuhin; Ghosh, Soumitra; Dixit, Karuna; Ganesan, Varsha; Ramagopal, Udupi A.; Dey, Debayan; Sarma, Siddhartha P.; Ramakumar, Suryanarayanarao; Nagaraja, Valakunja

    2014-06-01

    The nucleoid-associated protein HU plays an important role in maintenance of chromosomal architecture and in global regulation of DNA transactions in bacteria. Although HU is essential for growth in Mycobacterium tuberculosis (Mtb), there have been no reported attempts to perturb HU function with small molecules. Here we report the crystal structure of the N-terminal domain of HU from Mtb. We identify a core region within the HU-DNA interface that can be targeted using stilbene derivatives. These small molecules specifically inhibit HU-DNA binding, disrupt nucleoid architecture and reduce Mtb growth. The stilbene inhibitors induce gene expression changes in Mtb that resemble those induced by HU deficiency. Our results indicate that HU is a potential target for the development of therapies against tuberculosis.

  17. Anti-Mycobacterial Activity of Marine Fungus-Derived 4-Deoxybostrycin and Nigrosporin

    Directory of Open Access Journals (Sweden)

    Xiaomin Lai

    2013-01-01

    Full Text Available 4-Deoxybostrycin is a natural anthraquinone compound isolated from the Mangrove endophytic fungus Nigrospora sp. collected from the South China Sea. Nigrosporin is the deoxy-derivative of 4-deoxybostrycin. They were tested against mycobacteria, especially Mycobacterium tuberculosis. In the Kirby-Bauer disk diffusion susceptibility test, they both had inhibition zone sizes of over 25 mm. The results of the absolute concentration susceptibility test suggested that they had inhibitory effects against mycobacteria. Moreover, 4-deoxybostrycin exhibited good inhibition which was even better than that of first line anti-tuberculosis (TB drugs against some clinical multidrug-resistant (MDR M. tuberculosis strains. The gene expression profile of M. tuberculosis H37Rv after treatment with 4-deoxybostrycin was compared with untreated bacteria. One hundred and nineteen out of 3,875 genes were significantly different in M. tuberculosis exposed to 4-deoxybostrycin from control. There were 46 functionally known genes which are involved in metabolism, information storage and processing and cellular processes. The differential expressions of six genes were further confirmed by quantitative real-time polymerase chain reaction (qRT-PCR. The present study provides a useful experiment basis for exploitation of correlative new drugs against TB and for finding out new targets of anti-mycobacterial therapy.

  18. Anti-mycobacterial activity of marine fungus-derived 4-deoxybostrycin and nigrosporin.

    Science.gov (United States)

    Wang, Cong; Wang, Juan; Huang, Yuhong; Chen, Hong; Li, Yan; Zhong, Lili; Chen, Yi; Chen, Shengping; Wang, Jun; Kang, Juling; Peng, Yi; Yang, Bin; Lin, Yongcheng; She, Zhigang; Lai, Xiaomin

    2013-01-29

    4-Deoxybostrycin is a natural anthraquinone compound isolated from the Mangrove endophytic fungus Nigrospora sp. collected from the South China Sea. Nigrosporin is the deoxy-derivative of 4-deoxybostrycin. They were tested against mycobacteria, especially Mycobacterium tuberculosis. In the Kirby-Bauer disk diffusion susceptibility test, they both had inhibition zone sizes of over 25 mm. The results of the absolute concentration susceptibility test suggested that they had inhibitory effects against mycobacteria. Moreover, 4-deoxybostrycin exhibited good inhibition which was even better than that of first line anti-tuberculosis (TB) drugs against some clinical multidrug-resistant (MDR) M. tuberculosis strains. The gene expression profile of M. tuberculosis H37Rv after treatment with 4-deoxybostrycin was compared with untreated bacteria. One hundred and nineteen out of 3,875 genes were significantly different in M. tuberculosis exposed to 4-deoxybostrycin from control. There were 46 functionally known genes which are involved in metabolism, information storage and processing and cellular processes. The differential expressions of six genes were further confirmed by quantitative real-time polymerase chain reaction (qRT-PCR). The present study provides a useful experiment basis for exploitation of correlative new drugs against TB and for finding out new targets of anti-mycobacterial therapy.

  19. Tuberculosis related drug-lipid interactions demonstrated by evanescent field biosensor

    CSIR Research Space (South Africa)

    Lemmer, Yolandy

    2009-08-01

    Full Text Available stream_source_info Lemmer1_2009.pdf.txt stream_content_type text/plain stream_size 6475 Content-Encoding ISO-8859-1 stream_name Lemmer1_2009.pdf.txt Content-Type text/plain; charset=ISO-8859-1 Tuberculosis related drug... of Pretoria, Pretoria, South Africa bPolymers and Bioceramics, MSM, CSIR, Pretoria, South Africa Mycolic acids (MA), depicted in Fig.1, which are part of the cell envelope of Mycobacterium tuberculosis, play a major role in the pathogenesis of the bacteria...

  20. Pathogenic mycobacteria achieve cellular persistence by inhibiting the Niemann-Pick Type C disease cellular pathway.

    Science.gov (United States)

    Fineran, Paul; Lloyd-Evans, Emyr; Lack, Nathan A; Platt, Nick; Davis, Lianne C; Morgan, Anthony J; Höglinger, Doris; Tatituri, Raju Venkata V; Clark, Simon; Williams, Ian M; Tynan, Patricia; Al Eisa, Nada; Nazarova, Evgeniya; Williams, Ann; Galione, Antony; Ory, Daniel S; Besra, Gurdyal S; Russell, David G; Brenner, Michael B; Sim, Edith; Platt, Frances M

    2016-11-18

    Tuberculosis remains a major global health concern. The ability to prevent phagosome-lysosome fusion is a key mechanism by which intracellular mycobacteria, including Mycobacterium tuberculosis , achieve long-term persistence within host cells. The mechanisms underpinning this key intracellular pro-survival strategy remain incompletely understood. Host macrophages infected with persistent mycobacteria share phenotypic similarities with cells taken from patients suffering from Niemann-Pick Disease Type C (NPC), a rare lysosomal storage disease in which endocytic trafficking defects and lipid accumulation within the lysosome lead to cell dysfunction and cell death. We investigated whether these shared phenotypes reflected an underlying mechanistic connection between mycobacterial intracellular persistence and the host cell pathway dysfunctional in NPC. The induction of NPC phenotypes in macrophages from wild-type mice or obtained from healthy human donors was assessed via infection with mycobacteria and subsequent measurement of lipid levels and intracellular calcium homeostasis. The effect of NPC therapeutics on intracellular mycobacterial load was also assessed. Macrophages infected with persistent intracellular mycobacteria phenocopied NPC cells, exhibiting accumulation of multiple lipid types, reduced lysosomal Ca 2+ levels, and defects in intracellular trafficking. These NPC phenotypes could also be induced using only lipids/glycomycolates from the mycobacterial cell wall. These data suggest that persistent intracellular mycobacteria inhibit the NPC pathway, likely via inhibition of the NPC1 protein, and subsequently induce altered acidic store Ca 2+ homeostasis. Reduced lysosomal calcium levels may provide a mechanistic explanation for the reduced levels of phagosome-lysosome fusion in mycobacterial infection. Treatments capable of correcting defects in NPC mutant cells via modulation of host cell calcium were of benefit in promoting clearance of mycobacteria

  1. Isolated Optic Disc Tuberculosis

    Science.gov (United States)

    Mansour, Ahmad M.; Tabbara, Khalid F.; Tabbarah, Zuhair

    2015-01-01

    We present a healthy male subject who developed progressive visual loss in the left eye initially diagnosed as optic neuritis. Upon suspicion of infectious etiology, testing was positive for tuberculosis. There were no signs or symptoms of active systemic tuberculosis infection. The patient responded swiftly to antimycobacterial therapy with return of vision and resolution of disc swelling. Positive purified protein derivative skin test, negative chest radiograph, negative systemic workup, negative workup for other causes of unilateral optic neuritis and quick response to mycobacterial therapy reaffirm the entity of isolated optic disc tuberculosis similar to isolated choroidal tuberculosis without systemic manifestation. PMID:26483675

  2. Isolated Optic Disc Tuberculosis

    Directory of Open Access Journals (Sweden)

    Ahmad M. Mansour

    2015-09-01

    Full Text Available We present a healthy male subject who developed progressive visual loss in the left eye initially diagnosed as optic neuritis. Upon suspicion of infectious etiology, testing was positive for tuberculosis. There were no signs or symptoms of active systemic tuberculosis infection. The patient responded swiftly to antimycobacterial therapy with return of vision and resolution of disc swelling. Positive purified protein derivative skin test, negative chest radiograph, negative systemic workup, negative workup for other causes of unilateral optic neuritis and quick response to mycobacterial therapy reaffirm the entity of isolated optic disc tuberculosis similar to isolated choroidal tuberculosis without systemic manifestation.

  3. Immune activation by medium-chain triglyceride-containing lipid emulsions is not modulated by n-3 lipids or toll-like receptor 4

    NARCIS (Netherlands)

    Olthof, E.D.; Gulich, A.F.; Renne, M.F.; Landman, S.; Joosten, L.A.B.; Roelofs, H.M.; Wanten, G.J.A.

    2015-01-01

    BACKGROUND: Saturated medium-chain triglycerides (MCT) as part of the parenteral lipid regimen (50% MCT and 50% long chain triglycerides (LCT)) activate the immune system in vitro. Fish oil (FO)-derived n-3 fatty acids (FA) inhibit saturated FA-induced immune activation via a toll-like receptor

  4. Corrosion Inhibition of High Speed Steel by Biopolymer HPMC Derivatives

    Directory of Open Access Journals (Sweden)

    Shih-Chen Shi

    2016-07-01

    Full Text Available The corrosion inhibition characteristics of the derivatives of biopolymer hydroxypropyl methylcellulose (HPMC, hydroxypropyl methylcellulose phthalate (HPMCP, and hydroxypropyl methylcellulose acetate succinate (HPMCAS film are investigated. Based on electrochemical impedance spectroscopic measurements and potentiodynamic polarization, the corrosion inhibition performance of high speed steel coated with HPMC derivatives is evaluated. The Nyquist plot and Tafel polarization demonstrate promising anti-corrosion performance of HPMC and HPMCP. With increasing film thickness, both materials reveal improvement in corrosion inhibition. Moreover, because of a hydrophobic surface and lower moisture content, HPMCP shows better anti-corrosion performance than HPMCAS. The study is of certain importance for designing green corrosion inhibitors of high speed steel surfaces by the use of biopolymer derivatives.

  5. Neutrophil-Derived MMP-8 Drives AMPK-Dependent Matrix Destruction in Human Pulmonary Tuberculosis

    Science.gov (United States)

    Ong, Catherine W. M.; Elkington, Paul T.; Brilha, Sara; Ugarte-Gil, Cesar; Tome-Esteban, Maite T.; Tezera, Liku B.; Pabisiak, Przemyslaw J.; Moores, Rachel C.; Sathyamoorthy, Tarangini; Patel, Vimal; Gilman, Robert H.; Porter, Joanna C.; Friedland, Jon S.

    2015-01-01

    Pulmonary cavities, the hallmark of tuberculosis (TB), are characterized by high mycobacterial load and perpetuate the spread of M. tuberculosis. The mechanism of matrix destruction resulting in cavitation is not well defined. Neutrophils are emerging as key mediators of TB immunopathology and their influx are associated with poor outcomes. We investigated neutrophil-dependent mechanisms involved in TB-associated matrix destruction using a cellular model, a cohort of 108 patients, and in separate patient lung biopsies. Neutrophil-derived NF-kB-dependent matrix metalloproteinase-8 (MMP-8) secretion was up-regulated in TB and caused matrix destruction both in vitro and in respiratory samples of TB patients. Collagen destruction induced by TB infection was abolished by doxycycline, a licensed MMP inhibitor. Neutrophil extracellular traps (NETs) contain MMP-8 and are increased in samples from TB patients. Neutrophils lined the circumference of human pulmonary TB cavities and sputum MMP-8 concentrations reflected TB radiological and clinical disease severity. AMPK, a central regulator of catabolism, drove neutrophil MMP-8 secretion and neutrophils from AMPK-deficient patients secrete lower MMP-8 concentrations. AMPK-expressing neutrophils are present in human TB lung biopsies with phospho-AMPK detected in nuclei. These data demonstrate that neutrophil-derived MMP-8 has a key role in the immunopathology of TB and is a potential target for host-directed therapy in this infectious disease. PMID:25996154

  6. Neutrophil-Derived MMP-8 Drives AMPK-Dependent Matrix Destruction in Human Pulmonary Tuberculosis.

    Science.gov (United States)

    Ong, Catherine W M; Elkington, Paul T; Brilha, Sara; Ugarte-Gil, Cesar; Tome-Esteban, Maite T; Tezera, Liku B; Pabisiak, Przemyslaw J; Moores, Rachel C; Sathyamoorthy, Tarangini; Patel, Vimal; Gilman, Robert H; Porter, Joanna C; Friedland, Jon S

    2015-05-01

    Pulmonary cavities, the hallmark of tuberculosis (TB), are characterized by high mycobacterial load and perpetuate the spread of M. tuberculosis. The mechanism of matrix destruction resulting in cavitation is not well defined. Neutrophils are emerging as key mediators of TB immunopathology and their influx are associated with poor outcomes. We investigated neutrophil-dependent mechanisms involved in TB-associated matrix destruction using a cellular model, a cohort of 108 patients, and in separate patient lung biopsies. Neutrophil-derived NF-kB-dependent matrix metalloproteinase-8 (MMP-8) secretion was up-regulated in TB and caused matrix destruction both in vitro and in respiratory samples of TB patients. Collagen destruction induced by TB infection was abolished by doxycycline, a licensed MMP inhibitor. Neutrophil extracellular traps (NETs) contain MMP-8 and are increased in samples from TB patients. Neutrophils lined the circumference of human pulmonary TB cavities and sputum MMP-8 concentrations reflected TB radiological and clinical disease severity. AMPK, a central regulator of catabolism, drove neutrophil MMP-8 secretion and neutrophils from AMPK-deficient patients secrete lower MMP-8 concentrations. AMPK-expressing neutrophils are present in human TB lung biopsies with phospho-AMPK detected in nuclei. These data demonstrate that neutrophil-derived MMP-8 has a key role in the immunopathology of TB and is a potential target for host-directed therapy in this infectious disease.

  7. Inhibition of lignin-derived phenolic compounds to cellulase.

    Science.gov (United States)

    Qin, Lei; Li, Wen-Chao; Liu, Li; Zhu, Jia-Qing; Li, Xia; Li, Bing-Zhi; Yuan, Ying-Jin

    2016-01-01

    Lignin-derived phenolic compounds are universal in the hydrolysate of pretreated lignocellulosic biomass. The phenolics reduce the efficiency of enzymatic hydrolysis and increase the cost of ethanol production. We investigated inhibition of phenolics on cellulase during enzymatic hydrolysis using vanillin as one of the typical lignin-derived phenolics and Avicel as cellulose substrate. As vanillin concentration increased from 0 to 10 mg/mL, cellulose conversion after 72-h enzymatic hydrolysis decreased from 53 to 26 %. Enzyme deactivation and precipitation were detected with the vanillin addition. The enzyme concentration and activity consecutively decreased during hydrolysis, but the inhibition degree, expressed as the ratio of the cellulose conversion without vanillin to the conversion with vanillin (A 0 /A), was almost independent on hydrolysis time. Inhibition can be mitigated by increasing cellulose loading or cellulase concentration. The inhibition degree showed linear relationship with the vanillin concentration and exponential relationship with the cellulose loading and the cellulase concentration. The addition of calcium chloride, BSA, and Tween 80 did not release the inhibition of vanillin significantly. pH and temperature for hydrolysis also showed no significant impact on inhibition degree. The presence of hydroxyl group, carbonyl group, and methoxy group in phenolics affected the inhibition degree. Besides phenolics concentration, other factors such as cellulose loading, enzyme concentration, and phenolic structure also affect the inhibition of cellulose conversion. Lignin-blocking agents have little effect on the inhibition effect of soluble phenolics, indicating that the inhibition mechanism of phenolics to enzyme is likely different from insoluble lignin. The inhibition of soluble phenolics can hardly be entirely removed by increasing enzyme concentration or adding blocking proteins due to the dispersity and multiple binding sites of phenolics

  8. Evaluation of a rapid radiometric differentiation test for the Mycobacterium tuberculosis complex by selective inhibition with p-nitro-alpha-acetylamino-beta-hydroxypropiophenone

    International Nuclear Information System (INIS)

    Laszlo, A.; Siddiqi, S.H.

    1984-01-01

    This study is an evaluation of a rapid technique for the differentiation of the Mycobacterium tuberculosis complex from other mycobacteria, using p-nitro-alpha-acetylamino-beta- hydroxypropiophenone (NAP) as a selective inhibitory agent. A total of 416 coded cultures, 234 cultures belonging to the M. tuberculosis complex and 182 cultures belonging to 35 other mycobacterial species, were tested in two laboratories for p-nitro-alpha-acetylamino-beta- hydroxypropiophenone inhibition to concentrations of 5 and 10 micrograms of NAP per ml in Middlebrook 7H12 liquid medium. Two testing modes were compared: the indirect, in which a large bacterial inoculum was used from an isolated culture on a solid medium, and the direct, which used a small inoculum from 7H12 medium. A decrease or no increase in daily 14 CO 2 output as measured by a BACTEC system was considered evidence of inhibition. The data presented show that a concentration of 5 micrograms of NAP per ml can effectively separate the M. tuberculosis complex from other mycobacterial species in 4 to 6 days. The direct test data show that, unlike other conventional biochemical tests, it does not require a heavy inoculum of mycobacteria and can therefore be performed soon after growth is detected by the radiometric method

  9. HIV protease inhibitors disrupt lipid metabolism by activating endoplasmic reticulum stress and inhibiting autophagy activity in adipocytes.

    Directory of Open Access Journals (Sweden)

    Beth S Zha

    Full Text Available HIV protease inhibitors (PI are core components of Highly Active Antiretroviral Therapy (HAART, the most effective treatment for HIV infection currently available. However, HIV PIs have now been linked to lipodystrophy and dyslipidemia, which are major risk factors for cardiovascular disease and metabolic syndrome. Our previous studies have shown that HIV PIs activate endoplasmic reticulum (ER stress and disrupt lipid metabolism in hepatocytes and macrophages. Yet, little is known on how HIV PIs disrupt lipid metabolism in adipocytes, a major cell type involved in the pathogenesis of metabolic syndrome.Cultured and primary mouse adipocytes and human adipocytes were used to examine the effect of frequently used HIV PIs in the clinic, lopinavir/ritonavir, on adipocyte differentiation and further identify the underlying molecular mechanism of HIV PI-induced dysregulation of lipid metabolism in adipocytes. The results indicated that lopinavir alone or in combination with ritonavir, significantly activated the ER stress response, inhibited cell differentiation, and induced cell apoptosis in adipocytes. In addition, HIV PI-induced ER stress was closely linked to inhibition of autophagy activity. We also identified through the use of primary adipocytes of CHOP(-/- mice that CHOP, the major transcriptional factor of the ER stress signaling pathway, is involved in lopinavir/ritonavir-induced inhibition of cell differentiation in adipocytes. In addition, lopinavir/ritonavir-induced ER stress appears to be associated with inhibition of autophagy activity in adipocytes.Activation of ER stress and impairment of autophagy activity are involved in HIV PI-induced dysregulation of lipid metabolism in adipocytes. The key components of ER stress and autophagy signaling pathways are potential therapeutic targets for HIV PI-induced metabolic side effects in HIV patients.

  10. Oral vaccination of guinea pigs with a Mycobacterium bovis bacillus Calmette-Guerin vaccine in a lipid matrix protects against aerosol infection with virulent M. bovis.

    Science.gov (United States)

    Clark, Simon; Cross, Martin L; Nadian, Allan; Vipond, Julia; Court, Pinar; Williams, Ann; Hewinson, R Glyn; Aldwell, Frank E; Chambers, Mark A

    2008-08-01

    Increased incidence of bovine tuberculosis (TB) in the United Kingdom caused by infection with Mycobacterium bovis is a cause of considerable economic loss to farmers and the government. The Eurasian badger (Meles meles) represents a wildlife source of recurrent M. bovis infections of cattle in the United Kingdom, and its vaccination against TB with M. bovis bacillus Calmette-Guérin (BCG) is an attractive disease control option. Delivery of BCG in oral bait holds the best prospect for vaccinating badgers over a wide geographical area. Using a guinea pig pulmonary challenge model, we evaluated the protective efficacy of candidate badger oral vaccines, based on broth-grown or ball-milled BCG, delivered either as aqueous suspensions or formulated in two lipids with differing fatty acid profiles (one being animal derived and the other being vegetable derived). Protection was determined in terms of increasing body weight after aerosol challenge with virulent M. bovis, reduced dissemination of M. bovis to the spleen, and, in the case of one oral formulation, restricted growth of M. bovis in the lungs. Only oral BCG formulated in lipid gave significant protection. These data point to the potential of the BCG-lipid formulation for further development as a tool for controlling tuberculosis in badgers.

  11. Indolcarboxamide is a preclinical candidate for treating multidrug-resistant tuberculosis.

    Science.gov (United States)

    Rao, Srinivasa P S; Lakshminarayana, Suresh B; Kondreddi, Ravinder R; Herve, Maxime; Camacho, Luis R; Bifani, Pablo; Kalapala, Sarath K; Jiricek, Jan; Ma, Ng L; Tan, Bee H; Ng, Seow H; Nanjundappa, Mahesh; Ravindran, Sindhu; Seah, Peck G; Thayalan, Pamela; Lim, Siao H; Lee, Boon H; Goh, Anne; Barnes, Whitney S; Chen, Zhong; Gagaring, Kerstin; Chatterjee, Arnab K; Pethe, Kevin; Kuhen, Kelli; Walker, John; Feng, Gu; Babu, Sreehari; Zhang, Lijun; Blasco, Francesca; Beer, David; Weaver, Margaret; Dartois, Veronique; Glynne, Richard; Dick, Thomas; Smith, Paul W; Diagana, Thierry T; Manjunatha, Ujjini H

    2013-12-04

    New chemotherapeutic compounds against multidrug-resistant Mycobacterium tuberculosis (Mtb) are urgently needed to combat drug resistance in tuberculosis (TB). We have identified and characterized the indolcarboxamides as a new class of antitubercular bactericidal agent. Genetic and lipid profiling studies identified the likely molecular target of indolcarboxamides as MmpL3, a transporter of trehalose monomycolate that is essential for mycobacterial cell wall biosynthesis. Two lead candidates, NITD-304 and NITD-349, showed potent activity against both drug-sensitive and multidrug-resistant clinical isolates of Mtb. Promising pharmacokinetic profiles of both compounds after oral dosing in several species enabled further evaluation for efficacy and safety. NITD-304 and NITD-349 were efficacious in treating both acute and chronic Mtb infections in mouse efficacy models. Furthermore, dosing of NITD-304 and NITD-349 for 2 weeks in exploratory rat toxicology studies revealed a promising safety margin. Finally, neither compound inhibited the activity of major cytochrome P-450 enzymes or the hERG (human ether-a-go-go related gene) channel. These results suggest that NITD-304 and NITD-349 should undergo further development as a potential treatment for multidrug-resistant TB.

  12. Tuberculin-purified protein derivative-, MPT-64-, and ESAT-6-stimulated gamma interferon responses in medical students before and after Mycobacterium bovis BCG vaccination and in patients with tuberculosis

    DEFF Research Database (Denmark)

    Johnson, P D; Stuart, R L; Grayson, M L

    1999-01-01

    QuantiFERON-TB (QIFN) (CSL Limited) is a whole-blood assay for the recognition of infection with Mycobacterium tuberculosis. QIFN measures gamma interferon (IFN-gamma) production when purified protein derivatives (PPDs) of mycobacteria are incubated with venous blood samples. The specificity...... of QIFN in medical students before and after BCG immunization was assessed, and sensitivity in patients with tuberculosis was assessed. Antigens were PPD derived from M. tuberculosis and two M. tuberculosis-specific proteins, ESAT-6 and MPT-64. Of 60 medical students, all of whom had 0-mm tuberculin skin...... tests (TSTs) at study entry, 58 (97%) were initially classified as negative for M. tuberculosis infection by PPD QIFN. Five months after BCG immunization, 7 of 54 students (13%) had a TST result of >/=10 mm and 11 of 54 students (20%) tested positive by PPD QIFN. ESAT-6- and MPT-64-stimulated IFN...

  13. Inhibition by acrolein of light-induced stomatal opening through inhibition of inward-rectifying potassium channels in Arabidopsis thaliana.

    Science.gov (United States)

    Islam, Md Moshiul; Ye, Wenxiu; Matsushima, Daiki; Khokon, Md Atiqur Rahman; Munemasa, Shintaro; Nakamura, Yoshimasa; Murata, Yoshiyuki

    2015-01-01

    Acrolein is a reactive α,β-unsaturated aldehyde derived from lipid peroxides, which are produced in plants under a variety of stress. We investigated effects of acrolein on light-induced stomatal opening using Arabidopsis thaliana. Acrolein inhibited light-induced stomatal opening in a dose-dependent manner. Acrolein at 100 μM inhibited plasma membrane inward-rectifying potassium (Kin) channels in guard cells. Acrolein at 100 μM inhibited Kin channel KAT1 expressed in a heterologous system using Xenopus leaves oocytes. These results suggest that acrolein inhibits light-induced stomatal opening through inhibition of Kin channels in guard cells.

  14. Inhibition of Akt signaling by exclusion from lipid rafts in normal and transformed epidermal keratinocytes

    DEFF Research Database (Denmark)

    Calay, Damien; Vind-Kezunovic, Dina; Frankart, Aurelie

    2010-01-01

    Lipid rafts are cholesterol-rich plasma membrane domains that regulate signal transduction. Because our earlier work indicated that raft disruption inhibited proliferation and caused cell death, we investigated here the role of membrane cholesterol, the crucial raft constituent, in the regulation...... of the phosphatidylinositol-3 kinase (PI3K)/Akt pathway. Raft disruption was achieved in normal human keratinocytes and precancerous (HaCaT) or transformed (A431) keratinocytes by cholesterol extraction or inactivation with methyl-beta-cyclodextrin, filipin III, or 5-cholestene-5-beta-ol. Lipid raft disruption did not affect...... in deactivation of mammalian target of rapamycin, activation of FoxO3a, and increased sensitivity to apoptosis stimuli. Lipid raft disruption abrogated the binding of Akt and the major Akt kinase, phosphatidylinositol-dependent kinase 1, to the membrane by pleckstrin-homology domains. Thus, the integrity of lipid...

  15. Metformin reduces lipid accumulation in macrophages by inhibiting FOXO1-mediated transcription of fatty acid-binding protein 4

    International Nuclear Information System (INIS)

    Song, Jun; Ren, Pingping; Zhang, Lin; Wang, Xing Li; Chen, Li; Shen, Ying H.

    2010-01-01

    Objective: The accumulation of lipids in macrophages contributes to the development of atherosclerosis. Strategies to reduce lipid accumulation in macrophages may have therapeutic potential for preventing and treating atherosclerosis and cardiovascular complications. The antidiabetic drug metformin has been reported to reduce lipid accumulation in adipocytes. In this study, we examined the effects of metformin on lipid accumulation in macrophages and investigated the mechanisms involved. Methods and results: We observed that metformin significantly reduced palmitic acid (PA)-induced intracellular lipid accumulation in macrophages. Metformin promoted the expression of carnitine palmitoyltransferase I (CPT-1), while reduced the expression of fatty acid-binding protein 4 (FABP4) which was involved in PA-induced lipid accumulation. Quantitative real-time PCR showed that metformin regulates FABP4 expression at the transcriptional level. We identified forkhead transcription factor FOXO1 as a positive regulator of FABP4 expression. Inhibiting FOXO1 expression with FOXO1 siRNA significantly reduced basal and PA-induced FABP4 expression. Overexpression of wild-type FOXO1 and constitutively active FOXO1 significantly increased FABP4 expression, whereas dominant negative FOXO1 dramatically decreased FABP4 expression. Metformin reduced FABP4 expression by promoting FOXO1 nuclear exclusion and subsequently inhibiting its activity. Conclusions: Taken together, these results suggest that metformin reduces lipid accumulation in macrophages by repressing FOXO1-mediated FABP4 transcription. Thus, metformin may have a protective effect against lipid accumulation in macrophages and may serve as a therapeutic agent for preventing and treating atherosclerosis in metabolic syndrome.

  16. Metformin reduces lipid accumulation in macrophages by inhibiting FOXO1-mediated transcription of fatty acid-binding protein 4

    Energy Technology Data Exchange (ETDEWEB)

    Song, Jun [Qilu Hospital, Shandong University, Jinan, Shandong (China); Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX (United States); Texas Heart Institute at St. Luke' s Episcopal Hospital, Houston, TX (United States); Ren, Pingping; Zhang, Lin [Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX (United States); Texas Heart Institute at St. Luke' s Episcopal Hospital, Houston, TX (United States); Wang, Xing Li [Qilu Hospital, Shandong University, Jinan, Shandong (China); Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX (United States); Texas Heart Institute at St. Luke' s Episcopal Hospital, Houston, TX (United States); Chen, Li [Qilu Hospital, Shandong University, Jinan, Shandong (China); Shen, Ying H., E-mail: hyshen@bcm.edu [Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX (United States); Texas Heart Institute at St. Luke' s Episcopal Hospital, Houston, TX (United States)

    2010-02-26

    Objective: The accumulation of lipids in macrophages contributes to the development of atherosclerosis. Strategies to reduce lipid accumulation in macrophages may have therapeutic potential for preventing and treating atherosclerosis and cardiovascular complications. The antidiabetic drug metformin has been reported to reduce lipid accumulation in adipocytes. In this study, we examined the effects of metformin on lipid accumulation in macrophages and investigated the mechanisms involved. Methods and results: We observed that metformin significantly reduced palmitic acid (PA)-induced intracellular lipid accumulation in macrophages. Metformin promoted the expression of carnitine palmitoyltransferase I (CPT-1), while reduced the expression of fatty acid-binding protein 4 (FABP4) which was involved in PA-induced lipid accumulation. Quantitative real-time PCR showed that metformin regulates FABP4 expression at the transcriptional level. We identified forkhead transcription factor FOXO1 as a positive regulator of FABP4 expression. Inhibiting FOXO1 expression with FOXO1 siRNA significantly reduced basal and PA-induced FABP4 expression. Overexpression of wild-type FOXO1 and constitutively active FOXO1 significantly increased FABP4 expression, whereas dominant negative FOXO1 dramatically decreased FABP4 expression. Metformin reduced FABP4 expression by promoting FOXO1 nuclear exclusion and subsequently inhibiting its activity. Conclusions: Taken together, these results suggest that metformin reduces lipid accumulation in macrophages by repressing FOXO1-mediated FABP4 transcription. Thus, metformin may have a protective effect against lipid accumulation in macrophages and may serve as a therapeutic agent for preventing and treating atherosclerosis in metabolic syndrome.

  17. Therapeutic Applicability of Anti-Inflammatory and Proresolving Polyunsaturated Fatty Acid-Derived Lipid Mediators

    Directory of Open Access Journals (Sweden)

    Gerard L. Bannenberg

    2010-01-01

    Full Text Available The enzymatic oxygenation of polyunsaturated fatty acids by lipoxygenases and cyclo-oxygenases is a resourceful mode of formation of specific autacoids that regulate the extent and pace of the inflammatory response. Arachidonate-derived eicosanoids, such as lipoxin A4, prostaglandin (PGD2, PGF2α, PGE2, and PGD2-derived cyclopentenones exert specific roles in counter-regulating inflammation and turning on resolution. Recently recognized classes of autacoids derived from long-chain ω-3 polyunsaturated fatty acids, the E- and D-series resolvins, protectin D1, and maresin 1, act as specialized mediators to dampen inflammation actively, afford tissue protection, stimulate host defense, and activate resolution. It is held that counter-regulatory lipid mediators and the specific molecular pathways activated by such endogenous agonists may be suitable for pharmacological use in the treatment of inflammatory disease. The anti-inflammatory drug aspirin is a striking example of a drug that is able to act in such a manner, namely through triggering the formation of 15-epi-lipoxin A4 and aspirin-triggered resolvins. Different aspects of the therapeutic applicability of lipid mediators have been addressed here, and indicate that the development of innovative pharmacotherapy based on anti-inflammatory and proresolution lipid mediators presents novel prospects for the treatment of inflammatory disease.

  18. Inhibition of Akt signaling by exclusion from lipid rafts in normal and transformed epidermal keratinocytes

    DEFF Research Database (Denmark)

    Calay, Damien; Vind-Kezunovic, Dina; Frankart, Aurelie

    2010-01-01

    Lipid rafts are cholesterol-rich plasma membrane domains that regulate signal transduction. Because our earlier work indicated that raft disruption inhibited proliferation and caused cell death, we investigated here the role of membrane cholesterol, the crucial raft constituent, in the regulation...

  19. Chemoproteomic profiling of targets of lipid-derived electrophiles by bioorthogonal aminooxy probe

    Directory of Open Access Journals (Sweden)

    Ying Chen

    2017-08-01

    Full Text Available Redox imbalance in cells induces lipid peroxidation and generates a class of highly reactive metabolites known as lipid-derived electrophiles (LDEs that can modify proteins and affects their functions. Identifying targets of LDEs is critical to understand how such modifications are functionally implicated in oxidative-stress associated diseases. Here we report a quantitative chemoproteomic method to globally profile protein targets and sites modified by LDEs. In this strategy, we designed and synthesized an alkyne-functionalized aminooxy probe to react with LDE-modified proteins for imaging and proteomic profiling. Using this probe, we successfully quantified >4000 proteins modified by 4-hydroxy-2-nonenal (HNE of high confidence in mammalian cell lysate and combined with a tandem-orthogonal proteolysis activity-based protein profiling (TOP-ABPP strategy, we identified ~400 residue sites targeted by HNE including reactive cysteines in peroxiredoxins, an important family of enzymes with anti-oxidant roles. Our method expands the toolbox to quantitatively profile protein targets of endogenous electrophiles and the enlarged inventory of LDE-modified proteins and sites will contribute to functional elucidation of cellular pathways affected by oxidative stress. Keywords: Lipid-derived electrophile, 4-hydroxy-2-nonenal, Chemoproteomics, Aminooxy probe, Activity-based protein profiling

  20. Platelet-derived growth factor inhibits platelet activation in heparinized whole blood.

    Science.gov (United States)

    Selheim, F; Holmsen, H; Vassbotn, F S

    1999-08-15

    We previously have demonstrated that human platelets have functionally active platelet-derived growth factor alpha-receptors. Studies with gel-filtered platelets showed that an autocrine inhibition pathway is transduced through this tyrosine kinase receptor during platelet activation. The physiological significance of this inhibitory effect of platelet-derived growth factor on gel-filtered platelets activation is, however, not known. In the present study, we investigated whether platelet-derived growth factor inhibits platelet activation under more physiological conditions in heparinized whole blood, which represents a more physiological condition than gel-filtered platelets. Using flow cytometric assays, we demonstrate here that platelet-derived growth factor inhibits thrombin-, thrombin receptor agonist peptide SFLLRN-, and collagen-induced platelet aggregation and shedding of platelet-derived microparticles from the platelet plasma membrane during platelet aggregation in stirred heparinized whole blood. The inhibitory effect of platelet-derived growth factor was dose dependent. However, under nonaggregating conditions (no stirring), we could not demonstrate any significant effect of platelet-derived growth factor on thrombin- and thrombin receptor agonist peptide-induced platelet surface expression of P-selectin. Our results demonstrate that platelet-derived growth factor appears to be a true antithrombotic agent only under aggregating conditions in heparinized whole blood.

  1. current trends in the laboratory diagnosis of tuberculosis

    African Journals Online (AJOL)

    drclement

    has a high concentration of lipids in the cell wall, which .... culture. Media- The common media for the culture of mycobacterium tuberculosis can be classified ..... optimum growth temperature and ... catalase test which is inactivated at. 680 C.

  2. Digestibility of Quinoa (Chenopodium quinoa Willd.) Protein Concentrate and Its Potential to Inhibit Lipid Peroxidation in the Zebrafish Larvae Model.

    Science.gov (United States)

    Vilcacundo, R; Barrio, D; Carpio, C; García-Ruiz, A; Rúales, J; Hernández-Ledesma, B; Carrillo, W

    2017-09-01

    Quinoa protein concentrate (QPC) was extracted and digested under in vitro gastrointestinal conditions. The protein content of QPC was in the range between 52.40 and 65.01% depending on the assay used. Quinoa proteins were almost completely hydrolyzed by pepsin at pH of 1.2, 2.0, and 3.2. At high pH, only partial hydrolysis was observed. During the duodenal phase, no intact proteins were visible, indicating their susceptibility to the in vitro simulated digestive conditions. Zebrafish larvae model was used to evaluate the in vivo ability of gastrointestinal digests to inhibit lipid peroxidation. Gastric digestion at pH 1.2 showed the highest lipid peroxidation inhibition percentage (75.15%). The lipid peroxidation activity increased after the duodenal phase. The digest obtained at the end of the digestive process showed an inhibition percentage of 82.10%, comparable to that showed when using BHT as positive control (87.13%).

  3. Targeting phenotypically tolerant Mycobacterium tuberculosis

    Science.gov (United States)

    Gold, Ben; Nathan, Carl

    2016-01-01

    While the immune system is credited with averting tuberculosis in billions of individuals exposed to Mycobacterium tuberculosis, the immune system is also culpable for tempering the ability of antibiotics to deliver swift and durable cure of disease. In individuals afflicted with tuberculosis, host immunity produces diverse microenvironmental niches that support suboptimal growth, or complete growth arrest, of M. tuberculosis. The physiological state of nonreplication in bacteria is associated with phenotypic drug tolerance. Many of these host microenvironments, when modeled in vitro by carbon starvation, complete nutrient starvation, stationary phase, acidic pH, reactive nitrogen intermediates, hypoxia, biofilms, and withholding streptomycin from the streptomycin-addicted strain SS18b, render M. tuberculosis profoundly tolerant to many of the antibiotics that are given to tuberculosis patients in a clinical setting. Targeting nonreplicating persisters is anticipated to reduce the duration of antibiotic treatment and rate of post-treatment relapse. Some promising drugs to treat tuberculosis, such as rifampicin and bedaquiline, only kill nonreplicating M. tuberculosis in vitro at concentrations far greater than their minimal inhibitory concentrations against replicating bacilli. There is an urgent demand to identify which of the currently used antibiotics, and which of the molecules in academic and corporate screening collections, have potent bactericidal action on nonreplicating M. tuberculosis. With this goal, we review methods of high throughput screening to target nonreplicating M. tuberculosis and methods to progress candidate molecules. A classification based on structures and putative targets of molecules that have been reported to kill nonreplicating M. tuberculosis revealed a rich diversity in pharmacophores. However, few of these compounds were tested under conditions that would exclude the impact of adsorbed compound acting during the recovery phase of

  4. Drug therapy in spinal tuberculosis.

    Science.gov (United States)

    Rajasekaran, S; Khandelwal, Gaurav

    2013-06-01

    Although the discovery of effective anti-tuberculosis drugs has made uncomplicated spinal tuberculosis a medical disease, the advent of multi-drug-resistant Mycobacterium tuberculosis and the co-infection of HIV with tuberculosis have led to a resurgence of the disease recently. The principles of drug treatment of spinal tuberculosis are derived from our experience in treating pulmonary tuberculosis. Spinal tuberculosis is classified to be a severe form of extrapulmonary tuberculosis and hence is included in Category I of the WHO classification. The tuberculosis bacilli isolated from patients are of four different types with different growth kinetics and metabolic characteristics. Hence multiple drugs, which act on the different groups of the mycobacteria, are included in each anti-tuberculosis drug regimen. Prolonged and uninterrupted chemotherapy (which may be 'short course' and 'intermittent' but preferably 'directly observed') is effective in controlling the infection. Spinal Multi-drug-resistant TB and spinal TB in HIV-positive patients present unique problems in management and have much poorer prognosis. Failure of chemotherapy and emergence of drug resistance are frequent due to the failure of compliance hence all efforts must be made to improve patient compliance to the prescribed drug regimen.

  5. Lipid reducing activity and toxicity profiles of a library of polyphenol derivatives.

    Science.gov (United States)

    Urbatzka, Ralph; Freitas, Sara; Palmeira, Andreia; Almeida, Tiago; Moreira, João; Azevedo, Carlos; Afonso, Carlos; Correia-da-Silva, Marta; Sousa, Emilia; Pinto, Madalena; Vasconcelos, Vitor

    2018-05-10

    Obesity is an increasing epidemic worldwide and novel treatments are urgently needed. Polyphenols are natural compounds derived from plants, which are known in particular for their antioxidant properties. However, some polyphenols were described to possess anti-obesity activities in vitro and in vivo. In this study, we aimed to screen a library of 85 polyphenol derivatives for their lipid reducing activity and toxicity. Compounds were analyzed at 5 μM with the zebrafish Nile red fluorescence fat metabolism assay and for general toxicity in vivo. To improve the safety profile, compounds were screened at 50 μM in murine preadipocytes in vitro for cytotoxicity. Obtained activity data were used to create a 2D-QSAR (quantitative structure activity relationship) model. 38 polyphenols showed strong lipid reducing activity. Toxicity analysis revealed that 18 of them did not show any toxicity in vitro or in vivo. QSAR analysis revealed the importance of the number of rings, fractional partial positively charged surface area, relative positive charge, relative number of oxygen atoms, and partial negative surface area for lipid-reducing activity. The five most potent compounds with EC 50 values in the nanomolar range for lipid reducing activity and without any toxic effects are strong candidates for future research and development into anti-obesity drugs. Molecular profiling for fasn, sirt1, mtp and ppary revealed one compound that reduced significantly fasn mRNA expression. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  6. PFOS induced lipid metabolism disturbances in BALB/c mice through inhibition of low density lipoproteins excretion

    Science.gov (United States)

    Wang, Ling; Wang, Yu; Liang, Yong; Li, Jia; Liu, Yuchen; Zhang, Jie; Zhang, Aiqian; Fu, Jianjie; Jiang, Guibin

    2014-04-01

    Male BALB/c mice fed with either a regular or high fat diet were exposed to 0, 5 or 20 mg/kg perfluorooctane sulfonate (PFOS) for 14 days. Increased body weight, serum glucose, cholesterol and lipoprotein levels were observed in mice given a high fat diet. However, all PFOS-treated mice got reduced levels of serum lipid and lipoprotein. Decreasing liver glycogen content was also observed, accompanied by reduced serum glucose levels. Histological and ultrastructural examination detected more lipid droplets accumulated in hepatocytes after PFOS exposure. Moreover, transcripitonal activity of lipid metabolism related genes suggests that PFOS toxicity is probably unrelevant to PPARα's transcription. The present study demonstrates a lipid disturbance caused by PFOS and thus point to its role in inhibiting the secretion and normal function of low density lipoproteins.

  7. Microbial conversion of synthetic and food waste-derived volatile fatty acids to lipids.

    Science.gov (United States)

    Vajpeyi, Shashwat; Chandran, Kartik

    2015-01-01

    Lipid accumulation in the oleaginous yeast Cryptococcus albidus was evaluated using mixtures of volatile fatty acids (VFA) as substrates. In general, batch growth under nitrogen limitation led to higher lipid accumulation using synthetic VFA. During batch growth, an initial COD:N ratio of 25:1mg COD:mg N led to maximum intracellular lipid accumulation (28.3 ± 0.7% g/g dry cell weight), which is the maximum reported for C. albidus using VFA as the carbon source, without compromising growth kinetics. At this feed COD:N ratio, chemostat cultures fed with synthetic VFA yielded statistically similar intracellular lipid content as batch cultures (29.9 ± 1.9%, g/g). However, batch cultures fed with VFA produced from the fermentation of food waste, yielded a lower lipid content (14.9 ± 0.1%, g/g). The lipid composition obtained with synthetic and food-waste-derived VFA was similar to commercial biodiesel feedstock. We therefore demonstrate the feasibility of linking biochemical waste treatment and biofuel production using VFA as key intermediates. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Low-molecular weight fractions of Japanese soy sauce act as a RAGE antagonist via inhibition of RAGE trafficking to lipid rafts.

    Science.gov (United States)

    Munesue, Seiichi; Yamamoto, Yasuhiko; Urushihara, Ryouta; Inomata, Kouhei; Saito, Hidehito; Motoyoshi, So; Watanabe, Takuo; Yonekura, Hideto; Yamamoto, Hiroshi

    2013-12-01

    Advanced glycation end-products (AGE) have been implicated in aging and the pathogenesis of diabetic complications, inflammation, Alzheimer's disease, and cancer. AGE engage the cell surface receptor for AGE (RAGE), which in turn elicits intracellular signaling, leading to activation of NF-κB to cause deterioration of tissue homeostasis. AGE are not only formed within our bodies but are also derived from foods, endowing them with flavor. In the present study, we assessed the agonistic/antagonistic effects of food-derived AGE on RAGE signaling in a reporter assay system and found that low-molecular weight AGE can antagonize the action of AGE-BSA. Foods tested were Japanese soy sauce, coffee, cola, and red wine, all of which showed fluorescence characteristics of AGE. Soy sauce and coffee contained N(ε)-carboxymethyl-lysine (CML). Soy sauce, coffee, and red wine inhibited the RAGE ligand-induced activation of NF-κB, whereas cola had no effect on the ligand induction of NF-κB. The liquids were then fractionated into high-molecular weight (HMW) fractions and low-molecular weight (LMW) fractions. Soy sauce-, coffee-, and red wine-derived LMW fractions consistently inhibited the RAGE ligand induction of NF-κB, whereas the HMW fractions of these foods activated RAGE signaling. Using the LMW fraction of soy sauce as a model food-derived RAGE antagonist, we performed a plate-binding assay and found that the soy sauce LMW fractions competitively inhibited AGE-RAGE association. Further, this fraction significantly reduced AGE-dependent monocyte chemoattractant protein-1 (MCP-1) secretion from murine peritoneal macrophages. The LMF from soy sauce suppressed the AGE-induced RAGE trafficking to lipid rafts. These results indicate that small components in some, if not all, foods antagonize RAGE signaling and could exhibit beneficial effects on RAGE-related diseases.

  9. Structures of the Mycobacterium tuberculosis GlpX protein (class II fructose-1,6-bisphosphatase): implications for the active oligomeric state, catalytic mechanism and citrate inhibition.

    Science.gov (United States)

    Wolf, Nina M; Gutka, Hiten J; Movahedzadeh, Farahnaz; Abad-Zapatero, Celerino

    2018-04-01

    The crystal structures of native class II fructose-1,6-bisphosphatase (FBPaseII) from Mycobacterium tuberculosis at 2.6 Å resolution and two active-site protein variants are presented. The variants were complexed with the reaction product fructose 6-phosphate (F6P). The Thr84Ala mutant is inactive, while the Thr84Ser mutant has a lower catalytic activity. The structures reveal the presence of a 222 tetramer, similar to those described for fructose-1,6/sedoheptulose-1,7-bisphosphatase from Synechocystis (strain 6803) as well as the equivalent enzyme from Thermosynechococcus elongatus. This homotetramer corresponds to a homologous oligomer that is present but not described in the crystal structure of FBPaseII from Escherichia coli and is probably conserved in all FBPaseIIs. The constellation of amino-acid residues in the active site of FBPaseII from M. tuberculosis (MtFBPaseII) is conserved and is analogous to that described previously for the E. coli enzyme. Moreover, the structure of the active site of the partially active (Thr84Ser) variant and the analysis of the kinetics are consistent with the previously proposed catalytic mechanism. The presence of metabolites in the crystallization medium (for example citrate and malonate) and in the corresponding crystal structures of MtFBPaseII, combined with their observed inhibitory effect, could suggest the existence of an uncharacterized inhibition of this class of enzymes besides the allosteric inhibition by adenosine monophosphate observed for the Synechocystis enzyme. The structural and functional insights derived from the structure of MtFBPaseII will provide critical information for the design of lead inhibitors, which will be used to validate this target for future chemical intervention.

  10. Infection Rate and Tissue Localization of Murine IL-12p40-Producing Monocyte-Derived CD103+ Lung Dendritic Cells during Pulmonary Tuberculosis

    Science.gov (United States)

    Leepiyasakulchai, Chaniya; Taher, Chato; Chuquimia, Olga D.; Mazurek, Jolanta; Söderberg-Naucler, Cecilia; Fernández, Carmen; Sköld, Markus

    2013-01-01

    Non-hematopoietic cells, including lung epithelial cells, influence host immune responses. By co-culturing primary alveolar epithelial cells and monocytes from naïve donor mice, we show that alveolar epithelial cells support monocyte survival and differentiation in vitro, suggesting a role for non-hematopoietic cells in monocyte differentiation during the steady state in vivo. CD103+ dendritic cells (αE-DC) are present at mucosal surfaces. Using a murine primary monocyte adoptive transfer model, we demonstrate that αE-DC in the lungs and pulmonary lymph nodes are monocyte-derived during pulmonary tuberculosis. The tissue localization may influence the functional potential of αE-DC that accumulate in Mycobacterium tuberculosis-infected lungs. Here, we confirm the localization of αE-DC in uninfected mice beneath the bronchial epithelial cell layer and near the vascular wall, and show that αE-DC have a similar distribution in the lungs during pulmonary tuberculosis and are detected in the bronchoalveolar lavage fluid from infected mice. Lung DC can be targeted by M. tuberculosis in vivo and play a role in bacterial dissemination to the draining lymph node. In contrast to other DC subsets, only a fraction of lung αE-DC are infected with the bacterium. We also show that virulent M. tuberculosis does not significantly alter cell surface expression levels of MHC class II on infected cells in vivo and that αE-DC contain the highest frequency of IL-12p40+ cells among the myeloid cell subsets in infected lungs. Our results support a model in which inflammatory monocytes are recruited into the M. tuberculosis-infected lung tissue and, depending on which non-hematopoietic cells they interact with, differentiate along different paths to give rise to multiple monocyte-derived cells, including DC with a distinctive αE-DC phenotype. PMID:23861965

  11. Infection rate and tissue localization of murine IL-12p40-producing monocyte-derived CD103(+) lung dendritic cells during pulmonary tuberculosis.

    Science.gov (United States)

    Leepiyasakulchai, Chaniya; Taher, Chato; Chuquimia, Olga D; Mazurek, Jolanta; Söderberg-Naucler, Cecilia; Fernández, Carmen; Sköld, Markus

    2013-01-01

    Non-hematopoietic cells, including lung epithelial cells, influence host immune responses. By co-culturing primary alveolar epithelial cells and monocytes from naïve donor mice, we show that alveolar epithelial cells support monocyte survival and differentiation in vitro, suggesting a role for non-hematopoietic cells in monocyte differentiation during the steady state in vivo. CD103(+) dendritic cells (αE-DC) are present at mucosal surfaces. Using a murine primary monocyte adoptive transfer model, we demonstrate that αE-DC in the lungs and pulmonary lymph nodes are monocyte-derived during pulmonary tuberculosis. The tissue localization may influence the functional potential of αE-DC that accumulate in Mycobacterium tuberculosis-infected lungs. Here, we confirm the localization of αE-DC in uninfected mice beneath the bronchial epithelial cell layer and near the vascular wall, and show that αE-DC have a similar distribution in the lungs during pulmonary tuberculosis and are detected in the bronchoalveolar lavage fluid from infected mice. Lung DC can be targeted by M. tuberculosis in vivo and play a role in bacterial dissemination to the draining lymph node. In contrast to other DC subsets, only a fraction of lung αE-DC are infected with the bacterium. We also show that virulent M. tuberculosis does not significantly alter cell surface expression levels of MHC class II on infected cells in vivo and that αE-DC contain the highest frequency of IL-12p40(+) cells among the myeloid cell subsets in infected lungs. Our results support a model in which inflammatory monocytes are recruited into the M. tuberculosis-infected lung tissue and, depending on which non-hematopoietic cells they interact with, differentiate along different paths to give rise to multiple monocyte-derived cells, including DC with a distinctive αE-DC phenotype.

  12. The synthesis of a water-soluble derivative of rutin as an antiradical agent

    Energy Technology Data Exchange (ETDEWEB)

    Pedriali, Carla Aparecida; Fernandes, Adjaci Uchoa [Universidade de Sao Paulo (USP), SP (Brazil). Inst. de Quimica. Dept. de Bioquimica]. E-mail: capedriali@hotmail.com; Bernusso, Leandra de Cassia; Polakiewicz, Bronislaw [Universidade de Sao Paulo (USP), SP (Brazil). Faculdade de Ciencias Farmaceuticas. Dept. de Tecnologia Bioquimico-Farmaceutica

    2008-07-01

    The purpose of this study was to synthesize a water-soluble derivative of rutin (compound 2) by introducing carboxylate groups on rutin's sugar moiety. The rutin derivative showed an almost 100-fold solubility increase in water. The antiradical capacity of compound 2 was evaluated using the luminol/AAPH system, and the derivative's activity was 1.5 times greater than that of Trolox. Despite the derivative's high solubility in water (log P = -1.13), lipid peroxidation of brain homogenate membranes was very efficiently inhibited (inhibition values were only 19% lower than the inhibition values of rutin). (author)

  13. The synthesis of a water-soluble derivative of rutin as an antiradical agent

    International Nuclear Information System (INIS)

    Pedriali, Carla Aparecida; Fernandes, Adjaci Uchoa; Bernusso, Leandra de Cassia; Polakiewicz, Bronislaw

    2008-01-01

    The purpose of this study was to synthesize a water-soluble derivative of rutin (compound 2) by introducing carboxylate groups on rutin's sugar moiety. The rutin derivative showed an almost 100-fold solubility increase in water. The antiradical capacity of compound 2 was evaluated using the luminol/AAPH system, and the derivative's activity was 1.5 times greater than that of Trolox. Despite the derivative's high solubility in water (log P = -1.13), lipid peroxidation of brain homogenate membranes was very efficiently inhibited (inhibition values were only 19% lower than the inhibition values of rutin). (author)

  14. [Increased IL-4 production in response to virulent Mycobacterium tuberculosis in tuberculosis patients with advanced disease].

    Science.gov (United States)

    Ordway, Diane J; Martins, Marta S; Costa, Leonor M; Freire, Mónica S; Arroz, Maria J; Dockrell, Hazel M; Ventura, Fernando A

    2005-01-01

    The study was designed to compare immune responses to Mycobacterium tuberculosis bacilli and antigens in healthy Portuguese subjects and pulmonary tuberculosis patients (TB), and to correlate immune status with clinical severity of tuberculosis disease. PBMC were cultured and stimulated with live and killed M. tuberculosis H37Rv and purified protein derivative (PPD) and lymphoproliferation and production of IFN-gamma and IL-5/IL-4 by these cultures were evaluated by the use of ELISA and multi-parameter flow cytometry. PBMC from 30 tuberculosis patients demonstrated significantly reduced amounts of proliferation and IFN-gamma when stimulated with live M. tuberculosis compared the control group. Of 15 tuberculosis patients tested for intracellular IL-4 following stimulation with M. tuberculosis, 7 showed greatly increased IL-4 production in CD8+ and gammadelta+ T cells. Tuberculosis patients demonstrated an increase of intracellular IL-4 after PBMC were stimulated with live M. tuberculosis in the CD4+ phenotype, but more notably in CD8+ and gammadelta TCR+ subsets. Increased production of IL-4 in tuberculosis patients was primarily in individuals with advanced involvement of lung parenchymal with high bacterial loads in sputum. These results suggest that an alteration in type 1 and type 2 cytokine balance can occur in patients with tuberculosis at an advanced clinical stage of disease.

  15. Essential oil from lemon peels inhibit key enzymes linked to neurodegenerative conditions and pro-oxidant induced lipid peroxidation.

    Science.gov (United States)

    Oboh, Ganiyu; Olasehinde, Tosin A; Ademosun, Ayokunle O

    2014-01-01

    This study sought to investigate the effects of essential oil from lemon (Citrus limoni) peels on acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) activities in vitro. The essential oil was extracted by hydrodistillation, dried with anhydrous Na2SO4 and characterized using gas chromatography. Antioxidant properties of the oil and inhibition of pro-oxidant-induced lipid peroxidation in rats brain homogenate were also assessed. The essential oil inhibited AChE and BChE activities in a concentration-dependent manner. GC analysis revealed the presence of sabinene, limonene, α-pinene, β-pinene, neral, geranial, 1,8-cineole, linalool, borneol, α-terpineol, terpinen-4-ol, linalyl acetate and β-caryophyllene. Furthermore, the essential oil exhibited antioxidant activities as typified by ferric reducing property, Fe(2+)-chelation and radicals [DPPH, ABTS, OH, NO] scavenging abilities. The inhibition of AChE and BChE activities, inhibition of pro-oxidant induced lipid peroxidation and antioxidant activities could be possible mechanisms for the use of the essential oil in the management and prevention of oxidative stress-induced neurodegeneration.

  16. Lipid-formulated bcg as an oral-bait vaccine for tuberculosis: vaccine stability, efficacy, and palatability to brushtail possums (Trichosurus vulpecula) in New Zealand.

    Science.gov (United States)

    Cross, Martin L; Henderson, Ray J; Lambeth, Matthew R; Buddle, Bryce M; Aldwell, Frank E

    2009-07-01

    Bovine tuberculosis (Tb), due to infection with virulent Mycobacterium bovis, represents a threat to New Zealand agriculture due to vectorial transmission from wildlife reservoir species, principally the introduced Australian brushtail possum (Trichosurus vulpecula). An oral-delivery wildlife vaccine has been developed to immunize possums against Tb, based on formulation of the human Tb vaccine (M. bovis BCG) in edible lipid matrices. Here BCG bacilli were shown to be stable in lipid matrix formulation for over 8 mo in freezer storage, for 7 wk under room temperature conditions, and for 3-5 wk under field conditions in a forest/pasture margin habitat (when maintained in weatherproof bait-delivery sachets). Samples of the lipid matrix were flavored and offered to captive possums in a bait-preference study: a combination of 10% chocolate powder with anise oil was identified as the most effective attractant/palatability combination. In a replicated field study, 85-100% of wild possums were shown to access chocolate-flavored lipid pellets, when baits were applied to areas holding approximately 600-800 possums/km(2). Finally, in a controlled vaccination/challenge study, chocolate-flavored lipid vaccine samples containing 10(8) BCG bacilli were fed to captive possums, which were subsequently challenged via aerosol exposure to virulent M. bovis: vaccine immunogenicity was confirmed, and protection was identified by significantly reduced postchallenge weight loss in vaccinated animals compared to nonvaccinated controls. These studies indicate that, appropriately flavored, lipid delivery matrices may form effective bait vaccines for the control of Tb in wildlife.

  17. Bioaktivitas Ekstrak Metanol Daun Pegagan (Centella Asiatica L. Terhadap Pertumbuhan Bakteri Mycobacterium Tuberculosis

    Directory of Open Access Journals (Sweden)

    Yusran Yusran

    2016-01-01

    Full Text Available Plants gotu kola (Centella Asiatica L .Urban is a wild plant that efficacious as remedies traditional cure disease tuberculosis (TB.TB is disease contagious infection caused by bacteria mycobacterium tuberculosis. Research aims to understand the ability extract methanol leaves gotu kola red and leaves gotu kola green and determines the concentration optimal extract methanol leaves gotu kola red and leaves gotu kola green and to know the comparison between extract methanol leaves gotu kola red with an extract methanol leaves gotu kola green in inhibits the activity of mycobacterium tuberculosis.Extraction done with the methods maceration use methanol and continued with evaporation until obtained extract viscous .Testing antibacterial activity done in a microscopic observation drug susceptibility ( mods use plate petri dish 24 hole with the variation of concentration ie 20%,40%, 60%, 80% and 100%.The results of testing show that extracts methanol leaves gotu kola red and leaves gotu kola green positive capable of inhibiting the growth of bacteria mycobacterium tuberculosis with inhibition optimal in concentration 80 % and 100 % characterized by the absence of growth bacteria colonies which are (- or 0 %.Extract methanol leaves gotu kola green capable of inhibiting the growth of bacteria mycobacterium tuberculosis better than extract methanol leaves gotu kola red seen in concentration 40% and 60%.

  18. The diarylquinoline TMC207 for multidrug-resistant tuberculosis

    NARCIS (Netherlands)

    Diacon, Andreas H.; Pym, Alexander; Grobusch, Martin; Patientia, Ramonde; Rustomjee, Roxana; Page-Shipp, Liesl; Pistorius, Christoffel; Krause, Rene; Bogoshi, Mampedi; Churchyard, Gavin; Venter, Amour; Allen, Jenny; Palomino, Juan Carlos; de Marez, Tine; van Heeswijk, Rolf P. G.; Lounis, Nacer; Meyvisch, Paul; Verbeeck, Johan; Parys, Wim; de Beule, Karel; Andries, Koen; Mc Neeley, David F.

    2009-01-01

    BACKGROUND: The diarylquinoline TMC207 offers a new mechanism of antituberculosis action by inhibiting mycobacterial ATP synthase. TMC207 potently inhibits drug-sensitive and drug-resistant Mycobacterium tuberculosis in vitro and shows bactericidal activity in patients who have drug-susceptible

  19. Evaluation of antioxidant activity of Ruta graveolens L. extract on inhibition of lipid peroxidation and DPPH radicals and the effects of some external factors on plant extract's potency.

    Directory of Open Access Journals (Sweden)

    S. Mohammadi- Motamed

    2014-01-01

    Full Text Available The antioxidant properties of Ruta graveolens L. were evaluated by two different methods; free radical scavenging using DPPH and inhibition of lipid peroxidation by the ferric thiocyanate method. The IC50 value of the methanol extract in DPPH inhibition was 200.5 μg/mL which was acceptable in comparison with BHT (41.8 μg/mL. In thiocyanate method, the plant extract demonstrated activity as much as BHT in prevention of lipid peroxidation. Increasing the temperature during extraction, significantly decreased the extract power in inhibition of DPPH radicals. The storage time and temperature had no effect on lipid peroxidation inhibition.

  20. Effects of Different End-Point Cooking Temperatures on the Efficiency of Encapsulated Phosphates on Lipid Oxidation Inhibition in Ground Meat.

    Science.gov (United States)

    Kılıç, B; Şimşek, A; Claus, J R; Atılgan, E; Aktaş, N

    2015-10-01

    Effects of 0.5% encapsulated (e) phosphates (sodium tripolyphosphate, STP; sodium hexametaphosphate, HMP; sodium pyrophosphate, SPP) on lipid oxidation during storage (0, 1, and 7 d) of ground meat (chicken, beef) after being cooked to 3 end-point cooking temperatures (EPCT; 71, 74, and 77 °C) were evaluated. The use of STP or eSTP resulted in lower (P cooking loss (CL) compared to encapsulated or unencapsulated forms of HMP and SPP. Increasing EPCT led to a significant increase in CL (P chicken compared to 74 and 71 °C (P chicken samples (P < 0.05). Findings suggest that encapsulated phosphates can be a strategy to inhibit lipid oxidation for meat industry and the efficiency of encapsulated phosphates on lipid oxidation inhibition can be enhanced by lowering EPCT. © 2015 Institute of Food Technologists®

  1. T-cell recognition of Mycobacterium tuberculosis culture filtrate fractions in tuberculosis patients and their household contacts

    DEFF Research Database (Denmark)

    Demissie, A; Ravn, P; Olobo, J

    1999-01-01

    We examined the immune responses of patients with active pulmonary tuberculosis (TB) and their healthy household contacts to short-term culture filtrate (ST-CF) of Mycobacterium tuberculosis or molecular mass fractions derived from it. Our goal was to identify fractions strongly recognized......, to secreted mycobacterial antigens is suggestive of an early stage of infection by M. tuberculosis, which could in time result in overt disease or containment of the infection. This possibility is currently being investigated by follow-up studies of the household contacts....

  2. Identification of Mycobacterium tuberculosis BioA inhibitors by using structure-based virtual screening

    Science.gov (United States)

    Singh, Swati; Khare, Garima; Bahal, Ritika Kar; Ghosh, Prahlad C; Tyagi, Anil K

    2018-01-01

    Background 7,8-Diaminopelargonic acid synthase (BioA), an enzyme of biotin biosynthesis pathway, is a well-known promising target for anti-tubercular drug development. Methods In this study, structure-based virtual screening was employed against the active site of BioA to identify new chemical entities for BioA inhibition and top ranking compounds were evaluated for their ability to inhibit BioA enzymatic activity. Results Seven compounds inhibited BioA enzymatic activity by greater than 60% at 100 μg/mL with most potent compounds being A36, A35 and A65, displaying IC50 values of 10.48 μg/mL (28.94 μM), 33.36 μg/mL (88.16 μM) and 39.17 μg/mL (114.42 μM), respectively. Compounds A65 and A35 inhibited Mycobacterium tuberculosis (M. tuberculosis) growth with MIC90 of 20 μg/mL and 80 μg/mL, respectively, whereas compound A36 exhibited relatively weak inhibition of M. tuberculosis growth (83% inhibition at 200 μg/mL). Compound A65 emerged as the most potent compound identified in our study that inhibited BioA enzymatic activity and growth of the pathogen and possessed drug-like properties. Conclusion Our study has identified a few hit molecules against M. tuberculosis BioA that can act as potential candidates for further development of potent anti-tubercular therapeutic agents. PMID:29750019

  3. Identification of marine-derived lipids in juvenile coho salmon and aquatic insects through fatty acid analysis

    Science.gov (United States)

    Heintz, Ron A.; Wipfli, Mark S.; Hudson, John P.

    2010-01-01

    The energetic benefits enjoyed by consumers in streams with salmon runs depend on how those benefits are accrued. Adult Pacific salmon Oncorhynchus spp. deliver significant amounts of nutrients (i.e., nitrogen and phosphorus) and carbon to streams when they spawn and die; these nutrient additions can have demonstrable effects on primary production in streams. Consumption of carcass tissues or eggs provides for direct energy subsidies to consumers and may have significant effects on their condition. In this study, comparisons of juvenile coho salmon O. kisutch and aquatic insects exposed to terrestrial and marine energy sources demonstrated that direct consumption of marine-derived lipids had a significant effect on the lipid reserves of consumers. Direct consumption of marine-derived tissues was verified through fatty acid analysis. Selected aquatic insects and juvenile coho salmon were reared for 6 weeks in experimental streams supplied with terrestrial or marine energy sources. Chironomid midges, nemourid stoneflies, and juvenile coho salmon exposed to the marine energy source altered their fatty acid compositions by incorporating the long-chain polyunsaturated fatty acids that are characteristic of marine fish. The fatty acid composition of baetid mayflies was unaffected. The direct movement of specific fatty markers indicated that direct consumption of marine-derived tissues led to increased energy reserves (triacylglycerols) in consumers. Similar results were obtained for juvenile coho salmon sampled from natural streams before and after the arrival of adult salmon runs. These data indicate that marine-derived lipids from anadromous fish runs are an important source of reserve lipids for consumers that overwinter in streams.

  4. Identification of Mycobacterium tuberculosis BioA inhibitors by using structure-based virtual screening

    Directory of Open Access Journals (Sweden)

    Singh S

    2018-05-01

    Full Text Available Swati Singh,1 Garima Khare,1 Ritika Kar Bahal,1 Prahlad C Ghosh,1 Anil K Tyagi1,2 1Department of Biochemistry, University of Delhi South Campus, New Delhi, India; 2Guru Gobind Singh Indraprastha University, New Delhi, India Background: 7,8-Diaminopelargonic acid synthase (BioA, an enzyme of biotin biosynthesis pathway, is a well-known promising target for anti-tubercular drug development. Methods: In this study, structure-based virtual screening was employed against the active site of BioA to identify new chemical entities for BioA inhibition and top ranking compounds were evaluated for their ability to inhibit BioA enzymatic activity. Results: Seven compounds inhibited BioA enzymatic activity by greater than 60% at 100 µg/mL with most potent compounds being A36, A35 and A65, displaying IC50 values of 10.48 µg/mL (28.94 µM, 33.36 µg/mL (88.16 µM and 39.17 µg/mL (114.42 µM, respectively. Compounds A65 and A35 inhibited Mycobacterium tuberculosis (M. tuberculosis growth with MIC90 of 20 µg/mL and 80 µg/mL, respectively, whereas compound A36 exhibited relatively weak inhibition of M. tuberculosis growth (83% inhibition at 200 µg/mL. Compound A65 emerged as the most potent compound identified in our study that inhibited BioA enzymatic activity and growth of the pathogen and possessed drug-like properties. Conclusion: Our study has identified a few hit molecules against M. tuberculosis BioA that can act as potential candidates for further development of potent anti-tubercular therapeutic agents. Keywords: Mycobacterium tuberculosis, BioA, virtual screening, drug discovery

  5. A small-molecule allosteric inhibitor of Mycobacterium tuberculosis tryptophan synthase

    Energy Technology Data Exchange (ETDEWEB)

    Wellington, Samantha; Nag, Partha P.; Michalska, Karolina; Johnston, Stephen E.; Jedrzejczak, Robert P.; Kaushik, Virendar K.; Clatworthy, Anne E.; Siddiqi, Noman; McCarren, Patrick; Bajrami, Besnik; Maltseva, Natalia I.; Combs, Senya; Fisher, Stewart L.; Joachimiak, Andrzej; Schreiber, Stuart L.; Hung, Deborah T.

    2017-07-03

    New antibiotics with novel targets are greatly needed. Bacteria have numerous essential functions, but only a small fraction of such processes—primarily those involved in macromolecular synthesis—are inhibited by current drugs. Targeting metabolic enzymes has been the focus of recent interest, but effective inhibitors have been difficult to identify. We describe a synthetic azetidine derivative, BRD4592, that kills Mycobacterium tuberculosis (Mtb) through allosteric inhibition of tryptophan synthase (TrpAB), a previously untargeted, highly allosterically regulated enzyme. BRD4592 binds at the TrpAB a–b-subunit interface and affects multiple steps in the enzyme’s overall reaction, resulting in inhibition not easily overcome by changes in metabolic environment. We show that TrpAB is required for the survival of Mtb and Mycobacterium marinum in vivo and that this requirement may be independent of an adaptive immune response. This work highlights the effectiveness of allosteric inhibition for targeting proteins that are naturally highly dynamic and that are essential in vivo, despite their apparent dispensability under in vitro conditions, and suggests a framework for the discovery of a next generation of allosteric inhibitors.

  6. Detection of Mycobacterium Tuberculosis by using PCR

    International Nuclear Information System (INIS)

    Suhadi, F; Dadang-Sudrajat; Maria-Lina, R.

    1996-01-01

    Polymerase Chain Reaction (PCR) procedure using three primary set derived from repetitive DNA sequence specific to mycobacteria was used to diagnose pathogenic Mycobacterium tuberculosis. The assay was specific for M. tuberculosis and could be used to detect the amount DNA less than 10 -9 g

  7. Lipid Droplets and Mycobacterium leprae Infection

    Science.gov (United States)

    Elamin, Ayssar A.; Stehr, Matthias; Singh, Mahavir

    2012-01-01

    Leprosy is a chronic infectious disease and is a major source of morbidity in developing countries. Leprosy is caused by the obligate intracellular bacterium Mycobacterium leprae, which infects as primary target Schwann cells. Lepromatous leprosy exhibits multiple lesions of the skin, eyes, nerves, and lymph nodes. The sites of infection are characterized by the presence of foamy macrophages, fully packed with lipid droplets (LDs), which are induced by M. leprae. In the last years, it has become evident that M. tuberculosis imports lipids from foamy macrophages and is dependent on fatty acids for growth in infected macrophages. M. leprae seems to have similar mechanisms for scavenging lipids from the host. But due to the inability to culture M. leprae on laboratory media, research progresses only slowly. However, in the last years, substantial progress has been made in the field of lipid metabolism in M. leprae. Herein, we will present and summarize the lipid droplets formation and the metabolism of lipids during M. leprae infection. PMID:23209912

  8. Lipid-derived free radical production in superantigen-induced interstitial pneumonia

    Science.gov (United States)

    Miyakawa, Hisako; Mason, Ronald P.; Jiang, JinJie; Kadiiska, Maria B.

