WorldWideScience

Sample records for tube integrity flaw

  1. Failure Pressure Assessment of the Circumferentially Flawed Heat Exchanger Tubes

    Science.gov (United States)

    Kim, Hyun Su; Jin, Tae Eun; Chang, Yoon Suk; Kim, Young Jin; Kim, Hong Deok

    Since the structural integrity of thin-walled tubes in the heat exchanger is crucial from the viewpoint of safety and reliability, the integrity evaluation for flawed tubes is quite important. Accurate estimation of the failure pressure is a key element of the structural integrity assessment. With regard to the prediction of the failure pressure, most of preceding researches have been focused on the limit load approach. However, the integrity assessment scheme based on the elastic plastic fracture mechanics concept has not been settled despite of its accuracy and efficiency. In this paper, three-dimensional finite element analyses assuming elastic plastic material behavior are carried out for the thin-walled tubes with various sizes of the circumferential flaws. As for the flaw location, both the top of tube sheet and transition regions are considered. The flaw instability is evaluated by comparing the driving force with the fracture toughness of the tube material. Analysis results show that the elastic plastic fracture mechanics approach accurately predicts the failure pressures compared to the experimental data. Thus, it is thought that the elastic plastic fracture mechanics concept can be applied to the integrity assessment of the heat exchanger tubes with the circumferential through-wall flaws.

  2. Estimating probable flaw distributions in PWR steam generator tubes

    International Nuclear Information System (INIS)

    Gorman, J.A.; Turner, A.P.L.

    1997-01-01

    This paper describes methods for estimating the number and size distributions of flaws of various types in PWR steam generator tubes. These estimates are needed when calculating the probable primary to secondary leakage through steam generator tubes under postulated accidents such as severe core accidents and steam line breaks. The paper describes methods for two types of predictions: (1) the numbers of tubes with detectable flaws of various types as a function of time, and (2) the distributions in size of these flaws. Results are provided for hypothetical severely affected, moderately affected and lightly affected units. Discussion is provided regarding uncertainties and assumptions in the data and analyses

  3. Characterization of flaws in a tube bundle mock-up for reliability studies

    International Nuclear Information System (INIS)

    Kupperman, D.S.; Bakhtiari, S.

    1997-01-01

    As part of an assessment of in-service inspection of steam generator tubes, the authors will assemble a steam generator mock-up for round robin studies and use as a test bed in evaluating emerging technologies. Progress is reported on the characterization of flaws that will be part of the mock-up. Eddy current and ultrasonic techniques are being evaluated as a means to characterize the flaws in the mock-up tubes before final assembly. Twenty Inconel 600 tubes with laboratory-grown cracks, typical of those to be used in the mock-up, were provided by Pacific Northwest National Laboratory for laboratory testing. After the tubes were inspected with eddy current and ultrasonic techniques, they were destructively analyzed to establish the actual depths, lengths, and profiles of the cracks. The analysis of the results will allow the best techniques to be used for characterizing the flaws in the mock-up tubes

  4. Characterization of flaws in a tube bundle mock-up for reliability studies

    International Nuclear Information System (INIS)

    Kupperman, D.S.; Bakhtiari, S.

    1996-10-01

    As part of an assessment of in-service inspection of steam generator tubes, the authors will assemble a steam generator mock-up for round robin studies and use as a test bed in evaluating emerging technologies. Progress is reported on the characterization of flaws that will be part of the mock-up. Eddy current and ultrasonic techniques are being evaluated as a means to characterize the flaws in the mock-up tubes before final assembly. Twenty Inconel 600 tubes with laboratory-grown cracks, typical of those to be used in the mock-up, were provided by Pacific Northwest National Laboratory for laboratory testing. After the tubes were inspected with eddy current and ultrasonic techniques, they were destructively analyzed to establish the actual depths, lengths, and profiles of the cracks. The analysis of the results will allow the best techniques to be used for characterizing the flaws in the mock-up tubes

  5. Data analysis algorithms for flaw sizing based on eddy current rotating probe examination of steam generator tubes

    International Nuclear Information System (INIS)

    Bakhtiari, S.; Elmer, T.W.

    2009-01-01

    Computer-aided data analysis tools can help improve the efficiency and reliability of flaw sizing based on nondestructive examination data. They can further help produce more consistent results, which is important for both in-service inspection applications and for engineering assessments associated with steam generator tube integrity. Results of recent investigations at Argonne on the development of various algorithms for sizing of flaws in steam generator tubes based on eddy current rotating probe data are presented. The research was carried out as part of the activities under the International Steam Generator Tube Integrity Program (ISG-TIP) sponsored by the U.S. Nuclear Regulatory Commission. A computer-aided data analysis tool has been developed for off-line processing of eddy current inspection data. The main objectives of the work have been to a) allow all data processing stages to be performed under the same user interface, b) simplify modification and testing of signal processing and data analysis scripts, and c) allow independent evaluation of viable flaw sizing algorithms. The focus of most recent studies at Argonne has been on the processing of data acquired with the +Point probe, which is one of the more widely used eddy current rotating probes for steam generator tube examinations in the U.S. The probe employs a directional surface riding differential coil, which helps reduce the influence of tubing artifacts and in turn helps improve the signal-to-noise ratio. Various algorithms developed under the MATLAB environment for the conversion, segmentation, calibration, and analysis of data have been consolidated within a single user interface. Data acquired with a number of standard eddy current test equipment are automatically recognized and converted to a standard format for further processing. Because of its modular structure, the graphical user interface allows user-developed routines to be easily incorporated, modified, and tested independent of the

  6. Estimation of the number of physical flaws from periodic ISI data of SG tubes using effective POD

    International Nuclear Information System (INIS)

    Lee, Jae Bong; Park, Jai Hak; Kim, Hong Deok; Chung, Han Sub

    2008-01-01

    It is necessary to know the number of flaws and their size distribution in order to calculate the probability of failure or to estimate the amount of leakage through the tube wall of steam generators. But In-Service Inspection (ISI) flaw data is different from the physical flaw data. In case of a single inspection, it is easy to estimate the number of physical flaws using the POD curve. However, we may be faced with some difficulties in obtaining the number of physical flaws from the periodic in-service inspection data. In this study a method for estimating the number of physical flaws from periodic in-service inspection data is proposed. In order to calculate the number of physical flaws with periodic ISI data, both probabilities of detecting and missing flaws should be considered. And flaw initiation and growth history must be known also. The flaw initiation and growth history can be inferred from appropriate probabilistic flaw growth rate. Two inference methods are proposed and compared. One is Monte Carlo simulation method and the other is transition (stochastic) matrix method. The effective POD, the total possibility of detection considering both probabilities of detecting and missing flaws for each flaw size, can be calculated using above two inference methods. And two methods are compared and the usefulness and convenience are evaluated from several applications

  7. Phenomenological modeling of eddy current signals with a view to characterizing steam generator tube flaws

    International Nuclear Information System (INIS)

    La, R.

    1997-01-01

    This work deals with the eddy current non-destructive test ing. Its long-term goal is to design an 'inverse model' for evaluating the geometry an d the dimensions of steam generator tube flaws from eddy current signals. The approach we adopted requires the preliminary knowledge of a 'forward model' that estimates the eddy current signal knowing the geometry and the dimensions of the flaws. A quasi-exhaustive study of the existing forward models showed their inadequacy to solve the inverse problem. Hence, we proposed to build a general forward model, appropriate to the inversion. Using a parametric approach, this model is phenomenological, i.e. it is based on observations made from results of a finite element code. For each position of the coil, the proposed forward model fist discretized the eddy current distribution into 'tubes of current'. A parametric description of the shape of these tubes is given according the system constituted of the coil and the tubes of current as a 'multi-transformer', their current signal, can then be deduced. The model was validated in the case of an axisymmetric configuration. Comparisons with both analytical and numerical models showed very good agreements. Then, the proposed model was applied to a three-dimensional configuration. Comparisons with experimental results are sufficiently conclusive to validate the approach to the construction of the phenomenological model. However, before envisaging the inverse problem, the computation time, still too long, ought to be reduced and the parametric description needs to be generalized to other three-dimensional configurations. (author)

  8. Model-based ECT signal interpretation and experimental verification for the quantitative flaw characterization in steam generator tubes

    International Nuclear Information System (INIS)

    Song, Sung Jin; Kim, Young Hwan; Kim, Eui Lae; Chung, Tae Eon; Yim, Chang Jae

    2002-01-01

    The model-based inversion tools for eddy current signals have been developed by the novel combination of neural networks and finite element modeling for quantitative flaw characterization in steam generator tubes. In the present work, interpretation of experimental eddy current signals was carried out in order to validate the developed inversion tools. A database was constructed using the synthetic flaw signals generated by the finite element modeling. The hybrid neural networks of a PNN classifier and BPNN size estimators were trained using the synthetic signals. Experimental eddy current signals were obtained from axisymmetric artificial flaws. Interpretations of flaws were carried out by feeding experimental signals into the neural networks. The results of interpretations were excellent, so that the developed inversion tools would be applicable to the interpretation of experimental eddy current signals.

  9. Intercomparison of techniques for inspection and diagnostics of heavy water reactor pressure tubes: Flaw detection and characterization [Phase 1

    International Nuclear Information System (INIS)

    2006-05-01

    Nuclear power plants with heavy water reactors (HWRs) comprise nine percent of today's operating nuclear units, and more are under construction. Efficient and accurate inspection and diagnostic techniques for various reactor components and systems are an important factor in assuring reliable and safe plant operation. To foster international collaboration in the efficient and safe use of nuclear power, the IAEA conducted a Coordinated Research Programme (CRP) on Inter-comparison of Techniques for HWR Pressure Tube Inspection and Diagnostics. This CRP was carried out within the frame of the IAEA Department of Nuclear Energy's Technical Working Group on Advanced Technologies for HWRs (the TWG-HWR). The TWG-HWR is a group of experts nominated by their governments and designated by the IAEA to provide advice and to support implementation of the IAEA's project on advanced technologies for HWRs. The objective of the CRP was to inter-compare non-destructive inspection and diagnostic techniques, in use and being developed, for structural integrity assessment of HWR pressure tubes. During the first phase of this CRP, participants have investigated the capability of different techniques to detect and characterize flaws. During the second phase of this CRP, participants collaborated to detect and characterize hydride blisters and to determine the hydrogen concentration in Zirconium alloys. The intent was to identify the most effective pressure tube inspection and diagnostic methods, and to identify further development needs. The organizations that have participated in this CRP are: - The Comision Nacional de Energia Atomica (CNEA), Argentina; - Atomic Energy of Canada Ltd. (AECL); Chalk River Laboratories (CRL), Canada; - The Research Institute of Nuclear Power Operations (RINPO), China National Nuclear Corporation (CNNC), China; - Bhabha Atomic Research Centre (BARC), India; - The Korea Electric Power Research Institute (KEPRI), Republic of Korea; - The Korea Atomic Energy

  10. Stochastic modeling of inspection uncertainties and applications to pitting flaws in steam generator tubes

    International Nuclear Information System (INIS)

    Mao, D.; Yuan, X.-X.; Pandey, M.D.

    2009-01-01

    Steam generators (SG) are a major pressure retaining component of great safety significance in nuclear power plants. Due to various manufacturing, operation and maintenance activities, as well as material interaction with the surrounding chemical environment, the SG tubes have been subject to a number of degradation modes. Among them, the under-deposit pitting corrosion at outside surfaces of the SG tubes just on top of the tubesheet support plates has had a serious impact on the integrity of the SG tubes. This paper presents an advanced probabilistic model of pitting corrosion characterizing the inherent randomness of the pitting process and measurement uncertainties of the in-service inspection (ISI) data obtained from eddy current (EC) inspections. A Bayesian method based on Markov Chain Monte Carlo (MCMC) simulation is developed for estimating the model parameters. The proposed model is able to predict the actual pit number, the actual pit depth as well as the maximum pit depth, which is the main interest of the pitting corrosion model. (author)

  11. Working session 3: Tubing integrity

    International Nuclear Information System (INIS)

    Cueto-Felgueroso, C.; Strosnider, J.

    1997-01-01

    Twenty-three individuals representing nine countries (Belgium, Canada, the Czech Republic, France, Japan, the Slovak Republic, Spain, the UK, and the US) participated in the session on tube integrity. These individuals represented utilities, vendors, consultants and regulatory authorities. The major subjects discussed by the group included overall objectives of managing steam generator tube degradation, necessary elements of a steam generator degradation management program, the concept of degradation specific management, structural integrity evaluations, leakage evaluations, and specific degradation mechanisms. The group's discussions on these subjects, including conclusions and recommendations, are summarized in this article

  12. Steam generator tube integrity program

    International Nuclear Information System (INIS)

    Diercks, D.R.; Shack, W.J.

    1996-01-01

    The degradation of steam generator tubes in pressurized water nuclear reactors continues to be a serious problem, and the US Nuclear Regulatory Commission (NRC) is developing a performance-based rule and regulatory guide for steam generator tube integrity. To support the evaluation of industry-proposed implementation of these performance-based criteria, the NRC is sponsoring a new research program at Argonne National Laboratory on steam generator tubing degradation. The objective of the new program is to provide the necessary experimental data and predictive correlations and models that will permit the NRC to independently evaluate the integrity of steam generator tubes. The technical work in the program is divided into four tasks, (1) assessment of inspection reliability, (2) research on in-service inspection technology, (3) research on degradation modes and integrity, and (4) development of methodology and technical assessments for current and emerging regulatory issues. The objectives of and planned research activities under each of these four tasks are described here. (orig.)

  13. A Bayesian approach to modeling and predicting pitting flaws in steam generator tubes

    International Nuclear Information System (INIS)

    Yuan, X.-X.; Mao, D.; Pandey, M.D.

    2009-01-01

    Steam generators in nuclear power plants have experienced varying degrees of under-deposit pitting corrosion. A probabilistic model to accurately predict pitting damage is necessary for effective life-cycle management of steam generators. This paper presents an advanced probabilistic model of pitting corrosion characterizing the inherent randomness of the pitting process and measurement uncertainties of the in-service inspection (ISI) data obtained from eddy current (EC) inspections. A Markov chain Monte Carlo simulation-based Bayesian method, enhanced by a data augmentation technique, is developed for estimating the model parameters. The proposed model is able to predict the actual pit number, the actual pit depth as well as the maximum pit depth, which is the main interest of the pitting corrosion model. The study also reveals the significance of inspection uncertainties in the modeling of pitting flaws using the ISI data: Without considering the probability-of-detection issues and measurement errors, the leakage risk resulted from the pitting corrosion would be under-estimated, despite the fact that the actual pit depth would usually be over-estimated.

  14. Steam generator tube integrity program: Annual report, August 1995--September 1996. Volume 2

    International Nuclear Information System (INIS)

    Diercks, D.R.; Bakhtiari, S.; Kasza, K.E.; Kupperman, D.S.; Majumdar, S.; Park, J.Y.; Shack, W.J.

    1998-02-01

    This report summarizes work performed by Argonne National Laboratory on the Steam Generator Tube Integrity Program from the inception of the program in August 1995 through September 1996. The program is divided into five tasks: (1) assessment of inspection reliability, (2) research on ISI (inservice-inspection) technology, (3) research on degradation modes and integrity, (4) tube removals from steam generators, and (5) program management. Under Task 1, progress is reported on the preparation of facilities and evaluation of nondestructive evaluation techniques for inspecting a mock-up steam generator for round-robin testing, the development of better ways to correlate failure pressure and leak rate with eddy current (EC) signals, the inspection of sleeved tubes, workshop and training activities, and the evaluation of emerging NDE technology. Results are reported in Task 2 on closed-form solutions and finite-element electromagnetic modeling of EC probe responses for various probe designs and flaw characteristics. In Task 3, facilities are being designed and built for the production of cracked tubes under aggressive and near-prototypical conditions and for the testing of flawed and unflawed tubes under normal operating, accident, and severe-accident conditions. Crack behavior and stability are also being modeled to provide guidance for test facility design, develop an improved understanding of the expected rupture behavior of tubes with circumferential cracks, and predict the behavior of flawed and unflawed tubes under severe accident conditions. Task 4 is concerned with the acquisition of tubes and tube sections from retired steam generators for use in the other research tasks. Progress on the acquisition of tubes from the Salem and McGuire 1 nuclear plants is reported

  15. Systematization of simplified J-integral evaluation method for flaw evaluation at high temperature

    International Nuclear Information System (INIS)

    Miura, Naoki; Takahashi, Yukio; Nakayama, Yasunari; Shimakawa, Takashi

    2000-01-01

    J-integral is an effective inelastic fracture parameter for the flaw evaluation of cracked components at high temperature. The evaluation of J-integral for an arbitrary crack configuration and an arbitrary loading condition can be generally accomplished by detailed numerical analysis such as finite element analysis, however, it is time-consuming and requires a high degree of expertise for its implementation. Therefore, it is important to develop simplified J-integral estimation techniques from the viewpoint of industrial requirements. In this study, a simplified J-integral evaluation method is proposed to estimate two types of J-integral parameters. One is the fatigue J-integral range to describe fatigue crack propagation behavior, and the other is the creep J-integral to describe creep crack propagation behavior. This paper presents the systematization of the simplified J-integral evaluation method incorporated with the reference stress method and the concept of elastic follow-up, and proposes a comprehensive evaluation procedure. The verification of the proposed method is presented in Part II of this paper. (author)

  16. Assessment of the integrity of degraded steam generator tube by the use of heterogeneous finite element method

    International Nuclear Information System (INIS)

    Duan, X.; Kozluk, M.; Pagan, S.; Mills, B.

    2006-01-01

    Steam generator tubes at Ontario Power Generation (OPG) have been experiencing a variety of degradations such as pitting, fretting wear, erosion-corrosion, thinning and denting. To assist with steam generator life cycle management, OPG has developed Fitness-For-Service Guidelines (FFSG) for steam generator tubes. The FFSG are intended to provide standard acceptance criteria and evaluation procedures for assessing the condition of steam generator tubes for structural integrity, operational leak rate, and consequential leakage during an upset or abnormal event. Based on inspection results in conjunction with representative, postulated distributions of flaws in the un-inspected tubes, the FFSG provide an acceptable method of satisfying the intent of CSA-N285.4 and justifying the continued operation of degraded steam generator tubes. Some non-mandatory empirical axial and circumferential flaw models are also provided in the FFSG for structural integrity assessments. The test data from the OPG Steam Generator Tube Test Program (SGTTP) showed that the FFSG axial flaw model is conservative for a wide range of defect morphologies. A defect-specific axial flaw model was proposed for lattice-bar fret defects in I800 tubes by utilizing the SGTTP database of extensive test results. A defect-specific flaw model for outer diameter (OD) pitting and inner diameter (ID) intergranular attack in Monel 400 tubes was also developed using the SGTTP test data. More tests have been scheduled to support the development of defect specific models for axial flaws (OD cracks or ID laps) in Monel 400 and to supplement the database for Monel 400 pits. This paper explores the use of simulated testing for use in developing defect specific flaw models to reduce the amount of expensive tests. The Heterogeneous Finite Element Model (HFEM) has been developed and successfully applied to predict the failure behaviour of ductile metals under various deformation modes, i.e. plane stress, plane strain and

  17. Development of an integrated database management system to evaluate integrity of flawed components of nuclear power plant

    International Nuclear Information System (INIS)

    Mun, H. L.; Choi, S. N.; Jang, K. S.; Hong, S. Y.; Choi, J. B.; Kim, Y. J.

    2001-01-01

    The object of this paper is to develop an NPP-IDBMS(Integrated DataBase Management System for Nuclear Power Plants) for evaluating the integrity of components of nuclear power plant using relational data model. This paper describes the relational data model, structure and development strategy for the proposed NPP-IDBMS. The NPP-IDBMS consists of database, database management system and interface part. The database part consists of plant, shape, operating condition, material properties and stress database, which are required for the integrity evaluation of each component in nuclear power plants. For the development of stress database, an extensive finite element analysis was performed for various components considering operational transients. The developed NPP-IDBMS will provide efficient and accurate way to evaluate the integrity of flawed components

  18. Steam generator tube integrity program. Semiannual report, August 1995--March 1996

    International Nuclear Information System (INIS)

    Diercks, D.R.; Bakhtiari, S.; Chopra, O.K.

