WorldWideScience

Sample records for tuberculosis h37rv induces

  1. Stringent DDI-based prediction of H. sapiens-M. tuberculosis H37Rv protein-protein interactions.

    Science.gov (United States)

    Zhou, Hufeng; Rezaei, Javad; Hugo, Willy; Gao, Shangzhi; Jin, Jingjing; Fan, Mengyuan; Yong, Chern-Han; Wozniak, Michal; Wong, Limsoon

    2013-01-01

    H. sapiens-M. tuberculosis H37Rv protein-protein interaction (PPI) data are very important information to illuminate the infection mechanism of M. tuberculosis H37Rv. But current H. sapiens-M. tuberculosis H37Rv PPI data are very scarce. This seriously limits the study of the interaction between this important pathogen and its host H. sapiens. Computational prediction of H. sapiens-M. tuberculosis H37Rv PPIs is an important strategy to fill in the gap. Domain-domain interaction (DDI) based prediction is one of the frequently used computational approaches in predicting both intra-species and inter-species PPIs. However, the performance of DDI-based host-pathogen PPI prediction has been rather limited. We develop a stringent DDI-based prediction approach with emphasis on (i) differences between the specific domain sequences on annotated regions of proteins under the same domain ID and (ii) calculation of the interaction strength of predicted PPIs based on the interacting residues in their interaction interfaces. We compare our stringent DDI-based approach to a conventional DDI-based approach for predicting PPIs based on gold standard intra-species PPIs and coherent informative Gene Ontology terms assessment. The assessment results show that our stringent DDI-based approach achieves much better performance in predicting PPIs than the conventional approach. Using our stringent DDI-based approach, we have predicted a small set of reliable H. sapiens-M. tuberculosis H37Rv PPIs which could be very useful for a variety of related studies. We also analyze the H. sapiens-M. tuberculosis H37Rv PPIs predicted by our stringent DDI-based approach using cellular compartment distribution analysis, functional category enrichment analysis and pathway enrichment analysis. The analyses support the validity of our prediction result. Also, based on an analysis of the H. sapiens-M. tuberculosis H37Rv PPI network predicted by our stringent DDI-based approach, we have discovered some

  2. Stringent homology-based prediction of H. sapiens-M. tuberculosis H37Rv protein-protein interactions.

    Science.gov (United States)

    Zhou, Hufeng; Gao, Shangzhi; Nguyen, Nam Ninh; Fan, Mengyuan; Jin, Jingjing; Liu, Bing; Zhao, Liang; Xiong, Geng; Tan, Min; Li, Shijun; Wong, Limsoon

    2014-04-08

    H. sapiens-M. tuberculosis H37Rv protein-protein interaction (PPI) data are essential for understanding the infection mechanism of the formidable pathogen M. tuberculosis H37Rv. Computational prediction is an important strategy to fill the gap in experimental H. sapiens-M. tuberculosis H37Rv PPI data. Homology-based prediction is frequently used in predicting both intra-species and inter-species PPIs. However, some limitations are not properly resolved in several published works that predict eukaryote-prokaryote inter-species PPIs using intra-species template PPIs. We develop a stringent homology-based prediction approach by taking into account (i) differences between eukaryotic and prokaryotic proteins and (ii) differences between inter-species and intra-species PPI interfaces. We compare our stringent homology-based approach to a conventional homology-based approach for predicting host-pathogen PPIs, based on cellular compartment distribution analysis, disease gene list enrichment analysis, pathway enrichment analysis and functional category enrichment analysis. These analyses support the validity of our prediction result, and clearly show that our approach has better performance in predicting H. sapiens-M. tuberculosis H37Rv PPIs. Using our stringent homology-based approach, we have predicted a set of highly plausible H. sapiens-M. tuberculosis H37Rv PPIs which might be useful for many of related studies. Based on our analysis of the H. sapiens-M. tuberculosis H37Rv PPI network predicted by our stringent homology-based approach, we have discovered several interesting properties which are reported here for the first time. We find that both host proteins and pathogen proteins involved in the host-pathogen PPIs tend to be hubs in their own intra-species PPI network. Also, both host and pathogen proteins involved in host-pathogen PPIs tend to have longer primary sequence, tend to have more domains, tend to be more hydrophilic, etc. And the protein domains from both

  3. Potential Mechanism of Action of meso-Dihydroguaiaretic Acid on Mycobacterium tuberculosis H37Rv

    Directory of Open Access Journals (Sweden)

    Aldo F. Clemente-Soto

    2014-12-01

    Full Text Available The isolation and characterization of the lignan meso-dihydroguaiaretic acid (MDGA from Larrea tridentata and its activity against Mycobacterial tuberculosis has been demonstrated, but no information regarding its mechanism of action has been documented. Therefore, in this study we carry out the gene expression from total RNA obtained from M. tuberculosis H37Rv treated with MDGA using microarray technology, which was validated by quantitative real time polymerase chain reaction. Results showed that the alpha subunit of coenzyme A transferase of M. tuberculosis H37Rv is present in both geraniol and 1-and 2-methylnaphthalene degradation pathways, which are targeted by MDGA. This assumption was supported by molecular docking which showed stable interaction between MDGA with the active site of the enzyme. We propose that inhibition of coenzyme A transferase of M. tuberculosis H37Rv results in the accumulation of geraniol and 1-and 2-methylnaphtalene inside bacteria, causing membrane destabilization and death of the pathogen. The natural product MDGA is thus an attractive template to develop new anti-tuberculosis drugs, because its target is different from those of known anti-tubercular agents.

  4. Revisiting host preference in the Mycobacterium tuberculosis complex: experimental infection shows M. tuberculosis H37Rv to be avirulent in cattle.

    Directory of Open Access Journals (Sweden)

    Adam O Whelan

    Full Text Available Experiments in the late 19th century sought to define the host specificity of the causative agents of tuberculosis in mammals. Mycobacterium tuberculosis, the human tubercle bacillus, was independently shown by Smith, Koch, and von Behring to be avirulent in cattle. This finding was erroneously used by Koch to argue the converse, namely that Mycobacterium bovis, the agent of bovine tuberculosis, was avirulent for man, a view that was subsequently discredited. However, reports in the literature of M. tuberculosis isolation from cattle with tuberculoid lesions suggests that the virulence of M. tuberculosis for cattle needs to be readdressed. We used an experimental bovine infection model to test the virulence of well-characterized strains of M. tuberculosis and M. bovis in cattle, choosing the genome-sequenced strains M. tuberculosis H37Rv and M. bovis 2122/97. Cattle were infected with approximately 10(6 CFU of M. tuberculosis H37Rv or M. bovis 2122/97, and sacrificed 17 weeks post-infection. IFN-gamma and tuberculin skin tests indicated that both M. bovis 2122 and M. tuberculosis H37Rv were equally infective and triggered strong cell-mediated immune responses, albeit with some indication of differential antigen-specific responses. Postmortem examination revealed that while M. bovis 2122/97-infected animals all showed clear pathology indicative of bovine tuberculosis, the M. tuberculosis-infected animals showed no pathology. Culturing of infected tissues revealed that M. tuberculosis was able to persist in the majority of animals, albeit at relatively low bacillary loads. In revisiting the early work on host preference across the M. tuberculosis complex, we have shown M. tuberculosis H37Rv is avirulent for cattle, and propose that the immune status of the animal, or genotype of the infecting bacillus, may have significant bearing on the virulence of a strain for cattle. This work will serve as a baseline for future studies into the genetic basis

  5. SigG Does Not Control Gene Expression in Response to DNA Damage in Mycobacterium tuberculosis H37Rv ▿ §

    OpenAIRE

    Smollett, Katherine L.; Dawson, Lisa F.; Davis, Elaine O.

    2010-01-01

    Expression of the Mycobacterium tuberculosis sigG sigma factor was induced by a variety of DNA-damaging agents, but inactivation of sigG did not affect induction of gene expression or bacterial survival under these conditions. Therefore, SigG does not control the DNA repair response of M. tuberculosis H37Rv.

  6. Overview of errors in the reference sequence and annotation of Mycobacterium tuberculosis H37Rv, and variation amongst its isolates

    KAUST Repository

    Köser, Claudio U.

    2012-06-01

    Since its publication in 1998, the genome sequence of the Mycobacterium tuberculosis H37Rv laboratory strain has acted as the cornerstone for the study of tuberculosis. In this review we address some of the practical aspects that have come to light relating to the use of H37Rv throughout the past decade which are of relevance for the ongoing genomic and laboratory studies of this pathogen. These include errors in the genome reference sequence and its annotation, as well as the recently detected variation amongst isolates of H37Rv from different laboratories. © 2011 Elsevier B.V..

  7. Crystallization and preliminary X-ray characterization of phosphoglucose isomerase from Mycobacterium tuberculosis H37Rv

    International Nuclear Information System (INIS)

    Mathur, Divya; Anand, Kanchan; Mathur, Deepika; Jagadish, Nirmala; Suri, Anil; Garg, Lalit C.

    2007-01-01

    The phosphoglucose isomerase from Mycobacterium tuberculosis H37Rv was crystallized and diffraction data were collected to 2.8 Å resolution. Phosphoglucose isomerase is a ubiquitous enzyme that catalyzes the isomerization of d-glucopyranose-6-phosphate to d-fructofuranose-6-phosphate. The present investigation reports the expression, purification, crystallization and preliminary crystallographic studies of the phosphoglucose isomerase from Mycobacterium tuberculosis H37Rv, which shares 46% sequence identity with that of its human host. The recombinant protein, which was prepared using an Escherichia coli expression system, was crystallized by the hanging-drop vapour-diffusion method. The crystals diffracted to a resolution of 2.8 Å and belonged to the orthorhombic space group I2 1 2 1 2 1 , with unit-cell parameters a = 109.0, b = 119.8, c = 138.9 Å

  8. Dehalogenation of Haloalkanes by Mycobacterium tuberculosis H37Rv and Other Mycobacteria

    Science.gov (United States)

    Jesenská, Andrea; Sedlác̆ek, Ivo; Damborský, Jir̆í

    2000-01-01

    Haloalkane dehalogenases convert haloalkanes to their corresponding alcohols by a hydrolytic mechanism. To date, various haloalkane dehalogenases have been isolated from bacteria colonizing environments that are contaminated with halogenated compounds. A search of current databases with the sequences of these known haloalkane dehalogenases revealed the presence of three different genes encoding putative haloalkane dehalogenases in the genome of the human parasite Mycobacterium tuberculosis H37Rv. The ability of M. tuberculosis and several other mycobacterial strains to dehalogenate haloaliphatic compounds was therefore studied. Intact cells of M. tuberculosis H37Rv were found to dehalogenate 1-chlorobutane, 1-chlorodecane, 1-bromobutane, and 1,2-dibromoethane. Nine isolates of mycobacteria from clinical material and four strains from a collection of microorganisms were found to be capable of dehalogenating 1,2-dibromoethane. Crude extracts prepared from two of these strains, Mycobacterium avium MU1 and Mycobacterium smegmatis CCM 4622, showed broad substrate specificity toward a number of halogenated substrates. Dehalogenase activity in the absence of oxygen and the identification of primary alcohols as the products of the reaction suggest a hydrolytic dehalogenation mechanism. The presence of dehalogenases in bacterial isolates from clinical material, including the species colonizing both animal tissues and free environment, indicates a possible role of parasitic microorganisms in the distribution of degradation genes in the environment. PMID:10618227

  9. Overview of errors in the reference sequence and annotation of Mycobacterium tuberculosis H37Rv, and variation amongst its isolates

    KAUST Repository

    Kö ser, Claudio U.; Niemann, Stefan; Summers, David K.; Archer, John A.C.

    2012-01-01

    Since its publication in 1998, the genome sequence of the Mycobacterium tuberculosis H37Rv laboratory strain has acted as the cornerstone for the study of tuberculosis. In this review we address some of the practical aspects that have come to light

  10. Identification of 2-aminothiazole-4-carboxylate derivatives active against Mycobacterium tuberculosis H37Rv and the beta-ketoacyl-ACP synthase mtFabH.

    Directory of Open Access Journals (Sweden)

    Qosay Al-Balas

    Full Text Available BACKGROUND: Tuberculosis (TB is a disease which kills two million people every year and infects approximately over one-third of the world's population. The difficulty in managing tuberculosis is the prolonged treatment duration, the emergence of drug resistance and co-infection with HIV/AIDS. Tuberculosis control requires new drugs that act at novel drug targets to help combat resistant forms of Mycobacterium tuberculosis and reduce treatment duration. METHODOLOGY/PRINCIPAL FINDINGS: Our approach was to modify the naturally occurring and synthetically challenging antibiotic thiolactomycin (TLM to the more tractable 2-aminothiazole-4-carboxylate scaffold to generate compounds that mimic TLM's novel mode of action. We report here the identification of a series of compounds possessing excellent activity against M. tuberculosis H(37R(v and, dissociatively, against the beta-ketoacyl synthase enzyme mtFabH which is targeted by TLM. Specifically, methyl 2-amino-5-benzylthiazole-4-carboxylate was found to inhibit M. tuberculosis H(37R(v with an MIC of 0.06 microg/ml (240 nM, but showed no activity against mtFabH, whereas methyl 2-(2-bromoacetamido-5-(3-chlorophenylthiazole-4-carboxylate inhibited mtFabH with an IC(50 of 0.95+/-0.05 microg/ml (2.43+/-0.13 microM but was not active against the whole cell organism. CONCLUSIONS/SIGNIFICANCE: These findings clearly identify the 2-aminothiazole-4-carboxylate scaffold as a promising new template towards the discovery of a new class of anti-tubercular agents.

  11. Identification of novel adhesins of M. tuberculosis H37Rv using integrated approach of multiple computational algorithms and experimental analysis.

    Directory of Open Access Journals (Sweden)

    Sanjiv Kumar

    Full Text Available Pathogenic bacteria interacting with eukaryotic host express adhesins on their surface. These adhesins aid in bacterial attachment to the host cell receptors during colonization. A few adhesins such as Heparin binding hemagglutinin adhesin (HBHA, Apa, Malate Synthase of M. tuberculosis have been identified using specific experimental interaction models based on the biological knowledge of the pathogen. In the present work, we carried out computational screening for adhesins of M. tuberculosis. We used an integrated computational approach using SPAAN for predicting adhesins, PSORTb, SubLoc and LocTree for extracellular localization, and BLAST for verifying non-similarity to human proteins. These steps are among the first of reverse vaccinology. Multiple claims and attacks from different algorithms were processed through argumentative approach. Additional filtration criteria included selection for proteins with low molecular weights and absence of literature reports. We examined binding potential of the selected proteins using an image based ELISA. The protein Rv2599 (membrane protein binds to human fibronectin, laminin and collagen. Rv3717 (N-acetylmuramoyl-L-alanine amidase and Rv0309 (L,D-transpeptidase bind to fibronectin and laminin. We report Rv2599 (membrane protein, Rv0309 and Rv3717 as novel adhesins of M. tuberculosis H37Rv. Our results expand the number of known adhesins of M. tuberculosis and suggest their regulated expression in different stages.

  12. Overproduction, purification and preliminary X-ray diffraction analysis of a sulfotransferase from Mycobacterium tuberculosis H37Rv

    International Nuclear Information System (INIS)

    Tanaka, Shotaro; Moriizumi, Yuuji; Kimura, Makoto; Kakuta, Yoshimitsu

    2004-01-01

    A sulfotransferase from M. tuberculosis was crystallized and preliminarily analyzed using X-ray diffraction. Sulfotransferase STF1 from the Mycobacterium tuberculosis H37Rv genome was overproduced in Escherichia coli, purified and crystallized using the hanging-drop vapour-diffusion method. The crystals diffract to 1.5 Å resolution using synchrotron radiation at SPring-8. The crystals are monoclinic and belong to space group P2 1 , with unit-cell parameters a = 40.86, b = 95.76, c = 48.04 Å, β = 106.43°. The calculated Matthews coefficient is approximately 2.1 Å 3 Da −1 assuming the presence of one molecule of STF1 in the asymmetric unit. A substrate-binding assay using a PAP–agarose column suggests that STF1 exhibits sulfotransferase activity

  13. Modeling phenotypic metabolic adaptations of Mycobacterium tuberculosis H37Rv under hypoxia.

    Directory of Open Access Journals (Sweden)

    Xin Fang

    Full Text Available The ability to adapt to different conditions is key for Mycobacterium tuberculosis, the causative agent of tuberculosis (TB, to successfully infect human hosts. Adaptations allow the organism to evade the host immune responses during acute infections and persist for an extended period of time during the latent infectious stage. In latently infected individuals, estimated to include one-third of the human population, the organism exists in a variety of metabolic states, which impedes the development of a simple strategy for controlling or eradicating this disease. Direct knowledge of the metabolic states of M. tuberculosis in patients would aid in the management of the disease as well as in forming the basis for developing new drugs and designing more efficacious drug cocktails. Here, we propose an in silico approach to create state-specific models based on readily available gene expression data. The coupling of differential gene expression data with a metabolic network model allowed us to characterize the metabolic adaptations of M. tuberculosis H37Rv to hypoxia. Given the microarray data for the alterations in gene expression, our model predicted reduced oxygen uptake, ATP production changes, and a global change from an oxidative to a reductive tricarboxylic acid (TCA program. Alterations in the biomass composition indicated an increase in the cell wall metabolites required for cell-wall growth, as well as heightened accumulation of triacylglycerol in preparation for a low-nutrient, low metabolic activity life style. In contrast, the gene expression program in the deletion mutant of dosR, which encodes the immediate hypoxic response regulator, failed to adapt to low-oxygen stress. Our predictions were compatible with recent experimental observations of M. tuberculosis activity under hypoxic and anaerobic conditions. Importantly, alterations in the flow and accumulation of a particular metabolite were not necessarily directly linked to

  14. Updated and standardized genome-scale reconstruction of Mycobacterium tuberculosis H37Rv, iEK1011, simulates flux states indicative of physiological conditions

    DEFF Research Database (Denmark)

    Kavvas, Erol S.; Seif, Yara; Yurkovich, James T.

    2018-01-01

    previous M. tuberculosis H37Rv genome-scale reconstructions. We functionally assess iEK1011 against previous models and show that the model increases correct gene essentiality predictions on two different experimental datasets by 6% (53% to 60%) and 18% (60% to 71%), respectively. We compared simulations...

  15. Bactericidal impact of Ag, ZnO and mixed AgZnO colloidal nanoparticles on H37Rv Mycobacterium tuberculosis phagocytized by THP-1 cell lines.

    Science.gov (United States)

    Jafari, Alireza; Mosavari, Nader; Movahedzadeh, Farahnaz; Nodooshan, Saeedeh Jafari; Safarkar, Roya; Moro, Rossella; Kamalzadeh, Morteza; Majidpour, Ali; Boustanshenas, Mina; Mosavi, Tahereh

    2017-09-01

    The purpose of this research project was to infection of human macrophages (THP-1) cell lines by H 37 Rv strain of Mycobacterium tuberculosis (H 37 RvMTB) and find out the ratio/dilution of mixture silver (Ag NPs) and zinc oxide nanoparticles (ZnO NPs) whose ability to eliminate phagocytized bacteria compared to rifampicin. The colloidal Ag NPs and ZnO NPs were synthesized and their characteristics were evaluated. The THP-1 cell lines were infected with different concentration of H 37 RvMTB. Next, the infected cells were treated with different ratios/dilutions of Ag NPs, ZnO NPs and rifampicin. The THP-1 were lysed and were cultured in Lowenstein-Jensen agar medium, for eight weeks. The TEM and AFM images of NPs and H 37 RvMTB were supplied. It is observed that Ag NPs, 2 Ag :8 ZnO and 8 Ag :2 ZnO did not have any anti-tubercular effects on phagocytized H 37 RvMTB. Conversely, ZnO NPs somehow eliminated 18.7 × 10 4  CFU ml -1 of H 37 RvMTB in concentration of ∼ 0.468 ppm. To compare with 40 ppm of rifampicin, ∼ 0.663 ppm of 5 Ag :5 ZnO had the ability to kill of H 37 RvMTB, too. Based on previous research, ZnO NPs had strong anti-tubercular impact against H 37 RvMTB to in-vitro condition, but it was toxic in concentration of ∼ 0.468 ppm to both of THP-1 and normal lung (MRC-5) cell lines. It also seems that 5 Ag :5 ZnO is justified because in concentration of ∼ 0.663 ppm of 5 Ag :5 ZnO , phagocytized H 37 RvMTB into the THP-1 had died without any toxicity effects against THP-1 and also MRC-5 cell lines. It is obvious that the mixture of colloidal silver and zinc oxide NPs with ratio of 5 Ag :5 ZnO would be trustworthy options as anti-tubercular nano-drugs in future researches. Copyright © 2017. Published by Elsevier Ltd.

  16. Molecular analysis of Rv0679c and Rv0180c genes of Mycobacterium tuberculosis from clinical isolates of pulmonary tuberculosis

    Directory of Open Access Journals (Sweden)

    L Rupa

    2016-01-01

    Full Text Available Context: Two novel proteins/genes Rv0679c and Rv0180c of Mycobacterium tuberculosis (MTB H37Rv were classified as a hypothetical membrane and transmembrane proteins which might have a role in the invasion. Molecular analysis of these genes in human clinical isolates of pulmonary tuberculosis (PTB patients was not well characterised. Aims: To assess the molecular diversity of Rv0679c and Rv0180c genes of MTB from clinical isolates of PTB patients. Settings and Design: DNA from 97 clinical isolates was extracted and subjected to amplification using selective primers by polymerase chain reaction (PCR. The PCR product obtained was sequenced commercially. Patients and Methods: Clinical isolates obtained from tuberculosis patients were investigated for polymorphisms in the Rv0679c and Rv0180c genes by PCR and DNA sequencing. Genomic DNA isolated by cetyltrimethylammonium bromide method was used for amplification of genes. Results: Rv0679c gene was highly conserved in 61 out of 65 clinical isolates assessed for sequence homology with wild-type H37Rv gene and was identical using ClustalW. Fifty-five out of 78 (70.5% clinical isolates assessed for Rv0180c were positive for single nucleotide polymorphism (SNP at 258th position where the nucleotide G was replaced with T (G to T. In clinical isolates of untreated cases, the frequency was 54.5% for SNP at 258th position which is low compared to cases undergoing treatment where the frequency was 73.1%. Conclusions: Molecular analysis of Rv0180c in clinical isolates of PTB assessed in this study was the first report, where an SNP at 258th position G to T was identified within the gene. Rv0679c gene was highly conserved (94%, within Indian clinical isolates as compared to reports from other nations.

  17. Rv3634c from Mycobacterium tuberculosis H37Rv encodes an enzyme with UDP-Gal/Glc and UDP-GalNAc 4-epimerase activities.

    Directory of Open Access Journals (Sweden)

    Peehu Pardeshi

    Full Text Available A bioinformatics study revealed that Mycobacterium tuberculosis H37Rv (Mtb contains sequence homologs of Campylobacter jejuni protein glycosylation enzymes. The ORF Rv3634c from Mtb was identified as a sequence homolog of C. jejuni UDP-Gal/GalNAc 4-epimerase. This study reports the cloning of Rv3634c and its expression as an N-terminal His-tagged protein. The recombinant protein was shown to have UDP-Gal/Glc 4-epimerase activity by GOD-POD assay and by reverse phase HPLC. This enzyme was shown to have UDP-GalNAc 4-epimerase activity also. Residues Ser121, Tyr146 and Lys150 were shown by site-directed mutagenesis to be important for enzyme activity. Mutation of Ser121 and Tyr146 to Ala and Phe, respectively, led to complete loss of activity whereas mutation of Lys150 to Arg led to partial loss of activity. There were no gross changes in the secondary structures of any of these three mutants. These results suggest that Ser121 and Tyr146 are essential for epimerase activity of Rv3634c. UDP-Gal/Glc 4-epimerases from other organisms also have a catalytic triad consisting of Ser, Tyr and Lys. The triad carries out proton transfer from nucleotide sugar to NAD+ and back, thus effecting the epimerization of the substrate. Addition of NAD+ to Lys150 significantly abrogates the loss of activity, suggesting that, as in other epimerases, NAD+ is associated with Rv3634c.

  18. Inhibition of apoptosis by Rv2456c through nuclear factor-κB extends the survival of Mycobacterium tuberculosis

    Directory of Open Access Journals (Sweden)

    Kristen L. Jurcic Smith

    2016-01-01

    Full Text Available Mycobacterium tuberculosis, the causative agent of tuberculosis, is an intracellular pathogen with several survival mechanisms aimed at subverting the host immune system. Apoptosis has been shown to be mycobactericidal, to activate CD8+ T cells, and to be modulated by mycobacterial proteins. Since few mycobacterial proteins have so far been directly implicated in the interactions between M. Tuberculosis and host cell apoptosis, we screened M. Tuberculosis H37Rv transposon mutants to identify mutants that fail to inhibit cell death (FID. One of these FID mutants, FID19, had a transposon insertion in Rv2456c and is important for survival in host cells. The lack of the protein resulted in enhanced caspase-3 mediated apoptosis, which is probably due to an inability to activate nuclear factor-κB. Additionally, FID19 infection enhanced polyfunctional CD8+ T cells and induced a higher frequency of interferon-γ secreting immune cells in a murine model. Taken together, our data suggest that Rv2456c is important for the survival of H37Rv by subduing the innate and ultimately adaptive immune responses of its host by preventing apoptosis of the infected cell. Better understanding of the host-mycobacterial interactions may be beneficial to develop novel drug targets and engineer more efficacious vaccine strains against tuberculosis.

  19. Maximum flow approach to prioritize potential drug targets of Mycobacterium tuberculosis H37Rv from protein-protein interaction network.

    Science.gov (United States)

    Melak, Tilahun; Gakkhar, Sunita

    2015-12-01

    In spite of the implementations of several strategies, tuberculosis (TB) is overwhelmingly a serious global public health problem causing millions of infections and deaths every year. This is mainly due to the emergence of drug-resistance varieties of TB. The current treatment strategies for the drug-resistance TB are of longer duration, more expensive and have side effects. This highlights the importance of identification and prioritization of targets for new drugs. This study has been carried out to prioritize potential drug targets of Mycobacterium tuberculosis H37Rv based on their flow to resistance genes. The weighted proteome interaction network of the pathogen was constructed using a dataset from STRING database. Only a subset of the dataset with interactions that have a combined score value ≥770 was considered. Maximum flow approach has been used to prioritize potential drug targets. The potential drug targets were obtained through comparative genome and network centrality analysis. The curated set of resistance genes was retrieved from literatures. Detail literature review and additional assessment of the method were also carried out for validation. A list of 537 proteins which are essential to the pathogen and non-homologous with human was obtained from the comparative genome analysis. Through network centrality measures, 131 of them were found within the close neighborhood of the centre of gravity of the proteome network. These proteins were further prioritized based on their maximum flow value to resistance genes and they are proposed as reliable drug targets of the pathogen. Proteins which interact with the host were also identified in order to understand the infection mechanism. Potential drug targets of Mycobacterium tuberculosis H37Rv were successfully prioritized based on their flow to resistance genes of existing drugs which is believed to increase the druggability of the targets since inhibition of a protein that has a maximum flow to

  20. Humoral Responses to Rv1733c, Rv0081, Rv1735c, and Rv1737c DosR Regulon-Encoded Proteins of Mycobacterium tuberculosis in Individuals with Latent Tuberculosis Infection

    Directory of Open Access Journals (Sweden)

    Simon G. Kimuda

    2017-01-01

    Full Text Available Latent tuberculosis infection (LTBI is evidence of immunological control of tuberculosis. Dormancy survival regulator (DosR regulon-encoded proteins may have a role in the maintenance of LTBI. T cell responses to Rv1733c, Rv0081, Rv1735c, and Rv1737c DosR regulon-encoded proteins were found to be most frequent among household contacts of TB cases from Uganda compared to other DosR proteins, but antibody responses were not described. We characterized antibody responses to these proteins in individuals from Uganda. Antibodies to Rv1733c, Rv0081, Rv1735c, and Rv1737c DosR regulon-encoded proteins were measured in 68 uninfected individuals, 62 with LTBI, and 107 with active pulmonary tuberculosis (APTB cases. There were no differences in the concentrations of antibodies to Rv0081, Rv1735c, and Rv1737c DosR regulon-encoded proteins between individuals with LTBI and APTB and those who were uninfected. LTBI was associated with higher concentrations of antibodies to Rv1733c in female participants [adjusted geometric mean ratio: 1.812, 95% confidence interval (CI: 1.105 2.973, and p=0.019] but not in males (p value for interaction = 0.060. Antibodies to the four DosR regulon-encoded proteins investigated may not serve as good biomarkers of LTBI in the general population. More of the M.tb proteome needs to be screened to identify proteins that induce strong antibody responses in LTBI.

  1. Mycobacterium tuberculosis directs T helper 2 cell differentiation by inducing interleukin-1β production in dendritic cells.

    Science.gov (United States)

    Dwivedi, Ved Prakash; Bhattacharya, Debapriya; Chatterjee, Samit; Prasad, Durbaka Vijay Raghva; Chattopadhyay, Debprasad; Van Kaer, Luc; Bishai, William R; Das, Gobardhan

    2012-09-28

    Mycobacterium tuberculosis, the causative agent of tuberculosis (TB), resides and replicates within phagocytes and persists in susceptible hosts by modulating protective innate immune responses. Furthermore, M. tuberculosis promotes T helper 2 (Th2) immune responses by altering the balance of T cell polarizing cytokines in infected cells. However, cytokines that regulate Th2 cell differentiation during TB infection remain unknown. Here we show that IL-1β, produced by phagocytes infected by virulent M. tuberculosis strain H37Rv, directs Th2 cell differentiation. In sharp contrast, the vaccine strain bacille Calmette-Guérin as well as RD-1 and ESAT-6 mutants of H37Rv failed to induce IL-1β and promote Th2 cell differentiation. Furthermore, ESAT-6 induced IL-1β production in dendritic cells (DCs), and CD4(+) T cells co-cultured with infected DCs differentiated into Th2 cells. Taken together, our findings indicate that IL-1β induced by RD-1/ESAT-6 plays an important role in the differentiation of Th2 cells, which in turn facilitates progression of TB by inhibiting host protective Th1 responses.

  2. Extracellular Sphingomyelinase Rv0888 of Mycobacterium tuberculosis Contributes to Pathological Lung Injury of Mycobacterium smegmatis in Mice via Inducing Formation of Neutrophil Extracellular Traps.

    Science.gov (United States)

    Dang, Guanghui; Cui, Yingying; Wang, Lei; Li, Tiantian; Cui, Ziyin; Song, Ningning; Chen, Liping; Pang, Hai; Liu, Siguo

    2018-01-01

    Mycobacterium tuberculosis is the causative agent of tuberculosis (TB), which mainly causes pulmonary injury and tubercles. Although macrophages are generally considered to harbor the main cells of M. tuberculosis , new evidence suggests that neutrophils are rapidly recruited to the infected lung. M. tuberculosis itself, or its early secreted antigenic target protein 6 (ESAT-6), can induce formation of neutrophil extracellular traps (NETs). However, NETs trap mycobacteria but are unable to kill them. The role of NETs' formation in the pathogenesis of mycobacteria remains unclear. Here, we report a new M. tuberculosis extracellular factor, bifunctional enzyme Rv0888, with both nuclease and sphingomyelinase activities. Rv0888 sphingomyelinase activity can induce NETs' formation in vitro and in the lung of the mice and enhance the colonization ability of Mycobacterium smegmatis in the lungs of mice. Mice infected by M. smegmatis harboring Rv0888 sphingomyelinase induced pathological injury and inflammation of the lung, which was mainly mediated by NETs, induced by Rv0888 sphingomyelinase, associated protein (myeloperoxidase) triggered caspase-3. In summary, the study sheds new light on the pathogenesis of mycobacteria and reveals a novel target for TB treatment.

  3. Investigating the metabolic capabilities of Mycobacterium tuberculosis H37Rv using the in silico strain iNJ661 and proposing alternative drug targets

    Directory of Open Access Journals (Sweden)

    Palsson Bernhard Ø

    2007-06-01

    Full Text Available Abstract Background: Mycobacterium tuberculosis continues to be a major pathogen in the third world, killing almost 2 million people a year by the most recent estimates. Even in industrialized countries, the emergence of multi-drug resistant (MDR strains of tuberculosis hails the need to develop additional medications for treatment. Many of the drugs used for treatment of tuberculosis target metabolic enzymes. Genome-scale models can be used for analysis, discovery, and as hypothesis generating tools, which will hopefully assist the rational drug development process. These models need to be able to assimilate data from large datasets and analyze them. Results: We completed a bottom up reconstruction of the metabolic network of Mycobacterium tuberculosis H37Rv. This functional in silico bacterium, iNJ661, contains 661 genes and 939 reactions and can produce many of the complex compounds characteristic to tuberculosis, such as mycolic acids and mycocerosates. We grew this bacterium in silico on various media, analyzed the model in the context of multiple high-throughput data sets, and finally we analyzed the network in an 'unbiased' manner by calculating the Hard Coupled Reaction (HCR sets, groups of reactions that are forced to operate in unison due to mass conservation and connectivity constraints. Conclusion: Although we observed growth rates comparable to experimental observations (doubling times ranging from about 12 to 24 hours in different media, comparisons of gene essentiality with experimental data were less encouraging (generally about 55%. The reasons for the often conflicting results were multi-fold, including gene expression variability under different conditions and lack of complete biological knowledge. Some of the inconsistencies between in vitro and in silico or in vivo and in silico results highlight specific loci that are worth further experimental investigations. Finally, by considering the HCR sets in the context of known

  4. Crystal Structure of Mycobacterium tuberculosis H37Rv AldR (Rv2779c), a Regulator of the ald Gene: DNA BINDING AND IDENTIFICATION OF SMALL MOLECULE INHIBITORS.

    Science.gov (United States)

    Dey, Abhishek; Shree, Sonal; Pandey, Sarvesh Kumar; Tripathi, Rama Pati; Ramachandran, Ravishankar

    2016-06-03

    Here we report the crystal structure of M. tuberculosis AldR (Rv2779c) showing that the N-terminal DNA-binding domains are swapped, forming a dimer, and four dimers are assembled into an octamer through crystal symmetry. The C-terminal domain is involved in oligomeric interactions that stabilize the oligomer, and it contains the effector-binding sites. The latter sites are 30-60% larger compared with homologs like MtbFFRP (Rv3291c) and can consequently accommodate larger molecules. MtbAldR binds to the region upstream to the ald gene that is highly up-regulated in nutrient-starved tuberculosis models and codes for l-alanine dehydrogenase (MtbAld; Rv2780). Further, the MtbAldR-DNA complex is inhibited upon binding of Ala, Tyr, Trp and Asp to the protein. Studies involving a ligand-binding site G131T mutant show that the mutant forms a DNA complex that cannot be inhibited by adding the amino acids. Comparative studies suggest that binding of the amino acids changes the relative spatial disposition of the DNA-binding domains and thereby disrupt the protein-DNA complex. Finally, we identified small molecules, including a tetrahydroquinoline carbonitrile derivative (S010-0261), that inhibit the MtbAldR-DNA complex. The latter molecules represent the very first inhibitors of a feast/famine regulatory protein from any source and set the stage for exploring MtbAldR as a potential anti-tuberculosis target. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  5. Mycobacterium tuberculosislpdC, Rv0462, induces dendritic cell maturation and Th1 polarization

    Energy Technology Data Exchange (ETDEWEB)

    Heo, Deok Rim [Department of Microbiology and Immunology, School of Medicine, Pusan National University, Beom-eo Ri, Mulgum Eop, Yangsan, Gyeongsangnam-do 626-770 (Korea, Republic of); Shin, Sung Jae; Kim, Woo Sik [Department of Microbiology, College of Medicine, Chungnam National University, Munwha-Dong, Jung-Ku, Daejeon 301-747 (Korea, Republic of); Noh, Kyung Tae; Park, Jin Wook; Son, Kwang Hee [Department of Microbiology and Immunology, School of Medicine, Pusan National University, Beom-eo Ri, Mulgum Eop, Yangsan, Gyeongsangnam-do 626-770 (Korea, Republic of); Park, Won Sun [Department of Physiology, Kangwon National University, School of Medicine, Chuncheon 200-701 (Korea, Republic of); Lee, Min-Goo [Department of Physiology, Korea University, College of Medicine, Anam-dong, Sungbuk-Gu, Seoul 136-705 (Korea, Republic of); Kim, Daejin [Department of Anatomy, Chung-Ang University, College of Medicine, 221 Heuksuk-Dong, Dongjak-Ku, Seoul 156-756 (Korea, Republic of); Shin, Yong Kyoo [Department of Pharmacology, Chung-Ang University, College of Medicine, 221 Heuksuk-Dong, Dongjak-Ku, Seoul 156-756 (Korea, Republic of); Jung, In Duk, E-mail: jungid@pusan.ac.kr [Department of Microbiology and Immunology, School of Medicine, Pusan National University, Beom-eo Ri, Mulgum Eop, Yangsan, Gyeongsangnam-do 626-770 (Korea, Republic of); Research Institute of Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Beom-eo Ri, Mulgum Eop, Yangsan, Gyeongsangnam-do 626-770 (Korea, Republic of); Park, Yeong-Min, E-mail: immunpym@pusan.ac.kr [Department of Microbiology and Immunology, School of Medicine, Pusan National University, Beom-eo Ri, Mulgum Eop, Yangsan, Gyeongsangnam-do 626-770 (Korea, Republic of); Research Institute of Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Beom-eo Ri, Mulgum Eop, Yangsan, Gyeongsangnam-do 626-770 (Korea, Republic of)

    2011-08-05

    Highlights: {yields} Treatment with Rv0462 induces the expression of surface molecules and the production of cytokines in DCs. {yields} Rv0462 induces the activation of MAPKs. {yields} Rv0462-treated DCs enhances the proliferation of CD4{sup +} T cells. -- Abstract: Mycobacterium tuberculosis, the etiological factor of pulmonary tuberculosis, causes significant morbidity and mortality worldwide. Activation of host immune responses for containment of mycobacterial infections involves participation of innate immune cells, such as dendritic cells (DCs). In this study, we demonstrated that the gene encoding lipoamide dehydrogenase C (lpdC) from M. tuberculosis, Rv0462, induce maturation and activation of DCs involved in the MAPKs signaling pathway. Moreover, Rv0462-treated DCs activated naive T cells, polarized CD4{sup +} and CD8{sup +} T cells to secrete IFN-{gamma} in syngeneic mixed lymphocyte reactions, which would be expected to contribute to Th1 polarization of the immune response. Our results suggest that Rv0462 can contribute to the innate and adaptive immune responses during tuberculosis infection, and thus modulate the clinical course of tuberculosis.

  6. Mycobacterium tuberculosislpdC, Rv0462, induces dendritic cell maturation and Th1 polarization

    International Nuclear Information System (INIS)

    Heo, Deok Rim; Shin, Sung Jae; Kim, Woo Sik; Noh, Kyung Tae; Park, Jin Wook; Son, Kwang Hee; Park, Won Sun; Lee, Min-Goo; Kim, Daejin; Shin, Yong Kyoo; Jung, In Duk; Park, Yeong-Min

    2011-01-01

    Highlights: → Treatment with Rv0462 induces the expression of surface molecules and the production of cytokines in DCs. → Rv0462 induces the activation of MAPKs. → Rv0462-treated DCs enhances the proliferation of CD4 + T cells. -- Abstract: Mycobacterium tuberculosis, the etiological factor of pulmonary tuberculosis, causes significant morbidity and mortality worldwide. Activation of host immune responses for containment of mycobacterial infections involves participation of innate immune cells, such as dendritic cells (DCs). In this study, we demonstrated that the gene encoding lipoamide dehydrogenase C (lpdC) from M. tuberculosis, Rv0462, induce maturation and activation of DCs involved in the MAPKs signaling pathway. Moreover, Rv0462-treated DCs activated naive T cells, polarized CD4 + and CD8 + T cells to secrete IFN-γ in syngeneic mixed lymphocyte reactions, which would be expected to contribute to Th1 polarization of the immune response. Our results suggest that Rv0462 can contribute to the innate and adaptive immune responses during tuberculosis infection, and thus modulate the clinical course of tuberculosis.

  7. Early secreted antigen ESAT-6 of Mycobacterium tuberculosis promotes protective T helper 17 cell responses in a toll-like receptor-2-dependent manner.

    Directory of Open Access Journals (Sweden)

    Samit Chatterjee

    2011-11-01

    Full Text Available Despite its relatively poor efficacy, Bacillus Calmette-Guérin (BCG has been used as a tuberculosis (TB vaccine since its development in 1921. BCG induces robust T helper 1 (Th1 immune responses but, for many individuals, this is not sufficient for host resistance against Mycobacterium tuberculosis (M. tb infection. Here we provide evidence that early secreted antigenic target protein 6 (ESAT-6, expressed by the virulent M. tb strain H37Rv but not by BCG, promotes vaccine-enhancing Th17 cell responses. These activities of ESAT-6 were dependent on TLR-2/MyD88 signalling and involved IL-6 and TGF-β production by dendritic cells. Thus, animals that were previously infected with H37Rv or recombinant BCG containing the RD1 region (BCG::RD1 exhibited improved protection upon re-challenge with virulent H37Rv compared with mice previously infected with BCG or RD1-deficient H37Rv (H37RvΔRD1. However, TLR-2 knockout (TLR-2⁻/⁻ animals neither showed Th17 responses nor exhibited improved protection in response to immunization with H37Rv. Furthermore, H37Rv and BCG::RD1 infection had little effect on the expression of the anti-inflammatory microRNA-146a (miR146a in dendritic cells (DCs, whereas BCG and H37RvΔRD1 profoundly induced its expression in DCs. Consistent with these findings, ESAT-6 had no effect on miR146a expression in uninfected DCs, but dramatically inhibited its upregulation in BCG-infected or LPS-treated DCs. Collectively, our findings indicate that, in addition to Th1 immunity induced by BCG, RD1/ESAT-6-induced Th17 immune responses are essential for optimal vaccine efficacy.

  8. Ursolic and oleanolic acids as antimicrobial and immunomodulatory compounds for tuberculosis treatment.

    Science.gov (United States)

    Jiménez-Arellanes, Adelina; Luna-Herrera, Julieta; Cornejo-Garrido, Jorge; López-García, Sonia; Castro-Mussot, María Eugenia; Meckes-Fischer, Mariana; Mata-Espinosa, Dulce; Marquina, Brenda; Torres, Javier; Hernández-Pando, Rogelio

    2013-10-07

    New alternatives for the treatment of Tuberculosis (TB) are urgently needed and medicinal plants represent a potential option. Chamaedora tepejilote and Lantana hispida are medicinal plants from Mexico and their hexanic extracts have shown antimycobacterial activity. Bioguided investigation of these extracts showed that the active compounds were ursolic acid (UA) and oleanolic acid (OA). The activity of UA and OA against Mycobacterium tuberculosis H37Rv, four monoresistant strains, and two drug-resistant clinical isolates were determined by MABA test. The intracellular activity of UA and OA against M. tuberculosis H37Rv and a MDR clinical isolate were evaluated in a macrophage cell line. Finally, the antitubercular activity of UA and OA was tested in BALB/c mice infected with M. tuberculosis H37Rv or a MDR strain, by determining pulmonary bacilli loads, tissue damage by automated histomorphometry, and expression of IFN-γ, TNF-α, and iNOS by quantitative RT-PCR. The in vitro assay showed that the UA/OA mixture has synergistic activity. The intracellular activity of these compounds against M. tuberculosis H37Rv and a MDR clinical isolate in a macrophage cell line showed that both compounds, alone and in combination, were active against intracellular mycobacteria even at low doses. Moreover, when both compounds were used to treat BALB/c mice with TB induced by H37Rv or MDR bacilli, a significant reduction of bacterial loads and pneumonia were observed compared to the control. Interestingly, animals treated with UA and OA showed a higher expression of IFN-γ and TNF-α in their lungs, than control animals. UA and OA showed antimicrobial activity plus an immune-stimulatory effect that permitted the control of experimental pulmonary TB.

  9. Cloning, overexpression, purification and preliminary X-ray analysis of a feast/famine regulatory protein (Rv2779c) from Mycobacterium tuberculosis H37Rv.

    Science.gov (United States)

    Dey, Abhishek; Ramachandran, Ravishankar

    2014-01-01

    Rv2779c from Mycobacterium tuberculosis is a feast/famine regulatory protein. This class of proteins are also known as the leucine-responsive regulatory protein/asparagine synthase C family (Lrp/AsnC) of transcriptional regulators and are known to be involved in various metabolic processes in bacteria and fungi. They contain a RAM (regulator of amino-acid metabolism) domain that is rarely found in humans and acts as the oligomerization domain. Since the oligomeric status is often linked to the particular functional role in these proteins, binding of ligands to the domain can elicit specific functional responses. Full-length Rv2779c corresponding to a molecular mass of 19.8 kDa and 179 residues was cloned and purified to homogeneity following transformation into Escherichia coli C41 (DE3) cells. Crystals were grown by vapour diffusion using the hanging-drop method. Diffraction data extending to 2.8 Å resolution were collected from a single crystal that belonged to space group P2(1)2(1)2, with unit-cell parameters a = 99.6, b = 146.0, c = 49.9 Å. Matthews coefficient (VM) calculations suggest that four molecules are present in the asymmetric unit, corresponding to a solvent content of ∼46%. Molecular-replacement calculations using the crystal structure of a homologue, Rv3291c, as the search model gave an unambiguous solution corresponding to four subunits in the asymmetric unit.

  10. Mycobacterium tuberculosis strains exhibit differential and strain-specific molecular signatures in pulmonary epithelial cells.

    Science.gov (United States)

    Mvubu, Nontobeko Eunice; Pillay, Balakrishna; Gamieldien, Junaid; Bishai, William; Pillay, Manormoney

    2016-12-01

    Although pulmonary epithelial cells are integral to innate and adaptive immune responses during Mycobacterium tuberculosis infection, global transcriptomic changes in these cells remain largely unknown. Changes in gene expression induced in pulmonary epithelial cells infected with M. tuberculosis F15/LAM4/KZN, F11, F28, Beijing and Unique genotypes were investigated by RNA sequencing (RNA-Seq). The Illumina HiSeq 2000 platform generated 50 bp reads that were mapped to the human genome (Hg19) using Tophat (2.0.10). Differential gene expression induced by the different strains in infected relative to the uninfected cells was quantified and compared using Cufflinks (2.1.0) and MeV (4.0.9), respectively. Gene expression varied among the strains with the total number of genes as follows: F15/LAM4/KZN (1187), Beijing (1252), F11 (1639), F28 (870), Unique (886) and H37Rv (1179). A subset of 292 genes was commonly induced by all strains, where 52 genes were down-regulated while 240 genes were up-regulated. Differentially expressed genes were compared among the strains and the number of induced strain-specific gene signatures were as follows: F15/LAM4/KZN (138), Beijing (52), F11 (255), F28 (55), Unique (186) and H37Rv (125). Strain-specific molecular gene signatures associated with functional pathways were observed only for the Unique and H37Rv strains while certain biological functions may be associated with other strain signatures. This study demonstrated that strains of M. tuberculosis induce differential gene expression and strain-specific molecular signatures in pulmonary epithelial cells. Specific signatures induced by clinical strains of M. tuberculosis can be further explored for novel host-associated biomarkers and adjunctive immunotherapies. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Idala: An unnamed Function Peptide Vaccine for Tuberculosis ...

    African Journals Online (AJOL)

    Purpose: To evaluate Myt272 protein antigenicity and immunogenicity by trial vaccination in mice and its in silico analysis as a potential peptide vaccine for tuberculosis. Methods: Myt272 gene, which has 100 % identity with Mycobacterium tuberculosis H37Rv unknown function gene Rv3424c, was ligated by genomic ...

  12. Crystal Structure of Full-length Mycobacterium tuberculosis H37Rv Glycogen Branching Enzyme; Insights of N-Terminal [beta]-Sandwich in Sustrate Specifity and Enzymatic Activity

    Energy Technology Data Exchange (ETDEWEB)

    Pal, Kuntal; Kumar, Shiva; Sharma, Shikha; Garg, Saurabh Kumar; Alam, Mohammad Suhail; Xu, H. Eric; Agrawal, Pushpa; Swaminathan, Kunchithapadam (NU Sinapore); (Van Andel); (IMT-India)

    2010-07-13

    The open reading frame Rv1326c of Mycobacterium tuberculosis (Mtb) H37Rv encodes for an {alpha}-1,4-glucan branching enzyme (MtbGlgB, EC 2.4.1.18, Uniprot entry Q10625). This enzyme belongs to glycoside hydrolase (GH) family 13 and catalyzes the branching of a linear glucose chain during glycogenesis by cleaving a 1 {yields} 4 bond and making a new 1 {yields} 6 bond. Here, we show the crystal structure of full-length MtbGlgB (MtbGlgBWT) at 2.33-{angstrom} resolution. MtbGlgBWT contains four domains: N1 {beta}-sandwich, N2 {beta}-sandwich, a central ({beta}/{alpha}){sub 8} domain that houses the catalytic site, and a C-terminal {beta}-sandwich. We have assayed the amylase activity with amylose and starch as substrates and the glycogen branching activity using amylose as a substrate for MtbGlgBWT and the N1 domain-deleted (the first 108 residues deleted) Mtb{Delta}108GlgB protein. The N1 {beta}-sandwich, which is formed by the first 105 amino acids and superimposes well with the N2 {beta}-sandwich, is shown to have an influence in substrate binding in the amylase assay. Also, we have checked and shown that several GH13 family inhibitors are ineffective against MtbGlgBWT and Mtb{Delta}108GlgB. We propose a two-step reaction mechanism, for the amylase activity (1 {yields} 4 bond breakage) and isomerization (1 {yields} 6 bond formation), which occurs in the same catalytic pocket. The structural and functional properties of MtbGlgB and Mtb{Delta}108GlgB are compared with those of the N-terminal 112-amino acid-deleted Escherichia coli GlgB (EC{Delta}112GlgB).

  13. Mycobacterium tuberculosis Universal Stress Protein Rv2623 Regulates Bacillary Growth by ATP Binding: Requirement for Establishing Chronic Persistent Infection

    Energy Technology Data Exchange (ETDEWEB)

    Drumm, J.; Mi, K; Bilder, P; Sun, M; Lim, J; Bielefeldt-Ohmann, H; Basaraba, R; So, M; Zhu, G; et. al.

    2009-01-01

    Tuberculous latency and reactivation play a significant role in the pathogenesis of tuberculosis, yet the mechanisms that regulate these processes remain unclear. The Mycobacterium tuberculosisuniversal stress protein (USP) homolog, rv2623, is among the most highly induced genes when the tubercle bacillus is subjected to hypoxia and nitrosative stress, conditions thought to promote latency. Induction of rv2623 also occurs when M. tuberculosis encounters conditions associated with growth arrest, such as the intracellular milieu of macrophages and in the lungs of mice with chronic tuberculosis. Therefore, we tested the hypothesis that Rv2623 regulates tuberculosis latency. We observed that an Rv2623-deficient mutant fails to establish chronic tuberculous infection in guinea pigs and mice, exhibiting a hypervirulence phenotype associated with increased bacterial burden and mortality. Consistent with this in vivo growth-regulatory role, constitutive overexpression of rv2623 attenuates mycobacterial growth in vitro. Biochemical analysis of purified Rv2623 suggested that this mycobacterial USP binds ATP, and the 2.9-A-resolution crystal structure revealed that Rv2623 engages ATP in a novel nucleotide-binding pocket. Structure-guided mutagenesis yielded Rv2623 mutants with reduced ATP-binding capacity. Analysis of mycobacteria overexpressing these mutants revealed that the in vitro growth-inhibitory property of Rv2623 correlates with its ability to bind ATP. Together, the results indicate that i M. tuberculosis Rv2623 regulates mycobacterial growth in vitro and in vivo, and ii Rv2623 is required for the entry of the tubercle bacillus into the chronic phase of infection in the host; in addition, iii Rv2623 binds ATP; and iv the growth-regulatory attribute of this USP is dependent on its ATP-binding activity. We propose that Rv2623 may function as an ATP-dependent signaling intermediate in a pathway that promotes persistent infection.

  14. Aptamer from whole-bacterium SELEX as new therapeutic reagent against virulent Mycobacterium tuberculosis

    International Nuclear Information System (INIS)

    Chen, Fan; Zhou, Jing; Luo, Fengling; Mohammed, Al-Bayati; Zhang, Xiao-Lian

    2007-01-01

    Worldwide, tuberculosis (TB) remains the most frequent and important infectious disease causing morbidity and death. One-third of the world's population is infected with Mycobacterium tuberculosis (MTB), the etiologic agent of TB. Because of the global health problems of TB, the development of potent new anti-TB drugs without cross-resistance with known antimycobacterial agents is urgently needed. In this study, we have applied a Systematic Evolution of Ligands by Exponential Enrichment (SELEX) process to identify a single aptamer (NK2) that binds to virulent strain M. tuberculosis (H37Rv) with high affinity and specificity. We have found that this aptamer improves CD4 + T cells to produce IFN-γ after binding to H37Rv. The different component between H37Rv and BCG was identified as some membrane protein. Moreover, the survival rates of mice challenged with i.v. H37Rv have been prolonged after treatment with single injection of aptamer NK2. The bacterial numbers were significantly lower in the spleen of mice treated with aptamer NK2. The histopathological examination of lung biopsy specimens showed lesser pulmonary alveolar fusion and swelling in the presence of the aptamer. These results suggest that aptamer NK2 has inhibitory effects on M. tuberculosis and can be used as antimycobacterial agent

  15. Influence of ESAT-6 secretion system 1 (RD1) of Mycobacterium tuberculosis on the interaction between mycobacteria and the host immune system.

    Science.gov (United States)

    Majlessi, Laleh; Brodin, Priscille; Brosch, Roland; Rojas, Marie-Jésus; Khun, Huot; Huerre, Michel; Cole, Stewart T; Leclerc, Claude

    2005-03-15

    The chromosomal locus encoding the early secreted antigenic target, 6 kDa (ESAT-6) secretion system 1 of Mycobacterium tuberculosis, also referred to as "region of difference 1 (RD1)," is absent from Mycobacterium bovis bacillus Calmette-Guerin (BCG). In this study, using low-dose aerosol infection in mice, we demonstrate that BCG complemented with RD1 (BCG::RD1) displays markedly increased virulence which albeit does not attain that of M. tuberculosis H37Rv. Nevertheless, phenotypic and functional analyses of immune cells at the site of infection show that the capacity of BCG::RD1 to initiate recruitment/activation of immune cells is comparable to that of fully virulent H37Rv. Indeed, in contrast to the parental BCG, BCG::RD1 mimics H37Rv and induces substantial influx of activated (CD44highCD45RB(-)CD62L(-)) or effector (CD45RB(-)CD27(-)) T cells and of activated CD11c(+)CD11bhigh cells to the lungs of aerosol-infected mice. For the first time, using in vivo analysis of transcriptome of inflammatory cytokines and chemokines of lung interstitial CD11c+ cells, we show that in a low-dose aerosol infection model, BCG::RD1 triggered an activation/inflammation program comparable to that induced by H37Rv while parental BCG, due to its overattenuation, did not initiate the activation program in lung interstitial CD11c+ cells. Thus, products encoded by the ESAT-6 secretion system 1 of M. tuberculosis profoundly modify the interaction between mycobacteria and the host innate and adaptive immune system. These modifications can explain the previously described improved protective capacity of BCG::RD1 vaccine candidate against M. tuberculosis challenge.

  16. Rapid Reagentless Detection of M. tuberculosis H37Ra in Respiratory Effluents

    International Nuclear Information System (INIS)

    Adams, K.L.; Steele, P.T.; Bogan, M.J.; Sadler, N.M.; Martin, S.; Martin, A.N.; Frank, M.

    2008-01-01

    Two similar mycobacteria, Mycobacteria tuberculosis H37Ra and Mycobacteria smegmatis are rapidly detected and identified within samples containing a complex background of respiratory effluents using Single Particle Aerosol Mass Spectrometry (SPAMS). M. tuberculosis H37Ra (TBa), an avirulent strain, is used as a surrogate for virulent tuberculosis (TBv); M. smegmatis (MSm) is utilized as a near neighbor confounder for TBa. Bovine lung surfactant and human exhaled breath condensate are used as first-order surrogates for infected human lung expirations from patients with pulmonary tuberculosis. This simulated background sputum is mixed with TBa or MSm and nebulized to produce conglomerate aerosol particles, single particles that contain a bacterium embedded within a background respiratory matrix. Mass spectra of single conglomerate particles exhibit ions associated with both respiratory effluents and mycobacteria. Spectral features distinguishing TBa from MSm in pure and conglomerate particles are shown. SPAMS pattern matching alarm algorithms are able to distinguish TBa containing particles from background matrix and MSm for >50% of the test particles, which is sufficient to enable a high probability of detection and a low false alarm rate if an adequate number of such particles are present. These results indicate the potential usefulness of SPAMS for rapid, reagentless tuberculosis screening

  17. Rapid Reagentless Detection of M. tuberculosis H37Ra in Respiratory Effluents

    Energy Technology Data Exchange (ETDEWEB)

    Adams, K L; Steele, P T; Bogan, M J; Sadler, N M; Martin, S; Martin, A N; Frank, M

    2008-01-29

    Two similar mycobacteria, Mycobacteria tuberculosis H37Ra and Mycobacteria smegmatis are rapidly detected and identified within samples containing a complex background of respiratory effluents using Single Particle Aerosol Mass Spectrometry (SPAMS). M. tuberculosis H37Ra (TBa), an avirulent strain, is used as a surrogate for virulent tuberculosis (TBv); M. smegmatis (MSm) is utilized as a near neighbor confounder for TBa. Bovine lung surfactant and human exhaled breath condensate are used as first-order surrogates for infected human lung expirations from patients with pulmonary tuberculosis. This simulated background sputum is mixed with TBa or MSm and nebulized to produce conglomerate aerosol particles, single particles that contain a bacterium embedded within a background respiratory matrix. Mass spectra of single conglomerate particles exhibit ions associated with both respiratory effluents and mycobacteria. Spectral features distinguishing TBa from MSm in pure and conglomerate particles are shown. SPAMS pattern matching alarm algorithms are able to distinguish TBa containing particles from background matrix and MSm for >50% of the test particles, which is sufficient to enable a high probability of detection and a low false alarm rate if an adequate number of such particles are present. These results indicate the potential usefulness of SPAMS for rapid, reagentless tuberculosis screening.

  18. Structure of Rv1848 (UreA), the Mycobacterium tuberculosis urease γ subunit

    International Nuclear Information System (INIS)

    Habel, Jeff E.; Bursey, Evan H.; Rho, Beom-Seop; Kim, Chang-Yub; Segelke, Brent W.; Rupp, Bernhard; Park, Min S.; Terwilliger, Thomas C.; Hung, Li-Wei

    2010-01-01

    Crystal and solution structures of Rv1848 protein and their implications in the biological assembly of Mtb urease is presented. The crystal structure of the urease γ subunit (UreA) from Mycobacterium tuberculosis, Rv1848, has been determined at 1.8 Å resolution. The asymmetric unit contains three copies of Rv1848 arranged into a homotrimer that is similar to the UreA trimer in the structure of urease from Klebsiella aerogenes. Small-angle X-ray scattering experiments indicate that the Rv1848 protein also forms trimers in solution. The observed homotrimer and the organization of urease genes within the M. tuberculosis genome suggest that M. tuberculosis urease has the (αβγ) 3 composition observed for other bacterial ureases. The γ subunit may be of primary importance for the formation of the urease quaternary structure

  19. Differential expression of miRNAs by macrophages infected with virulent and avirulent Mycobacterium tuberculosis.

    Science.gov (United States)

    Das, Kishore; Saikolappan, Sankaralingam; Dhandayuthapani, Subramanian

    2013-12-01

    MicroRNAs (miRNAs) are small non-coding RNAs which post-transcriptionally regulate a wide range of biological processes that include cellular differentiation, development, immunity and apoptosis. There is a growing body of evidences that bacteria modulate immune responses by altering the expression of host miRNAs. Since macrophages are immune cells associated with innate and adaptive immunity, we investigated whether Mycobacterium tuberculosis infection affects miRNAs of macrophages. THP-1 macrophages infected with virulent (H37Rv) and avirulent (H37Ra) strains of M. tuberculosis were analyzed for changes in miRNAs' expression using microarray. This revealed that nine miRNA genes (miR-30a, miR-30e, miR-155, miR-1275, miR-3665, miR-3178, miR-4484, miR-4668-5p and miR-4497) were differentially expressed between THP-1cells infected with M. tuberculosis H37Rv and M. tuberculosis H37Ra strains. Additional characterization of these genes is likely to provide insights into their role in the pathogenesis of tuberculosis. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Identification and application of ssDNA aptamers against H₃₇Rv in the detection of Mycobacterium tuberculosis.

    Science.gov (United States)

    Aimaiti, Rusitanmujiang; Qin, Lianhua; Cao, Ting; Yang, Hua; Wang, Jie; Lu, Junmei; Huang, Xiaochen; Hu, Zhongyi

    2015-11-01

    Microscopy of direct smear with the Ziehl-Neelsen stain is still broadly used in tuberculosis diagnosis. However, this method suffers from low specificity and is difficult to distinguish Mycobacterium tuberculosis (MTB) from nontuberculosis mycobacterial (NTM), since all mycobacterial species are positive in Ziehl-Neelsen stain. In this study, we utilized whole cell SELEX to obtain species-specific aptamers for increasing the specificity of MTB detection. Whole cell SELEX was performed in MTB reference strain H37Rv by two selection processes based on enzyme-linked plate or Eppendorf tube, respectively. To increase success rate of generating aptamers, the selection processes were systematically monitored to understand the dynamic evolution of aptamers against complex structure of target bacteria. Two preponderant groups and ten high-affinity aptamers were obtained by analyzing the dynamic evolution. Preponderant aptamer MA1 from group I showed relatively high binding affinity with apparent dissociation constant (KD value) of 12.02 nM. Sandwich ELISA assay revealed five aptamer combinations effectively bound MTB strains in preliminary evaluation, especially the combination based on aptamer MA2 (another preponderant aptamer from group II) and MA1. Further evaluated in many other strains, MA2/MA1 combination effectively identified MTB from NTM or other pathogenic bacteria, and displayed the high specificity and sensitivity. Binding analysis of aptamer MA1 or MA2 by fluorescence microscopy observation showed high binding reactivity with H37Rv, low apparent cross-reactivity with M. marinum, and no apparent cross-reactivity with Enterobacter cloacae. Taken together, this study provides attractive candidate species-specific aptamers to effectively capture or discriminate MTB strains.

  1. Comparative Analyses of Nonpathogenic, Opportunistic, and Totally Pathogenic Mycobacteria Reveal Genomic and Biochemical Variabilities and Highlight the Survival Attributes of Mycobacterium tuberculosis

    Science.gov (United States)

    Singh, Yadvir; Kohli, Sakshi; Ahmad, Javeed; Ehtesham, Nasreen Z.; Tyagi, Anil K.

    2014-01-01

    ABSTRACT Mycobacterial evolution involves various processes, such as genome reduction, gene cooption, and critical gene acquisition. Our comparative genome size analysis of 44 mycobacterial genomes revealed that the nonpathogenic (NP) genomes were bigger than those of opportunistic (OP) or totally pathogenic (TP) mycobacteria, with the TP genomes being smaller yet variable in size—their genomic plasticity reflected their ability to evolve and survive under various environmental conditions. From the 44 mycobacterial species, 13 species, representing TP, OP, and NP, were selected for genomic-relatedness analyses. Analysis of homologous protein-coding genes shared between Mycobacterium indicus pranii (NP), Mycobacterium intracellulare ATCC 13950 (OP), and Mycobacterium tuberculosis H37Rv (TP) revealed that 4,995 (i.e., ~95%) M. indicaus pranii proteins have homology with M. intracellulare, whereas the homologies among M. indicus pranii, M. intracellulare ATCC 13950, and M. tuberculosis H37Rv were significantly lower. A total of 4,153 (~79%) M. indicus pranii proteins and 4,093 (~79%) M. intracellulare ATCC 13950 proteins exhibited homology with the M. tuberculosis H37Rv proteome, while 3,301 (~82%) and 3,295 (~82%) M. tuberculosis H37Rv proteins showed homology with M. indicus pranii and M. intracellulare ATCC 13950 proteomes, respectively. Comparative metabolic pathway analyses of TP/OP/NP mycobacteria showed enzymatic plasticity between M. indicus pranii (NP) and M. intracellulare ATCC 13950 (OP), Mycobacterium avium 104 (OP), and M. tuberculosis H37Rv (TP). Mycobacterium tuberculosis seems to have acquired novel alternate pathways with possible roles in metabolism, host-pathogen interactions, virulence, and intracellular survival, and by implication some of these could be potential drug targets. PMID:25370496

  2. Conservation in gene encoding Mycobacterium tuberculosis antigen Rv2660 and a high predicted population coverage of H56 multistage vaccine in South Africa.

    Science.gov (United States)

    Perez-Martinez, Angy P; Ong, Edison; Zhang, Lixin; Marrs, Carl F; He, Yongqun; Yang, Zhenhua

    2017-11-01

    H56/AERAS-456+IC31 (H56), composed of two early secretion proteins, Ag85B and ESAT-6, and a latency associated protein, Rv2660, and the IC31 Intercell adjuvant, is a new fusion subunit vaccine candidate designed to induce immunity against both new infection and reactivation of latent tuberculosis infection. Efficacy of subunit vaccines may be affected by the diversity of vaccine antigens among clinical strains and the extent of recognition by the diverse HLA molecules in the recipient population. Although a previous study showed the conservative nature of Ag85B- and ESAT-6-encoding genes, genetic diversity of Rv2660c that encodes RV2660 is largely unknown. The population coverage of H56 as a whole yet remains to be assessed. The present study was conducted to address these important knowledge gaps. DNA sequence analysis of Rv2660c found no variation among 83 of the 84 investigated clinical strains belonging to four genetic lineages. H56 was predicted to have as high as 99.6% population coverage in the South Africa population using the Immune Epitope Database (IEDB) Population Coverage Tool. Further comparison of H56 population coverage between South African Blacks and Caucasians based on the phenotypic frequencies of binding MHC Class I and Class II supertype alleles found that all of the nine MHC-I and six of eight MHC-II human leukocyte antigen (HLA) supertype alleles analyzed were significantly differentially expressed between the two subpopulations. This finding suggests the presence of race-specific functional binding motifs of MHC-I and MHC-II HLA alleles, which, in turn, highlights the importance of including diverse populations in vaccine clinical evaluation. In conclusion, H56 vaccine is predicted to have a promising population coverage in South Africa; this study demonstrates the utility of integrating comparative genomics and bioinformatics in bridging animal and clinical studies of novel TB vaccines. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Active tuberculosis patients have high levels of IgA anti-alpha-crystallin and isocitrate lyase proteins.

    Science.gov (United States)

    Talavera-Paulín, M; García-Morales, L; Ruíz-Sánchez, B P; Caamal-Ley, Á D; Hernández-Solis, A; Ramírez-Casanova, E; Cicero-Sabido, R; Espitia, C; Helguera-Repetto, C; González-Y-Merchand, J A; Flores-Mejía, R; Estrada-Parra, S; Estrada-García, I; Chacón-Salinas, R; Wong-Baeza, I; Serafín-López, J

    2016-12-01

    Mexico City, Mexico. To identify proteins synthetised by Mycobacterium tuberculosis in hypoxic culture, which resemble more closely a granuloma environment than aerobic culture, and to determine if they are recognised by antibodies from patients with active pulmonary tuberculosis (PTB). Soluble extracts from M. tuberculosis H37Rv cultured under aerobic or hypoxic conditions were analysed using two-dimensional polyacrylamide gel electrophoresis, and proteins over-expressed under hypoxia were identified by mass spectrometry. The presence of immunoglobulin (Ig) G, IgA and IgM antibodies against these proteins was determined in the serum of 42 patients with active PTB and 42 healthy controls. We selected three M. tuberculosis H37Rv proteins (alpha-crystallin protein [Acr, Rv2031c], universal stress protein Rv2623 and isocitrate lyase [ICL, RV0467]) that were over-expressed under hypoxia. Titres of anti-Acr and anti-ICL IgA antibodies were higher in patients than in healthy controls, with an area under the receiver operating characteristic curve of 0.71 for anti-ICL IgA antibodies. ICL could be used in combination with other M. tuberculosis antigens to improve the sensitivity and specificity of current serological TB diagnostic methods.

  4. Genomic diversity among Beijing and non-Beijing Mycobacterium tuberculosis isolates from Myanmar.

    Directory of Open Access Journals (Sweden)

    Ruth Stavrum

    2008-04-01

    Full Text Available The Beijing family of Mycobacterium tuberculosis is dominant in countries in East Asia. Genomic polymorphisms are a source of diversity within the M. tuberculosis genome and may account for the variation of virulence among M. tuberculosis isolates. Till date there are no studies that have examined the genomic composition of M. tuberculosis isolates from the high TB-burden country, Myanmar.Twenty-two M. tuberculosis isolates from Myanmar were screened on whole-genome arrays containing genes from M. tuberculosis H37Rv, M. tuberculosis CDC1551 and M. bovis AF22197. Screening identified 198 deletions or extra regions in the clinical isolates compared to H37Rv. Twenty-two regions differentiated between Beijing and non-Beijing isolates and were verified by PCR on an additional 40 isolates. Six regions (Rv0071-0074 [RD105], Rv1572-1576c [RD149], Rv1585c-1587c [RD149], MT1798-Rv1755c [RD152], Rv1761c [RD152] and Rv0279c were deleted in Beijing isolates, of which 4 (Rv1572-1576c, Rv1585c-1587c, MT1798-Rv1755c and Rv1761c were variably deleted among ST42 isolates, indicating a closer relationship between the Beijing and ST42 lineages. The TbD1 region, Mb1582-Mb1583 was deleted in Beijing and ST42 isolates. One M. bovis gene of unknown function, Mb3184c was present in all isolates, except 11 of 13 ST42 isolates. The CDC1551 gene, MT1360 coding for a putative adenylate cyclase, was present in all Beijing and ST42 isolates (except 1. The pks15/1 gene, coding for a putative virulence factor, was intact in all Beijing and non-Beijing isolates, except in ST42 and ST53 isolates.This study describes previously unreported deletions/extra regions in Beijing and non-Beijing M. tuberculosis isolates. The modern and highly frequent ST42 lineage showed a closer relationship to the hypervirulent Beijing lineage than to the ancient non-Beijing lineages. The pks15/1 gene was disrupted only in modern non-Beijing isolates. This is the first report of an in-depth analysis on

  5. Mycothiol acetyltransferase (Rv0819) of Mycobacterium tuberculosis is a potential biomarker for direct diagnosis of tuberculosis using patient serum specimens.

    Science.gov (United States)

    Zeitoun, H; Bahey-El-Din, M; Kassem, M A; Aboushleib, H M

    2017-12-01

    Mycobacterium tuberculosis infection constitutes a global threat that results in significant morbidity and mortality worldwide. Efficient and early diagnosis of tuberculosis (TB) is of paramount importance for successful treatment. The aim of the current study is to investigate the mycobacterial mycothiol acetyltransferase Rv0819 as a potential novel biomarker for the diagnosis of active TB infection. The gene encoding Rv0819 was cloned and successfully expressed in Escherichia coli. The recombinant Rv0819 was purified using metal affinity chromatography and was used to raise murine polyclonal antibodies against Rv0819. The raised antibodies were employed for direct detection of Rv0819 in patient serum samples using dot blot assay and competitive enzyme-linked immunosorbent assay (ELISA). Serum samples were obtained from 68 confirmed new TB patients and 35 healthy volunteers as negative controls. The dot blot assay showed sensitivity of 64·7% and specificity of 100%, whereas the competitive ELISA assay showed lower sensitivity (54·4%) and specificity (88·57%). The overall sensitivity of the combined results of the two tests was found to be 89·7%. Overall, the mycobacterial Rv0819 is a potential TB serum biomarker that can be exploited, in combination with other TB biomarkers, for efficient and reliable diagnosis of active TB infection. The early and accurate diagnosis of tuberculosis infection is of paramount importance for initiating treatment and avoiding clinical complications. Most current diagnostic tests have poor sensitivity and/or specificity and in many cases they are too expensive for routine diagnostic testing in resource-limited settings. In the current study, we examined a novel mycobacterial serum biomarker, namely mycothiol acetyltransferase Rv0819. The antigen was detectable in serum specimens of a significant number of tuberculosis patients. This article proves the importance of Rv0819 and paves the way towards its future use as a useful

  6. Tuberculosis diagnosis and multidrug resistance testing by direct sputum culture in selective broth without decontamination or centrifugation.

    Science.gov (United States)

    Grandjean, Louis; Martin, Laura; Gilman, Robert H; Valencia, Teresa; Herrera, Beatriz; Quino, Willi; Ramos, Eric; Rivero, Maribel; Montoya, Rosario; Escombe, A Roderick; Coleman, David; Mitchison, Denis; Evans, Carlton A

    2008-07-01

    Tuberculosis culture usually requires sputum decontamination and centrifugation to prevent cultures from being overgrown by contaminating bacteria and fungi. However, decontamination destroys many tuberculous bacilli, and centrifugation often is not possible in resource-poor settings. We therefore assessed the performance of Mycobacterium tuberculosis culture with unprocessed samples plated directly by using tuberculosis-selective media and compared this procedure to conventional culture using centrifuge decontamination. Quadruplicate aliquots of strain H37RV were cultured in 7H9 broth with and without selective antimicrobials and after centrifuge decontamination. The subsequent comparison was made with 715 sputum samples. Split paired sputum samples were cultured conventionally with centrifuge decontamination and by direct culture in tuberculosis-selective media containing antibiotics. Centrifuge decontamination reduced tuberculosis H37RV colonies by 78% (P laboratories this deficit may be outweighed by the ease of use.

  7. NCBI nr-aa BLAST: CBRC-TNIG-14-0016 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-TNIG-14-0016 ref|YP_177783.1| PE-PGRS FAMILY PROTEIN [Mycobacterium tuberculosis... H37Rv] ref|YP_001282395.1| PE-PGRS family protein [Mycobacterium tuberculosis H37Ra] pir||E70895 hypothet...ical glycine-rich protein Rv1087 - Mycobacterium tuberculosis (strain H37RV) emb|CAE55354.1| PE-PGRS FAMILY ...PROTEIN [Mycobacterium tuberculosis H37Rv] gb|ABQ72833.1| PE-PGRS family protein [Mycobacterium tuberculosis H37Ra] YP_177783.1 3e-07 36% ...

  8. NCBI nr-aa BLAST: CBRC-TGUT-20-0006 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-TGUT-20-0006 ref|YP_177783.1| PE-PGRS FAMILY PROTEIN [Mycobacterium tuberculosis... H37Rv] ref|YP_001282395.1| PE-PGRS family protein [Mycobacterium tuberculosis H37Ra] pir||E70895 hypothet...ical glycine-rich protein Rv1087 - Mycobacterium tuberculosis (strain H37RV) emb|CAE55354.1| PE-PGRS FAMILY ...PROTEIN [Mycobacterium tuberculosis H37Rv] gb|ABQ72833.1| PE-PGRS family protein [Mycobacterium tuberculosis H37Ra] YP_177783.1 0.001 40% ...

  9. NCBI nr-aa BLAST: CBRC-GGAL-35-0201 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-GGAL-35-0201 ref|YP_177783.1| PE-PGRS FAMILY PROTEIN [Mycobacterium tuberculosis... H37Rv] ref|YP_001282395.1| PE-PGRS family protein [Mycobacterium tuberculosis H37Ra] pir||E70895 hypothet...ical glycine-rich protein Rv1087 - Mycobacterium tuberculosis (strain H37RV) emb|CAE55354.1| PE-PGRS FAMILY ...PROTEIN [Mycobacterium tuberculosis H37Rv] gb|ABQ72833.1| PE-PGRS family protein [Mycobacterium tuberculosis H37Ra] YP_177783.1 3e-22 41% ...

  10. NCBI nr-aa BLAST: CBRC-BTAU-01-3007 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-BTAU-01-3007 ref|YP_177783.1| PE-PGRS FAMILY PROTEIN [Mycobacterium tuberculosis... H37Rv] ref|YP_001282395.1| PE-PGRS family protein [Mycobacterium tuberculosis H37Ra] pir||E70895 hypothet...ical glycine-rich protein Rv1087 - Mycobacterium tuberculosis (strain H37RV) emb|CAE55354.1| PE-PGRS FAMILY ...PROTEIN [Mycobacterium tuberculosis H37Rv] gb|ABQ72833.1| PE-PGRS family protein [Mycobacterium tuberculosis H37Ra] YP_177783.1 9e-36 36% ...

  11. Vitamin B5 Reduces Bacterial Growth via Regulating Innate Immunity and Adaptive Immunity in Mice Infected with Mycobacterium tuberculosis

    Directory of Open Access Journals (Sweden)

    Wenting He

    2018-02-01

    Full Text Available The mechanisms by which vitamins regulate immunity and their effect as an adjuvant treatment for tuberculosis have gradually become very important research topics. Studies have found that vitamin B5 (VB5 can promote epithelial cells to express inflammatory cytokines. We aimed to examine the proinflammatory and antibacterial effect of VB5 in macrophages infected with Mycobacterium tuberculosis (MTB strain H37Rv and the therapeutic potential of VB5 in vivo with tuberculosis. We investigated the activation of inflammatory signal molecules (NF-κB, AKT, JNK, ERK, and p38, the expression of two primary inflammatory cytokines (tumor necrosis factor and interleukin-6 and the bacterial burdens in H37Rv-infected macrophages stimulated with VB5 to explore the effect of VB5 on the inflammatory and antibacterial responses of macrophages. We further treated the H37Rv-infected mice with VB5 to explore VB5’s promotion of the clearance of H37Rv in the lungs and the effect of VB5 on regulating the percentage of inflammatory cells. Our data showed that VB5 enhanced the phagocytosis and inflammatory response in macrophages infected with H37Rv. Oral administration of VB5 decreased the number of colony-forming units of H37Rv in lungs of mice at 1, 2, and 4 weeks after infection. In addition, VB5 regulated the percentage of macrophages and promoted CD4+ T cells to express interferon-γ and interleukin-17; however, it had no effect on the percentage of polymorphonuclear neutrophils, CD4+ and CD8+ T cells. In conclusion, VB5 significantly inhibits the growth of MTB by regulating innate immunity and adaptive immunity.

  12. Construction of a virtual Mycobacterium tuberculosis consensus genome and its application to data from a next generation sequencer.

    Science.gov (United States)

    Okumura, Kayo; Kato, Masako; Kirikae, Teruo; Kayano, Mitsunori; Miyoshi-Akiyama, Tohru

    2015-03-20

    Although Mycobacterium tuberculosis isolates are consisted of several different lineages and the epidemiology analyses are usually assessed relative to a particular reference genome, M. tuberculosis H37Rv, which might introduce some biased results. Those analyses are essentially based genome sequence information of M. tuberculosis and could be performed in sillico in theory, with whole genome sequence (WGS) data available in the databases and obtained by next generation sequencers (NGSs). As an approach to establish higher resolution methods for such analyses, whole genome sequences of the M. tuberculosis complexes (MTBCs) strains available on databases were aligned to construct virtual reference genome sequences called the consensus sequence (CS), and evaluated its feasibility in in sillico epidemiological analyses. The consensus sequence (CS) was successfully constructed and utilized to perform phylogenetic analysis, evaluation of read mapping efficacy, which is crucial for detecting single nucleotide polymorphisms (SNPs), and various MTBC typing methods virtually including spoligotyping, VNTR, Long sequence polymorphism and Beijing typing. SNPs detected based on CS, in comparison with H37Rv, were utilized in concatemer-based phylogenetic analysis to determine their reliability relative to a phylogenetic tree based on whole genome alignment as the gold standard. Statistical comparison of phylogenic trees based on CS with that of H37Rv indicated the former showed always better results that that of later. SNP detection and concatenation with CS was advantageous because the frequency of crucial SNPs distinguishing among strain lineages was higher than those of H37Rv. The number of SNPs detected was lower with the consensus than with the H37Rv sequence, resulting in a significant reduction in computational time. Performance of each virtual typing was satisfactory and accorded with those published when those are available. These results indicated that virtual CS

  13. Studying of the function of expected ABC transporter Rv1458c-Rv1457c-Rv1456c in mycobacteria; Studium funkcie predpokladaneho ABC transportera Rv1458c-Rv1457c-Rv1456c v mykobakteriach

    Energy Technology Data Exchange (ETDEWEB)

    Sarkan, M; Mikusova, K; Kordulakova, J [Univerzita Komenskeho v Bratislave, Prirodovedecka fakulta, Katedra biochemie, 84215 Bratislava (Slovakia)

    2012-04-25

    The bacterium Mycobacterium tuberculosis - the originator of tuberculosis in humans - is characterized by a complex cell wall, which is responsible for a high bacteria resistant to adverse external environmental conditions, as well as to the common antibiotics. The structure of the cell wall components and enzymes involved into its biosynthesis are relatively well described, but there is no information on the transfer of intermediate products of its biosynthetic across the plasmatic membrane. Orthologues of genes rv1459c-rv1458c-rv1457c-rv1456c of M. tuberculosis are in the same configuration in genomes of all previously sequenced mycobacterial strains. Rv1459c gene encodes a probable glycosyltransferases and genes rv1458c, rv1457c rv1456c code nucleotide binding and transmembrane subunits of expected ABC transporter. In our work we focused on the study of the function of expected ABC transporter Rv1458c-Rv1457c-Rv1456c, through analysis of phenotypes of strains M. Smegmatis. They have orthologues of genes encoding the transmembrane subunits of this transporter suspended by fragment encoding resistance to kanamycin. (authors)

  14. Mycobacterium tuberculosis infection induces non-apoptotic cell death of human dendritic cells

    LENUS (Irish Health Repository)

    Ryan, Ruth CM

    2011-10-24

    Abstract Background Dendritic cells (DCs) connect innate and adaptive immunity, and are necessary for an efficient CD4+ and CD8+ T cell response after infection with Mycobacterium tuberculosis (Mtb). We previously described the macrophage cell death response to Mtb infection. To investigate the effect of Mtb infection on human DC viability, we infected these phagocytes with different strains of Mtb and assessed viability, as well as DNA fragmentation and caspase activity. In parallel studies, we assessed the impact of infection on DC maturation, cytokine production and bacillary survival. Results Infection of DCs with live Mtb (H37Ra or H37Rv) led to cell death. This cell death proceeded in a caspase-independent manner, and without nuclear fragmentation. In fact, substrate assays demonstrated that Mtb H37Ra-induced cell death progressed without the activation of the executioner caspases, 3\\/7. Although the death pathway was triggered after infection, the DCs successfully underwent maturation and produced a host-protective cytokine profile. Finally, dying infected DCs were permissive for Mtb H37Ra growth. Conclusions Human DCs undergo cell death after infection with live Mtb, in a manner that does not involve executioner caspases, and results in no mycobactericidal effect. Nonetheless, the DC maturation and cytokine profile observed suggests that the infected cells can still contribute to TB immunity.

  15. Identification of Rv0222 from RD4 as a novel serodiagnostic target for tuberculosis

    DEFF Research Database (Denmark)

    Rosenkrands, Ida; Aagaard, Claus; Weldingh, Karin

    2008-01-01

    tuberculosis patients and healthy controls led to identification of Rv0222 as the most promising serodiagnostic antigen. Recognition of the Rv0222 was compared with the 38 kDa protein and a fusion protein of the RD1 proteins ESAT-6 and CFP10 in a serum panel from pulmonary tuberculosis (TB) patients from......Forty-seven Mycobacterium tuberculosis genes from the 'regions of difference' RD2-7, RD9-13 and RD15 were cloned and expressed, and the purified recombinant proteins were screened for their serodiagnostic potential. Evaluation of six selected proteins in serum samples from Danish resident...

  16. Purification, crystallization and preliminary X-ray crystallographic studies of Rv3705c from Mycobacterium tuberculosis

    International Nuclear Information System (INIS)

    Lu, Feifei; Gao, Feng; Li, Honglin; Gong, Weimin; Zhou, Lin; Bi, Lijun

    2014-01-01

    The cloning, expression, purification, crystallization and preliminary X-ray diffraction analysis of Rv3705c from M. tuberculosis are described. The conserved protein Rv3705c from Mycobacterium tuberculosis has been cloned, expressed, purified and crystallized by the sitting-drop vapour-diffusion method using PEG 3350 as a precipitant. The Rv3705c crystals exhibited space group P6 1 22 or P6 5 22, with unit-cell parameters a = b = 198.0, c = 364.1 Å, α = β = 90, γ = 120°, and diffracted to a resolution of 3.3 Å

  17. Purification, crystallization and preliminary X-ray crystallographic studies of Rv3705c from Mycobacterium tuberculosis

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Feifei [East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, People’s Republic of (China); Gao, Feng [Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, People’s Republic of (China); Li, Honglin [East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, People’s Republic of (China); Gong, Weimin [Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, People’s Republic of (China); Zhou, Lin, E-mail: gdtb-bg@vip.163.com [Center for Tuberculosis Control of Guangdong Province, Guangzhou, People’s Republic of (China); Bi, Lijun, E-mail: gdtb-bg@vip.163.com [East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, People’s Republic of (China)

    2014-07-23

    The cloning, expression, purification, crystallization and preliminary X-ray diffraction analysis of Rv3705c from M. tuberculosis are described. The conserved protein Rv3705c from Mycobacterium tuberculosis has been cloned, expressed, purified and crystallized by the sitting-drop vapour-diffusion method using PEG 3350 as a precipitant. The Rv3705c crystals exhibited space group P6{sub 1}22 or P6{sub 5}22, with unit-cell parameters a = b = 198.0, c = 364.1 Å, α = β = 90, γ = 120°, and diffracted to a resolution of 3.3 Å.

  18. NCBI nr-aa BLAST: CBRC-CJAC-01-0074 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-CJAC-01-0074 ref|YP_177850.1| PPE FAMILY PROTEIN [Mycobacterium tuberculosis H...37Rv] ref|YP_001283249.1| PPE family protein [Mycobacterium tuberculosis H37Ra] pir||E70808 probable PPE protein - Mycobacterium tube...rculosis (strain H37RV) emb|CAE55441.1| PPE FAMILY PROTEIN [Mycobacterium tuberculosis... H37Rv] gb|ABQ73687.1| PPE family protein [Mycobacterium tuberculosis H37Ra] YP_177850.1 0.001 26% ...

  19. NCBI nr-aa BLAST: CBRC-CJAC-01-0949 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-CJAC-01-0949 ref|YP_177830.1| PPE FAMILY PROTEIN [Mycobacterium tuberculosis H...37Rv] ref|YP_001283075.1| PPE family protein [Mycobacterium tuberculosis H37Ra] pir||B70987 probable PPE protein - Mycobacterium tube...rculosis (strain H37RV) emb|CAE55416.1| PPE FAMILY PROTEIN [Mycobacterium tuberculosis... H37Rv] gb|ABQ73513.1| PPE family protein [Mycobacterium tuberculosis H37Ra] YP_177830.1 2e-07 25% ...

  20. NCBI nr-aa BLAST: CBRC-CJAC-01-0908 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-CJAC-01-0908 ref|YP_177830.1| PPE FAMILY PROTEIN [Mycobacterium tuberculosis H...37Rv] ref|YP_001283075.1| PPE family protein [Mycobacterium tuberculosis H37Ra] pir||B70987 probable PPE protein - Mycobacterium tube...rculosis (strain H37RV) emb|CAE55416.1| PPE FAMILY PROTEIN [Mycobacterium tuberculosis... H37Rv] gb|ABQ73513.1| PPE family protein [Mycobacterium tuberculosis H37Ra] YP_177830.1 7e-10 28% ...