    2009-01-01

    We studied the free radical generation involved in the development of interstitial pneumonia (IP) in an animal model of autoimmune disease. We observed an electron spin resonance (ESR) spectrum of α-(4-pyridyl-1-oxide)-N-tert-butylnitrone (POBN) radical adducts detected in the lipid extract of lungs in autoimmune-prone mice after intratracheal instillation of staphylococcal enterotoxin B. The POBN adducts detected by ESR were paralleled by infiltration of macrophages and neutrophils in the bronchoalveolar lavage fluid. To further investigate the mechanism of free radical generation, mice were pretreated with the macrophage toxicant gadolinium chloride, which significantly suppressed the radical generation. Free radical generation was also decreased by pretreatment with the xanthine oxidase (XO) inhibitor allopurinol, the iron chelator Desferal, and the inducible nitric oxide synthase (iNOS) inhibitor 1400W. Histopathologically, these drugs significantly reduced both the cell infiltration to alveolar septal walls and the synthesis of pulmonary collagen fibers. Experiments with NADPH oxidase knockout mice showed that NADPH oxidase did not contribute to lipid radical generation. These results suggest that lipid-derived carbon-centered free radical production is important in the manifestation of IP and that a macrophage toxicant, an XO inhibitor, an iron chelator, and an iNOS inhibitor protect against both radical generation and the manifestation of IP. PMID:19376221

  9. Type I interferons in tuberculosis: Foe and occasionally friend.

    Science.gov (United States)

    Moreira-Teixeira, Lúcia; Mayer-Barber, Katrin; Sher, Alan; O'Garra, Anne

    2018-05-07

    Tuberculosis remains one of the leading causes of mortality worldwide, and, despite its clinical significance, there are still significant gaps in our understanding of pathogenic and protective mechanisms triggered by Mycobacterium tuberculosis infection. Type I interferons (IFN) regulate a broad family of genes that either stimulate or inhibit immune function, having both host-protective and detrimental effects, and exhibit well-characterized antiviral activity. Transcriptional studies have uncovered a potential deleterious role for type I IFN in active tuberculosis. Since then, additional studies in human tuberculosis and experimental mouse models of M. tuberculosis infection support the concept that type I IFN promotes both bacterial expansion and disease pathogenesis. More recently, studies in a different setting have suggested a putative protective role for type I IFN. In this study, we discuss the mechanistic and contextual factors that determine the detrimental versus beneficial outcomes of type I IFN induction during M. tuberculosis infection, from human disease to experimental mouse models of tuberculosis. © 2018 Moreira-Teixeira et al.

  10. Paracetamol, 3-monoalkyl- and 3,5-dialkyl-substituted derivatives. Antioxidant activity and relationship between lipid peroxidation and cytotoxicity

    NARCIS (Netherlands)

    Van de Straat, R; Bijloo, G.J.; Vermeulen, N P

    1988-01-01

    The analgesic drug paracetamol is known to cause lipid peroxidation and hepatotoxicity after overdosage. In this paper, the relationship between lipid peroxidation and toxicity in freshly isolated hepatocytes was studied using paracetamol and three 3-monoalkyl-substituted derivatives of paracetamol.

  11. Anti-Mycobacterial Activity of Marine Fungus-Derived 4-Deoxybostrycin and Nigrosporin

    OpenAIRE

    Wang, Cong; Wang, Juan; Huang, Yuhong; Chen, Hong; Li, Yan; Zhong, Lili; Chen, Yi; Chen, Shengping; Wang, Jun; Kang, Juling; Peng, Yi; Yang, Bin; Lin, Yongcheng; She, Zhigang; Lai, Xiaomin

    2013-01-01

    4-Deoxybostrycin is a natural anthraquinone compound isolated from the Mangrove endophytic fungus Nigrospora sp. collected from the South China Sea. Nigrosporin is the deoxy-derivative of 4-deoxybostrycin. They were tested against mycobacteria, especially Mycobacterium tuberculosis. In the Kirby-Bauer disk diffusion susceptibility test, they both had inhibition zone sizes of over 25 mm. The results of the absolute concentration susceptibility test suggested that they had inhibitory effects ag...

  12. Interaction between leucine and phosphodiesterase 5 inhibition in modulating insulin sensitivity and lipid metabolism

    Directory of Open Access Journals (Sweden)

    Fu L

    2015-05-01

    Full Text Available Lizhi Fu,1 Fenfen Li,1 Antje Bruckbauer,2 Qiang Cao,1 Xin Cui,1 Rui Wu,1 Hang Shi,1 Bingzhong Xue,1 Michael B Zemel21Department of Biology, Center for Obesity Reversal, Georgia State University, Atlanta, GA, 2NuSirt Biopharma Inc., Nashville, TN, USA Purpose: Leucine activates SIRT1/AMP-activated protein kinase (AMPK signaling and markedly potentiates the effects of other sirtuin and AMPK activators on insulin signaling and lipid metabolism. Phosphodiesterase 5 inhibition increases nitric oxide–cGMP signaling, which in turn exhibits a positive feedback loop with both SIRT1 and AMPK, thus amplifying peroxisome proliferator-activated receptor γ co-activator α (PGC1α-mediated effects. Methods: We evaluated potential synergy between leucine and PDE5i on insulin sensitivity and lipid metabolism in vitro and in diet-induced obese (DIO mice. Results: Leucine (0.5 mM exhibited significant synergy with subtherapeutic doses (0.1–10 nM of PDE5-inhibitors (sildenafil and icariin on fat oxidation, nitric oxide production, and mitochondrial biogenesis in hepatocytes, adipocytes, and myotubes. Effects on insulin sensitivity, glycemic control, and lipid metabolism were then assessed in DIO-mice. DIO-mice exhibited fasting and postprandial hyperglycemia, insulin resistance, and hepatic steatosis, which were not affected by the addition of leucine (24 g/kg diet. However, the combination of leucine and a subtherapeutic dose of icariin (25 mg/kg diet for 6 weeks reduced fasting glucose (38%, P<0.002, insulin (37%, P<0.05, area under the glucose tolerance curve (20%, P<0.01, and fully restored glucose response to exogenous insulin challenge. The combination also inhibited hepatic lipogenesis, stimulated hepatic and muscle fatty acid oxidation, suppressed hepatic inflammation, and reversed high-fat diet-induced steatosis. Conclusion: These robust improvements in insulin sensitivity, glycemic control, and lipid metabolism indicate therapeutic potential for

  13. Inhibition of exogenous 3-deoxy-D-manno octulosonate incorporation into lipid A precursor of toluene-treated Salmonella typhimurium cells

    International Nuclear Information System (INIS)

    Capobianco, J.O.; Darveau, R.P.; Goldman, R.C.; Lartey, P.A.; Pernet, A.G.

    1987-01-01

    Analogs of 3-deoxy-D-manno-octulosonate (KDO) were designed to inhibit CTP:CMP-KDO cytidylyltransferase (CMP-KDO synthetase). Since these analogs lacked whole-cell antibacterial activity, a permeabilized-cell method was developed to measure intracellular compound activity directly. The method employed a mutant of Salmonella typhimurium defective in KDO-8-phosphate synthetase (kdsA), which accumulated lipid A precursor at 42 0 C. Cells permeabilized with 1% toluene were used to evaluate inhibitor effect on [ 3 H]KDO incorporation into preformed lipid A precursor. KDO incorporation proceeded through the enzymes CMP-DKO synthetase and CMP-KDO:lipid A KDO transferase. Optimum KDO incorporation occurred between pH 8 and 9 and required CTP, prior lipid A precursor accumulation, and a functional kdsB gene product, CMP-KDO synthetase. The apparent K/sub m/ for KDO in this coupled system at pH 7.6 was 1.38 mM. The reaction products isolated and characterized contained 1 and 2 KDO residues per lipid A precursor molecule. Several KDO analogs produced concentration-related reductions of DKO incorporation in toluenized cells with 50% inhibitor concentrations comparable to those obtained in purified CMP-DKO synthetase systems. Two compounds, 8-amino-2-deoxy-KDO (A-60478) and 8-aminomethyl-2-deoxy-KDO (A-60821), competitively inhibited KDO incorporation, displaying K/sub i/s of 4.2 + M for A=60478 and 2.5 + M for A-60821

  14. Quantitative Structure-Activity Relationships Predicting the Antioxidant Potency of 17β-Estradiol-Related Polycyclic Phenols to Inhibit Lipid Peroxidation

    Directory of Open Access Journals (Sweden)

    Katalin Prokai-Tatrai

    2013-01-01

    Full Text Available The antioxidant potency of 17β-estradiol and related polycyclic phenols has been well established. This property is an important component of the complex events by which these types of agents are capable to protect neurons against the detrimental consequences of oxidative stress. In order to relate their molecular structure and properties with their capacity to inhibit lipid peroxidation, a marker of oxidative stress, quantitative structure-activity relationship (QSAR studies were conducted. The inhibition of Fe3+-induced lipid peroxidation in rat brain homogenate, measured through an assay detecting thiobarbituric acid reactive substances for about seventy compounds were correlated with various molecular descriptors. We found that lipophilicity (modeled by the logarithm of the n-octanol/water partition coefficient, logP was the property that influenced most profoundly the potency of these compounds to inhibit lipid peroxidation in the biological medium studied. Additionally, the important contribution of the bond dissociation enthalpy of the phenolic O-H group, a shape index, the solvent-accessible surface area and the energy required to remove an electron from the highest occupied molecular orbital were also confirmed. Several QSAR equations were validated as potentially useful exploratory tools for identifying or designing novel phenolic antioxidants incorporating the structural backbone of 17β-estradiol to assist therapy development against oxidative stress-associated neurodegeneration.

  15. CD1 and mycobacterial lipids activate human T cells.

    Science.gov (United States)

    Van Rhijn, Ildiko; Moody, D Branch

    2015-03-01

    For decades, proteins were thought to be the sole or at least the dominant source of antigens for T cells. Studies in the 1990s demonstrated that CD1 proteins and mycobacterial lipids form specific targets of human αβ T cells. The molecular basis by which T-cell receptors (TCRs) recognize CD1-lipid complexes is now well understood. Many types of mycobacterial lipids function as antigens in the CD1 system, and new studies done with CD1 tetramers identify T-cell populations in the blood of tuberculosis patients. In human populations, a fundamental difference between the CD1 and major histocompatibility complex systems is that all humans express nearly identical CD1 proteins. Correspondingly, human CD1 responsive T cells show evidence of conserved TCRs. In addition to natural killer T cells and mucosal-associated invariant T (MAIT cells), conserved TCRs define other subsets of human T cells, including germline-encoded mycolyl-reactive (GEM) T cells. The simple immunogenetics of the CD1 system and new investigative tools to measure T-cell responses in humans now creates a situation in which known lipid antigens can be developed as immunodiagnostic and immunotherapeutic reagents for tuberculosis disease. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  16. [Optimization of parodontitis treatment of patients with tuberculosis].

    Science.gov (United States)

    Aleksandrova, E A; Lepilin, A V; Kazimirova, N E; Shul'diakov, A A

    2010-01-01

    For the purpose to determine the clinic-pathogenetic efficacy of Cycloferon liniment in the combined therapy of parodontitis of patients with focal tuberculosis medical examination and treatment of 40 patients is carried out. It is established, that use of liniment Cycloferon in the combined treatment of patients with focal tuberculosis allows to accelerate process of normalization of lipid peroxidation parameters and antioxidant potential of blood, to decrease infection load (Herpes symplex virus I, Candida albicans, Staphylococcus aureus) in parodontal recess and evidence of local inflammation with reduction of activity of the tumours necrosis factor and interleukin 1beta, that provides acceleration of recuperation processes, lowering the frequency of parodontitis relapses.

  17. Total synthesis, stereochemical elucidation and biological evaluation of Ac(2)SGL; a 1,3-methyl branched sulfoglycolipid from Mycobacterium tuberculosis

    NARCIS (Netherlands)

    Geerdink, Danny; ter Horst, Bjorn; Lepore, Marco; Mori, Lucia; Puzo, Germain; Hirsch, Anna K. H.; Gilleron, Martine; de Libero, Gennaro; Minnaard, Adriaan J.

    2012-01-01

    Mycobacterium tuberculosis, the causative agent of tuberculosis (TB), continues to represent a challenging pathogen causing many deaths. A reason for the persistence of this pathogen is the cell-envelope composition, which consists of long-tailed (glyco) lipids, involved in the modulation of the

  18. Combating highly resistant emerging pathogen Mycobacterium abscessus and Mycobacterium tuberculosis with novel salicylanilide esters and carbamates.

    Science.gov (United States)

    Baranyai, Zsuzsa; Krátký, Martin; Vinšová, Jarmila; Szabó, Nóra; Senoner, Zsuzsanna; Horváti, Kata; Stolaříková, Jiřina; Dávid, Sándor; Bősze, Szilvia

    2015-08-28

    In the Mycobacterium genus over one hundred species are already described and new ones are periodically reported. Species that form colonies in a week are classified as rapid growers, those requiring longer periods (up to three months) are the mostly pathogenic slow growers. More recently, new emerging species have been identified to lengthen the list, all rapid growers. Of these, Mycobacterium abscessus is also an intracellular pathogen and it is the most chemotherapy-resistant rapid-growing mycobacterium. In addition, the cases of multidrug-resistant Mycobacterium tuberculosis infection are also increasing. Therefore there is an urgent need to find new active molecules against these threatening strains. Based on previous results, a series of salicylanilides, salicylanilide 5-chloropyrazinoates and carbamates was designed, synthesized and characterised. The compounds were evaluated for their in vitro activity on M. abscessus, susceptible M. tuberculosis H37Rv, multidrug-resistant (MDR) M. tuberculosis MDR A8, M. tuberculosis MDR 9449/2006 and on the extremely-resistant Praha 131 (XDR) strains. All derivatives exhibited a significant activity with minimum inhibitory concentrations (MICs) in the low micromolar range. Eight salicylanilide carbamates and two salicylanilide esters exhibited an excellent in vitro activity on M. abscessus with MICs from 0.2 to 2.1 μM, thus being more effective than ciprofloxacin and gentamicin. This finding is potentially promising, particularly, as M. abscessus is a threateningly chemotherapy-resistant species. M. tuberculosis H37Rv was inhibited with MICs from 0.2 μM, and eleven compounds have lower MICs than isoniazid. Salicylanilide esters and carbamates were found that they were effective also on MDR and XDR M. tuberculosis strains with MICs ≥1.0 μM. The in vitro cytotoxicity (IC50) was also determined on human MonoMac-6 cells, and selectivity index (SI) of the compounds was established. In general, salicylanilide

  19. Matrix Degradation in Human Immunodeficiency Virus Type 1-Associated Tuberculosis and Tuberculosis Immune Reconstitution Inflammatory Syndrome: A Prospective Observational Study.

    Science.gov (United States)

    Walker, Naomi F; Wilkinson, Katalin A; Meintjes, Graeme; Tezera, Liku B; Goliath, Rene; Peyper, Janique M; Tadokera, Rebecca; Opondo, Charles; Coussens, Anna K; Wilkinson, Robert J; Friedland, Jon S; Elkington, Paul T

    2017-07-01

    Extensive immunopathology occurs in human immunodeficiency virus (HIV)/tuberculosis (TB) coinfection, but the underlying molecular mechanisms are not well-defined. Excessive matrix metalloproteinase (MMP) activity is emerging as a key process but has not been systematically studied in HIV-associated TB. We performed a cross-sectional study of matrix turnover in HIV type 1 (HIV-1)-infected and -uninfected TB patients and controls, and a prospective cohort study of HIV-1-infected TB patients at risk of TB immune reconstitution inflammatory syndrome (TB-IRIS), in Cape Town, South Africa. Sputum and plasma MMP concentrations were quantified by Luminex, plasma procollagen III N-terminal propeptide (PIIINP) by enzyme-linked immunosorbent assay, and urinary lipoarabinomannan (LAM) by Alere Determine TB LAM assay. Peripheral blood mononuclear cells from healthy donors were cultured with Mycobacterium tuberculosis and extracellular matrix in a 3D model of TB granuloma formation. MMP activity differed between HIV-1-infected and -uninfected TB patients and corresponded with specific TB clinical phenotypes. HIV-1-infected TB patients had reduced pulmonary MMP concentrations, associated with reduced cavitation, but increased plasma PIIINP, compared to HIV-1-uninfected TB patients. Elevated extrapulmonary extracellular matrix turnover was associated with TB-IRIS, both before and during TB-IRIS onset. The predominant collagenase was MMP-8, which was likely neutrophil derived and M. tuberculosis-antigen driven. Mycobacterium tuberculosis-induced matrix degradation was suppressed by the MMP inhibitor doxycycline in vitro. MMP activity in TB differs by HIV-1 status and compartment, and releases matrix degradation products. Matrix turnover in HIV-1-infected patients is increased before and during TB-IRIS, informing novel diagnostic strategies. MMP inhibition is a potential host-directed therapy strategy for prevention and treatment of TB-IRIS. © The Author 2017. Published by Oxford

  20. Long chain fatty acids (LCFA) evolution for inhibition forecasting during anaerobic treatment of lipid-rich wastes: Case of milk-fed veal slaughterhouse waste.

    Science.gov (United States)

    Rodríguez-Méndez, R; Le Bihan, Y; Béline, F; Lessard, P

    2017-09-01

    A detailed study of a solid slaughterhouse waste (SHW) anaerobic treatment is presented. The waste used in this study is rich in lipids and proteins residue. Long chain fatty acids (LCFA), coming from the hydrolysis of lipids were inhibitory to anaerobic processes at different degrees. Acetogenesis and methanogenesis processes were mainly affected by inhibition whereas disintegration and hydrolysis processes did not seem to be affected by high LCFA concentrations. Nevertheless, because of the high energy content, this kind of waste is very suitable for anaerobic digestion but strict control of operating conditions is required to prevent inhibition. For that, two inhibition indicators were identified in this study. Those two indicators, LCFA dynamics and LCFA/VS biomass ratio proved to be useful to predict and to estimate the process inhibition degree. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Anthrarobin and its derivatives: evaluation of antibacterial and lipoxygenase inhibition activities

    International Nuclear Information System (INIS)

    Lateef, M.; Iqbal, S.

    2013-01-01

    The antibacterial activity of anthrarobin and its synthesized derivatives 1, 10-dihydoxyanthracen-2-0-acetate (1) and anthracen-1, 2-10-tri-O-acetate (2) is determined against two Gram-negative bacteria (Escherichia coli, Pseudomonas aerogenosa) and two Gram-positive bacteria (Staphylococcus aureus, Bacillus subtilis) along with the lipoxygenase inhibition activity. Gentamycin (0.3 %) was used as standard antibiotic for antibacterial assay. The minimum inhibitory concentration (MIC) was determined by agar well diffusion method. Anthrarobin showed highest antibacterial activity against all the tested bacteria while anthracen-1, 2-10-tri-0-acetate (2) exhibited 97 % activity against Gram-positive bacteria, Staphylococcus aureus, and; 36 % activity against Gram-negative bacteria Escherichia coli. On the other hand, 1, 10-dihydoxyanthracen-2-0-acetate (1) remained non-significant against all the bacteria tested. When anthrarobin and its derivatives were analyzed for lipoxygenase inhibition studies, only anthrarobin showed weak inhibition activity with IC 5 0 value of 65.2 μM. It is concluded that anthrarobin has significant potential for antibacterial activity as compared to its synthesized derivatives. Structure-activity relationship suggests that numbers of hydroxyl group in anthrarobin may be responsible for antimicrobial activity and the activity decreases with the substitution of acyl groups in synthesized derivatives. (author)

  2. Mesophilic co-digestion of dairy manure and lipid rich solid slaughterhouse wastes: process efficiency, limitations and floating granules formation.

    Science.gov (United States)

    Pitk, Peep; Palatsi, Jordi; Kaparaju, Prasad; Fernández, Belén; Vilu, Raivo

    2014-08-01

    Lipid and protein rich solid slaughterhouse wastes are attractive co-substrates to increase volumetric biogas production in co-digestion with dairy manure. Addition of decanter sludge (DS), containing 42.2% of lipids and 35.8% of proteins (total solids basis), up to 5% of feed mixture resulted in a stable process without any indication of long chain fatty acids (LCFA) or free ammonia (NH3) inhibition and in 3.5-fold increase of volumetric biogas production. Contrary, only lipids addition as technical fat (TF) at over 2% of feed mixture resulted in formation of floating granules (FG) and process efficiency decrease. Formed FG had low biodegradability and its organic part was composed of lipids and calcium salts of LCFAs. Anaerobic digestion process intentionally directed to FG formation, could be a viable option for mitigation and control of lipids overload and derived LCFA inhibition. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Use of the 2,3-diacyl-trehalose and the purified protein derivative in the serodiagnosis of tuberculosis in AIDS

    Directory of Open Access Journals (Sweden)

    Maria Helena F Saad

    1996-02-01

    Full Text Available The effect of the human immunodeficiency virus (HIV infection on IgG production against purified protein derivative (PPD and 2,3-diacil-trehalose (SL-IV was investigated by an enzyme-linked immunosorbent assay (ELISA test. Comparison between the antigens showed that immunocompetent patients produce preferentially antibodies to SL-IV than to PPD (73.3% versus 63.3%. Combination of these results showed an increase of the sensitivity to 80%, which decreased over the spectrum of immunodepression caused by HIV. In the tuberculous HIV seropositive group the sensitivities of SL-IV and PPD were 36.4% versus 40% and 0% versus 22.2% in the tuberculosis/acquired immunodeficiency syndrome (TB/AIDS group. Combination of these results gave respectively 54.5% and 20%, showing that serological tests have limited value for diagnosis of tuberculosis in HIV infected patients. High antibody levels were observed in HIV seropositive asymptomatic group, but only two individuals were positive for both antigens. In the follow up, one of them developed tuberculous lymphadenitis, indicating that further work is needed to access the value of serological tests in predicting tuberculosis in HIV infected individuals.

  4. A small-molecule allosteric inhibitor of Mycobacterium tuberculosis tryptophan synthase

    Energy Technology Data Exchange (ETDEWEB)

    Wellington, Samantha; Nag, Partha P.; Michalska, Karolina; Johnston, Stephen E.; Jedrzejczak, Robert P.; Kaushik, Virendar K.; Clatworthy, Anne E.; Siddiqi, Noman; McCarren, Patrick; Bajrami, Besnik; Maltseva, Natalia I.; Combs, Senya; Fisher, Stewart L.; Joachimiak, Andrzej; Schreiber, Stuart L.; Hung, Deborah T.

    2017-07-03

    New antibiotics with novel targets are greatly needed. Bacteria have numerous essential functions, but only a small fraction of such processes—primarily those involved in macromolecular synthesis—are inhibited by current drugs. Targeting metabolic enzymes has been the focus of recent interest, but effective inhibitors have been difficult to identify. We describe a synthetic azetidine derivative, BRD4592, that kills Mycobacterium tuberculosis (Mtb) through allosteric inhibition of tryptophan synthase (TrpAB), a previously untargeted, highly allosterically regulated enzyme. BRD4592 binds at the TrpAB α–β-subunit interface and affects multiple steps in the enzyme's overall reaction, resulting in inhibition not easily overcome by changes in metabolic environment. We show that TrpAB is required for the survival of Mtb and Mycobacterium marinum in vivo and that this requirement may be independent of an adaptive immune response. This work highlights the effectiveness of allosteric inhibition for targeting proteins that are naturally highly dynamic and that are essential in vivo, despite their apparent dispensability under in vitro conditions, and suggests a framework for the discovery of a next generation of allosteric inhibitors.

  5. Capacity of lung stroma to educate dendritic cells inhibiting mycobacteria-specific T-cell response depends upon genetic susceptibility to tuberculosis.

    Science.gov (United States)

    Kapina, Marina A; Rubakova, Elvira I; Majorov, Konstantin B; Logunova, Nadezhda N; Apt, Alexander S

    2013-01-01

    The balance between activation and inhibition of local immune responses in affected tissues during prolonged chronic infections is important for host protection. There is ample evidence that regulatory, tolerogenic dendritic cells (DC) are developed and present in tissues and inhibit overwhelming inflammatory reactions. Also, it was firmly established that stromal microenvironment of many organs is able to induce development of immature regulatory DC (DCreg), an essential element of a general immune regulatory network. However, direct experimental data demonstrating inhibition of immune responses by stroma-instructed immature DCreg in infectious models are scarce, and virtually nothing is known about functioning of this axis of immunity during tuberculosis (TB) infection. In this study, we demonstrate that lung stromal cells are capable of supporting the development in culture of immature CD11b(+)CD11c(low)CD103(-) DCreg from lineage-negative (lin(-)) bone marrow precursors. DCreg developed on lung stroma isolated from mice of genetically TB-hyper-susceptible I/St and relatively resistant B6 inbred strains inhibited proliferative response of mycobacteria-specific CD4(+) T-cell lines a dose-dependent manner. Importantly, the inhibitory activity of B6 DCreg was substantially higher than that of I/St Dcreg. Moreover, when the donors of stromal cells were chronically infected with virulent mycobacteria, the capacity to instruct inhibitory DCreg was retained in B6, but further diminished in I/St stromal cells. DCreg-provided suppression was mediated by a few soluble mediators, including PGE2, NO and IL-10. The content of CD4(+)Foxp3(+) Treg cells in the mediastinal, lung-draining lymph nodes at the advanced stages of chronic infection did not change in I/St, but increased 2-fold in B6 mice, and lung pathology was much more pronounced in the former mice. Taken together, these data provide genetic evidence that the capacity to maintain populations of regulatory cells

  6. Capacity of lung stroma to educate dendritic cells inhibiting mycobacteria-specific T-cell response depends upon genetic susceptibility to tuberculosis.

    Directory of Open Access Journals (Sweden)

    Marina A Kapina

    Full Text Available The balance between activation and inhibition of local immune responses in affected tissues during prolonged chronic infections is important for host protection. There is ample evidence that regulatory, tolerogenic dendritic cells (DC are developed and present in tissues and inhibit overwhelming inflammatory reactions. Also, it was firmly established that stromal microenvironment of many organs is able to induce development of immature regulatory DC (DCreg, an essential element of a general immune regulatory network. However, direct experimental data demonstrating inhibition of immune responses by stroma-instructed immature DCreg in infectious models are scarce, and virtually nothing is known about functioning of this axis of immunity during tuberculosis (TB infection. In this study, we demonstrate that lung stromal cells are capable of supporting the development in culture of immature CD11b(+CD11c(lowCD103(- DCreg from lineage-negative (lin(- bone marrow precursors. DCreg developed on lung stroma isolated from mice of genetically TB-hyper-susceptible I/St and relatively resistant B6 inbred strains inhibited proliferative response of mycobacteria-specific CD4(+ T-cell lines a dose-dependent manner. Importantly, the inhibitory activity of B6 DCreg was substantially higher than that of I/St Dcreg. Moreover, when the donors of stromal cells were chronically infected with virulent mycobacteria, the capacity to instruct inhibitory DCreg was retained in B6, but further diminished in I/St stromal cells. DCreg-provided suppression was mediated by a few soluble mediators, including PGE2, NO and IL-10. The content of CD4(+Foxp3(+ Treg cells in the mediastinal, lung-draining lymph nodes at the advanced stages of chronic infection did not change in I/St, but increased 2-fold in B6 mice, and lung pathology was much more pronounced in the former mice. Taken together, these data provide genetic evidence that the capacity to maintain populations of regulatory

  7. Nanoparticles as Antituberculosis Drugs Carriers: Effect on Activity Against Mycobacterium tuberculosis in Human Monocyte-Derived Macrophages

    International Nuclear Information System (INIS)

    Anisimova, Y.V.; Gelperina, S.I.; Peloquin, C.A.; Heifets, L.B.

    2000-01-01

    This is the first report evaluating the nanoparticle delivery system for three antituberculosis drugs: isoniazid, rifampin, and streptomycin. The typical particle size is 250 nm. We studied accumulation of these drugs in human monocytes as well as their antimicrobial activity against Mycobacterium tuberculosis residing in human monocyte-derived macrophages. Nanoparticle encapsulation increased the intracellular accumulation (cell-association) of all three tested drugs, but it enhanced the antimicrobial activity of isoniazid and streptomycin only. On the other hand, the activity of encapsulated rifampin against intracellular bacteria was not higher than that of the free drug

  8. Development and analysis of an in vivo-compatible metabolic network of Mycobacterium tuberculosis

    Directory of Open Access Journals (Sweden)

    Reifman Jaques

    2010-11-01

    Full Text Available Abstract Background During infection, Mycobacterium tuberculosis confronts a generally hostile and nutrient-poor in vivo host environment. Existing models and analyses of M. tuberculosis metabolic networks are able to reproduce experimentally measured cellular growth rates and identify genes required for growth in a range of different in vitro media. However, these models, under in vitro conditions, do not provide an adequate description of the metabolic processes required by the pathogen to infect and persist in a host. Results To better account for the metabolic activity of M. tuberculosis in the host environment, we developed a set of procedures to systematically modify an existing in vitro metabolic network by enhancing the agreement between calculated and in vivo-measured gene essentiality data. After our modifications, the new in vivo network contained 663 genes, 838 metabolites, and 1,049 reactions and had a significantly increased sensitivity (0.81 in predicted gene essentiality than the in vitro network (0.31. We verified the modifications generated from the purely computational analysis through a review of the literature and found, for example, that, as the analysis suggested, lipids are used as the main source for carbon metabolism and oxygen must be available for the pathogen under in vivo conditions. Moreover, we used the developed in vivo network to predict the effects of double-gene deletions on M. tuberculosis growth in the host environment, explore metabolic adaptations to life in an acidic environment, highlight the importance of different enzymes in the tricarboxylic acid-cycle under different limiting nutrient conditions, investigate the effects of inhibiting multiple reactions, and look at the importance of both aerobic and anaerobic cellular respiration during infection. Conclusions The network modifications we implemented suggest a distinctive set of metabolic conditions and requirements faced by M. tuberculosis during

  9. Synthesis of new piroxicam derivatives and their influence on lipid bilayers.

    Science.gov (United States)

    Szczęśniak-Sięga, Berenika; Maniewska, Jadwiga; Poła, Andrzej; Środa-Pomianek, Kamila; Malinka, Wiesław; Michalak, Krystyna

    2014-01-01

    A novel series of potentially biologically active 1,2-benzothiazine 1,1-dioxides--analogs of piroxicam (a recognized non-steroidal anti-inflammatory drug) were synthesized from commercially available saccharin. All of the synthesized compounds were subjected to preliminary evaluation for their ability to interact with lipid bilayers. The influence of the new derivatives of piroxicam on liposomes made of EYPC was investigated by fluorescence spectroscopy with two fluorescent probes--Laurdan and Prodan. All the studied compounds showed an interaction with model membranes.

  10. Trehalose Polyphleates, External Cell Wall Lipids in Mycobacterium abscessus, Are Associated with the Formation of Clumps with Cording Morphology, Which Have Been Associated with Virulence

    Directory of Open Access Journals (Sweden)

    Marta Llorens-Fons

    2017-07-01

    Full Text Available Mycobacterium abscessus is a reemerging pathogen that causes pulmonary diseases similar to tuberculosis, which is caused by Mycobacterium tuberculosis. When grown in agar medium, M. abscessus strains generate rough (R or smooth colonies (S. R morphotypes are more virulent than S morphotypes. In searching for the virulence factors responsible for this difference, R morphotypes have been found to form large aggregates (clumps that, after being phagocytozed, result in macrophage death. Furthermore, the aggregates released to the extracellular space by damaged macrophages grow, forming unphagocytosable structures that resemble cords. In contrast, bacilli of the S morphotype, which do not form aggregates, do not damage macrophages after phagocytosis and do not form cords. Cording has also been related to the virulence of M. tuberculosis. In this species, the presence of mycolic acids and surface-exposed cell wall lipids has been correlated with the formation of cords. The objective of this work was to study the roles of the surface-exposed cell wall lipids and mycolic acids in the formation of cords in M. abscessus. A comparative study of the pattern and structure of mycolic acids was performed on R (cording and S (non-cording morphotypes derived from the same parent strains, and no differences were observed between morphotypes. Furthermore, cords formed by R morphotypes were disrupted with petroleum ether (PE, and the extracted lipids were analyzed by thin layer chromatography, nuclear magnetic resonance spectroscopy and mass spectrometry. Substantial amounts of trehalose polyphleates (TPP were recovered as major lipids from PE extracts, and images obtained by transmission electron microscopy suggested that these lipids are localized to the external surfaces of cords and R bacilli. The structure of M. abscessus TPP was revealed to be similar to those previously described in Mycobacterium smegmatis. Although the exact role of TPP is unknown, our

  11. Neuroglobin Overexpression Inhibits AMPK Signaling and Promotes Cell Anabolism.

    Science.gov (United States)

    Cai, Bin; Li, Wenjun; Mao, XiaoOu; Winters, Ali; Ryou, Myoung-Gwi; Liu, Ran; Greenberg, David A; Wang, Ning; Jin, Kunlin; Yang, Shao-Hua

    2016-03-01

    Neuroglobin (Ngb) is a recently discovered globin with preferential localization to neurons. Growing evidence indicates that Ngb has distinct physiological functions separate from the oxygen storage and transport roles of other globins, such as hemoglobin and myoglobin. We found increased ATP production and decreased glycolysis in Ngb-overexpressing immortalized murine hippocampal cell line (HT-22), in parallel with inhibition of AMP-activated protein kinase (AMPK) signaling and activation of acetyl-CoA carboxylase (ACC). In addition, lipid and glycogen content was increased in Ngb-overexpressing HT-22 cells. AMPK signaling was also inhibited in the brain and heart from Ngb-overexpressing transgenic mice. Although Ngb overexpression did not change glycogen content in whole brain, glycogen synthase was activated in cortical neurons of Ngb-overexpressing mouse brain and Ngb overexpression primary neurons. Moreover, lipid and glycogen content was increased in hearts derived from Ngb-overexpressing mice. These findings suggest that Ngb functions as a metabolic regulator and enhances cellular anabolism through the inhibition of AMPK signaling.

  12. Tuberculosis

    International Nuclear Information System (INIS)

    Aleksandrova, A.V.

    1983-01-01

    Classification of clinical forms of tuberculosis of respiratory organs is m ade. It is shown, that diagnosis, determination of the clinical form of pulmona ry tuberculosis, extent and phase of the process are mainly based on the data of roentgenologic studies and in certain cases tomography is preferable. Roentgenologic picture of primary tuberculosis, tuberculosis of intrathoracis l ymp nodes, dissemenated tuberculosis, focal and infiltrative tuberculosis of lungs, tuberculomas of lungs, cavernous and fibrocavernous form of pulmonary tub erculosis, cirrhotic tuberculosis of lungs, tuberculosis of upper respiratory tracks, tuberculous pleurite and tuberculosis of respiratory organs, combined wi th dust occupational diseases, has been described

  13. Curcumin enhances human macrophage control of Mycobacterium tuberculosis infection.

    Science.gov (United States)

    Bai, Xiyuan; Oberley-Deegan, Rebecca E; Bai, An; Ovrutsky, Alida R; Kinney, William H; Weaver, Michael; Zhang, Gong; Honda, Jennifer R; Chan, Edward D

    2016-07-01

    With the worldwide emergence of highly drug-resistant tuberculosis (TB), novel agents that have direct antimycobacterial effects or that enhance host immunity are urgently needed. Curcumin is a polyphenol responsible for the bright yellow-orange colour of turmeric, a spice derived from the root of the perennial herb Curcuma longa. Curcumin is a potent inducer of apoptosis-an effector mechanism used by macrophages to kill intracellular Mycobacterium tuberculosis (MTB). An in vitro human macrophage infection model was used to determine the effects of curcumin on MTB survival. We found that curcumin enhanced the clearance of MTB in differentiated THP-1 human monocytes and in primary human alveolar macrophages. We also found that curcumin was an inducer of caspase-3-dependent apoptosis and autophagy. Curcumin mediated these anti-MTB cellular functions, in part, via inhibition of nuclear factor-kappa B (NFκB) activation. Curcumin protects against MTB infection in human macrophages. The host-protective role of curcumin against MTB in macrophages needs confirmation in an animal model; if validated, the immunomodulatory anti-TB effects of curcumin would be less prone to drug resistance development. © 2016 Asian Pacific Society of Respirology.

  14. Novel mechanism of gene regulation: the protein Rv1222 of Mycobacterium tuberculosis inhibits transcription by anchoring the RNA polymerase onto DNA.

    Science.gov (United States)

    Rudra, Paulami; Prajapati, Ranjit Kumar; Banerjee, Rajdeep; Sengupta, Shreya; Mukhopadhyay, Jayanta

    2015-07-13

    We propose a novel mechanism of gene regulation in Mycobacterium tuberculosis where the protein Rv1222 inhibits transcription by anchoring RNA polymerase (RNAP) onto DNA. In contrast to our existing knowledge that transcriptional repressors function either by binding to DNA at specific sequences or by binding to RNAP, we show that Rv1222-mediated transcription inhibition requires simultaneous binding of the protein to both RNAP and DNA. We demonstrate that the positively charged C-terminus tail of Rv1222 is responsible for anchoring RNAP on DNA, hence the protein slows down the movement of RNAP along the DNA during transcription elongation. The interaction between Rv1222 and DNA is electrostatic, thus the protein could inhibit transcription from any gene. As Rv1222 slows down the RNA synthesis, upon expression of the protein in Mycobacterium smegmatis or Escherichia coli, the growth rate of the bacteria is severely impaired. The protein does not possess any significant affinity for DNA polymerase, thus, is unable to inhibit DNA synthesis. The proposed mechanism by which Rv1222 inhibits transcription reveals a new repertoire of prokaryotic gene regulation. © Crown copyright 2015.

  15. Reconstruction of diaminopimelic acid biosynthesis allows characterisation of Mycobacterium tuberculosis N-succinyl-L,L-diaminopimelic acid desuccinylase.

    Science.gov (United States)

    Usha, Veeraraghavan; Lloyd, Adrian J; Roper, David I; Dowson, Christopher G; Kozlov, Guennadi; Gehring, Kalle; Chauhan, Smita; Imam, Hasan T; Blindauer, Claudia A; Besra, Gurdyal S

    2016-03-15

    With the increased incidence of tuberculosis (TB) caused by Mycobacterium tuberculosis there is an urgent need for new and better anti-tubercular drugs. N-succinyl-L,L-diaminopimelic acid desuccinylase (DapE) is a key enzyme in the succinylase pathway for the biosynthesis of meso-diaminopimelic acid (meso-DAP) and L-lysine. DapE is a zinc containing metallohydrolase which hydrolyses N-succinyl L,L diaminopimelic acid (L,L-NSDAP) to L,L-diaminopimelic acid (L,L-DAP) and succinate. M. tuberculosis DapE (MtDapE) was cloned, over-expressed and purified as an N-terminal hexahistidine ((His)6) tagged fusion containing one zinc ion per DapE monomer. We redesigned the DAP synthetic pathway to generate L,L-NSDAP and other L,L-NSDAP derivatives and have characterised MtDapE with these substrates. In contrast to its other Gram negative homologues, the MtDapE was insensitive to inhibition by L-captopril which we show is consistent with novel mycobacterial alterations in the binding site of this drug.

  16. Evaporation and Hydrocarbon Chain Conformation of Surface Lipid Films

    Science.gov (United States)

    Sledge, Samiyyah M.; Khimji, Hussain; Borchman, Douglas; Oliver, Alexandria; Michael, Heidi; Dennis, Emily K.; Gerlach, Dylan; Bhola, Rahul; Stephen, Elsa

    2016-01-01

    Purpose The inhibition of the rate of evaporation (Revap) by surface lipids is relevant to reservoirs and dry eye. Our aim was to test the idea that lipid surface films inhibit Revap. Methods Revap were determined gravimetrically. Hydrocarbon chain conformation and structure were measured using a Raman microscope. Six 1-hydroxyl hydrocarbons (11–24 carbons in length) and human meibum were studied. Reflex tears were obtained from a 62-year-old male. Results The Raman scattering intensity of the lipid film deviated by about 7 % for hydroxyl lipids and varied by 21 % for meibum films across the entire film at a resolution of 5 µm2. All of the surface lipids were ordered. Revap of the shorter chain hydroxyl lipids were slightly (7%) but significantly lower compared with the longer chain hydroxyl lipids. Revap of both groups was essentially similar to that of buffer. A hydroxyl lipid film did not influence Revap over an estimated average thickness range of 0.69 to >6.9 µm. Revap of human tears and buffer with and without human meibum (34.4 µm thick) was not significantly different. Revap of human tears was not significantly different from buffer. Conclusions Human meibum and hydroxyl lipids, regardless of their fluidity, chain length, or thickness did not inhibit Revap of buffer or tears even though they completely covered the surface. It is unlikely that hydroxyl lipids can be used to inhibit Revap of reservoirs. Our data do not support the widely accepted (yet unconfirmed) idea that the tear film lipid layer inhibits Revap of tears. PMID:27395776

  17. Elucidation and chemical modulation of sulfolipid-1 biosynthesis in Mycobacterium tuberculosis.

    Science.gov (United States)

    Seeliger, Jessica C; Holsclaw, Cynthia M; Schelle, Michael W; Botyanszki, Zsofia; Gilmore, Sarah A; Tully, Sarah E; Niederweis, Michael; Cravatt, Benjamin F; Leary, Julie A; Bertozzi, Carolyn R

    2012-03-09

    Mycobacterium tuberculosis possesses unique cell-surface lipids that have been implicated in virulence. One of the most abundant is sulfolipid-1 (SL-1), a tetraacyl-sulfotrehalose glycolipid. Although the early steps in SL-1 biosynthesis are known, the machinery underlying the final acylation reactions is not understood. We provide genetic and biochemical evidence for the activities of two proteins, Chp1 and Sap (corresponding to gene loci rv3822 and rv3821), that complete this pathway. The membrane-associated acyltransferase Chp1 accepts a synthetic diacyl sulfolipid and transfers an acyl group regioselectively from one donor substrate molecule to a second acceptor molecule in two successive reactions to yield a tetraacylated product. Chp1 is fully active in vitro, but in M. tuberculosis, its function is potentiated by the previously identified sulfolipid transporter MmpL8. We also show that the integral membrane protein Sap and MmpL8 are both essential for sulfolipid transport. Finally, the lipase inhibitor tetrahydrolipstatin disrupts Chp1 activity in M. tuberculosis, suggesting an avenue for perturbing SL-1 biosynthesis in vivo. These data complete the SL-1 biosynthetic pathway and corroborate a model in which lipid biosynthesis and transmembrane transport are coupled at the membrane-cytosol interface through the activity of multiple proteins, possibly as a macromolecular complex.

  18. LipidPedia: a comprehensive lipid knowledgebase.

    Science.gov (United States)

    Kuo, Tien-Chueh; Tseng, Yufeng Jane

    2018-04-10

    Lipids are divided into fatty acyls, glycerolipids, glycerophospholipids, sphingolipids, saccharolipids, sterols, prenol lipids and polyketides. Fatty acyls and glycerolipids are commonly used as energy storage, whereas glycerophospholipids, sphingolipids, sterols and saccharolipids are common used as components of cell membranes. Lipids in fatty acyls, glycerophospholipids, sphingolipids and sterols classes play important roles in signaling. Although more than 36 million lipids can be identified or computationally generated, no single lipid database provides comprehensive information on lipids. Furthermore, the complex systematic or common names of lipids make the discovery of related information challenging. Here, we present LipidPedia, a comprehensive lipid knowledgebase. The content of this database is derived from integrating annotation data with full-text mining of 3,923 lipids and more than 400,000 annotations of associated diseases, pathways, functions, and locations that are essential for interpreting lipid functions and mechanisms from over 1,400,000 scientific publications. Each lipid in LipidPedia also has its own entry containing a text summary curated from the most frequently cited diseases, pathways, genes, locations, functions, lipids and experimental models in the biomedical literature. LipidPedia aims to provide an overall synopsis of lipids to summarize lipid annotations and provide a detailed listing of references for understanding complex lipid functions and mechanisms. LipidPedia is available at http://lipidpedia.cmdm.tw. yjtseng@csie.ntu.edu.tw. Supplementary data are available at Bioinformatics online.

  19. Inhibition of inflammation and oxidative stress by an imidazopyridine derivative X22 prevents heart injury from obesity.

    Science.gov (United States)

    Qian, Yuanyuan; Zhang, Yali; Zhong, Peng; Peng, Kesong; Xu, Zheng; Chen, Xuemei; Lu, Kongqin; Chen, Gaozhi; Li, Xiaokun; Liang, Guang

    2016-08-01

    Inflammation and oxidative stress plays an important role in the development of obesity-related complications and cardiovascular disease. Benzimidazole and imidazopyridine compounds are a class of compounds with a variety of activities, including anti-inflammatory, antioxidant and anti-cancer. X22 is an imidazopyridine derivative we synthesized and evaluated previously for anti-inflammatory activity in lipopolysaccharide-stimulated macrophages. However, its ability to alleviate obesity-induced heart injury via its anti-inflammatory actions was unclear. This study was designed to evaluate the cardioprotective effects of X22 using cell culture studies and a high-fat diet rat model. We observed that palmitic acid treatment in cardiac-derived H9c2 cells induced a significant increase in reactive oxygen species, inflammation, apoptosis, fibrosis and hypertrophy. All of these changes were inhibited by treatment with X22. Furthermore, oral administration of X22 suppressed high-fat diet-induced oxidative stress, inflammation, apoptosis, hypertrophy and fibrosis in rat heart tissues and decreased serum lipid concentration. We also found that the anti-inflammatory and anti-oxidative actions of X22 were associated with Nrf2 activation and nuclear factor-kappaB (NF-κB) inhibition, respectively, both in vitro and in vivo. The results of this study indicate that X22 may be a promising cardioprotective agent and that Nrf2 and NF-κB may be important therapeutic targets for obesity-related complications. © 2016 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  20. Amyloid fibril formation of peptides derived from the C-terminus of CETP modulated by lipids

    Energy Technology Data Exchange (ETDEWEB)

    García-González, Victor [Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, 04510 México, DF (Mexico); Mas-Oliva, Jaime, E-mail: jmas@ifc.unam.mx [Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, 04510 México, DF (Mexico); División de Investigación, Facultad de Medicina, Universidad Nacional Autónoma de México, 04510 México, DF (Mexico)

    2013-04-26

    Highlights: •The secondary structure of a C-terminal peptide derived from CETP was studied. •Lipids modulate secondary structure changes of a C-terminal peptide derived from CETP. •Lysophosphatidic acid maintains a functional α-helix and prevents fibril formation. •Transfer of lipids by CETP is related to the presence of an α-helix at its C-end. -- Abstract: Cholesteryl-ester transfer protein (CETP) is a plasmatic protein involved in neutral lipid transfer between lipoproteins. Focusing on the last 12 C-terminus residues we have previously shown that mutation D{sub 470}N promotes a conformational change towards a β-secondary structure. In turn, this modification leads to the formation of oligomers and fibrillar structures, which cause cytotoxic effects similar to the ones provoked by amyloid peptides. In this study, we evaluated the role of specific lipid arrangements on the structure of peptide helix-Z (D{sub 470}N) through the use of thioflavin T fluorescence, peptide bond absorbance, circular dichroism and electron microscopy. The results indicate that the use of micelles formed with lysophosphatidylcholine and lysophosphatidic acid (LPA) under neutral pH induce a conformational transition of peptide helix-Z containing a β-sheet conformation to a native α-helix structure, therefore avoiding the formation of amyloid fibrils. In contrast, incubation with phosphatidic acid does not change the profile for the β-sheet conformation. When the electrostatic charge at the surface of micelles or vesicles is regulated through the use of lipids such as phospholipid and LPA, minimal changes and the presence of β-structures were recorded. Mixtures with a positive net charge diminished the percentage of β-structure and the amount of amyloid fibrils. Our results suggest that the degree of solvation determined by the presence of a free hydroxyl group on lipids such as LPA is a key condition that can modulate the secondary structure and the consequent formation of

  1. Amyloid fibril formation of peptides derived from the C-terminus of CETP modulated by lipids

    International Nuclear Information System (INIS)

    García-González, Victor; Mas-Oliva, Jaime

    2013-01-01

    Highlights: •The secondary structure of a C-terminal peptide derived from CETP was studied. •Lipids modulate secondary structure changes of a C-terminal peptide derived from CETP. •Lysophosphatidic acid maintains a functional α-helix and prevents fibril formation. •Transfer of lipids by CETP is related to the presence of an α-helix at its C-end. -- Abstract: Cholesteryl-ester transfer protein (CETP) is a plasmatic protein involved in neutral lipid transfer between lipoproteins. Focusing on the last 12 C-terminus residues we have previously shown that mutation D 470 N promotes a conformational change towards a β-secondary structure. In turn, this modification leads to the formation of oligomers and fibrillar structures, which cause cytotoxic effects similar to the ones provoked by amyloid peptides. In this study, we evaluated the role of specific lipid arrangements on the structure of peptide helix-Z (D 470 N) through the use of thioflavin T fluorescence, peptide bond absorbance, circular dichroism and electron microscopy. The results indicate that the use of micelles formed with lysophosphatidylcholine and lysophosphatidic acid (LPA) under neutral pH induce a conformational transition of peptide helix-Z containing a β-sheet conformation to a native α-helix structure, therefore avoiding the formation of amyloid fibrils. In contrast, incubation with phosphatidic acid does not change the profile for the β-sheet conformation. When the electrostatic charge at the surface of micelles or vesicles is regulated through the use of lipids such as phospholipid and LPA, minimal changes and the presence of β-structures were recorded. Mixtures with a positive net charge diminished the percentage of β-structure and the amount of amyloid fibrils. Our results suggest that the degree of solvation determined by the presence of a free hydroxyl group on lipids such as LPA is a key condition that can modulate the secondary structure and the consequent formation of amyloid

  2. Comparison of antigen-specific T-cell responses of tuberculosis patients using complex or single antigens of Mycobacterium tuberculosis

    DEFF Research Database (Denmark)

    Mustafa, A S; Amoudy, H A; Wiker, H G

    1998-01-01

    We have screened peripheral blood mononuclear cells (PBMC) from tuberculosis (TB) patients for proliferative reactivity and interferon-gamma (IFN-gamma) secretion against a panel of purified recombinant (r) and natural (n) culture filtrate (rESAT-6, nMPT59, nMPT64 and nMPB70) and somatic-derived (r......GroES, rPstS, rGroEL and rDnaK) antigens of Mycobacterium tuberculosis. The responses of PBMC to these defined antigens were compared with the corresponding results obtained with complex antigens, such as whole-cell M. tuberculosis, M. tuberculosis culture filtrate (MT-CF) and cell wall antigens, as well...... as the vaccine strain, Mycobacterium bovis bacillus Calmette-Guerin (BCG). In addition, M. tuberculosis and MT-CF-induced T-cell lines were tested in the same assays against the panel of purified and complex antigens. The compiled data from PBMC and T-cell lines tested for antigen-induced proliferation and IFN...

  3. Chitosan derivatives targeting lipid bilayers: Synthesis, biological activity and interaction with model membranes.

    Science.gov (United States)

    Martins, Danubia Batista; Nasário, Fábio Domingues; Silva-Gonçalves, Laiz Costa; de Oliveira Tiera, Vera Aparecida; Arcisio-Miranda, Manoel; Tiera, Marcio José; Dos Santos Cabrera, Marcia Perez

    2018-02-01

    The antimicrobial activity of chitosan and derivatives to human and plant pathogens represents a high-valued prospective market. Presently, two low molecular weight derivatives, endowed with hydrophobic and cationic character at different ratios were synthesized and characterized. They exhibit antimicrobial activity and increased performance in relation to the intermediate and starting compounds. However, just the derivative with higher cationic character showed cytotoxicity towards human cervical carcinoma cells. Considering cell membranes as targets, the mode of action was investigated through the interaction with model lipid vesicles mimicking bacterial, tumoral and erythrocyte membranes. Intense lytic activity and binding are demonstrated for both derivatives in anionic bilayers. The less charged compound exhibits slightly improved selectivity towards bacterial model membranes, suggesting that balancing its hydrophobic/hydrophilic character may improve efficiency. Observing the aggregation of vesicles, we hypothesize that the "charge cluster mechanism", ascribed to some antimicrobial peptides, could be applied to these chitosan derivatives. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Inclusion of the helper lipid dioleoyl-phosphatidylethanolamine in solid lipid nanoparticles inhibits their transfection efficiency

    NARCIS (Netherlands)

    de Jesus, Marcelo B.; Radaic, Allan; Hinrichs, Wouter L J; Ferreira, Carmen V; de Paula, Eneida; Hoekstra, Dirk; Zuhorn, Inge S

    Solid lipid nanoparticles (SLNs) are a promising system for the delivery of lipophilic and hydrophilic drugs. They consist of a solid lipid core that is stabilized by a layer of surfactants. By the incorporation of cationic lipids in the formulation, positively charged SLNs can be generated, that

  5. Aspirin Inhibits Platelet-Derived Sphingosine-1-Phosphate Induced Endothelial Cell Migration.

    Science.gov (United States)

    Polzin, Amin; Knoop, Betül; Böhm, Andreas; Dannenberg, Lisa; Zurek, Mark; Zeus, Tobias; Kelm, Malte; Levkau, Bodo; Rauch, Bernhard H

    2018-01-01

    Aspirin plays a crucial role in the prevention of cardiovascular diseases. We previously described that aspirin has effects beyond inhibition of platelet aggregation, as it inhibited thrombin-mediated release of sphingosine-1-phosphate (S1P) from human platelets. S1P is a bioactive lipid with important functions on inflammation and apoptosis. In endothelial cells (EC), S1P is a key regulator of cell migration. In this study, we aimed to analyze the effects of aspirin on platelet-induced EC migration. Human umbilical EC migration was measured by Boyden chamber assay. EC migration was induced by platelet supernatants of thrombin receptor-activating peptide-1 (AP1) stimulated platelets. To investigate the S1P receptor subtype that promotes EC migration, specific inhibitors of S1P receptor subtypes were applied. S1P induced EC migration in a concentration-dependent manner. EC migration induced by AP1-stimulated platelet supernatants was reduced by aspirin. S1P1 receptor inhibition almost completely abolished EC migration induced by activated platelets. The inhibition of S1P2 or S1P3 receptor had no effect. Aspirin inhibits EC migration induced by activated platelets that is in part due to S1P and mediated by the endothelial S1P1 receptor. The clinical significance of this novel mechanism of aspirin action has to be investigated in future studies. © 2017 S. Karger AG, Basel.

  6. Antioxidant activities of ginger extract and its constituents toward lipids.

    Science.gov (United States)

    Si, Wenhui; Chen, Yan Ping; Zhang, Jianhao; Chen, Zhen-Yu; Chung, Hau Yin

    2018-01-15

    Lipid oxidation-a major cause of food product deterioration-necessitates the use of food additives to inhibit food oxidation. Ginger extract (GE) has been reported to possess antioxidant properties. However, components isolated from ginger have been rarely reported to inhibit fat oxidation. Herein, antioxidant properties of GE and four pure components derived from it (6-gingerol, 8-gingerol, 10-gingerol, and 6-shogaol) were examined and their properties were compared to those of butylated hydroxytoluene. GE and the constituent components exhibited antioxidant properties that might be attributed to their hydroxyl groups and suitable solubilizing side chains. 6-Shogaol and 10-gingerol exhibited higher activity at 60°C than 6-gingerol and 8-gingerol. Low antioxidant activity was detected at high temperatures (120/180°C). Overall, GE displayed the strongest dose-dependent antioxidant properties, especially at high temperatures, thereby demonstrating that GE can be employed as a natural antioxidant in lipid-containing processed foods. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Synthesis of deuterium-labeled analogs of the lipid hydroperoxide-derived bifunctional electrophile 4-oxo-2(E)-nonenal

    OpenAIRE

    Arora, Jasbir S.; Oe, Tomoyuki; Blair, Ian A.

    2011-01-01

    Lipid hydroperoxides undergo homolytic decomposition into the bifunctional 4-hydroxy-2(E)-nonenal and 4-oxo-2(E)-nonenal (ONE). These bifunctional electrophiles are highly reactive and can readily modify intracellular molecules including glutathione (GSH), deoxyribonucleic acid (DNA) and proteins. Lipid hydroperoxide-derived bifunctional electrophiles are thought to contribute to the pathogenesis of a number of diseases. ONE is an α,β-unsaturated aldehyde that can react in multiple ways and w...

  8. Phylogenetic detection of horizontal gene transfer during the step-wise genesis of Mycobacterium tuberculosis

    Directory of Open Access Journals (Sweden)

    Turenne Christine

    2009-08-01

    Full Text Available Abstract Background In the past decade, the availability of complete genome sequence data has greatly facilitated comparative genomic research aimed at addressing genetic variability within species. More recently, analysis across species has become feasible, especially in genera where genome sequencing projects of multiple species have been initiated. To understand the genesis of the pathogen Mycobacterium tuberculosis within a genus where the majority of species are harmless environmental organisms, we have used genome sequence data from 16 mycobacteria to look for evidence of horizontal gene transfer (HGT associated with the emergence of pathogenesis. First, using multi-locus sequence analysis (MLSA of 20 housekeeping genes across these species, we derived a phylogeny that serves as the basis for HGT assignments. Next, we performed alignment searches for the 3989 proteins of M. tuberculosis H37Rv against 15 other mycobacterial genomes, generating a matrix of 59835 comparisons, to look for genetic elements that were uniquely found in M. tuberculosis and closely-related pathogenic mycobacteria. To assign when foreign genes were likely acquired, we designed a bioinformatic program called mycoHIT (mycobacterial homologue investigation tool to analyze these data in conjunction with the MLSA-based phylogeny. Results The bioinformatic screen predicted that 137 genes had been acquired by HGT at different phylogenetic strata; these included genes coding for metabolic functions and modification of mycobacterial lipids. For the majority of these genes, corroborating evidence of HGT was obtained, such as presence of phage or plasmid, and an aberrant GC%. Conclusion M. tuberculosis emerged through vertical inheritance along with the step-wise addition of genes acquired via HGT events, a process that may more generally describe the evolution of other pathogens.

  9. Anthocyanins and phenolic acids from a wild blueberry (Vaccinium angustifolium) powder counteract lipid accumulation in THP-1-derived macrophages

    DEFF Research Database (Denmark)

    Del Bo', Cristian; Cao, Yi; Roursgaard, Martin

    2016-01-01

    PURPOSE: Blueberries are a rich source of anthocyanins (ACNs) and phenolic acids (PA), which are hypothesized to protect against development of atherosclerosis. The present study examined the effect of an ACN- and PA-rich fractions, obtained from a wild blueberry powder, on the capacity...... to counteract lipid accumulation in macrophages derived from monocytic THP-1 cells. In addition, we tested the capacity of pure ACNs and their metabolites to alter lipid accumulation. METHODS: THP-1-derived macrophages were incubated with fatty acids (500 μM oleic/palmitic acid, 2:1 ratio) and different...... concentrations (from 0.05 to 10 μg mL(-1)) of ACN- and PA-rich fractions, pure ACN standards (malvidin, delphinidin and cyanidin 3-glucoside), and metabolites (syringic, gallic and protocatechuic acids). Lipid accumulation was quantified with the fluorescent dye Nile red. RESULTS: Lipid accumulation was reduced...

  10. Semisynthetic Lipopeptides Derived from Nisin Display Antibacterial Activity and Lipid II Binding on Par with That of the Parent Compound

    NARCIS (Netherlands)

    Koopmans, Timo; Wood, Thomas M.; 't Hart, Peter; Kleijn, Laurens H. J.; Hendrickx, Antoni P. A.; Willems, Rob J. L.; Breukink, Eefjan; Martin, Nathaniel I.

    2015-01-01

    The lipid II-binding N-terminus of nisin, comprising the so-called A/B ring system, was synthetically modified to provide antibacterially active and proteolytically stable derivatives. A variety of lipids were coupled to the C-terminus of the nisin A/B ring system to generate semisynthetic

  11. Validation of a homology model of Mycobacterium tuberculosis DXS: rationalization of observed activities of thiamine derivatives as potent inhibitors of two orthologues of DXS.

    Science.gov (United States)

    Masini, T; Lacy, B; Monjas, L; Hawksley, D; de Voogd, A R; Illarionov, B; Iqbal, A; Leeper, F J; Fischer, M; Kontoyianni, M; Hirsch, A K H

    2015-12-14

    The enzyme DXS catalyzes the first, rate-limiting step of the 2-C-methyl-d-erythritol-4-phosphate (MEP, 1) pathway using thiamine diphosphate (ThDP) as cofactor; the DXS-catalyzed reaction constitutes also the first step in vitamin B1 and B6 metabolism in bacteria. DXS is the least studied among the enzymes of this pathway in terms of crystallographic information, with only one complete crystal structure deposited in the Protein Data Bank (Deinococcus radiodurans DXS, PDB: ). We synthesized a series of thiamine and ThDP derivatives and tested them for their biochemical activity against two DXS orthologues, namely D. radiodurans DXS and Mycobacterium tuberculosis DXS. These experimental results, combined with advanced docking studies, led to the development and validation of a homology model of M. tuberculosis DXS, which, in turn, will guide medicinal chemists in rationally designing potential inhibitors for M. tuberculosis DXS.

  12. MicroRNA-223 Is Upregulated in Active Tuberculosis Patients and Inhibits Apoptosis of Macrophages by Targeting FOXO3.

    Science.gov (United States)

    Xi, Xiue; Zhang, Chunxiao; Han, Wei; Zhao, Huayang; Zhang, Huiqiang; Jiao, Junhua

    2015-12-01

    Macrophage apoptosis is a host innate defense mechanism against tuberculosis (TB). In this study, we aimed to investigate the role of microRNA-223 (miR-223) in macrophage apoptosis of TB. We analyzed apoptosis in peripheral blood macrophages of active TB patients, infected human macrophages (TDMs and MDMs) with the Mycobacterium tuberculosis (Mtb) strain H37Rv, and observed the expression of miR-223 to investigate the relationship between miR-223 and macrophage apoptosis induced by Mtb. The apoptosis rate of peripheral blood macrophages decreased in active TB patients compared with healthy controls, and miR-223 expression increased significantly in macrophages after H37Rv infection. Transfection of human macrophages (TDMs and MDMs) with miR-223 inhibited macrophage apoptosis. We also demonstrated that miR-223 directly suppressed forkhead box O3 (FOXO3), and FOXO3 played a critical role as a mediator of the biological effects of miR-223 in macrophage apoptosis. The overexpression of FOXO3 remarkably reversed the apoptosis inhibitory effect of miR-223. Our data provide new clues for the essential role of miR-223 in the regulation of anti-Mtb-directed immune responses, which relies on the regulation of FOXO3 expression.

  13. MicroRNA-125a Inhibits Autophagy Activation and Antimicrobial Responses during Mycobacterial Infection.

    Science.gov (United States)

    Kim, Jin Kyung; Yuk, Jae-Min; Kim, Soo Yeon; Kim, Tae Sung; Jin, Hyo Sun; Yang, Chul-Su; Jo, Eun-Kyeong

    2015-06-01

    MicroRNAs (miRNAs) are small noncoding nucleotides that play critical roles in the regulation of diverse biological functions, including the response of host immune cells. Autophagy plays a key role in activating the antimicrobial host defense against Mycobacterium tuberculosis. Although the pathways associated with autophagy must be tightly regulated at a posttranscriptional level, the contribution of miRNAs and whether they specifically influence the activation of macrophage autophagy during M. tuberculosis infection are largely unknown. In this study, we demonstrate that M. tuberculosis infection of macrophages leads to increased expression of miRNA-125a-3p (miR-125a), which targets UV radiation resistance-associated gene (UVRAG), to inhibit autophagy activation and antimicrobial responses to M. tuberculosis. Forced expression of miR-125a significantly blocked M. tuberculosis-induced activation of autophagy and phagosomal maturation in macrophages, and inhibitors of miR-125a counteracted these effects. Both TLR2 and MyD88 were required for biogenesis of miR-125a during M. tuberculosis infection. Notably, activation of the AMP-activated protein kinase significantly inhibited the expression of miR-125a in M. tuberculosis-infected macrophages. Moreover, either overexpression of miR-125a or silencing of UVRAG significantly attenuated the antimicrobial effects of macrophages against M. tuberculosis. Taken together, these data indicate that miR-125a regulates the innate host defense by inhibiting the activation of autophagy and antimicrobial effects against M. tuberculosis through targeting UVRAG. Copyright © 2015 by The American Association of Immunologists, Inc.

  14. MiR-155 is upregulated in patients with active tuberculosis and inhibits apoptosis of monocytes by targeting FOXO3.

    Science.gov (United States)

    Huang, Jian; Jiao, Junhua; Xu, Weihua; Zhao, Huayang; Zhang, Chunxiao; Shi, Yan; Xiao, Zhijian

    2015-11-01

    The aim of the present study was to investigate the association between microRNA (miR)-155 and apoptosis of monocytes infected by Mycobacterium tuberculosis, to examine the effect of forkhead box O3 (FOXO3) on miR‑155. The present study analysed the apoptosis of CD14+ in the peripheral blood of patients with active tuberculosis, disposed the THP‑1 human monocytic cell line by BCG and examined the expression of miR‑155. Furthermore, the expression of FOXO3 in THP‑1 cells was determined, and wild- and mutant-type luciferase reporter plasmids containing FOXO3 3'‑untranslated regions (UTRs) were constructed to analyse the expression of luciferase. Finally, an over‑expression plasmid was constructed, and THP-1 cells were transfected with control miRNA, miR‑155 and the plasmid, which revealed that miR‑155 inhibited the apoptosis of THP‑1 cells. miR‑155 in the THP‑1 cells infected by BCG was upregulated and apoptosis also increased. However, the apoptosis declined when the cells were transfected with the control miRNA and miR‑155. Folllowing transfection with miR‑155, the expression of FOXO3 decreased. Transfection with miR‑155 and the FOXO3 3'-UTRs significantly reduced luciferase, and overexpression of FOXO3 reversed the inhibitory role of miR‑155. From these results, it was concluded that mycobacteria can improve the level of miR‑155, while BCG can induce apoptosis in THP‑1 cells. The results suggested FOXO3 is a downstream target gene of miR‑155, which combines 3'-UTRs to inhibit the expression of FOXO3.

  15. Inhibition of lipid peroxidation induced by γ- radiation and AAPH in rat liver and brain mitochondria by mushrooms

    International Nuclear Information System (INIS)

    Lakshmi, B.; Janardhanan, K.K.; Tilak, J.C.; Devasagayam, T.P.A.; Adhikari, S.

    2005-01-01

    Exposure to radiation or 2.2' Azobis(2-amidopropane) dihydrochloride (AAPH) induces generation of reactive oxygen species (ROS) especially hydroxyl radical ( . OH) and peroxyl radical (ROO . ), which are capable of inducing lipid peroxidation. Our earlier studies have demonstrated that extracts of the medicinal and edible mushrooms Ganoderma lucidum, Pleurotus florida, Pleurotus sajor-caju and Phellinus rimosus possessed significant antioxidant activity, measured as radical scavenging. In the present study, we examined the protective effect of these mushroom extracts against radiation- and AAPH-induced lipid peroxidation using rat liver and brain mitochondria as model systems. The results obtained showed that the investigated mushroom extracts significantly inhibited the formation of lipid hydroperoxide and thiobarbituric acid reactive substances, indicating membrane protective effects. The finding suggests the profound protective effect of the extracts of the fruiting bodies of G. lucidum, P. florida, P. sajor-caju and P. rimosus against lipid peroxidation by two major forms of ROS capable of inducing this type of damage in a major organelle, the mitochondria from both rat liver and brain. This observation can possibly explain the health benefits of these mushrooms. (author)

  16. Pathogenic mycobacteria achieve cellular persistence by inhibiting the Niemann-Pick Type C disease cellular pathway [version 1; referees: 2 approved, 1 approved with reservations

    Directory of Open Access Journals (Sweden)

    Paul Fineran

    2016-11-01

    Full Text Available Background. Tuberculosis remains a major global health concern. The ability to prevent phagosome-lysosome fusion is a key mechanism by which intracellular mycobacteria, including Mycobacterium tuberculosis, achieve long-term persistence within host cells. The mechanisms underpinning this key intracellular pro-survival strategy remain incompletely understood. Host macrophages infected with persistent mycobacteria share phenotypic similarities with cells taken from patients suffering from Niemann-Pick Disease Type C (NPC, a rare lysosomal storage disease in which endocytic trafficking defects and lipid accumulation within the lysosome lead to cell dysfunction and cell death. We investigated whether these shared phenotypes reflected an underlying mechanistic connection between mycobacterial intracellular persistence and the host cell pathway dysfunctional in NPC. Methods. The induction of NPC phenotypes in macrophages from wild-type mice or obtained from healthy human donors was assessed via infection with mycobacteria and subsequent measurement of lipid levels and intracellular calcium homeostasis. The effect of NPC therapeutics on intracellular mycobacterial load was also assessed. Results. Macrophages infected with persistent intracellular mycobacteria phenocopied NPC cells, exhibiting accumulation of multiple lipid types, reduced lysosomal Ca2+ levels, and defects in intracellular trafficking. These NPC phenotypes could also be induced using only lipids/glycomycolates from the mycobacterial cell wall. These data suggest that persistent intracellular mycobacteria inhibit the NPC pathway, likely via inhibition of the NPC1 protein, and subsequently induce altered acidic store Ca2+ homeostasis. Reduced lysosomal calcium levels may provide a mechanistic explanation for the reduced levels of phagosome-lysosome fusion in mycobacterial infection. Treatments capable of correcting defects in NPC mutant cells via modulation of host cell calcium were

  17. Pathogenic mycobacteria achieve cellular persistence by inhibiting the Niemann-Pick Type C disease cellular pathway [version 2; referees: 2 approved, 2 approved with reservations

    Directory of Open Access Journals (Sweden)

    Paul Fineran

    2017-06-01

    Full Text Available Background. Tuberculosis remains a major global health concern. The ability to prevent phagosome-lysosome fusion is a key mechanism by which intracellular mycobacteria, including Mycobacterium tuberculosis, achieve long-term persistence within host cells. The mechanisms underpinning this key intracellular pro-survival strategy remain incompletely understood. Host macrophages infected with intracellular mycobacteria share phenotypic similarities with cells taken from patients suffering from Niemann-Pick Disease Type C (NPC, a rare lysosomal storage disease in which endocytic trafficking defects and lipid accumulation within the lysosome lead to cell dysfunction and cell death. We investigated whether these shared phenotypes reflected an underlying mechanistic connection between mycobacterial intracellular persistence and the host cell pathway dysfunctional in NPC.  Methods. The induction of NPC phenotypes in macrophages from wild-type mice or obtained from healthy human donors was assessed via infection with mycobacteria and subsequent measurement of lipid levels and intracellular calcium homeostasis. The effect of NPC therapeutics on intracellular mycobacterial load was also assessed.  Results. Macrophages infected with intracellular mycobacteria phenocopied NPC cells, exhibiting accumulation of multiple lipid types, reduced lysosomal Ca 2+ levels, and defects in intracellular trafficking. These NPC phenotypes could also be induced using only lipids/glycomycolates from the mycobacterial cell wall. These data suggest that intracellular mycobacteria inhibit the NPC pathway, likely via inhibition of the NPC1 protein, and subsequently induce altered acidic store Ca 2+ homeostasis. Reduced lysosomal calcium levels may provide a mechanistic explanation for the reduced levels of phagosome-lysosome fusion in mycobacterial infection. Treatments capable of correcting defects in NPC mutant cells via modulation of host cell calcium were of benefit in

  18. Emerging roles of eosinophils and eosinophil-derived lipid mediators in the resolution of inflammation

    Directory of Open Access Journals (Sweden)

    Yosuke eIsobe

    2012-08-01

    Full Text Available Acute inflammation and its resolution are essential processes for tissue protection and homeostasis. Once thought to be a passive process, the resolution of inflammation is now shown to involve active biochemical programs that enable inflamed tissues to return to homeostasis. The mechanisms by which acute inflammation is resolved are of interest, and research in recent years has uncovered new endogenous anti-inflammatory and pro-resolving lipid mediators (i.e. lipoxins, resolvins, protectin, and maresin generated from polyunsaturated fatty acids (PUFAs. This review presents new insights into the cellular and molecular mechanisms of inflammatory resolution, especially the roles of eosinophils, and a series of omega-3 PUFA derived anti-inflammatory lipid mediators that they generate.