    1997-04-01

    This report summarizes work performed by Argonne National Laboratory on the Steam Generator Tube Integrity Program from the inception of that program in August 1995 through March 1996. The program is divided into five tasks, namely (1) Assessment of Inspection Reliability, (2) Research on ISI (in-service-inspection) Technology, (3) Research on Degradation Modes and Integrity, (4) Development of Methodology and Technical Requirements for Current and Emerging Regulatory Issues, and (5) Program Management. Under Task 1, progress is reported on the preparation of and evaluation of nondestructive evaluation (NDE) techniques for inspecting a mock-up steam generator for round-robin testing, the development of better ways to correlate burst pressure and leak rate with eddy current (EC) signals, the inspection of sleeved tubes, workshop and training activities, and the evaluation of emerging NDE technology. Under Task 2, results are reported on closed-form solutions and finite element electromagnetic modeling of EC probe response for various probe designs and flaw characteristics. Under Task 3, facilities are being designed and built for the production of cracked tubes under aggressive and near-prototypical conditions and for the testing of flawed and unflawed tubes under normal operating, accident, and severe accident conditions. In addition, crack behavior and stability are being modeled to provide guidance on test facility design, to develop an improved understanding of the expected rupture behavior of tubes with circumferential cracks, and to predict the behavior of flawed and unflawed tubes under severe accident conditions. Task 4 is concerned with the cracking and failure of tubes that have been repaired by sleeving, and with a review of literature on this subject

  19. Integrity Assessment of GOH Heater Tube

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Bong Sang; Hong, J. H.; Oh, Y. J.; Yoon, J. H.; Oh, J. M. [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1997-08-01

    An assessment of structural integrity of ASTM A312-TP347 GOH heater tube was performed. The surface notches which had been produced during tube manufacturing process were analyzed microscopically. Chemical analysis, hardness tests, tensile tests, and J-Integral fracture resistance tests were carried out to compare the mechanical properties with those of the material specification and also with the other material of the same type. The test results showed the mechanical properties of the GOH tube material are within the specification range. An elastic-plastic fracture mechanics analysis based on the DPFAD method reveals the tube an appropriate safety margin for the normal operation. 13 refs., 5 tabs., 24 figs. (author)

  20. Probabilistic integrity assessment of pressure tubes in an operating pressurized heavy water reactor

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Young-Jin; Park, Heung-Bae [KEPCO E and C, 188 Gumi-dong, Bundang-gu, Seongnam-si, Gyeonggi-do 463-870 (Korea, Republic of); Lee, Jung-Min; Kim, Young-Jin [School of Mechanical Engineering, Sungkyunkwan University, 300 Chunchun-dong, Jangan-gu, Suwon-si, Gyeonggi-do 440-746 (Korea, Republic of); Ko, Han-Ok [Korea Institute of Nuclear Safety, 34 Gwahak-ro, Yuseong-gu, Daejeon-si 305-338 (Korea, Republic of); Chang, Yoon-Suk, E-mail: yschang@khu.ac.kr [Department of Nuclear Engineering, Kyung Hee University, 1 Seocheon-dong, Giheung-gu, Yongin-si, Gyeonggi-do 446-701 (Korea, Republic of)

    2012-02-15

    Even though pressure tubes are major components of a pressurized heavy water reactor (PHWR), only small proportions of pressure tubes are sampled for inspection due to limited inspection time and costs. Since the inspection scope and integrity evaluation have been treated by using a deterministic approach in general, a set of conservative data was used instead of all known information related to in-service degradation mechanisms because of inherent uncertainties in the examination. Recently, in order that pressure tube degradations identified in a sample of inspected pressure tubes are taken into account to address the balance of the uninspected ones in the reactor core, a probabilistic approach has been introduced. In the present paper, probabilistic integrity assessments of PHWR pressure tubes were carried out based on accumulated operating experiences and enhanced technology. Parametric analyses on key variables were conducted, which were periodically measured by in-service inspection program, such as deuterium uptake rate, dimensional change rate of pressure tube and flaw size distribution. Subsequently, a methodology to decide optimum statistical distribution by using a robust method adopting a genetic algorithm was proposed and applied to the most influential variable to verify the reliability of the proposed method. Finally, pros and cons of the alternative distributions comparing with corresponding ones derived from the traditional method as well as technical findings from the statistical assessment were discussed to show applicability to the probabilistic assessment of pressure tubes.

  1. Phenomenological modeling of eddy current signals with a view to characterizing steam generator tube flaws; Modelisation phenomenologique des signaux courants de Foucault en vue de la caracterisation des defauts des tubes de generateurs de vapeur

    Energy Technology Data Exchange (ETDEWEB)

    La, R

    1997-12-31

    This work deals with the eddy current non-destructive test ing. Its long-term goal is to design an `inverse model` for evaluating the geometry an d the dimensions of steam generator tube flaws from eddy current signals. The approach we adopted requires the preliminary knowledge of a `forward model` that estimates the eddy current signal knowing the geometry and the dimensions of the flaws. A quasi-exhaustive study of the existing forward models showed their inadequacy to solve the inverse problem. Hence, we proposed to build a general forward model, appropriate to the inversion. Using a parametric approach, this model is phenomenological, i.e. it is based on observations made from results of a finite element code. For each position of the coil, the proposed forward model fist discretized the eddy current distribution into `tubes of current`. A parametric description of the shape of these tubes is given according the system constituted of the coil and the tubes of current as a `multi-transformer`, their current signal, can then be deduced. The model was validated in the case of an axisymmetric configuration. Comparisons with both analytical and numerical models showed very good agreements. Then, the proposed model was applied to a three-dimensional configuration. Comparisons with experimental results are sufficiently conclusive to validate the approach to the construction of the phenomenological model. However, before envisaging the inverse problem, the computation time, still too long, ought to be reduced and the parametric description needs to be generalized to other three-dimensional configurations. (author). 92 refs.

  2. Overview of steam generator tube degradation and integrity issues

    International Nuclear Information System (INIS)

    Diercks, D.R.; Shack, W.J.; Muscara, J.

    1996-10-01

    The degradation of steam generator tubes in pressurized water nuclear reactors continues to be a serious problem. Primary water stress corrosion cracking is commonly observed at the roll transition zone at U-bends, at tube denting locations, and occasionally in plugs and sleeves. Outer-diameter stress corrosion cracking and intergranular attack commonly occur near the tube support plate crevice, near the tube sheet in crevices or under sludge piles, and occasionally in the free span. A particularly troubling recent trend has been the increasing occurrence of circumferential cracking at the RTZ on both the primary and secondary sides. Segmented axial cracking at the tubes support plate crevices is also becoming more common. Despite recent advances in in-service inspection technology, a clear need still exists for quantifying and improving the reliability of in- service inspection methods with respect to the probability of detection of the various types of flaws and their accurate sizing. Improved inspection technology and the increasing occurrence of such degradation modes as circumferential cracking, intergranular attack, and discontinuous axial cracking have led to the formulation of a new performance-based steam generator rule. This new rule would require the development and implementation of a steam generator management program that monitors tube condition against accepted performance criteria to ensure that the tubes perform the required safety function over the next operating cycle. The new steam generator rule will also be applied to severe accident conditions to determine the continued serviceability of a steam generator with degraded tubes in the event of a severe accident. Preliminary analyses are being performed for a hypothetical severe accident scenario to determine whether failure will occur first in the steam generator tubes, which would lead to containment bypass, or instead in the hot leg nozzle or surge line, which would not

  3. Integrating YouTube into the nursing curriculum.

    Science.gov (United States)

    Sharoff, Leighsa

    2011-08-17

    Nurse educators need to be innovative, stimulating, and engaging as they teach future nursing professionals. The use of YouTube in nursing education classes provides an easy, innovative, and user-friendly way to engage today's nursing students. YouTube presentations can be easily adapted into nursing courses at any level, be it a fundamentals course for undergraduate students or a theoretical foundations course for graduate students. In this article I will provide information to help educators effectively integrate YouTube into their course offerings. I will start by reviewing the phenomenon of social networking. Next I will discuss challenges and strategies related to YouTube learning experiences, after which I will share some of the legal considerations in using YouTube. I will conclude by describing how to engage students via YouTube and current research related to YouTube.

  4. Factors that affect tube-tubesheet joint integrity

    International Nuclear Information System (INIS)

    Martin, P.W.

    1991-01-01

    There are several factors that can affect the degree of integrity of the tube-tubesheet joint: the tube sheet design as to the material selection and the quality and spacing of the machined holes; the selection of tubes as to material and quality; the quality of the fabrication tooling and the parameters for their use. All comments in this paper are with respect to mechanical roller expansion. (author)

  5. Chemical milling of zircaloy tubing to produce integral OD spiral finned tubes. AWBA development program

    Science.gov (United States)

    Horwood, W. A.

    1982-02-01

    A detailed process description is provided for producing integral spiral fins on the outside surface of Zircaloy nuclear fuel cladding tubes by masking with pressure sensitive tape strips and then chemical milling (pickling) the tube wall between the tape strips to leave the fins in relief. Fins up to 0.020 inch high by 0.05 to 0.12 inch wide were consistently produced on tubes having wall thickness of 0.008 inch or greater after fin pickling. Wall thickness uniformity was excellent. Information is provided on tube surface preparation to maximize tape mask adhesion time during pickling, acid chemistry control to prevent local tube wall thinning near the fin, and pickling techniques to promote uniform material removal. Simple fixture designs are described for quickly and conveniently applying the tape strips to the tube wall in an accurate spiral.

  6. Automatic integrated testing bench for tubes in translation

    International Nuclear Information System (INIS)

    Dufayet, J.P.; Perdijon, J.

    1976-01-01

    All the nondestructive tests required for receiving the cladding tubes intended for fast nuclear reactor are integrated on this bench: quality control by eddy currents and ultra-sounds, thickness and (inner and outer) diameter measurement. The linear displacement of the tube allows very high rates to be attained [fr

  7. Structural integrity assessments of steam generator tubes using the FAD methodology

    Energy Technology Data Exchange (ETDEWEB)

    Bergant, Marcos A., E-mail: marcos.bergant@cab.cnea.gov.ar [Gerencia CAREM, Centro Atómico Bariloche (CNEA), Av. Bustillo 9500, San Carlos de Bariloche 8400 (Argentina); Yawny, Alejandro A., E-mail: yawny@cab.cnea.gov.ar [División Física de Metales, Centro Atómico Bariloche (CNEA)/CONICET, Av. Bustillo 9500, San Carlos de Bariloche 8400 (Argentina); Perez Ipiña, Juan E., E-mail: juan.perezipina@fain.uncoma.edu.ar [Grupo Mecánica de Fractura, Universidad Nacional del Comahue/CONICET, Buenos Aires 1400, Neuquén 8300 (Argentina)

    2015-12-15

    Highlights: • The Failure Assessment Diagram (FAD) is used to assess cracked steam generator tubes. • Typical loading conditions and reported tensile and fracture properties are used. • The FAD is capable to predict the failure mode for different cracks and loads. • The FAD can be used to reduce the conservatism of the current plugging criteria. • Appropriate tensile and fracture properties at operating conditions are required. - Abstract: Steam generator tubes (SGTs) represents up to 60% of the total primary pressure retaining boundary area of a nuclear power plant. They have been found susceptible to diverse degradation mechanisms during service. Due to the significance of a SGT failure on the plant safe operation, nuclear regulatory authorities have established tube plugging or repairing criteria which are based on the defect depth. The widespreadly used “40% criterion” proposed in the 70s is an example whose use is still recommended in the last editions of the ASME Boiler and Pressure Vessel Code. In the present work, an alternative, more realistic and less conservative methodology for SGT integrity evaluation is proposed. It is based on the Failure Assessment Diagram (FAD) and takes advantage of the recent developments in non-destructive techniques which allow a more comprehensive characterization of tube defects, i.e., depth, length, orientation and type. The proposed approach has been applied to: the study of the influence of primary and secondary stresses on tube integrity; the prediction of failure mode (i.e., ductile fracture or plastic collapse) of defective SGTs for varied crack geometries and loading conditions; the analysis of the sensibility of tensile and fracture properties with temperature. The potentiality of the FAD as a comprehensive methodology for predicting the failure loads and failure modes of flawed SGTs is highlighted.

  8. DEVELOPMENT OF AN ANALYTICAL METHOD TO EVALUATE THE INTEGRITY OF A CALANDRIA TUBE IN THE CASE OF PRESSURE TUBE RUPTURE

    OpenAIRE

    森下 善嗣

    1990-01-01

    An analytical method which consists of two‐dimensional thermal‐hydraulic analysis and three‐dimensional structural analysis has been proposed to evaluate the integrity of a calandria tube in the case of pressure tube rupture in a pressure tube type reactor.In order to validate the method,experiments were carried out with coaxially arranged double tubes simulating a pressure tube and a calandria tube.Experimental data were also comparedwith analytical results with the proposed method.

  9. 3D integrated HYDRA simulations of hohlraums including fill tubes

    Science.gov (United States)

    Marinak, M. M.; Milovich, J.; Hammel, B. A.; Macphee, A. G.; Smalyuk, V. A.; Kerbel, G. D.; Sepke, S.; Patel, M. V.

    2017-10-01

    Measurements of fill tube perturbations from hydro growth radiography (HGR) experiments on the National Ignition Facility show spoke perturbations in the ablator radiating from the base of the tube. These correspond to the shadow of the 10 μm diameter glass fill tube cast by hot spots at early time. We present 3D integrated HYDRA simulations of these experiments which include the fill tube. Meshing techniques are described which were employed to resolve the fill tube structure and associated perturbations in the simulations. We examine the extent to which the specific illumination geometry necessary to accommodate a backlighter in the HGR experiment contributes to the spoke pattern. Simulations presented include high resolution calculations run on the Trinity machine operated by the Alliance for Computing at Extreme Scale (ACES) partnership. This work was performed under the auspices of the Lawrence Livermore National Security, LLC, (LLNS) under Contract No. DE-AC52-07NA27344.

  10. Ligament rupture and unstable burst behaviors of axial flaws in steam generator U-bends

    International Nuclear Information System (INIS)

    Bahn, Chi Bum; Oh, Young-Jin; Majumdar, Saurin

    2015-01-01

    Highlights: • Ligament rupture and unstable burst pressure tests were conducted with U-bends. • In general, U-bends showed higher ligament rupture and burst pressures than straight tubes. • U-bend test data was bounded by 90% lower limit of the probabilistic models for straight tubes. • Prediction models for straight tubes could be conservatively applied to U-bends. - Abstract: Incidents of U-bend cracking in steam generator (SG) tubes have been reported, some of which have led to tube rupture. Experimental and analytical modeling efforts to determine the failure criteria of flawed SG U-bends are limited. To evaluate structural integrity of flawed U-bends, ligament rupture and unstable burst pressure tests were conducted on 57 and 152 mm bend radius U-bends with axial electrical discharge machining notches. In general, the ligament rupture and burst pressures of the U-bends were higher than those of straight tubes with similar notches. To quantitatively address the test data scatter issue, probabilistic models were introduced. All ligament rupture and burst pressures of U-bends were bounded by 90% lower limits of the probabilistic models for straight tubes. It was concluded that the prediction models for straight tubes could be applied to U-bends to conservatively evaluate the ligament rupture and burst pressures of U-bends with axial flaws.

  11. Research perspectives on the evaluation of steam generator tube integrity

    International Nuclear Information System (INIS)

    Muscara, J.; Diercks, D.R.; Majumdar, S.; Kupperman, D.S.; Bakhtiari, S.; Shack, W.J.

    2002-01-01

    Industry efforts have been largely successful in managing degradation of steam generator tubes due to wastage, pitting, and denting, but fretting, stress corrosions cracking (SCC) and intergranular attack have proved more difficult to manage. Although steam generator replacements are proceeding, there is substantial industry interest in operating with degraded steam generators, and significant numbers of plants will continue to do so. In most cases degradation of steam generator tubing by stress corrosion cracking is still managed by 'plug or repair on detection' because current NDE techniques for characterization of flaws and the knowledge of SCC crack growth rates are not accurate enough to permit continued operation. Replacement generators with improved designs and materials have performed well to date, but previous experience with the appearance of some types of SCC in Alloy 600 after 10 years or more of operation and laboratory results suggest additional understanding of corrosion performance of these materials is needed. This paper reviews some of the historical background that underlies current steam generator degradation management strategies and outlines some of the additional research that must be done to provide more effective management of degradation in current generators and provide greater assurance of satisfactory performance in replacement steam generators. (author)

  12. Structural and leakage integrity assessment of WWER steam generator tubes

    Energy Technology Data Exchange (ETDEWEB)

    Splichal, K.; Otruba, J. [Nuclear Research Inst., Rez (Switzerland)

    1997-12-31

    The integrity of heat exchange tubes may influence the life-time of WWER steam generators and appears to be an important criterion for the evaluation of their safety and operational reliability. The basic requirement is to assure a very low probability of radioactive water leakage, preventing unstable crack growth and sudden tube rupture. These requirements led to development of permissible limits for primary to secondary leak evolution and heat exchange tubes plugging based on eddy current test inspection. The stress corrosion cracking and pitting are the main corrosion damage of WWER heat exchange tubes and are initiated from the outer surface. They are influenced by water chemistry, temperature and tube wall stress level. They take place under crevice corrosion condition and are indicated especially (1) under the tube support plates, where up to 90-95 % of defects detected by the ECT method occur, and (2) on free spans under tube deposit layers. Both the initiation and crack growth cause thinning of the tube wall and lead to part thickness cracks and through-wall cracks, oriented above all in the axial direction. 10 refs.

  13. Eddy current flaw detecting probe

    International Nuclear Information System (INIS)

    Hashimoto, Mitsuo; Harada, Yutaka; Shimone, Junri; Maeda, Kotaro

    1998-01-01

    The present invention provides an eddy current-flaw detection probe facilitating quantitative evaluation, which is used for maintenance and inspection of metal fine tubes of a heat exchanger of a nuclear power plant. Namely, the probe comprises a substantially cylindrical or columnar flow detection main body to be inserted to a metal tube. Wires are wound on the circumferential surface of the flaw detection main body substantially uniformly and in parallel to form a solenoid portion having a predetermined width. Magnetic sensors are disposed on the lateral center of the solenoid portion. With such a constitution, the solenoid portion forms eddy current in the circumferential direction. The eddy current is substantially in parallel having the same intensity at the lateral central portion of the solenoid. Accordingly, the quantitative evaluation for the shape and the size of cracks in the axial direction of the tube can be conducted by the magnetic sensors disposed to the portion. In addition, since the eddy current is substantially uniform, parameters upon reverse analysis can be reduced upon determination of the shape of flaws. (I.S.)

  14. WWER steam generator tube structural and leakage integrity

    International Nuclear Information System (INIS)

    Splichal, K.; Krhounek, Vl.; Otruba, J.; Ruscak, M.

    1998-01-01

    The integrity of heat exchange tubes may influence the lifetime of WWER steam generators and appears to be an important criterion for the evaluation of their safety and operational reliability. The basic requirements are to assure very low probability of radioactive water leakage, preventing unstable crack growth and sudden tube rupture. These requirements led to development of permissible limits for primary to secondary leak evaluation and heat exchange tubes plugging. The stress corrosion cracking and pitting are the main corrosion damages of WWER heat exchange tubes and are initiated from the outer surface. Both the initiation and crack growth cause thinning of the tube wall and lead to part thickness cracks and through wall cracks, oriented preferentially in the axial direction. The paper presents the leakage and plugging limits for WWER steam generators, which have been determined from leak tests and burst tests. The tubes with axial part-through and through-wall defects have been used. The permissible value of primary to secondary leak rate was evaluated with respect to permissible axial through-wall defect size of WWER 440 and 1000 steam generator tubes. Blocking of the tube cracks by corrosion product particles and other compounds reduces the primary to secondary leak rate. The plugging limits involve the following factors: permissible tube wall thickness which determine further operation of the tubes with defects and assures their integrity under operating conditions and permissible size of a through-wall crack which is sufficiently stable under normal and accident conditions in relation to the critical crack length. For the evaluation of burst test of heat exchange tubes with longitudinal through-wall defects the instability criterion has been used and the dependence of the normalised burst pressure on the normalised length of an axial through-wall defect has been determined. The validity of the criterion of instability for WWER tubes with through

  15. Currency flaw severity. [Banknotes

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, C.; Burnett, M.; Goodman, C.; Sherrod, R.; Schmoyer, R.; Harrison, C.; Uppuluri, R.

    1986-01-01

    A survey of currency flaw severity was carried out using 300 banknotes and 37 judges. Each judge assigned each note to one of five flaw severity categories. These categories correspond to severity grades of 1 to 5 with 1 equivalent to ''always accepted'' and 5 ''never accepted.'' An average flaw severity grade for each note was obtained by taking the mean of the severity grades assigned to that note by the 37 judges. Thus, each note has a single numerical real-number flaw grade between 1 and 5. Mathematical modeling of the currency flaw survey results is continuing with some very promising initial results. Our present model handles common excess ink and missing ink flaw types quite well. We plan to extend the model to ink level, mash, setoff and blanket impression flaw types.