  1. NCBI nr-aa BLAST: CBRC-CJAC-01-1001 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-CJAC-01-1001 ref|YP_177830.1| PPE FAMILY PROTEIN [Mycobacterium tuberculosis H...37Rv] ref|YP_001283075.1| PPE family protein [Mycobacterium tuberculosis H37Ra] pir||B70987 probable PPE protein - Mycobacterium tube...rculosis (strain H37RV) emb|CAE55416.1| PPE FAMILY PROTEIN [Mycobacterium tuberculosis... H37Rv] gb|ABQ73513.1| PPE family protein [Mycobacterium tuberculosis H37Ra] YP_177830.1 2e-08 27% ...

  2. NCBI nr-aa BLAST: CBRC-XTRO-01-0381 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-XTRO-01-0381 ref|YP_177830.1| PPE FAMILY PROTEIN [Mycobacterium tuberculosis H...37Rv] ref|YP_001283075.1| PPE family protein [Mycobacterium tuberculosis H37Ra] pir||B70987 probable PPE protein - Mycobacterium tube...rculosis (strain H37RV) emb|CAE55416.1| PPE FAMILY PROTEIN [Mycobacterium tuberculosis... H37Rv] gb|ABQ73513.1| PPE family protein [Mycobacterium tuberculosis H37Ra] YP_177830.1 3e-08 28% ...

  3. NCBI nr-aa BLAST: CBRC-CJAC-01-1255 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-CJAC-01-1255 ref|YP_177830.1| PPE FAMILY PROTEIN [Mycobacterium tuberculosis H...37Rv] ref|YP_001283075.1| PPE family protein [Mycobacterium tuberculosis H37Ra] pir||B70987 probable PPE protein - Mycobacterium tube...rculosis (strain H37RV) emb|CAE55416.1| PPE FAMILY PROTEIN [Mycobacterium tuberculosis... H37Rv] gb|ABQ73513.1| PPE family protein [Mycobacterium tuberculosis H37Ra] YP_177830.1 3e-19 27% ...

  4. NCBI nr-aa BLAST: CBRC-GGAL-35-0335 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-GGAL-35-0335 ref|YP_177830.1| PPE FAMILY PROTEIN [Mycobacterium tuberculosis H...37Rv] ref|YP_001283075.1| PPE family protein [Mycobacterium tuberculosis H37Ra] pir||B70987 probable PPE protein - Mycobacterium tube...rculosis (strain H37RV) emb|CAE55416.1| PPE FAMILY PROTEIN [Mycobacterium tuberculosis... H37Rv] gb|ABQ73513.1| PPE family protein [Mycobacterium tuberculosis H37Ra] YP_177830.1 5e-16 28% ...

  5. NCBI nr-aa BLAST: CBRC-CJAC-01-0774 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-CJAC-01-0774 ref|YP_177830.1| PPE FAMILY PROTEIN [Mycobacterium tuberculosis H...37Rv] ref|YP_001283075.1| PPE family protein [Mycobacterium tuberculosis H37Ra] pir||B70987 probable PPE protein - Mycobacterium tube...rculosis (strain H37RV) emb|CAE55416.1| PPE FAMILY PROTEIN [Mycobacterium tuberculosis... H37Rv] gb|ABQ73513.1| PPE family protein [Mycobacterium tuberculosis H37Ra] YP_177830.1 1e-12 25% ...

  6. NCBI nr-aa BLAST: CBRC-CJAC-01-1306 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-CJAC-01-1306 ref|YP_177830.1| PPE FAMILY PROTEIN [Mycobacterium tuberculosis H...37Rv] ref|YP_001283075.1| PPE family protein [Mycobacterium tuberculosis H37Ra] pir||B70987 probable PPE protein - Mycobacterium tube...rculosis (strain H37RV) emb|CAE55416.1| PPE FAMILY PROTEIN [Mycobacterium tuberculosis... H37Rv] gb|ABQ73513.1| PPE family protein [Mycobacterium tuberculosis H37Ra] YP_177830.1 4e-15 30% ...

  7. NCBI nr-aa BLAST: CBRC-CJAC-01-0299 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-CJAC-01-0299 ref|YP_177830.1| PPE FAMILY PROTEIN [Mycobacterium tuberculosis H...37Rv] ref|YP_001283075.1| PPE family protein [Mycobacterium tuberculosis H37Ra] pir||B70987 probable PPE protein - Mycobacterium tube...rculosis (strain H37RV) emb|CAE55416.1| PPE FAMILY PROTEIN [Mycobacterium tuberculosis... H37Rv] gb|ABQ73513.1| PPE family protein [Mycobacterium tuberculosis H37Ra] YP_177830.1 4e-18 28% ...

  8. NCBI nr-aa BLAST: CBRC-CJAC-01-1056 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-CJAC-01-1056 ref|YP_177830.1| PPE FAMILY PROTEIN [Mycobacterium tuberculosis H...37Rv] ref|YP_001283075.1| PPE family protein [Mycobacterium tuberculosis H37Ra] pir||B70987 probable PPE protein - Mycobacterium tube...rculosis (strain H37RV) emb|CAE55416.1| PPE FAMILY PROTEIN [Mycobacterium tuberculosis... H37Rv] gb|ABQ73513.1| PPE family protein [Mycobacterium tuberculosis H37Ra] YP_177830.1 4e-12 27% ...

  9. NCBI nr-aa BLAST: CBRC-CJAC-01-0354 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-CJAC-01-0354 ref|YP_177830.1| PPE FAMILY PROTEIN [Mycobacterium tuberculosis H...37Rv] ref|YP_001283075.1| PPE family protein [Mycobacterium tuberculosis H37Ra] pir||B70987 probable PPE protein - Mycobacterium tube...rculosis (strain H37RV) emb|CAE55416.1| PPE FAMILY PROTEIN [Mycobacterium tuberculosis... H37Rv] gb|ABQ73513.1| PPE family protein [Mycobacterium tuberculosis H37Ra] YP_177830.1 2e-11 28% ...

  10. 1.55 Å resolution X-ray crystal structure of Rv3902c from Mycobacterium tuberculosis

    Energy Technology Data Exchange (ETDEWEB)

    Reddy, Bharat G.; Moates, Derek B. [University of Alabama at Birmingham, 1025 18th Street South, Birmingham, AL 35233 (United States); Kim, Heung-Bok [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Green, Todd J. [University of Alabama at Birmingham, 1025 18th Street South, Birmingham, AL 35233 (United States); Kim, Chang-Yub; Terwilliger, Thomas C. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); DeLucas, Lawrence J., E-mail: duke2@uab.edu [University of Alabama at Birmingham, 1025 18th Street South, Birmingham, AL 35233 (United States)

    2014-03-25

    The 1.55 Å resolution X-ray crystal structure of Rv3902c from M. tuberculosis reveals a novel fold. The crystallographic structure of the Mycobacterium tuberculosis (TB) protein Rv3902c (176 residues; molecular mass of 19.8 kDa) was determined at 1.55 Å resolution. The function of Rv3902c is unknown, although several TB genes involved in bacterial pathogenesis are expressed from the operon containing the Rv3902c gene. The unique structural fold of Rv3902c contains two domains, each consisting of antiparallel β-sheets and α-helices, creating a hand-like binding motif with a small binding pocket in the palm. Structural homology searches reveal that Rv3902c has an overall structure similar to that of the Salmonella virulence-factor chaperone InvB, with an r.m.s.d. for main-chain atoms of 2.3 Å along an aligned domain.

  11. 1.55 Å resolution X-ray crystal structure of Rv3902c from Mycobacterium tuberculosis

    International Nuclear Information System (INIS)

    Reddy, Bharat G.; Moates, Derek B.; Kim, Heung-Bok; Green, Todd J.; Kim, Chang-Yub; Terwilliger, Thomas C.; DeLucas, Lawrence J.

    2014-01-01

    The 1.55 Å resolution X-ray crystal structure of Rv3902c from M. tuberculosis reveals a novel fold. The crystallographic structure of the Mycobacterium tuberculosis (TB) protein Rv3902c (176 residues; molecular mass of 19.8 kDa) was determined at 1.55 Å resolution. The function of Rv3902c is unknown, although several TB genes involved in bacterial pathogenesis are expressed from the operon containing the Rv3902c gene. The unique structural fold of Rv3902c contains two domains, each consisting of antiparallel β-sheets and α-helices, creating a hand-like binding motif with a small binding pocket in the palm. Structural homology searches reveal that Rv3902c has an overall structure similar to that of the Salmonella virulence-factor chaperone InvB, with an r.m.s.d. for main-chain atoms of 2.3 Å along an aligned domain

  12. ORF Alignment: NC_002755 [GENIUS II[Archive

    Lifescience Database Archive (English)

    Full Text Available NC_002755 gi|15839632 >1gmeA 4 129 9 136 2e-13 ... ref|NP_214765.1| HEAT SHOCK PROTEIN HSP (HEAT-STRESS... ... ref|NP_853922.1| HEAT SHOCK PROTEIN HSP ... (HEAT-STRESS-INDUCED RIBOSOME-BINDING PROTEIN A) ... ...] emb|CAD93121.1| HEAT ... SHOCK PROTEIN HSP (HEAT-STRESS-INDUCED RIBOSOME-BINDING ... PROTEIN...terium tuberculosis ... (strain H37RV) emb|CAA17343.1| HEAT SHOCK PROTEIN HSP ... (HEAT-STRE...SS-INDUCED RIBOSOME-BINDING PROTEIN A) ... [Mycobacterium tuberculosis H37Rv

  13. ORF Alignment: NC_002945 [GENIUS II[Archive

    Lifescience Database Archive (English)

    Full Text Available NC_002945 gi|31791429 >1gmeA 4 129 9 136 2e-13 ... ref|NP_214765.1| HEAT SHOCK PROTEIN HSP (HEAT-STRESS... ... ref|NP_853922.1| HEAT SHOCK PROTEIN HSP ... (HEAT-STRESS-INDUCED RIBOSOME-BINDING PROTEIN A) ... ...] emb|CAD93121.1| HEAT ... SHOCK PROTEIN HSP (HEAT-STRESS-INDUCED RIBOSOME-BINDING ... PROTEIN...terium tuberculosis ... (strain H37RV) emb|CAA17343.1| HEAT SHOCK PROTEIN HSP ... (HEAT-STRE...SS-INDUCED RIBOSOME-BINDING PROTEIN A) ... [Mycobacterium tuberculosis H37Rv

  14. ORF Alignment: NC_000962 [GENIUS II[Archive

    Lifescience Database Archive (English)

    Full Text Available NC_000962 gi|15607392 >1gmeA 4 129 9 136 2e-13 ... ref|NP_214765.1| HEAT SHOCK PROTEIN HSP (HEAT-STRESS... ... ref|NP_853922.1| HEAT SHOCK PROTEIN HSP ... (HEAT-STRESS-INDUCED RIBOSOME-BINDING PROTEIN A) ... ...] emb|CAD93121.1| HEAT ... SHOCK PROTEIN HSP (HEAT-STRESS-INDUCED RIBOSOME-BINDING ... PROTEIN...terium tuberculosis ... (strain H37RV) emb|CAA17343.1| HEAT SHOCK PROTEIN HSP ... (HEAT-STRE...SS-INDUCED RIBOSOME-BINDING PROTEIN A) ... [Mycobacterium tuberculosis H37Rv

  15. NCBI nr-aa BLAST: CBRC-XTRO-01-2803 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-XTRO-01-2803 ref|YP_177978.1| PE-PGRS FAMILY PROTEIN [Mycobacterium tuberculosis... H37Rv] pir||E70806 hypothetical glycine-rich protein Rv3507 - Mycobacterium tuberculosis (strain H37RV) e...mb|CAE55603.1| PE-PGRS FAMILY PROTEIN [Mycobacterium tuberculosis H37Rv] YP_177978.1 9e-35 37% ...

  16. Mycobacterium tuberculosis Rv3402c enhances mycobacterial survival within macrophages and modulates the host pro-inflammatory cytokines production via NF-kappa B/ERK/p38 signaling.

    Directory of Open Access Journals (Sweden)

    Wu Li

    Full Text Available Intracellular survival plays a central role in the pathogenesis of Mycobacterium tuberculosis, a process which depends on an array of virulence factors to colonize and replicate within the host. The M. tuberculosis iron regulated open reading frame (ORF rv3402c, encoding a conserved hypothetical protein, was shown to be up-regulated upon infection in both human and mice macrophages. To explore the function of this ORF, we heterologously expressed the rv3402c gene in the non-pathogenic fast-growing Mycobacterium smegmatis strain, and demonstrated that Rv3402c, a cell envelope-associated protein, was able to enhance the intracellular survival of recombinant M. smegmatis. Enhanced growth was not found to be the result of an increased resistance to intracellular stresses, as growth of the Rv3402c expressing strain was unaffected by iron depletion, H2O2 exposure, or acidic conditions. Colonization of macrophages by M. smegmatis expressing Rv3402c was associated with substantial cell death and significantly greater amount of TNF-α and IL-1β compared with controls. Rv3402c-induced TNF-α and IL-1β production was found to be mediated by NF-κB, ERK and p38 pathway in macrophages. In summary, our study suggests that Rv3402c delivered in a live M. smegmatis vehicle can modify the cytokines profile of macrophage, promote host cell death and enhance the persistence of mycobacterium within host cells.

  17. Crystallization and preliminary X-ray diffraction analysis of prephenate dehydratase from Mycobacterium tuberculosis H37Rv

    Energy Technology Data Exchange (ETDEWEB)

    Vivan, Ana Luiza [Programa de Pós Graduação em Genética e Biologia Molecular, Departamento de Genética, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS (Brazil); Centro de Pesquisa em Biologia Molecular e Funcional, Instituto de Pesquisas Biomédicas, Pontifícia Universidade Católica do Rio Grande do Sul-PUCRS, Av. Ipiranga, 6681 Prédio 92A-TECNOPUC-Partenon, CEP 90619-900, Porto Alegre, RS (Brazil); Dias, Márcio Vinícius Bertacini [Programa de Pós Graduação em Biofísica Molecular, Departamento de Física, IBILCE/UNESP, São José do Rio Preto, SP, 15054-000 (Brazil); Schneider, Cristopher Z. [Programa de Pós Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS (Brazil); Centro de Pesquisa em Biologia Molecular e Funcional, Instituto de Pesquisas Biomédicas, Pontifícia Universidade Católica do Rio Grande do Sul-PUCRS, Av. Ipiranga, 6681 Prédio 92A-TECNOPUC-Partenon, CEP 90619-900, Porto Alegre, RS (Brazil); Azevedo, Walter Filgueira Jr de; Basso, Luiz Augusto, E-mail: luiz.basso@pucrs.br; Santos, Diógenes Santiago, E-mail: luiz.basso@pucrs.br [Centro de Pesquisa em Biologia Molecular e Funcional, Instituto de Pesquisas Biomédicas, Pontifícia Universidade Católica do Rio Grande do Sul-PUCRS, Av. Ipiranga, 6681 Prédio 92A-TECNOPUC-Partenon, CEP 90619-900, Porto Alegre, RS (Brazil); Programa de Pós Graduação em Genética e Biologia Molecular, Departamento de Genética, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS (Brazil)

    2006-04-01

    The M. tuberculosis prephenate dehydratase was cloned, expressed, purified, crystallized by the hanging-drop vapour-diffusion method, and a complete data set collected to 3.2 Å resolution using synchrotron radiation. These results should pave the way for the three-dimensional structure determination of the enzyme and provide a framework on which to base the rational design of chemotherapeutic agents to treat tuberculosis. Tuberculosis remains the leading cause of mortality arising from a bacterial pathogen (Mycobacterium tuberculosis). There is an urgent need for the development of new antimycobacterial agents. The aromatic amino-acid pathway is essential for the survival of this pathogen and represents a target for structure-based drug design. Accordingly, the M. tuberculosis prephenate dehydratase has been cloned, expressed, purified and crystallized by the hanging-drop vapour-diffusion method using PEG 400 as a precipitant. The crystal belongs to the orthorhombic space group I222 or I2{sub 1}2{sub 1}2{sub 1}, with unit-cell parameters a = 98.26, b = 133.22, c = 225.01 Å, and contains four molecules in the asymmetric unit. A complete data set was collected to 3.2 Å resolution using a synchrotron-radiation source.

  18. Crystallization and preliminary X-ray diffraction analysis of prephenate dehydratase from Mycobacterium tuberculosis H37Rv

    International Nuclear Information System (INIS)

    Vivan, Ana Luiza; Dias, Márcio Vinícius Bertacini; Schneider, Cristopher Z.; Azevedo, Walter Filgueira Jr de; Basso, Luiz Augusto; Santos, Diógenes Santiago

    2006-01-01

    The M. tuberculosis prephenate dehydratase was cloned, expressed, purified, crystallized by the hanging-drop vapour-diffusion method, and a complete data set collected to 3.2 Å resolution using synchrotron radiation. These results should pave the way for the three-dimensional structure determination of the enzyme and provide a framework on which to base the rational design of chemotherapeutic agents to treat tuberculosis. Tuberculosis remains the leading cause of mortality arising from a bacterial pathogen (Mycobacterium tuberculosis). There is an urgent need for the development of new antimycobacterial agents. The aromatic amino-acid pathway is essential for the survival of this pathogen and represents a target for structure-based drug design. Accordingly, the M. tuberculosis prephenate dehydratase has been cloned, expressed, purified and crystallized by the hanging-drop vapour-diffusion method using PEG 400 as a precipitant. The crystal belongs to the orthorhombic space group I222 or I2 1 2 1 2 1 , with unit-cell parameters a = 98.26, b = 133.22, c = 225.01 Å, and contains four molecules in the asymmetric unit. A complete data set was collected to 3.2 Å resolution using a synchrotron-radiation source

  19. NCBI nr-aa BLAST: CBRC-TGUT-20-0006 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-TGUT-20-0006 ref|YP_177750.1| PE-PGRS FAMILY PROTEIN [Mycobacterium tuberculosis... H37Rv] pir||E70824 hypothetical glycine-rich protein Rv0746 - Mycobacterium tuberculosis (strain H37RV) e...mb|CAE55316.1| PE-PGRS FAMILY PROTEIN [Mycobacterium tuberculosis H37Rv] YP_177750.1 0.003 38% ...

  20. NCBI nr-aa BLAST: CBRC-CJAC-01-1322 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-CJAC-01-1322 ref|YP_177968.1| PE-PGRS FAMILY PROTEIN [Mycobacterium tuberculosis... H37Rv] pir||C70974 hypothetical glycine-rich protein Rv3388 - Mycobacterium tuberculosis (strain H37RV) e...mb|CAE55593.1| PE-PGRS FAMILY PROTEIN [Mycobacterium tuberculosis H37Rv] YP_177968.1 0.041 29% ...

  1. NCBI nr-aa BLAST: CBRC-XTRO-01-2365 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-XTRO-01-2365 ref|YP_177980.1| PE-PGRS FAMILY PROTEIN [Mycobacterium tuberculosis... H37Rv] pir||A70807 hypothetical glycine-rich protein Rv3511 - Mycobacterium tuberculosis (strain H37RV) e...mb|CAE55605.1| PE-PGRS FAMILY PROTEIN [Mycobacterium tuberculosis H37Rv] YP_177980.1 0.17 36% ...

  2. NCBI nr-aa BLAST: CBRC-TNIG-22-0315 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-TNIG-22-0315 ref|YP_177750.1| PE-PGRS FAMILY PROTEIN [Mycobacterium tuberculosis... H37Rv] pir||E70824 hypothetical glycine-rich protein Rv0746 - Mycobacterium tuberculosis (strain H37RV) e...mb|CAE55316.1| PE-PGRS FAMILY PROTEIN [Mycobacterium tuberculosis H37Rv] YP_177750.1 7e-13 31% ...

  3. NCBI nr-aa BLAST: CBRC-TSYR-01-1466 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-TSYR-01-1466 ref|YP_177750.1| PE-PGRS family protein [Mycobacterium tuberculosis... H37Rv] pir||E70824 hypothetical glycine-rich protein Rv0746 - Mycobacterium tuberculosis (strain H37RV) e...mb|CAE55316.1| PE-PGRS FAMILY PROTEIN [Mycobacterium tuberculosis H37Rv] YP_177750.1 6e-21 35% ...

  4. NCBI nr-aa BLAST: CBRC-DYAK-04-0109 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-DYAK-04-0109 ref|YP_177978.1| PE-PGRS FAMILY PROTEIN [Mycobacterium tuberculosis... H37Rv] pir||E70806 hypothetical glycine-rich protein Rv3507 - Mycobacterium tuberculosis (strain H37RV) e...mb|CAE55603.1| PE-PGRS FAMILY PROTEIN [Mycobacterium tuberculosis H37Rv] YP_177978.1 9e-09 25% ...

  5. NCBI nr-aa BLAST: CBRC-PVAM-01-0838 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-PVAM-01-0838 ref|YP_177982.1| PE-PGRS family protein [Mycobacterium tuberculosis... H37Rv] pir||D70807 hypothetical glycine-rich protein Rv3514 - Mycobacterium tuberculosis (strain H37RV) e...mb|CAE55607.1| PE-PGRS FAMILY PROTEIN [Mycobacterium tuberculosis H37Rv] YP_177982.1 1e-108 30% ...

  6. NCBI nr-aa BLAST: CBRC-HSAP-15-0004 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-HSAP-15-0004 ref|YP_177750.1| PE-PGRS FAMILY PROTEIN [Mycobacterium tuberculosis... H37Rv] pir||E70824 hypothetical glycine-rich protein Rv0746 - Mycobacterium tuberculosis (strain H37RV) e...mb|CAE55316.1| PE-PGRS FAMILY PROTEIN [Mycobacterium tuberculosis H37Rv] YP_177750.1 2e-10 33% ...

  7. NCBI nr-aa BLAST: CBRC-PABE-17-0033 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-PABE-17-0033 ref|YP_177982.1| PE-PGRS FAMILY PROTEIN [Mycobacterium tuberculosis... H37Rv] pir||D70807 hypothetical glycine-rich protein Rv3514 - Mycobacterium tuberculosis (strain H37RV) e...mb|CAE55607.1| PE-PGRS FAMILY PROTEIN [Mycobacterium tuberculosis H37Rv] YP_177982.1 2e-14 32% ...

  8. NCBI nr-aa BLAST: CBRC-GGAL-35-0050 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-GGAL-35-0050 ref|YP_177980.1| PE-PGRS FAMILY PROTEIN [Mycobacterium tuberculosis... H37Rv] pir||A70807 hypothetical glycine-rich protein Rv3511 - Mycobacterium tuberculosis (strain H37RV) e...mb|CAE55605.1| PE-PGRS FAMILY PROTEIN [Mycobacterium tuberculosis H37Rv] YP_177980.1 2e-18 33% ...

  9. Crystallization and preliminary X-ray crystallographic studies of Mycobacterium tuberculosis CRP/FNR family transcription regulator

    International Nuclear Information System (INIS)

    Akif, Mohd; Akhter, Yusuf; Hasnain, Seyed E.; Mande, Shekhar C.

    2006-01-01

    The CRP/FNR family transcription factor from M. tuberculosis H37Rv has been crystallized in space group P2 1 2 1 2 1 in the absence of cAMP. The crystals show the presence of a dimeric molecule in the asymmetric unit. CRP/FNR family members are transcription factors that regulate the transcription of many genes in Escherichia coli and other organisms. Mycobacterium tuberculosis H37Rv contains a probable CRP/FNR homologue encoded by the open reading frame Rv3676. The deletion of this gene is known to cause growth defects in cell culture, in bone marrow-derived macrophages and in a mouse model of tuberculosis. The mycobacterial gene Rv3676 shares ∼32% sequence identity with prototype E. coli CRP. The structure of the protein might provide insight into transcriptional regulation in the pathogen by this protein. The M. tuberculosis CRP/FNR transcription regulator was crystallized in space group P2 1 2 1 2 1 , with unit-cell parameters a = 54.1, b = 84.6, c = 101.2 Å. The crystal diffracted to a resolution of 2.9 Å. Matthews coefficient and self-rotation function calculations reveal the presence of two monomers in the asymmetric unit

  10. Quantitative proteomic analysis of ofloxacin resistant and sensitive clinical isolates of Mycobacterium tuberculosis

    Directory of Open Access Journals (Sweden)

    Xiang-yu HUANG

    2014-10-01

    Full Text Available Objective To identify the proteins related to ofloxacin (OFX resistance of Mycobacterium tuberculosis (MTB. Methods Standard MTB H37Rv strain, clinical isolates of OFX resistant strain (OFXR and sensitive strain (OFXS were obtained from the Chinese Center for Disease Control and Prevention, and they were cultured in Sauton's medium, and then inactivated by 60Co. Whole cellular proteins were extracted from OFXR, OFXS and H37Rv strain of MTB, respectively. The peptides were labeled, separated and identified by isobaric tags of relative and absolute quantitation (iTRAQ combined with Nano LCMS/MS technology. Results One hundred and seventy-five and 134 differential expression proteins were identified in MTB OFXR compared with MTB OFXS and H37Rv, respectively. One hundred and four common differential expression proteins were identified in MTB OFXR compared with both MTB OFXS and H37Rv. The isoelectric point and theoretic relative molecular mass of differential expression proteins were widely distributed. The majority of the common differential expression proteins were involved in intermediary metabolism, respiration, and lipid metabolism. Twelve common differential expression proteins showed significant differences (the ratio>1.2 or <0.55 in MTB OFXR, including Rv0106, Rv0895, Rv2185c, Rv3248c and Rv3841 up-regulation and Rv2524c, Rv2986c, Rv3118 and Rv3597c down-regulation. Conclusion iTRAQ has been used to identify the common differential expression proteins in MTB OFXR compared with both MTB OFXS and H37Rv, which provides a basis for further study of the mechanism of OFX-resistance. DOI: 10.11855/j.issn.0577-7402.2014.09.06

  11. A functional role of Rv1738 in Mycobacterium tuberculosis persistence suggested by racemic protein crystallography.

    Science.gov (United States)

    Bunker, Richard D; Mandal, Kalyaneswar; Bashiri, Ghader; Chaston, Jessica J; Pentelute, Bradley L; Lott, J Shaun; Kent, Stephen B H; Baker, Edward N

    2015-04-07

    Protein 3D structure can be a powerful predictor of function, but it often faces a critical roadblock at the crystallization step. Rv1738, a protein from Mycobacterium tuberculosis that is strongly implicated in the onset of nonreplicating persistence, and thereby latent tuberculosis, resisted extensive attempts at crystallization. Chemical synthesis of the L- and D-enantiomeric forms of Rv1738 enabled facile crystallization of the D/L-racemic mixture. The structure was solved by an ab initio approach that took advantage of the quantized phases characteristic of diffraction by centrosymmetric crystals. The structure, containing L- and D-dimers in a centrosymmetric space group, revealed unexpected homology with bacterial hibernation-promoting factors that bind to ribosomes and suppress translation. This suggests that the functional role of Rv1738 is to contribute to the shutdown of ribosomal protein synthesis during the onset of nonreplicating persistence of M. tuberculosis.

  12. NCBI nr-aa BLAST: CBRC-GACU-10-0021 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-GACU-10-0021 ref|YP_177714.1| PPE FAMILY PROTEIN [Mycobacterium tuberculosis H...37Rv] pir||A70524 probable PPE protein - Mycobacterium tuberculosis (strain H37RV) emb|CAE55269.1| PPE FAMILY PROTEIN [Mycobacterium tuberculosis H37Rv] YP_177714.1 1e-30 41% ...

  13. Molecular characterization of tlyA gene product, Rv1694 of Mycobacterium tuberculosis: A non-conventional hemolysin and a ribosomal RNA methyl transferase

    Directory of Open Access Journals (Sweden)

    Ahmed Neesar

    2010-09-01

    was significantly slower than mock vector transformed E. coli. The S30 extract of E. coli expressing the Rv1694 had poor translational activity in presence of capreomycin, further confirming its methylation activity. Finally, incorporation of methyl group of [3H]-S-adenosylmethionine in isolated ribosomes also confirmed its methylation activity. Conclusions The Rv1694 has an unusual dual activity. It appears to contain two diverse functions such as haemolytic activity and ribosomal RNA methylation activity. It is possible that the haemolytic activity might be relevant to intra-cellular compartments such as phagosomes rather than cell lysis of erythrocytes and the self-assembly trait may have a potential role after successful entry into macrophages by Mycobacterium tuberculosis.

  14. Viability, biofilm formation, and MazEF expression in drug-sensitive and drug-resistant Mycobacterium tuberculosis strains circulating in Xinjiang, China.

    Science.gov (United States)

    Zhao, Ji-Li; Liu, Wei; Xie, Wan-Ying; Cao, Xu-Dong; Yuan, Li

    2018-01-01

    Tuberculosis (TB) caused by Mycobacterium tuberculosis (MTB) is one of the most common chronic infectious amphixenotic diseases worldwide. Prevention and control of TB are greatly difficult, due to the increase in drug-resistant TB, particularly multidrug-resistant TB. We speculated that there were some differences between drug-sensitive and drug-resistant MTB strains and that mazEF 3,6,9 toxin-antitoxin systems (TASs) were involved in MTB viability. This study aimed to investigate differences in viability, biofilm formation, and MazEF expression between drug-sensitive and drug-resistant MTB strains circulating in Xinjiang, China, and whether mazEF 3,6,9 TASs contribute to MTB viability under stress conditions. Growth profiles and biofilm-formation abilities of drug-sensitive, drug-resistant MTB strains and the control strain H37Rv were monitored. Using molecular biology experiments, the mRNA expression of the mazF 3, 6, and 9 toxin genes, the mazE 3, 6, and 9 antitoxin genes, and expression of the MazF9 protein were detected in the different MTB strains, H37RvΔ mazEF 3,6,9 mutants from the H37Rv parent strain were generated, and mutant viability was tested. Ex vivo culture analyses demonstrated that drug-resistant MTB strains exhibit higher survival rates than drug-sensitive strains and the control strain H37Rv. However, there was no statistical difference in biofilm-formation ability in the drug-sensitive, drug-resistant, and H37Rv strains. mazE 3,6 mRNA-expression levels were relatively reduced in the drug-sensitive and drug-resistant strains compared to H37Rv. Conversely, mazE 3,9 expression was increased in drug-sensitive strains compared to drug-resistant strains. Furthermore, compared with the H37Rv strain, mazF 3,6 expression was increased in drug-resistant strains, mazF 9 expression was increased in drug-sensitive strains, and mazF 9 exhibited reduced expression in drug-resistant strains compared with drug-sensitive strains. Protein expression of mazF9

  15. Crystallization and preliminary X-ray analysis of a novel esterase Rv0045c from Mycobacterium tuberculosis

    International Nuclear Information System (INIS)

    Xu, Lipeng; Guo, Jiubiao; Zheng, Xiangdong; Wen, Tingyi; Sun, Fei; Liu, Siguo; Pang, Hai

    2010-01-01

    The novel esterase Rv0045c from M. tuberculosis was expressed and purified to homogeneity. The crystals of native and SeMet-labelled Rv0045c protein that were obtained diffracted to resolutions of 2.7 and 3.0 Å, respectively. The Rv0045c protein is predicted to be an esterase that is involved in lipid metabolism in Mycobacterium tuberculosis. The protein was overproduced in Escherichia coli, purified and crystallized using the hanging-drop vapour-diffusion method. The Rv0045c protein crystals diffracted to a resolution of 2.7 Å using a synchrotron-radiation source and belonged to space group P3 1 or P3 2 , with unit-cell parameters a = b = 73.465, c = 48.064 Å, α = β = 90, γ = 120°. Purified SeMet-labelled Rv0045c protein was also crystallized and formed crystals that diffracted to a resolution of 3.0 Å using an in-house X-ray radiation source

  16. Mutation of Rv2887, a marR-like gene, confers Mycobacterium tuberculosis resistance to an imidazopyridine-based agent.

    Science.gov (United States)

    Winglee, Kathryn; Lun, Shichun; Pieroni, Marco; Kozikowski, Alan; Bishai, William

    2015-11-01

    Drug resistance is a major problem in Mycobacterium tuberculosis control, and it is critical to identify novel drug targets and new antimycobacterial compounds. We have previously identified an imidazo[1,2-a]pyridine-4-carbonitrile-based agent, MP-III-71, with strong activity against M. tuberculosis. In this study, we evaluated mechanisms of resistance to MP-III-71. We derived three independent M. tuberculosis mutants resistant to MP-III-71 and conducted whole-genome sequencing of these mutants. Loss-of-function mutations in Rv2887 were common to all three MP-III-71-resistant mutants, and we confirmed the role of Rv2887 as a gene required for MP-III-71 susceptibility using complementation. The Rv2887 protein was previously unannotated, but domain and homology analyses suggested it to be a transcriptional regulator in the MarR (multiple antibiotic resistance repressor) family, a group of proteins first identified in Escherichia coli to negatively regulate efflux pumps and other mechanisms of multidrug resistance. We found that two efflux pump inhibitors, verapamil and chlorpromazine, potentiate the action of MP-III-71 and that mutation of Rv2887 abrogates their activity. We also used transcriptome sequencing (RNA-seq) to identify genes which are differentially expressed in the presence and absence of a functional Rv2887 protein. We found that genes involved in benzoquinone and menaquinone biosynthesis were repressed by functional Rv2887. Thus, inactivating mutations of Rv2887, encoding a putative MarR-like transcriptional regulator, confer resistance to MP-III-71, an effective antimycobacterial compound that shows no cross-resistance to existing antituberculosis drugs. The mechanism of resistance of M. tuberculosis Rv2887 mutants may involve efflux pump upregulation and also drug methylation. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  17. 2-Thiophenecarboxylic acid hydrazide Derivatives: Synthesis and Anti-Tuberculosis Studies

    Science.gov (United States)

    Fahmi, M. R. G.; Khumaidah, L.; Ilmiah, T. K.; Fadlan, A.; Santoso, M.

    2018-04-01

    One of the most frequent and widespread infectious diseases especially in developing countries is tuberculosis (TB). The number of TB drug resistant tend to increase, and there has been no new TB drug introduce since the 1960s. Six 2-Thiophenecarboxylic acid hydrazide derivatives were synthesized in 90-97% yields, and 2-thiophenecarbonylhydrazone-5, 7-dibromoisatin showed the highest activity in inhibiting M. tuberculosis H37Rv.

  18. NCBI nr-aa BLAST: CBRC-DDIS-02-0229 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-DDIS-02-0229 ref|NP_337051.1| PE_PGRS family protein [Mycobacterium tuberculosis... CDC1551] ref|YP_177886.1| PE-PGRS FAMILY PROTEIN [Mycobacterium tuberculosis H37Rv] ref|YP_001283845.1| P...E-PGRS family protein [Mycobacterium tuberculosis H37Ra] pir||F70868 hypothetical glycine-rich protein Rv2487c - Mycobacterium tuberc...ulosis (strain H37RV) gb|AAK46865.1| PE_PGRS family protein [Mycobacterium tuberc...ulosis CDC1551] emb|CAE55495.1| PE-PGRS FAMILY PROTEIN [Mycobacterium tuberculosis

  19. Transcriptional analysis of genetic region RvD1 of Mycobacterium bovis

    Directory of Open Access Journals (Sweden)

    Víctor Manuel Tibatá R.

    2004-07-01

    Full Text Available Mycobacterium bovis, shares 99.9% of genomic identity with M. tuberculosis, M. africanum and M. microti. Within this 0.1 % of difference, there are two genetic regions characteristics of M. bovis that are deleted in M. tuberculo­sis H37Rv: RvD1 and RvD2. According to bioinformatic analysis, these regions contain Open Reading Frames (ORFs. With the purpose of determining if the RvD1 region transcribes the ORFs predicted by bioinformatics (ORF1, ORF2 and Rv2024; total RNA was extracted from a culture of M. bovis BCG Pasteur, at different time points along the growth curve. The RNA samples were analyzed by Real Time Reverse Transcription - Poly-merase Chain Reaction (RTq-PCR. The findings show that ORF1, ORF2 and Rv2024, were transcribed consti-tutively, something that has not been reported previously. These results are a first step in order to determine the function of M. bovis RvD1 region, its possible role in pathogenesis and its interaction with both cattle and humans. Key words: Mycobacterium bovis, BCG, RNA, Real Time, RT-PCR, RvD1

  20. Structural and Biophysical Characterization of the Mycobacterium tuberculosis Protein Rv0577, a Protein Associated with Neutral Red Staining of Virulent Tuberculosis Strains and Homologue of the Streptomyces coelicolor Protein KbpA

    Energy Technology Data Exchange (ETDEWEB)

    Buchko, Garry W.; Echols, Nathaniel; Flynn, E. M.; Ng, Ho-Leung; Stephenson, Sam; Kim, Heungbok; Myler, Peter J.; Terwilliger, Thomas C.; Alber, Tom; Kim, Chang Y.

    2017-07-25

    The 261-residue Mycobacterium tuberculosis protein Rv0577 is a prominent antigen in tuberculosis patients, the responsible component for neutral red staining of virulent strains of M. tuberculosis, a putative component in a methylglyoxal detoxification pathway, and an agonist of toll-like receptor 2. It also has 36% sequence identity to AfsK-binding protein A (KbpA), a component in the complex secondary metabolite pathways in the Streptomycetes genus from which many commercial antibiotics are derived. To gain insight into the biological function of Rv0577 and the family of KpbA kinase regulators, the crystal structure for Rv0577 was determined to a resolution of 1.75 Å (3OXH), binding properties with neutral red and deoxyadenosine (Ado) surveyed, backbone dynamics measured, and thermal stability assayed by CD spectroscopy. The protein is composed of four approximate repeats with an topology arranged radially in consecutive pairs to form two continuous eight-strand -sheets capped on both ends with an -helix. The two -sheets intersect in the center at roughly a right angle and form an asymmetric deep “saddle” on both sides of the protein, saddle one (P11 to A129) and saddle two (L143 to A258), that may serve to bind ligands. NMR chemical shift perturbation experiments show that neutral red binds to Rv0577, further cementing the role of Rv0577 in the neutral red staining of virulent strains of M. tuberculosis. Similar experiments show that adenosine also bind to Rv0577, although less tightly, with estimated dissociation constants of 4.1 ± 0.3 mM for saddle one and > 1 M for saddle two. Heteronuclear steady-state {1H}-15N NOE, T1, and T2 values were generally uniform through-out the sequence with only a few modest pockets of differences suggestive of slightly different motion in loops between -strands in saddle 1. Circular dichroism spectroscopy characterization of the thermal stability of Rv0577 indicated irreversible unfolding upon heating with an estimated

  1. Forkhead-associated (FHA) Domain Containing ABC Transporter Rv1747 Is Positively Regulated by Ser/Thr Phosphorylation in Mycobacterium tuberculosis*

    Science.gov (United States)

    Spivey, Vicky L.; Molle, Virginie; Whalan, Rachael H.; Rodgers, Angela; Leiba, Jade; Stach, Lasse; Walker, K. Barry; Smerdon, Stephen J.; Buxton, Roger S.

    2011-01-01

    One major signaling method employed by Mycobacterium tuberculosis, the causative agent of tuberculosis, is through reversible phosphorylation of proteins mediated by protein kinases and phosphatases. This study concerns one of these enzymes, the serine/threonine protein kinase PknF, that is encoded in an operon with Rv1747, an ABC transporter that is necessary for growth of M. tuberculosis in vivo and contains two forkhead-associated (FHA) domains. FHA domains are phosphopeptide recognition motifs that specifically recognize phosphothreonine-containing epitopes. Experiments to determine how PknF regulates the function of Rv1747 demonstrated that phosphorylation occurs on two specific threonine residues, Thr-150 and Thr-208. To determine the in vivo consequences of phosphorylation, infection experiments were performed in bone marrow-derived macrophages and in mice using threonine-to-alanine mutants of Rv1747 that prevent specific phosphorylation and revealed that phosphorylation positively modulates Rv1747 function in vivo. The role of the FHA domains in this regulation was further demonstrated by isothermal titration calorimetry, using peptides containing both phosphothreonine residues. FHA-1 domain mutation resulted in attenuation in macrophages highlighting the critical role of this domain in Rv1747 function. A mutant deleted for pknF did not, however, have a growth phenotype in an infection, suggesting that other kinases can fulfill its role when it is absent. This study provides the first information on the molecular mechanism(s) regulating Rv1747 through PknF-dependent phosphorylation but also indicates that phosphorylation activates Rv1747, which may have important consequences in regulating growth of M. tuberculosis. PMID:21622570

  2. Comparative 'omics analyses differentiate Mycobacterium tuberculosis and Mycobacterium bovis and reveal distinct macrophage responses to infection with the human and bovine tubercle bacilli

    Science.gov (United States)

    Malone, Kerri M.; Rue-Albrecht, Kévin; Magee, David A.; Conlon, Kevin; Schubert, Olga T.; Nalpas, Nicolas C.; Browne, John A.; Smyth, Alicia; Gormley, Eamonn; Aebersold, Ruedi; MacHugh, David E.; Gordon, Stephen V.

    2018-01-01

    Members of the Mycobacterium tuberculosis complex (MTBC) are the causative agents of tuberculosis in a range of mammals, including humans. A key feature of MTBC pathogens is their high degree of genetic identity yet distinct host tropism. Notably, while Mycobacterium bovis is highly virulent and pathogenic for cattle, the human pathogen M. tuberculosis is attenuated in cattle. Previous research also suggests that host preference amongst MTBC members has a basis in host innate immune responses. To explore MTBC host tropism, we present in-depth profiling of the MTBC reference strains M. bovis AF2122/97 and M. tuberculosis H37Rv at both the global transcriptional and the translational level via RNA-sequencing and SWATH MS. Furthermore, a bovine alveolar macrophage infection time course model was used to investigate the shared and divergent host transcriptomic response to infection with M. tuberculosis H37Rv or M. bovis AF2122/97. Significant differential expression of virulence-associated pathways between the two bacilli was revealed, including the ESX-1 secretion system. A divergent transcriptional response was observed between M. tuberculosis H37Rv and M. bovis AF2122/97 infection of bovine alveolar macrophages, in particular cytosolic DNA-sensing pathways at 48 h post-infection, and highlights a distinct engagement of M. bovis with the bovine innate immune system. The work presented here therefore provides a basis for the identification of host innate immune mechanisms subverted by virulent host-adapted mycobacteria to promote their survival during the early stages of infection. PMID:29557774

  3. ORF Alignment: NC_002755 [GENIUS II[Archive

    Lifescience Database Archive (English)

    Full Text Available NC_002755 gi|15839498 >1ixcA 2 291 3 298 1e-20 ... ref|NP_214631.1| OXIDATIVE STRESS ...RESPONSE REGULATORY PROTEIN OXYS [Mycobacterium ... tuberculosis H37Rv] ref|NP_853788.1| OXIDATIVE STRESS...ory protein - ... Mycobacterium tuberculosis (strain H37RV) ... emb|CAA17311.1| OXIDATIVE STRESS... RESPONSE REGULATORY ... PROTEIN OXYS [Mycobacterium tuberculosis H37Rv] ... emb|CAD92982.1| OXIDATIVE STRESS

  4. ORF Alignment: NC_002945 [GENIUS II[Archive

    Lifescience Database Archive (English)

    Full Text Available NC_002945 gi|31791295 >1ixcA 2 291 3 298 1e-20 ... ref|NP_214631.1| OXIDATIVE STRESS ...RESPONSE REGULATORY PROTEIN OXYS [Mycobacterium ... tuberculosis H37Rv] ref|NP_853788.1| OXIDATIVE STRESS...ory protein - ... Mycobacterium tuberculosis (strain H37RV) ... emb|CAA17311.1| OXIDATIVE STRESS... RESPONSE REGULATORY ... PROTEIN OXYS [Mycobacterium tuberculosis H37Rv] ... emb|CAD92982.1| OXIDATIVE STRESS

  5. Rv2477c is an antibiotic-sensitive manganese-dependent ABC-F ATPase in Mycobacterium tuberculosis.

    Science.gov (United States)

    Daniel, Jaiyanth; Abraham, Liz; Martin, Amanda; Pablo, Xyryl; Reyes, Shelby

    2018-01-01

    The Rv2477c protein of Mycobacterium tuberculosis (Mtb) belongs to the ATP-binding cassette (ABC) subfamily F that contains proteins with tandem nucleotide-binding domains but lacking transmembrane domains. ABC-F subfamily proteins have been implicated in diverse cellular processes such as translation, antibiotic resistance, cell growth and nutrient sensing. In order to investigate the biochemical characteristics of Rv2477c, we expressed it in Escherichia coli, purified it and characterized its enzymatic functions. We show that Rv2477c displays strong ATPase activity (V max  = 45.5 nmol/mg/min; K m  = 90.5 μM) that is sensitive to orthovanadate. The ATPase activity was maximal in the presence of Mn 2+ at pH 5.2. The Rv2477c protein was also able to hydrolyze GTP, TTP and CTP but at lower rates. Glutamate to glutamine substitutions at amino acid residues 185 and 468 in the two Walker B motifs of Rv2477c severely inhibited its ATPase activity. The antibiotics tetracycline and erythromycin, which target protein translation, were able to inhibit the ATPase activity of Rv2477c. We postulate that Rv2477c could be involved in mycobacterial protein translation and in resistance to tetracyclines and macrolides. This is the first report of the biochemical characterization of an ABC-F subfamily protein in Mtb. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Capsular glucan and intracellular glycogen of Mycobacterium tuberculosis: biosynthesis and impact on the persistence in mice

    DEFF Research Database (Denmark)

    Sambou, Tounkang; Dinadayala, Premkumar; Stadthagen, Gustavo

    2008-01-01

    Mycobacterium tuberculosis and other pathogenic mycobacterial species produce large amounts of a glycogen-like alpha-glucan that represents the major polysaccharide of their outermost capsular layer. To determine the role of the surface-exposed glucan in the physiology and virulence of these bact......Mycobacterium tuberculosis and other pathogenic mycobacterial species produce large amounts of a glycogen-like alpha-glucan that represents the major polysaccharide of their outermost capsular layer. To determine the role of the surface-exposed glucan in the physiology and virulence...... of these bacteria, orthologues of the glg genes involved in the biosynthesis of glycogen in Escherichia coli were identified in M. tuberculosis H37Rv and inactivated by allelic replacement. Biochemical analyses of the mutants and complemented strains indicated that the synthesis of glucan and glycogen involves...... the alpha-1,4-glucosyltransferases Rv3032 and GlgA (Rv1212c), the ADP-glucose pyrophosphorylase GlgC (Rv1213) and the branching enzyme GlgB (Rv1326c). Disruption of glgC reduced by half the glucan and glycogen contents of M. tuberculosis, whereas the inactivation of glgA and Rv3032 affected the production...

  7. Proteome analysis of ofloxacin and moxifloxacin induced mycobacterium tuberculosis isolates by proteomic approach.

    Science.gov (United States)

    Lata, Manju; Sharma, Divakar; Kumar, Bhavnesh; Deo, Nirmala; Tiwari, Pramod Kumar; Bisht, Deepa; Venkatesan, Krishnamurthy

    2015-01-01

    Ofloxacin (OFX) and moxifloxacin (MOX) are the most promising second line drugs for tuberculosis treatment. Although the primary mechanism of action of OFX and MOX is gyrase inhibition, other possible mechanisms cannot be ruled out. Being the functional moiety of cell, the proteins act as primary targets for developing drugs, diagnostics and therapeutics. In this study we have investigated the proteomic changes of Mycobacterium tuberculosis isolates induced by OFX and MOX by applying comparative proteomic approaches based on two-dinensional gel electrophoresis (2DE) along with matrix assisted laser desorption ionisation time of flight mass spectrometry (MALDI TOF/TOF-MS) and bioinformatic tools. The findings are likely to provide new understanding of OFX and MOX mechanisms that might be helpful in exploring new diagnostics and drug targets. Our study explored eleven proteins (Rv2889c, Rv2623, Rv0952, Rv1827, Rv1932, Rv0054, Rv1080c, Rv3418c, Rv3914, Rv1636 and Rv0009) that were overexpressed in the presence of drugs. Among them, Rv2623, Rv1827 and Rv1636 were identified as proteins with unknown function. InterProScan and molecular docking revealed that the conserved domain of hypothetical proteins interact with OFX and MOX which indicate a probable inhibition/modulation of the functioning of these proteins by both drugs, which might be overexpressed to overcome this effect.

  8. [Cloning expression and serological evaluation on Mycobacterium tuberculosis four new antigens].

    Science.gov (United States)

    Luo, Q; Li, S J; Xiao, T Y; Li, M C; Liu, H C; Lou, Y L; Wan, K L

    2018-04-10

    Objective: To evaluate the serological diagnostic value of Mycobacterium (M.) tuberculosis four new antigens Rv0432, Rv0674, Rv1566c and Rv1547. Methods: Rv0432, Rv0674, Rv1566c and Rv1547 were amplified from M. tuberculosis strain H37Rv genomic DNA by using PCR, among which Rv1547 was divided into two segments for amplification ( Rv1547-1 and Rv1547-2 ). The segments were cloned into expression vector PET-32a while the recombinant proteins were purified by affinity chromatography. Serums were incubated with BL21 (DE3) proteins. Antibodies IgG against M. tuberculosis were tested with 151 serum samples (41 healthy people and 110 TB patients) by using ELISA. The diagnostic efficiency of antigens was analyzed by means of receiver operating characteristic curve. Difference of the objective proteins in TB patients and healthy controls was compared by t -test. Results: Recombinant antigens Rv0432, Rv0674, Rv1566c, Rv1547-1 and Rv1547-2 were successfully expressed and purified. Results from ELISA showed that the sensitivity, specificity, positive predictive value, negative predictive value, Youden index and area under the curve of Rv0432, Rv0674, Rv1566c, Rv1547-1 and Rv1547-2, as 43.64%-92.73%, 80.49%-92.68%, 0.92-0.94, 0.38-0.80, 0.363-0.732 and 0.649-0.915. All the objective proteins showed significantly higher antibody levels in TB patients, when compared to the healthy controls ( P <0.000 1). Conclusion: The newly identified antigens Rv0432, Rv0674, Rv1566c, Rv1547-1 and Rv1547-2 all performed well when being used for TB serological diagnosis, thus were expected to be new candidate antigens used for TB diagnosis.

  9. Conserved hypothetical protein Rv1977 in Mycobacterium tuberculosis strains contains sequence polymorphisms and might be involved in ongoing immune evasion.

    Science.gov (United States)

    Jiang, Yi; Liu, Haican; Wang, Xuezhi; Li, Guilian; Qiu, Yan; Dou, Xiangfeng; Wan, Kanglin

    2015-01-01

    Host immune pressure and associated parasite immune evasion are key features of host-pathogen co-evolution. A previous study showed that human T cell epitopes of Mycobacterium tuberculosis are evolutionarily hyperconserved and thus it was deduced that M. tuberculosis lacks antigenic variation and immune evasion. Here, we selected 151 clinical Mycobacterium tuberculosis isolates from China, amplified gene encoding Rv1977 and compared the sequences. The results showed that Rv1977, a conserved hypothetical protein, is not conserved in M. tuberculosis strains and there are polymorphisms existed in the protein. Some mutations, especially one frameshift mutation, occurred in the antigen Rv1977, which is uncommon in M.tb strains and may lead to the protein function altering. Mutations and deletion in the gene all affect one of three T cell epitopes and the changed T cell epitope contained more than one variable position, which may suggest ongoing immune evasion.

  10. Design and Construction of a Cloning Vector Containing the hspX Gene of Mycobacterium tuberculosis.

    Science.gov (United States)

    Yaghoubi, Atieh; Aryan, Ehsan; Zare, Hosna; Alami, Shadi; Teimourpour, Roghayeh; Meshkat, Zahra

    2016-10-01

    Tuberculosis (TB) is a major cause of death worldwide. Finding an effective vaccine against TB is the best way to control it. Several vaccines against this disease have been developed but none are completely protective. The aim of this study was to design and construct a cloning vector containing the Mycobacterium tuberculosis (M. tuberculosis) heat shock protein X (hspX) . First, an hspX fragment was amplified by PCR and cloned into plasmid pcDNA3.1(+) and recombinant vector was confirmed. A 435 bp hspX fragment was isolated. The fragment was 100% homologous with hspX of M. tuberculosis strain H37Rv in GenBank. In this study, the cloning vector pcDNA3.1(+), containing a 435-bp hspX fragment of M. tuberculosis , was constructed. This could be used as a DNA vaccine to induce immune responses in animal models in future studies.

  11. Structure of Mycobacterium tuberculosis Rv2714, a representative of a duplicated gene family in Actinobacteria

    International Nuclear Information System (INIS)

    Graña, Martin; Bellinzoni, Marco; Miras, Isabelle; Fiez-Vandal, Cedric; Haouz, Ahmed; Shepard, William; Buschiazzo, Alejandro; Alzari, Pedro M.

    2009-01-01

    The crystal structure of Rv2714, a protein of unknown function from M. tuberculosis, has been determined at 2.6 Å resolution using single-wavelength anomalous diffraction methods. The gene Rv2714 from Mycobacterium tuberculosis, which codes for a hypothetical protein of unknown function, is a representative member of a gene family that is largely confined to the order Actinomycetales of Actinobacteria. Sequence analysis indicates the presence of two paralogous genes in most mycobacterial genomes and suggests that gene duplication was an ancient event in bacterial evolution. The crystal structure of Rv2714 has been determined at 2.6 Å resolution, revealing a trimer in which the topology of the protomer core is similar to that observed in a functionally diverse set of enzymes, including purine nucleoside phosphorylases, some carboxypeptidases, bacterial peptidyl-tRNA hydrolases and even the plastidic form of an intron splicing factor. However, some structural elements, such as a β-hairpin insertion involved in protein oligomerization and a C-terminal α-helical domain that serves as a lid to the putative substrate-binding (or ligand-binding) site, are only found in Rv2714 bacterial homologues and represent specific signatures of this protein family

  12. Structure of Mycobacterium tuberculosis Rv2714, a representative of a duplicated gene family in Actinobacteria

    Energy Technology Data Exchange (ETDEWEB)

    Graña, Martin; Bellinzoni, Marco [Institut Pasteur, Unité de Biochimie Structurale, URA CNRS 2185, 25 Rue du Dr Roux, 75724 Paris (France); Miras, Isabelle; Fiez-Vandal, Cedric; Haouz, Ahmed; Shepard, William [Institut Pasteur, Plate-forme de Cristallogenèse et Diffraction des Rayons X, 25 Rue du Dr Roux, 75724 Paris (France); Buschiazzo, Alejandro; Alzari, Pedro M., E-mail: alzari@pasteur.fr [Institut Pasteur, Unité de Biochimie Structurale, URA CNRS 2185, 25 Rue du Dr Roux, 75724 Paris (France)

    2009-10-01

    The crystal structure of Rv2714, a protein of unknown function from M. tuberculosis, has been determined at 2.6 Å resolution using single-wavelength anomalous diffraction methods. The gene Rv2714 from Mycobacterium tuberculosis, which codes for a hypothetical protein of unknown function, is a representative member of a gene family that is largely confined to the order Actinomycetales of Actinobacteria. Sequence analysis indicates the presence of two paralogous genes in most mycobacterial genomes and suggests that gene duplication was an ancient event in bacterial evolution. The crystal structure of Rv2714 has been determined at 2.6 Å resolution, revealing a trimer in which the topology of the protomer core is similar to that observed in a functionally diverse set of enzymes, including purine nucleoside phosphorylases, some carboxypeptidases, bacterial peptidyl-tRNA hydrolases and even the plastidic form of an intron splicing factor. However, some structural elements, such as a β-hairpin insertion involved in protein oligomerization and a C-terminal α-helical domain that serves as a lid to the putative substrate-binding (or ligand-binding) site, are only found in Rv2714 bacterial homologues and represent specific signatures of this protein family.

  13. Deciphering the biology of Mycobacterium tuberculosis from thecomplete genome sequence

    DEFF Research Database (Denmark)

    Cole, S.T.; Krogh, Anders Stærmose

    1998-01-01

    Countless millions of people have died from tuberculosis, a chronic infectious disease caused by the tubercle bacillus. The complete genome sequence of the best-characterized strain of Mycobacterium tuberculosis, H37Rv, has been determined and analysed in order to improve our understanding....... tuberculosis differs radically from other bacteria in that a very large portion of its coding capacity is devoted to the production of enzymes involved in lipogenesis and lipolysis, and to two new families of glycine-rich proteins with a repetitive structure that may represent a source of antigenic variation....

  14. In vivo induction of neutrophil extracellular traps by Mycobacterium tuberculosis in a guinea pig model.

    Science.gov (United States)

    Filio-Rodríguez, Georgina; Estrada-García, Iris; Arce-Paredes, Patricia; Moreno-Altamirano, María M; Islas-Trujillo, Sergio; Ponce-Regalado, M Dolores; Rojas-Espinosa, Oscar

    2017-10-01

    In 2004, a novel mechanism of cellular death, called 'NETosis', was described in neutrophils. This mechanism, different from necrosis and apoptosis, is characterized by the release of chromatin webs admixed with microbicidal granular proteins and peptides (NETs). NETs trap and kill a variety of microorganisms. Diverse microorganisms, including Mycobacterium tuberculosis, are NET inducers in vitro. The aim of this study was to examine whether M. tuberculosis can also induce NETs in vivo and if the NETs are bactericidal to the microorganism. Guinea pigs were intradermally inoculated with M. tuberculosis H37Rv, and the production of NETs was investigated at several time points thereafter. NETs were detected as early as 30 min post-inoculation and were clearly evident by 4 h post-inoculation. NETs produced in vivo contained DNA, myeloperoxidase, elastase, histones, ROS and acid-fast bacilli. Viable and heat-killed M. tuberculosis, as well as Mycobacterium bovis BCG were efficient NET inducers, as were unilamellar liposomes prepared with lipids from M. tuberculosis. In vitro, guinea pig neutrophils also produced NETs in response to M. tuberculosis. However, neither the in vivo nor the in vitro-produced NETs were able to kill M. tuberculosis. Nevertheless, in vivo, neutrophils might propitiate recruitment and activation of more efficient microbicidal cells.

  15. Three-dimensional models of Mycobacterium tuberculosis proteins Rv1555, Rv1554 and their docking analyses with sildenafil, tadalafil, vardenafil drugs, suggest interference with quinol binding likely to affect protein's function.

    Science.gov (United States)

    Dash, Pallabini; Bala Divya, M; Guruprasad, Lalitha; Guruprasad, Kunchur

    2018-04-18

    Earlier based on bioinformatics analyses, we had predicted the Mycobacterium tuberculosis (M.tb) proteins; Rv1555 and Rv1554, among the potential new tuberculosis drug targets. According to the 'TB-drugome' the Rv1555 protein is 'druggable' with sildenafil (Viagra), tadalafil (Cialis) and vardenafil (Levitra) drugs. In the present work, we intended to understand via computer modeling studies, how the above drugs are likely to inhibit the M.tb protein's function. The three-dimensional computer models for M.tb proteins; Rv1555 and Rv1554 constructed on the template of equivalent membrane anchor subunits of the homologous E.coli quinol fumarate reductase respiratory protein complex, followed by drug docking analyses, suggested that the binding of above drugs interferes with quinol binding sites. Also, we experimentally observed the in-vitro growth inhibition of E.coli bacteria containing the homologous M.tb protein sequences with sildenafil and tadalafil drugs. The predicted binding sites of the drugs is likely to affect the above M.tb proteins function as quinol binding is known to be essential for electron transfer function during anaerobic respiration in the homologous E.coli protein complex. Therefore, sildenafil and related drugs currently used in the treatment of male erectile dysfunction targeting the human phosphodiesterase 5 enzyme may be evaluated for their plausible role as repurposed drugs to treat human tuberculosis.

  16. Iron storage proteins are essential for the survival and pathogenesis of Mycobacterium tuberculosis in THP-1 macrophages and the guinea pig model of infection.

    Science.gov (United States)

    Reddy, P Vineel; Puri, Rupangi Verma; Khera, Aparna; Tyagi, Anil K

    2012-02-01

    Iron is one of the crucial elements required for the growth of Mycobacterium tuberculosis. However, excess free iron becomes toxic for the cells because it catalyzes the production of reactive oxygen radicals, leading to oxidative damage. Hence, it is essential for the pathogen to have the ability to store intracellular iron in an iron-rich environment and utilize it under iron depletion. M. tuberculosis has two iron storage proteins, namely BfrA (Rv1876; a bacterioferritin) and BfrB (Rv3841; a ferritin-like protein). However, the demonstration of biological significance requires the disruption of relevant genes and the evaluation of the resulting mutant for its ability to survive in the host and cause disease. In this study, we have disrupted bfrA and bfrB of M. tuberculosis and demonstrated that these genes are crucial for the storage and supply of iron for the growth of bacteria and to withstand oxidative stress in vitro. In addition, the bfrA bfrB double mutant (H37Rv ΔbfrA ΔbfrB) exhibited a marked reduction in its ability to survive inside human macrophages. Guinea pigs infected with H37Rv ΔbfrA ΔbfrB exhibited a marked diminution in the dissemination of the bacilli to spleen compared to that of the parental strain. Moreover, guinea pigs infected with H37Rv ΔbfrA ΔbfrB exhibited significantly reduced pathological damage in spleen and lungs compared to that of animals infected with the parental strain. Our study clearly demonstrates the importance of these iron storage proteins in the survival and pathogenesis of M. tuberculosis in the host and establishes them as attractive targets for the development of new inhibitors against mycobacterial infections.

  17. The curative activity of thioridazine on mice infected with Mycobacterium tuberculosis

    DEFF Research Database (Denmark)

    Martins, Marta; Viveiros, Miguel; Kristiansen, Jette E

    2007-01-01

    BACKGROUND: The aim of the study was to evaluate the effectiveness of thioridazine (TZ) at different dose levels on mice that had been infected intraperitoneally (i.p.) with a high dose of the Mycobacterium tuberculosis ATCC H37Rv strain. SUBJECTS AND METHODS: Groups of five female BALB/C mice were...

  18. Mycobacterium tuberculosis PPE44 (Rv2770c) is involved in response to multiple stresses and promotes the macrophage expression of IL-12 p40 and IL-6 via the p38, ERK, and NF-κB signaling axis.

    Science.gov (United States)

    Yu, Zhaoxiao; Zhang, Chenhui; Zhou, Mingliang; Li, Qiming; Li, Hui; Duan, Wei; Li, Xue; Feng, Yonghong; Xie, Jianping

    2017-09-01

    Tuberculosis (TB), caused by Mycobacterium tuberculosis, remains a formidable threat to global public health. The successful intracellular persistence of M. tuberculosis significantly contributes to the intractability of tuberculosis. Proline-glutamic acid (PE) and proline-proline-glutamic acid (PPE) are mycobacterial exclusive protein families that widely reported to be involved in the bacterial virulence, physiology and interaction with host. Rv2770c (PPE44), a predicted virulence factor, was up-regulated upon the infected guinea pig lungs. To investigate the role of Rv2770c, we heterologously expressed the PPE44 in the nonpathogenic fast-growing M. smegmatis strain. Subcellular location analysis demonstrated that Rv2770c is a cell wall associated protein, suggestive of a potential candidate involved in host-pathogen interaction. The Rv2770c can enhance M. smegmatis survival within macrophages and under stresses such as H 2 O 2 , SDS, diamide exposure, and low pH condition. M. smegmatis expressing Rv2770c is more virulent as testified by the increased death of macrophages and the increased expression of interlukin-6 (IL-6) and interlukin-12p40 (IL-12p40). Moreover, Rv2770c altered the secretion of IL-6 and IL-12p40 of macrophages via NF-κB, ERK1/2 and p38 MAPK axis. Taken together, this study implicated that Rv2770c was a virulent factor actively engaged in the interaction with host macrophage. Copyright © 2017. Published by Elsevier B.V.

  19. Vitamin D represses rhinovirus replication in cystic fibrosis cells by inducing LL-37.

    Science.gov (United States)

    Schögler, Aline; Muster, Ricardo J; Kieninger, Elisabeth; Casaulta, Carmen; Tapparel, Caroline; Jung, Andreas; Moeller, Alexander; Geiser, Thomas; Regamey, Nicolas; Alves, Marco P

    2016-02-01

    Vitamin D has immunomodulatory properties in the defence against pathogens. Its insufficiency is a widespread feature of cystic fibrosis (CF) patients, which are repeatedly suffering from rhinovirus (RV)-induced pulmonary exacerbations.To investigate whether vitamin D has antiviral activity, primary bronchial epithelial cells from CF children were pre-treated with vitamin D and infected with RV16. Antiviral and anti-inflammatory activity of vitamin D was assessed. RV and LL-37 levels were measured in bronchoalveolar lavage (BAL) of CF children infected with RV.Vitamin D reduced RV16 load in a dose-dependent manner in CF cells (10(-7 )M, pvitamin D in CF cells. Vitamin D did not exert anti-inflammatory properties in RV-infected CF cells. Vitamin D increased the expression of the antimicrobial peptide LL-37 up to 17.4-fold (pvitamin D through the induction of LL-37. Clinical studies are needed to determine the importance of an adequate control of vitamin D for prevention of virus-induced pulmonary CF exacerbations. Copyright ©ERS 2016.

  20. A novel vaccine p846 encoding Rv3615c, Mtb10.4, and Rv2660c elicits robust immune response and alleviates lung injury induced by Mycobacterium infection.

    Science.gov (United States)

    Kong, Hongmei; Dong, Chunsheng; Xiong, Sidong

    2014-01-01

    Development of effective anti-tuberculosis (TB) vaccines is one of the important steps to improve control of TB. Cell-mediated immune response significantly affects the control of M. tuberculosis infection. Thus, vaccines able to elicit strong cellular immune response hold special advantages against TB. In this study, three well-defined mycobacterial antigens (Rv3615c, Mtb10.4 [Rv0228], and Rv2660c) were engineered as a novel triple-antigen fusion DNA vaccine p846. The p846 vaccine consists of a high density of CD4(+) and CD8(+) T-cell epitopes. Intramuscular immunization of p846 induced robust T cells mediated immune response comparable to that of bacillus Calmette-Guérin (BCG) vaccination but more effective than that of individual antigen vaccination. After mycobacterial challenge, p846 immunization decreased bacterial burden at least 15-fold compared with individual antigen-based vaccination. Notably, the lungs of mice immunized with p846 exhibited fewer inflammatory cell infiltrates and less damage than those of control group mice. Our data demonstrate that the potential of p846 vaccine to protect against TB and the feasibility of this design strategy for further TB vaccine development.

  1. Design and Construction of a Cloning Vector Containing the hspX Gene of Mycobacterium tuberculosis

    Directory of Open Access Journals (Sweden)

    Atieh Yaghoubi

    2016-10-01

    Full Text Available Background: Tuberculosis (TB is a major cause of death worldwide. Finding an effective vaccine against TB is the best way to control it. Several vaccines against this disease have been developed but none are completely protective. The aim of this study was to design and construct a cloning vector containing the Mycobacterium tuberculosis (M. tuberculosis heat shock protein X (hspX. Methods: First, an hspX fragment was amplified by PCR and cloned into plasmid pcDNA3.1(+ and recombinant vector was confirmed. Results: A 435 bp hspX fragment was isolated. The fragment was 100% homologous with hspX of M. tuberculosis strain H37Rv in GenBank. Conclusions: In this study, the cloning vector pcDNA3.1(+, containing a 435-bp hspX fragment of M. tuberculosis, was constructed. This could be used as a DNA vaccine to induce immune responses in animal models in future studies.

  2. MicroRNA-223 Is Upregulated in Active Tuberculosis Patients and Inhibits Apoptosis of Macrophages by Targeting FOXO3.

    Science.gov (United States)

    Xi, Xiue; Zhang, Chunxiao; Han, Wei; Zhao, Huayang; Zhang, Huiqiang; Jiao, Junhua

    2015-12-01

    Macrophage apoptosis is a host innate defense mechanism against tuberculosis (TB). In this study, we aimed to investigate the role of microRNA-223 (miR-223) in macrophage apoptosis of TB. We analyzed apoptosis in peripheral blood macrophages of active TB patients, infected human macrophages (TDMs and MDMs) with the Mycobacterium tuberculosis (Mtb) strain H37Rv, and observed the expression of miR-223 to investigate the relationship between miR-223 and macrophage apoptosis induced by Mtb. The apoptosis rate of peripheral blood macrophages decreased in active TB patients compared with healthy controls, and miR-223 expression increased significantly in macrophages after H37Rv infection. Transfection of human macrophages (TDMs and MDMs) with miR-223 inhibited macrophage apoptosis. We also demonstrated that miR-223 directly suppressed forkhead box O3 (FOXO3), and FOXO3 played a critical role as a mediator of the biological effects of miR-223 in macrophage apoptosis. The overexpression of FOXO3 remarkably reversed the apoptosis inhibitory effect of miR-223. Our data provide new clues for the essential role of miR-223 in the regulation of anti-Mtb-directed immune responses, which relies on the regulation of FOXO3 expression.

  3. Anti-Tuberculosis Activity of Extract Ethyl Acetate Kenikir Leaves (Cosmos caudatus H.B.K and Sendok Leaves (Plantago Major L. By In Vitro Test

    Directory of Open Access Journals (Sweden)

    Tatang Irianti

    2018-04-01

    Full Text Available The increasing therapy problem including multidrug-resistant tuberculosis (TB has made it important to discover a new anti-TB drug candidate. The aim of this study was to acknowledge the activity of ethyl acetate extracts of kenikir (Cosmos caudatus H.B.K and sendok (Plantago major L. leaves against Mycobacterium tuberculosis (M. tuberculosis H37Rv. This research used Middlebrook (MB 7H9 media and observed the growth of M. tuberculosis using Lowenstein Jensen (LJ media. The concentration of extracts were 0.25 mg/ml, 0.50 mg/ml, and 1.00 mg/ml. The result of this study showed that ethyl acetate extracts exhibited anti-TB activity in 1000 µg/ml of both extracts. The active compound group was detected by thin layer chromatography (TLC and the separation of compounds was shown by retardation factor (Rf and the color of the spots. Based on TLC chromatograms, it is known that there are types of compounds, such as ortho-dihydroxy compounds, phenolic compounds, and compound leads to terpenoids for both extracts.

  4. Gene expression analysis of two extensively drug-resistant tuberculosis isolates show that two-component response systems enhance drug resistance.

    Science.gov (United States)

    Yu, Guohua; Cui, Zhenling; Sun, Xian; Peng, Jinfu; Jiang, Jun; Wu, Wei; Huang, Wenhua; Chu, Kaili; Zhang, Lu; Ge, Baoxue; Li, Yao

    2015-05-01

    Global analysis of expression profiles using DNA microarrays was performed between a reference strain H37Rv and two clinical extensively drug-resistant isolates in response to three anti-tuberculosis drug exposures (isoniazid, capreomycin, and rifampicin). A deep analysis was then conducted using a combination of genome sequences of the resistant isolates, resistance information, and related public microarray data. Certain known resistance-associated gene sets were significantly overrepresented in upregulated genes in the resistant isolates relative to that observed in H37Rv, which suggested a link between resistance and expression levels of particular genes. In addition, isoniazid and capreomycin response genes, but not rifampicin, either obtained from published works or our data, were highly consistent with the differentially expressed genes of resistant isolates compared to those of H37Rv, indicating a strong association between drug resistance of the isolates and genes differentially regulated by isoniazid and capreomycin exposures. Based on these results, 92 genes of the studied isolates were identified as candidate resistance genes, 10 of which are known resistance-related genes. Regulatory network analysis of candidate resistance genes using published networks and literature mining showed that three two-component regulatory systems and regulator CRP play significant roles in the resistance of the isolates by mediating the production of essential envelope components. Finally, drug sensitivity testing indicated strong correlations between expression levels of these regulatory genes and sensitivity to multiple anti-tuberculosis drugs in Mycobacterium tuberculosis. These findings may provide novel insights into the mechanism underlying the emergence and development of drug resistance in resistant tuberculosis isolates and useful clues for further studies on this issue. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Dendritic Cells Activate and Mature after Infection with Mycobacterium tuberculosis

    Directory of Open Access Journals (Sweden)

    Mamo Gezahagne

    2011-07-01

    Full Text Available Abstract Background Dendritic cells (DCs can take up an array of different antigens, including microorganisms which they can process and present more effectively than any other antigen presenting cell. However, whether the interaction between the human DC and Mycobacterium tuberculosis represents a defense mechanism by the invaded host, or helping the invader to evade the defense mechanism of the host is still not clearly understood. Findings To analyze the interactions between M. tuberculosis and immune cells, human peripheral blood monocyte-derived immature DCs were infected with M. tuberculosis H37Rv wild type strain and flow cytometry was used to analyse cell surface expression markers. The ability of the M. tuberculosis infected DC to induce T cell proliferation using 5 and 6-carboxyfluorescein diacetate succinimidyl ester (CFSE dilution technique was also investigated. DCs were found to internalize the mycobacteria and show dose dependent infection and necrosis with different multiplicity of infection. Flow cytometry analysis of cell surface expression markers CD40, CD54, CD80, CD83, CD86 and HLA DR in infected DC revealed significant (p M. tuberculosis in comparison to immature DC with no stimulation. Lipopolysaccharide (LPS from Salmonella abortus equi, a known DC maturation agent, was used as a positive control and showed a comparable up regulation of cell surface markers as observed with M. tuberculosis infected DC. It was revealed that the M. tuberculosis infected DC induced T cell proliferation. Conclusion These data clearly demonstrate that M. tuberculosis induces activation and maturation of human monocyte-derived immature DC as well as induces T cell proliferation in vitro.

  6. Characterisation of iunH gene knockout strain from Mycobacterium tuberculosis

    Directory of Open Access Journals (Sweden)

    Anne Drumond Villela

    Full Text Available BACKGROUND Tuberculosis (TB is an infectious disease caused mainly by the bacillus Mycobacterium tuberculosis. The better understanding of important metabolic pathways from M. tuberculosis can contribute to the development of novel therapeutic and prophylactic strategies to combat TB. Nucleoside hydrolase (MtIAGU-NH, encoded by iunH gene (Rv3393, is an enzyme from purine salvage pathway in M. tuberculosis. MtIAGU-NH accepts inosine, adenosine, guanosine, and uridine as substrates, which may point to a pivotal metabolic role. OBJECTIVES Our aim was to construct a M. tuberculosis knockout strain for iunH gene, to evaluate in vitro growth and the effect of iunH deletion in M. tuberculosis in non-activated and activated macrophages models of infection. METHODS A M. tuberculosis knockout strain for iunH gene was obtained by allelic replacement, using pPR27xylE plasmid. The complemented strain was constructed by the transformation of the knockout strain with pNIP40::iunH. MtIAGU-NH expression was analysed by Western blot and LC-MS/MS. In vitro growth was evaluated in Sauton’s medium. Bacterial load of non-activated and interferon-γ activated RAW 264.7 cells infected with knockout strain was compared with wild-type and complemented strains. FINDINGS Western blot and LC-MS/MS validated iunH deletion at protein level. The iunH knockout led to a delay in M. tuberculosis growth kinetics in Sauton’s medium during log phase, but did not affect bases and nucleosides pool in vitro. No significant difference in bacterial load of knockout strain was observed when compared with both wild-type and complemented strains after infection of non-activated and interferon-γ activated RAW 264.7 cells. MAIN CONCLUSION The disruption of iunH gene does not influence M. tuberculosis growth in both non-activated and activated RAW 264.7 cells, which show that iunH gene is not important for macrophage invasion and virulence. Our results indicated that MtIAGU-NH is not a

  7. Methodology of mycobacteria tuberculosis bacteria detection by Raman spectroscopy

    Science.gov (United States)

    Zyubin, A.; Lavrova, A.; Manicheva, O.; Dogonadze, M.; Tsibulnikova, A.; Samusev, I.

    2018-01-01

    We have developed a methodology for the study of deactivated strains of Mycobacterium tuberculosis. Strains of the Beijing species obtained from pulmonary patient secrete (XDR strain) and reference strain (H37Rv) were investigated by Raman spectrometry with He-Ne (632,8 nm) laser excitation source. As a result of the research, the optimal experimental parameters have been obtained to get spectra of mycolic acids, which are part of the cell wall of mycobacteria.

  8. [Increased IL-4 production in response to virulent Mycobacterium tuberculosis in tuberculosis patients with advanced disease].

    Science.gov (United States)

    Ordway, Diane J; Martins, Marta S; Costa, Leonor M; Freire, Mónica S; Arroz, Maria J; Dockrell, Hazel M; Ventura, Fernando A

    2005-01-01

    The study was designed to compare immune responses to Mycobacterium tuberculosis bacilli and antigens in healthy Portuguese subjects and pulmonary tuberculosis patients (TB), and to correlate immune status with clinical severity of tuberculosis disease. PBMC were cultured and stimulated with live and killed M. tuberculosis H37Rv and purified protein derivative (PPD) and lymphoproliferation and production of IFN-gamma and IL-5/IL-4 by these cultures were evaluated by the use of ELISA and multi-parameter flow cytometry. PBMC from 30 tuberculosis patients demonstrated significantly reduced amounts of proliferation and IFN-gamma when stimulated with live M. tuberculosis compared the control group. Of 15 tuberculosis patients tested for intracellular IL-4 following stimulation with M. tuberculosis, 7 showed greatly increased IL-4 production in CD8+ and gammadelta+ T cells. Tuberculosis patients demonstrated an increase of intracellular IL-4 after PBMC were stimulated with live M. tuberculosis in the CD4+ phenotype, but more notably in CD8+ and gammadelta TCR+ subsets. Increased production of IL-4 in tuberculosis patients was primarily in individuals with advanced involvement of lung parenchymal with high bacterial loads in sputum. These results suggest that an alteration in type 1 and type 2 cytokine balance can occur in patients with tuberculosis at an advanced clinical stage of disease.

  9. Design, synthesis, and in vitro antituberculosis activity of 2(5H)-Furanone derivatives

    CSIR Research Space (South Africa)

    Ngwane, AH

    2016-01-01

    Full Text Available growth (Bioscreen C system). In screening the active first-generation compounds for growth inhibition against Mycobacterium tuberculosis H37Rv, the most active compound was identified with a minimum inhibitory concentration (MIC99 ) of 8.07 µg/mL (15.8 µ...

  10. ORF Alignment: NC_002945 [GENIUS II[Archive

    Lifescience Database Archive (English)

    Full Text Available cetylmuramate-alanine ligase MurC [Mycobacterium ... tuberculosis H37Rv] ref|NP_855825.1| ... ...UDP-N-acetylmuramate-alanine ligase MurC [Mycobacterium ... bovis AF2122/97] gb|AAK46495.1| ... ...ate-alanine ... ligase MurC [Mycobacterium tuberculosis H37Rv] ... ...emb|CAD97029.1| UDP-N-acetylmuramate-alanine ligase MurC ... [Mycobacterium bovis AF2122/97] ...

  11. ORF Alignment: NC_002755 [GENIUS II[Archive

    Lifescience Database Archive (English)

    Full Text Available cetylmuramate-alanine ligase MurC [Mycobacterium ... tuberculosis H37Rv] ref|NP_855825.1| ... ...UDP-N-acetylmuramate-alanine ligase MurC [Mycobacterium ... bovis AF2122/97] gb|AAK46495.1| ... ...ate-alanine ... ligase MurC [Mycobacterium tuberculosis H37Rv] ... ...emb|CAD97029.1| UDP-N-acetylmuramate-alanine ligase MurC ... [Mycobacterium bovis AF2122/97] ...

  12. ORF Alignment: NC_000962 [GENIUS II[Archive

    Lifescience Database Archive (English)

    Full Text Available cetylmuramate-alanine ligase MurC [Mycobacterium ... tuberculosis H37Rv] ref|NP_855825.1| ... ...UDP-N-acetylmuramate-alanine ligase MurC [Mycobacterium ... bovis AF2122/97] gb|AAK46495.1| ... ...ate-alanine ... ligase MurC [Mycobacterium tuberculosis H37Rv] ... ...emb|CAD97029.1| UDP-N-acetylmuramate-alanine ligase MurC ... [Mycobacterium bovis AF2122/97] ...

  13. Oligomeric stability of Rapana venosa hemocyanin (RvH) and its structural subunits.

    Science.gov (United States)

    Dolashka-Angelova, Pavlina; Schwarz, Heinz; Dolashki, Aleksandar; Stevanovic, Stefan; Fecker, Miriam; Saeed, Muhammad; Voelter, Wolfgang

    2003-03-21

    The two structural subunits RvH1 and RvH2 were separated after overnight dialysis of Rapana venosa Hc against 130 mM Gly/NaOH buffer, pH 9.6, on an ion exchange column Hiload 26/10 Sepharose Q using a fast performance liquid chromatography (FPLC) system. The reassociation characteristics of these two RvH isoforms and the native molecule were studied in buffers with different pH values and concentrations of Ca(2+) and Mg(2+). Reassociation of mixed RvH subunits was performed over a period of several days using a stabilizing buffer (SB) of pH 7.0 containing different concentrations of Ca(2+) and Mg(2+) ions. After 2 days of dialysis, an RvH subunit mixture of didecamers and multidecamers was observed in the presence of 100 mM CaCl(2) and MgCl(2), though RvH1 and RvH2 are biochemically and immunologically different and have also different dissociation properties. The reassociation, performed at pH 9.6 with 2 mM CaCl(2) and MgCl(2) at 4 degrees C over a period of one to several weeks, led to the formation of decameric oligomers, while didecamers formed predominantly in the SB at pH 7.0. Higher concentrations of calcium and magnesium ions led to a more rapid reassociation of RvH1 resulting in long stable multidecamers and helical tubules, which were stable and slowly dissociated into shorter multidecamers and decamers at higher pH values. The reassociation of the RvH2 structural subunit in the same buffers processed slowly and yielded didecamers, shorter tubule polymers and long multidecamers which are less stable at higher pH values. The stability of RvH isoforms under varying ionic conditions is compared with the stability of keyhole limpet (KLH, Megathura crenulata) hemocyanin (KLH) and Haliotis tuberculata hemocyanin (HtH) isoforms. The process of dissociation and reassociation is connected with changes of the fluorescence intensity at 600 nm, which can be explained by differences in opalescence of the solutions of these two isoforms. The solutions of longer tubule

  14. Effect of radiation on microbiologic characteristics of M. tuberculosis

    International Nuclear Information System (INIS)

    Zack, M.B.; Stottmeier, K.; Berg, G.; Kazemi, H.

    1974-01-01

    The effect of irradiation on mutation (expressing itself as drug resistance) and on viability of Mycobacterium tuberculosis was studied in vitro. Forty-two identical cultures of H37-Rv (M. tuberculosis) were exposed to different levels of cobalt radiation (10, 100, 1,000, 2,500, 5,000, 10,000, and 20,000 rads) with six samples used for each of the seven radiation levels. Equivalent samples exposed to zero rads and samples handled and stored identically formed the controls. Coded cultures were read in a double-blind fashion to determine the number of surviving organisms and sensitivities to nine different antituberculosis drugs. Organism viability began to decrease at radiation levels of 1,000 rads and decreased linearly with higher levels of radiation. Three of the 42 radiated cultures developed drug-resistant organisms (one to INH, one to PAS, a third to SM). This drug resistance occurred at levels of clinical significance (greater than 1 percent control) as well as in amounts exceeding probability values for chance resistance mutation. High radiation levels such as occur in radiotherapeutic doses decrease the viability of M. tuberculosis. Radiation may also induce genetic mutation expressed as primary drug resistance. (U.S.)

  15. Diminished Adherence and/or Ingestion of Virulent Mycobacterium tuberculosis by Monocyte-Derived Macrophages from Patients with Tuberculosis

    Science.gov (United States)

    Zabaleta, J.; Arias, M.; Maya, J. R.; García, L. F.

    1998-01-01

    The interaction between the macrophage and Mycobacterium tuberculosis is mediated by a variety of macrophage membrane-associated proteins. Complement receptors have been implicated in the adherence of M. tuberculosis to macrophages. In the present work, the adherence and/or ingestion of M. tuberculosis H37Rv to human monocyte-derived macrophages (MDM) from patients with tuberculosis (TB) and healthy controls was measured by microscopical examination, [3H]uracil incorporation, and CFU. The adherence and/or ingestion was enhanced by fresh serum and inhibited by heat inactivation, EDTA treatment, and anti-CR1 and anti-CR3 antibodies. Comparison of MDM from TB patients and healthy controls showed that the former exhibited a significantly decreased capacity to adhere and/or ingest M. tuberculosis, as determined by the number of CFU and 3H incorporation. The expression of CR1 (CD35) and CR3 (CD11b/CD18) on MDM from TB patients and healthy controls, as determined by flow cytometry, did not show significant differences. These results suggest that the lower ingestion of M. tuberculosis by MDM from TB patients is not due to defects in complement receptors, and therefore, there might be other molecules involved in the adherence and/or ingestion process that render MDM from TB patients ingest less mycobacteria than those from healthy controls. PMID:9729537

  16. Different Transcriptional Profiles of Human Monocyte-Derived Dendritic Cells Infected with Distinct Strains of Mycobacterium tuberculosis and Mycobacterium bovis Bacillus Calmette-Guérin

    Directory of Open Access Journals (Sweden)

    Nunzia Sanarico

    2011-01-01

    Full Text Available In order to analyze dendritic cells (DCs activation following infection with different mycobacterial strains, we studied the expression profiles of 165 genes of human monocyte-derived DCs infected with H37Rv, a virulent Mycobacterium tuberculosis (MTB laboratory strain, CMT97, a clinical MTB isolate, Mycobacterium bovis bacillus Calmette-Guérin (BCG, Aventis Pasteur, and BCG Japan, both employed as vaccine against tuberculosis. The analysis of the gene expression reveals that, despite a set of genes similarly modulated, DCs response resulted strain dependent. In particular, H37Rv significantly upregulated EBI3 expression compared with BCG Japan, while it was the only strain that failed to release a significant IL-10 amount. Of note, BCG Japan showed a marked increase in CCR7 and TNF-α expression regarding both MTB strains and it resulted the only strain failing in exponential intracellular growth. Our results suggest that DCs display the ability to elicit a tailored strain-specific immune response.

  17. Differential Expression of Immunogenic Proteins on Virulent Mycobacterium tuberculosis Clinical Isolates

    Directory of Open Access Journals (Sweden)

    Pablo Schierloh

    2014-01-01

    Full Text Available Molecular epidemiology has revealed that Mycobacterium tuberculosis (Mtb, formerly regarded as highly conserved species, displays a considerable degree of genetic variability that can influence the outcome of the disease as well as the innate and adaptive immune response. Recent studies have demonstrated that Mtb families found worldwide today differ in pathology, transmissibility, virulence, and development of immune response. By proteomic approaches seven proteins that were differentially expressed between a local clinical isolate from Latin-American-Mediterranean (LAM and from Haarlem (H lineages were identified. In order to analyze the immunogenic ability, recombinant Rv2241, Rv0009, Rv0407, and Rv2624c proteins were produced for testing specific antibody responses. We found that these proteins induced humoral immune responses in patients with drug-sensitive and drug-resistant tuberculosis with substantial cross-reactivity among the four proteins. Moreover, such reactivity was also correlated with anti-Mtb-cell surface IgM, but not with anti-ManLAM, anti-PPD, or anti-Mtb-surface IgG antibodies. Therefore, the present results describe new Mtb antigens with potential application as biomarkers of TB.

  18. Mycobacterium tuberculosis infection causes different levels of apoptosis and necrosis in human macrophages and alveolar epithelial cells.