  19. Water extractable phytochemicals from Capsicum pubescens (tree pepper) inhibit lipid peroxidation induced by different pro-oxidant agents in brain

    Energy Technology Data Exchange (ETDEWEB)

    Oboh, G [Biochemistry Department, Federal University of Technology, Akure, Ondo State (Nigeria); [Departamento de Quimica, Universidade Federal de Santa Maria (UFSM), Campus Universitario - Camobi, Santa Maria RS (Brazil); [Abdus Salam International Centre for Theoretical Physics, Trieste (Italy)]. E-mail: goboh2001@yahoo.com; Rocha, J B.T. [Campus Universitario - Camobi, Santa Maria RS (Brazil)

    2006-03-15

    Reactive oxygen species (ROS) is the cause of neurodegenerative disorders such as Lou Gehrig's disease, Parkinson's disease and Huntington's disease; one practical way to prevent and manage neurodegenerative diseases is through the eating of food rich in antioxidants (dietary means). In this study, the antioxidant and neuroprotective properties of aqueous extract of ripe and unripe Capsicum pubescens (popularly known as tree pepper) on different pro-oxidant induced lipid peroxidation in Rat's brain (in vitro) is been investigated. Aqueous extract of freshly harvested pepper was prepared, and the total phenol content, vitamin C, ferric reducing antioxidant property (FRAP) and Fe (II) chelating ability was determined. In addition, the ability of the extracts to protect the Rat's brain against some pro-oxidant FeSO{sub 4}, Sodium nitroprusside and Quinolinic acid - induced oxidative stress was also determined. The results of the study revealed that ripe Capsicum pubescens had a significantly higher (P<0.05) total phenol [ripe (113.7mg/100g), unripe (70.5mg/100g)] content and ferric reducing antioxidant property than the unripe pepper. However, there was no significant difference in the vitamin C [ripe (231.5{mu}g/g), unripe (224.4{mu}g/g)] content and Fe (II) chelating ability. Furthermore, the pepper extracts caused a significant decrease (P<0.05) in 25{mu}M Fe(II), 7{mu}M Sodium Nitroprusside and 1mM Quinolinic acid induced lipid peroxidation in the Rat's brain in a dose-dependent manner. However, the ripe pepper inhibited MDA (Malondialdehyhide) production in the Rat's brain than the unripe pepper. Conversely, both extract did not significantly inhibit Fe (II)/H{sub 2}O{sub 2} induced decomposition of deoxyribose. Therefore, ripe and unripe Capsicum pubescens would inhibit lipid peroxidation in vitro. However, the ripe potent was a more potent inhibitor of lipid peroxidation, which is probably due to its higher vitamin C and phenol content, reducing power and Fe

  20. Benfotiamine, a synthetic S-acyl thiamine derivative, has different mechanisms of action and a different pharmacological profile than lipid-soluble thiamine disulfide derivatives.

    Science.gov (United States)

    Volvert, Marie-Laure; Seyen, Sandrine; Piette, Marie; Evrard, Brigitte; Gangolf, Marjorie; Plumier, Jean-Christophe; Bettendorff, Lucien

    2008-06-12

    Lipid-soluble thiamine precursors have a much higher bioavailability than genuine thiamine and therefore are more suitable for therapeutic purposes. Benfotiamine (S-benzoylthiamine O-monophosphate), an amphiphilic S-acyl thiamine derivative, prevents the progression of diabetic complications, probably by increasing tissue levels of thiamine diphosphate and so enhancing transketolase activity. As the brain is particularly sensitive to thiamine deficiency, we wanted to test whether intracellular thiamine and thiamine phosphate levels are increased in the brain after oral benfotiamine administration. Benfotiamine that is practically insoluble in water, organic solvents or oil was solubilized in 200 mM hydroxypropyl-beta-cyclodextrin and the mice received a single oral administration of 100 mg/kg. Though thiamine levels rapidly increased in blood and liver to reach a maximum after one or two hours, no significant increase was observed in the brain. When mice received a daily oral administration of benfotiamine for 14 days, thiamine derivatives were increased significantly in the liver but not in the brain, compared to control mice. In addition, incubation of cultured neuroblastoma cells with 10 muM benfotiamine did not lead to increased intracellular thiamine levels. Moreover, in thiamine-depleted neuroblastoma cells, intracellular thiamine contents increased more rapidly after addition of thiamine to the culture medium than after addition of benfotiamine for which a lag period was observed. Our results show that, though benfotiamine strongly increases thiamine levels in blood and liver, it has no significant effect in the brain. This would explain why beneficial effects of benfotiamine have only been observed in peripheral tissues, while sulbutiamine, a lipid-soluble thiamine disulfide derivative, that increases thiamine derivatives in the brain as well as in cultured cells, acts as a central nervous system drug. We propose that benfotiamine only penetrates the cells

  1. Mechanish of dTTP Inhibition of the Bifunctional dCTP Deaminase:dUTPase Encoded by Mycobacterium tuberculosis

    DEFF Research Database (Denmark)

    Helt, Signe Smedegaard; Thymark, Majbritt; Harris, Pernille

    2008-01-01

    Recombinant deoxycytidine triphosphate (dCTP) deaminase from Mycobacterium tuberculosis was produced in Escherichia coli and purified. The enzyme proved to be a bifunctional dCTP deaminase:deoxyuridine triphosphatase. As such, the M. tuberculosis enzyme is the second bifunctional enzyme to be cha......Recombinant deoxycytidine triphosphate (dCTP) deaminase from Mycobacterium tuberculosis was produced in Escherichia coli and purified. The enzyme proved to be a bifunctional dCTP deaminase:deoxyuridine triphosphatase. As such, the M. tuberculosis enzyme is the second bifunctional enzyme...

  2. Understanding Rifampicin Resistance in Tuberculosis through a Computational Approach

    Directory of Open Access Journals (Sweden)

    Satish Kumar

    2014-12-01

    Full Text Available The disease tuberculosis, caused by Mycobacterium tuberculosis (MTB, remains a major cause of morbidity and mortality in developing countries. The evolution of drug-resistant tuberculosis causes a foremost threat to global health. Most drug-resistant MTB clinical strains are showing resistance to isoniazid and rifampicin (RIF, the frontline anti-tuberculosis drugs. Mutation in rpoB, the beta subunit of DNA-directed RNA polymerase of MTB, is reported to be a major cause of RIF resistance. Amongst mutations in the well-defined 81-base-pair central region of the rpoB gene, mutation at codon 450 (S450L and 445 (H445Y is mainly associated with RIF resistance. In this study, we modeled two resistant mutants of rpoB (S450L and H445Y using Modeller9v10 and performed a docking analysis with RIF using AutoDock4.2 and compared the docking results of these mutants with the wild-type rpoB. The docking results revealed that RIF more effectively inhibited the wild-type rpoB with low binding energy than rpoB mutants. The rpoB mutants interacted with RIF with positive binding energy, revealing the incapableness of RIF inhibition and thus showing resistance. Subsequently, this was verified by molecular dynamics simulations. This in silico evidence may help us understand RIF resistance in rpoB mutant strains.

  3. Role of pigment epithelium-derived factor in the involution of hemangioma: Autocrine growth inhibition of hemangioma-derived endothelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kyung-Jin [Department of Pharmacology, College of Medicine, Seoul National University, Seoul 110-799 (Korea, Republic of); Department of Biomedical Science, College of Medicine, Seoul National University, Seoul 110-799 (Korea, Republic of); Yun, Jang-Hyuk; Heo, Jong-Ik [Department of Pharmacology, College of Medicine, Seoul National University, Seoul 110-799 (Korea, Republic of); Lee, Eun Hui [Department of Physiology, College of Medicine, The Catholic University of Korea, Seoul 137-701 (Korea, Republic of); Min, Hye Sook [Department of Pathology, Seoul National University Hospital, Seoul 110-744 (Korea, Republic of); Choi, Tae Hyun, E-mail: psthchoi@snu.ac.kr [Department of Plastic and Reconstructive Surgery, Seoul National University Children’s Hospital, Seoul 110-744 (Korea, Republic of); Department of Pediatric Plastic and Reconstructive Surgery, Seoul National University Children’s Hospital, Seoul 110-744 (Korea, Republic of); Cho, Chung-Hyun, E-mail: iamhyun@snu.ac.kr [Department of Pharmacology, College of Medicine, Seoul National University, Seoul 110-799 (Korea, Republic of); Department of Biomedical Science, College of Medicine, Seoul National University, Seoul 110-799 (Korea, Republic of); Ischemic/Hypoxic Disease Institute, College of Medicine, Seoul National University, Seoul 110-799 (Korea, Republic of); Cancer Research Institute, College of Medicine, Seoul National University, Seoul 110-799 (Korea, Republic of)

    2014-11-14

    Highlights: • PEDF was expressed and induced during the involuting phase of IH. • PEDF inhibited the cell growth of the involuting HemECs in an autocrine manner. • PEDF suppression restored the impaired cell growth of the involuting HemECs. - Abstract: Hemangioma is a benign tumor derived from abnormal blood vessel growth. Unlike other vascular tumor counterparts, a hemangioma is known to proliferate during its early stage but it is followed by a stage of involution where regression of the tumor occurs. The critical onset leading to the involution of hemangioma is currently not well understood. This study focused on the molecular identities of the involution of hemangioma. We demonstrated that a soluble factor released from the involuting phase of hemangioma-derived endothelial cells (HemECs) and identified pigment epithelium-derived factor (PEDF) as an anti-angiogenic factor that was associated with the growth inhibition of the involuting HemECs. The growth inhibition of the involuting HemECs was reversed by suppression of PEDF in the involuting HemECs. Furthermore, we found that PEDF was more up-regulated in the involuting phase of hemangioma tissues than in the proliferating or the involuted. Taken together, we propose that PEDF accelerates the involution of hemangioma by growth inhibition of HemECs in an autocrine manner. The regulatory mechanism of PEDF expression could be a potential therapeutic target to treat hemangiomas.

  4. Lipid droplets, perilipins and cytokeratins--unravelled liaisons in epithelium-derived cells.

    Directory of Open Access Journals (Sweden)

    Hans Heid

    Full Text Available Lipid droplets (LDs are spherical accumulations of apolar lipids and other hydrophobic substances and are generally surrounded by a thin cortical layer of specific amphiphilic proteins (APs. These APs segregate the LDs from the mostly polar components of the cytoplasm. We have studied LDs in epithelium-derived cell cultures and in particular characterized proteins from the perilipin (PLIN gene family - in mammals consisting of the proteins Perilipin, Adipophilin, TIP47, S3-12 and MLDP/OXPAT (PLIN 1-5. Using a large number of newly generated and highly specific mono- and polyclonal antibodies specific for individual APs, and using improved LD isolation methods, we have enriched and characterized APs in greater detail and purity. The majority of lipid-AP complexes could be obtained in the top layer fractions of density gradient centrifugation separations of cultured cells, but APs could also be detected in other fractions within such separations. The differently sized LD complexes were analyzed using various biochemical methods and mass spectrometry as well as immunofluorescence and electron- in particular immunoelectron-microscopy. Moreover, by immunoprecipitation, protein-protein binding assays and by immunoelectron microscopy we identified a direct linkage between LD-binding proteins and the intermediate-sized filaments (IF cytokeratins 8 and 18 (also designated as keratins K8 and K18. Specifically, in gradient fractions of higher density supposedly containing small LDs, we received as co-precipitations cytidylyl-, palmitoyl- and cholesterol transferases and other specific enzymes involved in lipid metabolism. So far, common proteomic studies have used LDs from top layer fractions only and did not report on these transferases and other enzymes. In addition to findings of short alternating hydrophobic/hydrophilic segments within the PLIN protein family, we propose and discuss a model for the interaction of LD-coating APs with IF proteins.

  5. Differential effects of Mycobacterium bovis - derived polar and apolar lipid fractions on bovine innate immune cells

    Directory of Open Access Journals (Sweden)

    Pirson Chris

    2012-06-01

    Full Text Available Abstract Mycobacterial lipids have long been known to modulate the function of a variety of cells of the innate immune system. Here, we report the extraction and characterisation of polar and apolar free lipids from Mycobacterium bovis AF 2122/97 and identify the major lipids present in these fractions. Lipids found included trehalose dimycolate (TDM and trehalose monomycolate (TMM, the apolar phthiocerol dimycocersates (PDIMs, triacyl glycerol (TAG, pentacyl trehalose (PAT, phenolic glycolipid (PGL, and mono-mycolyl glycerol (MMG. Polar lipids identified included glucose monomycolate (GMM, diphosphatidyl glycerol (DPG, phenylethanolamine (PE and a range of mono- and di-acylated phosphatidyl inositol mannosides (PIMs. These lipid fractions are capable of altering the cytokine profile produced by fresh and cultured bovine monocytes as well as monocyte derived dendritic cells. Significant increases in the production of IL-10, IL-12, MIP-1β, TNFα and IL-6 were seen after exposure of antigen presenting cells to the polar lipid fraction. Phenotypic characterisation of the cells was performed by flow cytometry and significant decreases in the expression of MHCII, CD86 and CD1b were found after exposure to the polar lipid fraction. Polar lipids also significantly increased the levels of CD40 expressed by monocytes and cultured monocytes but no effect was seen on the constitutively high expression of CD40 on MDDC or on the levels of CD80 expressed by any of the cells. Finally, the capacity of polar fraction treated cells to stimulate alloreactive lymphocytes was assessed. Significant reduction in proliferative activity was seen after stimulation of PBMC by polar fraction treated cultured monocytes whilst no effect was seen after lipid treatment of MDDC. These data demonstrate that pathogenic mycobacterial polar lipids may significantly hamper the ability of the host APCs to induce an appropriate immune response to an invading pathogen.

  6. N-Guanidino Derivatives of 1,5-Dideoxy-1,5-imino-d-xylitol are Potent, Selective, and Stable Inhibitors of β-Glucocerebrosidase

    NARCIS (Netherlands)

    Sevsek, Alen; Šrot, Luka; Rihter, Jakob; Čelan, Maša; van Ufford, Linda Quarles; Moret, Ed E; Martin, Nathaniel I; Pieters, Roland J

    2017-01-01

    A series of lipidated guanidino and urea derivatives of 1,5-dideoxy-1,5-imino-d-xylitol were prepared from d-xylose using a concise synthetic protocol. Inhibition assays with a panel of glycosidases revealed that the guanidino analogues display potent inhibition against human recombinant

  7. Two roles of thylakoid lipids in modifying the activity of herbicides which inhibit photosystem II

    International Nuclear Information System (INIS)

    Kupatt, C.C. Jr.

    1985-01-01

    Thylakoid lipids may modify the activity of herbicides which inhibit electron transport at the Q/sub B/ protein of photosystem II in two ways: (1) lipids can act as a hydrophobic barrier to a binding site localized close to the loculus of the membrane, and (2) changes in lipid composition can reduce the ability of inhibitors to block electron transport, possibly due to a change in the conformation of the Q/sub B/ protein. The herbicide binding site was localized close to the locular side of the thylakoid membrane by determining the activity of a number of substituted phenylurea and s-triazine herbicides in inverted and non-inverted thylakoids. Quantitative structure-activity relationship analysis showed that inversion of thylakoids reduced the requirement of molecular lipophilicity deemed necessary for phenylurea activity in non-inverted membranes, whereas s-triazines exhibited no differences in the lipophilicity requirement in thylakoid membranes of either orientation. The binding affinity of 14 C-diuron was reduced in bicarbonate-depleted thylakoids relative to reconstituted or control membranes, as is the case with atrazine binding. These observations support a model of the herbicide binding site containing both common and herbicide family specific binding domains. Thylakoids isolated either from detached lambs quarters (Chenopodium album L.) leaves, treated with SAN 6706, or from soybean (Glycine max L.), with norflurazon or pyrazon applied preemergence, exhibited decreased susceptibility to atrazine. The ability of lipid-modifying treatments to decrease the atrazine susceptibility of field-grown soybeans was also investigated

  8. Inhibition of the differentiation of monocyte-derived dendritic cells by human gingival fibroblasts.

    Directory of Open Access Journals (Sweden)

    Sylvie Séguier

    Full Text Available We investigated whether gingival fibroblasts (GFs can modulate the differentiation and/or maturation of monocyte-derived dendritic cells (DCs and analyzed soluble factors that may be involved in this immune modulation. Experiments were performed using human monocytes in co-culture with human GFs in Transwell® chambers or using monocyte cultures treated with conditioned media (CM from GFs of four donors. The four CM and supernatants from cell culture were assayed by ELISA for cytokines involved in the differentiation of dendritic cells, such as IL-6, VEGF, TGFβ1, IL-13 and IL-10. The maturation of monocyte-derived DCs induced by LPS in presence of CM was also studied. Cell surface phenotype markers were analyzed by flow cytometry. In co-cultures, GFs inhibited the differentiation of monocyte-derived DCs and the strength of this blockade correlated with the GF/monocyte ratio. Conditioned media from GFs showed similar effects, suggesting the involvement of soluble factors produced by GFs. This inhibition was associated with a lower stimulatory activity in MLR of DCs generated with GFs or its CM. Neutralizing antibodies against IL-6 and VEGF significantly (P<0.05 inhibited the inhibitory effect of CM on the differentiation of monocytes-derived DCs and in a dose dependent manner. Our data suggest that IL-6 is the main factor responsible for the inhibition of DCs differentiation mediated by GFs but that VEGF is also involved and constitutes an additional mechanism.

  9. Lipid nanocapsules containing the non-ionic surfactant Solutol HS15 inhibit the transport of calcium through hyperforin-activated channels in neuronal cells.

    Science.gov (United States)

    Chauvet, Sylvain; Barras, Alexandre; Boukherroub, Rabah; Bouron, Alexandre

    2015-12-01

    Hyperforin is described as a natural antidepressant inhibiting the reuptake of neurotransmitters and also activating cation channels. However the blood-brain barrier limits the access to the brain of this biomolecule. To circumvent this problem it was envisaged to encapsulate hyperforin into biomimetic lipid nano-carriers like lipid nanocapsules (LNCs). When testing the safety of 25 nm LNCs it appeared that they strongly blocked hyperforin-activated Ca2+ channels of cultured cortical neurons. This inhibition was due to one of their main component: solutol HS15 (polyoxyethylene-660-12-hydroxy stearate), a non-ionic soluble surfactant. Solutol HS15 rapidly depresses in a concentration-dependent manner the entry of Ca2+ through hyperforin-activated channels without influencing store-operated channels. This effect is mimicked by Brij58 but not by PEG600, indicating that the lipid chain of Solutol HS15 is important in determining its effects on the channels. The inhibition of the Ca2+ fluxes depends on the cellular cholesterol content; it is stronger after depleting cholesterol with methyl-β-cyclodextrin and is nearly absent on cells cultured in a cholesterol-rich medium. When chronically applied for 24 h, Solutol HS15 slightly up-regulates the entry of Ca2+ through hyperforin-activated channels. Similar observations were made when testing 25 nm lipid nanocapsules containing the surfactant Solutol HS15. Altogether, this study shows that Solutol HS15 perturbs in a cholesterol-dependent manner the activity of some neuronal channels. This is the first demonstration that LNCs containing this surfactant can influence cellular calcium signaling in the brain, a finding that can have important clinical implications. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Structure, inhibition, and regulation of essential lipid A enzymes.

    Science.gov (United States)

    Zhou, Pei; Zhao, Jinshi

    2017-11-01

    The Raetz pathway of lipid A biosynthesis plays a vital role in the survival and fitness of Gram-negative bacteria. Research efforts in the past three decades have identified individual enzymes of the pathway and have provided a mechanistic understanding of the action and regulation of these enzymes at the molecular level. This article reviews the discovery, biochemical and structural characterization, and regulation of the essential lipid A enzymes, as well as continued efforts to develop novel antibiotics against Gram-negative pathogens by targeting lipid A biosynthesis. This article is part of a Special Issue entitled: Bacterial Lipids edited by Russell E. Bishop. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Novel derivatives of aclacinomycin A block cancer cell migration through inhibition of farnesyl transferase.

    Science.gov (United States)

    Magi, Shigeyuki; Shitara, Tetsuo; Takemoto, Yasushi; Sawada, Masato; Kitagawa, Mitsuhiro; Tashiro, Etsu; Takahashi, Yoshikazu; Imoto, Masaya

    2013-03-01

    In the course of screening for an inhibitor of farnesyl transferase (FTase), we identified two compounds, N-benzyl-aclacinomycin A (ACM) and N-allyl-ACM, which are new derivatives of ACM. N-benzyl-ACM and N-allyl-ACM inhibited FTase activity with IC50 values of 0.86 and 2.93 μM, respectively. Not only ACM but also C-10 epimers of each ACM derivative failed to inhibit FTase. The inhibition of FTase by N-benzyl-ACM and N-allyl-ACM seems to be specific, because these two compounds did not inhibit geranylgeranyltransferase or geranylgeranyl pyrophosphate (GGPP) synthase up to 100 μM. In cultured A431 cells, N-benzyl-ACM and N-allyl-ACM also blocked both the membrane localization of H-Ras and activation of the H-Ras-dependent PI3K/Akt pathway. In addition, they inhibited epidermal growth factor (EGF)-induced migration of A431 cells. Thus, N-benzyl-ACM and N-allyl-ACM inhibited EGF-induced migration of A431 cells by inhibiting the farnesylation of H-Ras and subsequent H-Ras-dependent activation of the PI3K/Akt pathway.

  12. Dendritic Cells Activate and Mature after Infection with Mycobacterium tuberculosis

    Directory of Open Access Journals (Sweden)

    Mamo Gezahagne

    2011-07-01

    Full Text Available Abstract Background Dendritic cells (DCs can take up an array of different antigens, including microorganisms which they can process and present more effectively than any other antigen presenting cell. However, whether the interaction between the human DC and Mycobacterium tuberculosis represents a defense mechanism by the invaded host, or helping the invader to evade the defense mechanism of the host is still not clearly understood. Findings To analyze the interactions between M. tuberculosis and immune cells, human peripheral blood monocyte-derived immature DCs were infected with M. tuberculosis H37Rv wild type strain and flow cytometry was used to analyse cell surface expression markers. The ability of the M. tuberculosis infected DC to induce T cell proliferation using 5 and 6-carboxyfluorescein diacetate succinimidyl ester (CFSE dilution technique was also investigated. DCs were found to internalize the mycobacteria and show dose dependent infection and necrosis with different multiplicity of infection. Flow cytometry analysis of cell surface expression markers CD40, CD54, CD80, CD83, CD86 and HLA DR in infected DC revealed significant (p M. tuberculosis in comparison to immature DC with no stimulation. Lipopolysaccharide (LPS from Salmonella abortus equi, a known DC maturation agent, was used as a positive control and showed a comparable up regulation of cell surface markers as observed with M. tuberculosis infected DC. It was revealed that the M. tuberculosis infected DC induced T cell proliferation. Conclusion These data clearly demonstrate that M. tuberculosis induces activation and maturation of human monocyte-derived immature DC as well as induces T cell proliferation in vitro.

  13. Multidrug-Resistant Tuberculosis and Culture Conversion with Bedaquiline

    NARCIS (Netherlands)

    Diacon, Andreas H.; Pym, Alexander; Grobusch, Martin P.; de Los Rios, Jorge M.; Gotuzzo, Eduardo; Vasilyeva, Irina; Leimane, Vaira; Andries, Koen; Bakare, Nyasha; de Marez, Tine; Haxaire-Theeuwes, Myriam; Lounis, Nacer; Meyvisch, Paul; de Paepe, Els; van Heeswijk, Rolf P. G.; Dannemann, Brian; Rolla, Valeria; Dalcomo, Margreth; Gripp, Karla; Escada, Rodrigo; Tavares, Isabel; Borga, Liamar; Thomas, Aleyamma; Rekha, Banu; Nair, Dina; Chandrasekar, Chockalingam; Parthasarathy, Ramavaran Thiruvengadaraj; Sekhar, Gomathi; Ganesh, Krishnamoorthy; Rajagopalan, Krishnakumar; Rajapandian, Gangadevi; Dorairajalu, Rajendran; Sharma, Surendra Kumar; Banavaliker, Jayant; Kadhiravan, Tamilarasu; Gulati, Vinay; Mahmud, Hanif; Gupta, Arvind; Bhatnagar, Anuj; Jain, Vipin; Hari, Smriti; Gupta, Yogesh Kumar; Vaid, Ashok; Cirule, Andra; Dravniece, Gunta; Skripconoka, Vija; Kuksa, Liga; Kreigere, Edite; Ramos, Carlos Rafael Seas; Amat y Leon, Ivan Arapovic

    2014-01-01

    BACKGROUND Bedaquiline (Sirturo, TMC207), a diarylquinoline that inhibits mycobacterial ATP synthase, has been associated with accelerated sputum-culture conversion in patients with multidrug-resistant tuberculosis, when added to a preferred background regimen for 8 weeks. METHODS In this phase 2b

  14. The Making and Taking of Lipids: The Role of Bacterial Lipid Synthesis and the Harnessing of Host Lipids in Bacterial Pathogenesis.

    Science.gov (United States)

    Fozo, E M; Rucks, E A

    2016-01-01

    In order to survive environmental stressors, including those induced by growth in the human host, bacterial pathogens will adjust their membrane physiology accordingly. These physiological changes also include the use of host-derived lipids to alter their own membranes and feed central metabolic pathways. Within the host, the pathogen is exposed to many stressful stimuli. A resulting adaptation is for pathogens to scavenge the host environment for readily available lipid sources. The pathogen takes advantage of these host-derived lipids to increase or decrease the rigidity of their own membranes, to provide themselves with valuable precursors to feed central metabolic pathways, or to impact host signalling and processes. Within, we review the diverse mechanisms that both extracellular and intracellular pathogens employ to alter their own membranes as well as their use of host-derived lipids in membrane synthesis and modification, in order to increase survival and perpetuate disease within the human host. Furthermore, we discuss how pathogen employed mechanistic utilization of host-derived lipids allows for their persistence, survival and potentiation of disease. A more thorough understanding of all of these mechanisms will have direct consequences for the development of new therapeutics, and specifically, therapeutics that target pathogens, while preserving normal flora. © 2016 Elsevier Ltd All rights reserved.

  15. Autophagy in the immune response to tuberculosis: clinical perspectives.

    LENUS (Irish Health Repository)

    Ní Cheallaigh, C

    2011-06-01

    A growing body of evidence points to autophagy as an essential component in the immune response to tuberculosis. Autophagy is a direct mechanism of killing intracellular Mycobacterium tuberculosis and also acts as a modulator of proinflammatory cytokine secretion. In addition, autophagy plays a key role in antigen processing and presentation. Autophagy is modulated by cytokines; it is stimulated by T helper type 1 (Th1) cytokines such as tumour necrosis factor (TNF)-α and interferon (IFN)-γ, and is inhibited by the Th2 cytokines interleukin (IL)-4 and IL-13 and the anti-inflammatory cytokine IL-10. Vitamin D, via cathelicidin, can also induce autophagy, as can Toll-like receptor (TLR)-mediated signals. Autophagy-promoting agents, administered either locally to the lungs or systemically, could have a clinical application as adjunctive treatment of drug-resistant and drug-sensitive tuberculosis. Moreover, vaccines which effectively induce autophagy could be more successful in preventing acquisition or reactivation of latent tuberculosis.

  16. Chronic suppression of acetyl-CoA carboxylase 1 in beta-cells impairs insulin secretion via inhibition of glucose rather than lipid metabolism.

    Science.gov (United States)

    Ronnebaum, Sarah M; Joseph, Jamie W; Ilkayeva, Olga; Burgess, Shawn C; Lu, Danhong; Becker, Thomas C; Sherry, A Dean; Newgard, Christopher B

    2008-05-23

    Acetyl-CoA carboxylase 1 (ACC1) currently is being investigated as a target for treatment of obesity-associated dyslipidemia and insulin resistance. To investigate the effects of ACC1 inhibition on insulin secretion, three small interfering RNA (siRNA) duplexes targeting ACC1 (siACC1) were transfected into the INS-1-derived cell line, 832/13; the most efficacious duplex was also cloned into an adenovirus and used to transduce isolated rat islets. Delivery of the siACC1 duplexes decreased ACC1 mRNA by 60-80% in 832/13 cells and islets and enzyme activity by 46% compared with cells treated with a non-targeted siRNA. Delivery of siACC1 decreased glucose-stimulated insulin secretion (GSIS) by 70% in 832/13 cells and by 33% in islets. Surprisingly, siACC1 treatment decreased glucose oxidation by 49%, and the ATP:ADP ratio by 52%, accompanied by clear decreases in pyruvate cycling activity and tricarboxylic acid cycle intermediates. Exposure of siACC1-treated cells to the pyruvate cycling substrate dimethylmalate restored GSIS to normal without recovery of the depressed ATP:ADP ratio. In siACC1-treated cells, glucokinase protein levels were decreased by 25%, which correlated with a 36% decrease in glycogen synthesis and a 33% decrease in glycolytic flux. Furthermore, acute addition of the ACC1 inhibitor 5-(tetradecyloxy)-2-furoic acid (TOFA) to beta-cells suppressed [(14)C]glucose incorporation into lipids but had no effect on GSIS, whereas chronic TOFA administration suppressed GSIS and glucose metabolism. In sum, chronic, but not acute, suppression of ACC1 activity impairs GSIS via inhibition of glucose rather than lipid metabolism. These findings raise concerns about the use of ACC inhibitors for diabetes therapy.

  17. Chronic Suppression of Acetyl-CoA Carboxylase 1 in β-Cells Impairs Insulin Secretion via Inhibition of Glucose Rather Than Lipid Metabolism*

    Science.gov (United States)

    Ronnebaum, Sarah M.; Joseph, Jamie W.; Ilkayeva, Olga; Burgess, Shawn C.; Lu, Danhong; Becker, Thomas C.; Sherry, A. Dean; Newgard, Christopher B.

    2008-01-01

    Acetyl-CoA carboxylase 1 (ACC1) currently is being investigated as a target for treatment of obesity-associated dyslipidemia and insulin resistance. To investigate the effects of ACC1 inhibition on insulin secretion, three small interfering RNA (siRNA) duplexes targeting ACC1 (siACC1) were transfected into the INS-1-derived cell line, 832/13; the most efficacious duplex was also cloned into an adenovirus and used to transduce isolated rat islets. Delivery of the siACC1 duplexes decreased ACC1 mRNA by 60–80% in 832/13 cells and islets and enzyme activity by 46% compared with cells treated with a non-targeted siRNA. Delivery of siACC1 decreased glucose-stimulated insulin secretion (GSIS) by 70% in 832/13 cells and by 33% in islets. Surprisingly, siACC1 treatment decreased glucose oxidation by 49%, and the ATP:ADP ratio by 52%, accompanied by clear decreases in pyruvate cycling activity and tricarboxylic acid cycle intermediates. Exposure of siACC1-treated cells to the pyruvate cycling substrate dimethylmalate restored GSIS to normal without recovery of the depressed ATP:ADP ratio. In siACC1-treated cells, glucokinase protein levels were decreased by 25%, which correlated with a 36% decrease in glycogen synthesis and a 33% decrease in glycolytic flux. Furthermore, acute addition of the ACC1 inhibitor 5-(tetradecyloxy)-2-furoic acid (TOFA) to β-cells suppressed [14C]glucose incorporation into lipids but had no effect on GSIS, whereas chronic TOFA administration suppressed GSIS and glucose metabolism. In sum, chronic, but not acute, suppression of ACC1 activity impairs GSIS via inhibition of glucose rather than lipid metabolism. These findings raise concerns about the use of ACC inhibitors for diabetes therapy. PMID:18381287

  18. Evaluation of the efficacy of valproic acid and suberoylanilide hydroxamic acid (vorinostat in enhancing the effects of first-line tuberculosis drugs against intracellular Mycobacterium tuberculosis

    Directory of Open Access Journals (Sweden)

    Martin Rao

    2018-04-01

    Full Text Available Background: New tuberculosis (TB drug treatment regimens are urgently needed. This study evaluated the potential of the histone deacetylase inhibitors (HDIs valproic acid (VPA and suberoylanilide hydroxamic acid (SAHA to enhance the effects of first-line anti-TB drugs against intracellular Mycobacterium tuberculosis. Methods: M. tuberculosis H37Rv cultures were exposed to VPA or SAHA over 6 days, in the presence or absence of isoniazid (INH and rifampicin (RIF. The efficacy of VPA and SAHA against intracellular M. tuberculosis with and without INH or RIF was tested by treating infected macrophages. Bactericidal activity was assessed by counting mycobacterial colony-forming units (CFU. Results: VPA treatment exhibited superior bactericidal activity to SAHA (2-log CFU reduction, while both HDIs moderately improved the activity of RIF against extracellular M. tuberculosis. The bactericidal effect of VPA against intracellular M. tuberculosis was greater than that of SAHA (1-log CFU reduction and equalled that of INH (1.5-log CFU reduction. INH/RIF and VPA/SAHA combination treatment inhibited intracellular M. tuberculosis survival in a shorter time span than monotherapy (3 days vs. 6 days. Conclusions: VPA and SAHA have adjunctive potential to World Health Organization-recommended TB treatment regimens. Clinical evaluation of the two drugs with regard to reducing the treatment duration and improving treatment outcomes in TB is warranted. Keywords: Mycobacterium tuberculosis, Adjunct host-directed therapy, Tuberculosis, Histone deacetylase inhibitors, Repurposed drugs

  19. Lipid Emulsion Inhibits Vasodilation Induced by a Toxic Dose of Bupivacaine via Attenuated Dephosphorylation of Myosin Phosphatase Target Subunit 1 in Isolated Rat Aorta

    Science.gov (United States)

    Ok, Seong-Ho; Byon, Hyo-Jin; Kwon, Seong-Chun; Park, Jungchul; Lee, Youngju; Hwang, Yeran; Baik, Jiseok; Choi, Mun-Jeoung; Sohn, Ju-Tae

    2015-01-01

    Lipid emulsions are widely used for the treatment of systemic toxicity that arises from local anesthetics. The goal of this in vitro study was to examine the cellular mechanism associated with the lipid emulsion-mediated attenuation of vasodilation induced by a toxic dose of bupivacaine in isolated endothelium-denuded rat aorta. The effects of lipid emulsion on vasodilation induced by bupivacaine, mepivacaine, and verapamil were assessed in isolated aorta precontracted with phenylephrine, the Rho kinase stimulant NaF, and the protein kinase C activator phorbol 12,13-dibutyrate (PDBu). The effects of Rho kinase inhibitor Y-27632 on contraction induced by phenylephrine or NaF were assessed. The effects of bupivacaine on intracellular calcium concentrations ([Ca2+]i) and tension induced by NaF were simultaneously measured. The effects of bupivacaine alone and lipid emulsion plus bupivacaine on myosin phosphatase target subunit 1 (MYPT1) phosphorylation induced by NaF were examined in rat aortic vascular smooth muscle cells. In precontracted aorta, the lipid emulsion attenuated bupivacaine-induced vasodilation but had no effect on mepivacaine-induced vasodilation. Y-27632 attenuated contraction induced by either phenylephrine or NaF. The lipid emulsion attenuated verapamil-induced vasodilation. Compared with phenylephrine-induced precontracted aorta, bupivacaine-induced vasodilation was slightly attenuated in NaF-induced precontracted aorta. The magnitude of the bupivacaine-induced vasodilation was higher than that of a bupivacaine-induced decrease in [Ca2+]i. Bupivacaine attenuated NaF-induced MYPT1 phosphorylation, whereas lipid emulsion pretreatment attenuated the bupivacaine-induced inhibition of MYPT1 phosphorylation induced by NaF. Taken together, these results suggest that lipid emulsions attenuate bupivacaine-induced vasodilation via the attenuation of inhibition of MYPT1 phosphorylation evoked by NaF. PMID:26664257

  20. β-Amyloid promotes accumulation of lipid peroxides by inhibiting CD36-mediated clearance of oxidized lipoproteins

    Directory of Open Access Journals (Sweden)

    Khan Tayeba

    2004-11-01

    Full Text Available Abstract Background Recent studies suggest that hypercholesterolemia, an established risk factor for atherosclerosis, is also a risk factor for Alzheimer's disease. The myeloid scavenger receptor CD36 binds oxidized lipoproteins that accumulate with hypercholesterolemia and mediates their clearance from the circulation and peripheral tissues. Recently, we demonstrated that CD36 also binds fibrillar β-amyloid and initiates a signaling cascade that regulates microglial recruitment and activation. As increased lipoprotein oxidation and accumulation of lipid peroxidation products have been reported in Alzheimer's disease, we investigated whether β-amyloid altered oxidized lipoprotein clearance via CD36. Methods The availability of mice genetically deficient in class A (SRAI & II and class B (CD36 scavenger receptors has facilitated studies to discriminate their individual actions. Using primary microglia and macrophages, we assessed the impact of Aβ on: (a cholesterol ester accumulation by GC-MS and neutral lipid staining, (b binding, uptake and degradation of 125I-labeled oxidized lipoproteins via CD36, SR-A and CD36/SR-A-independent pathways, (c expression of SR-A and CD36. In addition, using mice with targeted deletions in essential kinases in the CD36-signaling cascade, we investigated whether Aβ-CD36 signaling altered metabolism of oxidized lipoproteins. Results In primary microglia and macrophages, Aβ inhibited binding, uptake and degradation of oxidized low density lipoprotein (oxLDL in a dose-dependent manner. While untreated cells accumulated abundant cholesterol ester in the presence of oxLDL, cells treated with Aβ were devoid of cholesterol ester. Pretreatment of cells with Aβ did not affect subsequent degradation of oxidized lipoproteins, indicating that lysosomal accumulation of Aβ did not disrupt this degradation pathway. Using mice with targeted deletions of the scavenger receptors, we demonstrated that Aβ inhibited oxidized

  1. Inhibition of VEGF-dependent angiogenesis by the anti-CD82 monoclonal antibody 4F9 through regulation of lipid raft microdomains

    International Nuclear Information System (INIS)

    Nomura, Sayaka; Iwata, Satoshi; Hatano, Ryo; Komiya, Eriko; Dang, Nam H.; Iwao, Noriaki; Ohnuma, Kei; Morimoto, Chikao

    2016-01-01

    CD82 (also known as KAI1) belongs to the tetraspanin superfamily of type III transmembrane proteins, and is involved in regulating cell adhesion, migration and proliferation. In contrast to these well-established roles of CD82 in tumor biology, its function in endothelial cell (EC) activity and tumor angiogenesis is yet to be determined. In this study, we show that suppression of CD82 negatively regulates vascular endothelial growth factor (VEGF)-induced angiogenesis. Moreover, we demonstrate that the anti-CD82 mAb 4F9 effectively inhibits phosphorylation of VEGF receptor 2 (VEGFR2), which is the principal mediator of the VEGF-induced angiogenic signaling process in tumor angiogenesis, by regulating the organization of the lipid raft microdomain signaling platform in human EC. Our present work therefore suggests that CD82 on EC is a potential target for anti-angiogenic therapy in VEGFR2-dependent tumor angiogenesis. -- Highlights: •Knockdown of CD82 decreases EC migration, proliferation and angiogenesis. •Anti-CD82 mAb 4F9 inhibits EC migration, proliferation and angiogenesis. •4F9 inhibits VEGFR2 phosphorylation via control of CD82 distribution in lipid rafts.

  2. Inhibition of VEGF-dependent angiogenesis by the anti-CD82 monoclonal antibody 4F9 through regulation of lipid raft microdomains

    Energy Technology Data Exchange (ETDEWEB)

    Nomura, Sayaka; Iwata, Satoshi; Hatano, Ryo [Division of Clinical Immunology, Advanced Clinical Research Center, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108-8639 (Japan); Komiya, Eriko [Department of Therapy Development and Innovation for Immune Disorders and Cancers, Graduate School of Medicine, Juntendo University, 2-1-1, Hongo, Bunkyo-ku, Tokyo, 113-8421 (Japan); Dang, Nam H. [Division of Hematology/Oncology, University of Florida, 1600 SW Archer Road- Box 100278, Room MSB M410A, Gainesville, FL, 32610 (United States); Iwao, Noriaki [Department of Hematology, School of Medicine, Juntendo University, 2-1-1, Hongo, Bunkyo-ku, Tokyo, 113-8421 (Japan); Ohnuma, Kei, E-mail: kohnuma@juntendo.ac.jp [Department of Rheumatology and Allergy, IMSUT Hospital, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108-8639 (Japan); Morimoto, Chikao [Division of Clinical Immunology, Advanced Clinical Research Center, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108-8639 (Japan); Department of Rheumatology and Allergy, IMSUT Hospital, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108-8639 (Japan)

    2016-05-20

    CD82 (also known as KAI1) belongs to the tetraspanin superfamily of type III transmembrane proteins, and is involved in regulating cell adhesion, migration and proliferation. In contrast to these well-established roles of CD82 in tumor biology, its function in endothelial cell (EC) activity and tumor angiogenesis is yet to be determined. In this study, we show that suppression of CD82 negatively regulates vascular endothelial growth factor (VEGF)-induced angiogenesis. Moreover, we demonstrate that the anti-CD82 mAb 4F9 effectively inhibits phosphorylation of VEGF receptor 2 (VEGFR2), which is the principal mediator of the VEGF-induced angiogenic signaling process in tumor angiogenesis, by regulating the organization of the lipid raft microdomain signaling platform in human EC. Our present work therefore suggests that CD82 on EC is a potential target for anti-angiogenic therapy in VEGFR2-dependent tumor angiogenesis. -- Highlights: •Knockdown of CD82 decreases EC migration, proliferation and angiogenesis. •Anti-CD82 mAb 4F9 inhibits EC migration, proliferation and angiogenesis. •4F9 inhibits VEGFR2 phosphorylation via control of CD82 distribution in lipid rafts.

  3. Antioxidant effect of bisphosphonates and simvastatin on chondrocyte lipid peroxidation

    International Nuclear Information System (INIS)

    Dombrecht, E.J.; De Tollenaere, C.B.; Aerts, K.; Cos, P.; Schuerwegh, A.J.; Bridts, C.H.; Van Offel, J.F.; Ebo, D.G.; Stevens, W.J.; De Clerck, L.S.

    2006-01-01

    The objective of this study was to evaluate the effect of bisphosphonates (BPs) and simvastatin on chondrocyte lipid peroxidation. For this purpose, a flow cytometrical method using C11-BODIPY 581/591 was developed to detect hydroperoxide-induced lipid peroxidation in chondrocytes. Tertiary butylhydroperoxide (t-BHP) induced a time and concentration dependent increase in chondrocyte lipid peroxidation. Addition of a Fe 2+ /EDTA complex to t-BHP or hydrogen peroxide (H 2 O 2 ) clearly enhanced lipid peroxidation. The lipophilic simvastatin demonstrated a small inhibition in the chondrocyte lipid peroxidation. None of three tested BPs (clodronate, pamidronate, and risedronate) had an effect on chondrocyte lipid peroxidation induced by t-BHP. However, when Fe 2+ /EDTA complex was added to t-BHP or H 2 O 2 , BPs inhibited the lipid peroxidation process varying from 25% to 58%. This study demonstrates that BPs have antioxidant properties as iron chelators, thereby inhibiting the chondrocyte lipid peroxidation. These findings add evidence to the therapeutic potential of bisphosphonates and statins in rheumatoid arthritis

  4. Inflammation responses in patients with pulmonary tuberculosis in an intensive care unit

    Science.gov (United States)

    Liu, Qiu-Yue; Han, Fen; Pan, Li-Ping; Jia, Hong-Yan; Li, Qi; Zhang, Zong-De

    2018-01-01

    Pulmonary tuberculosis caused by Mycobacterium tuberculosis remains a global problem. Inflammatory responses are the primary characteristics of patients with pulmonary tuberculosis in intensive care units (ICU). The aim of the present study was to investigate the clinical importance of inflammatory cells and factors for patients with pulmonary tuberculosis in ICU. A total of 124 patients with pulmonary tuberculosis in ICU were recruited for the present study. The inflammatory responses in patients with pulmonary tuberculosis in ICU were examined by changes in inflammatory cells and factors in the serum. The results indicated that serum levels of lymphocytes, plasma cells, granulocytes and monocytes were increased in patients with pulmonary tuberculosis in ICU compared with healthy controls. The serum levels of inflammatory factors interleukin (IL)-1, IL-6, IL-10, IL-12, and IL-4 were upregulated in patients with pulmonary tuberculosis in ICU. Lower plasma concentrations of IL-2, IL-15 and interferon-γ were detected in patients with pulmonary tuberculosis compared with healthy controls. It was demonstrated that high mobility group box-1 protein expression levels were higher in the serum of patients with pulmonary tuberculosis compared with healthy controls. Notably, an imbalance of T-helper cell (Th)1/Th2 cytokines was observed in patients with pulmonary tuberculosis. Pulmonary tuberculosis caused by M. tuberculosis also upregulated expression of matrix metalloproteinase (MMP)-1 and MMP-9 in hPMCs. In conclusion, these outcomes demonstrated that inflammatory responses and inflammatory factors are associated with the progression of pulmonary tuberculosis, suggesting that inhibition of inflammatory responses and inflammatory factors may be beneficial for the treatment of patients with pulmonary tuberculosis in ICU. PMID:29456674

  5. A Stabilized Demethoxyviridin Derivative Inhibits PI3 kinase

    Science.gov (United States)

    Yuan, Hushan; Pupo, Monica T.; Blois, Joe; Smith, Adam; Weissleder, Ralph; Clardy, Jon; Josephson, Lee

    2009-01-01

    The viridins like demethoxyviridin (Dmv) and wortmannin (Wm) are nanomolar inhibitors of the PI3 kinases, a family of enzymes that play key roles in a host of regulatory processes. Central to the use of these compounds to investigate the role of PI3 kinase in biological systems, or as scaffolds for drug development, are the interrelated issues of stability, chemical reactivity, and bioactivity as inhibitors of PI3 kinase. We found that Dmv was an even more potent inhibitor of PI3 kinase than Wm. However, Dmv was notably less stable than Wm in PBS, with a half-life of 26 min vs Wm’s half-life of 3470 min. Dmv, like Wm, disappeared in culture media with a half-life of less than 1 min. To overcome Dmv’s instability, it was esterified at the C1 position, and then reacted with glycine at the C20 position. The resulting Dmv derivative, termed SA-DmvC20-Gly had a half-life of 218 min in PBS and 64 min in culture media. SA-DmvC20-Gly underwent an exchange reaction at the C20 position with N-acetyl lysine in a manner similar to a WmC20 derivative, WmC20-Proline. SA-DmvC20-Gly inhibited PI3 kinase with an IC50 of 44 nM, compared to Wm’s IC50 of 12 nM. These results indicate that the stability of Dmv can be manipulated by reactions at the C1 and C20 positions, while substantially maintaining its ability to inhibit PI3 kinase. Our results indicate it may be possible to obtain stabilized Dmv derivatives for use as PI3 kinase inhibitors in biological systems. PMID:19523825

  6. Extract from Edible Red Seaweed (Gelidium amansii) Inhibits Lipid Accumulation and ROS Production during Differentiation in 3T3-L1 Cells.

    Science.gov (United States)

    Seo, Min-Jung; Lee, Ok-Hwan; Choi, Hyeon-Son; Lee, Boo-Yong

    2012-06-01

    Gelidium (G.) amansii is a red alga widely distributed in the shallow waters around East Asian countries. We investigated the effect of G. amansii on lipid accumulation and ROS (Reactive Oxygen Species) production in 3T3-L1 cells. G. amansii extracts dose-dependently inhibited lipid formation and ROS generation in cultured cells. Our results showed that anti-adipogenic effect of G. amansii was due to the reduction in mRNA expressions of PPARγ peroxisome proliferator-activated receptor-γ and aP2 (adipocyte protein 2). G. amansii extracts significantly decreased mRNA levels of a ROS-generator, NOX4 (nicotinamide adenine dinucleotide phosphate hydrogen oxidase 4), and increased the protein levels of antioxidant enzymes including SOD1/2 (superoxide dis-mutases), Gpx (glutathione peroxidase), and GR (glutathione reductase), which can lead to the reduction of ROS in the cell. In addition, the G. amansii extract enhanced mRNA levels of adiponectin, one of the adipokines secreted from adipocytes, and GLUT4, glucose uptake protein. Taken together, our study shows that G. amansii extract inhibited lipid accumulation and ROS production by controlling adipogenic signals and ROS regulating genes.

  7. Radiometric diagnosis of Mycobacterium tuberculosis

    International Nuclear Information System (INIS)

    Laszlo, A.

    1986-01-01

    The results of this study confirm that rapid radiometric diagnostic tests such as the NAP selective inhibition test for the M. tuberculosis complex followed by the radiometric drug susceptibility tests are extremely reliable and compare favourably with conventional methodologies. This study also shows that referred cultures growing on solid medium can be processed by radiometric procedures without prior subculture. This circumstance by itself shortens the time needed for reporting. (Auth.)

  8. On the Mechanism of Cytoprotection by Ferrostatin-1 and Liproxstatin-1 and the Role of Lipid Peroxidation in Ferroptotic Cell Death.

    Science.gov (United States)

    Zilka, Omkar; Shah, Ron; Li, Bo; Friedmann Angeli, José Pedro; Griesser, Markus; Conrad, Marcus; Pratt, Derek A

    2017-03-22

    Ferroptosis is a form of regulated necrosis associated with the iron-dependent accumulation of lipid hydroperoxides that may play a key role in the pathogenesis of degenerative diseases in which lipid peroxidation has been implicated. High-throughput screening efforts have identified ferrostatin-1 (Fer-1) and liproxstatin-1 (Lip-1) as potent inhibitors of ferroptosis - an activity that has been ascribed to their ability to slow the accumulation of lipid hydroperoxides. Herein we demonstrate that this activity likely derives from their reactivity as radical-trapping antioxidants (RTAs) rather than their potency as inhibitors of lipoxygenases. Although inhibited autoxidations of styrene revealed that Fer-1 and Lip-1 react roughly 10-fold more slowly with peroxyl radicals than reactions of α-tocopherol (α-TOH), they were significantly more reactive than α-TOH in phosphatidylcholine lipid bilayers - consistent with the greater potency of Fer-1 and Lip-1 relative to α-TOH as inhibitors of ferroptosis. None of Fer-1, Lip-1, and α-TOH inhibited human 15-lipoxygenase-1 (15-LOX-1) overexpressed in HEK-293 cells when assayed at concentrations where they inhibited ferroptosis. These results stand in stark contrast to those obtained with a known 15-LOX-1 inhibitor (PD146176), which was able to inhibit the enzyme at concentrations where it was effective in inhibiting ferroptosis. Given the likelihood that Fer-1 and Lip-1 subvert ferroptosis by inhibiting lipid peroxidation as RTAs, we evaluated the antiferroptotic potential of 1,8-tetrahydronaphthyridinols (hereafter THNs): rationally designed radical-trapping antioxidants of unparalleled reactivity. We show for the first time that the inherent reactivity of the THNs translates to cell culture, where lipophilic THNs were similarly effective to Fer-1 and Lip-1 at subverting ferroptosis induced by either pharmacological or genetic inhibition of the hydroperoxide-detoxifying enzyme Gpx4 in mouse fibroblasts, and glutamate

  9. Curcumin prevents the oxidation and lipid modification of LDL and its inhibition of prostacyclin generation by endothelial cells in culture.

    Science.gov (United States)

    Mahfouz, Mohamedain M; Zhou, Sherry Q; Kummerow, Fred A

    2009-11-01

    Low-density lipoprotein (LDL) was isolated from human plasma and oxidized by 5microM copper sulfate for 4h at 37 degrees C in the absence and presence of 1, 3, 5, 10, or 20microM of curcumin. LDL oxidized in the absence of curcumin (oxLDL) showed an increased levels of conjugated dienes, lipid peroxides (TBARS) and lysolecithin (lysoPC) and a significant loss of polyunsaturated fatty acids (PUFA). LDL oxidized with 5microM copper sulfate in the presence of curcumin caused a significant decrease of conjugated diene, lipid peroxides, lysoPC and significant increase of PUFA compared to oxLDL. These changes were dose dependent and reached a maximum at 5microM curcumin. Incubation of human endothelial cells (EC) with 200microg protein/ml of oxLDL caused a significant decrease of prostacyclin (PGI(2)) generation. LDL oxidized in presence of 5microM curcumin did not show any inhibition of PGI(2) generation compared to the control cells. These results indicate that curcumin is an effective chain-breaking antioxidant which prevents oxidation and lipid modification of LDL. The inhibition of oxLDL on PGI(2) is considered a contributing factor in the pathogenesis of thrombosis and atherosclerosis. Curcumin supplementation could be an effective strategy in preventing LDL oxidation and its impact on atherosclerosis and lesion formation.

  10. Inhibition of HCV replication by oxysterol-binding protein-related protein 4 (ORP4 through interaction with HCV NS5B and alteration of lipid droplet formation.

    Directory of Open Access Journals (Sweden)

    In-Woo Park

    Full Text Available Hepatitis C virus (HCV RNA replication involves complex interactions among the 3'x RNA element within the HCV 3' untranslated region, viral and host proteins. However, many of the host proteins remain unknown. In this study, we devised an RNA affinity chromatography /2D/MASS proteomics strategy and identified nine putative 3' X-associated host proteins; among them is oxysterol-binding protein-related protein 4 (ORP4, a cytoplasmic receptor for oxysterols. We determined the relationship between ORP4 expression and HCV replication. A very low level of constitutive ORP4 expression was detected in hepatocytes. Ectopically expressed ORP4 was detected in the endoplasmic reticulum and inhibited luciferase reporter gene expression in HCV subgenomic replicon cells and HCV core expression in JFH-1-infected cells. Expression of ORP4S, an ORP4 variant that lacked the N-terminal pleckstrin-homology domain but contained the C-terminal oxysterol-binding domain also inhibited HCV replication, pointing to an important role of the oxysterol-binding domain in ORP4-mediated inhibition of HCV replication. ORP4 was found to associate with HCV NS5B and its expression led to inhibition of the NS5B activity. ORP4 expression had little effect on intracellular lipid synthesis and secretion, but it induced lipid droplet formation in the context of HCV replication. Taken together, these results demonstrate that ORP4 is a negative regulator of HCV replication, likely via interaction with HCV NS5B in the replication complex and regulation of intracellular lipid homeostasis. This work supports the important role of lipids and their metabolism in HCV replication and pathogenesis.

  11. Managing latent tuberculosis infection and tuberculosis in children

    Directory of Open Access Journals (Sweden)

    I. Carvalho

    2018-03-01

    Full Text Available Tuberculosis (TB is a major cause of childhood morbidity and mortality worldwide. The aim of this review is to describe the management of the child with TB and latent tuberculosis infection (LTBI.To develop this article, a working group reviewed relevant epidemiological and other scientific studies and established practices in conducting LBTI and TB in children. The article describes how to manage the child with LTBI, considering transmission and infectiousness of tuberculosis, contact screening and prioritization of contacts and recommendations on treatment of children with LTBI and how to manage the child with TB considering the susceptibility of children to developing tuberculosis, epidemiology and classification of tuberculosis in children, diagnosis and treatment. Keywords: Tuberculosis, Pediatric, Childhood, Latent tuberculosis infection

  12. Inhibition of key enzymes linked to type 2 diabetes and sodium nitroprusside-induced lipid peroxidation in rat pancreas by water extractable phytochemicals from some tropical spices.

    Science.gov (United States)

    Adefegha, Stephen Adeniyi; Oboh, Ganiyu

    2012-07-01

    Spices have been used as food adjuncts and in folklore for ages. Inhibition of key enzymes (α-amylase and α-glucosidase) involved in the digestion of starch and protection against free radicals and lipid peroxidation in pancreas could be part of the therapeutic approach towards the management of hyperglycemia and dietary phenolics have shown promising potentials. This study investigated and compared the inhibitory properties of aqueous extracts of some tropical spices: Xylopia aethiopica [Dun.] A. Rich (Annonaceae), Monodora myristica (Gaertn.) Dunal (Annonaceae), Syzygium aromaticum [L.] Merr. et Perry (Myrtaceae), Piper guineense Schumach. et Thonn (Piperaceae), Aframomum danielli K. Schum (Zingiberaceae) and Aframomum melegueta (Rosc.) K. Schum (Zingiberaceae) against α-amylase, α-glucosidase, 1,1-diphenyl-2-picrylhydrazyl (DPPH) radicals and sodium nitroprusside (SNP)-induced lipid peroxidation in rat pancreas--in vitro using different spectrophotometric method. Aqueous extract of the spices was prepared and the ability of the spice extracts to inhibit α-amylase, α-glucosidase, DPPH radicals and SNP-induced lipid peroxidation in rat pancreas--in vitro was investigated using various spectrophotometric methods. All the spice extracts inhibited α-amylase (IC(50) = 2.81-4.83 mg/mL), α-glucosidase (IC(50) = 2.02-3.52 mg/mL), DPPH radicals (EC(50) = 15.47-17.38 mg/mL) and SNP-induced lipid peroxidation (14.17-94.38%), with the highest α-amylase & α-glucosidase inhibitory actions and DPPH radical scavenging ability exhibited by X. aethiopica, A. danielli and S. aromaticum, respectively. Also, the spices possess high total phenol (0.88-1.3 mg/mL) and flavonoid (0.24-0.52 mg/mL) contents with A. melegueta having the highest total phenolic and flavonoid contents. The inhibitory effects of the spice extracts on α-amylase, α-glucosidase, DPPH radicals and SNP-induced lipid peroxidation in pancreas (in vitro) could be attributed to the presence of biologically

  13. Herb–drug interaction prediction based on the high specific inhibition of andrographolide derivatives towards UDP-glucuronosyltransferase (UGT) 2B7

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Hai-Ying [The Fourth Affiliated Hospital of China Medical University, Shenyang 110032 (China); Sun, Dong-Xue [School of Traditional Chinese Medicine, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016 (China); Cao, Yun-Feng [The First Affiliated Hospital of Liaoning Medical University, Jinzhou 121001 (China); Joint Center for Translational Medicine, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road, Dalian 116023 (China); Ai, Chun-Zhi [Joint Center for Translational Medicine, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road, Dalian 116023 (China); Qu, Yan-Qing [Thyroid Surgery, Yantaishan Hospital, Yantai, Shandong (China); Hu, Cui-Min [Joint Center for Translational Medicine, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road, Dalian 116023 (China); Department of Microbiology and Immunology, Georgetown University Medical Center, Washington, DC 20057 (United States); Jiang, Changtao [Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892 (United States); Dong, Pei-Pei [Academy of Integrative Medicine, Dalian Medical University, Dalian 116044 (China); Sun, Xiao-Yu; Hong, Mo [Joint Center for Translational Medicine, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road, Dalian 116023 (China); Tanaka, Naoki; Gonzalez, Frank J. [Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892 (United States); others, and

    2014-05-15

    Herb–drug interaction strongly limits the clinical application of herbs and drugs, and the inhibition of herbal components towards important drug-metabolizing enzymes (DMEs) has been regarded as one of the most important reasons. The present study aims to investigate the inhibition potential of andrographolide derivatives towards one of the most important phase II DMEs UDP-glucuronosyltransferases (UGTs). Recombinant UGT isoforms (except UGT1A4)-catalyzed 4-methylumbelliferone (4-MU) glucuronidation reaction and UGT1A4-catalyzed trifluoperazine (TFP) glucuronidation were employed to firstly screen the andrographolide derivatives' inhibition potential. High specific inhibition of andrographolide derivatives towards UGT2B7 was observed. The inhibition type and parameters (K{sub i}) were determined for the compounds exhibiting strong inhibition capability towards UGT2B7, and human liver microsome (HLMs)-catalyzed zidovudine (AZT) glucuronidation probe reaction was used to furtherly confirm the inhibition behavior. In combination of inhibition parameters (K{sub i}) and in vivo concentration of andrographolide and dehydroandrographolide, the potential in vivo inhibition magnitude was predicted. Additionally, both the in vitro inhibition data and computational modeling results provide important information for the modification of andrographolide derivatives as selective inhibitors of UGT2B7. Taken together, data obtained from the present study indicated the potential herb–drug interaction between Andrographis paniculata and the drugs mainly undergoing UGT2B7-catalyzed metabolic elimination, and the andrographolide derivatives as potential candidates for the selective inhibitors of UGT2B7. - Highlights: • Specific inhibition of andrographolide derivatives towards UGT2B7. • Herb-drug interaction related withAndrographis paniculata. • Guidance for design of UGT2B7 specific inhibitors.

  14. Herb–drug interaction prediction based on the high specific inhibition of andrographolide derivatives towards UDP-glucuronosyltransferase (UGT) 2B7

    International Nuclear Information System (INIS)

    Ma, Hai-Ying; Sun, Dong-Xue; Cao, Yun-Feng; Ai, Chun-Zhi; Qu, Yan-Qing; Hu, Cui-Min; Jiang, Changtao; Dong, Pei-Pei; Sun, Xiao-Yu; Hong, Mo; Tanaka, Naoki; Gonzalez, Frank J.

    2014-01-01

    Herb–drug interaction strongly limits the clinical application of herbs and drugs, and the inhibition of herbal components towards important drug-metabolizing enzymes (DMEs) has been regarded as one of the most important reasons. The present study aims to investigate the inhibition potential of andrographolide derivatives towards one of the most important phase II DMEs UDP-glucuronosyltransferases (UGTs). Recombinant UGT isoforms (except UGT1A4)-catalyzed 4-methylumbelliferone (4-MU) glucuronidation reaction and UGT1A4-catalyzed trifluoperazine (TFP) glucuronidation were employed to firstly screen the andrographolide derivatives' inhibition potential. High specific inhibition of andrographolide derivatives towards UGT2B7 was observed. The inhibition type and parameters (K i ) were determined for the compounds exhibiting strong inhibition capability towards UGT2B7, and human liver microsome (HLMs)-catalyzed zidovudine (AZT) glucuronidation probe reaction was used to furtherly confirm the inhibition behavior. In combination of inhibition parameters (K i ) and in vivo concentration of andrographolide and dehydroandrographolide, the potential in vivo inhibition magnitude was predicted. Additionally, both the in vitro inhibition data and computational modeling results provide important information for the modification of andrographolide derivatives as selective inhibitors of UGT2B7. Taken together, data obtained from the present study indicated the potential herb–drug interaction between Andrographis paniculata and the drugs mainly undergoing UGT2B7-catalyzed metabolic elimination, and the andrographolide derivatives as potential candidates for the selective inhibitors of UGT2B7. - Highlights: • Specific inhibition of andrographolide derivatives towards UGT2B7. • Herb-drug interaction related withAndrographis paniculata. • Guidance for design of UGT2B7 specific inhibitors

  15. Herb–drug interaction prediction based on the high specific inhibition of andrographolide derivatives towards UDP-glucuronosyltransferase (UGT) 2B7

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Hai-Ying, E-mail: cmu4h-mhy@126.com [The Fourth Affiliated Hospital of China Medical University, Shenyang 110032 (China); Sun, Dong-Xue [School of Traditional Chinese Medicine, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016 (China); Cao, Yun-Feng [The First Affiliated Hospital of Liaoning Medical University, Jinzhou 121001 (China); Joint Center for Translational Medicine, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road, Dalian 116023 (China); Ai, Chun-Zhi [Joint Center for Translational Medicine, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road, Dalian 116023 (China); Qu, Yan-Qing [Thyroid Surgery, Yantaishan Hospital, Yantai, Shandong (China); Hu, Cui-Min [Joint Center for Translational Medicine, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road, Dalian 116023 (China); Department of Microbiology and Immunology, Georgetown University Medical Center, Washington, DC 20057 (United States); Jiang, Changtao [Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892 (United States); Dong, Pei-Pei [Academy of Integrative Medicine, Dalian Medical University, Dalian 116044 (China); Sun, Xiao-Yu; Hong, Mo [Joint Center for Translational Medicine, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road, Dalian 116023 (China); Tanaka, Naoki; Gonzalez, Frank J. [Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892 (United States); and others

    2014-05-15

    Herb–drug interaction strongly limits the clinical application of herbs and drugs, and the inhibition of herbal components towards important drug-metabolizing enzymes (DMEs) has been regarded as one of the most important reasons. The present study aims to investigate the inhibition potential of andrographolide derivatives towards one of the most important phase II DMEs UDP-glucuronosyltransferases (UGTs). Recombinant UGT isoforms (except UGT1A4)-catalyzed 4-methylumbelliferone (4-MU) glucuronidation reaction and UGT1A4-catalyzed trifluoperazine (TFP) glucuronidation were employed to firstly screen the andrographolide derivatives' inhibition potential. High specific inhibition of andrographolide derivatives towards UGT2B7 was observed. The inhibition type and parameters (K{sub i}) were determined for the compounds exhibiting strong inhibition capability towards UGT2B7, and human liver microsome (HLMs)-catalyzed zidovudine (AZT) glucuronidation probe reaction was used to furtherly confirm the inhibition behavior. In combination of inhibition parameters (K{sub i}) and in vivo concentration of andrographolide and dehydroandrographolide, the potential in vivo inhibition magnitude was predicted. Additionally, both the in vitro inhibition data and computational modeling results provide important information for the modification of andrographolide derivatives as selective inhibitors of UGT2B7. Taken together, data obtained from the present study indicated the potential herb–drug interaction between Andrographis paniculata and the drugs mainly undergoing UGT2B7-catalyzed metabolic elimination, and the andrographolide derivatives as potential candidates for the selective inhibitors of UGT2B7. - Highlights: • Specific inhibition of andrographolide derivatives towards UGT2B7. • Herb-drug interaction related withAndrographis paniculata. • Guidance for design of UGT2B7 specific inhibitors.

  16. MIR144* inhibits antimicrobial responses against Mycobacterium tuberculosis in human monocytes and macrophages by targeting the autophagy protein DRAM2.

    Science.gov (United States)

    Kim, Jin Kyung; Lee, Hye-Mi; Park, Ki-Sun; Shin, Dong-Min; Kim, Tae Sung; Kim, Yi Sak; Suh, Hyun-Woo; Kim, Soo Yeon; Kim, In Soo; Kim, Jin-Man; Son, Ji-Woong; Sohn, Kyung Mok; Jung, Sung Soo; Chung, Chaeuk; Han, Sang-Bae; Yang, Chul-Su; Jo, Eun-Kyeong

    2017-02-01

    Autophagy is an important antimicrobial effector process that defends against Mycobacterium tuberculosis (Mtb), the human pathogen causing tuberculosis (TB). MicroRNAs (miRNAs), endogenous noncoding RNAs, are involved in various biological functions and act as post-transcriptional regulators to target mRNAs. The process by which miRNAs affect antibacterial autophagy and host defense mechanisms against Mtb infections in human monocytes and macrophages is largely uncharacterized. In this study, we show that Mtb significantly induces the expression of MIR144*/hsa-miR-144-5p, which targets the 3'-untranslated region of DRAM2 (DNA damage regulated autophagy modulator 2) in human monocytes and macrophages. Mtb infection downregulated, whereas the autophagy activators upregulated, DRAM2 expression in human monocytes and macrophages by activating AMP-activated protein kinase. In addition, overexpression of MIR144* decreased DRAM2 expression and formation of autophagosomes in human monocytes, whereas inhibition of MIR144* had the opposite effect. Moreover, the levels of MIR144* were elevated, whereas DRAM2 levels were reduced, in human peripheral blood cells and tissues in TB patients, indicating the clinical significance of MIR144* and DRAM2 in human TB. Notably, DRAM2 interacted with BECN1 and UVRAG, essential components of the autophagic machinery, leading to displacement of RUBCN from the BECN1 complex and enhancement of Ptdlns3K activity. Furthermore, MIR144* and DRAM2 were critically involved in phagosomal maturation and enhanced antimicrobial effects against Mtb. Our findings identify a previously unrecognized role of human MIR144* in the inhibition of antibacterial autophagy and the innate host immune response to Mtb. Additionally, these data reveal that DRAM2 is a key coordinator of autophagy activation that enhances antimicrobial activity against Mtb.

  17. Study on mechanism of decreased lipid peroxide by low dose radiation

    International Nuclear Information System (INIS)

    Yamaoka, Kiyonori; Okazoe, Yoko; Akimaru, Kunihiro; Sato, E.F.; Utsumi, Kozo.

    1991-01-01

    We examined the effect of SOD on lipid peroxidation in biomembrane from V.E-deficient rats, in order to study the mechanism of increased SOD activities and decreased lipid peroxide by low dose irradiation. The following results were obtained. i. Active oxygen (O 2 - ) strongly enhances lipid peroxidations in biomembrane with the Fe 3+ as catalyst. ii. SOD evidently inhibits lipid peroxidations under above conditions. iii. We suggested that the effect of SOD enhanced by low dose irradiation results in inhibition of lipid peroxidation. (author)

  18. Tuberculosis

    International Nuclear Information System (INIS)

    Latorre Tortello, Pablo

    1998-01-01

    The tuberculosis is an infection bacterial chronicle of world distribution. Three organisms of the family of the mycobacterium, the m. tuberculosis, the m. bovis and m. africanum, phenotypic and genetically similar, produce it, but only the m. tuberculosis has importance; the others rarely produce illness in the human. By definition, the lung tuberculosis is the localization of the m. tuberculosis in the breathing tract, the most common and main form in the affection and the only able to contaminate to other people. The koch bacillus, transmits the illness directly person to person. The paper Includes topics like pathogenesis, natural history, epidemiology, diagnose, symptomatology and treatment

  19. Citoquinas en tuberculosis Cytokines in tuberculosis

    Directory of Open Access Journals (Sweden)

    Jaime I. Rodríguez

    1997-04-01

    specific antigens of Iymphocytes from tuberculin positive healthy subjects induces a type I cytokine pattern (1'IL.2, 1'IFN.y, -VIL.4, -VIL.5 whereas Iymphocytes from tuberculous patients do not exhibit it. Type I cytokines activate macrophages able to inhibit mycobacteria intracellular growth. In mice, nitric oxide produced by activated macrophages is responsible for such effect; however, the productJon of nitric oxide by human macrophages has not been conclusively demonstrated. Recent reports have shown that infection with M. tuberculosis induces apoptosis in infected macrophages. Apoptosis in such conditions is Tumor Necrosis Factor.a and nitric oxide dependent. Paradoxically, mannosylated liparabinomann (ManLAM, a structural component of the rñycobacterial cell wall, inhibits apoptosis of infected macrophages. These results demonstrate a new aspect of the mycobacteria.macrophage relatJonship that must be finely regulated by both the microorganism and the host.

  20. Lipid Supplement in the Cultural Condition Facilitates the Porcine iPSC Derivation through cAMP/PKA/CREB Signal Pathway

    Directory of Open Access Journals (Sweden)

    Wei Zhang

    2018-02-01

    Full Text Available Large numbers of lipids exist in the porcine oocytes and early embryos and have the positive effects on their development, suggesting that the lipids may play an important role in pluripotency establishment and maintenance in pigs. However, the effects of lipids and their metabolites, such as fatty acids on reprogramming and the pluripotency gene expression of porcine-induced pluripotent stem cells (iPSCs, are unclear. Here, we generated the porcine iPSCs that resemble the mouse embryonic stem cells (ESCs under lipid and fatty-acid-enriched cultural conditions (supplement of AlbuMAX. These porcine iPSCs show positive for the ESCs pluripotency markers and have the differentiation abilities to all three germ layers, and importantly, have the capability of aggregation into the inner cell mass (ICM of porcine blastocysts. We further confirmed that lipid and fatty acid enriched condition can promote the cell proliferation and improve reprogramming efficiency by elevating cAMP levels. Interestingly, this lipids supplement promotes mesenchymal–epithelial transition (MET through the cAMP/PKA/CREB signal pathway and upregulates the E-cadherin expression during porcine somatic cell reprogramming. The lipids supplement also makes a contribution to lipid droplets accumulation in the porcine iPSCs that resemble porcine preimplantation embryos. These findings may facilitate understanding of the lipid metabolism in porcine iPSCs and lay the foundation of bona fide porcine embryonic stem cell derivation.

  1. Mycobacterium tuberculosis Controls Phagosomal Acidification by Targeting CISH-Mediated Signaling

    Directory of Open Access Journals (Sweden)

    Christophe J. Queval

    2017-09-01

    Full Text Available Pathogens have evolved a range of mechanisms to counteract host defenses, notably to survive harsh acidic conditions in phagosomes. In the case of Mycobacterium tuberculosis, it has been shown that regulation of phagosome acidification could be achieved by interfering with the retention of the V-ATPase complexes at the vacuole. Here, we present evidence that M. tuberculosis resorts to yet another strategy to control phagosomal acidification, interfering with host suppressor of cytokine signaling (SOCS protein functions. More precisely, we show that infection of macrophages with M. tuberculosis leads to granulocyte-macrophage colony-stimulating factor (GM-CSF secretion, inducing STAT5-mediated expression of cytokine-inducible SH2-containing protein (CISH, which selectively targets the V-ATPase catalytic subunit A for ubiquitination and degradation by the proteasome. Consistently, we show that inhibition of CISH expression leads to reduced replication of M. tuberculosis in macrophages. Our findings further broaden the molecular understanding of mechanisms deployed by bacteria to survive.

  2. Some bromo phenyl piperidine derivatives having plasmepsin inhibition with potent analgesia

    International Nuclear Information System (INIS)

    Rafiq, K.; Saify, Z.S.