  16. Structural integrity assessment of steam generator tubes deteriorated through primary water stress corrosion cracking in transition region of tube expansion

    International Nuclear Information System (INIS)

    Silveira, Helvecio Carlos Klinke da

    2002-01-01

    In PWR plants, steam generator tube degradation has been one of the most important economical concerns, besides causing operational safety problems. In this work, a survey of steam generator tube degradation modes is done. Degradation mechanisms and influence factors are introduced and discussed. The importance of stress corrosion cracking, especially in transition region of tube expansion zone, is underlined. The actual steam generator tube plugging criteria are conservative. Proposed alternative criteria are introduced and discussed. Distinction is done to structural integrity assessment of defective tubes. Real data of tube defect indications of axial cracks in expansion transition zone due to primary water stress corrosion cracking are used in analysis. Results allow discussing application aspects of deterministic and probabilistic criteria on structural integrity assessment of tubes with defect indications. Applied models are specifics, but the application of concept may be extended to other steam generator tube degradation modes. (author)

  17. Steam generator tube integrity program. Phase I report

    International Nuclear Information System (INIS)

    Alzheimer, J.M.; Clark, R.A.; Morris, C.J.; Vagins, M.

    1979-09-01

    The results are presented of the pressure tests performed as part of Phase I of the Steam Generator Tube Integrity (SGTI) program at Battelle Pacific Northwest Laboratory. These tests were performed to establish margin-to-failure predictions for mechanically defected Pressurized Water Reactor (PWR) steam generator tubing under operating and accident conditions. Defect geometries tested were selected because they simulate known or expected defects in PWR steam generators. These defect geometries are Electric Discharge Machining (EDM) slots, elliptical wastage, elliptical wastage plus through-wall slot, uniform thinning, denting, denting plus uniform thinning, and denting plus elliptical wastage. All defects were placed in tubing representative of that currently used in PWR steam generators

  18. Integrity evaluation for steam generator tube of system integrated modular advanced reactor

    International Nuclear Information System (INIS)

    Kim, J. S.; Jin, T. E.; Jeong, M. J.; Choi, Y. H.; Jeo, J. C.

    2003-01-01

    In this study, the structural integrity for SG tube of system integrated modular advanced reactor, which is subjected to dominant external pressure as well as helical type, is evaluated using the commercial finite element package ABAQUS and the American petrochemical industry code API 579 Appendix B. First of all, the crack behavior under the assumption of local heating is assessed using ABAQUS. And, the buckling behavior of tube with 40% wall thinning is assessed using API 579 Appendix B. As a result, it is found that the crack closure phenomenon occurs under external pressure and the buckling doesn't occur even if 40% wall thinning exists in tube

  19. Development of a computer program to predict structural integrity against fretting wear of steam generator tubes: PIAT (program for integrity assessment of steam generator tubes)

    International Nuclear Information System (INIS)

    Park, Chi-Yong; Ryu, Ki-Wahn; Rhee, Huinam

    2013-01-01

    Highlights: ► We develop a computer code to assess the structural integrity of steam generator tubes. ► Flow-induced vibration of whole steam generator tubes can be analyzed systematically. ► The wear map is obtained to predict the wear depth of whole steam generator tubes. ► The structural integrity of steam generator tubes can be improved significantly. -- Abstract: Flow induced vibration of steam generator tubes potentially causes excessive fretting wear at the supports such as anti-vibration bars and tube support plates. For a reliable design of tubes against the flow-induced vibration related failure, the prediction of vibration and wear of tubes should be performed through complicated steps including the thermal-hydraulic analysis, dynamic modal analysis, evaluation of fluid-elastic instability, prediction of turbulence-induced vibration and wear depth for thousands of tubes. However, entire tubes cannot be evaluated within a limited time of design engineering by the conventional analysis methodology. In this paper, we describe an efficient computer program to assess the structural integrity of steam generator tubes against the flow-induced vibration related failure in a very systematic way. The program contains all the necessary thermal-hydraulic database of typical steam generators. It has a very special function to perform modal analysis for all thousands of tubes of a steam generator much faster than the conventional method. The program also performs fluid-elastic instability analysis and calculates the vibrational response to the turbulent flow excitation, and then can predict the wear depth for all tubes of a steam generator. Finally, we can generate the wear prediction map for whole tubes so that an efficient and practical steam generator maintenance management program is feasible. The utilization of the developed computer program for the design and maintenance of steam generators can significantly increase the structural integrity of steam

  20. Steam Generator tube integrity -- US Nuclear Regulatory Commission perspective

    International Nuclear Information System (INIS)

    Murphy, E.L.; Sullivan, E.J.

    1997-01-01

    In the US, the current regulatory framework was developed in the 1970s when general wall thinning was the dominant degradation mechanism; and, as a result of changes in the forms of degradation being observed and improvements in inspection and tube repair technology, the regulatory framework needs to be updated. Operating experience indicates that the current U.S. requirements should be more stringent in some areas, while in other areas they are overly conservative. To date, this situation has been dealt with on a plant-specific basis in the US. However, the NRC staff is now developing a proposed steam generator rule as a generic framework for ensuring that the steam generator tubes are capable of performing their intended safety functions. This paper discusses the current U.S. regulatory framework for assuring steam generator (SG) tube integrity, the need to update this regulatory framework, the objectives of the new proposed rule, the US Nuclear Regulatory Commission (NRC) regulatory guide (RG) that will accompany the rule, how risk considerations affect the development of the new rule, and some outstanding issues relating to the rule that the NRC is still dealing with

  1. Experimental Research on heat transfer enhancement of lubricating-oil cooler with mixing integral pin-fin tubes and plain tubes

    International Nuclear Information System (INIS)

    Niu Guanglin; Yan Changqi; Sun Zhongning; Shi Shuai; Wang Lei

    2010-01-01

    A lot of comparison experimental research has been done to the lubricating-oil cooler with mixing integral pin-fin tubes and plain tubes. It is discovered that the mixing integral pin-fin tubes heat transfer capacity in unit volume is higher, pressure drop is lower, and the very strong heat transfer ability than plain tubes when oil volume flow rate is at constant value. The results show the performance of lubricating-oil cooler with mixing integral pin-fin tubes and plain tubes is superiority. So this can made lubricating-oil cooler miniaturize in the same Heat changing condition. (authors)

  2. Characterization and structural integrity tests of ex-service steam generator tubes at Ontario Power Generation

    Energy Technology Data Exchange (ETDEWEB)

    Pagan, Sandra [Ontario Power Generation, 889 Brock Road, Pickering, Ontario (Canada); Duan Xinjian [Atomic Energy of Canada Limited, 2251 Speakman Drive, Mississauga, Ontario (Canada)], E-mail: duanx@aecl.ca; Kozluk, Michael J. [Atomic Energy of Canada Limited, 2251 Speakman Drive, Mississauga, Ontario (Canada); Mills, Brian; Goszczynski, Guylaine [Kinectrics Inc., 800 Kipling Avenue, Toronto, Ontario (Canada)

    2009-03-15

    The Canadian Nuclear Standard CSA N285.4 requires the periodic metallurgical examination of removed ex-service steam generator tubes. This paper describes the practices used for the characterization and structural integrity tests of ex-service steam generator tubes at Ontario Power Generation (OPG). It shows that there is no degradation of mechanical properties of Monel 400 tubes after 7-18 effective full power years (EFPY) of operation and Incoloy 800 tubes after more than 10 EFPY of operation.

  3. Conservatism in methodologies for moderator subcooling sufficiency for fuel channel integrity upon pressure tube and calandria tube contact

    Energy Technology Data Exchange (ETDEWEB)

    Sun, L., E-mail: LSun@nbpower.com [Point Lepreau Generating Station, Lepreau, NB, (Canada)

    2015-07-01

    During a postulated large LOCA event in CANDU reactors, the pressure tube may balloon to contact with its surrounding calandria tube to transfer heat to the moderator. To confirm the integrity of the fuel channel in this case, many experiments have been performed in the last three decades. Based on the extant database of the pressure tube/calandria tube (PT/CT) contact, an analytical methodology was developed by Canadian Nuclear Industry to determine the sufficiency of moderator subcooling for fuel channel integrity. At the same time a semi-empirical methodology with an idea of Equivalent Moderator Subcooling (EMS) was also developed to judge the sufficiency of the moderator. In this work, some discussions were made over the two methodologies on their conservatism and it is demonstrated that the analytical approach is over conservative comparing with the EMS methodology. By using the EMS methodology, it is demonstrated that applying glass-peened calandria tubes, the requirement to moderator subcooling can be reduced by 10{sup o}C from that for smooth calandria tubes. (author)

  4. Fabrication Flaw Density and Distribution in Weld Repairs

    International Nuclear Information System (INIS)

    Doctor, Steven R.

    2009-01-01

    The Pacific Northwest National Laboratory (PNNL) is developing a generalized flaw distribution for the population of nuclear reactor pressure vessels and for piping welds in the U. S. operating reactors. The purpose of the generalized flaw distribution is to predict component-specific flaw densities. The estimates of fabrication flaws are intended for use in fracture mechanics structural integrity assessments. Structural integrity assessments, such as estimating the frequency of loss-of-coolant accidents, are performed by computer codes that require, as input, accurate estimates of flaw densities. Welds from four different cancelled reactor pressure vessels and a collection of archived pipes have been studied to develop empirical estimates of fabrication flaw densities. This paper describes the fabrication flaw distribution and characterization in the repair weld metal of vessels and piping. This work indicates that large flaws occur in these repairs which are complex in composition and sometimes include cracks on the ends of the repair cavities. Parametric analysis using an exponential fit is performed on the data. Construction records where available were reviewed. It is difficult to make conclusions due to the limited number of construction records reviewed. However, the records reviewed to date show a significant change in repair frequency over the years when the components in this study were fabricated. A description of repair flaw morphology is provided with a discussion of fracture mechanics significance.

  5. Structural and leakage integrity assessment of WWER steam generator tubes

    International Nuclear Information System (INIS)

    Splichal, K.; Otruba, J.; Keilova, E.; Krhounek, V.; Turek, J.

    1996-01-01

    The leakage and plugging limits were derived for WWER steam generators based on leak and burst tests using tubes with axial part-through and through-wall defects. The following conclusions were arrived at: (i) The permissible primary-to-secondary leak rate with respect to the permissible through-wall defect size of WWER-440 and WWER-1000 steam generator tubes is 8 l/h. (ii) The primary-to-secondary leak rate is reduced by the blocking of the tube cracks by corrosion product particles and other substances. (iii) The rate of crack penetration through the tube wall is higher than the crack widening. (iv) The validity of the criterion of instability for tubes with through-wall cracks was confirmed experimentally. For the WWER-440 and WWER-1000 steam generators, the critical size of axial through-wall cracks, for the threshold primary-to-secondary pressure difference, is 13.8 and 12.0 mm, respectively. (v) The calculated leakage for the rupture of one tube and for the assumed extreme defects is two orders and one order of magnitude, respectively, higher than the proposed primary water leakage limit of 8 l/h. (vi) The experiments gave evidence that the use of the permissible thinning limit of 80% for the heat exchange tube plugging does not bring about uncontrollable leakage or unstable crack growth. This is consistent with experience gained at WWER-440 type nuclear power plants. 4 tabs., 5 figs., 9 refs

  6. Manufacturing of tailored tubes with a process integrated heat treatment

    Science.gov (United States)

    Hordych, Illia; Boiarkin, Viacheslav; Rodman, Dmytro; Nürnberger, Florian

    2017-10-01

    The usage of work-pieces with tailored properties allows for reducing costs and materials. One example are tailored tubes that can be used as end parts e.g. in the automotive industry or in domestic applications as well as semi-finished products for subsequent controlled deformation processes. An innovative technology to manufacture tubes is roll forming with a subsequent inductive heating and adapted quenching to obtain tailored properties in the longitudinal direction. This processing offers a great potential for the production of tubes with a wide range of properties, although this novel approach still requires a suited process design. Based on experimental data, a process simulation is being developed. The simulation shall be suitable for a virtual design of the tubes and allows for gaining a deeper understanding of the required processing. The model proposed shall predict microstructural and mechanical tube properties by considering process parameters, different geometries, batch-related influences etc. A validation is carried out using experimental data of tubes manufactured from various steel grades.

  7. Evaluation of canister weld flaw depth for concrete storage cask

    Energy Technology Data Exchange (ETDEWEB)

    Moon, Tae Chul; Cho, Chun Hyung [Korea Radioactive Waste Agency, Daejeon (Korea, Republic of); Jung, Sung Hun; Lee, Young Oh; Jung, In Su [Korea Nuclear Engineering and Service Corp, Daejeon (Korea, Republic of)

    2017-03-15

    Domestically developed concrete storage casks include an internal canister to maintain the confinement integrity of radioactive materials. In this study, we analyzed the depth of flaws caused by loads that propagate canister weld cracks under normal, off-normal and accident conditions, and evaluated the maximum allowable weld flaw depth needed to secure the structural integrity of the canister weld and to reduce the welding time of the internal canister lid of the concrete storage cask. Structural analyses for normal, off-normal and accident conditions were performed using the general-purpose finite element analysis program ABAQUS; the allowable flaw depth was assessed according to ASME B and PV Code Section XI. Evaluation results revealed an allowable canister weld flaw depth of 18.75 mm for the concrete storage cask, which satisfies the critical flaw depth recommended in NUREG-1536.

  8. Steam generator tube integrity requirements and operating experience in the United States

    International Nuclear Information System (INIS)

    Karwoski, K.J.

    2009-01-01

    Steam generator tube integrity is important to the safe operation of pressurized-water reactors. For ensuring tube integrity, the U.S. Nuclear Regulatory Commission uses a regulatory framework that is largely performance based. This performance-based framework is supplemented with some prescriptive requirements. The framework recognizes that there are three combinations of tube materials and heat treatments currently used in the United States and that the operating experience depends, in part, on the type of material used. This paper summarizes the regulatory framework for ensuring steam generator tube integrity, it highlights the current status of steam generators, and it highlights some of the steam generator issues and challenges that exist in the United States. (author)

  9. Development of technology on natural flaw fabrication and precise diagnosis for the major components in NPPs

    International Nuclear Information System (INIS)

    Han, Jung Ho; Choi, Myung Sik; Lee, Doek Hyun; Hur, Do Haeng

    2002-01-01

    The objective of this research is to develop a fabrication technology of natural flaw specimen of major components in NPPs and a technology of precise diagnosis for failure and degradation of components using natural flaw specimen. 1) Successful development of the natural flaw fabrication technology of SG tube 2) Evaluation of ECT signal and development of precise diagnosis using natural flaws. - Determination of length, depth, width, and multiplicity of fabricated natural flaws. - Informations about detectability and accuracy of ECT evaluation on various kinds of defects are collected when the combination of probe and frequency is changed. - An advanced technology for precise ECT evaluation is established. 3) Application of precise ECT diagnosis to failure analysis of SG tube in operation. - Fretting wear of KSNP SG. - ODSCC at tube expanded region of KSNP SG. - Determination of through/non-through wall of axial crack

  10. SCC susceptibility and flaw tolerance evaluation for steam generator channel head materials

    International Nuclear Information System (INIS)

    Cothron, H.; Wolfe, R.

    2015-01-01

    Primary water stress corrosion cracking (PWSCC) has been reported in the divider plate assemblies of steam generators in operation outside of the United States. Evaluations have been performed to assess the susceptibility of U.S. steam generator channel head materials to PWSCC and the flaw tolerance of the channel head assembly in instances where cracking is assumed to occur. Earlier work concluded that the cracks reported in the foreign steam generators could not cause failure of the divider plate in the limiting U.S. steam generators during the design basis accident or normal operating conditions. Three additional cracking scenarios represent a potential breach of the primary pressure boundary of the channel head assembly: cracks initiating in the divider plate then propagating through the channel head cladding and into the low alloy steel shell material, cracks initiating in the tubesheet cladding then propagating to the tube-to-tubesheet weldments, and cracks initiating in the tube-to-tubesheet weld. Operating experience and literature were reviewed to determine the likelihood that cracks will propagate into the carbon steel channel head material and cause a breach in the primary pressure boundary. A flaw tolerance evaluation demonstrated that the structural integrity of the steam generator channel head is not compromised by a crack originating in the divider plate. Assumed axial and circumferential flaws in the steam generator channel head material remain well below the allowable flaw depths after 40 years of operation. Utilities can use the results from this analysis to determine the need to inspect steam generator Alloy 600 material in the divider plate assembly or the low-alloy steel channel head material in the period of operation beyond 40 years. (authors)

  11. Development of Evaluation Technology of the Integrity of HWR Pressure Tubes

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Y. S.; Jeong, Y. M.; Ahn, S. B. (and others)

    2005-03-15

    Major degradation of the feeder pipe is the thinning due to the flow accelerated corrosion and the cracking in the bent region due to the stress corrosion cracking. The feeder pipe in a PHWR is a pipe to supply the coolant to the pressure tube and the heated coolant to the steam generator for power generation. Approximately 380 pipes are installed on the inlet side and outlet side each with two bent regions in the 600 MW-class PHWR. After a leakage in the bent region of the feeder pipe, it is required to examine all the pipes in order to ensure the integrity of the pressure boundaries. It is not easy, however, to examine all the pipes with the conventional ultrasonic method, because of a high dose of radiation exposure and a limited accessibility to the pipe. In order to get rid of the limited accessibility, the ultrasonic guided wave method are developed for detection and evaluation of the cracks in the feeder pipe. The dispersion mode analysis was performed for the development of long-range guided wave inspection for the feeder pipe. An analytical approach for the straight pipe as well as numerical approach for the bent pipe with 2-D FFT were accomplished. A computer program for the calculation of the dispersion curves and wave structures was developed. Based on the dispersion curves and wave structure of the feeder pipe, candidates for the optimal parameters on the frequencies and vibration modes were selected. A time-frequency analysis methodology was developed for the mode identification of received ultrasonic signal. A high power tone-burst ultrasonic system has been setup for the generation of guided waves. Various artificial notches were fabricated on the bent feeder pipes for the experiment on the flaw detection. Considering the results of dispersion analysis and field condition, the torsional vibration mode, T(0,1) is selected for the first choice. An array of electromagnetic acoustic transducers (EMAT) was designed and fabricated for the generation of T

  12. Project of integrity assessment of flawed components with structural discontinuity (IAF). Data book for estimation stress intensity factor. Surface crack on ICM housing for penetration in reactor vessel

    International Nuclear Information System (INIS)

    2012-12-01

    The project of Integrity Assessment of Flawed Components with Structural Discontinuity (IAF) was entrusted to Japan Power Engineering and Inspection Corporation (JAPEIC) from Nuclear and Industrial Safety Agency (NISA) and started from FY 2001. And then, it was taken over to Japan Nuclear Energy Safety Organization (JNES) which was established in October 2003 and carried out until FY 2007. In the IAF project, weld joints between nickel based alloys and low alloy steels around penetrations in reactor vessel, safe-end of nozzles and shroud supports were selected from among components and pipe arrangements in nuclear power plants, where high residual stresses were generated due to welding and complex structure. Residual stresses around of the weld joints were estimated by finite element analysis method (FEM) with a general modeling method, then the reasonability and the conservativeness was evaluated. In addition, for postulated surface crack of stress corrosion cracking (SCC), a simple calculation method of stress intensity factor (K) required to estimate the crack growth was proposed and the effectiveness was confirmed. JNES compiled results of the IAF project into Data Books of Residual Stress Analysis of Weld Joint, and Data Book of Simplified Stress Intensity Factor Calculation for Penetration of Reactor as typical Structure Discontinuity, respectively. Data Books of Residual Stress Analysis in Weld Joint. 1. Butt Weld Joint of Small Diameter Cylinder (4B Sch40) (JNES-RE-2012-0005), 2. Dissimilar Metal Weld Joint in Safe End (One-Side Groove Joint (JNES-RE-2012-0006), 3. Dissimilar Metal Weld Joint in Safe End (Large Diameter Both-Side Groove Joint) (JNES-RE-2012-0007), 4. Weld Joint around Penetrations in Reactor Vessel (Insert Joint) (JNES-RE-2012-0008), 5. Weld Joint in Shroud Support (H8, H9, H10 and H11 Welds) (JNES-RE-2012-0009), 6. Analysis Model of Dissimilar Metal Weld Joint Applied Post Weld Heat Treatment (PWHT) (JNES-RE-2012-0010). Data Book of

  13. Battery failure model derived from flaw theory

    Science.gov (United States)

    Schulman, I.

    1981-01-01

    A previously derived failure model for battery lifetime is discussed in terms of growth rate of the flaw, distribution of flaw sizes, and number of flaws. Equations are presented for determining the failure model for a nickel cadmium battery.