    Science.gov (United States)

    Danelishvili, Lia; McGarvey, Jeffery; Li, Yong-Jun; Bermudez, Luiz E

    2003-09-01

    Mycobacterium tuberculosis interacts with macrophages and epithelial cells in the alveolar space of the lung, where it is able to invade and replicate in both cell types. M. tuberculosis-associated cytotoxicity to these cells has been well documented, but the mechanisms of host cell death are not well understood. We examined the induction of apoptosis and necrosis of human macrophages (U937) and type II alveolar epithelial cells (A549) by virulent (H37Rv) and attenuated (H37Ra) M. tuberculosis strains. Apoptosis was determined by both enzyme-linked immunosorbent assay (ELISA) and TdT-mediated dUTP nick end labelling (TUNEL) assay, whereas necrosis was evaluated by the release of lactate dehydrogenase (LDH). Both virulent and attenuated M. tuberculosis induced apoptosis in macrophages; however, the attenuated strain resulted in significantly more apoptosis than the virulent strain after 5 days of infection. In contrast, cytotoxicity of alveolar cells was the result of necrosis, but not apoptosis. Although infection with M. tuberculosis strains resulted in apoptosis of 14% of the cells on the monolayer, cell death associated with necrosis was observed in 59% of alveolar epithelial cells after 5 days of infection. Infection with M. tuberculosis suppressed apoptosis of alveolar epithelial cells induced by the kinase inhibitor, staurosporine. Because our findings suggest that M. tuberculosis can modulate the apoptotic response of macrophages and epithelial cells, we carried out an apoptosis pathway-specific cDNA microarray analysis of human macrophages and alveolar epithelial cells. Whereas the inhibitors of apoptosis, bcl-2 and Rb, were upregulated over 2.5-fold in infected (48 h) alveolar epithelial cells, the proapoptotic genes, bad and bax, were downregulated. The opposite was observed when U937 macrophages were infected with M. tuberculosis. Upon infection of alveolar epithelial cells with M. tuberculosis, the generation of apoptosis, as determined by the

  19. Importance of confirming data on the in vivo efficacy of novel antibacterial drug regimens against various strains of Mycobacterium tuberculosis.

    Science.gov (United States)

    De Groote, Mary A; Gruppo, Veronica; Woolhiser, Lisa K; Orme, Ian M; Gilliland, Janet C; Lenaerts, Anne J

    2012-02-01

    In preclinical testing of antituberculosis drugs, laboratory-adapted strains of Mycobacterium tuberculosis are usually used both for in vitro and in vivo studies. However, it is unknown whether the heterogeneity of M. tuberculosis stocks used by various laboratories can result in different outcomes in tests of antituberculosis drug regimens in animal infection models. In head-to-head studies, we investigated whether bactericidal efficacy results in BALB/c mice infected by inhalation with the laboratory-adapted strains H37Rv and Erdman differ from each other and from those obtained with clinical tuberculosis strains. Treatment of mice consisted of dual and triple drug combinations of isoniazid (H), rifampin (R), and pyrazinamide (Z). The results showed that not all strains gave the same in vivo efficacy results for the drug combinations tested. Moreover, the ranking of HRZ and RZ efficacy results was not the same for the two H37Rv strains evaluated. The magnitude of this strain difference also varied between experiments, emphasizing the risk of drawing firm conclusions for human trials based on single animal studies. The results also confirmed that the antagonism seen within the standard HRZ regimen by some investigators appears to be an M. tuberculosis strain-specific phenomenon. In conclusion, the specific identity of M. tuberculosis strain used was found to be an important variable that can change the apparent outcome of in vivo efficacy studies in mice. We highly recommend confirmation of efficacy results in late preclinical testing against a different M. tuberculosis strain than the one used in the initial mouse efficacy study, thereby increasing confidence to advance potent drug regimens to clinical trials.

  20. Diterpenes Synthesized from the Natural Serrulatane Leubethanol and Their in Vitro Activities against Mycobacterium tuberculosis

    Directory of Open Access Journals (Sweden)

    Ricardo Escarcena

    2015-04-01

    Full Text Available Seventeen new derivatives of the natural diterpene leubethanol, including some potential pro-drugs, with changes in the functionality of the aliphatic chain or modifications of aromatic ring and the phenolic group, were synthesized and tested in vitro by the MABA technique for their activity against the H37Rv strain of Mycobacterium tuberculosis. Some compounds showed antimycobacterial selectivity indices higher than leubethanol.

  1. The ABC transporter Rv1272c of Mycobacterium tuberculosis enhances the import of long-chain fatty acids in Escherichia coli.

    Science.gov (United States)

    Martin, Audrey; Daniel, Jaiyanth

    2018-02-05

    Mycobacterium tuberculosis (Mtb), which causes tuberculosis, is capable of accumulating triacylglycerol (TAG) by utilizing fatty acids from host cells. ATP-binding cassette (ABC) transporters are involved in transport processes in all organisms. Among the classical ABC transporters in Mtb none have been implicated in fatty acid import. Since the transport of fatty acids from the host cell is important for dormancy-associated TAG synthesis in the pathogen, mycobacterial ABC transporter(s) could potentially be involved in this process. Based on sequence identities with a bacterial ABC transporter that mediates fatty acid import for TAG synthesis, we identified Rv1272c, a hitherto uncharacterized ABC-transporter in Mtb that also shows sequence identities with a plant ABC transporter involved in fatty acid transport. We expressed Rv1272c in E. coli and show that it enhances the import of radiolabeled fatty acids. We also show that Rv1272c causes a significant increase in the metabolic incorporation of radiolabeled long-chain fatty acids into cardiolipin, a tetra-acylated phospholipid, and phosphatidylglycerol in E. coli. This is the first report on the function of Rv1272c showing that it displays a long-chain fatty acid transport function. Copyright © 2018 Elsevier Inc. All rights reserved.

  2. ORF Alignment: NC_002755 [GENIUS II[Archive

    Lifescience Database Archive (English)

    Full Text Available NC_002755 gi|15841354 >1xsfA 3 107 45 146 4e-23 ... ref|NP_216400.1| PROBABLE RESUSCITATION...-PROMOTING FACTOR RPFC [Mycobacterium ... tuberculosis H37Rv] ref|NP_855568.1| PROBABLE ... RESUSCITATION... emb|CAB10065.1| PROBABLE RESUSCITATION-PROMOTING FACTOR ... RPFC [Mycobacterium tuberculosis H37Rv] ...emb|CAD94619.1| ... PROBABLE RESUSCITATION-PROMOTING FACTOR RPFC ... [Mycobacterium bovis AF21

  3. ORF Alignment: NC_000962 [GENIUS II[Archive

    Lifescience Database Archive (English)

    Full Text Available NC_000962 gi|15609021 >1xsfA 3 107 45 146 4e-23 ... ref|NP_216400.1| PROBABLE RESUSCITATION...-PROMOTING FACTOR RPFC [Mycobacterium ... tuberculosis H37Rv] ref|NP_855568.1| PROBABLE ... RESUSCITATION... emb|CAB10065.1| PROBABLE RESUSCITATION-PROMOTING FACTOR ... RPFC [Mycobacterium tuberculosis H37Rv] ...emb|CAD94619.1| ... PROBABLE RESUSCITATION-PROMOTING FACTOR RPFC ... [Mycobacterium bovis AF21

  4. ORF Alignment: NC_002945 [GENIUS II[Archive

    Lifescience Database Archive (English)

    Full Text Available NC_002945 gi|31793075 >1xsfA 3 107 45 146 4e-23 ... ref|NP_216400.1| PROBABLE RESUSCITATION...-PROMOTING FACTOR RPFC [Mycobacterium ... tuberculosis H37Rv] ref|NP_855568.1| PROBABLE ... RESUSCITATION... emb|CAB10065.1| PROBABLE RESUSCITATION-PROMOTING FACTOR ... RPFC [Mycobacterium tuberculosis H37Rv] ...emb|CAD94619.1| ... PROBABLE RESUSCITATION-PROMOTING FACTOR RPFC ... [Mycobacterium bovis AF21

  5. Anti-mycobacterium tuberculosis activity of polyherbal medicines used for the treatment of tuberculosis in Eastern Cape, South Africa.

    Science.gov (United States)

    Famewo, Elizabeth B; Clarke, Anna M; Wiid, Ian; Ngwane, Andile; van Helden, Paul; Afolayan, Anthony J

    2017-09-01

    The emergence of drug-resistant strains of Mycobacterium tuberculosis has become a global public health problem. Polyherbal medicines offer great hope for developing alternative drugs for the treatment of tuberculosis. To evaluate the anti-tubercular activity of polyherbal medicines used for the treatment of tuberculosis. The remedies were screened against Mycobacterium tuberculosis H37Rv using Middlebrook 7H9 media and MGIT BACTEC 960 system. They were liquid preparations from King Williams Town site A (KWTa), King Williams Town site B (KWTb), King Williams Town site C (KWTc), Hogsback first site (HBfs), Hogsback second site (HBss), Hogsback third site (HBts), East London (EL), Alice (AL) and Fort Beaufort (FB). The susceptibility testing revealed that all the remedies contain anti-tubercular activity with KWTa, KWTb, KWTc, HBfs, HBts, AL and FB exhibiting more activity at a concentration below 25 µl/ml. Furthermore, MIC values exhibited inhibitory activity with the most active remedies from KWTa, HBfs and HBts at 1.562 µg/ml. However, isoniazid showed more inhibitory activity against M. tuberculosis at 0.05 µg/ml when compare to the polyherbal remedies. This study has indicated that these remedies could be potential sources of new anti-mycobacterial agents against M. tuberculosis . However, the activity of these preparations and their active principles still require in vivo study in order to assess their future as new anti-tuberculosis agents.

  6. Disinfectant-susceptibility of multi-drug-resistant Mycobacterium tuberculosis isolated in Japan

    Directory of Open Access Journals (Sweden)

    Noriko Shinoda

    2016-02-01

    Full Text Available Abstract Background Multi-drug-resistant Mycobacterium tuberculosis has been an important problem in public health around the world. However, limited information about disinfectant-susceptibility of multi-drug-resistant strain of M. tuberculosis was available. Findings We studied susceptibility of several Japanese isolates of multi-drug-resistant M. tuberculosis against disinfectants, which are commonly used in clinical and research laboratories. We selected a laboratory reference strain (H37Rv and eight Japanese isolates, containing five drug-susceptible strains and three multi-drug-resistant strains, and determined profiles of susceptibility against eight disinfectants. The M. tuberculosis strains were distinguished into two groups by the susceptibility profile. There was no relationship between multi-drug-resistance and disinfectant-susceptibility in the M. tuberculosis strains. Cresol soap and oxydol were effective against all strains we tested, regardless of drug resistance. Conclusions Disinfectant-resistance is independent from multi-drug-resistance in M. tuberculosis. Cresol soap and oxydol were effective against all strains we tested, regardless of drug resistance.

  7. Design and synthesis of positional isomers of 5 and 6-bromo-1-[(phenyl)sulfonyl]-2-[(4-nitrophenoxy)methyl]-1H-benzimidazoles as possible antimicrobial and antitubercular agents.

    Science.gov (United States)

    Ranjith, P Karuvalam; Rajeesh, P; Haridas, Karickal R; Susanta, Nayak K; Row, Tayur N Guru; Rishikesan, R; Kumari, N Suchetha

    2013-09-15

    In this Letter, we report the structure-activity relationship (SAR) studies on series of positional isomers of 5(6)-bromo-1-[(phenyl)sulfonyl]-2-[(4-nitrophenoxy)methyl]-1H-benzimidazoles derivatives 7(a-j) and 8(a-j) synthesized in good yields and characterized by (1)H NMR, (13)C NMR and mass spectral analyses. The crystal structure of 7a was evidenced by X-ray diffraction study. The newly synthesized compounds were evaluated for their in vitro antibacterial activity against Staphylococcus aureus, (Gram-positive), Escherichia coli and Klebsiella pneumoniae (Gram-negative), antifungal activity against Candida albicans, Aspergillus flavus and Rhizopus sp. and antitubercular activity against Mycobacterium tuberculosis H37Rv, Mycobacterium smegmatis, Mycobacterium fortuitum and MDR-TB strains. The synthesized compounds displayed interesting antimicrobial activity. The compounds 7b, 7e and 7h displayed significant activity against Mycobacterium tuberculosis H37Rv strain. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Rv2969c, essential for optimal growth in Mycobacterium tuberculosis, is a DsbA-like enzyme that interacts with VKOR-derived peptides and has atypical features of DsbA-like disulfide oxidases

    International Nuclear Information System (INIS)

    Premkumar, Lakshmanane; Heras, Begoña; Duprez, Wilko; Walden, Patricia; Halili, Maria; Kurth, Fabian; Fairlie, David P.; Martin, Jennifer L.

    2013-01-01

    The gene product of M. tuberculosis Rv2969c is shown to be a disulfide oxidase enzyme that has a canonical DsbA-like fold with novel structural and functional characteristics. The bacterial disulfide machinery is an attractive molecular target for developing new antibacterials because it is required for the production of multiple virulence factors. The archetypal disulfide oxidase proteins in Escherichia coli (Ec) are DsbA and DsbB, which together form a functional unit: DsbA introduces disulfides into folding proteins and DsbB reoxidizes DsbA to maintain it in the active form. In Mycobacterium tuberculosis (Mtb), no DsbB homologue is encoded but a functionally similar but structurally divergent protein, MtbVKOR, has been identified. Here, the Mtb protein Rv2969c is investigated and it is shown that it is the DsbA-like partner protein of MtbVKOR. It is found that it has the characteristic redox features of a DsbA-like protein: a highly acidic catalytic cysteine, a highly oxidizing potential and a destabilizing active-site disulfide bond. Rv2969c also has peptide-oxidizing activity and recognizes peptide segments derived from the periplasmic loops of MtbVKOR. Unlike the archetypal EcDsbA enzyme, Rv2969c has little or no activity in disulfide-reducing and disulfide-isomerase assays. The crystal structure of Rv2969c reveals a canonical DsbA fold comprising a thioredoxin domain with an embedded helical domain. However, Rv2969c diverges considerably from other DsbAs, including having an additional C-terminal helix (H8) that may restrain the mobility of the catalytic helix H1. The enzyme is also characterized by a very shallow hydrophobic binding surface and a negative electrostatic surface potential surrounding the catalytic cysteine. The structure of Rv2969c was also used to model the structure of a paralogous DsbA-like domain of the Ser/Thr protein kinase PknE. Together, these results show that Rv2969c is a DsbA-like protein with unique properties and a limited

  9. Rv2969c, essential for optimal growth in Mycobacterium tuberculosis, is a DsbA-like enzyme that interacts with VKOR-derived peptides and has atypical features of DsbA-like disulfide oxidases

    Energy Technology Data Exchange (ETDEWEB)

    Premkumar, Lakshmanane, E-mail: p.lakshmanane@imb.uq.edu.au; Heras, Begoña; Duprez, Wilko; Walden, Patricia; Halili, Maria; Kurth, Fabian; Fairlie, David P.; Martin, Jennifer L., E-mail: p.lakshmanane@imb.uq.edu.au [University of Queensland, St Lucia, QLD 4067 (Australia)

    2013-10-01

    The gene product of M. tuberculosis Rv2969c is shown to be a disulfide oxidase enzyme that has a canonical DsbA-like fold with novel structural and functional characteristics. The bacterial disulfide machinery is an attractive molecular target for developing new antibacterials because it is required for the production of multiple virulence factors. The archetypal disulfide oxidase proteins in Escherichia coli (Ec) are DsbA and DsbB, which together form a functional unit: DsbA introduces disulfides into folding proteins and DsbB reoxidizes DsbA to maintain it in the active form. In Mycobacterium tuberculosis (Mtb), no DsbB homologue is encoded but a functionally similar but structurally divergent protein, MtbVKOR, has been identified. Here, the Mtb protein Rv2969c is investigated and it is shown that it is the DsbA-like partner protein of MtbVKOR. It is found that it has the characteristic redox features of a DsbA-like protein: a highly acidic catalytic cysteine, a highly oxidizing potential and a destabilizing active-site disulfide bond. Rv2969c also has peptide-oxidizing activity and recognizes peptide segments derived from the periplasmic loops of MtbVKOR. Unlike the archetypal EcDsbA enzyme, Rv2969c has little or no activity in disulfide-reducing and disulfide-isomerase assays. The crystal structure of Rv2969c reveals a canonical DsbA fold comprising a thioredoxin domain with an embedded helical domain. However, Rv2969c diverges considerably from other DsbAs, including having an additional C-terminal helix (H8) that may restrain the mobility of the catalytic helix H1. The enzyme is also characterized by a very shallow hydrophobic binding surface and a negative electrostatic surface potential surrounding the catalytic cysteine. The structure of Rv2969c was also used to model the structure of a paralogous DsbA-like domain of the Ser/Thr protein kinase PknE. Together, these results show that Rv2969c is a DsbA-like protein with unique properties and a limited

  10. Progression of chronic pulmonary tuberculosis in mice intravenously infected with ethambutol resistant Mycobacterium tuberculosis

    Directory of Open Access Journals (Sweden)

    Srivastava S

    2008-01-01

    Full Text Available Purpose: Ethambutol (EMB is an important first line drug, however little information on its molecular mechanism of resistance and pathogenicity of resistant isolates is available. Present work was designed to study virulence of the EMB resistant M. tuberculosis strains and the host responses in-vivo on infection of EMB resistant M. tuberculosis using Balb/c mouse model of infection. Methods: Three groups of Balb/c mice (female, age 4-6 wk; 21 mice in each group were infected intravenously with 106 CFU of M. tuberculosis H37Rv and two EMB resistant clinical isolates. Age and sex matched control animals were mock inoculated with Middlebrook 7H9 broth alone. At 10, 20, 30, 40, 50, 60, and 70 days post-infection three animals from each group were sacrificed by cervical dislocation and lung tissue was collected for further analysis. Results: Infection with EMB resistant M. tuberculosis led to progressive and chronic disease with significantly high bacillary load (p=0.02. Massive infiltration and exacerbated lung pathology with increased expression of IFN-γ and TNF-α was observed in lungs of mice infected with EMB resistant strains. The present study suggests that infection with EMB resistant M. tuberculosis leads to chronic infection with subsequent loss of lung function, bacterial persistence with elevated expression of TNF-α resulting in increased lung pathology. Conclusion: These findings highlight that EMB resistant M. tuberculosis regulates host immune response differentially and its pathogenicity is different from drug sensitive strains of M. tuberculosis.

  11. Expression profile of mce4 operon of Mycobacterium tuberculosis following environmental stress.

    Science.gov (United States)

    Rathor, Nisha; Garima, Kushal; Sharma, Naresh Kumar; Narang, Anshika; Varma-Basil, Mandira; Bose, Mridula

    2016-09-01

    The mce4 operon is one of the four mce operons with eight genes (yrbE4A, yrbE4B, mce4A, mce4B, mce4C, mce4D, mce4E and mce4F) of Mycobacterium tuberculosis. It expresses in the later phase of infection and imports cholesterol for long term survival of the bacilli. To cause latent infection, M. tuberculosis undergoes metabolic reprogramming of its genes to survive in the hostile environment like low availability of oxygen and nutrition depletion inside the host. To analyze real time expression profile of mce4 operon under various stress conditions. M. tuberculosis H37Rv was exposed to surface stress (0.1% SDS for 30min and 90min in late log and stationary phase of culture), hypoxia (5, 10, 15 and 20days) and grown in the presence of either glycerol or cholesterol as sole source of carbon. The expression profile of genes of mce4 operon was analyzed by real time PCR. Surface stress induced expression of mce4C and yrbE4B in late log phase on 30min and 90min exposure respectively. The SDS exposure for 30min induced mce4C, mce4D and mce4F in stationary phase. All eight genes were induced significantly on 10th and 15th days of hypoxia and in the presence of cholesterol. Hypoxia and cholesterol are potent factors for the expression of mce4 operon of M. tuberculosis. Copyright © 2016. Published by Elsevier Ltd.

  12. Colorimetric microwell plate reverse-hybridization assay for Mycobacterium tuberculosis detection

    Directory of Open Access Journals (Sweden)

    Candice Tosi Michelon

    2011-03-01

    Full Text Available Direct smear examination using Ziehl-Neelsen staining for pulmonary tuberculosis (PTB diagnosis is inexpensive and easy to use, but has the major limitation of low sensitivity. Rapid molecular methods are becoming more widely available in centralized laboratories, but they depend on timely reporting of results and strict quality assurance obtainable only from costly commercial kits available in high burden nations. This study describes a pre-commercial colorimetric method, Detect-TB, for detecting Mycobacterium tuberculosis DNA in which an oligonucleotide probe is fixed onto wells of microwell plates and hybridized with biotinylated polymerase chain reaction amplification products derived from clinical samples. The probe is capable of hybridising with the IS6110 insertion element and was used to specifically recognise the M. tuberculosis complex. When combined with an improved silica-based DNA extraction method, the sensitivity of the test was 50 colony-forming units of the M. tuberculosis reference strain H37Rv. The results that were in agreement with reference detection methods were observed in 95.2% (453/476 of samples included in the analysis. Sensitivity and specificity for 301 induced sputum samples and 175 spontaneous sputum samples were 85% and 98%, and 94% and 100%, respectively. This colorimetric method showed similar specificity to that described for commercially available kits and may provide an important contribution for PTB diagnosis.

  13. Cloning, expression, purification, crystallization and preliminary X-ray diffraction analysis of succinyl-diaminopimelate desuccinylase (Rv1202, DapE) from Mycobacterium tuberculosis

    International Nuclear Information System (INIS)

    Reinhard, Linda; Mueller-Dieckmann, Jochen; Weiss, Manfred S.

    2012-01-01

    M. tuberculosis succinyl-diaminopimelate desuccinylase, the enzyme which catalyzes the seventh step of the lysine-biosynthesis pathway, has been cloned, expressed, purified and crystallized. Preliminary X-ray diffraction analysis indicated the presence of pseudo-merohedral twinning in space group P2 1 , resulting in possible emulation of space group C222 1 . Succinyl-diaminopimelate desuccinylase from Mycobacterium tuberculosis (DapE, Rv1202) has been cloned, heterologously expressed in Escherichia coli and purified using standard chromatographic techniques. Diffraction-quality crystals were obtained at acidic pH from ammonium sulfate and PEG and diffraction data were collected from two crystals to resolutions of 2.40 and 2.58 Å, respectively. The crystals belonged to the monoclinic space group P2 1 , with unit-cell parameters a = 79.7, b = 76.0, c = 82.9 Å, β = 119°. The most probable content of the asymmetric unit was two molecules of DapE, which would correspond to a solvent content of 56%. Both examined crystals turned out to be pseudo-merohedrally twinned, with twin operator −h, −k, h + l and twin fractions of approximately 0.46 and 0.16, respectively

  14. Computer-assisted prediction of HLA-DR binding and experimental analysis for human promiscuous Th1-cell peptides in the 24 kDa secreted lipoprotein (LppX) of Mycobacterium tuberculosis.

    Science.gov (United States)

    Al-Attiyah, R; Mustafa, A S

    2004-01-01

    The secreted 24 kDa lipoprotein (LppX) is an antigen that is specific for Mycobacterium tuberculosis complex and M. leprae. The present study was carried out to identify the promiscuous T helper 1 (Th1)-cell epitopes of the M. tuberculosis LppX (MT24, Rv2945c) antigen by using 15 overlapping synthetic peptides (25 mers overlapping by 10 residues) covering the sequence of the complete protein. The analysis of Rv2945c sequence for binding to 51 alleles of nine serologically defined HLA-DR molecules, by using a virtual matrix-based prediction program (propred), showed that eight of the 15 peptides of Rv2945c were predicted to bind promiscuously to >/=10 alleles from more than or equal to three serologically defined HLA-DR molecules. The Th1-cell reactivity of all the peptides was assessed in antigen-induced proliferation and interferon-gamma (IFN-gamma)-secretion assays with peripheral blood mononuclear cells (PBMCs) from 37 bacille Calmette-Guérin (BCG)-vaccinated healthy subjects. The results showed that 17 of the 37 donors, which represented an HLA-DR-heterogeneous group, responded to one or more peptides of Rv2945c in the Th1-cell assays. Although each peptide stimulated PBMCs from one or more donors in the above assays, the best positive responses (12/17 (71%) responders) were observed with the peptide p14 (aa 196-220). This suggested a highly promiscuous presentation of p14 to Th1 cells. In addition, the sequence of p14 is completely identical among the LppX of M. tuberculosis, M. bovis and M. leprae, which further supports the usefulness of Rv2945c and p14 in the subunit vaccine design against both tuberculosis and leprosy.

  15. EXPERIMENTAL COMPARISON OF THE AEROSOL METHOD OF DISINFECTION OF AIR AND SURFACES CONTAMINATED BY M. TUBERCULOSIS

    Directory of Open Access Journals (Sweden)

    V. V. Kuzin

    2018-01-01

    Full Text Available The objective of the study: to analyze efficiency of an aerosol method of M. tuberculosis deactivation in the air and on surfaces versus the conventional methods of the disinfectants' application.Subjects and Methods. The article describes the evaluation of efficiency of the aerosol method of M. tuberculosis, H37Rv strain, deactivation on surfaces (tested objects made of linoleum and in the air using the disinfectant of Green Dez based on chlorine dioxide versus deactivation through wiping and irrigation.The efficiency of disinfectant was tested by the device of 099С А4224 manufactured by Glas-Col, USA, using the air sampler of PU-1B, Russia.The Mobile Hygienic Center (MNC, Russia, was used for application of the disinfectant, wiping and irrigation was done using the disperser of Avtomaks AO-2, Russia.The bacterial aerosol was generated in the Glass-Col chamber with the concentration 5 ± 2.5 × 102 CFU/cm3, by spraying the suspension of M. tuberculosis, H37Rv strain. After that, the disinfectant spray was supplied to the chamber, where linoleum objects were placed horizontally on a variety of surfaces. In order to evaluate efficiency of surface treatment by wiping, the test objects were wiped with a tissue, soaked with the solution of Green Dez, based on consumption of 100-150 ml/m2. In 15, 30 and 60 minutes, the samples of inactivated M. tuberculosis aerosol were collected using an aspirator, chambers with test objects were closed and placed in the vent hood. To monitor efficiency of disinfection of the test object surfaces, the rinse blanks were done by wiping the surface with a sterile gauze wad, soaked with 0.5% of sodium thiosulfate solution.The samples of deactivated aerosol and rinse blanks from the surfaces of test objects were put into Petri dishes with Middlebrook 7H11 medium. The cultures were incubated in the thermostat at the temperature of 37 ± 1° C for 10-21 days, and the number of colonies was counted.Sterile water was used

  16. Cloning, expression, purification, crystallization and preliminary X-ray diffraction analysis of succinyl-diaminopimelate desuccinylase (Rv1202, DapE) from Mycobacterium tuberculosis.

    Science.gov (United States)

    Reinhard, Linda; Mueller-Dieckmann, Jochen; Weiss, Manfred S

    2012-09-01

    Succinyl-diaminopimelate desuccinylase from Mycobacterium tuberculosis (DapE, Rv1202) has been cloned, heterologously expressed in Escherichia coli and purified using standard chromatographic techniques. Diffraction-quality crystals were obtained at acidic pH from ammonium sulfate and PEG and diffraction data were collected from two crystals to resolutions of 2.40 and 2.58 Å, respectively. The crystals belonged to the monoclinic space group P2(1), with unit-cell parameters a = 79.7, b = 76.0, c = 82.9 Å, β = 119°. The most probable content of the asymmetric unit was two molecules of DapE, which would correspond to a solvent content of 56%. Both examined crystals turned out to be pseudo-merohedrally twinned, with twin operator -h, -k, h + l and twin fractions of approximately 0.46 and 0.16, respectively.

  17. Mycobacterium tuberculosis Latent Antigen Rv2029c from the Multistage DNA Vaccine A39 Drives TH1 Responses via TLR-mediated Macrophage Activation

    Directory of Open Access Journals (Sweden)

    Haibo Su

    2017-11-01

    Full Text Available Targeting of Mycobacterium tuberculosis (MTB latent antigens comprises a crucial strategy for the development of alternative tuberculosis (TB vaccine(s that protects against TB reactivation. Here, we generated a multistage DNA vaccine, A39, containing the early antigens Ag85A and Rv3425 as well as the latency-associated protein Rv2029c, which conferred protective immunity in a pre-exposure mouse model. Moreover, administration of the A39 vaccination after MTB exposure inhibited reactivation and resulted in significantly lower bacterial loads in the lungs and spleen of mice, compared to those in the control population. Subsequently, we investigated the effect of Rv2029c on innate immunity and characterized the molecular details of the interaction of this protein with the host via iTRAQ proteomic and biochemical assay analyses. Rv2029c activated macrophages, triggered the production of pro-inflammatory cytokines, and promoted toll-like receptor/mitogen-activated protein kinase (TLR/MAPK-dependent macrophage apoptosis. Furthermore, Rv2029c treatment enhanced the ability of Mycobacterium bovis Bacillus Calmette-Guérin (BCG-infected macrophages to present antigens to CD4+ T cells in vitro, which correlated with an increase in MHC-II expression. Lastly, Rv2029c-treated macrophages activated T cells, effectively polarized CD4+ and CD8+ T cells to secrete IFN-γ and IL-2, and specifically expanded a population of CD44highCD62LlowCD4+/CD8+ effector/memory cells, indicating that Rv2029c, as a specific recall antigen, contributes to Th1 polarization in T cell immunity. These results suggest that Rv2029c and A39 comprise promising targets for the development of next-generation clinical TB therapeutic vaccines.

  18. Rv2131c gene product: An unconventional enzyme that is both inositol monophosphatase and fructose-1,6-bisphosphatase

    International Nuclear Information System (INIS)

    Gu Xiaoling; Chen Mao; Shen Hongbo; Jiang Xin; Huang Yishu; Wang Honghai

    2006-01-01

    Inositol monophosphatase is an enzyme in the biosynthesis of myo-inostiol, a crucial substrate for the synthesis of phosphatidylinositol, which has been demonstrated to be an essential component of mycobacteria. In this study, the Rv2131c gene from Mycobacterium tuberculosis H37Rv was cloned into the pET28a vector and the recombinant plasmid was transformed into Escherichia coli BL21 (DE3) strain, allowing the expression of the enzyme in fusion with a histidine-rich peptide on the N-terminal. The fusion protein was purified from the soluble fraction of the lysed cells under native conditions by immobilized metal affinity chromatography (IMAC). The purified Rv2131c gene product showed inositol monophosphatase activity but with substrate specificity that was broader than those of several bacterial and eukaryotic inositol monophosphatases, and it also acted as fructose-1,6-bisphosphatase. The dimeric enzyme exhibited dual activities of IMPase and FBPase, with K m of 0.22 ± 0.03 mM for inositol-1-phosphate and K m of 0.45 ± 0.05 mM for fructose-1,6-bisphosphatase. To better understand the relationship between the function and structure of the Rv2131c enzyme, we constructed D40N, L71A, and D94N mutants and purified these corresponding proteins. Mutations of D40N and D94N caused the proteins to almost completely lose both the inositol monophosphatase and fructose-1,6-bisphosphatase activities. However, L71A mutant did not cause loss either of the activities, but the activity toward the inositol was 12-fold more resistant to inhibition by lithium (IC 5 ∼ 60 mM). Based on the substrate specificity and presence of conserved sequence motifs of the M. tuberculosis Rv2131c, we proposed that the enzyme belonged to class IV fructose-1,6-bisphosphatase (FBPase IV)

  19. NCBI nr-aa BLAST: CBRC-TGUT-37-0151 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-TGUT-37-0151 ref|YP_001284895.1| PE-PGRS family protein [Mycobacterium tuberculosi...s H37Ra] gb|ABQ75333.1| PE-PGRS family protein [Mycobacterium tuberculosis H37Ra] YP_001284895.1 6e-51 37% ...

  20. Antituberculosis: Synthesis and Antimycobacterial Activity of Novel Benzimidazole Derivatives

    Directory of Open Access Journals (Sweden)

    Yeong Keng Yoon

    2013-01-01

    Full Text Available A total of seven novel benzimidazoles were synthesized by a 4-step reaction starting from 4-fluoro-3-nitrobenzoic acid under relatively mild reaction conditions. The synthesized compounds were screened for their antimycobacterial activity against M. tuberculosis H37Rv (MTB-H37Rv and INH-resistant M. tuberculosis (INHR-MTB strains using agar dilution method. Three of them displayed good activity with MIC of less than 0.2 μM. Compound ethyl 1-(2-(4-(4-(ethoxycarbonyl-2-aminophenylpiperazin-1-ylethyl-2-(4-(5-(4-fluorophenylpyridin-3-ylphenyl-1H-benzo[d]imidazole-5-carboxylate (5g was found to be the most active with MIC of 0.112 μM against MTB-H37Rv and 6.12 μM against INHR-MTB, respectively.

  1. Mycobacterial species as case-study of comparative genome analysis

    DEFF Research Database (Denmark)

    Zakham, F.; Belayachi, L.; Ussery, David

    2011-01-01

    . Pasteur 1173P2, M. leprae Br4923, M. marinum M, M. sp. KMS, M. sp. MCS, M. tuberculosis CDC1551, M. tuberculosis F11, M. tuberculosis H37Ra, M. tuberculosis H37Rv, M. tuberculosis KZN 1435 , M. ulcerans Agy99,and M. vanbaalenii PYR—1, For this purpose a comparison has been done based on their length...... defined for twelve Mycobacterial species. We have also introduced the genome atlas of the reference strain M. tuberculosis H37Rv which can give a good overview of this genome. And for examining the phylogenetic relationships among these bacteria, a phylogenic tree has been constructed from 16S rRNA gene...... the evolutionary events of these species and improving drugs, vaccines, and diagnostics tools for controlling Mycobacterial diseases. In this present study we aim to outline a comparative genome analysis of fourteen Mycobacterial genomes: M. avium subsp. paratuberculosis K—10, M. bovis AF2122/97, M. bovis BCG str...

  2. Novel mechanism of gene regulation: the protein Rv1222 of Mycobacterium tuberculosis inhibits transcription by anchoring the RNA polymerase onto DNA.

    Science.gov (United States)

    Rudra, Paulami; Prajapati, Ranjit Kumar; Banerjee, Rajdeep; Sengupta, Shreya; Mukhopadhyay, Jayanta

    2015-07-13

    We propose a novel mechanism of gene regulation in Mycobacterium tuberculosis where the protein Rv1222 inhibits transcription by anchoring RNA polymerase (RNAP) onto DNA. In contrast to our existing knowledge that transcriptional repressors function either by binding to DNA at specific sequences or by binding to RNAP, we show that Rv1222-mediated transcription inhibition requires simultaneous binding of the protein to both RNAP and DNA. We demonstrate that the positively charged C-terminus tail of Rv1222 is responsible for anchoring RNAP on DNA, hence the protein slows down the movement of RNAP along the DNA during transcription elongation. The interaction between Rv1222 and DNA is electrostatic, thus the protein could inhibit transcription from any gene. As Rv1222 slows down the RNA synthesis, upon expression of the protein in Mycobacterium smegmatis or Escherichia coli, the growth rate of the bacteria is severely impaired. The protein does not possess any significant affinity for DNA polymerase, thus, is unable to inhibit DNA synthesis. The proposed mechanism by which Rv1222 inhibits transcription reveals a new repertoire of prokaryotic gene regulation. © Crown copyright 2015.

  3. Susceptibilidad in vitro a los medicamentos anti-tuberculosos de aislados de cepas del complejo Mycobacterium tuberculosis obtenidos a partir de lobos marinos

    Directory of Open Access Journals (Sweden)

    Amelia Bernardelli

    2004-06-01

    Full Text Available Se han hallado cepas de micobacterias aisladas de lobos marinos del Atlántico sur y pertenecen al complejo de Mycobacterium tuberculosis. Los animales se recibieron en las instalaciones del Oceanario Mundo Marino y fueron tratados apropiadamente para su recuperación con la terapia convencional, cuidados intensivos y suplemento alimentario pero no se observó mejoría en su estado general. Se practicaron necropsias en todos los animales y se observaron lesiones extensas compatibles con tuberculosis en pulmones, hígado, bazo y ganglios linfáticos. Para la identificación de las micobacterias, se realizaron pruebas bioquímicas y técnicas de biología molecular con la sonda IS6110. Además, se identificaron todas las cepas como pertenecientes al complejo M. tuberculosis mediante el equipo LCx M. tuberculosis Assay (Abbott Laboratories. El objetivo de este estudio fue determinar in vitro la sensibilidad de las cepas patrón BCG, H37Rv (M. tuberculosis y AN5 (Mycobacterium bovis y la de las siete aisladas de lobos marinos a isoniacida, rifampicina, estreptomicina y etambutol. La concentración inhibitoria mínima (CIM de las drogas antituberculosas se llevó a cabo con el equipo Mycobacterial Growth Indicator Tube (MGIT, BD, Argentina y la microdilución con el ensayo colorimétrico con bromuro de 3-(4-5 dimetiltiazol-2-2,5 difeniltetrazolio. Todos los aislamientos y las cepas de referencia BCG y AN5 se inhibieron con valores CIM de los de H37Rv con buena concordancia entre los resultados obtenidos con ambas técnicas. Los hallazgos permiten sugerir que podrían ser una importante ayuda terapéutica en los lobos marinos con diagnóstico de tuberculosis y evaluar el posible papel sanitario en la prevención y transmisión de la tuberculosis de los animales a los humanos y el trabajo en conjunto.

  4. Proteogenomic Investigation of Strain Variation in Clinical Mycobacterium tuberculosis Isolates

    KAUST Repository

    Heunis, Tiaan

    2017-08-18

    Mycobacterium tuberculosis consists of a large number of different strains that display unique virulence characteristics. Whole-genome sequencing has revealed substantial genetic diversity among clinical M. tuberculosis isolates, and elucidating the phenotypic variation encoded by this genetic diversity will be of utmost importance to fully understand M. tuberculosis biology and pathogenicity. In this study we integrated whole-genome sequencing and mass spectrometry (GeLC-MS/MS) to reveal strain-specific characteristics in the proteomes of two clinical M. tuberculosis Latin American-Mediterranean isolates. Using this approach we identified 59 peptides containing single amino acid variants, which covered ~9% of all total coding nonsynonymous single nucleotide variants detected by whole-genome sequencing. Furthermore, we identified 29 distinct peptides that mapped to a hypothetical protein not present in the M. tuberculosis H37Rv reference proteome. Here we provide evidence for the expression of this protein in the clinical M. tuberculosis SAWC3651 isolate. The strain-specific databases enabled confirmation of genomic differences (i.e. large genomic regions of difference and nonsynonymous single nucleotide variants) in these two clinical M. tuberculosis isolates and allowed strain differentiation at the proteome level. Our results contribute to the growing field of clinical microbial proteogenomics and can improve our understanding of phenotypic variation in clinical M. tuberculosis isolates.

  5. Proteogenomic Investigation of Strain Variation in Clinical Mycobacterium tuberculosis Isolates

    KAUST Repository

    Heunis, Tiaan; Dippenaar, Anzaan; Warren, Robin M.; van Helden, Paul D.; van der Merwe, Ruben G.; Gey van Pittius, Nicolaas C.; Pain, Arnab; Sampson, Samantha L.; Tabb, David L.

    2017-01-01

    Mycobacterium tuberculosis consists of a large number of different strains that display unique virulence characteristics. Whole-genome sequencing has revealed substantial genetic diversity among clinical M. tuberculosis isolates, and elucidating the phenotypic variation encoded by this genetic diversity will be of utmost importance to fully understand M. tuberculosis biology and pathogenicity. In this study we integrated whole-genome sequencing and mass spectrometry (GeLC-MS/MS) to reveal strain-specific characteristics in the proteomes of two clinical M. tuberculosis Latin American-Mediterranean isolates. Using this approach we identified 59 peptides containing single amino acid variants, which covered ~9% of all total coding nonsynonymous single nucleotide variants detected by whole-genome sequencing. Furthermore, we identified 29 distinct peptides that mapped to a hypothetical protein not present in the M. tuberculosis H37Rv reference proteome. Here we provide evidence for the expression of this protein in the clinical M. tuberculosis SAWC3651 isolate. The strain-specific databases enabled confirmation of genomic differences (i.e. large genomic regions of difference and nonsynonymous single nucleotide variants) in these two clinical M. tuberculosis isolates and allowed strain differentiation at the proteome level. Our results contribute to the growing field of clinical microbial proteogenomics and can improve our understanding of phenotypic variation in clinical M. tuberculosis isolates.

  6. Proteogenomic Investigation of Strain Variation in Clinical Mycobacterium tuberculosis Isolates.

    Science.gov (United States)

    Heunis, Tiaan; Dippenaar, Anzaan; Warren, Robin M; van Helden, Paul D; van der Merwe, Ruben G; Gey van Pittius, Nicolaas C; Pain, Arnab; Sampson, Samantha L; Tabb, David L

    2017-10-06

    Mycobacterium tuberculosis consists of a large number of different strains that display unique virulence characteristics. Whole-genome sequencing has revealed substantial genetic diversity among clinical M. tuberculosis isolates, and elucidating the phenotypic variation encoded by this genetic diversity will be of the utmost importance to fully understand M. tuberculosis biology and pathogenicity. In this study, we integrated whole-genome sequencing and mass spectrometry (GeLC-MS/MS) to reveal strain-specific characteristics in the proteomes of two clinical M. tuberculosis Latin American-Mediterranean isolates. Using this approach, we identified 59 peptides containing single amino acid variants, which covered ∼9% of all coding nonsynonymous single nucleotide variants detected by whole-genome sequencing. Furthermore, we identified 29 distinct peptides that mapped to a hypothetical protein not present in the M. tuberculosis H37Rv reference proteome. Here, we provide evidence for the expression of this protein in the clinical M. tuberculosis SAWC3651 isolate. The strain-specific databases enabled confirmation of genomic differences (i.e., large genomic regions of difference and nonsynonymous single nucleotide variants) in these two clinical M. tuberculosis isolates and allowed strain differentiation at the proteome level. Our results contribute to the growing field of clinical microbial proteogenomics and can improve our understanding of phenotypic variation in clinical M. tuberculosis isolates.

  7. Studies on mycobacterium tuberculosis sensitivity test by using the method of rapid radiometry with appendixes of clinical results

    International Nuclear Information System (INIS)

    Yang Yongqing; Jiang Yimin; Lu Wendong; Zhu Rongen

    1987-01-01

    Three standard strains of mycobacterium tuberculosis (H 37 RV-fully sensitive, SM-R1000 μg/ml, RFP-R 100 μg/ml) were tested with 10 concentration of 5 antitubercular agent, INH, SM, PAS, RFP and EB. 114 isolates of mycobacterium tuberculosis taken from patients were tested with INH, PAS, SM and RFP. They were agreed with the results of standard Lowenstein-Jensen method in 81.7%. 82% of the isolate test were completed within 5 days. The method may be used in routine clinical work. The liquid media prepared by authors do not require human serum albumin and it is less expensive and readily available

  8. Efficacy of amikacin and ciprofloxacin against clinical isolates of mycobacterium tuberculosis

    International Nuclear Information System (INIS)

    Satti, M.; Faqir, F.; Sattar, A.; Abbasi, S.; Butt, T.; Karamat, K.A.; Abidi, M.

    2010-01-01

    Background: Tuberculosis was a leading cause of death at the turn of the 20 century and continues to be one of the medical scourges of mankind. Before the availability of antimicrobial drugs the cornerstone of treatment was rest in the open air in sanatoria. The major breakthrough in treatment of tuberculosis came with the discovery of Streptomycin. Later, INH, Ethambutol, Pyrazinamide, Rifampicin were added to the arsenal. Objective of this study was to determine the sensitivity of clinical isolates of Mycobacterium tuberculosis against two second-line anti-tuberculosis drugs, Amikacin and Ciprofloxacin. Methods: This cross-sectional study was conducted at Department of Microbiology, Armed Forces Institute of Pathology (AFIP) Rawalpindi. All routine clinical samples received for acid fast bacilli (AFB) in the Department of Microbiology, AFIP, Rawalpindi were processed by modified Petroff's technique and inoculated on Lowenstein Jensen (LJ) medium and Bactec 460 Mycobacterium tuberculosis culture system. After identification of M. tuberculosis sensitivity was performed against first-line anti-tuberculosis drugs. Then susceptibility of M. tuberculosis isolates against Amikacin and Ciprofloxacin was performed on LJ medium. H37Rv was used as control strain. Results: Results were interpreted using resistance ratio method. Out of 100 M. tuberculosis isolates, 98% were sensitive to Amikacin and 97% to Ciprofloxacin. Conclusion: Amikacin and Ciprofloxacin are very effective second line anti-tuberculosis drugs against tuberculosis isolates in our set-up. (author)

  9. Karakterisasi Klon Rekombinan pGEMT-Rv1984c Sebagai Antigen untuk Imunodiagnostik Tuberkulosis Laten

    OpenAIRE

    Baharaeni, Wa Ode

    2017-01-01

    The research about "Characterization of Recombinant Clones pGEMT-Rv1984c as Antigen for Latent Tuberculosis Immunodiagnostic" has been done. Rv1984c gene is the gene that is owned by Mycobacterium tuberculosis, and encodes a protein formation CFP21 which serve as antigen candidate for latent tuberculosis immunodiagnostic through gene cloning. The result of transformation of gene cloning still has the possibility of failure of the process of transformation and ligation, so we need a character...

  10. In vitro efficacy of ethionamide and clarithromycin in mycobacterium tuberculosis isolates

    International Nuclear Information System (INIS)

    Satti, M.S.; Abbasi, S.; Rafi, S.; Butt, T.; Karamat, K.A.

    2010-01-01

    To determine the sensitivity of clinical isolates of Mycobacterium tuberculosis isolates against ethionamide, and clarithromycin. Department of Microbiology, Armed Forces institute of Pathology (AFIP) Rawalpindi from June 2003 to June 2004. Materials and Methods: All routine clinical samples received for acid fast bacilli (AFB) culture and yielding positive growth on Lowenstien Jensen medium and Bactec 460 were include in the study. The isolates were from sputum (n=70), bronchioalveolar lavage (n=10), fine needle aspiration (n=6), lymph nodes (n=7), pleural fluid (n=4), endometrium (n=3). After the identification of M. tuberculosis (MTB) sensitivity was performed against first-line antituberculosis drugs. Then susceptibility of M. tuberculosis isolates against ethionamide and clarithromycih was performed on LJ medium. Mycobacterium H37Rv was used as control strain. Results were interpreted using resistance ratio method. Out of 100 M. tuberculosis isolates, sensitivity to ethionamide was 93% and 9% to clarithromycih. Clarithromycin when used alone is ineffective as antituberculosis drug but its efficacy in combination needs to be tested. However ethionamide may be used as an alternative antituberculosis drug. (author)

  11. A luciferase-based assay for rapid assessment of drug activity against Mycobacterium tuberculosis including monitoring of macrophage viability.

    Science.gov (United States)

    Larsson, Marie C; Lerm, Maria; Ängeby, Kristian; Nordvall, Michaela; Juréen, Pontus; Schön, Thomas

    2014-11-01

    The intracellular (IC) effect of drugs against Mycobacterium tuberculosis (Mtb) is not well established but increasingly important to consider when combining current and future multidrug regimens into the best possible treatment strategies. For this purpose, we developed an IC model based on a genetically modified Mtb H37Rv strain, expressing the Vibrio harvei luciferase (H37Rv-lux) infecting the human macrophage like cell line THP-1. Cells were infected at a low multiplicity of infection (1:1) and subsequently exposed to isoniazid (INH), ethambutol (EMB), amikacin (AMI) or levofloxacin (LEV) for 5days in a 96-well format. Cell viability was evaluated by Calcein AM and was maintained throughout the experiment. The number of viable H37Rv-lux was determined by luminescence and verified by a colony forming unit analysis. The results were compared to the effects of the same drugs in broth cultures. AMI, EMB and LEV were significantly less effective intracellularly (MIC90: >4mg/L, 8mg/L and 2mg/L, respectively) compared to extracellularly (MIC90: 0.5mg/L for AMI and EMB; 0.25mg/L for LEV). The reverse was the case for INH (IC: 0.064mg/L vs EC: 0.25mg/L). In conclusion, this luciferase based method, in which monitoring of cell viability is included, has the potential to become a useful tool while evaluating the intracellular effects of anti-mycobacterial drugs. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Efficacy Testing of H56 cDNA Tattoo Immunization against Tuberculosis in a Mouse Model.

    Science.gov (United States)

    Platteel, Anouk C M; Nieuwenhuizen, Natalie E; Domaszewska, Teresa; Schürer, Stefanie; Zedler, Ulrike; Brinkmann, Volker; Sijts, Alice J A M; Kaufmann, Stefan H E

    2017-01-01

    Tuberculosis (TB), caused by Mycobacterium tuberculosis ( Mtb ), remains a global threat. The only approved vaccine against TB, Mycobacterium bovis bacillus Calmette-Guérin (BCG), provides insufficient protection and, being a live vaccine, can cause disseminated disease in immunocompromised individuals. Previously, we found that intradermal cDNA tattoo immunization with cDNA of tetanus toxoid fragment C domain 1 fused to cDNA of the fusion protein H56, comprising the Mtb antigens Ag85B, ESAT-6, and Rv2660c, induced antigen-specific CD8 + T cell responses in vivo . As cDNA tattoo immunization would be safer than a live vaccine in immunocompromised patients, we tested the protective efficacy of intradermal tattoo immunization against TB with H56 cDNA, as well as with H56_E, a construct optimized for epitope processing in a mouse model. As Mtb antigens can be used in combination with BCG to boost immune responses, we also tested the protective efficacy of heterologous prime-boost, using dermal tattoo immunization with H56_E cDNA to boost BCG immunization in mice. Dermal H56 and H56_E cDNA immunization induced H56-specific CD4 + and CD8 + T cell responses and Ag85B-specific IgG antibodies, but did not reduce bacterial loads, although immunization with H56_E ameliorated lung pathology. Both subcutaneous and intradermal immunization with BCG resulted in broad cellular immune responses, with increased frequencies of CD4 + T effector memory cells, T follicular helper cells, and germinal center B cells, and resulted in reduced bacterial loads and lung pathology. Heterologous vaccination with BCG/H56_E cDNA induced increased H56-specific CD4 + and CD8 + T cell cytokine responses compared to vaccination with BCG alone, and lung pathology was significantly decreased in BCG/H56_E cDNA immunized mice compared to unvaccinated controls. However, bacterial loads were not decreased after heterologous vaccination compared to BCG alone. CD4 + T cells responding to Ag85B- and ESAT-6

  13. Structure Determination of Mycobacterium tuberculosis Serine Protease Hip1 (Rv2224c)

    Energy Technology Data Exchange (ETDEWEB)

    Naffin-Olivos, Jacqueline L.; Daab, Andrew; White, Andre; Goldfarb, Nathan E.; Milne, Amy C.; Liu, Dali; Baikovitz, Jacqueline; Dunn, Ben M.; Rengarajan, Jyothi; Petsko, Gregory A.; Ringe, Dagmar

    2017-04-07

    The Mycobacterium tuberculosis (Mtb) serine protease Hip1 (hydrolase important for pathogenesis; Rv2224c) promotes tuberculosis (TB) pathogenesis by impairing host immune responses through proteolysis of a protein substrate, Mtb GroEL2. The cell surface localization of Hip1 and its immunomodulatory functions make Hip1 a good drug target for new adjunctive immune therapies for TB. Here, we report the crystal structure of Hip1 to a resolution of 2.6 Å and the kinetic studies of the enzyme against model substrates and the protein GroEL2. The structure shows a two-domain protein, one of which contains the catalytic residues that are the signature of a serine protease. Surprisingly, a threonine is located within the active site close enough to hydrogen bond with the catalytic residues Asp463 and His490. Mutation of this residue, Thr466, to alanine established its importance for function. Our studies provide insights into the structure of a member of a novel family of proteases. Knowledge of the Hip1 structure will aid in designing inhibitors that could block Hip1 activity

  14. ORF Alignment: NC_000962 [GENIUS II[Archive

    Lifescience Database Archive (English)

    Full Text Available - Mycobacterium tuberculosis (strain H37RV) ... pdb|1LQU|B Chain B, Mycobacterium Tuberculosis... Fpra In ... Complex With Nadph pdb|1LQU|A Chain A, Mycobacterium ... Tuberculosis... By The ... Atomic Resolution Structure Of Fpra, A Mycobacterium ... Tuberculosis...e Atomic ... Resolution Structure Of Fpra, A Mycobacterium ... Tuberculosis Oxidoreductase sp|

  15. ORF Alignment: NC_002755 [GENIUS II[Archive

    Lifescience Database Archive (English)

    Full Text Available - Mycobacterium tuberculosis (strain H37RV) ... pdb|1LQU|B Chain B, Mycobacterium Tuberculosis... Fpra In ... Complex With Nadph pdb|1LQU|A Chain A, Mycobacterium ... Tuberculosis... By The ... Atomic Resolution Structure Of Fpra, A Mycobacterium ... Tuberculosis...e Atomic ... Resolution Structure Of Fpra, A Mycobacterium ... Tuberculosis Oxidoreductase sp|

  16. Antigen induced production of υ-interferon ex vivo, in the peripheral blood of patients with active pulmonary tuberculosis

    Directory of Open Access Journals (Sweden)

    Z. M. Zagdyn

    2013-01-01

    Full Text Available Tuberculosis (TB is one of the most significant problems in the Russian Health Care. Russia remains on the list of the 22 countries with a high TB incidence and on the third place in the world with a high prevalence of Drug Resistant TB [1]. It is urgently needed to develop new TB diagnostic methods as well as effective measures of the specific TB prevention, including a development of the novel vaccines, so we have to know better about the most immunogenic antigens of Mycobacterium Tuberculosis. We studied the Interferon-Q production in the whole blood after stimulating immune response with different proteins of Mycobacterium Tuberculosis in patients with active TB. The study results permitted us to evaluate the immunogenicity of the previously known proteins (Ag85a и ESAT-6 in comparison to the recently identified ones (Rv2957, Rv2958c и Rv0447, analyzing simultaneously their relation to tuberculin, as well as to antigens of the different viruses (Human Immunodeficiency Virus, Cytomegalovirus, Epstein-Barr Virus, Influenza Virus. Protein Rv2958c, unlike protein ESAT-6, showed the high immunogenicity in comparison to tuberculin. The expressed immunogenicity of protein Rv2958c might be indicated a possible greatest specificity of immune response to this antigen in TB patients. Meanwhile, bacillary tuberculosis was strongly associated with low immune response to this protein. Also we were found statistical differences in immune responses of patients to the different Mycobacterium Tuberculosis antigens depending on the drug sensitivity. In addition it was interesting to know about a significantly low immune response of patients with Drug Resistant TB to protein pp65 CMV.

  17. Detection of circulating Mycobacterium tuberculosis-specific DNA by droplet digital PCR for vaccine evaluation in challenged monkeys and TB diagnosis.

    Science.gov (United States)

    Song, Neng; Tan, Yang; Zhang, Lingyun; Luo, Wei; Guan, Qing; Yan, Ming-Zhe; Zuo, Ruiqi; Liu, Weixiang; Luo, Feng-Ling; Zhang, Xiao-Lian

    2018-04-24

    Mycobacterium tuberculosis (M. tb) is emerging as a more serious pathogen due to the increased multidrug-resistant TB and co-infection of human immunodeficiency virus (HIV). The development of an effective and sensitive detection method is urgently needed for bacterial load evaluation in vaccine development, early TB diagnosis, and TB treatment. Droplet digital polymerase chain reaction (ddPCR) is a newly developed sensitive PCR method for the absolute quantification of nucleic acid concentrations. Here, we used ddPCR to quantify the circulating virulent M. tb-specific CFP10 (10-kDa culture filtrate protein, Rv3874) and Rv1768 DNA copy numbers in the blood samples from Bacille Calmette-Guerin (BCG)-vaccinated and/or virulent M. tb H37Rv-challenged rhesus monkeys. We found that ddPCR was more sensitive compared to real-time fluorescence quantitative PCR (qPCR), as the detection limits of CFP10 were 1.2 copies/μl for ddPCR, but 15.8 copies/μl for qPCR. We demonstrated that ddPCR could detect CFP10 and Rv1768 DNA after 3 weeks of infection and at least two weeks earlier than qPCR in M.tb H37Rv-challenged rhesus monkey models. DdPCR could also successfully quantify CFP10 and Rv1768 DNA copy numbers in clinical TB patients' blood samples (active pulmonary TB, extrapulmonary TB (EPTB), and infant TB). To our knowledge, this study is the first to demonstrate that ddPCR is an effective and sensitive method of measuring the circulating CFP10 and Rv1768 DNA for vaccine development, bacterial load evaluation in vivo, and early TB (including EPTB and infant TB) diagnosis as well.

  18. Role of Mutations in Dihydrofolate Reductase DfrA (Rv2763c) and Thymidylate Synthase ThyA (Rv2764c) in Mycobacterium tuberculosis Drug Resistance

    KAUST Repository

    Koser, C. U.

    2010-09-17

    We would like to comment on a number of recent reports in this journal (6, 8, 12, 18) concerning Mycobacterium tuberculosis dihydrofolate reductase (DHFR), encoded by dfrA (Rv2763c). Around 36% of phenotypically para-aminosalicylic acid (PAS)-resistant M. tuberculosis strains harbor mutations in thyA (Rv2764c), which encodes a thymidylate synthase (20). In their effort to elucidate the remaining unknown resistance mechanism(s), Mathys et al. extended their sequence analysis to a number of additional genes, including dfrA (12). It was unclear whether the three dfrA mutations they identified in the PAS-resistant strains P-693 and P-3158 could contribute to PAS resistance on their own. Nonetheless, these findings are notable for two reasons. First, isoniazid (INH) has been shown to inhibit M. tuberculosis DHFR in vitro (1). Whether the same holds true for ethionamide, which shares a number of common resistance mechanisms with INH, was not tested (J. Blanchard, personal communication). In any case, the clinical relevance of DHFR-mediated INH resistance remains enigmatic. To date, only Ho et al. have addressed this question, but they did not identify any dfrA mutations in a screen of 127 INH-resistant clinical isolates (8). Consequently, Mathys et al. remain the first to describe mutations in this target (12). However, given that isolates with mutated DHFR are members of a cluster with baseline INH resistance, the importance of these mutations with respect to INH resistance remains unclear. Irrespective of their relevance in INH resistance, these dfrA mutations are noteworthy for a second reason. Contrary to previous wisdom, Forgacs et al. recently showed that M. tuberculosis is sensitive to the drug combination trimethoprim-sulfamethoxazole (TMP-SMX) (6, 18). DHFR is competitively inhibited by TMP, and consequently, mutations therein lead to resistance in a variety of organisms (9, 16, 19). The crystal structures of the wild-type M. tuberculosis DHFR in complex with

  19. Transfer of adoptive immunity to tuberculosis in mice

    International Nuclear Information System (INIS)

    Lefford, M.J.

    1975-01-01

    A system is described for studying adoptive immunity to tuberculosis in syngeneic mice. Donor mice were immunized with 10 4 BCG intravenously, and lymphoid cells were harvested 28 days later. Adoptive immunity was measured in recipient mice in terms of the inhibition of growth of BCG in the liver and spleen following intravenous injection. Adoptive immunity was expressed optimally when recipients were sublethally irradiated (500 R), challenged with 10 4 to 10 5 viable organisms, and given sensitized lymphoid cells intravenously. Adoptive immunity was not manifest until 14 days after challenge and was effective against Mycobacterium tuberculosis H37Rv as well as BCG. Immunity could be conferred by spleen, lymph node, peritoneal exudate, and resident peritoneal (washout) cells. The lymphoid cells conferring immunity were shown to be thymus-dependent lymphocytes by virtue of their nonadherence to glass wool and sensitivity to anti-theta serum plus complement. The sensitized cells were relatively susceptible to both in vitro and in vivo x irradiation

  20. Combating highly resistant emerging pathogen Mycobacterium abscessus and Mycobacterium tuberculosis with novel salicylanilide esters and carbamates.

    Science.gov (United States)

    Baranyai, Zsuzsa; Krátký, Martin; Vinšová, Jarmila; Szabó, Nóra; Senoner, Zsuzsanna; Horváti, Kata; Stolaříková, Jiřina; Dávid, Sándor; Bősze, Szilvia

    2015-08-28

    In the Mycobacterium genus over one hundred species are already described and new ones are periodically reported. Species that form colonies in a week are classified as rapid growers, those requiring longer periods (up to three months) are the mostly pathogenic slow growers. More recently, new emerging species have been identified to lengthen the list, all rapid growers. Of these, Mycobacterium abscessus is also an intracellular pathogen and it is the most chemotherapy-resistant rapid-growing mycobacterium. In addition, the cases of multidrug-resistant Mycobacterium tuberculosis infection are also increasing. Therefore there is an urgent need to find new active molecules against these threatening strains. Based on previous results, a series of salicylanilides, salicylanilide 5-chloropyrazinoates and carbamates was designed, synthesized and characterised. The compounds were evaluated for their in vitro activity on M. abscessus, susceptible M. tuberculosis H37Rv, multidrug-resistant (MDR) M. tuberculosis MDR A8, M. tuberculosis MDR 9449/2006 and on the extremely-resistant Praha 131 (XDR) strains. All derivatives exhibited a significant activity with minimum inhibitory concentrations (MICs) in the low micromolar range. Eight salicylanilide carbamates and two salicylanilide esters exhibited an excellent in vitro activity on M. abscessus with MICs from 0.2 to 2.1 μM, thus being more effective than ciprofloxacin and gentamicin. This finding is potentially promising, particularly, as M. abscessus is a threateningly chemotherapy-resistant species. M. tuberculosis H37Rv was inhibited with MICs from 0.2 μM, and eleven compounds have lower MICs than isoniazid. Salicylanilide esters and carbamates were found that they were effective also on MDR and XDR M. tuberculosis strains with MICs ≥1.0 μM. The in vitro cytotoxicity (IC50) was also determined on human MonoMac-6 cells, and selectivity index (SI) of the compounds was established. In general, salicylanilide

  1. Nicotinamidase/pyrazinamidase of Mycobacterium tuberculosis forms homo-dimers stabilized by disulfide bonds.

    Science.gov (United States)

    Rueda, Daniel; Sheen, Patricia; Gilman, Robert H; Bueno, Carlos; Santos, Marco; Pando-Robles, Victoria; Batista, Cesar V; Zimic, Mirko

    2014-12-01

    Recombinant wild-pyrazinamidase from H37Rv Mycobacterium tuberculosis was analyzed by gel electrophoresis under differential reducing conditions to evaluate its quaternary structure. PZAse was fractionated by size exclusion chromatography under non-reducing conditions. PZAse activity was measured and mass spectrometry analysis was performed to determine the identity of proteins by de novo sequencing and to determine the presence of disulfide bonds. This study confirmed that M. tuberculosis wild type PZAse was able to form homo-dimers in vitro. Homo-dimers showed a slightly lower specific PZAse activity compared to monomeric PZAse. PZAse dimers were dissociated into monomers in response to reducing conditions. Mass spectrometry analysis confirmed the existence of disulfide bonds (C72-C138 and C138-C138) stabilizing the quaternary structure of the PZAse homo-dimer. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Evaluation of the efficacy of valproic acid and suberoylanilide hydroxamic acid (vorinostat in enhancing the effects of first-line tuberculosis drugs against intracellular Mycobacterium tuberculosis

    Directory of Open Access Journals (Sweden)

    Martin Rao

    2018-04-01

    Full Text Available Background: New tuberculosis (TB drug treatment regimens are urgently needed. This study evaluated the potential of the histone deacetylase inhibitors (HDIs valproic acid (VPA and suberoylanilide hydroxamic acid (SAHA to enhance the effects of first-line anti-TB drugs against intracellular Mycobacterium tuberculosis. Methods: M. tuberculosis H37Rv cultures were exposed to VPA or SAHA over 6 days, in the presence or absence of isoniazid (INH and rifampicin (RIF. The efficacy of VPA and SAHA against intracellular M. tuberculosis with and without INH or RIF was tested by treating infected macrophages. Bactericidal activity was assessed by counting mycobacterial colony-forming units (CFU. Results: VPA treatment exhibited superior bactericidal activity to SAHA (2-log CFU reduction, while both HDIs moderately improved the activity of RIF against extracellular M. tuberculosis. The bactericidal effect of VPA against intracellular M. tuberculosis was greater than that of SAHA (1-log CFU reduction and equalled that of INH (1.5-log CFU reduction. INH/RIF and VPA/SAHA combination treatment inhibited intracellular M. tuberculosis survival in a shorter time span than monotherapy (3 days vs. 6 days. Conclusions: VPA and SAHA have adjunctive potential to World Health Organization-recommended TB treatment regimens. Clinical evaluation of the two drugs with regard to reducing the treatment duration and improving treatment outcomes in TB is warranted. Keywords: Mycobacterium tuberculosis, Adjunct host-directed therapy, Tuberculosis, Histone deacetylase inhibitors, Repurposed drugs

  3. ORF Alignment: NC_002945 [GENIUS II[Archive

    Lifescience Database Archive (English)

    Full Text Available NC_002945 gi|31792055 >1xsfA 15 102 29 115 2e-23 ... ref|NP_215382.1| POSSIBLE RESUSCITATION...hypothetical protein Rv0867c - Mycobacterium ... tuberculosis (strain H37RV) emb|CAA17673.1| POSSIBLE ... RESUSCITATION

  4. ORF Alignment: NC_002945 [GENIUS II[Archive

    Lifescience Database Archive (English)

    Full Text Available NC_002945 gi|31793631 >1xsfA 15 102 29 115 2e-23 ... ref|NP_215382.1| POSSIBLE RESUSCITATION...hypothetical protein Rv0867c - Mycobacterium ... tuberculosis (strain H37RV) emb|CAA17673.1| POSSIBLE ... RESUSCITATION

  5. ORF Alignment: NC_002755 [GENIUS II[Archive

    Lifescience Database Archive (English)

    Full Text Available NC_002755 gi|15841974 >1xsfA 15 102 29 115 2e-23 ... ref|NP_215382.1| POSSIBLE RESUSCITATION...hypothetical protein Rv0867c - Mycobacterium ... tuberculosis (strain H37RV) emb|CAA17673.1| POSSIBLE ... RESUSCITATION

  6. ORF Alignment: NC_002755 [GENIUS II[Archive

    Lifescience Database Archive (English)

    Full Text Available NC_002755 gi|15840280 >1xsfA 15 102 29 115 2e-23 ... ref|NP_215382.1| POSSIBLE RESUSCITATION...hypothetical protein Rv0867c - Mycobacterium ... tuberculosis (strain H37RV) emb|CAA17673.1| POSSIBLE ... RESUSCITATION

  7. ORF Alignment: NC_000962 [GENIUS II[Archive

    Lifescience Database Archive (English)

    Full Text Available NC_000962 gi|15609587 >1xsfA 15 102 29 115 2e-23 ... ref|NP_215382.1| POSSIBLE RESUSCITATION...hypothetical protein Rv0867c - Mycobacterium ... tuberculosis (strain H37RV) emb|CAA17673.1| POSSIBLE ... RESUSCITATION

  8. ORF Alignment: NC_003155 [GENIUS II[Archive

    Lifescience Database Archive (English)

    Full Text Available NC_003155 gi|29830077 >1xsfA 15 102 29 115 2e-23 ... ref|NP_215382.1| POSSIBLE RESUSCITATION...hypothetical protein Rv0867c - Mycobacterium ... tuberculosis (strain H37RV) emb|CAA17673.1| POSSIBLE ... RESUSCITATION

  9. ORF Alignment: NC_000962 [GENIUS II[Archive

    Lifescience Database Archive (English)

    Full Text Available NC_000962 gi|15608007 >1xsfA 15 102 29 115 2e-23 ... ref|NP_215382.1| POSSIBLE RESUSCITATION...hypothetical protein Rv0867c - Mycobacterium ... tuberculosis (strain H37RV) emb|CAA17673.1| POSSIBLE ... RESUSCITATION

  10. Activity against Mycobacterium tuberculosis with concomitant induction of cellular immune responses by a tetraaza-macrocycle with acetate pendant arms.

    Science.gov (United States)

    David, S; Ordway, D; Arroz, M J; Costa, J; Delgado, R

    2001-01-01

    The novel tetraaza-macrocyclic compound 3,7,11-tris(carboxymethyl)-3,7,11,17-tetraaza-bicyclo[11.3.1]heptadeca-1(17),13,15-triene, abbreviated as ac3py14, was investigated for its activity against Mycobacterium tuberculosis and for induction of protective cellular immune responses. Perspective results show that ac3py14 and its Fe3+ 1:1 complex, [Fe(ac3py14)], inhibited radiometric growth of several strains of M. tuberculosis. Inhibition with 25 microg/mL varied from 99% for H37Rv to 80% and above for multiple drug-resistant clinical isolates. The capacity of ac3py14 to elicit a beneficial immune response without cellular apoptosis was assessed and compared to the effects of virulent M. tuberculosis. The present study produces evidence that after stimulation with ac3py14 there was significant production of interferon gamma (IFN-gamma), whereas the production of interleukin-5 (IL-5) remained low, and there was development of a memory population (CD45RO). The level of binding of Annexin V, a marker of apoptosis, was not sufficient to result in toxic effects toward alphabeta and gammadelta T cells and CD14+ macrophages. This preliminary study is the first report of a compound that simultaneously exerts an inhibitory effect against M. tuberculosis and induces factors associated with protective immune responses.

  11. The Mycobacterium tuberculosis Rv2540c DNA sequence encodes a bifunctional chorismate synthase

    Directory of Open Access Journals (Sweden)

    Santos Diógenes S

    2008-04-01

    Full Text Available Abstract Background The emergence of multi- and extensively-drug resistant Mycobacterium tuberculosis strains has created an urgent need for new agents to treat tuberculosis (TB. The enzymes of shikimate pathway are attractive targets to the development of antitubercular agents because it is essential for M. tuberculosis and is absent from humans. Chorismate synthase (CS is the seventh enzyme of this route and catalyzes the NADH- and FMN-dependent synthesis of chorismate, a precursor of aromatic amino acids, naphthoquinones, menaquinones, and mycobactins. Although the M. tuberculosis Rv2540c (aroF sequence has been annotated to encode a chorismate synthase, there has been no report on its correct assignment and functional characterization of its protein product. Results In the present work, we describe DNA amplification of aroF-encoded CS from M. tuberculosis (MtCS, molecular cloning, protein expression, and purification to homogeneity. N-terminal amino acid sequencing, mass spectrometry and gel filtration chromatography were employed to determine identity, subunit molecular weight and oligomeric state in solution of homogeneous recombinant MtCS. The bifunctionality of MtCS was determined by measurements of both chorismate synthase and NADH:FMN oxidoreductase activities. The flavin reductase activity was characterized, showing the existence of a complex between FMNox and MtCS. FMNox and NADH equilibrium binding was measured. Primary deuterium, solvent and multiple kinetic isotope effects are described and suggest distinct steps for hydride and proton transfers, with the former being more rate-limiting. Conclusion This is the first report showing that a bacterial CS is bifunctional. Primary deuterium kinetic isotope effects show that C4-proS hydrogen is being transferred during the reduction of FMNox by NADH and that hydride transfer contributes significantly to the rate-limiting step of FMN reduction reaction. Solvent kinetic isotope effects and

  12. Direct detection of Mycobacterium tuberculosis complex in bovine and bubaline tissues through nested-PCR.

    Science.gov (United States)

    Araújo, Cristina P; Osório, Ana Luiza A R; Jorge, Klaudia S G; Ramos, Carlos A N; Souza Filho, Antonio F; Vidal, Carlos E S; Vargas, Agueda P C; Roxo, Eliana; Rocha, Adalgiza S; Suffys, Philip N; Fonseca, Antônio A; Silva, Marcio R; Barbosa Neto, José D; Cerqueira, Valíria D; Araújo, Flábio R

    2014-01-01

    Post-mortem bacterial culture and specific biochemical tests are currently performed to characterize the etiologic agent of bovine tuberculosis. Cultures take up to 90 days to develop. A diagnosis by molecular tests such as PCR can provide fast and reliable results while significantly decreasing the time of confirmation. In the present study, a nested-PCR system, targeting rv2807, with conventional PCR followed by real-time PCR, was developed to detect Mycobacterium tuberculosis complex (MTC) organisms directly from bovine and bubaline tissue homogenates. The sensitivity and specificity of the reactions were assessed with DNA samples extracted from tuberculous and non-tuberculous mycobacteria, as well as other Actinomycetales species and DNA samples extracted directly from bovine and bubaline tissue homogenates. Regarding the analytical sensitivity, DNA of the M. bovis AN5 strain was detected up to 1.5 pg by nested-PCR, whereas DNA of M. tuberculosis H37Rv strain was detected up to 6.1 pg. The nested-PCR system showed 100% analytical specificity for MTC when tested with DNA of reference strains of non-tuberculous mycobacteria and closely-related Actinomycetales. A clinical sensitivity level of 76.7% was detected with tissues samples positive for MTC by means of the culture and conventional PCR. A clinical specificity of 100% was detected with DNA from tissue samples of cattle with negative results in the comparative intradermal tuberculin test. These cattle exhibited no visible lesions and were negative in the culture for MTC. The use of the nested-PCR assay to detect M. tuberculosis complex in tissue homogenates provided a rapid diagnosis of bovine and bubaline tuberculosis.

  13. Lauric acid and myristic acid from Allium sativum inhibit the growth of Mycobacterium tuberculosis H37Ra: in silico analysis reveals possible binding to protein kinase B.

    Science.gov (United States)

    Muniyan, Rajiniraja; Gurunathan, Jayaraman

    2016-12-01

    The bulb of Allium sativum Linn (Alliaceae) has numerous medicinal values. Though the petroleum ether extract of the bulb has shown to exhibit antimycobacterial activity, the phytochemical(s) responsible for this inhibitory activity is not known. To characterize the bioactive compounds in the petroleum ether extract of Allium sativum (garlic) that inhibit the growth of Mycobacterium tuberculosis H37Ra. Bioactivity-guided fractionation was employed to isolate the bioactive compounds. Antimycobacterial activity was evaluated by well-diffusion method and microplate alamar blue assay (MABA). Infrared spectroscopy, mass spectrometry and nuclear magnetic resonance spectroscopy were used to characterize the bioactive compounds. Autodock was used to obtain information on molecular recognition, and molecular dynamics simulation was performed using GROMACS. The bioactive compounds that inhibited the growth of M. tuberculosis H37Ra were found to be lauric acid (LA) and myristic acid (MA). The minimal inhibitory concentration of LA and MA was found to be 22.2 and 66.7 μg/mL, respectively. In silico analysis revealed that these fatty acids could bind at the cleft between the N-terminal and C-terminal lobes of the cytosolic domain of serine/threonine protein kinase B (PknB). The inhibition activity was dependent on the alkyl chain length of the fatty acid, and the amino acid residues involved in binding to fatty acid was found to be conserved across the Pkn family of proteins. The study indicates the possibility of using fatty acid derivatives, involving Pkn family of proteins, to inhibit the signal transduction processes in M. tuberculosis.

  14. Pyrosequencing for Rapid Detection of Mycobacterium tuberculosis Resistance to Rifampin, Isoniazid, and Fluoroquinolones ▿

    Science.gov (United States)

    Bravo, Lulette Tricia C.; Tuohy, Marion J.; Ang, Concepcion; Destura, Raul V.; Mendoza, Myrna; Procop, Gary W.; Gordon, Steven M.; Hall, Geraldine S.; Shrestha, Nabin K.

    2009-01-01

    After isoniazid and rifampin (rifampicin), the next pivotal drug class in Mycobacterium tuberculosis treatment is the fluoroquinolone class. Mutations in resistance-determining regions (RDR) of the rpoB, katG, and gyrA genes occur with frequencies of 97%, 50%, and 85% among M. tuberculosis isolates resistant to rifampin, isoniazid, and fluoroquinolones, respectively. Sequences are highly conserved, and certain mutations correlate well with phenotypic resistance. We developed a pyrosequencing assay to determine M. tuberculosis genotypic resistance to rifampin, isoniazid, and fluoroquinolones. We characterized 102 M. tuberculosis clinical isolates from the Philippines for susceptibility to rifampin, isoniazid, and ofloxacin by using the conventional submerged-disk proportion method and validated our pyrosequencing assay using these isolates. DNA was extracted and amplified by using PCR primers directed toward the RDR of the rpoB, katG, and gyrA genes, and pyrosequencing was performed on the extracts. The M. tuberculosis H37Rv strain (ATCC 25618) was used as the reference strain. The sensitivities and specificities of pyrosequencing were 96.7% and 97.3%, 63.8% and 100%, and 70.0% and 100% for the detection of resistance to rifampin, isoniazid, and ofloxacin, respectively. Pyrosequencing is thus a rapid and accurate method for detecting M. tuberculosis resistance to these three drugs. PMID:19846642

  15. Interleukin-1 or tumor necrosis factor-alpha augmented the cytotoxic effect of mycobacteria on human fibroblasts: application to evaluation of pathogenesis of clinical isolates of Mycobacterium tuberculosis and M. avium complex.

    Science.gov (United States)

    Takii, T; Abe, C; Tamura, A; Ramayah, S; Belisle, J T; Brennan, P J; Onozaki, K

    2001-03-01

    Mycobacteria-induced in vitro events reflecting human tuberculosis can contribute to the evaluation of the pathogenesis of Mycobacterium tuberculosis (MTB). In this study, we propose such an in vitro method based on live mycobacteria-induced cytotoxicity to human cell lines. When human lung-derived normal fibroblast cell line MRC-5 was infected with various strains of mycobacteria (M. tuberculosis H(37)Rv and H(37) Ra, Mycobacterium avium 427S and 2151SmO, and Mycobacterium bovis BCG Pasteur and Tokyo), the fibroblasts were killed by mycobacteria according to the degree of virulence. Other human originated macrophage (U-937, THP-1), myeloid (HL-60), and epithelial carcinoma (A549) cell lines exhibited a similar cytotoxic response to virulent mycobacteria. MRC-5 was most susceptible to virulent mycobacteria among various human cell lines examined. The cytotoxicity was enhanced by the proinflammatory cytokines, interleukin-1 (IL-1) and tumor necrosis factor-a (TNF-alpha), which in the absence of mycobacteria stimulate the growth of normal human fibroblasts. This in vitro evaluation system was applied to clinical isolates of drug-sensitive MTB (DS-MTB), drug-resistant MTB (DR-MTB) including multidrug-resistant (MDR-MTB), and M. avium complex (MAC). MTB strains (n = 24) exhibited strong cytotoxic activity, but MAC strains (n = 5) had only weak activity. Furthermore, there was no significant difference in cytotoxicity between DS-MTB (n = 11) and DR-MTB (n = 13). Collectively, these results suggest that this new in vitro system is useful for evaluating the pathogenesis of mycobacteria and that there was no difference in the pathogenesis between drug-susceptible and drug-resistant clinical isolates.

  16. Mycobacterium tuberculosis septum site determining protein, Ssd encoded by rv3660c, promotes filamentation and elicits an alternative metabolic and dormancy stress response

    Directory of Open Access Journals (Sweden)

    Crew Rebecca

    2011-04-01

    Full Text Available Abstract Background Proteins that are involved in regulation of cell division and cell cycle progression remain undefined in Mycobacterium tuberculosis. In addition, there is a growing appreciation that regulation of cell replication at the point of division is important in establishing a non-replicating persistent state. Accordingly, the objective of this study was to use a systematic approach consisting of consensus-modeling bioinformatics, ultrastructural analysis, and transcriptional mapping to identify septum regulatory proteins that participate in adaptive metabolic responses in M. tuberculosis. Results Septum site determining protein (Ssd, encoded by rv3660c was discovered to be an ortholog of septum site regulating proteins in actinobacteria by bioinformatics analysis. Increased expression of ssd in M. smegmatis and M. tuberculosis inhibited septum formation resulting in elongated cells devoid of septa. Transcriptional mapping in M. tuberculosis showed that increased ssd expression elicited a unique response including the dormancy regulon and alternative sigma factors that are thought to play a role in adaptive metabolism. Disruption of rv3660c by transposon insertion negated the unique transcriptional response and led to a reduced bacterial length. Conclusions This study establishes the first connection between a septum regulatory protein and induction of alternative metabolism consisting of alternative sigma factors and the dormancy regulon that is associated with establishing a non-replicating persistent intracellular lifestyle. The identification of a regulatory component involved in cell cycle regulation linked to the dormancy response, whether directly or indirectly, provides a foundation for additional studies and furthers our understanding of the complex mechanisms involved in establishing a non-replicating state and resumption of growth.

  17. Structure of Mycobacterium tuberculosis RuvA, a protein involved in recombination

    International Nuclear Information System (INIS)

    Prabu, J. Rajan; Thamotharan, S.; Khanduja, Jasbeer Singh; Alipio, Emily Zabala; Kim, Chang-Yub; Waldo, Geoffrey S.; Terwilliger, Thomas C.; Segelke, Brent; Lekin, Tim; Toppani, Dominique; Hung, Li-Wei; Yu, Minmin; Bursey, Evan; Muniyappa, K.; Chandra, Nagasuma R.; Vijayan, M.

    2006-01-01

    RuvA, a protein from M. tuberculosis H37Rv involved in recombination, has been cloned, expressed, purified and analysed by X-ray crystallography. The process of recombinational repair is crucial for maintaining genomic integrity and generating biological diversity. In association with RuvB and RuvC, RuvA plays a central role in processing and resolving Holliday junctions, which are a critical intermediate in homologous recombination. Here, the cloning, purification and structure determination of the RuvA protein from Mycobacterium tuberculosis (MtRuvA) are reported. Analysis of the structure and comparison with other known RuvA proteins reveal an octameric state with conserved subunit–subunit interaction surfaces, indicating the requirement of octamer formation for biological activity. A detailed analysis of plasticity in the RuvA molecules has led to insights into the invariant and variable regions, thus providing a framework for understanding regional flexibility in various aspects of RuvA function

  18. Characterization of the major formamidopyrimidine-DNA glycosylase homolog in Mycobacterium tuberculosis and its linkage to variable tandem repeats.

    Science.gov (United States)

    Olsen, Ingrid; Balasingham, Seetha V; Davidsen, Tonje; Debebe, Ephrem; Rødland, Einar A; van Soolingen, Dick; Kremer, Kristin; Alseth, Ingrun; Tønjum, Tone

    2009-07-01

    The ability to repair DNA damage is likely to play an important role in the survival of facultative intracellular parasites because they are exposed to high levels of reactive oxygen species and nitrogen intermediates inside phagocytes. Correcting oxidative damage in purines and pyrimidines is the primary function of the enzymes formamidopyrimidine (faPy)-DNA glycosylase (Fpg) and endonuclease VIII (Nei) of the base excision repair pathway, respectively. Four gene homologs, belonging to the fpg/nei family, have been identified in Mycobacterium tuberculosis H37Rv. The recombinant protein encoded by M. tuberculosis Rv2924c, termed Mtb-Fpg1, was overexpressed, purified and biochemically characterized. The enzyme removed faPy and 5-hydroxycytosine lesions, as well as 8-oxo-7,8-dihydroguanine (8oxoG) opposite to C, T and G. Mtb-Fpg1 thus exhibited substrate specificities typical for Fpg enzymes. Although Mtb-fpg1 showed nearly complete nucleotide sequence conservation in 32 M. tuberculosis isolates, the region upstream of Mtb-fpg1 in these strains contained tandem repeat motifs of variable length. A relationship between repeat length and Mtb-fpg1 expression level was demonstrated in M. tuberculosis strains, indicating that an increased length of the tandem repeats positively influenced the expression levels of Mtb-fpg1. This is the first example of such a tandem repeat region of variable length being linked to the expression level of a bacterial gene.

  19. Analysis of the genetic variation in Mycobacterium tuberculosis strains by multiple genome alignments

    Directory of Open Access Journals (Sweden)

    Morales Juan

    2008-11-01

    Full Text Available Abstract Background The recent determination of the complete nucleotide sequence of several Mycobacterium tuberculosis (MTB genomes allows the use of comparative genomics as a tool for dissecting the nature and consequence of genetic variability within this species. The multiple alignment of the genomes of clinical strains (CDC1551, F11, Haarlem and C, along with the genomes of laboratory strains (H37Rv and H37Ra, provides new insights on the mechanisms of adaptation of this bacterium to the human host. Findings The genetic variation found in six M. tuberculosis strains does not involve significant genomic rearrangements. Most of the variation results from deletion and transposition events preferentially associated with insertion sequences and genes of the PE/PPE family but not with genes implicated in virulence. Using a Perl-based software islandsanalyser, which creates a representation of the genetic variation in the genome, we identified differences in the patterns of distribution and frequency of the polymorphisms across the genome. The identification of genes displaying strain-specific polymorphisms and the extrapolation of the number of strain-specific polymorphisms to an unlimited number of genomes indicates that the different strains contain a limited number of unique polymorphisms. Conclusion The comparison of multiple genomes demonstrates that the M. tuberculosis genome is currently undergoing an active process of gene decay, analogous to the adaptation process of obligate bacterial symbionts. This observation opens new perspectives into the evolution and the understanding of the pathogenesis of this bacterium.

  20. Tuberculosis: finding a new potential antimycobacterium derivative in a aldehyde-arylhydrazone-oxoquinoline series.

    Science.gov (United States)

    da C Santos, Fernanda; Castro, Helena C; Lourenço, Maria Cristina S; Abreu, Paula A; Batalha, Pedro N; Cunha, Anna C; Carvalho, Guilherme S L; Rodrigues, Carlos R; Medeiros, Cid A; Souza, Simone D; Ferreira, Vitor F; de Souza, Maria C B V

    2012-10-01

    Tuberculosis (TB) is a contagious disease caused by Mycobacterium tuberculosis, which remains a serious public health problem. The emergence of resistant bacterial strains has continuously increased and new treatment options are currently in need. In this work, we identified a new potential aldehyde-arylhydrazone-oxoquinoline derivative (4e) with interesting chemical structural features that may be important for designing new anti-TB agents. This 1-ethyl-N'-[(1E)-(5-nitro-2-furyl)methylene]-4-oxo-1,4-dihydroquinoline-3-carbohydrazide (4e) presented an in vitro active profile against M. tuberculosis H37Rv strain (minimum inhibitory concentration, MIC = 6.25 μg/mL) better than other acylhydrazones described in the literature (MIC = 12.5 μg/mL) and close to other antitubercular agents currently on the market. The theoretical analysis showed the importance of several structural features that together with the 5-nitro-2-furyl group generated this active compound (4e). This new compound and the analysis of its molecular properties may be useful for designing new and more efficient antibacterial drugs.