    2016-01-01

    The present study was conducted to evaluate the synthesized 4-(4?-Bromophenyl)-4-hydroxy piperdine derivatives for plasmepsin inhibition (antimalarial activity) and analgesic response to develop excellent moiety to work in malaria. The plasmepsin II and cathepsin D (Biodesign International, USA) assays were measured using a fluorescence resonance energy transfer (FRET) method. The inhibition of enzyme was done (in triplicates) in 96 well plate format and response were obtained on a Perkin Elmer LS55 Fluorescence spectrometer with an excitation and emission wavelengths of 336 and 490 nm, respectively and analgesic activity of synthesized derivatives of 4-(4-Bromophenyl)-4-hydroxy piperidine was conducted by Eddy's hot plate method in albino mice by providing standard colony conditions using Pethidine as standard drug. These novel compounds having the parent moiety 4-(4-Bromophenyl)-4-hydroxy piperdine were found to prove strong inhibition towards plasmepsin enzyme with 8-10 IC50 in micro M and highly significant analgesic response in albino mice. The current studies suggest that the designed molecules were found to work both on cellular level and also on the symptoms of disease as the headache, fever and muscle aches are the very common and initial symptoms associated with malaria and hence the molecules discovered as excellent analgesics. (author)

  3. Inhibition of Super-Enhancer Activity in Autoinflammatory Site-Derived T Cells Reduces Disease-Associated Gene Expression.

    Science.gov (United States)

    Peeters, Janneke G C; Vervoort, Stephin J; Tan, Sander C; Mijnheer, Gerdien; de Roock, Sytze; Vastert, Sebastiaan J; Nieuwenhuis, Edward E S; van Wijk, Femke; Prakken, Berent J; Creyghton, Menno P; Coffer, Paul J; Mokry, Michal; van Loosdregt, Jorg

    2015-09-29

    The underlying molecular mechanisms for many autoimmune diseases are poorly understood. Juvenile idiopathic arthritis (JIA) is an exceptionally well-suited model for studying autoimmune diseases due to its early onset and the possibility to analyze cells derived from the site of inflammation. Epigenetic profiling, utilizing primary JIA patient-derived cells, can contribute to the understanding of autoimmune diseases. With H3K27ac chromatin immunoprecipitation, we identified a disease-specific, inflammation-associated, typical enhancer and super-enhancer signature in JIA patient synovial-fluid-derived CD4(+) memory/effector T cells. RNA sequencing of autoinflammatory site-derived patient T cells revealed that BET inhibition, utilizing JQ1, inhibited immune-related super-enhancers and preferentially reduced disease-associated gene expression, including cytokine-related processes. Altogether, these results demonstrate the potential use of enhancer profiling to identify disease mediators and provide evidence for BET inhibition as a possible therapeutic approach for the treatment of autoimmune diseases. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  4. Inhibition of Super-Enhancer Activity in Autoinflammatory Site-Derived T Cells Reduces Disease-Associated Gene Expression

    Directory of Open Access Journals (Sweden)

    Janneke G.C. Peeters

    2015-09-01

    Full Text Available The underlying molecular mechanisms for many autoimmune diseases are poorly understood. Juvenile idiopathic arthritis (JIA is an exceptionally well-suited model for studying autoimmune diseases due to its early onset and the possibility to analyze cells derived from the site of inflammation. Epigenetic profiling, utilizing primary JIA patient-derived cells, can contribute to the understanding of autoimmune diseases. With H3K27ac chromatin immunoprecipitation, we identified a disease-specific, inflammation-associated, typical enhancer and super-enhancer signature in JIA patient synovial-fluid-derived CD4+ memory/effector T cells. RNA sequencing of autoinflammatory site-derived patient T cells revealed that BET inhibition, utilizing JQ1, inhibited immune-related super-enhancers and preferentially reduced disease-associated gene expression, including cytokine-related processes. Altogether, these results demonstrate the potential use of enhancer profiling to identify disease mediators and provide evidence for BET inhibition as a possible therapeutic approach for the treatment of autoimmune diseases.

  5. Breaking Transmission with Vaccines: The Case of Tuberculosis.

    Science.gov (United States)

    Gonzalo-Asensio, Jesus; Aguilo, Nacho; Marinova, Dessislava; Martin, Carlos

    2017-07-01

    Members of the Mycobacterium tuberculosis complex (MTBC) have evolved causing tuberculosis (TB) in different mammalian hosts. MTBC ecotypes have adapted to diverse animal species, with M. bovis being the most common cause of TB in livestock. Cattle-to-human transmission of M. bovis through ingestion of raw milk was common before introduction of the pasteurization process. TB in humans is mainly caused by M. tuberculosis . This bacterium is considered a genetically clonal pathogen that has coevolved with humans due to its ability to manipulate and subvert the immune response. TB is a major public health problem due to airborne person-to-person transmission of M. tuberculosis . The essential yet unanswered question on the natural history of TB is when M. tuberculosis decides to establish latent infection in the host (resambling the lysogenic cycle of lambda phage) or to cause pulmonary disease (comparable to the lytic cycle of lambda phage). In this latter case, M. tuberculosis kills the host with the aim of achieving transmission to new hosts. Combating the TB epidemic requires stopping transmission. M. bovis BCG, the present vaccine against TB, is derived from M. bovis and only protects against disseminated forms of TB. Thus, a priority in TB research is development of new effective vaccines to prevent pulmonary disease. Attenuated vaccines based on M. tuberculosis as MTBVAC are potential candidates that could contribute to break the TB transmission cycle.

  6. Herb-drug interaction prediction based on the high specific inhibition of andrographolide derivatives towards UDP-glucuronosyltransferase (UGT) 2B7.

    Science.gov (United States)

    Ma, Hai-Ying; Sun, Dong-Xue; Cao, Yun-Feng; Ai, Chun-Zhi; Qu, Yan-Qing; Hu, Cui-Min; Jiang, Changtao; Dong, Pei-Pei; Sun, Xiao-Yu; Hong, Mo; Tanaka, Naoki; Gonzalez, Frank J; Ma, Xiao-Chi; Fang, Zhong-Ze

    2014-05-15

    Herb-drug interaction strongly limits the clinical application of herbs and drugs, and the inhibition of herbal components towards important drug-metabolizing enzymes (DMEs) has been regarded as one of the most important reasons. The present study aims to investigate the inhibition potential of andrographolide derivatives towards one of the most important phase II DMEs UDP-glucuronosyltransferases (UGTs). Recombinant UGT isoforms (except UGT1A4)-catalyzed 4-methylumbelliferone (4-MU) glucuronidation reaction and UGT1A4-catalyzed trifluoperazine (TFP) glucuronidation were employed to firstly screen the andrographolide derivatives' inhibition potential. High specific inhibition of andrographolide derivatives towards UGT2B7 was observed. The inhibition type and parameters (Ki) were determined for the compounds exhibiting strong inhibition capability towards UGT2B7, and human liver microsome (HLMs)-catalyzed zidovudine (AZT) glucuronidation probe reaction was used to furtherly confirm the inhibition behavior. In combination of inhibition parameters (Ki) and in vivo concentration of andrographolide and dehydroandrographolide, the potential in vivo inhibition magnitude was predicted. Additionally, both the in vitro inhibition data and computational modeling results provide important information for the modification of andrographolide derivatives as selective inhibitors of UGT2B7. Taken together, data obtained from the present study indicated the potential herb-drug interaction between Andrographis paniculata and the drugs mainly undergoing UGT2B7-catalyzed metabolic elimination, and the andrographolide derivatives as potential candidates for the selective inhibitors of UGT2B7. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. Inhibition of DNA topoisomerase I activity and induction of apoptosis by thiazacridine derivatives

    Energy Technology Data Exchange (ETDEWEB)

    Barros, Francisco W.A. [Department of Physiology and Pharmacology, School of Medicine, Federal University of Ceará, Fortaleza, Ceará (Brazil); Bezerra, Daniel P., E-mail: danielpbezerra@gmail.com [Department of Physiology, Federal University of Sergipe, São Cristóvão, Sergipe (Brazil); Ferreira, Paulo M.P. [Department of Biological Sciences, Federal University of Piauí, Picos, Piauí (Brazil); Cavalcanti, Bruno C. [Department of Physiology and Pharmacology, School of Medicine, Federal University of Ceará, Fortaleza, Ceará (Brazil); Silva, Teresinha G.; Pitta, Marina G.R.; Lima, Maria do C.A. de; Galdino, Suely L.; Pitta, Ivan da R. [Department of Antibiotics, Federal, University of Pernambuco, Recife, Pernembuco (Brazil); Costa-Lotufo, Letícia V.; Moraes, Manoel O. [Department of Physiology and Pharmacology, School of Medicine, Federal University of Ceará, Fortaleza, Ceará (Brazil); Burbano, Rommel R. [Institute of Biological Sciences, Federal University of Pará, Belém, Pará (Brazil); Guecheva, Temenouga N.; Henriques, João A.P. [Biotechnology Center, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul (Brazil); Pessoa, Cláudia, E-mail: cpessoa@ufc.br [Department of Physiology and Pharmacology, School of Medicine, Federal University of Ceará, Fortaleza, Ceará (Brazil)

    2013-04-01

    Thiazacridine derivatives (ATZD) are a novel class of cytotoxic agents that combine an acridine and thiazolidine nucleus. In this study, the cytotoxic action of four ATZD were tested in human colon carcinoma HCT-8 cells: (5Z)-5-acridin-9-ylmethylene-3-(4-methylbenzyl)-thiazolidine-2,4-dione — AC-4; (5ZE)-5-acridin-9-ylmethylene-3-(4-bromo-benzyl)-thiazolidine-2,4-dione — AC-7; (5Z)-5-(acridin-9-ylmethylene)-3-(4-chloro-benzyl) -1,3-thiazolidine-2,4-dione — AC-10; and (5ZE)-5-(acridin-9-ylmethylene)-3-(4-fluoro-benzyl)-1,3-thiazolidine-2, 4-dione — AC-23. All of the ATZD tested reduced the proliferation of HCT-8 cells in a concentration- and time-dependent manner. There were significant increases in internucleosomal DNA fragmentation without affecting membrane integrity. For morphological analyses, hematoxylin–eosin and acridine orange/ethidium bromide were used to stain HCT-8 cells treated with ATZD, which presented the typical hallmarks of apoptosis. ATZD also induced mitochondrial depolarisation and phosphatidylserine exposure and increased the activation of caspases 3/7 in HCT-8 cells, suggesting that this apoptotic cell death was caspase-dependent. In an assay using Saccharomyces cerevisiae mutants with defects in DNA topoisomerases 1 and 3, the ATZD showed enhanced activity, suggesting an interaction between ATZD and DNA topoisomerase enzyme activity. In addition, ATZD inhibited DNA topoisomerase I action in a cell-free system. Interestingly, these ATZD did not cause genotoxicity or inhibit the telomerase activity in human lymphocyte cultures at the experimental levels tested. In conclusion, the ATZD inhibited the DNA topoisomerase I activity and induced tumour cell death through apoptotic pathways. - Highlights: ► Thiazacridine derivatives induce mitochondrial-dependent apoptotic cell death. ► Thiazacridine derivatives inhibit DNA topoisomerase I action. ► Thiazacridine derivatives failed to cause genotoxicity on human lymphocytes.

  8. Inhibition of DNA topoisomerase I activity and induction of apoptosis by thiazacridine derivatives

    International Nuclear Information System (INIS)

    Barros, Francisco W.A.; Bezerra, Daniel P.; Ferreira, Paulo M.P.; Cavalcanti, Bruno C.; Silva, Teresinha G.; Pitta, Marina G.R.; Lima, Maria do C.A. de; Galdino, Suely L.; Pitta, Ivan da R.; Costa-Lotufo, Letícia V.; Moraes, Manoel O.; Burbano, Rommel R.; Guecheva, Temenouga N.; Henriques, João A.P.; Pessoa, Cláudia

    2013-01-01

    Thiazacridine derivatives (ATZD) are a novel class of cytotoxic agents that combine an acridine and thiazolidine nucleus. In this study, the cytotoxic action of four ATZD were tested in human colon carcinoma HCT-8 cells: (5Z)-5-acridin-9-ylmethylene-3-(4-methylbenzyl)-thiazolidine-2,4-dione — AC-4; (5ZE)-5-acridin-9-ylmethylene-3-(4-bromo-benzyl)-thiazolidine-2,4-dione — AC-7; (5Z)-5-(acridin-9-ylmethylene)-3-(4-chloro-benzyl) -1,3-thiazolidine-2,4-dione — AC-10; and (5ZE)-5-(acridin-9-ylmethylene)-3-(4-fluoro-benzyl)-1,3-thiazolidine-2, 4-dione — AC-23. All of the ATZD tested reduced the proliferation of HCT-8 cells in a concentration- and time-dependent manner. There were significant increases in internucleosomal DNA fragmentation without affecting membrane integrity. For morphological analyses, hematoxylin–eosin and acridine orange/ethidium bromide were used to stain HCT-8 cells treated with ATZD, which presented the typical hallmarks of apoptosis. ATZD also induced mitochondrial depolarisation and phosphatidylserine exposure and increased the activation of caspases 3/7 in HCT-8 cells, suggesting that this apoptotic cell death was caspase-dependent. In an assay using Saccharomyces cerevisiae mutants with defects in DNA topoisomerases 1 and 3, the ATZD showed enhanced activity, suggesting an interaction between ATZD and DNA topoisomerase enzyme activity. In addition, ATZD inhibited DNA topoisomerase I action in a cell-free system. Interestingly, these ATZD did not cause genotoxicity or inhibit the telomerase activity in human lymphocyte cultures at the experimental levels tested. In conclusion, the ATZD inhibited the DNA topoisomerase I activity and induced tumour cell death through apoptotic pathways. - Highlights: ► Thiazacridine derivatives induce mitochondrial-dependent apoptotic cell death. ► Thiazacridine derivatives inhibit DNA topoisomerase I action. ► Thiazacridine derivatives failed to cause genotoxicity on human lymphocytes

  9. Decreased inducibility of TNF expression in lipid-loaded macrophages

    Directory of Open Access Journals (Sweden)

    Kallin Bengt

    2002-10-01

    Full Text Available Abstract Background Inflammation and immune responses are considered to be very important in the pathogenesis of atherosclerosis. Lipid accumulation in macrophages of the arterial intima is a characteristic feature of atherosclerosis which can influence the inflammatory potential of macrophages. We studied the effects of lipid loading on the regulation of TNF expression in human monocyte-derived macrophages. Results In macrophages incubated with acetylated low density lipoprotein (ac-LDL for 2 days, mRNA expression of TNF in cells stimulated with TNF decreased by 75%. In cell cultures stimulated over night with IL-1β, lipid loading decreased secretion of TNF into culture medium by 48%. These results suggest that lipid accumulation in macrophages makes them less responsive to inflammatory stimuli. Decreased basal activity and inducibility of transcription factor AP-1 was observed in lipid-loaded cells, suggesting a mechanism for the suppression of cytokine expression. NF-κB binding activity and inducibility were only marginally affected by ac-LDL. LDL and ac-LDL did not activate PPARγ. In contrast, oxidized LDL stimulated AP-1 and PPARγ but inhibited NF-κB, indicating that the effects of lipid loading with ac-LDL were not due to oxidation of lipids. Conclusions Accumulation of lipid, mainly cholesterol, results in down-regulation of TNF expression in macrophages. Since monocytes are known to be activated by cell adhesion, these results suggest that foam cells in atherosclerotic plaques may contribute less potently to an inflammatory reaction than newly arrived monocytes/macrophages.

  10. Natural Cinnamic Acids, Synthetic Derivatives and Hybrids with Antimicrobial Activity

    Directory of Open Access Journals (Sweden)

    Juan David Guzman

    2014-11-01

    Full Text Available Antimicrobial natural preparations involving cinnamon, storax and propolis have been long used topically for treating infections. Cinnamic acids and related molecules are partly responsible for the therapeutic effects observed in these preparations. Most of the cinnamic acids, their esters, amides, aldehydes and alcohols, show significant growth inhibition against one or several bacterial and fungal species. Of particular interest is the potent antitubercular activity observed for some of these cinnamic derivatives, which may be amenable as future drugs for treating tuberculosis. This review intends to summarize the literature data on the antimicrobial activity of the natural cinnamic acids and related derivatives. In addition, selected hybrids between cinnamic acids and biologically active scaffolds with antimicrobial activity were also included. A comprehensive literature search was performed collating the minimum inhibitory concentration (MIC of each cinnamic acid or derivative against the reported microorganisms. The MIC data allows the relative comparison between series of molecules and the derivation of structure-activity relationships.

  11. Gemfibrozil, a Lipid-lowering Drug, Inhibits the Induction of Nitric-oxide Synthase in Human Astrocytes*

    Science.gov (United States)

    Pahan, Kalipada; Jana, Malabendu; Liu, Xiaojuan; Taylor, Bradley S.; Wood, Charles; Fischer, Susan M.

    2007-01-01

    Gemfibrozil, a lipid-lowering drug, inhibited cytokine-induced production of NO and the expression of inducible nitric-oxide synthase (iNOS) in human U373MG astroglial cells and primary astrocytes. Similar to gemfibrozil, clofibrate, another fibrate drug, also inhibited the expression of iNOS. Inhibition of human iNOS promoter-driven luciferase activity by gemfibrozil in cytokine-stimulated U373MG astroglial cells suggests that this compound inhibits the transcription of iNOS. Since gemfibrozil is known to activate peroxisome proliferator-activated receptor-α (PPAR-α), we investigated the role of PPAR-α in gemfibrozil-mediated inhibition of iNOS. Gemfibrozil induced peroxisome proliferator-responsive element (PPRE)-dependent luciferase activity, which was inhibited by the expression of ΔhPPAR-α, the dominant-negative mutant of human PPAR-α. However, ΔhPPAR-α was unable to abrogate gemfibrozil-mediated inhibition of iNOS suggesting that gemfibrozil inhibits iNOS independent of PPAR-α. The human iNOS promoter contains consensus sequences for the binding of transcription factors, including interferon-γ (IFN-γ) regulatory factor-1 (IRF-1) binding to interferon-stimulated responsive element (ISRE), signal transducer and activator of transcription (STAT) binding to γ-activation site (GAS), nuclear factor-κB (NF-κB), activator protein-1 (AP-1), and CCAAT/enhancer-binding protein β (C/EBPβ); therefore, we investigated the effect of gemfibrozil on the activation of these transcription factors. The combination of interleukin (IL)-1β and IFN-γ induced the activation of NF-κB, AP-1, C/EBPβ, and GAS but not that of ISRE, suggesting that IRF-1 may not be involved in cytokine-induced expression of iNOS in human astrocytes. Interestingly, gemfibrozil strongly inhibited the activation of NF-κB, AP-1, and C/EBPβ but not that of GAS in cytokine-stimulated astroglial cells. These results suggest that gemfibrozil inhibits the induction of iNOS probably by

  12. Inhibition of lipid oxidation in foods and feeds and hydroxyl radical-treated fish erythrocytes: A comparative study of Ginkgo biloba leaves extracts and synthetic antioxidants

    Directory of Open Access Journals (Sweden)

    Huatao Li

    2016-09-01

    Full Text Available This study explored the effects of butylated hydroxytoluene (BHT and ethoxyquin (EQ and ethyl ether extracts, ethyl acetate extracts (EAE, acetone extracts, ethanol extracts and aqueous extracts of Ginkgo biloba leaves (EGbs on lipid oxidation in a linoleic acid emulsion, fish flesh and fish feed and in hydroxyl radical (·OH-treated carp erythrocytes. The linoleic acid, fish flesh and fish feed were incubated with BHT, EQ and EGbs at 45°C for 8 d, respectively, except for the control group. The lipid oxidation in the linoleic acid emulsion, fish flesh and fish feed was then measured by the ferric thiocyanate method or thiobarbituric acid method. The carp erythrocytes were treated with BHT, EQ or EGbs in the presence of 40 μmol/L FeSO4 and 20 μmol/L H2O2 at 37°C for 6 h, except for the control group. Oxidative stress and apoptosis parameters in carp erythrocytes were then evaluated by the commercial kit. The results showed that BHT, EQ and EGbs inhibited lipid oxidation in the linoleic acid emulsion, fish flesh and fish feed and ·OH-induced phosphatidylserine exposure and DNA fragmentation (the biomarkers of apoptosis in carp erythrocytes. Furthermore, BHT, EQ and EGbs decreased the generation of reactive oxygen species (ROS, inhibited the oxidation of cellular components and restored the activities of enzymatic antioxidants in ·OH-treated carp erythrocytes. Of all examined EGbs, EAE showed the strongest effects. The effects of EAE on lipid oxidation in the linoleic acid emulsion and on superoxide anion and malonaldehyde levels, catalase activity and apoptosis in ·OH-treated carp erythrocytes were equivalent to or stronger than those of BHT. Moreover, these results indicated that the inhibition order of EGbs on the generation of ROS and oxidation of cellular components in fish erythrocytes approximately agreed with that for the food and feed materials tested above. And, the antioxidative and anti-apoptotic effects of EGbs were

  13. Tuberculosis

    OpenAIRE

    Mochammad, Hatta

    2008-01-01

    This book chapter for medical students and researcher Tuberculosis is still one of the leading causes of death by infectious diseases with 2 million deaths per year and 9.2 million new cases of tuberculosis disease annually [1-3]. Besides, more than 2 milliard people are infected with latent tuberculosis infection (LTBI) [1-3]. Despite continuous effort in the prevention, monitoring and treatment of tuberculosis, the disease remains a major health problem in many countries [4-6...

  14. Arabidopsis lipid droplet-associated protein (LDAP)–interacting protein (LDIP) influences lipid droplet size and neutral lipid homeostasis in both leaves and seeds

    Science.gov (United States)

    Cytoplasmic lipid droplets (LDs) are found in all types of plant cells where they are derived from the endoplasmic reticulum and function as a repository for neutral lipids, as well as serving in lipid remodelling and signalling. However, the mechanisms underlying the formation and functioning of pl...

  15. Salt modulates the stability and lipid binding affinity of the adipocyte lipid-binding proteins

    Science.gov (United States)

    Schoeffler, Allyn J.; Ruiz, Carmen R.; Joubert, Allison M.; Yang, Xuemei; LiCata, Vince J.

    2003-01-01

    Adipocyte lipid-binding protein (ALBP or aP2) is an intracellular fatty acid-binding protein that is found in adipocytes and macrophages and binds a large variety of intracellular lipids with high affinity. Although intracellular lipids are frequently charged, biochemical studies of lipid-binding proteins and their interactions often focus most heavily on the hydrophobic aspects of these proteins and their interactions. In this study, we have characterized the effects of KCl on the stability and lipid binding properties of ALBP. We find that added salt dramatically stabilizes ALBP, increasing its Delta G of unfolding by 3-5 kcal/mol. At 37 degrees C salt can more than double the stability of the protein. At the same time, salt inhibits the binding of the fluorescent lipid 1-anilinonaphthalene-8-sulfonate (ANS) to the protein and induces direct displacement of the lipid from the protein. Thermodynamic linkage analysis of the salt inhibition of ANS binding shows a nearly 1:1 reciprocal linkage: i.e. one ion is released from ALBP when ANS binds, and vice versa. Kinetic experiments show that salt reduces the rate of association between ANS and ALBP while simultaneously increasing the dissociation rate of ANS from the protein. We depict and discuss the thermodynamic linkages among stability, lipid binding, and salt effects for ALBP, including the use of these linkages to calculate the affinity of ANS for the denatured state of ALBP and its dependence on salt concentration. We also discuss the potential molecular origins and potential intracellular consequences of the demonstrated salt linkages to stability and lipid binding in ALBP.

  16. Tuberculosis.

    Science.gov (United States)

    Tabbara, Khalid F

    2007-11-01

    The purpose of this report is to present an update on the manifestations and management of ocular tuberculosis. Tuberculosis affects one-third of the world's population. The incidence of tuberculosis has increased with the increase in the HIV infected population. Following a resurgence of the disease in the US, the incidence has recently declined. Patients may develop scleritis that can be focal, nodular or diffuse with or without keratitis. Anterior granulomatous uveitis may occur. The posterior segment reveals vitritis, choroiditis, and can mimic serpiginous choroiditis and other entities. Patients who are immunosuppressed or HIV infected may develop active mycobacterial disease in the eye leading to rapid destruction of the ocular structures. The diagnosis of ocular tuberculosis is made by isolation of Mycobacterium tuberculosis on Löwestein-Jensen medium or by PCR. The diagnosis is supported by the clinical findings, imaging techniques including optical coherence tomography, fluorescein angiography, indocyanine green and ultrasonography. Tuberculin skin test helps to confirm the diagnosis. Ocular tuberculosis may occur in the absence of pulmonary disease. Patients present with a spectrum of clinical signs. The disease may mimic several clinical entities. Early diagnosis and prompt treatment of ocular tuberculosis may prevent ocular morbidity and blindness.

  17. Tetrandrine induces lipid accumulation through blockade of autophagy in a hepatic stellate cell line

    International Nuclear Information System (INIS)

    Miyamae, Yusaku; Nishito, Yukina; Nakai, Naomi; Nagumo, Yoko; Usui, Takeo; Masuda, Seiji; Kambe, Taiho; Nagao, Masaya

    2016-01-01

    Macroautophagy, or autophagy, is a cellular response in which unnecessary cytoplasmic components, including lipids and organelles, are self-degraded. Recent studies closely related autophagy to activation of hepatic stellate cells (HSCs), a process critical in the pathogenesis of liver fibrosis. During HSC activation, cytoplasmic lipid droplets (LDs) are degraded as autophagic cargo, and then cells express fibrogenic genes. Thus, inhibition of autophagy in HSCs is a potential therapeutic approach for attenuating liver fibrosis. We found that tetrandrine, a bisbenzylisoquinoline alkaloid isolated from Stephania tetrandra, induced lipid accumulation, a phenotype associated with quiescent HSCs, through blockade of autophagy in the rat-derived HSC line HSC-T6. Tetrandrine inhibited autophagic flux without affecting lysosomal function. A phenotypic comparison using siRNA knockdown suggested that tetrandrine may target regulators, involved in fusion between autophagosomes and lysosomes (e.g., syntaxin 17). Moreover, perilipin 1, an LD-coated protein, co-localized specifically with LC3, a marker protein for autophagosomes, in tetrandrine-treated HSC-T6 cells. This suggests a potential role for perilipin 1 in autophagy-mediated LD degradation in HSCs. Our results identified tetrandrine as a potential tool for prevention and treatment of HSC activation. - Highlights: • Autophagy is closely related to lipid degradation in hepatic stellate cells. • Tetrandrine (Tet) causes lipid accumulation via blockade of autophagy in HSC-T6 cells. • Tet blocked autophagy without affecting lysosomal function unlike bafilomycin A_1. • Perilipin 1 was specifically co-localized with LC3 in Tet-treated cells. • Perilipin 1 may play potential roles in autophagy-mediated lipid degradation.

  18. Tetrandrine induces lipid accumulation through blockade of autophagy in a hepatic stellate cell line

    Energy Technology Data Exchange (ETDEWEB)

    Miyamae, Yusaku, E-mail: ymiyamae@lif.kyoto-u.ac.jp [Graduate School of Biostudies, Kyoto University, Oiwakecho, Kitashirakawa, Sakyo-ku, Kyoto 606-8502 (Japan); Nishito, Yukina; Nakai, Naomi [Graduate School of Biostudies, Kyoto University, Oiwakecho, Kitashirakawa, Sakyo-ku, Kyoto 606-8502 (Japan); Nagumo, Yoko; Usui, Takeo [Faculty of Life and Environmental Sciences, University of Tsukuba, Tennodai, Tsukuba, Ibaraki 305-8572 (Japan); Masuda, Seiji; Kambe, Taiho [Graduate School of Biostudies, Kyoto University, Oiwakecho, Kitashirakawa, Sakyo-ku, Kyoto 606-8502 (Japan); Nagao, Masaya, E-mail: mnagao@kais.kyoto-u.ac.jp [Graduate School of Biostudies, Kyoto University, Oiwakecho, Kitashirakawa, Sakyo-ku, Kyoto 606-8502 (Japan)

    2016-08-12

    Macroautophagy, or autophagy, is a cellular response in which unnecessary cytoplasmic components, including lipids and organelles, are self-degraded. Recent studies closely related autophagy to activation of hepatic stellate cells (HSCs), a process critical in the pathogenesis of liver fibrosis. During HSC activation, cytoplasmic lipid droplets (LDs) are degraded as autophagic cargo, and then cells express fibrogenic genes. Thus, inhibition of autophagy in HSCs is a potential therapeutic approach for attenuating liver fibrosis. We found that tetrandrine, a bisbenzylisoquinoline alkaloid isolated from Stephania tetrandra, induced lipid accumulation, a phenotype associated with quiescent HSCs, through blockade of autophagy in the rat-derived HSC line HSC-T6. Tetrandrine inhibited autophagic flux without affecting lysosomal function. A phenotypic comparison using siRNA knockdown suggested that tetrandrine may target regulators, involved in fusion between autophagosomes and lysosomes (e.g., syntaxin 17). Moreover, perilipin 1, an LD-coated protein, co-localized specifically with LC3, a marker protein for autophagosomes, in tetrandrine-treated HSC-T6 cells. This suggests a potential role for perilipin 1 in autophagy-mediated LD degradation in HSCs. Our results identified tetrandrine as a potential tool for prevention and treatment of HSC activation. - Highlights: • Autophagy is closely related to lipid degradation in hepatic stellate cells. • Tetrandrine (Tet) causes lipid accumulation via blockade of autophagy in HSC-T6 cells. • Tet blocked autophagy without affecting lysosomal function unlike bafilomycin A{sub 1}. • Perilipin 1 was specifically co-localized with LC3 in Tet-treated cells. • Perilipin 1 may play potential roles in autophagy-mediated lipid degradation.

  19. Improvement of therapy of inflammatory dieseases of parodentium in patients with focal tuberculosis

    Directory of Open Access Journals (Sweden)

    Shuldyakov А.А.

    2011-03-01

    Full Text Available The purpose of the study is to determine clinical and pathogenetic efficacy of cycloferon liniment in the combined therapy of periodontitis of patients with focal tuberculosis. It is proved, that use of liniment Cycloferon in the combined treatment of patients with focal tuberculosis allows to accelerate process of normalization of parameters of lipid per-oxidation and antioxidant potential of blood, to decrease infection (herpes symplex virus I, Candida albicans, staphylo-coccus aureus in parodontal pockets and local inflammation with reduction of activity of factor tumours necrosis and interleukin 1b. It leads to soon recovery and decrease of frequency of parodontitis recurrences

  20. Characterization of goat inner cell mass derived cells in double kinase inhibition condition

    International Nuclear Information System (INIS)

    Wei, Qiang; Xi, Qihui; Liu, Xiaokun; Meng, Kai; Zhao, Xiaoe; Ma, Baohua

    2017-01-01

    The identification of small molecular inhibitors, which were reported to promote the derivation of mouse and human embryonic stem cells (ESCs), provides a potential strategy for the derivation of domesticated ungulate ESCs. In present study, goat inner cell mass (ICM) derived cells in the double inhibition (2i) condition, in which, mitogen-activated protein kinase kinase (MAP2K) and glycogen synthase kinase 3 (GSK3) were inhibited by PD0325901 and BIO respectively, were characterized. The results showed that goat ICM derived cells in 2i medium adding leukaemia inhibitor factor (LIF) possessed a mouse ES-like morphology. But these cells had much compromised proliferation capacity, resulting in difficulty in expansion. In 2i alone medium, goat ICM derived cells possessed primate ES-like morphology. These cells expressed pluripotent markers and could differentiate into derivatives of three germ layers in vitro. However, these cells could not be proliferated in long-term (persisted for 15 passages) because of spontaneously neural differentiation. Additionally, goat ICM derived cells could be inducing differentiated into neural lineage in vitro. Although goat ESCs could not be established in PD0325901 and BIO alone medium, this derivation condition provides a useful research system to find signaling molecular those regulate early embryonic development and pluripotency in goat. - Highlights: • Goat inner cell mass derived cells possessed finite pluripotency in 2i condition. • These cells could not be proliferated in long-term in 2i condition. • These cells could spontaneously and inductively differentiate into neural lineage.

  1. Mycobacterium tuberculosis nucleoid-associated DNA-binding protein H-NS binds with high-affinity to the Holliday junction and inhibits strand exchange promoted by RecA protein.

    Science.gov (United States)

    Sharadamma, N; Harshavardhana, Y; Singh, Pawan; Muniyappa, K

    2010-06-01

    A number of studies have shown that the structure and composition of bacterial nucleoid influences many a processes related to DNA metabolism. The nucleoid-associated proteins modulate not only the DNA conformation but also regulate the DNA metabolic processes such as replication, recombination, repair and transcription. Understanding of how these processes occur in the context of Mycobacterium tuberculosis nucleoid is of considerable medical importance because the nucleoid structure may be constantly remodeled in response to environmental signals and/or growth conditions. Many studies have concluded that Escherichia coli H-NS binds to DNA in a sequence-independent manner, with a preference for A-/T-rich tracts in curved DNA; however, recent studies have identified the existence of medium- and low-affinity binding sites in the vicinity of the curved DNA. Here, we show that the M. tuberculosis H-NS protein binds in a more structure-specific manner to DNA replication and repair intermediates, but displays lower affinity for double-stranded DNA with relatively higher GC content. Notably, M. tuberculosis H-NS was able to bind Holliday junction (HJ), the central recombination intermediate, with substantially higher affinity and inhibited the three-strand exchange promoted by its cognate RecA. Likewise, E. coli H-NS was able to bind the HJ and suppress DNA strand exchange promoted by E. coli RecA, although much less efficiently compared to M. tuberculosis H-NS. Our results provide new insights into a previously unrecognized function of H-NS protein, with implications for blocking the genome integration of horizontally transferred genes by homologous and/or homeologous recombination.

  2. Tuberculosis

    Directory of Open Access Journals (Sweden)

    Elena Morán López

    2001-04-01

    Full Text Available En la actualidad la incidencia de la tuberculosis ha aumentado. El Mycobacterium tuberculosis infecta frecuentemente a las personas con SIDA, debido a que en estos pacientes hay una reducción de la resistencia mediada por células T, lo que propicia que este bacilo pueda desarrollar la enfermedad con una frecuencia superior a la de las personas sanas. La transmisión de la enfermedad puede ser por vía directa, de un individuo afectado a otro, fundamentalmente por las gotitas de saliva que contengan a este microorganismo, o por vía indirecta por la inhalación del bacilo que se puede encontrar por meses en los objetos de uso diario, debido a su gran resistencia. Las micobacterias que producen tuberculosis en el hombre inmunocompetente son la Mycobacterium tuberculosis y la bovis, otros tipos pueden provocar tuberculosis en individuos inmunocomprometidos. La patogenicidad de este bacilo está relacionada con su capacidad para escapar de la destrucción inducida por los macrófagos y para provocar hipersensibilidad de tipo retardado. Esta enfermedad tiene muy pocas manifestaciones bucales, lo que se observa generalmente es una úlcera que toma como asiento fundamental el dorso de la lengua. La tuberculosis amenaza con convertirse en una enfermedad incurable por la deficiente administración de los programas contra ésta, por lo que la OMS plantea para su detección y tratamiento el DOTS (tratamiento observado directamente, de corta duración que comienza a tener resultados satisfactorios, aunque en el último quinquenio, el 88 % de los pacientes que se estimaban como infectados por tuberculosis no recibieron DOTS.At present, the incidence of tuberculosis is on the rise. Mycobacterium tuberculosis often infests AIDS patients due to the fact that these persons´T-cell mediated resistance is reduced, which favors the development of the disease at a higher rate than in healthy people. The disease can be transmitted directly, that is , from an

  3. Renal tuberculosis

    Directory of Open Access Journals (Sweden)

    Džamić Zoran

    2016-01-01

    Full Text Available Tuberculosis is still a significant health problem in the world, mostly in developing countries. The special significance lies in immunocompromised patients, particularly those suffering from the HIV. Urogenital tuberculosis is one of the most common forms of extrapulmonary tuberculosis, while the most commonly involved organ is the kidney. Renal tuberculosis occurs by hematogenous dissemination of mycobacterium tuberculosis from a primary tuberculosis foci in the body. Tuberculosis is characterized by the formation of pathognomonic lesions in the tissues - granulomata. These granulomata may heal spontaneously or remain stable for years. In certain circumstances in the body associated with immunosuppression, the disease may be activated. Central caseous necrosis occurs within tuberculoma, leading to formation of cavities that destroy renal parenchyma. The process may gain access to the collecting system, forming the caverns. In this way, infection can be spread distally to renal pelvis, ureter and bladder. Scaring of tissue by tuberculosis process may lead to development of strictures of the urinary tract. The clinical manifestations are presented by nonspecific symptoms and signs, so tuberculosis can often be overlooked. Sterile pyuria is characteristic for urinary tuberculosis. Dysuric complaints, flank pain or hematuria may be presented in patients. Constitutional symptoms of fever, weight loss and night sweats are presented in some severe cases. Diagnosis is made by isolation of mycobacterium tuberculosis in urine samples, by cultures carried out on standard solid media optimized for mycobacterial growth. Different imaging studies are used in diagnostics - IVU, CT and NMR are the most important. Medical therapy is the main modality of tuberculosis treatment. The first line anti-tuberculosis drugs include isoniazid, rifampicin, pyrazinamide and ethambutol. Surgical treatment is required in some cases, to remove severely damaged kidney, if

  4. pH-responsive artemisinin derivatives and lipid nanoparticle formulations inhibit growth of breast cancer cells in vitro and induce down-regulation of HER family members.

    Directory of Open Access Journals (Sweden)

    Yitong J Zhang

    Full Text Available Artemisinin (ART dimers show potent anti-proliferative activities against breast cancer cells. To facilitate their clinical development, novel pH-responsive artemisinin dimers were synthesized for liposomal nanoparticle formulations. A new ART dimer was designed to become increasingly water-soluble as pH declines. The new artemisinin dimer piperazine derivatives (ADPs remained tightly associated with liposomal nanoparticles (NPs at neutral pH but were efficiently released at acidic pH's that are known to exist within solid tumors and organelles such as endosomes and lysosomes. ADPs incorporated into nanoparticles down regulated the anti-apoptotic protein, survivin, and cyclin D1 when incubated at low concentrations with breast cancer cell lines. We demonstrate for the first time, for any ART derivative, that ADP NPs can down regulate the oncogenic protein HER2, and its counterpart, HER3 in a HER2+ cell line. We also show that the wild type epidermal growth factor receptor (EGFR or HER1 declines in a triple negative breast cancer (TNBC cell line in response to ADP NPs. The declines in these proteins are achieved at concentrations of NP109 at or below 1 µM. Furthermore, the new artemisinin derivatives showed improved cell-proliferation inhibition effects compared to known dimer derivatives.

  5. Tuberculosis (TB): Treatment

    Science.gov (United States)

    ... Education & Training Home Conditions Tuberculosis (TB) Tuberculosis: Treatment Tuberculosis: Treatment Make an Appointment Refer a Patient Ask ... or bones is treated longer. NEXT: Preventive Treatment Tuberculosis: Diagnosis Tuberculosis: History Clinical Trials For more than ...

  6. Living with Tuberculosis

    Science.gov (United States)

    ... Diseases > Lung Disease Lookup > Tuberculosis (TB) Living With Tuberculosis What to Expect You will need regular checkups ... XML file."); } }); } } --> Blank Section Header Lung Disease Lookup Tuberculosis (TB) Learn About Tuberculosis Tuberculosis Symptoms, Causes & Risk ...

  7. Tuberculosis como enfermedad ocupacional Tuberculosis as occupational disease

    Directory of Open Access Journals (Sweden)

    Alberto Mendoza-Ticona

    2012-06-01

    Full Text Available Existe evidencia suficiente para declarar a la tuberculosis como enfermedad ocupacional en diversos profesionales especialmente entre los trabajadores de salud. En el Perú están normados y reglamentados los derechos laborales inherentes a la tuberculosis como enfermedad ocupacional, como la cobertura por discapacidad temporal o permanente. Sin embargo, estos derechos aún no han sido suficientemente socializados. En este trabajo se presenta información sobre el riesgo de adquirir tuberculosis en el lugar de trabajo, se revisan las evidencias para declarar a la tuberculosis como enfermedad ocupacional en trabajadores de salud y se presenta la legislación peruana vigente al respecto.There is enough evidence to declare tuberculosis as an occupational disease among healthcare workers. In Peru, there are regulations granting employment rights regarding tuberculosis as an occupational disease, such as healthcare coverage for temporary or permanent disability. However, these rights have not been sufficiently socialized. This study presents information on the risk of acquiring tuberculosis in the workplace, and a review of the evidence to declare tuberculosis as an occupational disease among health care workers, presenting the current Peruvian law related.

  8. Maternal obesity reduces milk lipid production in lactating mice by inhibiting acetyl-CoA carboxylase and impairing fatty acid synthesis.

    Science.gov (United States)

    Saben, Jessica L; Bales, Elise S; Jackman, Matthew R; Orlicky, David; MacLean, Paul S; McManaman, James L

    2014-01-01

    Maternal metabolic and nutrient trafficking adaptations to lactation differ among lean and obese mice fed a high fat (HF) diet. Obesity is thought to impair milk lipid production, in part, by decreasing trafficking of dietary and de novo synthesized lipids to the mammary gland. Here, we report that de novo lipogenesis regulatory mechanisms are disrupted in mammary glands of lactating HF-fed obese (HF-Ob) mice. HF feeding decreased the total levels of acetyl-CoA carboxylase-1 (ACC), and this effect was exacerbated in obese mice. The relative levels of phosphorylated (inactive) ACC, were elevated in the epithelium, and decreased in the adipose stroma, of mammary tissue from HF-Ob mice compared to those of HF-fed lean (HF-Ln) mice. Mammary gland levels of AMP-activated protein kinase (AMPK), which catalyzes formation of inactive ACC, were also selectively elevated in mammary glands of HF-Ob relative to HF-Ln dams or to low fat fed dams. These responses correlated with evidence of increased lipid retention in mammary adipose, and decreased lipid levels in mammary epithelial cells, of HF-Ob dams. Collectively, our data suggests that maternal obesity impairs milk lipid production, in part, by disrupting the balance of de novo lipid synthesis in the epithelial and adipose stromal compartments of mammary tissue through processes that appear to be related to increased mammary gland AMPK activity, ACC inhibition, and decreased fatty acid synthesis.

  9. Metabonomics reveals drastic changes in anti-inflammatory/pro-resolving polyunsaturated fatty acids-derived lipid mediators in leprosy disease.

    Directory of Open Access Journals (Sweden)

    Julio J Amaral

    Full Text Available Despite considerable efforts over the last decades, our understanding of leprosy pathogenesis remains limited. The complex interplay between pathogens and hosts has profound effects on host metabolism. To explore the metabolic perturbations associated with leprosy, we analyzed the serum metabolome of leprosy patients. Samples collected from lepromatous and tuberculoid patients before and immediately after the conclusion of multidrug therapy (MDT were subjected to high-throughput metabolic profiling. Our results show marked metabolic alterations during leprosy that subside at the conclusion of MDT. Pathways showing the highest modulation were related to polyunsaturated fatty acid (PUFA metabolism, with emphasis on anti-inflammatory, pro-resolving omega-3 fatty acids. These results were confirmed by eicosanoid measurements through enzyme-linked immunoassays. Corroborating the repertoire of metabolites altered in sera, metabonomic analysis of skin specimens revealed alterations in the levels of lipids derived from lipase activity, including PUFAs, suggesting a high lipid turnover in highly-infected lesions. Our data suggest that omega-6 and omega-3, PUFA-derived, pro-resolving lipid mediators contribute to reduced tissue damage irrespectively of pathogen burden during leprosy disease. Our results demonstrate the utility of a comprehensive metabonomic approach for identifying potential contributors to disease pathology that may facilitate the development of more targeted treatments for leprosy and other inflammatory diseases.

  10. Colorectal tuberculosis

    International Nuclear Information System (INIS)

    Nagi, B.; Kochhar, R.; Bhasin, D.K.; Singh, K.

    2003-01-01

    Our objective was to evaluate the incidence of colorectal tuberculosis in our series and to study its radiological spectrum. A total of 684 cases of proven gastrointestinal tuberculosis with positive barium contrast findings seen over a period of more than one decade were evaluated. The study did not include cases where colon was involved in direct contiguity with ileo-caecal tuberculosis. Seventy-four patients (10.8%) had colorectal tuberculosis. Commonest site involved was transverse colon, closely followed by rectum and ascending colon. Radiological findings observed were in the form of strictures (54%), colitis (39%) and polypoid lesions (7%). Complications noted were in the form of perforations and fistulae in 18.9% of cases. Colorectal tuberculosis is a very common site for gastrointestinal tuberculosis. Typical findings of colorectal tuberculosis are strictures, signs of colitis and polypoid lesions. Common complications are perforation and fistulae. (orig.)

  11. Crystal Structure of Mycobacterium tuberculosis H37Rv AldR (Rv2779c), a Regulator of the ald Gene: DNA BINDING AND IDENTIFICATION OF SMALL MOLECULE INHIBITORS.

    Science.gov (United States)

    Dey, Abhishek; Shree, Sonal; Pandey, Sarvesh Kumar; Tripathi, Rama Pati; Ramachandran, Ravishankar

    2016-06-03

    Here we report the crystal structure of M. tuberculosis AldR (Rv2779c) showing that the N-terminal DNA-binding domains are swapped, forming a dimer, and four dimers are assembled into an octamer through crystal symmetry. The C-terminal domain is involved in oligomeric interactions that stabilize the oligomer, and it contains the effector-binding sites. The latter sites are 30-60% larger compared with homologs like MtbFFRP (Rv3291c) and can consequently accommodate larger molecules. MtbAldR binds to the region upstream to the ald gene that is highly up-regulated in nutrient-starved tuberculosis models and codes for l-alanine dehydrogenase (MtbAld; Rv2780). Further, the MtbAldR-DNA complex is inhibited upon binding of Ala, Tyr, Trp and Asp to the protein. Studies involving a ligand-binding site G131T mutant show that the mutant forms a DNA complex that cannot be inhibited by adding the amino acids. Comparative studies suggest that binding of the amino acids changes the relative spatial disposition of the DNA-binding domains and thereby disrupt the protein-DNA complex. Finally, we identified small molecules, including a tetrahydroquinoline carbonitrile derivative (S010-0261), that inhibit the MtbAldR-DNA complex. The latter molecules represent the very first inhibitors of a feast/famine regulatory protein from any source and set the stage for exploring MtbAldR as a potential anti-tuberculosis target. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  12. Effects of lipid concentration on anaerobic co-digestion of municipal biomass wastes

    International Nuclear Information System (INIS)

    Sun, Yifei; Wang, Dian; Yan, Jiao; Qiao, Wei; Wang, Wei; Zhu, Tianle

    2014-01-01

    Highlights: • Lipid in municipal biomass would not inhibited the anaerobic digestion process. • A lipid concentration of 65% of total VS was the inhibition concentration. • The amount of Brevibacterium decreased with the increasing of the lipid contents. • Long chain fatty acids stacked on the methanogenic bacteria and blocked the mass transfer process. - Abstract: The influence of the lipid concentration on the anaerobic co-digestion of municipal biomass waste and waste-activated sludge was assessed by biochemical methane potential (BMP) tests and by bench-scale tests in a mesophilic semi-continuous stirred tank reactor. The effect of increasing the volatile solid (VS) concentration of lipid from 0% to 75% was investigated. BMP tests showed that lipids in municipal biomass waste could enhance the methane production. The results of bench-scale tests showed that a lipids concentration of 65% of total VS was the inhibition concentration. Methane yields increased with increasing lipid concentration when lipid concentrations were below 60%, but when lipid concentration was set as 65% or higher, methane yields decreased sharply. When lipid concentrations were below 60%, the pH values were in the optimum range for the growth of methanogenic bacteria and the ratios of volatile fatty acid (VFA)/alkalinity were in the range of 0.2–0.6. When lipid concentrations exceeded 65%, the pH values were below 5.2, the reactor was acidized and the values of VFA/alkalinity rose to 2.0. The amount of Brevibacterium decreased with increasing lipid content. Long chain fatty acids stacked on the methanogenic bacteria and blocked the mass transfer process, thereby inhibiting anaerobic digestion

  13. Effects of lipid concentration on anaerobic co-digestion of municipal biomass wastes

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Yifei, E-mail: sunif@buaa.edu.cn [School of Chemistry and Environment, Beihang University, Beijing 100191 (China); Wang, Dian; Yan, Jiao [School of Chemistry and Environment, Beihang University, Beijing 100191 (China); Qiao, Wei [College of Chemical Science and Engineering, China University of Petroleum, Beijing 102249 (China); Wang, Wei [School of Environment, Tsinghua University, Beijing 100084 (China); Zhu, Tianle [School of Chemistry and Environment, Beihang University, Beijing 100191 (China)

    2014-06-01

    Highlights: • Lipid in municipal biomass would not inhibited the anaerobic digestion process. • A lipid concentration of 65% of total VS was the inhibition concentration. • The amount of Brevibacterium decreased with the increasing of the lipid contents. • Long chain fatty acids stacked on the methanogenic bacteria and blocked the mass transfer process. - Abstract: The influence of the lipid concentration on the anaerobic co-digestion of municipal biomass waste and waste-activated sludge was assessed by biochemical methane potential (BMP) tests and by bench-scale tests in a mesophilic semi-continuous stirred tank reactor. The effect of increasing the volatile solid (VS) concentration of lipid from 0% to 75% was investigated. BMP tests showed that lipids in municipal biomass waste could enhance the methane production. The results of bench-scale tests showed that a lipids concentration of 65% of total VS was the inhibition concentration. Methane yields increased with increasing lipid concentration when lipid concentrations were below 60%, but when lipid concentration was set as 65% or higher, methane yields decreased sharply. When lipid concentrations were below 60%, the pH values were in the optimum range for the growth of methanogenic bacteria and the ratios of volatile fatty acid (VFA)/alkalinity were in the range of 0.2–0.6. When lipid concentrations exceeded 65%, the pH values were below 5.2, the reactor was acidized and the values of VFA/alkalinity rose to 2.0. The amount of Brevibacterium decreased with increasing lipid content. Long chain fatty acids stacked on the methanogenic bacteria and blocked the mass transfer process, thereby inhibiting anaerobic digestion.

  14. Tuberculosis

    Science.gov (United States)

    Friend, Milton

    1999-01-01

    Avian tuberculosis is usually caused by the bacterium Mycobacterium avium. At least 20 different types of M. avium have been identified, only three of which are known to cause disease in birds. Other types of Mycobacterium rarely cause tuberculosis in most avian species; however, parrots, macaws, and other large perching birds are susceptible to human and bovine types of tuberculosis bacilli. Avian tuberculosis generally is transmitted by direct contact with infected birds, ingestion of contaminated feed and water, or contact with a contaminated environment. Inhalation of the bacterium can cause respiratory tract infections. Wild bird studies in the Netherlands disclosed tuberculosis-infected puncture-type injuries in birds of prey that fight at the nest site (kestrels) or on the ground (buteo-type buzzards), but tuberculosisinfected injuries were not found in accipiters (falco

  15. Lipid peroxidation in liver homogenates. Effects of membrane lipid composition and irradiation

    International Nuclear Information System (INIS)

    Vaca, C.; Ringdahl, M.H.

    1984-01-01

    The rate of lipid peroxidation has been followed in whole liver homogenates from mice using the TBA-method. Liver homogenates with different membrane fatty acid composition were obtained from mice fed diets containing different sources of fat i.e. sunflower seed oil (S), coconut oil (C) and hydrogenated lard (L). The yields of the TBA-chromophore (TBA-c) were 4 times higher in the liver homogenates S compared to C and L after 4 hour incubation at 37 0 C. Irradiation of the liver homogenates before incubation inhibited the formation of lipid peroxidation products in a dose dependent way. The catalytic capacity of the homogenates was investigated, followed as the autooxidation of cysteamine or modified by addition of the metal chelator EDTA. The rate of autooxidation of cysteamine, which is dependent on the presence of metal ions (Fe/sup 2+/ or Cu/sup 2+/), was decreased with increasing dose, thus indicating an alteration in the availability of metal catalysts in the system. The addition of Fe/sup 2+/ to the system restored the lipid peroxidation yields in the irradiated systems and the presence of EDTA inhibited the formation of lipid peroxidation products in all three dietary groups. It is suggested that irradiation alters the catalytic activity needed in the autooxidation processes of polyunsaturated fatty acids

  16. Production of antibodies against glycolipids from the Mycobacterium tuberculosis cell wall in aerosol murine models of tuberculosis.

    Science.gov (United States)

    Cardona, P J; Julián, E; Vallès, X; Gordillo, S; Muñoz, M; Luquin, M; Ausina, V

    2002-06-01

    Evolution of antibodies against glycolipids from the Mycobacterium tuberculosis cell wall has been studied for the first time in experimental murine models of tuberculosis induced by aerosol, in which infection, reinfection, reactivation, prophylaxis and treatment with antibiotics have been assayed. Results show a significant humoral response against these antigens, where diacyltrehaloses (DAT) and sulpholipid I (SL-I) elicited higher antibody levels than protein antigens like antigen 85 protein complex (Ag85), culture filtrate proteins (CFP) and purified protein derivative (PPD). Only immunoglobulin M (IgM) antibodies have been detected against DAT and SL-I. Their evolution has a positive correlation with bacillary concentration in tissues.

  17. The South African Tuberculosis Care Cascade: Estimated Losses and Methodological Challenges.

    Science.gov (United States)

    Naidoo, Pren; Theron, Grant; Rangaka, Molebogeng X; Chihota, Violet N; Vaughan, Louise; Brey, Zameer O; Pillay, Yogan

    2017-11-06

    While tuberculosis incidence and mortality are declining in South Africa, meeting the goals of the End TB Strategy requires an invigorated programmatic response informed by accurate data. Enumerating the losses at each step in the care cascade enables appropriate targeting of interventions and resources. We estimated the tuberculosis burden; the number and proportion of individuals with tuberculosis who accessed tests, had tuberculosis diagnosed, initiated treatment, and successfully completed treatment for all tuberculosis cases, for those with drug-susceptible tuberculosis (including human immunodeficiency virus (HIV)-coinfected cases) and rifampicin-resistant tuberculosis. Estimates were derived from national electronic tuberculosis register data, laboratory data, and published studies. The overall tuberculosis burden was estimated to be 532005 cases (range, 333760-764480 cases), with successful completion of treatment in 53% of cases. Losses occurred at multiple steps: 5% at test access, 13% at diagnosis, 12% at treatment initiation, and 17% at successful treatment completion. Overall losses were similar among all drug-susceptible cases and those with HIV coinfection (54% and 52%, respectively, successfully completed treatment). Losses were substantially higher among rifampicin- resistant cases, with only 22% successfully completing treatment. Although the vast majority of individuals with tuberculosis engaged the public health system, just over half were successfully treated. Urgent efforts are required to improve implementation of existing policies and protocols to close gaps in tuberculosis diagnosis, treatment initiation, and successful treatment completion. © The Author 2017. Published by Oxford University Press for the Infectious Diseases Society of America.

  18. Plant-Derived Polyphenols Interact with Staphylococcal Enterotoxin A and Inhibit Toxin Activity

    OpenAIRE

    Shimamura, Yuko; Aoki, Natsumi; Sugiyama, Yuka; Tanaka, Takashi; Murata, Masatsune; Masuda, Shuichi

    2016-01-01

    This study was performed to investigate the inhibitory effects of 16 different plant-derived polyphenols on the toxicity of staphylococcal enterotoxin A (SEA). Plant-derived polyphenols were incubated with the cultured Staphylococcus aureus C-29 to investigate the effects of these samples on SEA produced from C-29 using Western blot analysis. Twelve polyphenols (0.1-0.5 mg/mL) inhibited the interaction between the anti-SEA antibody and SEA. We examined whether the polyphenols could directly i...

  19. Strain specific transcriptional response in Mycobacterium tuberculosis infected macrophages

    Directory of Open Access Journals (Sweden)

    Koo Mi-Sun

    2012-01-01

    Full Text Available Abstract Background Tuberculosis (TB, a bacterial infection caused by Mycobacterium tuberculosis (Mtb remains a significant health problem worldwide with a third of the world population infected and nearly nine million new cases claiming 1.1 million deaths every year. The outcome following infection by Mtb is determined by a complex and dynamic host-pathogen interaction in which the phenotype of the pathogen and the immune status of the host play a role. However, the molecular mechanism by which Mtb strains induce different responses during intracellular infection of the host macrophage is not fully understood. To explore the early molecular events triggered upon Mtb infection of macrophages, we studied the transcriptional responses of murine bone marrow-derived macrophages (BMM to infection with two clinical Mtb strains, CDC1551 and HN878. These strains have previously been shown to differ in their virulence/immunogenicity in the mouse and rabbit models of pulmonary TB. Results In spite of similar intracellular growth rates, we observed that compared to HN878, infection by CDC1551 of BMM was associated with an increased global transcriptome, up-regulation of a specific early (6 hours immune response network and significantly elevated nitric oxide production. In contrast, at 24 hours post-infection of BMM by HN878, more host genes involved in lipid metabolism, including cholesterol metabolism and prostaglandin synthesis were up-regulated, compared to infection with CDC1551. In association with the differences in the macrophage responses to infection with the 2 Mtb strains, intracellular CDC1551 expressed higher levels of stress response genes than did HN878. Conclusions In association with the early and more robust macrophage activation, intracellular CDC1551 cells were exposed to a higher level of stress leading to increased up-regulation of the bacterial stress response genes. In contrast, sub-optimal activation of macrophages and induction of

  20. Adaptation to Environmental Stimuli within the Host: Two-Component Signal Transduction Systems of Mycobacterium tuberculosis

    Science.gov (United States)

    Bretl, Daniel J.; Demetriadou, Chrystalla; Zahrt, Thomas C.

    2011-01-01

    Summary: Pathogenic microorganisms encounter a variety of environmental stresses following infection of their respective hosts. Mycobacterium tuberculosis, the etiological agent of tuberculosis, is an unusual bacterial pathogen in that it is able to establish lifelong infections in individuals within granulomatous lesions that are formed following a productive immune response. Adaptation to this highly dynamic environment is thought to be mediated primarily through transcriptional reprogramming initiated in response to recognition of stimuli, including low-oxygen tension, nutrient depletion, reactive oxygen and nitrogen species, altered pH, toxic lipid moieties, cell wall/cell membrane-perturbing agents, and other environmental cues. To survive continued exposure to these potentially adverse factors, M. tuberculosis encodes a variety of regulatory factors, including 11 complete two-component signal transduction systems (TCSSs) and several orphaned response regulators (RRs) and sensor kinases (SKs). This report reviews our current knowledge of the TCSSs present in M. tuberculosis. In particular, we discuss the biochemical and functional characteristics of individual RRs and SKs, the environmental stimuli regulating their activation, the regulons controlled by the various TCSSs, and the known or postulated role(s) of individual TCSSs in the context of M. tuberculosis physiology and/or pathogenesis. PMID:22126994

  1. Transcriptional and physiological changes during Mycobacterium tuberculosis reactivation from non-replicating persistence

    Directory of Open Access Journals (Sweden)

    Peicheng Du

    2016-08-01

    Full Text Available Mycobacterium tuberculosis can persist for years in the hostile environment of the host in a non-replicating or slowly replicating state. While active disease predominantly results from reactivation of a latent infection, the molecular mechanisms of M. tuberculosis reactivation are still poorly understood. We characterized the physiology and global transcriptomic profiles of M. tuberculosis during reactivation from hypoxia-induced non-replicating persistence. We found that M. tuberculosis reactivation upon reaeration was associated with a lag phase, in which the recovery of cellular physiological and metabolic functions preceded the resumption of cell replication. Enrichment analysis of the transcriptomic dynamics revealed changes to many metabolic pathways and transcription regulons/subnetworks that orchestrated the metabolic and physiological transformation in preparation for cell division. In particular, we found that M. tuberculosis reaeration lag phase is associated with down-regulation of persistence-associated regulons/subnetworks, including DosR, MprA, SigH, SigE and ClgR, as well as metabolic pathways including those involved in the uptake of lipids and their catabolism. More importantly, we identified a number of up-regulated transcription regulons and metabolic pathways, including those involved in metal transport and remobilization, second messenger-mediated responses, DNA repair and recombination, and synthesis of major cell wall components. We also found that inactivation of the major alternative sigma factors SigE or SigH disrupted exit from persistence, underscoring the importance of the global transcriptional reprogramming during M. tuberculosis reactivation. Our observations suggest that M. tuberculosis lag phase is associated with a global gene expression reprogramming that defines the initiation of a reactivation process.

  2. Human Adipose-Derived Mesenchymal Stem/Stromal Cells Handling Protocols. Lipid Droplets and Proteins Double-Staining

    Directory of Open Access Journals (Sweden)

    Aldana D. Gojanovich

    2018-04-01

    Full Text Available Human Adipose-derived mesenchymal stem/stromal cells (hASCs are of great interest because of their potential for therapeutic approaches. The method described here covers every single step necessary for hASCs isolation from subcutaneous abdominal adipose tissue, multicolor phenotyping by flow cytometry, and quantitative determination of adipogenic differentiation status by means of lipid droplets (LDs accumulation, and Western blot analysis. Moreover, to simultaneously analyze both LDs accumulation and cellular proteins localization by fluorescence microscopy, we combined Oil Red O (ORO staining with immunofluorescence detection. For LDs quantification we wrote a program for automatic ORO-stained digital image processing implemented in Octave, a freely available software package. Our method is based on the use of the traditional low cost neutral lipids dye ORO, which can be imaged both by bright-field and fluorescence microscopy. The utilization of ORO instead of other more expensive lipid-specific dyes, together with the fact that the whole method has been designed employing cost-effective culture reagents (standard culture medium and serum, makes it affordable for tight-budget research laboratories. These may be replaced, if necessary or desired, by defined xeno-free reagents for clinical research and applications.

  3. Paleopathology of Human Tuberculosis and the Potential Role of Climate

    Science.gov (United States)

    Nerlich, Andreas G.; Lösch, Sandra

    2009-01-01

    Both origin and evolution of tuberculosis and its pathogens (Mycobacterium tuberculosis complex) are not fully understood. The paleopathological investigation of human remains offers a unique insight into the molecular evolution and spread including correlative data of the environment. The molecular analysis of material from Egypt (3000–500 BC), Sudan (200–600 AD), Hungary (600–1700 AD), Latvia (1200–1600 AD), and South Germany (1400–1800 AD) urprisingly revealed constantly high frequencies of tuberculosis in all different time periods excluding significant environmental influence on tuberculosis spread. The typing of various mycobacteria strains provides evidence for ancestral M. tuberculosis strains in Pre- to early Egyptian dynastic material (3500–2650 BC), while typical M. africanum signatures were detected in a Middle Kingdom tomb (2050–1650 BC). Samples from the New Kingdom to Late Period (1500–500 BC) indicated modern M. tuberculosis strains. No evidence was seen for M. bovis in Egyptian material while M. bovis signatures were first identified in Siberian biomaterial dating 2000 years before present. These results contraindicates the theory that M. tuberculosis evolved from M. bovis during early domestication in the region of the “Fertile Crescent,” but supports the scenario that M. tuberculosis probably derived from an ancestral progenitor strain. The environmental influence of this evolutionary scenario deserves continuing intense evaluation. PMID:19360109

  4. Mycobacterium tuberculosis Controls Phagosomal Acidification by Targeting CISH-Mediated Signaling.

    Science.gov (United States)

    Queval, Christophe J; Song, Ok-Ryul; Carralot, Jean-Philippe; Saliou, Jean-Michel; Bongiovanni, Antonino; Deloison, Gaspard; Deboosère, Nathalie; Jouny, Samuel; Iantomasi, Raffaella; Delorme, Vincent; Debrie, Anne-Sophie; Park, Sei-Jin; Gouveia, Joana Costa; Tomavo, Stanislas; Brosch, Roland; Yoshimura, Akihiko; Yeramian, Edouard; Brodin, Priscille

    2017-09-26

    Pathogens have evolved a range of mechanisms to counteract host defenses, notably to survive harsh acidic conditions in phagosomes. In the case of Mycobacterium tuberculosis, it has been shown that regulation of phagosome acidification could be achieved by interfering with the retention of the V-ATPase complexes at the vacuole. Here, we present evidence that M. tuberculosis resorts to yet another strategy to control phagosomal acidification, interfering with host suppressor of cytokine signaling (SOCS) protein functions. More precisely, we show that infection of macrophages with M. tuberculosis leads to granulocyte-macrophage colony-stimulating factor (GM-CSF) secretion, inducing STAT5-mediated expression of cytokine-inducible SH2-containing protein (CISH), which selectively targets the V-ATPase catalytic subunit A for ubiquitination and degradation by the proteasome. Consistently, we show that inhibition of CISH expression leads to reduced replication of M. tuberculosis in macrophages. Our findings further broaden the molecular understanding of mechanisms deployed by bacteria to survive. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  5. Pathology and immune reactivity: understanding multidimensionality in pulmonary tuberculosis.

    Science.gov (United States)

    Dorhoi, Anca; Kaufmann, Stefan H E

    2016-03-01

    Heightened morbidity and mortality in pulmonary tuberculosis (TB) are consequences of complex disease processes triggered by the causative agent, Mycobacterium tuberculosis (Mtb). Mtb modulates inflammation at distinct stages of its intracellular life. Recognition and phagocytosis, replication in phagosomes and cytosol escape induce tightly regulated release of cytokines [including interleukin (IL)-1, tumor necrosis factor (TNF), IL-10], chemokines, lipid mediators, and type I interferons (IFN-I). Mtb occupies various lung lesions at sites of pathology. Bacteria are barely detectable at foci of lipid pneumonia or in perivascular/bronchiolar cuffs. However, abundant organisms are evident in caseating granulomas and at the cavity wall. Such lesions follow polar trajectories towards fibrosis, encapsulation and mineralization or liquefaction, extensive matrix destruction, and tissue injury. The outcome is determined by immune factors acting in concert. Gradients of cytokines and chemokines (CCR2, CXCR2, CXCR3/CXCR5 agonists; TNF/IL-10, IL-1/IFN-I), expression of activation/death markers on immune cells (TNF receptor 1, PD-1, IL-27 receptor) or abundance of enzymes [arginase-1, matrix metalloprotease (MMP)-1, MMP-8, MMP-9] drive genesis and progression of lesions. Distinct lesions coexist such that inflammation in TB encompasses a spectrum of tissue changes. A better understanding of the multidimensionality of immunopathology in TB will inform novel therapies against this pulmonary disease.

  6. Pulmonary tuberculosis

    Science.gov (United States)

    TB; Tuberculosis - pulmonary; Mycobacterium - pulmonary ... Pulmonary TB is caused by the bacterium Mycobacterium tuberculosis (M tuberculosis) . TB is contagious. This means the bacteria is easily spread from an infected person ...

  7. Inhibition of Oxidative Stress and Lipid Peroxidation by Anthocyanins from Defatted Canarium odontophyllum Pericarp and Peel Using In Vitro Bioassays

    Science.gov (United States)

    Khoo, Hock Eng; Azlan, Azrina; Ismail, Amin; Abas, Faridah; Hamid, Muhajir

    2014-01-01

    Canarium odontophyllum, also known as CO, is a highly nutritious fruit. Defatted parts of CO fruit are potent sources of nutraceutical. This study aimed to determine oxidative stress and lipid peroxidation effects of defatted CO pericarp and peel extracts using in vitro bioassays. Cell cytotoxic effect of the CO pericarp and peel extracts were also evaluated using HUVEC and Chang liver cell lines. The crude extracts of defatted CO peel and pericarp showed cytoprotective effects in t-BHP and 40% methanol-induced cell death. The crude extracts also showed no toxic effect to Chang liver cell line. Using CD36 ELISA, NAD+ and LDL inhibition assays, inhibition of oxidative stress were found higher in the crude extract of defatted CO peel compared to the pericarp extract. Hemoglobin and LDL oxidation assays revealed both crude extracts had significantly reduced lipid peroxidation as compared to control. TBARS values among defatted CO pericarp, peel, and cyanidin-3-glucoside showed no significant differences for hemoglobin and LDL oxidation assays. The protective effects of defatted CO parts, especially its peel is related to the presence of high anthocyanin that potentially offers as a pharmaceutical ingredient for cardioprotection. PMID:24416130

  8. Inhibition of oxidative stress and lipid peroxidation by anthocyanins from defatted Canarium odontophyllum pericarp and peel using in vitro bioassays.

    Directory of Open Access Journals (Sweden)

    Hock Eng Khoo

    Full Text Available Canarium odontophyllum, also known as CO, is a highly nutritious fruit. Defatted parts of CO fruit are potent sources of nutraceutical. This study aimed to determine oxidative stress and lipid peroxidation effects of defatted CO pericarp and peel extracts using in vitro bioassays. Cell cytotoxic effect of the CO pericarp and peel extracts were also evaluated using HUVEC and Chang liver cell lines. The crude extracts of defatted CO peel and pericarp showed cytoprotective effects in t-BHP and 40% methanol-induced cell death. The crude extracts also showed no toxic effect to Chang liver cell line. Using CD36 ELISA, NAD(+ and LDL inhibition assays, inhibition of oxidative stress were found higher in the crude extract of defatted CO peel compared to the pericarp extract. Hemoglobin and LDL oxidation assays revealed both crude extracts had significantly reduced lipid peroxidation as compared to control. TBARS values among defatted CO pericarp, peel, and cyanidin-3-glucoside showed no significant differences for hemoglobin and LDL oxidation assays. The protective effects of defatted CO parts, especially its peel is related to the presence of high anthocyanin that potentially offers as a pharmaceutical ingredient for cardioprotection.

  9. Optimization of 14C liquid scintillation counting of plant and soil lipids to trace short term formation, translocation and degradation of lipids

    International Nuclear Information System (INIS)

    Wiesenberg, G.L.B.; Gocke, M.; Yakov Kuzyakov

    2010-01-01

    Two powerful approaches are frequently used to trace incorporation and degradation of plant derived C in soil: 14 C labelling/chasing and analysis of lipid composition. In this study, we coupled these approaches in order to trace short term incorporation of plant derived lipids into rhizosphere and non-rhizosphere soil. Methodological optimization was required and implied 14 C liquid scintillation counting improvement for plant lipid extracts taking into account organic solvents, solvent-to-scintillation cocktail ratio, and amount of lipids. Following method optimization, 14 C data of fatty acids indicated a notable contribution of root derived lipids to rhizosphere and non-rhizosphere soil. Coupling of 14 C labelling/chasing with lipid analysis is a powerful and cheap approach for tracing of root derived C in soil allowing for estimation of C budget, for determination of C formation and translocation within plants and from plant to soil, as well as for identification of short term dynamics of specific compound classes within soil. (author)

  10. Structure and management of tuberculosis control programs in fragile states--Afghanistan, DR Congo, Haiti, Somalia

    NARCIS (Netherlands)

    Mauch, Verena; Weil, Diana; Munim, Aayid; Boillot, Francois; Coninx, Rudi; Huseynova, Sevil; Powell, Clydette; Seita, Akihiro; Wembanyama, Henriette; van den Hof, Susan

    2010-01-01

    Health care delivery is particularly problematic in fragile states often connected with increased incidence of communicable diseases, among them tuberculosis. This article draws upon experiences in tuberculosis control in four fragile states from which four lessons learned were derived. A structured

  11. Autophagy protects type II alveolar epithelial cells from Mycobacterium tuberculosis infection

    International Nuclear Information System (INIS)

    Guo, Xu-Guang; Ji, Tian-Xing; Xia, Yong; Ma, Yue-Yun

    2013-01-01

    Highlights: ► We investigated the protective effect of autophagy pathway against MTB infection. ► MTB-infected A549 cells had higher LDH release. ► Inhibition of autophagy signaling significantly enhanced the MTB-induced necrosis. ► Autophagy prevents apoptosis and promotes cell survival in infected cells. -- Abstract: This study was designed to investigate the protective effect of the autophagy signaling pathway against Mycobacterium tuberculosis infection in type II alveolar epithelial cells. An in vitro M. tuberculosis system was established using human A549 cells. Infection-induced changes in the expression of the autophagic marker LC3 were assessed by reverse transcription-PCR and Western blotting. Morphological changes in autophagosomes were detected by transmission electron microscopy (TEM). The function of the autophagy signaling pathway during infection was assessed by measuring the level of cell death and the amount of lactate dehydrogenase (LDH) released in the presence or absence of the inhibitor 3-methyladenine (3-MA). In addition, effects on LDH release were assessed after the siRNA-mediated knockdown of the essential autophagosomal structural membrane protein Atg5. LC3 mRNA expression was significantly reduced in M.tuberculosis-infected A549 cells (16888.76 ± 1576.34 vs. uninfected: 12744.29 ± 1089.37; P < 0.05). TEM revealed M.tuberculosis bacilli-containing compartments that were surrounded by double membranes characteristic of the autophagic process. M.tuberculosis-infected A549 cells released more LDH (1.45 ± 0.12 vs. uninfected: 0.45 ± 0.04; P < 0.05). The inhibition of autophagy signaling significantly enhanced M.tuberculosis-induced necrosis (3-MA: 75 ± 5% vs. untreated: 15 ± 1%; P < 0.05) and LDH release (3-MA: 2.50 ± 0.24 vs. untreated: 0.45 ± 0.04; Atg5 knockdown: 3.19 ± 0.29 vs. untreated: 1.28 ± 0.11; P < 0.05). Our results indicate that autophagy signaling pathway prevents apoptosis in type II alveolar epithelial cells

  12. In vivo induction of neutrophil extracellular traps by Mycobacterium tuberculosis in a guinea pig model.

    Science.gov (United States)

    Filio-Rodríguez, Georgina; Estrada-García, Iris; Arce-Paredes, Patricia; Moreno-Altamirano, María M; Islas-Trujillo, Sergio; Ponce-Regalado, M Dolores; Rojas-Espinosa, Oscar

    2017-10-01

    In 2004, a novel mechanism of cellular death, called 'NETosis', was described in neutrophils. This mechanism, different from necrosis and apoptosis, is characterized by the release of chromatin webs admixed with microbicidal granular proteins and peptides (NETs). NETs trap and kill a variety of microorganisms. Diverse microorganisms, including Mycobacterium tuberculosis, are NET inducers in vitro. The aim of this study was to examine whether M. tuberculosis can also induce NETs in vivo and if the NETs are bactericidal to the microorganism. Guinea pigs were intradermally inoculated with M. tuberculosis H37Rv, and the production of NETs was investigated at several time points thereafter. NETs were detected as early as 30 min post-inoculation and were clearly evident by 4 h post-inoculation. NETs produced in vivo contained DNA, myeloperoxidase, elastase, histones, ROS and acid-fast bacilli. Viable and heat-killed M. tuberculosis, as well as Mycobacterium bovis BCG were efficient NET inducers, as were unilamellar liposomes prepared with lipids from M. tuberculosis. In vitro, guinea pig neutrophils also produced NETs in response to M. tuberculosis. However, neither the in vivo nor the in vitro-produced NETs were able to kill M. tuberculosis. Nevertheless, in vivo, neutrophils might propitiate recruitment and activation of more efficient microbicidal cells.