  14. Experimental analysis of ammonia condensation on smooth and integral-fin titanium tubes

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez-Seara, Jose; Uhia, Francisco J.; Diz, Ruben [Area de Maquinas y Motores Termicos, E.T.S. de Ingenieros Industriales, University of Vigo, Campus Lagoas-Marcosende No 9, 36310 Vigo (Spain)

    2009-09-15

    This paper reports on the experimental research conducted to study the condensation of ammonia on smooth and integral-fin (32 fpi) titanium tubes of 19.05 mm outer diameter. Experiments were carried out at saturation temperatures of 30, 35, 40 and 45 C and wall subcoolings from 1 to 8 C. The results show that the condensation coefficients on the smooth tubes are well predicted by the Nusselt theory with an average error of +0.66% and within a deviation between -6.6% and +8.3%. The enhancement factors provided by the integral-fin tubes range from 0.77 to 1.22. The low enhancement factors are due to the high condensate retention between fins, which brings about flooded fractions of the tube perimeter from 62.9% to 73.2%, and the low thermal conductivity of titanium. The Briggs and Rose [1994. Effect of fin efficiency on a model for condensation heat transfer on a horizontal, integral-fin tube. Int. J. Heat Mass Transfer 37, 457-463.] model, which accounts for the conduction in the fins, predicts the experimental data with a mean overestimation of 20%. The analysis of the partial thermal resistances in the overall heat transfer process points out the convenience of enhancing the outside ammonia condensation when high water velocities are considered inside the tubes. (author)

  15. Strategy for assessment of WWER steam generator tube integrity. Report prepared within the framework of the coordinated research project on verification of WWER steam generator tube integrity

    International Nuclear Information System (INIS)

    2007-12-01

    Steam generator heat exchanger tube degradations happen in WWER Nuclear Power Plant (NPP). The situation varies from country to country and from NPP to NPP. More severe degradation is observed in WWER-1000 NPPs than in case of WWER-440s. The reasons for these differences could be, among others, differences in heat exchanger tube material (chemical composition, microstructure, residual stresses), in thermal and mechanical loadings, as well as differences in water chemistry. However, WWER steam generators had not been designed for eddy current testing which is the usual testing method in steam generators of western PWRs. Moreover, their supplier provided neither adequate methodology and criteria nor equipment for planning and implementing In-Service Inspection (ISI). Consequently, WWER steam generator ISI infrastructure was established with delay. Even today, there are still big differences in the eddy current inspection strategy and practice as well as in the approach to steam generator heat exchanger tube structural integrity assessment (plugging criteria for defective tubes vary from 40 to 90% wall thickness degradation). Recognizing this situation, the WWER operating countries expressed their need for a joint effort to develop methodology to establish reasonable commonly accepted integrity assessment criteria for the heat exchanger tubes. The IAEA's programme related to steam generator life management is embedded into the systematic activity of its Technical Working Group on Life Management of Nuclear Power Plants (TWG-LMNPP). Under the advice of the TWG-LMNPP, an IAEA coordinated research project (CRP) on Verification of WWER Steam Generator Tube Integrity was launched in 2001. It was completed in 2005. Thirteen organizations involved in in-service inspection of steam generators in WWER operating countries participated: Croatia, Czech Republic, Finland, France, Hungary, Russian Federation, Slovakia, Spain, Ukraine, and the USA. The overall objective was to

  16. Critical Initial Flaw Size Analysis

    Science.gov (United States)

    Dawicke, David S.; Raju, Ivatury S.; Cheston, Derrick J.

    2008-01-01

    An independent assessment was conducted to determine the critical initial flaw size (CIFS) for the flange-to-skin weld in the Ares I-X Upper Stage Simulator (USS). The USS consists of several "tuna can" segments that are approximately 216 inches in diameter, 115 inches tall, and 0.5 inches thick. A 6 inch wide by 1 inch thick flange is welded to the skin and is used to fasten adjacent tuna cans. A schematic of a "tuna can" and the location of the flange-to-skin weld are shown in Figure 1. Gussets (shown in yellow in Figure 1) are welded to the skin and flange every 10 degrees around the circumference of the "tuna can". The flange-to-skin weld is a flux core butt weld with a fillet weld on the inside surface, as illustrated in Figure 2. The welding process may create loss of fusion defects in the weld that could develop into fatigue cracks and jeopardize the structural integrity of the Ares I-X vehicle. The CIFS analysis was conducted to determine the largest crack in the weld region that will not grow to failure within 4 lifetimes, as specified by NASA standard 5001 & 5019 [1].

  17. Proceedings of the CNRA/CSNI workshop on steam generator tube integrity in nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Diercks, D.R. [Argonne National Lab., IL (United States)

    1997-02-01

    The objective of the workshop was to provide a working forum for the exchange of information by contributing experts on current issues related to PWR steam generator tube integrity. One hundred persons from 15 countries attended the workshop, including 36 from regulatory and nuclear policy agencies, 28 from research and development laboratories, 18 from nuclear vendors and consulting firms, and 18 from electrical utilities. The workshop opened with a plenary session; the first part of the session covered international steam generator regulatory practices and issues, featuring speakers from regulatory bodies in Belgium, France, Japan, Spain, and the US. In Part 2 of the plenary session, comprehensive technical overviews on steam generator tubing degradation, inspection, and integrity were presented by authorities in these fields from the US, France, and Belgium. Parallel working sessions on the second and third days of the workshop then developed findings and recommendations in the areas of (1) tubing degradation, (2) tubing inspection, (3) tubing integrity, (4) preventative and corrective measures, and (5) operational aspects and risk analysis. On the final day of the workshop, the working-session facilitators presented summaries of their sessions to the workshop attendees. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database.

  18. Proceedings of the CNRA/CSNI workshop on steam generator tube integrity in nuclear power plants

    International Nuclear Information System (INIS)

    Diercks, D.R.

    1997-02-01

    The objective of the workshop was to provide a working forum for the exchange of information by contributing experts on current issues related to PWR steam generator tube integrity. One hundred persons from 15 countries attended the workshop, including 36 from regulatory and nuclear policy agencies, 28 from research and development laboratories, 18 from nuclear vendors and consulting firms, and 18 from electrical utilities. The workshop opened with a plenary session; the first part of the session covered international steam generator regulatory practices and issues, featuring speakers from regulatory bodies in Belgium, France, Japan, Spain, and the US. In Part 2 of the plenary session, comprehensive technical overviews on steam generator tubing degradation, inspection, and integrity were presented by authorities in these fields from the US, France, and Belgium. Parallel working sessions on the second and third days of the workshop then developed findings and recommendations in the areas of (1) tubing degradation, (2) tubing inspection, (3) tubing integrity, (4) preventative and corrective measures, and (5) operational aspects and risk analysis. On the final day of the workshop, the working-session facilitators presented summaries of their sessions to the workshop attendees. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database

  19. Grounding Moralism: Moral Flaws and Aesthetic Properties

    Science.gov (United States)

    Smuts, Aaron

    2011-01-01

    Can moral flaws lessen an artwork's aesthetic value? Answering yes to this question requires both that artworks can be morally flawed and that moral flaws within a work of art can have an aesthetic impact. For present purposes, the author will assume that artworks can be morally flawed by such means as endorsing immoral perspectives, culpably…

  20. Determination of Flaw Size from Thermographic Data

    Science.gov (United States)

    Winfree, William P.; Howell, Patricia A.; Zalameda, Joseph N.

    2014-01-01

    Conventional methods for reducing the pulsed thermographic responses of delaminations tend to overestimate the size of the flaw. Since the heat diffuses in the plane parallel to the surface, the resulting temperature profile over the flaw is larger than the flaw. A variational method is presented for reducing the thermographic data to produce an estimated size for the flaw that is much closer to the true size of the flaw. The size is determined from the spatial thermal response of the exterior surface above the flaw and a constraint on the length of the contour surrounding the flaw. The technique is applied to experimental data acquired on a flat bottom hole composite specimen.

  1. Integral split ring resonator loaded with drift tubes and RF quadrupoles

    International Nuclear Information System (INIS)

    Fang, J.X.; Chen, C.E.

    1985-01-01

    In order to improve the mechanical stability, the coupled split ring (also spirals) resonators, loaded either with drift tubes or RF Quadrupoles, are integrated together through conducting bars. Investigations on 1/2 and full scale models (50 cm in tank diameter) show considerable improvement on the overall rigidity of the structure while keeping the RF efficiency high. The operating frequency can be greatly reduced by the integration to 24 and 14 MHz for loading with drift tubes and RFQ respectively. The integration also flattens the accelerating voltage distribution and enhances the mode separation and thus facilitates the assembling and commissioning of the accelerating structure. An equivalent circuit of the integral split ring, which agrees well with the experiments, has been developed

  2. A Novel Approach for an Integrated Straw Tube-Microstrip Detector

    Science.gov (United States)

    Basile, E.; Bellucci, F.; Benussi, L.; Bertani, M.; Bianco, S.; Caponero, M. A.; Colonna, D.; Di Falco, F.; Fabbri, F. L.; Felli, F.; Giardoni, M.; La Monaca, A.; Mensitieri, G.; Ortenzi, B.; Pallotta, M.; Paolozzi, A.; Passamonti, L.; Pierluigi, D.; Pucci, C.; Russo, A.; Saviano, G.; Casali, F.; Bettuzzi, M.; Bianconi, D.; Baruffaldi, F.; Perilli, E.; Massa, F.

    2006-06-01

    We report on a novel concept of silicon microstrips and straw tubes detector, where integration is accomplished by a straw module with straws not subjected to mechanical tension in a Rohacell/spl reg/ lattice and carbon fiber reinforced plastic shell. Results on mechanical and test beam performances are reported as well.

  3. A Novel Approach for an Integrated Straw tube-Microstrip Detector

    OpenAIRE

    Basile, E.; Bellucci, F.; Benussi, L.; Bertani, M.; Bianco, S.; Caponero, M. A.; Colonna, D.; Di Falco, F.; Fabbri, F. L.; Felli, F.; Giardoni, M.; La Monaca, A.; Mensitieri, G.; Ortenzi, B.; Pallotta, M.

    2005-01-01

    We report on a novel concept of silicon microstrips and straw tubes detector, where integration is accomplished by a straw module with straws not subjected to mechanical tension in a Rohacell $^{\\circledR}$ lattice and carbon fiber reinforced plastic shell. Results on mechanical and test beam performances are reported on as well.

  4. Modeling the X-ray Process, and X-ray Flaw Size Parameter for POD Studies

    Science.gov (United States)

    Koshti, Ajay M.

    2014-01-01

    Nondestructive evaluation (NDE) method reliability can be determined by a statistical flaw detection study called probability of detection (POD) study. In many instances, the NDE flaw detectability is given as a flaw size such as crack length. The flaw is either a crack or behaving like a crack in terms of affecting the structural integrity of the material. An alternate approach is to use a more complex flaw size parameter. The X-ray flaw size parameter, given here, takes into account many setup and geometric factors. The flaw size parameter relates to X-ray image contrast and is intended to have a monotonic correlation with the POD. Some factors such as set-up parameters, including X-ray energy, exposure, detector sensitivity, and material type that are not accounted for in the flaw size parameter may be accounted for in the technique calibration and controlled to meet certain quality requirements. The proposed flaw size parameter and the computer application described here give an alternate approach to conduct the POD studies. Results of the POD study can be applied to reliably detect small flaws through better assessment of effect of interaction between various geometric parameters on the flaw detectability. Moreover, a contrast simulation algorithm for a simple part-source-detector geometry using calibration data is also provided for the POD estimation.

  5. Evaluation of ECT reliability for axial ODSCC in steam generator tubes

    International Nuclear Information System (INIS)

    Lee, Jae Bong; Park, Jai Hak; Kim, Hong Deok; Chung, Han Sub

    2010-01-01

    The integrity of steam generator tubes is usually evaluated based on eddy current test (ECT) results. Because detection capacity of the ECT is not perfect, all of the physical flaws, which actually exist in steam generator tubes, cannot be detected by ECT inspection. Therefore it is very important to analyze ECT reliability in the integrity assessment of steam generators. The reliability of an ECT inspection system is divided into reliability of inspection technique and reliability of quality of analyst. And the reliability of ECT results is also divided into reliability of size and reliability of detection. The reliability of ECT sizing is often characterized as a linear regression model relating true flaw size data to measured flaw size data. The reliability of detection is characterized in terms of probability of detection (POD), which is expressed as a function of flaw size. In this paper the reliability of an ECT inspection system is analyzed quantitatively. POD of the ECT inspection system for axial outside diameter stress corrosion cracks (ODSCC) in steam generator tubes is evaluated. Using a log-logistic regression model, POD is evaluated from hit (detection) and miss (no detection) binary data obtained from destructive and non-destructive inspections of cracked tubes. Crack length and crack depth are considered as variables in multivariate log-logistic regression and their effects on detection capacity are assessed using two-dimensional POD (2-D POD) surface. The reliability of detection is also analyzed using POD for inspection technique (POD T ) and POD for analyst (POD A ).

  6. DETERMINISTIC EVALUATION OF DELAYED HYDRIDE CRACKING BEHAVIORS IN PHWR PRESSURE TUBES

    Directory of Open Access Journals (Sweden)

    YOUNG-JIN OH

    2013-04-01

    Full Text Available Pressure tubes made of Zr-2.5 wt% Nb alloy are important components consisting reactor coolant pressure boundary of a pressurized heavy water reactor, in which unanticipated through-wall cracks and rupture may occur due to a delayed hydride cracking (DHC. The Canadian Standards Association has provided deterministic and probabilistic structural integrity evaluation procedures to protect pressure tubes against DHC. However, intuitive understanding and subsequent assessment of flaw behaviors are still insufficient due to complex degradation mechanisms and diverse influential parameters of DHC compared with those of stress corrosion cracking and fatigue crack growth phenomena. In the present study, a deterministic flaw assessment program was developed and applied for systematic integrity assessment of the pressure tubes. Based on the examination results dealing with effects of flaw shapes, pressure tube dimensional changes, hydrogen concentrations of pressure tubes and plant operation scenarios, a simple and rough method for effective cooldown operation was proposed to minimize DHC risks. The developed deterministic assessment program for pressure tubes can be used to derive further technical bases for probabilistic damage frequency assessment.

  7. Radiation flaw detector for testing non-uniform surface bodies of revolution

    International Nuclear Information System (INIS)

    Valevich, M.I.

    1984-01-01

    Radiation flaw detector for testing bodies of revolution with non-uniform surface, welded joints, etc., based on spatial filtration and differentiation of ionizing radiation flux has been described. The calculation of the most important unit of flaw detector - integrators - is made. Experimental studies of the sensitivity have shown, that the radiation flaw detector can be used for rapid testing of products with the sensitivity comparable with the sensitivity of radiographic testing of steel

  8. Thermal performance of capillary micro tubes integrated into the sandwich element made of concrete

    DEFF Research Database (Denmark)

    Mikeska, Tomas; Svendsen, Svend

    2013-01-01

    was studied. Thermal heat flux on the inner surface of HPC element was carefully investigated. Calculations were carried out for different temperatures of the circulating fluid, different spacing between CMT and different thicknesses of the inner HPC layer covering the CMT. This paper shows that CMT......The thermal performance of radiant heating and cooling systems (RHCS) composed of capillary micro tubes (CMT) integrated into the inner plate of sandwich elements made of High Performance Concrete (HPC) was investigated in the article. Temperature distribution in HPC elements around integrated CMT...

  9. Development of Zirconium alloys (for pressure tubes)

    International Nuclear Information System (INIS)

    Kim, Young Suk; Kwon, Sang Chul; Choo, Ki Nam; Jung, Chung Hwan; Yim, Kyong Soo; Kim, Sung Soo; Baek, Jong Hyuk; Jeong, Yong Hwan; Kim, Kyong Ho; Cho, Hae Dong; Hwang, S. K.; Kim, M. H.; Kwon, S. I; Kim, I. S.

    1997-09-01

    The objective of this research is to set up the basic technologies for the evaluation of pressure tube integrity and to develop improved zirconium alloys to prevent pressure tube failures due to DHC and hydride blister caused by excessive creep-down of pressure tubes. The experimental procedure and facilities for characterization of pressure tubes were developed. The basic research related to a better understanding of the in-reactor performances of pressure tubes leads to noticeable findings for the first time : the microstructural effect on corrosion and hydrogen pick-up behavior of Zr-2.5Nb pressure tubes, texture effect on strength and DHC resistance and enhanced recrystallization by Fe in zirconium alloys and etc. Analytical methodology for the assessment of pressure tubes with surface flaws was set up. A joint research is being under way with AECL to determine the fracture toughness of O-8 at the EOL (End of Life) that had been quadruple melted and was taken out of the Wolsung Unit-1 after 10 year operation. In addition, pressure tube with texture controlled is being made along with VNINM in Russia as a joint project between KAERI and Russia. Finally, we succeeded in developing 4 different kinds of zirconium alloys with better corrosion resistance, low hydrogen pickup fraction and higher creep strength. (author). 121 refs., 65 tabs., 260 figs

  10. Flaw shape reconstruction – an experimental approach

    Directory of Open Access Journals (Sweden)

    Marilena STANCULESCU

    2009-05-01

    Full Text Available Flaws can be classified as acceptable and unacceptable flaws. As a result of nondestructive testing, one takes de decision Admit/Reject regarding the tested product related to some acceptability criteria. In order to take the right decision, one should know the shape and the dimension of the flaw. On the other hand, the flaws considered to be acceptable, develop in time, such that they can become unacceptable. In this case, the knowledge of the shape and dimension of the flaw allows determining the product time life. For interior flaw shape reconstruction the best procedure is the use of difference static magnetic field. We have a stationary magnetic field problem, but we face the problem given by the nonlinear media. This paper presents the results of the experimental work for control specimen with and without flaw.

  11. Finite-element analysis of flawed and unflawed pipe tests

    International Nuclear Information System (INIS)

    James, R.J.; Nickell, R.E.; Sullaway, M.F.

    1989-12-01

    Contemporary versions of the general purpose, nonlinear finite element program ABAQUS have been used in structural response verification exercises on flawed and unflawed austenitic stainless steel and ferritic steel piping. Among the topics examined, through comparison between ABAQUS calculations and test results, were: (1) the effect of using variations in the stress-strain relationship from the test article material on the calculated response; (2) the convergence properties of various finite element representations of the pipe geometry, using shell, beam and continuum models; (3) the effect of test system compliance; and (4) the validity of ABAQUS J-integral routines for flawed pipe evaluations. The study was culminated by the development and demonstration of a ''macroelement'' representation for the flawed pipe section. The macroelement can be inserted into an existing piping system model, in order to accurately treat the crack-opening and crack-closing static and dynamic response. 11 refs., 20 figs., 1 tab

  12. Insensitivity to Flaws Leads to Damage Tolerance in Brittle Architected Meta-Materials.

    Science.gov (United States)

    Montemayor, L C; Wong, W H; Zhang, Y-W; Greer, J R

    2016-02-03

    Cellular solids are instrumental in creating lightweight, strong, and damage-tolerant engineering materials. By extending feature size down to the nanoscale, we simultaneously exploit the architecture and material size effects to substantially enhance structural integrity of architected meta-materials. We discovered that hollow-tube alumina nanolattices with 3D kagome geometry that contained pre-fabricated flaws always failed at the same load as the pristine specimens when the ratio of notch length (a) to sample width (w) is no greater than 1/3, with no correlation between failure occurring at or away from the notch. Samples with (a/w) > 0.3, and notch length-to-unit cell size ratios of (a/l) > 5.2, failed at a lower peak loads because of the higher sample compliance when fewer unit cells span the intact region. Finite element simulations show that the failure is governed by purely tensile loading for (a/w) meta-materials may give rise to their damage tolerance and insensitivity of failure to the presence of flaws even when made entirely of intrinsically brittle materials.

  13. Ultrasonographic Detection of Tooth Flaws

    Science.gov (United States)

    Bertoncini, C. A.; Hinders, M. K.; Ghorayeb, S. R.

    2010-02-01

    The goal of our work is to adapt pulse-echo ultrasound into a high resolution imaging modality for early detection of oral diseases and for monitoring treatment outcome. In this talk we discuss our preliminary results in the detection of: demineralization of the enamel and dentin, demineralization or caries under and around existing restorations, caries on occlusal and interproximal surfaces, cracks of enamel and dentin, calculus, and periapical lesions. In vitro immersion tank experiments are compared to results from a handpiece which uses a compliant delay line to couple the ultrasound to the tooth surface. Because the waveform echoes are complex, and in order to make clinical interpretation of ultrasonic waveform data in real time, it is necessary to automatically interpret the signals. We apply the dynamic wavelet fingerprint algorithms to identify and delineate echographic features that correspond to the flaws of interest in teeth. The resulting features show a clear distinction between flawed and unflawed waveforms collected with an ultrasonic handpiece on both phantom and human cadaver teeth.