  1. AMPLIFIKASI DAN IDENTIFIKASI MUTASI REGIO PROMOTER inhA PADA ISOLAT Mycobacterium tuberculosis MULTIDRUG RESISTANCE DENGAN TEKNIK POLYMERASE CHAIN REACTION

    Directory of Open Access Journals (Sweden)

    Devita Kusdianingrum

    2014-10-01

    Full Text Available ABSTRAK: Sekitar 8-20% isolate M. tuberculosis yang resisten terhadap isoniazid diketahui telah mengalami mutasi pada posisi regio promoter inhA [1]. Untuk memperoleh titik mutasi pada regio promoter, maka amplifikasi fragmen target perlu untuk dilakukan. Tujuan dilakukannya penelitian ini adalah untuk mengamplifikasi regio promoter inhA, mengetahui ada tidaknya mutasi dan jenis mutasi pada isolat 134 MDR-TB. Tahap isolasi DNA dilakukan menggunakan metode Boom yang telah dimodifikasi. Fragmen target diamplifikasi dengan teknik PCR menggunakan sepasang primer (forward primer 5’ ACATACCTGCTGCGCAAT 3’ dan reverse primer 5’ CTCCGGTAACCAGGACT GAA 3’. Amplikon disekuensing secara satu arah menggunakan forward primer. Analisis homologi dilakukan menggunakan program online BLASTn, sementara identifikasi mutasi dilakukan menggunakan software MEGA4. Hasil penelitian menunjukkan bahwa analisis homologi isolate 134 terhadap M. tuberculosis H37Rv adalah sebesar 99%. Tahap analisis mutasi menemukan terjadinya perubahan sitosin menjadi timin (CàT pada posisi -15 isolat 134 MDR-TB   ABSTRACT: Approximately 8-20% M. tuberculosis isolates that are resistant to isoniazid habe been known to have a mutation in inhA promoter region [1]. To find the mutation in inhA promoter region, it is necessary to carry out the amplification of the target fragment. The purpose of this research were to amplify the inhA promoter region and to find out if there is a mutation and type of mutation at MDR-TB isolate. DNA isolation was done by a modified Boom method. Target fragment was amplified by a pair primer (forward primer 5’ ACATACCTGCTGCGCAAT 3’ and reverse primer 5’ CTCCGGTAACCAGGACT GAA 3’ using Polymerase Chain Reaction (PCR technique. Amplicon was sequenced in one forward direction. Homology analysis was conducted by online BLASTn program, while the mutation was identified by MEGA4. The result of this research showed that homology analysis of 134 was homolog

  2. Biosynthesis of ilamycins featuring unusual building blocks and engineered production of enhanced anti-tuberculosis agents.

    Science.gov (United States)

    Ma, Junying; Huang, Hongbo; Xie, Yunchang; Liu, Zhiyong; Zhao, Jin; Zhang, Chunyan; Jia, Yanxi; Zhang, Yun; Zhang, Hua; Zhang, Tianyu; Ju, Jianhua

    2017-08-30

    Tuberculosis remains one of the world's deadliest communicable diseases, novel anti-tuberculosis agents are urgently needed due to severe drug resistance and the co-epidemic of tuberculosis/human immunodeficiency virus. Here, we show the isolation of six anti-mycobacterial ilamycin congeners (1-6) bearing rare L-3-nitro-tyrosine and L-2-amino-4-hexenoic acid structural units from the deep sea-derived Streptomyces atratus SCSIO ZH16. The biosynthesis of the rare L-3-nitrotyrosine and L-2-amino-4-hexenoic acid units as well as three pre-tailoring and two post-tailoring steps are probed in the ilamycin biosynthetic machinery through a series of gene inactivation, precursor chemical complementation, isotope-labeled precursor feeding experiments, as well as structural elucidation of three intermediates (6-8) from the respective mutants. Most impressively, ilamycins E 1 /E 2 , which are produced in high titers by a genetically engineered mutant strain, show very potent anti-tuberculosis activity with an minimum inhibitory concentration value ≈9.8 nM to Mycobacterium tuberculosis H37Rv constituting extremely potent and exciting anti-tuberculosis drug leads.Tuberculosis (TB) remains one of the world's deadliest communicable diseases, novel anti-TB agents are urgently needed due to severe drug resistance and the co-epidemic of TB/HIV. Here, the authors show that anti-mycobacterial ilamycin congeners bearing unusual structural units possess extremely potent anti-tuberculosis activities.

  3. Crystallization Process of Protein Rv0731c from Mycobacterium Tuberculosis for a Successful Atomic Resolution Crystal Structure at 1.2 Angstrom

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Liang Cong

    2009-06-08

    Proteins are bio-macromolecules consisting of basic 20 amino acids and have distinct three-dimensional folds. They are essential parts of organisms and participate in every process within cells. Proteins are crucial for human life, and each protein within the body has a specific function, such as antibodies, contractile proteins, enzymes, hormonal proteins, structural proteins, storage proteins and transport proteins. Determining three-dimensional structure of a protein can help researchers discover the remarkable protein folding, binding site, conformation and etc, in order to understand well of protein interaction and aid for possible drug design. The research on protein structure by X-ray protein crystallography carried by Li-Wei Hung's research group in the Physical Bioscience Division at Lawrence Berkeley National Laboratory (LBNL) is focusing on protein crystallography. The research in this lab is in the process of from crystallizing the proteins to determining the three dimensional crystal structures of proteins. Most protein targets are selected from Mycobacterium Tuberculosis. TB (Tuberculosis) is a possible fatal infectious disease. By studying TB target protein can help discover antituberculer drugs, and find treatment for TB. The high-throughput mode of crystallization, crystal harvesting, crystal screening and data collection are applied to the research pipeline (Figure 1). The X-ray diffraction data by protein crystals can be processed and analyzed to result in a three dimensional representation of electron density, producing a detailed model of protein structure. Rv0731c is a conserved hypothetical protein with unknown function from Mycobacterium Tuberculosis. This paper is going to report the crystallization process and brief structure information of Rv0731c.

  4. Proteomic analysis of drug-resistant Mycobacterium tuberculosis by one-dimensional gel electrophoresis and charge chromatography.

    Science.gov (United States)

    Yari, Shamsi; Hadizadeh Tasbiti, Alireza; Ghanei, Mostafa; Shokrgozar, Mohammad Ali; Fateh, Abolfazl; Mahdian, Reza; Yari, Fatemeh; Bahrmand, Ahmadreza

    2017-01-01

    Multidrug-resistant tuberculosis (MDR-TB) is a form of TB caused by Mycobacterium tuberculosis (M. tuberculosis) that do not respond to, at least, isoniazid and rifampicin, the two most powerful, first-line (or standard) anti-TB drugs. Novel intervention strategies for eliminating this disease were based on finding proteins that can be used for designing new drugs or new and reliable kits for diagnosis. The aim of this study was to compare the protein profiles of MDR-TB with sensitive isolates. Proteomic analysis of M. tuberculosis MDR-TB and sensitive isolates was obtained with ion exchange chromatography coupled with MALDI-TOF-TOF (matrix-assisted laser desorption/ionization) in order to identify individual proteins that have different expression in MDR-TB to be used as a drug target or diagnostic marker for designing valuable TB vaccines or TB rapid tests. We identified eight proteins in MDR-TB isolates, and analyses showed that these proteins are absent in M. tuberculosis-sensitive isolates: (Rv2140c, Rv0009, Rv1932, Rv0251c, Rv2558, Rv1284, Rv3699 and MMP major membrane proteins). These data will provide valuable clues in further investigation for suitable TB rapid tests or drug targets against drug-resistant and sensitive M. tuberculosis isolates.

  5. Andrographolide: A potent antituberculosis compound that targets Aminoglycoside 2'-N-acetyltransferase in Mycobacterium tuberculosis.

    Science.gov (United States)

    Prabu, Amudha; Hassan, Sameer; Prabuseenivasan; Shainaba, A S; Hanna, L E; Kumar, Vanaja

    2015-09-01

    Tuberculosis (TB) still remains a major challenging infectious disease. The increased rate of emergence of multi-drug resistant and extensively-drug resistant strains of the organism has further complicated the situation, resulting in an urgent need for new anti-TB drugs. Antimycobacterial activity of Andrographis paniculata was evaluated using a rapid LRP assay and the probable targets were identified by docking analysis. The methanolic extract of A. paniculata showed maximum antimycobacterial activity at 250μg/ml against all the tested strains of M. tuberculosis (H37Rv, MDR, and drug sensitive). Based on bioassay guided fractionation, andrographolide was identified as the potent molecule. With the docking analysis, both ICDH (Isocitrate Dehydrogenase) and AAC (Aminoglycoside 2'-N-acetyltransferase) were predicted as targets of andrographolide in M. tuberculosis. Molecular simulation revealed that, ICDH showed low binding affinity to andrographolide. However, for AAC, the andrographolide was observed to be well within the active site after 10ns of molecular simulation. This suggests that ACC (PDB ID 1M4I) could be the probable target for andrographolide. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Evaluation of highly conserved hsp65-specific nested PCR primers for diagnosing Mycobacterium tuberculosis.

    Science.gov (United States)

    Priyadarshini, P; Tiwari, K; Das, A; Kumar, D; Mishra, M N; Desikan, P; Nath, G

    2017-02-01

    To evaluate the sensitivity and specificity of a new nested set of primers designed for the detection of Mycobacterium tuberculosis complex targeting a highly conserved heat shock protein gene (hsp65). The nested primers were designed using multiple sequence alignment assuming the nucleotide sequence of the M. tuberculosis H37Rv hsp65 genome as base. Multidrug-resistant Mycobacterium species along with other non-mycobacterial and fungal species were included to evaluate the specificity of M. tuberculosis hsp65 gene-specific primers. The sensitivity of the primers was determined using serial 10-fold dilutions, and was 100% as shown by the bands in the case of M. tuberculosis complex. None of the other non M. tuberculosis complex bacterial and fungal species yielded any band on nested polymerase chain reaction (PCR). The first round of amplification could amplify 0.3 ng of the template DNA, while nested PCR could detect 0.3 pg. The present hsp65-specific primers have been observed to be sensitive, specific and cost-effective, without requiring interpretation of biochemical tests, real-time PCR, sequencing or high-performance liquid chromatography. These primer sets do not have the drawbacks associated with those protocols that target insertion sequence 6110, 16S rDNA, rpoB, recA and MPT 64.

  7. ORF Alignment: NC_000962 [GENIUS II[Archive

    Lifescience Database Archive (English)

    Full Text Available inase (EC 2.7.4.6) - Mycobacterium tuberculosis (strain ... H37RV) pdb|1K44|F Chain F, Mycobacterium Tuberculosis...losis Nucleoside Diphosphate Kinase ... pdb|1K44|D Chain D, Mycobacterium Tuberculosis... ... Nucleoside Diphosphate Kinase pdb|1K44|C Chain C, ... Mycobacterium Tuberculosis... Nucleoside Diphosphate Kinase ... pdb|1K44|B Chain B, Mycobacterium Tuberculosis ... Nucleos...ide Diphosphate Kinase pdb|1K44|A Chain A, ... Mycobacterium Tuberculosis

  8. ORF Alignment: NC_002755 [GENIUS II[Archive

    Lifescience Database Archive (English)

    Full Text Available inase (EC 2.7.4.6) - Mycobacterium tuberculosis (strain ... H37RV) pdb|1K44|F Chain F, Mycobacterium Tuberculosis...losis Nucleoside Diphosphate Kinase ... pdb|1K44|D Chain D, Mycobacterium Tuberculosis... ... Nucleoside Diphosphate Kinase pdb|1K44|C Chain C, ... Mycobacterium Tuberculosis... Nucleoside Diphosphate Kinase ... pdb|1K44|B Chain B, Mycobacterium Tuberculosis ... Nucleos...ide Diphosphate Kinase pdb|1K44|A Chain A, ... Mycobacterium Tuberculosis

  9. ORF Alignment: NC_002945 [GENIUS II[Archive

    Lifescience Database Archive (English)

    Full Text Available inase (EC 2.7.4.6) - Mycobacterium tuberculosis (strain ... H37RV) pdb|1K44|F Chain F, Mycobacterium Tuberculosis...losis Nucleoside Diphosphate Kinase ... pdb|1K44|D Chain D, Mycobacterium Tuberculosis... ... Nucleoside Diphosphate Kinase pdb|1K44|C Chain C, ... Mycobacterium Tuberculosis... Nucleoside Diphosphate Kinase ... pdb|1K44|B Chain B, Mycobacterium Tuberculosis ... Nucleos...ide Diphosphate Kinase pdb|1K44|A Chain A, ... Mycobacterium Tuberculosis

  10. Structure/activity of Pt{sup II}/N,N-disubstituted-N'-acylthiourea complexes: Anti-tumor and anti-mycobacterium tuberculosis activities

    Energy Technology Data Exchange (ETDEWEB)

    Plutín, Ana M.; Alvarez, Anislay; Mocelo, Raúl; Ramos, Raúl; Sánchez, Osmar C. [Laboratorio de Síntesis Orgánica, Facultad de Química, Universidad de La Habana (Cuba); Castellano, Euardo E. [Universidade de São Paulo (USP), São Carlos, SP (Brazil); Silva, Monize M. da; Villarreal, Wilmer; Colina-Vegas, Legna; Batista, Alzir A. [Universidade Federal de São Carlos (UFSCar), SP (Brazil); Pavan, Fernando R., E-mail: anap@fq.uh.cu, E-mail: daab@ufscar.br [Universidade Estadual Paulista Julio de Mesquita Filho (UNESP), Araraquara, SP (Brazil). Faculdade de Ciências Farmacêuticas

    2018-05-01

    The syntheses, characterization, cytotoxicity against tumor cells and anti-Mycobacterium tuberculosis activity assays of Pt{sup II}/PPh{sub 3}/N,N-disubstituted-N'-acylthioureas complexes with general formulae [Pt(PPh{sub 3}){sub 2}(L)]PF{sub 6}, PPh{sub 3} = triphenylphosphine; L = N,N-disubstituted-N'-acylthiourea, are here reported. The complexes were characterized by elemental analysis, molar conductivity, infrared (IR), nuclear magnetic resonance (NMR) ({sup 1} H, {sup 13}C{1 H} and {sup 31}P{"1 H}) spectroscopy. The {sup 31}P{"1 H} NMR data are consistent with the presence of two PPh{sup 3} ligands cis to each other position, and one N,N-disubstituted-N'-acylthiourea coordinated to the metal through O and S, in a chelate form. The structures of the complexes were determined by X-ray crystallography, forming distorted square-planar structures. The complexes were tested in human cell lines carcinomas and also screened with respect to their anti-Mycobacterium tuberculosis activity (H37RvATCC 27294). It was found that complexes with N,N-disubstituted-N'-acylthiourea containing open and small chains as R2 groups show higher cytotoxic and higher anti-Mycobacterium tuberculosis activity than those containing rings in this position. (author)

  11. Aislamiento y caracterización de proteínas de Mycobacterium tuberculosis H37Rv con capacidad de modular la apoptosis de los macrófagos

    Directory of Open Access Journals (Sweden)

    Blanca Ortiz

    2001-04-01

    Full Text Available

    En los últimos años se ha descrito que la inducción de apoptosis puede ser un mecanismo de defensa contra las infecciones intracelulares, ya que se altera el microambiente intracelular, perdiéndose la permisividad para el crecimiento de microorganismos invasores. En el modelo murino la infección causada por la Mycobacterium tuberculosis induce apoptosis dependiendo de un delicado balance entre factores anti vs pro-apoptóticos, tanto del macrófago hospedero como de la
    micobacteria. La apoptosis depende de productos derivados de la micobacteria viable como el PPD, mientras que antígenos estructurales como el ManLAM pueden inhibirla. Una mayor caracterización de los antígenos micobacterianos que modulan la apoptosis es importante para entender la fisiopatología de la enfermedad y desarrollar estrategias novedosas para su control. En este trabajo se tiene como objetivo purificar antígenos
    micobacterianos y evaluar su papel en la modulación de la apoptosis de macrófagos murinos.

     

     

  12. Activation of MMPs in Macrophages by Mycobacterium tuberculosis via the miR-223-BMAL1 Signaling Pathway.

    Science.gov (United States)

    Lou, Jun; Wang, Yongli; Zhang, Zhimin; Qiu, Weiqiang

    2017-12-01

    An interaction between Mycobacterium tuberculosis and macrophages constitutes an essential step in tuberculosis development, as macrophages exert both positive and negative effects on M. tuberculosis-triggered organ lesions. In this study, we focused on the regulation of the expression of matrix metalloproteinases (MMPs), which is responsible for lung matrix degradation and bacteria dissection, in macrophages following M. tuberculosis infection. Female BALB/c mice were intravenously injected with the M. tuberculosis strain H37Rv at 0 h zeitgeber time (ZT0) or 12 h zeitgeber time (ZT12). The expression and activity of MMP-1, -2, -3, and -9 in lungs and spleens were then evaluated. In vitro, peritoneal macrophages were harvested at ZT0 or at ZT12 and infected with 10 MOI M. tuberculosis. The expression of MMPs, microRNA-223 and BMAL1 was analyzed by qRT-PCR and/or Western blot. The binding of BMAL1 3'-UTR by miR-223 was confirmed by luciferase activity assay. Additionally, wild-type BMAL1 or NLS mut BMAL1 plasmids were transfected to evaluate the effect of BMAL1 on MMPs. The results showed a differential expression of MMPs in mice tissues infected at different times. M. tuberculosis infection caused enhanced MMP-1, -9, and miR-223 expression, with inhibited BMAL1 expression. MiR-223 modulated BMAL1 expression via the direct binding of BMAL1 3'-UTR. Furthermore, wild-type BMAL1 other than NLS mut BMAL1 attenuated MMPs expression in M. tuberculosis-infected macrophages. Overall, this study demonstrated a potential involvement of circadian rhythm in MMP activation by M. tuberculosis in macrophages. J. Cell. Biochem. 118: 4804-4812, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  13. Clonal analysis of the T-cell response to in vivo expressed Mycobacterium tuberculosis protein Rv2034, using a CD154 expression based T-cell cloning method.

    Directory of Open Access Journals (Sweden)

    Susanna Commandeur

    Full Text Available Tuberculosis (TB, caused by Mycobacterium tuberculosis (Mtb, remains a leading cause of death worldwide. A better understanding of the role of CD4+ and CD8+ T cells, which are both important to TB protection, is essential to unravel the mechanisms of protection and to identify the key antigens seen by these T cells. We have recently identified a set of in vivo expressed Mtb genes (IVE-TB which is expressed during in vivo pulmonary infection in mice, and shown that their encoded antigens are potently recognized by polyclonal T cells from tuberculin skin test-positive, in vitro ESAT-6/CFP10-responsive individuals. Here we have cloned T cells specific for one of these newly identified in vivo expressed Mtb (IVE-TB antigens, Rv2034. T cells were enriched based on the expression of CD154 (CD40L, which represents a new method for selecting antigen-specific (low frequency T cells independent of their specific function. An Rv2034-specific CD4+ T-cell clone expressed the Th1 markers T-bet, IFN-γ, TNF-α, IL-2 and the cytotoxicity related markers granzyme B and CD107a as measured by flow cytometry. The clone specifically recognized Rv2034 protein, Rv2034 peptide p81-100 and Mtb lysate. Remarkably, while the recognition of the dominant p81-100 epitope was HLA-DR restricted, the T-cell clone also recognized a neighboring epitope (p88-107 in an HLA-DR- as well as HLA-DQ1-restricted fashion. Importantly, the T-cell clone was able to inhibit Mtb outgrowth from infected monocytes significantly. The characterization of the polyfunctional and Mtb inhibitory T-cell response to IVE-TB Rv2034 at the clonal level provides detailed further insights into the potential of IVE-TB antigens as new vaccine candidate antigens in TB. Our new approach allowed the identification of T-cell subsets that likely play a significant role in controlling Mtb infection, and can be applied to the analysis of T-cell responses in patient populations.

  14. The 19?kDa Mycobacterium tuberculosis Lipoprotein (LpqH) Induces Macrophage Apoptosis through Extrinsic and Intrinsic Pathways: A Role for the Mitochondrial Apoptosis-Inducing Factor

    OpenAIRE

    S?nchez, Alejandro; Espinosa, Patricia; Garc?a, Teresa; Mancilla, Ra?l

    2012-01-01

    We describe the association of caspase-dependent and caspase-independent mechanisms in macrophage apoptosis induced by LpqH, a 19 kDa Mycobacterium tuberculosis lipoprotein. LpqH triggered TLR2 activation, with upregulation of death receptors and ligands, which was followed by a death receptor signaling cascade with activation of initiator caspase 8 and executioner caspase 3. In this caspase-mediated phase, mitochondrial factors were involved in loss of mitochondrial transmembrane potential (...

  15. Treatment of Mycobacterium tuberculosis-Infected Macrophages with Poly(Lactic-Co-Glycolic Acid) Microparticles Drives NFκB and Autophagy Dependent Bacillary Killing.

    LENUS (Irish Health Repository)

    Lawlor, Ciaran

    2016-01-01

    The emergence of multiple-drug-resistant tuberculosis (MDR-TB) has pushed our available repertoire of anti-TB therapies to the limit of effectiveness. This has increased the urgency to develop novel treatment modalities, and inhalable microparticle (MP) formulations are a promising option to target the site of infection. We have engineered poly(lactic-co-glycolic acid) (PLGA) MPs which can carry a payload of anti-TB agents, and are successfully taken up by human alveolar macrophages. Even without a drug cargo, MPs can be potent immunogens; yet little is known about how they influence macrophage function in the setting of Mycobacterium tuberculosis (Mtb) infection. To address this issue we infected THP-1 macrophages with Mtb H37Ra or H37Rv and treated with MPs. In controlled experiments we saw a reproducible reduction in bacillary viability when THP-1 macrophages were treated with drug-free MPs. NFκB activity was increased in MP-treated macrophages, although cytokine secretion was unaltered. Confocal microscopy of immortalized murine bone marrow-derived macrophages expressing GFP-tagged LC3 demonstrated induction of autophagy. Inhibition of caspases did not influence the MP-induced restriction of bacillary growth, however, blockade of NFκB or autophagy with pharmacological inhibitors reversed this MP effect on macrophage function. These data support harnessing inhaled PLGA MP-drug delivery systems as an immunotherapeutic in addition to serving as a vehicle for targeted drug delivery. Such "added value" could be exploited in the generation of inhaled vaccines as well as inhaled MDR-TB therapeutics when used as an adjunct to existing treatments.

  16. Glycine in the conserved motif III modulates the thermostability and oxidative stress resistance of peptide deformylase in Mycobacterium tuberculosis.

    Science.gov (United States)

    Narayanan, Sai Shyam; Sokkar, Pandian; Ramachandran, Murugesan; Nampoothiri, Kesavan Madhavan

    2011-07-01

    Peptide deformylase (PDF) catalyses the removal of the N-formyl group from the nascent polypeptide during protein maturation. The PDF of Mycobacterium tuberculosis H37Rv (MtbPDF), overexpressed and purified from Escherichia coli, was characterized as an iron-containing enzyme with stability towards H(2) O(2) and moderate thermostability. Substitution of two conserved residues (G49 and L107) from MtbPDF with the corresponding residues found in human PDF affected its deformylase activity. Among characterized PDFs, glycine (G151) in motif III instead of conserved aspartate is characteristic of M. tuberculosis. Although the G151D mutation in MtbPDF increased its deformylase activity and thermostability, it also affected enzyme stability towards H(2) O(2) . Molecular dynamics and docking results confirmed improved substrate binding and catalysis for the G151D mutant and the study provides another possible molecular basis for the stability of MtbPDF against oxidizing agents. © 2011 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  17. Potential of DosR and Rpf antigens from Mycobacterium tuberculosis to discriminate between latent and active tuberculosis in a tuberculosis endemic population of Medellin Colombia.

    Science.gov (United States)

    Arroyo, Leonar; Marín, Diana; Franken, Kees L M C; Ottenhoff, Tom H M; Barrera, Luis F

    2018-01-08

    Tuberculosis (TB) remains one of the most deadly infectious diseases. One-third to one-fourth of the human population is estimated to be infected with Mycobacterium tuberculosis (Mtb) without showing clinical symptoms, a condition called latent TB infection (LTBI). Diagnosis of Mtb infection is based on the immune response to a mixture of mycobacterial antigens (PPD) or to Mtb specific ESAT-6/CFP10 antigens (IGRA), highly expressed during the initial phase of infection. However, the immune response to PPD and IGRA antigens has a low power to discriminate between LTBI and PTB. The T-cell response to a group of so-called latency (DosR-regulon-encoded) and Resuscitation Promoting (Rpf) antigens of Mtb has been proved to be significantly higher in LTBI compared to active TB across many populations, suggesting their potential use as biomarkers to differentiate latent from active TB. PBMCs from a group LTBI (n = 20) and pulmonary TB patients (PTB, n = 21) from an endemic community for TB of the city of Medellín, Colombia, were in vitro stimulated for 7 days with DosR- (Rv1737c, Rv2029c, and Rv2628), Rpf- (Rv0867c and Rv2389c), the recombinant fusion protein ESAT-6-CFP10 (E6-C10)-, or PPD-antigen. The induced IFNγ levels detectable in the supernatants of the antigen-stimulated cells were then used to calculate specificity and sensitivity in discriminating LTBI from PTB, using different statistical approaches. IFNγ production in response to DosR and Rpf antigens was significantly higher in LTBI compared to PTB. ROC curve analyses of IFNγ production allowed differentiation of LTBI from PTB with areas under the curve higher than 0.70. Furthermore, Multiple Correspondence Analysis (MCA) revealed that LTBI is associated with higher levels of IFNγ in response to the different antigens compared to PTB. Analysis based on decision trees showed that the IFNγ levels produced in response to Rv2029c was the leading variable that best-classified disease status. Finally

  18. Lysophosphatidylcholine Promotes Phagosome Maturation and Regulates Inflammatory Mediator Production Through the Protein Kinase A–Phosphatidylinositol 3 Kinase–p38 Mitogen-Activated Protein Kinase Signaling Pathway During Mycobacterium tuberculosis Infection in Mouse Macrophages

    Directory of Open Access Journals (Sweden)

    Hyo-Ji Lee

    2018-04-01

    Full Text Available Tuberculosis is caused by the infectious agent Mycobacterium tuberculosis (Mtb. Mtb has various survival strategies, including blockade of phagosome maturation and inhibition of antigen presentation. Lysophosphatidylcholine (LPC is a major phospholipid component of oxidized low-density lipoprotein and is involved in various cellular responses, such as activation of second messengers and bactericidal activity in neutrophils. In this study, macrophages were infected with a low infectious dose of Mtb and treated with LPC to investigate the bactericidal activity of LPC against Mtb. In macrophages infected with Mtb strain, H37Ra or H37Rv, LPC suppressed bacterial growth; however, this effect was suppressed in bone marrow-derived macrophages (BMDMs isolated from G2A (a G protein-coupled receptor involved in some LPC actions knockout mice. LPC also promoted phagosome maturation via phosphatidylinositol 3 kinase (PI3K–p38 mitogen-activated protein kinase (MAPK-mediated reactive oxygen species production and intracellular Ca2+ release during Mtb infection. In addition, LPC induced increased levels of intracellular cyclic adenosine monophosphate (cAMP and phosphorylated glycogen synthase kinase 3 beta (GSK3β in Mtb-infected macrophages. Protein kinase A (PKA-induced phosphorylation of GSK3β suppressed activation of NF-κB in LPC-treated macrophages during Mtb infection, leading to decreased secretion of pro-inflammatory cytokines and increased secretion of anti-inflammatory cytokines. These results suggest that LPC can effectively control Mtb growth by promoting phagosome maturation via cAMP-induced activation of the PKA–PI3K–p38 MAPK pathway. Moreover, LPC can regulate excessive production of pro-inflammatory cytokines associated with bacterial infection of macrophages.

  19. Modeling Phenotypic Metabolic Adaptations of Mycobacterium tuberculosis H37Rv under Hypoxia

    Science.gov (United States)

    2012-09-13

    Parish T, Brown AC (2008) Mycobacteria protocols. New York, NY: Humana Press. 19. Voskuil MI, Schnappinger D, Visconti KC, Harrell MI, Dolganov GM...Genomics Hum Genet 2: 343–372. 31. Kell DB (2006) Systems biology, metabolic modelling and metabolomics in drug discovery and development. Drug Discov

  20. The impact of mouse passaging of Mycobacterium tuberculosis strains prior to virulence testing in the mouse and guinea pig aerosol models.

    Directory of Open Access Journals (Sweden)

    Paul J Converse

    2010-04-01

    Full Text Available It has been hypothesized that the virulence of lab-passaged Mycobacterium tuberculosis and recombinant M. tuberculosis mutants might be reduced due to multiple in vitro passages, and that virulence might be augmented by passage of these strains through mice before quantitative virulence testing in the mouse or guinea pig aerosol models.By testing three M. tuberculosis H37Rv samples, one deletion mutant, and one recent clinical isolate for survival by the quantitative organ CFU counting method in mouse or guinea pig aerosol or intravenous infection models, we could discern no increase in bacterial fitness as a result of passaging of M. tuberculosis strains in mice prior to quantitative virulence testing in two animal models. Surface lipid expression as assessed by neutral red staining and thin-layer chromatography for PDIM analysis also failed to identify virulence correlates.These results indicate that animal passaging of M. tuberculosis strains prior to quantitative virulence testing in mouse or guinea pig models does not enhance or restore potency to strains that may have lost virulence due to in vitro passaging. It is critical to verify virulence of parental strains before genetic manipulations are undertaken and comparisons are made.

  1. ORF Sequence: NC_000962 [GENIUS II[Archive

    Lifescience Database Archive (English)

    Full Text Available NC_000962 gi|57116825 >gi|57116825|ref|YP_177638.1| PROBABLE CELLULASE CELA2A (ENDO-1,4-BETA-GLUCA...NASE) (ENDOGLUCANASE) (CARBOXYMETHYL CELLULASE) [Mycobacterium tuberculosis H37Rv] MNGAAPTNGAPLSYPSICEGVHWGHLVGGHQPAY

  2. Specific T-cell epitopes for immunoassay-based diagnosis of Mycobacterium tuberculosis infection

    DEFF Research Database (Denmark)

    Brock, I; Weldingh, K; Leyten, EM

    2004-01-01

    Specific T-cell epitopes for immunoassay-based diagnosis of Mycobacterium tuberculosis infection.Brock I, Weldingh K, Leyten EM, Arend SM, Ravn P, Andersen P. Department of Infectious Disease Immunology, Statens Serum Institute, Artillerivej 5, DK-2300 Copenhagen S, Denmark. The currently used...... method for immunological detection of tuberculosis infection, the tuberculin skin test, has low specificity. Antigens specific for Mycobacterium tuberculosis to replace purified protein derivative are therefore urgently needed. We have performed a rigorous assessment of the diagnostic potential of four...... recently identified antigens (Rv2653, Rv2654, Rv3873, and Rv3878) from genomic regions that are lacking from the Mycobacterium bovis bacillus Calmette-Guerin (BCG) vaccine strains as well as from the most common nontuberculous mycobacteria. The fine specificity of potential epitopes in these molecules...

  3. Activity of Scottish plant, lichen and fungal endophyte extracts against Mycobacterium aurum and Mycobacterium tuberculosis.

    Science.gov (United States)

    Gordien, Andréa Y; Gray, Alexander I; Ingleby, Kevin; Franzblau, Scott G; Seidel, Véronique

    2010-05-01

    With tuberculosis the leading bacterial killer worldwide and other mycobacterial diseases on the increase, the search for new antimycobacterial agents is timely. In this study, extracts from plants, lichens and fungal endophytes of Scottish provenance were screened for activity against Mycobacterium aurum and M. tuberculosis H(37)Rv. The best activity against M. aurum was observed for extracts of Juniperus communis roots and Cladonia arbuscula (MIC = 4 microg/mL), and a fungal endophyte isolated from Vaccinium myrtillus (MIC = 8 microg/mL). The best activity against M. tuberculosis was observed for extracts of C. arbuscula, Empetrum nigrum, J. communis roots, Calluna vulgaris aerial parts, Myrica gale roots and stems (93 to 99% inhibition at 100 microg/mL). Potent antitubercular activity (90 to 96% inhibition at 100 microg/mL) was also observed for the ethanol extracts of Xerocomus badius, Chalciporus piperatus, Suillus luteus and of endophytes isolated from C. vulgaris, E. nigrum, Vaccinium vitis-idaea and V. myrtillus. The results obtained this study provide, in part, some scientific basis for the traditional use of some of the selected plants in the treatment of tuberculosis. They also indicate that fungal endophytes recovered from Scottish plants are a source of antimycobacterial agents worthy of further investigation. Copyright (c) 2009 John Wiley & Sons, Ltd.

  4. Identification of Novel Potential Vaccine Candidates against Tuberculosis Based on Reverse Vaccinology

    Directory of Open Access Journals (Sweden)

    Gloria P. Monterrubio-López

    2015-01-01

    Full Text Available Tuberculosis (TB is a chronic infectious disease, considered as the second leading cause of death worldwide, caused by Mycobacterium tuberculosis. The limited efficacy of the bacillus Calmette-Guérin (BCG vaccine against pulmonary TB and the emergence of multidrug-resistant TB warrants the need for more efficacious vaccines. Reverse vaccinology uses the entire proteome of a pathogen to select the best vaccine antigens by in silico approaches. M. tuberculosis H37Rv proteome was analyzed with NERVE (New Enhanced Reverse Vaccinology Environment prediction software to identify potential vaccine targets; these 331 proteins were further analyzed with VaxiJen for the determination of their antigenicity value. Only candidates with values ≥0.5 of antigenicity and 50% of adhesin probability and without homology with human proteins or transmembrane regions were selected, resulting in 73 antigens. These proteins were grouped by families in seven groups and analyzed by amino acid sequence alignments, selecting 16 representative proteins. For each candidate, a search of the literature and protein analysis with different bioinformatics tools, as well as a simulation of the immune response, was conducted. Finally, we selected six novel vaccine candidates, EsxL, PE26, PPE65, PE_PGRS49, PBP1, and Erp, from M. tuberculosis that can be used to improve or design new TB vaccines.

  5. In vitro and in vivo activities of the nitroimidazole TBA-354 against Mycobacterium tuberculosis.

    Science.gov (United States)

    Upton, A M; Cho, S; Yang, T J; Kim, Y; Wang, Y; Lu, Y; Wang, B; Xu, J; Mdluli, K; Ma, Z; Franzblau, S G

    2015-01-01

    Nitroimidazoles are a promising new class of antitubercular agents. The nitroimidazo-oxazole delamanid (OPC-67683, Deltyba) is in phase III trials for the treatment of multidrug-resistant tuberculosis, while the nitroimidazo-oxazine PA-824 is entering phase III for drug-sensitive and drug-resistant tuberculosis. TBA-354 (SN31354[(S)-2-nitro-6-((6-(4-trifluoromethoxy)phenyl)pyridine-3-yl)methoxy)-6,7-dihydro-5H-imidazo[2,1-b][1,3]oxazine]) is a pyridine-containing biaryl compound with exceptional efficacy against chronic murine tuberculosis and favorable bioavailability in preliminary rodent studies. It was selected as a potential next-generation antituberculosis nitroimidazole following an extensive medicinal chemistry effort. Here, we further evaluate the pharmacokinetic properties and activity of TBA-354 against Mycobacterium tuberculosis. TBA-354 is narrow spectrum and bactericidal in vitro against replicating and nonreplicating Mycobacterium tuberculosis, with potency similar to that of delamanid and greater than that of PA-824. The addition of serum protein or albumin does not significantly alter this activity. TBA-354 maintains activity against Mycobacterium tuberculosis H37Rv isogenic monoresistant strains and clinical drug-sensitive and drug-resistant isolates. Spontaneous resistant mutants appear at a frequency of 3 × 10(-7). In vitro studies and in vivo studies in mice confirm that TBA-354 has high bioavailability and a long elimination half-life. In vitro studies suggest a low risk of drug-drug interactions. Low-dose aerosol infection models of acute and chronic murine tuberculosis reveal time- and dose-dependent in vivo bactericidal activity that is at least as potent as that of delamanid and more potent than that of PA-824. Its superior potency and pharmacokinetic profile that predicts suitability for once-daily oral dosing suggest that TBA-354 be studied further for its potential as a next-generation nitroimidazole. Copyright © 2015, American

  6. Dihydrolipoamide dehydrogenase-Lpd (Rv0462)-specific T cell recall responses are higher in healthy household contacts of TB: a novel immunodominant antigen from M. tuberculosis.

    Science.gov (United States)

    Devasundaram, Santhi; Raja, Alamelu

    2017-07-01

    The partial effectiveness against pulmonary tuberculosis (PTB), displayed by the existing tuberculosis (TB) vaccine, bacillus Calmette-Guérin (BCG), highlights the need for novel vaccines to replace or improve BCG. In TB immunology, antigen-specific cellular immune response is frequently considered indispensable. Latency-associated antigens are intriguing as targets for TB vaccine development. The mycobacterial protein, dihydrolipoamide dehydrogenase (Lpd; Rv0462), the third enzyme of the pyruvate dehydrogenase (PDH) complex, facilitates Mycobacterium tuberculosis to resist host reactive nitrogen intermediates. Multicolor flow cytometry analysis of whole-blood cultures showed higher Lpd-specific Th1 recall response (IFN-γ, TNF-α, and IL-2; P = 0.0006) and memory CD4 + and CD8 + T cells (CCR7 + CD45RA - and CCR7 - CD45RA - ) in healthy household contacts (HHC) of TB ( P < 0.0001), which is comparable with or higher than the standard antigens, ESAT-6 and CFP-10. The frequency of Lpd-specific multifunctional T cells was higher in HHC compared with PTB patients. However, there is no significant statistical correlation. Regulatory T cell (T reg ) analysis of HHCs and active TB patients demonstrated very low Lpd-specific CD4 + T regs relative to ESAT-6 and CFP-10. Our study demonstrates that the Lpd antigen induces a strong cellular immune response in healthy mycobacteria-infected individuals. In consideration of this population having demonstrated immunologic protection against active TB disease development, our data are encouraging about the possible use of Lpd as a target for further TB subunit vaccine development. © Society for Leukocyte Biology.

  7. Bis-spirochromanones as potent inhibitors of Mycobacterium tuberculosis: synthesis and biological evaluation.

    Science.gov (United States)

    Dongamanti, Ashok; Aamate, Vikas Kumar; Devulapally, Mohan Gandhi; Gundu, Srinivas; Balabadra, Saikrishna; Manga, Vijjulatha; Yogeeswari, Perumal; Sriram, Dharmarajan; Balasubramanian, Sridhar

    2017-11-01

    On the basis of reported antimycobacterial property of chroman-4-one pharmacophore, a series of chemically modified bis-spirochromanones were synthesized starting from 2-hydroxyacetophenone and 1,4-dioxaspiro[4.5] decan-8-one using a Kabbe condensation approach. The synthesized bis-spirochromanones were established based on their spectral data and X-ray crystal structure of 6e. All synthesized compounds were evaluated against Mycobacterium tuberculosis H37Rv (ATCC 27294) strain, finding that some products exhibited good antimycobacterial activity with minimum inhibitory concentration as low as [Formula: see text]. Docking studies were carried out to identify the binding interactions of compounds II, 6a and 6n with FtsZ. Compounds exhibiting good in vitro potency in the MTB MIC assay were further evaluated for toxicity using the HEK cell line.

  8. Overexpression of Adenylyl Cyclase Encoded by the Mycobacterium tuberculosis Rv2212 Gene Confers Improved Fitness, Accelerated Recovery from Dormancy and Enhanced Virulence in Mice

    Directory of Open Access Journals (Sweden)

    Margarita O. Shleeva

    2017-08-01

    Full Text Available Earlier we demonstrated that the adenylyl cyclase (AC encoded by the MSMEG_4279 gene plays a key role in the resuscitation and growth of dormant Mycobacterium smegmatis and that overexpression of this gene leads to an increase in intracellular cAMP concentration and prevents the transition of M. smegmatis from active growth to dormancy in an extended stationary phase accompanied by medium acidification. We surmised that the homologous Rv2212 gene of M. tuberculosis (Mtb, the main cAMP producer, plays similar physiological roles by supporting, under these conditions, the active state and reactivation of dormant bacteria. To test this hypothesis, we established Mtb strain overexpressing Rv2212 and compared its in vitro and in vivo growth characteristics with a control strain. In vitro, the AC-overexpressing pMindRv2212 strain demonstrated faster growth in a liquid medium, prolonged capacity to form CFUs and a significant delay or even prevention of transition toward dormancy. AC-overexpressing cells exhibited easier recovery from dormancy. In vivo, AC-overexpressing bacteria demonstrated significantly higher growth rates (virulence in the lungs and spleens of infected mice compared to the control strain, and, unlike the latter, killed mice in the TB-resistant strain before month 8 of infection. Even in the absence of selecting hygromycin B, all pMindRv2212 CFUs retained the Rv2212 insert during in vivo growth, strongly suggesting that AC overexpression is beneficial for bacteria. Taken together, our results indicate that cAMP supports the maintenance of Mtb cells vitality under unfavorable conditions in vitro and their virulence in vivo.

  9. Aporphine alkaloids with antitubercular activity isolated from Ocotea discolor Kunth (Lauraceae

    Directory of Open Access Journals (Sweden)

    Monica Constanza Avila Murillo

    2017-09-01

    Full Text Available Tuberculosis disease causes thousands of deaths worldwide and, currently, the used drugs are either not enough or obsolete for its treatment. Therefore, new compounds that combat this disease are been seek. Thus, the antituberculosis activity of the alkaloids ocoxilonine (1, ocoteine (2, dicentrine (3 and 1,2-methylenedioxy-3,10,11-trimethoxyaporphine (4, isolated from Ocotea discolor wood was evaluated. Their structures were identified by analysis of nuclear magnetic resonance spectroscopic data (NMR 1D – 1H, 13C, 2D – COSY, HSQC and HMBC, mass spectra, and comparison with literature data. All the isolated compounds demonstrated antituberculosis activity, with ocoteine (2 being the most active compound, with a minimum inhibitory concentration value of 140 μM against the virulent strain Mycobacterium tuberculosis H37Rv. All the isolated compounds showed antituberculosis activity, with a variation range in the minimum inhibitory concentration between 140 to 310 μM, being ocoteine (2 the most active compound against the virulent strain Mycobacterium tuberculosis H37Rv.

  10. Hit discovery of Mycobacterium tuberculosis inosine 5'-monophosphate dehydrogenase, GuaB2, inhibitors.

    Science.gov (United States)

    Sahu, Niteshkumar U; Singh, Vinayak; Ferraris, Davide M; Rizzi, Menico; Kharkar, Prashant S

    2018-04-18

    Tuberculosis remains a global concern. There is an urgent need of newer antitubercular drugs due to the development of resistant forms of Mycobacterium tuberculosis (Mtb). Inosine 5'-monophosphate dehydrogenase (IMPDH), guaB2, of Mtb, required for guanine nucleotide biosynthesis, is an attractive target for drug development. In this study, we screened a focused library of 73 drug-like molecules with desirable calculated/predicted physicochemical properties, for growth inhibitory activity against drug-sensitive MtbH37Rv. The eight hits and mycophenolic acid, a prototype IMPDH inhibitor, were further evaluated for activity on purified Mtb-GuaB2 enzyme, target selectivity using a conditional knockdown mutant of guaB2 in Mtb, followed by cross-resistance to IMPDH inhibitor-resistant SRMV2.6 strain of Mtb, and activity on human IMPDH2 isoform. One of the hits, 13, a 5-amidophthalide derivative, has shown growth inhibitory potential and target specificity against the Mtb-GuaB2 enzyme. The hit, 13, is a promising molecule with potential for further development as an antitubercular agent. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. High genetic diversity among Mycobacterium tuberculosis strains in Tehran, Iran

    Directory of Open Access Journals (Sweden)

    Taher Azimi

    2018-05-01

    Full Text Available Introduction: Tuberculosis (TB still remains an important public health problem in Iran. The genotyping of Mycobacterium tuberculosis isolates is expected to lead to a better understanding of M. tuberculosis transmission in Tehran, the most populated city of Iran. Materials and Methods: A total of 2300 clinical specimens were obtained from TB suspected patients who were referred to a TB center in Tehran from Jan 2014 to Dec 2016. Identification was performed using both conventional and molecular methods. The presence of resistance to rifampicin was examined by the GeneXpert MTB/RIF. The standard 15-locus mycobacterial interspersed repetitive units-variable number of tandem repeats (MIRU-VNTR typing method was applied to genotype of clinical isolates. Results: Of 2300 specimens, 80 isolates were identified as M. tuberculosis by using biochemical and molecular tests. Of 80 M. tuberculosis isolates, 76 (95% had unique genotypic profiles and 4 (5% shared a profile with one or more other strains. Based on single loci variation (SLV 4 clonal complexes were observed. NEW-1 was found to be the most predominant lineage (22.5% followed by West African (1.25%, Central Asian (CAS/Delhi (1.25%, Bovis (1.25%, H37Rv (1.25% and multiple matches (1.25%. Loci MIRU10, MIRU26, MTUB21 and QUB26 were found as highly discriminative. No mutation was detected in the hotspot region of rifampicin by using GeneXpert MTB/RIF. Conclusions: Our study findings show that there was considerable genotypic diversity among M. tuberculosis isolates in Tehran. The 15-locus MIRU-VNTR showed high HGDI and could be used as a first-line genotyping method for epidemiological studies. Keywords: Mycobacterium tuberculosis, Genotyping, MIRU-VNTR, Tehran, Iran

  12. Proteasomal control of cytokinin synthesis protects Mycobacterium tuberculosis against nitric oxide

    Science.gov (United States)

    Samanovic, Marie I.; Tu, Shengjiang; Novák, Ondřej; Iyer, Lakshminarayan M.; McAllister, Fiona E.; Aravind, L.; Gygi, Steven P.; Hubbard, Stevan R.; Strnad, Miroslav; Darwin, K. Heran

    2015-01-01

    Summary One of several roles of the Mycobacterium tuberculosis proteasome is to defend against host-produced nitric oxide (NO), a free radical that can damage numerous biological macromolecules. Mutations that inactivate proteasomal degradation in Mycobacterium tuberculosis result in bacteria that are hypersensitive to NO and attenuated for growth in vivo, but it was not known why. To elucidate the link between proteasome function, NO-resistance, and pathogenesis, we screened for suppressors of NO hypersensitivity in a mycobacterial proteasome ATPase mutant and identified mutations in Rv1205. We determined that Rv1205 encodes a pupylated proteasome substrate. Rv1205 is a homologue of the plant enzyme LONELY GUY, which catalyzes the production of hormones called cytokinins. Remarkably, we report for the first time that an obligate human pathogen secretes several cytokinins. Finally, we determined that the Rv1205-dependent accumulation of cytokinin breakdown products is likely responsible for the sensitization of Mycobacterium tuberculosis proteasome-associated mutants to NO. PMID:25728768

  13. Insights on the Emergence of Mycobacterium tuberculosis from the Analysis of Mycobacterium kansasii

    Science.gov (United States)

    Wang, Joyce; McIntosh, Fiona; Radomski, Nicolas; Dewar, Ken; Simeone, Roxane; Enninga, Jost; Brosch, Roland; Rocha, Eduardo P.; Veyrier, Frédéric J.; Behr, Marcel A.

    2015-01-01

    By phylogenetic analysis, Mycobacterium kansasii is closely related to Mycobacterium tuberculosis. Yet, although both organisms cause pulmonary disease, M. tuberculosis is a global health menace, whereas M. kansasii is an opportunistic pathogen. To illuminate the differences between these organisms, we have sequenced the genome of M. kansasii ATCC 12478 and its plasmid (pMK12478) and conducted side-by-side in vitro and in vivo investigations of these two organisms. The M. kansasii genome is 6,432,277 bp, more than 2 Mb longer than that of M. tuberculosis H37Rv, and the plasmid contains 144,951 bp. Pairwise comparisons reveal conserved and discordant genes and genomic regions. A notable example of genomic conservation is the virulence locus ESX-1, which is intact and functional in the low-virulence M. kansasii, potentially mediating phagosomal disruption. Differences between these organisms include a decreased predicted metabolic capacity, an increased proportion of toxin–antitoxin genes, and the acquisition of M. tuberculosis-specific genes in the pathogen since their common ancestor. Consistent with their distinct epidemiologic profiles, following infection of C57BL/6 mice, M. kansasii counts increased by less than 10-fold over 6 weeks, whereas M. tuberculosis counts increased by over 10,000-fold in just 3 weeks. Together, these data suggest that M. kansasii can serve as an image of the environmental ancestor of M. tuberculosis before its emergence as a professional pathogen, and can be used as a model organism to study the switch from an environmental opportunistic pathogen to a professional host-restricted pathogen. PMID:25716827

  14. Transcriptional analysis of ESAT-6 cluster 3 in Mycobacterium smegmatis

    Directory of Open Access Journals (Sweden)

    Riccardi Giovanna

    2009-03-01

    Full Text Available Abstract Background The ESAT-6 (early secreted antigenic target, 6 kDa family collects small mycobacterial proteins secreted by Mycobacterium tuberculosis, particularly in the early phase of growth. There are 23 ESAT-6 family members in M. tuberculosis H37Rv. In a previous work, we identified the Zur- dependent regulation of five proteins of the ESAT-6/CFP-10 family (esxG, esxH, esxQ, esxR, and esxS. esxG and esxH are part of ESAT-6 cluster 3, whose expression was already known to be induced by iron starvation. Results In this research, we performed EMSA experiments and transcriptional analysis of ESAT-6 cluster 3 in Mycobacterium smegmatis (msmeg0615-msmeg0625 and M. tuberculosis. In contrast to what we had observed in M. tuberculosis, we found that in M. smegmatis ESAT-6 cluster 3 responds only to iron and not to zinc. In both organisms we identified an internal promoter, a finding which suggests the presence of two transcriptional units and, by consequence, a differential expression of cluster 3 genes. We compared the expression of msmeg0615 and msmeg0620 in different growth and stress conditions by means of relative quantitative PCR. The expression of msmeg0615 and msmeg0620 genes was essentially similar; they appeared to be repressed in most of the tested conditions, with the exception of acid stress (pH 4.2 where msmeg0615 was about 4-fold induced, while msmeg0620 was repressed. Analysis revealed that in acid stress conditions M. tuberculosis rv0282 gene was 3-fold induced too, while rv0287 induction was almost insignificant. Conclusion In contrast with what has been reported for M. tuberculosis, our results suggest that in M. smegmatis only IdeR-dependent regulation is retained, while zinc has no effect on gene expression. The role of cluster 3 in M. tuberculosis virulence is still to be defined; however, iron- and zinc-dependent expression strongly suggests that cluster 3 is highly expressed in the infective process, and that the cluster

  15. Mycobacterial species as case-study of comparative genome analysis.

    Science.gov (United States)

    Zakham, F; Belayachi, L; Ussery, D; Akrim, M; Benjouad, A; El Aouad, R; Ennaji, M M

    2011-02-08

    The genus Mycobacterium represents more than 120 species including important pathogens of human and cause major public health problems and illnesses. Further, with more than 100 genome sequences from this genus, comparative genome analysis can provide new insights for better understanding the evolutionary events of these species and improving drugs, vaccines, and diagnostics tools for controlling Mycobacterial diseases. In this present study we aim to outline a comparative genome analysis of fourteen Mycobacterial genomes: M. avium subsp. paratuberculosis K—10, M. bovis AF2122/97, M. bovis BCG str. Pasteur 1173P2, M. leprae Br4923, M. marinum M, M. sp. KMS, M. sp. MCS, M. tuberculosis CDC1551, M. tuberculosis F11, M. tuberculosis H37Ra, M. tuberculosis H37Rv, M. tuberculosis KZN 1435 , M. ulcerans Agy99,and M. vanbaalenii PYR—1, For this purpose a comparison has been done based on their length of genomes, GC content, number of genes in different data bases (Genbank, Refseq, and Prodigal). The BLAST matrix of these genomes has been figured to give a lot of information about the similarity between species in a simple scheme. As a result of multiple genome analysis, the pan and core genome have been defined for twelve Mycobacterial species. We have also introduced the genome atlas of the reference strain M. tuberculosis H37Rv which can give a good overview of this genome. And for examining the phylogenetic relationships among these bacteria, a phylogenic tree has been constructed from 16S rRNA gene for tuberculosis and non tuberculosis Mycobacteria to understand the evolutionary events of these species.

  16. Mycobacterium tuberculosis from chronic murine infections that grows in liquid but not on solid medium

    Directory of Open Access Journals (Sweden)

    Mitchison Denis A

    2004-11-01

    Full Text Available Abstract Background Old, stationary cultures of Mycobacterium tuberculosis contain a majority of bacteria that can grow in broth cultures but cannot grow on solid medium plates. These may be in a non-replicating, dormant growth phase. We hypothesised that a similar population might be present in chronic, murine tuberculosis. Methods Estimates of the numbers of viable M. tuberculosis, strain H37Rv, in the spleens and lungs of mice in a 7-day acute infection and in a 10-month chronic infection were made by conventional plate counts and, as broth counts, by noting presence or absence of growth in serial replicate dilutions in liquid medium. Results Plate and broth counts in 6 mice gave similar mean values in the acute infection, 7 days after infection. However, the broth counts were much higher in 36 mice with a chronic infection at 10 months. Broth counts averaged 5.290 log10 cfu /organ from spleens and 5.523 log10 cfu/organ from lungs, while plate counts were 3.858 log10 cfu/organ from spleens and 3.662 log10 cfu/organ from lungs, indicating that the total bacterial population contained only 3.7% bacilli in spleens and 1.4% bacilli in lungs, capable of growth on plates. Conclusion The proportion growing on plates might be a measure of the "dormancy" of the bacilli equally applicable to cultural and animal models.

  17. Cloning and expression of pab gene of M. tuberculosis isolated from pulmonary TB patient in E.coli DH5α

    Directory of Open Access Journals (Sweden)

    Tri Y. M. Raras

    2011-11-01

    Full Text Available Background: Mycobacterium tuberculosis antigen38 is a potent serodiagnostic agent containing two M. tuberculosisspecific B-cell epitopes. The high price of imported diagnostic agents hinders realization of fast clinical TB diagnosis in developing countries. Therefore, we produced recombinant antigen38 (recAg38M from M. tuberculosis local strain, which might be used to produce economical tuberculosis serodiagnostic kit.Methods: Pab gene that was isolated from pulmonary TB patient in Malang was cloned into a plasmid vector (pGEMTeasy to construct pMB38. The E.coli DH5α clone carrying pMb38 was selected on X-gal medium. The expression of pab was mediated using pPRoExHTc under the control of Trc promoter and E.coli DH5α as host.Results: Alignment of the pab sequence from the white E.coli DH5α clones with that of M. tuberculosis H37Rv showed 98% homology. The recombinant protein in which the signal peptide has been deleted to prevent the protein being secreted into medium was found in the cytoplasm.Conclusion: pab gene of M. tuberculosis isolated from a TB patient could be expressed in heterologous system in E.coliDH5α. (Med J Indones 2011; 20:247-54Keywords: Mycobacterium tuberculosis, Pab gene expression, recombinant antigen38

  18. Perspective on sequence evolution of microsatellite locus (CCGn in Rv0050 gene from Mycobacterium tuberculosis

    Directory of Open Access Journals (Sweden)

    Jin Ruiliang

    2011-08-01

    Full Text Available Abstract Background The mycobacterial genome is inclined to polymerase slippage and a high mutation rate in microsatellite regions due to high GC content and absence of a mismatch repair system. However, the exact molecular mechanisms underlying microsatellite variation have not been fully elucidated. Here, we investigated mutation events in the hyper-variable trinucleotide microsatellite locus MML0050 located in the Rv0050 gene of W-Beijing and non-W-Beijing Mycobacterium tuberculosis strains in order to gain insight into the genomic structure and activity of repeated regions. Results Size analysis indicated the presence of five alleles that differed in length by three base pairs. Moreover, nucleotide gains occurred more frequently than loses in this trinucleotide microsatellite. Mutation frequency was not completely related with the total length, though the relative frequency in the longest allele was remarkably higher than that in the shortest. Sequence analysis was able to detect seven alleles and revealed that point mutations enhanced the level of locus variation. Introduction of an interruptive motif correlated with the total allele length and genetic lineage, rather than the length of the longest stretch of perfect repeats. Finally, the level of locus variation was drastically different between the two genetic lineages. Conclusion The Rv0050 locus encodes the bifunctional penicillin-binding protein ponA1 and is essential to mycobacterial survival. Our investigations of this particularly dynamic genomic region provide insights into the overall mode of microsatellite evolution. Specifically, replication slippage was implicated in the mutational process of this microsatellite and a sequence-based genetic analysis was necessary to determine that point mutation events acted to maintain microsatellite size integrity while providing genomic diversity.

  19. Vitamin D3 analog maxacalcitol (OCT) induces hCAP-18/LL-37 production in human oral epithelial cells.

    Science.gov (United States)

    Tada, Hiroyuki; Shimizu, Takamitsu; Nagaoka, Isao; Takada, Haruhiko

    2016-01-01

    Maxacalcitol (22-oxacalcitriol: OCT) is a synthetic vitamin D3 analog with a limited calcemic effect. In this study, we investigated whether OCT increases the production of LL-37/CAP-18, a human cathelicidin antimicrobial peptide, in human gingival/oral epithelial cells. A human gingival epithelial cell line (Ca9-22) and human oral epithelial cell lines (HSC-2, HSC-3, and HSC-4) exhibited the enhanced expression of LL-37 mRNA upon stimulation with OCT as well as active metabolites of vitamins D3 and D2. Among the human epithelial cell lines, Ca9-22 exhibited the strongest response to these vitamin D-related compounds. OCT induced the higher production of CAP-18 (ng/mL order) until 6 days time-dependently in Ca9-22 cells in culture. The periodontal pathogen Porphyromonas gingivalis was killed by treatment with the LL-37 peptide. These findings suggest that OCT induces the production of hCAP-18/LL-37 in a manner similar to that induced by the active metabolite of vitamin D3.

  20. Mycobacterium tuberculosis cAMP Receptor Protein (Rv3676) Differs from the Escherichia coli Paradigm in Its cAMP Binding and DNA Binding Properties and Transcription Activation Properties*

    Science.gov (United States)

    Stapleton, Melanie; Haq, Ihtshamul; Hunt, Debbie M.; Arnvig, Kristine B.; Artymiuk, Peter J.; Buxton, Roger S.; Green, Jeffrey

    2010-01-01

    The pathogen Mycobacterium tuberculosis produces a burst of cAMP upon infection of macrophages. Bacterial cyclic AMP receptor proteins (CRP) are transcription factors that respond to cAMP by binding at target promoters when cAMP concentrations increase. Rv3676 (CRPMt) is a CRP family protein that regulates expression of genes (rpfA and whiB1) that are potentially involved in M. tuberculosis persistence and/or emergence from the dormant state. Here, the CRPMt homodimer is shown to bind two molecules of cAMP (one per protomer) at noninteracting sites. Furthermore, cAMP binding by CRPMt was relatively weak, entropy driven, and resulted in a relatively small enhancement in DNA binding. Tandem CRPMt-binding sites (CRP1 at −58.5 and CRP2 at −37.5) were identified at the whiB1 promoter (PwhiB1). In vitro transcription reactions showed that CRP1 is an activating site and that CRP2, which was only occupied in the presence of cAMP or at high CRPMt concentrations in the absence of cAMP, is a repressing site. Binding of CRPMt to CRP1 was not essential for open complex formation but was required for transcription activation. Thus, these data suggest that binding of CRPMt to the PwhiB1 CRP1 site activates transcription at a step after open complex formation. In contrast, high cAMP concentrations allowed occupation of both CRP1 and CRP2 sites, resulting in inhibition of open complex formation. Thus, M. tuberculosis CRP has evolved several distinct characteristics, compared with the Escherichia coli CRP paradigm, to allow it to regulate gene expression against a background of high concentrations of cAMP. PMID:20028978

  1. A trisubstituted benzimidazole cell division inhibitor with efficacy against Mycobacterium tuberculosis.

    Directory of Open Access Journals (Sweden)

    Susan E Knudson

    Full Text Available Trisubstituted benzimidazoles have demonstrated potency against Gram-positive and Gram-negative bacterial pathogens. Previously, a library of novel trisubstituted benzimidazoles was constructed for high throughput screening, and compounds were identified that exhibited potency against M. tuberculosis H37Rv and clinical isolates, and were not toxic to Vero cells. A new series of 2-cyclohexyl-5-acylamino-6-N, N-dimethylaminobenzimidazoles derivatives has been developed based on SAR studies. Screening identified compounds with potency against M. tuberculosis. A lead compound from this series, SB-P17G-A20, was discovered to have an MIC of 0.16 µg/mL and demonstrated efficacy in the TB murine acute model of infection based on the reduction of bacterial load in the lungs and spleen by 1.73 ± 0.24 Log10 CFU and 2.68 ± Log10 CFU, respectively, when delivered at 50 mg/kg by intraperitoneal injection (IP twice daily (bid. The activity of SB-P17G-A20 was determined to be concentration dependent and to have excellent stability in mouse and human plasma, and liver microsomes. Together, these studies demonstrate that SB-P17G-A20 has potency against M. tuberculosis clinical strains with varying susceptibility and efficacy in animal models of infection, and that trisubstituted benzimidazoles continue to be a platform for the development of novel inhibitors with efficacy.

  2. A Trisubstituted Benzimidazole Cell Division Inhibitor with Efficacy against Mycobacterium tuberculosis

    Science.gov (United States)

    Knudson, Susan E.; Awasthi, Divya; Kumar, Kunal; Carreau, Alexandra; Goullieux, Laurent; Lagrange, Sophie; Vermet, Hélèn; Ojima, Iwao; Slayden, Richard A.

    2014-01-01

    Trisubstituted benzimidazoles have demonstrated potency against Gram-positive and Gram-negative bacterial pathogens. Previously, a library of novel trisubstituted benzimidazoles was constructed for high throughput screening, and compounds were identified that exhibited potency against M. tuberculosis H37Rv and clinical isolates, and were not toxic to Vero cells. A new series of 2-cyclohexyl-5-acylamino-6-N, N-dimethylaminobenzimidazoles derivatives has been developed based on SAR studies. Screening identified compounds with potency against M. tuberculosis. A lead compound from this series, SB-P17G-A20, was discovered to have an MIC of 0.16 µg/mL and demonstrated efficacy in the TB murine acute model of infection based on the reduction of bacterial load in the lungs and spleen by 1.73±0.24 Log10 CFU and 2.68±Log10 CFU, respectively, when delivered at 50 mg/kg by intraperitoneal injection (IP) twice daily (bid). The activity of SB-P17G-A20 was determined to be concentration dependent and to have excellent stability in mouse and human plasma, and liver microsomes. Together, these studies demonstrate that SB-P17G-A20 has potency against M. tuberculosis clinical strains with varying susceptibility and efficacy in animal models of infection, and that trisubstituted benzimidazoles continue to be a platform for the development of novel inhibitors with efficacy. PMID:24736743

  3. Expression, purification, and characterization of protective MPT64 antigen protein and identification of its multimers isolated from nontoxic Mycobacterium tuberculosis H37Ra.

    Science.gov (United States)

    Chu, Teng-Ping J; Yuann, Jeu-Ming P

    2011-05-01

    MPT64, a secreted protein of Mycobacterium tuberculosis (MTB), stimulates the immune reactions within cells and is a protective antigen that is lost by the bacilli Calmette-Guérin (BCG) vaccine during propagation. To minimize the toxicity caused by MTB, we used the MPT64 gene encoded by nontoxic H37Ra MTB to carry out genetic expansion via polymerase chain reaction and gene clone MPT64. The plasmid DNA encoded MPT64 was expressed at 20°C for 22 H, and a large quantity of MPT64 was obtained. In the absence of urea, MPT64 multimers with subunits being covalently connected via disulfide bonds were detected by Western blot showing strong protein-protein interactions, as evidenced by the formation of MPT64 tetramers. Finally, with urea of decreasing concentrations, we refolded MPT64 purified in the presence of urea and determined its secondary structures using circular dichroism. MPT64 was found to contain 2.2% α-helix, 50.9% β-sheet, 19.5% turn, and 27.4% random coil. The molecular weight of MPT64 was determined by a matrix-assisted laser desorption ionization-time of flight mass spectrometer and found to be 23,497 Da, very close to the theoretical molecular weight of MPT64. The results presented here provide a sound basis for future biochemical and biophysical studies of MPT64 or any other proteins encoded by nontoxic H37Ra MTB. Copyright © 2011 International Union of Biochemistry and Molecular Biology, Inc.

  4. Crystallization and preliminary X-ray characterization of the glpX-encoded class II fructose-1,6-bisphosphatase from Mycobacterium tuberculosis

    International Nuclear Information System (INIS)

    Gutka, Hiten J.; Franzblau, Scott G.; Movahedzadeh, Farahnaz; Abad-Zapatero, Cele

    2011-01-01

    The crystallization and preliminary X-ray crystallographic analysis of the glpX-encoded class II fructose-1,6-bisphosphatase from M. tuberculosis in the apo form is reported. Fructose-1,6-bisphosphatase (FBPase; EC 3.1.3.11), which is a key enzyme in gluconeogenesis, catalyzes the hydrolysis of fructose 1,6-bisphosphate to form fructose 6-phosphate and orthophosphate. The present investigation reports the crystallization and preliminary crystallographic studies of the glpX-encoded class II FBPase from Mycobacterium tuberculosis H37Rv. The recombinant protein, which was cloned using an Escherichia coli expression system, was purified and crystallized using the hanging-drop vapor-diffusion method. The crystals diffracted to a resolution of 2.7 Å and belonged to the hexagonal space group P6 1 22, with unit-cell parameters a = b = 131.3, c = 143.2 Å. The structure has been solved by molecular replacement and is currently undergoing refinement

  5. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    This reaction proceeded smoothly in good to excellent yields and offered several other advantages including short reaction time, simple experimental workup procedure and no by-products. The synthesized compounds were subjected to antimycobacterial efficacy against Mycobacterium tuberculosis H37Rv strain and DNA ...

  6. Rotavirus shedding following administration of RV3-BB human neonatal rotavirus vaccine.

    Science.gov (United States)

    Cowley, Daniel; Boniface, Karen; Bogdanovic-Sakran, Nada; Kirkwood, Carl D; Bines, Julie E

    2017-08-03

    The RV3-BB human neonatal rotavirus vaccine aims to provide protection from severe rotavirus disease from birth. A phase IIa safety and immunogenicity trial was undertaken in Dunedin, New Zealand between January 2012 and April 2014. Healthy, full-term (≥ 36 weeks gestation) babies, who were 0-5 d old were randomly assigned (1:1:1) to receive 3 doses of oral RV3-BB vaccine with the first dose given at 0-5 d after birth (neonatal schedule), or the first dose given at about 8 weeks after birth (infant schedule), or to receive placebo (placebo schedule). Vaccine take (serum immune response or stool shedding of vaccine virus after any dose) was detected after 3 doses of RV3-BB vaccine in >90% of participants when the first dose was administered in the neonatal and infant schedules. The aim of the current study was to characterize RV3-BB shedding and virus replication following administration of RV3-BB in a neonatal and infant vaccination schedule. Shedding was defined as detection of rotavirus by VP6 reverse transcription polymerase chain reaction (RT-PCR) in stool on days 3-7 after administration of RV3-BB. Shedding of rotavirus was highest following vaccination at 8 weeks of age in both neonatal and infant schedules (19/30 and 17/27, respectively). Rotavirus was detected in stool on days 3-7, after at least one dose of RV3-BB, in 70% (21/30) of neonate, 78% (21/27) of infant and 3% (1/32) placebo participants. In participants who shed RV3-BB, rotavirus was detectable in stool on day 1 following RV3-BB administration and remained positive until day 4-5 after administration. The distinct pattern of RV3-BB stool viral load demonstrated using a NSP3 quantitative qRT-PCR in participants who shed RV3-BB, suggests that detection of RV3-BB at day 3-7 was the result of replication rather than passage through the gastrointestinal tract.

  7. Activity of Medicinal Plant Extracts on Multiplication of Mycobacterium tuberculosis under Reduced Oxygen Conditions Using Intracellular and Axenic Assays

    Directory of Open Access Journals (Sweden)

    Purva D. Bhatter

    2016-01-01

    Full Text Available Aim. Test the activity of selected medicinal plant extracts on multiplication of Mycobacterium tuberculosis under reduced oxygen concentration which represents nonreplicating conditions. Material and Methods. Acetone, ethanol and aqueous extracts of the plants Acorus calamus L. (rhizome, Ocimum sanctum L. (leaf, Piper nigrum L. (seed, and Pueraria tuberosa DC. (tuber were tested on Mycobacterium tuberculosis H37Rv intracellularly using an epithelial cell (A549 infection model. The extracts found to be active intracellularly were further studied axenically under reducing oxygen concentrations. Results and Conclusions. Intracellular multiplication was inhibited ≥60% by five of the twelve extracts. Amongst these 5 extracts, in axenic culture, P. nigrum (acetone was active under aerobic, microaerophilic, and anaerobic conditions indicating presence of multiple components acting at different levels and P. tuberosa (aqueous showed bactericidal activity under microaerophilic and anaerobic conditions implying the influence of anaerobiosis on its efficacy. P. nigrum (aqueous and A. calamus (aqueous and ethanol extracts were not active under axenic conditions but only inhibited intracellular growth of Mycobacterium tuberculosis, suggesting activation of host defense mechanisms to mediate bacterial killing rather than direct bactericidal activity.

  8. Isoniazid Pharmacokinetics-Pharmacodynamics in an Aerosol Infection Model of Tuberculosis

    Science.gov (United States)

    Jayaram, Ramesh; Shandil, Radha. K.; Gaonkar, Sheshagiri; Kaur, Parvinder; Suresh, B. L.; Mahesh, B. N.; Jayashree, R.; Nandi, Vrinda; Bharath, Sowmya; Kantharaj, E.; Balasubramanian, V.

    2004-01-01

    Limited data exist on the pharmacokinetic-pharmacodynamic (PK-PD) parameters of the bactericidal activities of the available antimycobacterial drugs. We report on the PK-PD relationships for isoniazid. Isoniazid exhibited concentration (C)-dependent killing of Mycobacterium tuberculosis H37Rv in vitro, with a maximum reduction of 4 log10 CFU/ml. In these studies, 50% of the maximum effect was achieved at a C/MIC ratio of 0.5, and the maximum effect did not increase with exposure times of up to 21 days. Conversely, isoniazid produced less than a 0.5-log10 CFU/ml reduction in two different intracellular infection models (J774A.1 murine macrophages and whole human blood). In a murine model of aerosol infection, isoniazid therapy for 6 days produced a reduction of 1.4 log10 CFU/lung. Dose fractionation studies demonstrated that the 24-h area under the concentration-time curve/MIC (r2 = 0.83) correlated best with the bactericidal efficacy, followed by the maximum concentration of drug in serum/MIC (r2 = 0.73). PMID:15273105

  9. Medicinal plants from open-air markets in the State of Rio de Janeiro, Brazil as a potential source of new antimycobacterial agents.

    Science.gov (United States)

    Leitão, Fernanda; Leitão, Suzana G; de Almeida, Mara Zélia; Cantos, Jéssica; Coelho, Tatiane; da Silva, Pedro Eduardo A

    2013-09-16

    Several medicinal plants are traditionally traded in open-air markets in Rio de Janeiro State (Brazil) to treat tuberculosis (TB) and related symptoms. Conduct a survey in the open-air markets of 20 cities of Rio de Janeiro State to find medicinal plants that are popularly used to treat tuberculosis and other related diseases and assess their in vitro antimycobacterial activity. We used direct observation and semi-structured interviews and asked herbalists to list species (free listing) in order to gather data about the plant species most commonly used for lung problems. We calculated a Salience Index and acquired two species of "erva-de-passarinho" (mistletoe), Struthanthus marginatus and Struthanthus concinnus (Loranthaceae), commonly used to treat tuberculosis for a bioassay-guided isolation of the antimycobacterial active principles. Extracts, fractions and isolated compounds of both species were assayed in vitro against susceptible (H37Rv) and rifampicin-resistant (ATCC 35338) Mycobacterium tuberculosis strains. From the interviews, we generated a list of 36 plant species belonging to 12 families. The mistletoes Struthanthus marginatus and Struthanthus concinnus showed high Salience Index values among plants used to treat tuberculosis. Bioassay-guided fractionation of hexane extracts from both species led to the isolation and/or identification of steroids and terpenoids. The Minimum Inhibitory Concentration (MIC) of the extracts and isolated compounds ranged from 25 to 200 μg/mL. Some of the isolated compounds have been previously assayed against Mycobacterium tuberculosis, others are reported here for the first time (obtusifoliol: MIC H37Rv 50 μg/mL, MIC ATCC 35338 12.5 μg/mL; 3-O-n-acil-lup-20(29)-en-3β,7β,15α-triol: MIC H37Rv 200 μg/mL, MIC ATCC 35338 100 μg/mL). This study demonstrated the importance of ethnobotanical surveys in markets as a source for new drugs and also for scientific validation of folk medicine. © 2013 Elsevier Ireland Ltd. All

  10. Role of P27 -P55 operon from Mycobacterium tuberculosis in the resistance to toxic compounds

    Directory of Open Access Journals (Sweden)

    Cataldi Angel A

    2011-07-01

    Full Text Available Abstract Background The P27-P55 (lprG-Rv1410c operon is crucial for the survival of Mycobacterium tuberculosis, the causative agent of human tuberculosis, during infection in mice. P55 encodes an efflux pump that has been shown to provide Mycobacterium smegmatis and Mycobacterium bovis BCG with resistance to several drugs, while P27 encodes a mannosylated glycoprotein previously described as an antigen that modulates the immune response against mycobacteria. The objective of this study was to determine the individual contribution of the proteins encoded in the P27-P55 operon to the resistance to toxic compounds and to the cell wall integrity of M. tuberculosis. Method In order to test the susceptibility of a mutant of M. tuberculosis H37Rv in the P27-P55 operon to malachite green, sodium dodecyl sulfate, ethidium bromide, and first-line antituberculosis drugs, this strain together with the wild type strain and a set of complemented strains were cultivated in the presence and in the absence of these drugs. In addition, the malachite green decolorization rate of each strain was obtained from decolorization curves of malachite green in PBS containing bacterial suspensions. Results The mutant strain decolorized malachite green faster than the wild type strain and was hypersensitive to both malachite green and ethidium bromide, and more susceptible to the first-line antituberculosis drugs: isoniazid and ethambutol. The pump inhibitor reserpine reversed M. tuberculosis resistance to ethidium bromide. These results suggest that P27-P55 functions through an efflux-pump like mechanism. In addition, deletion of the P27-P55 operon made M. tuberculosis susceptible to sodium dodecyl sulfate, suggesting that the lack of both proteins causes alterations in the cell wall permeability of the bacterium. Importantly, both P27 and P55 are required to restore the wild type phenotypes in the mutant. Conclusions The results clearly indicate that P27 and P55 are

  11. The Scavenger Protein Apoptosis Inhibitor of Macrophages (AIM) Potentiates the Antimicrobial Response against Mycobacterium tuberculosis by Enhancing Autophagy

    Science.gov (United States)

    Sanjurjo, Lucía; Amézaga, Núria; Vilaplana, Cristina; Cáceres, Neus; Marzo, Elena; Valeri, Marta; Cardona, Pere-Joan; Sarrias, Maria-Rosa

    2013-01-01

    Apoptosis inhibitor of macrophages (AIM), a scavenger protein secreted by tissue macrophages, is transcriptionally regulated by the nuclear receptor Liver X Receptor (LXR) and Retinoid X Receptor (RXR) heterodimer. Given that LXR exerts a protective immune response against M. tuberculosis, here we analyzed whether AIM is involved in this response. In an experimental murine model of tuberculosis, AIM serum levels peaked dramatically early after infection with M. tuberculosis, providing an in vivo biological link to the disease. We therefore studied the participation of AIM in macrophage response to M. tuberculosis in vitro. For this purpose, we used the H37Rv strain to infect THP-1 macrophages transfected to stably express AIM, thereby increasing infected macrophage survival. Furthermore, the expression of this protein enlarged foam cell formation by enhancing intracellular lipid content. Phagocytosis assays with FITC-labeled M. tuberculosis bacilli indicated that this protein was not involved in bacterial uptake; however, AIM expression decreased the number of intracellular cfus by up to 70% in bacterial killing assays, suggesting that AIM enhances macrophage mycobactericidal activity. Accordingly, M. tuberculosis-infected AIM-expressing cells upregulated the production of reactive oxygen species. Moreover, real-time PCR analysis showed increased mRNA levels of the antimicrobial peptides cathelicidin and defensin 4B. These increases were concomitant with greater cellular concentrations of the autophagy-related molecules Beclin 1 and LC3II, as well as enhanced acidification of mycobacterial phagosomes and LC3 co-localization. In summary, our data support the notion that AIM contributes to key macrophage responses to M. tuberculosis. PMID:24223991

  12. Ultra-low dose of Mycobacterium tuberculosis aerosol creates partial infection in mice.

    Science.gov (United States)

    Saini, Divey; Hopkins, Gregory W; Seay, Sarah A; Chen, Ching-Ju; Perley, Casey C; Click, Eva M; Frothingham, Richard

    2012-03-01

    A murine low dose (LD) aerosol model is commonly used to test tuberculosis vaccines. Doses of 50-400 CFU (24h lung CFU) infect 100% of exposed mice. The LD model measures progression from infection to disease based on organ CFU at defined time points. To mimic natural exposure, we exposed mice to an ultra-low dose (ULD) aerosol. We estimated the presented dose by sampling the aerosol. Female C57BL/6 mice were exposed to Mycobacterium tuberculosis H37Rv aerosol at 1.0, 1.1, 1.6, 5.4, and 11 CFU presented dose, infecting 27%, 36%, 36%, 100%, and 95% of mice, respectively. These data are compatible with a stochastic infection event (Poisson distribution, weighted R(2)=0.97) or with a dose-response relationship (sigmoid distribution, weighted R(2)=0.97). Based on the later assumption, the ID50 was 1.6CFU presented dose (95% confidence interval, 1.2-2.1). We compared organ CFU after ULD and LD aerosols (5.4 vs. 395CFU presented dose). Lung burden was 30-fold lower in the ULD model at 4 weeks (3.4 vs. 4.8 logs, pLD aerosols had greater within-group CFU variability. Exposure to ULD aerosols leads to infection in a subset of mice, and to persistently low organ CFU. The ULD aerosol model may resemble human pulmonary tuberculosis more closely than the standard LD model, and may be used to identify host or bacterial factors that modulate the initial infection event. Copyright © 2011 Elsevier Ltd. All rights reserved.

  13. Cloning, expression, purification, crystallization and preliminary X-ray studies of the C-terminal domain of Rv3262 (FbiB) from Mycobacterium tuberculosis

    International Nuclear Information System (INIS)

    Rehan, Aisyah M.; Bashiri, Ghader; Paterson, Neil G.; Baker, Edward N.; Squire, Christopher J.

    2011-01-01

    The C-terminal domain of FbiB, a bifunctional protein that is essential for the biosynthesis of cofactor F 420 in M. tuberculosis, has been expressed, purified and crystallized. The crystals diffracted to 2.0 Å resolution and were suitable for structure determination. During cofactor F 420 biosynthesis, the enzyme F 420 -γ-glutamyl ligase (FbiB) catalyzes the addition of γ-linked l-glutamate residues to form polyglutamylated F 420 derivatives. In Mycobacterium tuberculosis, Rv3262 (FbiB) consists of two domains: an N-terminal domain from the F 420 ligase superfamily and a C-terminal domain with sequence similarity to nitro-FMN reductase superfamily proteins. To characterize the role of the C-terminal domain of FbiB in polyglutamyl ligation, it has been purified and crystallized in an apo form. The crystals diffracted to 2.0 Å resolution using a synchrotron source and belonged to the tetragonal space group P4 1 2 1 2 (or P4 3 2 1 2), with unit-cell parameters a = b = 136.6, c = 101.7 Å, α = β = γ = 90°

  14. Use of recombinant purified protein derivative (PPD) antigens as specific skin test for tuberculosis.

    Science.gov (United States)

    Stavri, Henriette; Bucurenci, Nadia; Ulea, Irina; Costache, Adriana; Popa, Loredana; Popa, Mircea Ioan

    2012-11-01

    Purified protein derivative (PPD) is currently the only available skin test reagent used worldwide for the diagnosis of tuberculosis (TB). The aim of this study was to develop a Mycobacterium tuberculosis specific skin test reagent, without false positive results due to Bacillus Calmette-Guerin (BCG) vaccination using recombinant antigens. Proteins in PPD IC-65 were analyzed by tandem mass spectrometry and compared to proteins in M. tuberculosis culture filtrate; 54 proteins were found in common. Top candidates MPT64, ESAT 6, and CFP 10 were overexpressed in Escherichia coli expression strains and purified as recombinant proteins. To formulate optimal immunodiagnostic PPD cocktails, the antigens were evaluated by skin testing guinea pigs sensitized with M. tuberculosis H37Rv and BCG. For single antigens and a cocktail mixture of these antigens, best results were obtained using 3 μg/0.1 ml, equivalent to 105 TU (tuberculin units). Each animal was simultaneously tested with PPD IC-65, 2 TU/0.1 ml, as reference. Reactivity of the multi-antigen cocktail was greater than that of any single antigen. The skin test results were between 34.3 and 76.6 per cent the level of reactivity compared to that of the reference when single antigens were tested and 124 per cent the level of reactivity compared to the reference for the multi-antigen cocktail. Our results showed that this specific cocktail could represent a potential candidate for a new skin diagnostic test for TB.

  15. Infection with Helicobacter pylori is associated with protection against tuberculosis.

    Directory of Open Access Journals (Sweden)

    Sharon Perry

    2010-01-01

    Full Text Available Helicobacter pylori, a lifelong and typically asymptomatic infection of the stomach, profoundly alters gastric immune responses, and may benefit the host in protection against other pathogens. We explored the hypothesis that H. pylori contributes to the control of infection with Mycobacterium tuberculosis.We first examined M. tuberculosis-specific IFN-gamma and H. pylori antibody responses in 339 healthy Northern Californians undergoing routine tuberculin skin testing. Of 97 subjects (29% meeting criteria for latent tuberculosis (TB infection (LTBI, 45 (46% were H. pylori seropositive. Subjects with LTBI who were H. pylori-seropositive had 1.5-fold higher TB antigen-induced IFN-gamma responses (p = 0.04, ANOVA, and a more Th-1 like cytokine profile in peripheral blood mononuclear cells, compared to those who were H. pylori seronegative. To explore an association between H. pylori infection and clinical outcome of TB exposure, we evaluated H. pylori seroprevalence in baseline samples from two high risk TB case-contact cohorts, and from cynomolgus macaques experimentally challenged with M. tuberculosis. Compared to 513 household contacts who did not progress to active disease during a median 24 months follow-up, 120 prevalent TB cases were significantly less likely to be H. pylori infected (AOR: 0.55, 95% CI 0.0.36-0.83, p = 0.005, though seroprevalence was not significantly different from non-progressors in 37 incident TB cases (AOR: 1.35 [95% CI 0.63-2.9] p = 0.44. Cynomolgus macaques with natural H. pylori infection were significantly less likely to progress to TB 6 to 8 months after M. tuberculosis challenge (RR: 0.31 [95% CI 0.12-0.80], p = 0.04.H. pylori infection may induce bystander effects that modify the risk of active TB in humans and non-human primates. That immunity to TB may be enhanced by exposure to other microbial agents may have important implications for vaccine development and disease control.

  16. Identification of two proteins that interact with the Erp virulence factor from Mycobacterium tuberculosis by using the bacterial two-hybrid system

    Directory of Open Access Journals (Sweden)

    Cataldi Angel A

    2009-01-01

    Full Text Available Abstract Background The exported repetitive protein (erp gene encodes a secreted 36-kDa protein with a central domain containing several proline-glycine-leucine-threonine-serine (PGLTS repeats. It has been demonstrated that erp is a virulence-associated factor since the disruption of this gene impairs the growth of Mycobacterium bovis and Mycobacterium tuberculosis in mice. Results In order to elucidate the function of Erp we searched for Erp-binding proteins from M. tuberculosis by using a bacterial two-hybrid system. Our results indicate that Erp interacts specifically with two putative membrane proteins, Rv1417 and Rv2617c. Further analysis revealed that the latter two interact with each other, indicating that Rv1417, Rv2617c and Erp are connected through multiple interactions. While Rv1417 is disseminated in several Actinomycetales genera, orthologues of Rv2617c are exclusively present in members of the M. tuberculosis complex (MTC. The central and amino-terminal regions of Erp were determined to be involved in the interaction with Rv1417 and Rv2627c. Erp forms from Mycobacterium smegmatis and Mycobacterium leprae were not able to interact with Rv2617c in two-hybrid assays. Immunolocalization experiments showed that Rv1417 and Rv2617c are found on the cell membrane and Erp on the bacterial cell wall. Finally, comparative genomics and expression studies revealed a possible role of Rv1417 in riboflavin metabolism. Conclusion We identified interactive partners of Erp, an M. tuberculosis protein involved in virulence, which will be the focus of future investigation to decipher the function of the Erp family protein.

  17. The Mycobacterium tuberculosis Complex has a Pathway for the Biosynthesis of 4-Formamido-4,6-Dideoxy-d-Glucose.

    Science.gov (United States)

    Brown, Haley A; Vinogradov, Evgeny; Gilbert, Michel; Holden, Hazel M

    2018-05-15

    Recent studies have demonstrated that the O-antigens of some pathogenic bacteria such as Brucella abortus, Francisella tularensis, and Campylobacter jejuni contain quite unusual N-formylated sugars (3-formamido-3,6-dideoxy-d-glucose or 4-formamido-4,6-dideoxy-d-glucose). Typically, four enzymes are required for the formation of such sugars: a thymidylyltransferase, a 4,6-dehydratase, a pyridoxal 5'-phosphate or PLP-dependent aminotransferase, and an N-formyltransferase. To date, there have been no published reports of N-formylated sugars associated with Mycobacterium tuberculosis. A recent investigation from our laboratories, however, has demonstrated that one gene product from M. tuberculosis, Rv3404c, functions as a sugar N-formyltransferase. Given that M. tuberculosis produces l-rhamnose, both a thymidylyltransferase (Rv0334) and a 4,6-dehydratase (Rv3464) required for its formation have been identified. Thus, there is one remaining enzyme needed for the production of an N-formylated sugar in M. tuberculosis, namely a PLP-dependent aminotransferase. Here we demonstrate that the M. tuberculosis rv3402c gene encodes such an enzyme. Our data prove that M. tuberculosis contains all of the enzymatic activities required for the formation of dTDP-4-formamido-4,6-dideoxy-d-glucose. Indeed, the rv3402c gene product likely contributes to virulence or persistence during infection, though its temporal expression and location remain to be determined. This article is protected by copyright. All rights reserved. © 2018 The Protein Society.

  18. Journal of Biosciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Amino acid sequence analysis corresponding to the PPE proteins in H37Rv and CDC1551 strains of the Mycobacterium tuberculosis genomes resulted in the identification of a previously uncharacterized 225 amino acidresidue common region in 22 proteins. The pairwise sequence identities were as low as 18%.

  19. Drug interaction studies of Ximenia americana and Pavetta ...

    African Journals Online (AJOL)

    The therapeutic efficacy of single or multicomponent herbs is thought to reside in synergistic interactions between the bioactive constituents. The methanol extracts of X. americana and P. crassipes were initially screened against Gram positive and negative organisms as well as against Mycobacterium tuberculosis H37Rv ...

  20. Comprehensive Definition of the SigH Regulon of Mycobacterium tuberculosis Reveals Transcriptional Control of Diverse Stress Responses.

    Directory of Open Access Journals (Sweden)

    Jared D Sharp

    Full Text Available Expression of SigH, one of 12 Mycobacterium tuberculosis alternative sigma factors, is induced by heat, oxidative and nitric oxide stresses. SigH activation has been shown to increase expression of several genes, including genes involved in maintaining redox equilibrium and in protein degradation. However, few of these are known to be directly regulated by SigH. The goal of this project is to comprehensively define the Mycobacterium tuberculosis genes and operons that are directly controlled by SigH in order to gain insight into the role of SigH in regulating M. tuberculosis physiology. We used ChIP-Seq to identify in vivo SigH binding sites throughout the M. tuberculosis genome, followed by quantification of SigH-dependent expression of genes linked to these sites and identification of SigH-regulated promoters. We identified 69 SigH binding sites, which are located both in intergenic regions and within annotated coding sequences in the annotated M. tuberculosis genome. 41 binding sites were linked to genes that showed greater expression following heat stress in a SigH-dependent manner. We identified several genes not previously known to be regulated by SigH, including genes involved in DNA repair, cysteine biosynthesis, translation, and genes of unknown function. Experimental and computational analysis of SigH-regulated promoter sequences within these binding sites identified strong consensus -35 and -10 promoter sequences, but with tolerance for non-consensus bases at specific positions. This comprehensive identification and validation of SigH-regulated genes demonstrates an extended SigH regulon that controls an unexpectedly broad range of stress response functions.