  13. Limitations of the BCG vaccine and new prophylaxis strategies against human tuberculosis

    Directory of Open Access Journals (Sweden)

    Arioldo Carvalho Vasconcelos-Junior

    2009-09-01

    Full Text Available BCG (Bacille Calmette Guérin, an attenuated vaccine derived from Mycobacterium bovis, is the current vaccine against tuberculosis. Notwithstanding its protection of children, BCG has failed to protect adults against active pulmonary tuberculosis, especially in countries where the disease is endemic. Any new tuberculosis vaccine should protect several categories of people, including children, adults, the elderly and immunodeppressed patients. An important feature is immunization safety for all of these classes. The aim of this review is to describe new vaccination strategies, such as subunit vaccines, DNA vaccines, vaccines with live microorganisms and vectors, and to discuss the application of these new strategies for the control and eradication of tuberculosis.

  14. Blood lipid metabolites and meat lipid peroxidation responses of ...

    African Journals Online (AJOL)

    Esnart Mukumbo

    2017-06-19

    Jun 19, 2017 ... Fat and protein contents of thigh muscle and abdominal fat weight were measured and reported. Chickens fed LPO had greater serum triacylglycerol and very low ... favour lipid peroxidation, inhibit synthesis of higher homologous of ... The ambient temperature was gradually decreased from 33 °C at first.

  15. Learn About Tuberculosis

    Science.gov (United States)

    ... Diseases > Lung Disease Lookup > Tuberculosis (TB) Learn About Tuberculosis Tuberculosis (TB) is an airborne bacterial infection caused by the organism Mycobacterium tuberculosis that primarily affects the lungs, although other organs ...

  16. Furan- and Thiophene-2-Carbonyl Amino Acid Derivatives Activate Hypoxia-Inducible Factor via Inhibition of Factor Inhibiting Hypoxia-Inducible Factor-1

    Directory of Open Access Journals (Sweden)

    Shin-ichi Kawaguchi

    2018-04-01

    Full Text Available Induction of a series of anti-hypoxic proteins protects cells during exposure to hypoxic conditions. Hypoxia-inducible factor-α (HIF-α is a major transcription factor that orchestrates this protective effect. To activate HIF exogenously, without exposing cells to hypoxic conditions, many small-molecule inhibitors targeting prolyl hydroxylase domain-containing protein have been developed. In addition, suppression of factor inhibiting HIF-1 (FIH-1 has also been shown to have the potential to activate HIF-α. However, few small-molecule inhibitors of FIH-1 have been developed. In this study, we synthesized a series of furan- and thiophene-2-carbonyl amino acid derivatives having the potential to inhibit FIH-1. The inhibitory activities of these compounds were evaluated in SK-N-BE(2c cells by measuring HIF response element (HRE promoter activity. Several furan- and thiophene-2-carbonyl amino acid derivatives inhibited FIH-1 based on correlations among the docking score of the FIH-1 active site, the chemical structure of the compounds, and biological HIF-α/HRE transcriptional activity.

  17. TUBERCULOSIS

    Directory of Open Access Journals (Sweden)

    Tarik Bajrović

    2013-10-01

    Full Text Available Tuberculosis, known as the "White Plague" in the early 19th century, is the infectious disease, which is being researched today even in some of the most developed countries in the world. Epidemiological- epizootiological research points to the importance of pasteurizing milk as well as the transmission in aerosolized droplets in humans and animals. Mycobacterium tuberculosis (Mtb, M. bovis, M. africanum and M. microti are the mycobacteria that cause tuberculosis. Other mycobacteria cause diseases commonly known as mycobacteriosae. Pathogenesis of tuberculosis includes both host- related and mycobacterium-related factors (virulence. Mtb acts through the expression of various genes and their proteins that are detectable in the serums of the diseased only, proving these proteins are formed in the course of the disease. In humans, a diagnosis is established by the detection of antigens (and antibodies, and in animals, with the allergy tests. As far as the bovine tuberculosis is concerned, the combination of skin tuberculin and blood gamma interferon test is recommended. Sequential genome (Mtb analysis has given the basis for further research of the new vaccines.Key words: Tuberculosis, pathogenesis, immunity

  18. Preclinical Evaluations To Identify Optimal Linezolid Regimens for Tuberculosis Therapy

    Science.gov (United States)

    Drusano, George L.; Adams, Jonathan R.; Rodriquez, Jaime L.; Jambunathan, Kalyani; Baluya, Dodge L.; Brown, David L.; Kwara, Awewura; Mirsalis, Jon C.; Hafner, Richard; Louie, Arnold

    2015-01-01

    ABSTRACT Linezolid is an oxazolidinone with potent activity against Mycobacterium tuberculosis. Linezolid toxicity in patients correlates with the dose and duration of therapy. These toxicities are attributable to the inhibition of mitochondrial protein synthesis. Clinically relevant linezolid regimens were simulated in the in vitro hollow-fiber infection model (HFIM) system to identify the linezolid therapies that minimize toxicity, maximize antibacterial activity, and prevent drug resistance. Linezolid inhibited mitochondrial proteins in an exposure-dependent manner, with toxicity being driven by trough concentrations. Once-daily linezolid killed M. tuberculosis in an exposure-dependent manner. Further, 300 mg linezolid given every 12 hours generated more bacterial kill but more toxicity than 600 mg linezolid given once daily. None of the regimens prevented linezolid resistance. These findings show that with linezolid monotherapy, a clear tradeoff exists between antibacterial activity and toxicity. By identifying the pharmacokinetic parameters linked with toxicity and antibacterial activity, these data can provide guidance for clinical trials evaluating linezolid in multidrug antituberculosis regimens. PMID:26530386

  19. Cell kinetics, DNA integrity, differentiation, and lipid fingerprinting analysis of rabbit adipose-derived stem cells.

    Science.gov (United States)

    Barretto, Letícia Siqueira de Sá; Lessio, Camila; Sawaki e Nakamura, Ahy Natally; Lo Turco, Edson Guimarães; da Silva, Camila Gonzaga; Zambon, João Paulo; Gozzo, Fábio César; Pilau, Eduardo Jorge; de Almeida, Fernando Gonçalves

    2014-10-01

    Human adipose tissue has been described as a potential alternative reservoir for stem cells. Although studies have been performed in rabbits using autologous adipose-derived stem cells (ADSC), these cells have not been well characterized. The primary objectives of this study were to demonstrate the presence of adipose-derived stem cells isolated from rabbit inguinal fat pads and to characterize them through osteogenic and adipogenic in vitro differentiation and lipid fingerprinting analysis. The secondary objective was to evaluate cell behavior through growth kinetics, cell viability, and DNA integrity. Rabbit ADSCs were isolated to determine the in vitro growth kinetics and cell viability. DNA integrity was assessed by an alkaline Comet assay in passages 0 and 5. The osteogenic differentiation was evaluated by Von Kossa, and Alizarin Red S staining and adipogenic differentiation were assessed by Oil Red O staining. Lipid fingerprinting analyses of control, adipogenic, and osteogenic differentiated cells were performed by MALDI-TOF/MS. We demonstrate that rabbit ADSC have a constant growth rate at the early passages, with increased DNA fragmentation at or after passage 5. Rabbit ADSC viability was similar in passages 2 and 5 (90.7% and 86.6%, respectively), but there was a tendency to decreased cellular growth rate after passage 3. The ADSC were characterized by the expression of surface markers such as CD29 (67.4%) and CD44 (89.4%), using CD 45 (0.77%) as a negative control. ADSC from rabbits were successfully isolated form the inguinal region. These cells were capable to differentiate into osteogenic and adipogenic tissue when they were placed in inductive media. After each passage, there was a trend towards decreased cell growth. On the other hand, DNA fragmentation increased at each passage. ADSC had a different lipid profile when placed in control, adipogenic, or osteogenic media.

  20. Controlling the Seedbeds of Tuberculosis: Diagnosis and Treatment of Tuberculosis Infection

    Science.gov (United States)

    Rangaka, Molebogeng X.; Cavalcante, Solange C.; Marais, Ben J.; Thim, Sok; Martinson, Neil A.; Swaminathan, Soumya; Chaisson, Richard E.

    2015-01-01

    The billions of people with latent tuberculosis infection serve as the seedbeds for future cases of active tuberculosis. Virtually all episodes of tuberculosis disease are preceded by a period of asymptomatic Mycobacterium tuberculosis infection; therefore, identifying infected individuals most likely to progress to disease and treating such subclinical infections to prevent future disease provides a critical opportunity to interrupt tuberculosis transmission and reduce the global burden of tuberculosis disease. Programs focusing on single strategies rather than comprehensive programs that deliver an integrated arsenal for tuberculosis control may continue to struggle. Tuberculosis preventive therapy is a poorly utilized tool that is essential for controlling the reservoirs of disease that drive the current epidemic. Comprehensive control strategies that combine preventive therapy for the most high-risk populations and communities with improved case-finding and treatment, control of transmission and health systems strengthening could ultimately lead to worldwide tuberculosis elimination. This paper outlines challenges to implementation of preventive therapy and provides pragmatic suggestions for overcoming them. It further advocates for tuberculosis preventive therapy as the core of a renewed global focus to implement a comprehensive epidemic control strategy that would reduce new tuberculosis cases to elimination targets. This strategy would be underpinned by accelerated research to further understand the biology of subclinical tuberculosis infections, develop novel diagnostics, and drug regimens specifically for subclinical tuberculosis infection, strengthen health systems, community engagement, and enhance sustainable large scale implementation of preventive therapy programs. PMID:26515679

  1. Tuberculosis (TB)

    Science.gov (United States)

    ... with facebook share with twitter share with linkedin Tuberculosis Go to Information for Researchers ► Credit: NIAID Scanning ... are drug resistant. Why Is the Study of Tuberculosis a Priority for NIAID? Tuberculosis is one of ...

  2. Perfluorinated chemicals: Differential toxicity, inhibition of aromatase activity and alteration of cellular lipids in human placental cells

    Energy Technology Data Exchange (ETDEWEB)

    Gorrochategui, Eva; Pérez-Albaladejo, Elisabet [Department of Environmental Chemistry, IDAEA–CSIC, 08034 Barcelona, Catalonia (Spain); Casas, Josefina [Department of Biomedicinal Chemistry, IQAC–CSIC, 08034 Barcelona, Catalonia (Spain); Lacorte, Sílvia, E-mail: slbqam@cid.csic.es [Department of Environmental Chemistry, IDAEA–CSIC, 08034 Barcelona, Catalonia (Spain); Porte, Cinta, E-mail: cinta.porte@cid.csic.es [Department of Environmental Chemistry, IDAEA–CSIC, 08034 Barcelona, Catalonia (Spain)

    2014-06-01

    The cytotoxicity of eight perfluorinated chemicals (PFCs), namely, perfluorobutanoic acid (PFBA), perfluorohexanoic acid (PFHxA), perfluorooctanoic acid (PFOA), perfluorononanoic acid (PFNA), perfluorododecanoic acid (PFDoA), perfluorobutanesulfonate (PFBS), perfluorohexanesulfonate (PFHxS) and perfluorooctanesulfonate (PFOS) was assessed in the human placental choriocarcinoma cell line JEG-3. Only the long chain PFCs – PFOS, PFDoA, PFNA, PFOA – showed significant cytotoxicity in JEG-3 cells with EC50 values in the range of 107 to 647 μM. The observed cytotoxicity was to some extent related to a higher uptake of the longer chain PFCs by cells (PFDoA > PFOS ≫ PFNA > PFOA > PFHxA). Moreover, this work evidences a high potential of PFOS, PFOA and PFBS to act as aromatase inhibitors in placental cells with IC50s in the range of 57–80 μM, the inhibitory effect of PFBS being particularly important despite the rather low uptake of the compound by cells. Finally, exposure of JEG-3 cells to a mixture of the eight PFCs (0.6 μM each) led to a relative increase (up to 3.4-fold) of several lipid classes, including phosphatidylcholines (PCs), plasmalogen PC and lyso plasmalogen PC, which suggests an interference of PFCs with membrane lipids. Overall, this work highlights the ability of the PFC mixture to alter cellular lipid pattern at concentrations well below those that generate toxicity, and the potential of the short chain PFBS, often considered a safe substitute of PFOS, to significantly inhibit aromatase activity in placental cells. - Highlights: • Eight perfluorinated chemicals of different chain lengths have been selected. • Long chain ones – PFOS, PFDoA, PFNA, PFOA – were cytotoxic in placenta cells. • The uptake of long chain perfluorinated chemicals by cells was comparatively higher. • PFOS, PFOA and the short chain PFBS significantly inhibited aromatase activity. • A mixture of perfluorinated chemicals significantly altered placenta cell

  3. Perfluorinated chemicals: Differential toxicity, inhibition of aromatase activity and alteration of cellular lipids in human placental cells

    International Nuclear Information System (INIS)

    Gorrochategui, Eva; Pérez-Albaladejo, Elisabet; Casas, Josefina; Lacorte, Sílvia; Porte, Cinta

    2014-01-01

    The cytotoxicity of eight perfluorinated chemicals (PFCs), namely, perfluorobutanoic acid (PFBA), perfluorohexanoic acid (PFHxA), perfluorooctanoic acid (PFOA), perfluorononanoic acid (PFNA), perfluorododecanoic acid (PFDoA), perfluorobutanesulfonate (PFBS), perfluorohexanesulfonate (PFHxS) and perfluorooctanesulfonate (PFOS) was assessed in the human placental choriocarcinoma cell line JEG-3. Only the long chain PFCs – PFOS, PFDoA, PFNA, PFOA – showed significant cytotoxicity in JEG-3 cells with EC50 values in the range of 107 to 647 μM. The observed cytotoxicity was to some extent related to a higher uptake of the longer chain PFCs by cells (PFDoA > PFOS ≫ PFNA > PFOA > PFHxA). Moreover, this work evidences a high potential of PFOS, PFOA and PFBS to act as aromatase inhibitors in placental cells with IC50s in the range of 57–80 μM, the inhibitory effect of PFBS being particularly important despite the rather low uptake of the compound by cells. Finally, exposure of JEG-3 cells to a mixture of the eight PFCs (0.6 μM each) led to a relative increase (up to 3.4-fold) of several lipid classes, including phosphatidylcholines (PCs), plasmalogen PC and lyso plasmalogen PC, which suggests an interference of PFCs with membrane lipids. Overall, this work highlights the ability of the PFC mixture to alter cellular lipid pattern at concentrations well below those that generate toxicity, and the potential of the short chain PFBS, often considered a safe substitute of PFOS, to significantly inhibit aromatase activity in placental cells. - Highlights: • Eight perfluorinated chemicals of different chain lengths have been selected. • Long chain ones – PFOS, PFDoA, PFNA, PFOA – were cytotoxic in placenta cells. • The uptake of long chain perfluorinated chemicals by cells was comparatively higher. • PFOS, PFOA and the short chain PFBS significantly inhibited aromatase activity. • A mixture of perfluorinated chemicals significantly altered placenta cell

  4. Tuberculosis and nutrition

    Directory of Open Access Journals (Sweden)

    Gupta Krishna

    2009-01-01

    Full Text Available Malnutrition and tuberculosis are both problems of considerable magnitude in most of the underdeveloped regions of the world. These two problems tend to interact with each other. Tuberculosis mortality rates in different economic groups in a community tend to vary inversely with their economic levels. Similarly, nutritional status is significantly lower in patients with active tuberculosis compared with healthy controls. Malnutrition can lead to secondary immunodeficiency that increases the host′s susceptibility to infection. In patients with tuberculosis, it leads to reduction in appetite, nutrient malabsorption, micronutrient malabsorption, and altered metabolism leading to wasting. Both, protein-energy malnutrition and micronutrients deficiencies increase the risk of tuberculosis. It has been found that malnourished tuberculosis patients have delayed recovery and higher mortality rates than well-nourished patients. Nutritional status of patients improves during tuberculosis chemotherapy. High prevalence of human immunodeficiency (HIV infection in the underdeveloped countries further aggravates the problem of malnutrition and tuberculosis. Effect of malnutrition on childhood tuberculosis and tuberculin skin test are other important considerations. Nutritional supplementation may represent a novel approach for fast recovery in tuberculosis patients. In addition, raising nutritional status of population may prove to be an effective measure to control tuberculosis in underdeveloped areas of world.

  5. A prospective blood RNA signature for tuberculosis disease risk

    Science.gov (United States)

    Zak, Daniel E.; Penn-Nicholson, Adam; Scriba, Thomas J.; Thompson, Ethan; Suliman, Sara; Amon, Lynn M.; Mahomed, Hassan; Erasmus, Mzwandile; Whatney, Wendy; Hussey, Gregory D.; Abrahams, Deborah; Kafaar, Fazlin; Hawkridge, Tony; Verver, Suzanne; Hughes, E. Jane; Ota, Martin; Sutherland, Jayne; Howe, Rawleigh; Dockrell, Hazel M.; Boom, W. Henry; Thiel, Bonnie; Ottenhoff, Tom H.M.; Mayanja-Kizza, Harriet; Crampin, Amelia C; Downing, Katrina; Hatherill, Mark; Valvo, Joe; Shankar, Smitha; Parida, Shreemanta K; Kaufmann, Stefan H.E.; Walzl, Gerhard; Aderem, Alan; Hanekom, Willem A.

    2016-01-01

    Background Identification of blood biomarkers that prospectively predict progression of Mycobacterium tuberculosis infection to tuberculosis disease may lead to interventions that impact the epidemic. Methods Healthy, M. tuberculosis infected South African adolescents were followed for 2 years; blood was collected every 6 months. A prospective signature of risk was derived from whole blood RNA-Sequencing data by comparing participants who ultimately developed active tuberculosis disease (progressors) with those who remained healthy (matched controls). After adaptation to multiplex qRT-PCR, the signature was used to predict tuberculosis disease in untouched adolescent samples and in samples from independent cohorts of South African and Gambian adult progressors and controls. The latter participants were household contacts of adults with active pulmonary tuberculosis disease. Findings Of 6,363 adolescents screened, 46 progressors and 107 matched controls were identified. A 16 gene signature of risk was identified. The signature predicted tuberculosis progression with a sensitivity of 66·1% (95% confidence interval, 63·2–68·9) and a specificity of 80·6% (79·2–82·0) in the 12 months preceding tuberculosis diagnosis. The risk signature was validated in an untouched group of adolescents (p=0·018 for RNA-Seq and p=0·0095 for qRT-PCR) and in the independent South African and Gambian cohorts (p values Bill and Melinda Gates Foundation, the National Institutes of Health, Aeras, the European Union and the South African Medical Research Council (detail at end of text). PMID:27017310

  6. Analytical Raman spectroscopic study for discriminant analysis of different animal-derived feedstuff: Understanding the high correlation between Raman spectroscopy and lipid characteristics.

    Science.gov (United States)

    Gao, Fei; Xu, Lingzhi; Zhang, Yuejing; Yang, Zengling; Han, Lujia; Liu, Xian

    2018-02-01

    The objectives of the current study were to explore the correlation between Raman spectroscopy and lipid characteristics and to assess the potential of Raman spectroscopic methods for distinguishing the different sources of animal-originated feed based on lipid characteristics. A total of 105 lipid samples derived from five animal species have been analyzed by gas chromatography (GC) and FT-Raman spectroscopy. High correlations (r 2 >0.94) were found between the characteristic peak ratio of the Raman spectra (1654/1748 and 1654/1445) and the degree of unsaturation of the animal lipids. The results of FT-Raman data combined with chemometrics showed that the fishmeal, poultry, porcine and ruminant (bovine and ovine) MBMs could be well separated based on their lipid spectral characteristics. This study demonstrated that FT-Raman spectroscopy can mostly exhibit the lipid structure specificity of different species of animal-originated feed and can be used to discriminate different animal-originated feed samples. Copyright © 2017. Published by Elsevier Ltd.

  7. Pyridine-substituted thiazolylphenol derivatives: Synthesis, modeling studies, aromatase inhibition, and antiproliferative activity evaluation.

    Science.gov (United States)

    Ertas, Merve; Sahin, Zafer; Berk, Barkin; Yurttas, Leyla; Biltekin, Sevde N; Demirayak, Seref

    2018-04-01

    Drugs used in breast cancer treatments target the suppression of estrogen biosynthesis. During this suppression, the main goal is to inhibit the aromatase enzyme that is responsible for the cyclization and structuring of estrogens either with steroid or non-steroidal-type inhibitors. Non-steroidal derivatives generally have a planar aromatic structure attached to the triazole ring system in their structures, which inhibits hydroxylation reactions during aromatization by coordinating the heme group. Bioisosteric replacement of the triazole ring system and development of aromatic/cyclic structures of the side chain can increase the selectivity for aromatase enzyme inhibition. In this study, pyridine-substituted thiazolylphenol derivatives, which are non-steroidal triazole bioisosteres, were synthesized using the Hantzsch method, and physical analysis and structural determination studies were performed. The IC 50 values of the compounds were determined by a fluorescence-based aromatase inhibition assay. Then, their antiproliferative activities on the MCF7 and HEK 293 cell lines were evaluated with the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Furthermore, the crystal structure of human placental aromatase was subjected to a series of docking experiments to identify the possible interactions between the most active structure and the active site. Lastly, an in silico technique was performed to analyze and predict the drug-likeness, molecular and ADME properties of the synthesized molecules. © 2018 Deutsche Pharmazeutische Gesellschaft.

  8. Human tuberculosis predates domestication in ancient Syria.

    Science.gov (United States)

    Baker, Oussama; Lee, Oona Y-C; Wu, Houdini H T; Besra, Gurdyal S; Minnikin, David E; Llewellyn, Gareth; Williams, Christopher M; Maixner, Frank; O'Sullivan, Niall; Zink, Albert; Chamel, Bérénice; Khawam, Rima; Coqueugniot, Eric; Helmer, Daniel; Le Mort, Françoise; Perrin, Pascale; Gourichon, Lionel; Dutailly, Bruno; Pálfi, György; Coqueugniot, Hélène; Dutour, Olivier

    2015-06-01

    The question of pre-neolithic tuberculosis is still open in paleopathological perspective. One of the major interests is to explore what type of infection could have existed around the early stage of animal domestication. Paleopathological lesions evoking skeletal TB were observed on five human skeletons coming from two PPNB sites in Syria, which belongs to the geographical cradle of agriculture. These sites represent respectively pre-domestication phase (Dja'de el Mughara, Northern Syria, 8800-8300 BCE cal.) and early domestication phase (Tell Aswad, Southern Syria, 8200-7600 BCE cal.). MicroCT scan analyses were performed on two specimens (one per site) and revealed microscopic changes in favor of TB infection. Detection of lipid biomarkers is positive for two specimens (one per site). Initial molecular analysis further indicates the presence of TB in one individual from Dja'de. Interestingly, no morphological evidence of TB was observed on animal remains of wild and newly domesticated species, discovered in these sites. These observations strongly suggest the presence of human tuberculosis before domestication and at its early stages. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Towards a new combination therapy for tuberculosis with next generation benzothiazinones

    NARCIS (Netherlands)

    Makarov, V.; Lechartier, B.; Zhang, M.; Neres, J.; van der Sar, A.M.; Raadsen, S.A.; Hartkoorn, R.C.; Ryabova, O.B.; Vocat, A.; Decosterd, L.A.; Widmer, N.; Buclin, T.; Bitter, W.; Andries, K.; Pojer, F.; Dyson, P.J.; Cole, S.T.

    2014-01-01

    The benzothiazinone lead compound, BTZ043, kills Mycobacterium tuberculosis by inhibiting the essential flavo-enzyme DprE1, decaprenylphosphoryl-beta-D-ribose 2-epimerase. Here, we synthesized a new series of piperazine-containing benzothiazinones (PBTZ) and show that, like BTZ043, the preclinical

  10. Biologic activity of porphyromonas endodontalis complex lipids.

    Science.gov (United States)

    Mirucki, Christopher S; Abedi, Mehran; Jiang, Jin; Zhu, Qiang; Wang, Yu-Hsiung; Safavi, Kamran E; Clark, Robert B; Nichols, Frank C

    2014-09-01

    Periapical infections secondary to pulpal necrosis are associated with bacterial contamination of the pulp. Porphyromonas endodontalis, a gram-negative organism, is considered to be a pulpal pathogen. P. gingivalis is phylogenetically related to P. endodontalis and synthesizes several classes of novel complex lipids that possess biological activity, including the capacity to promote osteoclastogenesis and osteoclast activation. The purpose of this study was to extract and characterize constituent lipids of P. endodontalis and evaluate their capacity to promote proinflammatory secretory responses in the macrophage cell line, RAW 264.7, as well as their capacity to promote osteoclastogenesis and inhibit osteoblast activity. Constituent lipids of both organisms were fractionated by high-performance liquid chromatography and were structurally characterized using electrospray mass spectrometry or electrospray-mass spectrometry/mass spectrometry. The virulence potential of P. endodontalis lipids was then compared with known biologically active lipids isolated from P. gingivalis. P. endodontalis total lipids were shown to promote tumor necrosis factor alpha secretion from RAW 264.7 cells, and the serine lipid fraction appeared to account for the majority of this effect. P. endodontalis lipid preparations also increased osteoclast formation from RAW 264.7 cells, but osteoblast differentiation in culture was inhibited and appeared to be dependent on Toll-like receptor 2 expression. These effects underscore the importance of P. endodontalis lipids in promoting inflammatory and bone cell activation processes that could lead to periapical pathology. Copyright © 2014 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  11. Lipid-mediated glial cell line-derived neurotrophic factor gene transfer to cultured porcine ventral mesencephalic tissue

    DEFF Research Database (Denmark)

    Bauer, Matthias; Meyer, Morten; Brevig, Thomas

    2002-01-01

    Transplantation of dopaminergic ventral mesencephalic (VM) tissue into the basal ganglia of patients with Parkinson's disease (PD) shows at best moderate symptomatic relief in some of the treated cases. Experimental animal studies and clinical trials with allogenic and xenogenic pig-derived VM...... tissue grafts to PD patients indicate that one reason for the poor outcome of neural transplantation is the low survival and differentiation of grafted dopaminergic neurons. To improve dopaminergic cell survival through a gene-therapeutic approach we have established and report here results of lipid-mediated...... numbers of tyrosine hydroxylase-positive neurons in the cultured VM tissue. We conclude that lipid-mediated gene transfer employed on embryonic pig VM explant cultures is a safe and effective method to improve survival of dopaminergic neurons and may become a valuable tool to improve allo...

  12. MCL Plays an Anti-Inflammatory Role in Mycobacterium tuberculosis-Induced Immune Response by Inhibiting NF-κB and NLRP3 Inflammasome Activation

    Directory of Open Access Journals (Sweden)

    Qingwen Zhang

    2017-01-01

    Full Text Available Mycobacterium tuberculosis (Mtb remains a significant menace to global health as it induces granulomatous lung lesions and systemic inflammatory responses during active tuberculosis (TB. Micheliolide (MCL, a sesquiterpene lactone, was recently reported to have a function of relieving LPS-induced inflammatory response, but the regulative role of MCL on the immunopathology of TB still remains unknown. In this experiment, we examined the inhibitory effect of MCL on Mtb-induced inflammatory response in mouse macrophage-like cell line Raw264.7 by downregulating the activation of nuclear factor kappa B (NF-κB and NLRP3 inflammasome. Evidences showed that MCL decreased the secretion of Mtb-induced inflammatory cytokines (IL-1β and TNF-α in a dose-dependent manner. Meanwhile, MCL dramatically suppressed Mtb-induced activation of iNOS and COX2 as well as subsequent production of NO. Furthermore, MCL inhibited Mtb-induced phosphorylation of Akt (Ser 473 in Raw264.7. According to our results, MCL plays an important role in modulating Mtb-induced inflammatory response through PI3K/Akt/NF-κB pathway and subsequently downregulating the activation of NLRP3 inflammasome. Therefore, MCL may represent as a potential drug candidate in the adjuvant treatment of TB by regulating host immune response.

  13. Inhibition of urease by extracts derived from 15 Chinese medicinal herbs.

    Science.gov (United States)

    Shi, Da-Hua; Liu, Yu-Wei; Liu, Wei-Wei; Gu, Zhi-Feng

    2011-07-01

    Helicobacter pylori is a major causative factor in gastritis-like disorders, and urease plays a key role in Helicobacter pylori colonizing and persisting in the mucous layer of the human stomach. In China, a variety of Chinese medicinal herbs have been prescribed to attenuate or eradicate gastritis-like disorders. However, little is known about the urease inhibition of Chinese medicinal herbs. The present study was conducted to investigate the urease inhibition activities of the ethanol and water extracts of 15 Chinese medicinal herbs. The ethanol and water extracts derived from 15 medicinal herbs, traditionally used for the treatment of gastritis-like disorders in China, were tested for urease-inhibition activity using the phenol red method. Screened at 10 µg/mL, 14 ethanol extracts and 10 water extracts showed urease inhibition. The ethanol extracts of Magnolia officinalis Rehd. et Wils. (Magnoliaceae) and Cassia obtusifolia L. (Leguminosae) possessed inhibition rates higher than 50% with IC₅₀ values of 6.5 and 12.3 µg/mL, respectively. After fractionating successively, the petroleum ether fraction of the ethanol extracts of Magnolia officinalis showed the best activity with 90.8% urease inhibition at a concentration of 10 µg/mL. The bioautography of the petroleum ether fraction indicated the existence of the urease inhibitors in the herb. The present results indicated that some Chinese medicinal herbs might treat gastritis-like disorders via the inhibition of Helicobacter pylori urease and the further possibility for discovering useful novel urease inhibitors from the Chinese medicinal herbs.

  14. Ascorbic acid improves the antioxidant activity of European grape juices by improving the juices' ability to inhibit lipid peroxidation of human LDL in vitro

    DEFF Research Database (Denmark)

    Landbo, Anne-Katrine Regel; Meyer, Anne Boye Strunge

    2001-01-01

    . Red grape juice concentrate inhibited lipid peroxidation of LDL by prolonging the lag phase by 2.7 times relative to a control when evaluated at a total phenolic concentration of 10 muM gallic acid equivalents (GAE). Both red grape juices tested blocked lipid peroxidation of LDL at 20 muM GAE. White.......96, P acid alone did not exert antioxidant activity towards LDL, but combinations of 5 muM ascorbic acid with 5 muM GAE juice phenols eliminated the prooxidant activity of white grape juice, and significantly...

  15. Comparison of antigen-specific T-cell responses of tuberculosis patients using complex or single antigens of Mycobacterium tuberculosis

    DEFF Research Database (Denmark)

    Mustafa, A S; Amoudy, H A; Wiker, H G

    1998-01-01

    We have screened peripheral blood mononuclear cells (PBMC) from tuberculosis (TB) patients for proliferative reactivity and interferon-gamma (IFN-gamma) secretion against a panel of purified recombinant (r) and natural (n) culture filtrate (rESAT-6, nMPT59, nMPT64 and nMPB70) and somatic-derived ...

  16. In Vitro Activity of Copper(II Complexes, Loaded or Unloaded into a Nanostructured Lipid System, against Mycobacterium tuberculosis

    Directory of Open Access Journals (Sweden)

    Patricia B. da Silva

    2016-05-01

    Full Text Available Tuberculosis (TB is an infectious disease caused mainly by the bacillus Mycobacterium tuberculosis (Mtb, presenting 9.5 million new cases and 1.5 million deaths in 2014. The aim of this study was to evaluate a nanostructured lipid system (NLS composed of 10% phase oil (cholesterol, 10% surfactant (soy phosphatidylcholine, sodium oleate, and Eumulgin® HRE 40 ([castor oil polyoxyl-40-hydrogenated] in a proportion of 3:6:8, and an 80% aqueous phase (phosphate buffer pH = 7.4 as a tactic to enhance the in vitro anti-Mtb activity of the copper(II complexes [CuCl2(INH2]·H2O (1, [Cu(NCS2(INH2]·5H2O (2 and [Cu(NCO2(INH2]·4H2O (3. The Cu(II complex-loaded NLS displayed sizes ranging from 169.5 ± 0.7095 to 211.1 ± 0.8963 nm, polydispersity index (PDI varying from 0.135 ± 0.0130 to 0.236 ± 0.00100, and zeta potential ranging from −0.00690 ± 0.0896 to −8.43 ± 1.63 mV. Rheological analysis showed that the formulations behave as non-Newtonian fluids of the pseudoplastic and viscoelastic type. Antimycobacterial activities of the free complexes and NLS-loaded complexes against Mtb H37Rv ATCC 27294 were evaluated by the REMA methodology, and the selectivity index (SI was calculated using the cytotoxicity index (IC50 against Vero (ATCC® CCL-81, J774A.1 (ATCC® TIB-67, and MRC-5 (ATCC® CCL-171 cell lines. The data suggest that the incorporation of the complexes into NLS improved the inhibitory action against Mtb by 52-, 27-, and 4.7-fold and the SI values by 173-, 43-, and 7-fold for the compounds 1, 2 and 3, respectively. The incorporation of the complexes 1, 2 and 3 into the NLS also resulted in a significant decrease of toxicity towards an alternative model (Artemia salina L.. These findings suggest that the NLS may be considered as a platform for incorporation of metallic complexes aimed at the treatment of TB.

  17. Specific T-cell epitopes for immunoassay-based diagnosis of Mycobacterium tuberculosis infection

    DEFF Research Database (Denmark)

    Brock, I; Weldingh, K; Leyten, EM

    2004-01-01

    Specific T-cell epitopes for immunoassay-based diagnosis of Mycobacterium tuberculosis infection.Brock I, Weldingh K, Leyten EM, Arend SM, Ravn P, Andersen P. Department of Infectious Disease Immunology, Statens Serum Institute, Artillerivej 5, DK-2300 Copenhagen S, Denmark. The currently used...... method for immunological detection of tuberculosis infection, the tuberculin skin test, has low specificity. Antigens specific for Mycobacterium tuberculosis to replace purified protein derivative are therefore urgently needed. We have performed a rigorous assessment of the diagnostic potential of four...... selected and combined the specific peptide stretches from the four proteins not recognized by M. bovis BCG-vaccinated individuals. These peptide stretches were tested with peripheral blood mononuclear cells obtained from patients with microscopy- or culture-confirmed tuberculosis and from healthy M. bovis...

  18. TUBERCULOSIS

    OpenAIRE

    Tarik Bajrović; Mahmud Nurkić; Šukrija Zvizdić

    2013-01-01

    Tuberculosis, known as the "White Plague" in the early 19th century, is the infectious disease, which is being researched today even in some of the most developed countries in the world. Epidemiological- epizootiological research points to the importance of pasteurizing milk as well as the transmission in aerosolized droplets in humans and animals. Mycobacterium tuberculosis (Mtb), M. bovis, M. africanum and M. microti are the mycobacteria that cause tuberculosis. Other mycobacteria cause dis...

  19. Activity of Scottish plant, lichen and fungal endophyte extracts against Mycobacterium aurum and Mycobacterium tuberculosis.

    Science.gov (United States)

    Gordien, Andréa Y; Gray, Alexander I; Ingleby, Kevin; Franzblau, Scott G; Seidel, Véronique

    2010-05-01

    With tuberculosis the leading bacterial killer worldwide and other mycobacterial diseases on the increase, the search for new antimycobacterial agents is timely. In this study, extracts from plants, lichens and fungal endophytes of Scottish provenance were screened for activity against Mycobacterium aurum and M. tuberculosis H(37)Rv. The best activity against M. aurum was observed for extracts of Juniperus communis roots and Cladonia arbuscula (MIC = 4 microg/mL), and a fungal endophyte isolated from Vaccinium myrtillus (MIC = 8 microg/mL). The best activity against M. tuberculosis was observed for extracts of C. arbuscula, Empetrum nigrum, J. communis roots, Calluna vulgaris aerial parts, Myrica gale roots and stems (93 to 99% inhibition at 100 microg/mL). Potent antitubercular activity (90 to 96% inhibition at 100 microg/mL) was also observed for the ethanol extracts of Xerocomus badius, Chalciporus piperatus, Suillus luteus and of endophytes isolated from C. vulgaris, E. nigrum, Vaccinium vitis-idaea and V. myrtillus. The results obtained this study provide, in part, some scientific basis for the traditional use of some of the selected plants in the treatment of tuberculosis. They also indicate that fungal endophytes recovered from Scottish plants are a source of antimycobacterial agents worthy of further investigation. Copyright (c) 2009 John Wiley & Sons, Ltd.

  20. Derivatives of amphotericin inhibit infection with human immunodeficiency virus in vitro by different modes of action

    DEFF Research Database (Denmark)

    Hansen, J E; Witzke, N M; Nielsen, C

    1990-01-01

    Three water-soluble derivatives of amphotericin B were tested for inhibition of HIV infection in vitro. The compounds amphotericin B methyl ester (AME) and N-(N'-(2-(4'-methylmorpholinio)ethyl)N"-cyclohexyl guanyl) amphotericin B methyl ester (MCG) inhibited HIV infection by 50% at 1 microgram/ml...

  1. miR-582-5p is upregulated in patients with active tuberculosis and inhibits apoptosis of monocytes by targeting FOXO1.

    Science.gov (United States)

    Liu, Yanhua; Jiang, Jing; Wang, Xinjing; Zhai, Fei; Cheng, Xiaoxing

    2013-01-01

    Macrophage apoptosis is a host innate defense mechanism against tuberculosis (TB). In this study, we found that percentage of apoptotic cells in peripheral blood monocytes from patients with active TB was lower than that from healthy controls (pmicroRNAs can modulate apoptosis of monocytes, we investigated differentially expressed microRNAs in patients with active TB. miR-582-5p was mainly expressed in monocytes and was upregulated in patients with active TB. The apoptotic percentage of THP-1 cells transfected with miR-582-5p mimics was significantly lower than those transfected with negative control of microRNA mimics (pmicroRNA mimics were transfected into THP-1 cells. RT-PCR and western blot analysis showed that the miR-582-5p could suppress both FOXO1 mRNA and protein expression. Co-transfection of miR-582-5p and FOXO1 3'UTR-luciferase reporter vector into cells demonstrated that significant decrease in luciferase activity was only found in reporter vector that contained a wild type sequence of FOXO1 3'UTR, suggesting that miR-582-5p could directly target FOXO1. In conclusion, miR-582-5p inhibited apoptosis of monocytes by down-regulating FOXO1 expression and might play an important role in regulating anti-M. tuberculosis directed immune responses.

  2. Tuberculosis

    OpenAIRE

    C. Robert Horsburgh, Jr

    2014-01-01

    This article reviews the published literature on tuberculosis from September 2012 to August 2013 and describes important advances in tuberculosis epidemiology, microbiology, pathology, clinical pharmacology, genetics, treatment and prevention.

  3. Hydrogen sulphide-releasing diclofenac derivatives inhibit breast cancer-induced osteoclastogenesis in vitro and prevent osteolysis ex vivo.

    Science.gov (United States)

    Frantzias, J; Logan, J G; Mollat, P; Sparatore, A; Del Soldato, P; Ralston, S H; Idris, A I

    2012-03-01

    Hydrogen sulphide (H(2)S) and prostaglandins are both involved in inflammation, cancer and bone turnover, and non-steroidal anti-inflammatory drugs (NSAIDs) and H(2)S donors exhibit anti-inflammatory and anti-tumour properties. H(2)S-releasing diclofenac (S-DCF) derivatives are a novel class of NSAIDs combining the properties of a H(2)S donor with those of a conventional NSAID. We studied the effects of the S-DCF derivatives ACS15 and ACS32 on osteoclast and osteoblast differentiation and activity in vitro, human and mouse breast cancer cells support for osteoclast formation and signalling in vitro, and osteolysis ex vivo. The S-diclofenac derivatives ACS15 and ACS32 inhibited the increase in osteoclast formation induced by human MDA-MB-231 and MCF-7 and mouse 4T1 breast cancer cells without affecting breast cancer cell viability. Conditioned media from human MDA-MB-231 cells enhanced IκB phosphorylation and osteoclast formation and these effects were significantly inhibited following treatment by ACS15 and ACS32, whereas the parent compound diclofenac had no effects. ACS15 and ACS32 inhibited receptor activator of NFκB ligand-induced osteoclast formation and resorption, and caused caspase-3 activation and apoptosis in mature osteoclasts via a mechanism dependent on IKK/NFκB inhibition. In calvaria organ culture, human MDA-MB-231 cells caused osteolysis, and this effect was completely prevented following treatment with ACS15 and ACS32. S-diclofenac derivatives inhibit osteoclast formation and activity, suppress breast cancer cell support for osteoclastogenesis and prevent osteolysis. This suggests that H(2)S-releasing diclofenac derivatives exhibit anti-resorptive properties, which might be of clinical value in the treatment of osteolytic bone disease. © 2011 The Authors. British Journal of Pharmacology © 2011 The British Pharmacological Society.

  4. Salicylic acid metabolites and derivatives inhibit CDK activity: Novel insights into aspirin's chemopreventive effects against colorectal cancer

    Science.gov (United States)

    Dachineni, Rakesh; Kumar, D. Ramesh; Callegari, Eduardo; Kesharwani, Siddharth S.; Sankaranarayanan, Ranjini; Seefeldt, Teresa; Tummala, Hemachand; Bhat, G. Jayarama

    2017-01-01

    Aspirin's potential as a drug continues to be evaluated for the prevention of colorectal cancer (CRC). Although multiple targets for aspirin and its metabolite, salicylic acid, have been identified, no unifying mechanism has been proposed to clearly explain its chemopreventive effects. Our goal here was to investigate the ability of salicylic acid metabolites, known to be generated through cytochrome P450 (CYP450) enzymes, and its derivatives as cyclin dependent kinase (CDK) inhibitors to gain new insights into aspirin's chemopreventive actions. Using in vitro kinase assays, for the first time, we demonstrate that salicylic acid metabolites, 2,3-dihydroxy-benzoic acid (2,3-DHBA) and 2,5-dihydroxybenzoic acid (2,5-DHBA), as well as derivatives 2,4-dihydroxybenzoic acid (2,4-DHBA), 2,6-dihydroxybenzoic acid (2,6-DHBA), inhibited CDK1 enzyme activity. 2,3-DHBA and 2,6-DHBA did not inhibit CDK2 and 4; however, both inhibited CDK-6 activity. Interestingly, another derivative, 2,4,6-trihydroxybenzoic acid (2,4,6-THBA) was highly effective in inhibiting CDK1, 2, 4 and 6 activity. Molecular docking studies showed that these compounds potentially interact with CDK1. Immunoblotting experiments showed that aspirin acetylated CDK1, and pre-incubation with salicylic acid and its derivatives prevented aspirin-mediated CDK1 acetylation, which supported the data obtained from molecular docking studies. We suggest that intracellularly generated salicylic acid metabolites through CYP450 enzymes within the colonic epithelial cells, or the salicylic acid metabolites generated by gut microflora may significantly contribute to the preferential chemopreventive effect of aspirin against CRC through inhibition of CDKs. This novel hypothesis and mechanism of action in aspirin's chemopreventive effects opens a new area for future research. In addition, structural modification to salicylic acid derivatives may prove useful in the development of novel CDK inhibitors in cancer prevention and

  5. Retinoic acid-induced granulocytic differentiation of HL60 human promyelocytic leukemia cells is preceded by downregulation of autonomous generation of inositol lipid-derived second messengers

    International Nuclear Information System (INIS)

    Porfiri, E.; Hoffbrand, A.V.; Wickremasinghe, R.G.

    1991-01-01

    Inositol phosphates (InsPs) and diacyglycerol (DAG) are second messengers derived via the breakdown of inositol phospholipids, and which play important signalling roles in the regulation of proliferation of some cell types. The authors have studied the operation of this pathway during the early stages of retionic acid (RA)-induced granulocytic differentiation of HL60 myeloid leukemia cells. The autonomous breakdown of inositol lipids that occurred in HL60 cells labeled with [3H] inositol was completely abolished following 48 hours of RA treatment. The rate of influx of 45Ca2+ was also significantly decreased at 48 hours, consistent with the role of inositol lipid-derived second messengers in regulating Ca2+ entry into cells. The downregulation of inositol lipid metabolism clearly preceded the onset of reduced proliferation induced by RA treatment, and was therefore not a consequence of decreased cell growth. The generation of InsPs in RA-treated cells was reactivated by the fluoroaluminate ion, a direct activator of guanine nucleotide-binding protein(s) (G proteins) that regulate the inositol lipid signalling pathway. Subtle alterations to a regulatory mechanism may therefore mediate the RA-induced downregulation of this pathway. The data are consistent with the hypothesis that the autonomous generation of inositol lipid-derived second messengers may contribute to the continuous proliferation of HL60 cells, and that the RA-induced downregulation of this pathway may, in turn, play a role in signalling the cessation of proliferation that preceedes granulocytic differentiation

  6. Phosphodiesterase-4 inhibition alters gene expression and improves isoniazid-mediated clearance of Mycobacterium tuberculosis in rabbit lungs.

    Directory of Open Access Journals (Sweden)

    Selvakumar Subbian

    2011-09-01

    Full Text Available Tuberculosis (TB treatment is hampered by the long duration of antibiotic therapy required to achieve cure. This indolent response has been partly attributed to the ability of subpopulations of less metabolically active Mycobacterium tuberculosis (Mtb to withstand killing by current anti-TB drugs. We have used immune modulation with a phosphodiesterase-4 (PDE4 inhibitor, CC-3052, that reduces tumor necrosis factor alpha (TNF-α production by increasing intracellular cAMP in macrophages, to examine the crosstalk between host and pathogen in rabbits with pulmonary TB during treatment with isoniazid (INH. Based on DNA microarray, changes in host gene expression during CC-3052 treatment of Mtb infected rabbits support a link between PDE4 inhibition and specific down-regulation of the innate immune response. The overall pattern of host gene expression in the lungs of infected rabbits treated with CC-3052, compared to untreated rabbits, was similar to that described in vitro in resting Mtb infected macrophages, suggesting suboptimal macrophage activation. These alterations in host immunity were associated with corresponding down-regulation of a number of Mtb genes that have been associated with a metabolic shift towards dormancy. Moreover, treatment with CC-3052 and INH resulted in reduced expression of those genes associated with the bacterial response to INH. Importantly, CC-3052 treatment of infected rabbits was associated with reduced ability of Mtb to withstand INH killing, shown by improved bacillary clearance, from the lungs of co-treated animals compared to rabbits treated with INH alone. The results of our study suggest that changes in Mtb gene expression, in response to changes in the host immune response, can alter the responsiveness of the bacteria to antimicrobial agents. These findings provide a basis for exploring the potential use of adjunctive immune modulation with PDE4 inhibitors to enhance the efficacy of existing anti-TB treatment.

  7. Bovine tuberculosis

    Science.gov (United States)

    Tuberculosis (TB) in animals and humans may result from exposure to bacilli within the Mycobacterium tuberculosis complex (i.e., M. tuberculosis, M. bovis, M. africanum, M. pinnipedii, M. microti, M. caprae, or M. canetti) . Mycobacterium bovis is the species most often isolated from tuberculous cat...

  8. Immunological response to Mycobacterium tuberculosis infection in blood from type 2 diabetes patients.

    Science.gov (United States)

    Raposo-García, Sara; Guerra-Laso, José Manuel; García-García, Silvia; Juan-García, Javier; López-Fidalgo, Eduardo; Diez-Tascón, Cristina; Nebreda-Mayoral, Teresa; López-Medrano, Ramiro; Rivero-Lezcano, Octavio Miguel

    2017-06-01

    The convergence of tuberculosis and diabetes represents a co-epidemic that threatens progress against tuberculosis. We have investigated type 2 diabetes as a risk factor for tuberculosis susceptibility, and have used as experimental model whole blood infected in vitro with Mycobacterium tuberculosis. Blood samples from diabetic patients were found to have a higher absolute neutrophil count that non-diabetic controls, but their immune functionality seemed impaired because they displayed a lower capacity to phagocytose M. tuberculosis, a finding that had been previously reported only for monocytes. In contrast, an increased production of TNFα was detected in infected blood from diabetic patients. Despite the altered phagocytic capacity showed by cells from these patients, the antimicrobial activity measured in both whole blood and monocyte derived macrophages was similar to that of controls. This unexpected result prompts further improvements in the whole blood model to analyze the immune response of diabetes patients to tuberculosis. Copyright © 2017 European Federation of Immunological Societies. Published by Elsevier B.V. All rights reserved.

  9. Negative regulation by Ser/Thr phosphorylation of HadAB and HadBC dehydratases from Mycobacterium tuberculosis type II fatty acid synthase system.

    Science.gov (United States)

    Slama, Nawel; Leiba, Jade; Eynard, Nathalie; Daffé, Mamadou; Kremer, Laurent; Quémard, Annaïk; Molle, Virginie

    2011-09-02

    The type II fatty acid synthase system of mycobacteria is involved in the biosynthesis of major and essential lipids, mycolic acids, key-factors of Mycobacterium tuberculosis pathogenicity. One reason of the remarkable survival ability of M. tuberculosis in infected hosts is partly related to the presence of cell wall-associated mycolic acids. Despite their importance, the mechanisms that modulate synthesis of these lipids in response to environmental changes are unknown. We demonstrate here that HadAB and HadBC dehydratases of this system are phosphorylated by Ser/Thr protein kinases, which negatively affects their enzymatic activity. The phosphorylation of HadAB/BC is growth phase-dependent, suggesting that it represents a mechanism by which mycobacteria might tightly control mycolic acid biosynthesis under non-replicating condition. Copyright © 2011 Elsevier Inc. All rights reserved.

  10. Kaempferol suppresses lipid accumulation by inhibiting early adipogenesis in 3T3-L1 cells and zebrafish.

    Science.gov (United States)

    Lee, Yeon-Joo; Choi, Hyeon-Son; Seo, Min-Jung; Jeon, Hui-Jeon; Kim, Kui-Jin; Lee, Boo-Yong

    2015-08-01

    Kaempferol is a flavonoid present in Kaempferia galanga and Opuntia ficus indica var. saboten. Recent studies have suggested that it has anti-oxidant, anti-inflammatory, anti-cancer, and anti-obesity effects. In this study, we focused on the anti-adipogenic effects of kaempferol during adipocyte differentiation. The results showed that kaempferol inhibits lipid accumulation in adipocytes and zebrafish. Oil Red O and Nile Red staining showed that the number of intracellular lipid droplets decreased in adipocytes and zebrafish treated with kaempferol. LPAATθ (lysophosphatidic acid acyltransferase), lipin1, and DGAT1 (triglyceride synthetic enzymes) and FASN and SREBP-1C (fatty acid synthetic proteins) showed decreased expression levels in the presence of kaempferol. In addition, treatment of kaempferol showed an inhibitory activity on cell cycle progression. Kaempferol delayed cell cycle progression from the S to G2/M phase through the regulation of cyclins in a dose-dependent manner. Kaempferol blocked the phosphorylation of AKT (protein kinase B) and mammalian target of rapamycin (mTOR) signaling pathway during the early stages of adipogenesis. In addition, kaempferol down-regulated pro-early adipogenic factors such as CCAAT-enhancer binding proteins β (C/EBPβ), and Krüppel-like factors (KLFs) 4 and 5, while anti-early adipogenic factors, such as KLF2 and pref-1(preadipocyte factor-1), were upregulated. These kaempferol-mediated regulations of early adipogenic factors resulted in the attenuation of late adipogenic factors such as C/EBPα and peroxisome proliferator-activated receptor γ (PPARγ). These results were supported in zebrafish based on the decrease in lipid accumulation and expression of adipogenic factors. Our results indicated that kaempferol might have an anti-obesity effect by regulating lipid metabolism.

  11. Statins inhibit protein lipidation and induce the unfolded protein response in the non-sterol producing nematode Caenorhabditis elegans

    DEFF Research Database (Denmark)

    Mörck, Catarina; Elmelund-Præstekær, Louise Cathrine Braun; Kurth, Caroline

    2009-01-01

    of lipid moieties for protein prenylation. The nematode Caenorhabditis elegans possesses a mevalonate pathway that lacks the branch leading to cholesterol synthesis, and thus represents an ideal organism to specifically study the noncholesterol roles of the pathway. Inhibiting HMG-CoA reductase in C....... elegans using statins or RNAi leads to developmental arrest and loss of membrane association of a GFP-based prenylation reporter. The unfolded protein response (UPR) is also strongly activated, suggesting that impaired prenylation of small GTPases leads to the accumulation of unfolded proteins and ER...... and fatty acid composition were unaffected in statin-treated worms, even though they showed reduced staining with Nile red. We conclude that inhibitors of HMG-CoA reductase or of farnesyl transferases induce the UPR by inhibiting the prenylation of M57.2 substrates, resulting in developmental arrest in C...

  12. Synthesis of lipid mediators during UVB-induced inflammatory hyperalgesia in rats and mice.

    Directory of Open Access Journals (Sweden)

    Marco Sisignano

    Full Text Available Peripheral sensitization during inflammatory pain is mediated by a variety of endogenous proalgesic mediators including a number of oxidized lipids, some of which serve endogenous modulators of sensory TRP-channels. These lipids are eicosanoids of the arachidonic acid and linoleic acid pathway, as well as lysophophatidic acids (LPAs. However, their regulation pattern during inflammatory pain and their contribution to peripheral sensitization is still unclear. Here, we used the UVB-model for inflammatory pain to investigate alterations of lipid concentrations at the site of inflammation, the dorsal root ganglia (DRGs as well as the spinal dorsal horn and quantified 21 lipid species from five different lipid families at the peak of inflammation 48 hours post irradiation. We found that known proinflammatory lipids as well as lipids with unknown roles in inflammatory pain to be strongly increased in the skin, whereas surprisingly little changes of lipid levels were seen in DRGs or the dorsal horn. Importantly, although there are profound differences between the number of cytochrome (CYP genes between mice and rats, CYP-derived lipids were regulated similarly in both species. Since TRPV1 agonists such as LPA 18∶1, 9- and 13-HODE, 5- and 12-HETE were elevated in the skin, they may contribute to thermal hyperalgesia and mechanical allodynia during UVB-induced inflammatory pain. These results may explain why some studies show relatively weak analgesic effects of cyclooxygenase inhibitors in UVB-induced skin inflammation, as they do not inhibit synthesis of other proalgesic lipids such as LPA 18∶1, 9-and 13-HODE and HETEs.

  13. Thiazolopyridines Improve Adipocyte Function by Inhibiting 11 Beta-HSD1 Oxoreductase Activity

    Directory of Open Access Journals (Sweden)

    Thirumurugan Rathinasabapathy

    2017-01-01

    Full Text Available Background. Glucocorticoid excess has been linked to clinical observations associated with the pathophysiology of metabolic syndrome. The intracellular glucocorticoid levels are primarily modulated by 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1 enzyme that is highly expressed in key metabolic tissues including fat, liver, and the central nervous system. Methods. In this study we synthesized a set of novel tetrahydrothiazolopyridine derivatives, TR-01–4, that specifically target 11β-HSD1 and studied their ability to interfere with the glucocorticoid and lipid metabolism in the 3T3-L1 adipocytes. Results. Based on the docking model and structure-activity relationships, tetrahydrothiazolopyridine derivatives TR-02 and TR-04 showed the highest potency against 11β-HSD1 by dose-dependently inhibiting conversion of cortisone to cortisol (IC50 values of 1.8 μM and 0.095 μM, resp.. Incubation of fat cells with 0.1–10 μM TR-01–4 significantly decreased cortisone-induced lipid accumulation in adipocytes and suppressed 11β-HSD1 mRNA expression. Observed reduction in adipocyte fat stores could be partially explained by decreased expression levels of adipogenic markers (PPAR-γ, aP2 and key enzymes of lipid metabolism, including fatty acid synthase (FAS, hormone sensitive lipase (HSL, and lipoprotein lipase (LPL. Conclusions. The tetrahydrothiazolopyridine moiety served as an active pharmacophore for inhibiting 11β-HSD1 and offered a novel therapeutic strategy to ameliorate metabolic alterations found in obesity and diabetes.

  14. Congenital tuberculosis

    African Journals Online (AJOL)

    Prof Ezechukwu

    2012-06-20

    Jun 20, 2012 ... Key words: Congenital tuberculo- sis, case report, miliary tuberculosis. Introduction. Congenital tuberculosis defines tuberculosis in infants of .... tary TB and otitis media, resulting in seizures, deafness, and death. It is therefore not surprising that the index case who presented at twelve weeks of age, had ...

  15. MenA Is a Promising Drug Target for Developing Novel Lead Molecules to Combat Mycobacterium tuberculosis

    OpenAIRE

    Kurosu, Michio; Crick, Dean C.

    2009-01-01

    Potent inhibitors of MenA (1,4-dihydroxy-2-naphtoate prenyltrasferase) in Mycobacterium tuberculosis are identified, and are also effective in inhibiting growth of Mycobacterium tuberculosis at low concentrations. The MenA inhibitors possess common chemical structural features of ((alkylamino)alkoxyphenyl)(phenyl)methanones. Significantly, the MenA inhibitors can be synthesized in a few steps with high overall yields. The representative MenA inhibitors are highly effective in killing nonrepli...

  16. Tuberculosis verrucosa cutis

    Directory of Open Access Journals (Sweden)

    Krishnabharath S

    2017-08-01

    Full Text Available We report a case of 23-year-old male patient with tuberculosis verrucous cutis on the foot for a duration of six months without responding to routine treatment. Tuberculosis is a common disease worldwide. Extrapulmonary tuberculosis contributes to 10% of cases. Cutaneous tuberculosis occupies a small spectrum of extrapulmonary tuberculosis. Tuberculosis verrucosa cutis is an exogenous infection occurring in a previously sensitized patient by direct inoculation of the organism. It occurs in sensitized patients with a moderate to high immune response. The diagnosis in our patient was confirmed by history, clinical examination, histopathological examination and the patient’s response to anti-tuberculous therapy.

  17. CD1b-mycolic acid tetramers demonstrate T-cell fine specificity for mycobacterial lipid tails

    NARCIS (Netherlands)

    Van Rhijn, Ildiko; Iwany, Sarah K; Fodran, Peter; Cheng, Tan-Yun; Gapin, Laurent; Minnaard, Adriaan J; Moody, D Branch

    Mycobacterium tuberculosis synthesizes a thick cell wall comprised of mycolic acids (MA), which are foreign antigens for human T cells. T-cell clones from multiple donors were used to determine the fine specificity of MA recognition by human αβ T cells. Most CD1-presented lipid antigens contain

  18. Design and study of some novel ibuprofen derivatives with potential nootropic and neuroprotective properties.

    Science.gov (United States)

    Siskou, Ioanna C; Rekka, Eleni A; Kourounakis, Angeliki P; Chrysselis, Michael C; Tsiakitzis, Kariofyllis; Kourounakis, Panos N

    2007-01-15

    Six novel ibuprofen derivatives and related structures, incorporating a proline moiety and designed for neurodegenerative disorders, are studied. They possess anti-inflammatory properties and three of them inhibited lipoxygenase. One compound was found to inhibit cyclooxygenase (COX)-2 production in spleenocytes from arthritic rats. The HS-containing compounds are potent antioxidants and one of them protected against glutathione loss after cerebral ischemia/reperfusion. They demonstrated lipid-lowering ability and seem to acquire low gastrointestinal toxicity. Acetylcholinesterase inhibitory activity, found in two of these compounds, may be an asset to their actions.

  19. Synthesis of water-soluble curcumin derivatives and their inhibition on lysozyme amyloid fibrillation

    Science.gov (United States)

    Wang, Sujuan; Peng, Xixi; Cui, Liangliang; Li, Tongtong; Yu, Bei; Ma, Gang; Ba, Xinwu

    2018-02-01

    The potential application of curcumin was heavily limited in biomedicine because of its poor solubility in pure water. To circumvent the detracting feature, two novel water-soluble amino acid modified curcumin derivatives (MLC and DLC) have been synthesized through the condensation reaction between curcumin and Nα-Fmoc-Nε-Boc-L-lysine. Benefiting from the enhanced solubility of 3.32 × 10- 2 g/mL for MLC and 4.66 × 10- 2 g/mL for DLC, the inhibition effects of the as-prepared derivatives on the amyloid fibrillation of lysozyme (HEWL) were investigated detaily in water solution. The obtained results showed that the amyloid fibrillation of HEWL was inhibited to a great extent when the concentrations of MLC and DLC reach to 20.139 mM and 49.622 mM, respectively. The fluorescence quenching upon the addition of curcumin to HEWL provide a support for static and dynamic recombination quenching process. The binding driving force was assigned to classical hydrophobic interaction between curcumin derivatives and HEWL. In addition, UV-Vis absorption and circular dichroism (CD) spectra confirmed the change of the conformation of HEWL.

  20. Evaluation of Novel Polyunsaturated Fatty Acid Derived Lipid Mediators of Inflammation to Ameliorate the Deleterious Effects of Blast Overpressure on Eye and Brain Visual Processing Centers in Rats

    Science.gov (United States)

    2014-10-01

    acid ( DHA ; 22:6ω-3) Eicosapentaenoic acid (EPA; 20:5ω-3) Lipoxin A4 Resolvin E1 Protectin DX Resolvin D1 LOX LOX LOX Structures and Endogenous Source...1 AD_________________ Award Number: W81XWH-12-2-0082 TITLE: Evaluation of Novel Polyunsaturated Fatty Acid Derived Lipid...Evaluation of Novel Polyunsaturated Fatty Acid Derived Lipid Mediators 5a. CONTRACT NUMBER of Inflammation to Ameliorate the Deleterious Effects of

  1. The tuberculosis hospital in Hohenkrug, Stettin. Department of Genitourinary Tuberculosis.

    Science.gov (United States)

    Zajaczkowski, Tadeusz

    2012-01-01

    Towards the end of the 19th century, Europe turned particular attention to the problem of tuberculosis, at that time the most serious social disease. In the majority of cases, pulmonary tuberculosis had a fatal outcome owing to the lack of effective drugs and methods of treatment. Due to poor sanitary conditions, particularly as regards dwellings, pulmonary tuberculosis was able to spread rapidly. Hospital departments were reluctant to admit patients suffering from tuberculosis. It was only after the discoveries of Robert Koch (bacillus tubercle in 1882) that the cause of the disease became understood and methods of treatment began to be developed. A modern sanatorium and hospital with 270 beds was erected in Hohenkrug (today Szczecin-Zdunowo) between 1915 and 1930. Patients could now be treated with modern methods, surgically in most cases. After the Second World War, pulmonary tuberculosis was still an enormous epidemiologic problem. In 1949, the Polish authorities opened a 400-bed sanatoriumin Zdunowo. The methods of treatment were not much different from pre-war practice and it was only the routine introduction of antituberculotic drugs during the fifties of the past century that brought about a radical change in the fight against tuberculosis. The growing numbers of patients with tuberculosis of the genitourinary system led to the opening in 1958 of a 40-bed specialist ward at the Tuberculosis Sanatorium in Zdunowo. It should be emphasized that the Department of Genitourinary Tuberculosis in Szczecin-Zdunowo was a historical necessity and a salvation for thousands of patients from Northern Poland. The Department totally fulfilled its social duties thanks to the commitment of many outstanding persons dedicated to helping the patients. This unit was finally closed in 1987 because the demand for surgical treatment of tuberculosis was declining concurrently with the advent of new and potent antituberculotics and falling number of new cases of genitourinary

  2. An epidemic of tuberculosis with a high rate of tuberculin anergy among a population previously unexposed to tuberculosis, the Yanomami Indians of the Brazilian Amazon

    Science.gov (United States)

    Sousa, Alexandra O.; Salem, Julia I.; Lee, Francis K.; Verçosa, Maria C.; Cruaud, Philippe; Bloom, Barry R.; Lagrange, Philippe H.; David, Hugo L.

    1997-01-01

    A survey of an emerging tuberculosis epidemic among the Yanomami Indians of the Amazonian rain forest provided a unique opportunity to study the impact of tuberculosis on a population isolated from contact with the tubercle bacillus for millennia until the mid-1960s. Within the Yanomami population, an extraordinary high prevalence of active tuberculosis (6.4% of 625 individuals clinically examined) was observed, indicating a high susceptibility to disease, even among bacille Calmette–Guérin-vaccinated individuals. Observational studies on cell-mediated and humoral immune responses of the Yanomami Indians compared with contemporary residents of the region suggest profound differences in immunological responsiveness to Mycobacterium tuberculosis infection. Among the Yanomami, a very high prevalence of tuberculin skin test anergy was found. Of patients with active tuberculosis, 46% had purified protein derivative of tuberculosis reactions Yanomami also had higher titers of antibodies against M. tuberculosis glycolipid antigens (>70%) than the control subjects comprised of Brazilians of European descent (14%). The antibodies were mostly of the IgM isotype. Among the tuberculosis patients who also produced IgG antibodies, the titers of IgG4 were significantly higher among the Yanomami than in the control population. Although it was not possible to analyze T-cell responses or patterns of lymphokine production in vitro because of the remoteness of the villages from laboratory facilities, the results suggest that the first encounter of the Yanomami Indian population with tuberculosis engenders a diminished cell-mediated immune response and an increased production antibody responses, relative to other populations with extensive previous contact with the pathogen. These findings suggest that tuberculosis may represent a powerful selective pressure on human evolution that over centuries has shaped the nature of human immune responses to infection. PMID:9371828

  3. An epidemic of tuberculosis with a high rate of tuberculin anergy among a population previously unexposed to tuberculosis, the Yanomami Indians of the Brazilian Amazon.

    Science.gov (United States)

    Sousa, A O; Salem, J I; Lee, F K; Verçosa, M C; Cruaud, P; Bloom, B R; Lagrange, P H; David, H L

    1997-11-25

    A survey of an emerging tuberculosis epidemic among the Yanomami Indians of the Amazonian rain forest provided a unique opportunity to study the impact of tuberculosis on a population isolated from contact with the tubercle bacillus for millennia until the mid-1960s. Within the Yanomami population, an extraordinary high prevalence of active tuberculosis (6.4% of 625 individuals clinically examined) was observed, indicating a high susceptibility to disease, even among bacille Calmette-Guérin-vaccinated individuals. Observational studies on cell-mediated and humoral immune responses of the Yanomami Indians compared with contemporary residents of the region suggest profound differences in immunological responsiveness to Mycobacterium tuberculosis infection. Among the Yanomami, a very high prevalence of tuberculin skin test anergy was found. Of patients with active tuberculosis, 46% had purified protein derivative of tuberculosis reactions Yanomami also had higher titers of antibodies against M. tuberculosis glycolipid antigens (>70%) than the control subjects comprised of Brazilians of European descent (14%). The antibodies were mostly of the IgM isotype. Among the tuberculosis patients who also produced IgG antibodies, the titers of IgG4 were significantly higher among the Yanomami than in the control population. Although it was not possible to analyze T-cell responses or patterns of lymphokine production in vitro because of the remoteness of the villages from laboratory facilities, the results suggest that the first encounter of the Yanomami Indian population with tuberculosis engenders a diminished cell-mediated immune response and an increased production antibody responses, relative to other populations with extensive previous contact with the pathogen. These findings suggest that tuberculosis may represent a powerful selective pressure on human evolution that over centuries has shaped the nature of human immune responses to infection.

  4. Th1 differentiation drives the accumulation of intravascular, non-protective CD4 T cells during tuberculosis

    Science.gov (United States)

    Sallin, Michelle A.; Sakai, Shunsuke; Kauffman, Keith D.; Young, Howard A.; Zhu, Jinfang; Barber, Daniel L.

    2017-01-01

    SUMMARY Recent data indicate that the differentiation state of Th1 cells determines their protective capacity against tuberculosis. Therefore, we examined the role of Th1 polarizing factors in the generation of protective and non-protective subsets of Mtb-specific Th1 cells. We find IL-12/23p40 promotes Th1 cell expansion and maturation beyond the CD73+CXCR3+T-betdim stage, and T-bet prevents deviation of Th1 cells into Th17 cells. Nevertheless, IL-12/23p40 and T-bet are also essential for the production of a prominent subset of intravascular CX3CR1+KLRG1+ Th1 cells that persists poorly and can neither migrate into the lung parenchyma nor control Mtb growth. Furthermore, T-bet suppresses development of CD69+CD103+ tissue resident phenotype effectors in lung. In contrast, Th1 cell-derived IFNγ inhibits the accumulation of intravascular CX3CR1+KLRG1+ Th1 cells. Thus, although IL-12 and T-bet are essential host survival factors, they simultaneously oppose lung CD4 T cell responses at several levels, demonstrating the dual nature of Th1 polarization in tuberculosis. PMID:28355562

  5. Detection and molecular characterization of 9,000-year-old Mycobacterium tuberculosis from a Neolithic settlement in the Eastern Mediterranean.

    Directory of Open Access Journals (Sweden)

    Israel Hershkovitz

    Full Text Available BACKGROUND: Mycobacterium tuberculosis is the principal etiologic agent of human tuberculosis. It has no environmental reservoir and is believed to have co-evolved with its host over millennia. This is supported by skeletal evidence of the disease in early humans, and inferred from M. tuberculosis genomic analysis. Direct examination of ancient human remains for M. tuberculosis biomarkers should aid our understanding of the nature of prehistoric tuberculosis and the host/pathogen relationship. METHODOLOGY/PRINCIPAL FINDINGS: We used conventional PCR to examine bone samples with typical tuberculosis lesions from a woman and infant, who were buried together in the now submerged site of Atlit-Yam in the Eastern Mediterranean, dating from 9,250-8,160 years ago. Rigorous precautions were taken to prevent contamination, and independent centers were used to confirm authenticity of findings. DNA from five M tuberculosis genetic loci was detected and had characteristics consistent with extant genetic lineages. High performance liquid chromatography was used as an independent method of verification and it directly detected mycolic acid lipid biomarkers, specific for the M. tuberculosis complex. CONCLUSIONS/SIGNIFICANCE: Human tuberculosis was confirmed by morphological and molecular methods in a population living in one of the first villages with evidence of agriculture and animal domestication. The widespread use of animals was not a source of infection but may have supported a denser human population that facilitated transmission of the tubercle bacillus. The similarity of the M. tuberculosis genetic signature with those of today gives support to the theory of a long-term co-existence of host and pathogen.