  14. Theoretical modeling and experimental analysis of solar still integrated with evacuated tubes

    Science.gov (United States)

    Panchal, Hitesh; Awasthi, Anuradha

    2017-06-01

    In this present research work, theoretical modeling of single slope, single basin solar still integrated with evacuated tubes has been performed based on energy balance equations. Major variables like water temperature, inner glass cover temperature and distillate output has been computed based on theoretical modeling. The experimental setup has been made from locally available materials and installed at Gujarat Power Engineering and Research Institute, Mehsana, Gujarat, India (23.5880°N, 72.3693°E) with 0.04 m depth during 6 months of time interval. From the series of experiments, it is found considerable increment in average distillate output of a solar still when integrated with evacuated tubes not only during daytime but also from night time. In all experimental cases, the correlation of coefficient (r) and root mean square percentage deviation of theoretical modeling and experimental study found good agreement with 0.97 < r < 0.98 and 10.22 < e < 38.4% respectively.

  15. Implementation status of performance demonstration program for steam generator tubing analysts in Korea

    International Nuclear Information System (INIS)

    Cho, Chan Hee; Lee, Hee Jong; Yoo, Hyun Ju; Nam, Min Woo; Hong, Sung Yull

    2013-01-01

    Some essential components in nuclear power plants are periodically inspected using non destructive examinations, for example ultrasonic, eddy current and radiographic examinations, in order to determine their integrity. These components include nuclear power plant items such as vessels, containments, piping systems, pumps, valves, tubes and core support structure. Steam generator tubes have an important safety role because they constitute one of the primary barriers between the radioactive and non radioactive sides of the nuclear power plant. There is potential that if a tube bursts while a plant is operating, radioactivity from the primary coolant system could escape directly to the atmosphere. Therefore, in service inspections are critical in maintaining steam generator tube integrity. In general, the eddy current testing is widely used for the inspection of steam generator tubes due tube integrity. In general, the eddy current testing is widely used for the inspection of steam generator tubes due to its high inspection speed and flaw detectability on non magnetic tubes. However, it is not easy to analyze correctly eddy current signals because they are influenced by many factors. Therefore, the performance of eddy current data analysts for steam generator tubing should be demonstrated comprehensively. In Korea, the performance of steam generator tubing analysts has been demonstrated using the Qualified Data Analyst program. This paper describes the performance demonstration program for steam generator tubing analysts and its implementation results in Korea. The pass rate of domestic analysts for this program was 71.4%

  16. Limit load estimation method for pipe with an arbitrary shaped circumferential surface flaw

    International Nuclear Information System (INIS)

    Li, Yinsheng; Hasegawa, Kunio; Onizawa, Kunio; Sugino, Hideharu

    2009-01-01

    When a flaw is detected in a stainless steel pipe during in-service inspection, the limit load criterion given in the codes such as JSME Rules on Fitness-for-Service for Nuclear Power Plants or ASME Boiler and Pressure Vessel Code Section XI can be applied to evaluate the integrity of the pipe. However, in the present codes, the limit load criterion is only provided for the case of a flaw with the uniform depth, although many flaws with complicated shape such as stress corrosion cracking have been actually detected in a pipe. In this paper, a limit load estimation method is proposed considering a circumferential flaw with arbitrary shape, in order to make it possible to evaluate the integrity of the pipe for general case. The plastic collapse moment and stress are obtained by dividing the surface flaw into several segmented sub-flaws. Using this method, good agreement is observed between the numerical solution and reported experimental results. Several numerical examples are also given to show the validity of this method. Finally, it can be seen that the number of the segmented sub-flaws for the semi-elliptical surface flaw is sufficient to be three from engineering judgment. (author)

  17. Evaluation on the fretting abrasion of heat-transfer tubes of the integrated IHX/primary sodium pump. 1. Workrate analyses model

    International Nuclear Information System (INIS)

    Kisohara, Naoyuki

    2002-05-01

    The cost minimization of commercialized FBR plant systems requires the integration of an intermediate-heat-exchanger (IHX) and a primary sodium mechanical pump into one component. The pump is installed in the center of the integrated component and heat transfer tubes surround the pump. Primary sodium flows down inside the heat transfer tubes and secondary sodium flows up outside the tubes in a zigzag. Therefore, the pump rotation and sodium flow induce the vibration of heat transfer tubes and it leads the tubes to fretting wearing against support plates. Then the tube wearing must be evaluated to confirm its integrity during the plant life span (60 years). However, the knowledge of the pump rotation influence on tube wearing is not sufficiently acquired because the integrated component is a new concept in JNC. To evaluate the tube fretting wearing ratio due to the pump rotation, a new calculation model of FINAS was composed. In the first place, the beam vibration analysis model of a pump shaft, shells, tube bundle etc. of the integrated component reveals its properties such as frequency, amplitude and vibration mode. In the second place, based on the above mentioned vibration analysis, the frequency and amplitude of abrasion between the tubes and support plates can be obtained by a contact analysis model of FINAS. Eventually, this calculation shows that the tube wearing will not affect the tube integrity during the plant life time. However further evaluation by more detailed analysis and abrasion tests are needed to obtain more accurate results. (author)

  18. Integrity of Narrow Epithelial Tubes in the C. elegans Excretory System Requires a Transient Luminal Matrix.

    Science.gov (United States)

    Gill, Hasreet K; Cohen, Jennifer D; Ayala-Figueroa, Jesus; Forman-Rubinsky, Rachel; Poggioli, Corey; Bickard, Kevin; Parry, Jean M; Pu, Pu; Hall, David H; Sundaram, Meera V

    2016-08-01

    Most epithelial cells secrete a glycoprotein-rich apical extracellular matrix that can have diverse but still poorly understood roles in development and physiology. Zona Pellucida (ZP) domain glycoproteins are common constituents of these matrices, and their loss in humans is associated with a number of diseases. Understanding of the functions, organization and regulation of apical matrices has been hampered by difficulties in imaging them both in vivo and ex vivo. We identified the PAN-Apple, mucin and ZP domain glycoprotein LET-653 as an early and transient apical matrix component that shapes developing epithelia in C. elegans. LET-653 has modest effects on shaping of the vulva and epidermis, but is essential to prevent lumen fragmentation in the very narrow, unicellular excretory duct tube. We were able to image the transient LET-653 matrix by both live confocal imaging and transmission electron microscopy. Structure/function and fluorescence recovery after photobleaching studies revealed that LET-653 exists in two separate luminal matrix pools, a loose fibrillar matrix in the central core of the lumen, to which it binds dynamically via its PAN domains, and an apical-membrane-associated matrix, to which it binds stably via its ZP domain. The PAN domains are both necessary and sufficient to confer a cyclic pattern of duct lumen localization that precedes each molt, while the ZP domain is required for lumen integrity. Ectopic expression of full-length LET-653, but not the PAN domains alone, could expand lumen diameter in the developing gut tube, where LET-653 is not normally expressed. Together, these data support a model in which the PAN domains regulate the ability of the LET-653 ZP domain to interact with other factors at the apical membrane, and this ZP domain interaction promotes expansion and maintenance of lumen diameter. These data identify a transient apical matrix component present prior to cuticle secretion in C. elegans, demonstrate critical roles for

  19. Evaluation of nondestructive evaluation size measurement for integrity assessment of axial outside diameter stress corrosion cracking in steam generator tubes

    International Nuclear Information System (INIS)

    Joo, Kyung Mun; Hong, Jun Hee

    2015-01-01

    Recently, the initiation of outside diameter stress corrosion cracking (ODSCC) at the tube support plate region of domestic steam generators (SG) with Alloy 600 HTMA tubes has been increasing. As a result, SGs with Alloy 600 HTMA tubes must be replaced early or are scheduled to be replaced prior to their designed lifetime. ODSCC is one of the biggest threats to the integrity of SG tubes. Therefore, the accurate evaluation of tube integrity to determine ODSCC is needed. Eddy current testing (ECT) is conducted periodically, and its results could be input as parameters for evaluating the integrity of SG tubes. The reliability of an ECT inspection system depends on the performance of the inspection technique and ability of the analyst. The detection probability and ECT sizing error of degradation are considered to be the performance indices of a nondestructive evaluation (NDE) system. This paper introduces an optimized evaluation method for ECT, as well as the sizing error, including the analyst performance. This study was based on the results of a round robin program in which 10 inspection analysts from 5 different companies participated. The analysis of ECT sizing results was performed using a linear regression model relating the true defect size data to the measured ECT size data.

  20. STEAM GENERATOR TUBE INTEGRITY ANALYSIS OF A TOTAL LOSS OF ALL HEAT SINKS ACCIDENT FOR WOLSONG NPP UNIT 1

    Directory of Open Access Journals (Sweden)

    HEOK-SOON LIM

    2014-02-01

    Full Text Available A total loss of all heat sinks is considered a severe accident with a low probability of occurrence. Following a total loss of all heat sinks, the degasser/condenser relief valves (DCRV become the sole means available for the depressurization of the primary heat transport system. If a nuclear power plant has a total loss of heat sinks accident, high-temperature steam and differential pressure between the primary heat transport system (PHTS and the steam generator (SG secondary side can cause a SG tube creep rupture. To protect the PHTS during a total loss of all heat sinks accident, a sufficient depressurization capability of the degasser/condenser relief valve and the SG tube integrity is very important. Therefore, an accurate estimation of the discharge through these valves is necessary to assess the impact of the PHTS overprotection and the SG tube integrity of the primary circuit. This paper describes the analysis of DCRV discharge capacity and the SG tube integrity under a total loss of all heat sink using the CATHENA code. It was found that the DCRV's discharge capacity is enough to protect the overpressure in the PHTS, and the SG tube integrity is maintained in a total loss of all heat accident.

  1. Steam Generator Tube Integrity Analysis of A Total Loss of all Heat Sinks Accident for Wolsong NPP Unit 1

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Heoksoon; Song, Taeyoung; Chi, Moongoo [Korea Htydro and Nuclear Power Co., Ltd., Daejeon (Korea, Republic of); Kim, Seoungrae [Nuclear Engineering Service and Solution, Daejeon (Korea, Republic of)

    2014-02-15

    A total loss of all heat sinks is considered a severe accident with a low probability of occurrence. Following a total loss of all heat sinks, the degasser/condenser relief valves (DCRV) become the sole means available for the depressurization of the primary heat transport system. If a nuclear power plant has a total loss of heat sinks accident, high-temperature steam and differential pressure between the primary heat transport system (PHTS) and the steam generator (SG) secondary side can cause a SG tube creep rupture. To protect the PHTS during a total loss of all heat sinks accident, a sufficient depressurization capability of the degasser/condenser relief valve and the SG tube integrity is very important. Therefore, an accurate estimation of the discharge through these valves is necessary to assess the impact of the PHTS overprotection and the SG tube integrity of the primary circuit. This paper describes the analysis of DCRV discharge capacity and the SG tube integrity under a total loss of all heat sink using the CATHENA code. It was found that the DCRV's discharge capacity is enough to protect the overpressure in the PHTS, and the SG tube integrity is maintained in a total loss of all heat accident.

  2. Integrated Planar Solid Oxide Fuel Cell: Steady-State Model of a Bundle and Validation through Single Tube Experimental Data

    Directory of Open Access Journals (Sweden)

    Paola Costamagna

    2015-11-01

    Full Text Available This work focuses on a steady-state model developed for an integrated planar solid oxide fuel cell (IP-SOFC bundle. In this geometry, several single IP-SOFCs are deposited on a tube and electrically connected in series through interconnections. Then, several tubes are coupled to one another to form a full-sized bundle. A previously-developed and validated electrochemical model is the basis for the development of the tube model, taking into account in detail the presence of active cells, interconnections and dead areas. Mass and energy balance equations are written for the IP-SOFC tube, in the classical form adopted for chemical reactors. Based on the single tube model, a bundle model is developed. Model validation is presented based on single tube current-voltage (I-V experimental data obtained in a wide range of experimental conditions, i.e., at different temperatures and for different H2/CO/CO2/CH4/H2O/N2 mixtures as the fuel feedstock. The error of the simulation results versus I-V experimental data is less than 1% in most cases, and it grows to a value of 8% only in one case, which is discussed in detail. Finally, we report model predictions of the current density distribution and temperature distribution in a bundle, the latter being a key aspect in view of the mechanical integrity of the IP-SOFC structure.

  3. Effects of proof loads and combined mode loadings on fracture and flaw growth characteristics of aerospace alloys

    Science.gov (United States)

    Shah, R. C.

    1974-01-01

    This experimental program was undertaken to determine the effects of (1) combined tensile and bending loadings, (2) combined tensile and shear loadings, and (3) proof overloads on fracture and flaw growth characteristics of aerospace alloys. Tests were performed on four alloys: 2219-T87 aluminum, 5Al-2.5Sn (ELl) titanium, 6Al-4V beta STA titanium and high strength 4340 steel. Tests were conducted in room air, gaseous nitrogen at -200F (144K), liquid nitrogen and liquid hydrogen. Flat center cracked and surface flawed specimens, cracked tube specimens, circumferentially notched round bar and surface flawed cylindrical specimens were tested. The three-dimensional photoelastic technique of stress freezing and slicing was used to determine stress intensity factors for surface flawed cylindrical specimens subjected to tension or torsion. Results showed that proof load/temperature histories used in the tests have a small beneficial effect or no effect on subsequent fracture strength and flaw growth rates.

  4. Integrated solutions for atmosphere production and control when annealing thermal exchanger tubes

    International Nuclear Information System (INIS)

    Chaffotte, Florent; Pinte, Gilles; Bockel-Macal, Savine; Bruchet, Pierre

    2012-01-01

    After having outlined and described the role of the atmosphere for tube annealing processes (carbon exchanges, gas phase interactions, carbon transfer at the metal-gas interface, carbon diffusion within tubes, parameters affecting oxidation), this article presents different solutions aimed at the production of atmospheres for tube annealing: nitrogen-diluted endothermic atmosphere, or nitrogen-hydrogen atmospheres. It discusses how this atmosphere must be selected. It presents different solutions for the control of these atmospheres: control of carbon potential, or control of the carbon flow. The benefits of such a control are illustrated by an example where tubes are processed in a continuous oven equipped with rollers heated by radiating tubes

  5. PWR steam generators tube integrity: plugging criteria for PWSCC in roll transition zone

    International Nuclear Information System (INIS)

    Mattar Neto, Miguel; Cruz, Julio R.B.

    1999-01-01

    One of the most important causes for tube plugging in PWR (Pressurized Water Reactor) steam generators is the degradation mechanism called Primary Water Stress Corrosion Cracking (PWSCC) in roll transition zone (RTZ) near the tubesheet, mainly for Alloy 600 tubes. To avoid an excessive tube plugging, alternative criteria have been developed based on an approach that consists in withdrawing from service any tube containing a defect for which there is a high probability of a critical size under accident conditions to be reached during next operation cycle. Predictions of the number of tubes to be plugged can be done aiming at preventive maintenance and tube repair, and even a steam generator replacement, without a large and non-planned plant outage. This work presents important aspects related to tube plugging criteria for PWSCC in RTZ based on the risk of break after a leak detection. Calculations of allowable crack length and allowable leak rate for a particular situation are also shown. (author)

  6. Application of the Guided Wave Technique to the Heat Exchanger Tube in NPP

    International Nuclear Information System (INIS)

    Yang, Dong Soon; Kim, Hyung Nam; Yoo, Hyun Joo

    2005-01-01

    The heat exchanger tube is examined by the method of eddy current test(ECT) to identify the integrity of the nuclear power plant. Because ECT probe is moved through the tube inside to identify flaws, the ECT probe should be exchanged periodically due to the wear of probe surface in order to remove the noise form the ECT signal. Moreover, it is impossible to examine the tube by ECT method because the ECT probe can not move through the inside due to the deformation such as dent. Recently, the theory of guided wave was established and the equipment applying the theory has been actively developed so as to overcome the limitation of ECT method for the tube inspection of heater exchanger in nuclear power plant. The object of this study is to know the application of the guided wave technique to heat exchanger tube in NPP

  7. Creating a YouTube-Like Collaborative Environment in Mathematics: Integrating Animated Geogebra Constructions and Student-Generated Screencast Videos

    Science.gov (United States)

    Lazarus, Jill; Roulet, Geoffrey

    2013-01-01

    This article discusses the integration of student-generated GeoGebra applets and Jing screencast videos to create a YouTube-like medium for sharing in mathematics. The value of combining dynamic mathematics software and screencast videos for facilitating communication and representations in a digital era is demonstrated herein. We share our…

  8. Fundamentally Flawed: Extension Administrative Practice (Part 1).

    Science.gov (United States)

    Patterson, Thomas F., Jr.

    1997-01-01

    Extension's current administrative techniques are based on the assumptions of classical management from the early 20th century. They are fundamentally flawed and inappropriate for the contemporary workplace. (SK)

  9. The Year in Elections, 2013: The World's Flawed and Failed Contests

    OpenAIRE

    Frank, Richard W.; Norris, Pippa; Martinez i Coma, Ferran

    2014-01-01

    In many countries, polling day ends with disputes about ballot-box fraud, corruption, and flawed registers. Which claims are accurate? And which are false complaints from sore losers? New evidence gathered by the Electoral Integrity Project has just been released in an annual report which compares the risks of flawed and failed elections, and how far countries around the world meet international standards. The EIP is an independent research project based at the University of Sydney and Harvar...

  10. Burst pressure and leak rate from fretted SG tubes

    International Nuclear Information System (INIS)

    Hwang, Seong Sik; Jung, Man Kyo; Kim, Hong Pyo; Kim, Joung Soo

    2005-01-01

    Steam generator(SG) tubes of a pressurized water reactor(PWR) have suffered from various types of corrosion, such as pitting, wastage and stress corrosion cracking (SCC) on both the primary and secondary side. Recently, fretting/wear degradation at the tube support region has been reported in some Korean nuclear power plants. In order to prevent the primary coolant from leaking to the secondary side, the tubes are repaired by a sleeving or plugging. It is important to establish the repair criteria to assure a reactor integrity and yet maintain the plugging ratio within the limits needed for an efficient operation. The objective of the burst test is to obtain a relationship between the burst/leak rate and the shape of the fretted flaws machined with an electro discharge machining (EDM)

  11. Development of an intelligent system for ultrasonic flaw classification in weldments

    International Nuclear Information System (INIS)

    Song, Sung-Jin; Kim, Hak-Joon; Cho, Hyeon

    2002-01-01

    Even though ultrasonic pattern recognition is considered as the most effective and promising approach to flaw classification in weldments, its application to the realistic field inspection is still very limited due to the crucial barriers in cost, time and reliability. To reduce such barriers, previously we have proposed an intelligent system approach that consisted of the following four ingredients: (1) a PC-based ultrasonic testing (PC-UT) system; (2) an effective invariant ultrasonic flaw classification algorithm; (3) an intelligent flaw classification software; and (4) a database with abundant experimental flaw signals. In the present work, for performing the ultrasonic flaw classification in weldments in a real-time fashion in many real word situations, we develop an intelligent system, which is called the 'Intelligent Ultrasonic Evaluation System (IUES)' by the integration of the above four ingredients into a single, unified system. In addition, for the improvement of classification accuracy of flaws, especially slag inclusions, we expand the feature set by adding new informative features, and demonstrate the enhanced performance of the IUES with flaw signals in the database constructed previously. And then, to take care of the increased redundancy in the feature set due to the addition of features, we also propose two efficient schemes for feature selection: the forward selection with trial and error, and the forward selection with criteria of the error probability and the linear correlation coefficients of individual features

  12. Technical basis for the CANDU steam generator tube fitness-for-service guidelines

    International Nuclear Information System (INIS)

    Kozluk, M.J.; Scarth, D.A.; Graham, D.B.