  1. Comprehensive Definition of the SigH Regulon of Mycobacterium tuberculosis Reveals Transcriptional Control of Diverse Stress Responses.

    Science.gov (United States)

    Sharp, Jared D; Singh, Atul K; Park, Sang Tae; Lyubetskaya, Anna; Peterson, Matthew W; Gomes, Antonio L C; Potluri, Lakshmi-Prasad; Raman, Sahadevan; Galagan, James E; Husson, Robert N

    2016-01-01

    Expression of SigH, one of 12 Mycobacterium tuberculosis alternative sigma factors, is induced by heat, oxidative and nitric oxide stresses. SigH activation has been shown to increase expression of several genes, including genes involved in maintaining redox equilibrium and in protein degradation. However, few of these are known to be directly regulated by SigH. The goal of this project is to comprehensively define the Mycobacterium tuberculosis genes and operons that are directly controlled by SigH in order to gain insight into the role of SigH in regulating M. tuberculosis physiology. We used ChIP-Seq to identify in vivo SigH binding sites throughout the M. tuberculosis genome, followed by quantification of SigH-dependent expression of genes linked to these sites and identification of SigH-regulated promoters. We identified 69 SigH binding sites, which are located both in intergenic regions and within annotated coding sequences in the annotated M. tuberculosis genome. 41 binding sites were linked to genes that showed greater expression following heat stress in a SigH-dependent manner. We identified several genes not previously known to be regulated by SigH, including genes involved in DNA repair, cysteine biosynthesis, translation, and genes of unknown function. Experimental and computational analysis of SigH-regulated promoter sequences within these binding sites identified strong consensus -35 and -10 promoter sequences, but with tolerance for non-consensus bases at specific positions. This comprehensive identification and validation of SigH-regulated genes demonstrates an extended SigH regulon that controls an unexpectedly broad range of stress response functions.

  2. Naphthoquinone Derivatives as Scaffold to Develop New Drugs for Tuberculosis Treatment.

    Science.gov (United States)

    Halicki, Priscila C B; Ferreira, Laís A; De Moura, Kelly C G; Carneiro, Paula F; Del Rio, Karina P; Carvalho, Tatiane Dos S C; Pinto, Maria do C F R; da Silva, Pedro E A; Ramos, Daniela F

    2018-01-01

    Despite being a curable disease, tuberculosis (TB) remains a public health problem worldwide mainly due to lengthy treatment, as well as its toxic effects, TB/HIV co-infection and the emergence of resistant Mycobacterium tuberculosis strains. These barriers reinforcing the need for development of new antimicrobial agents, that ideally should reduce the time of treatment and be active against susceptible and resistant strains. Quinones are compounds found in natural sources and among them, the naphthoquinones show antifungal, antiparasitic, and antimycobacterial activity. Thus, we evaluated the potential antimycobacterial activity of six 1,4-naphthoquinones derivatives. We determined the minimum inhibitory concentration (MIC) of the compounds against three M. tuberculosis strains: a pan-susceptible H37Rv (ATCC 27294); one mono-resistant to isoniazid (ATCC 35822); and one mono-resistant to rifampicin (ATCC 35838); the cytotoxicity in the J774A.1 (ATCC TIB-67) macrophage lineage; performed in silico analysis about absorption, distribution, metabolism, and excretion (ADME) and docking sites. All evaluated naphthoquinones were active against the three strains with MIC between 206.6 and 12.5 μM, and the compounds with lower MIC values have also showed low cytotoxicity. Moreover, two naphthoquinones derivatives 5 and 6 probably do not exhibit cross resistance with isoniazid and rifampicin, respectively, and regarding ADME analysis, no compound violated the Lipinski's rule-of-five. Considering the set of findings in this study, we conclude that these naphthoquinones could be promising scaffolds to develop new therapeutic strategies to TB.

  3. Biochemical characterization and novel inhibitor identification of Mycobacterium tuberculosis Endonuclease VIII 2 (Rv3297

    Directory of Open Access Journals (Sweden)

    Kiran Lata

    2017-12-01

    Full Text Available Nei2 (Rv3297 is a DNA Base Excision Repair (BER glycosylase that is essential for survival of Mycobacterium tuberculosis in primates. We show that MtbNei2 is a bifunctional glycosylase that specifically acts on oxidized pyrimidine-containing single-stranded, double-stranded, 5’/3’ fork and bubble DNA substrates. MtbNei2 possesses Uracil DNA glycosylase activity unlike E. coli Nei. Mutational studies demonstrate that Pro2 and Glu3 located in the active site are essential for glycosylase activity of MtbNei2. Mutational analysis demonstrated that an unstructured C-terminal zinc finger domain that was important for activity in E. coli Nei and Fpg, was not required for the glycosylase activity of MtbNei2. Lastly, we screened the NCI natural product compound database and identified three natural product inhibitors with IC50 values ranging between 41.8 μM-92.7 μM against MtbNei2 in in vitro inhibition assays. Surface Plasmon Resonance (SPR experiments showed that the binding affinity of the best inhibitor, NSC31867, was 74 nM. The present results set the stage for exploiting this important target in developing new therapeutic strategies that target Mycobacterial BER.

  4. Correlates between Models of Virulence for Mycobacterium tuberculosis among Isolates of the Central Asian Lineage: a Case for Lysozyme Resistance Testing?

    Science.gov (United States)

    Casali, Nicola; Clark, Simon O.; Hooper, Richard; Williams, Ann; Velji, Preya; Gonzalo, Ximena

    2015-01-01

    Virulence factors (VFs) contribute to the emergence of new human Mycobacterium tuberculosis strains, are lineage dependent, and are relevant to the development of M. tuberculosis drugs/vaccines. VFs were sought within M. tuberculosis lineage 3, which has the Central Asian (CAS) spoligotype. Three isolates were selected from clusters previously identified as dominant in London, United Kingdom. Strain-associated virulence was studied in guinea pig, monocyte-derived macrophage, and lysozyme resistance assays. Whole-genome sequencing, single nucleotide polymorphism (SNP) analysis, and a literature review contributed to the identification of SNPs of interest. The animal model revealed borderline differences in strain-associated pathogenicity. Ex vivo, isolate C72 exhibited statistically significant differences in intracellular growth relative to C6 and C14. SNP candidates inducing lower fitness levels included 123 unique nonsynonymous SNPs, including three located in genes (lysX, caeA, and ponA2) previously identified as VFs in the laboratory-adapted reference strain H37Rv and shown to confer lysozyme resistance. C72 growth was most affected by lysozyme in vitro. A BLAST search revealed that all three SNPs of interest (C35F, P76Q, and P780R) also occurred in Tiruvallur, India, and in Uganda. Unlike C72, however, no single isolate identified through BLAST carried all three SNPs simultaneously. CAS isolates representative of three medium-sized human clusters demonstrated differential outcomes in models commonly used to estimate strain-associated virulence, supporting the idea that virulence varies within, not just across, M. tuberculosis lineages. Three VF SNPs of interest were identified in two additional locations worldwide, which suggested independent selection and supported a role for these SNPs in virulence. The relevance of lysozyme resistance to strain virulence remains to be established. PMID:25776753

  5. In vitro antimycobacterial activity of acetone extract of Glycyrrhiza glabra

    Directory of Open Access Journals (Sweden)

    Swapna S. Nair

    2015-08-01

    Full Text Available Context: Glycyrrhiza glabra (licorice has been used since ages as expectorant, antitussive and demulcent. G. glabra has been indicated in Ayurveda as an antimicrobial agent for the treatment of respiratory infections and tuberculosis. Aims: To evaluate the antimycobacterial activity of acetone extract of G. glabra by in vitro techniques. Methods: The anti-tubercular activity of acetone extract of G. glabra, obtained by Soxhlet extraction, was evaluated against Mycobacterium tuberculosis H37Rv (ATCC 27294. The in vitro anti-tubercular activity was determined by Resazurin Microtiter Plate Assay (REMA and colony count method. Further, the anti-tubercular activity of acetone extract of G. glabra was determined in human macrophage U937 cell lines and was compared against that of the standard drugs isoniazid, rifampicin and ethambutol. Results: G. glabra extract showed significant activity against Mycobacterium tuberculosis, when evaluated by REMA/colony count methods and in U937 human macrophage cell lines infected with Mycobacterium tuberculosis H37Rv. The activity of the extract was comparable to those of standard drugs. It was observed that the extract showed time and concentration dependent antimycobacterial activity. Conclusions: The present study reveals that G. glabra extract has promising anti-tubercular activity by preliminary in vitro techniques and in U937 macrophage cell line. Therefore, it has the definite potential to be developed as an affordable, cost-effective drug against tuberculosis.

  6. Immunogenicity of 60 novel latency-related antigens of Mycobacterium tuberculosis.

    Science.gov (United States)

    Serra-Vidal, Mᵃdel Mar; Latorre, Irene; Franken, Kees L C M; Díaz, Jéssica; de Souza-Galvão, Maria Luiza; Casas, Irma; Maldonado, José; Milà, Cèlia; Solsona, Jordi; Jimenez-Fuentes, M Ángeles; Altet, Neus; Lacoma, Alícia; Ruiz-Manzano, Juan; Ausina, Vicente; Prat, Cristina; Ottenhoff, Tom H M; Domínguez, José

    2014-01-01

    The aim of our work here was to evaluate the immunogenicity of 60 mycobacterial antigens, some of which have not been previously assessed, notably a novel series of in vivo-expressed Mycobacterium tuberculosis (IVE-TB) antigens. We enrolled 505 subjects and separated them in individuals with and without latent tuberculosis infection (LTBI) vs. patients with active tuberculosis (TB). Following an overnight and 7 days stimulation of whole blood with purified recombinant M. tuberculosis antigens, interferon-γ (IFN-γ) levels were determined by ELISA. Several antigens could statistically significantly differentiate the groups of individuals. We obtained promising antigens from all studied antigen groups [dormancy survival regulon (DosR regulon) encoded antigens; resuscitation-promoting factors (Rpf) antigens; IVE-TB antigens; reactivation associated antigens]. Rv1733, which is a probable conserved transmembrane protein encoded in DosR regulon, turned out to be very immunogenic and able to discriminate between the three defined TB status, thus considered a candidate biomarker. Rv2389 and Rv2435n, belonging to Rpf family and IVE-TB group of antigens, respectively, also stood out as LTBI biomarkers. Although more studies are needed to support our findings, the combined use of these antigens would be an interesting approach to TB immunodiagnosis candidates.

  7. Immunogenicity of 60 novel latency-related antigens of Mycobacterium tuberculosis

    Directory of Open Access Journals (Sweden)

    Mªdel Mar eSerra Vidal

    2014-10-01

    Full Text Available The aim of our work here was to evaluate the immunogenicity of 60 mycobacterial antigens, some of which have not been previously assessed, notably a novel series of in vivo-expressed M.tuberculosis (IVE-TB antigens. We enrolled 505 subjects and separated them in individuals with and without latent tuberculosis infection (LTBI versus patients with active tuberculosis. Following an overnight and 7 day stimulation of whole blood with purified recombinant M.tb antigens, interferon-γ (IFN-γ levels were determined by ELISA. Several antigens could statistically significantly differentiate the groups of individuals. We obtained promising antigens from all studied antigen groups (DosR regulon encoded antigens; resuscitation-promoting factors (Rpf antigens; IVE-TB antigens; reactivation asociated antigens. Rv1733, which is a probable conserved transmembrane protein encoded in DosR regulon, turned out to be very immunogenic and able to discriminate between the three defined TB status, thus considered a candidate biomarker. Rv2389 and Rv2435n, belonging to Rpf family and IVE-TB group of antigens, respectively, also stood out as LTBI biomarkers. Although more studies are needed to support our findings, the combined use of these antigens would be an interesting approach to tuberculosis immunodiagnosis candidates.

  8. Bim is a crucial regulator of apoptosis induced by Mycobacterium tuberculosis

    Science.gov (United States)

    Aguiló, N; Uranga, S; Marinova, D; Martín, C; Pardo, J

    2014-01-01

    Mycobacterium tuberculosis, the causative agent of tuberculosis, induces apoptosis in infected macrophages in vitro and in vivo. However, the molecular mechanism controlling this process is not known. In order to study the involvement of the mitochondrial apoptotic pathway in M. tuberculosis-induced apoptosis, we analysed cell death in M. tuberculosis-infected embryonic fibroblasts (MEFs) derived from different knockout mice for genes involved in this route. We found that apoptosis induced by M. tuberculosis is abrogated in the absence of Bak and Bax, caspase 9 or the executioner caspases 3 and 7. Notably, we show that MEF deficient in the BH3-only BCL-2-interacting mediator of cell death (Bim) protein were also resistant to this process. The relevance of these results has been confirmed in the mouse macrophage cell line J774, where cell transfection with siRNA targeting Bim impaired apoptosis induced by virulent mycobacteria. Notably, only infection with a virulent strain, but not with attenuated ESX-1-defective strains, such as Bacillus Calmette-Guerin and live-attenuated M. tuberculosis vaccine strain MTBVAC, induced Bim upregulation and apoptosis, probably implicating virulence factor early secreted antigenic target 6-kDa protein in this process. Our results suggest that Bim upregulation and apoptosis is mediated by the p38MAPK-dependent pathway. Our findings show that Bim is a master regulator of apoptosis induced by M. tuberculosis. PMID:25032866

  9. Vitamin D enhances IL-1β secretion and restricts growth of Mycobacterium tuberculosis in macrophages from TB patients

    Directory of Open Access Journals (Sweden)

    Daniel Eklund

    2013-01-01

    Full Text Available The emergence of multidrug-resistant strains of Mycobacterium tuberculosis (MTB, the bacterium responsible for tuberculosis (TB, has rekindled the interest in the role of nutritional supplementation of micronutrients, such as vitamin D, as adjuvant treatment. Here, the growth of virulent MTB in macrophages obtained from the peripheral blood of patients with and without TB was studied. The H37Rv strain genetically modified to express Vibrio harveyi luciferase was used to determine the growth of MTB by luminometry in the human monocyte-derived macrophages (hMDMs from study subjects. Determination of cytokine levels in culture supernatants was performed using a flow cytometry-based bead array technique. No differences in intracellular growth of MTB were observed between the different study groups. However, stimulation with 100nM 1,25-dihydroxyvitamin D significantly enhanced the capacity of hMDMs isolated from TB patients to control the infection. This effect was not observed in hMDMs from the other groups. The interleukin (IL-1β and IL-10 release by hMDMs was clearly increased upon stimulation with 1,25-dihydroxyvitamin D. Furthermore, the 1,25-dihydroxyvitamin D stimulation also led to elevated levels of TNF-α (tumor necrosis factor-alpha and IL-12p40. It was concluded that vitamin D triggers an inflammatory response in human macrophages with enhanced secretion of cytokines, as well as enhancing the capacity of hMDMs from patients with active TB to restrict mycobacterial growth.

  10. Dry-heat inactivation of "Mycobacterium canettii".

    Science.gov (United States)

    Aboubaker Osman, Djaltou; Garnotel, Eric; Drancourt, Michel

    2017-06-09

    "Mycobacterium canettii" is responsible for non-transmissible lymph node and pulmonary tuberculosis in persons exposed in the Horn of Africa. In the absence of direct human transmission, contaminated water and foodstuffs could be sources of contamination. We investigated the dry-heat inactivation of "M. canettii" alone and mixed into mock-infected foodstuffs by inoculating agar cylinders and milk with 10 4 colony-forming units of "M. canettii" CIPT140010059 and two "M. canettii" clinical strains with Mycobacterium tuberculosis H37Rv as a control. Exposed to 35 °C, M. tuberculosis H37Rv, "M canettii" CIPT140010059 and "M. canettii" 157 exhibited a survival rate of 108, 95 and 81%, which is significantly higher than that of "M. canettii" 173. However, all tested mycobacteria tolerated a 90-min exposure at 45 °C. In the foodstuff models set at 70 °C, no growing mycobacteria were visualized. This study supports the premise that "M. canettii" may survive up to 45 °C; and suggests that contaminated raw drinks and foodstuffs but not cooked ones may be sources of infection for populations.

  11. Synthesis of biocompatible nanoparticle drug complexes for inhibition of mycobacteria

    International Nuclear Information System (INIS)

    Bhave, Tejashree; Ghoderao, Prachi; Sanghavi, Sonali; Babrekar, Harshada; Bhoraskar, S V; Ganesan, V; Kulkarni, Anjali

    2013-01-01

    Tuberculosis (TB) is one of the most critical infectious diseases affecting the world today. Current TB treatment involves six months long daily administration of four oral doses of antibiotics. Due to severe side effects and the long treatment, a patient's adherence is low and this results in relapse of symptoms causing an alarming increase in the prevalence of multi-drug resistant (MDR) TB. Hence, it is imperative to develop a new drug delivery technology wherein these effects can be reduced. Rifampicin (RIF) is one of the widely used anti-tubercular drugs (ATD). The present study discusses the development of biocompatible nanoparticle–RIF complexes with superior inhibitory activity against both Mycobacterium smegmatis (M. smegmatis) and Mycobacterium tuberculosis (M. tuberculosis). Iron oxide nanoparticles (NPs) synthesized by gas phase condensation and NP-RIF complexes were tested against M. smegmatis SN2 strain as well as M. tuberculosis H37Rv laboratory strain. These complexes showed significantly better inhibition of M. smegmatis SN2 strain at a much lower effective concentration (27.5 μg ml −1 ) as compared to neat RIF (125 μg ml −1 ). Similarly M. tuberculosis H37Rv laboratory strain was susceptible to both nanoparticle–RIF complex and neat RIF at a minimum inhibitory concentration of 0.22 and 1 μg ml −1 , respectively. Further studies are underway to determine the efficacy of NPs–RIF complexes in clinical isolates of M. tuberculosis as well as MDR isolates. (paper)

  12. Crystal structure of the toxin Msmeg_6760, the structural homolog of Mycobacterium tuberculosis Rv2035, a novel type II toxin involved in the hypoxic response

    Energy Technology Data Exchange (ETDEWEB)

    Bajaj, R. Alexandra; Arbing, Mark A.; Shin, Annie; Cascio, Duilio; Miallau, Linda (UCLA)

    2016-11-19

    The structure of Msmeg_6760, a protein of unknown function, has been determined. Biochemical and bioinformatics analyses determined that Msmeg_6760 interacts with a protein encoded in the same operon, Msmeg_6762, and predicted that the operon is a toxin–antitoxin (TA) system. Structural comparison of Msmeg_6760 with proteins of known function suggests that Msmeg_6760 binds a hydrophobic ligand in a buried cavity lined by large hydrophobic residues. Access to this cavity could be controlled by a gate–latch mechanism. The function of the Msmeg_6760 toxin is unknown, but structure-based predictions revealed that Msmeg_6760 and Msmeg_6762 are homologous to Rv2034 and Rv2035, a predicted novel TA system involved inMycobacterium tuberculosislatency during macrophage infection. The Msmeg_6760 toxin fold has not been previously described for bacterial toxins and its unique structural features suggest that toxin activation is likely to be mediated by a novel mechanism.

  13. In silico dissection of Type VII Secretion System components across

    Indian Academy of Sciences (India)

    Type VII Secretion System (T7SS) is one of the factors involved in virulence of Mycobacteriun tuberculosis H37Rv. Numerous research efforts have been made in the last decade towards characterizing the components of this secretion system. An extensive genome-wide analysis through compilation of isolated information ...

  14. Assessment of an ELISA for serodiagnosis of active pulmonary tuberculosis in a Cuban population

    Directory of Open Access Journals (Sweden)

    Julio Cesar Ayala

    2015-10-01

    Full Text Available Objective: To explore the serodiagnostic potential of the five recombinant Mycobacterium tuberculosis antigens CFP-10 (Rv3874, ESAT-6 (Rv3875, APA (Rv1860, PstS-1 (Rv0934, Ag85A (Rv3804c and their combination in a Cuban population with active pulmonary tuberculosis. Methods: The serodiagnostic potential of the recombinant antigens rESAT-6, rCFP-10, rAPA, rPstS-1 produced in Escherichia coli, rAg85A produced in Streptomyces lividans and the combination of the five proteins was evaluated by an indirect ELISA. Humoral immune response was analysed in a group of 140 patients with active pulmonary tuberculosis (smear-, Mantoux- and culture-positive and in a control group consisting of 34 bacillus CalmetteGuerin vaccinated, Mantoux-negative, healthy subjects. Results: With the exception of CFP-10, the use of the separate recombinant antigens or the antigenic cocktail in ELISA-based serodiagnosis resulted in a significant difference in the mean optical densitiy values between sera of patients and healthy subjects. The highest sensitivity of the assay using single antigens, being 58.57%, was achieved with rPstS-1 compared to 27.14% with rCFP-10, 31.65% with Ag85A, 42.86% with rAPA and 44.29% with rESAT-6. Single antigen ELISAs provided high specificity values ranging from 94.12% to 97.06%. A cocktail of the aforementioned antigens increased the sensitivity to 87.14% and the specificity to 97.06%. Conclusions: An ELISA using a multi-antigen mix containing recombinant immuno-dominant antigens of Mycobacterium tuberculosis, namely, rCFP-10, rESAT-6, rAPA, rPstS-1 and rAg85, increases the sensitivity and specificity compared with that using the single antigens and shows potential as a complementary tool for the diagnosis of active pulmonary tuberculosis in Cuba.

  15. Subfamily-specific adaptations in the structures of two penicillin-binding proteins from Mycobacterium tuberculosis.

    Directory of Open Access Journals (Sweden)

    Daniil M Prigozhin

    Full Text Available Beta-lactam antibiotics target penicillin-binding proteins including several enzyme classes essential for bacterial cell-wall homeostasis. To better understand the functional and inhibitor-binding specificities of penicillin-binding proteins from the pathogen, Mycobacterium tuberculosis, we carried out structural and phylogenetic analysis of two predicted D,D-carboxypeptidases, Rv2911 and Rv3330. Optimization of Rv2911 for crystallization using directed evolution and the GFP folding reporter method yielded a soluble quadruple mutant. Structures of optimized Rv2911 bound to phenylmethylsulfonyl fluoride and Rv3330 bound to meropenem show that, in contrast to the nonspecific inhibitor, meropenem forms an extended interaction with the enzyme along a conserved surface. Phylogenetic analysis shows that Rv2911 and Rv3330 belong to different clades that emerged in Actinobacteria and are not represented in model organisms such as Escherichia coli and Bacillus subtilis. Clade-specific adaptations allow these enzymes to fulfill distinct physiological roles despite strict conservation of core catalytic residues. The characteristic differences include potential protein-protein interaction surfaces and specificity-determining residues surrounding the catalytic site. Overall, these structural insights lay the groundwork to develop improved beta-lactam therapeutics for tuberculosis.

  16. Immunological crossreactivity of the Mycobacterium leprae CFP-10 with its homologue in Mycobacterium tuberculosis

    NARCIS (Netherlands)

    Geluk, A.; van Meijgaarden, K. E.; Franken, K. L. M. C.; Wieles, B.; Arend, S. M.; Faber, W. R.; Naafs, B.; Ottenhoff, T. H. M.

    2004-01-01

    Mycobacterium tuberculosis culture filtrate protein-10 (CFP-10) (Rv3874) is considered a promising antigen for the immunodiagnosis of tuberculosis (TB) together with early secreted antigens of M. tuberculosis (ESAT-6). Both ESAT-6 and CFP-10 are encoded by the RD1 region that is deleted from all

  17. The New Xpert MTB/RIF Ultra: Improving Detection of Mycobacterium tuberculosis and Resistance to Rifampin in an Assay Suitable for Point-of-Care Testing.

    Science.gov (United States)

    Chakravorty, Soumitesh; Simmons, Ann Marie; Rowneki, Mazhgan; Parmar, Heta; Cao, Yuan; Ryan, Jamie; Banada, Padmapriya P; Deshpande, Srinidhi; Shenai, Shubhada; Gall, Alexander; Glass, Jennifer; Krieswirth, Barry; Schumacher, Samuel G; Nabeta, Pamela; Tukvadze, Nestani; Rodrigues, Camilla; Skrahina, Alena; Tagliani, Elisa; Cirillo, Daniela M; Davidow, Amy; Denkinger, Claudia M; Persing, David; Kwiatkowski, Robert; Jones, Martin; Alland, David

    2017-08-29

    The Xpert MTB/RIF assay (Xpert) is a rapid test for tuberculosis (TB) and rifampin resistance (RIF-R) suitable for point-of-care testing. However, it has decreased sensitivity in smear-negative sputum, and false identification of RIF-R occasionally occurs. We developed the Xpert MTB/RIF Ultra assay (Ultra) to improve performance. Ultra and Xpert limits of detection (LOD), dynamic ranges, and RIF-R rpoB mutation detection were tested on Mycobacterium tuberculosis DNA or sputum samples spiked with known numbers of M. tuberculosis H37Rv or Mycobacterium bovis BCG CFU. Frozen and prospectively collected clinical samples from patients suspected of having TB, with and without culture-confirmed TB, were also tested. For M. tuberculosis H37Rv, the LOD was 15.6 CFU/ml of sputum for Ultra versus 112.6 CFU/ml of sputum for Xpert, and for M. bovis BCG, it was 143.4 CFU/ml of sputum for Ultra versus 344 CFU/ml of sputum for Xpert. Ultra resulted in no false-positive RIF-R specimens, while Xpert resulted in two false-positive RIF-R specimens. All RIF-R-associated M. tuberculosis rpoB mutations tested were identified by Ultra. Testing on clinical sputum samples, Ultra versus Xpert, resulted in an overall sensitivity of 87.5% (95% confidence interval [CI], 82.1, 91.7) versus 81.0% (95% CI, 74.9, 86.2) and a sensitivity on sputum smear-negative samples of 78.9% (95% CI, 70.0, 86.1) versus 66.1% (95% CI, 56.4, 74.9). Both tests had a specificity of 98.7% (95% CI, 93.0, 100), and both had comparable accuracies for detection of RIF-R in these samples. Ultra should significantly improve TB detection, especially in patients with paucibacillary disease, and may provide more-reliable RIF-R detection. IMPORTANCE The Xpert MTB/RIF assay (Xpert), the first point-of-care assay for tuberculosis (TB), was endorsed by the World Health Organization in December 2010. Since then, 23 million Xpert tests have been procured in 130 countries. Although Xpert showed high overall sensitivity and

  18. Biochemical and functional characterization of MRA-1571 of Mycobacterium tuberculosis H37Ra and effect of its down-regulation on survival in macrophages

    International Nuclear Information System (INIS)

    Sharma, Rishabh; Keshari, Deepa; Singh, Kumar Sachin; Singh, Sudheer Kumar

    2017-01-01

    Amino acid biosynthesis has emerged as a source of new drug targets as many bacterial strains auxotrophic for amino acids fail to proliferate under in vivo conditions. Branch chain amino acids (BCAAs) are important for Mycobacterium tuberculosis (Mtb) survival and strains deficient in their biosynthesis were attenuated for growth in mice. Threonine dehydratase (IlvA) is a pyridoxal-5-phosphate (PLP) dependent enzyme that catalyzes the first step in isoleucine biosynthesis. The MRA-1571 of Mycobacterium tuberculosis H37Ra (Mtb-Ra), annotated to be coding for IlvA, was cloned, expressed and purified. Purified protein was subsequently used for developing enzyme assay and to study its biochemical properties. Also, E. coli BL21 (DE3) IlvA knockout (E. coli-ΔilvA) was developed and genetically complemented with Mtb-Ra ilvA expression construct (pET32a-ilvA) to make complemented E. coli strain (E. coli-ΔilvA + pET32a-ilvA). The E. coli-ΔilvA showed growth failure in minimal medium but growth restoration was observed in E. coli-ΔilvA + pET32a-ilvA. E. coli-ΔilvA growth was also restored in the presence of isoleucine. The IlvA localization studies detected its distribution in cell wall and membrane fractions with relatively minor presence in cytosolic fraction. Maximum IlvA expression was observed at 72 h in wild-type (WT) Mtb-Ra infecting macrophages. Also, Mtb-Ra IlvA knockdown (KD) showed reduced survival in macrophages compared to WT and complemented strain (KDC). - Highlights: • Mtb-Ra gene MRA-1571 codes for a functional threonine dehydratase (IlvA). • IlvA is pyridoxal 5’-phosphate dependent and is inhibited by isoleucine. • E. coli IlvA knockout growth can be supplemented by isoleucine or by Mtb-Ra IlvA. • The enzyme is primarily localized in cell wall and membrane fractions. • IlvA knockdown Mtb-Ra shows reduced growth in macrophages.

  19. Antimycobacterial activity of medicinal plants used by the Mayo people of Sonora, Mexico.

    Science.gov (United States)

    Coronado-Aceves, Enrique Wenceslao; Sánchez-Escalante, José Jesús; López-Cervantes, Jaime; Robles-Zepeda, Ramón Enrique; Velázquez, Carlos; Sánchez-Machado, Dalia Isabel; Garibay-Escobar, Adriana

    2016-08-22

    Tuberculosis (TB) is an infectious disease mainly caused by Mycobacterium tuberculosis (Mtb), which generates 9 million new cases worldwide each year. The Mayo ethnicity of southern Sonora, Mexico is more than 2000 years old, and the Mayos possess extensive knowledge of traditional medicine. To evaluate the antimycobacterial activity levels of extracts of medicinal plants used by the Mayos against Mtb and Mycobacterium smegmatis (Msm) in the treatment of TB, respiratory diseases and related symptoms. A total of 34 plant species were collected, and 191 extracts were created with n-hexane, dichloromethane, ethyl acetate (EtOAc), methanol and water. Their minimum inhibitory concentrations (MICs) and minimum bactericidal concentrations (MBCs) were determined against Mtb H37Rv using the microplate alamar blue assay (MABA) and against Msm using the resazurin microplate assay (REMA) at 6 and 2 days of exposure, respectively, and at concentrations of 250-1.9µg/mL (n-hexane extracts) and 1000-7.81µg/mL (extracts obtained with dichloromethane, EtOAc, methanol and water). Rhynchosia precatoria (Willd.) DC. (n-hexane root extract), Euphorbia albomarginata Torr. and A. Gray. (EtOAc shoot extract) and Helianthus annuus L. (n-hexane stem extract) were the most active plants against Mtb H37Rv, with MICs of 15.6, 250, 250µg/mL and MBCs of 31.25, 250, 250µg/mL, respectively. R. precatoria (root) was the only active plant against Msm, with MIC and MBC values of ≥250µg/mL. None of the aqueous extracts were active. This study validates the medicinal use of certain plants used by the Mayo people in the treatment of TB and related symptoms. R. precatoria, E. albomarginata and H. annuus are promising plant sources of active compounds that act against Mtb H37Rv. To our knowledge, this is the first time that their antimycobacterial activity has been reported. Crude extracts obtained with n-hexane, EtOAc and dichloromethane were the most active against Mtb H37Rv. Copyright © 2016

  20. Antitubercular constituents from Premna odorata Blanco.

    Science.gov (United States)

    Lirio, Stephen B; Macabeo, Allan Patrick G; Paragas, Erickson M; Knorn, Matthias; Kohls, Paul; Franzblau, Scott G; Wang, Yuehong; Aguinaldo, Ma Alicia M

    2014-06-11

    Premna odorata Blanco (Lamiaceae) is a medicinal plant traditionally used in Albay Province, in southeastern Luzon, Philippines to treat tuberculosis. This study aimed to determine the antitubercular property of the crude extract and sub-extracts of the leaves, and to isolate the bioactive principles from the active fractions. Through extraction, solvent polarity-based fractionation and silica gel chromatography purification of the DCM sub-extract, compound mixtures from the bioactive fractions were isolated and screened for their in vitro antimycobacterial activity against Mycobacterium tuberculosis H37Rv using the colorimetric Microplate Alamar Blue assay (MABA). The crude methanolic extract and sub-extracts showed poor inhibitory activity against Mycobacterium tuberculosis H37Rv (MIC≥128µg/mL). However, increased inhibitory potency was observed for fractions eluted from the DCM sub-extract (MIC=54 to 120µg/mL). Further purification of the most active fraction (MIC=54µg/mL) led to the isolation of a 1-heneicosyl formate (1), 4:1 mixture of β-sitosterol (2), stigmasterol (3) and diosmetin (4), which were identified through GC-MS analysis (with dereplication) and NMR experiments. The MIC of compound 1 was 8µg/mL. The results of this study provide scientific basis for the traditional use of Premna odorata as treatment for tuberculosis. Copyright © 2014. Published by Elsevier Ireland Ltd.

  1. Rv0004 is a new essential member of the mycobacterial DNA replication machinery.

    Science.gov (United States)

    Mann, Katherine M; Huang, Deborah L; Hooppaw, Anna J; Logsdon, Michelle M; Richardson, Kirill; Lee, Hark Joon; Kimmey, Jacqueline M; Aldridge, Bree B; Stallings, Christina L

    2017-11-01

    DNA replication is fundamental for life, yet a detailed understanding of bacterial DNA replication is limited outside the organisms Escherichia coli and Bacillus subtilis. Many bacteria, including mycobacteria, encode no identified homologs of helicase loaders or regulators of the initiator protein DnaA, despite these factors being essential for DNA replication in E. coli and B. subtilis. In this study we discover that a previously uncharacterized protein, Rv0004, from the human pathogen Mycobacterium tuberculosis is essential for bacterial viability and that depletion of Rv0004 leads to a block in cell cycle progression. Using a combination of genetic and biochemical approaches, we found that Rv0004 has a role in DNA replication, interacts with DNA and the replicative helicase DnaB, and affects DnaB-DnaA complex formation. We also identify a conserved domain in Rv0004 that is predicted to structurally resemble the N-terminal protein-protein interaction domain of DnaA. Mutation of a single conserved tryptophan within Rv0004's DnaA N-terminal-like domain leads to phenotypes similar to those observed upon Rv0004 depletion and can affect the association of Rv0004 with DnaB. In addition, using live cell imaging during depletion of Rv0004, we have uncovered a previously unappreciated role for DNA replication in coordinating mycobacterial cell division and cell size. Together, our data support that Rv0004 encodes a homolog of the recently identified DciA family of proteins found in most bacteria that lack the DnaC-DnaI helicase loaders in E. coli and B. subtilis. Therefore, the mechanisms of Rv0004 elucidated here likely apply to other DciA homologs and reveal insight into the diversity of bacterial strategies in even the most conserved biological processes.

  2. Vitamin D enhances IL-1β secretion and restricts growth of Mycobacterium tuberculosis in macrophages from TB patients.

    Science.gov (United States)

    Eklund, Daniel; Persson, Hans Lennart; Larsson, Marie; Welin, Amanda; Idh, Jonna; Paues, Jakob; Fransson, Sven-Göran; Stendahl, Olle; Schön, Thomas; Lerm, Maria

    2013-03-01

    The emergence of multidrug-resistant strains of Mycobacterium tuberculosis (MTB), the bacterium responsible for tuberculosis (TB), has rekindled the interest in the role of nutritional supplementation of micronutrients, such as vitamin D, as adjuvant treatment. Here, the growth of virulent MTB in macrophages obtained from the peripheral blood of patients with and without TB was studied. The H37Rv strain genetically modified to express Vibrio harveyi luciferase was used to determine the growth of MTB by luminometry in the human monocyte-derived macrophages (hMDMs) from study subjects. Determination of cytokine levels in culture supernatants was performed using a flow cytometry-based bead array technique. No differences in intracellular growth of MTB were observed between the different study groups. However, stimulation with 100nM 1,25-dihydroxyvitamin D significantly enhanced the capacity of hMDMs isolated from TB patients to control the infection. This effect was not observed in hMDMs from the other groups. The interleukin (IL)-1β and IL-10 release by hMDMs was clearly increased upon stimulation with 1,25-dihydroxyvitamin D. Furthermore, the 1,25-dihydroxyvitamin D stimulation also led to elevated levels of TNF-α (tumor necrosis factor-alpha) and IL-12p40. It was concluded that vitamin D triggers an inflammatory response in human macrophages with enhanced secretion of cytokines, as well as enhancing the capacity of hMDMs from patients with active TB to restrict mycobacterial growth. Copyright © 2013 Asian-African Society for Mycobacteriology. Published by Elsevier Ltd. All rights reserved.

  3. Mycobactericidal activity of sutezolid (PNU-100480 in sputum (EBA and blood (WBA of patients with pulmonary tuberculosis.

    Directory of Open Access Journals (Sweden)

    Robert S Wallis

    Full Text Available Sutezolid (PNU-100480 is a linezolid analog with superior bactericidal activity against Mycobacterium tuberculosis in the hollow fiber, whole blood and mouse models. Like linezolid, it is unaffected by mutations conferring resistance to standard TB drugs. This study of sutezolid is its first in tuberculosis patients.Sputum smear positive tuberculosis patients were randomly assigned to sutezolid 600 mg BID (N = 25 or 1200 mg QD (N = 25, or standard 4-drug therapy (N = 9 for the first 14 days of treatment. Effects on mycobacterial burden in sputum (early bactericidal activity or EBA were monitored as colony counts on agar and time to positivity in automated liquid culture. Bactericidal activity was also measured in ex vivo whole blood cultures (whole blood bactericidal activity or WBA inoculated with M. tuberculosis H37Rv.All patients completed assigned treatments and began subsequent standard TB treatment according to protocol. The 90% confidence intervals (CI for bactericidal activity in sputum over the 14 day interval excluded zero for all treatments and both monitoring methods, as did those for cumulative WBA. There were no treatment-related serious adverse events, premature discontinuations, or dose reductions due to laboratory abnormalities. There was no effect on the QT interval. Seven sutezolid-treated patients (14% had transient, asymptomatic ALT elevations to 173±34 U/L on day 14 that subsequently normalized promptly; none met Hy's criteria for serious liver injury.The mycobactericidal activity of sutezolid 600 mg BID or 1200 mg QD was readily detected in sputum and blood. Both schedules were generally safe and well tolerated. Further studies of sutezolid in tuberculosis treatment are warranted.ClinicalTrials.gov NCT01225640.

  4. Opportunistic microorganisms in patients undergoing antibiotic therapy for pulmonary tuberculosis

    Directory of Open Access Journals (Sweden)

    Silvia Maria Rodrigues Querido

    2011-12-01

    Full Text Available Antimicrobial therapy may cause changes in the resident oral microbiota, with the increase of opportunistic pathogens. The aim of this study was to compare the prevalence of Candida, Staphylococcus, Pseudomonas and Enterobacteriaceae in the oral cavity of fifty patients undergoing antibiotic therapy for pulmonary tuberculosis and systemically healthy controls. Oral rinsing and subgingival samples were obtained, plated in Sabouraud dextrose agar with chloramphenicol, mannitol agar and MacConkey agar, and incubated for 48 h at 37ºC. Candida spp. and coagulase-positive staphylococci were identified by phenotypic tests, C. dubliniensis, by multiplex PCR, and coagulase-negative staphylococci, Enterobacteriaceae and Pseudomonas spp., by the API systems. The number of Candida spp. was significantly higher in tuberculosis patients, and C. albicans was the most prevalent specie. No significant differences in the prevalence of other microorganisms were observed. In conclusion, the antimicrobial therapy for pulmonary tuberculosis induced significant increase only in the amounts of Candida spp.

  5. Phylogenetic detection of horizontal gene transfer during the step-wise genesis of Mycobacterium tuberculosis

    Directory of Open Access Journals (Sweden)

    Turenne Christine

    2009-08-01

    Full Text Available Abstract Background In the past decade, the availability of complete genome sequence data has greatly facilitated comparative genomic research aimed at addressing genetic variability within species. More recently, analysis across species has become feasible, especially in genera where genome sequencing projects of multiple species have been initiated. To understand the genesis of the pathogen Mycobacterium tuberculosis within a genus where the majority of species are harmless environmental organisms, we have used genome sequence data from 16 mycobacteria to look for evidence of horizontal gene transfer (HGT associated with the emergence of pathogenesis. First, using multi-locus sequence analysis (MLSA of 20 housekeeping genes across these species, we derived a phylogeny that serves as the basis for HGT assignments. Next, we performed alignment searches for the 3989 proteins of M. tuberculosis H37Rv against 15 other mycobacterial genomes, generating a matrix of 59835 comparisons, to look for genetic elements that were uniquely found in M. tuberculosis and closely-related pathogenic mycobacteria. To assign when foreign genes were likely acquired, we designed a bioinformatic program called mycoHIT (mycobacterial homologue investigation tool to analyze these data in conjunction with the MLSA-based phylogeny. Results The bioinformatic screen predicted that 137 genes had been acquired by HGT at different phylogenetic strata; these included genes coding for metabolic functions and modification of mycobacterial lipids. For the majority of these genes, corroborating evidence of HGT was obtained, such as presence of phage or plasmid, and an aberrant GC%. Conclusion M. tuberculosis emerged through vertical inheritance along with the step-wise addition of genes acquired via HGT events, a process that may more generally describe the evolution of other pathogens.

  6. Priming of innate antimycobacterial immunity by heat-killed Listeria monocytogenes induces sterilizing response in the adult zebrafish tuberculosis model

    Directory of Open Access Journals (Sweden)

    Hanna Luukinen

    2018-01-01

    Full Text Available Mycobacterium tuberculosis remains one of the most problematic infectious agents, owing to its highly developed mechanisms to evade host immune responses combined with the increasing emergence of antibiotic resistance. Host-directed therapies aiming to optimize immune responses to improve bacterial eradication or to limit excessive inflammation are a new strategy for the treatment of tuberculosis. In this study, we have established a zebrafish-Mycobacterium marinum natural host-pathogen model system to study induced protective immune responses in mycobacterial infection. We show that priming adult zebrafish with heat-killed Listeria monocytogenes (HKLm at 1 day prior to M. marinum infection leads to significantly decreased mycobacterial loads in the infected zebrafish. Using rag1−/− fish, we show that the protective immunity conferred by HKLm priming can be induced through innate immunity alone. At 24 h post-infection, HKLm priming leads to a significant increase in the expression levels of macrophage-expressed gene 1 (mpeg1, tumor necrosis factor α (tnfa and nitric oxide synthase 2b (nos2b, whereas superoxide dismutase 2 (sod2 expression is downregulated, implying that HKLm priming increases the number of macrophages and boosts intracellular killing mechanisms. The protective effects of HKLm are abolished when the injected material is pretreated with nucleases or proteinase K. Importantly, HKLm priming significantly increases the frequency of clearance of M. marinum infection by evoking sterilizing immunity (25 vs 3.7%, P=0.0021. In this study, immune priming is successfully used to induce sterilizing immunity against mycobacterial infection. This model provides a promising new platform for elucidating the mechanisms underlying sterilizing immunity and to develop host-directed treatment or prevention strategies against tuberculosis. This article has an associated First Person interview with the first author of the paper.

  7. Synthesis and antituberculosis activity of new fatty acid amides.

    Science.gov (United States)

    D'Oca, Caroline Da Ros Montes; Coelho, Tatiane; Marinho, Tamara Germani; Hack, Carolina Rosa Lopes; Duarte, Rodrigo da Costa; da Silva, Pedro Almeida; D'Oca, Marcelo Gonçalves Montes

    2010-09-01

    This work reports the synthesis of new fatty acid amides from C16:0, 18:0, 18:1, 18:1 (OH), and 18:2 fatty acids families with cyclic and acyclic amines and demonstrate for the first time the activity of these compounds as antituberculosis agents against Mycobacterium tuberculosis H(37)Rv, M. tuberculosis rifampicin resistance (ATCC 35338), and M. tuberculosis isoniazid resistance (ATCC 35822). The fatty acid amides derivate from ricinoleic acid were the most potent one among a series of tested compounds, with a MIC 6.25 microg/mL for resistance strains. Copyright 2010 Elsevier Ltd. All rights reserved.

  8. Mycobacterium tuberculosis controls microRNA-99b (miR-99b) expression in infected murine dendritic cells to modulate host immunity.

    Science.gov (United States)

    Singh, Yogesh; Kaul, Vandana; Mehra, Alka; Chatterjee, Samit; Tousif, Sultan; Dwivedi, Ved Prakash; Suar, Mrutyunjay; Van Kaer, Luc; Bishai, William R; Das, Gobardhan

    2013-02-15

    Mycobacterium tuberculosis resides and replicates within host phagocytes by modulating host microbicidal responses. In addition, it suppresses the production of host protective cytokines to prevent activation of and antigen presentation by M. tuberculosis-infected cells, causing dysregulation of host protective adaptive immune responses. Many cytokines are regulated by microRNAs (miRNAs), a newly discovered class of small noncoding RNAs, which have been implicated in modulating host immune responses in many bacterial and viral diseases. Here, we show that miRNA-99b (miR-99b), an orphan miRNA, plays a key role in the pathogenesis of M. tuberculosis infection. We found that miR-99b expression was highly up-regulated in M. tuberculosis strain H37Rv-infected dendritic cells (DCs) and macrophages. Blockade of miR-99b expression by antagomirs resulted in significantly reduced bacterial growth in DCs. Interestingly, knockdown of miR-99b in DCs significantly up-regulated proinflammatory cytokines such as IL-6, IL-12, and IL-1β. Furthermore, mRNA and membrane-bound protein data indicated that inhibition of miR-99b augments TNF-α and TNFRSF-4 production. Thus, miR-99b targets TNF-α and TNFRSF-4 receptor genes. Treatment of anti-miR-99b-transfected DCs with anti-TNF-α antibody resulted in increased bacterial burden. Thus, our findings unveil a novel host evasion mechanism adopted by M. tuberculosis via miR-99b, which may open up new avenues for designing miRNA-based vaccines and therapies.

  9. Mycobacterium tuberculosis Controls MicroRNA-99b (miR-99b) Expression in Infected Murine Dendritic Cells to Modulate Host Immunity*

    Science.gov (United States)

    Singh, Yogesh; Kaul, Vandana; Mehra, Alka; Chatterjee, Samit; Tousif, Sultan; Dwivedi, Ved Prakash; Suar, Mrutyunjay; Van Kaer, Luc; Bishai, William R.; Das, Gobardhan

    2013-01-01

    Mycobacterium tuberculosis resides and replicates within host phagocytes by modulating host microbicidal responses. In addition, it suppresses the production of host protective cytokines to prevent activation of and antigen presentation by M. tuberculosis-infected cells, causing dysregulation of host protective adaptive immune responses. Many cytokines are regulated by microRNAs (miRNAs), a newly discovered class of small noncoding RNAs, which have been implicated in modulating host immune responses in many bacterial and viral diseases. Here, we show that miRNA-99b (miR-99b), an orphan miRNA, plays a key role in the pathogenesis of M. tuberculosis infection. We found that miR-99b expression was highly up-regulated in M. tuberculosis strain H37Rv-infected dendritic cells (DCs) and macrophages. Blockade of miR-99b expression by antagomirs resulted in significantly reduced bacterial growth in DCs. Interestingly, knockdown of miR-99b in DCs significantly up-regulated proinflammatory cytokines such as IL-6, IL-12, and IL-1β. Furthermore, mRNA and membrane-bound protein data indicated that inhibition of miR-99b augments TNF-α and TNFRSF-4 production. Thus, miR-99b targets TNF-α and TNFRSF-4 receptor genes. Treatment of anti-miR-99b-transfected DCs with anti-TNF-α antibody resulted in increased bacterial burden. Thus, our findings unveil a novel host evasion mechanism adopted by M. tuberculosis via miR-99b, which may open up new avenues for designing miRNA-based vaccines and therapies. PMID:23233675

  10. A Novel TetR-Like Transcriptional Regulator Is Induced in Acid-Nitrosative Stress and Controls Expression of an Efflux Pump in Mycobacteria

    Directory of Open Access Journals (Sweden)

    Filomena Perrone

    2017-10-01

    Full Text Available Mycobacterium tuberculosis has the ability to survive inside macrophages under acid-nitrosative stress. M. tuberculosis Rv1685c and its ortholog in M. smegmatis, MSMEG_3765, are induced on exposure to acid-nitrosative stress. Both genes are annotated as TetR transcriptional regulators, a family of proteins that regulate a wide range of cellular activities, including multidrug resistance, carbon catabolism and virulence. Here, we demonstrate that MSMEG_3765 is co-transcribed with the upstream genes MSMEG_3762 and MSMEG_3763, encoding efflux pump components. RTq-PCR and GFP-reporter assays showed that the MSMEG_3762/63/65 gene cluster, and the orthologous region in M. tuberculosis (Rv1687c/86c/85c, was up-regulated in a MSMEG_3765 null mutant, suggesting that MSMEG_3765 acts as a repressor, typical of this family of regulators. We further defined the MSMEG_3765 regulon using genome-wide transcriptional profiling and used reporter assays to confirm that the MSMEG_3762/63/65 promoter was induced under acid-nitrosative stress. A putative 36 bp regulatory motif was identified upstream of the gene clusters in both M. smegmatis and M. tuberculosis and purified recombinant MSMEG_3765 protein was found to bind to DNA fragments containing this motif from both M. smegmatis and M. tuberculosis upstream regulatory regions. These results suggest that the TetR repressor MSMEG_3765/Rv1685c controls expression of an efflux pump with an, as yet, undefined role in the mycobacterial response to acid-nitrosative stress.

  11. Evaluation of antituberculosis activity and DFT study on dipyrromethane-derived hydrazone derivatives

    Science.gov (United States)

    Rawat, Poonam; Singh, R. N.; Niranjan, Priydarshni; Ranjan, Alok; Holguín, Norma Rosario Flores

    2017-12-01

    This paper evaluates the anti-tubercular activity of dipyrromethane-derived hydrazones derivatives (3a-d) against strain of Mycobacterium tuberculosis H37Rv. The newly synthesized compounds have been obtained in good yield based on the condensation of aromatic aldehyde derivatives with pyrrole hydrazone in presence of catalyst and well characterized with spectroscopic methods (1H, 13C NMR, Mass spectrometry) and elemental analysis. The singlet observed in the experimental 1H and 13C NMR spectra in the range of 5.3-5.7 ppm and 30-33.86 ppm, respectively, indicating that two pyrrole units are joined at meso position. The electronic transitions observed in the experimental spectra are n→π* and π →π* in nature. Experimental and theoretical findings corroborate well with each other. The substitution of acceptor group (-NO2) at ortho- and meta-positions of benzene ring, present at meso-position of dipyrromethane is responsible for variation in β0 values. The calculated NLO of (3a-d) are much greater than those of p-nitroaniline (PNA). The solvent induced effects on the non-linear optical properties were studied and found to enhance NLO properties of the molecules as dielectric constants of the solvents increases. On the basis of results it is anticipated that these dipyrromethanes will be useful for both antimicrobial and non-linear optical (NLO) applications. With the help of Microplate Alamar Blue assay (MABA) method all (3a-d) compounds were screened for their anti-tubercular activity and found that 3b and 3d have higher inhibitory activity against strain of M. tuberculosis H37Rv.

  12. Biochemical Characterization of Mycobacterium tuberculosis DNA Repair Enzymes – Nfo, XthA and Nei2

    Directory of Open Access Journals (Sweden)

    Sailau Abeldenov

    2014-01-01

    Full Text Available Introduction: Tuberculosis (TB is a human disease caused by Mycobacterium tuberculosis (Mtb. Treatment of TB requires long-term courses of multi-drug therapies to eliminate subpopulations of bacteria, which sometimes persist against antibiotics. Therefore, understanding of the mechanism of Mtb antibiotic-resistance is extremely important. During infection, Mtb overcomes a variety of body defense mechanisms, including treatment with the reactive species of oxygen and nitrogen. The bases in DNA molecule are susceptible to the damages caused by reactive forms of intermediate compounds of oxygen and nitrogen. Most of this damage is repaired by the base excision repair (BER pathway. In this study, we aimed to biochemically characterize three Mtb DNA repair enzymes of BER pathway. Methods: XthA, nfo, and nei genes were identified in mycobacteria by homology search of genomic sequences available in the GenBank database. We used standard methods of genetic engineering  to clone and sequence Mtb genes, which coded Nfo, XthA and Nei2 repair enzymes. The protein products of Mtb genes were expressed and purified in Escherichia coli using affinity tags. The enzymatic activity of purified Nfo, XthA, and Nei2 proteins were measured using radioactively labeled DNA substrates containing various modified residues. Results: The genes end (Rv0670, xthA (Rv0427c, and nei (Rv3297 were PCR amplified using genomic DNA of Mtb H37Rv with primers that contain specific restriction sites. The amplified products were inserted into pET28c(+ expression vector in such a way that the recombinant proteins contain C-terminal histidine tags. The plasmid constructs were verified by sequencing and then transformed into the Escherichia coli BL21 (DE3 strain. Purification of recombinant proteins was performed using Ni2+ ions immobilized affinity column, coupled with the fast performance liquid chromatography machine AKTA. Identification of the isolated proteins was performed by

  13. Efflux pumps of Mycobacterium tuberculosis play a significant role in antituberculosis activity of potential drug candidates.

    Science.gov (United States)

    Balganesh, Meenakshi; Dinesh, Neela; Sharma, Sreevalli; Kuruppath, Sanjana; Nair, Anju V; Sharma, Umender

    2012-05-01

    Active efflux of drugs mediated by efflux pumps that confer drug resistance is one of the mechanisms developed by bacteria to counter the adverse effects of antibiotics and chemicals. To understand these efflux mechanisms in Mycobacterium tuberculosis, we generated knockout (KO) mutants of four efflux pumps of the pathogen belonging to different classes. We measured the MICs and kill values of two different compound classes on the wild type (WT) and the efflux pump (EP) KO mutants in the presence and absence of the efflux inhibitors verapamil and l-phenylalanyl-l-arginyl-β-naphthylamide (PAβN). Among the pumps studied, the efflux pumps belonging to the ABC (ATP-binding cassette) class, encoded by Rv1218c, and the SMR (small multidrug resistance) class, encoded by Rv3065, appear to play important roles in mediating the efflux of different chemical classes and antibiotics. Efflux pumps encoded by Rv0849 and Rv1258c also mediate the efflux of these compounds, but to a lesser extent. Increased killing is observed in WT M. tuberculosis cells by these compounds in the presence of either verapamil or PAβN. The efflux pump KO mutants were more susceptible to these compounds in the presence of efflux inhibitors. We have shown that these four efflux pumps of M. tuberculosis play a vital role in mediating efflux of different chemical scaffolds. Inhibitors of one or several of these efflux pumps could have a significant impact in the treatment of tuberculosis. The identification and characterization of Rv0849, a new efflux pump belonging to the MFS (major facilitator superfamily) class, are reported.

  14. Rapid susceptibility testing of Mycobacterium tuberculosis by bioluminescence assay of mycobacterial ATP

    International Nuclear Information System (INIS)

    Nilsson, L.E.; Hoffner, S.E.; Ansehn, S.

    1988-01-01

    Mycobacterial growth was monitored by bioluminescence assay of mycobacterial ATP. Cultures of Mycobacterium tuberculosis H37Rv and of 25 clinical isolates of the same species were exposed to serial dilutions of ethambutol, isoniazid, rifampin, and streptomycin. A suppression of ATP, indicating growth inhibition, occurred for susceptible but not resistant strains within 5 to 7 days of incubation. Breakpoint concentrations between susceptibility and resistance were determined by comparing these results with those obtained by reference techniques. Full agreement was found in 99% of the assays with the resistance ratio method on Lowenstein-Jensen medium, and 98% of the assays were in full agreement with the radiometric system (BACTEC). A main advantage of the bioluminescence method is its rapidity, with results available as fast as with the radiometric system but at a lower cost and without the need for radioactive culture medium. The method provides kinetic data concerning drug effects within available in vivo drug concentrations and has great potential for both rapid routine susceptibility testing and research applications in studies of drug effects on mycobacteria

  15. Enhancement of antibiotic activity by efflux inhibitors against multidrug resistant Mycobacterium tuberculosis clinical isolates from Brazil

    Directory of Open Access Journals (Sweden)

    Tatiane eCoelho

    2015-04-01

    Full Text Available Drug resistant tuberculosis continues to increase and new approaches for its treatment are necessary. The identification of M. tuberculosis clinical isolates presenting efflux as part of their resistant phenotype has a major impact in tuberculosis treatment. In this work, we used a checkerboard procedure combined with the tetrazolium microplate-based assay (TEMA to study single combinations between antituberculosis drugs and efflux inhibitors (EIs against multidrug resistant M. tuberculosis clinical isolates using the fully susceptible strain H37Rv as reference. Efflux activity was studied on a real-time basis by a fluorometric method that uses ethidium bromide as efflux substrate. Quantification of efflux pump genes mRNA transcriptional levels were performed by RT-qPCR. The fractional inhibitory concentrations (FIC indicated synergistic activity for the interactions between isoniazid, rifampicin, amikacin, ofloxacin, and ethidium bromide plus the EIs verapamil, thioridazine and chlorpromazine. The FICs ranged from 0.25, indicating a four-fold reduction on the MICs, to 0.015, 64-fold reduction. The detection of active efflux by real-time fluorometry showed that all strains presented intrinsic efflux activity that contributes to the overall resistance which can be inhibited in the presence of the EIs. The quantification of the mRNA levels of the most important efflux pump genes on these strains shows that they are intrinsically predisposed to expel toxic compounds as the exposure to subinhibitory concentrations of antibiotics were not necessary to increase the pump mRNA levels when compared with the non-exposed counterpart. The results obtained in this study confirm that the intrinsic efflux activity contributes to the overall resistance in multidrug resistant clinical isolates of M. tuberculosis and that the inhibition of efflux pumps by the EIs can enhance the clinical effect of antibiotics that are their substrates.

  16. Attenuated Mycobacterium tuberculosis SO2 vaccine candidate is unable to induce cell death.

    Directory of Open Access Journals (Sweden)

    Adriana Aporta

    Full Text Available It has been proposed that Mycobacterium tuberculosis virulent strains inhibit apoptosis and trigger cell death by necrosis of host macrophages to evade innate immunity, while non-virulent strains induce typical apoptosis activating a protective host response. As part of the characterization of a novel tuberculosis vaccine candidate, the M. tuberculosis phoP mutant SO2, we sought to evaluate its potential to induce host cell death. The parental M. tuberculosis MT103 strain and the current vaccine against tuberculosis Bacillus Calmette-Guérin (BCG were used as comparators in mouse models in vitro and in vivo. Our data reveal that attenuated SO2 was unable to induce apoptotic events neither in mouse macrophages in vitro nor during lung infection in vivo. In contrast, virulent MT103 triggers typical apoptotic events with phosphatidylserine exposure, caspase-3 activation and nuclear condensation and fragmentation. BCG strain behaved like SO2 and did not induce apoptosis. A clonogenic survival assay confirmed that viability of BCG- or SO2-infected macrophages was unaffected. Our results discard apoptosis as the protective mechanism induced by SO2 vaccine and provide evidence for positive correlation between classical apoptosis induction and virulent strains, suggesting apoptosis as a possible virulence determinant during M. tuberculosis infection.

  17. Doubly end-on azido bridged mixed-valence cobalt trinuclear complex: Spectral study, VTM, inhibitory effect and antimycobacterial activity on human carcinoma and tuberculosis cells

    Science.gov (United States)

    Datta, Amitabha; Das, Kuheli; Sen, Chandana; Karan, Nirmal Kumar; Huang, Jui-Hsien; Lin, Chia-Her; Garribba, Eugenio; Sinha, Chittaranjan; Askun, Tulin; Celikboyun, Pinar; Mane, Sandeep B.

    2015-09-01

    Doubly end-on azido-bridged mixed-valence trinuclear cobalt complex, [Co3(L)2(N3)6(CH3OH)2] (1) is afforded by employing a potential monoanionic tetradentate-N2O2 Schiff base precursor (2-[{[2-(dimethylamino)ethyl]imino}methyl]-6-methoxyphenol; HL). Single crystal X-ray structure reveals that in 1, the adjacent CoII and CoIII ions are linked by double end-on azido bridges and thus the full molecule is generated by the site symmetry of a crystallographic twofold rotation axis. Complex 1 is subjected on different spectral analysis such as IR, UV-vis, emission and EPR spectroscopy. On variable temperature magnetic study, we observe that during cooling, the χMT values decrease smoothly until 15 K and then reaches to the value 1.56 cm3 K mol-1 at 2 K. Complex 1 inhibits the cell growth on human lung carcinoma (A549 cells), human colorectal (COLO 205 and HT-29 cells), and human heptacellular (PLC5 cells) carcinoma cells. Complex 1 exhibits anti-mycobacterial activity and considerable efficacy on Mycobacterium tuberculosis H37Rv ATCC 27294 and H37Ra ATCC 25177 strains.

  18. TCGCG 87 88 89 90 91 92 93 94 95 96 2564 CAC GGC GAC GCG ...

    Indian Academy of Sciences (India)

    Figure:8.A:Summary of mutations at codon 87 to 96 in the gyrA gene. Nucleotide changes are indicated on top of the wild-type sequence, and the corresponding amino acid changes are shown at the bottom. B: The Electropherogram showing the wild type M.tuberculosis H37Rv sequence at codon 87 to 96 in gyrA locus.

  19. Analytical and clinical performance characteristics of the Abbott RealTime MTB RIF/INH Resistance, an assay for the detection of rifampicin and isoniazid resistant Mycobacterium tuberculosis in pulmonary specimens.

    Science.gov (United States)

    Kostera, Joshua; Leckie, Gregor; Tang, Ning; Lampinen, John; Szostak, Magdalena; Abravaya, Klara; Wang, Hong

    2016-12-01

    Clinical management of drug-resistant tuberculosis patients continues to present significant challenges to global health. To tackle these challenges, the Abbott RealTime MTB RIF/INH Resistance assay was developed to accelerate the diagnosis of rifampicin and/or isoniazid resistant tuberculosis to within a day. This article summarizes the performance of the Abbott RealTime MTB RIF/INH Resistance assay; including reliability, analytical sensitivity, and clinical sensitivity/specificity as compared to Cepheid GeneXpert MTB/RIF version 1.0 and Hain MTBDRplus version 2.0. The limit of detection (LOD) of the Abbott RealTime MTB RIF/INH Resistance assay was determined to be 32 colony forming units/milliliter (cfu/mL) using the Mycobacterium tuberculosis (MTB) strain H37Rv cell line. For rifampicin resistance detection, the Abbott RealTime MTB RIF/INH Resistance assay demonstrated statistically equivalent clinical sensitivity and specificity as compared to Cepheid GeneXpert MTB/RIF. For isoniazid resistance detection, the assay demonstrated statistically equivalent clinical sensitivity and specificity as compared to Hain MTBDRplus. The performance data presented herein demonstrate that the Abbott RealTime MTB RIF/INH Resistance assay is a sensitive, robust, and reliable test for realtime simultaneous detection of first line anti-tuberculosis antibiotics rifampicin and isoniazid in patient specimens. Copyright © 2016 The Author. Published by Elsevier Ltd.. All rights reserved.

  20. Comparative analysis of Mycobacterium and related Actinomycetes yields insight into the evolution of Mycobacterium tuberculosis pathogenesis.

    Science.gov (United States)

    McGuire, Abigail Manson; Weiner, Brian; Park, Sang Tae; Wapinski, Ilan; Raman, Sahadevan; Dolganov, Gregory; Peterson, Matthew; Riley, Robert; Zucker, Jeremy; Abeel, Thomas; White, Jared; Sisk, Peter; Stolte, Christian; Koehrsen, Mike; Yamamoto, Robert T; Iacobelli-Martinez, Milena; Kidd, Matthew J; Maer, Andreia M; Schoolnik, Gary K; Regev, Aviv; Galagan, James

    2012-03-28

    The sequence of the pathogen Mycobacterium tuberculosis (Mtb) strain H37Rv has been available for over a decade, but the biology of the pathogen remains poorly understood. Genome sequences from other Mtb strains and closely related bacteria present an opportunity to apply the power of comparative genomics to understand the evolution of Mtb pathogenesis. We conducted a comparative analysis using 31 genomes from the Tuberculosis Database (TBDB.org), including 8 strains of Mtb and M. bovis, 11 additional Mycobacteria, 4 Corynebacteria, 2 Streptomyces, Rhodococcus jostii RHA1, Nocardia farcinia, Acidothermus cellulolyticus, Rhodobacter sphaeroides, Propionibacterium acnes, and Bifidobacterium longum. Our results highlight the functional importance of lipid metabolism and its regulation, and reveal variation between the evolutionary profiles of genes implicated in saturated and unsaturated fatty acid metabolism. It also suggests that DNA repair and molybdopterin cofactors are important in pathogenic Mycobacteria. By analyzing sequence conservation and gene expression data, we identify nearly 400 conserved noncoding regions. These include 37 predicted promoter regulatory motifs, of which 14 correspond to previously validated motifs, as well as 50 potential noncoding RNAs, of which we experimentally confirm the expression of four. Our analysis of protein evolution highlights gene families that are associated with the adaptation of environmental Mycobacteria to obligate pathogenesis. These families include fatty acid metabolism, DNA repair, and molybdopterin biosynthesis. Our analysis reinforces recent findings suggesting that small noncoding RNAs are more common in Mycobacteria than previously expected. Our data provide a foundation for understanding the genome and biology of Mtb in a comparative context, and are available online and through TBDB.org.

  1. Cytosolic proteome profiling of aminoglycosides resistant Mycobacterium tuberculosis clinical isolates using MALDI-TOF/MS

    Directory of Open Access Journals (Sweden)

    Divakar Sharma

    2016-11-01

    Full Text Available Emergence of extremely drug resistant tuberculosis (XDR-TB is the consequence of the failure of second line TB treatment. Aminoglycosides are the important second line anti-TB drugs used to treat the multi drug resistant tuberculosis (MDR-TB. Main known mechanism of action of aminoglycosides is to inhibit the protein synthesis by inhibiting the normal functioning of ribosome. Primary target of aminoglycosides are the ribosomal RNA and its associated proteins. Various mechanisms have been proposed for aminoglycosides resistance but still some are unsolved. As proteins are involved in most of the biological processes, these act as a potential diagnostic markers and drug targets. In the present study we analyzed the purely cytosolic proteome of amikacin (AK and kanamycin (KM resistant Mycobacterium tuberculosis isolates by proteomic and bioinformatic approaches. Twenty protein spots were found to have over expressed in resistant isolates and were identified. Among these Rv3208A, Rv2623, Rv1360, Rv2140c, Rv1636 and Rv2185c are six proteins with unknown functions or undefined role. Docking results showed that AK and KM binds to the conserved domain (DUF, USP-A, Luciferase, PEBP and Polyketidecyclase/dehydrase domain of these hypothetical proteins and over expression of these proteins might neutralize/modulate the effect of drug molecules. TBPred and GPS-PUP predicted cytoplasmic nature and potential pupylation sites within these identified proteins respectively. String analysis also suggested that over expressed proteins along with their interactive partners might be involved in aminoglycosides resistance. Cumulative effect of these over expressed proteins could be involved in AK and KM resistance by mitigating the toxicity, repression of drug target and neutralizing affect. These findings need further exploitation for the expansion of newer therapeutics or diagnostic markers against AK and KM resistance so that an extreme condition like XDR-TB can

  2. Cytosolic Proteome Profiling of Aminoglycosides Resistant Mycobacterium tuberculosis Clinical Isolates Using MALDI-TOF/MS.

    Science.gov (United States)

    Sharma, Divakar; Lata, Manju; Singh, Rananjay; Deo, Nirmala; Venkatesan, Krishnamurthy; Bisht, Deepa

    2016-01-01

    Emergence of extensively drug resistant tuberculosis (XDR-TB) is the consequence of the failure of second line TB treatment. Aminoglycosides are the important second line anti-TB drugs used to treat the multi drug resistant tuberculosis (MDR-TB). Main known mechanism of action of aminoglycosides is to inhibit the protein synthesis by inhibiting the normal functioning of ribosome. Primary target of aminoglycosides are the ribosomal RNA and its associated proteins. Various mechanisms have been proposed for aminoglycosides resistance but still some are unsolved. As proteins are involved in most of the biological processes, these act as a potential diagnostic markers and drug targets. In the present study we analyzed the purely cytosolic proteome of amikacin (AK) and kanamycin (KM) resistant Mycobacterium tuberculosis isolates by proteomic and bioinformatic approaches. Twenty protein spots were found to have over expressed in resistant isolates and were identified. Among these Rv3208A, Rv2623, Rv1360, Rv2140c, Rv1636, and Rv2185c are six proteins with unknown functions or undefined role. Docking results showed that AK and KM binds to the conserved domain (DUF, USP-A, Luciferase, PEBP and Polyketidecyclase/dehydrase domain) of these hypothetical proteins and over expression of these proteins might neutralize/modulate the effect of drug molecules. TBPred and GPS-PUP predicted cytoplasmic nature and potential pupylation sites within these identified proteins, respectively. String analysis also suggested that over expressed proteins along with their interactive partners might be involved in aminoglycosides resistance. Cumulative effect of these over expressed proteins could be involved in AK and KM resistance by mitigating the toxicity, repression of drug target and neutralizing affect. These findings need further exploitation for the expansion of newer therapeutics or diagnostic markers against AK and KM resistance so that an extreme condition like XDR-TB can be prevented.

  3. Protective Effect of a Lipid-Based Preparation from Mycobacterium smegmatis in a Murine Model of Progressive Pulmonary Tuberculosis

    Directory of Open Access Journals (Sweden)

    Maria de los Angeles García

    2014-01-01

    Full Text Available A more effective vaccine against tuberculosis (TB is urgently needed. Based on its high genetic homology with Mycobacterium tuberculosis (Mtb, the nonpathogenic mycobacteria, Mycobacterium smegmatis (Ms, could be an attractive source of potential antigens to be included in such a vaccine. We evaluated the capability of lipid-based preparations obtained from Ms to provide a protective response in Balb/c mice after challenge with Mtb H37Rv strain. The intratracheal model of progressive pulmonary TB was used to assess the level of protection in terms of bacterial load as well as the pathological changes in the lungs of immunized Balb/c mice following challenge with Mtb. Mice immunized with the lipid-based preparation from Ms either adjuvanted with Alum (LMs-AL or nonadjuvanted (LMs showed significant reductions in bacterial load (P<0.01 compared to the negative control group (animals immunized with phosphate buffered saline (PBS. Both lipid formulations showed the same level of protection as Bacille Calmette and Guerin (BCG. Regarding the pathologic changes in the lungs, mice immunized with both lipid formulations showed less pneumonic area when compared with the PBS group (P<0.01 and showed similar results compared with the BCG group. These findings suggest the potential of LMs as a promising vaccine candidate against TB.

  4. Synthesis and antitubercular activity of isoniazid condensed with carbohydrate derivatives

    Directory of Open Access Journals (Sweden)

    Sílvia H. Cardoso

    2009-01-01

    Full Text Available A series of 13 compounds analogous of isoniazid condensed with carbohydrate was synthesized and evaluated for their in vitro antibacterial activity against Mycobacterium tuberculosis H37Rv using Alamar Blue susceptibility test and the activity expressed as the minimum inhibitory concentration (MIC90 in μg/mL. Several compounds exhibited antitubercular activity (0.31-3.12 μg/mL when compared with first line drugs such as isoniazid (INH and rifampicin (RIP and could be a good starting point to develop new compounds against tuberculosis.

  5. Synthesis and antimycobacterial activity of isoniazid derivatives from renewable fatty acids.

    Science.gov (United States)

    Rodrigues, Marieli O; Cantos, Jéssica B; D'Oca, Caroline R Montes; Soares, Karina L; Coelho, Tatiane S; Piovesan, Luciana A; Russowsky, Dennis; da Silva, Pedro A; D'Oca, Marcelo G Montes

    2013-11-15

    This work describes the synthesis of a series of fatty acid hydrazide derivatives of isoniazid (INH). The compounds were tested against Mycobacterium tuberculosis H37Rv (ATCC 27294) as well as INH-resistant (ATCC 35822 and 1896 HF) and rifampicin-resistant (ATCC 35338) M. tuberculosis strains. The fatty acid derivatives of INH showed high antimycobacterial potency against the studied strains, which is desirable for a pharmaceutical compound, suggesting that the increased lipophilicity of isoniazid plays an important role in its antimycobacterial activity. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Evaluation of the effect of Pulicaria gnaphalodes and Perovskia abrotanoides essential oil extracts against Mycobacterium tuberculosis strains

    Directory of Open Access Journals (Sweden)

    Fereshte Hozoorbakhsh

    2016-01-01

    Full Text Available Background: Mycobacterium tuberculosis (MTB is the causative agent of tuberculosis (TB, which remains one of the major public health problems in the world. The increasing incidence of multidrug-resistant tuberculosis (MDR-TB and extensively drug-resistant tuberculosis (XDR-TB worldwide highlights the urgent need to search for alternative antimycobacterial agents. More and more people in developing countries utilize traditional medicine for their major primary health care needs. It has been determined that the medicinal plants Pulicaria gnaphalodes and Perovskia abrotanoides possess strong antibacterial effect. Materials and Methods: In this study, the antimycobacterial effects of P. gnaphalodes and P. abrotanoides essential oil on MTB were examined. Essential oil was prepared from P. gnaphalodes aerial parts and P. abrotanoides flower. The effects of six different concentrations (20 μg/ml, 40 μg/ml, 80 μg/ml, 160 μg/ml, 320 μg/ml, and 640 μg/ml were examined against sensitive isolates of MTB and MTB H37Rv (ATCC 27294. Results: The results showed that P. gnaphalodes and P. abrotanoides essential oil extracts have strong inhibitory effects on MTB. This activity for P. gnaphalodes was observed from very low (4% to good (70.9% effect; meanwhile, this activity for P. abrotanoides was observed from very low (4% to strong (86% effect. Conclusion: The mean of inhibition percentage for P. gnaphalodes and P. abrotanoides in 640 μg/ml was 58.1% and 76.2%, respectively. So, P. abrotanoides plant is more effective against MTB than P. gnaphalodes. Identification of the effective fraction against MTB is a further step to be studied.

  7. Intranasal IFNγ extends passive IgA antibody protection of mice against Mycobacterium tuberculosis lung infection

    Science.gov (United States)

    Reljic, R; Clark, S O; Williams, A; Falero-Diaz, G; Singh, M; Challacombe, S; Marsh, P D; Ivanyi, J

    2006-01-01

    Intranasal inoculation of mice with monoclonal IgA against the α-crystallin (acr1) antigen can diminish the tuberculous infection in the lungs. As this effect has been observed only over a short-term, we investigated if it could be extended by inoculation of IFNγ 3 days before infection, and further coinoculations with IgA, at 2 h before and 2 and 7 days after aerosol infection with Mycobacterium tuberculosis H37Rv. This treatment reduced the lung infection at 4 weeks more than either IgA or IFNγ alone (i.e. 17-fold, from 4·2 × 107 to 2·5 × 106 CFU, P = 0·006), accompanied also by lower granulomatous infiltration of the lungs. IFNγ added prior to infection of mouse peritoneal macrophages with IgA-opsonized bacilli resulted in a synergistic increase of nitric oxide and TNFα production and a 2–3 fold decrease in bacterial counts. Our improved results suggest, that combined treatment with IFNγ and IgA could be developed towards prophylactic treatment of AIDS patients, or as an adjunct to chemotherapy. PMID:16487246

  8. The majority of inducible DNA repair genes in Mycobacterium tuberculosis are induced independently of RecA.

    Science.gov (United States)

    Rand, Lucinda; Hinds, Jason; Springer, Burkhard; Sander, Peter; Buxton, Roger S; Davis, Elaine O

    2003-11-01

    In many species of bacteria most inducible DNA repair genes are regulated by LexA homologues and are dependent on RecA for induction. We have shown previously by analysing the induction of recA that two mechanisms for the induction of gene expression following DNA damage exist in Mycobacterium tuberculosis. Whereas one of these depends on RecA and LexA in the classical way, the other mechanism is independent of both of these proteins and induction occurs in the absence of RecA. Here we investigate the generality of each of these mechanisms by analysing the global response to DNA damage in both wild-type M. tuberculosis and a recA deletion strain of M. tuberculosis using microarrays. This revealed that the majority of the genes that were induced remained inducible in the recA mutant stain. Of particular note most of the inducible genes with known or predicted functions in DNA repair did not depend on recA for induction. Amongst these are genes involved in nucleotide excision repair, base excision repair, damage reversal and recombination. Thus, it appears that this novel mechanism of gene regulation is important for DNA repair in M. tuberculosis.

  9. Increased serum anti-mycobacterial antibody titers in rheumatoid arthritis patients: Is there any specific antigenic target?

    International Nuclear Information System (INIS)

    Cetin, Emel S.; Aksoy, Ali M

    2007-01-01

    Objective was to investigate the presence of immunoreactivity against mycobacterial antigens in the sera of patients with rheumatoid arthritis (Ra) and to detect the target of the immune reaction. This study was carried out on 60 patients with RA, and 25 patients with no joint diseases in the laboratory of Clinical Microbiology Department of Ankara University Medical Faculty, Ankara, Turkey between July 2003 to January 2004. Secreted and cellular antigens of Mycobacterium tuberculosis (M. tuberculosis) H37Rv and Mycobacterium bovis (M. bovis) were isolated and purified by high performance liquid chromatography to antigenic fractions. The immunoreactivity of patient and control sera against these antigens were determined by enzyme-linked immunosorbent assay (ELISA). Immunoreactivity against mycobacterial antigens in RA patients were significantly higher than controls. Significant difference between patients and controls has been determined with M. bovis Bacillus Calmette Guerin (BCG) culture fluid and sonicate antigens, but not with M. tuberculosis H37Rv. This suggests that the antigen triggering immune response in patients with RA may belong to or mainly expressed on M. bovis BCG. The ELISA results showed significant difference between RA patients and controls with all antigenic fractions. Presence of increased immunoreactivity against mycobacterial antigens in the sera of patients with RA was detected. When statistical analysis was considered, we cannot put forward any antigenic fraction alone as the one responsible for the increased reactivity. (author)

  10. TubercuList--10 years after.

    Science.gov (United States)

    Lew, Jocelyne M; Kapopoulou, Adamandia; Jones, Louis M; Cole, Stewart T

    2011-01-01

    TubercuList (http://tuberculist.epfl.ch/), the relational database that presents genome-derived information about H37Rv, the paradigm strain of Mycobacterium tuberculosis, has been active for ten years and now presents its twentieth release. Here, we describe some of the recent changes that have resulted from manual annotation with information from the scientific literature. Through manual curation, TubercuList strives to provide current gene-based information and is thus distinguished from other online sources of genome sequence data for M. tuberculosis. New, mostly small, genes have been discovered and the coordinates of some existing coding sequences have been changed when bioinformatics or experimental data suggest that this is required. Nucleotides that are polymorphic between different sources of H37Rv are annotated and gene essentiality data have been updated. A host of functional information has been gleaned from the literature and many new activities of proteins and RNAs have been included. To facilitate basic and translational research, TubercuList also provides links to other specialized databases that present diverse datasets such as 3D-structures, expression profiles, drug development criteria and drug resistance information, in addition to direct access to PubMed articles pertinent to particular genes. TubercuList has been and remains a highly valuable tool for the tuberculosis research community with >75,000 visitors per month. Copyright © 2010 Elsevier Ltd. All rights reserved.

  11. Genomic diversity among drug sensitive and multidrug resistant isolates of Mycobacterium tuberculosis with identical DNA fingerprints.

    Directory of Open Access Journals (Sweden)

    Stefan Niemann

    2009-10-01

    Full Text Available Mycobacterium tuberculosis complex (MTBC, the causative agent of tuberculosis (TB, is characterized by low sequence diversity making this bacterium one of the classical examples of a genetically monomorphic pathogen. Because of this limited DNA sequence variation, routine genotyping of clinical MTBC isolates for epidemiological purposes relies on highly discriminatory DNA fingerprinting methods based on mobile and repetitive genetic elements. According to the standard view, isolates exhibiting the same fingerprinting pattern are considered direct progeny of the same bacterial clone, and most likely reflect ongoing transmission or disease relapse within individual patients.Here we further investigated this assumption and used massively parallel whole-genome sequencing to compare one drug-susceptible (K-1 and one multidrug resistant (MDR isolate (K-2 of a rapidly spreading M. tuberculosis Beijing genotype clone from a high incidence region (Karakalpakstan, Uzbekistan. Both isolates shared the same IS6110 RFLP pattern and the same allele at 23 out of 24 MIRU-VNTR loci. We generated 23.9 million (K-1 and 33.0 million (K-2 paired 50 bp purity filtered reads corresponding to a mean coverage of 483.5 fold and 656.1 fold respectively. Compared with the laboratory strain H37Rv both Beijing isolates shared 1,209 SNPs. The two Beijing isolates differed by 130 SNPs and one large deletion. The susceptible isolate had 55 specific SNPs, while the MDR variant had 75 specific SNPs, including the five known resistance-conferring mutations.Our results suggest that M. tuberculosis isolates exhibiting identical DNA fingerprinting patterns can harbour substantial genomic diversity. Because this heterogeneity is not captured by traditional genotyping of MTBC, some aspects of the transmission dynamics of tuberculosis could be missed or misinterpreted. Furthermore, a valid differentiation between disease relapse and exogenous reinfection might be impossible using

  12. Genomic diversity among drug sensitive and multidrug resistant isolates of Mycobacterium tuberculosis with identical DNA fingerprints.

    Science.gov (United States)

    Niemann, Stefan; Köser, Claudio U; Gagneux, Sebastien; Plinke, Claudia; Homolka, Susanne; Bignell, Helen; Carter, Richard J; Cheetham, R Keira; Cox, Anthony; Gormley, Niall A; Kokko-Gonzales, Paula; Murray, Lisa J; Rigatti, Roberto; Smith, Vincent P; Arends, Felix P M; Cox, Helen S; Smith, Geoff; Archer, John A C

    2009-10-12

    Mycobacterium tuberculosis complex (MTBC), the causative agent of tuberculosis (TB), is characterized by low sequence diversity making this bacterium one of the classical examples of a genetically monomorphic pathogen. Because of this limited DNA sequence variation, routine genotyping of clinical MTBC isolates for epidemiological purposes relies on highly discriminatory DNA fingerprinting methods based on mobile and repetitive genetic elements. According to the standard view, isolates exhibiting the same fingerprinting pattern are considered direct progeny of the same bacterial clone, and most likely reflect ongoing transmission or disease relapse within individual patients. Here we further investigated this assumption and used massively parallel whole-genome sequencing to compare one drug-susceptible (K-1) and one multidrug resistant (MDR) isolate (K-2) of a rapidly spreading M. tuberculosis Beijing genotype clone from a high incidence region (Karakalpakstan, Uzbekistan). Both isolates shared the same IS6110 RFLP pattern and the same allele at 23 out of 24 MIRU-VNTR loci. We generated 23.9 million (K-1) and 33.0 million (K-2) paired 50 bp purity filtered reads corresponding to a mean coverage of 483.5 fold and 656.1 fold respectively. Compared with the laboratory strain H37Rv both Beijing isolates shared 1,209 SNPs. The two Beijing isolates differed by 130 SNPs and one large deletion. The susceptible isolate had 55 specific SNPs, while the MDR variant had 75 specific SNPs, including the five known resistance-conferring mutations. Our results suggest that M. tuberculosis isolates exhibiting identical DNA fingerprinting patterns can harbour substantial genomic diversity. Because this heterogeneity is not captured by traditional genotyping of MTBC, some aspects of the transmission dynamics of tuberculosis could be missed or misinterpreted. Furthermore, a valid differentiation between disease relapse and exogenous reinfection might be impossible using standard

  13. ORF Alignment: NC_002755 [GENIUS II[Archive

    Lifescience Database Archive (English)

    Full Text Available NC_002755 gi|15841902 >1xsfA 1 103 24 123 7e-24 ... ref|NP_216905.1| PROBABLE RESUSCITATION...-PROMOTING FACTOR RPFD [Mycobacterium ... tuberculosis H37Rv] ref|NP_856059.1| PROBABLE ... RESUSCITATION...-PROMOTING FACTOR RPFD [Mycobacterium bovis ... AF2122/97] emb|CAB03736.1| PROBABLE ... RESUSCITATION...berculosis CDC1551] emb|CAD97271.1| ... PROBABLE RESUSCITATION-PROMOTING FACTOR RPFD ... [Myco

  14. ORF Alignment: NC_002945 [GENIUS II[Archive

    Lifescience Database Archive (English)

    Full Text Available NC_002945 gi|31793566 >1xsfA 1 103 24 123 7e-24 ... ref|NP_216905.1| PROBABLE RESUSCITATION...-PROMOTING FACTOR RPFD [Mycobacterium ... tuberculosis H37Rv] ref|NP_856059.1| PROBABLE ... RESUSCITATION...-PROMOTING FACTOR RPFD [Mycobacterium bovis ... AF2122/97] emb|CAB03736.1| PROBABLE ... RESUSCITATION...berculosis CDC1551] emb|CAD97271.1| ... PROBABLE RESUSCITATION-PROMOTING FACTOR RPFD ... [Myco

  15. ORF Alignment: NC_000962 [GENIUS II[Archive

    Lifescience Database Archive (English)

    Full Text Available NC_000962 gi|15609526 >1xsfA 1 103 24 123 7e-24 ... ref|NP_216905.1| PROBABLE RESUSCITATION...-PROMOTING FACTOR RPFD [Mycobacterium ... tuberculosis H37Rv] ref|NP_856059.1| PROBABLE ... RESUSCITATION...-PROMOTING FACTOR RPFD [Mycobacterium bovis ... AF2122/97] emb|CAB03736.1| PROBABLE ... RESUSCITATION...berculosis CDC1551] emb|CAD97271.1| ... PROBABLE RESUSCITATION-PROMOTING FACTOR RPFD ... [Myco

  16. ORF Alignment: NC_000962 [GENIUS II[Archive

    Lifescience Database Archive (English)

    Full Text Available NC_000962 gi|15609358 >1v4aA 6 435 65 483 2e-72 ... ref|NP_216737.1| GLUTAMATE-AMMONIA...erium tuberculosis H37Rv] ref|NP_855894.1| ... GLUTAMATE-AMMONIA-LIGASE ADENYLYLTRANSFERASE GLNE ... ... AF2122/97] emb|CAA94664.1| ... GLUTAMATE-AMMONIA-LIGASE ADENYLYLTRANSFERASE GLNE ... (Glutami...se] adenylyltransferase) ... (Glutamine-synthetase adenylyltransferase) (ATase) ... emb|CAD97098.1| GLUTAMATE-AMMONIA

  17. ORF Alignment: NC_002755 [GENIUS II[Archive

    Lifescience Database Archive (English)

    Full Text Available NC_002755 gi|15841713 >1v4aA 6 435 65 483 2e-72 ... ref|NP_216737.1| GLUTAMATE-AMMONIA...erium tuberculosis H37Rv] ref|NP_855894.1| ... GLUTAMATE-AMMONIA-LIGASE ADENYLYLTRANSFERASE GLNE ... ... AF2122/97] emb|CAA94664.1| ... GLUTAMATE-AMMONIA-LIGASE ADENYLYLTRANSFERASE GLNE ... (Glutami...se] adenylyltransferase) ... (Glutamine-synthetase adenylyltransferase) (ATase) ... emb|CAD97098.1| GLUTAMATE-AMMONIA

  18. ORF Alignment: NC_002945 [GENIUS II[Archive

    Lifescience Database Archive (English)

    Full Text Available NC_002945 gi|31793401 >1v4aA 6 435 65 483 2e-72 ... ref|NP_216737.1| GLUTAMATE-AMMONIA...erium tuberculosis H37Rv] ref|NP_855894.1| ... GLUTAMATE-AMMONIA-LIGASE ADENYLYLTRANSFERASE GLNE ... ... AF2122/97] emb|CAA94664.1| ... GLUTAMATE-AMMONIA-LIGASE ADENYLYLTRANSFERASE GLNE ... (Glutami...se] adenylyltransferase) ... (Glutamine-synthetase adenylyltransferase) (ATase) ... emb|CAD97098.1| GLUTAMATE-AMMONIA

  19. Lymphatic endothelial cells are a replicative niche for Mycobacterium tuberculosis

    Science.gov (United States)

    Lerner, Thomas R.; de Souza Carvalho-Wodarz, Cristiane; Repnik, Urska; Russell, Matthew R.G.; Borel, Sophie; Diedrich, Collin R.; Rohde, Manfred; Wainwright, Helen; Collinson, Lucy M.; Wilkinson, Robert J.; Griffiths, Gareth; Gutierrez, Maximiliano G.