  6. Synthesis and Pharmacochemistry of New Pleiotropic Pyrrolyl Derivatives

    Directory of Open Access Journals (Sweden)

    Markella Konstantinidou

    2015-09-01

    Full Text Available Within the framework of our attempts to synthesize pleiotropic anti-inflammatory agents, we have synthesized some chalcones and their corresponding 3,4-pyrrolyl derivatives. Chalcones constitute a class of compounds with high biological impact. They are known for a number of biological activities, including anti-inflammatory and free radical scavenging activities. They inhibit several enzymes implicated in the inflammatory process, such as lipoxygenase, cyclooxygenase (COX and lysozymes. The synthesized pyrroles have been studied for: (1 their in vitro inhibition of lipoxygenase; (2 their in vitro inhibition of COX; (3 their in vitro inhibition of lipid peroxidation; (4 their interaction with the stable, N-centered, free radical, 2,2-diphenyl-1-picrylhydrazyl (DPPH; (5 their inhibition on interleukin-6 (IL-6; (6 their anti-proteolytic activity; and (7 their in vivo anti-inflammatory activity using carrageenan-induced rat paw edema. Their physicochemical properties were determined to explain the biological results. Lipophilicity was experimentally determined. 2i and 2v were found to be promising multifunctional molecules with high antiproteolytic and anti-inflammatory activities in combination with anti-interleukin-6 activity.

  7. Attenuated Mycobacterium tuberculosis SO2 vaccine candidate is unable to induce cell death.

    Directory of Open Access Journals (Sweden)

    Adriana Aporta

    Full Text Available It has been proposed that Mycobacterium tuberculosis virulent strains inhibit apoptosis and trigger cell death by necrosis of host macrophages to evade innate immunity, while non-virulent strains induce typical apoptosis activating a protective host response. As part of the characterization of a novel tuberculosis vaccine candidate, the M. tuberculosis phoP mutant SO2, we sought to evaluate its potential to induce host cell death. The parental M. tuberculosis MT103 strain and the current vaccine against tuberculosis Bacillus Calmette-Guérin (BCG were used as comparators in mouse models in vitro and in vivo. Our data reveal that attenuated SO2 was unable to induce apoptotic events neither in mouse macrophages in vitro nor during lung infection in vivo. In contrast, virulent MT103 triggers typical apoptotic events with phosphatidylserine exposure, caspase-3 activation and nuclear condensation and fragmentation. BCG strain behaved like SO2 and did not induce apoptosis. A clonogenic survival assay confirmed that viability of BCG- or SO2-infected macrophages was unaffected. Our results discard apoptosis as the protective mechanism induced by SO2 vaccine and provide evidence for positive correlation between classical apoptosis induction and virulent strains, suggesting apoptosis as a possible virulence determinant during M. tuberculosis infection.

  8. In vitro screening of snake venom against multidrug-resistant tuberculosis

    Directory of Open Access Journals (Sweden)

    Sujay Kumar Bhunia

    2015-12-01

    Full Text Available The re-emergence of multidrug-resistant tuberculosis (MDR-TB has brought to light the importance of screening effective novel drugs. In the present study, in vitro activities of different snake (Naja naja, Bungarus fasciatus, Daboia russelli russelli, Naja kaouthia venoms have been investigated against clinical isolate of MDR-TB strains. The treatment with all the venoms inhibited the mycobacterial growth for at least a week in common and two of them (Naja naja and Naja kaouthia showed significantly longer inhibition up to two weeks against the MDR-TB strain with single dose and a repetition of those two venoms exhibited inhibition up to more than four weeks.

  9. Radiographic differentiation of atypical tuberculosis from mycobacterium tuberculosis

    International Nuclear Information System (INIS)

    Tarver, R.D.; Pearcy, E.A.; Conces, D.J. Jr.; Mathur, P.N.

    1987-01-01

    The chest radiographs of 95 patients with the new diagnosis of atypical turberculosis were reviewed to determine if any significant differences between atypical tuberculosis and that caused by Mycobacterium tuberculosis could be discerned. Findings included upper lobe involvement in B4 of the 95 patients and cavities in 76, with nearly equal groups having no, moderate, or extensive surrounding alveolar disease. Nodules were common; in six patients a nodule was the sole manifestation of disease. Adenopathy was seen in 12 of the 95 patients, atlectasis in 45, pleural thickening in 90, and effusions in three. These radiographic findings did not allow the radiographic differentiation of atypical tuberculosis from Mycobacterium tuberculosis infection

  10. Radiation-induced lipid peroxidation: influence of oxygen concentration and membrane lipid composition

    International Nuclear Information System (INIS)

    Wolters, H.; Tilburg, C.A.M. van; Konings, A.W.T.

    1987-01-01

    Radiation -induced lipid peroxidation phospholipid liposomes was investigated in terms of its dependence on lipid composition and oxygen concentration. Non-peroxidizable lipid incorporated in the liposomes reduced the rate of peroxidation of the peroxidizable phospholipid acyl chains, possibly by restricting the length of chain reactions. The latter effect is believed to be caused by interference of the non-peroxidizable lipids in the bilayer. At low oxygen concentration lipid peroxidation was reduced. The cause of this limited peroxidation may be a reduced number of radical initiation reactions possibly involving oxygen-derived superoxide radicals. Killing of proliferating mammalian cells, irradiated at oxygen concentrations ranging from 0 to 100%, appeared to be independent of the concentration of peroxidizable phospholipids in the cell membranes. This indicates that lipid peroxidation is not the determining process in radiation-induced reproductive cell death. (author)

  11. Meropenem-Clavulanate is Effective Against Extensive Drug-Resistant Mycobacterium Tuberculosis

    Energy Technology Data Exchange (ETDEWEB)

    Hugonnet, J.; Tremblay, L; Boshoff, H; Barry, C; Blanchard, J

    2009-01-01

    e-lactam antibiotics are ineffective against Mycobacterium tuberculosis, being rapidly hydrolyzed by the chromosomally encoded blaC gene product. The carbapenem class of e-lactams are very poor substrates for BlaC, allowing us to determine the three-dimensional structure of the covalent BlaC-meropenem covalent complex at 1.8 angstrom resolution. When meropenem was combined with the e-lactamase inhibitor clavulanate, potent activity against laboratory strains of M. tuberculosis was observed [minimum inhibitory concentration (MICmeropenem) less than 1 microgram per milliliter], and sterilization of aerobically grown cultures was observed within 14 days. In addition, this combination exhibited inhibitory activity against anaerobically grown cultures that mimic the 'persistent' state and inhibited the growth of 13 extensively drug-resistant strains of M. tuberculosis at the same levels seen for drug-susceptible strains. Meropenem and clavulanate are Food and Drug Administration-approved drugs and could potentially be used to treat patients with currently untreatable disease.

  12. T-cell recognition of Mycobacterium tuberculosis culture filtrate fractions in tuberculosis patients and their household contacts

    DEFF Research Database (Denmark)

    Demissie, A; Ravn, P; Olobo, J

    1999-01-01

    We examined the immune responses of patients with active pulmonary tuberculosis (TB) and their healthy household contacts to short-term culture filtrate (ST-CF) of Mycobacterium tuberculosis or molecular mass fractions derived from it. Our goal was to identify fractions strongly recognized...... antigens and immune responses were determined. Household contacts produced significantly higher levels of gamma interferon (IFN-gamma) than the TB patients in response to antigens present in ST-CF and the 10 narrow-molecular-mass fractions. A similar difference in leukocyte proliferative responses...... to the antigens between the two groups was also found. In general, while all fractions stimulated immune responses, the highest activity was seen with the low-molecular-mass fractions, which include well-defined TB antigens such as ESAT-6. Leukocytes from contacts of TB patients with severe disease produced...

  13. T-cell recognition of Mycobacterium tuberculosis culture filtrate fractions in tuberculosis patients and their household contacts

    DEFF Research Database (Denmark)

    Demissie, A; Ravn, P; Olobo, J

    1999-01-01

    We examined the immune responses of patients with active pulmonary tuberculosis (TB) and their healthy household contacts to short-term culture filtrate (ST-CF) of Mycobacterium tuberculosis or molecular mass fractions derived from it. Our goal was to identify fractions strongly recognized...... to the antigens between the two groups was also found. In general, while all fractions stimulated immune responses, the highest activity was seen with the low-molecular-mass fractions, which include well-defined TB antigens such as ESAT-6. Leukocytes from contacts of TB patients with severe disease produced...... higher levels of antigen-specific IFN-gamma than those from contacts of patients with minimal disease. Both groups of contacts exhibited higher cell-mediated responses than the patients themselves. The enhanced immune response of healthy contacts, especially those of patients with severe disease...

  14. Human-induced pluripotent stem cell-derived macrophages and their immunological function in response to tuberculosis infection.

    Science.gov (United States)

    Hong, Danping; Ding, Jiongyan; Li, Ouyang; He, Quan; Ke, Minxia; Zhu, Mengyi; Liu, Lili; Ou, Wen-Bin; He, Yulong; Wu, Yuehong

    2018-02-26

    Induced pluripotent stem cells (iPS) represent an innovative source for the standardized in vitro generation of macrophages (Mφ). Mφ show great promise in disease pathogenesis, particularly tuberculosis. However, there is no information about human iPS-derived (hiPS) macrophages (hiPS-Mφ) in response to tuberculosis infection. In the present study, macrophages derived from hiPS were established via embryoid body (EB) formation by using feeder-free culture conditions, and the human monocyte cell line THP-1 (THP-1-Mφ) was used as control. iPS-Mφ were characterized by using morphology, Giemsa staining, nonspecific esterase staining (α-NAE), phagocytosis, and surface phenotype. Additionally, after treatment with Bacillus Calmette-Guérin (BCG) for 24 h, cell apoptosis was detected by using an Annexin V-FITC Apoptosis Detection assay. The production of nitric oxide (NO), expression of tumor necrosis factor alpha (TNF-α), activity of apoptosis-related protein cysteine-3 (Caspase-3) and expression of B-cell lymphoma-2 (Bcl-2) were analyzed. With respect to morphology, surface phenotype, and function, the iPS-Mφ closely resembled their counterparts generated in vitro from a human monocyte cell line. iPS-Mφ exhibited the typically morphological characteristics of macrophages, such as round, oval, fusiform and irregular characteristics. The cells were Giemsa-stained-positive, α-NAE-positive, and possessed phagocytic ability. iPS-Mφ express high levels of CD14, CD11b, CD40, CD68, and major histocompatibility complex II (MHC-II). Moreover, with regard to the apoptotic rate, the production of NO, expression of TNF-α, and activity of Caspase-3 and Bcl-2, iPS-Mφ closely resemble that of their counterparts generated in vitro from human monocyte cell line in response to BCG infection. The rate of apoptosis of BCG-treated iPS-Mφ was 37.77 ± 7.94% compared to that of the untreated group at 4.97 ± 1.60% (P immunological function in response to Bacillus Calmette

  15. miR-582-5p is upregulated in patients with active tuberculosis and inhibits apoptosis of monocytes by targeting FOXO1.

    Directory of Open Access Journals (Sweden)

    Yanhua Liu

    Full Text Available Macrophage apoptosis is a host innate defense mechanism against tuberculosis (TB. In this study, we found that percentage of apoptotic cells in peripheral blood monocytes from patients with active TB was lower than that from healthy controls (p<0.001. To understand whether microRNAs can modulate apoptosis of monocytes, we investigated differentially expressed microRNAs in patients with active TB. miR-582-5p was mainly expressed in monocytes and was upregulated in patients with active TB. The apoptotic percentage of THP-1 cells transfected with miR-582-5p mimics was significantly lower than those transfected with negative control of microRNA mimics (p<0.001, suggesting that miR-582-5p could inhibit apoptosis of monocytes. To our knowledge, the role of miR-582-5p in regulating apoptosis of monocytes has not been reported so far. Systematic bioinformatics analysis indicated that FOXO1 might be a target gene for miR-582-5p and its 3'UTR contains potential binding sites for miR-582-5p. To determine whether miR-582-5p could influence FOXO1 expression, miR-582-5p mimics or negative control of microRNA mimics were transfected into THP-1 cells. RT-PCR and western blot analysis showed that the miR-582-5p could suppress both FOXO1 mRNA and protein expression. Co-transfection of miR-582-5p and FOXO1 3'UTR-luciferase reporter vector into cells demonstrated that significant decrease in luciferase activity was only found in reporter vector that contained a wild type sequence of FOXO1 3'UTR, suggesting that miR-582-5p could directly target FOXO1. In conclusion, miR-582-5p inhibited apoptosis of monocytes by down-regulating FOXO1 expression and might play an important role in regulating anti-M. tuberculosis directed immune responses.

  16. High-contrast imaging of mycobacterium tuberculosis using third-harmonic generation microscopy

    Science.gov (United States)

    Kim, Bo Ram; Lee, Eungjang; Park, Seung-Han

    2015-07-01

    Nonlinear optical microcopy has become an important tool in investigating biomaterials due to its various advantages such as label-free imaging capabilities. In particular, it has been shown that third-harmonic generation (THG) signals can be produced at interfaces between an aqueous medium (e.g. cytoplasm, interstitial fluid) and a mineralized lipidic surface. In this work, we have demonstrated that label-free high-contrast THG images of the mycobacterium tuberculosis can be obtained using THG microscopy.

  17. Gallic acid-based indanone derivative interacts synergistically with tetracycline by inhibiting efflux pump in multidrug resistant E. coli.

    Science.gov (United States)

    Dwivedi, Gaurav Raj; Tiwari, Nimisha; Singh, Aastha; Kumar, Akhil; Roy, Sudeep; Negi, Arvind Singh; Pal, Anirban; Chanda, Debabrata; Sharma, Ashok; Darokar, Mahendra P

    2016-03-01

    The purpose of the present study was to study the synergy potential of gallic acid-based derivatives in combination with conventional antibiotics using multidrug resistant cultures of Escherichia coli. Gallic acid-based derivatives significantly reduced the MIC of tetracycline against multidrug resistant clinical isolate of E. coli. The best representative, 3-(3',4,'5'-trimethoxyphenyl)-4,5,6-trimethoxyindanone-1, an indanone derivative of gallic acid, was observed to inhibit ethidium bromide efflux and ATPase which was also supported by in silico docking. This derivative extended the post-antibiotic effect and decreased the mutation prevention concentration of tetracycline. This derivative in combination with TET was able to reduce the concentration of TNFα up to 18-fold in Swiss albino mice. This derivative was nontoxic and well tolerated up to 300 mg/kg dose in subacute oral toxicity study in mice. This is the first report of gallic acid-based indanone derivative as drug resistance reversal agent acting through ATP-dependent efflux pump inhibition.

  18. Different Transcriptional Profiles of Human Monocyte-Derived Dendritic Cells Infected with Distinct Strains of Mycobacterium tuberculosis and Mycobacterium bovis Bacillus Calmette-Guérin

    Directory of Open Access Journals (Sweden)

    Nunzia Sanarico

    2011-01-01

    Full Text Available In order to analyze dendritic cells (DCs activation following infection with different mycobacterial strains, we studied the expression profiles of 165 genes of human monocyte-derived DCs infected with H37Rv, a virulent Mycobacterium tuberculosis (MTB laboratory strain, CMT97, a clinical MTB isolate, Mycobacterium bovis bacillus Calmette-Guérin (BCG, Aventis Pasteur, and BCG Japan, both employed as vaccine against tuberculosis. The analysis of the gene expression reveals that, despite a set of genes similarly modulated, DCs response resulted strain dependent. In particular, H37Rv significantly upregulated EBI3 expression compared with BCG Japan, while it was the only strain that failed to release a significant IL-10 amount. Of note, BCG Japan showed a marked increase in CCR7 and TNF-α expression regarding both MTB strains and it resulted the only strain failing in exponential intracellular growth. Our results suggest that DCs display the ability to elicit a tailored strain-specific immune response.

  19. Protein conjugated with aldehydes derived from lipid peroxidation as an independent parameter of the carbonyl stress in the kidney damage

    Directory of Open Access Journals (Sweden)

    Medina-Navarro Rafael

    2011-11-01

    Full Text Available Abstract Background One of the well-defined and characterized protein modifications usually produced by oxidation is carbonylation, an irreversible non-enzymatic modification of proteins. However, carbonyl groups can be introduced into proteins by non-oxidative mechanisms. Reactive carbonyl compounds have been observed to have increased in patients with renal failure. In the present work we have described a procedure designed as aldehyde capture to calculate the protein carbonyl stress derived solely from lipid peroxidation. Methods Acrolein-albumin adduct was prepared as standard at alkaline pH. Rat liver microsomal membranes and serum samples from patients with diabetic nephropathy were subjected to the aldehyde capture procedure and aldol-protein formation. Before alkalinization and incubation, samples were precipitated and redisolved in 6M guanidine. The absorbances of the samples were read with a spectrophotometer at 266 nm against a blank of guanidine. Results Evidence showed abundance of unsaturated aldehydes derived from lipid peroxidation in rat liver microsomal membranes and in the serum of diabetic patients with advanced chronic kidney disease. Carbonyl protein and aldol-proteins resulted higher in the diabetic nephropathy patients (p Conclusion The aldehyde-protein adduct represents a non oxidative component of carbonyl stress, independent of the direct amino acid oxidation and could constitute a practical and novelty strategy to measure the carbonyl stress derived solely from lipid peroxidation and particularly in diabetic nephropathy patients. In addition, we are in a position to propose an alternative explanation of why alkalinization of urine attenuates rhabdomyolysis-induced renal dysfunction.

  20. Mycobacterium tuberculosis phosphoribosylpyrophosphate synthetase: biochemical features of a crucial enzyme for mycobacterial cell wall biosynthesis.

    Directory of Open Access Journals (Sweden)

    Anna P Lucarelli

    Full Text Available The selection and soaring spread of Mycobacterium tuberculosis multidrug-resistant (MDR-TB and extensively drug-resistant strains (XDR-TB is a severe public health problem. Currently, there is an urgent need for new drugs for tuberculosis treatment, with novel mechanisms of action and, moreover, the necessity to identify new drug targets. Mycobacterial phosphoribosylpyrophosphate synthetase (MtbPRPPase is a crucial enzyme involved in the biosynthesis of decaprenylphosphoryl-arabinose, an essential precursor for the mycobacterial cell wall biosynthesis. Moreover, phosphoribosylpyrophosphate, which is the product of the PRPPase catalyzed reaction, is the precursor for the biosynthesis of nucleotides and of some amino acids such as histidine and tryptophan. In this context, the elucidation of the molecular and functional features of MtbPRPPase is mandatory. MtbPRPPase was obtained as a recombinant form, purified to homogeneity and characterized. According to its hexameric form, substrate specificity and requirement of phosphate for activity, the enzyme proved to belong to the class I of PRPPases. Although the sulfate mimicked the phosphate, it was less effective and required higher concentrations for the enzyme activation. MtbPRPPase showed hyperbolic response to ribose 5-phosphate, but sigmoidal behaviour towards Mg-ATP. The enzyme resulted to be allosterically activated by Mg(2+ or Mn(2+ and inhibited by Ca(2+ and Cu(2+ but, differently from other characterized PRPPases, it showed a better affinity for the Mn(2+ and Cu(2+ ions, indicating a different cation binding site geometry. Moreover, the enzyme from M. tuberculosis was allosterically inhibited by ADP, but less sensitive to inhibition by GDP. The characterization of M. tuberculosis PRPPase provides the starting point for the development of inhibitors for antitubercular drug design.

  1. Tuberculosis en el niño Tuberculosis in the child

    OpenAIRE

    J. Ruiz Contreras

    2011-01-01

    La tuberculosis infantil representa alrededor del 5% de todos los casos de tuberculosis en los países desarrollados, pero el porcentaje es mucho mayor en los países en vías de desarrollo. En España, los niños menores de 14 años representan el 5,6% de todos los casos de tuberculosis. Aproximadamente, dos tercios de los casos de tuberculosis en niños europeos de 0 a 14 años ocurren en Europa del Este. En estos países, la incidencia más alta de tuberculosis ocurre en adultos jóvenes, entre los 2...

  2. Multifunctional Cinnamic Acid Derivatives

    Directory of Open Access Journals (Sweden)

    Aikaterini Peperidou

    2017-07-01

    Full Text Available Our research to discover potential new multitarget agents led to the synthesis of 10 novel derivatives of cinnamic acids and propranolol, atenolol, 1-adamantanol, naphth-1-ol, and (benzylamino ethan-1-ol. The synthesized molecules were evaluated as trypsin, lipoxygenase and lipid peroxidation inhibitors and for their cytotoxicity. Compound 2b derived from phenoxyphenyl cinnamic acid and propranolol showed the highest lipoxygenase (LOX inhibition (IC50 = 6 μΜ and antiproteolytic activity (IC50 = 0.425 μΜ. The conjugate 1a of simple cinnamic acid with propranolol showed the higher antiproteolytic activity (IC50 = 0.315 μΜ and good LOX inhibitory activity (IC50 = 66 μΜ. Compounds 3a and 3b, derived from methoxylated caffeic acid present a promising combination of in vitro inhibitory and antioxidative activities. The S isomer of 2b also presented an interesting multitarget biological profile in vitro. Molecular docking studies point to the fact that the theoretical results for LOX-inhibitor binding are identical to those from preliminary in vitro study.

  3. Mycobacterium tuberculosis infection causes different levels of apoptosis and necrosis in human macrophages and alveolar epithelial cells.

    Science.gov (United States)

    Danelishvili, Lia; McGarvey, Jeffery; Li, Yong-Jun; Bermudez, Luiz E

    2003-09-01

    expression of caspase-1, caspase-3 and caspase-10, was inhibited. Inhibition of replication of intracellular bacteria resulted in an increase in apoptosis in both cell types. Our results showed that the differential induction of apoptosis between macrophages and alveolar epithelial cells represents specific strategies of M. tuberculosis for survival in the host.

  4. Inhibition of Th1 and Th17 Cells by Medicinal Plants and Their Derivatives: A Systematic Review.

    Science.gov (United States)

    Asadi-Samani, Majid; Bagheri, Nader; Rafieian-Kopaei, Mahmoud; Shirzad, Hedayatollah

    2017-08-01

    Searching for new natural drugs that are capable of targeting Th1 and Th17 may lead to development of more effective treatments for inflammatory and autoimmune diseases. Most of the natural drugs can be derived from plants that are used in traditional medicine and folk medicine. The aim of this systematic review is to identify and introduce plants or plant derivatives that are effective on inflammatory diseases by inhibiting Th1 and Th17 responses. To achieve this purpose, the search terms herb, herbal medicine, herbal drug, medicinal plant, phytochemical, traditional Chinese medicine, Ayurvedic medicine, natural compound, inflammation, inflammatory diseases, Th1, Th17, T helper 1 or T helper 17 were used separately in Title/Keywords/Abstract in Web of Science and PubMed databases. In articles investigating the effect of the medicinal plants and their derivatives in inhibiting Th1 and Th17 cells, the effects of eight extracts of the medicinal plants, 21 plant-based compounds and some of their derivatives, and eight drugs derived from the medicinal plants' compounds in inhibiting Th1 and Th17 cells were reviewed. The results showed that medicinal plants and their derivates are able to suppress Th17 and Th1 T cell functions as well as cytokine secretion and differentiation. The results can be used to produce herbal drugs that suppress Th, especially Th17, responses. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  5. Emerging roles of Lipasin as a critical lipid regulator.

    Science.gov (United States)

    Zhang, Ren; Abou-Samra, Abdul B

    2013-03-15

    Patients with metabolic syndrome are at high risk for developing atherosclerotic cardiovascular diseases and diabetes. In addition to total cholesterol, LDL-C and HDL-C, elevated plasma triglycerides (TG) are increasingly recognized as an independent risk factor for cardiovascular diseases. Recently 3 groups independently reported the identification and characterization of a novel blood lipid regulator, Lipasin/RIFL/ANGPTL8, which here is referred to as Lipasin for its lipoprotein lipase inhibition effect and for being a circulating factor denoted by 'in'. Being highly enriched in the liver, Lipasin is a hepatocyte-derived circulating factor that regulates plasma TG levels. Lipasin is nutritionally regulated, as its mRNA levels in liver and fat as well as its protein level in serum are reduced by fasting. Mice deficient for Lipasin have lower serum TG levels; conversely, its adenovirus-mediated overexpression increases serum TG levels, in part, through promoting ANGPTL3 cleavage, releasing its N-terminal domain that inhibits lipoprotein lipase. Lipasin sequence variations are associated with LDL-C and HDL-C concentrations in humans. Being lipogenic, Lipasin is highly induced during adipogenesis. Levels of Lipasin and ANGPTL4 show opposite changes in response to fasting or cold environment. Lipasin, a novel but atypical ANGPTL family member, is emerging as a critical lipid regulator and a potential drug target. Copyright © 2013 Elsevier Inc. All rights reserved.

  6. miR-34a expands myeloid-derived suppressor cells via apoptosis inhibition

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Anfei, E-mail: huang_anfei@163.com [Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, Jiangsu Province (China); Zhang, Haitao, E-mail: zhanghtjp@126.com [Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou 215021, Jiangsu Province (China); Chen, Si, E-mail: chensisdyxb@126.com [Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, Jiangsu Province (China); Xia, Fei, E-mail: xiafei87@gmail.com [Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, Jiangsu Province (China); Yang, Yi, E-mail: 602744364@qq.com [Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, Jiangsu Province (China); Dong, Fulu, E-mail: adiok0903@126.com [Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, Jiangsu Province (China); Sun, Di, E-mail: dongfl@suda.edu.cn [Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, Jiangsu Province (China); Xiong, Sidong, E-mail: sdxiong@suda.edu.cn [Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, Jiangsu Province (China); Zhang, Jinping, E-mail: j_pzhang@suda.edu.cn [Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, Jiangsu Province (China)

    2014-08-15

    Myeloid-derived suppressor cells (MDSCs) are a heterogeneous population and show significant expansion under pathological conditions. microRNA plays important roles in many biological processes, whether microRNAs have a function in the expansion of MDSCs is still not very clear. In this study, miR-34a overexpression can induce the expansion of MDSCs in bone marrow chimera and transgenic mice model. The experimental results suggest that miR-34a inhibited the apoptosis of MDSCs but did not affect the proliferation of MDSCs. The distinct mRNA microarray profiles of MDSCs of wild type and miR-34a over-expressing MDSCs combined with the target prediction of miR-34a suggest that miR-34a may target genes such as p2rx7, Tia1, and plekhf1 to inhibit the apoptosis of MDSCs. Taken together, miR-34a contributes to the expansion of MDSCs by inhibiting the apoptosis of MDSCs. - Highlights: • Over-expression of miR-34a increases the number of MDSCs. • miR-34a inhibits the apoptosis of MDSCs, but does not affects their proliferation. • miR-34a may inhibit the apoptosis of MDSCs via targeting the p2rx7, Tia1 and plekhf1.

  7. Targeting DNA Replication and Repair for the Development of Novel Therapeutics against Tuberculosis.

    Science.gov (United States)

    Reiche, Michael A; Warner, Digby F; Mizrahi, Valerie

    2017-01-01

    Mycobacterium tuberculosis is the etiological agent of tuberculosis (TB), an infectious disease which results in approximately 10 million incident cases and 1.4 million deaths globally each year, making it the leading cause of mortality from infection. An effective frontline combination chemotherapy exists for TB; however, this regimen requires the administration of four drugs in a 2 month long intensive phase followed by a continuation phase of a further 4 months with two of the original drugs, and is only effective for the treatment of drug-sensitive TB. The emergence and global spread of multidrug-resistant (MDR) as well as extensively drug-resistant (XDR) strains of M. tuberculosis , and the complications posed by co-infection with the human immunodeficiency virus (HIV) and other co-morbidities such as diabetes, have prompted urgent efforts to develop shorter regimens comprising new compounds with novel mechanisms of action. This demands that researchers re-visit cellular pathways and functions that are essential to M. tuberculosis survival and replication in the host but which are inadequately represented amongst the targets of current anti-mycobacterial agents. Here, we consider the DNA replication and repair machinery as a source of new targets for anti-TB drug development. Like most bacteria, M. tuberculosis encodes a complex array of proteins which ensure faithful and accurate replication and repair of the chromosomal DNA. Many of these are essential; so, too, are enzymes in the ancillary pathways of nucleotide biosynthesis, salvage, and re-cycling, suggesting the potential to inhibit replication and repair functions at multiple stages. To this end, we provide an update on the state of chemotherapeutic inhibition of DNA synthesis and related pathways in M. tuberculosis . Given the established links between genotoxicity and mutagenesis, we also consider the potential implications of targeting DNA metabolic pathways implicated in the development of drug

  8. Targeting DNA Replication and Repair for the Development of Novel Therapeutics against Tuberculosis

    Directory of Open Access Journals (Sweden)

    Michael A. Reiche

    2017-11-01

    Full Text Available Mycobacterium tuberculosis is the etiological agent of tuberculosis (TB, an infectious disease which results in approximately 10 million incident cases and 1.4 million deaths globally each year, making it the leading cause of mortality from infection. An effective frontline combination chemotherapy exists for TB; however, this regimen requires the administration of four drugs in a 2 month long intensive phase followed by a continuation phase of a further 4 months with two of the original drugs, and is only effective for the treatment of drug-sensitive TB. The emergence and global spread of multidrug-resistant (MDR as well as extensively drug-resistant (XDR strains of M. tuberculosis, and the complications posed by co-infection with the human immunodeficiency virus (HIV and other co-morbidities such as diabetes, have prompted urgent efforts to develop shorter regimens comprising new compounds with novel mechanisms of action. This demands that researchers re-visit cellular pathways and functions that are essential to M. tuberculosis survival and replication in the host but which are inadequately represented amongst the targets of current anti-mycobacterial agents. Here, we consider the DNA replication and repair machinery as a source of new targets for anti-TB drug development. Like most bacteria, M. tuberculosis encodes a complex array of proteins which ensure faithful and accurate replication and repair of the chromosomal DNA. Many of these are essential; so, too, are enzymes in the ancillary pathways of nucleotide biosynthesis, salvage, and re-cycling, suggesting the potential to inhibit replication and repair functions at multiple stages. To this end, we provide an update on the state of chemotherapeutic inhibition of DNA synthesis and related pathways in M. tuberculosis. Given the established links between genotoxicity and mutagenesis, we also consider the potential implications of targeting DNA metabolic pathways implicated in the

  9. Insights into Integrated Lead Generation and Target Identification in Malaria and Tuberculosis Drug Discovery.

    Science.gov (United States)

    Okombo, John; Chibale, Kelly

    2017-07-18

    New, safe and effective drugs are urgently needed to treat and control malaria and tuberculosis, which affect millions of people annually. However, financial return on investment in the poor settings where these diseases are mostly prevalent is very minimal to support market-driven drug discovery and development. Moreover, the imminent loss of therapeutic lifespan of existing therapies due to evolution and spread of drug resistance further compounds the urgency to identify novel effective drugs. However, the advent of new public-private partnerships focused on tropical diseases and the recent release of large data sets by pharmaceutical companies on antimalarial and antituberculosis compounds derived from phenotypic whole cell high throughput screening have spurred renewed interest and opened new frontiers in malaria and tuberculosis drug discovery. This Account recaps the existing challenges facing antimalarial and antituberculosis drug discovery, including limitations associated with experimental animal models as well as biological complexities intrinsic to the causative pathogens. We enlist various highlights from a body of work within our research group aimed at identifying and characterizing new chemical leads, and navigating these challenges to contribute toward the global drug discovery and development pipeline in malaria and tuberculosis. We describe a catalogue of in-house efforts toward deriving safe and efficacious preclinical drug development candidates via cell-based medicinal chemistry optimization of phenotypic whole-cell medium and high throughput screening hits sourced from various small molecule chemical libraries. We also provide an appraisal of target-based screening, as invoked in our laboratory for mechanistic evaluation of the hits generated, with particular focus on the enzymes within the de novo pyrimidine biosynthetic and hemoglobin degradation pathways, the latter constituting a heme detoxification process and an associated cysteine

  10. Identification and Characterization of Lipase Activity and Immunogenicity of LipL from Mycobacterium tuberculosis.

    Directory of Open Access Journals (Sweden)

    Jun Cao

    Full Text Available Lipids and lipid-metabolizing esterases/lipases are highly important for the mycobacterial life cycle and, possibly, for mycobacterial virulence. In this study, we expressed 10 members of the Lip family of Mycobacterium tuberculosis. Among the 10 proteins, LipL displayed a significantly high enzymatic activity for the hydrolysis of long-chain lipids. The optimal temperature for the lipase activity of LipL was demonstrated to be 37°C, and the optimal pH was 8.0. The lipase active center was not the conserved motif G-x-S-x-G, but rather the S-x-x-K and GGG motifs, and the key catalytic amino acid residues were identified as G50, S88, and K91, as demonstrated through site-directed mutagenesis experiments. A three-dimensional modeling structure of LipL was constructed, which showed that the GGG motif was located in the surface of a pocket structure. Furthermore, the subcellular localization of LipL was demonstrated to be on the mycobacterial surface by Western blot analysis. Our results revealed that the LipL protein could induce a strong humoral immune response in humans and activate a CD8+ T cell-mediated response in mice. Overall, our study identified and characterized a novel lipase denoted LipL from M. tuberculosis, and demonstrated that LipL functions as an immunogen that activates both humoral and cell-mediated responses.

  11. Bim is a crucial regulator of apoptosis induced by Mycobacterium tuberculosis

    Science.gov (United States)

    Aguiló, N; Uranga, S; Marinova, D; Martín, C; Pardo, J

    2014-01-01

    Mycobacterium tuberculosis, the causative agent of tuberculosis, induces apoptosis in infected macrophages in vitro and in vivo. However, the molecular mechanism controlling this process is not known. In order to study the involvement of the mitochondrial apoptotic pathway in M. tuberculosis-induced apoptosis, we analysed cell death in M. tuberculosis-infected embryonic fibroblasts (MEFs) derived from different knockout mice for genes involved in this route. We found that apoptosis induced by M. tuberculosis is abrogated in the absence of Bak and Bax, caspase 9 or the executioner caspases 3 and 7. Notably, we show that MEF deficient in the BH3-only BCL-2-interacting mediator of cell death (Bim) protein were also resistant to this process. The relevance of these results has been confirmed in the mouse macrophage cell line J774, where cell transfection with siRNA targeting Bim impaired apoptosis induced by virulent mycobacteria. Notably, only infection with a virulent strain, but not with attenuated ESX-1-defective strains, such as Bacillus Calmette-Guerin and live-attenuated M. tuberculosis vaccine strain MTBVAC, induced Bim upregulation and apoptosis, probably implicating virulence factor early secreted antigenic target 6-kDa protein in this process. Our results suggest that Bim upregulation and apoptosis is mediated by the p38MAPK-dependent pathway. Our findings show that Bim is a master regulator of apoptosis induced by M. tuberculosis. PMID:25032866

  12. Tuberculosis treatment among smear positive tuberculosis patients

    International Nuclear Information System (INIS)

    Munir, M.K.; Iqbal, R.; Shabbir, I.; Chaudhry, K

    2012-01-01

    Tuberculosis is a major health problem in many parts of the world. Delay in initiation of the treatment may result in prolonged infectious state, drug resistance, relapse and death. Objectives: To determine the factors responsible for not starting tuberculosis treatment among smear positive tuberculosis patients. Study type, settings and duration: This cross sectional study was done at Pakistan Medical Research Council TB Research Center, King Edward Medical University, Lahore, from fifth March 2010 to fifth December 2010. Patients and Methods: Fifty sputum smear positive patients of tuberculosis who did not register themselves in treatment register and presumably did not initiate anti tuberculosis treatment were contacted using telephone or traced by their home addresses. Once contact was established, they were inquired about the reasons for not starting tuberculosis treatment. Results: Of 50 patients 38(76%)belonged to the lower socio economic class and 12(24%) to the lower middle class. Fourteen patients (28%) were illiterate and 23(46%) had only 8 years of education. Of the 50 cases 41(82%) were taking treatment from traditional healers and 4% did not go back to the DOTS program. Physical condition of the patient, social, domestic and religious issues also played some role in default. Conclusions: Lack of health education and poverty were the main factors responsible for non compliance from treatment. Policy message: Sputum testing sites should have a paramedic who should educate the patients about the benefits of treatment and the dangers of default or partial treatment. (author)

  13. Delayed bactericidal response of Mycobacterium tuberculosis to bedaquiline involves remodelling of bacterial metabolism

    DEFF Research Database (Denmark)

    Koul, A.; Vranckx, L.; Dhar, N.

    2014-01-01

    Bedaquiline (BDQ), an ATP synthase inhibitor, is the first drug to be approved for treatment of multidrug-resistant tuberculosis in decades. Though BDQ has shown excellent efficacy in clinical trials, its early bactericidal activity during the first week of chemotherapy is minimal. Here, using...... microfluidic devices and time-lapse microscopy of Mycobacterium tuberculosis, we confirm the absence of significant bacteriolytic activity during the first 3-4 days of exposure to BDQ. BDQ-induced inhibition of ATP synthesis leads to bacteriostasis within hours after drug addition. Transcriptional...... and proteomic analyses reveal that M. tuberculosis responds to BDQ by induction of the dormancy regulon and activation of ATP-generating pathways, thereby maintaining bacterial viability during initial drug exposure. BDQ-induced bacterial killing is significantly enhanced when the mycobacteria are grown on non...

  14. The inhibition performance of long-chain alkyl-substituted benzimidazole derivatives for corrosion of mild steel in HCl

    International Nuclear Information System (INIS)

    Zhang, Dongqin; Tang, Yongming; Qi, Sijun; Dong, Dawei; Cang, Hui; Lu, Gang

    2016-01-01

    Highlights: • Inhibition performance of long-chain alkyl-substituted benzimidazole. • Benzimidazole segment donating electrons to metal surface. • Non-polar long chain enhancing inhibition by the barrier effect. • Molecular form of DBI more tightly adsorbs on the steel than its protonated form. - Abstract: The corrosion inhibition of a new benzimidazole derivative, 6-(dodecyloxy)-1H-benzo[d]imidazole (DBI), for mild steel in 1 M HCl was investigated in this paper. Computational chemistry was performed to explore the adsorption of DBI on metal surface. Inhibition performance of DBI is attributed to both the direct interaction of benzimidazole segment with iron surface and the barrier effect of the non-polar long chain against aggressive solution. Compared to the protonated form, the molecular form of DBI could more tightly interact with iron surface. These results show that the long-chain alkyl-substituted benzimidazole derivative is of great potential application as corrosion inhibitor.

  15. [2-(2,4-dimethylphenylthio)phenyl] aniline and its amide derivatives ...

    Indian Academy of Sciences (India)

    YOGESH PATIL

    2018-02-15

    Feb 15, 2018 ... These derivatives could be considered as a precursor structure for further design of antituberculosis agent. Keywords. [2-(2,4-dimethylphenylthio)phenyl] aniline; antituberculosis activity; cytotoxicity. 1. Introduction. Tuberculosis (TB) is a contagious disease caused by the. Mycobacterium tuberculosis (MTB).

  16. Multidrug-resistant tuberculosis

    Directory of Open Access Journals (Sweden)

    McNerney Ruth

    2008-01-01

    Full Text Available Abstract Background With almost 9 million new cases each year, tuberculosis remains one of the most feared diseases on the planet. Led by the STOP-TB Partnership and WHO, recent efforts to combat the disease have made considerable progress in a number of countries. However, the emergence of mutated strains of Mycobacterium tuberculosis that are resistant to the major anti-tuberculosis drugs poses a deadly threat to control efforts. Multidrug-resistant tuberculosis (MDR-TB has been reported in all regions of the world. More recently, extensively drug resistant-tuberculosis (XDR-TB that is also resistant to second line drugs has emerged in a number of countries. To ensure that adequate resources are allocated to prevent the emergence and spread of drug resistance it is important to understand the scale of the problem. In this article we propose that current methods of describing the epidemiology of drug resistant tuberculosis are not adequate for this purpose and argue for the inclusion of population based statistics in global surveillance data. Discussion Whereas the prevalence of tuberculosis is presented as the proportion of individuals within a defined population having disease, the prevalence of drug resistant tuberculosis is usually presented as the proportion of tuberculosis cases exhibiting resistance to anti-tuberculosis drugs. Global surveillance activities have identified countries in Eastern Europe, the former Soviet Union and regions of China as having a high proportion of MDR-TB cases and international commentary has focused primarily on the urgent need to improve control in these settings. Other regions, such as sub-Saharan Africa have been observed as having a low proportion of drug resistant cases. However, if one considers the incidence of new tuberculosis cases with drug resistant disease in terms of the population then countries of sub-Saharan Africa have amongst the highest rates of transmitted MDR-TB in the world. We propose

  17. Tuberculosis como enfermedad ocupacional Tuberculosis as occupational disease

    OpenAIRE

    Alberto Mendoza-Ticona

    2012-01-01

    Existe evidencia suficiente para declarar a la tuberculosis como enfermedad ocupacional en diversos profesionales especialmente entre los trabajadores de salud. En el Perú están normados y reglamentados los derechos laborales inherentes a la tuberculosis como enfermedad ocupacional, como la cobertura por discapacidad temporal o permanente. Sin embargo, estos derechos aún no han sido suficientemente socializados. En este trabajo se presenta información sobre el riesgo de adquirir tuberculosis ...

  18. Water extractable phytochemicals from Capsicum pubescens (tree pepper) inhibit lipid peroxidation induced by different pro-oxidant agents in brain

    International Nuclear Information System (INIS)

    Oboh, G.; Rocha, J.B.T.

    2006-03-01

    Reactive oxygen species (ROS) is the cause of neurodegenerative disorders such as Lou Gehrig's disease, Parkinson's disease and Huntington's disease; one practical way to prevent and manage neurodegenerative diseases is through the eating of food rich in antioxidants (dietary means). In this study, the antioxidant and neuroprotective properties of aqueous extract of ripe and unripe Capsicum pubescens (popularly known as tree pepper) on different pro-oxidant induced lipid peroxidation in Rat's brain (in vitro) is been investigated. Aqueous extract of freshly harvested pepper was prepared, and the total phenol content, vitamin C, ferric reducing antioxidant property (FRAP) and Fe (II) chelating ability was determined. In addition, the ability of the extracts to protect the Rat's brain against some pro-oxidant FeSO 4 , Sodium nitroprusside and Quinolinic acid) - induced oxidative stress was also determined. The results of the study revealed that ripe Capsicum pubescens had a significantly higher (P 2 O 2 induced decomposition of deoxyribose. Therefore, ripe and unripe Capsicum pubescens would inhibit lipid peroxidation in vitro. However, the ripe potent was a more potent inhibitor of lipid peroxidation, which is probably due to its higher vitamin C and phenol content, reducing power and Fe (II) chelating ability. (author)

  19. Global stability of two models with incomplete treatment for tuberculosis

    International Nuclear Information System (INIS)

    Yang Yali; Li Jianquan; Ma Zhien; Liu Luju

    2010-01-01

    Research highlights: → Two tuberculosis models with incomplete treatment. → Intuitive epidemiological interpretations for the basic reproduction numbers. → Global dynamics of the two models. → Strategies to control the spread of tuberculosis. - Abstract: Two tuberculosis (TB) models with incomplete treatment are investigated. It is assumed that the treated individuals may enter either the latent compartment due to the remainder of Mycobacterium tuberculosis or the infectious compartment due to the treatment failure. The first model is a simple one with treatment failure reflecting the current TB treatment fact in most countries with high tuberculosis incidence. The second model refines the simple one by dividing the latent compartment into slow and fast two kinds of progresses. This improvement can be used to describe the case that the latent TB individuals have been infected with some other chronic diseases (such as HIV and diabetes) which may weaken the immunity of infected individuals and shorten the latent period of TB. Both of the two models assume mass action incidence and exponential distributions of transfers between different compartments. The basic reproduction numbers of the two models are derived and their intuitive epidemiological interpretations are given. The global dynamics of two models are all proved by using Liapunov functions. At last, some strategies to control the spread of tuberculosis are discussed.

  20. Noncatalytic transformation of the crude lipid of ChlorellaI vulgaris into fatty acid methyl ester (FAME) with charcoal via a thermo-chemical process.

    Science.gov (United States)

    Kwon, Eilhann E; Jeon, Young Jae; Yi, Haakrho

    2013-02-01

    The noncatalytic transformation of the crude lipid of Chlorella vulgaris (C. vulgaris) into fatty acid methyl ester (FAME) via a thermo-chemical process was mainly investigated in this work. The crude lipid of C. vulgaris was recovered by means of solvent extraction from C. vulgaris cultivated in a raceway pond. The conventional catalyzed transesterification of crude lipid of C. vulgaris is notably inhibited by the impurities contained in the crude lipid of C. vulgaris. These impurities are inevitably derived from the solvent extraction process for C. vulgaris. However, this work presents the noncatalytic transesterification of microalgal lipid into FAME, which could be an alternative option. For example, the noncatalytic transformation of microalgal lipid into FAME provides evidence that the esterification of free fatty acids (FFAs) and the transesterification of triglycerides can be combined into a single step less susceptible to the impurities and with a high conversion efficiency (∼97%). Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Tuberculosis

    NARCIS (Netherlands)

    Ankrah, Alfred O; Glaudemans, Andor W J M; Maes, Alex; Van de Wiele, Christophe; Dierckx, Rudi A J O; Vorster, Mariza; Sathekge, Mike M

    Tuberculosis (TB) is currently the world's leading cause of infectious mortality. Imaging plays an important role in the management of this disease. The complex immune response of the human body to Mycobacterium tuberculosis results in a wide array of clinical manifestations, making clinical and

  2. Synthesis, α-glucosidase inhibition and molecular docking study of coumarin based derivatives.

    Science.gov (United States)

    Taha, Muhammad; Shah, Syed Adnan Ali; Afifi, Muhammad; Imran, Syahrul; Sultan, Sadia; Rahim, Fazal; Khan, Khalid Mohammed

    2018-04-01

    We have synthesized seventeen Coumarin based derivatives (1-17), characterized by 1 HNMR, 13 CNMR and EI-MS and evaluated for α-glucosidase inhibitory potential. Among the series, all derivatives exhibited outstanding α-glucosidase inhibition with IC 50 values ranging between 1.10 ± 0.01 and 36.46 ± 0.70 μM when compared with the standard inhibitor acarbose having IC 50 value 39.45 ± 0.10 μM. The most potent derivative among the series is derivative 3 having IC 50 value 1.10 ± 0.01 μM, which are many folds better than the standard acarbose. The structure activity relationship (SAR) was mainly based upon by bring about difference of substituent's on phenyl part. Molecular docking studies were carried out to understand the binding interaction of the most active compounds. Copyright © 2018 Elsevier Inc. All rights reserved.

  3. Synthesis of avibactam derivatives and activity on β-lactamases and peptidoglycan biosynthesis enzymes of mycobacteria.

    Science.gov (United States)

    Edoo, Zainab; Iannazzo, Laura; Compain, Fabrice; Li de la Sierra Gallay, Inès; van Tilbeurgh, Herman; Fonvielle, Matthieu; Bouchet, Flavie; Le Run, Eva; Mainardi, Jean-Luc; Arthur, Michel; Ethève-Quelquejeu, Mélanie; Hugonnet, Jean-Emmanuel

    2018-03-30

    There is a renewed interest for β-lactams for treating infections due to Mycobacterium tuberculosis and M. abscessus since their β-lactamases are inhibited by classical (clavulanate) or new generation (avibactam) inhibitors, respectively. Here, we report access to an azido derivative of the diazabicyclooctane (DBO) scaffold of avibactam for functionalization by the Huisgen-Sharpless cycloaddition reaction. The amoxicillin-DBO combinations were active indicating that the triazole ring is compatible with drug penetration (minimal inhibitory concentration of 16 µg/ml for both species). Mechanistically, β-lactamase inhibition was not sufficient to account for the potentiation of amoxicillin by DBOs. Thus, we investigated the latter compounds as inhibitors of L,D-transpeptidases (LDTs), which are the main peptidoglycan polymerases in mycobacteria. The DBOs acted as slow-binding inhibitors of LDTs by S-carbamoylation indicating that optimization of DBOs for LDT inhibition is an attractive strategy to obtain drugs selectively active on mycobacteria. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Hedonic Eating and the “Delicious Circle”: From Lipid-Derived Mediators to Brain Dopamine and Back

    Directory of Open Access Journals (Sweden)

    Roberto Coccurello

    2018-04-01

    Full Text Available Palatable food can be seductive and hedonic eating can become irresistible beyond hunger and negative consequences. This is witnessed by the subtle equilibrium between eating to provide energy intake for homeostatic functions, and reward-induced overeating. In recent years, considerable efforts have been devoted to study neural circuits, and to identify potential factors responsible for the derangement of homeostatic eating toward hedonic eating and addiction-like feeding behavior. Here, we examined recent literature on “old” and “new” players accountable for reward-induced overeating and possible liability to eating addiction. Thus, the role of midbrain dopamine is positioned at the intersection between selected hormonal signals involved in food reward information processing (namely, leptin, ghrelin, and insulin, and lipid-derived neural mediators such as endocannabinoids. The impact of high fat palatable food and dietary lipids on endocannabinoid formation is reviewed in its pathogenetic potential for the derangement of feeding homeostasis. Next, endocannabinoid signaling that regulates synaptic plasticity is discussed as a key mechanism acting both at hypothalamic and mesolimbic circuits, and affecting both dopamine function and interplay between leptin and ghrelin signaling. Outside the canonical hypothalamic feeding circuits involved in energy homeostasis and the notion of “feeding center,” we focused on lateral hypothalamus as neural substrate able to confront food-associated homeostatic information with food salience, motivation to eat, reward-seeking, and development of compulsive eating. Thus, the lateral hypothalamus-ventral tegmental area-nucleus accumbens neural circuitry is reexamined in order to interrogate the functional interplay between ghrelin, dopamine, orexin, and endocannabinoid signaling. We suggested a pivotal role for endocannabinoids in food reward processing within the lateral hypothalamus, and for orexin

  5. Structural insights into cholinesterases inhibition by harmane β-carbolinium derivatives: a kinetics-molecular modeling approach.

    Science.gov (United States)

    Torres, Juliana M; Lira, Aline F; Silva, Daniel R; Guzzo, Lucas M; Sant'Anna, Carlos M R; Kümmerle, Arthur E; Rumjanek, Victor M

    2012-09-01

    The natural indole alkaloids, the β-carbolines, are often associated with cholinesterase inhibition, especially their quaternary salts, which frequently have higher activity than the free bases. Due to lack of information explaining this fact in the literature, the cholinesterase inhibition by the natural product harmane and its two β-carbolinium synthetic derivative salts (N-methyl and N-ethyl) was explored, together with a combination of kinetics and a molecular modeling approach. The results, mainly for the β-carbolinium salts, demonstrated a noncompetitive inhibition profile, ruling out previous findings which associated cholinesterase inhibition by β-carbolinium salts to a possible mimicking of the choline moiety of the natural substrate, acetylcholine. Molecular modeling studies corroborate this kind of inhibition through analyses of inhibitor/enzyme and inhibitor/substrate/enzyme complexes of both enzymes. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. Arginase Inhibition Ameliorates Hepatic Metabolic Abnormalities in Obese Mice

    Science.gov (United States)

    Moon, Jiyoung; Do, Hyun Ju; Cho, Yoonsu; Shin, Min-Jeong

    2014-01-01

    Objectives We examined whether arginase inhibition influences hepatic metabolic pathways and whole body adiposity in diet-induced obesity. Methods and Results After obesity induction by a high fat diet (HFD), mice were fed either the HFD or the HFD with an arginase inhibitor, Nω-hydroxy-nor-L-arginine (nor-NOHA). Nor-NOHA significantly prevented HFD-induced increases in body, liver, and visceral fat tissue weight, and ameliorated abnormal lipid profiles. Furthermore, nor-NOHA treatment reduced lipid accumulation in oleic acid-induced hepatic steatosis in vitro. Arginase inhibition increased hepatic nitric oxide (NO) in HFD-fed mice and HepG2 cells, and reversed the elevated mRNA expression of hepatic genes in lipid metabolism. Expression of phosphorylated 5′ AMPK-activated protein kinase α was increased by arginase inhibition in the mouse livers and HepG2 cells. Conclusions Arginase inhibition ameliorated obesity-induced hepatic lipid abnormalities and whole body adiposity, possibly as a result of increased hepatic NO production and subsequent activation of metabolic pathways involved in hepatic triglyceride metabolism and mitochondrial function. PMID:25057910

  7. Tuberculosis: General Information

    Science.gov (United States)

    TB Elimination Tuberculosis: General Information What is TB? Tuberculosis (TB) is a disease caused by germs that are spread from person ... Viral Hepatitis, STD, and TB Prevention Division of Tuberculosis Elimination CS227840_A What Does a Positive Test ...

  8. Adipogenic human adenovirus Ad-36 induces commitment, differentiation, and lipid accumulation in human adipose-derived stem cells

    DEFF Research Database (Denmark)

    Pasarica, Magdalena; Mashtalir, Nazar; McAllister, Emily J

    2008-01-01

    Human adenovirus Ad-36 is causatively and correlatively linked with animal and human obesity, respectively. Ad-36 enhances differentiation of rodent preadipocytes, but its effect on adipogenesis in humans is unknown. To indirectly assess the role of Ad-36-induced adipogenesis in human obesity......, the effect of the virus on commitment, differentiation, and lipid accumulation was investigated in vitro in primary human adipose-derived stem/stromal cells (hASC). Ad-36 infected hASC in a time- and dose-dependent manner. Even in the presence of osteogenic media, Ad-36-infected hASC showed significantly...... greater lipid accumulation, suggestive of their commitment to the adipocyte lineage. Even in the absence of adipogenic inducers, Ad-36 significantly increased hASC differentiation, as indicated by a time-dependent expression of genes within the adipogenic cascade-CCAAT/Enhancer binding protein...

  9. Plant-Derived Polyphenols Interact with Staphylococcal Enterotoxin A and Inhibit Toxin Activity.

    Science.gov (United States)

    Shimamura, Yuko; Aoki, Natsumi; Sugiyama, Yuka; Tanaka, Takashi; Murata, Masatsune; Masuda, Shuichi

    2016-01-01

    This study was performed to investigate the inhibitory effects of 16 different plant-derived polyphenols on the toxicity of staphylococcal enterotoxin A (SEA). Plant-derived polyphenols were incubated with the cultured Staphylococcus aureus C-29 to investigate the effects of these samples on SEA produced from C-29 using Western blot analysis. Twelve polyphenols (0.1-0.5 mg/mL) inhibited the interaction between the anti-SEA antibody and SEA. We examined whether the polyphenols could directly interact with SEA after incubation of these test samples with SEA. As a result, 8 polyphenols (0.25 mg/mL) significantly decreased SEA protein levels. In addition, the polyphenols that interacted with SEA inactivated the toxin activity of splenocyte proliferation induced by SEA. Polyphenols that exerted inhibitory effects on SEA toxic activity had a tendency to interact with SEA. In particular, polyphenol compounds with 1 or 2 hexahydroxydiphenoyl groups and/or a galloyl group, such as eugeniin, castalagin, punicalagin, pedunculagin, corilagin and geraniin, strongly interacted with SEA and inhibited toxin activity at a low concentration. These polyphenols may be used to prevent S. aureus infection and staphylococcal food poisoning.

  10. Plant-Derived Polyphenols Interact with Staphylococcal Enterotoxin A and Inhibit Toxin Activity.

    Directory of Open Access Journals (Sweden)

    Yuko Shimamura

    Full Text Available This study was performed to investigate the inhibitory effects of 16 different plant-derived polyphenols on the toxicity of staphylococcal enterotoxin A (SEA. Plant-derived polyphenols were incubated with the cultured Staphylococcus aureus C-29 to investigate the effects of these samples on SEA produced from C-29 using Western blot analysis. Twelve polyphenols (0.1-0.5 mg/mL inhibited the interaction between the anti-SEA antibody and SEA. We examined whether the polyphenols could directly interact with SEA after incubation of these test samples with SEA. As a result, 8 polyphenols (0.25 mg/mL significantly decreased SEA protein levels. In addition, the polyphenols that interacted with SEA inactivated the toxin activity of splenocyte proliferation induced by SEA. Polyphenols that exerted inhibitory effects on SEA toxic activity had a tendency to interact with SEA. In particular, polyphenol compounds with 1 or 2 hexahydroxydiphenoyl groups and/or a galloyl group, such as eugeniin, castalagin, punicalagin, pedunculagin, corilagin and geraniin, strongly interacted with SEA and inhibited toxin activity at a low concentration. These polyphenols may be used to prevent S. aureus infection and staphylococcal food poisoning.

  11. New isatin derivative inhibits neurodegeneration by restoring insulin signaling in brain.

    Science.gov (United States)

    Aftab, Meha Fatima; Afridi, Shabbir Khan; Mughal, Uzma Rasool; Karim, Aneela; Haleem, Darakhshan Jabeen; Kabir, Nurul; Khan, Khalid M; Hafizur, Rahman M; Waraich, Rizwana S

    2017-04-01

    Diabetes is associated with neurodegeneration. Glycation ensues in diabetes and glycated proteins cause insulin resistance in brain resulting in amyloid plaques and NFTs. Also glycation enhances gliosis by promoting neuroinflammation. Currently there is no therapy available to target neurodegenration in brain therefore, development of new therapy that offers neuroprotection is critical. The objective of this study was to evaluate mechanistic effect of isatin derivative URM-II-81, an anti-glycation agent for improvement of insulin action in brain and inhibition of neurodegenration. Methylglyoxal induced stress was inhibited by treatment with URM-II-81. Also, Ser473 and Ser9 phosphorylation of Akt and GSK-3β respectively were restored by URM-II-81. Effect of URM-II-81 on axonal integrity was studied by differentiating Neuro2A using retinoic acid. URM-II-81 restored axonal length in MGO treated cells. Its effects were also studied in high fat and low dose streptozotocin induced diabetic mice where it reduced RBG levels and inhibited glycative stress by reducing HbA1c. URM-II-81 treatment also showed inhibition of gliosis in hippocampus. Histological analysis showed reduced NFTs in CA3 hippocampal region and restoration of insulin signaling in hippocampii of diabetic mice. Our findings suggest that URM-II-81 can be developed as a new therapeutic agent for treatment of neurodegenration. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Tuberculosis--triumph and tragedy.

    Science.gov (United States)

    Singh, M M

    2003-03-01

    Tuberculosis has been making havoc worldwide with an 11.9 million cases to be involved by the year 2005. In India, about 2 million cases are infected every year. Regarding triumphs and tragedies in the control of tuberculosis some points as follows are discussed. (1) Tuberculosis Control Programmes from National Tuberculosis Programme (NTP) to Revised National Tuberculosis Control Programme (RNTCP) and Directly Observed Treatment, Short course (DOTS). (2) Problem of multidrug resistance (MDR) tuberculosis and (3) HIV and tuberculosis. DOTS being largely based on Indian research. It is now being applied worldwide. MDR is strictly a man made problem. Poor prescriptions, poor case management, lack of coordinated education and haphazard treatment research result in drug resistance. Treatment of MDR is difficult. The drug acceptability, tolerance and toxicity have to be considered. HIV and tuberculosis form a deadly duo. They mean more cases, more costs and more national losses.

  13. Effective Inhibition of Bone Morphogenetic Protein Function by Highly Specific Llama-Derived Antibodies.

    Science.gov (United States)

    Calpe, Silvia; Wagner, Koen; El Khattabi, Mohamed; Rutten, Lucy; Zimberlin, Cheryl; Dolk, Edward; Verrips, C Theo; Medema, Jan Paul; Spits, Hergen; Krishnadath, Kausilia K

    2015-11-01

    Bone morphogenetic proteins (BMP) have important but distinct roles in tissue homeostasis and disease, including carcinogenesis and tumor progression. A large number of BMP inhibitors are available to study BMP function; however, as most of these antagonists are promiscuous, evaluating specific effects of individual BMPs is not feasible. Because the oncogenic role of the different BMPs varies for each neoplasm, highly selective BMP inhibitors are required. Here, we describe the generation of three types of llama-derived heavy chain variable domains (VHH) that selectively bind to either BMP4, to BMP2 and 4, or to BMP2, 4, 5, and 6. These generated VHHs have high affinity to their targets and are able to inhibit BMP signaling. Epitope binning and docking modeling have shed light into the basis for their BMP specificity. As opposed to the wide structural reach of natural inhibitors, these small molecules target the grooves and pockets of BMPs involved in receptor binding. In organoid experiments, specific inhibition of BMP4 does not affect the activation of normal stem cells. Furthermore, in vitro inhibition of cancer-derived BMP4 noncanonical signals results in an increase of chemosensitivity in a colorectal cancer cell line. Therefore, because of their high specificity and low off-target effects, these VHHs could represent a therapeutic alternative for BMP4(+) malignancies. ©2015 American Association for Cancer Research.

  14. Indirubin inhibits cell proliferation, migration, invasion and angiogenesis in tumor-derived endothelial cells

    Directory of Open Access Journals (Sweden)

    Li Z

    2018-05-01

    Full Text Available Zhuohong Li, Chaofu Zhu, Baiping An, Yu Chen, Xiuyun He, Lin Qian, Lan Lan, Shijie Li Department of Oncology, The Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China Purpose: Hepatocellular carcinoma is one of the most predominant malignancies with high fatality rate and its incidence is rising at an alarming rate because of its resistance to radio- and chemotherapy. Indirubin is the major active anti-tumor ingredient of a traditional Chinese herbal medicine. The present study aimed to analyze the effects of indirubin on cell proliferation, migration, invasion, and angiogenesis of tumor-derived endothelial cells (Td-EC. Methods: Td-EC were derived from human umbilical vein endothelial cells (HUVEC by treating HUVEC with the conditioned medium of human liver cancer cell line HepG2. Cell proliferation, migration, invasion, and angiogenesis were assessed by MTT, wound healing, in vitro cell invasion, and in vitro tube formation assay. Results: Td-EC were successfully obtained from HUVEC cultured with 50% culture supernatant from serum-starved HepG2 cells. Indirubin significantly inhibited Td-EC proliferation in a dose- and time-dependent manner. Indirubin also inhibited Td-EC migration, invasion, and angiogenesis. However, indirubin’s effects were weaker on HUVEC than Td-EC. Conclusion: Indirubin significantly inhibited Td-EC proliferation, migration, invasion, and angiogenesis. Keywords: indirubin, Td-EC, proliferation, migration, invasion, angiogenesis

  15. iNKT Cells and Their potential Lipid Ligands during Viral Infection

    Directory of Open Access Journals (Sweden)

    Anunya eOpasawatchai

    2015-07-01

    Full Text Available Invariant natural killer T (iNKT cells are a unique population of lipid reactive CD1d restricted innate-like T lymphocytes. Despite being a minor population, they serve as an early source of cytokines and promote immunological crosstalk thus bridging innate and adaptive immunity. Diseases ranging from allergy, autoimmunity, and cancer as well as infectious diseases, including viral infection, have been reported to be influenced by iNKT cells. However, it remains unclear how iNKT cells are activated during viral infection, as virus derived lipid antigens have not been reported. Cytokines may activate iNKT cells during infections from influenza and murine cytomegalovirus (MCMV, although CD1d dependent activation is evident in other viral infections. Several viruses, such as dengue virus (DENV, induce CD1d upregulation which correlates with iNKT cell activation. In contrast, Herpes simplex virus type 1 (HSV-1, Human immunodeficiency virus (HIV, Epstein-Barr virus (EBV and Human papiloma virus (HPV promote CD1d downregulation as a strategy to evade iNKT cell recognition. These observations suggest the participation of a CD1d-dependent process in the activation of iNKT cells in response to viral infection. Endogenous lipid ligands, including phospholipids as well as glycosphingolipids, such as glucosylceramide have been proposed to mediate iNKT cell activation. Pro-inflammatory signals produced during viral infection may stimulate iNKT cells through enhanced CD1d dependent endogenous lipid presentation. Furthermore, viral infection may alter lipid composition and inhibit endogenous lipid degradation. Recent advances in this field are reviewed.

  16. Kaempferol Isolated from Nelumbo nucifera Inhibits Lipid Accumulation and Increases Fatty Acid Oxidation Signaling in Adipocytes.

    Science.gov (United States)

    Lee, Bonggi; Kwon, Misung; Choi, Jae Sue; Jeong, Hyoung Oh; Chung, Hae Young; Kim, Hyeung-Rak

    2015-12-01

    Stamens of Nelumbo nucifera Gaertn have been used as a Chinese medicine due to its antioxidant, hypoglycemic, and antiatherogenic activity. However, the effects of kaempferol, a main component of N. nucifera, on obesity are not fully understood. We examined the effect of kaempferol on adipogenesis and fatty acid oxidation signaling pathways in 3T3-L1 adipocytes. Kaempferol reduced cytoplasmic triglyceride (TG) accumulation in dose and time-dependent manners during adipocyte differentiation. Accumulation of TG was rapidly reversed by retrieving kaempferol treatment. Kaempferol broadly decreased mRNA or protein levels of adipogenic transcription factors and their target genes related to lipid accumulation. Kaempferol also suppressed glucose uptake and glucose transporter GLUT4 mRNA expression in adipocytes. Furthermore, protein docking simulation suggests that Kaempferol can directly bind to and activate peroxisome proliferator-activated receptor (PPAR)-α by forming hydrophobic interactions with VAL324, THR279, and LEU321 residues of PPARα. The binding affinity was higher than a well-known PPARα agonist fenofibrate. Consistently, mRNA expression levels of PPARα target genes were increased. Our study indicates while kaempferol inhibits lipogenic transcription factors and lipid accumulation, it may bind to PPARα and stimulate fatty acid oxidation signaling in adipocytes.

  17. Synthesis, cyclooxygenase inhibition, anti-inflammatory evaluation and ulcerogenic liability of new 1-phenylpyrazolo[3,4-d]pyrimidine derivatives.

    Science.gov (United States)

    Bakr, Rania B; Azouz, Amany A; Abdellatif, Khaled R A

    2016-01-01

    A new group of 1-phenylpyrazolo[3,4-d]pyrimidine derivatives 14a-d-21 were synthesized from 2-(6-methyl-1-phenyl-1H-pyrazolo[3,4-d]pyrimidin-4-yloxy)acetohydrazide (12). All the synthesized compounds were evaluated for their cyclooxygenase (COX) inhibition, anti-inflammatory activity and ulcerogenic liability. All the target compounds were more potential in inhibiting COX-2 than COX-1. Compounds having pyrazolyl moiety in a hybrid structure with pyrazolo[3,4-d]pyrimidine scaffold (14a-d, 16 and 17) showed higher edema inhibition percentage activities (34-68%) and the 5-aminopyrazole derivative (14c, ED 50  =   87.9 μmol/kg) was the most potent one > celecoxib (ED 50  =   91.9 μmol/kg). While, the in vivo potent compounds (14a-d, 16, 17 and 21) caused variable ulceration effect (ulcer index   = 0.33-4.0) comparable to that of celecoxib (ulcer index   = 0.33), the pyrazol-3-one derivative (16) and the acetohydrazide (21) were the least ulcerogenic derivatives showing the same ulcerogenic potential of celecoxib.

  18. Tumor-like tuberculosis

    International Nuclear Information System (INIS)

    Kim, Soon Yong

    1975-01-01

    It was known that some of the abdominal tuberculosis can produce tumor-like appearance clinically and radiologically. But these were mainly masses formed in mesenteric and retroperitoneal lymph nodes. The author has experienced the gastrointestinal tuberculosis resembling to a neoplastic process. In the gastric tuberculosis, irregular narrowing and filling defect with mucosal distortion and occasional shoulder effect could be seen in pyloric antrum. Deformity of proximal portion of duodenum was noted in most cases. Difficulty in differential diagnosis from the gastric cancer might be encountered. If duodenum was not involved. No definite sign of mucosal destruction involved area and associated deformity of duodenum was suggestive of an inflammatory lesion. If there is any tuberculous changes in small bowel, than gastric tuberculosis is more likely. There was the tuberculosis of descending duodenum or pancreaticoduodenal group of lymph nodes revealed cancer-like appearance. Long irregular narrowing with nodular filling defect and mucosal distortion or inverted 3 sign was evident. Differential diagnosis from cancer in duodenum or pancreas could not be made radiographically. Short annular stenosis and nodular filling defect with shoulder effect in both ends of stenosis was noted in some of small bowel tuberculosis. The findings were very resemble to malignancy. There was a case of huge hepatoma-like tuberculosis formed a large irregular mass by lymph nodes and adjacent organs. Chest film was not much help in the differential diagnosis. In many cases of the gastrointestinal tuberculosis, radiological findings were resembled to a neoplastic process. Since none of radiologic findings are specific enough to allow one to make a definitive diagnosis of the gastrointestinal tuberculosis and since type of the gastrointestinal tuberculosis could be cured by chemotherapy, careful analyzation of clinical features is emphasized before surgery.

  19. Tumor-like tuberculosis

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Soon Yong [Kyung Hee University College of Medicine, Seoul (Korea, Republic of)

    1975-06-15

    It was known that some of the abdominal tuberculosis can produce tumor-like appearance clinically and radiologically. But these were mainly masses formed in mesenteric and retroperitoneal lymph nodes. The author has experienced the gastrointestinal tuberculosis resembling to a neoplastic process. In the gastric tuberculosis, irregular narrowing and filling defect with mucosal distortion and occasional shoulder effect could be seen in pyloric antrum. Deformity of proximal portion of duodenum was noted in most cases. Difficulty in differential diagnosis from the gastric cancer might be encountered. If duodenum was not involved. No definite sign of mucosal destruction involved area and associated deformity of duodenum was suggestive of an inflammatory lesion. If there is any tuberculous changes in small bowel, than gastric tuberculosis is more likely. There was the tuberculosis of descending duodenum or pancreaticoduodenal group of lymph nodes revealed cancer-like appearance. Long irregular narrowing with nodular filling defect and mucosal distortion or inverted 3 sign was evident. Differential diagnosis from cancer in duodenum or pancreas could not be made radiographically. Short annular stenosis and nodular filling defect with shoulder effect in both ends of stenosis was noted in some of small bowel tuberculosis. The findings were very resemble to malignancy. There was a case of huge hepatoma-like tuberculosis formed a large irregular mass by lymph nodes and adjacent organs. Chest film was not much help in the differential diagnosis. In many cases of the gastrointestinal tuberculosis, radiological findings were resembled to a neoplastic process. Since none of radiologic findings are specific enough to allow one to make a definitive diagnosis of the gastrointestinal tuberculosis and since type of the gastrointestinal tuberculosis could be cured by chemotherapy, careful analyzation of clinical features is emphasized before surgery.

  20. Imaging in Tuberculosis abdominal

    International Nuclear Information System (INIS)

    Suarez, Tatiana; Garcia, Vanessa; Tamara, Estrada; Acosta, Federico

    2010-01-01

    In this article we illustrate and discuss imaging features resulting from Tuberculosis abdominal affectation. We present patients evaluated with several imaging modalities who had abdominal symptoms and findings suggestive of granulomatous disease. Diagnosis was confirm including hystopatology and clinical outgoing. Cases involved presented many affected organs such as lymphatic system, peritoneum, liver, spleen, pancreas, kidneys, ureters, adrenal glands and pelvic organs Tuberculosis, Tuberculosis renal, Tuberculosis hepatic, Tuberculosis splenic Tomography, x-ray, computed

  1. Effect of tea catechins on the structure of lipid membrane and beta-ray induced lipid peroxidation

    International Nuclear Information System (INIS)

    Kubota, M.; Haga, H.; Takeuchi, Y.; Okuno, K.; Yoshioka, H.; Yoshioka, H.

    2007-01-01

    Inhibiting effect of four tea catechins, (-)-epicatechin (EC), (-)-epicatechin gallate (ECG), (-)-epigallocatechin (EGC), (-)-epigallocatechin gallate (EGCG), on the lipid peroxidation induced by β-ray in tritiated water was examined using a spin probe method. 16-Doxylstearic acid (16NS) was incorporated into the liposome prepared from egg yolk phosphatidylcholine and the rate of the decrease of ESR intensity of 16NS was used as a measure of the inhibiting effect. In the low concentration region below 10 -5 M, catechins showed their inhibitions on the lipid peroxidation according to the order of ECG>EGCG>EC>EGC. This result was explained by a model that the initiator of the peroxidation is the hydroxyl radical (·OH) and the catechins adsorbed on the lipid membrane surface acting as scavengers of ·OH. In the high concentration range, however, the effect was diverse and it decreased with the increase of it in the case of EGCG. EGCG in this range was considered to enter into the interior of the membrane and break the structure, which causes the decrease of 16NS. Observation with transmission electron microscope (TEM) revealed that the size of the liposome became larger with the increasing concentration of EGCG and finally it was broken into fragments, showing that EGCG broadened the area of the liposome as expected from the result of ESR. (author)

  2. Tuberculosis

    OpenAIRE

    Latorre Tortello, Pablo

    2011-01-01

    Por definición, la tuberculosis pulmonar es la localizaci6n del M. tuberculosis en el tracto respiratorio, la forma más común y principal de la afección y la única capaz de contagiar a otras personas. El M. tuberculosis, descubierto por Robert Koch en 1882, el bacilo de Koch, es un bacilo delgado, inmóvil, de 4 micras de longitud media, aerobio obligado, que se tiñe de rajo por la tinción de Ziehl-Neelsen. Debido a la coraza lipídica de su pared, lo hace resistente a la decoloración con ácido...