    2002-01-01

    Active degradation mechanisms in steam generators and preheaters in Canadian CANDU T M generating stations are managed through Steam Generator Programs that incorporate tube inspection, maintenance (cleaning), fitness-for-service assessment, and preventative plugging as part of the overall steam generator management strategy. Steam generator and preheater tubes are inspected in accordance with the CSA Standard CAN/CSA-N285.4-94[l]. When a detected flaw indication does not satisfy the criteria of acceptance by examination, CSA-N285.4-94 permits a fitness-for-service assessment to determine acceptability. In 1999 Ontario Power Generation issued, for trial use, fitness-for-service guidelines for steam generator and preheater tubes in CANDU nuclear power plants. The main objectives of the Fitness-for-Service Guidelines are to provide reasonable assurance that tube structural integrity is maintained, and to provide reasonable assurance that there are adequate margins between estimated accumulated dose and applicable site dose limits. The Fitness-for-Service Guidelines are intended to provide industry-standard acceptance criteria and evaluation procedures for assessing the condition of steam generator and preheater tubes in terms of tube structural integrity, operational leak rate, and consequential leakage during an upset or abnormal event. This paper describes the technical basis for the minimum required safety factors specified in Table IC-1 of the Fitness-for-Service Guidelines and for the flaw models used to develop the flaw stability requirements in the nonmandatory, Appendix C of the Fitness-for-Service Guidelines. (author)

  13. A study on integrity of LMFBR secondary cooling system to hypothetical tube failure propagation in the steam generator

    International Nuclear Information System (INIS)

    Yoshihisa Shindo; Kazuo Haga

    2005-01-01

    Full text of publication follows: A fundamental safety issue of liquid-metal-cooled fast breeder reactor (LMFBR) is to maintain the integrity of the secondary cooling system components against violent chemical sodium-water reaction caused by the water leak from the heat transfer tube of steam generators (SG). The produced sodium-water reaction jet would attack more severely surrounding tubes and would cause other tube failures (tube failure propagation), if it was assumed that the water leak was not detected by function-less detectors and proper operating actions to mitigate the tube failure propagation, such as isolations of the SG from the secondary cooling system and turbine water/steam system, and blowing water and steam inside tubes in the SG, were not taken. This study has been made focusing on the affection of large-scale water leak enlarged due to SG tube failure propagation to the structural integrity of the secondary cooling system because the generated pressure pulse caused by a large-scale sodium-water reaction might break heat transfer tubes of the intermediate heat exchanger (IHX). The present work has been made as one part of the study of probabilistic safety assessment (PSA) of LMFBR, because if the heat-transfer tubes of IHX were failed, the reactor core may be affected by the pressure pulse and/or by the sodium-water reaction products transported through the primary cooling system. As tools for PSA of the water leak incident of SG, we have developed QUARK-LP Version 4 code that mainly analyzes the high temperature rupture phenomena and estimates the number of failed tubes during the middle-scale water leak. The pressure pulse behavior generated by sodium-water reaction in the failure SG and the pressure propagation in the secondary cooling system are calculated by using the SWAAM-2 code developed by ANL. Furthermore, the quasi-steady state high pressure and temperature of the secondary cooling system in a long term is estimated by using the SWAAM

  14. A charged-particle manipulator utilizing a co-axial tube electrodynamic trap with an integrated camera

    International Nuclear Information System (INIS)

    Jiang, L; Pau, S; Whitten, W B

    2011-01-01

    A charged-particle manipulator was designed and fabricated with an integrated imaging camera allowing real-time in-situ monitoring of trapped particle motion even when the trap device is under motion or rotation. The trap device was made of two co-axial electrically conductive tubes with diameters of 5.5 mm and 7 mm for the inner tube and outer tube, respectively; the imaging camera with its optical fiber bundle was integrated within the tubular trap device to realize a single instrument functioning as a manipulator. Motion of suspended microparticles of 3 μm to 50 μm in diameter can be monitored using the integrated camera regardless of the trap device orientations. This manipulator provides capability of controlled manipulation of trapped particles by tuning the operating conditions while monitoring the feedback of real-time particle motion. Imaging of suspended particles was not interrupted while the manipulator was translated and/or rotated. This integrated manipulator can be used for charged particle transport and repositioning.

  15. Steam Generator Tube Integrity Program: Surry Steam Generator Project, Hanford site, Richland, Benton County, Washington: Environmental assessment

    International Nuclear Information System (INIS)

    1980-03-01

    The US Nuclear Regulatory Commission (NRC) has placed a Nuclear Regulatory Research Order with the Richland Operations Office of the US Department of Energy (DOE) for expanded investigations at the DOE Pacific Northwest Laboratory (PNL) related to defective pressurized water reactor (PWR) steam generator tubing. This program, the Steam Generator Tube Integrity (SGTI) program, is sponsored by the Metallurgy and Materials Research Branch of the NRC Division of Reactor Safety Research. This research and testing program includes an additional task requiring extensive investigation of a degraded, out-of-service steam generator from a commercial nuclear power plant. This comprehensive testing program on an out-of-service generator will provide NRC with timely and valuable information related to pressurized water reactor primary system integrity and degradation with time. This report presents the environmental assessment of the removal, transport, and testing of the steam generator along with decontamination/decommissioning plans

  16. Real time automatic discriminating of ultrasonic flaws

    International Nuclear Information System (INIS)

    Suhairy Sani; Mohd Hanif Md Saad; Marzuki Mustafa; Mohd Redzwan Rosli

    2009-01-01

    This paper is concerned with the real time automatic discriminating of flaws from two categories; i. cracks (planar defect) and ii. Non-cracks (volumetric defect such as cluster porosity and slag) using pulse-echo ultrasound. The raw ultrasonic flaws signal were collected from a computerized robotic plane scanning system over the whole of each reflector as the primary source of data. The signal is then filtered and the analysis in both time and frequency domain were executed to obtain the selected feature. The real time feature analysis techniques measured the number of peaks, maximum index, pulse duration, rise time and fall time. The obtained features could be used to distinguish between quantitatively classified flaws by using various tools in artificial intelligence such as neural networks. The proposed algorithm and complete system were implemented in a computer software developed using Microsoft Visual BASIC 6.0 (author)

  17. A Laboratory Experimental Study: An FBG-PVC Tube Integrated Device for Monitoring the Slip Surface of Landslides.

    Science.gov (United States)

    Wang, Kai; Zhang, Shaojie; Chen, Jiang; Teng, Pengxiao; Wei, Fangqiang; Chen, Qiao

    2017-10-30

    A new detection device was designed by integrating fiber Bragg grating (FBG) and polyvinyl chloride (PVC) tube in order to monitor the slip surface of a landslide. Using this new FBG-based device, a corresponding slope model with a pre-set slip surface was designed, and seven tests with different soil properties were carried out in laboratory conditions. The FBG sensing fibers were fixed on the PVC tube to measure strain distributions of PVC tube at different elevation. Test results indicated that the PVC tube could keep deformation compatible with soil mass. The new device was able to monitor slip surface location before sliding occurrence, and the location of monitored slip surface was about 1-2 cm above the pre-set slip surface, which basically agreed with presupposition results. The monitoring results are expected to be used to pre-estimate landslide volume and provide a beneficial option for evaluating the potential impact of landslides on shipping safety in the Three Gorges area.

  18. The Eurozone’s Flaws Are Not Intrinsic

    OpenAIRE

    Wren-Lewis, Simon

    2016-01-01

    There seem to be two typical responses to the failure of the euro project that the last five years have exposed. The first, mostly from those outside the eurozone, is that the whole project was doomed from the start and should be abandoned. The second is that the only way forward is further political integration. However, the problems of the eurozone are not intrinsic to any attempt at a monetary union, but rather reflect design flaws in the particular version of monetary union that was embod...

  19. Flaw evaluation methodology for class 2, 3 components in light water reactors

    International Nuclear Information System (INIS)

    Miura, Naoki; Kashima, Koichi; Miyazaki, Katsumasa; Hasegawa, Kunio; Oritani, Naohiko

    2006-01-01

    It is quite important to validate the structural integrity of operating plant components as aged LWR plants are gradually increasing in Japan. The rules on fitness-for-service for nuclear power plants constituted by the JSME provides flaw evaluation methodology. They are mainly focused on Class 1 components, while flaw evaluation criteria for Class 2, 3 components are not consolidated. As such, they also required from the viewpoints of in-service inspection request, reduction of operating cost and systematization of consistent code/standard. In this study, basic concept of flaw evaluation for Class 2, 3 piping was considered, and it is concluded that the same evaluation procedure as Class 1 piping in the current rules is applicable. Some technical issues on practical flaw evaluation for Class 2, 3 piping were listed up, and a countermeasure for each issue was devised. Especially, both allowable flaw sizes in acceptance standards and critical flaw sizes in acceptance criteria have to be determined in consideration of degraded fracture toughness. (author)

  20. Procedures for measuring and verifying gastric tube placement in newborns: an integrative review.

    Science.gov (United States)

    Dias, Flávia de Souza Barbosa; Emidio, Suellen Cristina Dias; Lopes, Maria Helena Baena de Moraes; Shimo, Antonieta Keiko Kakuda; Beck, Ana Raquel Medeiros; Carmona, Elenice Valentim

    2017-07-10

    to investigate evidence in the literature on procedures for measuring gastric tube insertion in newborns and verifying its placement, using alternative procedures to radiological examination. an integrative review of the literature carried out in the Cochrane, LILACS, CINAHL, EMBASE, MEDLINE and Scopus databases using the descriptors "Intubation, gastrointestinal" and "newborns" in original articles. seventeen publications were included and categorized as "measuring method" or "technique for verifying placement". Regarding measuring methods, the measurements of two morphological distances and the application of two formulas, one based on weight and another based on height, were found. Regarding the techniques for assessing placement, the following were found: electromagnetic tracing, diaphragm electrical activity, CO2 detection, indigo carmine solution, epigastrium auscultation, gastric secretion aspiration, color inspection, and evaluation of pH, enzymes and bilirubin. the measuring method using nose to earlobe to a point midway between the xiphoid process and the umbilicus measurement presents the best evidence. Equations based on weight and height need to be experimentally tested. The return of secretion into the tube aspiration, color assessment and secretion pH are reliable indicators to identify gastric tube placement, and are the currently indicated techniques. investigar, na literatura, evidências sobre procedimentos de mensuração da sonda gástrica em recém-nascidos e de verificação do seu posicionamento, procedimentos alternativos ao exame radiológico. revisão integrativa da literatura nas bases Biblioteca Cochrane, LILACS, CINAHL, EMBASE, MEDLINE e Scopus, utilizando os descritores "intubação gastrointestinal" e "recém-nascido" em artigos originais. dezessete publicações foram incluídas e categorizadas em "método de mensuração" ou "técnica de verificação do posicionamento". Como métodos de mensuração, foram encontrados os de tomada

  1. Apparatus facilitates pressure-testing of metal tubing

    Science.gov (United States)

    Gyorgak, C. A.

    1965-01-01

    Burst-testing of refractory metal tubing is conducted in an apparatus in which tubular specimans are firmly gripped and test pressures and temperatures are applied. Porosity, flaw, and fatigue-stress rupture are also tested.

  2. Ultrasonic Flaw Imaging via Multipath Exploitation

    Directory of Open Access Journals (Sweden)

    Yimin D. Zhang

    2012-01-01

    Full Text Available We consider ultrasonic imaging for the visualization of flaws in a material. Ultrasonic imaging is a powerful nondestructive testing (NDT tool which assesses material conditions via the detection, localization, and classification of flaws inside a structure. We utilize reflections of ultrasonic signals which occur when encountering different media and interior boundaries. These reflections can be cast as direct paths to the target corresponding to the virtual sensors appearing on the top and bottom side of the target. Some of these virtual sensors constitute a virtual aperture, whereas in others, the aperture changes with the transmitter position. Exploitations of multipath extended virtual array apertures provide enhanced imaging capability beyond the limitation of traditional multisensor approaches. The waveforms observed at the physical as well as the virtual sensors yield additional measurements corresponding to different aspect angles, thus allowing proper multiview imaging of flaws. We derive the wideband point spread functions for dominant multipaths and show that fusion of physical and virtual sensor data improves the flaw perimeter detection and localization performance. The effectiveness of the proposed multipath exploitation approach is demonstrated using real data.

  3. Development of Evaluation Technology of the Integrity of HWR Pressure Tubes

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Y. M.; Kim, Y. S.; Im, K. S.; Kim, K. S.; Ahn, S. B

    2007-06-15

    Zr-2.5Nb pressure tubes are one of the most critical structural components governing the lifetime of the heavy water reactors to carry fuel bundles and heavy coolant water inside. Since they are being degraded during their operation in reactors due to dimensional changes caused by creep and irradiation growth, neutron irradiation and delayed hydride cracking, it is required to evaluate their degradation by conducting material testing and examinations on the highly irradiated pressure tubes in hot cells and to keep tracking of their degradation behavior with operation time, which are the aim of this project.

  4. Nondestructive examination of PHWR pressure tube using eddy current technique

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hee Jong; Choi, Sung Nam; Cho, Chan Hee; Yoo, Hyun Joo; Moon, Gyoon Young [KHNP Central Research Institute, Daejeon (Korea, Republic of)

    2014-06-15

    A pressurized heavy water reactor (PHWR) core has 380 fuel channels contained and supported by a horizontal cylindrical vessel known as the calandria, whereas a pressurized water reactor (PWR) has only a single reactor vessel. The pressure tube, which is a pressure-retaining component, has a 103.4 mm inside diameter x 4.19 mm wall thickness, and is 6.36 m long, made of a zirconium alloy (Zr-2.5 wt% Nb). This provides support for the fuel while transporting the D2O heat-transfer fluid. The simple tubular geometry invites highly automated inspection, and good approach for all inspection. Similar to all nuclear heat-transfer pressure boundaries, the PHWR pressure tube requires a rigorous, periodic inspection to assess the reactor integrity in accordance with the Korea Nuclear Safety Committee law. Volumetric-based nondestructive evaluation (NDE) techniques utilizing ultrasonic and eddy current testing have been adopted for use in the periodic inspection of the fuel channel. The eddy current testing, as a supplemental NDE method to ultrasonic testing, is used to confirm the flaws primarily detected through ultrasonic testing, however, eddy current testing offers a significant advantage in that its ability to detect surface flaws is superior to that of ultrasonic testing. In this paper, effectiveness of flaw detection and the depth sizing capability by eddy current testing for the inside surface of a pressure tube, will be introduced. As a result of this examination, the ET technique is found to be useful only as a detection technique for defects because it can detect fine defects on the surface with high resolution. However, the ET technique is not recommended for use as a depth sizing method because it has a large degree of error for depth sizing.

  5. Applicability of chemical cleaning process to steam generator secondary side, (3). Effect of chemical cleaning on long term integrity of steam generator tube after chemical cleaning process

    International Nuclear Information System (INIS)

    Kawamura, Hirotaka; Fujiwara, Kazutoshi; Kanbe, Hiromi; Hirano, Hideo; Takiguchi, Hideki; Yoshino, Kouji; Yamamoto, Shuuichi; Shibata, Toshio; Ishigure, Kenkichi

    2006-01-01

    The application of the chemical cleaning process to dissolve and remove scales and sludge by chemicals is being planned at the Japanese pressurized water reactor (PWR) plant in order to maintain a designed heat transfer condition and to prevent the steam generator (SG) tube degradation. In this paper, the affects of the EPRI process and the KWU process on the long term integrity of SG tubing were investigated under the simulated SG condition using a SG model boiler test facility. No adverse effect of the both chemical cleaning processes on the long term integrity of SG tubing were observed. (author)

  6. The Influence of Wall Conductivity of Film Condensation with Integral Fin Tubes

    Science.gov (United States)

    1993-09-23

    7 oI Figure 1.1 Schematic of Condensate Retention Angle on Finned Tubes and Condensate Wedge (illustrated by the gray sections) 8 II. LITRATURE SUREY...more data is required before all the mysteries associated with this complex condensation process can be unravelled. 74 a t Z - - --Mo EE.o zh oo I--O

  7. Study of thermal performance of capillary micro tubes integrated into the building sandwich element made of high performance concrete

    DEFF Research Database (Denmark)

    Mikeska, Tomas; Svendsen, Svend

    2013-01-01

    The thermal performance of radiant heating and cooling systems (RHCS) composed of capillary micro tubes (CMT) integrated into the inner plate of sandwich elements made of high performance concrete (HPC) was investigated in the article. Temperature distribution in HPC elements around integrated CMT...... was studied. Thermal heat flux on the inner surface of HPC element, and the increase of heat losses to the outside environment were carefully investigated. Calculations were carried out for different temperatures of the circulating fluid, different spacing between CMT and different thicknesses of the inner...... HPC layer covering the CMT. This paper shows that CMT integrated into the thin plate of sandwich element made of HPC can supply the energy needed for heating (cooling) and at the same time create the comfortable and healthy environment for the occupants. This solution is very suitable for heating...

  8. Irradiation effects and the duplication of detected flaws in service

    International Nuclear Information System (INIS)

    Mager, T.R.

    1976-01-01

    ASME Code procedure for evaluating the acceptability of flaws detected during in-service inspection is revised. Critical crack size for instability is proposed as criteria for detected flaws in operating plants

  9. Flawed statistics and science confirming existing paradigms.

    Science.gov (United States)

    Rutten, Lex A L B

    2018-03-30

    Part of the scientific community states that implausible methods cannot have a true effect and that epidemiological proof can only lead to false positives. Homeopathy is regarded as an example of an implausible method with false positive evidence. However, epidemiological proof is necessary to falsify the placebo hypothesis. Implausibility is now supposed to rectify selection of a part of all trials, but the applied selection criteria are diverse and not common in conventional medicine. Applying Bayes' theorem only once to demonstrate that a low prior chance does not lead to reasonable probability is flawed application of this theorem. Demanding scientific evidence and then rejecting the same with post-hoc selection of trials and flawed statistics shows unwillingness to falsify the completeness of existing paradigms. © 2018 John Wiley & Sons, Ltd.

  10. Detection of flaws below curved surfaces

    International Nuclear Information System (INIS)

    Elsley, R.K.; Addison, R.C.; Graham, L.J.

    1983-01-01

    A measurement model has been developed to describe ultrasonic measurements made with circular piston transducers in parts with flat or cylindrically curved surfaces. The model includes noise terms to describe electrical noise, scatterer noise and echo noise as well as effects of attenuation, diffraction and Fresnel loss. An experimental procedure for calibrating the noise terms of the model was developed. Experimental measurements were made on a set of known flaws located beneath a cylindrically curved surface. The model was verified by using it to correct the experimental measurements to obtain the absolute scattering amplitude of the flaws. For longitudinal wave propagation within the part, the derived scattering amplitudes were consistent with predictions at internal angles of less than 30 0 . At larger angles, focusing and aberrations caused a lack of agreement; the model needs further refinement in this case. For shear waves, it was found that the frequency for optimum flaw detection in the presence of material noise is lower than that for longitudinal waves; lower frequency measurements are currently in progress. The measurement model was then used to make preliminary predictions of the best experimental measurement technique for the detection of cracks located under cylindrically curved surfaces

  11. The Lipocalin LPR-1 Cooperates with LIN-3/EGF Signaling To Maintain Narrow Tube Integrity in Caenorhabditis elegans

    Science.gov (United States)

    Pu, Pu; Stone, Craig E.; Burdick, Joshua T.; Murray, John I.; Sundaram, Meera V.

    2017-01-01

    Lipocalins are secreted cup-shaped glycoproteins that bind sterols, fatty acids, and other lipophilic molecules. Lipocalins have been implicated in a wide array of processes related to lipophilic cargo transport, sequestration, and signaling, and several are used as biomarkers for human disease, but the functions of most lipocalins remain poorly understood. Here we show that the Caenorhabditis elegans lipocalin LPR-1 is required to maintain apical membrane integrity and a continuous lumen in two narrow unicellular tubes, the excretory duct and pore, during a period of rapid lumen elongation. LPR-1 fusion protein is expressed by the duct and pore and accumulates both intracellularly and in apical extracellular compartments, but it can also function cell nonautonomously when provided from outside of the excretory system. lpr-1 mutant defects can be rescued by increased signaling through the epidermal growth factor (EGF)-Ras-extracellular signal regulated kinase (ERK) pathway, which promotes the more elongated duct vs. less elongated pore tube fate. Spatial and temporal rescue experiments indicate that Ras signaling acts within the duct and pore tubes during or prior to cell fate determination to bypass the requirement for LPR-1. lpr-1 mutations did not disrupt LIN-3/EGF-dependent duct-fate specification, prevent functioning of any specific LIN-3/EGF isoform, or alter LET-23/EGFR localization, and reduced signaling did not phenocopy or enhance lpr-1 mutant defects. These data suggest that LPR-1 protects lumen integrity through a LIN-3/EGF-independent mechanism, but that increased signaling upregulates some target(s) that can compensate for lpr-1 absence. PMID:28040739

  12. Prenatal paradox: an integrative review of women's experiences with prenatal screening for fetal aneuploidy and neural tube defects.

    Science.gov (United States)

    Shea, Tamra L

    2017-04-01

    As prenatal screening for fetal aneuploidy and neural tube defects evolves technologically and becomes increasingly utilized worldwide, an evaluation of the available evidence on women's experiences with prenatal screening is warranted. To conduct an integrative review to enhance understanding of women's experiences with prenatal screening for fetal aneuploidy and neural tube defects. Systematic literature searches from January 2005 through January 2016, using the CINAHL, PubMed, and PsychInfo electronic databases and ancestry searches of included studies were performed to identify previously published, peer-reviewed quantitative and qualitative studies. The integrative review method as proposed by Whittemore and Knafl was selected. Thirty-nine studies were included in the review. The literature reveals that prenatal screening occurs in a complex social, ethical, and political reality. A theme of paradox emerged indicating the incongruity between reported and perceived risk, the tension between informational utility and moral decisions concerning pregnancy management, and the pervasive influences of authoritative and experiential knowledge. There is a need for future inquiry to critically examine the interrelationships of individual, biomedical, ethical, and sociopolitical factors surrounding prenatal screening.