    2016-01-01

    In extrapulmonary tuberculosis, the most common site of infection is within the lymphatic system, and there is growing recognition that lymphatic endothelial cells (LECs) are involved in immune function. Here, we identified LECs, which line the lymphatic vessels, as a niche for Mycobacterium tuberculosis in the lymph nodes of patients with tuberculosis. In cultured primary human LECs (hLECs), we determined that M. tuberculosis replicates both in the cytosol and within autophagosomes, but the bacteria failed to replicate when the virulence locus RD1 was deleted. Activation by IFN-γ induced a cell-autonomous response in hLECs via autophagy and NO production that restricted M. tuberculosis growth. Thus, depending on the activation status of LECs, autophagy can both promote and restrict replication. Together, these findings reveal a previously unrecognized role for hLECs and autophagy in tuberculosis pathogenesis and suggest that hLECs are a potential niche for M. tuberculosis that allows establishment of persistent infection in lymph nodes. PMID:26901813

  20. Polymorphisms in Isoniazid and Prothionamide Resistance Genes of the Mycobacterium tuberculosis Complex

    KAUST Repository

    Projahn, M.; Koser, C. U.; Homolka, S.; Summers, D. K.; Archer, John A.C.; Niemann, S.

    2011-01-01

    Sequence analyses of 74 strains that encompassed major phylogenetic lineages of the Mycobacterium tuberculosis complex revealed 10 polymorphisms in mshA (Rv0486) and four polymorphisms in inhA (Rv1484) that were not responsible for isoniazid or prothionamide resistance. Instead, some of these mutations were phylogenetically informative. This genetic diversity must be taken into consideration for drug development and for the design of molecular tests for drug resistance.

  1. Polymorphisms in Isoniazid and Prothionamide Resistance Genes of the Mycobacterium tuberculosis Complex

    KAUST Repository

    Projahn, M.

    2011-06-27

    Sequence analyses of 74 strains that encompassed major phylogenetic lineages of the Mycobacterium tuberculosis complex revealed 10 polymorphisms in mshA (Rv0486) and four polymorphisms in inhA (Rv1484) that were not responsible for isoniazid or prothionamide resistance. Instead, some of these mutations were phylogenetically informative. This genetic diversity must be taken into consideration for drug development and for the design of molecular tests for drug resistance.

  2. Low dose aerosol fitness at the innate phase of murine infection better predicts virulence amongst clinical strains of Mycobacterium tuberculosis.

    Science.gov (United States)

    Caceres, Neus; Llopis, Isaac; Marzo, Elena; Prats, Clara; Vilaplana, Cristina; de Viedma, Dario Garcia; Samper, Sofía; Lopez, Daniel; Cardona, Pere-Joan

    2012-01-01

    Evaluation of a quick and easy model to determine the intrinsic ability of clinical strains to generate active TB has been set by assuming that this is linked to the fitness of Mycobacterium tuberculosis strain at the innate phase of the infection. Thus, the higher the bacillary load, the greater the possibility of inducting liquefaction, and thus active TB, once the adaptive response is set. The virulence of seven clinical Mycobacterium tuberculosis strains isolated in Spain was tested by determining the bacillary concentration in the spleen and lung of mice at weeks 0, 1 and 2 after intravenous (IV) inoculation of 10⁴ CFU, and by determining the growth in vitro until the stationary phase had been reached. Cord distribution automated analysis showed two clear patterns related to the high and low fitness in the lung after IV infection. This pattern was not seen in the in vitro fitness tests, which clearly favored the reference strain (H37Rv). Subsequent determination using a more physiological low-dose aerosol (AER) inoculation with 10² CFU showed a third pattern in which the three best values coincided with the highest dissemination capacity according to epidemiological data. The fitness obtained after low dose aerosol administration in the presence of the innate immune response is the most predictive factor for determining the virulence of clinical strains. This gives support to a mechanism of the induction of active TB derived from the dynamic hypothesis of latent tuberculosis infection.

  3. Synthesis and Antibacterial, Antimycobacterial Activity of 7-[4-{5-(2-Oxo-2-p-substituted-phenylethylthio-1,3,4-thiadiazol-2yl}-3′-methylpiperazinyl] Quinolone Derivatives

    Directory of Open Access Journals (Sweden)

    Kapil M. Agrawal

    2013-01-01

    Full Text Available Currently we screened 9 newer synthesized fluoroquinolone derivatives 5(a–i against two gram positive, two gram negative bacterial strains, and mycobacterium tuberculosis H37Rv. These analogues were confirmed by IR, 1H NMR, 13C NMR, and elemental analysis. Selected compounds were confirmed by mass spectral study. Compounds 5(b–d showed comparable biological activities and other analogues of the series showed moderate-to-weak activity, as compared to the reference marketed drugs.

  4. Clinical significance of 2 h plasma concentrations of first-line anti-tuberculosis drugs

    DEFF Research Database (Denmark)

    Prahl, Julie B; Johansen, Isik S; Cohen, Arieh S

    2014-01-01

    OBJECTIVES: To study 2 h plasma concentrations of the first-line tuberculosis drugs isoniazid, rifampicin, ethambutol and pyrazinamide in a cohort of patients with tuberculosis in Denmark and to determine the relationship between the concentrations and the clinical outcome. METHODS: After 6......-207 days of treatment (median 34 days) 2 h blood samples were collected from 32 patients with active tuberculosis and from three patients receiving prophylactic treatment. Plasma concentrations were determined using LC-MS/MS. Normal ranges were obtained from the literature. Clinical charts were reviewed...... failure occurred more frequently when the concentrations of isoniazid and rifampicin were both below the normal ranges (P = 0.013) and even more frequently when they were below the median 2 h drug concentrations obtained in the study (P = 0.005). CONCLUSIONS: At 2 h, plasma concentrations of isoniazid...

  5. The Effects of First-Line Anti-Tuberculosis Drugs on the Actions of Vitamin D in Human Macrophages.

    Science.gov (United States)

    Chesdachai, Supavit; Zughaier, Susu M; Hao, Li; Kempker, Russell R; Blumberg, Henry M; Ziegler, Thomas R; Tangpricha, Vin

    2016-12-01

    Tuberculosis (TB) is a major global health problem. Patients with TB have a high rate of vitamin D deficiency, both at diagnosis and during the course of treatment with anti-tuberculosis drugs. Although data on the efficacy of vitamin D supplementation on Mycobacterium tuberculosis (Mtb) clearance is uncertain from randomized controlled trials (RCTs), vitamin D enhances the expression of the anti-microbial peptide human cathelicidin (hCAP18) in cultured macrophages in vitro. One possible explanation for the mixed (primarily negative) results of RCTs examining vitamin D treatment in TB infection is that anti-TB drugs given to enrolled subjects may impact actions of vitamin D to enhance cathelicidin in macrophages. To address this hypothesis, human macrophage-like monocytic (THP-1) cells were treated with varying doses of first-line anti-tuberculosis drugs in the presence of the active form of vitamin D, 1N1,25-dihydroxyvitamin D 3 (1,25(OH) 2 D 3 ). The expression of hCAP18 was determined by quantitative reverse transcriptase polymerase chain reaction (qRT-PCR). 1,25(OH) 2 D 3 strongly induced expression of hCAP18 mRNA in THP-1 cells (fold-change from control). The combination of the standard 4-drug TB therapy (isoniazid, rifampicin, pyrazinamide and ethambutol) in the cultured THP-1 cells demonstrated a significant decrease of hCAP18 mRNA at the dosage of 10 ug/mL. In 31 subjects with newly diagnosed drug-sensitive TB randomized to either high-dose vitamin D 3 (1.2 million IU over 8 weeks, n=13) versus placebo (n=18), there was no change from baseline to week 8 in hCAP18 mRNA levels in peripheral blood mononuclear cells or in plasma concentrations of LL-37, the protein product of hCAP18.These data suggest that first-line anti-TB drugs may alter the vitamin D-dependent increase in hCAP18 and LL-37 human macrophages.

  6. Mycobacterium tuberculosis lipolytic enzymes as potential biomarkers for the diagnosis of active tuberculosis.

    Directory of Open Access Journals (Sweden)

    Belinda Brust

    Full Text Available BACKGROUND: New diagnosis tests are urgently needed to address the global tuberculosis (TB burden and to improve control programs especially in resource-limited settings. An effective in vitro diagnostic of TB based on serological methods would be regarded as an attractive progress because immunoassays are simple, rapid, inexpensive, and may offer the possibility to detect cases missed by standard sputum smear microscopy. However, currently available serology tests for TB are highly variable in sensitivity and specificity. Lipolytic enzymes have recently emerged as key factors in lipid metabolization during dormancy and/or exit of the non-replicating growth phase, a prerequisite step of TB reactivation. The focus of this study was to analyze and compare the potential of four Mycobacterium tuberculosis lipolytic enzymes (LipY, Rv0183, Rv1984c and Rv3452 as new markers in the serodiagnosis of active TB. METHODS: Recombinant proteins were produced and used in optimized ELISA aimed to detect IgG and IgM serum antibodies against the four lipolytic enzymes. The capacity of the assays to identify infection was evaluated in patients with either active TB or latent TB and compared with two distinct control groups consisting of BCG-vaccinated blood donors and hospitalized non-TB individuals. RESULTS: A robust humoral response was detected in patients with active TB whereas antibodies against lipolytic enzymes were infrequently detected in either uninfected groups or in subjects with latent infection. High specifity levels, ranging from 93.9% to 97.5%, were obtained for all four antigens with sensitivity values ranging from 73.4% to 90.5%, with Rv3452 displaying the highest performances. Patients with active TB usually exhibited strong IgG responses but poor IgM responses. CONCLUSION: These results clearly indicate that the lipolytic enzymes tested are strongly immunogenic allowing to distinguish active from latent TB infections. They appear as potent

  7. MicroRNA-365 in macrophages regulates Mycobacterium tuberculosis-induced active pulmonary tuberculosis via interleukin-6.

    Science.gov (United States)

    Song, Qingzhang; Li, Hui; Shao, Hua; Li, Chunling; Lu, Xiao

    2015-01-01

    The present study is to investigate the relationship between microRNA (miR)-365 expression and the levels of interleukin (IL)-6 mRNA and protein in patients with active tuberculosis. From June 2011 to June 2014, 48 patients with active pulmonary tuberculosis induced by Mycobacterium tuberculosis were included in the study. In addition, 23 healthy subjects were enrolled as control. Macrophages were collected by pulmonary alveolus lavage. In addition, serum and mononuclear cells were isolated from peripheral blood. The levels of miR-365 and IL-6 in macrophages, mononuclear cells and serum were determined using quantitative real-time polymerase chain reaction. The protein expression of IL-6 in macrophages and mononuclear cells was measured using Western blotting, while that in serum was detected by enzyme-linked immunoabsorbent assay. Expression of IL-6 mRNA and protein was significantly enhanced in patients with active pulmonary tuberculosis. Increase of IL-6 protein concentration in serum was probably due to the release of IL-6 protein from mononuclear cells in the blood. In addition, miR-365 levels were significantly lowered in patients with active pulmonary tuberculosis. Up-regulated IL-6 expression in macrophages, mononuclear cells and serum in patients with active pulmonary tuberculosis is related to the down-regulation of miR-365, suggesting that miR-365 may regulate the occurrence and immune responses of active pulmonary tuberculosis via IL-6.

  8. NOD2 enhances the innate response of alveolar macrophages to Mycobacterium tuberculosis in humans.

    Science.gov (United States)

    Juárez, Esmeralda; Carranza, Claudia; Hernández-Sánchez, Fernando; León-Contreras, Juan C; Hernández-Pando, Rogelio; Escobedo, Dante; Torres, Martha; Sada, Eduardo

    2012-04-01

    A role for the nucleotide-binding oligomerization domain 2 (NOD2) receptor in pulmonary innate immune responses has recently been explored. In the present study, we investigated the role that NOD2 plays in human alveolar macrophage innate responses and determined its involvement in the response to infection with virulent Mycobacterium tuberculosis. Our results showed that NOD2 was expressed in human alveolar macrophages, and significant amounts of IL-1β, IL-6, and TNF-α were produced upon ligand recognition with muramyldipeptide (MDP). NOD2 ligation induced the transcription and protein expression of the antimicrobial peptide LL37 and the autophagy enzyme IRGM in alveolar macrophages, demonstrating a novel function for this receptor in these cells. MDP treatment of alveolar macrophages improved the intracellular growth control of virulent M. tuberculosis; this was associated with a significant release of TNF-α and IL-6 and overexpression of bactericidal LL37. In addition, the autophagy proteins IRGM, LC3 and ATG16L1 were recruited to the bacteria-containing autophagosome after treatment with MDP. In conclusion, our results suggest that NOD2 can modulate the innate immune response of alveolar macrophages and play a role in the initial control of respiratory M. tuberculosis infections. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Comparative analysis of mycobacterium and related actinomycetes yields insight into the evolution of mycobacterium tuberculosis pathogenesis

    Directory of Open Access Journals (Sweden)

    McGuire Abigail

    2012-03-01

    Full Text Available Abstract Background The sequence of the pathogen Mycobacterium tuberculosis (Mtb strain H37Rv has been available for over a decade, but the biology of the pathogen remains poorly understood. Genome sequences from other Mtb strains and closely related bacteria present an opportunity to apply the power of comparative genomics to understand the evolution of Mtb pathogenesis. We conducted a comparative analysis using 31 genomes from the Tuberculosis Database (TBDB.org, including 8 strains of Mtb and M. bovis, 11 additional Mycobacteria, 4 Corynebacteria, 2 Streptomyces, Rhodococcus jostii RHA1, Nocardia farcinia, Acidothermus cellulolyticus, Rhodobacter sphaeroides, Propionibacterium acnes, and Bifidobacterium longum. Results Our results highlight the functional importance of lipid metabolism and its regulation, and reveal variation between the evolutionary profiles of genes implicated in saturated and unsaturated fatty acid metabolism. It also suggests that DNA repair and molybdopterin cofactors are important in pathogenic Mycobacteria. By analyzing sequence conservation and gene expression data, we identify nearly 400 conserved noncoding regions. These include 37 predicted promoter regulatory motifs, of which 14 correspond to previously validated motifs, as well as 50 potential noncoding RNAs, of which we experimentally confirm the expression of four. Conclusions Our analysis of protein evolution highlights gene families that are associated with the adaptation of environmental Mycobacteria to obligate pathogenesis. These families include fatty acid metabolism, DNA repair, and molybdopterin biosynthesis. Our analysis reinforces recent findings suggesting that small noncoding RNAs are more common in Mycobacteria than previously expected. Our data provide a foundation for understanding the genome and biology of Mtb in a comparative context, and are available online and through TBDB.org.

  10. Prime-boost BCG vaccination with DNA vaccines based in β-defensin-2 and mycobacterial antigens ESAT6 or Ag85B improve protection in a tuberculosis experimental model.

    Science.gov (United States)

    Cervantes-Villagrana, Alberto R; Hernández-Pando, Rogelio; Biragyn, Arya; Castañeda-Delgado, Julio; Bodogai, Monica; Martínez-Fierro, Margarita; Sada, Eduardo; Trujillo, Valentin; Enciso-Moreno, Antonio; Rivas-Santiago, Bruno

    2013-01-11

    The World Health Organization (WHO) has estimated that there are about 8 million new cases annually of active Tuberculosis (TB). Despite its irregular effectiveness (0-89%), the Bacillus Calmette-Guérin) BCG is the only vaccine available worldwide for prevention of TB; thus, the design is important of novel and more efficient vaccination strategies. Considering that β-defensin-2 is an antimicrobial peptide that induces dendritic cell maturation through the TLR-4 receptor and that both ESAT-6 and Ag85B are immunodominant mycobacterial antigens and efficient activators of the protective immune response, we constructed two DNA vaccines by the fusion of the gene encoding β-defensin-2 and antigens ESAT6 (pDE) and 85B (pDA). After confirming efficient local antigen expression that induced high and stable Interferon gamma (IFN-γ) production in intramuscular (i.m.) vaccinated Balb/c mice, groups of mice were vaccinated with DNA vaccines in a prime-boost regimen with BCG and with BCG alone, and 2 months later were challenged with the mild virulence reference strain H37Rv and the highly virulent clinical isolate LAM 5186. The level of protection was evaluated by survival, lung bacilli burdens, and extension of tissue damage (pneumonia). Vaccination with both DNA vaccines showed similar protection to that of BCG. After the challenge with the highly virulent Mycobacterium tuberculosis strain, animals that were prime-boosted with BCG and then boosted with both DNA vaccines showed significant higher survival and less tissue damage than mice vaccinated only with BCG. These results suggest that improvement of BCG vaccination, such as the prime-boost DNA vaccine, represents a more efficient vaccination scheme against TB. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. PCR (Polymerase Chain Reaction) Assay On Antibiotics Resistant Clinical Isolates Of Mycobacterium tuberculosis

    International Nuclear Information System (INIS)

    R, Maria Lina; S, Dadang; Suhadi, F.

    2000-01-01

    To detect to DNA of 9 drug-resistant isolates of m. tuberculosis such as isoniazid, streptomycin, isoniazid + streptomycin and isoniazid + rifampisin- resistant isolates, the DNA amplification by using PCR assay was carried out after lysing the bacterial cells. Two primer pairs for amplification used were Pt8 and Pt9 and Pt3 and Pt6. The amplified DNA taeget of 8 drug-resistant isolates and 1 drug-resistant isolate by means Pt8 8 Pt9 primer, gave the positive and negative result, respectively. Presence of amplified DNA target fragmens/bands on agarose gel, showed the positive result and vice verse. PCR process by using Pt3 and Pt6 primer revealed the positive results on 2 drug-resistant islates, whereas there was no amplified DNA bands from the other 7 isolates. DNA amplification by using either Pt8 and Pt9 or Pt3 and Pt6 primers occurred on H sub.37Rv strain DNA. Size of the amplified DNA products with Pt8 and Pt9 and Pt3 and Pt6 primers were 541 bp and 188 bp, respectively

  12. Role of Bacterioferritin & Ferritin in M. tuberculosis Pathogenesis and Drug Resistance: A Future Perspective by Interactomic Approach

    Directory of Open Access Journals (Sweden)

    Divakar Sharma

    2017-06-01

    Full Text Available Tuberculosis is caused by Mycobacterium tuberculosis, one of the most successful and deadliest human pathogen. Aminoglycosides resistance leads to emergence of extremely drug resistant strains of M. tuberculosis. Iron is crucial for the biological functions of the cells. Iron assimilation, storage and their utilization is not only involved in pathogenesis but also in emergence of drug resistance strains. We previously reported that iron storing proteins (bacterioferritin and ferritin were found to be overexpressed in aminoglycosides resistant isolates. In this study we performed the STRING analysis of bacterioferritin & ferritin proteins and predicted their interactive partners [ferrochelatase (hemH, Rv1877 (hypothetical protein/probable conserved integral membrane protein, uroporphyrinogen decarboxylase (hemE trigger factor (tig, transcriptional regulatory protein (MT3948, hypothetical protein (MT1928, glnA3 (glutamine synthetase, molecular chaperone GroEL (groEL1 & hsp65, and hypothetical protein (MT3947]. We suggested that interactive partners of bacterioferritin and ferritin are directly or indirectly involved in M. tuberculosis growth, homeostasis, iron assimilation, virulence, resistance, and stresses.

  13. Difference in TB10.4 T-cell epitope recognition following immunization with recombinant TB10.4, BCG or infection with Mycobacterium tuberculosis

    DEFF Research Database (Denmark)

    Billeskov, Rolf; Grandal, Michael V; Poulsen, Christian

    2010-01-01

    vaccine Ag, TB10.4, in a recombinant form, or when expressed by the pathogen Mycobacterium tuberculosis (M.tb), or by the current anti-tuberculosis vaccine, Mycobacterium bovis BCG. We showed that BCG and M.tb induced a similar CD4(+) T-cell specific TB10.4 epitope-pattern, which differed completely from...... that induced by recombinant TB10.4. This difference was not due to post-translational modifications of TB10.4 or because TB10.4 is secreted from BCG and M.tb as a complex with Rv0287. In addition, BCG and TB10.4/CAF01 were both taken up by DC and macrophages in vivo, and in vitro uptake experiments revealed...... that both TB10.4 and BCG were transported to Lamp(+)-compartments. BCG and TB10.4 however, were directed to different types of Lamp(+)-compartments in the same APC, which may lead to different epitope recognition patterns. In conclusion, we show that different vectors can induce completely different...

  14. Versatility of 7-Substituted Coumarin Molecules as Antimycobacterial Agents, Neuronal Enzyme Inhibitors and Neuroprotective Agents

    Directory of Open Access Journals (Sweden)

    Erika Kapp

    2017-09-01

    Full Text Available A medium-throughput screen using Mycobacterium tuberculosis H37Rv was employed to screen an in-house library of structurally diverse compounds for antimycobacterial activity. In this initial screen, eleven 7-substituted coumarin derivatives with confirmed monoamine oxidase-B and cholinesterase inhibitory activities, demonstrated growth inhibition of more than 50% at 50 µM. This prompted further exploration of all the 7-substituted coumarins in our library. Four compounds showed promising MIC99 values of 8.31–29.70 µM and 44.15–57.17 µM on M. tuberculosis H37Rv in independent assays using GAST-Fe and 7H9+OADC media, respectively. These compounds were found to bind to albumin, which may explain the variations in MIC between the two assays. Preliminary data showed that they were able to maintain their activity in fluoroquinolone resistant mycobacteria. Structure-activity relationships indicated that structural modification on position 4 and/or 7 of the coumarin scaffold could direct the selectivity towards either the inhibition of neuronal enzymes or the antimycobacterial effect. Moderate cytotoxicities were observed for these compounds and slight selectivity towards mycobacteria was indicated. Further neuroprotective assays showed significant neuroprotection for selected compounds irrespective of their neuronal enzyme inhibitory properties. These coumarin molecules are thus interesting lead compounds that may provide insight into the design of new antimicrobacterial and neuroprotective agents.

  15. Detection of rifampin resistance patterns in Mycobacterium tuberculosis strains isolated in Iran by polymerase chain reaction-single-strand conformation polymorphism and direct sequencing methods

    Directory of Open Access Journals (Sweden)

    Bahram Nasr Isfahani

    2006-09-01

    Full Text Available Mutations in the rpoB locus confer conformational changes leading to defective binding of rifampin (RIF to rpoB and consequently resistance in Mycobacterium tuberculosis. Polymerase chain reaction-single-strand conformation polymorphism (PCR-SSCP was established as a rapid screening test for the detection of mutations in the rpoB gene, and direct sequencing has been unambiguously applied to characterize mutations. A total of 37 of Iranian isolates of M. tuberculosis, 16 sensitive and 21 resistant to RIF, were used in this study. A 193-bp region of the rpoB gene was amplified and PCR-SSCP patterns were determined by electrophoresis in 10% acrylamide gel and silver staining. Also, 21 samples of 193-bp rpoB amplicons with different PCR-SSCP patterns from RIFr and 10 from RIFs were sequenced. Seven distinguishable PCR-SSCP patterns were recognized in the 21 Iranian RIFr strains, while 15 out of 16 RIFs isolates demonstrated PCR-SSCP banding patterns similar to that of sensitive standard strain H37Rv. However one of the sensitive isolates demonstrated a different pattern. There were seen six different mutations in the amplified region of rpoB gene: codon 516(GAC/GTC, 523(GGG/GGT, 526(CAC/TAC, 531(TCG/TTG, 511(CTG/TTG, and 512(AGC/TCG. This study demonstrated the high specificity (93.8% and sensitivity (95.2% of PCR-SSCP method for detection of mutation in rpoB gene; 85.7% of RIFr strains showed a single mutation and 14.3% had no mutations. Three strains showed mutations caused polymorphism. Our data support the common notion that rifampin resistance genotypes are generally present mutations in codons 531 and 526, most frequently found in M. tuberculosis populations regardless of geographic origin.

  16. [Analysis of Koch phenomenon of Mycobacterium tuberculosis-infected guinea pigs vaccinated with recombinant tuberculosis vaccine AEC/BC02].

    Science.gov (United States)

    Lu, J B; Cheng, B W; Deng, H Q; Su, C; Shen, X B; Du, W X; Yang, L; Wang, G Z; Xu, M

    2016-07-01

    To observe the Koch phenomenon of Mycobacterium tuberculosis(MTB)-infected guinea pigs after vaccinated with killed H37Ra bacteria or tuberculosis vaccine candidate AEC/BC02. Eighteen guinea pigs were challenged subcutaneously with 5.0×10(3) CFU MTB and after 40 days were divided into 3 groups (6 per group): NS group, AEC/BC02 group and H37Ra group, which were injected intramuscularly 3 times at 1 day interval with normal saline, AEC/BC02 vaccine and killed H37Ra bacteria respectively. Three weeks after the first vaccination, all guinea pigs were sacrificed to evaluate gross pathological scores for liver, spleen and lung, bacterial loads in lung and spleen, and lung inflammation. The gross pathological score in H37Ra group (48±26) was lower than that in NS group(62±15), but the difference was not significant (t=1.093, P=0.300). The AEC/BC02 group had a significantly lower gross pathological score (36±15) than NS group (t=2.980, P=0.014). No significant difference between H37Ra group and AEC/BC02 group was observed (t=1.009, P=0.337). The spleen bacterial load [(5.31±0.80) log10 CFU]in H37Ra group was slightly lower than that in NS group[(5.57±0.75) log10 CFU] but the difference was not significant (t=1.581, P=0.574). In AEC/BC02 group bacterial load in the spleen was (4.64±0.64) log10 CFU and significantly lower than NS group (t=2.306, P=0.044) and no significant difference between H37Ra group and AEC/BC02 group was observed (t=1.602, P=0.140). Meanwhile, the lung bacterial load in AEC/BC02 group was (3.71±1.01) log10 CFU and in H37Ra group was (3.82±1.25) log10 CFU. Compared to (4.15±0.69) log10 CFU in the NS group, no significant differences were found (t=0.881, P=0.399; t=0.566, P=0.584, respectively). For the lung inflammation, the inflamed areas in H37Ra group were significantly larger [(33.0±4.4%)] than those in both NS group [(14.8±8.4) %, t=4.719, P=0.001] and AEC/BC02 group [(14.8±8.4) %, t=3.616, P=0.005], and no significant differences were

  17. NCBI nr-aa BLAST: CBRC-TGUT-37-0151 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-TGUT-37-0151 ref|YP_001289469.1| PE-PGRS family protein [Mycobacterium tuberculosis... F11] gb|ABR07867.1| PE-PGRS family protein [Mycobacterium tuberculosis F11] YP_001289469.1 3e-51 37% ...

  18. Queen of Peace Nursing Home, Churchfield, Knock, Mayo.

    LENUS (Irish Health Repository)

    Ryan, Ruth CM

    2011-10-24

    Abstract Background Dendritic cells (DCs) connect innate and adaptive immunity, and are necessary for an efficient CD4+ and CD8+ T cell response after infection with Mycobacterium tuberculosis (Mtb). We previously described the macrophage cell death response to Mtb infection. To investigate the effect of Mtb infection on human DC viability, we infected these phagocytes with different strains of Mtb and assessed viability, as well as DNA fragmentation and caspase activity. In parallel studies, we assessed the impact of infection on DC maturation, cytokine production and bacillary survival. Results Infection of DCs with live Mtb (H37Ra or H37Rv) led to cell death. This cell death proceeded in a caspase-independent manner, and without nuclear fragmentation. In fact, substrate assays demonstrated that Mtb H37Ra-induced cell death progressed without the activation of the executioner caspases, 3\\/7. Although the death pathway was triggered after infection, the DCs successfully underwent maturation and produced a host-protective cytokine profile. Finally, dying infected DCs were permissive for Mtb H37Ra growth. Conclusions Human DCs undergo cell death after infection with live Mtb, in a manner that does not involve executioner caspases, and results in no mycobactericidal effect. Nonetheless, the DC maturation and cytokine profile observed suggests that the infected cells can still contribute to TB immunity.

  19. Ülemiste City kvartal Tallinnas / Mattias Agabus, Eero Endjärv, Illimar Truverk...[jt.] ; fotod: Kaido Haagen

    Index Scriptorium Estoniae

    2008-01-01

    asendiplaan, 3 korruste plaani, 3 värv. välisvaadet, restorani Mercado sisevaade; projekteerijad: M. Agabus, E. Endjärv, I.Truverk (Agabus, Endjärv & Truverk Arhitektid); hoonete arhitektuurne osa: E. Endjärv; sisearhitektid: K. Lents, H. Kääramees, T. Aunre (restoran Mercado); konstruktorid: Ü. Suvemaa, A. Lehtla, K. Adoberg; maastikuarhitektuur: Ü. Grišakov, M. Agabus, E. Endjärv

  20. Expression, purification, crystallization and preliminary X-ray analysis of two arginine-biosynthetic enzymes from Mycobacterium tuberculosis

    International Nuclear Information System (INIS)

    Moradian, Fatemeh; Garen, Craig; Cherney, Leonid; Cherney, Maia; James, Michael N. G.

    2006-01-01

    Two enzymes responsible for arginine biosynthesis in M. tuberculosis were expressed in Escherichia coli, then purified to homogeneity. Preliminary X-ray analysis of diffraction-quality crystals grown from each enzyme are reported. The gene products of two open reading frames from Mycobacterium tuberculosis (Mtb) have been crystallized using the sitting-drop vapour-diffusion method. Rv1652 encodes a putative N-acetyl-γ-glutamyl-phosphate reductase (MtbAGPR), while the Rv1656 gene product is annotated as ornithine carbamoyltransferase (MtbOTC). Both MtbAGPR and MtbOTC were expressed in Escherichia coli, purified to homogeneity and crystallized. Native data for each crystal were collected to resolutions of 2.15 and 2.80 Å, respectively. Preliminary X-ray data are presented for both enzymes

  1. Age-Related Effect of Viral-Induced Wheezing in Severe Prematurity

    Directory of Open Access Journals (Sweden)

    Geovanny F. Perez

    2016-10-01

    Full Text Available Premature children are prone to severe viral respiratory infections in early life, but the age at which susceptibility peaks and disappears for each pathogen is unclear. Methods: A retrospective analysis was performed of the age distribution and clinical features of acute viral respiratory infections in full-term and premature children, aged zero to seven years. Results: The study comprised of a total of 630 hospitalizations (n = 580 children. Sixty-seven percent of these hospitalizations occurred in children born full-term (>37 weeks, 12% in preterm (32–37 weeks and 21% in severely premature children (<32 weeks. The most common viruses identified were rhinovirus (RV; 60% and respiratory syncytial virus (RSV; 17%. Age-distribution analysis of each virus identified that severely premature children had a higher relative frequency of RV and RSV in their first three years, relative to preterm or full-term children. Additionally, the probability of RV- or RSV-induced wheezing was higher overall in severely premature children less than three years old. Conclusions: Our results indicate that the vulnerability to viral infections in children born severely premature is more specific for RV and RSV and persists during the first three years of age. Further studies are needed to elucidate the age-dependent molecular mechanisms that underlie why premature infants develop RV- and RSV-induced wheezing in early life.

  2. Identification of a novel 27-kDa protein from Mycobacterium tuberculosis culture fluid by a monoclonal antibody specific for the Mycobacterium tuberculosis complex

    NARCIS (Netherlands)

    Rambukkana, A.; Das, P. K.; Kolk, A. H.; Burggraaf, J. D.; Kuijper, S.; Harboe, M.

    1993-01-01

    Mycobacterium tuberculosis antigens inducing species-specific immune responses are likely to be particularly important for serodiagnosis or for skin testing of tuberculosis. In the present study, we describe the characterization of two novel monoclonal antibodies (MoAbs) A3h4 (IgG2a) and B5g1 (IgM)

  3. Culture-independent detection and characterisation of Mycobacterium tuberculosis and M. africanum in sputum samples using shotgun metagenomics on a benchtop sequencer

    Directory of Open Access Journals (Sweden)

    Emma L. Doughty

    2014-09-01

    Full Text Available Tuberculosis remains a major global health problem. Laboratory diagnostic methods that allow effective, early detection of cases are central to management of tuberculosis in the individual patient and in the community. Since the 1880s, laboratory diagnosis of tuberculosis has relied primarily on microscopy and culture. However, microscopy fails to provide species- or lineage-level identification and culture-based workflows for diagnosis of tuberculosis remain complex, expensive, slow, technically demanding and poorly able to handle mixed infections. We therefore explored the potential of shotgun metagenomics, sequencing of DNA from samples without culture or target-specific amplification or capture, to detect and characterise strains from the Mycobacterium tuberculosis complex in smear-positive sputum samples obtained from The Gambia in West Africa. Eight smear- and culture-positive sputum samples were investigated using a differential-lysis protocol followed by a kit-based DNA extraction method, with sequencing performed on a benchtop sequencing instrument, the Illumina MiSeq. The number of sequence reads in each sputum-derived metagenome ranged from 989,442 to 2,818,238. The proportion of reads in each metagenome mapping against the human genome ranged from 20% to 99%. We were able to detect sequences from the M. tuberculosis complex in all eight samples, with coverage of the H37Rv reference genome ranging from 0.002X to 0.7X. By analysing the distribution of large sequence polymorphisms (deletions and the locations of the insertion element IS6110 and single nucleotide polymorphisms (SNPs, we were able to assign seven of eight metagenome-derived genomes to a species and lineage within the M. tuberculosis complex. Two metagenome-derived mycobacterial genomes were assigned to M. africanum, a species largely confined to West Africa; the others that could be assigned belonged to lineages T, H or LAM within the clade of “modern” M. tuberculosis

  4. Antimycobacterial, docking and molecular dynamic studies of pentacyclic triterpenes from Buddleja saligna leaves.

    Science.gov (United States)

    Singh, Alveera; Venugopala, Katharigatta N; Khedr, Mohammed A; Pillay, Mellendran; Nwaeze, Kenneth U; Coovadia, Yacoob; Shode, Francis; Odhav, Bharti

    2017-09-01

    Buddleja saligna (family Buddlejaceae) is a medicinal plant endemic to South Africa. Two isomeric pentacyclic triterpenes, oleanolic acid and ursolic acid, were isolated from the leaves of B. saligna using silica gel column chromatography. Compounds oleanolic acid and ursolic acid were subjected to derivatization with acetic anhydride in the presence of pyridine to obtain oleanolic acid-3-acetate and ursolic acid-3-acetate, respectively. The structures of these compounds were fully characterized by detailed nuclear magnetic resonance (NMR) investigations, which included 1 H and 13 C NMR. Molecular docking studies predicted the free binding energy of the four triterpenes inside the steroid binding pocket of Mycobacterium tuberculosis fadA5 thiolase compared to a reported inhibitor. Thus, their ability to inhibit the growth of M. tuberculosis was predicted and was confirmed to possess significant antimycobacterial activity when tested against Mycobacterium smegmatis, M. tuberculosis H 37 Rv (ATCC 25177), clinical isolates of multi-drug-resistant M. tuberculosis (MDR-TB) and extensively drug-resistant M. tuberculosis (XDR-TB) using the Micro Alamar Blue Assay. Ursolic acid was isolated from this plant for the first time.

  5. A non-sense mutation in the putative anti-mutator gene ada/alkA of Mycobacterium tuberculosis and M. bovis isolates suggests convergent evolution

    Directory of Open Access Journals (Sweden)

    Gicquel Brigitte

    2007-05-01

    Full Text Available Abstract Background Previous studies have suggested that variations in DNA repair genes of W-Beijing strains may have led to transient mutator phenotypes which in turn may have contributed to host adaptation of this strain family. Single nucleotide polymorphism (SNP in the DNA repair gene mutT1 was identified in MDR-prone strains from the Central African Republic. A Mycobacteriumtuberculosis H37Rv mutant inactivated in two DNA repair genes, namely ada/alkA and ogt, was shown to display a hypermutator phenotype. We then looked for polymorphisms in these genes in Central African Republic strains (CAR. Results In this study, 55 MDR and 194 non-MDR strains were analyzed. Variations in DNA repair genes ada/alkA and ogt were identified. Among them, by comparison to M. tuberculosis published sequences, we found a non-sense variation in ada/alkA gene which was also observed in M. bovis AF2122 strain. SNPs that are present in the adjacent regions to the amber variation are different in M. bovis and in M. tuberculosis strain. Conclusion An Amber codon was found in the ada/alkA locus of clustered M. tuberculosis isolates and in M. bovis strain AF2122. This is likely due to convergent evolution because SNP differences between strains are incompatible with horizontal transfer of an entire gene. This suggests that such a variation may confer a selective advantage and be implicated in hypermutator phenotype expression, which in turn contributes to adaptation to environmental changes.

  6. SUSCEPTIBILITY OF RIFAMPICIN-ISONIAZID RESISTANT MYCOBACTERIUM TUBERCULOSIS ISOLATES AGAINST LEVOFLOXACIN

    Directory of Open Access Journals (Sweden)

    A. H. Kurniawan

    2016-01-01

    Full Text Available Background: Tuberculosis (TB is a high burden disease in Indonesia with multidrug-resistant (MDR TB incidence started to increase. Treatment success of MDR-TB globally was low in number than it was targeted which was especially caused by fluoroquinolone resistance. One of the fluoroquinolone is levofloxacin, an antibiotic that has been widely used irrationally as antimicrobial treatment. Therefore, this study investigated the sensitivity and MBC of MDR Mycobacterium tuberculosis isolates against Levofloxacin. Method: The susceptibility test for MDR-Mycobacterium tuberculosis on levofloxacin by standard method with levofloxacin were on concentrations 0,5 μg/ml, 1 μg/ml, and 2 μg/ml. Sample of 8 strains MDR-Mycobacterium tuberculosis were cultured with each concentrations on Middlebrook 7H9 for 1 week incubation. Next, each of the incubated concentration was subcultured on solid media Middlebrook 7H10 for 3 weeks incubation. Colonized agar plates after 3 weeks incubation were confirmed with acid-fast stain. Results: On MB 7H10 with levofloxacin concentration 2 μg/ml showed bactericidal effect 100% by no MDR Mycobacterium tuberculosis colony grew (0/8 while the MB 7H10 with levofloxacin concentration 1 μg/ml and 0,5 μg/ml showed the bactericidal effect 37,5% and 25% respectively. The colonized agar plate implied that the MDR Mycobacterium tuberculosis with levofloxacin concentration 1 μg/ml (5/8 and 0,5 μg/ml (6/8 grew well. Conclusion: Levofloxacin concentration 2 μg/ml was susceptible on MDR Mycobacterium tuberculosis. The concentration 2 μg/ml of levofloxacin could be considered as MBC.

  7. Elucidation and chemical modulation of sulfolipid-1 biosynthesis in Mycobacterium tuberculosis.

    Science.gov (United States)

    Seeliger, Jessica C; Holsclaw, Cynthia M; Schelle, Michael W; Botyanszki, Zsofia; Gilmore, Sarah A; Tully, Sarah E; Niederweis, Michael; Cravatt, Benjamin F; Leary, Julie A; Bertozzi, Carolyn R

    2012-03-09

    Mycobacterium tuberculosis possesses unique cell-surface lipids that have been implicated in virulence. One of the most abundant is sulfolipid-1 (SL-1), a tetraacyl-sulfotrehalose glycolipid. Although the early steps in SL-1 biosynthesis are known, the machinery underlying the final acylation reactions is not understood. We provide genetic and biochemical evidence for the activities of two proteins, Chp1 and Sap (corresponding to gene loci rv3822 and rv3821), that complete this pathway. The membrane-associated acyltransferase Chp1 accepts a synthetic diacyl sulfolipid and transfers an acyl group regioselectively from one donor substrate molecule to a second acceptor molecule in two successive reactions to yield a tetraacylated product. Chp1 is fully active in vitro, but in M. tuberculosis, its function is potentiated by the previously identified sulfolipid transporter MmpL8. We also show that the integral membrane protein Sap and MmpL8 are both essential for sulfolipid transport. Finally, the lipase inhibitor tetrahydrolipstatin disrupts Chp1 activity in M. tuberculosis, suggesting an avenue for perturbing SL-1 biosynthesis in vivo. These data complete the SL-1 biosynthetic pathway and corroborate a model in which lipid biosynthesis and transmembrane transport are coupled at the membrane-cytosol interface through the activity of multiple proteins, possibly as a macromolecular complex.

  8. Analysis of host responses to Mycobacterium tuberculosis antigens in a multi-site study of subjects with different TB and HIV infection states in sub-Saharan Africa.

    Directory of Open Access Journals (Sweden)

    Jayne S Sutherland

    Full Text Available Tuberculosis (TB remains a global health threat with 9 million new cases and 1.4 million deaths per year. In order to develop a protective vaccine, we need to define the antigens expressed by Mycobacterium tuberculosis (Mtb, which are relevant to protective immunity in high-endemic areas.We analysed responses to 23 Mtb antigens in a total of 1247 subjects with different HIV and TB status across 5 geographically diverse sites in Africa (South Africa, The Gambia, Ethiopia, Malawi and Uganda. We used a 7-day whole blood assay followed by IFN-γ ELISA on the supernatants. Antigens included PPD, ESAT-6 and Ag85B (dominant antigens together with novel resuscitation-promoting factors (rpf, reactivation proteins, latency (Mtb DosR regulon-encoded antigens, starvation-induced antigens and secreted antigens.There was variation between sites in responses to the antigens, presumably due to underlying genetic and environmental differences. When results from all sites were combined, HIV- subjects with active TB showed significantly lower responses compared to both TST(- and TST(+ contacts to latency antigens (Rv0569, Rv1733, Rv1735, Rv1737 and the rpf Rv0867; whilst responses to ESAT-6/CFP-10 fusion protein (EC, PPD, Rv2029, TB10.3, and TB10.4 were significantly higher in TST(+ contacts (LTBI compared to TB and TST(- contacts fewer differences were seen in subjects with HIV co-infection, with responses to the mitogen PHA significantly lower in subjects with active TB compared to those with LTBI and no difference with any antigen.Our multi-site study design for testing novel Mtb antigens revealed promising antigens for future vaccine development. The IFN-γ ELISA is a cheap and useful tool for screening potential antigenicity in subjects with different ethnic backgrounds and across a spectrum of TB and HIV infection states. Analysis of cytokines other than IFN-γ is currently on-going to determine correlates of protection, which may be useful for vaccine

  9. Radiometric studies on the oxidation of (I-14C) fatty acids by drug-susceptible and drug-resistant mycobacteria

    International Nuclear Information System (INIS)

    Camargo, E.E.; Kopajtic, T.M.; Hopkins, G.K.; Cannon, N.P.; Wagner Junior, H.N.

    1987-01-01

    A radiometric assay system has been used to study oxidation patterns of (l - 14 C) fatty acids by drug-susceptible and drug-resistant organisms of the genus Mycobacterium (M. tuberculosis - H 37 Rv and Erdman, M. bovis, M. avium, M. intracellulare, M.Kansasii and M. chelonei). The organisms were inoculated in sterile reaction vials containing liquid 7H9 medium, 10% ADC enrichment and 1.0 uli of one of the (l- 14 C) fatty acids (butyric, hexanoic, octanoic, decanoic, lauric, myristic, palmitic, stearic, oleic, linoleic, linolenic). Vials were incubated at 37 0 C and the 14 CO 2 envolved was measured daily for 3 days with a Bactec R-301 instrument. (M.A.C.) [pt

  10. The ethanolic extract of ashitaba stem (Angelica keskei [Miq.] Koidz as future antituberculosis

    Directory of Open Access Journals (Sweden)

    Sri Agung Fitri Kusuma

    2018-01-01

    Full Text Available Considering the easy contagion of tuberculosis (TB disease spread and the emergence of multidrug-resistant TB, which directly impacts the failure of therapeutic goals and mortality rates increasing, TB disease control remains to be the main concern of continuous health development effort. Therefore, the discovery of new TB drug is needed. This research assessed the new natural anti-TB drug from the ethanolic extract of Angelica keiskei stem obtained from Lombok, Indonesia. The objectives of this study were to evaluate the sensitivity of Mycobacterium tuberculosis (Mtb H37Rv strain to A. keiskei stem extract and to determine its minimum inhibitory concentration (MIC. The extraction methods of A. keiskei stem were done using a maceration method. In addition to phytochemical screening and water content analysis using standard method, the phytochemical parameters were analyzed by thin-layer chromatography. Ethanolic extract of A. keiskei stem was assayed for their Mtb inhibitory activity using the proportion method. The phytochemical analysis result showed that the secondary metabolites contain in the extract were flavonoid, polyphenol, tannin, monoterpenoid and sesquiterpen, quinon, and saponin. The anti-TB test result showed the active activity of ethanolic extract of A. keiskei against Mtb H37Rv strain with MIC ranging from 6% to 8% w/v. In conclusion, ethanolic extract of A. keiskei is a prospective natural anti-TB for the future.

  11. Discovery of the type VII ESX-1 secretion needle?

    Science.gov (United States)

    Ates, Louis S; Brosch, Roland

    2017-01-01

    Mycobacterium tuberculosis, the etiological agent of human tuberculosis, harbours five ESAT-6/type VII secretion (ESX/T7S) systems. The first esx gene clusters were identified during the genome-sequencing project of M. tuberculosis H37Rv. Follow-up studies revealed additional genes playing important roles in ESX/T7S systems. Among the latter genes, one can find those that encode Pro-Glu (PE) and Pro-Pro-Glu (PPE) proteins as well as a gene cluster that is encoded >260 kb upstream of the esx-1 locus and encodes ESX-1 secretion-associated proteins EspA (Rv3616c), EspC (Rv3615c) and EspD (Rv3614c). The espACD cluster has been suggested to have an important function in ESX-1 secretion since EspA-EspC and EsxA-EsxB are mutually co-dependent on each other for secretion. However, the molecular mechanism of this co-dependence and interaction between the substrates remained unknown. In this issue of Molecular Microbiology, Lou and colleagues show that EspC forms high-molecular weight polymerization complexes that resemble selected components of type II, III and/or IV secretion systems of Gram-negative bacteria. Indeed, EspC-multimeric complexes form filamentous structures that could well represent a secretion needle of ESX-1 type VII secretion systems. This exciting observation opens new avenues for research to discover and characterize ESX/T7S components and elucidates the co-dependence of EsxA/B secretion with EspA/C. © 2016 John Wiley & Sons Ltd.

  12. Sonographic Findings of Abdominal Tuberculosis in Children With Pulmonary Tuberculosis

    NARCIS (Netherlands)

    Bélard, Sabine; Heller, Tom; Orie, Viyanti; Heuvelings, Charlotte C.; Bateman, Lindy; Workman, Lesley; Grobusch, Martin P.; Zar, Heather J.

    2017-01-01

    Ultrasound reports of 102 children with microbiologically confirmed or clinically diagnosed pulmonary tuberculosis (TB) showed that 23 of 37 (64%) and 23 of 65 (36%) had TB suggestive abdominal lymphadenopathy, and 16 of 37 (44%) and 8 of 65 (13%) had splenic microabscesses, respectively. Splenic

  13. Thin-layer agar (TL7H11 for rapid isolation of Mycobacterium tuberculosis in sputum specimens

    Directory of Open Access Journals (Sweden)

    Habiba Binte Alam

    2016-08-01

    Full Text Available Background: Tuberculosis (TB remains one of the major causes of death from a single infectious agent worldwide. The early detection of new cases of pulmonary tuberculosis is an important goal in tuberculosis control program.Objective: 1n this study, thin layer agar (TLA culture was compared with Lowenstein-Jensen (LJ culture for rapid detection of pulmonary tuberculosis. Methods: It was a cross sectional study conducted in National Tuberculosis Reference Labora­tory (NTRL of National Institute of Disease of Chest and Hospital (NIDCH, Dhaka, from July 2010 to June 2011. A total of 100 sputum smear positive for acid fast bacilli (AFB by Z-N staining, pulmonary tuberculosis patients were included in this study. Samples were processed by modified Petroff method and then cultured on thin layer 7H11(TL7H11 plates and L-J tubes. TL7H11 plates were observed microscopically for rnicrocolony growth once a week for 6 weeks, and L-J tubes were observed once a week for 8 weeks. Results: The recovery rates of mycobacteria on only TLA, only LJ and on both media were 90%, 97% and 88% respectively. Overall positivity was 99% in both L-J and TLA media. Mean time for detection of mycobacteria on TLA was 9.04±1.66 days compared to 21.78±6.19 days on L-J media. The rate of contamination was higher (6% in L-J media than in TLA media (4%. Conclusion: The TL7H11 media can be used as an alternative to the Lowenstein-Jensen medium for early isolation of mycobacteria in resource constrained settings.

  14. Comparison of the in vivo and in vitro activities of adenylate cyclase from Mycobacterium tuberculosis H37Ra(NCTC 7417)

    International Nuclear Information System (INIS)

    Padh, Harish; Venkitsubramanian, T.A.

    1979-01-01

    The incorporation of [ 14 C] adenine into the adenosine 3', 5'-monophosphate (cyclic AMP) fraction by whole cells of Mycobacterium tuberculosis was taken as a measure of the in vivo activity of adenylate cyclase. The in vivo activity of adenylate cyclase was significantly inhibited by glucose, thus suggesting that the low level of cyclic AMP in the presence of glucose is due to the inhibited synthesis of cyclic AMP. In vitro activity of adenylate cyclase had optimum pH of 8.5 and Km of 1.33 mM for ATP. Glucose and other sugars did not show significant inhibition of in vitro activity. The results suggest that the adenylate cyclase activity becomes less sensitive to glucose when the bacterial cells are disrupted, an analogy with eukaryotic adenylate cyclase which loses sensitivity to hormones when the cells are disrupted. (auth.)

  15. Destruction of Various Kinds of Mycobacteria in Milk by Pasteurization

    Science.gov (United States)

    Harrington, Rube; Karlson, Alfred G.

    1965-01-01

    Various strains of unclassified mycobacteria, Mycobacterium tuberculosis (including H37Rv strains), M. bovis, M. avium, M. fortuitum, and bacille Calmette-Guerin, were exposed to the temperature and time of pasteurization in skim milk in test tubes. Of the 195 strains tested, there were a few surviving colonies among 6 of 33 skotochromogens, 1 of 26 photochromogens, 10 of 79 nonchromogens, and 1 of 9 rapid growers. Subcultures of the surviving colonies failed to resist the pasteurization tests on subsequent trials. PMID:14325295

  16. Production and characterization of guinea pig recombinant gamma interferon and its effect on macrophage activation.

    Science.gov (United States)

    Jeevan, A; McFarland, C T; Yoshimura, T; Skwor, T; Cho, H; Lasco, T; McMurray, D N

    2006-01-01

    Gamma interferon (IFN-gamma) plays a critical role in the protective immune responses against mycobacteria. We previously cloned a cDNA coding for guinea pig IFN-gamma (gpIFN-gamma) and reported that BCG vaccination induced a significant increase in the IFN-gamma mRNA expression in guinea pig cells in response to living mycobacteria and that the virulent H37Rv strain of Mycobacterium tuberculosis stimulated less IFN-gamma mRNA than did the attenuated H37Ra strain. In this study, we successfully expressed and characterized recombinant gpIFN-gamma with a histidine tag at the N terminus (His-tagged rgpIFN-gamma) in Escherichia coli. rgpIFN-gamma was identified as an 18-kDa band in the insoluble fraction; therefore, the protein was purified under denaturing conditions and renatured. N-terminal amino acid sequencing of the recombinant protein yielded the sequence corresponding to the N terminus of His-tagged gpIFN-gamma. The recombinant protein upregulated major histocompatibility complex class II expression in peritoneal macrophages. The antiviral activity of rgpIFN-gamma was demonstrated with a guinea pig fibroblast cell line (104C1) infected with encephalomyocarditis virus. Interestingly, peritoneal macrophages treated with rgpIFN-gamma did not produce any nitric oxide but did produce hydrogen peroxide and suppressed the intracellular growth of mycobacteria. Furthermore, rgpIFN-gamma induced morphological alterations in cultured macrophages. Thus, biologically active rgpIFN-gamma has been successfully produced and characterized in our laboratory. The study of rgpIFN-gamma will further increase our understanding of the cellular and molecular responses induced by BCG vaccination in the guinea pig model of pulmonary tuberculosis.

  17. aprABC: A Mycobacterium tuberculosis complex-specific locus that modulates pH-driven adaptation to the macrophage phagosome

    Science.gov (United States)

    Abramovitch, Robert B.; Rohde, Kyle H.; Hsu, Fong-Fu; Russell, David G.

    2011-01-01

    Summary Following phagocytosis by macrophages, Mycobacterium tuberculosis (Mtb) senses the intracellular environment and remodels its gene expression for growth in the phagosome. We have identified an Acid and Phagosome Regulated (aprABC) locus that is unique to the Mtb complex and whose gene expression is induced during growth in acidic environments in vitro and in macrophages. Using the aprA promoter, we generated a strain that exhibits high levels of inducible fluorescence in response to growth in acidic medium in vitro and in macrophages. aprABC expression is dependent on the two-component regulator phoPR, linking phoPR signaling to pH sensing. Deletion of the aprABC locus causes defects in gene expression that impact aggregation, intracellular growth, and the relative levels of storage and cell wall lipids. We propose a model where phoPR senses the acidic pH of the phagosome and induces aprABC expression to fine-tune processes unique for intracellular adaptation of Mtb complex bacteria. PMID:21401735

  18. ESAT6-induced IFNgamma and CXCL9 can differentiate severity of tuberculosis.

    Directory of Open Access Journals (Sweden)

    Zahra Hasan

    Full Text Available BACKGROUND: Protective responses against Mycobacterium tuberculosis are dependent on appropriate T cell and macrophage activation. Mycobacterial antigen six kDa early secreted antigenic target (ESAT6 and culture filtrate protein 10 (CFP10 can detect M. tuberculosis specific IFNgamma responses. However, most studies have been performed in non-endemic regions and to study pulmonary tuberculosis (PTB. We have studied ESAT6 and CFP10 induced cytokine and chemokines responses in PTB and extrapulmonary (EPul TB. METHODOLOGY: IFNgamma, IL10, CXCL9 and CCL2 responses were determined using an ex vivo whole blood assay system in PTB (n = 30 and EPulTB patients with limited (LNTB, n = 24 or severe (SevTB, n = 22 disease, and in healthy endemic controls (ECs. Responses to bacterial LPS were also determined. PRINCIPAL FINDINGS: ESAT6- and CFP10-induced IFNgamma was comparable between ECs and TB patients. Both ESAT6- and CFP10-induced IFNgamma secretion was greater in LNTB than PTB. ESAT6-induced CXCL9 was greater in EPulTB as compared with PTB, with an increase in SevTB as compared with LNTB. CFP10-induced CCL2 was higher in PTB than LNTB patients. LPS-stimulated CXCL9 was greatest in SevTB and LPS-induced CCL2 was increased in PTB as compared with LNTB patients. A positive correlation between ESAT6-induced IFNgamma and CXCL9 was present in all TB patients, but IFNgamma and CCL2 was only correlated in LNTB. ESAT-induced CCL2 and CXCL9 were significantly associated in LNTB while correlation in response to LPS was only present in SevTB. CONCLUSIONS: ESAT6 induced IFNgamma and CXCL9 can differentiate between limited and severe TB infections.

  19. The susceptibility of anti-tuberculosis drug-induced liver injury and chronic hepatitis C infection: A systematic review and meta-analysis.

    Science.gov (United States)

    Chang, Tien-En; Huang, Yi-Shin; Chang, Chih-Hao; Perng, Chin-Lin; Huang, Yi-Hsiang; Hou, Ming-Chih

    2018-02-01

    Anti-tuberculosis drug-induced liver injury (ATDILI) is a major safety concern in the treatment of tuberculosis (TB). The impact of chronic hepatitis C (CHC) infection on the risk of ATDILI is still controversial. We aimed to assess the influence of CHC infection on ATDILI through a systematic review and meta-analysis. We systemically reviewed all English-language literature in the major medical databases with the subject search terms "anti-tuberculosis drug-induced liver injury" and "anti-tuberculosis drug-induced hepatotoxicity". We then performed a systematic review and meta-analysis of the papers relevant to hepatitis C in qualified publications. A total of 14 studies were eligible for analysis, which included 516 cases with ATDILI and 4301 controls without ATDILI. The pooled odds ratio (OR) of all studies for CHC infection to ATDILI was 3.21 (95% confidence interval (CI): 2.30-4.49). Subgroup analysis revealed that the CHC carriers had a higher risk of ATDILI than those without CHC both in Asians (OR = 2.96, 95% CI: 1.79-4.90) and Caucasians (OR = 4.07, 95% CI: 2.70-6.14), in those receiving standard four combination anti-TB therapy (OR = 2.94, 95% CI: 1.95-4.41) and isoniazid monotherapy (OR = 4.18, 95% CI: 2.36-7.40), in those with a strict definition of DILI (serum alanine aminotransferase [ALT] > 5 upper limit of normal value [ULN], OR = 2.59, 95% CI: 1.58-4.25) and a loose definition of DILI (ALT > 2 or 3 ULN, OR = 4.34, 95% CI: 2.96-6.37), and in prospective studies (OR = 4.16, 95% CI: 2.93-5.90) and case-control studies (OR = 2.43, 95% CI: 1.29-4.58). This meta-analysis suggests that CHC infection may increase the risk of ATDILI. Regular liver tests are mandatory for CHC carriers under anti-TB therapy. Copyright © 2017. Published by Elsevier Taiwan LLC.

  20. CCL2 responses to Mycobacterium tuberculosis are associated with disease severity in tuberculosis.

    Directory of Open Access Journals (Sweden)

    Zahra Hasan

    Full Text Available BACKGROUND: Leucocyte activating chemokines such as CCL2, CCL3, and CXCL8 together with proinflammatory IFNgamma, TNFalpha and downmodulatory IL10 play a central role in the restriction of M. tuberculosis infections, but is unclear whether these markers are indicative of tuberculosis disease severity. METHODOLOGY: We investigated live M. tuberculosis- and M. bovis BCG-induced peripheral blood mononuclear cell responses in patients with tuberculosis (TB and healthy endemic controls (ECs, n = 36. TB patients comprised pulmonary (PTB, n = 34 and extrapulmonary groups, subdivided into those with less severe localized extrapulmonary TB (L-ETB, n = 16 or severe disseminated ETB (D-ETB, n = 16. Secretion of CCL2, IFNgamma, IL10 and CCL3, and mRNA expression of CCL2, TNFalpha, CCL3 and CXCL8 were determined. RESULTS: M. tuberculosis- and BCG-induced CCL2 secretion was significantly increased in both PTB and D-ETB (p<0.05, p<0.01 as compared with L-ETB patients. CCL2 secretion in response to M. tuberculosis was significantly greater than to BCG in the PTB and D-ETB groups. M. tuberculosis-induced CCL2 mRNA transcription was greater in PTB than L-ETB (p = 0.023, while CCL2 was reduced in L-ETB as compared with D-ETB (p = 0.005 patients. M. tuberculosis-induced IFNgamma was greater in L-ETB than PTB (p = 0.04, while BCG-induced IFNgamma was greater in L-ETB as compared with D-ETB patients (p = 0.036. TNFalpha mRNA expression was raised in PTB as compared with L-ETB group in response to M. tuberculosis (p = 0.02 and BCG (p = 0.03. Mycobacterium-induced CCL3 and CXCL8 was comparable between TB groups. CONCLUSIONS: The increased CCL2 and TNFalpha in PTB patients may support effective leucocyte recruitment and M. tuberculosis localization. CCL2 alone is associated with severity of TB, possibly due to increased systemic inflammation found in severe disseminated TB or due to increased monocyte infiltration to lung parenchyma in pulmonary disease.

  1. ORF Alignment: NC_002945 [GENIUS II[Archive

    Lifescience Database Archive (English)

    Full Text Available Mycobacterium ... Tuberculosis pdb|1YK3|G Chain G, Crystal Structure Of ... ... ... Rv1347c From Mycobacterium Tuberculosis pdb|1YK3|F Chain ... F, Crystal Structure Of Rv1347...c From Mycobacterium ... Tuberculosis pdb|1YK3|E Chain E, Crystal Structure Of ... Rv1347c From Mycobacterium Tuberculo...Rv1347c From Mycobacterium ... Tuberculosis pdb|1YK3|C Chain C, Crystal Structure Of ... Rv1347c From Mycobacterium Tub...erculosis pdb|1YK3|B Chain ... B, Crystal Structure Of Rv1347c From Mycobacterium ... Tubercul

  2. ORF Alignment: NC_000962 [GENIUS II[Archive

    Lifescience Database Archive (English)

    Full Text Available Mycobacterium ... Tuberculosis pdb|1YK3|G Chain G, Crystal Structure Of ... ... ... Rv1347c From Mycobacterium Tuberculosis pdb|1YK3|F Chain ... F, Crystal Structure Of Rv1347...c From Mycobacterium ... Tuberculosis pdb|1YK3|E Chain E, Crystal Structure Of ... Rv1347c From Mycobacterium Tuberculo...Rv1347c From Mycobacterium ... Tuberculosis pdb|1YK3|C Chain C, Crystal Structure Of ... Rv1347c From Mycobacterium Tub...erculosis pdb|1YK3|B Chain ... B, Crystal Structure Of Rv1347c From Mycobacterium ... Tubercul

  3. ORF Alignment: NC_002755 [GENIUS II[Archive

    Lifescience Database Archive (English)

    Full Text Available Mycobacterium ... Tuberculosis pdb|1YK3|G Chain G, Crystal Structure Of ... ... ... Rv1347c From Mycobacterium Tuberculosis pdb|1YK3|F Chain ... F, Crystal Structure Of Rv1347...c From Mycobacterium ... Tuberculosis pdb|1YK3|E Chain E, Crystal Structure Of ... Rv1347c From Mycobacterium Tuberculo...Rv1347c From Mycobacterium ... Tuberculosis pdb|1YK3|C Chain C, Crystal Structure Of ... Rv1347c From Mycobacterium Tub...erculosis pdb|1YK3|B Chain ... B, Crystal Structure Of Rv1347c From Mycobacterium ... Tubercul

  4. Enhanced immune response and protective effects of nano-chitosan-based DNA vaccine encoding T cell epitopes of Esat-6 and FL against Mycobacterium tuberculosis infection.

    Directory of Open Access Journals (Sweden)

    Ganzhu Feng

    Full Text Available Development of a novel and effective vaccine against Mycobacterium tuberculosis (M.tb is a challenging for preventing TB infection. In this study, a novel nanoparticle-based recombinant DNA vaccine was developed, which contains Esat-6 three T cell epitopes (Esat-6/3e and fms-like tyrosine kinase 3 ligand (FL genes (termed Esat-6/3e-FL, and was enveloped with chitosan (CS nanoparticles (nano-chitosan. The immunologic and protective efficacy of the nano-chitosan-based DNA vaccine (termed nano-Esat-6/3e-FL was assessed in C57BL/6 mice after intramuscular prime vaccination with the plasmids DNA and nasal boost with the Esat-6/3e peptides. The results showed that the immunized mice remarkably elicited enhanced T cell responses and protection against M.tb H37Rv challenge. These findings indicate that the nano-chitosan can significantly elevate the immunologic and protective effects of the DNA vaccine, and the nano-Esat-6/3e-FL is a useful vaccine for preventing M.tb infection in mice.

  5. Positive correlation between circulating cathelicidin antimicrobial peptide (hCAP18/LL-37) and 25-hydroxyvitamin D levels in healthy adults

    DEFF Research Database (Denmark)

    Dixon, Brian M; Barker, Tyler; McKinnon, Toni

    2012-01-01

    ABSTRACT: BACKGROUND: Transcription of the cathelicidin antimicrobial peptide (CAMP) gene is induced by binding of the bioactive form of vitamin D, 1,25-dihydroxyvitamin D, to the vitamin D receptor. Significant levels of the protein hCAP18/LL-37 are found in the blood and may protect against...... = 0.63). CONCLUSIONS: We conclude that plasma hCAP18 levels correlate with serum 25(OH)D levels in subjects with concentrations of 25(OH)D 32 ng/ml and that vitamin D status may regulate systemic levels of hCAP18/LL-37....

  6. Anti-tuberculosis medication-induced oculogyric crisis and the importance of proper history taking

    Directory of Open Access Journals (Sweden)

    Wong LH

    2017-10-01

    Full Text Available Lin Ho Wong,1 Endean Tan2 1University College Cork, Cork, Ireland; 2Tan Tock Seng Hospital, Singapore Abstract: Oculogyric crisis (OGC, frequently caused by medications such as antiemetics, antidepressants, and anti-epileptics, is an acute dystonic reaction of the ocular muscles. It consists of wide-staring gaze (lasting variably from seconds to minutes, seizures, and a widely-opened mouth. To date, there have been no reports of anti-tuberculosis medications such as rifampicin, isoniazid, pyrazinamide or ethambutol inducing OGC. It is of utmost importance to recognize this adverse reaction, which could be incorrectly diagnosed as an anaphylactic-like reaction. In this paper, we highlight a case of a 66-year-old Indian man who presented with OGC induced by anti-tuberculosis medications which was initially suspected to be an anaphylactic reaction and was subsequently halted with the administration of diphenhydramine. Keywords: oculogyric crisis, tuberculosis, rifampicin, isoniazid, ethambutol, adverse drug reaction 

  7. Changes in right ventricular function assessed by echocardiography in dog models of mild RV pressure overload.

    Science.gov (United States)

    Morita, Tomoya; Nakamura, Kensuke; Osuga, Tatsuyuki; Yokoyama, Nozomu; Morishita, Keitaro; Sasaki, Noboru; Ohta, Hiroshi; Takiguchi, Mitsuyoshi

    2017-07-01

    The assessment of hemodynamic change by echocardiography is clinically useful in patients with pulmonary hypertension. Recently, mild elevation of the mean pulmonary arterial pressure (PAP) has been shown to be associated with increased mortality. However, changes in the echocardiographic indices of right ventricular (RV) function are still unknown. The objective of this study was to validate the relationship between echocardiographic indices of RV function and right heart catheterization variables under a mild RV pressure overload condition. Echocardiography and right heart catheterization were performed in dog models of mild RV pressure overload induced by thromboxane A 2 analog (U46619) (n=7). The mean PAP was mildly increased (19.3±1.1 mm Hg), and the cardiac index was decreased. Most echocardiographic indices of RV function were significantly impaired even under a mild RV pressure overload condition. Multivariate analysis revealed that the RV free wall longitudinal strain (RVLS), standard deviation of the time-to-peak longitudinal strain of RV six segments (RV-SD) by speckle-tracking echocardiography, and Tei index were independent echocardiographic predictors of the mean PAP (free wall RVLS, β=-0.60, P<.001; RV-SD, β=0.40, P=.011), pulmonary vascular resistance (free wall RVLS, β=-0.39, P=.020; RV-SD, β=0.47, P=.0086; Tei index, β=0.34, P=.047), and cardiac index (Tei index, β=-0.65, P<.001). Free wall RVLS, RV-SD, and Tei index are useful for assessing the hemodynamic change under a mild RV pressure overload condition. © 2017, Wiley Periodicals, Inc.

  8. VapC toxins from Mycobacterium tuberculosis are ribonucleases that differentially inhibit growth and are neutralized by cognate VapB antitoxins.

    Directory of Open Access Journals (Sweden)

    Bintou Ahmadou Ahidjo

    Full Text Available The chromosome of Mycobacterium tuberculosis (Mtb encodes forty seven toxin-antitoxin modules belonging to the VapBC family. The role of these modules in the physiology of Mtb and the function(s served by their expansion are unknown. We investigated ten vapBC modules from Mtb and the single vapBC from M. smegmatis. Of the Mtb vapCs assessed, only Rv0549c, Rv0595c, Rv2549c and Rv2829c were toxic when expressed from a tetracycline-regulated promoter in M. smegmatis. The same genes displayed toxicity when conditionally expressed in Mtb. Toxicity of Rv2549c in M. smegmatis correlated with the level of protein expressed, suggesting that the VapC level must exceed a threshold for toxicity to be observed. In addition, the level of Rv2456 protein induced in M. smegmatis was markedly lower than Rv2549c, which may account for the lack of toxicity of this and other VapCs scored as 'non-toxic'. The growth inhibitory effects of toxic VapCs were neutralized by expression of the cognate VapB as part of a vapBC operon or from a different chromosomal locus, while that of non-cognate antitoxins did not. These results demonstrated a specificity of interaction between VapCs and their cognate VapBs, a finding corroborated by yeast two-hybrid analyses. Deletion of selected vapC or vapBC genes did not affect mycobacterial growth in vitro, but rendered the organisms more susceptible to growth inhibition following toxic VapC expression. However, toxicity of 'non-toxic' VapCs was not unveiled in deletion mutant strains, even when the mutation eliminated the corresponding cognate VapB, presumably due to insufficient levels of VapC protein. Together with the ribonuclease (RNase activity demonstrated for Rv0065 and Rv0617--VapC proteins with similarity to Rv0549c and Rv3320c, respectively--these results suggest that the VapBC family potentially provides an abundant source of RNase activity in Mtb, which may profoundly impact the physiology of the organism.

  9. Antitubercular activity and inhibitory effect on Epstein-Barr virus activation of sterols and polyisoprenepolyols from an edible mushroom, Hypsizigus marmoreus.

    Science.gov (United States)

    Akihisa, Toshihiro; Franzblau, Scott Gary; Tokuda, Harukuni; Tagata, Masaaki; Ukiya, Motohiko; Matsuzawa, Tsunetomo; Metori, Koichi; Kimura, Yumiko; Suzuki, Takashi; Yasukawa, Ken

    2005-06-01

    Seven sterols (1-7) and eight polyisoprenepolyols (8-15), isolated from the non-saponifiable lipid fraction of the dichloromethane extract of an edible mushroom, Hypsizigus marmoreus (Buna-shimeji), were tested for their antitubercular activity against Mycobacterium tuberculosis strain H37Rv using the Microplate Alamar Blue Assay (MABA). Six sterols (2-7) and two polyisoprenepolyols (8, 12) showed a minimum inhibitory concentration (MIC) in the range of 1-51 microg/ml, while the others (1, 9-11, 13-15) were inactive (MIC>128 microg/ml). The seven sterols (1-7) and three polyisoprenepolyols (8, 10, 12) were further evaluated for their inhibitory effects on Epstein-Barr virus early antigen (EBV-EA) activation induced by the tumor promoter 12-O-tetradecanoylphorbol-13-acetate (TPA) in Raji cells. Sterols 6 and 7 showed potent inhibitory effects while preserving the high viability of Raji cells.

  10. Protective and therapeutic efficacy of Mycobacterium smegmatis expressing HBHA-hIL12 fusion protein against Mycobacterium tuberculosis in mice.

    Directory of Open Access Journals (Sweden)

    Shanmin Zhao

    Full Text Available Tuberculosis (TB remains a major worldwide health problem. The only vaccine against TB, Mycobacterium bovis Bacille Calmette-Guerin (BCG, has demonstrated relatively low efficacy and does not provide satisfactory protection against the disease. More efficient vaccines and improved therapies are urgently needed to decrease the worldwide spread and burden of TB, and use of a viable, metabolizing mycobacteria vaccine may be a promising strategy against the disease. Here, we constructed a recombinant Mycobacterium smegmatis (rMS strain expressing a fusion protein of heparin-binding hemagglutinin (HBHA and human interleukin 12 (hIL-12. Immune responses induced by the rMS in mice and protection against Mycobacterium tuberculosis (MTB were investigated. Administration of this novel rMS enhanced Th1-type cellular responses (IFN-γ and IL-2 in mice and reduced bacterial burden in lungs as well as that achieved by BCG vaccination. Meanwhile, the bacteria load in M. tuberculosis infected mice treated with the rMS vaccine also was significantly reduced. In conclusion, the rMS strain expressing the HBHA and human IL-12 fusion protein enhanced immunogencity by improving the Th1-type response against TB, and the protective effect was equivalent to that of the conventional BCG vaccine in mice. Furthermore, it could decrease bacterial load and alleviate histopathological damage in lungs of M. tuberculosis infected mice.

  11. Azurophil granule proteins constitute the major mycobactericidal proteins in human neutrophils and enhance the killing of mycobacteria in macrophages

    DEFF Research Database (Denmark)

    Jena, Prajna; Mohanty, Soumitra; Mohanty, Tirthankar

    2012-01-01

    Pathogenic mycobacteria reside in, and are in turn controlled by, macrophages. However, emerging data suggest that neutrophils also play a critical role in innate immunity to tuberculosis, presumably by their different antibacterial granule proteins. In this study, we purified neutrophil azurophil...... and specific granules and systematically analyzed the antimycobacterial activity of some purified azurophil and specific granule proteins against M. smegmatis, M. bovis-BCG and M. tuberculosis H37Rv. Using gel overlay and colony forming unit assays we showed that the defensin-depleted azurophil granule...... proteins (AZP) were more active against mycobacteria compared to other granule proteins and cytosolic proteins. The proteins showing antimycobacterial activity were identified by MALDI-TOF mass spectrometry. Electron microscopic studies demonstrate that the AZP disintegrate bacterial cell membrane...

  12. EMTP-RV at a glance

    Energy Technology Data Exchange (ETDEWEB)

    Mahseredjian, J.; Dennetiere, S. [IREQ Headquarters, PQ (Canada); Saad, O.; Khodabakhchian, B. [TransEnergie Technologies, PQ (Canada)

    2004-10-01

    A new restructured version of an electromagnetic transient program, EMTP-RV, which is a combination of the well-known EMTP and a powerful graphical interface EMTPWorks, is described. EMTP-RV provides a higher level of capabilities in the simulation of large scale electrical networks, making it possible to rapidly design, simulate and view large and complex systems, without the usual large expenditure of engineering and development time, and at the same time allowing more detailed studies on the complex phenomena of power system transients. EMTP-RV has a completely new control system solver, an optional Newton method for finding the simultaneous solution of all control system blocks, and a complex matrix-based steady-state solution, used primarily in automatic initialization of state-variables. The article also describes the highly efficient, intuitive and user-friendly graphical user interface EMTPWorks, which has an open architecture for maximized user configurability from basic user-defined model assemblies to more advanced script-based programming. The EMTP-RV package also includes an efficient data acquisition and processing software, named ScopeView and another visualization function called MPLOT. ScopeView offers multi-page and multi-column capabilities, an advanced built-in function editor, and is especially well adapted for the simultaneous viewing and mathematical post-processing of EMTP-RV. MPLOT, a compiled version of a set of m-files, is well suited for waveform viewing and statistical analysis. A one-week seminar and computer workshop on different aspects of transient system studies and analysis with EMTP-RV is provided twice a year by TransEnergie Technologies. 1 fig.

  13. Kohtujurist Ivo Raudjärv peab etteheiteid maksuametile põhjendatuiks / Ivo Raudjärv ; interv. Edith Kiilmaa

    Index Scriptorium Estoniae

    Raudjärv, Ivo, 1976-

    2003-01-01

    Maksumaksja intervjuu juristibüroo Raudjärv & Ko UÜ juhataja Ivo Raudjärvega. Kommentaarid: Lasse Lehis (TÜ finantsõiguse dotsent, Riigikohtu halduskolleegiumi nõunik) "Ivo Raudjärv - asendamatu asjatundja", Aivar Pau (Maksuameti pressiesindaja) "Maksuameti statistika põhineb jõustunud kohtulahenditel", Jüri Allikalt (Jüri Allikaltþi õigusbüroo jurist-maksukonsultant) "Analüütiline Ivo Raudjärv". Lisatud Ivo Raudjärve CV

  14. M. tuberculosis induces potent activation of IDO-1, but this is not essential for the immunological control of infection.

    Directory of Open Access Journals (Sweden)

    Antje Blumenthal

    Full Text Available Indoleamine 2,3-dioxygenesae-1 (IDO-1 catalyses the initial, rate-limiting step in tryptophan metabolism, thereby regulating tryptophan availability and the formation of downstream metabolites, including picolinic and quinolinic acid. We found that Mycobacterium tuberculosis infection induced marked upregulation of IDO-1 expression in both human and murine macrophages in vitro and in the lungs of mice following aerosol challenge with M. tuberculosis. The absence of IDO-1 in dendritic cells enhanced the activation of mycobacteria-specific T cells in vitro. Interestingly, IDO-1-deficiency during M. tuberculosis infection in mice was not associated with altered mycobacteria-specific T cell responses in vivo. The bacterial burden of infected organs, pulmonary inflammatory responses, and survival were also comparable in M. tuberculosis-infected IDO-1 deficient and wild type animals. Tryptophan is metabolised into either picolinic acid or quinolinic acid, but only picolinic acid inhibited the growth of M. tuberculosis in vitro. By contrast macrophages infected with pathogenic mycobacteria, produced quinolinic, rather than picolinic acid, which did not reduce M. tuberculosis growth in vitro. Therefore, although M. tuberculosis induces robust expression of IDO-1 and activation of tryptophan metabolism, IDO-1-deficiency fails to impact on the immune control and the outcome of the infection in the mouse model of tuberculosis.

  15. Design of the Anti-tuberculosis Drugs induced Adverse Reactions in China National Tuberculosis Prevention and Control Scheme Study (ADACS

    Directory of Open Access Journals (Sweden)

    He Ping

    2010-05-01

    Full Text Available Abstract Background More than 1 million tuberculosis (TB patients are receiving the standard anti-TB treatment provided by China National Tuberculosis Prevention and Control Scheme (CNTS in China every year. Adverse reactions (ADRs induced by anti-TB drugs could both do harm to patients and lead to anti-TB treatment failure. The ADACS aimed to explore ADRs' incidences, prognoses, economical and public health impacts for TB patients and TB control, and build a DNA bank of TB patients. Methods/Design Multiple study designs were adopted. Firstly, a prospective cohort with 4488 sputum smears positive pulmonary tuberculosis patients was established. Patients were followed up for 6-9 months in 52 counties of four regions. Those suspected ADRs should be checked and confirmed by Chinese State Food and Drug Administration (SFDA. Secondly, if the suspected ADR was anti-TB drug induced liver injury (ATLI, a nested case-control study would be performed which comprised choosing a matched control and doing a plus questionnaire inquiry. Thirdly, health economical data of ADRs would be collected to analyze financial burdens brought by ADRs and cost-effectiveness of ADRs' treatments. Fourthly, a drop of intravenous blood for each patient was taken and saved in FTA card for DNA banking and genotyping. Finally, the demographic, clinical, environmental, administrative and genetic data would be merged for the comprehensive analysis. Discussion ADACS will give an overview of anti-TB drugs induced ADRs' incidences, risk factors, treatments, prognoses, and clinical, economical and public health impacts for TB patients applying CNTS regimen in China, and provide suggestions for individualized health care and TB control policy.

  16. Design of the Anti-tuberculosis Drugs induced Adverse Reactions in China National Tuberculosis Prevention and Control Scheme Study (ADACS)

    Science.gov (United States)

    2010-01-01

    Background More than 1 million tuberculosis (TB) patients are receiving the standard anti-TB treatment provided by China National Tuberculosis Prevention and Control Scheme (CNTS) in China every year. Adverse reactions (ADRs) induced by anti-TB drugs could both do harm to patients and lead to anti-TB treatment failure. The ADACS aimed to explore ADRs' incidences, prognoses, economical and public health impacts for TB patients and TB control, and build a DNA bank of TB patients. Methods/Design Multiple study designs were adopted. Firstly, a prospective cohort with 4488 sputum smears positive pulmonary tuberculosis patients was established. Patients were followed up for 6-9 months in 52 counties of four regions. Those suspected ADRs should be checked and confirmed by Chinese State Food and Drug Administration (SFDA). Secondly, if the suspected ADR was anti-TB drug induced liver injury (ATLI), a nested case-control study would be performed which comprised choosing a matched control and doing a plus questionnaire inquiry. Thirdly, health economical data of ADRs would be collected to analyze financial burdens brought by ADRs and cost-effectiveness of ADRs' treatments. Fourthly, a drop of intravenous blood for each patient was taken and saved in FTA card for DNA banking and genotyping. Finally, the demographic, clinical, environmental, administrative and genetic data would be merged for the comprehensive analysis. Discussion ADACS will give an overview of anti-TB drugs induced ADRs' incidences, risk factors, treatments, prognoses, and clinical, economical and public health impacts for TB patients applying CNTS regimen in China, and provide suggestions for individualized health care and TB control policy. PMID:20492672

  17. In Vitro Activity of Copper(II Complexes, Loaded or Unloaded into a Nanostructured Lipid System, against Mycobacterium tuberculosis

    Directory of Open Access Journals (Sweden)

    Patricia B. da Silva

    2016-05-01

    Full Text Available Tuberculosis (TB is an infectious disease caused mainly by the bacillus Mycobacterium tuberculosis (Mtb, presenting 9.5 million new cases and 1.5 million deaths in 2014. The aim of this study was to evaluate a nanostructured lipid system (NLS composed of 10% phase oil (cholesterol, 10% surfactant (soy phosphatidylcholine, sodium oleate, and Eumulgin® HRE 40 ([castor oil polyoxyl-40-hydrogenated] in a proportion of 3:6:8, and an 80% aqueous phase (phosphate buffer pH = 7.4 as a tactic to enhance the in vitro anti-Mtb activity of the copper(II complexes [CuCl2(INH2]·H2O (1, [Cu(NCS2(INH2]·5H2O (2 and [Cu(NCO2(INH2]·4H2O (3. The Cu(II complex-loaded NLS displayed sizes ranging from 169.5 ± 0.7095 to 211.1 ± 0.8963 nm, polydispersity index (PDI varying from 0.135 ± 0.0130 to 0.236 ± 0.00100, and zeta potential ranging from −0.00690 ± 0.0896 to −8.43 ± 1.63 mV. Rheological analysis showed that the formulations behave as non-Newtonian fluids of the pseudoplastic and viscoelastic type. Antimycobacterial activities of the free complexes and NLS-loaded complexes against Mtb H37Rv ATCC 27294 were evaluated by the REMA methodology, and the selectivity index (SI was calculated using the cytotoxicity index (IC50 against Vero (ATCC® CCL-81, J774A.1 (ATCC® TIB-67, and MRC-5 (ATCC® CCL-171 cell lines. The data suggest that the incorporation of the complexes into NLS improved the inhibitory action against Mtb by 52-, 27-, and 4.7-fold and the SI values by 173-, 43-, and 7-fold for the compounds 1, 2 and 3, respectively. The incorporation of the complexes 1, 2 and 3 into the NLS also resulted in a significant decrease of toxicity towards an alternative model (Artemia salina L.. These findings suggest that the NLS may be considered as a platform for incorporation of metallic complexes aimed at the treatment of TB.

  18. Thr202Ala in thyA Is a Marker for the Latin American Mediterranean Lineage of the Mycobacterium tuberculosis Complex Rather than Para-Aminosalicylic Acid Resistance

    KAUST Repository

    Feuerriegel, S.

    2010-08-30

    Single nucleotide polymorphisms (SNPs) involved in the development of resistance represent powerful markers for the rapid detection of first- and second-line resistance in clinical Mycobacterium tuberculosis complex (MTBC) isolates. However, the association between particular mutations and phenotypic resistance is not always clear-cut, and phylogenetic SNPs have been misclassified as resistance markers in the past. In the present study, we investigated the utility of a specific polymorphism in thyA (Thr202Ala) as a marker for resistance to para-aminosalicyclic acid (PAS). Sixty-three PAS-susceptible MTBC strains comprising all major phylogenetic lineages, reference strain H37Rv, and 135 multidrug-resistant (MDR) strains from Germany (comprising 8 PAS-resistant isolates) were investigated for the presence of Thr202Ala. In both strain collections, the Thr202Ala SNP was found exclusively in strains of the Latin American Mediterranean (LAM) lineage irrespective of PAS resistance. Furthermore, PAS MICs (0.5 mg/liter) for selected LAM strains (all containing the SNP) and non-LAM strains (not containing the SNP), as well as the results of growth curve analyses performed in liquid 7H9 medium in the presence of increasing PAS concentrations (0 to 2.0 mg/liter), were identical. In conclusion, our data demonstrate that the Thr202Ala polymorphism in thyA is not a valid marker for PAS resistance but, instead, represents a phylogenetic marker for the LAM lineage of the M. tuberculosis complex. These findings challenge some of the previous understanding of PAS resistance and, as a consequence, warrant further in-depth investigations of the genetic variation in PAS-resistant clinical isolates and spontaneous mutants.

  19. Stratus Ocean Reference Station (20 deg S, 85 deg W) Mooring Recovery and Deployment Cruise, R/V Ronald H. Brown Cruise 06-07, October 9-October 27, 2006

    National Research Council Canada - National Science Library

    Bigorre, Sebastien; Weller, Robert; Lord, Jeff; Whelan, Sean; Galbraith, Nancy; Wolfe, Dan; Bariteau, Ludovic; Ghate, Virendra; Zajaczkovski, Uriel; Vera, Alvaro

    2007-01-01

    .... During the October 2006 cruise of NOAA's R/V Ronald H. Brown to the ORS Stratus site, the primary activities where recovery of the Stratus 6 WHOI surface mooring that had been deployed in October...

  20. Antimicrobial activity of Streptomyces spp. Isolates from vegetable plantation soil

    Directory of Open Access Journals (Sweden)

    Isnaeni

    2016-05-01

    Full Text Available Fifteen Streptomyces isolates were isolated from soil in some different location on vegetable plantation at agriculture standard condition. The isolates were assessed for their antibacterial activity against Mycobacterium tuberculosis (MTB ATCC H37RV and mycobacterial which isolated from Dr. Soetomo Hospital patients in Surabaya. The International Streptomyces Project 4 (ISP4 and Middlebrook 7H9 (MB7H9 wwere used as growth or fermentation medium. The screening of inhibition activity was performed using turbidimetry and spot-test on agar medium. Results shown that 33.3% of the isolates (5 isolates have anti-mycobacterial activities. The first line anti tuberculosis drug rifampicin, (RIF, ethambutol (EMB, isoniazid (INH, and pyrazinamide (PZA were used as standards or positive controls with concentration 20 ppm. Optical density of crude fermentation broth concentrated from five isolates relatively lower than five anti-tuberculosis drug activity standard, although their activities against some microbial were similar to the standard at spot-test. The most efficient isolate shown anti-mycobacterial activity was Streptomyces B10 which identified as Streptomyces violaceousniger. In addition, fatty acid methyl ester (FAME profile of gas chromatography-mass spectrometry chromatogram of each isolates were studied and compared to Streptomyces spp. Keywords: Anti-mycobacterial, Mycobacterium tuberculosis, Streptomyces spp.

  1. Global transcriptional profiling of longitudinal clinical isolates of Mycobacterium tuberculosis exhibiting rapid accumulation of drug resistance.