  3. Tuberculosis

    OpenAIRE

    Pablo Latorre Tortello

    1998-01-01

    Por definición, la tuberculosis pulmonar es la localizaci6n del M. tuberculosis en el tracto respiratorio, la forma más común y principal de la afección y la única capaz de contagiar a otras personas. El M. tuberculosis, descubierto por Robert Koch en 1882, el bacilo de Koch, es un bacilo delgado, inmóvil, de 4 micras de longitud media, aerobio obligado, que se tiñe de rajo por la tinción de Ziehl-Neelsen. Debido a la coraza lipídica de su pared, lo hace resistente a la decoloración con ácido...

  4. Potential Mechanism of Action of meso-Dihydroguaiaretic Acid on Mycobacterium tuberculosis H37Rv

    Directory of Open Access Journals (Sweden)

    Aldo F. Clemente-Soto

    2014-12-01

    Full Text Available The isolation and characterization of the lignan meso-dihydroguaiaretic acid (MDGA from Larrea tridentata and its activity against Mycobacterial tuberculosis has been demonstrated, but no information regarding its mechanism of action has been documented. Therefore, in this study we carry out the gene expression from total RNA obtained from M. tuberculosis H37Rv treated with MDGA using microarray technology, which was validated by quantitative real time polymerase chain reaction. Results showed that the alpha subunit of coenzyme A transferase of M. tuberculosis H37Rv is present in both geraniol and 1-and 2-methylnaphthalene degradation pathways, which are targeted by MDGA. This assumption was supported by molecular docking which showed stable interaction between MDGA with the active site of the enzyme. We propose that inhibition of coenzyme A transferase of M. tuberculosis H37Rv results in the accumulation of geraniol and 1-and 2-methylnaphtalene inside bacteria, causing membrane destabilization and death of the pathogen. The natural product MDGA is thus an attractive template to develop new anti-tuberculosis drugs, because its target is different from those of known anti-tubercular agents.

  5. Antitumor Lipids--Structure, Functions, and Medical Applications.

    Science.gov (United States)

    Kostadinova, Aneliya; Topouzova-Hristova, Tanya; Momchilova, Albena; Tzoneva, Rumiana; Berger, Martin R

    2015-01-01

    Cell proliferation and metastasis are considered hallmarks of tumor progression. Therefore, efforts have been made to develop novel anticancer drugs that inhibit both the proliferation and the motility of tumor cells. Synthetic antitumor lipids (ATLs), which are chemically divided into two main classes, comprise (i) alkylphospholipids (APLs) and (ii) alkylphosphocholines (APCs). They represent a new entity of drugs with distinct antiproliferative properties in tumor cells. These compounds do not interfere with the DNA or mitotic spindle apparatus of the cell, instead, they incorporate into cell membranes, where they accumulate and interfere with lipid metabolism and lipid-dependent signaling pathways. Recently, it has been shown that the most commonly studied APLs inhibit proliferation by inducing apoptosis in malignant cells while leaving normal cells unaffected and are potent sensitizers of conventional chemo- and radiotherapy, as well as of electrical field therapy. APLs resist catabolic degradation to a large extent, therefore accumulate in the cell and interfere with lipid-dependent survival signaling pathways, notably PI3K-Akt and Raf-Erk1/2, and de novo phospholipid biosynthesis. They are internalized in the cell membrane via raft domains and cause downstream reactions as inhibition of cell growth and migration, cell cycle arrest, actin stress fibers collapse, and apoptosis. This review summarizes the in vitro, in vivo, and clinical trials of most common ATLs and their mode of action at molecular and biochemical levels. © 2015 Elsevier Inc. All rights reserved.

  6. Lipid nanocarriers containing sorafenib inhibit colonies formation in human hepatocarcinoma cells.

    Science.gov (United States)

    Bondì, Maria Luisa; Botto, Chiara; Amore, Erika; Emma, Maria Rita; Augello, Giuseppa; Craparo, Emanuela Fabiola; Cervello, Melchiorre

    2015-09-30

    Here, the potential of two nanostructured lipid carriers (NLC) for controlled release of sorafenib was evaluated. The obtained systems showed characteristics suitable as drug delivery systems for the treatment of hepatocellular carcinoma (HCC) through parenteral administration. The use of a mixture between a solid lipid (tripalmitin) with a liquid lipid (Captex 355 EP/NF or Miglyol 812) to prepare NLC systems could give a higher drug loading capacity and a longer term stability during storage than that obtained by using only solid lipids. The obtained nanoparticles showed a nanometer size and high negative zeta potential values. Scansion electron microscopy (SEM) of the sorafenib loaded NLC revealed a spherical shape with a diameter <300 nm. In vitro biological studies demonstrated that sorafenib loaded into NLC had enhanced anti-tumor activity compared to that of free drug. This finding raises hope in terms of future drug delivery strategy of sorafenib loaded NLC, that can be useful for therapeutic application in HCC. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Tuberculosis abdominal Abdominal tuberculosis

    OpenAIRE

    T. Rubio; M. T. Gaztelu; A. Calvo; M. Repiso; H. Sarasíbar; F. Jiménez Bermejo; A. Martínez Echeverría

    2005-01-01

    La tuberculosis abdominal cursa con un cuadro inespecífico, con difícil diagnóstico diferencial respecto a otras entidades de similar semiología. Presentamos el caso de un varón que ingresa por presentar dolor abdominal, pérdida progresiva y notoria de peso corporal y fiebre de dos meses de evolución. El cultivo de la biopsia de colon mostró presencia de bacilo de Koch.Abdominal tuberculosis develops according to a non-specific clinical picture, with a difficult differential diagnosis with re...

  8. Biosynthesis of membrane lipids of thermophilic archaebacteria and its implication to early evolution of life

    International Nuclear Information System (INIS)

    Oshima, Tairo

    1995-01-01

    The unit lipid of cell membranes of archaebacteria is unique ether lipids, O-dialkylated glycerol with a polar head group at sn-1 position. The chirality of glycerol moiety of the lipids is opposite to that of other kingdoms. The hydrophobic potion consists of saturated C 20 isoprenoid hydrocarbon backbone and is connected to glycerol by an ether linkage. In addition, cell membrane of some of thermophilic archaebacteria are monolayer (in stead of bilayer) of tetraether lipids in which both tails of hydrocarbon chains of two diether lipids are covalently connected in a tail-to-tail fashion. Although the host cell from which contemporary eukaryotes have been derived by endosymbiosis, is speculated to be an archaebacterium, the unique ether lipids raised a serious question to the idea of archabacterial origin of eukaryote cells; why the unique ether lipids are not used to construct cytoplasmic membranes of eukaryotes? The author and his colleagues have studied biosynthesis of membrane liquids of two thermo-acidophilic archaebacteria, Thermoplasma and Sulfolobus. It was found that origins of stereospecificity of glycerol moiety of archaebacterial ether lipids differs form species to species. In Sulfolobus sn-glycerol-1-phosphate (the abnormal isomer of glycerol phosphate) seems to be directly synthesized from glycerol, whereas in Halobacterium stereospecificity of glycerol phosphate is inverted during the lipid synthesis. Recently we found that specific inhibitors for eukaryotes squalene epoxidase inhibit the condensation of diether lipids to tetraether lipids in cell-free extracts of these thermophilic archaebacteria. The results suggest evolutionary implication of archaebacterial tetraether condensing enzyme to eukaryote sterol biosynthesis. Relationships between chemical structures of membrane lipids and early evolution of life will be discussed. (author). Abstract only

  9. Identification of proteins from tuberculin purified protein derivative (PPD) by LC-MS/MS.

    Science.gov (United States)

    Borsuk, Sibele; Newcombe, Jane; Mendum, Tom A; Dellagostin, Odir A; McFadden, Johnjoe

    2009-11-01

    The tuberculin purified protein derivative (PPD) is a widely used diagnostic antigen for tuberculosis, however it is poorly defined. Most mycobacterial proteins are extensively denatured by the procedure employed in its preparation, which explains previous difficulties in identifying constituents from PPD to characterize their behaviour in B- and T-cell reactions. We here described a proteomics-based characterization of PPD from several different sources by LC-MS/MS, which combines the solute separation power of HPLC, with the detection power of a mass spectrometer. The technique is able to identify proteins from complex mixtures of peptide fragments. A total of 171 different proteins were identified among the four PPD samples (two bovine PPD and two avium PPD) from Brazil and UK. The majority of the proteins were cytoplasmic (77.9%) and involved in intermediary metabolism and respiration (24.25%) but there was a preponderance of proteins involved in lipid metabolism. We identified a group of 21 proteins that are present in both bovine PPD but were not detected in avium PPD preparation. In addition, four proteins found in bovine PPD are absent in Mycobacterium bovis BCG vaccine strain. This study provides a better understanding of the tuberculin PPD components leading to the identification of additional antigens useful as reagents for specific diagnosis of tuberculosis.

  10. Is adipose tissue a place for Mycobacterium tuberculosis persistence?

    Directory of Open Access Journals (Sweden)

    Olivier Neyrolles

    Full Text Available BACKGROUND: Mycobacterium tuberculosis, the etiological agent of tuberculosis (TB, has the ability to persist in its human host for exceptionally long periods of time. However, little is known about the location of the bacilli in latently infected individuals. Long-term mycobacterial persistence in the lungs has been reported, but this may not sufficiently account for strictly extra-pulmonary TB, which represents 10-15% of the reactivation cases. METHODOLOGY/PRINCIPAL FINDINGS: We applied in situ and conventional PCR to sections of adipose tissue samples of various anatomical origins from 19 individuals from Mexico and 20 from France who had died from causes other than TB. M. tuberculosis DNA could be detected by either or both techniques in fat tissue surrounding the kidneys, the stomach, the lymph nodes, the heart and the skin in 9/57 Mexican samples (6/19 individuals, and in 8/26 French samples (6/20 individuals. In addition, mycobacteria could be immuno-detected in perinodal adipose tissue of 1 out of 3 biopsy samples from individuals with active TB. In vitro, using a combination of adipose cell models, including the widely used murine adipose cell line 3T3-L1, as well as primary human adipocytes, we show that after binding to scavenger receptors, M. tuberculosis can enter within adipocytes, where it accumulates intracytoplasmic lipid inclusions and survives in a non-replicating state that is insensitive to the major anti-mycobacterial drug isoniazid. CONCLUSIONS/SIGNIFICANCE: Given the abundance and the wide distribution of the adipose tissue throughout the body, our results suggest that this tissue, among others, might constitute a vast reservoir where the tubercle bacillus could persist for long periods of time, and avoid both killing by antimicrobials and recognition by the host immune system. In addition, M. tuberculosis-infected adipocytes might provide a new model to investigate dormancy and to evaluate new drugs for the treatment of

  11. TUBERCULOSIS AS AN INFECTIOUS PATHOLOGY OF IMMUNE SYSTEM

    Directory of Open Access Journals (Sweden)

    Martynov AV

    2016-09-01

    Full Text Available As a result of years’ research of the many research groups around the world able to understand the reason why it will be impossible to create really effective vaccine for the prevention of tuberculosis infection in the near future. The main reason for the impossibility creating such vaccine is an intracellular nature of tuberculosis. In fact, TB is a pathology of the immune system. Mycobacterium tuberculosis persist within macrophages and thereby inhibit the process of phagocytosis completion and digesting the contents of phagosome. The destruction of the lysosomal membrane inside macrophages is blocked by changing the pH in lysosomes. For the presence of lytic activity for most lysosomal enzymes require need acidic environment. Mycobacteria are also getting into the lysosomes of macrophages start to rapidly hydrolysis for urea by urease to form ammonia. Wherein pH in the medium changes to alkaline, this inactivates enzymes and stabilizes lysosomal membrane. Thus mycobacterium prevent lysosome collapse at inactivated lysosomal enzymes and do not allow them to complete macrophage digestion phase by transition lysosomal to phagosomal stage. Stop phagocytolysis process leads to imbalance of the host immune system. Increasing the number of infected macrophages sensitized to Mycobacterium tuberculosis antigens, leading to constant hyperfunction of cellular immunity, particularly enhanced immune response to cell wall components of mycobacteria, induction high titers of interferon-gamma in response to a stimulus, a sharp jump IL-2 titers and TNF-α , IFN-γ specific activation CD8 + CTL. Need also focus attention on the main differences from the MBT and human BCG, that is well growth in the human body, persists along host life, but does not cause active TB (except in patients with HIV/AIDS. After MBT cell destruction in the environment gets some additional high allergenic antigens, such as 85B, ESAT6, Rv2660c, HyVaC 4 (Ag85B and TB10.4.. These

  12. Duodenal tuberculosis

    International Nuclear Information System (INIS)

    Mirza, M.R.; Sarwar, M.

    2004-01-01

    Tuberculosis is a world wide communicable disease caused by tubercle bacilli discovered by Robert Kock in 1882. In 1993 WHO declared TB as a global emergency due to its world wide resurgence. It can involve any organ of the body. Abdomen is the fourth commonest site of involvement in the extra pulmonary tuberculosis after the lymph-nodes, skeletal and Genito urinary variants. In the gastro intestinal tract tuberculosis can affect any part from the mouth to the anus but ileocaecal area is a favourite location. Duodenal involvement is uncommon and accounts for only 2.5% of tuberculous enteritis. Major pathogens are Mycobacterium Tuberculosis and bovis and the usual route of entry is by direct penetration of the intestinal mucosa by swallowed organisms. (author)

  13. Acid sphingomyelinase activity is regulated by membrane lipids and facilitates cholesterol transfer by NPC2.

    Science.gov (United States)

    Oninla, Vincent O; Breiden, Bernadette; Babalola, Jonathan O; Sandhoff, Konrad

    2014-12-01

    During endocytosis, membrane components move to intraluminal vesicles of the endolysosomal compartment for digestion. At the late endosomes, cholesterol is sorted out mainly by two sterol-binding proteins, Niemann-Pick protein type C (NPC)1 and NPC2. To study the NPC2-mediated intervesicular cholesterol transfer, we developed a liposomal assay system. (Abdul-Hammed, M., B. Breiden, M. A. Adebayo, J. O. Babalola, G. Schwarzmann, and K. Sandhoff. 2010. Role of endosomal membrane lipids and NPC2 in cholesterol transfer and membrane fusion. J. Lipid Res. 51: 1747-1760.) Anionic lipids stimulate cholesterol transfer between liposomes while SM inhibits it, even in the presence of anionic bis(monoacylglycero)phosphate (BMP). Preincubation of vesicles containing SM with acid sphingomyelinase (ASM) (SM phosphodiesterase, EC 3.1.4.12) results in hydrolysis of SM to ceramide (Cer), which enhances cholesterol transfer. Besides SM, ASM also cleaves liposomal phosphatidylcholine. Anionic phospholipids derived from the plasma membrane (phosphatidylglycerol and phosphatidic acid) stimulate SM and phosphatidylcholine hydrolysis by ASM more effectively than BMP, which is generated during endocytosis. ASM-mediated hydrolysis of liposomal SM was also stimulated by incorporation of diacylglycerol (DAG), Cer, and free fatty acids into the liposomal membranes. Conversely, phosphatidylcholine hydrolysis was inhibited by incorporation of cholesterol, Cer, DAG, monoacylglycerol, and fatty acids. Our data suggest that SM degradation by ASM is required for physiological secretion of cholesterol from the late endosomal compartment, and is a key regulator of endolysosomal lipid digestion. Copyright © 2014 by the American Society for Biochemistry and Molecular Biology, Inc.

  14. Structure-activity studies of Wnt/β-catenin inhibition in the Niclosamide chemotype: Identification of derivatives with improved drug exposure.

    Science.gov (United States)

    Mook, Robert A; Wang, Jiangbo; Ren, Xiu-Rong; Chen, Minyong; Spasojevic, Ivan; Barak, Larry S; Lyerly, H Kim; Chen, Wei

    2015-09-01

    The Wnt signaling pathway plays a key role in regulation of organ development and tissue homeostasis. Dysregulated Wnt activity is one of the major underlying mechanisms responsible for many diseases including cancer. We previously reported the FDA-approved anthelmintic drug Niclosamide inhibits Wnt/β-catenin signaling and suppresses colon cancer cell growth in vitro and in vivo. Niclosamide is a multi-functional drug that possesses important biological activity in addition to inhibition of Wnt/β-catenin signaling. Here, we studied the SAR of Wnt signaling inhibition in the anilide and salicylamide region of Niclosamide. We found that the 4'-nitro substituent can be effectively replaced by trifluoromethyl or chlorine and that the potency of inhibition was dependent on the substitution pattern in the anilide ring. Non-anilide, N-methyl amides and reverse amide derivatives lost significant potency, while acylated salicylamide derivatives inhibited signaling with potency similar to non-acyl derivatives. Niclosamide's low systemic exposure when dosed orally may hinder its use to treat systemic disease. To overcome this limitation we identified an acyl derivative of Niclosamide, DK-520 (compound 32), that significantly increased both the plasma concentration and the duration of exposure of Niclosamide when dosed orally. The studies herein provide a medicinal chemical foundation to improve the pharmacokinetic exposure of Niclosamide and Wnt-signaling inhibitors based on the Niclosamide chemotype. The identification of novel derivatives of Niclosamide that metabolize to Niclosamide and increase its drug exposure may provide important research tools for in vivo studies and provide drug candidates for treating cancers with dysregulated Wnt signaling including drug-resistant cancers. Moreover, since Niclosamide is a multi-functional drug, new research tools such as DK520 could directly result in novel treatments against bacterial and viral infection, lupus, and metabolic

  15. Structure–activity studies of Wnt/β-catenin inhibition in the Niclosamide chemotype: Identification of derivatives with improved drug exposure

    Science.gov (United States)

    Mook, Robert A.; Wang, Jiangbo; Ren, Xiu-Rong; Chen, Minyong; Spasojevic, Ivan; Barak, Larry S.; Lyerly, H. Kim; Chen, Wei

    2015-01-01

    The Wnt signaling pathway plays a key role in regulation of organ development and tissue homeostasis. Dysregulated Wnt activity is one of the major underlying mechanisms responsible for many diseases including cancer. We previously reported the FDA-approved anthelmintic drug Niclosamide inhibits Wnt/β-catenin signaling and suppresses colon cancer cell growth in vitro and in vivo. Niclosamide is a multi-functional drug that possesses important biological activity in addition to inhibition of Wnt/β-catenin signaling. Here, we studied the SAR of Wnt signaling inhibition in the anilide and salicylamide region of Niclosamide. We found that the 4′-nitro substituent can be effectively replaced by trifluoromethyl or chlorine and that the potency of inhibition was dependent on the substitution pattern in the anilide ring. Non-anilide, N-methyl amides and reverse amide derivatives lost significant potency, while acylated salicylamide derivatives inhibited signaling with potency similar to non-acyl derivatives. Niclosamide's low systemic exposure when dosed orally may hinder its use to treat systemic disease. To overcome this limitation we identified an acyl derivative of Niclosamide, DK-520 (compound 32), that significantly increased both the plasma concentration and the duration of exposure of Niclosamide when dosed orally. The studies herein provide a medicinal chemical foundation to improve the pharmacokinetic exposure of Niclosamide and Wnt-signaling inhibitors based on the Niclosamide chemotype. The identification of novel derivatives of Niclosamide that metabolize to Niclosamide and increase its drug exposure may provide important research tools for in vivo studies and provide drug candidates for treating cancers with dysregulated Wnt signaling including drug-resistant cancers. Moreover, since Niclosamide is a multifunctional drug, new research tools such as DK520 could directly result in novel treatments against bacterial and viral infection, lupus, and metabolic

  16. Gangliosides inhibit bee venom melittin cytotoxicity but not phospholipase A2-induced degranulation in mast cells

    International Nuclear Information System (INIS)

    Nishikawa, Hirofumi; Kitani, Seiichi

    2011-01-01

    Sting accident by honeybee causes severe pain, inflammation and allergic reaction through IgE-mediated anaphylaxis. In addition to this hypersensitivity, an anaphylactoid reaction occurs by toxic effects even in a non-allergic person via cytolysis followed by similar clinical manifestations. Auto-injectable epinephrine might be effective for bee stings, but cannot inhibit mast cell lysis and degranulation by venom toxins. We used connective tissue type canine mast cell line (CM-MC) for finding an effective measure that might inhibit bee venom toxicity. We evaluated degranulation and cytotoxicity by measurement of β-hexosaminidase release and MTT assay. Melittin and crude bee venom induced the degranulation and cytotoxicity, which were strongly inhibited by mono-sialoganglioside (G M1 ), di-sialoganglioside (G D1a ) and tri-sialoganglioside (G T1b ). In contrast, honeybee venom-derived phospholipase A 2 induced the net degranulation directly without cytotoxicity, which was not inhibited by G M1 , G D1a and G T1b . For analysis of distribution of Gα q and Gα i protein by western blotting, lipid rafts were isolated by using discontinuous sucrose gradient centrifuge. Melittin disrupted the localization of Gα q and Gα i at lipid raft, but gangliosides stabilized the rafts. As a result from this cell-based study, bee venom-induced anaphylactoid reaction can be explained with melittin cytotoxicity and phospholipase A 2 -induced degranulation. Taken together, gangliosides inhibit the effect of melittin such as degranulation, cytotoxicity and lipid raft disruption but not phospholipase A 2 -induced degranulation in mast cells. Our study shows a potential of gangliosides as a therapeutic tool for anaphylactoid reaction by honeybee sting.

  17. Inhibition of haemoglobin-mediated lipid oxidation in washed cod muscle and cod protein isolates by Fucus vesiculosus extract and fraction

    DEFF Research Database (Denmark)

    Wang, Tao; Jonsdottir, Rosa; Kristinsson, Hordur

    2010-01-01

    washed cod muscle and protein isolates, phlorotannin-enriched ethyl acetate (EtOAc) fraction showed higher inhibitory effect than crude 80% ethanol (EtOH) extract. The addition of oligomeric phlorotannin-rich subfraction (LH-2) separated by Sephadex LH-20 chromatography, completely inhibited...... similar level of TPC and chemical antioxidant activities as oligomeric subfraction LH-2, it was far less efficient in model systems. These results suggest that other factors rather than the intrinsic reactivity toward radicals could be responsible for the inhibitory effect of phlorotannins on lipid...

  18. Lipid Composition of methane-derived Carbonate Crusts and Sediments from Mud Volcanoes in the Sorokin Trough, NE Black Sea

    Science.gov (United States)

    Stadnitskaia, A.; Baas, M.; Hopmans, E.; van Weering, T.; Sinninghe Damsté, J.

    2003-04-01

    We investigated the distributions and d13C values of bacterial and archaeal lipids in four carbonate crusts and hosting sediments collected from three mud volcanoes in the Sorokin Trough during the 11th Training Through Research expedition in 2001. The lipid extract from carbonate crusts contains abundant archaeal and bacterial biomarkers such as pentamethylicosane (PMI), unsaturated PMIs, archaeol, hydroxyarchaeols (sn-2 and sn-3 isomers), diphytanyl glycerol diethers (DGDs). Hosting sediments also contain a diversity of bacterial and archaeal lipids, but their concentrations are significantly lower then those observed in the crusts. The stable isotopic signature of these compounds have established their biosynthesis by consortia of microorganisms performing anaerobic methanotrophy. Quantitatively, the most predominant group of archaeal core membrane lipids in the crusts and in the sediments is the glycerol dialkyl glycerol tetraethers (GDGTs). Besides, two carbonate crusts contained two archaeal core membrane macrocyclic diether lipids which have not been reported previously. These macrocyclic diethers are structurally related to GDGTs with one and two cyclopentane rings. Cyclopentane-bearing GDGTs are well known for different archaeal species thriving in different environments, while a macrocyclic diether was found only in the thermophilic methanogen Methanococcus jannaschi. Therefore, the molecular structure of novel macrocyclic DGDs unites ecologically contrasting archaeal groups. Strongly depleted carbon isotopic values of these diethers indicate that these diethers derived from archaea acting within anaerobic methane-oxidizing consortia in cold-water environments.

  19. Membrane lipid peroxidation by UV-A: Mechanism and implications

    International Nuclear Information System (INIS)

    Bose, B.; Agarwal, S.; Chatterjee, S.N.

    1990-01-01

    UV-A produced a dose-dependent linear increase of lipid peroxidation in liposomal membrane, as detected by the assay of (i) conjugated dienes, (ii) lipid hydroperoxides, (iii) malondialdehydes (MDA), and (iv) the fluorescent adducts formed by the reaction of MDA with glycine and also a linear dose-dependent increase of [ 14 C]glucose efflux from the liposomes. UV-A-induced MDA production could not be inhibited by any significant degree by sodium formate, dimethyl sulfoxide, EDTA, or superoxide dismutase but was very significantly inhibited by butylated hydroxytoluene, alpha-tocopherol, sodium azide, L-histidine, dimethylfuran, and beta-carotene. MDA formation increased with an increase in the D 2 O content in water, leading to a maximal amount of nearly 50% enhancement of lipid peroxidation in 100% D 2 O vis-a-vis water used as dispersion medium. The experimental findings indicate the involvement of singlet oxygen as the initiator of the UV-A-induced lipid peroxidation

  20. MRI-derived measurements of fibrous-cap and lipid-core thickness: the potential for identifying vulnerable carotid plaques in vivo

    International Nuclear Information System (INIS)

    Trivedi, Rikin A.; U-King-Im, Jean-Marie; Graves, Martin J.; Horsley, Jo; Goddard, Martin; Kirkpatrick, Peter J.; Gillard, Jonathan H.

    2004-01-01

    Vulnerable plaques have thin fibrous caps overlying large necrotic lipid cores. Recent studies have shown that high-resolution MR imaging can identify these components. We set out to determine whether in vivo high-resolution MRI could quantify this aspect of the vulnerable plaque. Forty consecutive patients scheduled for carotid endarterectomy underwent pre-operative in vivo multi-sequence MR imaging of the carotid artery. Individual plaque constituents were characterised on MR images. Fibrous-cap and lipid-core thickness was measured on MRI and histology images. Bland-Altman plots were generated to determine the level of agreement between the two methods. Multi-sequence MRI identified 133 corresponding MR and histology slices. Plaque calcification or haemorrhage was seen in 47 of these slices. MR and histology derived fibrous cap-lipid-core thickness ratios showed strong agreement with a mean difference between MR and histology ratios of 0.02 (±0.04). The intra-class correlation coefficient between two readers for measurements was 0.87 (95% confidence interval, 0.73 and 0.93). Multi-sequence, high-resolution MR imaging accurately quantified the relative thickness of fibrous-cap and lipid-core components of carotid atheromatous plaques. This may prove to be a useful tool to characterise vulnerable plaques in vivo. (orig.)

  1. MRI-derived measurements of fibrous-cap and lipid-core thickness: the potential for identifying vulnerable carotid plaques in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Trivedi, Rikin A. [Addenbrooke' s Hospital, University Department of Radiology, Cambridge (United Kingdom); Addenbrooke' s Hospital, Academic Department of Neurosurgery, Cambridge (United Kingdom); U-King-Im, Jean-Marie; Graves, Martin J. [Addenbrooke' s Hospital, University Department of Radiology, Cambridge (United Kingdom); Horsley, Jo; Goddard, Martin [Papworth Hospital, Department of Histopathology, Papworth Everard (United Kingdom); Kirkpatrick, Peter J. [Addenbrooke' s Hospital, Academic Department of Neurosurgery, Cambridge (United Kingdom); Gillard, Jonathan H. [Addenbrooke' s Hospital, University Department of Radiology, Cambridge (United Kingdom); Addenbrooke' s Hospital, Hills Road, Box 219, Cambridge (United Kingdom)

    2004-09-01

    Vulnerable plaques have thin fibrous caps overlying large necrotic lipid cores. Recent studies have shown that high-resolution MR imaging can identify these components. We set out to determine whether in vivo high-resolution MRI could quantify this aspect of the vulnerable plaque. Forty consecutive patients scheduled for carotid endarterectomy underwent pre-operative in vivo multi-sequence MR imaging of the carotid artery. Individual plaque constituents were characterised on MR images. Fibrous-cap and lipid-core thickness was measured on MRI and histology images. Bland-Altman plots were generated to determine the level of agreement between the two methods. Multi-sequence MRI identified 133 corresponding MR and histology slices. Plaque calcification or haemorrhage was seen in 47 of these slices. MR and histology derived fibrous cap-lipid-core thickness ratios showed strong agreement with a mean difference between MR and histology ratios of 0.02 ({+-}0.04). The intra-class correlation coefficient between two readers for measurements was 0.87 (95% confidence interval, 0.73 and 0.93). Multi-sequence, high-resolution MR imaging accurately quantified the relative thickness of fibrous-cap and lipid-core components of carotid atheromatous plaques. This may prove to be a useful tool to characterise vulnerable plaques in vivo. (orig.)

  2. Tuberculosis Fluoroscopy

    Science.gov (United States)

    Follow-up though Dec 31, 2002 has been completed for a study of site-specific cancer mortality among tuberculosis patients treated with artificial lung collapse therapy in Massachusetts tuberculosis sanatoria (1930-1950).

  3. LIGAND-BINDING SITES ON THE MYCOBACTERIUM TUBERCULOSIS UREASE

    Directory of Open Access Journals (Sweden)

    Lisnyak Yu. V.

    2017-10-01

    Full Text Available Introduction. Mycobacterium tuberculosis is the causative agent of tuberculosis that remains a serious medical and social health problem. Despite intensive efforts have been made in the past decade, there are no new efficient anti-tuberculosis drugs today, and that need is growing due to the spread of drug-resistant strains of M.tuberculosis. M. tuberculosis urease (MTU, being an important factor of the bacterium viability and virulence, is an attractive target for anti-tuberculosis drugs acting by inhibition of urease activity. However, the commercially available urease inhibitors are toxic and unstable, that prevent their clinical use. Therefore, new more potent anti-tuberculosis drugs inhibiting new targets are urgently needed. A useful tool for the search of novel inhibitors is a computational drug design. The inhibitor design is significantly easier if binding sites on the enzyme are identified in advance. This paper aimed to determine the probable ligand binding sites on the surface of M. tuberculosis urease. Methods. To identify ligand binding sites on MTU surface, сomputational solvent mapping method FTSite was applied by the use of MTU homology model we have built earlier. The method places molecular probes (small organic molecules containing various functional groups on a dense grid defined around the enzyme, and for each probe finds favorable positions. The selected poses are refined by free energy minimization, the low energy conformations are clustered, and the clusters are ranked on the basis of the average free energy. FTSite server outputs the protein residues delineating a binding sites and the probe molecules representing each cluster. To predict allosteric pockets on MTU, AlloPred and AlloSite servers were applied. AlloPred uses the normal mode analysis (NMA and models how the dynamics of a protein would be altered in the presence of a modulator at a specific pocket. Pockets on the enzyme are predicted using the Fpocket

  4. Crystal structure of DNA polymerase III β sliding clamp from Mycobacterium tuberculosis.

    Science.gov (United States)

    Gui, Wen-Jun; Lin, Shi-Qiang; Chen, Yuan-Yuan; Zhang, Xian-En; Bi, Li-Jun; Jiang, Tao

    2011-02-11

    The sliding clamp is a key component of DNA polymerase III (Pol III) required for genome replication. It is known to function with diverse DNA repair proteins and cell cycle-control proteins, making it a potential drug target. To extend our understanding of the structure/function relationship of the sliding clamp, we solved the crystal structure of the sliding clamp from Mycobacterium tuberculosis (M. tuberculosis), a human pathogen that causes most cases of tuberculosis (TB). The sliding clamp from M. tuberculosis forms a ring-shaped head-to-tail dimer with three domains per subunit. Each domain contains two α helices in the inner ring that lie against two β sheets in the outer ring. Previous studies have indicated that many Escherichia coli clamp-binding proteins have a conserved LF sequence, which is critical for binding to the hydrophobic region of the sliding clamp. Here, we analyzed the binding affinities of the M. tuberculosis sliding clamp and peptides derived from the α and δ subunits of Pol III, which indicated that the LF motif also plays an important role in the binding of the α and δ subunits to the sliding clamp of M. tuberculosis. Copyright © 2011 Elsevier Inc. All rights reserved.

  5. Dependency of a therapy-resistant state of cancer cells on a lipid peroxidase pathway.

    Science.gov (United States)

    Viswanathan, Vasanthi S; Ryan, Matthew J; Dhruv, Harshil D; Gill, Shubhroz; Eichhoff, Ossia M; Seashore-Ludlow, Brinton; Kaffenberger, Samuel D; Eaton, John K; Shimada, Kenichi; Aguirre, Andrew J; Viswanathan, Srinivas R; Chattopadhyay, Shrikanta; Tamayo, Pablo; Yang, Wan Seok; Rees, Matthew G; Chen, Sixun; Boskovic, Zarko V; Javaid, Sarah; Huang, Cherrie; Wu, Xiaoyun; Tseng, Yuen-Yi; Roider, Elisabeth M; Gao, Dong; Cleary, James M; Wolpin, Brian M; Mesirov, Jill P; Haber, Daniel A; Engelman, Jeffrey A; Boehm, Jesse S; Kotz, Joanne D; Hon, Cindy S; Chen, Yu; Hahn, William C; Levesque, Mitchell P; Doench, John G; Berens, Michael E; Shamji, Alykhan F; Clemons, Paul A; Stockwell, Brent R; Schreiber, Stuart L

    2017-07-27

    Plasticity of the cell state has been proposed to drive resistance to multiple classes of cancer therapies, thereby limiting their effectiveness. A high-mesenchymal cell state observed in human tumours and cancer cell lines has been associated with resistance to multiple treatment modalities across diverse cancer lineages, but the mechanistic underpinning for this state has remained incompletely understood. Here we molecularly characterize this therapy-resistant high-mesenchymal cell state in human cancer cell lines and organoids and show that it depends on a druggable lipid-peroxidase pathway that protects against ferroptosis, a non-apoptotic form of cell death induced by the build-up of toxic lipid peroxides. We show that this cell state is characterized by activity of enzymes that promote the synthesis of polyunsaturated lipids. These lipids are the substrates for lipid peroxidation by lipoxygenase enzymes. This lipid metabolism creates a dependency on pathways converging on the phospholipid glutathione peroxidase (GPX4), a selenocysteine-containing enzyme that dissipates lipid peroxides and thereby prevents the iron-mediated reactions of peroxides that induce ferroptotic cell death. Dependency on GPX4 was found to exist across diverse therapy-resistant states characterized by high expression of ZEB1, including epithelial-mesenchymal transition in epithelial-derived carcinomas, TGFβ-mediated therapy-resistance in melanoma, treatment-induced neuroendocrine transdifferentiation in prostate cancer, and sarcomas, which are fixed in a mesenchymal state owing to their cells of origin. We identify vulnerability to ferroptic cell death induced by inhibition of a lipid peroxidase pathway as a feature of therapy-resistant cancer cells across diverse mesenchymal cell-state contexts.

  6. The association between smoking and tuberculosis La asociación entre tabaquismo y tuberculosis

    Directory of Open Access Journals (Sweden)

    K.M. Hassmiller

    2006-01-01

    Full Text Available OBJECTIVE: To review epidemiological evidence on the association between smoking and tuberculosis. METHODS: Reviewed articles were identified by searching Pubmed for the terms "smoking" or "tobacco" and "tuberculosis". Additional articles were obtained from the bibliographies of identified papers. RESULTS: Thirty-four studies were reviewed: five investigate the association between smoking and mortality from tuberculosis, 13 investigate the association between smoking and development of tuberculosis, eigth investigate the association between smoking and infection with Mycobacterium tuberculosis, and nine estimate the impact of smoking on characteristics of tuberculosis and disease outcomes. CONCLUSIONS: Taken together, evidence suggests that smoking (both current and former is associated with: risk of being infected with Mycobacterium tuberculosis, risk of developing tuberculosis, development of more severe forms of tuberculosis, and risk of dying of tuberculosis. In many cases, there is a strong dose-response relationship -both in terms of quantity and duration of smoking. These relationships are not explained away by controlling for potentially confounding variables such as age, gender, alcohol consumption, and HIV status.OBJETIVO: Revisar evidencia epidemiológica relativa a la asociación entre el tabaquismo y la tuberculosis. MATERIALES Y MÉTODOS: Se identificaron artículos de revisión mediante la búsqueda en Pubmed de los términos "tabaquismo", "tabaco" y "tuberculosis". Se obtuvieron artículos adicionales de las bibliografías de los trabajos identificados. RESULTADOS: Se revisaron 34 estudios: cinco investigan la asociación entre tabaquismo y mortalidad a partir de la tuberculosis; 13, la asociación entre tabaquismo y el desarrollo de tuberculosis; ocho, la asociación entre tabaquismo y la infección con Mycobacterium tuberculosis; y nueve estiman el impacto del tabaquismo en las características de la tuberculosis y las

  7. Genitourinary tuberculosis

    International Nuclear Information System (INIS)

    Matos, Maria Joao; Bacelar, Maria Teresa; Pinto, Pedro; Ramos, Isabel

    2005-01-01

    Although uncommon, genitourinary tuberculosis is the most common site of extrapulmonary tuberculosis infection. Its diagnosis is often difficult. This article provides an overview of the pathologic and radiologic findings of this disease process

  8. Expression profiling and comparative sequence derived insights into lipid metabolism

    Energy Technology Data Exchange (ETDEWEB)

    Callow, Matthew J.; Rubin, Edward M.

    2001-12-19

    Expression profiling and genomic DNA sequence comparisons are increasingly being applied to the identification and analysis of the genes involved in lipid metabolism. Not only has genome-wide expression profiling aided in the identification of novel genes involved in important processes in lipid metabolism such as sterol efflux, but the utilization of information from these studies has added to our understanding of the regulation of pathways participating in the process. Coupled with these gene expression studies, cross species comparison, searching for sequences conserved through evolution, has proven to be a powerful tool to identify important non-coding regulatory sequences as well as the discovery of novel genes relevant to lipid biology. An example of the value of this approach was the recent chance discovery of a new apolipoprotein gene (apo AV) that has dramatic effects upon triglyceride metabolism in mice and humans.

  9. Dietary flavonoid derivatives enhance chemotherapeutic effect by inhibiting the DNA damage response pathway

    International Nuclear Information System (INIS)

    Kuo, Ching-Ying; Zupkó, István; Chang, Fang-Rong; Hunyadi, Attila; Wu, Chin-Chung; Weng, Teng-Song; Wang, Hui-Chun

    2016-01-01

    Flavonoids are the most common group of polyphenolic compounds and abundant in dietary fruits and vegetables. Diet high in vegetables or dietary flavonoid supplements is associated with reduced mortality rate for patients with breast cancer. Many studies have been proposed for mechanisms linking flavonoids to improving chemotherapy efficacy in many types of cancers, but data on this issue is still limited. Herein, we report on a new mechanism through which dietary flavonoids inhibit DNA damage checkpoints and repair pathways. We found that dietary flavonoids could inhibit Chk1 phosphorylation and decrease clonogenic cell growth once breast cancer cells receive ultraviolet irradiation, cisplatin, or etoposide treatment. Since the ATR-Chk1 pathway mainly involves response to DNA replication stress, we propose that flavonoid derivatives reduce the side effect of chemotherapy by improving the sensitivity of cycling cells. Therefore, we propose that increasing intake of common dietary flavonoids is beneficial to breast cancer patients who are receiving DNA-damaging chemotherapy, such as cisplatin or etoposide-based therapy. - Highlights: • First report on inhibition of both DNA damage and repair by dietary flavonoids • Dietary flavonoids inhibit cisplatin- and UV-induced Chk1 phosphorylation. • Flavonoids combined with cisplatin or UV treatment show notable growth inhibition. • Promising treatment proposal for patients who are receiving adjuvant chemotherapy

  10. Dietary flavonoid derivatives enhance chemotherapeutic effect by inhibiting the DNA damage response pathway

    Energy Technology Data Exchange (ETDEWEB)

    Kuo, Ching-Ying [Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 80708, Taiwan (China); Zupkó, István [Department of Pharmacodynamics and Biopharmacy, University of Szeged, Eötvös Utca 6, Szeged H-6720 (Hungary); Chang, Fang-Rong [Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 80708, Taiwan (China); Hunyadi, Attila [Institute of Pharmacognosy, Faculty of Pharmacy, University of Szeged, Eötvös Utca 6, Szeged H-6720 (Hungary); Wu, Chin-Chung; Weng, Teng-Song [Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 80708, Taiwan (China); Wang, Hui-Chun, E-mail: wanghc@kmu.edu.tw [Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 80708, Taiwan (China); PhD Program in Translational Medicine, College of Medicine and PhD Program in Toxicology, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 80708, Taiwan (China); Research Center for Natural Product and Drug Development, Kaohsiung Medical University, Kaohsiung 80708, Taiwan (China); Translational Research Center and Cancer Center, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan (China); Department of Marine Biotechnology and Resources, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan (China); Department of Fragrance and Cosmetic Science, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 80708, Taiwan (China)

    2016-11-15

    Flavonoids are the most common group of polyphenolic compounds and abundant in dietary fruits and vegetables. Diet high in vegetables or dietary flavonoid supplements is associated with reduced mortality rate for patients with breast cancer. Many studies have been proposed for mechanisms linking flavonoids to improving chemotherapy efficacy in many types of cancers, but data on this issue is still limited. Herein, we report on a new mechanism through which dietary flavonoids inhibit DNA damage checkpoints and repair pathways. We found that dietary flavonoids could inhibit Chk1 phosphorylation and decrease clonogenic cell growth once breast cancer cells receive ultraviolet irradiation, cisplatin, or etoposide treatment. Since the ATR-Chk1 pathway mainly involves response to DNA replication stress, we propose that flavonoid derivatives reduce the side effect of chemotherapy by improving the sensitivity of cycling cells. Therefore, we propose that increasing intake of common dietary flavonoids is beneficial to breast cancer patients who are receiving DNA-damaging chemotherapy, such as cisplatin or etoposide-based therapy. - Highlights: • First report on inhibition of both DNA damage and repair by dietary flavonoids • Dietary flavonoids inhibit cisplatin- and UV-induced Chk1 phosphorylation. • Flavonoids combined with cisplatin or UV treatment show notable growth inhibition. • Promising treatment proposal for patients who are receiving adjuvant chemotherapy.

  11. Drivers of Tuberculosis Transmission.

    Science.gov (United States)

    Mathema, Barun; Andrews, Jason R; Cohen, Ted; Borgdorff, Martien W; Behr, Marcel; Glynn, Judith R; Rustomjee, Roxana; Silk, Benjamin J; Wood, Robin

    2017-11-03

    Measuring tuberculosis transmission is exceedingly difficult, given the remarkable variability in the timing of clinical disease after Mycobacterium tuberculosis infection; incident disease can result from either a recent (ie, weeks to months) or a remote (ie, several years to decades) infection event. Although we cannot identify with certainty the timing and location of tuberculosis transmission for individuals, approaches for estimating the individual probability of recent transmission and for estimating the fraction of tuberculosis cases due to recent transmission in populations have been developed. Data used to estimate the probable burden of recent transmission include tuberculosis case notifications in young children and trends in tuberculin skin test and interferon γ-release assays. More recently, M. tuberculosis whole-genome sequencing has been used to estimate population levels of recent transmission, identify the distribution of specific strains within communities, and decipher chains of transmission among culture-positive tuberculosis cases. The factors that drive the transmission of tuberculosis in communities depend on the burden of prevalent tuberculosis; the ways in which individuals live, work, and interact (eg, congregate settings); and the capacity of healthcare and public health systems to identify and effectively treat individuals with infectious forms of tuberculosis. Here we provide an overview of these factors, describe tools for measurement of ongoing transmission, and highlight knowledge gaps that must be addressed. © The Author 2017. Published by Oxford University Press for the Infectious Diseases Society of America.

  12. Inactivation of Mycobacterium tuberculosis l,d-Transpeptidase LdtMt1 by Carbapenems and Cephalosporins

    Science.gov (United States)

    Dubée, Vincent; Triboulet, Sébastien; Mainardi, Jean-Luc; Ethève-Quelquejeu, Mélanie; Gutmann, Laurent; Marie, Arul; Dubost, Lionel

    2012-01-01

    The structure of Mycobacterium tuberculosis peptidoglycan is atypical since it contains a majority of 3→3 cross-links synthesized by l,d-transpeptidases that replace 4→3 cross-links formed by the d,d-transpeptidase activity of classical penicillin-binding proteins. Carbapenems inactivate these l,d-transpeptidases, and meropenem combined with clavulanic acid is bactericidal against extensively drug-resistant M. tuberculosis. Here, we used mass spectrometry and stopped-flow fluorimetry to investigate the kinetics and mechanisms of inactivation of the prototypic M. tuberculosis l,d-transpeptidase LdtMt1 by carbapenems (meropenem, doripenem, imipenem, and ertapenem) and cephalosporins (cefotaxime, cephalothin, and ceftriaxone). Inactivation proceeded through noncovalent drug binding and acylation of the catalytic Cys of LdtMt1, which was eventually followed by hydrolysis of the resulting acylenzyme. Meropenem rapidly inhibited LdtMt1, with a binding rate constant of 0.08 μM−1 min−1. The enzyme was unable to recover from this initial binding step since the dissociation rate constant of the noncovalent complex was low (carbapenem side chains affected both the binding and acylation steps, ertapenem being the most efficient LdtMt1 inactivator. Cephalosporins also formed covalent adducts with LdtMt1, although the acylation reaction was 7- to 1,000-fold slower and led to elimination of one of the drug side chains. Comparison of kinetic constants for drug binding, acylation, and acylenzyme hydrolysis indicates that carbapenems and cephems can both be tailored to optimize peptidoglycan synthesis inhibition in M. tuberculosis. PMID:22615283

  13. Rational Modulation of the Induced-Fit Conformational Change for Slow-Onset Inhibition in Mycobacterium tuberculosis InhA.

    Science.gov (United States)

    Lai, Cheng-Tsung; Li, Huei-Jiun; Yu, Weixuan; Shah, Sonam; Bommineni, Gopal R; Perrone, Victoria; Garcia-Diaz, Miguel; Tonge, Peter J; Simmerling, Carlos

    2015-08-04

    Slow-onset enzyme inhibitors are the subject of considerable interest as an approach to increasing the potency of pharmaceutical compounds by extending the residence time of the inhibitor on the target (the lifetime of the drug-receptor complex). However, rational modulation of residence time presents significant challenges because it requires additional mechanistic insight, such as the nature of the transition state for postbinding isomerization. Our previous work, based on X-ray crystallography, enzyme kinetics, and molecular dynamics simulation, suggested that the slow step in inhibition of the Mycobacterium tuberculosis enoyl-ACP reductase InhA involves a change in the conformation of the substrate binding loop from an open state in the initial enzyme-inhibitor complex to a closed state in the final enzyme-inhibitor complex. Here, we use multidimensional free energy landscapes for loop isomerization to obtain a computational model for the transition state. The results suggest that slow-onset inhibitors crowd key side chains on helices that slide past each other during isomerization, resulting in a steric clash. The landscapes become significantly flatter when residues involved in the steric clash are replaced with alanine. Importantly, this lower barrier can be increased by rational inhibitor redesign to restore the steric clash. Crystallographic studies and enzyme kinetics confirm the predicted effects on loop structure and flexibility, as well as inhibitor residence time. These loss and regain of function studies validate our mechanistic hypothesis for interactions controlling substrate binding loop isomerization, providing a platform for the future design of inhibitors with longer residence times and better in vivo potency. Similar opportunities for slow-onset inhibition via the same mechanism are identified in other pathogens.

  14. Chronic inhibition of tumor cell-derived VEGF enhances the malignant phenotype of colorectal cancer cells

    International Nuclear Information System (INIS)

    Yamagishi, Naoko; Teshima-Kondo, Shigetada; Masuda, Kiyoshi; Nishida, Kensei; Kuwano, Yuki; Dang, Duyen T; Dang, Long H; Nikawa, Takeshi; Rokutan, Kazuhito

    2013-01-01

    Vascular endothelial growth factor-a (VEGF)-targeted therapies have become an important treatment for a number of human malignancies. The VEGF inhibitors are actually effective in several types of cancers, however, the benefits are transiently, and the vast majority of patients who initially respond to the therapies will develop resistance. One of possible mechanisms for the acquired resistance may be the direct effect(s) of VEGF inhibitors on tumor cells expressing VEGF receptors (VEGFR). Thus, we investigated here the direct effect of chronic VEGF inhibition on phenotype changes in human colorectal cancer (CRC) cells. To chronically inhibit cancer cell-derived VEGF, human CRC cell lines (HCT116 and RKO) were chronically exposed (2 months) to an anti-VEGF monoclonal antibody (mAb) or were disrupted the Vegf gene (VEGF-KO). Effects of VEGF family members were blocked by treatment with a VEGF receptor tyrosine kinase inhibitor (VEGFR-TKI). Hypoxia-induced apoptosis under VEGF inhibited conditions was measured by TUNEL assay. Spheroid formation ability was assessed using a 3-D spheroid cell culture system. Chronic inhibition of secreted/extracellular VEGF by an anti-VEGF mAb redundantly increased VEGF family member (PlGF, VEGFR1 and VEGFR2), induced a resistance to hypoxia-induced apoptosis, and increased spheroid formation ability. This apoptotic resistance was partially abrogated by a VEGFR-TKI, which blocked the compensate pathway consisted of VEGF family members, or by knockdown of Vegf mRNA, which inhibited intracellular function(s) of all Vegf gene products. Interestingly, chronic and complete depletion of all Vegf gene products by Vegf gene knockout further augmented these phenotypes in the compensate pathway-independent manner. These accelerated phenotypes were significantly suppressed by knockdown of hypoxia-inducible factor-1α that was up-regulated in the VEGF-KO cell lines. Our findings suggest that chronic inhibition of tumor cell-derived VEGF

  15. Effects of soy sauce and packaging method on volatile compounds and lipid oxidation of cooked irradiated beef patties

    International Nuclear Information System (INIS)

    Kim, Hyun-Wook; Lee, Soo-Yeon; Hwang, Ko-Eun; Song, Dong-Heon; Kim, Yong-Jae; Ham, Yun-Kyung; Lee, Choong-Hee; Choi, Yun-Sang; Lee, Ju-Woon; Kim, Cheon-Jei

    2014-01-01

    The objective of this study is to determine the effect of soy sauce on volatile compounds and lipid oxidation of cooked irradiated beef patties. Sulfur-containing volatile components, which are produced by irradiation, were not found in all treatments. Volatile components derived from soy sauce, such as 3-hydroxy-2-butanone, acetic acid, 3-methyl-1-butanol and 2-methyl-1-butanol, were detected in beef patties containing soy sauce regardless of irradiation and packaging method. Volatile aldehydes, including hexanal, significantly decreased the irradiated beef patty prepared with soy sauce compared to those of irradiated beef patty made with NaCl at 1 day and 5 days after irradiation. In addition, combined use of vacuum packaging and soy sauce treatments could inhibit the formation of volatile compounds and 2-thiobarbituric acid reactive substances during chilled storage. Therefore, the use of soy sauce in cooked and irradiated beef could reduce the production of volatile components associated with the irradiation-induced off-flavor and lipid oxidation. - Highlights: • Soy sauce (SS) could inhibit volatiles cooked irradiated beef patties. • Vacuum packaging and SS treatment is effective to prevent lipid oxidation. • Hexanal content was highly correlated with TBA value of the irradiated beef patties

  16. Aldo-keto reductase family 1 B10 protein detoxifies dietary and lipid-derived alpha, beta-unsaturated carbonyls at physiological levels

    International Nuclear Information System (INIS)

    Zhong, Linlin; Liu, Ziwen; Yan, Ruilan; Johnson, Stephen; Zhao, Yupei; Fang, Xiubin; Cao, Deliang

    2009-01-01

    Alpha, beta-unsaturated carbonyls are highly reactive mutagens and carcinogens to which humans are exposed on a daily basis. This study demonstrates that aldo-keto reductase family 1 member B10 (AKR1B10) is a critical protein in detoxifying dietary and lipid-derived unsaturated carbonyls. Purified AKR1B10 recombinant protein efficiently catalyzed the reduction to less toxic alcohol forms of crotonaldehyde at 0.90 μM, 4-hydroxynonenal (HNE) at 0.10 μM, trans-2-hexanal at 0.10 μM, and trans-2,4-hexadienal at 0.05 μM, the concentrations at or lower than physiological exposures. Ectopically expressed AKR1B10 in 293T cells eliminated immediately HNE at 1 (subtoxic) or 5 μM (toxic) by converting to 1,4-dihydroxynonene, protecting the cells from HNE toxicity. AKR1B10 protein also showed strong enzymatic activity toward glutathione-conjugated carbonyls. Taken together, our study results suggest that AKR1B10 specifically expressed in the intestine is physiologically important in protecting the host cell against dietary and lipid-derived cytotoxic carbonyls.

  17. Beta-lactamases of Mycobacterium tuberculosis and Mycobacterium kansasii.

    Science.gov (United States)

    Segura, C; Salvadó, M

    1997-09-01

    Re-emergence of infectious diseases caused by mycobacteria as well as the emergence of multiresistant strains of Mycobacterium has promoted the research on the use of beta-lactames in the treatment of such diseases. Mycobacteria produce beta-lactamases: M. tuberculosis produces a wide-spectrum beta-lactamase whose behaviour mimicks those of Gram-negative bacteria. M. kansasii produces also beta-lactamase which can be inhibited by clavulanic acid. An overview on beta-lactamases from both species is reported.

  18. Lipid Nanotechnology

    Directory of Open Access Journals (Sweden)

    Gijsje Koenderink

    2013-02-01

    Full Text Available Nanotechnology is a multidisciplinary field that covers a vast and diverse array of devices and machines derived from engineering, physics, materials science, chemistry and biology. These devices have found applications in biomedical sciences, such as targeted drug delivery, bio-imaging, sensing and diagnosis of pathologies at early stages. In these applications, nano-devices typically interface with the plasma membrane of cells. On the other hand, naturally occurring nanostructures in biology have been a source of inspiration for new nanotechnological designs and hybrid nanostructures made of biological and non-biological, organic and inorganic building blocks. Lipids, with their amphiphilicity, diversity of head and tail chemistry, and antifouling properties that block nonspecific binding to lipid-coated surfaces, provide a powerful toolbox for nanotechnology. This review discusses the progress in the emerging field of lipid nanotechnology.

  19. Vaccination against tuberculosis.

    Science.gov (United States)

    Martin, Carlos; Aguilo, Nacho; Gonzalo-Asensio, Jesús

    2018-04-04

    BCG (Bacille Calmette-Guérin) vaccination is included in the immunization schedule for tuberculosis endemic countries with a global coverage at birth close to 90% worldwide. BCG was attenuated from Mycobacterium bovis almost a century ago, and provides a strong protection against disseminated forms of the disease, though very limited against pulmonary forms of tuberculosis, responsible for transmission. Novel prophylactic tuberculosis vaccines are in clinical development either to replace BCG or to improve its protection against respiratory forms of the disease. There are limitations understanding the immunological responses involved and the precise type of long-lived immunity that new vaccines need to induce. MTBVAC is the first and only tuberculosis vaccine candidate based on live-attenuated Mycobacterium tuberculosis in clinical evaluation. MTBVAC clinical development plans to target tuberculosis prevention in newborns, as a BCG replacement strategy, and as secondary objective to be tested in adolescents and adults previous vaccinated with BCG. Copyright © 2018 Elsevier España, S.L.U. and Sociedad Española de Enfermedades Infecciosas y Microbiología Clínica. All rights reserved.

  20. Addison's Disease Caused by Tuberculosis with Atypical Hyperpigmentation and Active Pulmonary Tuberculosis.

    Science.gov (United States)

    Namikawa, Hiroki; Takemoto, Yasuhiko; Kainuma, Shigeto; Umeda, Sakurako; Makuuchi, Ayako; Fukumoto, Kazuo; Kobayashi, Masanori; Kinuhata, Shigeki; Isaka, Yoshihiro; Toyoda, Hiromitsu; Kamata, Noriko; Tochino, Yoshihiro; Hiura, Yoshikazu; Morimura, Mina; Shuto, Taichi

    2017-01-01

    We herein report a case of Addison's disease caused by tuberculosis characterized by atypical hyperpigmentation, noted as exacerbation of the pigmentation of freckles and the occurrence of new freckles, that was diagnosed in the presence of active pulmonary tuberculosis. The clinical condition of the patient was markedly ameliorated by the administration of hydrocortisone and anti-tuberculosis agents. When exacerbation of the pigmentation of the freckles and/or the occurrence of new freckles are noted, Addison's disease should be considered as part of the differential diagnosis. In addition, the presence of active tuberculosis needs to be assumed whenever we treat patients with Addison's disease caused by tuberculosis, despite its rarity.

  1. The Scavenger Protein Apoptosis Inhibitor of Macrophages (AIM) Potentiates the Antimicrobial Response against Mycobacterium tuberculosis by Enhancing Autophagy

    Science.gov (United States)

    Sanjurjo, Lucía; Amézaga, Núria; Vilaplana, Cristina; Cáceres, Neus; Marzo, Elena; Valeri, Marta; Cardona, Pere-Joan; Sarrias, Maria-Rosa

    2013-01-01

    Apoptosis inhibitor of macrophages (AIM), a scavenger protein secreted by tissue macrophages, is transcriptionally regulated by the nuclear receptor Liver X Receptor (LXR) and Retinoid X Receptor (RXR) heterodimer. Given that LXR exerts a protective immune response against M. tuberculosis, here we analyzed whether AIM is involved in this response. In an experimental murine model of tuberculosis, AIM serum levels peaked dramatically early after infection with M. tuberculosis, providing an in vivo biological link to the disease. We therefore studied the participation of AIM in macrophage response to M. tuberculosis in vitro. For this purpose, we used the H37Rv strain to infect THP-1 macrophages transfected to stably express AIM, thereby increasing infected macrophage survival. Furthermore, the expression of this protein enlarged foam cell formation by enhancing intracellular lipid content. Phagocytosis assays with FITC-labeled M. tuberculosis bacilli indicated that this protein was not involved in bacterial uptake; however, AIM expression decreased the number of intracellular cfus by up to 70% in bacterial killing assays, suggesting that AIM enhances macrophage mycobactericidal activity. Accordingly, M. tuberculosis-infected AIM-expressing cells upregulated the production of reactive oxygen species. Moreover, real-time PCR analysis showed increased mRNA levels of the antimicrobial peptides cathelicidin and defensin 4B. These increases were concomitant with greater cellular concentrations of the autophagy-related molecules Beclin 1 and LC3II, as well as enhanced acidification of mycobacterial phagosomes and LC3 co-localization. In summary, our data support the notion that AIM contributes to key macrophage responses to M. tuberculosis. PMID:24223991

  2. Childhood tuberculosis and malnutrition.

    Science.gov (United States)

    Jaganath, Devan; Mupere, Ezekiel

    2012-12-15

    Despite the burden of both malnutrition and tuberculosis in children worldwide, there are few studies on the mechanisms that underlie this relationship. From available research, it appears that malnutrition is a predictor of tuberculosis disease and is associated with worse outcomes. This is supported through several lines of evidence, including the role of vitamin D receptor genotypes, malnutrition's effects on immune development, respiratory infections among malnourished children, and limited work specifically on pediatric tuberculosis and malnutrition. Nutritional supplementation has yet to suggest significant benefits on the course of tuberculosis in children. There is a critical need for research on childhood tuberculosis, specifically on how nutritional status affects the risk and progression of tuberculosis and whether nutritional supplementation improves clinical outcomes or prevents disease.

  3. Cutaneous tuberculosis, tuberculosis verrucosa cutis

    Directory of Open Access Journals (Sweden)

    Nilamani Mohanty

    2014-01-01

    Full Text Available Cutaneous tuberculosis because of its variability in presentation, wider differential diagnosis, and difficulty in obtaining microbiological confirmation continues to be the most challenging to diagnose for dermatologists in developing countries. Despite the evolution of sophisticated techniques such as polymerase chain reaction (PCR and enzyme-linked-immunosorbent serologic assay (ELISA, the sensitivity of new methods are not better than the isolation of Mycobacterium tuberculosum in culture. Even in the 21 st century, we rely on methods as old as the intradermal reaction purified protein derivative standard test and therapeutic trials, as diagnostic tools. We describe a case which has been diagnosed and treated as eczema by renowned physicians for 2 years. Incisional biopsy showed the presence of well-defined granulomas and ZN staining of the biopsy specimen showed the presence of acid fast bacilli; a trial of ATT (antitubercular therapy for 6 months lead to permanent cure of the lesion.

  4. Global Tuberculosis Report 2016

    Science.gov (United States)

    ... Alt+0 Navigation Alt+1 Content Alt+2 Tuberculosis (TB) Menu Tuberculosis Data and statistics Regional Framework Resources Meetings and events Global tuberculosis report 2017 WHO has published a global TB ...

  5. Sequential inflammatory processes define human progression from M. tuberculosis infection to tuberculosis disease.

    Science.gov (United States)

    Scriba, Thomas J; Penn-Nicholson, Adam; Shankar, Smitha; Hraha, Tom; Thompson, Ethan G; Sterling, David; Nemes, Elisa; Darboe, Fatoumatta; Suliman, Sara; Amon, Lynn M; Mahomed, Hassan; Erasmus, Mzwandile; Whatney, Wendy; Johnson, John L; Boom, W Henry; Hatherill, Mark; Valvo, Joe; De Groote, Mary Ann; Ochsner, Urs A; Aderem, Alan; Hanekom, Willem A; Zak, Daniel E

    2017-11-01

    Our understanding of mechanisms underlying progression from Mycobacterium tuberculosis infection to pulmonary tuberculosis disease in humans remains limited. To define such mechanisms, we followed M. tuberculosis-infected adolescents longitudinally. Blood samples from forty-four adolescents who ultimately developed tuberculosis disease (“progressors”) were compared with those from 106 matched controls, who remained healthy during two years of follow up. We performed longitudinal whole blood transcriptomic analyses by RNA sequencing and plasma proteome analyses using multiplexed slow off-rate modified DNA aptamers. Tuberculosis progression was associated with sequential modulation of immunological processes. Type I/II interferon signalling and complement cascade were elevated 18 months before tuberculosis disease diagnosis, while changes in myeloid inflammation, lymphoid, monocyte and neutrophil gene modules occurred more proximally to tuberculosis disease. Analysis of gene expression in purified T cells also revealed early suppression of Th17 responses in progressors, relative to M. tuberculosis-infected controls. This was confirmed in an independent adult cohort who received BCG re-vaccination; transcript expression of interferon response genes in blood prior to BCG administration was associated with suppression of IL-17 expression by BCG-specific CD4 T cells 3 weeks post-vaccination. Our findings provide a timeline to the different immunological stages of disease progression which comprise sequential inflammatory dynamics and immune alterations that precede disease manifestations and diagnosis of tuberculosis disease. These findings have important implications for developing diagnostics, vaccination and host-directed therapies for tuberculosis. Clincialtrials.gov, NCT01119521.

  6. Tissue phospholipids (TPL) in avian tuberculosis (AT)

    International Nuclear Information System (INIS)

    Nandedkar, A.K.N.; Malhotra, H.C.

    1986-01-01

    AT constitutes one of the major problems in animal husbandry. Chickens (white, leg horn, male, 400-600 g) were infected with Mycobacterium avium maintained on I.U.T. medium to induce clinical AT which was confirmed by histopathological examinations of the affected tissues. Fatty infiltration and tissue enlargement was visible in infected birds. After 4 wks, incorporation of i.v. 32 P (50 uCi/100 g body wt.) in affected tissues was followed for 3,7,9,12 hr intervals. Lipids were extracted and fractionated by silicic acid (SA) column and SA impregnated paper chromatography. When compared with pair-fed controls, in AT slower turnover of TPL in liver, slightly higher in heart and significantly increased turnover of TPL in serum were observed. No appreciable change in total TPL content was noticed in brain, spleen and kidney. Further fractionation of TPL provided better understanding of the metabolism. Increase in lysophosphatidyl-choline (LPC) and -ethanolamine (LPE) content, powerful hemolytic agents, in liver may explain frequent occurrence of anemia in tuberculosis. Also, a concomitant marked increase in the ratio of total saturated/unsaturated fatty acids is observed in serum phosphatidyl choline fraction. This confirms the observation that the membrane phospholipid metabolism is significantly affected in tuberculosis infection

  7. The impact of mouse passaging of Mycobacterium tuberculosis strains prior to virulence testing in the mouse and guinea pig aerosol models.

    Directory of Open Access Journals (Sweden)

    Paul J Converse

    2010-04-01

    Full Text Available It has been hypothesized that the virulence of lab-passaged Mycobacterium tuberculosis and recombinant M. tuberculosis mutants might be reduced due to multiple in vitro passages, and that virulence might be augmented by passage of these strains through mice before quantitative virulence testing in the mouse or guinea pig aerosol models.By testing three M. tuberculosis H37Rv samples, one deletion mutant, and one recent clinical isolate for survival by the quantitative organ CFU counting method in mouse or guinea pig aerosol or intravenous infection models, we could discern no increase in bacterial fitness as a result of passaging of M. tuberculosis strains in mice prior to quantitative virulence testing in two animal models. Surface lipid expression as assessed by neutral red staining and thin-layer chromatography for PDIM analysis also failed to identify virulence correlates.These results indicate that animal passaging of M. tuberculosis strains prior to quantitative virulence testing in mouse or guinea pig models does not enhance or restore potency to strains that may have lost virulence due to in vitro passaging. It is critical to verify virulence of parental strains before genetic manipulations are undertaken and comparisons are made.

  8. M. tuberculosis induces potent activation of IDO-1, but this is not essential for the immunological control of infection.

    Directory of Open Access Journals (Sweden)

    Antje Blumenthal

    Full Text Available Indoleamine 2,3-dioxygenesae-1 (IDO-1 catalyses the initial, rate-limiting step in tryptophan metabolism, thereby regulating tryptophan availability and the formation of downstream metabolites, including picolinic and quinolinic acid. We found that Mycobacterium tuberculosis infection induced marked upregulation of IDO-1 expression in both human and murine macrophages in vitro and in the lungs of mice following aerosol challenge with M. tuberculosis. The absence of IDO-1 in dendritic cells enhanced the activation of mycobacteria-specific T cells in vitro. Interestingly, IDO-1-deficiency during M. tuberculosis infection in mice was not associated with altered mycobacteria-specific T cell responses in vivo. The bacterial burden of infected organs, pulmonary inflammatory responses, and survival were also comparable in M. tuberculosis-infected IDO-1 deficient and wild type animals. Tryptophan is metabolised into either picolinic acid or quinolinic acid, but only picolinic acid inhibited the growth of M. tuberculosis in vitro. By contrast macrophages infected with pathogenic mycobacteria, produced quinolinic, rather than picolinic acid, which did not reduce M. tuberculosis growth in vitro. Therefore, although M. tuberculosis induces robust expression of IDO-1 and activation of tryptophan metabolism, IDO-1-deficiency fails to impact on the immune control and the outcome of the infection in the mouse model of tuberculosis.

  9. Anti-tuberculosis lupane-type isoprenoids from Syzygium guineense Wild DC. (Myrtaceae stem bark

    Directory of Open Access Journals (Sweden)

    I.A. Oladosu

    2017-12-01

    Full Text Available Plant derived isoprenoids commonly called terpenoids, are not only useful as chemosytemic markers but are increasingly attracting attention in the development of newer drugs for the treatment of multi-drug resistant tuberculosis. Anti-tuberculosis activity guided solvent fractionation and chromatographic separation of the chloroform extract of S. guineense stem bark resulted in the isolation of two bioactive 3-β-hydroxylupane-type isoprenoids: betulinic acid methylenediol ester (1 (MIC; 0.15 mg/mL and betulinic acid (2 (MIC; 0.60 mg/mL. The structures of the isolated compounds were elucidated using spectroscopic techniques. The antituberculosis assay was done using the Mycobacterium Growth Indicator Tube (MGIT method. This is the first report of the isolation of the anti-tuberculosis constituents of S. guineense and its potentials for the development of drug leads for the treatment of tuberculosis thus validating its ethno-medicinal uses.

  10. Effect of the inoculation site of bovine purified protein derivative (PPD) on the skin fold thickness increase in cattle from officially tuberculosis free and tuberculosis-infected herds.

    Science.gov (United States)

    Casal, Carmen; Alvarez, Julio; Bezos, Javier; Quick, Harrison; Díez-Guerrier, Alberto; Romero, Beatriz; Saez, Jose L; Liandris, Emmanouil; Navarro, Alejandro; Perez, Andrés; Domínguez, Lucas; de Juan, Lucía

    2015-09-01

    The official technique for diagnosis of bovine tuberculosis (bTB) worldwide is the tuberculin skin test, based on the evaluation of the skin thickness increase after the intradermal inoculation of a purified protein derivative (PPD) in cattle. A number of studies performed on experimentally infected or sensitized cattle have suggested that the relative sensitivity of the cervical test (performed in the neck) may vary depending on the exact location in which the PPD is injected. However, quantitative evidence on the variation of the test accuracy associated to changes in the site of inoculation in naturally infected animals (the population in which performance of the test is most critical for disease eradication) is lacking. Here, the probability of obtaining a positive reaction (>2 or 4 millimeters and/or presence of local clinical signs) after multiple inoculations of bovine PPD in different cervical and scapular locations was assessed in animals from five bTB-infected herds (818 cattle receiving eight inoculations) using a hierarchical Bayesian logistic regression model and adjusting for the potential effect of age and sex. The effect of the inoculation site was also assessed qualitatively in animals from four officially tuberculosis free (OTF) herds (two inoculations in 210 animals and eight inoculations in 38 cattle). Although no differences in the qualitative outcome of the test were observed in cattle from OTF herds, a statistically important association between the test outcome and the inoculation site in animals from infected herds was observed, with higher probabilities of positive results when the test was performed in the neck anterior area. Our results suggest that test sensitivity may be maximized by considering the area of the neck in which the test is applied, although lack of effect of the inoculation site in the specificity of the test should be confirmed in a larger sample. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Carboxylesterases in lipid metabolism: from mouse to human

    Directory of Open Access Journals (Sweden)

    Jihong Lian

    2017-07-01

    Full Text Available ABSTRACT Mammalian carboxylesterases hydrolyze a wide range of xenobiotic and endogenous compounds, including lipid esters. Physiological functions of carboxylesterases in lipid metabolism and energy homeostasis in vivo have been demonstrated by genetic manipulations and chemical inhibition in mice, and in vitro through (overexpression, knockdown of expression, and chemical inhibition in a variety of cells. Recent research advances have revealed the relevance of carboxylesterases to metabolic diseases such as obesity and fatty liver disease, suggesting these enzymes might be potential targets for treatment of metabolic disorders. In order to translate pre-clinical studies in cellular and mouse models to humans, differences and similarities of carboxylesterases between mice and human need to be elucidated. This review presents and discusses the research progress in structure and function of mouse and human carboxylesterases, and the role of these enzymes in lipid metabolism and metabolic disorders.

  12. Complications of presumed ocular tuberculosis.

    Science.gov (United States)

    Hamade, Issam H; Tabbara, Khalid F

    2010-12-01

    To determine the effect of steroid treatment on visual outcome and ocular complications in patients with presumed ocular tuberculosis. Retrospective review of patients with presumptive ocular tuberculosis. The clinical diagnosis was made based on ocular findings, positive purified protein derivative (PPD) testing of more than 15 mm induration, exclusion of other causes of uveitis and positive ocular response to anti-tuberculous therapy (ATT) within 4 weeks. Group 1 included patients who had received oral prednisone or subtenon injection of triamcinolone acetonide prior to ATT. Group 2 included patients who did not receive corticosteroid therapy prior to administration of ATT.   Among 500 consecutive new cases of uveitis encountered in 1997-2007 there were 49 (10%) patients with presumed ocular tuberculosis. These comprised 28 (57%) male and 21 (43%) female patients with a mean age of 45 years (range 12-76 years). Four (20%) patients in group 1 had initial visual acuity of 20/40 or better, in comparison to eight (28%) patients in group 2. At 1-year follow-up, six (30%) patients in group 1 had a visual acuity of 20/40 or better compared with 20 (69%) patients in group 2 (p = 0.007). Of 20 eyes (26%) in group 1 that had visual acuity of < 20/50 at 1-year follow up, 14 (70%) eyes developed severe chorioretinal lesion (p = 0.019). Early administration of corticosteroids without anti-tuberculous therapy in presumed ocular tuberculosis may lead to poor visual outcome compared with patients who did not receive corticosteroids prior to presentation. Furthermore, the severity of chorioretinitis lesion in the group of patients given corticosteroid prior to ATT may account for the poor visual outcome. © 2009 The Authors. Journal compilation © 2009 Acta Ophthalmol.