  13. Ocean acidification impacts spine integrity but not regenerative capacity of spines and tube feet in adult sea urchins.

    Science.gov (United States)

    Emerson, Chloe E; Reinardy, Helena C; Bates, Nicholas R; Bodnar, Andrea G

    2017-05-01

    Increasing atmospheric carbon dioxide (CO 2 ) has resulted in a change in seawater chemistry and lowering of pH, referred to as ocean acidification. Understanding how different organisms and processes respond to ocean acidification is vital to predict how marine ecosystems will be altered under future scenarios of continued environmental change. Regenerative processes involving biomineralization in marine calcifiers such as sea urchins are predicted to be especially vulnerable. In this study, the effect of ocean acidification on regeneration of external appendages (spines and tube feet) was investigated in the sea urchin Lytechinus variegatus exposed to ambient (546 µatm), intermediate (1027 µatm) and high (1841 µatm) partial pressure of CO 2 ( p CO 2 ) for eight weeks. The rate of regeneration was maintained in spines and tube feet throughout two periods of amputation and regrowth under conditions of elevated p CO 2 . Increased expression of several biomineralization-related genes indicated molecular compensatory mechanisms; however, the structural integrity of both regenerating and homeostatic spines was compromised in high p CO 2 conditions. Indicators of physiological fitness (righting response, growth rate, coelomocyte concentration and composition) were not affected by increasing p CO 2 , but compromised spine integrity is likely to have negative consequences for defence capabilities and therefore survival of these ecologically and economically important organisms.

  14. Ocean acidification impacts spine integrity but not regenerative capacity of spines and tube feet in adult sea urchins

    Science.gov (United States)

    Emerson, Chloe E.; Reinardy, Helena C.; Bates, Nicholas R.

    2017-01-01

    Increasing atmospheric carbon dioxide (CO2) has resulted in a change in seawater chemistry and lowering of pH, referred to as ocean acidification. Understanding how different organisms and processes respond to ocean acidification is vital to predict how marine ecosystems will be altered under future scenarios of continued environmental change. Regenerative processes involving biomineralization in marine calcifiers such as sea urchins are predicted to be especially vulnerable. In this study, the effect of ocean acidification on regeneration of external appendages (spines and tube feet) was investigated in the sea urchin Lytechinus variegatus exposed to ambient (546 µatm), intermediate (1027 µatm) and high (1841 µatm) partial pressure of CO2 (pCO2) for eight weeks. The rate of regeneration was maintained in spines and tube feet throughout two periods of amputation and regrowth under conditions of elevated pCO2. Increased expression of several biomineralization-related genes indicated molecular compensatory mechanisms; however, the structural integrity of both regenerating and homeostatic spines was compromised in high pCO2 conditions. Indicators of physiological fitness (righting response, growth rate, coelomocyte concentration and composition) were not affected by increasing pCO2, but compromised spine integrity is likely to have negative consequences for defence capabilities and therefore survival of these ecologically and economically important organisms. PMID:28573022

  15. Filmwise condensation on low integral-fin tubes of different diameter

    OpenAIRE

    Van Petten, Thomas Louis

    1988-01-01

    Heat transfer measurements were made for filmwise condensation of R-113, steam and ethylene glycol on three sets of finned tubes which differed only in root diameter. The fin root diameters were 12.7 mm. 19.05 mm and 25.0 mm. A comparison of the enhancement ratios (based on constant vapor-side temperature drop) revealed that, within the range of diameter tested, the effect of root diameter was small. Results indicated that two or more trends may exist while increasing root diameter. With the ...

  16. The detection of flaws in austenitic welds using the decomposition of the time-reversal operator.

    Science.gov (United States)

    Cunningham, Laura J; Mulholland, Anthony J; Tant, Katherine M M; Gachagan, Anthony; Harvey, Gerry; Bird, Colin

    2016-04-01

    The non-destructive testing of austenitic welds using ultrasound plays an important role in the assessment of the structural integrity of safety critical structures. The internal microstructure of these welds is highly scattering and can lead to the obscuration of defects when investigated by traditional imaging algorithms. This paper proposes an alternative objective method for the detection of flaws embedded in austenitic welds based on the singular value decomposition of the time-frequency domain response matrices. The distribution of the singular values is examined in the cases where a flaw exists and where there is no flaw present. A lower threshold on the singular values, specific to austenitic welds, is derived which, when exceeded, indicates the presence of a flaw. The detection criterion is successfully implemented on both synthetic and experimental data. The datasets arising from welds containing a flaw are further interrogated using the decomposition of the time-reversal operator (DORT) method and the total focusing method (TFM), and it is shown that images constructed via the DORT algorithm typically exhibit a higher signal-to-noise ratio than those constructed by the TFM algorithm.

  17. Preliminary design study of removable integral steam generator units of the multiple helically wound tube type for a 1250 MW(th) H.T.G.C. reactor

    International Nuclear Information System (INIS)

    Gilli, P.V.; Fritz, K.; Lippitsch, J.; Sandri, A.H.; Weiss, B.

    1965-11-01

    The possibilities of designing a multiple steam generator for a 1250 MW(th) High Temperature Gas-Cooled Reactor, consisting of 18 units which are able to pass through 5 ft diam. holes in the integral prestressed concrete pressure vessel are investigated. A lay-out and design with bundles of multi-start helical tubes is evolved, particular attention being paid to the questions of tube blanking and removal of the unit, and of selection of materials for superheater and reheater tubes. Thermal and stress calculations have been carried out, using the Waagner-Biro Computer Code ADURHELIX. (author)

  18. Detection of flaws on surface of civil infrastructures and their profiling using imaging system with laser displacement sensor

    Science.gov (United States)

    Giri, Paritosh; Kharkovsky, Sergey

    2016-04-01

    Civil infrastructures such as buildings, bridges, roads and pipelines are the integral part of people's lives and their failure can have large public safety and economic consequences. Early detection of flaws in civil infrastructures and their appropriate retrofitting will aid in preventing this failure. Flaws such as cracks and impact damages initially occur on the surface and propagate inside the materials causing further degradation. There is a need to develop systems that can detect these surface flaws. Developing a system with one sensing technique which can detect the flaws is a challenging task since infrastructures are made up of diverse materials such as concrete, metal, plastics, composite and timber that have different electrical and mechanical properties. It is also desired that non-plain surfaces with complex profiles can be interrogated and surface flaws can be detected. We have proposed an imaging system capable of interrogating structures with complex surface profiles for the purpose of detection and evaluation of surface flaws such as cracks and impact damages using laser displacement sensor (LDS). The developed system consists of LDS mounted on the scanner which is able to perform raster scan over the specimen under test. The reading of displacement from the sensor head to the laser spot on the surface of the test material is then used to generate images which can be used to detect the surface flaws. The proof of concept is given by testing specimens made of metal, concrete and plastics with complex surface profiles.

  19. Arbitrary 3D flaws in electromagnetothermoelastic composites under coupled multiple fields

    International Nuclear Information System (INIS)

    Zhu, B J; Qin, T Y

    2008-01-01

    The arbitrary 3D flaws in fully electromagnetothermoelastic coupled multiphase composites (EMTE-CMCs) under extended electromagnetothermoelastic coupled loads are turned into a set of extended hypersingular integral equations. Analytical solutions for the extended singular stresses, the extended stress intensity factors and the extended energy release rate near the crack fronts are provided. A numerical method is put forward in which the extended displacement discontinuities are approximated by the product of basic density functions and polynomials. In addition, the relationships between the extended stress intensity factors and the shapes of cracks, the distance between two interface flaws, the properties of the materials and the electromagnetoelastic coupling effects are discussed. The effects of flaw orientation, interaction and shielding are analyzed

  20. A Study on the Structural Integrity Considering the Installation of a Micro-tube Heat Exchanger

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Se Yun; Kim, Tae Jin; Cho, Jong Rae [Korea Maritime and Ocean University, Busan (Korea, Republic of); Jeong, Ho Sung [Pusan National University, Busan (Korea, Republic of)

    2015-04-15

    The objective of this study is to predict the structural characteristics of a heat exchanger mounted on an aircraft engine using finite element analysis. The plastic fracture and life of the heat exchanger were estimated by a thermo-mechanical analysis. Tensile tests were conducted under high temperature conditions (700, 800, 900, 1000 K) using five specimens to obtain the mechanical properties of the Inconel 625 tubes. To assess the structural characteristics of the heat exchanger, the full and partial models were applied under the operating conditions given by the thermo-mechanical and inertial load. As a result, the case, tubesheet, flange, and mounting components have a reasonable safety margin to the allowable stress assuming a fatigue strength of Inconel 625 of 10000 cycles under 1000 K.

  1. Friction pressure drop and heat transfer coefficient of two-phase flow in helically coiled tube once-through steam generator for integrated type marine water reactor

    International Nuclear Information System (INIS)

    Nariai, Hideki; Kobayashi, Michiyuki; Matsuoka, Takeshi.

    1982-01-01

    Two-phase friction pressure drop and heat transfer coefficients in a once-through steam generator with helically coiled tubes were investigated with the model test rig of an integrated type marine water reactor. As the dimensions of the heat transfer tubes and the thermal-fluid conditions are almost the same as those of real reactors, the data applicable directly to the real reactor design were obtained. As to the friction pressure drop, modified Kozeki's prediction which is based on the experimental data by Kozeki for coiled tubes, agreed the best with the experimental data. Modified Martinelli-Nelson's prediction which is based on Martinelli-Nelson's multiplier using Ito's equation for single-phase flow in coiled tube, agreed within 30%. The effect of coiled tube on the average heat transfer coefficients at boiling region were small, and the predictions for straight tube could also be applied to coiled tube. Schrock-Grossman's correlation agreed well with the experimental data at the pressures of lower than 3.5 MPa. It was suggested that dryout should be occurred at the quality of greater than 90% within the conditions of this report. (author)

  2. Automation in tube finishing bay

    International Nuclear Information System (INIS)

    Bhatnagar, Prateek; Satyadev, B.; Raghuraman, S.; Syama Sundara Rao, B.

    1997-01-01

    Automation concept in tube finishing bay, introduced after the final pass annealing of PHWR tubes resulted in integration of number of sub-systems in synchronisation with each other to produce final cut fuel tubes of specified length, tube finish etc. The tube finishing bay which was physically segregated into four distinct areas: 1. tube spreader and stacking area, 2. I.D. sand blasting area, 3. end conditioning, wad blowing, end capping and O.D. wet grinding area, 4. tube inspection, tube cutting and stacking area has been studied

  3. Signal Processing Variables for Optimization of Flaw Detection in Composites Using Ultrasonic Guided Wave Scanning

    Science.gov (United States)

    Roth, Don J.; Cosgriff, Laura M.; Martin, Richard E.; Teemer, LeTarrie

    2004-01-01

    This study analyzes the effect of signal processing variables on the ability of the ultrasonic guided wave scan method at NASA Glenn Research Center to distinguish various flaw conditions in ceramic matrix composites samples. In the ultrasonic guided wave scan method, several time- and frequency-domain parameters are calculated from the ultrasonic guided wave signal at each scan location to form images. The parameters include power spectral density, centroid mean time, total energy (zeroth moment), centroid frequency, and ultrasonic decay rate. A number of signal processing variables are available to the user when calculating these parameters. These signal processing variables include 1) the time portion of the time-domain waveform processed, 2) integration type for the properties requiring integrations, 3) bounded versus unbounded integrations, 4) power spectral density window type, 5) and the number of time segments chosen if using the short-time fourier transform to calculate ultrasonic decay rate. Flaw conditions examined included delamination, cracking, and density variation.

  4. Integrated straight - through automatic non-destructive examination and data acquisition system for thin-wall tubes

    International Nuclear Information System (INIS)

    Stoessel, A.; Boulanger, G.; Furlan, J.; Mogavero, R.

    1981-09-01

    This non-destructive testing unit inspects the cladding tubes for the SUPER-PHENIX fast neutron reactor. The quality level demanded for these tubes, as well as their number, required designing an installation that combined high performance with a great testing rate and complete automation. The testing is effected under immersion by means of six transducers, focused in line, working at 30 MHz. The tubes are numbered on an automatic rig; marking is by dark rings obtained by superficial electrolysis of the tube and regularly distributed on the abscissa; the quality of the tube is not affected by this. The advantage of this numbering system is that it enables the tubes to be fed to the test set in any order. An acquisition unit, constituted of a microprocessor, a semi-graphical printer and a double floppy disk unit, makes it possible to enter, edit and store the information for each tube [fr

  5. Detecting and revising flaws in OWL object property expressions

    CSIR Research Space (South Africa)

    Keet, CM

    2012-10-01

    Full Text Available identify the types of flaws that can occur in the object property box and propose corresponding compatibility services, SubProS and ProChainS, that check for meaningful property hierarchies and property chaining and propose how to revise a flaw. SubProS...

  6. Integrated ultrasonic inspection technology to meet the requirements of CANDU steam generators

    International Nuclear Information System (INIS)

    Chen, Z.; Maynard, K.; Chan, K.; Malkiewicz, T.; Prince, J.; Huggins, J.

    2009-01-01

    For over a decade, ultrasonic (UT) inspection techniques with TRUSTIE (Tiny Rotating UltraSonic Tube Inspection Equipment) have been providing inspection capability that can assess the severity of flaws in Steam Generator (SG) tubes, and accurately monitor their growth. TRUSTIE, a high-resolution ultrasonic imaging system specialized for small diameter tube inspection, plays an important role in CANDU Steam Generator life cycle management. The increasing demand for production-oriented outage management strategies is focused on shortening outage windows. Advanced technologies in the areas of data analysis, multi-element probes, high torque servo systems, and integrated fibre-optic cable networks are being integrated into the existing TRUSTIE system to meet the new and challenging inspection requirements. This paper presents an overview of the advanced technical developments and enhancements that are currently underway and being implemented for SG tube UT inspections in CANDU nuclear power plants. (author)

  7. Investigation of the radiation leakage from X ray flaw detectors and the improvement measures for the unqualified products

    International Nuclear Information System (INIS)

    Li Yiachun; Wu Yi; Pang Hu; Bai Bin

    1997-01-01

    The authors introduce investigation methods and results for radiation leakage from X ray flaw detectors, which are used in Beijing area. Total 21 sets of flaw detectors made in 8 factories in Beijing, Shanghai etc. have been tested, of which 16 sets made in Beijing, Dandong and Japan are gas cooling flaw detectors, and rest 5 sets made in Shanghai and Germany are water or oil cooling detectors. The air Kerma rate of leakage radiation at 1 m from the X ray tube target were measured by Type FJ-347A X, γ dosimeter. It can be seen from the results that, compared with the trade standard ZBY315-83, 5 sets of water or oil cooling flaw detectors are all qualified. However, only two sets of gas cooling detectors are qualified, and the radiation leakage of another 14 sets are over the values specified in the standard. The reason is analyzed, and some advices about the measures of improving radiation protection structure design and production technology for the unqualified products have been proposed

  8. Program to develop acoustic emission: flaw relationship for inservice monitoring of nuclear pressure vessels. Progress report No. 1, July 1, 1976--February 1, 1977

    International Nuclear Information System (INIS)

    Hutton, P.H.; Schwenk, E.B.

    1977-03-01

    This is a laboratory research program to characterize acoustic emission (AE) from flaw growth and noise from innocuous sources in A533B Class 1 pressure vessel steel. The objectives are: characterize AE from a limited range of defects and material property conditions of concern to reactor pressure vessel integrity; characterize AE from innocuous sources (including defects); develop criteria for distinguishing significant flaws from innocuous sources; and develop an AE flaw damage model to serve as a basis for relating in-service AE to pressure vessel integrity. The purpose of the program is to build an experimental evaluation of the feasibility of detecting and analyzing flaw growth in reactor pressure boundaries by continuously monitoring for AE. A detailed program plan in the form of an analysis-before-test document has been prepared and approved

  9. 3-D fracture analysis using a partial-reduced integration scheme

    International Nuclear Information System (INIS)

    Leitch, B.W.

    1987-01-01

    This paper presents details of 3-D elastic-plastic analyses of axially orientated external surface flaw in an internally pressurized thin-walled cylinder and discusses the variation of the J-integral values around the crack tip. A partial-reduced-integration-penalty method is introduced to minimize this variation of the J-integral near the crack tip. Utilizing 3-D symmetry, an eighth segment of a tube containing an elliptically shaped external surface flaw is modelled using 20-noded isoparametric elements. The crack-tip elements are collapsed to form a 1/r stress singularity about the curved crack front. The finite element model is subjected to internal pressure and axial pressure-generated loads. The virtual crack extension method is used to determine linear elastic stress intensity factors from the J-integral results at various points around the crack front. Despite the different material constants and the thinner wall thickness in this analysis, the elastic results compare favourably with those obtained by other researchers. The nonlinear stress-strain behaviour of the tube material is modelled using an incremental theory of plasticity. Variations of the J-integral values around the curved crack front of the 3-D flaw were seen. These variations could not be resolved by neglecting the immediate crack-tip elements J-integral results in favour of the more remote contour paths or else smoothed out when all the path results are averaged. Numerical incompatabilities in the 20-noded 3-D finite elements used to model the surface flaw were found. A partial-reduced integration scheme, using a combination of full and reduced integration elements, is proposed to determine J-integral results for 3-D fracture analyses. This procedure is applied to the analysis of an external semicircular surface flaw projecting halfway into the tube wall thickness. Examples of the J-integral values, before and after the partial-reduced integration method is employed, are given around the

  10. Eddy-current inspection of shuttle heat exchanger tube welds

    International Nuclear Information System (INIS)

    Dodd, C.V.; Scott, G.W.; Chitwood, L.D.

    1989-01-01

    This goal of this project was to develop the system necessary to demonstrate in the laboratory that an eddy-current system can inspect the tubes and welds described above, screening for the existence of flaws equal in size to, or larger than, the target flaw. The laboratory system was to include the probe necessary to traverse the tubing, the electronics to drive (i.e., electrically excite) the probe and receive and process signals from it, a data display, data recording and playback devices, and microprocessor software or firmware necessary to operate the system. 5 refs., 9 figs., 2 tabs

  11. Feeding Tubes

    Science.gov (United States)

    ... the TPN. Tubes Used for Enteral Feeds NG (Nasogastric Tube) A flexible tube is placed via the nose, ... portion of the small intestine Naso – nose NG – Nasogastric Tube -ostomy – new opening Percutaneous – through the skin PEJ – ...

  12. Development of computer based ultrasonic flaw detector for nondestructive testing

    International Nuclear Information System (INIS)

    Lee, Weon Heum; Kim, Jin Koo; Kim, Yang Rae; Choi, Kwan Sun; Kim, Sun Hyung; Lee, Sun Heum

    1996-01-01

    Ultrasonic Testing is one of the most widely used method of Nondestructive testing for Pre-Service Inspection(PSI) and In-Service Inspection(ISI) in the structure of Bridges, Power plants, chemical plants and heavy industrial fields. It is very important target to estimate safety, remain life, Quality Control of the Structure. Also, a lot of research for quantities evaluation and analysis inspection data is proceeding. But traditional portable ultrasonic flaw detector had been following disadvantages. 1) Analog ultrasonic flaw detector decreased credibility of ultrasonic test, because it is impossible for saying data and digital signal processing. 2) Stand-alone digital ultrasonic flaw detector cannot effectively evaluate received signals because of lack of its storage memory. To overcome this shortcoming, we develop the computer based ultrasonic flaw detector for nondestructive testing. It can store the received signal and effectively evaluate the signal, and then enhance the reliability of the testing results.

  13. Automatic surface flaw inspection of nuclear fuel pellets

    International Nuclear Information System (INIS)

    McLemore, D.R.; Nyman, D.H.; Wilks, R.S.

    1978-01-01

    The Hanford Engineering Development Laboratory (HEDL), operated by the Westinghouse Hanford Company, is developing automated equipment for fabrication and inspection of nuclear reactor fuels. One inspection process that has been evaluated is automatic surface flaw inspection of nuclear fuel pellets. The inspection technique involves projecting a well-defined spot of light onto the surface of a rotating pellet and collecting the light specularly reflected from the pellet's surface. The data form a binary description of the surface topography, which is then processed to identify and quantify flaw attributes before accept/reject decisions are made. The inspection apparatus is designed to operate at a rate of three pellets per second. A unique flaw interpretation algorithm is used to evaluate surface acceptability. The size and shape of a flaw is characterized by its area and by its area-to-perimeter ratio

  14. Non-Destructive Testing Methods Applied to Multi-Finned SAP Tubing for Nuclear-Fuel Elements

    International Nuclear Information System (INIS)

    Lund, S.A.; Knudsen, P.