    Directory of Open Access Journals (Sweden)

    Anirvan Chatterjee

    Full Text Available The identification of multidrug resistant (MDR, extensively and totally drug resistant Mycobacterium tuberculosis (Mtb, in vulnerable sites such as Mumbai, is a grave threat to the control of tuberculosis. The current study aimed at explaining the rapid expression of MDR in Directly Observed Treatment Short Course (DOTS compliant patients, represents the first study comparing global transcriptional profiles of 3 pairs of clinical Mtb isolates, collected longitudinally at initiation and completion of DOTS. While the isolates were drug susceptible (DS at onset and MDR at completion of DOTS, they exhibited identical DNA fingerprints at both points of collection. The whole genome transcriptional analysis was performed using total RNA from H37Rv and 3 locally predominant spoligotypes viz. MANU1, CAS and Beijing, hybridized on MTBv3 (BuG@S microarray, and yielded 36, 98 and 45 differentially expressed genes respectively. Genes encoding transcription factors (sig, rpoB, cell wall biosynthesis (emb genes, protein synthesis (rpl and additional central metabolic pathways (ppdK, pknH, pfkB were found to be down regulated in the MDR isolates as compared to the DS isolate of the same genotype. Up regulation of drug efflux pumps, ABC transporters, trans-membrane proteins and stress response transcriptional factors (whiB in the MDR isolates was observed. The data indicated that Mtb, without specific mutations in drug target genes may persist in the host due to additional mechanisms like drug efflux pumps and lowered rate of metabolism. Furthermore this population of Mtb, which also showed reduced DNA repair activity, would result in selection and stabilization of spontaneous mutations in drug target genes, causing selection of a MDR strain in the presence of drug pressures. Efflux pump such as drrA may play a significant role in increasing fitness of low level drug resistant cells and assist in survival of Mtb till acquisition of drug resistant mutations with

  2. Identification of Rv0222 from RD4 as a novel serodiagnostic target for tuberculosis

    DEFF Research Database (Denmark)

    Rosenkrands, Ida; Aagaard, Claus; Weldingh, Karin

    2008-01-01

    Forty-seven Mycobacterium tuberculosis genes from the 'regions of difference' RD2-7, RD9-13 and RD15 were cloned and expressed, and the purified recombinant proteins were screened for their serodiagnostic potential. Evaluation of six selected proteins in serum samples from Danish resident tubercu...

  3. A transcript cleavage factor of Mycobacterium tuberculosis important for its survival.

    Directory of Open Access Journals (Sweden)

    Arnab China

    Full Text Available After initiation of transcription, a number of proteins participate during elongation and termination modifying the properties of the RNA polymerase (RNAP. Gre factors are one such group conserved across bacteria. They regulate transcription by projecting their N-terminal coiled-coil domain into the active center of RNAP through the secondary channel and stimulating hydrolysis of the newly synthesized RNA in backtracked elongation complexes. Rv1080c is a putative gre factor (MtbGre in the genome of Mycobacterium tuberculosis. The protein enhanced the efficiency of promoter clearance by lowering abortive transcription and also rescued arrested and paused elongation complexes on the GC rich mycobacterial template. Although MtbGre is similar in domain organization and shares key residues for catalysis and RNAP interaction with the Gre factors of Escherichia coli, it could not complement an E. coli gre deficient strain. Moreover, MtbGre failed to rescue E. coli RNAP stalled elongation complexes, indicating the importance of specific protein-protein interactions for transcript cleavage. Decrease in the level of MtbGre reduced the bacterial survival by several fold indicating its essential role in mycobacteria. Another Gre homolog, Rv3788 was not functional in transcript cleavage activity indicating that a single Gre is sufficient for efficient transcription of the M. tuberculosis genome.

  4. Synthesis of coumarin-theophylline hybrids as a new class of anti-tubercular and anti-microbial agents.

    Science.gov (United States)

    Mangasuli, Sumitra N; Hosamani, Kallappa M; Devarajegowda, Hirihalli C; Kurjogi, Mahantesh M; Joshi, Shrinivas D

    2018-02-25

    A series of novel coumarin-theophylline hybrids were synthesized and examined for their anti-tubercular activity in vitro against Mycobacterium tuberculosis H 37 Rv, anti-microbial activity in vitro against gram-positive bacteria (Staphylococcus aureus) and gram-negative bacterias (Escherichia coli, Salmonella typhi) as well as fungi (Candida albicans). The compound (3a) has shown excellent anti-tubercular activity with MIC of 0.12 μg/mL. Electron donating compounds (3a, 3f) have displayed significant anti-microbial activity. The compounds have also been precisely elucidated using single crystal X-ray diffraction techniques. Molecular docking study has been performed against 4DQU enzyme of Mycobacterium tuberculosis showed good binding interactions and is in agreement with the in vitro results. Copyright © 2018. Published by Elsevier Masson SAS.

  5. LL-37 induces polymerization and bundling of actin and affects actin structure.

    Directory of Open Access Journals (Sweden)

    Asaf Sol

    Full Text Available Actin exists as a monomer (G-actin which can be polymerized to filaments F-actin that under the influence of actin-binding proteins and polycations bundle and contribute to the formation of the cytoskeleton. Bundled actin from lysed cells increases the viscosity of sputum in lungs of cystic fibrosis patients. The human host defense peptide LL-37 was previously shown to induce actin bundling and was thus hypothesized to contribute to the pathogenicity of this disease. In this work, interactions between actin and the cationic LL-37 were studied by optical, proteolytic and surface plasmon resonance methods and compared to those obtained with scrambled LL-37 and with the cationic protein lysozyme. We show that LL-37 binds strongly to CaATP-G-actin while scrambled LL-37 does not. While LL-37, at superstoichiometric LL-37/actin concentrations polymerizes MgATP-G-actin, at lower non-polymerizing concentrations LL-37 inhibits actin polymerization by MgCl(2 or NaCl. LL-37 bundles Mg-F-actin filaments both at low and physiological ionic strength when in equimolar or higher concentrations than those of actin. The LL-37 induced bundles are significantly less sensitive to increase in ionic strength than those induced by scrambled LL-37 and lysozyme. LL-37 in concentrations lower than those needed for actin polymerization or bundling, accelerates cleavage of both monomer and polymer actin by subtilisin. Our results indicate that the LL-37-actin interaction is partially electrostatic and partially hydrophobic and that a specific actin binding sequence in the peptide is responsible for the hydrophobic interaction. LL-37-induced bundles, which may contribute to the accumulation of sputum in cystic fibrosis, are dissociated very efficiently by DNase-1 and also by cofilin.

  6. Patients with secondary amenorrhea due to tuberculosis endometritis towards the induced anti-tuberculosis drug category 1.

    Science.gov (United States)

    Perdhana, Raditya; Sutrisno, Sutrisno; Sugiri, Yani Jane; Baktiyani, Siti Candra Windu; Wiyasa, Arsana

    2016-01-01

    Tuberculosis (TB) is a disease which can affect various organs, including human's genital organs such as the endometrium. Tuberculosis endometritis can cause clinical symptoms of secondary amenorrhea and infertility. Infertility in genital TB caused by the involvement of the endometrium. The case presentation is 33-year-old woman from dr. Saiful Anwar Public Hospital to consult that she has not menstruated since 5 years ago (28 years old). The diagnosis was done by performing a clinical examination until the diagnosis of secondary amenorrhea due to tuberculosis endometritis is obtained. A treatment by using category I of anti-tuberculosis drugs was done for 6 months, afterward an Anatomical Pathology observation found no signs of the tuberculosis symptoms. Based on that, patient, who was diagnosed to have secondary amenorrhea due to tuberculosis endometritis, has no signs of tuberculosis process after being treated by using category I of anti-tuberculosis drugs for 6 months.

  7. Tuberculosis Treatment

    African Journals Online (AJOL)

    Tuberculosis Treatment, Lusaka, Zambia. 1. 2. 2. 3. 3 ... TB treatment has contributed to the steady rise of TB incidence in ... respondents (89.4%) had positive attitude towards TB treatment ..... respondents described feelings of depression, anger and apathy .... Journal of Personality and Social Psychology,. 1979, 37:1-11.

  8. Diabetes Drug Discovery: hIAPP1-37 Polymorphic Amyloid Structures as Novel Therapeutic Targets.

    Science.gov (United States)

    Fernández-Gómez, Isaac; Sablón-Carrazana, Marquiza; Bencomo-Martínez, Alberto; Domínguez, Guadalupe; Lara-Martínez, Reyna; Altamirano-Bustamante, Nelly F; Jiménez-García, Luis Felipe; Pasten-Hidalgo, Karina; Castillo-Rodríguez, Rosa Angélica; Altamirano, Perla; Marrero, Suchitil Rivera; Revilla-Monsalve, Cristina; Valdés-Sosa, Peter; Salamanca-Gómez, Fabio; Garrido-Magaña, Eulalia; Rodríguez-Tanty, Chryslaine; Altamirano-Bustamante, Myriam M

    2018-03-19

    Human islet amyloid peptide (hIAPP 1-37 ) aggregation is an early step in Diabetes Mellitus. We aimed to evaluate a family of pharmaco-chaperones to act as modulators that provide dynamic interventions and the multi-target capacity (native state, cytotoxic oligomers, protofilaments and fibrils of hIAPP 1-37 ) required to meet the treatment challenges of diabetes. We used a cross-functional approach that combines in silico and in vitro biochemical and biophysical methods to study the hIAPP 1-37 aggregation-oligomerization process as to reveal novel potential anti-diabetic drugs. The family of pharmaco-chaperones are modulators of the oligomerization and fibre formation of hIAPP 1-37 . When they interact with the amino acid in the amyloid-like steric zipper zone, they inhibit and/or delay the aggregation-oligomerization pathway by binding and stabilizing several amyloid structures of hIAPP 1-37 . Moreover, they can protect cerebellar granule cells (CGC) from the cytotoxicity produced by the hIAPP 1-37 oligomers. The modulation of proteostasis by the family of pharmaco-chaperones A - F is a promising potential approach to limit the onset and progression of diabetes and its comorbidities.

  9. Antimicrobial and Antimycobacterial Activity of Cyclostellettamine Alkaloids from Sponge Pachychalina sp.

    Science.gov (United States)

    de Oliveira, Jaine H. H. L.; Seleghim, Mirna H. R.; Timm, Christoph; Grube, Achim; Köck, Matthias; Nascimento, Gislene G.F.; Martins, Ana Claudia T.; Silva, Elissa G. O.; de Souza, Ana Olívia; Minarini, Paulo R. R.; Galetti, Fabio C. S.; Silva, Célio L.; Hajdu, Eduardo; Berlinck, Roberto G. S.

    2006-01-01

    Cyclostellettamines A – F (1 – 6) isolated from the sponge Pachychalina sp. and cyclostellettamines G - I, K and L (7 – 11) obtained by synthesis were evaluated in bioassays of antimicrobial activity against susceptible and antibiotic-resistant Staphylococcus aureus, Pseudomonas aeruginosa and antibiotic-susceptible Escherichia coli and Candida albicans, as well as in antimycobacterial activity against Mycobacterium tuberculosis H37Rv bioassays. The results obtained indicated that cyclostellettamines display different antimicrobial activity depending on the alkyl-chain size, suggesting that, if a mechanism-of action is implied, it is dependent on the distance between the two pyridinium moieties of cyclostellettamines.

  10. Production of matrix metalloproteinases in response to mycobacterial infection.

    Science.gov (United States)

    Quiding-Järbrink, M; Smith, D A; Bancroft, G J

    2001-09-01

    Matrix metalloproteinases (MMPs) constitute a large family of enzymes with specificity for the various proteins of the extracellular matrix which are implicated in tissue remodeling processes and chronic inflammatory conditions. To investigate the role of MMPs in immunity to mycobacterial infections, we incubated murine peritoneal macrophages with viable Mycobacterium bovis BCG or Mycobacterium tuberculosis H37Rv and assayed MMP activity in the supernatants by zymography. Resting macrophages secreted only small amounts of MMP-9 (gelatinase B), but secretion increased dramatically in a dose-dependent manner in response to either BCG or M. tuberculosis in vitro. Incubation with mycobacteria also induced increased MMP-2 (gelatinase A) activity. Neutralization of tumor necrosis alpha (TNF-alpha), and to a lesser extent interleukin 18 (IL-18), substantially reduced MMP production in response to mycobacteria. Exogenous addition of TNF-alpha or IL-18 induced macrophages to express MMPs, even in the absence of bacteria. The immunoregulatory cytokines gamma interferon (IFN-gamma), IL-4, and IL-10 all suppressed BCG-induced MMP production, but through different mechanisms. IFN-gamma treatment increased macrophage secretion of TNF-alpha but still reduced their MMP activity. Conversely, IL-4 and IL-10 seemed to act by reducing the amount of TNF-alpha available to the macrophages. Finally, infection of BALB/c or severe combined immunodeficiency (SCID) mice with either BCG or M. tuberculosis induced substantial increases in MMP-9 activity in infected tissues. In conclusion, we show that mycobacterial infection induces MMP-9 activity both in vitro and in vivo and that this is regulated by TNF-alpha, IL-18, and IFN-gamma. These findings indicate a possible contribution of MMPs to tissue remodeling processes that occur in mycobacterial infections.

  11. Aspirin-triggered resolvin D1 down-regulates inflammatory responses and protects against endotoxin-induced acute kidney injury

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Jiao [Center for Research on Environmental Disease, University of Kentucky, Lexington, KY 40536 (United States); Shetty, Sreerama [Center for Biomedical Research, University of Texas Health Science Center at Tyler, Tyler, TX 75708 (United States); Zhang, Ping [State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041 (China); Gao, Rong; Hu, Yuxin [Center for Research on Environmental Disease, University of Kentucky, Lexington, KY 40536 (United States); Wang, Shuxia [Graduate Center for Nutritional Sciences, College of Medicine, University of Kentucky, Lexington, KY 40536 (United States); Li, Zhenyu [Division of Cardiovascular Medicine, University of Kentucky, Lexington, KY 40536 (United States); Fu, Jian, E-mail: jian.fu@uky.edu [Center for Research on Environmental Disease, University of Kentucky, Lexington, KY 40536 (United States); Graduate Center for Toxicology, University of Kentucky, Lexington, KY 40536 (United States)

    2014-06-01

    The presence of endotoxin in blood can lead to acute kidney injury (AKI) and septic shock. Resolvins, the endogenous lipid mediators derived from docosahexaenoic acid, have been reported to exhibit potent anti-inflammatory action. Using a mouse model of lipopolysaccharide (LPS)-induced AKI, we investigated the effects of aspirin-triggered resolvin D1 (AT-RvD1) on inflammatory kidney injury. Administration of AT-RvD1 1 h after LPS challenge protected the mice from kidney injury as indicated by the measurements of blood urea nitrogen, serum creatinine, and morphological alterations associated with tubular damage. The protective effects were evidenced by decreased neutrophil infiltration in the kidney indicating reduction in inflammation. AT-RvD1 treatment restored kidney cell junction protein claudin-4 expression, which was otherwise reduced after LPS challenge. AT-RvD1 treatment inhibited endotoxin-induced NF-κB activation and suppressed LPS-induced ICAM-1 and VCAM-1 expression in the kidney. Moreover, AT-RvD1 treatment markedly decreased LPS-induced IL-6 level in the kidney and blocked IL-6-mediated signaling including STAT3 and ERK phosphorylation. Our findings demonstrate that AT-RvD1 is a potent anti-inflammatory mediator in LPS-induced kidney injury, and AT-RvD1 has therapeutic potential against AKI during endotoxemia.

  12. Aspirin-triggered resolvin D1 down-regulates inflammatory responses and protects against endotoxin-induced acute kidney injury

    International Nuclear Information System (INIS)

    Chen, Jiao; Shetty, Sreerama; Zhang, Ping; Gao, Rong; Hu, Yuxin; Wang, Shuxia; Li, Zhenyu; Fu, Jian

    2014-01-01

    The presence of endotoxin in blood can lead to acute kidney injury (AKI) and septic shock. Resolvins, the endogenous lipid mediators derived from docosahexaenoic acid, have been reported to exhibit potent anti-inflammatory action. Using a mouse model of lipopolysaccharide (LPS)-induced AKI, we investigated the effects of aspirin-triggered resolvin D1 (AT-RvD1) on inflammatory kidney injury. Administration of AT-RvD1 1 h after LPS challenge protected the mice from kidney injury as indicated by the measurements of blood urea nitrogen, serum creatinine, and morphological alterations associated with tubular damage. The protective effects were evidenced by decreased neutrophil infiltration in the kidney indicating reduction in inflammation. AT-RvD1 treatment restored kidney cell junction protein claudin-4 expression, which was otherwise reduced after LPS challenge. AT-RvD1 treatment inhibited endotoxin-induced NF-κB activation and suppressed LPS-induced ICAM-1 and VCAM-1 expression in the kidney. Moreover, AT-RvD1 treatment markedly decreased LPS-induced IL-6 level in the kidney and blocked IL-6-mediated signaling including STAT3 and ERK phosphorylation. Our findings demonstrate that AT-RvD1 is a potent anti-inflammatory mediator in LPS-induced kidney injury, and AT-RvD1 has therapeutic potential against AKI during endotoxemia

  13. Endogenous expression pattern of resolvin D1 in a rat model of self-resolution of lipopolysaccharide-induced acute respiratory distress syndrome and inflammation.

    Science.gov (United States)

    Sun, Wei; Wang, Zai-ping; Gui, Ping; Xia, Weiyi; Xia, Zhengyuan; Zhang, Xing-cai; Deng, Qing-zhu; Xuan, Wei; Marie, Christelle; Wang, Lin-lin; Wu, Qing-ping; Wang, Tingting; Lin, Yun

    2014-11-01

    Resolvin D1 (RvD1), an endogenous lipid mediator derived from docosahexaenoic acid, has been reported to promote a biphasic activity in anti-inflammatory response and regulate inflammatory resolution. The present study aimed to determine the endogenous expression pattern of RvD1 in a rat model of self-resolution of lipopolysaccharide (LPS)-induced acute respiratory distress syndrome (ARDS) and inflammation. The ARDS model was induced by administrating LPS (2mg/kg) via tracheotomy in 138 male Sprague-Dawley rats. At specified time points, lung injury and inflammation were respectively assessed by lung histology and analysis of bronchoalveolar lavage fluid and cytokine levels. The expression of endogenous RvD1 was detected by high performance liquid chromatography and tandem mass spectrometry. The results showed that histological lung injury peaked between 6h (LPS6h) and day 3, followed by recovery over 4-10 days after LPS administration. Lung tissue polymorph nuclear cell (PMN) was significantly increased at LPS6h, and peaked between 6h to day 2. The levels of interleukin (IL)-6 and IL-10 were significantly increased at LPS6h and remained higher over day 10 as compared to baseline. Intriguingly, the endogenous RvD1 expression was decreased gradually during the first 3 days, followed by almost completely recovery over days 9-10. The finding indicated that endogenous RvD1 underwent a decrease in expression followed by gradual increase that was basically coincident with the lung injury recovery in a rat model of self-resolution LPS-induced ARDS and inflammation. Our results may help define the optimal therapeutic window for endogenous RvD1 to prevent or treat LPS-induced ARDS and inflammation. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Comparative metabolic profiling of mce1 operon mutant vs wild-type Mycobacterium tuberculosis strains.

    Science.gov (United States)

    Queiroz, Adriano; Medina-Cleghorn, Daniel; Marjanovic, Olivera; Nomura, Daniel K; Riley, Lee W

    2015-11-01

    Mycobacterium tuberculosis disrupted in a 13-gene operon (mce1) accumulates free mycolic acids (FM) in its cell wall and causes accelerated death in mice. Here, to more comprehensively analyze differences in their cell wall lipid composition, we used an untargeted metabolomics approach to compare the lipid profiles of wild-type and mce1 operon mutant strains. By liquid chromatography-mass spectrometry, we identified >400 distinct lipids significantly altered in the mce1 mutant compared to wild type. These lipids included decreased levels of saccharolipids and glycerophospholipids, and increased levels of alpha-, methoxy- and keto mycolic acids (MA), and hydroxyphthioceranic acid. The mutant showed reduced expression of mmpL8, mmpL10, stf0, pks2 and papA2 genes involved in transport and metabolism of lipids recognized to induce proinflammatory response; these lipids were found to be decreased in the mutant. In contrast, the transcripts of mmpL3, fasI, kasA, kasB, acpM and RV3451 involved in MA transport and metabolism increased; MA inhibits inflammatory response in macrophages. Since the mce1 operon is known to be regulated in intracellular M. tuberculosis, we speculate that the differences we observed in cell wall lipid metabolism and composition may affect host response to M. tuberculosis infection and determine the clinical outcome of such an infection. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  15. Stratus Ocean Reference Station (20 deg. S, 85 deg. W) : Mooring Recovery and Deployment Cruise, R/V Ronald H. Brown Cruise 05-05, September 26, 2005-October 21, 2005

    National Research Council Canada - National Science Library

    Hutto, Lara; Weller, Robert; Lord, Jeff; Smith, Jason; Bouchard, Paul; Fairall, Chris; Pezoa, Sergio; Bariteau, Ludovic; Lundquist, Jessica; Ghate, Virendra

    2006-01-01

    .... During the October 2005 cruise of NOAA's R/V Ronald H. Brown to the ORS Stratus site, the primary activities were recovery of the WHOl surface mooring that had been deployed in December 2004, deployment of a new...

  16. Negligible risk of inducing resistance in Mycobacterium tuberculosis with single-dose rifampicin as post-exposure prophylaxis for leprosy.

    Science.gov (United States)

    Mieras, Liesbeth; Anthony, Richard; van Brakel, Wim; Bratschi, Martin W; van den Broek, Jacques; Cambau, Emmanuelle; Cavaliero, Arielle; Kasang, Christa; Perera, Geethal; Reichman, Lee; Richardus, Jan Hendrik; Saunderson, Paul; Steinmann, Peter; Yew, Wing Wai

    2016-06-08

    Post-exposure prophylaxis (PEP) for leprosy is administered as one single dose of rifampicin (SDR) to the contacts of newly diagnosed leprosy patients. SDR reduces the risk of developing leprosy among contacts by around 60 % in the first 2-3 years after receiving SDR. In countries where SDR is currently being implemented under routine programme conditions in defined areas, questions were raised by health authorities and professional bodies about the possible risk of inducing rifampicin resistance among the M. tuberculosis strains circulating in these areas. This issue has not been addressed in scientific literature to date. To produce an authoritative consensus statement about the risk that SDR would induce rifampicin-resistant tuberculosis, a meeting was convened with tuberculosis (TB) and leprosy experts. The experts carefully reviewed and discussed the available evidence regarding the mechanisms and risk factors for the development of (multi) drug-resistance in M. tuberculosis with a view to the special situation of the use of SDR as PEP for leprosy. They concluded that SDR given to contacts of leprosy patients, in the absence of symptoms of active TB, poses a negligible risk of generating resistance in M. tuberculosis in individuals and at the population level. Thus, the benefits of SDR prophylaxis in reducing the risk of developing leprosy in contacts of new leprosy patients far outweigh the risks of generating drug resistance in M. tuberculosis.

  17. Dimers of coumarin-1,2,3-triazole hybrids bearing alkyl spacer: Design, microwave-assisted synthesis, molecular docking and evaluation as antimycobacterial and antimicrobial agents

    Science.gov (United States)

    Ashok, Dongamanti; Gundu, Srinivas; Aamate, Vikas Kumar; Devulapally, Mohan Gandhi; Bathini, Raju; Manga, Vijjulatha

    2018-04-01

    The present study demonstrated the synthesis of new series of coumarin-1,2,3-triazole hybrids under microwave irradiation method. Several dimers of coumarin based 1,2,3-triazole derivatives were synthesized and their antimycobacterial and antimicrobial activities were investigated. The antimycobacterial activity screening results revealed that compounds 6i and 6j were the most active against Mycobacterium tuberculosis H37Rv strain. The active compounds were further evaluated for cytotoxicity with HEK cell lines and exhibited less % of inhibition. The same synthetic hybrids were evaluated for their antimicrobial activity against various bacterial strains and fungal strains and compounds 6e, 6h, 6i and 6j were found to be the most promising antimicrobial potent molecules. Furthermore, the active compounds against Mycobacterium tuberculosis were evaluated for their molecular docking studies against pantothenate synthetase (PS) enzyme of MTB and the docking results are in well agreement with the antitubercular evaluation results.

  18. High Antigen Dose Is Detrimental to Post-Exposure Vaccine Protection against Tuberculosis.

    Science.gov (United States)

    Billeskov, Rolf; Lindenstrøm, Thomas; Woodworth, Joshua; Vilaplana, Cristina; Cardona, Pere-Joan; Cassidy, Joseph P; Mortensen, Rasmus; Agger, Else Marie; Andersen, Peter

    2017-01-01

    Mycobacterium tuberculosis (Mtb), the etiologic agent of tuberculosis (TB), causes 1.8M deaths annually. The current vaccine, BCG, has failed to eradicate TB leaving 25% of the world's population with latent Mtb infection (LTBI), and 5-10% of these people will reactivate and develop active TB. An efficient therapeutic vaccine targeting LTBI could have an enormous impact on global TB incidence, and could be an important aid in fighting multidrug resistance, which is increasing globally. Here we show in a mouse model using the H56 (Ag85B-ESAT-6-Rv2660) TB vaccine candidate that post-exposure, but not preventive, vaccine protection requires low vaccine antigen doses for optimal protection. Loss of protection from high dose post-exposure vaccination was not associated with a loss of overall vaccine response magnitude, but rather with greater differentiation and lower functional avidity of vaccine-specific CD4 T cells. High vaccine antigen dose also led to a decreased ability of vaccine-specific CD4 T cells to home into the Mtb-infected lung parenchyma, a recently discovered important feature of T cell protection in mice. These results underscore the importance of T cell quality rather than magnitude in TB-vaccine protection, and the significant role that antigen dosing plays in vaccine-mediated protection.

  19. Autophagy protects type II alveolar epithelial cells from Mycobacterium tuberculosis infection

    International Nuclear Information System (INIS)

    Guo, Xu-Guang; Ji, Tian-Xing; Xia, Yong; Ma, Yue-Yun

    2013-01-01

    Highlights: ► We investigated the protective effect of autophagy pathway against MTB infection. ► MTB-infected A549 cells had higher LDH release. ► Inhibition of autophagy signaling significantly enhanced the MTB-induced necrosis. ► Autophagy prevents apoptosis and promotes cell survival in infected cells. -- Abstract: This study was designed to investigate the protective effect of the autophagy signaling pathway against Mycobacterium tuberculosis infection in type II alveolar epithelial cells. An in vitro M. tuberculosis system was established using human A549 cells. Infection-induced changes in the expression of the autophagic marker LC3 were assessed by reverse transcription-PCR and Western blotting. Morphological changes in autophagosomes were detected by transmission electron microscopy (TEM). The function of the autophagy signaling pathway during infection was assessed by measuring the level of cell death and the amount of lactate dehydrogenase (LDH) released in the presence or absence of the inhibitor 3-methyladenine (3-MA). In addition, effects on LDH release were assessed after the siRNA-mediated knockdown of the essential autophagosomal structural membrane protein Atg5. LC3 mRNA expression was significantly reduced in M.tuberculosis-infected A549 cells (16888.76 ± 1576.34 vs. uninfected: 12744.29 ± 1089.37; P < 0.05). TEM revealed M.tuberculosis bacilli-containing compartments that were surrounded by double membranes characteristic of the autophagic process. M.tuberculosis-infected A549 cells released more LDH (1.45 ± 0.12 vs. uninfected: 0.45 ± 0.04; P < 0.05). The inhibition of autophagy signaling significantly enhanced M.tuberculosis-induced necrosis (3-MA: 75 ± 5% vs. untreated: 15 ± 1%; P < 0.05) and LDH release (3-MA: 2.50 ± 0.24 vs. untreated: 0.45 ± 0.04; Atg5 knockdown: 3.19 ± 0.29 vs. untreated: 1.28 ± 0.11; P < 0.05). Our results indicate that autophagy signaling pathway prevents apoptosis in type II alveolar epithelial cells

  20. Mycobacterium tuberculosis TlyA Protein Negatively Regulates T Helper (Th) 1 and Th17 Differentiation and Promotes Tuberculosis Pathogenesis*

    Science.gov (United States)

    Rahman, Md. Aejazur; Sobia, Parveen; Dwivedi, Ved Prakash; Bhawsar, Aakansha; Singh, Dhiraj Kumar; Sharma, Pawan; Moodley, Prashini; Van Kaer, Luc; Bishai, William R; Das, Gobardhan

    2015-01-01

    Mycobacterium tuberculosis, the causative agent of tuberculosis, is an ancient pathogen and a major cause of death worldwide. Although various virulence factors of M. tuberculosis have been identified, its pathogenesis remains incompletely understood. TlyA is a virulence factor in several bacterial infections and is evolutionarily conserved in many Gram-positive bacteria, but its function in M. tuberculosis pathogenesis has not been elucidated. Here, we report that TlyA significantly contributes to the pathogenesis of M. tuberculosis. We show that a TlyA mutant M. tuberculosis strain induces increased IL-12 and reduced IL-1β and IL-10 cytokine responses, which sharply contrasts with the immune responses induced by wild type M. tuberculosis. Furthermore, compared with wild type M. tuberculosis, TlyA-deficient M. tuberculosis bacteria are more susceptible to autophagy in macrophages. Consequently, animals infected with the TlyA mutant M. tuberculosis organisms exhibited increased host-protective immune responses, reduced bacillary load, and increased survival compared with animals infected with wild type M. tuberculosis. Thus, M. tuberculosis employs TlyA as a host evasion factor, thereby contributing to its virulence. PMID:25847237

  1. Selective Destruction of Interleukin 23–Induced Expansion of a Major Antigen–Specific γδ T-Cell Subset in Patients With Tuberculosis

    Science.gov (United States)

    Gu, Jin; Xiao, Heping; Liang, Shanshan; Yang, Enzhuo; Yang, Rui; Huang, Dan; Chen, Crystal; Wang, Feifei; Shen, Ling; Chen, Zheng W.

    2017-01-01

    Abstract A loss of antigen-specific T-cell responses due to defective cytokine signaling during infections has not been reported. We hypothesize that tuberculosis can destroy signaling effects of selective cytokine(s) and induce exhaustion of antigen-specific T cells. To test this hypothesis, mechanistic studies were performed to examine whether and how tuberculosis blocked interleukin 23 (IL-23) and interleukin 2 (IL-2) signaling effects on a major human γδ T-cell subpopulation, phosphoantigen HMBPP–specific Vγ2Vδ2 T cells. IL-23 and IL-2 significantly expanded HMBPP-stimulated Vγ2Vδ2 T cells from subjects with latent tuberculosis infection, and IL-2 synergized the effect of IL-23. IL-23–induced expansion of Vγ2Vδ2 T cells involved STAT3. Surprisingly, patients with tuberculosis exhibited a selective destruction of IL-23–induced expansion of these cells. The tuberculosis-driven destruction of IL-23 signaling coincided with decreases of expression and phosphorylation of STAT3. Interestingly, impairing of STAT3 was linked to marked increases in the microRNAs (miRNAs) hsa-miR-337-3p and hsa-miR-125b-5p in Vγ2Vδ2 T cells from patients with tuberculosis. Downregulation of hsa-miR-337-3p and hsa-miR-125b-5p by miRNA sponges improved IL-23–mediated expansion of Vγ2Vδ2 T cells and restored the ability of these cells to produce anti–tuberculosis cytokines. These results support our hypothesis that tuberculosis can selectively impair a cytokine effect while sparing another and can induce exhaustion of T cells in response to the respective cytokine. PMID:27789724

  2. Hyperthermostable binding molecules on phage: Assay components for point-of-care diagnostics for active tuberculosis infection.

    Science.gov (United States)

    Zhao, Ning; Spencer, John; Schmitt, Margaret A; Fisk, John D

    2017-03-15

    Tuberculosis is the leading cause of death from infectious disease worldwide. The low sensitivity, extended processing time, and high expense of current diagnostics are major challenges to the detection and treatment of tuberculosis. Mycobacterium tuberculosis ornithine transcarbamylase (Mtb OTC, Rv1656) has been identified in the urine of patients with active TB infection and is a promising target for point-of-care diagnostics. Specific binding proteins with low nanomolar affinities for Mtb OTC were selected from a phage display library built upon a hyperthermostable Sso7d scaffold. Phage particles displaying Sso7d variants were utilized to generate a sandwich ELISA-based assay for Mtb OTC. The assay response is linear between 2 ng/mL and 125 ng/mL recombinant Mtb OTC and has a limit of detection of 400 pg/mL recombinant Mtb OTC. The assay employing a phage-based detection reagent is comparable to commercially-available antibody-based biosensors. Importantly, the assay maintains functionality at both neutral and basic pH in presence of salt and urea over the range of concentrations typical for human urine. Phage-based diagnostic systems may feature improved physical stability and cost of production relative to traditional antibody-based reagents, without sacrificing specificity and sensitivity. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Validação da proteína MDP2 de Mycobacterium tuberculosis H37Rv como uma proteína intrinsecamente desordenada e geração de uma cepa nocaute para o gene hns

    OpenAIRE

    Abbadi, Bruno Lopes

    2014-01-01

    A proteína micobacteriana ligadora de DNA 2 (MDP2) de Mycobacterium tuberculosis é uma proteína pequena e de caráter básico, conhecida por se ligar ao DNA de uma forma não es-pecífica e de ancorar o nucleóide à membrana plasmática promovendo o seu desempacota-mento. Motivados por uma predição de desordem intrínseca in silico prévia, nós usamos um conjunto de técnicas complementares para caracterizar esta proteína, tais como determina-ção da estabilidade ao calor e a desnaturantes químicos, ge...

  4. Analysis on Dynamic Transmission Accuracy for RV Reducer

    Directory of Open Access Journals (Sweden)

    Zhang Fengshou

    2017-01-01

    Full Text Available By taking rotate vector (RV reducer as the research object, the factors affecting the transmission accuracy are studied, including the machining errors of the main parts, assembly errors, clearance, micro-displacement, gear mesh stiffness and damping, bearing stiffness. Based on Newton second law, the transmission error mathematical model of RV reducer is set up. Then, the RV reducer transmission error curve is achieved by solving the mathematical model using the Runge-Kutta methods under the combined action of various error factors. Through the analysis of RV reducer transmission test, it can be found that there are similar variation trend and frequency components compared the theoretical research and experimental result. The presented method is useful to the research on dynamic transmission accuracy of RV reducer, and also applies to research the transmission accuracy of other cycloid drive systems.

  5. Effectiveness of BCG vaccination to aged mice

    Directory of Open Access Journals (Sweden)

    Ito Tsukasa

    2010-09-01

    Full Text Available Abstract Background The tuberculosis (TB still increases in the number of new cases, which is estimated to approach 10 million in 2010. The number of aged people has been growing all over the world. Ageing is one of risk factors in tuberculosis because of decreased immune responses in aged people. Mycobacterium bovis Bacillus Calmette Guérin (BCG is a sole vaccine currently used for TB, however, the efficacy of BCG in adults is still a matter of debate. Emerging the multidrug resistant Mycobacterium tuberculosis (MDR-TB make us to see the importance of vaccination against TB in new light. In this study, we evaluated the efficacy of BCG vaccination in aged mice. Results The Th1 responses, interferon-γ production and interleukin 2, in BCG inoculated aged mice (24-month-old were comparable to those of young mice (4- to 6-week-old. The protection activity of BCG in aged mice against Mycobacterium tuberculosis H37Rv was also the same as young mice. Conclusion These findings suggest that vaccination in aged generation is still effective for protection against tuberculosis.

  6. Chromosomal rearrangements and protein globularity changes in Mycobacterium tuberculosis isolates from cerebrospinal fluid

    Directory of Open Access Journals (Sweden)

    Seow Hoon Saw

    2016-09-01

    Full Text Available Background Meningitis is a major cause of mortality in tuberculosis (TB. It is not clear what factors promote central nervous system invasion and pathology but it has been reported that certain strains of Mycobacterium tuberculosis (Mtb might have genetic traits associated with neurotropism. Methods In this study, we generated whole genome sequences of eight clinical strains of Mtb that were isolated from the cerebrospinal fluid (CSF of patients presenting with tuberculous meningitis (TBM in Malaysia, and compared them to the genomes of H37Rv and other respiratory Mtb genomes either downloaded from public databases or extracted from local sputum isolates. We aimed to find genomic features that might be distinctly different between CSF-derived and respiratory Mtb. Results Genome-wide comparisons revealed rearrangements (translocations, inversions, insertions and deletions and non-synonymous SNPs in our CSF-derived strains that were not observed in the respiratory Mtb genomes used for comparison. These rearranged segments were rich in genes for PE (proline-glutamate/PPE (proline-proline-glutamate, transcriptional and membrane proteins. Similarly, most of the ns SNPs common in CSF strains were noted in genes encoding PE/PPE proteins. Protein globularity differences were observed among mycobacteria from CSF and respiratory sources and in proteins previously reported to be associated with TB meningitis. Transcription factors and other transcription regulators featured prominently in these proteins. Homologs of proteins associated with Streptococcus pneumoniae meningitis and Neisseria meningitidis virulence were identified in neuropathogenic as well as respiratory mycobacterial spp. examined in this study. Discussion The occurrence of in silico genetic differences in CSF-derived but not respiratory Mtb suggests their possible involvement in the pathogenesis of TBM. However, overall findings in this comparative analysis support the postulation that TB

  7. Tumor like tuberculosis of the descending duodenum; One case report

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Seung Wook; Choi, Byung Sook [Yonsei University College of Medicine, Seoul (Korea, Republic of)

    1971-10-15

    Tuberculosis of the duodenum is a definite clinical entity, of which incidence is not common. One case of tuberculosis of the duodenum in 37 years old Korean housewife, which is experienced by writers recently, is reported.

  8. The ada operon of Mycobacterium tuberculosis encodes two DNA methyltransferases for inducible repair of DNA alkylation damage.

    Science.gov (United States)

    Yang, Mingyi; Aamodt, Randi M; Dalhus, Bjørn; Balasingham, Seetha; Helle, Ina; Andersen, Pernille; Tønjum, Tone; Alseth, Ingrun; Rognes, Torbjørn; Bjørås, Magnar

    2011-06-10

    The ada operon of Mycobacterium tuberculosis, which encodes a composite protein of AdaA and AlkA and a separate AdaB/Ogt protein, was characterized. M. tuberculosis treated with N-methyl-N'-nitro-N-nitrosoguanidine induced transcription of the adaA-alkA and adaB genes, suggesting that M. tuberculosis mount an inducible response to methylating agents. Survival assays of the methyltransferase defective Escherichia coli mutant KT233 (ada ogt), showed that expression of the adaB gene rescued the alkylation sensitivity. Further, adaB but not adaA-alkA complemented the hypermutator phenotype of KT233. Purified AdaA-AlkA and AdaB possessed methyltransferase activity. These data suggested that AdaB counteract the cytotoxic and mutagenic effect of O(6)-methylguanine, while AdaA-AlkA most likely transfers methyl groups from innocuous methylphosphotriesters. AdaA-AlkA did not possess alkylbase DNA glycosylase activity nor rescue the alkylation sensitivity of the E. coli mutant BK2118 (tag alkA). We propose that AdaA-AlkA is a positive regulator of the adaptive response in M. tuberculosis. It thus appears that the ada operon of M. tuberculosis suppresses the mutagenic effect of alkylation but not the cytotoxic effect of lesions such as 3-methylpurines. Collectively, these data indicate that M. tuberculosis hypermutator strains with defective adaptive response genes might sustain robustness to cytotoxic alkylation DNA damage and confer a selective advantage contributing to host adaptation. Copyright © 2011 Elsevier B.V. All rights reserved.

  9. Effect of pH on radiation-induced apoptosis

    International Nuclear Information System (INIS)

    Chang, W. Song; Park, Heon J.; Lyons, John C.; Auger, Elizabeth A.; Lee, Hyung-Sik

    1996-01-01

    Purpose/Objective: The effect of environmental pH on the radiation-induced apoptosis in tumor cells in vitro was investigated. Materials and Methods: SCK mammary adenocarcinoma cells of A/J mice were irradiated with γ-rays using a 137 Cs irradiator and incubated in media of different pHs. After incubation at 37 degree sign C for 24-120 hrs., the extent of apoptosis was determined using agarose gel electrophoresis of DNA, in situ TUNEL staining, flow cytometry, and release of 3 H from 3 H-thymidine labeled cells. The membrane integrity, using the trypan blue exclusion method, and the clonogenicity of the cells were also determined. Results: Irradiation with 2-12 Gy of γ-rays induced apoptosis in pH 7.5 medium within 48 hrs. The radiation-induced apoptosis progressively declined as the medium pH was lowered so that little apoptosis occurred in 48 hrs. after irradiation with 12 Gy in pH 6.6 medium. However, when the cells were irradiated and incubated for 48 hrs. in pH 6.6 medium and then medium was replaced with pH 7.5 medium, apoptosis promptly occurred. Apoptosis also occurred even in pH 6.6 medium when the cells were irradiated and maintained in pH 7.5 medium for 8 hrs. or longer post-irradiation before incubation in pH 6.6 medium. Conclusion: An acidic environment markedly suppresses radiation-induced apoptosis probably by suppressing the expression of initial signals responsible for irradiation-induced apoptosis. Indications are that the signals persist in an acidic environment and trigger apoptosis when the environmental acidity is eased. Our results suggest that the acidic environment in human tumors may inhibit the apoptosis after irradiation. However, apoptosis may be triggered when reoxygenation occurs after irradiation, and thus, the intratumor environment becomes less acidic after irradiation. Not only the change in pO 2 but the change in pH during the course of fractionated radiotherapy may greatly influence the outcome of the treatment

  10. Comparison of antigen-specific T-cell responses of tuberculosis patients using complex or single antigens of Mycobacterium tuberculosis

    DEFF Research Database (Denmark)

    Mustafa, A S; Amoudy, H A; Wiker, H G

    1998-01-01

    GroES, rPstS, rGroEL and rDnaK) antigens of Mycobacterium tuberculosis. The responses of PBMC to these defined antigens were compared with the corresponding results obtained with complex antigens, such as whole-cell M. tuberculosis, M. tuberculosis culture filtrate (MT-CF) and cell wall antigens, as well...... as the vaccine strain, Mycobacterium bovis bacillus Calmette-Guerin (BCG). In addition, M. tuberculosis and MT-CF-induced T-cell lines were tested in the same assays against the panel of purified and complex antigens. The compiled data from PBMC and T-cell lines tested for antigen-induced proliferation and IFN...

  11. Microbial sensor for drug susceptibility testing of Mycobacterium tuberculosis.

    Science.gov (United States)

    Zhang, Z-T; Wang, D-B; Li, C-Y; Deng, J-Y; Zhang, J-B; Bi, L-J; Zhang, X-E

    2018-01-01

    Drug susceptibility testing (DST) of clinical isolates of Mycobacterium tuberculosis is critical in treating tuberculosis. We demonstrate the possibility of using a microbial sensor to perform DST of M. tuberculosis and shorten the time required for DST. The sensor is made of an oxygen electrode with M. tuberculosis cells attached to its surface. This sensor monitors the residual oxygen consumption of M. tuberculosis cells after treatment with anti-TB drugs with glycerine as a carbon source. In principle, after drug pretreatment for 4-5 days, the response differences between the sensors made of drug-sensitive isolates are distinguishable from the sensors made of drug-resistant isolates. The susceptibility of the M. tuberculosis H37Ra strain, its mutants and 35 clinical isolates to six common anti-TB drugs: rifampicin, isoniazid, streptomycin, ethambutol, levofloxacin and para-aminosalicylic acid were tested using the proposed method. The results agreed well with the gold standard method (LJ) and were determined in significantly less time. The whole procedure takes approximately 11 days and therefore has the potential to inform clinical decisions. To our knowledge, this is the first study that demonstrates the possible application of a dissolved oxygen electrode-based microbial sensor in M. tuberculosis drug resistance testing. This study used the microbial sensor to perform DST of M. tuberculosis and shorten the time required for DST. The overall detection result of the microbial sensor agreed well with that of the conventional LJ proportion method and takes less time than the existing phenotypic methods. In future studies, we will build an O 2 electrode array microbial sensor reactor to enable a high-throughput drug resistance analysis. © 2017 The Authors. Journal of Applied Microbiology published by John Wiley & Sons Ltd on behalf of The Society for Applied Microbiology.

  12. Chemical Compositions of RV Tauri Stars and Related Objects

    Science.gov (United States)

    Rao, S. S.; Giridhar, S.

    2014-04-01

    We have undertaken a comprehensive abundance analysis for a sample of relatively unexplored RV Tauri and RV Tauri like stars to further our understanding of post-Asymptotic Giant Branch (post-AGB) evolution. From our study based on high resolution spectra and a grid of model atmospheres, we find indications of mild s-processing for V820 Cen and IRAS 06165+3158. On the other hand, SU Gem and BT Lac exhibit the effects of mild dust-gas winnowing. We have also compiled the existing abundance data on RV Tauri objects and find that a large fraction of them are afflicted by dust-gas winnowing and aided by the present work, we find a small group of two RV Tauris showing mild s-process enhancement in our Galaxy. With two out of three reported s-process enhanced objects belonging to RV Tauri spectroscopic class C, these intrinsically metal-poor objects appear to be promising candidates to analyse the possible s-processing in RV Tauri stars.

  13. The role of transcriptional regulation in maintaining the availability of mycobacterial adenylate cyclases

    Directory of Open Access Journals (Sweden)

    Sarah J. Casey

    2014-03-01

    Full Text Available Mycobacterium species have a complex cAMP regulatory network indicated by the high number of adenylate cyclases annotated in their genomes. However the need for a high level of redundancy in adenylate cyclase genes remains unknown. We have used semiquantitiative RT-PCR to examine the expression of eight Mycobacterium smegmatis cyclases with orthologs in the human pathogen Mycobacterium tuberculosis, where cAMP has recently been shown to be important for virulence. All eight cyclases were transcribed in all environments tested, and only four demonstrated environmental-mediated changes in transcription. M. smegmatis genes MSMEG_0545 and MSMEG_4279 were upregulated during starvation conditions while MSMEG_0545 and MSMEG_4924 were downregulated in H2O2 and MSMEG_3780 was downregulated in low pH and starvation. Promoter fusion constructs containing M. tuberculosis H37Rv promoters showed consistent regulation compared to their M. smegmatis orthologs. Overall our findings indicate that while low levels of transcriptional regulation occur, regulation at the mRNA level does not play a major role in controlling cellular cyclase availability in a given environment.

  14. Human cathelicidin LL-37 – Does it influence the homeostatic ...

    Indian Academy of Sciences (India)

    70

    37; pulmonary tuberculosis; schizophrenia. 1. Introduction. Cathelicidins are ..... higher LL-37 levels in the cerebrospinal fluid and serum of children with ... found to be lower in cultured epidermal cells taken from biopsies of diabetic foot ulcers .... Greer A, Zenobia C and Darveau RP 2013 Defensins and LL-37: a review of ...

  15. Expresión de las moléculas del complejo mayor de histocompatibilidad clases I y II en pacientes con tuberculosis: efecto de la infección i n vitro con Mycobacterium tuberculosis H37Rv

    Directory of Open Access Journals (Sweden)

    Luis Fernando Barrera

    2001-04-01

    Full Text Available

    Es ampliamente conocido que pacientes con tuberculosis (TB
    activa pueden presentar alteraciones en la respuesta inmunológica, incluyendo defectos en la presentación antigénica. Dado el papel crítico del IFNγ y de las moléculas clase II en la inmunidad antimicrobiana, una estrategia desarrollada por microorganismos intracelulares, incluyendo virus, protozoos y bacterias, para evadir la respuesta inmune del hospedero, es la inhibición de la expresión de las moléculas del CMH. La mayor parte de las evidencias obtenidas hasta la fecha indican que estas infecciones intracelulares conducen a diferentes alteraciones en la vía de transducción de señales mediada por Jak1,2-Stat1, las
    cuales se han asociado con una disminución en la expresión superficial del CMH.
    Evidencias obtenidas en nuestro laboratorio, utilizando la línea
    celular de macrófagos murinos B10R infectada con Mtb, sugiere que esta infección altera la vía de transduccíon de señales mediada por Jak- Stat, la cual a su vez conduce a la disminución en la expresión de CIITA, un coactivador esencial para la expresión del CMH. De otro lado, se ha observado que la presencia de TGFβ e IL-10 también puede conducir a una disminución en la expresión del CMH II, a través de mecanismos
    dependientes e independientes de la vía JAK-Stat. Dado que una fracción apreciable de pacientes con TB muestran niveles elevados de estas citoquinas, ellas pudieran participar en la disminución de la expresión de las moléculas del CMH observada en algunos pacientes.

     

  16. SPECIFIC CONSTITUTIONAL FEATURES OF CHILDREN INFECTED WITH TUBERCULOSIS

    Directory of Open Access Journals (Sweden)

    Yu. A. Yarovaya

    2017-01-01

    Full Text Available In order to define specific constitutional features of the children infected with tuberculosis 222 children in the age from 1 to 14 years old have been examined: 106 children with active tuberculosis; 54 children with remaining post-tuberculosis changes; 62 children infected with tuberculous mycobacteria. The following types of diatheses were identified: lymphohypoplastic, allergic, neuroarthritic, exudative-catarrhal. It has been found out that among those with active tuberculosis the children suffering from lymphohypoplastic and neuroarthritic diatheses prevail (17.0 ± 3.7%, and allergic diathesis is less common (10.4 ± 3.0% cases. Children with lymphohypoplastic diathesis have a complicated course of tuberculosis (27.8 ± 10.6% and more intensive intoxication syndrome (55.6 ± 11.7%. The frequency of allergic diathesis is higher in the children with remaining post-tuberculosis changes (29.6 ± 6.2% and those infected with tuberculosis (33.8 ± 6.1% compared to children with active tuberculosis (10.4 ± 3.0%.

  17. Detection of KatG Gen Mutation on Mycobacterium Tuberculosis by Means of PCR-Dot Blot Hybridization with 32P Labeled Oligonucleotide Probe Methods

    International Nuclear Information System (INIS)

    Maria Lina R; Budiman Bela; Andi Yasmon

    2009-01-01

    Handling and controlling of tuberculosis, a disease caused by Mycobacterium tuberculosis (MTB), is now complicated since there are many MTBs that are resistant against anti-tuberculosis drugs such as isoniazid. The drug resistance could occurred due to the inadequate and un-regular drug utilization that cause gene mutation of the drug target such as katG gene for isoniazid. The molecular biology techniques such as the PCR- dot blot hybridization with radioisotope ( 32 P) labeled oligonucleotide probe, has been reported as a technique that is more sensitive and rapid for detection of gene mutations related with drug resistances. Hence, the aim of this study was to apply the PCR- dot blot hybridization technique using 32 P labeled oligonucleotide probe for detection of single mutation at codon 315 of katG gene of MTBs that rise the isoniazid resistance. In this study, we used 89 sputum specimens and a standard MTB (MTB H 37 RV) as a control. DNA extractions were performed by the BOOM method and the phenol chloroform for sputum samples and standard MTB, respectively. Primers used for PCR technique were Pt8 and Pt9 and RTB59 and RTB36 for detecting tuberculosis causing Mycobacterium and the existence of katG gene, respectively. Both of the primers are specific for IS6110 region and katG gene, respectively. PCR products were detected by an agarose gel electrophoresis technique. Dot blot hybridization with 32 P-oligonucleotide probe 315mu was performed to detect mutation at codon 315 of tested samples. Results of the PCR using primer Pt8 and Pt9 showed that all sputum specimens had positive results. Mutation detection by PCR- dot blot hybridization with 32 P-oligonucleotide probe 315mu, revealed that 11 of 89 tested samples had a mutation at their codon 315 of katG gene. Based upon these results, it is concluded that PCR-dot blot hybridization with 32 P-oligonucleotide probe is a technique that is rapid and highly specific and sensitive for detection of mutation at codon

  18. Ascites alone as the presentation of Congenital Tuberculosis

    Directory of Open Access Journals (Sweden)

    S Purkait

    2015-06-01

    Full Text Available Congenital tuberculosis is a rare disease. It usually presents with respiratory distress, fever and organomegaly. We report a case of congenital tuberculosis presenting with ascites only.DOI: http://dx.doi.org/10.3126/jcmsn.v10i1.12766 Journal of College of Medical Sciences-Nepal, 2014, Vol.10(1; 37-40

  19. [Abdominal Tuberculosis in children and adolescents. A diagnostic challenge].

    Science.gov (United States)

    Reto Valiente, Luz; Pichilingue Reto, Catherina; Pichilingue Prieto, Oscar; Dolores Cerna, Ketty

    2015-01-01

    To present our experience with abdominal tuberculosis in children and adolescents treated in our hospital from 2003 - 2014. It is a retrospective study. We have collected clinical records of inpatients overweight or obese and only 23.33% suffered of malnutrition. TB contact was present in 10 (33.33%). Positive tuberculin skin tests were seen in 10%. Extra-abdominal tuberculosis was found in 22 patients (63.32%). 12 cases had coexisting pulmonary tuberculosis and 4 cases had pleural effusion. 12 patients (40%) had tuberculous peritonitis; 12 patients (40%) had intestinal tuberculosis and peritoneal tuberculosis and 4 patients (13.33%) had intestinal tuberculosis. Bacteriological confirmation of tuberculosis was achieved in 10 cases (33.33%). Antituberculous therapy for 6 months was effective in 29 cases. One patient died who multifocal tuberculosis with HIV had associated. Abdominal tuberculosis is seen in 4.37% of children affected with tuberculosis, of which over 63% will have extra abdominal manifestations. Abdominal tuberculosis should be considered in patients with abdominal pain, fever, weight loss and abnormal chest radiography. Imaging can be useful for early diagnosis of abdominal tuberculosis.

  20. Optimisation of the microplate resazurin assay for screening and bioassay-guided fractionation of phytochemical extracts against Mycobacterium tuberculosis.

    Science.gov (United States)

    O'Neill, Taryn E; Li, Haoxin; Colquhoun, Caitlyn D; Johnson, John A; Webster, Duncan; Gray, Christopher A

    2014-01-01

    Because of increased resistance to current drugs, there is an urgent need to discover new anti-mycobacterial compounds for the development of novel anti-tuberculosis drugs. The microplate resazurin assay (MRA) is commonly used to evaluate natural products and synthetic compounds for anti-mycobacterial activity. However, the assay can be problematic and unreliable when screening methanolic phytochemical extracts. To optimise the MRA for the screening and bioassay-guided fractionation of phytochemical extracts using Mycobacterium tuberculosis H37Ra. The effects of varying assay duration, resazurin solution composition, solvent (dimethyl sulphoxide - DMSO) concentration and type of microtitre plate used on the results and reliability of the MRA were investigated. The optimal bioassay protocol was applied to methanolic extracts of medicinal plants that have been reported to possess anti-mycobacterial activity. The variables investigated were found to have significant effects on the results obtained with the MRA. A standardised procedure that can reliably quantify anti-mycobacterial activity of phytochemical extracts in as little as 48 h was identified. The optimised MRA uses 2% aqueous DMSO, with an indicator solution of 62.5 µg/mL resazurin in 5% aqueous Tween 80 over 96 h incubation. The study has identified an optimal procedure for the MRA when used with M. tuberculosis H37Ra that gives rapid, reliable and consistent results. The assay procedure has been used successfully for the screening and bioassay-guided fractionation of anti-mycobacterial compounds from methanol extracts of Canadian medicinal plants. Copyright © 2014 John Wiley & Sons, Ltd.

  1. Diabetes Drug Discovery: hIAPP1–37 Polymorphic Amyloid Structures as Novel Therapeutic Targets

    Directory of Open Access Journals (Sweden)

    Isaac Fernández-Gómez

    2018-03-01

    Full Text Available Human islet amyloid peptide (hIAPP1–37 aggregation is an early step in Diabetes Mellitus. We aimed to evaluate a family of pharmaco-chaperones to act as modulators that provide dynamic interventions and the multi-target capacity (native state, cytotoxic oligomers, protofilaments and fibrils of hIAPP1–37 required to meet the treatment challenges of diabetes. We used a cross-functional approach that combines in silico and in vitro biochemical and biophysical methods to study the hIAPP1–37 aggregation-oligomerization process as to reveal novel potential anti-diabetic drugs. The family of pharmaco-chaperones are modulators of the oligomerization and fibre formation of hIAPP1–37. When they interact with the amino acid in the amyloid-like steric zipper zone, they inhibit and/or delay the aggregation-oligomerization pathway by binding and stabilizing several amyloid structures of hIAPP1–37. Moreover, they can protect cerebellar granule cells (CGC from the cytotoxicity produced by the hIAPP1–37 oligomers. The modulation of proteostasis by the family of pharmaco-chaperones A–F is a promising potential approach to limit the onset and progression of diabetes and its comorbidities.

  2. Selective detection of Co2+ by fluorescent nano probe: Diagnostic approach for analysis of environmental samples and biological activities

    Science.gov (United States)

    Mahajan, Prasad G.; Dige, Nilam C.; Desai, Netaji K.; Patil, Shivajirao R.; Kondalkar, Vijay V.; Hong, Seong-Karp; Lee, Ki Hwan

    2018-06-01

    Nowadays scientist over the world are engaging to put forth improved methods to detect metal ion in an aqueous medium based on fluorescence studies. A simple, selective and sensitive method was proposed for detection of Co2+ ion using fluorescent organic nanoparticles. We synthesized a fluorescent small molecule viz. 4,4‧-{benzene-1,4-diylbis-[(Z)methylylidenenitrilo]}dibenzoic acid (BMBA) to explore its suitability as sensor for Co2+ ion and biocompatibility in form of nanoparticles. Fluorescence nanoparticles (BMBANPs) prepared by simple reprecipitation method. Aggregation induced enhanced emission of BMBANPs exhibits the narrower particle size of 68 nm and sphere shape morphology. The selective fluorescence quenching was observed by addition of Co2+ and does not affected by presence of other coexisting ion solutions. The photo-physical properties, viz. UV-absorption, fluorescence emission, and lifetime measurements are in support of ligand-metal interaction followed by static fluorescence quenching phenomenon in emission of BMBANPs. Finally, we develop a simple analytical method for selective and sensitive determination of Co2+ ion in environmental samples. The cell culture E. coli, Bacillus sps., and M. tuberculosis H37RV strain in the vicinity of BMBANPs indicates virtuous anti-bacterial and anti-tuberculosis activity which is of additional novel application shown by prepared nanoparticles.

  3. The crystal and solution structure of a putative transcriptional antiterminator from Mycobacterium tuberculosis

    DEFF Research Database (Denmark)

    Morth, J.P.; Feng, V.; Perry, L.J.

    2004-01-01

    We describe the crystal structure of Rv1626 from Mycobacterium tuberculosis at 1.48 A resolution and the corresponding solution structure determined from small angle X-ray scattering. The N-terminal domain shows structural homology to the receiver domains found in bacterial two-component systems....... regulators, so far only found in bacteria, and includes NasT, a protein from the assimilatory nitrate/nitrite reductase operon of Azetobacter vinelandii....

  4. Population Structure among Mycobacterium tuberculosis Isolates from Pulmonary Tuberculosis Patients in Colombia

    Science.gov (United States)

    Realpe, Teresa; Correa, Nidia; Rozo, Juan Carlos; Ferro, Beatriz Elena; Gomez, Verónica; Zapata, Elsa; Ribon, Wellman; Puerto, Gloria; Castro, Claudia; Nieto, Luisa María; Diaz, Maria Lilia; Rivera, Oriana; Couvin, David; Rastogi, Nalin; Arbelaez, Maria Patricia; Robledo, Jaime

    2014-01-01

    Background Phylogeographic composition of M. tuberculosis populations reveals associations between lineages and human populations that might have implications for the development of strategies to control the disease. In Latin America, lineage 4 or the Euro-American, is predominant with considerable variations among and within countries. In Colombia, although few studies from specific localities have revealed differences in M. tuberculosis populations, there are still areas of the country where this information is lacking, as is a comparison of Colombian isolates with those from the rest of the world. Principal Findings A total of 414 M. tuberculosis isolates from adult pulmonary tuberculosis cases from three Colombian states were studied. Isolates were genotyped using IS6110-restriction fragment length polymorphism (RFLP), spoligotyping, and 24-locus Mycobacterial interspersed repetitive units variable number tandem repeats (MIRU-VNTRs). SIT42 (LAM9) and SIT62 (H1) represented 53.3% of isolates, followed by 8.21% SIT50 (H3), 5.07% SIT53 (T1), and 3.14% SIT727 (H1). Composite spoligotyping and 24-locus MIRU- VNTR minimum spanning tree analysis suggest a recent expansion of SIT42 and SIT62 evolved originally from SIT53 (T1). The proportion of Haarlem sublineage (44.3%) was significantly higher than that in neighboring countries. Associations were found between M. tuberculosis MDR and SIT45 (H1), as well as HIV-positive serology with SIT727 (H1) and SIT53 (T1). Conclusions This study showed the population structure of M. tuberculosis in several regions from Colombia with a dominance of the LAM and Haarlem sublineages, particularly in two major urban settings (Medellín and Cali). Dominant spoligotypes were LAM9 (SIT 42) and Haarlem (SIT62). The proportion of the Haarlem sublineage was higher in Colombia compared to that in neighboring countries, suggesting particular conditions of co-evolution with the corresponding human population that favor the success of this

  5. Human-induced pluripotent stem cell-derived macrophages and their immunological function in response to tuberculosis infection.

    Science.gov (United States)

    Hong, Danping; Ding, Jiongyan; Li, Ouyang; He, Quan; Ke, Minxia; Zhu, Mengyi; Liu, Lili; Ou, Wen-Bin; He, Yulong; Wu, Yuehong

    2018-02-26

    Induced pluripotent stem cells (iPS) represent an innovative source for the standardized in vitro generation of macrophages (Mφ). Mφ show great promise in disease pathogenesis, particularly tuberculosis. However, there is no information about human iPS-derived (hiPS) macrophages (hiPS-Mφ) in response to tuberculosis infection. In the present study, macrophages derived from hiPS were established via embryoid body (EB) formation by using feeder-free culture conditions, and the human monocyte cell line THP-1 (THP-1-Mφ) was used as control. iPS-Mφ were characterized by using morphology, Giemsa staining, nonspecific esterase staining (α-NAE), phagocytosis, and surface phenotype. Additionally, after treatment with Bacillus Calmette-Guérin (BCG) for 24 h, cell apoptosis was detected by using an Annexin V-FITC Apoptosis Detection assay. The production of nitric oxide (NO), expression of tumor necrosis factor alpha (TNF-α), activity of apoptosis-related protein cysteine-3 (Caspase-3) and expression of B-cell lymphoma-2 (Bcl-2) were analyzed. With respect to morphology, surface phenotype, and function, the iPS-Mφ closely resembled their counterparts generated in vitro from a human monocyte cell line. iPS-Mφ exhibited the typically morphological characteristics of macrophages, such as round, oval, fusiform and irregular characteristics. The cells were Giemsa-stained-positive, α-NAE-positive, and possessed phagocytic ability. iPS-Mφ express high levels of CD14, CD11b, CD40, CD68, and major histocompatibility complex II (MHC-II). Moreover, with regard to the apoptotic rate, the production of NO, expression of TNF-α, and activity of Caspase-3 and Bcl-2, iPS-Mφ closely resemble that of their counterparts generated in vitro from human monocyte cell line in response to BCG infection. The rate of apoptosis of BCG-treated iPS-Mφ was 37.77 ± 7.94% compared to that of the untreated group at 4.97 ± 1.60% (P immunological function in response to Bacillus Calmette

  6. DEFINITION DESIRED MODE ULTRAVIOLET RADIATION, WHICH PREVENT MYCOBACTERIUM TUBERCULOSIS SURVIVAL AND CONVERSION TO L-FORMS

    Directory of Open Access Journals (Sweden)

    Moiseenko TN

    2015-04-01

    Full Text Available Bactericidal effect of ultraviolet (UV rays was first described over 100 years ago. UV was used in hospitals from 1930 and in 1936 was first used to sterilize the air in the operating room. The maximum bactericidal effect occurs in the region 254-257 nm UV wavelength, which is manifested mainly in the destructive-modifying photochemical damage of DNA synthesis. So, UV rays causes an increase in the permeability of the microbial cell membranes to ions environment and coagulation of colloids cytoplasm, resulting in disruption of normal cell development, stopping the reproduction and lysis. In any body there are biochemical mechanisms that could fully or partially restore the damaged original structure of the DNA molecule - fotoreactivation. It's resistant microorganisms consist about 0.01% of the microbial population, but the certain types reach 1-5%. Surviving bacteria can form new colonies with less susceptibility to radiation. Mycobacteria in the course of evolution developed various mechanisms to overcome or inactivation of adverse environmental factors: a special cell wall (waxes, fats, mycolic acid; large metabolic capabilities by which M. tuberculosis able to inactivate various antiseptics and disinfectants; morphological plasticity, which is spontaneous and induced transformation in L-forms with a reversion of virulent original shape. М. tuberculosis more resistant to UV radiation than other bacteria. Materials and methods. We investigated the effectiveness of UV radiation against to M. tuberculosis at distances from the radiator - 70 cm, 140 cm, 210 cm; exposure time 20, 30, 40 and 50 minutes. We used museum strain H37Rv and 3 clinical strains: 1 - strain with preserved sensitivity; 2 - strain with resistance to isoniazid and rifampicin; 3 - strain with resistance to isoniazid, rifampicin and ofloxacin (enhanced resistance. We used radiator - Philips TUV power 30 W (without ozone for up to 6000 hours. Control and irradiated cultures of

  7. A booster vaccine expressing a latency-associated antigen augments BCG induced immunity and confers enhanced protection against tuberculosis.

    Directory of Open Access Journals (Sweden)

    Bappaditya Dey

    Full Text Available BACKGROUND: In spite of a consistent protection against tuberculosis (TB in children, Mycobacterium bovis Bacille Calmette-Guerin (BCG fails to provide adequate protection against the disease in adults as well as against reactivation of latent infections or exogenous reinfections. It has been speculated that failure to generate adequate memory T cell response, elicitation of inadequate immune response against latency-associated antigens and inability to impart long-term immunity against M. tuberculosis infections are some of the key factors responsible for the limited efficiency of BCG in controlling TB. METHODS/PRINCIPAL FINDINGS: In this study, we evaluated the ability of a DNA vaccine expressing α-crystallin--a key latency antigen of M. tuberculosis to boost the BCG induced immunity. 'BCG prime-DNA boost' regimen (B/D confers robust protection in guinea pigs along with a reduced pathology in comparison to BCG vaccination (1.37 log(10 and 1.96 log(10 fewer bacilli in lungs and spleen, respectively; p<0.01. In addition, B/D regimen also confers enhanced protection in mice. Further, we show that B/D immunization in mice results in a heightened frequency of PPD and antigen specific multi-functional CD4 T cells (3(+ simultaneously producing interferon (IFNγ, tumor necrosis factor (TNFα and interleukin (IL2. CONCLUSIONS/SIGNIFICANCE: These results clearly indicate the superiority of α-crystallin based B/D regimen over BCG. Our study, also demonstrates that protection against TB is predictable by an increased frequency of 3(+ Th1 cells with superior effector functions. We anticipate that this study would significantly contribute towards the development of superior booster vaccines for BCG vaccinated individuals. In addition, this regimen can also be expected to reduce the risk of developing active TB due to reactivation of latent infection.

  8. Vaccination against tuberculosis.

    Science.gov (United States)

    Martin, Carlos; Aguilo, Nacho; Gonzalo-Asensio, Jesús

    2018-04-04

    BCG (Bacille Calmette-Guérin) vaccination is included in the immunization schedule for tuberculosis endemic countries with a global coverage at birth close to 90% worldwide. BCG was attenuated from Mycobacterium bovis almost a century ago, and provides a strong protection against disseminated forms of the disease, though very limited against pulmonary forms of tuberculosis, responsible for transmission. Novel prophylactic tuberculosis vaccines are in clinical development either to replace BCG or to improve its protection against respiratory forms of the disease. There are limitations understanding the immunological responses involved and the precise type of long-lived immunity that new vaccines need to induce. MTBVAC is the first and only tuberculosis vaccine candidate based on live-attenuated Mycobacterium tuberculosis in clinical evaluation. MTBVAC clinical development plans to target tuberculosis prevention in newborns, as a BCG replacement strategy, and as secondary objective to be tested in adolescents and adults previous vaccinated with BCG. Copyright © 2018 Elsevier España, S.L.U. and Sociedad Española de Enfermedades Infecciosas y Microbiología Clínica. All rights reserved.

  9. [Function in patients with chronic fibrocavernous tuberculosis].

    Science.gov (United States)

    Nefedov, V B; Popova, L A; Shergina, E A

    2008-01-01

    Vital capacity (VC), forced vital capacity (FVC), forced expiratory volume in 1 second (FEV1), FEV1/VC%, PEF, MEF25, MEF50, MEF75, TLC, TGV, residual volume (RV), R(aw), R(in), R(ex), DLCO-SB, DLCO-SS, PaO2, and PaCO2 were determined in 62 patients with chronic fibrocavernous tuberculosis. Lung dysfunctions were detected in 96.8% of the patients. Changes in lung volumes and capacities were found in 90.3%, impaired bronchial patency was in 90.3%, and pulmonary gas exchange dysfunction was in 79.0%. The lung volume and capacity changes appeared as decreased VC and FVC, decreased and increased TLC, TGV, RV; impaired bronchial patency presented as decreased PEF, MEF25, MEF50, MEF75, and FEV1/VC%; and increased R(aw), R(in), R(ex); pulmonary gas exchange dysfunction manifested itself as reduced DLCO-SB, DLCO-SS, PaO2, and decreased and increased PaCO2. The magnitude of the observed functional changes ranges from slight to significant and drastic with a predominance of considerable and drastic changes in lung volumes and capacities and mild impairments of bronchial patency and pulmonary gas exchange function.

  10. Radiation-induced apoptosis in different pH environments in vitro

    International Nuclear Information System (INIS)

    Lee, Hyung-Sik; Park, Heon J.; Lyons, John C.; Griffin, Robert J.; Auger, Elizabeth A.; Song, Chang W.

    1997-01-01

    Purpose: The effect of environmental pH on the radiation-induced apoptosis in tumor cells in vitro was investigated. Methods and Materials: Mammary adenocarcinoma cells of A/J mice (SCK cells) were irradiated with γ-rays using a 137 Cs irradiator and incubated in media of different pHs. After incubation at 37 deg. C for 24-120 h the extent of apoptosis was determined using agarose gel electrophoresis, TdT-mediated dUTP-biotin nick end labeling (TUNEL) staining, flow cytometry, and release of 3 H from 3 H-thymidine labeled cells. The clonogenicity of the cells irradiated in different pH medium was determined, and the progression of cells through the cell cycle after irradiation in different pHs was also determined with flow cytometry. Results: Irradiation with 2-12 Gy of γ-rays induced apoptosis in SCK cells in pH 7.5 medium within 48 h as judged from the results of four different assays mentioned. Radiation-induced apoptosis declined as the medium pH was lowered from 7.5 to 6.4. Specifically, the radiation-induced degradation of DNA including the early DNA breaks, as determined with the TUNEL method, progressively declined as the medium pH was lowered so that little DNA fragmentation occurred 48 h after irradiation with 12 Gy in pH 6.6 medium. When the cells were irradiated and incubated for 48 h in pH 6.6 medium and the medium was replaced with pH 7.5 medium, DNA fragmentation promptly occurred. DNA fragmentation also occurred even in pH 6.6 medium when the cells were irradiated and maintained in pH 7.5 medium for 8 h or longer post-irradiation before incubation in pH 6.6 medium. The radiation-induced G 2 arrest in pH 6.6 medium lasted markedly longer than that in pH 7.5 medium. Conclusion: Radiation-induced apoptosis in SCK cells in vitro is reversibly suppressed in an acidic environment. Taking the results of four different assays together, it was concluded that early step(s) in the apoptotic pathway, probably the DNA break or upstream of DNA break, is

  11. Carbon Dioxide, Hydrographic, and Chemical Data Obtained During the R/V Ronald H. Brown Repeat Hydrography Cruise in the Atlantic Ocean: CLIVAR CO2 Section A16S_2005 (11 January - 24 February, 2005)

    Energy Technology Data Exchange (ETDEWEB)

    Kozyr, Alex [Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States). Carbon Dioxide Information Analysis Center

    2006-08-30

    This report presents methods, and analytical and quality control procedures for salinity, oxygen, nutrient, inorganic carbon, organic carbon, chlorofluorocarbon (CFC), and bomb 14C system parameters performed during the A16S_2005 cruise, which took place from January 11 to February 24, 2005, aboard research vessel (R/V) Ronald H. Brown under the auspices of the National Oceanic and Atmospheric Administration (NOAA). The R/V Ronald H. Brown departed Punta Arenas, Chile, on January 11, 2005, and ended its cruise in Fortaleza, Brazil, on February 24, 2005. The research conducted was one of a series of repeat hydrography sections jointly funded by NOAA and the National Science Foundation as part of the CLIVAR/CO2/repeat hydrography/tracer program. Samples were taken from 36 depths at 121 stations. The data presented in this report include the analyses of water samples for total inorganic carbon (TCO2), fugacity of CO2 (fCO2), total alkalinity (TALK), pH, dissolved organic carbon (DOC), CFC, 14C, hydrographic, and other chemical measurements. The R/V Ronald H. Brown A16S_2005 data set is available free of charge as a numeric data package (NDP) from the Carbon Dioxide Information Analysis Center (CDIAC). The NDP consists of the oceanographic data files and this printed documentation, which describes the procedures and methods used to obtain the data.

  12. High Antigen Dose Is Detrimental to Post-Exposure Vaccine Protection against Tuberculosis

    Directory of Open Access Journals (Sweden)

    Rolf Billeskov

    2018-01-01

    Full Text Available Mycobacterium tuberculosis (Mtb, the etiologic agent of tuberculosis (TB, causes 1.8M deaths annually. The current vaccine, BCG, has failed to eradicate TB leaving 25% of the world’s population with latent Mtb infection (LTBI, and 5–10% of these people will reactivate and develop active TB. An efficient therapeutic vaccine targeting LTBI could have an enormous impact on global TB incidence, and could be an important aid in fighting multidrug resistance, which is increasing globally. Here we show in a mouse model using the H56 (Ag85B-ESAT-6-Rv2660 TB vaccine candidate that post-exposure, but not preventive, vaccine protection requires low vaccine antigen doses for optimal protection. Loss of protection from high dose post-exposure vaccination was not associated with a loss of overall vaccine response magnitude, but rather with greater differentiation and lower functional avidity of vaccine-specific CD4 T cells. High vaccine antigen dose also led to a decreased ability of vaccine-specific CD4 T cells to home into the Mtb-infected lung parenchyma, a recently discovered important feature of T cell protection in mice. These results underscore the importance of T cell quality rather than magnitude in TB-vaccine protection, and the significant role that antigen dosing plays in vaccine-mediated protection.

  13. Biochemical characterization of the maltokinase from Mycobacterium bovis BCG

    Directory of Open Access Journals (Sweden)

    Lamosa Pedro

    2010-05-01

    Full Text Available Abstract Background Maltose-1-phosphate was detected in Mycobacterium bovis BCG extracts in the 1960's but a maltose-1-phosphate synthetase (maltokinase, Mak was only much later purified from Actinoplanes missouriensis, allowing the identification of the mak gene. Recently, this metabolite was proposed to be the intermediate in a pathway linking trehalose with the synthesis of glycogen in M. smegmatis. Although the M. tuberculosis H37Rv mak gene (Rv0127 was considered essential for growth, no mycobacterial Mak has, to date, been characterized. Results The sequence of the Mak from M. bovis BCG was identical to that from M. tuberculosis strains (99-100% amino acid identity. The enzyme was dependent on maltose and ATP, although GTP and UTP could be used to produce maltose-1-phosphate, which we identified by TLC and characterized by NMR. The Km for maltose was 2.52 ± 0.40 mM and 0.74 ± 0.12 mM for ATP; the Vmax was 21.05 ± 0.89 μmol/min.mg-1. Divalent cations were required for activity and Mg2+ was the best activator. The enzyme was a monomer in solution, had maximal activity at 60°C, between pH 7 and 9 (at 37°C and was unstable on ice and upon freeze/thawing. The addition of 50 mM NaCl markedly enhanced Mak stability. Conclusions The unknown role of maltokinases in mycobacterial metabolism and the lack of biochemical data led us to express the mak gene from M. bovis BCG for biochemical characterization. This is the first mycobacterial Mak to be characterized and its properties represent essential knowledge towards deeper understanding of mycobacterial physiology. Since Mak may be a potential drug target in M. tuberculosis, its high-level production and purification in bioactive form provide important tools for further functional and structural studies.

  14. Mechanistic insights into a novel exporter-importer system of Mycobacterium tuberculosis unravel its role in trafficking of iron.

    Directory of Open Access Journals (Sweden)

    Aisha Farhana

    2008-05-01

    Full Text Available Elucidation of the basic mechanistic and biochemical principles underlying siderophore mediated iron uptake in mycobacteria is crucial for targeting this principal survival strategy vis-à-vis virulence determinants of the pathogen. Although, an understanding of siderophore biosynthesis is known, the mechanism of their secretion and uptake still remains elusive.Here, we demonstrate an interplay among three iron regulated Mycobacterium tuberculosis (M.tb proteins, namely, Rv1348 (IrtA, Rv1349 (IrtB and Rv2895c in export and import of M.tb siderophores across the membrane and the consequent iron uptake. IrtA, interestingly, has a fused N-terminal substrate binding domain (SBD, representing an atypical subset of ABC transporters, unlike IrtB that harbors only the permease and ATPase domain. SBD selectively binds to non-ferrated siderophores whereas Rv2895c exhibits relatively higher affinity towards ferrated siderophores. An interaction between the permease domain of IrtB and Rv2895c is evident from GST pull-down assay. In vitro liposome reconstitution experiments further demonstrate that IrtA is indeed a siderophore exporter and the two-component IrtB-Rv2895c system is an importer of ferrated siderophores. Knockout of msmeg_6554, the irtA homologue in Mycobacterium smegmatis, resulted in an impaired M.tb siderophore export that is restored upon complementation with M.tb irtA.Our data suggest the interplay of three proteins, namely IrtA, IrtB and Rv2895c in synergizing the balance of siderophores and thus iron inside the mycobacterial cell.

  15. Mycobacterium tuberculosis Upregulates TNF-α Expression via TLR2/ERK Signaling and Induces MMP-1 and MMP-9 Production in Human Pleural Mesothelial Cells.

    Directory of Open Access Journals (Sweden)

    Wei-Lin Chen

    Full Text Available Tumor necrosis factor (TNF-α and matrix metalloproteinases (MMPs are elevated in pleural fluids of tuberculous pleuritis (TBP where pleural mesothelial cells (PMCs conduct the first-line defense against Mycobacterium tuberculosis (MTB. However, the clinical implication of TNF-α and MMPs in TBP and the response of PMCs to MTB infection remain unclear.We measured pleural fluid levels of TNF-α and MMPs in patients with TBP (n = 18 or heart failure (n = 18 as controls. Radiological scores for initial effusion amount and residual pleural fibrosis at 6-month follow-up were assessed. In vitro human PMC experiments were performed to assess the effect of heat-killed M. tuberculosis H37Ra (MTBRa on the expression of TNF-α and MMPs.As compared with controls, the effusion levels of TNF-α, MMP-1 and MMP-9 were significantly higher and correlated positively with initial effusion amount in patients with TBP, while TNF-α and MMP-1, but not MMP-9, were positively associated with residual pleural fibrosis of TBP. Moreover, effusion levels of TNF-α had positive correlation with those of MMP-1 and MMP-9 in TBP. In cultured PMCs, MTBRa enhanced TLR2 and TLR4 expression, activated ERK signaling, and upregulated TNF-α mRNA and protein expression. Furthermore, knockdown of TLR2, but not TLR4, significantly inhibited ERK phosphorylation and TNF-α expression. Additionally, both MTBRa and TNF-α markedly induced MMP-1 and MMP-9 synthesis in human PMCs, and TNF-α neutralization substantially reduced the production of MMP-1, but not MMP-9, in response to MTBRa stimulation.MTBRa activates TLR2/ERK signalings to induce TNF-α and elicit MMP-1 and MMP-9 in human PMCs, which are associated with effusion volume and pleural fibrosis and may contribute to pathogenesis of TBP. Further investigation of manipulation of TNF-α and MMP expression in pleural mesothelium may provide new insights into the mechanisms and rational treatment strategies for TBP.

  16. High tuberculosis prevalence in a South African prison: the need for routine tuberculosis screening.

    Directory of Open Access Journals (Sweden)

    Lilanganee Telisinghe

    Full Text Available Tuberculosis is a major health concern in prisons, particularly where HIV prevalence is high. Our objective was to determine the undiagnosed pulmonary tuberculosis ("undiagnosed tuberculosis" prevalence in a representative sample of prisoners in a South African prison. In addition we investigated risk factors for undiagnosed tuberculosis, to explore if screening strategies could be targeted to high risk groups, and, the performance of screening tools for tuberculosis.In this cross-sectional survey, male prisoners were screened for tuberculosis using symptoms, chest radiograph (CXR and two spot sputum specimens for microscopy and culture. Anonymised HIV antibody testing was performed on urine specimens. The sensitivity, specificity and predictive values of symptoms and investigations were calculated, using Mycobacterium tuberculosis isolated on sputum culture as the gold standard. From September 2009 to October 2010, 1046 male prisoners were offered enrolment to the study. A total of 981 (93.8% consented (median age was 32 years; interquartile range [IQR] 27-37 years and were screened for tuberculosis. Among 968 not taking tuberculosis treatment and with sputum culture results, 34 (3.5%; 95% confidence interval [CI] 2.4-4.9% were culture positive for Mycobacterium tuberculosis. HIV prevalence was 25.3% (242/957; 95% CI 22.6-28.2%. Positive HIV status (adjusted odds ratio [aOR] 2.0; 95% CI 1.0-4.2 and being an ex-smoker (aOR 2.6; 95% CI 1.2-5.9 were independently associated with undiagnosed tuberculosis. Compared to the gold standard of positive sputum culture, cough of any duration had a sensitivity of 35.3% and specificity of 79.6%. CXR was the most sensitive single screening modality (sensitivity 70.6%, specificity 92.2%. Adding CXR to cough of any duration gave a tool with sensitivity of 79.4% and specificity of 73.8%.Undiagnosed tuberculosis and HIV prevalence was high in this prison, justifying routine screening for tuberculosis at entry

  17. REACTIVITY OF BLOOD LYMPHOCYTES IN PULMONARY TUBERCULOSIS

    Directory of Open Access Journals (Sweden)

    R. R. Khasanova

    2009-01-01

    Full Text Available Evaluation of proliferative and IL-2-producing activity of peripheral blood lymphocytes wasperformed, using cultural methods, in patients with drug-sensitive and drug-resistant infiltrative pulmonary tuberculosis. The cell testing was performed at basal level and following in vitro stimulation with recombinant IL-2 and M. tuberculosis antigens. It was established that clinical course of infiltrative pulmonary tuberculosis, independently on drug sensitivity/resistance of the infectious pathogen, is accompanied by suppression of spontaneous lymphoproliferation. The levels of induced IL-2 production in drug-sensitive tuberculosis proved to be increased, whereas a reserve of IL-2-secreting reactivity of blood lymphocytes was lower than in drugresistant infection. Also, it was revealed that the level of lymphoproliferative response induced by IL-2, does not depend on clinical variant of tuberculosis, whereas stimulation of IL-2 production in blood lymphocytes is attained only in cases of drug-resistant tuberculosis variant.

  18. rBCG30-induced immunity and cross-protection against Mycobacterium leprae challenge are enhanced by boosting with the Mycobacterium tuberculosis 30-kilodalton antigen 85B.

    Science.gov (United States)

    Gillis, Thomas P; Tullius, Michael V; Horwitz, Marcus A

    2014-09-01

    Leprosy remains a major global health problem and typically occurs in regions in which tuberculosis is endemic. Vaccines are needed that protect against both infections and do so better than the suboptimal Mycobacterium bovis BCG vaccine. Here, we evaluated rBCG30, a vaccine previously demonstrated to induce protection superior to that of BCG against Mycobacterium tuberculosis and Mycobacterium bovis challenge in animal models, for efficacy against Mycobacterium leprae challenge in a murine model of leprosy. rBCG30 overexpresses the M. tuberculosis 30-kDa major secretory protein antigen 85B, which is 85% homologous with the M. leprae homolog (r30ML). Mice were sham immunized or immunized intradermally with BCG or rBCG30 and challenged 2.5 months later by injection of viable M. leprae into each hind footpad. After 7 months, vaccine efficacy was assessed by enumerating the M. leprae bacteria per footpad. Both BCG and rBCG30 induced significant protection against M. leprae challenge. In the one experiment in which a comparison between BCG and rBCG30 was feasible, rBCG30 induced significantly greater protection than did BCG. Immunization of mice with purified M. tuberculosis or M. leprae antigen 85B also induced protection against M. leprae challenge but less so than BCG or rBCG30. Notably, boosting rBCG30 with M. tuberculosis antigen 85B significantly enhanced r30ML-specific immune responses, substantially more so than boosting BCG, and significantly augmented protection against M. leprae challenge. Thus, rBCG30, a vaccine that induces improved protection against M. tuberculosis, induces cross-protection against M. leprae that is comparable or potentially superior to that induced by BCG, and boosting rBCG30 with antigen 85B further enhances immune responses and protective efficacy. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  19. Comparison between Radioisotopic and Non-radioisotopic Polymerase Chain Reaction-Single Strand Conformation Polymorphism (PCR-SSCP) Procedures in the Detection of Mutations at the rpoB Gene Associated with Rifampicin Resistance in Mycobacterium tuberculosis

    International Nuclear Information System (INIS)

    Lee, H.; Bang, H.E.; Johnson, R.; Jordaan, A.M.; Victor, T.C. . E-mail : tv@sun.ac.za; Dar, L.; Khan, B.K.; Cho, S.N. . E-mail : raycho@yonsei.ac.kr

    2006-01-01

    Rapid and sensitive detection of mutations at the rpoB gene of Mycobacterium tuberculosis would be of great importance for proper management of tuberculosis (TB) patients and control of multi-drug resistant TB. Polymerase chain reaction-single strand conformation polymorphism (PCR-SSCP) using both radioisotopic and non-radioisotopic methods have been widely used for detecting such mutations. However, the silver staining method, which is the most frequently employed in PCR-SSCP, has been reported to be producing results of varying sensitivity. Radioisotope-based methods have shown greater sensitivity in detecting the rpoB mutations than the silver staining method. The primary objective of this study was therefore to compare the radioisotopic method with the silver staining method detection of mutations of rpoB gene by PCR-SSCP in the same laboratory. Purified DNAs from M. tuberculosis H37Rv were serially diluted and used for PCR amplification with and without radionuclides. The PCR products were then detected by silver staining and autoradiography methods. In addition, clinical isolates were analyzed by PCR-SSCP. The radioisotopic method showed about four-fold increase in the detection of PCR products over ethidium bromide staining in agarose gel. When compared with silver staining, the radioisotopic method gave a sensitivity of more than 10-fold in detecting PCR products and about 8-fold in PCR-SSCP. Radioisotope-based detection methods provided a clearer resolution in PCR-SSCP than the silver staining method when applied to clinical isolates of M. tuberculosis. Radioisotope-based detection method was shown to be more sensitive than non-isotope-based method in detecting PCR products and mutations at the rpoB gene of M. tuberculosis by PCR-SSCP. It may be noted that mutations in the rpoB gene as a marker have significant clinical importance because of the increasing number of MDR-TB cases in the world. It is especially relevant to MDR and Extreme Drug Resistance TB

  20. Prevalence and molecular characterization of pyrazinamide resistance among multidrug-resistant Mycobacterium tuberculosis isolates from Southern China.