  13. Curcumin Mitigates the Intracellular Lipid Deposit Induced by Antipsychotics In Vitro.

    Directory of Open Access Journals (Sweden)

    Alberto Canfrán-Duque

    Full Text Available First- and second-generation antipsychotics (FGAs and SGAs, respectively, both inhibit cholesterol biosynthesis and impair the intracellular cholesterol trafficking, leading to lipid accumulation in the late endosome/lysosome compartment. In this study we examined if curcumin, a plant polyphenol that stimulates exosome release, can alleviate antipsychotic-induced intracellular lipid accumulation.HepG2 hepatocarcinoma cells were treated with antipsychotics or placebo and DiI-labelled LDL for 18 h and then exposed to curcumin for the last 2 h. Cells and media were collected separately and used for biochemical analyses, electron microscopy and immunocytochemistry. Exosomes were isolated from the incubation medium by ultracentrifugation.Curcumin treatment reduced the number of heterolysosomes and shifted their subcellular localization to the periphery, as revealed by electron microscopy, and stimulated the release of lysosomal β-hexosaminidase and exosome markers flotillin-2 and CD63 into the media. The presence of DiI in exosomes released by cells preloaded with DiI-LDL demonstrated the endolysosomal origin of the microvesicles. Furthermore, curcumin increased the secretion of cholesterol as well as LDL-derived DiI and [3H]-cholesterol, in association with a decrease of intracellular lipids. Thus, the disruption of lipid trafficking induced by FGAs or SGAs can be relieved by curcumin treatment. This polyphenol, however, did not mitigate the reduction of cholesterol esterification induced by antipsychotics.Curcumin stimulates exosome release to remove cholesterol (and presumably other lipids accumulated within the endolysosomal compartment, thereby normalizing intracellular lipid homeostasis. This action may help minimize the adverse metabolic effects of antipsychotic treatment, which should now be evaluated in clinical trials.

  14. Correlating electronic structure with corrosion inhibition potentiality of some bis-benzimidazole derivatives for mild steel in hydrochloric acid: Combined experimental and theoretical studies

    International Nuclear Information System (INIS)

    Dutta, Alokdut; Saha, Sourav Kr.; Banerjee, Priyabrata; Sukul, Dipankar

    2015-01-01

    Highlights: • Bis-benzimidazole derivatives as good corrosion inhibitors for mild steel in acid. • Simultaneous both way electron-transfer is expected to occur during adsorption. • Role of molecular conformation on inhibition efficiency is demonstrated. • Good correlation between inhibition efficiency and molecular parameters established. • MD simulation results support experimental observations. - Abstract: Four different bis-benzimidazole (BBI) derivatives, tested as potential corrosion inhibitors for mild steel in 1 M HCl, have revealed good inhibition efficiency for long period of exposure. Inhibitors impart high resistance towards charge transfer across metal–electrolyte interface and behave broadly as mixed type. DFT calculations are used to correlate inhibition potentiality with intrinsic molecular parameters. From the optimized geometry of BBI derivatives, electron distribution in HOMO and LUMO and Fukui indices of each atom, possible modes of interaction of BBI derivatives with mild steel surface have been predicted. Energy corresponding to inhibitor-metal surface interaction is evaluated following molecular dynamics simulation

  15. Tuberculosis as occupational disease

    OpenAIRE

    Mendoza-Ticona, Alberto; Instituto de Medicina Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia. Lima, Perú. Médico infectólogo tropicalista magister en Epidemiología Clínica.

    2014-01-01

    There is enough evidence to declare tuberculosis as an occupational disease among healthcare workers. In Peru, there are regulations granting employment rights regarding tuberculosis as an occupational disease, such as healthcare coverage for temporary or permanent disability. However, these rights have not been sufficiently socialized. This study presents information on the risk of acquiring tuberculosis in the workplace, and a review of the evidence to declare tuberculosis as an occupationa...

  16. ESAT6 inhibits autophagy flux and promotes BCG proliferation through MTOR

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Hu, E-mail: austhudong@126.com [Department of Medical Immunology, Medical School, Anhui University of Science and Technology (China); Medical Inspection Center, Anhui University of Science and Technology, Huainan (China); Jing, Wu, E-mail: wujing8008@126.com [Department of Medical Immunology, Medical School, Anhui University of Science and Technology (China); Medical Inspection Center, Anhui University of Science and Technology, Huainan (China); Runpeng, Zhao; Xuewei, Xu; Min, Mu; Ru, Cai [Department of Medical Immunology, Medical School, Anhui University of Science and Technology (China); Yingru, Xing; Shengfa, Ni [Affiliated Cancer Hospital, Anhui University of Science and Technology (China); Rongbo, Zhang [Department of Medical Immunology, Medical School, Anhui University of Science and Technology (China); Medical Inspection Center, Anhui University of Science and Technology, Huainan (China)

    2016-08-19

    In recent years, increasing studies have found that pathogenic Mycobacterium tuberculosis (Mtb) inhibits autophagy, which mediates the anti-mycobacterial response, but the mechanism is not clear. We previously reported that secretory acid phosphatase (SapM) of Mtb can negatively regulate autophagy flux. Recently, another virulence factor of Mtb, early secretory antigenic target 6 (ESAT6), has been found to be involved in inhibiting autophagy, but the mechanism remains unclear. In this study, we show that ESAT6 hampers autophagy flux to boost bacillus Calmette-Guerin (BCG) proliferation and reveals a mechanism by which ESAT6 blocks autophagosome-lysosome fusion in a mammalian target of rapamycin (MTOR)-dependent manner. In both Raw264.7 cells and primary macrophages derived from the murine abdominal cavity (ACM), ESAT6 repressed autophagy flux by interfering with the autophagosome-lysosome fusion, which resulted in an increased load of BCG. Impaired degradation of LC3Ⅱ and SQSTM1 by ESAT6 was related to the upregulated activity of MTOR. Contrarily, inhibiting MTOR with Torin1 removed the ESAT6-induced autophagy block and lysosome dysfunction. Furthermore, in both Raw264.7 and ACM cells, MTOR inhibition significantly suppressed the survival of BCG. In conclusion, our study highlights how ESAT6 blocks autophagy and promotes BCG survival in a way that activates MTOR. - Highlights: • A mechanism for disruping autophagy flux induced by ESAT6. • ESAT6-inhibited autophagy is MTOR-dependent. • ESAT6-boosted BCG is MTOR-dependent.

  17. Invasive Pulmonary Aspergillosis-mimicking Tuberculosis.

    Science.gov (United States)

    Kim, Sung-Han; Kim, Mi Young; Hong, Sun In; Jung, Jiwon; Lee, Hyun Joo; Yun, Sung-Cheol; Lee, Sang-Oh; Choi, Sang-Ho; Kim, Yang Soo; Woo, Jun Hee

    2015-07-01

    Pulmonary tuberculosis is occasionally confused with invasive pulmonary aspergillosis (IPA) in transplant recipients, since clinical suspicion and early diagnosis of pulmonary tuberculosis and IPA rely heavily on imaging modes such as computed tomography (CT). We therefore investigated IPA-mimicking tuberculosis in transplant recipients. All adult transplant recipients who developed tuberculosis or IPA at a tertiary hospital in an intermediate tuberculosis-burden country during a 6-year period were enrolled. First, we tested whether experienced radiologists could differentiate pulmonary tuberculosis from IPA. Second, we determined which radiologic findings could help us differentiate them. During the study period, 28 transplant recipients developed pulmonary tuberculosis after transplantation, and 80 patients developed IPA after transplantation. Two experienced radiologists scored blindly 28 tuberculosis and 50 randomly selected IPA cases. The sensitivities of radiologists A and B for IPA were 78% and 68%, respectively (poor agreement, kappa value = 0.25). The sensitivities of radiologists A and B for tuberculosis were 64% and 61%, respectively (excellent agreement, kappa value = 0.77). We then compared the CT findings of the 28 patients with tuberculosis and 80 patients with IPA. Infarct-shaped consolidations and smooth bronchial wall thickening were more frequent in IPA, and mass-shaped consolidations and centrilobular nodules (tuberculosis. Certain CT findings appear to be helpful in differentiating between IPA and tuberculosis. Nevertheless, the CT findings of about one-third of pulmonary tuberculosis cases in transplant recipients are very close to those of IPA. © The Author 2015. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  18. The histone deacetylase inhibiting drug Entinostat induces lipid accumulation in differentiated HepaRG cells

    Science.gov (United States)

    Nunn, Abigail D. G.; Scopigno, Tullio; Pediconi, Natalia; Levrero, Massimo; Hagman, Henning; Kiskis, Juris; Enejder, Annika

    2016-06-01

    Dietary overload of toxic, free metabolic intermediates leads to disrupted insulin signalling and fatty liver disease. However, it was recently reported that this pathway might not be universal: depletion of histone deacetylase (HDAC) enhances insulin sensitivity alongside hepatic lipid accumulation in mice, but the mechanistic role of microscopic lipid structure in this effect remains unclear. Here we study the effect of Entinostat, a synthetic HDAC inhibitor undergoing clinical trials, on hepatic lipid metabolism in the paradigmatic HepaRG liver cell line. Specifically, we statistically quantify lipid droplet morphology at single cell level utilizing label-free microscopy, coherent anti-Stokes Raman scattering, supported by gene expression. We observe Entinostat efficiently rerouting carbohydrates and free-fatty acids into lipid droplets, upregulating lipid coat protein gene Plin4, and relocating droplets nearer to the nucleus. Our results demonstrate the power of Entinostat to promote lipid synthesis and storage, allowing reduced systemic sugar levels and sequestration of toxic metabolites within protected protein-coated droplets, suggesting a potential therapeutic strategy for diseases such as diabetes and metabolic syndrome.

  19. Critical composition fluctuations in artificial and cell-derived lipid membranes

    Science.gov (United States)

    Honerkamp-Smith, Aurelia

    2014-03-01

    Cell plasma membranes contain a mixture of lipid types which can segregate into coexisting liquids, a thermodynamic phenomenon which may contribute to biological functions. Simplified, artificial three-component lipid vesicles can be prepared which display a critical miscibility transition near room temperature. We found that such vesicles exhibit concentration fluctuations whose size, composition, and timescales vary consistently with critical exponents for two-dimensional conserved order parameter systems. However, the critical miscibility transition is also observed in vesicles formed directly from the membranes of living cells, despite their more complex composition and the presence of membrane proteins. I will describe our critical fluctuation measurements and also review a variety of more recent work by other researchers. Proximity to a critical point alters the spatial distribution and aggregation tendencies of proteins, and makes lipid mixtures more susceptible to domain formation by protein-mediated interactions, such as adhesion zones. Recent work suggests that critical temperature depression may also be relevant to the mechanism of anaesthetic action.

  20. CR108, a novel vitamin K3 derivative induces apoptosis and breast tumor inhibition by reactive oxygen species and mitochondrial dysfunction

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Chun-Ru [Department of Biological Science and Technology, National Chiao Tung University, Hsinchu 30068, Taiwan (China); Liao, Wei-Siang [Institute of Molecular Medicine and Bioengineering, National Chiao Tung University, Hsinchu 30068, Taiwan (China); Wu, Ya-Hui [Department of Biological Science and Technology, National Chiao Tung University, Hsinchu 30068, Taiwan (China); Murugan, Kaliyappan [Department of Chemistry, National Dong Hwa University, Hualien 974, Taiwan (China); Chen, Chinpiao, E-mail: chinpiao@mail.ndhu.edu.tw [Department of Chemistry, National Dong Hwa University, Hualien 974, Taiwan (China); Chao, Jui-I, E-mail: jichao@faculty.nctu.edu.tw [Department of Biological Science and Technology, National Chiao Tung University, Hsinchu 30068, Taiwan (China); Institute of Molecular Medicine and Bioengineering, National Chiao Tung University, Hsinchu 30068, Taiwan (China)

    2013-12-15

    Vitamin K3 derivatives have been shown to exert anticancer activities. Here we show a novel vitamin K3 derivative (S)-2-(2-hydroxy-3-methylbutylthio)naphthalene-1,4-dione, which is named as CR108 that induces apoptosis and tumor inhibition through reactive oxygen species (ROS) and mitochondrial dysfunction in human breast cancer. CR108 is more effective on the breast cancer cell death than other vitamin K3 derivatives. Moreover, CR108 induced apoptosis in both the non-HER-2-overexpressed MCF-7 and HER-2-overexpressed BT-474 breast cancer cells. CR108 caused the loss of mitochondrial membrane potential, cytochrome c released from mitochondria to cytosol, and cleaved PARP proteins for apoptosis induction. CR108 markedly increased ROS levels in breast cancer cells. N-acetylcysteine (NAC), a general ROS scavenger, completely blocked the CR108-induced ROS levels, mitochondrial dysfunction and apoptosis. Interestingly, CR108 increased the phosphorylation of p38 MAP kinase but conversely inhibited the survivin protein expression. NAC treatment prevented the activation of p38 MAP kinase and rescued the survivin protein levels. SB202190, a specific p38 MAP kinase inhibitor, recovered the survivin protein levels and attenuated the cytotoxicity of CR108-treated cells. Furthermore, CR108 inhibited the xenografted human breast tumor growth in nude mice. Together, we demonstrate that CR108 is a novel vitamin K3 derivative that induces apoptosis and tumor inhibition by ROS production and mitochondrial dysfunction and associates with the phosphorylation of p38 MAP kinase and the inhibition of survivin in the human breast cancer. - Highlights: • CR108 is more effective on the cell death than other vitamin K3 derivatives. • CR108 induces apoptosis and tumor inhibition by ROS and mitochondrial dysfunction. • CR108 induces apoptosis by p38 kinase activation and survivin inhibition. • CR108 is a potent vitamin K3 analog that can develop for breast cancer therapy.

  1. CR108, a novel vitamin K3 derivative induces apoptosis and breast tumor inhibition by reactive oxygen species and mitochondrial dysfunction

    International Nuclear Information System (INIS)

    Yang, Chun-Ru; Liao, Wei-Siang; Wu, Ya-Hui; Murugan, Kaliyappan; Chen, Chinpiao; Chao, Jui-I

    2013-01-01

    Vitamin K3 derivatives have been shown to exert anticancer activities. Here we show a novel vitamin K3 derivative (S)-2-(2-hydroxy-3-methylbutylthio)naphthalene-1,4-dione, which is named as CR108 that induces apoptosis and tumor inhibition through reactive oxygen species (ROS) and mitochondrial dysfunction in human breast cancer. CR108 is more effective on the breast cancer cell death than other vitamin K3 derivatives. Moreover, CR108 induced apoptosis in both the non-HER-2-overexpressed MCF-7 and HER-2-overexpressed BT-474 breast cancer cells. CR108 caused the loss of mitochondrial membrane potential, cytochrome c released from mitochondria to cytosol, and cleaved PARP proteins for apoptosis induction. CR108 markedly increased ROS levels in breast cancer cells. N-acetylcysteine (NAC), a general ROS scavenger, completely blocked the CR108-induced ROS levels, mitochondrial dysfunction and apoptosis. Interestingly, CR108 increased the phosphorylation of p38 MAP kinase but conversely inhibited the survivin protein expression. NAC treatment prevented the activation of p38 MAP kinase and rescued the survivin protein levels. SB202190, a specific p38 MAP kinase inhibitor, recovered the survivin protein levels and attenuated the cytotoxicity of CR108-treated cells. Furthermore, CR108 inhibited the xenografted human breast tumor growth in nude mice. Together, we demonstrate that CR108 is a novel vitamin K3 derivative that induces apoptosis and tumor inhibition by ROS production and mitochondrial dysfunction and associates with the phosphorylation of p38 MAP kinase and the inhibition of survivin in the human breast cancer. - Highlights: • CR108 is more effective on the cell death than other vitamin K3 derivatives. • CR108 induces apoptosis and tumor inhibition by ROS and mitochondrial dysfunction. • CR108 induces apoptosis by p38 kinase activation and survivin inhibition. • CR108 is a potent vitamin K3 analog that can develop for breast cancer therapy

  2. Th1 Differentiation Drives the Accumulation of Intravascular, Non-protective CD4 T Cells during Tuberculosis.

    Science.gov (United States)

    Sallin, Michelle A; Sakai, Shunsuke; Kauffman, Keith D; Young, Howard A; Zhu, Jinfang; Barber, Daniel L

    2017-03-28

    Recent data indicate that the differentiation state of Th1 cells determines their protective capacity against tuberculosis. Therefore, we examined the role of Th1-polarizing factors in the generation of protective and non-protective subsets of Mtb-specific Th1 cells. We find that IL-12/23p40 promotes Th1 cell expansion and maturation beyond the CD73 + CXCR3 + T-bet dim stage, and T-bet prevents deviation of Th1 cells into Th17 cells. Nevertheless, IL- 12/23p40 and T-bet are also essential for the production of a prominent subset of intravascular CX3CR1 + KLRG1 + Th1 cells that persists poorly and can neither migrate into the lung parenchyma nor control Mtb growth. Furthermore, T-bet suppresses development of CD69 + CD103 + tissue resident phenotype effectors in lung. In contrast, Th1-cell-derived IFN-γ inhibits the accumulation of intravascular CX3CR1 + KLRG1 + Th1 cells. Thus, although IL-12 and T-bet are essential host survival factors, they simultaneously oppose lung CD4 T cell responses at several levels, demonstrating the dual nature of Th1 polarization in tuberculosis. Published by Elsevier Inc.

  3. Th1 Differentiation Drives the Accumulation of Intravascular, Non-protective CD4 T Cells during Tuberculosis

    Directory of Open Access Journals (Sweden)

    Michelle A. Sallin

    2017-03-01

    Full Text Available Recent data indicate that the differentiation state of Th1 cells determines their protective capacity against tuberculosis. Therefore, we examined the role of Th1-polarizing factors in the generation of protective and non-protective subsets of Mtb-specific Th1 cells. We find that IL-12/23p40 promotes Th1 cell expansion and maturation beyond the CD73+CXCR3+T-betdim stage, and T-bet prevents deviation of Th1 cells into Th17 cells. Nevertheless, IL- 12/23p40 and T-bet are also essential for the production of a prominent subset of intravascular CX3CR1+KLRG1+ Th1 cells that persists poorly and can neither migrate into the lung parenchyma nor control Mtb growth. Furthermore, T-bet suppresses development of CD69+CD103+ tissue resident phenotype effectors in lung. In contrast, Th1-cell-derived IFN-γ inhibits the accumulation of intravascular CX3CR1+KLRG1+ Th1 cells. Thus, although IL-12 and T-bet are essential host survival factors, they simultaneously oppose lung CD4 T cell responses at several levels, demonstrating the dual nature of Th1 polarization in tuberculosis.

  4. Membrane proteins bind lipids selectively to modulate their structure and function.

    Science.gov (United States)

    Laganowsky, Arthur; Reading, Eamonn; Allison, Timothy M; Ulmschneider, Martin B; Degiacomi, Matteo T; Baldwin, Andrew J; Robinson, Carol V

    2014-06-05

    Previous studies have established that the folding, structure and function of membrane proteins are influenced by their lipid environments and that lipids can bind to specific sites, for example, in potassium channels. Fundamental questions remain however regarding the extent of membrane protein selectivity towards lipids. Here we report a mass spectrometry approach designed to determine the selectivity of lipid binding to membrane protein complexes. We investigate the mechanosensitive channel of large conductance (MscL) from Mycobacterium tuberculosis and aquaporin Z (AqpZ) and the ammonia channel (AmtB) from Escherichia coli, using ion mobility mass spectrometry (IM-MS), which reports gas-phase collision cross-sections. We demonstrate that folded conformations of membrane protein complexes can exist in the gas phase. By resolving lipid-bound states, we then rank bound lipids on the basis of their ability to resist gas phase unfolding and thereby stabilize membrane protein structure. Lipids bind non-selectively and with high avidity to MscL, all imparting comparable stability; however, the highest-ranking lipid is phosphatidylinositol phosphate, in line with its proposed functional role in mechanosensation. AqpZ is also stabilized by many lipids, with cardiolipin imparting the most significant resistance to unfolding. Subsequently, through functional assays we show that cardiolipin modulates AqpZ function. Similar experiments identify AmtB as being highly selective for phosphatidylglycerol, prompting us to obtain an X-ray structure in this lipid membrane-like environment. The 2.3 Å resolution structure, when compared with others obtained without lipid bound, reveals distinct conformational changes that re-position AmtB residues to interact with the lipid bilayer. Our results demonstrate that resistance to unfolding correlates with specific lipid-binding events, enabling a distinction to be made between lipids that merely bind from those that modulate membrane

  5. Long-circulating DNA lipid nanocapsules as new vector for passive tumor targeting.

    Science.gov (United States)

    Morille, Marie; Montier, Tristan; Legras, Pierre; Carmoy, Nathalie; Brodin, Priscille; Pitard, Bruno; Benoît, Jean-Pierre; Passirani, Catherine

    2010-01-01

    Systemic gene delivery systems are needed for therapeutic application to organs that are inaccessible by percutaneous injection. Currently, the main objective is the development of a stable and non-toxic vector that can encapsulate and deliver foreign genetic material to target cells. To this end, DNA, complexed with cationic lipids i.e. DOTAP/DOPE, was encapsulated into lipid nanocapsules (LNCs) leading to the formation of stable nanocarriers (DNA LNCs) with a size inferior to 130 nm. Amphiphilic and flexible poly (ethylene glycol) (PEG) polymer coatings [PEG lipid derivative (DSPE-mPEG(2000)) or F108 poloxamer] at different concentrations were selected to make DNA LNCs stealthy. Some of these coated lipid nanocapsules were able to inhibit complement activation and were not phagocytized in vitro by macrophagic THP-1 cells whereas uncoated DNA LNCs accumulated in the vacuolar compartment of THP-1 cells. These results correlated with a significant increase of in vivo circulation time in mice especially for DSPE-mPEG(2000) 10 mm and an early half-life time (t(1/2) of distribution) 5-fold greater than for non-coated DNA LNCs (7.1 h vs 1.4 h). Finally, a tumor accumulation assessed by in vivo fluorescence imaging system was evidenced for these coated LNCs as a passive targeting without causing any hepatic damage.

  6. Tuberculosis

    Directory of Open Access Journals (Sweden)

    Pablo Latorre Tortello

    1998-10-01

    Full Text Available Por definición, la tuberculosis pulmonar es la localizaci6n del M. tuberculosis en el tracto respiratorio, la forma más común y principal de la afección y la única capaz de contagiar a otras personas. El M. tuberculosis, descubierto por Robert Koch en 1882, el bacilo de Koch, es un bacilo delgado, inmóvil, de 4 micras de longitud media, aerobio obligado, que se tiñe de rajo por la tinción de Ziehl-Neelsen. Debido a la coraza lipídica de su pared, lo hace resistente a la decoloración con ácidos y alcohol, de ahí el nombre de bacilos ácido-alcohol resistente (BAAR. Su transmisión es directa, de persona a persona.

  7. Transfer of adoptive immunity to tuberculosis in mice

    International Nuclear Information System (INIS)

    Lefford, M.J.

    1975-01-01

    A system is described for studying adoptive immunity to tuberculosis in syngeneic mice. Donor mice were immunized with 10 4 BCG intravenously, and lymphoid cells were harvested 28 days later. Adoptive immunity was measured in recipient mice in terms of the inhibition of growth of BCG in the liver and spleen following intravenous injection. Adoptive immunity was expressed optimally when recipients were sublethally irradiated (500 R), challenged with 10 4 to 10 5 viable organisms, and given sensitized lymphoid cells intravenously. Adoptive immunity was not manifest until 14 days after challenge and was effective against Mycobacterium tuberculosis H37Rv as well as BCG. Immunity could be conferred by spleen, lymph node, peritoneal exudate, and resident peritoneal (washout) cells. The lymphoid cells conferring immunity were shown to be thymus-dependent lymphocytes by virtue of their nonadherence to glass wool and sensitivity to anti-theta serum plus complement. The sensitized cells were relatively susceptible to both in vitro and in vivo x irradiation

  8. Radiologic diagnosis of lung tuberculosis

    International Nuclear Information System (INIS)

    Eisenhuber, E.; Mostbeck, G.; Bankier, A.; Stadler, A.; Rumetshofer, R.

    2007-01-01

    The radiologic knowledge of tuberculosis-associated lung disease is an essential tool in the clinical diagnosis of tuberculosis. Chest radiography is the primary imaging method, but the importance of CT is still increasing, as CT is more sensitive in the detection of cavitation, of hilar and mediastinal lymphadenopathie, of endobronchial spread and of complications in the course of the disease. In addition, CT has been proven as a valuable technique in the assessment of tuberculosis activity, especially in patients where M. tuberculosis has not been detected in the sputum or in patients with multidrug-resistant tuberculosis. Depending on the immune status of the patient, the morphologic spectrum of tuberculosis is quite variable. Early diagnosis of tuberculosis is essential to prevent further spread of the disease. (orig.) [de

  9. Progression to active tuberculosis, but not transmission, varies by Mycobacterium tuberculosis lineage in The Gambia

    NARCIS (Netherlands)

    de Jong, Bouke C.; Hill, Philip C.; Aiken, Alex; Awine, Timothy; Antonio, Martin; Adetifa, Ifedayo M.; Jackson-Sillah, Dolly J.; Fox, Annette; Deriemer, Kathryn; Gagneux, Sebastien; Borgdorff, Martien W.; McAdam, Keith P. W. J.; Corrah, Tumani; Small, Peter M.; Adegbola, Richard A.

    2008-01-01

    BACKGROUND: There is considerable variability in the outcome of Mycobacterium tuberculosis infection. We hypothesized that Mycobacterium africanum was less likely than M. tuberculosis to transmit and progress to tuberculosis disease. METHODS: In a cohort study of patients with tuberculosis and their

  10. Acute and persistent Mycobacterium tuberculosis infections depend on the thiol peroxidase TpX.

    Directory of Open Access Journals (Sweden)

    Yanmin Hu

    Full Text Available The macrophage is the natural niche of Mycobacterium tuberculosis infection. In order to combat oxidative and nitrosative stresses and persist in macrophages successfully, M. tuberculosis is endowed with a very efficient antioxidant complex. Amongst these antioxidant enzymes, TpX is the only one in M. tuberculosis with sequence homology to thiol peroxidase. Previous reports have demonstrated that the M. tuberculosis TpX protein functions as a peroxidase in vitro. It is the dominant antioxidant which protects M. tuberculosis against oxidative and nitrosative stresses. The level of the protein increases in oxidative stress. To determine the roles of tpx gene in M. tuberculosis survival and virulence in vivo, we constructed an M. tuberculosis strain lacking the gene. The characteristics of the mutant were examined in an in vitro stationary phase model, in response to stresses; in murine bone marrow derived macrophages and in an acute and an immune resistant model of murine tuberculosis. The tpx mutant became sensitive to H(2O(2 and NO compared to the wild type strain. Enzymatic analysis using bacterial extracts from the WT and the tpx mutant demonstrated that the mutant contains reduced peroxidase activity. As a result of this, the mutant failed to grow and survive in macrophages. The growth deficiency in macrophages became more pronounced after interferon-gamma activation. In contrast, its growth was significantly restored in the macrophages of inducible nitric oxide synthase (iNOS or NOS2 knockout mice. Moreover, the tpx mutant was impaired in its ability to initiate an acute infection and to maintain a persistent infection. Its virulence was attenuated. Our results demonstrated that tpx is required for M. tuberculosis to deal with oxidative and nitrosative stresses, to survive in macrophages and to establish acute and persistent infections in animal tuberculosis models.

  11. Berberine Regulated Lipid Metabolism in the Presence of C75, Compound C, and TOFA in Breast Cancer Cell Line MCF-7.

    Science.gov (United States)

    Tan, Wen; Zhong, Zhangfeng; Wang, Shengpeng; Suo, Zhanwei; Yang, Xian; Hu, Xiaodong; Wang, Yitao

    2015-01-01

    Berberine interfering with cancer reprogramming metabolism was confirmed in our previous study. Lipid metabolism and mitochondrial function were also the core parts in reprogramming metabolism. In the presence of some energy-related inhibitors, including C75, compound C, and TOFA, the discrete roles of berberine in lipid metabolism and mitochondrial function were elucidated. An altered lipid metabolism induced by berberine was observed under the inhibition of FASN, AMPK, and ACC in breast cancer cell MCF-7. And the reversion of berberine-induced lipid suppression indicated that ACC inhibition might be involved in that process instead of FASN inhibition. A robust apoptosis induced by berberine even under the inhibition of AMPK and lipid synthesis was also indicated. Finally, mitochondrial function regulation under the inhibition of AMPK and ACC might be in an ACL-independent manner. Undoubtedly, the detailed mechanisms of berberine interfering with lipid metabolism and mitochondrial function combined with energy-related inhibitors need further investigation, including the potential compensatory mechanisms for ATP production and the upregulation of ACL.

  12. Berberine Regulated Lipid Metabolism in the Presence of C75, Compound C, and TOFA in Breast Cancer Cell Line MCF-7

    Directory of Open Access Journals (Sweden)

    Wen Tan

    2015-01-01

    Full Text Available Berberine interfering with cancer reprogramming metabolism was confirmed in our previous study. Lipid metabolism and mitochondrial function were also the core parts in reprogramming metabolism. In the presence of some energy-related inhibitors, including C75, compound C, and TOFA, the discrete roles of berberine in lipid metabolism and mitochondrial function were elucidated. An altered lipid metabolism induced by berberine was observed under the inhibition of FASN, AMPK, and ACC in breast cancer cell MCF-7. And the reversion of berberine-induced lipid suppression indicated that ACC inhibition might be involved in that process instead of FASN inhibition. A robust apoptosis induced by berberine even under the inhibition of AMPK and lipid synthesis was also indicated. Finally, mitochondrial function regulation under the inhibition of AMPK and ACC might be in an ACL-independent manner. Undoubtedly, the detailed mechanisms of berberine interfering with lipid metabolism and mitochondrial function combined with energy-related inhibitors need further investigation, including the potential compensatory mechanisms for ATP production and the upregulation of ACL.

  13. Effect of catechin and its derivatives on inhibition of polyphenoloxidase and melanosis of Pacific white shrimp.

    Science.gov (United States)

    Sae-Leaw, Thanasak; Benjakul, Soottawat; Simpson, Benjamin K

    2017-04-01

    This study aimed to investigate the effect of tea catechin (C) and 4 of its derivatives on the Pacific white shrimp PPO inhibition and melanosis during refrigerated storage. Epigallocatechin gallate (EGCG) exhibited the highest inhibition towards PPO, followed by C. Inhibitory activity of all compounds tested was in a dose dependent manner (0.1-2.0 mM). Based on activity staining, EGCG most effectively inhibited PPO. For inhibition kinetic studies, C and epicatechin (EC) showed uncompetitive type, whereas epicatechin gallate (ECG), epigallocatechin (EGC) and EGCG exhibited mixed type inhibition. When whole shrimps were treated with EGCG solution at various concentrations (0.25-0.75%), those treated with 0.5 or 0.75% EGCG had lower melanosis scores throughout storage for 10 days at 4 °C, compared with the control and the 1.25% sodium metabisulfite treated samples ( P  white shrimp during refrigerated storage.

  14. "Impact of and response to increased tuberculosis prevalence among Syrian refugees compared with Jordanian tuberculosis prevalence: case study of a tuberculosis public health strategy".

    Science.gov (United States)

    Cookson, Susan T; Abaza, Hiba; Clarke, Kevin R; Burton, Ann; Sabrah, Nadia A; Rumman, Khaled A; Odeh, Nedal; Naoum, Marwan

    2015-01-01

    By the summer of 2014, the Syrian crisis resulted in a regional humanitarian emergency with 2.9 million refugees, including 608,000 in Jordan. These refugees access United Nations High Commissioner for Refugees (UNHCR)-sponsored clinics or Jordan Ministry of Health clinics, including tuberculosis diagnosis and treatment. Tuberculosis care in Syria has deteriorated with destroyed health infrastructure and drug supply chain. Syrian refugees may have undiagnosed tuberculosis; therefore, the UNHCR, the International Organization for Migration (IOM), the National Tuberculosis Program (NTP), and the Centers for Disease Control and Prevention developed the Public Health Strategy for Tuberculosis among Syrian Refugees in Jordan. This case study presents that strategy, its impact, and recommendations for other neighboring countries. UNHCR determined that World Health Organization (WHO) criteria for implementing a tuberculosis program in an emergency were met for the Syrian refugees in Jordan. Jordan NTP assessed their tuberculosis program and found that access to Syrian refugees was the one component of their program missing. Therefore, a strategy for tuberculosis control among Syrian refugees was developed. Since that development through work with IOM, UNHCR, and NTP, tuberculosis case detection among Syrian refugees is almost 40 % greater (74 cases/12 months or 1.01/100,000 monthly through June 2014 vs. 56 cases/16 months or 0.73/100,000 monthly through June 2013) using estimated population figures; more than two fold the 2012 Jordan tuberculosis incidence. Additionally, the WHO objective of curing ≥85 % of newly identified infectious tuberculosis cases was met among Syrian refugees. Tuberculosis (TB) rates among displaced persons are high, but increased detection is possible. High TB rates were found among Syrian refugees through active screening and will probably persist as the Syrian crisis continues. Active screening can detect tuberculosis early and reduce risk

  15. High tuberculosis prevalence in a South African prison: the need for routine tuberculosis screening.

    Directory of Open Access Journals (Sweden)

    Lilanganee Telisinghe

    Full Text Available Tuberculosis is a major health concern in prisons, particularly where HIV prevalence is high. Our objective was to determine the undiagnosed pulmonary tuberculosis ("undiagnosed tuberculosis" prevalence in a representative sample of prisoners in a South African prison. In addition we investigated risk factors for undiagnosed tuberculosis, to explore if screening strategies could be targeted to high risk groups, and, the performance of screening tools for tuberculosis.In this cross-sectional survey, male prisoners were screened for tuberculosis using symptoms, chest radiograph (CXR and two spot sputum specimens for microscopy and culture. Anonymised HIV antibody testing was performed on urine specimens. The sensitivity, specificity and predictive values of symptoms and investigations were calculated, using Mycobacterium tuberculosis isolated on sputum culture as the gold standard. From September 2009 to October 2010, 1046 male prisoners were offered enrolment to the study. A total of 981 (93.8% consented (median age was 32 years; interquartile range [IQR] 27-37 years and were screened for tuberculosis. Among 968 not taking tuberculosis treatment and with sputum culture results, 34 (3.5%; 95% confidence interval [CI] 2.4-4.9% were culture positive for Mycobacterium tuberculosis. HIV prevalence was 25.3% (242/957; 95% CI 22.6-28.2%. Positive HIV status (adjusted odds ratio [aOR] 2.0; 95% CI 1.0-4.2 and being an ex-smoker (aOR 2.6; 95% CI 1.2-5.9 were independently associated with undiagnosed tuberculosis. Compared to the gold standard of positive sputum culture, cough of any duration had a sensitivity of 35.3% and specificity of 79.6%. CXR was the most sensitive single screening modality (sensitivity 70.6%, specificity 92.2%. Adding CXR to cough of any duration gave a tool with sensitivity of 79.4% and specificity of 73.8%.Undiagnosed tuberculosis and HIV prevalence was high in this prison, justifying routine screening for tuberculosis at entry

  16. Specific T-cell epitopes for immunoassay-based diagnosis of Mycobacterium tuberculosis infection

    DEFF Research Database (Denmark)

    Brock, I; Weldingh, K; Leyten, EM

    2004-01-01

    Specific T-cell epitopes for immunoassay-based diagnosis of Mycobacterium tuberculosis infection.Brock I, Weldingh K, Leyten EM, Arend SM, Ravn P, Andersen P. Department of Infectious Disease Immunology, Statens Serum Institute, Artillerivej 5, DK-2300 Copenhagen S, Denmark. The currently used...... method for immunological detection of tuberculosis infection, the tuberculin skin test, has low specificity. Antigens specific for Mycobacterium tuberculosis to replace purified protein derivative are therefore urgently needed. We have performed a rigorous assessment of the diagnostic potential of four...... recently identified antigens (Rv2653, Rv2654, Rv3873, and Rv3878) from genomic regions that are lacking from the Mycobacterium bovis bacillus Calmette-Guerin (BCG) vaccine strains as well as from the most common nontuberculous mycobacteria. The fine specificity of potential epitopes in these molecules...

  17. Gangliosides inhibit bee venom melittin cytotoxicity but not phospholipase A(2)-induced degranulation in mast cells.

    Science.gov (United States)

    Nishikawa, Hirofumi; Kitani, Seiichi

    2011-05-01

    Sting accident by honeybee causes severe pain, inflammation and allergic reaction through IgE-mediated anaphylaxis. In addition to this hypersensitivity, an anaphylactoid reaction occurs by toxic effects even in a non-allergic person via cytolysis followed by similar clinical manifestations. Auto-injectable epinephrine might be effective for bee stings, but cannot inhibit mast cell lysis and degranulation by venom toxins. We used connective tissue type canine mast cell line (CM-MC) for finding an effective measure that might inhibit bee venom toxicity. We evaluated degranulation and cytotoxicity by measurement of β-hexosaminidase release and MTT assay. Melittin and crude bee venom induced the degranulation and cytotoxicity, which were strongly inhibited by mono-sialoganglioside (G(M1)), di-sialoganglioside (G(D1a)) and tri-sialoganglioside (G(T1b)). In contrast, honeybee venom-derived phospholipase A(2) induced the net degranulation directly without cytotoxicity, which was not inhibited by G(M1), G(D1a) and G(T1b). For analysis of distribution of Gα(q) and Gα(i) protein by western blotting, lipid rafts were isolated by using discontinuous sucrose gradient centrifuge. Melittin disrupted the localization of Gα(q) and Gα(i) at lipid raft, but gangliosides stabilized the rafts. As a result from this cell-based study, bee venom-induced anaphylactoid reaction can be explained with melittin cytotoxicity and phospholipase A(2)-induced degranulation. Taken together, gangliosides inhibit the effect of melittin such as degranulation, cytotoxicity and lipid raft disruption but not phospholipase A(2)-induced degranulation in mast cells. Our study shows a potential of gangliosides as a therapeutic tool for anaphylactoid reaction by honeybee sting. Copyright © 2011 Elsevier Inc. All rights reserved.

  18. Evaluation of selected Indian traditional folk medicinal plants against Mycobacterium tuberculosis with antioxidant and cytotoxicity study.

    Directory of Open Access Journals (Sweden)

    Tawde K. V

    2012-10-01

    Full Text Available Objective: To evaluate different solvent extracts of selected Indian traditional medicinal plant against Mycobacterium tuberculosis, its antioxidant potential and cytotoxicity. Methods: Acacia catechu (L. Willd (Root extract and Ailanthus excelsa Roxb., leaf extracts of Aegle marmelos Corr., Andrographis paniculata Nees. and Datura metel L. were sequentially extracted in water, ethanol, chloroform and hexane and evaluated for their anti-tuberculosis (TB activity against Mycobacterium tuberculosis using agar diffusion assay. The zone of inhibition ( at 20 and 40 mg/ ml was measured and MIC were calculated. The results were compared with Rifampicin as a standard anti TB drug. The extracts were also evaluated for DPPH and OH radical scavenging activities to understand their antioxidant potential. MTT based cytotoxicity assay was used for evaluating cytotoxicity of the selected samples against Chang liver cells. Results: The selected botanicals were sequentially extracted in water, ethanol, chloroform and hexane and tested for growth inhibition of M. tuberculosi. The hexane extract of A. catechu root and ethanol extract of A. paniculata leaf showed promising activity against M. tuberculosis while remaining extracts showed moderate anti TB activity. The samples were found to possess considerable DPPH and OH radical scavenging activities with no demonstrable cytotoxicity against Chang liver cells. Conclusions: Five traditional medicinal plants were selected for the present study. The selection of medicinal plants was based on their traditional usage for the treatment of tuberculosis, asthma and chronic respiratory diseases. Herein we report for the first time, the anti TB activity of root extracts of Acacia catechu and Ailanthus excelsa while leaf extract of Andrographis paniculata, Aegle marmelos and Datura metel. The study holds importance in the midst of multi drug resistance (MDR crisis in the TB management, since it unravels the scientific basis

  19. Simvastatin Inhibits IL-5-Induced Chemotaxis and CCR3 Expression of HL-60-Derived and Human Primary Eosinophils.

    Science.gov (United States)

    Fu, Chia-Hsiang; Tsai, Wan-Chun; Lee, Ta-Jen; Huang, Chi-Che; Chang, Po-Hung; Su Pang, Jong-Hwei

    2016-01-01

    IL-5-induced chemotaxis of eosinophils is an important feature of allergic airway inflammatory diseases. Simvastatin, a lipid lowering agent, has been shown to exhibit anti-inflammatory and anti-allergic effects. Our aim was to investigate the effect of simvastatin on IL-5-induced eosinophil chemotaxis and its regulatory mechanisms. Eosinophils were derived by treating HL-60 clone 15 (HC15) cells with butyric acid (BA) in an alkaline condition or through direct isolation from human peripheral blood. The expressions of CC chemokine receptor 3 (CCR3) and interleukin (IL)-5 receptors (IL5Rα and β) were analyzed using RT/real-time PCR. The granular proteins were stained using fast green. Eotaxin-induced chemotaxis was measured using a transwell migration assay. CCR3 protein expression was revealed by immunocytochemistry. An animal model of allergic rhinitis was established by challenging Sprague-Dawley® rats repeatedly with ovalbumin. Butyric acid significantly increased the expression of IL5Rα and IL5Rβ, CCR3 and granular proteins in HC15 cells, indicating the maturation of eosinophils (BA-E cells). IL-5 further enhanced the CCR3 expression at both the mRNA and protein levels and the eotaxin-induced chemotaxis of BA-E cells. Simvastatin inhibited the effects of IL-5 on BA-E cells, but not in the presence of mevalonate. Similar results were also exhibited in human primary eosinophils. In vivo animal studies further confirmed that oral simvastatin could significantly suppress the infiltration of eosinophils into turbinate tissues of allergic rats. Therefore, simvastatin was demonstrated to inhibit IL-5-induced CCR3 expression and chemotaxis of eosinophils mediated via the mevalonate pathway. We confirmed that simvastatin also reduced eosinophilic infiltration in allergic rhinitis.

  20. Analysis of peculiarities of identification, diagnostics and course of tuberculosis in patients with tuberculosis/HIV co-infection

    Directory of Open Access Journals (Sweden)

    V. P. Melnyk

    2017-10-01

    Full Text Available Objective – to analyse dynamics of detection of tuberculosis and HIV/AIDS in tuberculosis/HIV co-infection, to identify the main clinical forms of tuberculosis, the type of tuberculosis process and the structure of incidence of tuberculosis, to analyse dependence of a clinical form of tuberculosis on quantity of CD4 cells. Materials and methods. 155 patients with tuberculosis/HIV co-infection and 155 patients with tuberculosis without HIV infection were examined. All patients underwent general clinical examination, laboratory tests, X-ray, microbiological, histological studies (with extrapulmonary tuberculosis. Results. In all patients, co-infection was detected mainly by respiratory tuberculosis (in 73 % of HIV-positive and 89 % of HIV-negative patients. In HIV-positive patients, tuberculosis was more often detected by the passive way (81 %, and in HIV-negative patients – by the active way (78 %. 66.5 % of patients had HIV infection first, 21.3 % had the first tuberculosis, and 12.2 % had HIV infection and tuberculosis at the same time. In clinical forms in patients with HIV-infection, infiltrative and disseminated tuberculosis prevailed. Pulmonary tuberculosis was diagnosed in 70.3 % of patients, extrapulmonary – in 11 %, pulmonary and extrapulmonary tuberculosis – in 18.7 %. In 28.4 % of patients, immunodeficiency was detected with CD4 cells less than 100 in 1mm3, in 22.6 % of patients – 101–200 CD4 cells in 1 mm3, in 10.3 % in 201–300 CD4 in 1 mm3, in 14.8 % of patients – 301–500 CD4 in 1 mm3 and in 23.9 % ≥ 500 CD4 in 1 mm3. In 56.1 % of patients, first diagnosed tuberculosis was detected, 28.4 % had the relapse of tuberculosis, 7.7 % had tuberculosis after a previous ineffective treatment, 7.7 % had tuberculosis with treatment after the break. Bacterial excretion (by the scopic method was detected in 42.6 % of patients, by the bacteriological method – in 73.9 %, by the molecular-genetic method – in 93.2 %, typical

  1. Physicochemical, pharmacokinetic, efficacy and toxicity profiling of a potential nitrofuranyl methyl piperazine derivative IIIM-MCD-211 for oral tuberculosis therapy via in-silico-in-vitro-in-vivo approach.

    Science.gov (United States)

    Magotra, Asmita; Sharma, Anjna; Singh, Samsher; Ojha, Probir Kumar; Kumar, Sunil; Bokolia, Naveen; Wazir, Priya; Sharma, Shweta; Khan, Inshad Ali; Singh, Parvinder Pal; Vishwakarma, Ram A; Singh, Gurdarshan; Nandi, Utpal

    2018-02-01

    Recent tuberculosis (TB) drug discovery programme involve continuous pursuit for new chemical entity (NCE) which can be not only effective against both susceptible and resistant strains of Mycobacterium tuberculosis (Mtb) but also safe and faster acting with the target, thereby shortening the prolonged TB treatments. We have identified a potential nitrofuranyl methyl piperazine derivative, IIIM-MCD-211 as new antitubercular agent with minimum inhibitory concentration (MIC) value of 0.0072 μM against H37Rv strain. Objective of the present study is to investigate physicochemical, pharmacokinetic, efficacy and toxicity profile using in-silico, in-vitro and in-vivo model in comprehensive manner to assess the likelihood of developing IIIM-MCD-211 as a clinical candidate. Results of computational prediction reveal that compound does not violate Lipinski's, Veber's and Jorgensen's rule linked with drug like properties and oral bioavailability. Experimentally, IIIM-MCD-211 exhibits excellent lipophilicity that is optimal for oral administration. IIIM-MCD-211 displays evidence of P-glycoprotein (P-gp) induction but no inhibition ability in rhodamine cell exclusion assay. IIIM-MCD-211 shows high permeability and plasma protein binding based on parallel artificial membrane permeability assay (PAMPA) and rapid equilibrium dialysis (RED) assay model, respectively. IIIM-MCD-211 has adequate metabolic stability in rat liver microsomes (RLM) and favourable pharmacokinetics with admirable correlation during dose escalation study in Swiss mice. IIIM-MCD-211 has capability to appear into highly perfusable tissues. IIIM-MCD-211 is able to actively prevent progression of TB infection in chronic infection mice model. IIIM-MCD-211 shows no substantial cytotoxicity in HepG2 cell line. In acute toxicity study, significant increase of total white blood cell (WBC) count in treatment group as compared to control group is observed. Overall, amenable preclinical data make IIIM-MCD-211 ideal

  2. Gastrointestinal tuberculosis.

    Science.gov (United States)

    Galloway, D J; Scott, R N

    1986-10-01

    In the developed countries gastrointestinal tuberculosis is no longer common in clinical practice. In this setting the importance of the condition lies in the vagaries of its presentation and the fact that it is eminently treatable, usually by a combination of chemotherapy and surgery. The clinical features and complications of gastrointestinal tuberculosis are highlighted by the seven cases which we report. Diagnosis and treatment of this condition is discussed and attention is drawn to the importance of case notification. Clinicians should bear in mind the diagnosis of gastrointestinal tuberculosis when dealing with any patient with non-specific abdominal symptoms.

  3. Elevated host lipid metabolism revealed by iTRAQ-based quantitative proteomic analysis of cerebrospinal fluid of tuberculous meningitis patients.

    Science.gov (United States)

    Mu, Jun; Yang, Yongtao; Chen, Jin; Cheng, Ke; Li, Qi; Wei, Yongdong; Zhu, Dan; Shao, Weihua; Zheng, Peng; Xie, Peng

    2015-10-30

    Tuberculous meningitis (TBM) remains to be one of the most deadly infectious diseases. The pathogen interacts with the host immune system, the process of which is largely unknown. Various cellular processes of Mycobacterium tuberculosis (MTB) centers around lipid metabolism. To determine the lipid metabolism related proteins, a quantitative proteomic study was performed here to identify differential proteins in the cerebrospinal fluid (CSF) obtained from TBM patients (n = 12) and healthy controls (n = 12). CSF samples were desalted, concentrated, labelled with isobaric tags for relative and absolute quantitation (iTRAQ™), and analyzed by multi-dimensional liquid chromatography-tandem mass spectrometry (LC-MS/MS). Gene ontology and proteomic phenotyping analysis of the differential proteins were conducted using Database for Annotation, Visualization, and Integrated Discovery (DAVID) Bioinformatics Resources. ApoE and ApoB were selected for validation by ELISA. Proteomic phenotyping of the 4 differential proteins was invloved in the lipid metabolism. ELISA showed significantly increased ApoB levels in TBM subjects compared to healthy controls. Area under the receiver operating characteristic curve analysis demonstrated ApoB levels could distinguish TBM subjects from healthy controls and viral meningitis subjects with 89.3% sensitivity and 92% specificity. CSF lipid metabolism disregulation, especially elevated expression of ApoB, gives insights into the pathogenesis of TBM. Further evaluation of these findings in larger studies including anti-tuberculosis medicated and unmedicated patient cohorts with other center nervous system infectious diseases is required for successful clinical translation. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. pulmonary tuberculosis, jimma hospital

    African Journals Online (AJOL)

    and National Tuberculosis and Leprosy Control Program manual. RESULTS: A total of 112 extra pulmonary ... Key words: Clinical audit; extra pulmonary Tuberculosis; National Tuberculosis and. Leprosy Control manual. "Addis Ababa ..... intern influence drug regimen selection. Compliance to the 1997 NTLCP inanual is.

  5. Host immunity to Mycobacterium tuberculosis and risk of tuberculosis

    DEFF Research Database (Denmark)

    Michelsen, Sascha Wilk; Soborg, Bolette; Agger, Else-Marie

    2016-01-01

    BACKGROUND: Human immune responses to latent Mycobacterium tuberculosis (Mtb) infection (LTBI) may enable individuals to control Mtb infection and halt progression to tuberculosis (TB), a hypothesis applied in several novel TB vaccines. We aimed to evaluate whether immune responses to selected LTBI...

  6. Detecting Ancient Tuberculosis

    Directory of Open Access Journals (Sweden)

    Angela M. Gernaey

    1998-12-01

    Full Text Available Some diseases have played a more significant role in human development than others. Here we describe the results of a trial to diagnose ancient tuberculosis using chemical methods. Palaeo-epidemiological studies of the disease are compromised, but it has become apparent that tuberculosis (TB is a 'population-density dependent' disease. From modern studies, it is also apparent that the prevalence of TB can be used as an indicator of the level of poverty within the studied population. Mid-shaft rib samples from articulated individuals recovered from the former Newcastle Infirmary Burial Ground (1753-1845 AD were examined for mycolic acids that are species-specific for Mycobacterium tuberculosis. The 24% of ribs positive for mycolic acids correlated with the documented 27% tuberculosis prevalence. Mycolic acid biomarkers have the potential to provide an accurate trace of the palaeo-epidemiology of tuberculosis in ancient populations, thereby providing an indication of the overall level of poverty - a useful adjunct for archaeology.

  7. Control of lipid oxidation in extruded salmon jerky snacks.

    Science.gov (United States)

    Kong, Jian; Perkins, L Brian; Dougherty, Michael P; Camire, Mary Ellen

    2011-01-01

    A shelf-life study was conducted to evaluate the effect of antioxidants on oxidative stability of extruded jerky-style salmon snacks. Deterioration of docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) due to lipid oxidation is a major concern for this healthy snack. A control jerky with no added antioxidants and 4 jerkies with antioxidants (rosemary, mixed tocopherols, tertiary butylhydroquinone, and ascorbyl palmitate) added as 0.02% of the lipid content were extruded in duplicate in a Coperion ZSK-25 twin screw extruder. Salmon jerkies from each formulation were placed in 3 mil barrier pouches, flushed with nitrogen, and stored at 35 °C and 75% relative humidity. Lipid oxidation was evaluated as by peroxide value and malonaldehyde content. Other chemical analyses included total fatty acid composition, lipid content, moisture, water activity, pH, and salt. Astaxanthin and CIE L*, a*, b* color were also analyzed at 4-wk intervals. Rosemary inhibited peroxide formation better than did other antioxidants at week 8; no treatment inhibited malonaldehyde levels. All jerkies had lower astaxanthin levels after 8 wk, but rosemary-treated jerky had higher pigment concentrations than did the control at weeks 4 and 8. Protection of omega-3 lipids in these extruded jerkies must be improved to offer consumers a convenient source of these healthful lipids. Practical Application: Salmon flesh can be extruded to produce a jerky that provides 410 mg of omega-3 lipids per serving. Natural antioxidants such as rosemary should be added at levels over 0.02% of the lipid content to help control lipid oxidation. Astaxanthin and CIE a* values correlated well with lipid stability and could be used to monitor quality during storage if initial values are known.

  8. Mycobacterium tuberculosis-specific memory NKT cells in patients with tuberculous pleurisy.

    Science.gov (United States)

    Li, Zitao; Yang, Binyan; Zhang, Yannan; Ma, Jiangjun; Chen, Xinchun; Lao, Suihua; Li, Baiqing; Wu, Changyou

    2014-11-01

    Natural killer T (NKT) cells from mouse and human play a protective role in the immune responses against the infection of Mycobacterium tuberculosis. However, the characteristic of CD3(+)TCRvβ11(+) NKT cells at the local site of M. tuberculosis infection remains poorly defined. In the present study, we found that the numbers of CD3(+)TCRvβ11(+) NKT cells in pleural fluid mononuclear cells (PFMCs) were significantly lower than those in peripheral blood mononuclear cells (PBMCs). However, CD3(+)TCRvβ11(+) NKT cells from PFMCs spontaneously expressed high levels of CD69 and CD25 and effector memory phenotypes of CD45RO(high)CD62L(low)CCR7(low). After stimulation with the antigens of M. tuberculosis, CD3(+)TCRvβ11(+) NKT cells from PFMCs produced high levels of IFN-γ. Sorted CD3(+)TCRvβ11(+) NKT cells from PFMCs cultured with antigen presenting cells (APCs) produced IFN-γ protein and mRNA. The production of IFN-γ could be completely inhibited by AG490 and Wortmannin. In addition, CD3(+)TCRvβ11(+) NKT cells from PFMCs expressed higher levels of Fas (CD95), FasL (CD178) and perforin but lower levels of granzyme B compared with those from PBMCs. Taken together, our data demonstrated for the first time that M. tuberculosis-specific CD3(+)TCRvβ11(+) NKT cells participated in the local immune responses against M. tuberculosis through the production of IFN-γ and the secretion of cytolytic molecules.

  9. Solid Lipid Nanoparticles of Guggul Lipid as Drug Carrier for Transdermal Drug Delivery

    Directory of Open Access Journals (Sweden)

    Praveen Kumar Gaur

    2013-01-01

    Full Text Available Diclofenac sodium loaded solid lipid nanoparticles (SLNs were formulated using guggul lipid as major lipid component and analyzed for physical parameters, permeation profile, and anti-inflammatory activity. The SLNs were prepared using melt-emulsion sonication/low temperature-solidification method and characterized for physical parameters, in vitro drug release, and accelerated stability studies, and formulated into gel. Respective gels were compared with a commercial emulgel (CEG and plain carbopol gel containing drug (CG for ex vivo and in vivo drug permeation and anti-inflammatory activity. The SLNs were stable with optimum physical parameters. GMS nanoparticle 1 (GMN-1 and stearic acid nanoparticle 1 (SAN-1 gave the highest in vitro drug release. Guggul lipid nanoparticle gel 3 (GLNG-3 showed 104.68 times higher drug content than CEG in receptor fluid. The enhancement ratio of GLNG-3 was 39.43 with respect to CG. GLNG-3 showed almost 8.12 times higher Cmax than CEG at 4 hours. The AUC value of GLNG-3 was 15.28 times higher than the AUC of CEG. GLNG-3 showed edema inhibition up to 69.47% in the first hour. Physicochemical properties of major lipid component govern the properties of SLN. SLN made up of guggul lipid showed good physical properties with acceptable stability. Furthermore, it showed a controlled drug release profile along with a promising permeation profile.

  10. Mesenchymal Stem Cells Enhance Liver Regeneration via Improving Lipid Accumulation and Hippo Signaling

    Directory of Open Access Journals (Sweden)

    Yang Liu

    2018-01-01

    Full Text Available The liver has the potential to regenerate after injury. It is a challenge to improve liver regeneration (LR after liver resection in clinical practice. Bone morrow-derived mesenchymal stem cells (MSCs have shown to have a role in various liver diseases. To explore the effects of MSCs on LR, we established a model of 70% partial hepatectomy (PHx. Results revealed that infusion of MSCs could improve LR through enhancing cell proliferation and cell growth during the first 2 days after PHx, and MSCs could also restore liver synthesis function. Infusion of MSCs also improved liver lipid accumulation partly via mechanistic target of rapamycin (mTOR signaling and enhanced lipid β-oxidation support energy for LR. Rapamycin-induced inhibition of mTOR decreased liver lipid accumulation at 24 h after PHx, leading to impaired LR. And after infusion of MSCs, a proinflammatory environment formed in the liver, evidenced by increased expression of IL-6 and IL-1β, and thus the STAT3 and Hippo-YAP pathways were activated to improve cell proliferation. Our results demonstrated the function of MSCs on LR after PHx and provided new evidence for stem cell therapy of liver diseases.

  11. Management of latent Mycobacterium tuberculosis infection: WHO guidelines for low tuberculosis burden countries

    NARCIS (Netherlands)

    Getahun, Haileyesus; Matteelli, Alberto; Abubakar, Ibrahim; Aziz, Mohamed Abdel; Baddeley, Annabel; Barreira, Draurio; den Boon, Saskia; Borroto Gutierrez, Susana Marta; Bruchfeld, Judith; Burhan, Erlina; Cavalcante, Solange; Cedillos, Rolando; Chaisson, Richard; Chee, Cynthia Bin-Eng; Chesire, Lucy; Corbett, Elizabeth; Dara, Masoud; Denholm, Justin; de Vries, Gerard; Falzon, Dennis; Ford, Nathan; Gale-Rowe, Margaret; Gilpin, Chris; Girardi, Enrico; Go, Un-Yeong; Govindasamy, Darshini; D Grant, Alison; Grzemska, Malgorzata; Harris, Ross; Horsburgh, C. Robert; Ismayilov, Asker; Jaramillo, Ernesto; Kik, Sandra; Kranzer, Katharina; Lienhardt, Christian; LoBue, Philip; Lönnroth, Knut; Marks, Guy; Menzies, Dick; Migliori, Giovanni Battista; Mosca, Davide; Mukadi, Ya Diul; Mwinga, Alwyn; Nelson, Lisa; Nishikiori, Nobuyuki; Oordt-Speets, Anouk; Rangaka, Molebogeng Xheedha; Reis, Andreas; Rotz, Lisa; Sandgren, Andreas; Sañé Schepisi, Monica; Schünemann, Holger J.; Sharma, Surender Kumar; Sotgiu, Giovanni; Stagg, Helen R.; Sterling, Timothy R.; Tayeb, Tamara; Uplekar, Mukund; van der Werf, Marieke J.; Vandevelde, Wim; van Kessel, Femke; van't Hoog, Anna; Varma, Jay K.; Vezhnina, Natalia; Voniatis, Constantia; Vonk Noordegraaf-Schouten, Marije; Weil, Diana; Weyer, Karin; Wilkinson, Robert John; Yoshiyama, Takashi; Zellweger, Jean Pierre; Raviglione, Mario

    2015-01-01

    Latent tuberculosis infection (LTBI) is characterised by the presence of immune responses to previously acquired Mycobacterium tuberculosis infection without clinical evidence of active tuberculosis (TB). Here we report evidence-based guidelines from the World Health Organization for a public health

  12. Biosynthesis of ilamycins featuring unusual building blocks and engineered production of enhanced anti-tuberculosis agents.

    Science.gov (United States)

    Ma, Junying; Huang, Hongbo; Xie, Yunchang; Liu, Zhiyong; Zhao, Jin; Zhang, Chunyan; Jia, Yanxi; Zhang, Yun; Zhang, Hua; Zhang, Tianyu; Ju, Jianhua

    2017-08-30

    Tuberculosis remains one of the world's deadliest communicable diseases, novel anti-tuberculosis agents are urgently needed due to severe drug resistance and the co-epidemic of tuberculosis/human immunodeficiency virus. Here, we show the isolation of six anti-mycobacterial ilamycin congeners (1-6) bearing rare L-3-nitro-tyrosine and L-2-amino-4-hexenoic acid structural units from the deep sea-derived Streptomyces atratus SCSIO ZH16. The biosynthesis of the rare L-3-nitrotyrosine and L-2-amino-4-hexenoic acid units as well as three pre-tailoring and two post-tailoring steps are probed in the ilamycin biosynthetic machinery through a series of gene inactivation, precursor chemical complementation, isotope-labeled precursor feeding experiments, as well as structural elucidation of three intermediates (6-8) from the respective mutants. Most impressively, ilamycins E 1 /E 2 , which are produced in high titers by a genetically engineered mutant strain, show very potent anti-tuberculosis activity with an minimum inhibitory concentration value ≈9.8 nM to Mycobacterium tuberculosis H37Rv constituting extremely potent and exciting anti-tuberculosis drug leads.Tuberculosis (TB) remains one of the world's deadliest communicable diseases, novel anti-TB agents are urgently needed due to severe drug resistance and the co-epidemic of TB/HIV. Here, the authors show that anti-mycobacterial ilamycin congeners bearing unusual structural units possess extremely potent anti-tuberculosis activities.

  13. Enhancement of antibiotic activity by efflux inhibitors against multidrug resistant Mycobacterium tuberculosis clinical isolates from Brazil

    Directory of Open Access Journals (Sweden)

    Tatiane eCoelho

    2015-04-01

    Full Text Available Drug resistant tuberculosis continues to increase and new approaches for its treatment are necessary. The identification of M. tuberculosis clinical isolates presenting efflux as part of their resistant phenotype has a major impact in tuberculosis treatment. In this work, we used a checkerboard procedure combined with the tetrazolium microplate-based assay (TEMA to study single combinations between antituberculosis drugs and efflux inhibitors (EIs against multidrug resistant M. tuberculosis clinical isolates using the fully susceptible strain H37Rv as reference. Efflux activity was studied on a real-time basis by a fluorometric method that uses ethidium bromide as efflux substrate. Quantification of efflux pump genes mRNA transcriptional levels were performed by RT-qPCR. The fractional inhibitory concentrations (FIC indicated synergistic activity for the interactions between isoniazid, rifampicin, amikacin, ofloxacin, and ethidium bromide plus the EIs verapamil, thioridazine and chlorpromazine. The FICs ranged from 0.25, indicating a four-fold reduction on the MICs, to 0.015, 64-fold reduction. The detection of active efflux by real-time fluorometry showed that all strains presented intrinsic efflux activity that contributes to the overall resistance which can be inhibited in the presence of the EIs. The quantification of the mRNA levels of the most important efflux pump genes on these strains shows that they are intrinsically predisposed to expel toxic compounds as the exposure to subinhibitory concentrations of antibiotics were not necessary to increase the pump mRNA levels when compared with the non-exposed counterpart. The results obtained in this study confirm that the intrinsic efflux activity contributes to the overall resistance in multidrug resistant clinical isolates of M. tuberculosis and that the inhibition of efflux pumps by the EIs can enhance the clinical effect of antibiotics that are their substrates.

  14. Research progress on polar lipids of deinococcus radiodurans

    International Nuclear Information System (INIS)

    Feng Qiong; Tian Bing; Hua Yuejin

    2013-01-01

    Deinococcus radiodurans is extremely resistant to radiation, desiccation, oxidizing agents and other extreme conditions. One of the unique lipids in Deinococcus radiodurans is the polar lipid phosphoglycolipid with alkylamine as the main component. Alkylamine derived from fatty acids. The composition characteristic of lipids is one of the classification criterias of Deinococcus. This article provided an overview of the main features of the Deinococcus radiodurans and introduced special polar lipids that have been found as well as the taxonomy significances of such lipids. The research progress of the relationship between lipids and their resistance mechanisms and the prospects of special lipids in Deinococcus radidurans have also been discussed. (authors)

  15. Tuberculosis neonatal

    OpenAIRE

    Pastor Durán, Xavier

    1986-01-01

    PROTOCOLOS TERAPEUTICOS. TUBERCULOSIS NEONATAL 1. CONCEPTO La tuberculosis neonatal es la infección del recién nacido producida por el bacilo de Koch. Es una situación rara pero grave que requiere un diagnóstico precoz y un tratamiento enérgico..

  16. Tea Drinking and Its Association with Active Tuberculosis Incidence among Middle-Aged and Elderly Adults: The Singapore Chinese Health Study.

    Science.gov (United States)

    Soh, Avril Zixin; Pan, An; Chee, Cynthia Bin Eng; Wang, Yee-Tang; Yuan, Jian-Min; Koh, Woon-Puay

    2017-05-25

    Experimental studies showed that tea polyphenols may inhibit growth of Mycobacterium tuberculosis . However, no prospective epidemiologic study has investigated tea drinking and the risk of active tuberculosis. We investigated this association in the Singapore Chinese Health Study, a prospective population-based cohort of 63,257 Chinese aged 45-74 years recruited between 1993 and 1998 in Singapore. Information on habitual drinking of tea (including black and green tea) and coffee was collected via structured questionnaires. Incident cases of active tuberculosis were identified via linkage with the nationwide tuberculosis registry up to 31 December 2014. Cox proportional hazard models were used to estimate the relation of tea and coffee consumption with tuberculosis risk. Over a mean 16.8 years of follow-up, we identified 1249 incident cases of active tuberculosis. Drinking either black or green tea was associated with a dose-dependent reduction in tuberculosis risk. Compared to non-drinkers, the hazard ratio (HR) (95% confidence interval (CI)) was 1.01 (0.85-1.21) in monthly tea drinkers, 0.84 (0.73-0.98) in weekly drinkers, and 0.82 (0.71-0.96) in daily drinkers ( p for trend = 0.003). Coffee or caffeine intake was not significantly associated with tuberculosis risk. In conclusion, regular tea drinking was associated with a reduced risk of active tuberculosis.

  17. Myosin-1 inhibition by PClP affects membrane shape, cortical actin distribution and lipid droplet dynamics in early Zebrafish embryos.

    Directory of Open Access Journals (Sweden)

    Prabuddha Gupta

    Full Text Available Myosin-1 (Myo1 represents a mechanical link between the membrane and actin-cytoskeleton in animal cells. We have studied the effect of Myo1 inhibitor PClP in 1-8 cell Zebrafish embryos. Our results indicate a unique involvement of Myo1 in early development of Zebrafish embryos. Inhibition of Myo1 (by PClP and Myo2 (by Blebbistatin lead to arrest in cell division. While Myo1 isoforms appears to be important for both the formation and the maintenance of cleavage furrows, Myo2 is required only for the formation of furrows. We found that the blastodisc of the embryo, which contains a thick actin cortex (~13 μm, is loaded with cortical Myo1. Myo1 appears to be crucial for maintaining the blastodisc morphology and the actin cortex thickness. In addition to cell division and furrow formation, inhibition of Myo1 has a drastic effect on the dynamics and distribution of lipid droplets (LDs in the blastodisc near the cleavage furrow. All these results above are effects of Myo1 inhibition exclusively; Myo2 inhibition by blebbistatin does not show such phenotypes. Therefore, our results demonstrate a potential role for Myo1 in the maintenance and formation of furrow, blastodisc morphology, cell-division and LD organization within the blastodisc during early embryogenesis.

  18. Free radical scavenging activity and lipoxygenase inhibition of Mahonia aquifolium extract and isoquinoline alkaloids

    Directory of Open Access Journals (Sweden)

    Kettmann Viktor

    2007-07-01

    Full Text Available Abstract Roots and stem-bark of Mahonia aquifolium (Oregon grape (Berberidaceae are effectively used in the treatment of skin inflammatory conditions. In the present study, the effect of Mahonia aquifolium crude extract and its two representative alkaloid fractions containing protoberberine and bisbenzylisoquinoline (BBIQ alkaloids on activity of 12-lipoxygenase (12-LOX, was studied. The reactivity with 1,1-diphenyl-2-picryl-hydrazyl (DPPH, a free stable radical, was evaluated to elucidate the rate of possible lipid-derived radical scavenging in the mechanism of the enzyme inhibition. The results indicate that although the direct radical scavenging mechanism cannot be ruled out in the lipoxygenase inhibition by Mahonia aquifolium and its constituents, other mechanisms based on specific interaction between enzyme and alkaloids could play the critical role in the lipoxygenase inhibition rather than non-specific reactivity with free radicals.

  19. Toxin-antitoxin systems and regulatory mechanisms in Mycobacterium tuberculosis.

    Science.gov (United States)

    Slayden, Richard A; Dawson, Clinton C; Cummings, Jason E

    2018-06-01

    There has been a significant reduction in annual tuberculosis incidence since the World Health Organization declared tuberculosis a global health threat. However, treatment of M. tuberculosis infections requires lengthy multidrug therapeutic regimens to achieve a durable cure. The development of new drugs that are active against resistant strains and phenotypically diverse organisms continues to present the greatest challenge in the future. Numerous phylogenomic analyses have revealed that the Mtb genome encodes a significantly expanded repertoire of toxin-antitoxin (TA) loci that makes up the Mtb TA system. A TA loci is a two-gene operon encoding a 'toxin' protein that inhibits bacterial growth and an interacting 'antitoxin' partner that neutralizes the inhibitory activity of the toxin. The presence of multiple chromosomally encoded TA loci in Mtb raises important questions in regard to expansion, regulation and function. Thus, the functional roles of TA loci in Mtb pathogenesis have received considerable attention over the last decade. The cumulative results indicate that they are involved in regulating adaptive responses to stresses associated with the host environment and drug treatment. Here we review the TA families encoded in Mtb, discuss the duplication of TA loci in Mtb, regulatory mechanism of TA loci, and phenotypic heterogeneity and pathogenesis.

  20. Synthesis, characterization, X-ray crystallography, acetyl cholinesterase inhibition and antioxidant activities of some novel ketone derivatives of gallic hydrazide-derived Schiff bases.

    Science.gov (United States)

    Gwaram, Nura Suleiman; Ali, Hapipah Mohd; Abdulla, Mahmood Ameen; Buckle, Michael J C; Sukumaran, Sri Devi; Chung, Lip Yong; Othman, Rozana; Alhadi, Abeer A; Yehye, Wageeh A; Hadi, A Hamid A; Hassandarvish, Pouya; Khaledi, Hamid; Abdelwahab, Siddig Ibrahim

    2012-02-28

    Alzheimer's disease (AD) is the most common form of dementia among older people and the pathogenesis of this disease is associated with oxidative stress. Acetylcholinesterase inhibitors with antioxidant activities are considered potential treatments for AD. Some novel ketone derivatives of gallic hydrazide-derived Schiff bases were synthesized and examined for their antioxidant activities and in vitro and in silico acetyl cholinesterase inhibition. The compounds were characterized using spectroscopy and X-ray crystallography. The ferric reducing antioxidant power (FRAP) and 2,2-diphenyl-1-picrylhydrazyl (DPPH) assays revealed that all the compounds have strong antioxidant activities. N-(1-(5-bromo-2-hydroxyphenyl)-ethylidene)-3,4,5-trihydroxybenzohydrazide (2) was the most potent inhibitor of human acetyl cholinesterase, giving an inhibition rate of 77% at 100 μM. Molecular docking simulation of the ligand-enzyme complex suggested that the ligand may be positioned in the enzyme's active-site gorge, interacting with residues in the peripheral anionic subsite (PAS) and acyl binding pocket (ABP). The current work warrants further preclinical studies to assess the potential for these novel compounds for the treatment of AD.