    Science.gov (United States)

    Pang, Yu; Zhu, Damian; Zheng, Huiwen; Shen, Jing; Hu, Yan; Liu, Jie; Zhao, Yanlin

    2017-11-06

    Pyrazinamide (PZA) plays a unique role in the treatment for multidrug-resistant tuberculosis (MDR-TB) in both first- and second-line regimens. The aim of this study was to investigate the prevalence and molecular characterization of PZA resistance among MDR-TB isolates collected in Chongqing municipality. A total of 133 MDR-TB isolates were collected from the smear-positive tuberculosis patients who were registered at local TB dispensaries of Chongqing. PZA susceptibility testing was determined with a Bactec MGIT 960 system. In addition, the genes conferring for PZA resistance were screened by DNA sequencing. Of these 133 MDR-TB isolates, 83 (62.4%) were determined as PZA-resistant by MGIT 960. In addition, streptomycin- (83.1% vs. 56.0%, P < 0.01), ofloxacin- (51.8% vs. 18.0%, P < 0.01), kanamycin- (22.9% vs. 2.0%, P < 0.01), amikacin- (18.1% vs. 2.0%, P = 0.01), capromycin-resistance (12.0% vs. 2.0%, P = 0.05), were more frequently observed among PZA-resistant isolates compared with PZA-susceptible isolates. Sequence analysis revealed that 73 out of 83 (88.0%) MDR strains harbored a mutation located in the pncA gene, including 55 (75.3%, 55/73) of single nucleotide substitutions and 18 (24.7%, 18/73) of frameshift mutation, while no genetic mutation associated with PZA resistance was found in the rpsA gene. The pncA expression of strains harboring substitution from A to G at position -11 in the promoter region of pncA was significantly lower than that of H37Rv (P < 0.01). In conclusion, our data have demonstrated that the analysis of the pncA gene rather than rpsA gene provides rapid and accurate information regarding PZA susceptibility for MDR-TB isolates in Chongqing. In addition, loss of pncA expression caused by promoter mutation confers PZA resistance in MDR-TB isolates.

  1. Anti-Mycobacterial Activity of Marine Fungus-Derived 4-Deoxybostrycin and Nigrosporin

    Directory of Open Access Journals (Sweden)

    Xiaomin Lai

    2013-01-01

    Full Text Available 4-Deoxybostrycin is a natural anthraquinone compound isolated from the Mangrove endophytic fungus Nigrospora sp. collected from the South China Sea. Nigrosporin is the deoxy-derivative of 4-deoxybostrycin. They were tested against mycobacteria, especially Mycobacterium tuberculosis. In the Kirby-Bauer disk diffusion susceptibility test, they both had inhibition zone sizes of over 25 mm. The results of the absolute concentration susceptibility test suggested that they had inhibitory effects against mycobacteria. Moreover, 4-deoxybostrycin exhibited good inhibition which was even better than that of first line anti-tuberculosis (TB drugs against some clinical multidrug-resistant (MDR M. tuberculosis strains. The gene expression profile of M. tuberculosis H37Rv after treatment with 4-deoxybostrycin was compared with untreated bacteria. One hundred and nineteen out of 3,875 genes were significantly different in M. tuberculosis exposed to 4-deoxybostrycin from control. There were 46 functionally known genes which are involved in metabolism, information storage and processing and cellular processes. The differential expressions of six genes were further confirmed by quantitative real-time polymerase chain reaction (qRT-PCR. The present study provides a useful experiment basis for exploitation of correlative new drugs against TB and for finding out new targets of anti-mycobacterial therapy.

  2. Anti-mycobacterial activity of marine fungus-derived 4-deoxybostrycin and nigrosporin.

    Science.gov (United States)

    Wang, Cong; Wang, Juan; Huang, Yuhong; Chen, Hong; Li, Yan; Zhong, Lili; Chen, Yi; Chen, Shengping; Wang, Jun; Kang, Juling; Peng, Yi; Yang, Bin; Lin, Yongcheng; She, Zhigang; Lai, Xiaomin

    2013-01-29

    4-Deoxybostrycin is a natural anthraquinone compound isolated from the Mangrove endophytic fungus Nigrospora sp. collected from the South China Sea. Nigrosporin is the deoxy-derivative of 4-deoxybostrycin. They were tested against mycobacteria, especially Mycobacterium tuberculosis. In the Kirby-Bauer disk diffusion susceptibility test, they both had inhibition zone sizes of over 25 mm. The results of the absolute concentration susceptibility test suggested that they had inhibitory effects against mycobacteria. Moreover, 4-deoxybostrycin exhibited good inhibition which was even better than that of first line anti-tuberculosis (TB) drugs against some clinical multidrug-resistant (MDR) M. tuberculosis strains. The gene expression profile of M. tuberculosis H37Rv after treatment with 4-deoxybostrycin was compared with untreated bacteria. One hundred and nineteen out of 3,875 genes were significantly different in M. tuberculosis exposed to 4-deoxybostrycin from control. There were 46 functionally known genes which are involved in metabolism, information storage and processing and cellular processes. The differential expressions of six genes were further confirmed by quantitative real-time polymerase chain reaction (qRT-PCR). The present study provides a useful experiment basis for exploitation of correlative new drugs against TB and for finding out new targets of anti-mycobacterial therapy.

  3. In vitro anti-mycobacterial activity of nine medicinal plants used by ethnic groups in Sonora, Mexico.

    Science.gov (United States)

    Robles-Zepeda, Ramón Enrique; Coronado-Aceves, Enrique Wenceslao; Velázquez-Contreras, Carlos Arturo; Ruiz-Bustos, Eduardo; Navarro-Navarro, Moisés; Garibay-Escobar, Adriana

    2013-11-25

    Sonoran ethnic groups (Yaquis, Mayos, Seris, Guarijíos, Pimas, Kikapúes and Pápagos) use mainly herbal based preparations as their first line of medicinal treatment. Among the plants used are those with anti-tuberculosis properties; however, no formal research is available. Organic extracts were obtained from nine medicinal plants traditionally used by Sonoran ethnic groups to treat different kinds of diseases; three of them are mainly used to treat tuberculosis. All of the extracts were tested against Mycobacterium tuberculosis H37Rv using the Alamar Blue redox bioassay. Methanolic extracts from Ambrosia confertiflora, Ambrosia ambrosioides and Guaiacum coulteri showed minimal inhibitory concentration (MIC) values of 200, 790 and 1000 μg/mL, respectively, whereas no effect was observed with the rest of the methanolic extracts at the concentrations tested. Chloroform, dichloromethane, and ethyl acetate extracts from Ambrosia confertiflora showed a MIC of 90, 120 and 160 μg/mL, respectively. A. confertiflora and A. ambrosioides showed the best anti-mycobacterial activity in vitro. The activity of Guaiacum coulteri is consistent with the traditional use by Sonoran ethnic groups as anti-tuberculosis agent.For these reasons, it is important to investigate a broader spectrum of medicinal plants in order to find compounds active against Mycobacterium tuberculosis.

  4. Demographics of tuberculosis in district mansehra

    International Nuclear Information System (INIS)

    Kamal, M.

    2015-01-01

    Tuberculosis is one of the leading causes of morbidity and mortality across the globe. Pakistan is one of the 22 high tuberculosis burden countries of the world sharing more than 80% of the global burden of tuberculosis. Methods: This study was a retrospective case-based study that analyzed secondary data obtained from TB-03 form at the office of the District Tuberculosis Control Officer (DTO), Mansehra. Data was entered into SPSS-20 and analyzed. Results: A total of 625 patients with a mean age of 32.1±19.1 years were registered at the DTO office during the year 2013. Most of the patients were female (57%) as compared to males (43%). The most common treatment outcome was treatment completed, recorded against 56% of the patients. The proportion of patients declared cured at the end of the treatment was 236 (37.8%). There were only 4 (0.64%) cases of treatment failure during 2013. Conclusion: Despite falling incidence of tuberculosis and mortality across the globe, tuberculosis is still a major determinant of disease in our society. Aggressive case detection and treatment is needed to manage this disease. (author)

  5. Tuberculosis

    Directory of Open Access Journals (Sweden)

    Elena Morán López

    2001-04-01

    infested individual to a healthy subject mainly by means of saliva containing these microorganisms, or indirectly by inhaling the bacillus which may be present in daily used objects for months due to its high resistance. Myobacteria causing tuberculosis in the immunocompetent man are tuberculosis and bovis whereas other types may produce tuberculosis in immunocompromised individuals. The pathogenecity of this bacillus is related to its capacity of escaping from macrophage-induced destruction and provoking retarded hypersensitivity. This disease has very few oral manifestations; in general, a sore mainly located in the back of the tongue is the only observed sign. Tuberculosis threatens to become an incurable disease because of the poor administration of anti-tuberculosis programs, that is why, WHO proposes DOTS (directly observed treatment of short duration for its detection and treatment. This programs begins to achieve satisfactory results, although in the last five-year period, 88% of the patients estimated to be tuberculosis-infested was not covered by DOTS.

  6. The two-domain LysX protein of Mycobacterium tuberculosis is required for production of lysinylated phosphatidylglycerol and resistance to cationic antimicrobial peptides.

    Directory of Open Access Journals (Sweden)

    Erin Maloney

    2009-07-01

    Full Text Available The well-recognized phospholipids (PLs of Mycobacterium tuberculosis (Mtb include several acidic species such as phosphatidylglycerol (PG, cardiolipin, phosphatidylinositol and its mannoside derivatives, in addition to a single basic species, phosphatidylethanolamine. Here we demonstrate that an additional basic PL, lysinylated PG (L-PG, is a component of the PLs of Mtb H37Rv and that the lysX gene encoding the two-domain lysyl-transferase (mprF-lysyl-tRNA synthetase (lysU protein is responsible for L-PG production. The Mtb lysX mutant is sensitive to cationic antibiotics and peptides, shows increased association with lysosome-associated membrane protein-positive vesicles, and it exhibits altered membrane potential compared to wild type. A lysX complementing strain expressing the intact lysX gene, but not one expressing mprF alone, restored the production of L-PG and rescued the lysX mutant phenotypes, indicating that the expression of both proteins is required for LysX function. The lysX mutant also showed defective growth in mouse and guinea pig lungs and showed reduced pathology relative to wild type, indicating that LysX activity is required for full virulence. Together, our results suggest that LysX-mediated production of L-PG is necessary for the maintenance of optimal membrane integrity and for survival of the pathogen upon infection.

  7. Infection with koala retrovirus subgroup B (KoRV-B), but not KoRV-A, is associated with chlamydial disease in free-ranging koalas (Phascolarctos cinereus).

    Science.gov (United States)

    Waugh, Courtney A; Hanger, Jonathan; Loader, Joanne; King, Andrew; Hobbs, Matthew; Johnson, Rebecca; Timms, Peter

    2017-03-09

    The virulence of chlamydial infection in wild koalas is highly variable between individuals. Some koalas can be infected (PCR positive) with Chlamydia for long periods but remain asymptomatic, whereas others develop clinical disease. Chlamydia in the koala has traditionally been studied without regard to coinfection with other pathogens, although koalas are usually subject to infection with koala retrovirus (KoRV). Retroviruses can be immunosuppressive, and there is evidence of an immunosuppressive effect of KoRV in vitro. Originally thought to be a single endogenous strain, a new, potentially more virulent exogenous variant (KoRV-B) was recently reported. We hypothesized that KoRV-B might significantly alter chlamydial disease outcomes in koalas, presumably via immunosuppression. By studying sub-groups of Chlamydia and KoRV infected koalas in the wild, we found that neither total KoRV load (either viraemia or proviral copies per genome), nor chlamydial infection level or strain type, was significantly associated with chlamydial disease risk. However, PCR positivity with KoRV-B was significantly associated with chlamydial disease in koalas (p = 0.02961). This represents an example of a recently evolved virus variant that may be predisposing its host (the koala) to overt clinical disease when co-infected with an otherwise asymptomatic bacterial pathogen (Chlamydia).

  8. Comparison of antigen-specific T-cell responses of tuberculosis patients using complex or single antigens of Mycobacterium tuberculosis

    DEFF Research Database (Denmark)

    Mustafa, A S; Amoudy, H A; Wiker, H G

    1998-01-01

    We have screened peripheral blood mononuclear cells (PBMC) from tuberculosis (TB) patients for proliferative reactivity and interferon-gamma (IFN-gamma) secretion against a panel of purified recombinant (r) and natural (n) culture filtrate (rESAT-6, nMPT59, nMPT64 and nMPB70) and somatic-derived (r......GroES, rPstS, rGroEL and rDnaK) antigens of Mycobacterium tuberculosis. The responses of PBMC to these defined antigens were compared with the corresponding results obtained with complex antigens, such as whole-cell M. tuberculosis, M. tuberculosis culture filtrate (MT-CF) and cell wall antigens, as well...... as the vaccine strain, Mycobacterium bovis bacillus Calmette-Guerin (BCG). In addition, M. tuberculosis and MT-CF-induced T-cell lines were tested in the same assays against the panel of purified and complex antigens. The compiled data from PBMC and T-cell lines tested for antigen-induced proliferation and IFN...

  9. Synthesis, Characterization and Biological Evaluation of Mononuclear Dichloro-bis[2-(2-chloro-6,7-substituted Quinolin-3-yl-1H-benzo[d]imidazole]Co(II Complexes

    Directory of Open Access Journals (Sweden)

    Minaxi Samatbhai Maru

    2015-06-01

    Full Text Available A series of Co(II complexes 3¢a-g of 2-(2-chloro-6,7-substituted quinolin-3-yl-1H-benzo[d]imidazole ligands 3a-g were prepared and characterized by various spectroscopic and physico-chemical methods viz. FT-IR, ESI mass, 1H NMR, 13C NMR and UV-Visible spectroscopy, Thermogravimetric analysis, Magnetic susceptibility, Molar conductance and Elemental analysis. The 2-(2-chloro-6,7-substituted quinolin-3-yl-1H-benzo[d]imidazole ligands 3a-g have been synthesized by cyclocondensation of benzene-1,2-diamine with 2-chloroquinoline-3-carbaldehydes by using ceric ammonium nitrate as a catalyst in presence of hydrogen peroxide as an oxidant. The structures of all ligands were confirmed by IR, Mass, UV-Visible, 1H NMR and 13C NMR spectroscopy. All ligands 3a-g and their Co(II complexes 3¢a-g were screened for their in vitro antimicrobial activity using twofold serial dilution technique against standard MTCC strains of two Gram-positive Staphylococcus aureus and Streptococcus pyogenes, two Gram-negative Escherichia coli and Pseudomonas aeruginosa bacteria and three Candida albicans, Aspergillus niger and Aspergillus clavatus fungus in comparison with standard drugs. All ligands 3a-g and complexes 3¢a-g also evaluated for antimycobacterial activity against standard Mycobacterium tuberculosis H37Rv strain. DOI: http://dx.doi.org/10.17807/orbital.v7i2.530

  10. Transcriptional and physiological changes during Mycobacterium tuberculosis reactivation from non-replicating persistence

    Directory of Open Access Journals (Sweden)

    Peicheng Du

    2016-08-01

    Full Text Available Mycobacterium tuberculosis can persist for years in the hostile environment of the host in a non-replicating or slowly replicating state. While active disease predominantly results from reactivation of a latent infection, the molecular mechanisms of M. tuberculosis reactivation are still poorly understood. We characterized the physiology and global transcriptomic profiles of M. tuberculosis during reactivation from hypoxia-induced non-replicating persistence. We found that M. tuberculosis reactivation upon reaeration was associated with a lag phase, in which the recovery of cellular physiological and metabolic functions preceded the resumption of cell replication. Enrichment analysis of the transcriptomic dynamics revealed changes to many metabolic pathways and transcription regulons/subnetworks that orchestrated the metabolic and physiological transformation in preparation for cell division. In particular, we found that M. tuberculosis reaeration lag phase is associated with down-regulation of persistence-associated regulons/subnetworks, including DosR, MprA, SigH, SigE and ClgR, as well as metabolic pathways including those involved in the uptake of lipids and their catabolism. More importantly, we identified a number of up-regulated transcription regulons and metabolic pathways, including those involved in metal transport and remobilization, second messenger-mediated responses, DNA repair and recombination, and synthesis of major cell wall components. We also found that inactivation of the major alternative sigma factors SigE or SigH disrupted exit from persistence, underscoring the importance of the global transcriptional reprogramming during M. tuberculosis reactivation. Our observations suggest that M. tuberculosis lag phase is associated with a global gene expression reprogramming that defines the initiation of a reactivation process.

  11. Viral booster vaccines improve Mycobacterium bovis BCG-induced protection against bovine tuberculosis.

    Science.gov (United States)

    Vordermeier, H Martin; Villarreal-Ramos, Bernardo; Cockle, Paul J; McAulay, Martin; Rhodes, Shelley G; Thacker, Tyler; Gilbert, Sarah C; McShane, Helen; Hill, Adrian V S; Xing, Zhou; Hewinson, R Glyn

    2009-08-01

    Previous work with small-animal laboratory models of tuberculosis has shown that vaccination strategies based on heterologous prime-boost protocols using Mycobacterium bovis bacillus Calmette-Guérin (BCG) to prime and modified vaccinia virus Ankara strain (MVA85A) or recombinant attenuated adenoviruses (Ad85A) expressing the mycobacterial antigen Ag85A to boost may increase the protective efficacy of BCG. Here we report the first efficacy data on using these vaccines in cattle, a natural target species of tuberculous infection. Protection was determined by measuring development of disease as an end point after M. bovis challenge. Either Ad85A or MVA85A boosting resulted in protection superior to that given by BCG alone: boosting BCG with MVA85A or Ad85A induced significant reduction in pathology in four/eight parameters assessed, while BCG vaccination alone did so in only one parameter studied. Protection was particularly evident in the lungs of vaccinated animals (median lung scores for naïve and BCG-, BCG/MVA85A-, and BCG/Ad85A-vaccinated animals were 10.5, 5, 2.5, and 0, respectively). The bacterial loads in lymph node tissues were also reduced after viral boosting of BCG-vaccinated calves compared to those in BCG-only-vaccinated animals. Analysis of vaccine-induced immunity identified memory responses measured by cultured enzyme-linked immunospot assay as well as in vitro interleukin-17 production as predictors of vaccination success, as both responses, measured before challenge, correlated positively with the degree of protection. Therefore, this study provides evidence of improved protection against tuberculosis by viral booster vaccination in a natural target species and has prioritized potential correlates of vaccine efficacy for further evaluation. These findings also have implications for human tuberculosis vaccine development.

  12. Dosimetry using Gafchromic XR-RV2 radiochromic films in interventional radiology

    International Nuclear Information System (INIS)

    Neocleous, A.; Yakoumakis, E.; Gialousis, G.; Dimitriadis, A.; Yakoumakis, N.; Georgiou, E.

    2011-01-01

    Patient dose measurements of local entrance dose to the skin have been carried out using radiochromic film (Gafchromic XR-RV2) in a sample of interventional procedures. The major aim of the work was to measure patient entrance dose from such examinations using Gafchromic XR-RV2. Forty-five various interventional procedures (including nephrostomies and urinary stenting, biliary stenting and percutaneous transhepatic biliary drainage (PTBD) and aorta stent grafting) were evaluated. Maximum entrance doses were 537±119 mGy in nephrostomies, 943±631 mGy in biliary stenting and PTBD and 2425±569 mGy in aorta stent grafting. Results indicate that all patients undergoing aorta stent grafting received skin dose above 1500 mGy, which means that there is an increasing potential to suffer radiation-induced skin injuries. The film provides dose mapping, the position of the skin area with highest dose and can be used for immediate qualitative and as well as for quantitative assessment of patient skin dose. (authors)

  13. RV-Typer: A Web Server for Typing of Rhinoviruses Using Alignment-Free Approach.

    Directory of Open Access Journals (Sweden)

    Pandurang S Kolekar

    Full Text Available Rhinoviruses (RV are increasingly being reported to cause mild to severe infections of respiratory tract in humans. RV are antigenically the most diverse species of the genus Enterovirus and family Picornaviridae. There are three species of RV (RV-A, -B and -C, with 80, 32 and 55 serotypes/types, respectively. Antigenic variation is the main limiting factor for development of a cross-protective vaccine against RV.Serotyping of Rhinoviruses is carried out using cross-neutralization assays in cell culture. However, these assays become laborious and time-consuming for the large number of strains. Alternatively, serotyping of RV is carried out by alignment-based phylogeny of both protein and nucleotide sequences of VP1. However, serotyping of RV based on alignment-based phylogeny is a multi-step process, which needs to be repeated every time a new isolate is sequenced. In view of the growing need for serotyping of RV, an alignment-free method based on "return time distribution" (RTD of amino acid residues in VP1 protein has been developed and implemented in the form of a web server titled RV-Typer. RV-Typer accepts nucleotide or protein sequences as an input and computes return times of di-peptides (k = 2 to assign serotypes. The RV-Typer performs with 100% sensitivity and specificity. It is significantly faster than alignment-based methods. The web server is available at http://bioinfo.net.in/RV-Typer/home.html.

  14. Predominance of Central Asian and European families among Mycobacterium tuberculosis isolates in Kashmir Valley, India.

    Science.gov (United States)

    Bashir, Gulnaz; Wani, Tehmeena; Sharma, Pragya; Katoch, V M; Lone, Rubina; Shah, Azra; Katoch, Kiran; Kakru, D K; Chauhan, Devendra Singh

    2017-10-01

    As there are no data available regarding the strains of Mycobacterium tuberculosis circulating in Kashmir Valley, India, the current study aimed at describing the genetic diversity of M. tuberculosis strains in this region, by spoligotyping and 12-locus-based MIRU-VNTR typing (Mycobacterial Interspersed Repetitive Unit-Variable Number Tandem Repeat). Sputa from 207 smear positive cases with newly diagnosed pulmonary tuberculosis were subjected to culture for M. tuberculosis. Eighty-five isolates confirmed as M. tuberculosis were subjected to drug susceptibility testing and molecular typing by spoligotyping and MIRU-VNTRs. Drug susceptibility results of 72 isolates revealed 76.3% as fully sensitive while 5.5% as multidrug resistant (MDR). Spoligotyping of 85 isolates detected 42 spoligotypes with 50 isolates (58.8%) clustered into seven spoligotypes. SIT26/CAS1_Del was the major spoligotype (23, 27%) followed by SIT127/H4 (12, 14.1%); CAS lineage (37.6%) was predominant, followed by Haarlem (25.8%) and ill-defined T clade (23.5%). MIRU-VNTR analysis displayed 82 MIRU patterns from 85 strains, including 3 small clusters and 79 unique. MIRU 26 was found to be the most discriminatory locus. Kashmir Valley has CAS as the predominant lineage of M. tuberculosis similar to the rest of the Indian sub-continent, while it is peculiar in having Euro American lineages such as Haarlem and ill-defined T clade. Copyright © 2017 Tuberculosis Association of India. Published by Elsevier B.V. All rights reserved.

  15. The response of Mycobacterium tuberculosis to reactive oxygen and nitrogen species

    Directory of Open Access Journals (Sweden)

    Martin I Voskuil

    2011-05-01

    Full Text Available The bacteriostatic and bacteriocidal effects and the transcriptional response of Mycobacterium tuberculosis to representative oxidative and nitrosative stresses were investigated by growth and survival studies and whole genome expression analysis. The M. tuberculosis reaction to a range of hydrogen peroxide (H2O2 concentrations fell into three distinct categories: (1 low level exposure resulted in induction of a few highly sensitive H2O2-responsive genes, (2 intermediate exposure resulted in massive transcriptional changes without an effect on growth or survival, and (3 high exposure resulted in a muted transcriptional response and eventual death. M. tuberculosis appears highly resistant to DNA damage-dependent, mode-one killing caused by low millimolar levels of H2O2 and only succumbs to overwhelming levels of oxidative stress observed in mode-two killing. Nitric oxide (NO exposure initiated much the same transcriptional response as H2O2. However, unlike H2O2 exposure, NO exposure induced dormancy-related genes and caused dose-dependent bacteriostatic activity without killing. Included in the large shared response to H2O2 and NO was the induction of genes encoding iron-sulfur cluster repair functions including iron acquisition. Stress regulons controlled by IdeR, Sigma H, Sigma E, and FurA comprised a large portion of the response to both stresses. Expression of several oxidative stress defense genes was constitutive, or increased moderately from an already elevated constitutive level, suggesting that bacilli are continually primed for oxidative stress defense.

  16. EPR interpretation, magnetism and biological study of a Cu(II) dinuclear complex assisted by a schiff base precursor.

    Science.gov (United States)

    Das, Kuheli; Patra, Chiranjit; Sen, Chandana; Datta, Amitabha; Massera, Chiara; Garribba, Eugenio; El Fallah, Mohamed Salah; Beyene, Belete B; Hung, Chen-Hsiung; Sinha, Chittaranjan; Askun, Tulin; Celikboyun, Pinar; Escudero, Daniel; Frontera, Antonio

    2017-06-01

    A new Cu(II) dinuclear complex, Cu 2 L 2 (1) was afforded employing the potentially pentatentate Schiff base precursor H 2 L, a refluxed product of o-vanillin and diethylenetriamine in methanol. Complex 1 was systematically characterized by FTIR, UV-Vis, emission and EPR spectrometry. The single crystal X-ray diffraction analysis of 1 reveals that the copper atom exhibits a distorted square planar geometry, comprising two pairs of phenolato-O and imine-N donors from two different H 2 L ligands. The temperature dependent magnetic interpretation agrees with the existence of weak antiferromagnetic interactions between the bridging dinuclear Cu(II) ions. A considerable body of experimental evidence has been accumulated to elucidate the magneto-structural relationship in this dinuclear Cu(II) complex by DFT computation. Both the ligand and complex 1 exhibit anti-mycobacterial activity and considerable efficacy on M. tuberculosis H 37 Ra (ATCC 25177) and M. tuberculosis H 37 Rv (ATCC 25618) strains. The practical applicability of the ligand and complex 1 has been examined in living cells (African Monkey Vero Cells). The MTT assay proves the non-toxicity of the probe up to 100 mg mL -1 . A new homometallic dinuclear Cu(II) complex is afforded with a tetradentate Schiff base precursor. EPR interpretation and temperature dependent magnetic studies show that complex 1 has weak antiferromagnetic coupling and DFT computation is governed to explain the magneto-structural correlation.

  17. Mycobacterium tuberculosis DNA repair in response to subinhibitory concentrations of ciprofloxacin.

    Science.gov (United States)

    O'Sullivan, D M; Hinds, J; Butcher, P D; Gillespie, S H; McHugh, T D

    2008-12-01

    To investigate how the SOS response, an error-prone DNA repair pathway, is expressed following subinhibitory quinolone treatment of Mycobacterium tuberculosis. Genome-wide expression profiling followed by quantitative RT (qRT)-PCR was used to study the effect of ciprofloxacin on M. tuberculosis gene expression. Microarray analysis showed that 16/110 genes involved in DNA protection, repair and recombination were up-regulated. There appeared to be a lack of downstream genes involved in the SOS response. qRT-PCR detected an induction of lexA and recA after 4 h and of dnaE2 after 24 h of subinhibitory treatment. The pattern of gene expression observed following subinhibitory quinolone treatment differed from that induced after other DNA-damaging agents (e.g. mitomycin C). The expression of the DnaE2 polymerase response was significantly delayed following subinhibitory quinolone exposure.

  18. Synthesis of acyl analogues of coniferyl alcohol and their antimycobacterial activity

    International Nuclear Information System (INIS)

    Begum, S.; Siddiqui, B.S.

    2013-01-01

    In search of new anti-mycobacterial agents seven acyl and one benzyl derivatives of coniferyl alcohol were synthesized and evaluated along with coniferyl alcohol for antitubercular activity against Mycobacterium tuberculosis H37Rv (Mtb) in vitro. Four compounds (3-6) showed greater activity than the parent compound and inhibited MTB with IC/sub 90/ 9.11, 8.92, 4.28 and 3.01 micro g/mL respectively. Compound 6, the most potent compound in vitro exhibited CC/sub 50/ 10.216 micro g/mL in VERO cells with selectivity index 3.394. Reference compounds used were rifampin and isoniazid and had IC/sub 90/ 0.0031 and 0.063 micro g/mL respectively. (author)

  19. INFILTRATE PULMONARY TUBERCULOSIS, GASTRIC ULCER AND HIV INFECTION (COMORBIDITY AND MULTIMORBIDITY

    Directory of Open Access Journals (Sweden)

    E. S. Skvortsova

    2016-01-01

    Full Text Available Peptic ulcer is registered in 20,5% of those suffering from infiltrate pulmonary tuberculosis and in 19,5% of HIV patients at C2 stage, ill with infiltrate pulmonary tuberculosis and presenting complaints about dyspeptic disorders. The following is typical of multimorbidity of pulmonary tuberculosis, HIV infection and peptic ulcer: oligosymptomatic start of tuberculosis, asthenic syndrome dominating among clinical symptoms, manifestations of gastric and intestinal indigestion, weight loss (2-4 times more often compared to HIV negative patients, less expressed lung tissue destruction (2 time less compared to HIV negative patients. H. pylori is a causative agent of the peptic ulcer in 62,5% of patients with infiltrate pulmonary tuberculosis and in 58,7% of HIV infected patients at C2 stage, suffering from pulmonary tuberculosis. Comorbidity of H. pilori negative peptic ulcer and infiltrate pulmonary tuberculosis differs from comorbidity of H. pilori positive peptic ulcer and infiltrate pulmonary tuberculosis since the first has confidently true unfavorable forecast of the outcome.

  20. Diethyl 2-(Phenylcarbamoylphenyl Phosphorothioates: Synthesis, Antimycobacterial Activity and Cholinesterase Inhibition

    Directory of Open Access Journals (Sweden)

    Jarmila Vinšová

    2014-05-01

    Full Text Available A new series of 27 diethyl 2-(phenylcarbamoylphenyl phosphorothioates (thiophosphates was synthesized, characterized by NMR, IR and CHN analyses and evaluated against Mycobacterium tuberculosis H37Rv, Mycobacterium avium and two strains of Mycobacterium kansasii. The best activity against M. tuberculosis was found for O-{4-bromo-2-[(3,4-dichlorophenylcarbamoyl]phenyl} O,O-diethyl phosphorothioate (minimum inhibitory concentration of 4 µM. The highest activity against nontuberculous mycobacteria was exhibited by O-(5-chloro-2-{[4-(trifluoromethylphenyl]carbamoyl}-phenyl O,O-diethyl phosphorothioate with MIC values from 16 µM. Prepared thiophosphates were also evaluated against acetylcholinesterase from electric eel and butyrylcholinesterase from equine serum. Their inhibitory activity was compared to that of the known cholinesterases inhibitors galanthamine and rivastigmine. All tested compounds showed a higher (for AChE inhibition and comparable (for BChE inhibition activity to that of rivastigmine, with IC50s within the 8.04 to 20.2 µM range.

  1. A novel noncovalent complex of chorismate mutase and DAHP synthase from Mycobacterium tuberculosis: protein purification, crystallization and X-ray diffraction analysis

    International Nuclear Information System (INIS)

    Ökvist, Mats; Sasso, Severin; Roderer, Kathrin; Kast, Peter; Krengel, Ute

    2009-01-01

    Two shikimate-pathway enzymes from M. tuberculosis, the intracellular chorismate mutase (MtCM) and DAHP synthase (MtDS), were produced recombinantly and purified. MtCM was crystallized alone and in complex with MtDS and analyzed by X-ray diffraction. Chorismate mutase catalyzes a key step in the shikimate-biosynthetic pathway and hence is an essential enzyme in bacteria, plants and fungi. Mycobacterium tuberculosis contains two chorismate mutases, a secreted and an intracellular one, the latter of which (MtCM; Rv0948c; 90 amino-acid residues; 10 kDa) is the subject of this work. Here are reported the gene expression, purification and crystallization of MtCM alone and of its complex with another shikimate-pathway enzyme, DAHP synthase (MtDS; Rv2178c; 472 amino-acid residues; 52 kDa), which has been shown to enhance the catalytic efficiency of MtCM. The MtCM–MtDS complex represents the first noncovalent enzyme complex from the common shikimate pathway to be structurally characterized. Soaking experiments with a transition-state analogue are also reported. The crystals of MtCM and the MtCM–MtDS complex diffracted to 1.6 and 2.1 Å resolution, respectively

  2. Resolvin D1 prevents smoking-induced emphysema and promotes lung tissue regeneration.

    Science.gov (United States)

    Kim, Kang-Hyun; Park, Tai Sun; Kim, You-Sun; Lee, Jae Seung; Oh, Yeon-Mok; Lee, Sang-Do; Lee, Sei Won

    2016-01-01

    Emphysema is an irreversible disease that is characterized by destruction of lung tissue as a result of inflammation caused by smoking. Resolvin D1 (RvD1), derived from docosahexaenoic acid, is a novel lipid that resolves inflammation. The present study tested whether RvD1 prevents smoking-induced emphysema and promotes lung tissue regeneration. C57BL/6 mice, 8 weeks of age, were randomly divided into four groups: control, RvD1 only, smoking only, and smoking with RvD1 administration. Four different protocols were used to induce emphysema and administer RvD1: mice were exposed to smoking for 4 weeks with poly(I:C) or to smoking only for 24 weeks, and RvD1 was injected within the smoking exposure period to prevent regeneration or after completion of smoking exposure to assess regeneration. The mean linear intercept and inflammation scores were measured in the lung tissue, and inflammatory cells and cytokines were measured in the bronchoalveolar lavage fluid. Measurements of mean linear intercept showed that RvD1 significantly attenuated smoking-induced lung destruction in all emphysema models. RvD1 also reduced smoking-induced inflammatory cell infiltration, which causes the structural derangements observed in emphysema. In the 4-week prevention model, RvD1 reduced the smoking-induced increase in eosinophils and interleukin-6 in the bronchoalveolar lavage fluid. In the 24-week prevention model, RvD1 also reduced the increased neutrophils and total cell counts induced by smoking. RvD1 attenuated smoking-induced emphysema in vivo by reducing inflammation and promoting tissue regeneration. This result suggests that RvD1 may be useful in the prevention and treatment of emphysema.

  3. NCBI nr-aa BLAST: CBRC-CJAC-01-1322 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-CJAC-01-1322 ref|YP_001284775.1| PE-PGRS family protein [Mycobacterium tuberculosi...s H37Ra] gb|ABQ75213.1| PE-PGRS family protein [Mycobacterium tuberculosis H37Ra] YP_001284775.1 0.041 29% ...

  4. 1993 recreational vehicle (RV) park census in Beatty and Pahrump, Nevada

    International Nuclear Information System (INIS)

    Levy, L.E.; Housel, M.D.

    1994-01-01

    This paper reports on the second annual study of seasonal nonpermanent residents in the towns of Beatty and Pahrump in southern Nye County, Nevada, situs county of the Yucca Mountain Site Characterization Project. The study used a census of recreational vehicle (RV) park managers to enumerate and characterize in demographic terms nonpermanent residents staying in RV parks. The questionnaire sought information from RV park managers which ordinarily would come from a household survey. The main objective was to study open-quotes snowbirdsclose quotes, the households of older couples who stay for a month or more each winter. The findings suggest that snowbirds are a majority of the seasonal influx of nonpermanent residents to RV parks in Pahrump. In contrast, a group called open-quotes seasonal travelersclose quotes, similar demographically but who stay less than a month, dominate the seasonal nonpermanent population in Beatty's RV parks. The study also tentatively identified the seasonality of nonpermanent resident occupancy. Because only RV parks were contacted, the study left unanswered the question of how many snowbirds live in other types of accommodations in Beatty and Pahrump

  5. Can pleural adenosine deaminase (ADA) levels in pleural tuberculosis predict the presence of pulmonary tuberculosis? A CT analysis

    International Nuclear Information System (INIS)

    Koh, Myung Je; Lee, In Jae; Kim, Joo-Hee

    2016-01-01

    Aim: To assess the relationship between imaging features of pulmonary tuberculosis at computed tomography (CT) and adenosine deaminase (ADA) values via pleural fluid analysis in patients with pleural tuberculosis. Materials and methods: This retrospective study enrolled 60 patients who underwent fluid analysis for ADA and chest CT and were diagnosed with tuberculosis by culture or polymerase chain reaction of pleural fluid and sputum. The presence of centrilobular nodules, consolidation, cavitation, and mediastinal lymphadenopathy at CT were evaluated. The relationship between ADA values and the pattern of pulmonary involvement of tuberculosis was analysed. Results: Pulmonary involvement was seen in 42 of the 60 patients. A centrilobular nodular pattern was seen in 37 and consolidation in 22. In 17 patients, both findings were identified. A centrilobular nodular pattern was more common than consolidation or cavitary lesions. When ADA values were high, pulmonary involvement was more frequent (p=0.002). Comparing low and high ADA groups using an obtained cut-off value of 80 IU/l, the high group had more frequent pulmonary involvement (p<0.001). Conclusion: Patients with tuberculous pleurisy who had high ADA values had a higher probability of manifesting pulmonary tuberculosis. High ADA values may help predict contagious pleuroparenchymal tuberculosis. The most common pulmonary involvement of tuberculous pleurisy showed a centrilobular nodular pattern. - Highlights: • To know the relationship of ADA values and pulmonary involvement pattern of pleural tuberculosis. • To help exact diagnosis of pleuroparenchymal tuberculosis in clinical setting. • The imaging findings of pleuroparenchymal tuberculosis.

  6. Helicobacter Pylori Transmission and Risk Factors for Infection in Rural China

    Science.gov (United States)

    1999-12-08

    diseases such as hepatitis a, hepatitis C, tuberculosis , and possibly HIV.225.226 In fact, nosocomial transmission of H. pylori is the only proven mode...included: a bleeding disorder, any type of cancer, a history of liver disease, renal disease, chronic obstructive pulmonary disease, or other life...1796 General DODUlation 45-59 SeroloRv 70.0% Stroffolini. 199816 ltalv 1659 Militarv students 17-24 Sc:ruloRv 17.5% Torres. 1998110 Mexico 5997 General

  7. Can pleural adenosine deaminase (ADA) levels in pleural tuberculosis predict the presence of pulmonary tuberculosis? A CT analysis.

    Science.gov (United States)

    Koh, Myung Je; Lee, In Jae; Kim, Joo-Hee

    2016-06-01

    To assess the relationship between imaging features of pulmonary tuberculosis at computed tomography (CT) and adenosine deaminase (ADA) values via pleural fluid analysis in patients with pleural tuberculosis. This retrospective study enrolled 60 patients who underwent fluid analysis for ADA and chest CT and were diagnosed with tuberculosis by culture or polymerase chain reaction of pleural fluid and sputum. The presence of centrilobular nodules, consolidation, cavitation, and mediastinal lymphadenopathy at CT were evaluated. The relationship between ADA values and the pattern of pulmonary involvement of tuberculosis was analysed. Pulmonary involvement was seen in 42 of the 60 patients. A centrilobular nodular pattern was seen in 37 and consolidation in 22. In 17 patients, both findings were identified. A centrilobular nodular pattern was more common than consolidation or cavitary lesions. When ADA values were high, pulmonary involvement was more frequent (p=0.002). Comparing low and high ADA groups using an obtained cut-off value of 80 IU/l, the high group had more frequent pulmonary involvement (pADA values had a higher probability of manifesting pulmonary tuberculosis. High ADA values may help predict contagious pleuroparenchymal tuberculosis. The most common pulmonary involvement of tuberculous pleurisy showed a centrilobular nodular pattern. Copyright © 2016 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.

  8. Limitations of Using IL-17A and IFN-γ-Induced Protein 10 to Detect Bovine Tuberculosis

    Science.gov (United States)

    Xin, Ting; Gao, Xintao; Yang, Hongjun; Li, Pingjun; Liang, Qianqian; Hou, Shaohua; Sui, Xiukun; Guo, Xiaoyu; Yuan, Weifeng; Zhu, Hongfei; Ding, Jiabo; Jia, Hong

    2018-01-01

    Bovine tuberculosis (bTB) is primarily caused by infection with Mycobacterium bovis, which belongs to the Mycobacterium tuberculosis complex. The airborne route is considered the most common for transmission of M. bovis, and more than 15% of cattle with bTB shed the Mycobacterium, which can be detect by nested PCR to amplify mycobacterial mpb70 from a nasal swab from a cow. To screen for cytokines fostering early and accurate detection of bTB, peripheral blood mononuclear cells were isolated from naturally M. bovis-infected, experimentally M. bovis 68002-infected, and uninfected cattle, then these cells were stimulated by PPD-B, CFP-10-ESAT-6 (CE), or phosphate-buffered saline (PBS) for 6 h. The levels of interferon gamma (IFN-γ), IFN-γ-induced protein 10 (IP-10), IL-6, IL-12, IL-17A, and tumor necrosis factor alpha mRNA were measured using real-time PCR. To explore the cytokines associated with different periods of M. bovis infection, cattle were divided into three groups: PCR-positive, PCR-negative, and uninfected using the tuberculin skin test, CFP-10/ESAT-6/TB10.4 protein cocktail-based skin test, IFN-γ release assay (IGRA), CFP-10/ESAT-6 (CE)-based IGRA, and nested PCR. The expression of IP-10, IL-17A, and IFN-γ proteins induced by PPD-B, CE, or PBS was detected by ELISA. The results showed that levels of PPD-B-stimulated IL-17A and IP-10 (mRNA and protein), and CE-induced IP-10 (mRNA and protein) were significantly higher in cattle naturally or experimentally infected with M. bovis than in those that were uninfected. The levels of PPD-B- or CE-induced IL-17A and IP-10 (protein) could be used to differentiate M. bovis-infected calves from uninfected ones for 6 to 30 weeks post-infection, whereas PPD-B- and CE-induced IP-10 and IL-17A mRNA expression could be used to differentiate M. bovis-infected calves from uninfected ones between 6 and 58 weeks post-infection. However, CE-induced IL-17A (protein) was not a reliable indicator of M. bovis infection

  9. The mechanism of thioacetamide-induced apoptosis in the L37 albumin-SV40 T-antigen transgenic rat hepatocyte-derived cell line occurs without DNA fragmentation.

    Science.gov (United States)

    Bulera, S J; Sattler, C A; Gast, W L; Heath, S; Festerling, T A; Pitot, H C

    1998-10-01

    The hepatotoxicant thioacetamide (TH) has classically been used as a model to study hepatic necrosis; however, recent studies have shown that TH can also induce apoptosis. In this report we demonstrate that 2.68+/-0.54% of the albumin-SV40 T-antigen transgenic rat hepatocytes undergo TH-induced apoptosis, a level comparable to other in vivo models of liver apoptosis. In addition, TH could induce apoptosis and necrosis in the L37 albumin-SV40 T-antigen transgenic rat liver-derived cell line. Examination of dying L37 cells treated with 100 mM TH by electron microscopy revealed distinct morphological characteristics that could be attributed to apoptosis. Quantitation of apoptosis by FACS analysis 24 h after treatment with 100 mM TH revealed that 81.3+/-1.6% of the cells were undergoing apoptosis. In contrast, when L37 cells were treated with 250 mM TH, cells exhibited characteristics consistent with necrotic cell death. DNA fragmentation ladders were produced by growth factor withdrawal-induced apoptosis; however, in 100 mM TH-induced apoptosis, DNA fragmentation ladders were not observed. Analysis of endonuclease activity in L37 cells revealed that the enzymes were not inactivated in the presence of 100 mM TH. The data presented in this report indicate that the L37 cell line could be used to study the mechanism of TH-induced apoptosis that was not mediated through a mechanism requiring DNA fragmentation.

  10. ORF Alignment: NC_002755 [GENIUS II[Archive

    Lifescience Database Archive (English)

    Full Text Available NC_002755 gi|15841371 >1wc3A 2 197 10 178 6e-16 ... pdb|1YBU|D Chain D, Mycobacterium Tuberculosis...C, ... Mycobacterium Tuberculosis Adenylyl Cyclase Rv1900c Chd, ... In Complex With A Substrat...e Analog. pdb|1YBU|B Chain B, ... Mycobacterium Tuberculosis Adenylyl Cycl...ase Rv1900c Chd, ... In Complex With A Substrate Analog. pdb|1YBU|A Chain A, ... Mycobacterium Tuberculosis

  11. ORF Alignment: NC_000962 [GENIUS II[Archive

    Lifescience Database Archive (English)

    Full Text Available NC_000962 gi|15609037 >1wc3A 2 197 10 178 6e-16 ... pdb|1YBU|D Chain D, Mycobacterium Tuberculosis...C, ... Mycobacterium Tuberculosis Adenylyl Cyclase Rv1900c Chd, ... In Complex With A Substrat...e Analog. pdb|1YBU|B Chain B, ... Mycobacterium Tuberculosis Adenylyl Cycl...ase Rv1900c Chd, ... In Complex With A Substrate Analog. pdb|1YBU|A Chain A, ... Mycobacterium Tuberculosis

  12. ORF Alignment: NC_002945 [GENIUS II[Archive

    Lifescience Database Archive (English)

    Full Text Available NC_002945 gi|31793093 >1wc3A 2 197 10 178 6e-16 ... pdb|1YBU|D Chain D, Mycobacterium Tuberculosis...C, ... Mycobacterium Tuberculosis Adenylyl Cyclase Rv1900c Chd, ... In Complex With A Substrat...e Analog. pdb|1YBU|B Chain B, ... Mycobacterium Tuberculosis Adenylyl Cycl...ase Rv1900c Chd, ... In Complex With A Substrate Analog. pdb|1YBU|A Chain A, ... Mycobacterium Tuberculosis

  13. Bacterial proteasome activator bpa (rv3780) is a novel ring-shaped interactor of the mycobacterial proteasome.

    Science.gov (United States)

    Delley, Cyrille L; Laederach, Juerg; Ziemski, Michal; Bolten, Marcel; Boehringer, Daniel; Weber-Ban, Eilika

    2014-01-01

    The occurrence of the proteasome in bacteria is limited to the phylum of actinobacteria, where it is maintained in parallel to the usual bacterial compartmentalizing proteases. The role it plays in these organisms is still not fully understood, but in the human pathogen Mycobacterium tuberculosis (Mtb) the proteasome supports persistence in the host. In complex with the ring-shaped ATPase Mpa (called ARC in other actinobacteria), the proteasome can degrade proteins that have been post-translationally modified with the prokaryotic ubiquitin-like protein Pup. Unlike for the eukaryotic proteasome core particle, no other bacterial proteasome interactors have been identified to date. Here we describe and characterize a novel bacterial proteasome activator of Mycobacterium tuberculosis we termed Bpa (Rv3780), using a combination of biochemical and biophysical methods. Bpa features a canonical C-terminal proteasome interaction motif referred to as the HbYX motif, and its orthologs are only found in those actinobacteria encoding the proteasomal subunits. Bpa can inhibit degradation of Pup-tagged substrates in vitro by competing with Mpa for association with the proteasome. Using negative-stain electron microscopy, we show that Bpa forms a ring-shaped homooligomer that can bind coaxially to the face of the proteasome cylinder. Interestingly, Bpa can stimulate the proteasomal degradation of the model substrate β-casein, which suggests it could play a role in the removal of non-native or damaged proteins.

  14. Altered Mycobacterium tuberculosis Cell Wall Metabolism and Physiology Associated With RpoB Mutation H526D

    Directory of Open Access Journals (Sweden)

    Victoria L. Campodónico

    2018-03-01

    Full Text Available Background:Mycobacterium tuberculosis (Mtb rpoB mutations are associated with global metabolic remodeling. However, the net effects of rpoB mutations on Mtb physiology, metabolism and function are not completely understood. Based on previous work, we hypothesized that changes in the expression of cell wall molecules in Mtb mutant RpoB 526D lead to changes in cell wall permeability and to altered resistance to environmental stresses and drugs.Methods: The phenotypes of a fully drug-susceptible clinical strain of Mtb and its paired rifampin-monoresistant, RpoB H526D mutant progeny strain were compared.Results: The rpoB mutant showed altered colony morphology, bacillary length and cell wall thickness, which were associated with increased cell wall permeability and susceptibility to the cell wall detergent sodium dodecyl sulfate (SDS after exposure to nutrient starvation. Relative to the isogenic rifampin-susceptible strain, the RpoB H526D mutant showed altered bacterial cellular metabolic activity and an eightfold increase in susceptibility to the cell-wall acting drug vancomycin.Conclusion: Our data suggest that RpoB mutation H526D is associated with altered cell wall physiology and resistance to cell wall-related stress. These findings are expected to contribute to an improved understanding of the pathogenesis of drug-resistant M. tuberculosis infections.

  15. Radial Velocities of Subgiant Stars and New Astrophysical Insights into RV Jitter

    Science.gov (United States)

    Luhn, Jacob; Bastien, Fabienne; Wright, Jason T.

    2018-01-01

    For nearly 20 years, the California Planet Search (CPS) has simultaneously monitored precise radial velocities and chromospheric activity levels of stars from Keck observatory to search for exoplanets. This sample provides a useful set of stars to better determine the dependence of RV jitter on flicker (which traces surface gravity) first shown in Bastien et al. (2014). We expand upon this initial work by examining a much larger sample of stars covering a much wider range of stellar parameters (effective temperature, surface gravity, and activity, among others). For more than 600 stars, there are enough RV measurements to distinguish this astrophysical jitter from accelerations due to orbital companions. To properly isolate RV jitter from these effects, we must first remove the RV signal due to these companions, including several previously unannounced giant planets around subgiant stars. We highlight some new results from our analysis of the CPS data. A more thorough understanding of the various sources of RV jitter and the underlying stellar phenomena that drive these intrinsic RV variations will enable more precise jitter estimates for RV follow-up targets such as those from K2 or the upcoming TESS mission.

  16. (1H-NMR spectroscopy revealed Mycobacterium tuberculosis caused abnormal serum metabolic profile of cattle.

    Directory of Open Access Journals (Sweden)

    Yingyu Chen

    Full Text Available To re-evaluate virulence of Mycobacterium tuberculosis (M. tb in cattle, we experimentally infected calves with M. tb andMycobacterium bovisvia intratracheal injection at a dose of 2.0×10(7 CFU and observed the animals for 33 weeks. The intradermal tuberculin test and IFN-γin vitro release assay showed that both M. tb and M. bovis induced similar responses. Immunohistochemical staining of pulmonary lymph nodes indicated that the antigen MPB83 of both M. tb and M. bovis were similarly distributed in the tissue samples. Histological examinations showed all of the infected groups exhibited neutrophil infiltration to similar extents. Although the infected cattle did not develop granulomatous inflammation, the metabolic profiles changed significantly, which were characterized by a change in energy production pathways and increased concentrations of N-acetyl glycoproteins. Glycolysis was induced in the infected cattle by decreased glucose and increased lactate content, and enhanced fatty acid β-oxidation was induced by decreased TG content, and decreased gluconeogenesis indicated by the decreased concentration of glucogenic and ketogenic amino acids promoted utilization of substances other than glucose as energy sources. In addition, an increase in acute phase reactive serum glycoproteins, together with neutrophil infiltration and increased of IL-1β production indicated an early inflammatory response before granuloma formation. In conclusion, this study indicated that both M. tb and M.bovis were virulent to cattle. Therefore, it is likely that cattle with M. tb infections would be critical to tuberculosis transmission from cattle to humans. Nuclear magnetic resonance was demonstrated to be an efficient method to systematically evaluate M. tb and M. bovi sinfection in cattle.

  17. TIME VARIATION OF AV AND RV FOR TYPE Ia SUPERNOVAE BEHIND INTERSTELLAR DUST

    Science.gov (United States)

    Huang, Xiaosheng; Biederman, M.; Herger, B.; Aldering, G. S.

    2014-01-01

    TIME VARIATION OF AV AND RV FOR TYPE Ia SUPERNOVAE BEHIND NON-UNIFORM INTERSTELLAR DUST ABSTRACT We investigate the time variation of the visual extinction, AV, and the total-to-selective extinction ratio, RV, resulting from interstellar dust in front of an expanding photospheric disk of a type Ia supernova (SN Ia). We simulate interstellar dust clouds according to a power law power spectrum and produce extinction maps that either follow a pseudo-Gaussian distribution or a lognormal distribution. The RV maps are produced through a correlation between AV and RV. With maps of AV and RV generated in each case (pseudo-Gaussian and lognormal), we then compute the effective AV and RV for a SN as its photospheric disk expands behind the dust screen. We find for a small percentage of SNe the AV and RV values can vary by a large factor from day to day in the first 40 days after explosion.

  18. Human cathelicidin LL-37 – Does it influence the homeostatic ...

    Indian Academy of Sciences (India)

    ELŻBIETA KOZŁOWSKA

    2018-04-19

    Apr 19, 2018 ... 37 concentration to be analyzed using one-way ANOVA analysis and the post ..... Meta-analysis of cytokine alterations in schizophrenia: clinical status and ... diabetes mellitus and pulmonary tuberculosis. Exp. Ther. Med. 9.

  19. Networked T cell death following macrophage infection by Mycobacterium tuberculosis.

    Directory of Open Access Journals (Sweden)

    Stephen H-F Macdonald

    Full Text Available BACKGROUND: Depletion of T cells following infection by Mycobacterium tuberculosis (Mtb impairs disease resolution, and interferes with clinical test performance that relies on cell-mediated immunity. A number of mechanisms contribute to this T cell suppression, such as activation-induced death and trafficking of T cells out of the peripheral circulation and into the diseased lungs. The extent to which Mtb infection of human macrophages affects T cell viability however, is not well characterised. METHODOLOGY/PRINCIPAL FINDINGS: We found that lymphopenia (<1.5 × 10(9 cells/l was prevalent among culture-positive tuberculosis patients, and lymphocyte counts significantly improved post-therapy. We previously reported that Mtb-infected human macrophages resulted in death of infected and uninfected bystander macrophages. In the current study, we sought to examine the influence of infected human alveolar macrophages on T cells. We infected primary human alveolar macrophages (the primary host cell for Mtb or PMA-differentiated THP-1 cells with Mtb H37Ra, then prepared cell-free supernatants. The supernatants of Mtb-infected macrophages caused dose-dependent, caspase-dependent, T cell apoptosis. This toxic effect of infected macrophage secreted factors did not require TNF-α or Fas. The supernatant cytotoxic signal(s were heat-labile and greater than 50 kDa in molecular size. Although ESAT-6 was toxic to T cells, other Mtb-secreted factors tested did not influence T cell viability; nor did macrophage-free Mtb bacilli or broth from Mtb cultures. Furthermore, supernatants from Mycobacterium bovis Bacille de Calmette et Guerin (BCG- infected macrophages also elicited T cell death suggesting that ESAT-6 itself, although cytotoxic, was not the principal mediator of T cell death in our system. CONCLUSIONS: Mtb-Infected macrophages secrete heat-labile factors that are toxic to T cells, and may contribute to the immunosuppression seen in tuberculosis as well as

  20. Synthesis and Biological Evaluation of Novel 2-Methoxypyridylamino-Substituted Riminophenazine Derivatives as Antituberculosis Agents

    Directory of Open Access Journals (Sweden)

    Dongfeng Zhang

    2014-04-01

    Full Text Available Clofazimine, a member of the riminophenazine class, is one of the few antibiotics that are still active against multidrug-resistant Mycobacterium tuberculosis (M. tuberculosis. However, the clinical utility of this agent is limited by its undesirable physicochemical properties and skin pigmentation potential. With the goal of maintaining potent antituberculosis activity while improving physicochemical properties and lowering skin pigmentation potential, a series of novel riminophenazine derivatives containing a 2-methoxypyridylamino substituent at the C-2 position of the phenazine nucleus were designed and synthesized. These compounds were evaluated for antituberculosis activity against M. tuberculosis H37Rv and screened for cytotoxicity. Riminophenazines bearing a 3-halogen- or 3,4-dihalogen-substituted phenyl group at the N-5 position exhibited potent antituberculosis activity, with MICs ranging from 0.25~0.01 μg/mL. The 3,4-dihalogen- substituted compounds displayed low cytotoxicity, with IC50 values greater than 64 μg/mL. Among these riminophenazines, compound 15 exhibited equivalent in vivo efficacy against M. tuberculosis infection and reduced skin discoloration potential in an experimental mouse infection model as compared to clofazimine. Compound 15, as compared to clofazimine, also demonstrated improved physicochemical properties and pharmacokinetic profiles with a short half-life and less drug tissue accumulation. This compound is being evaluated as a potential drug candidate for the treatment of multidrug resistant tuberculosis.

  1. [Interleukin-37 induces apoptosis and autophagy of SMMC-7721 cells by inhibiting phosphorylation of mTOR].

    Science.gov (United States)

    Li, Tingting; Zhu, Di; Mou, Tong; Guo, Zhen; Pu, Junliang; Wu, Zhongjun

    2017-04-01

    Objective To investigate the underlying mechanism by which interleukin-37 (IL-37) induces the apoptosis and autophagy in SMMC-7721 cells. Methods SMMC-7721 cells were incubated in vitro and divided into two groups, IL-37 treated group and control group. The cells were treated with (50, 100, 200) ng/mL of recombinant human interleukin-37 (rhIL-37). CCK-8 assay was used to detect the cell proliferation of SMMC-7721 cells. Cell apoptosis was measured by flow cytometry. Western blot analysis was performed to examine the expressions of apoptosis-related proteins, Bax, Bcl-2, and autophagy related proteins, microtubule-associated proteins 1 light chain 3 (LC3), beclin 1 and mammalian target of rapamycin (mTOR). Transmission electron microscopy (TEM) was used to observe the ultrastructures of autophagosomes. Results The rhIL-37 inhibited the proliferation of hepatocellular carcinoma SMMC-7721 cells. It induced the apoptosis and autophagy in SMMC-7721 cells. In the IL-37 treated group, the levels of Bax, LC3 and beclin 1 increased but Bcl-2 decreased. The phosphorylation of mTOR was inhibited in the IL-37 treated group. Autophagosome was obvious in the IL-37 treated group. Conclusion IL-37 induces the apoptosis and autophagy in SMMC-7721 cells, which may be related to the phosphorylation of mTOR.

  2. NCBI nr-aa BLAST: CBRC-XTRO-01-2803 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-XTRO-01-2803 ref|YP_001284894.1| PE-PGRS family protein [Mycobacterium tuberculosis... H37Ra] gb|ABQ75332.1| PE-PGRS family protein [Mycobacterium tuberculosis H37Ra] YP_001284894.1 9e-35 37% ...

  3. Imunogenicidade da cepa avirulenta RV194-2 do vírus rábico em camundongos

    Directory of Open Access Journals (Sweden)

    Rugimar Marcovistz

    1996-12-01

    Full Text Available O vírus rábico RV194-2, uma variante avirulenta da cepa CVS (Challenge Vírus Standard, produz uma infecção inaparente quando inoculado intracerebralmente em camundongos adultos. Sugerindo que a resposta imunológica do hospedeiro permite a eliminação do vírus do sistema nervoso central. Por esta razão foram estudadas a indução de interferon e a resposta imune humoral em camundongos BALB/c inoculados com vírus RV194-2. Durante a infecção, estes camundongos apresentaram elevados níveis de interferon no plasma e no cérebro com altos títulos de anticorpos neutralizantes anti-rábicos. A 2-5A sintetase. um marcador da ação dos interferons,foi também analisada no cérebro destes animais. Sua atividade, aumentou, paralelamente, á produção de interferon, demonstrando que este interferon é bioquímicamente ativo. O vírus RV194-2 também induziu, 45 dias após sua inoculação, proteção aos animais quando desafiados com a cepa virulenta CVS. Estes resultados demonstram que a cepa RV194-2possui um alto nível imunogênico.RV194-2 rabies virus, an avirulent mutant of CVS strain, induces an inapparent infection limited to the central nervous system (CNS in adult mice inoculated intracerebrally. This fact suggest that immune response of the host is able to eliminate the virus in CNS. For this reason, we have studied the induction of interferon and the humoral immune responses in BALB/c mice after RV194-2 inoculation. These mice presented high levels of interferon in the plasma and in the brain, with elevated levels of neutralizing antirabies antibodies. The 2-5A synthetase, an enzyme marker of interferon action, was analyzed in the brain of inoculated animals. Its enhancement in parallel to the interferon production in the brain, showed biochemical evidence that this interferon is active. Forty five days after RV194-2 virus inoculation, mice were protected against a challenge with the CVS virulent strain. The results presented

  4. 30 Years Retrospective Review of Tuberculosis Cases in a Tuberculosis Dispensary in Bursa/Nilufer, Turkey (1985-2014

    Directory of Open Access Journals (Sweden)

    Kayıhan PALA

    2016-11-01

    Full Text Available Abstract Objective: The aim of this study was to evaluate tuberculosis control programmes of patients who applied to the Bursa Nilufer Tuberculosis Dispensary and by investigating the changes in the variables over 3 decades. Method: In this retrospective descriptive study, the records of all tuberculosis cases (1662 people treated in the last 30 years (1985-2014 at the Bursa Nilufer Tuberculosis Dispensary were examined. In the analysis, the chi-square test, the trend chi-square test and Fisher's exact test were used. Results: Males comprised 65.2% of the patients. The ages of the patients ranged from 1 to 87 years, and the mean age was 37.4 (95% CI:36.6-38.2. Among the cases, 86.7% were new and 74.1% were pulmonary tuberculosis. In the last decade, the proportion of women, the education level, the proportion of patients who had received a BCG vaccination and the proportion of active employees among women increased by a statistically significant amount, while the proportion of employees among men decreased. Clinical symptoms, such as weakness, anorexia, weight loss, and cough, decreased to a statistically significant degree. In the last decade, the mortality rate was 3.6%, a statistically significant increase compared with previous decades. Mortality was statistically significant higher among patients who were elderly, male, did not have a BCG scar or had a chronic disease. Conclusion: This study reveals the need for studies that determine the risk factors associated with tuberculosis mortality and examine the effectiveness of tuberculosis control programmes. Direct measures to address mortality risk factors can reduce the number of deaths from tuberculosis.

  5. Prevention of pneumonic plague in mice, rats, guinea pigs and non-human primates with clinical grade rV10, rV10-2 or F1-V vaccines

    Science.gov (United States)

    Quenee, Lauriane E.; Ciletti, Nancy A.; Elli, Derek; Hermanas, Timothy M.; Schneewind, Olaf

    2012-01-01

    Yersinia pestis causes plague, a disease with high mortality in humans that can be transmitted by fleabite or aerosol. A US Food and Drug Administration (FDA)-licensed plague vaccine is currently not available. Vaccine developers have focused on two subunits of Y. pestis: LcrV, a protein at the tip of type III secretion needles, and F1, the fraction 1 pilus antigen. F1-V, a hybrid generated via translational fusion of both antigens, is being developed for licensure as a plague vaccine. The rV10 vaccine is a non-toxigenic variant of LcrV lacking residues 271–300. Here we developed Current Good Manufacturing Practice (cGMP) protocols for rV10. Comparison of clinical grade rV10 with F1-V did not reveal significant differences in plague protection in mice, guinea pigs or cynomolgus macaques. We also developed cGMP protocols for rV10-2, a variant of rV10 with an altered affinity tag. Immunization with rV10-2 adsorbed to aluminum hydroxide elicited antibodies against LcrV and conferred pneumonic plague protection in mice, rats, guinea pigs, cynomolgus macaques and African Green monkeys. The data support further development of rV10-2 for FDA Investigational New Drug (IND) authorization review and clinical testing. PMID:21763383

  6. Comprehensive sieve analysis of breakthrough HIV-1 sequences in the RV144 vaccine efficacy trial.

    Directory of Open Access Journals (Sweden)

    Paul T Edlefsen

    2015-02-01

    Full Text Available The RV144 clinical trial showed the partial efficacy of a vaccine regimen with an estimated vaccine efficacy (VE of 31% for protecting low-risk Thai volunteers against acquisition of HIV-1. The impact of vaccine-induced immune responses can be investigated through sieve analysis of HIV-1 breakthrough infections (infected vaccine and placebo recipients. A V1/V2-targeted comparison of the genomes of HIV-1 breakthrough viruses identified two V2 amino acid sites that differed between the vaccine and placebo groups. Here we extended the V1/V2 analysis to the entire HIV-1 genome using an array of methods based on individual sites, k-mers and genes/proteins. We identified 56 amino acid sites or "signatures" and 119 k-mers that differed between the vaccine and placebo groups. Of those, 19 sites and 38 k-mers were located in the regions comprising the RV144 vaccine (Env-gp120, Gag, and Pro. The nine signature sites in Env-gp120 were significantly enriched for known antibody-associated sites (p = 0.0021. In particular, site 317 in the third variable loop (V3 overlapped with a hotspot of antibody recognition, and sites 369 and 424 were linked to CD4 binding site neutralization. The identified signature sites significantly covaried with other sites across the genome (mean = 32.1 more than did non-signature sites (mean = 0.9 (p < 0.0001, suggesting functional and/or structural relevance of the signature sites. Since signature sites were not preferentially restricted to the vaccine immunogens and because most of the associations were insignificant following correction for multiple testing, we predict that few of the genetic differences are strongly linked to the RV144 vaccine-induced immune pressure. In addition to presenting results of the first complete-genome analysis of the breakthrough infections in the RV144 trial, this work describes a set of statistical methods and tools applicable to analysis of breakthrough infection genomes in general vaccine

  7. Genetic-and-epigenetic Interspecies Networks for Cross-talk Mechanisms in Human Macrophages and Dendritic Cells During MTB Infection

    Directory of Open Access Journals (Sweden)

    Cheng-Wei Li

    2016-10-01

    Full Text Available Tuberculosis is caused by Mycobacterium tuberculosis (Mtb infection. Mtb is one of the oldest human pathogens, and evolves mechanisms implied in human evolution. The lungs are the first organ exposed to aerosol-transmitted Mtb during gaseous exchange. Therefore, the guards of the immune system in the lungs, such as macrophages (Mϕs and dendritic cells (DCs, are the most important defense against Mtb infection. There have been several studies discussing the functions of Mϕs and DCs during Mtb infection, but the genome-wide pathways and networks are still incomplete. Furthermore, the immune response induced by Mϕs and DCs varies. Therefore, we analyzed the cross-talk genome-wide genetic-and-epigenetic interspecies networks (GWGEINs between Mϕs vs. Mtb and DCs vs. Mtb to determine the varying mechanisms of both the host and pathogen as it relates to Mϕs and DCs during early Mtb infection.First, we performed database mining to construct candidate cross-talk GWGEIN between human cells and Mtb. Then we constructed dynamic models to characterize the molecular mechanisms, including intraspecies gene/microRNA (miRNA regulation networks (GRNs, intraspecies protein-protein interaction networks (PPINs, and the interspecies PPIN of the cross-talk GWGEIN. We applied a system identification method and a system order detection scheme to dynamic models to identify the real cross-talk GWGEINs using the microarray data of Mϕs, DCs and Mtb.After identifying the real cross-talk GWGEINs, the principal network projection (PNP method was employed to construct host-pathogen core networks (HPCNs between Mϕs vs. Mtb and DCs vs. Mtb during infection process. Thus, we investigated the underlying cross-talk mechanisms between the host and the pathogen to determine how the pathogen counteracts host defense mechanisms in Mϕs and DCs during Mtb H37Rv early infection. Based on our findings, we propose Rv1675c as a potential drug target because of its important defensive

  8. Spoligotyping based genetic diversity of Mycobacterium tuberculosis in Ethiopia: a systematic review.

    Science.gov (United States)

    Tulu, Begna; Ameni, Gobena

    2018-03-27

    Understanding the types of strains and lineages of Mycobacterium tuberculosis (M. tuberculosis) circulating in a country is of paramount importance for tuberculosis (TB) control program of that country. The main aim of this study was to review and compile the results of studies conducted on strains and lineages of M. tuberculosis in Ethiopia. A systematic search and review of articles published on M. tuberculosis strains and lineages in Ethiopia were made. PubMed and Google Scholar databases were considered for the search while the keywords used were M. tuberculosis, molecular epidemiology, molecular typing spoligotyping and Ethiopia. Twenty-one studies were considered in this review and a total of 3071 M. tuberculosis isolates and 3067 strains were included. These studies used spoligotyping and identified five lineages including Indo-Ocean, East Asian/Beijing, East African-Indian, Euro-American and Ethiopian in a proportion of 7.1%, 0.2%, 23.0%, 64.8%, and 4.1%, respectively. Thus, Euro-American was the most frequently (64.8%) occurring Lineage while East Asian was the least (0.2%) frequently occurring Lineage in the country. Surprisingly, the Ethiopian Lineage seemed to be localized to northeastern Ethiopia. In addition, the top five clades identified by this review were T, CAS, H, Manu and Ethiopian comprising of 48.0%, 23.0%, 11.0%, 6.0% and 4.1% of the strains, respectively. Furthermore, predominant shared types (spoligotype patterns) identified were SIT149, SIT53, SIT25, SIT37, and SIT21, each consisting of 420, 343, 266, 162 and 102 isolates, respectively, while, on the other hand, 15% of the strains were orphan. According to the summary of the results of this review, diversified strains and lineages of M. tuberculosis were found in Ethiopia, and the frequencies of occurrence of these strains and lineages were variable in different regions of the country. This systematic review is registered in the PRISMA with the registration number of 42017059263.

  9. Helminth-induced arginase-1 exacerbates lung inflammation and disease severity in tuberculosis

    Science.gov (United States)

    Monin, Leticia; Griffiths, Kristin L.; Lam, Wing Y.; Gopal, Radha; Kang, Dongwan D.; Ahmed, Mushtaq; Rajamanickam, Anuradha; Cruz-Lagunas, Alfredo; Zúñiga, Joaquín; Babu, Subash; Kolls, Jay K.; Mitreva, Makedonka; Rosa, Bruce A.; Ramos-Payan, Rosalio; Morrison, Thomas E.; Murray, Peter J.; Rangel-Moreno, Javier; Pearce, Edward J.; Khader, Shabaana A.

    2015-01-01

    Parasitic helminth worms, such as Schistosoma mansoni, are endemic in regions with a high prevalence of tuberculosis (TB) among the population. Human studies suggest that helminth coinfections contribute to increased TB susceptibility and increased rates of TB reactivation. Prevailing models suggest that T helper type 2 (Th2) responses induced by helminth infection impair Th1 immune responses and thereby limit Mycobacterium tuberculosis (Mtb) control. Using a pulmonary mouse model of Mtb infection, we demonstrated that S. mansoni coinfection or immunization with S. mansoni egg antigens can reversibly impair Mtb-specific T cell responses without affecting macrophage-mediated Mtb control. Instead, S. mansoni infection resulted in accumulation of high arginase-1–expressing macrophages in the lung, which formed type 2 granulomas and exacerbated inflammation in Mtb-infected mice. Treatment of coinfected animals with an antihelminthic improved Mtb-specific Th1 responses and reduced disease severity. In a genetically diverse mouse population infected with Mtb, enhanced arginase-1 activity was associated with increased lung inflammation. Moreover, in patients with pulmonary TB, lung damage correlated with increased serum activity of arginase-1, which was elevated in TB patients coinfected with helminths. Together, our data indicate that helminth coinfection induces arginase-1–expressing type 2 granulomas, thereby increasing inflammation and TB disease severity. These results also provide insight into the mechanisms by which helminth coinfections drive increased susceptibility, disease progression, and severity in TB. PMID:26571397

  10. Whole genome sequencing-based characterization of extensively drug resistant (XDR) strains of Mycobacterium tuberculosis from Pakistan

    KAUST Repository

    Hasan, Zahra; Ali, Asho; McNerney, Ruth; Mallard, Kim; Hill-Cawthorne, Grant A.; Coll, Francesc; Nair, Mridul; Pain, Arnab; Clark, Taane G.; Hasan, Rumina

    2015-01-01

    Objectives: The global increase in drug resistance in Mycobacterium tuberculosis (MTB) strains increases the focus on improved molecular diagnostics for MTB. Extensively drug-resistant (XDR) - TB is caused by MTB strains resistant to rifampicin, isoniazid, fluoroquinolone and aminoglycoside antibiotics. Resistance to anti-tuberculous drugs has been associated with single nucleotide polymorphisms (SNPs), in particular MTB genes. However, there is regional variation between MTB lineages and the SNPs associated with resistance. Therefore, there is a need to identify common resistance conferring SNPs so that effective molecular-based diagnostic tests for MTB can be developed. This study investigated used whole genome sequencing (WGS) to characterize 37 XDR MTB isolates from Pakistan and investigated SNPs related to drug resistance. Methods: XDR-TB strains were selected. DNA was extracted from MTB strains, and samples underwent WGS with 76-base-paired end fragment sizes using Illumina paired end HiSeq2000 technology. Raw sequence data were mapped uniquely to H37Rv reference genome. The mappings allowed SNPs and small indels to be called using SAMtools/BCFtools. Results: This study found that in all XDR strains, rifampicin resistance was attributable to SNPs in the rpoB RDR region. Isoniazid resistance-associated mutations were primarily related to katG codon 315 followed by inhA S94A. Fluoroquinolone resistance was attributable to gyrA 91-94 codons in most strains, while one did not have SNPs in either gyrA or gyrB. Aminoglycoside resistance was mostly associated with SNPs in rrs, except in 6 strains. Ethambutol resistant strains had embB codon 306 mutations, but many strains did not have this present. The SNPs were compared with those present in commercial assays such as LiPA Hain MDRTBsl, and the sensitivity of the assays for these strains was evaluated. Conclusions: If common drug resistance associated with SNPs evaluated the concordance between phenotypic and

  11. Whole genome sequencing-based characterization of extensively drug resistant (XDR) strains of Mycobacterium tuberculosis from Pakistan

    KAUST Repository

    Hasan, Zahra

    2015-03-01

    Objectives: The global increase in drug resistance in Mycobacterium tuberculosis (MTB) strains increases the focus on improved molecular diagnostics for MTB. Extensively drug-resistant (XDR) - TB is caused by MTB strains resistant to rifampicin, isoniazid, fluoroquinolone and aminoglycoside antibiotics. Resistance to anti-tuberculous drugs has been associated with single nucleotide polymorphisms (SNPs), in particular MTB genes. However, there is regional variation between MTB lineages and the SNPs associated with resistance. Therefore, there is a need to identify common resistance conferring SNPs so that effective molecular-based diagnostic tests for MTB can be developed. This study investigated used whole genome sequencing (WGS) to characterize 37 XDR MTB isolates from Pakistan and investigated SNPs related to drug resistance. Methods: XDR-TB strains were selected. DNA was extracted from MTB strains, and samples underwent WGS with 76-base-paired end fragment sizes using Illumina paired end HiSeq2000 technology. Raw sequence data were mapped uniquely to H37Rv reference genome. The mappings allowed SNPs and small indels to be called using SAMtools/BCFtools. Results: This study found that in all XDR strains, rifampicin resistance was attributable to SNPs in the rpoB RDR region. Isoniazid resistance-associated mutations were primarily related to katG codon 315 followed by inhA S94A. Fluoroquinolone resistance was attributable to gyrA 91-94 codons in most strains, while one did not have SNPs in either gyrA or gyrB. Aminoglycoside resistance was mostly associated with SNPs in rrs, except in 6 strains. Ethambutol resistant strains had embB codon 306 mutations, but many strains did not have this present. The SNPs were compared with those present in commercial assays such as LiPA Hain MDRTBsl, and the sensitivity of the assays for these strains was evaluated. Conclusions: If common drug resistance associated with SNPs evaluated the concordance between phenotypic and

  12. In vitro Antitubercular Activity of 3-Deoxysappanchalcone Isolated From the Heartwood of Caesalpinia sappan Linn.

    Science.gov (United States)

    Seo, Hoonhee; Kim, Sukyung; Mahmud, Hafij Al; Islam, Md Imtiazul; Nam, Kung-Woo; Lee, Byung-Eui; Lee, Hanna; Cho, Myoung-Lae; Shin, Heung-Mook; Song, Ho-Yeon

    2017-10-01

    Responsible for nearly 1.5 million deaths every year, the infectious disease tuberculosis remains one of the most serious challenges to global health. The emergence of multidrug-resistant tuberculosis and, more recently, extensively drug-resistant tuberculosis poses a significant threat in our effort to control this epidemic. New drugs are urgently needed to combat the growing threat of antimicrobial resistance. To achieve this goal, we screened approximately 500 species of medicinal plant methanol extracts and their solvent partitioned fractions for potential inhibitors of Mycobacterium tuberculosis growth. Using microdilution screening, the ethyl acetate solvent partitioned fraction from the heartwood of Caesalpinia sappan exhibited strong antitubercular activity. We isolated the active compound and identified it as 3-deoxysappanchalcone. The extracted 3-deoxysappanchalcone possessed activity against both drug-susceptible and drug-resistant strains of M. tuberculosis at MIC 50 s of 3.125-12.5 μg/mL in culture broth and MIC 50 s of 6.25-12.5 μg/mL inside macrophages and pneumocytes. 3-Deoxysappanchalcone was also found to act in partial synergy with streptomycin/ethambutol against M. tuberculosis H37Rv. 3-Deoxysappanchalcone had no cytotoxicity against the A549 cell line up to a concentration of 100 μg/mL (selectivity index > 8-32). Further studies are warranted to establish the in vivo effect and therapeutic potential of 3-deoxysappanchalcone. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  13. Pleural Tuberculosis and its Treatment Outcomes

    African Journals Online (AJOL)

    Sciences, University Sains Malaysia, 11800 Penang, Malaysia, 4Discipline of ... 37.7 %) of cases among tuberculosis pleuritis patients were Chinese, followed by Malay (31.2 %). Out ... combined with culture, diagnosis can be made in ... Chinese (46.5 %), Indian (10.6 %) and ... left pleural effusion (48.6 % compared to 27.5.

  14. Antiprotozoal, antimycobacterial, and anti-inflammatory evaluation of Cnidoscolus chayamansa (Mc Vaugh) extract and the isolated compounds.

    Science.gov (United States)

    Pérez-González, Mariana Z; Gutiérrez-Rebolledo, Gabriel A; Yépez-Mulia, Lilián; Rojas-Tomé, Irma S; Luna-Herrera, Julieta; Jiménez-Arellanes, María A

    2017-05-01

    Cnidoscolus chayamansa is a medicinal and edible plant known as Chaya, is commonly used as an anti-inflammatory, antiprotozoal, antibacterial agent and as a remedy for respiratory illness, gastrointestinal disorders, and vaginal infections related with the inflammation process. In this paper, we describe the plant's phytochemical analysis and biological activities (antimycobacterial, antibacterial, antiprotozoal, and anti-inflammatory properties) of the CHCl 3 :MeOH (1:1) leaves extract and isolated compounds, as well as the acute and sub-acute toxic effects. Chemical identification of isolated compounds was performed by 1 H- and 13 C NMR spectra data. In vitro antibacterial and antimycobacterial activities were determined by disc diffusion and MABA assays, respectively; antiprotozoal test by means of the sub-culture test. Topical and systemic anti-inflammatory effects were tested by TPA and carrageenan assay on BALB/c mice. Moretenol, moretenyl acetate, kaempferol-3,7-dimethyl ether, and 5-hydroxy-7-3',4'-trimethoxyflavanone were the main compounds isolated. The CHCl 3 :MeOH extract showed antiprotozoal (IC 50 ≤65.29μg/mL), antimycobacterial (MIC≤50μg/mL), and anti-inflammatory activities (ED 50 =1.66mg/ear and 467.73mg/kg), but was inactive against the bacterial strains tested. The LD 50 for extract was >2g/kg. In the sub-acute toxicity test, the extract was administered at 1g/kg for 28days and did not cause lethality or any alteration in hematological and biochemical parameters; in addition, liver, kidney, and spleen histological analysis exhibited no structural changes. Moretenol and moretenyl acetate showed MIC=25μg/mL against Mycobacterium tuberculosis H37Rv and against four monoresistant strains of M. tuberculosis H37Rv. Both compounds exhibited moderate activity against Entamoeba histolytica and Giardia lamblia (IC 50 ≤71.70μg/mL). Kaempferol-3,7-dimethyl ether and 5-hydroxy-7-3',4'-trimethoxy-flavanone were more active than the extract against E

  15. Mycobacterium tuberculosis nucleoid-associated DNA-binding protein H-NS binds with high-affinity to the Holliday junction and inhibits strand exchange promoted by RecA protein.

    Science.gov (United States)

    Sharadamma, N; Harshavardhana, Y; Singh, Pawan; Muniyappa, K

    2010-06-01

    A number of studies have shown that the structure and composition of bacterial nucleoid influences many a processes related to DNA metabolism. The nucleoid-associated proteins modulate not only the DNA conformation but also regulate the DNA metabolic processes such as replication, recombination, repair and transcription. Understanding of how these processes occur in the context of Mycobacterium tuberculosis nucleoid is of considerable medical importance because the nucleoid structure may be constantly remodeled in response to environmental signals and/or growth conditions. Many studies have concluded that Escherichia coli H-NS binds to DNA in a sequence-independent manner, with a preference for A-/T-rich tracts in curved DNA; however, recent studies have identified the existence of medium- and low-affinity binding sites in the vicinity of the curved DNA. Here, we show that the M. tuberculosis H-NS protein binds in a more structure-specific manner to DNA replication and repair intermediates, but displays lower affinity for double-stranded DNA with relatively higher GC content. Notably, M. tuberculosis H-NS was able to bind Holliday junction (HJ), the central recombination intermediate, with substantially higher affinity and inhibited the three-strand exchange promoted by its cognate RecA. Likewise, E. coli H-NS was able to bind the HJ and suppress DNA strand exchange promoted by E. coli RecA, although much less efficiently compared to M. tuberculosis H-NS. Our results provide new insights into a previously unrecognized function of H-NS protein, with implications for blocking the genome integration of horizontally transferred genes by homologous and/or homeologous recombination.

  16. Identification and Characterization of Lipase Activity and Immunogenicity of LipL from Mycobacterium tuberculosis.

    Directory of Open Access Journals (Sweden)

    Jun Cao

    Full Text Available Lipids and lipid-metabolizing esterases/lipases are highly important for the mycobacterial life cycle and, possibly, for mycobacterial virulence. In this study, we expressed 10 members of the Lip family of Mycobacterium tuberculosis. Among the 10 proteins, LipL displayed a significantly high enzymatic activity for the hydrolysis of long-chain lipids. The optimal temperature for the lipase activity of LipL was demonstrated to be 37°C, and the optimal pH was 8.0. The lipase active center was not the conserved motif G-x-S-x-G, but rather the S-x-x-K and GGG motifs, and the key catalytic amino acid residues were identified as G50, S88, and K91, as demonstrated through site-directed mutagenesis experiments. A three-dimensional modeling structure of LipL was constructed, which showed that the GGG motif was located in the surface of a pocket structure. Furthermore, the subcellular localization of LipL was demonstrated to be on the mycobacterial surface by Western blot analysis. Our results revealed that the LipL protein could induce a strong humoral immune response in humans and activate a CD8+ T cell-mediated response in mice. Overall, our study identified and characterized a novel lipase denoted LipL from M. tuberculosis, and demonstrated that LipL functions as an immunogen that activates both humoral and cell-mediated responses.

  17. Synthesis and Biological Evaluation of N-Alkyl-3-(alkylamino-pyrazine-2-carboxamides

    Directory of Open Access Journals (Sweden)

    Lucia Semelkova

    2015-05-01

    Full Text Available A series of N-alkyl-3-(alkylaminopyrazine-2-carboxamides and their N-alkyl-3-chloropyrazine-2-carboxamide precursors were prepared. All compounds were characterized by analytical methods and tested for antimicrobial and antiviral activity. The antimycobacterial MIC values against Mycobacterium tuberculosis H37Rv of the most effective compounds, 3-(hexylamino-, 3-(heptylamino- and 3-(octylamino-N-methyl-pyrazine-2-carboxamides 14‒16, was 25 μg/mL. The compounds inhibited photosystem 2 photosynthetic electron transport (PET in spinach chloroplasts. This activity was strongly connected with the lipophilicity of the compounds. For effective PET inhibition longer alkyl chains in the 3-(alkylamino substituent in the N-alkyl-3-(alkylaminopyrazine-2-carboxamide molecule were more favourable than two shorter alkyl chains.

  18. Antimycobacterial and cytotoxicity activity of synthetic and natural compounds

    Directory of Open Access Journals (Sweden)

    Ana O. de Souza

    2007-01-01

    Full Text Available Antimycobacterial and cytotoxicity activity of synthetic and natural compounds. Secondary metabolites from Curvularia eragrostidis and Drechslera dematioidea, Clusia sp. floral resin, alkaloids from Pilocarpus alatus, salicylideneanilines, piperidine amides, the amine 1-cinnamylpiperazine and chiral pyridinium salts were assayed on Mycobacterium tuberculosis H37Rv. N-(salicylidene-2-hydroxyaniline was the most effective compound with a minimal inhibitory concentration (MIC of 8 µmol/L. Dihydrocurvularin was moderately effective with a MIC of 40 µmol/L. Clusia sp. floral resin and a gallocatechin-epigallocatechin mixture showed MIC of 0.02 g/L and 38 µmol/L, respectively. The cytotoxicity was evaluated for N-(salicylidene-2-hydroxyaniline, curvularin, dihydrocurvularin and Clusia sp. floral resin, and the selectivity indexes were > 125, 0.47, 0.75 and 5, respectively.

  19. Serodiagnostic potential of immuno-PCR using a cocktail of mycobacterial antigen 85B, ESAT-6 and cord factor in tuberculosis patients.

    Science.gov (United States)

    Singh, Netrapal; Sreenivas, Vishnubhatla; Sheoran, Abhishek; Sharma, Suman; Gupta, Krishna B; Khuller, Gopal K; Mehta, Promod K

    2016-01-01

    A novel indirect immuno-polymerase chain reaction (I-PCR) assay was developed for the detection of circulating anti-Ag85B (antigen 85B, Rv1886c), anti-ESAT-6 (early secretory antigenic target-6, Rv3875) and anti-cord factor (trehalose 6,6'-dimycolate) antibodies from the sera samples of pulmonary tuberculosis (PTB) and extrapulmonary tuberculosis (EPTB) patients and the results were compared with an analogous enzyme-linked immunosorbent assay (ELISA). We covalently attached the amino-modified reporter DNA to the dithiothreitol (DTT)-reduced anti-human IgG antibody through a chemical linker succinimidyl 4-[N-maleimidomethyl]-cyclohexane-1-carboxylate (SMCC). The detection of cocktail of anti-Ag85B, anti-ESAT-6 and anti-cord factor antibodies was found to be superior to the detection of individual antibodies. The sensitivities of 89.5% and 77.5% with I-PCR and 70.8% and 65% with ELISA were observed in smear-positive and smear-negative PTB cases, respectively with high specificity (90.9%). On the other hand, a sensitivity of 77.5% with I-PCR and 65% with ELISA was observed in EBTB cases. The detection of cocktail of antibodies by I-PCR is likely to improve the utility of existing algorithms for TB diagnosis. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Tuberculosis post-liver transplantation: a rare but complicated disease.

    Science.gov (United States)

    Lu, W; Wai, C T; Da Costa, M; Tambyah, P A; Prabhakaran, K; Lee, K H

    2005-03-01

    Tuberculosis is a rare but serious complication after transplantation. We report a case and discuss its presentation and management. A 60-year-old Indonesian male presented initially with fever, acute confusion and rapidly progressive right upper lobe pneumonia 3.5 months post-liver transplant, and was diagnosed with pulmonary tuberculosis by positive sputum smear for acid-fast bacilli and tuberculosis culture. Standard anti-tuberculosis therapy was administered but was complicated by interaction with cyclosporine and drug-induced cholestasis. A high level of suspicion, prompt antituberculosis treatment and close follow-up are essential in management of post-transplant tuberculosis.