    1965-01-01

    The Danish Atomic Energy Commission has undertaken a design study oi an organic-cooled, heavy- water-moderated power reactor. The fuel element for the reactor is a 19-rod bundle; the fuel rods contain sintered uranium-dioxide pellets canned in 2-m long, helically-finned tubes of Sintered Aluminium Product (SAP). A very high quality of the canning tubes is necessary to obtain the optimum heat-transfer conditions and to maintain the integrity of the fuel element during reactor service. Two examples of tube design illustrate the narrow dimensional tolerances. In order to ensure an adequate quality of the canning tubes, a stringent quality control has been established, to a wide extent based upon non-destructive methods. An account is presented of the non-destructive techniques developed for measuring wall thickness and diameters and for detecting defects. The complex 24-finned cross-section prevents the application of ultrasonic or eddy-current methods for wall-thickness measurements. Therefore, a special recording beta-gauge has been developed, based upon the attenuation of beta radiation from a Sr 90 source placed inside the tube. An ultrasonic immersion resonance method is used for the continuous recording of the wall thickness of the more simple 12-finned tube design. Inner and outer (across fin tips) diameters are continuously recorded by rapid air-gauge systems. Flaw detection is carried out by the ultrasonic pulse-echo immersion technique and by eddy-current inspection.. Transverse cracks can easily be detected by the ultrasonic method whereas inspection for longitudinal flaws has not appeared feasible with this method. Therefore, eddy-current inspection is applied in addition to the ultrasonic testing. (author) [fr

  15. A study on the dimensioning of flaws by acoustical holography

    International Nuclear Information System (INIS)

    Yamamoto, Michio; Ando, Tomozumi; Enami, Koji; Yajima, Minoru; Fukui, Shigetaka.

    1978-01-01

    As a means of evaluating the safety of flawed pressure vessels and other structures against fracture, fracture mechanics has come to be applied. For the application of fracture mechanics it is necessary to get information concerning the sizes and shapes of flaws. The ultrasonic flaw detection method that is widely used as a nondestructive inspection method cannot measure the sizes and shapes of flaws accurately. Considering that acoustical holography is an useful means for the dimensioning of flaws, we performed basic tests on this method and obtained the following results: (1) The measured values of artificial flaws (flat bottom drilled holes: 5 - 36 mm) made on a steel plate of 150 mm thick showed a good linear relation with their actual sizes and scatter in the measured values was +-3 - 6 mm. (2) The measured values of fatigue cracks (length: 5 - 57 mm) introduced into a steel plate of 150 mm thick also showed a good linear relation with their actual sizes and scatter in the measured values was +-3 mm. (3) It was found that acoustical holography can also be applied to heavy section cast steels. (4) The method of correcting distortion caused by curved surface was investigated by computer-aided simulation and it was considered that such distortion can be corrected by radial scanning of a transducer. (author)

  16. Phased array ultrasonic inspection method for homogeneous tube inspection over a wide oblique angle range

    Science.gov (United States)

    Lepage, Benoit; Painchaud-April, Guillaume

    2017-02-01

    As seamless tube manufacturers push quality requirements for their products, automated phased array Rotating Tube Inspection Systems (RTIS) are now required to provide continuous NDE detection performances over a wide angular range of oblique flaws. One major impact of this new reality is a paradigm shift for the calibration method use. This change is driven by the requirement to meet homogeneous detection over broad oblique flaw angle intervals, whereas standard practice only requires calibration at specific discrete angles. This paper presents an innovative method specifically designed to obtain high productivity and homogeneous inspection measurements over an oblique flaw range extending from -45 to 45 degrees. Experimental results from the application of the method on various tubes presenting multiple artificial flaws support the quantitative performance evaluation.

  17. Centrifugal LabTube platform for fully automated DNA purification and LAMP amplification based on an integrated, low-cost heating system.

    Science.gov (United States)

    Hoehl, Melanie M; Weißert, Michael; Dannenberg, Arne; Nesch, Thomas; Paust, Nils; von Stetten, Felix; Zengerle, Roland; Slocum, Alexander H; Steigert, Juergen

    2014-06-01

    This paper introduces a disposable battery-driven heating system for loop-mediated isothermal DNA amplification (LAMP) inside a centrifugally-driven DNA purification platform (LabTube). We demonstrate LabTube-based fully automated DNA purification of as low as 100 cell-equivalents of verotoxin-producing Escherichia coli (VTEC) in water, milk and apple juice in a laboratory centrifuge, followed by integrated and automated LAMP amplification with a reduction of hands-on time from 45 to 1 min. The heating system consists of two parallel SMD thick film resistors and a NTC as heating and temperature sensing elements. They are driven by a 3 V battery and controlled by a microcontroller. The LAMP reagents are stored in the elution chamber and the amplification starts immediately after the eluate is purged into the chamber. The LabTube, including a microcontroller-based heating system, demonstrates contamination-free and automated sample-to-answer nucleic acid testing within a laboratory centrifuge. The heating system can be easily parallelized within one LabTube and it is deployable for a variety of heating and electrical applications.

  18. Measuring weld heat to evaluate weld integrity

    Energy Technology Data Exchange (ETDEWEB)

    Schauder, V., E-mail: schauder@hks-prozesstechnik.de [HKS-Prozesstechnik GmbH, Halle (Germany)

    2015-11-15

    Eddy current and ultrasonic testing are suitable for tube and pipe mills and have been used for weld seam flaw detection for decades, but a new process, thermography, is an alternative. By measuring the heat signature of the weld seam as it cools, it provides information about weld integrity at and below the surface. The thermal processes used to join metals, such as plasma, induction, laser, and gas tungsten arc welding (GTAW), have improved since they were developed, and they get better with each passing year. However, no industrial process is perfect, so companies that conduct research in flaw detection likewise continue to develop and improve the technologies used to verify weld integrity: ultrasonic testing (UT), eddy current testing (ET), hydrostatic, X-ray, magnetic particle, and liquid penetrant are among the most common. Two of these are used for verifying the integrity of the continuous welds such as those used on pipe and tube mills: UT and ET. Each uses a transmitter to send waves of ultrasonic energy or electrical current through the material and a receiver (probe) to detect disturbances in the flow. The two processes often are combined to capitalize on the strengths of each. While ET is good at detecting flaws at or near the surface, UT penetrates the material, detecting subsurface flaws. One drawback is that sound waves and electrical current waves have a specific direction of travel, or an alignment. A linear defect that runs parallel to the direction of travel of the ultrasonic sound wave or a flaw that is parallel to the coil winding direction of the ET probe can go undetected. A second drawback is that they don't detect cold welds. An alternative process, thermography, works in a different fashion: It monitors the heat of the material as the weld cools. Although it measures the heat at the surface, the heat signature provides clues about cooling activity deep in the material, resulting in a thorough assessment of the weld's integrity It

  19. Savannah River reactor process water heat exchanger tube structural integrity margin Task Number 92-005-1

    International Nuclear Information System (INIS)

    Mertz, G.E.; Barnes, D.M.; Sindelar, R.L.

    1992-02-01

    Twelve process water heat exchangers are designed to remove heat generated in the reactor tank. Each heat exchanger has approximately 9000, 1/2 inch diameter x 0.049 inches thick tubes. Minimum structural tubing requirements and the leak rate through postulated tubing defects are developed in this report A comparison of the structural requirements and the defect size calculated to produce leak rates of 0.5 lbs./day demonstrate adequate structural margins against gross tube rupture. Commercial nuclear experience with pressurized water reactor (PWR) steam generator plugging criteria are used for guidance in performing this analysis. It is important to note that the SRS reactors are low energy systems with normal operating pressures of 203 psig at 130 degree F while the PWR is a high energy system with operating pressures near 2200 psig at 600 degree F. Clearly the PVM steam generator has loadings which are more severe than the SRS heat exchangers. Consistent with the Regulatory Guide 1.121 criteria both wastage (wall thinning) and cracking are addressed. Structural limits on wall thinning and crack size are developed to preclude gross rupture. ASME Section XI criteria, with the factors of safety recommended by Regulatory Guide 1.121 are used to develop the allowable crack size criteria. Normal operating conditions (pressure, dead weight, and hydraulic drag) are considered with seismic and water hammer accident conditions. Both the wall thinning and crack size criteria are developed for the end-of-evaluation period. Allowances for corrosion, wear, or crack growth have not been included in this analysis Structurally, the tubing is over designed and can tolerate large defects with adequate margins against gross rupture. The structural margins of heat exchanger tubing are evident by contrasting the tubing's structural capacity, per the ASME Code, with its operating conditions/configuration

  20. Probabilistic fracture mechanics applied for DHC assessment in the cool-down transients for CANDU pressure tubes

    International Nuclear Information System (INIS)

    Radu, Vasile; Roth, Maria

    2012-01-01

    For CANDU pressure tubes made from Zr–2.5%Nb alloy, the mechanism called delayed hydride cracking (DHC) is widely recognized as main mechanism responsible for crack initiation and propagation in the pipe wall. Generation of some blunt flaws at the inner pressure tube surface during refueling by fuel bundle bearing pad or by debris fretting, combined with hydrogen/deuterium up-take (20–40 ppm) from normal corrosion process with coolant, may lead to crack initiation and growth. The process is governed by hydrogen hysteresis of terminal solid solubility limits in Zirconium and the diffusion of hydrogen atoms in the stress gradient near to a stress spot (flaw). Creep and irradiation growth under normal operating conditions promote the specific mechanisms for Zirconium alloys, which result in circumferential expansion, accompanied by wall thinning and length increasing. These complicate damage mechanisms in the case of CANDU pressure tubes that are also are affected by irradiation environment in the reactor core. The structural integrity assessment of CANDU fuel channels is based on the technical requirements and methodology stated in the Canadian Standard N285.8. Usually it works with fracture mechanics principles in a deterministic manner. However, there are inherent uncertainties from the in-service inspection, which are associated with those from material properties determination; therefore a necessary conservatism in deterministic evaluation should be used. Probabilistic approach, based on fracture mechanics principle and appropriate limit state functions defined as fracture criteria, appears as a promising complementary way to evaluate structural integrity of CANDU pressure tubes. To perform this, one has to account for the uncertainties that are associated with the main parameters for pressure tube assessment, such as: flaws distribution and sizing, initial hydrogen concentration, fracture toughness, DHC rate and dimensional changes induced by long term

  1. Integrative proteomic and cytological analysis of the effects of extracellular Ca(2+) influx on Pinus bungeana pollen tube development.

    Science.gov (United States)

    Wu, Xiaoqin; Chen, Tong; Zheng, Maozhong; Chen, Yanmei; Teng, Nianjun; Samaj, Jozef; Baluska, Frantisek; Lin, Jinxing

    2008-10-01

    Ca (2+) is an essential ion in the control of pollen germination and tube growth. However, the control of pollen tube development by Ca (2+) signaling and its interactions with cytoskeletal components, energy-providing pathways, and cell-expansion machinery remain elusive. Here, we used nifedipine (Nif) to study Ca (2+) functions in differential protein expression and other cellular processes in Pinus bungeana pollen tube growth. Proteomics analysis indicated that 50 proteins showed differential expression with varying doses of Nif. Thirty-four of these were homologous to previously reported proteins and were classified into different functional categories closely related to tip-growth machinery. Blocking the L-type Ca (2+) channel with Nif in the pollen tube membrane induced several early alterations within a short time, including a reduction of extracellular Ca (2+) influx and a subsequently dramatic decrease in cytosolic free Ca (2+) concentration ([Ca (2+)] c), concomitant with ultrastructural abnormalities and changes in the abundance of proteins involved in energy production and signaling. Secondary alterations included actin filament depolymerization, disrupted patterns of endocytosis/exocytosis, and cell wall remodeling, along with changes in the proteins involved in these processes. These results suggested that extracellular Ca (2+) influx was necessary for the maintenance of the typical tip-focused [Ca (2+)] c gradient in the P. bungeana pollen tube, and that reduced adenosine triphosphate production (ATP), depolymerization of the cytoskeleton, and abnormal endocytosis/exocytosis, together with enhanced rigidity of cell walls, were responsible for the growth arrest observed in pollen tubes treated with Nif.

  2. Critical flaw size in silicon nitride ball bearings

    Science.gov (United States)

    Levesque, George Arthur

    Aircraft engine and bearing manufacturers have been aggressively pursuing advanced materials technology systems solutions to meet main shaft-bearing needs of advanced military aircraft engines. Ceramic silicon nitride hybrid bearings are being developed for such high performance applications. Though silicon nitride exhibits many favorable properties such as high compressive strength, high hardness, a third of the density of steel, low coefficient of thermal expansion, and high corrosion and temperature resistance, they also have low fracture toughness and are susceptible to failure from fatigue spalls emanating from pre-existing surface flaws that can grow under rolling contact fatigue (RCF). Rolling elements and raceways are among the most demanding components in aircraft engines due to a combination of high cyclic contact stresses, long expected component lifetimes, corrosive environment, and the high consequence of fatigue failure. The cost of these rolling elements increases exponentially with the decrease in allowable flaw size for service applications. Hence the range of 3D non-planar surface flaw geometries subject to RCF is simulated to determine the critical flaw size (CFS) or the largest allowable flaw that does not grow under service conditions. This dissertation is a numerical and experimental investigation of surface flaws in ceramic balls subjected to RCF and has resulted in the following analyses: Crack Shape Determination: the nucleation of surface flaws from ball impact that occurs during the manufacturing process is simulated. By examining the subsurface Hertzian stresses between contacting spheres, their applicability to predicting and characterizing crack size and shape is established. It is demonstrated that a wide range of cone and partial cone cracks, observed in practice, can be generated using the proposed approaches. RCF Simulation: the procedure and concerns in modeling nonplanar 3D cracks subject to RCF using FEA for stress intensity

  3. Probabilistic assessment of critically flawed LMFBR PHTS piping elbows

    International Nuclear Information System (INIS)

    Balkey, K.R.; Wallace, I.T.; Vaurio, J.K.

    1982-01-01

    One of the important functions of the Primary Heat Transport System (PHTS) of a large Liquid Metal Fast Breeder Reactor (LMFBR) plant is to contain the circulating radioactive sodium in components and piping routed through inerted areas within the containment building. A significant possible failure mode of this vital system is the development of cracks in the piping components. This paper presents results from the probabilistic assessment of postulated flaws in the most-critical piping elbow of each piping leg. The criticality of calculated maximum sized flaws is assessed against an estimated material fracture toughness to determine safety factors and failure probability estimates using stress-strength interference theory. Subsequently, a different approach is also employed in which the randomness of the initial flaw size and loading are more-rigorously taken into account. This latter approach yields much smaller probability of failure values when compared to the stress-strength interference analysis results

  4. Improved Flaw Detection and Characterization with Difference Thermography

    Science.gov (United States)

    Winfree, William P.; Zalameda, Joseph N.; Howell, Patricia A.

    2011-01-01

    Flaw detection and characterization with thermographic techniques in graphite polymer composites is often limited by localized variations in the thermographic response. Variations in properties such as acceptable porosity, variations in fiber volume content and surface polymer thickness result in variations in the thermal response that in general cause significant variations in the initial thermal response. These variations result in a noise floor that increases the difficulty of detecting and characterizing deeper flaws. The paper investigates comparing thermographic responses taken before and after a change in state in a composite to improve the detection of subsurface flaws. A method is presented for registration of the responses before finding the difference. A significant improvement in the detectability is achieved by comparing the differences in response. Examples of changes in state due to application of a load and impact are presented.

  5. Remote Field Eddy Curent Signal Modeling for the Gap Measurement of Neighboring Tubes

    Science.gov (United States)

    Jung, H. K.; Lee, D. H.; Lee, Y. S.

    2005-04-01

    The fuel channels in the Canadian Deuterium Uranium (CANDU) reactor consist of the coaxial pressure tube (PT) and the calandria tube (CT). The Liquid injection nozzle (LIN) is cross aligned with the fuel channel to control the reactor by injecting poison. For a safe operation, the gap between the LIN and CT should be maintained in order to prevent a contact of the neighboring tubes. The remote field eddy current (RFEC) method was applied to measure the gap between a nonmagnetic Zircaloy-2 liquid injection nozzle (LIN) and a Zircaloy-2 calandria tube. Under the condition of inserting the RFEC probe into the coaxial tubes and of crossing a LIN above or under the CT, the modeling of a LIN signal is needed to check the possibility of a gap measurement. The Volume Integral Code S/W which covers the axi-symmetric 3D configuration has been very rarely applied to obtain a LIN signal. This problem was solved by assuming a LIN as a flaw which can be described as a complete 3D object. This simulated LIN signal was verified by performing the laboratory experiment. The gap between the LIN and CT can be correlated with the amplitude of the LIN signals in the voltage plane. Typical noises in the fuel channel were the relative constriction, the change in the pressure tube diameter (fill-factor), thickness variation, and so on. These noise signals were simulated by using the modeling and were analyzed by considering their dependency on the phase angle and amplitude of the voltage plane in order to separate the gap signal from them. It could be concluded that the voltage plane analysis of the simulated RFEC signals were effective for obtaining the gap measurement of the neighboring tube.

  6. Integration of signals along orthogonal axes of the vertebrate neural tube controls progenitor competence and increases cell diversity.

    Directory of Open Access Journals (Sweden)

    Noriaki Sasai

    2014-07-01

    Full Text Available A relatively small number of signals are responsible for the variety and pattern of cell types generated in developing embryos. In part this is achieved by exploiting differences in the concentration or duration of signaling to increase cellular diversity. In addition, however, changes in cellular competence-temporal shifts in the response of cells to a signal-contribute to the array of cell types generated. Here we investigate how these two mechanisms are combined in the vertebrate neural tube to increase the range of cell types and deliver spatial control over their location. We provide evidence that FGF signaling emanating from the posterior of the embryo controls a change in competence of neural progenitors to Shh and BMP, the two morphogens that are responsible for patterning the ventral and dorsal regions of the neural tube, respectively. Newly generated neural progenitors are exposed to FGF signaling, and this maintains the expression of the Nk1-class transcription factor Nkx1.2. Ventrally, this acts in combination with the Shh-induced transcription factor FoxA2 to specify floor plate cells and dorsally in combination with BMP signaling to induce neural crest cells. As development progresses, the intersection of FGF with BMP and Shh signals is interrupted by axis elongation, resulting in the loss of Nkx1.2 expression and allowing the induction of ventral and dorsal interneuron progenitors by Shh and BMP signaling to supervene. Hence a similar mechanism increases cell type diversity at both dorsal and ventral poles of the neural tube. Together these data reveal that tissue morphogenesis produces changes in the coincidence of signals acting along orthogonal axes of the neural tube and this is used to define spatial and temporal transitions in the competence of cells to interpret morphogen signaling.

  7. Statistical flaw strength distributions for glass fibres: Correlation between bundle test and AFM-derived flaw size density functions

    International Nuclear Information System (INIS)

    Foray, G.; Descamps-Mandine, A.; R’Mili, M.; Lamon, J.

    2012-01-01

    The present paper investigates glass fibre flaw size distributions. Two commercial fibre grades (HP and HD) mainly used in cement-based composite reinforcement were studied. Glass fibre fractography is a difficult and time consuming exercise, and thus is seldom carried out. An approach based on tensile tests on multifilament bundles and examination of the fibre surface by atomic force microscopy (AFM) was used. Bundles of more than 500 single filaments each were tested. Thus a statistically significant database of failure data was built up for the HP and HD glass fibres. Gaussian flaw distributions were derived from the filament tensile strength data or extracted from the AFM images. The two distributions were compared. Defect sizes computed from raw AFM images agreed reasonably well with those derived from tensile strength data. Finally, the pertinence of a Gaussian distribution was discussed. The alternative Pareto distribution provided a fair approximation when dealing with AFM flaw size.

  8. CANDU fuel sheath integrity and oxide layer thickness determination by Eddy current technique

    International Nuclear Information System (INIS)

    Gheorghe, Gabriela; Man, Ion; Parvan, Marcel; Valeca, Serban

    2010-01-01

    This paper presents results concerning the integrity assessment of the fuel elements cladding and measurements of the oxide layer on sheaths, using the eddy current technique. Flaw detection using eddy current provides information about the integrity of fuel element sheath or presence of defects in the sheath produced by irradiation. The control equipment consists of a flaw detector with eddy currents, operable in the frequency range 10 Hz to 10 MHz, and a differential probe. The calibration of the flaw detector is done using artificial defects (longitudinal, transversal, external and internal notches, bored and unbored holes) obtained on Zircaloy-4 tubes identical to those out of which the sheath of the CANDU fuel element is manufactured (having a diameter of 13.08 mm and a wall thickness of 0.4 mm). When analyzing the behavior of the fuel elements' cladding facing the corrosion is important to know the thickness of the zirconium oxide layer. The calibration of the device measuring the thickness of the oxide layer is done using a Zircaloy-4 tube identical to that which the cladding of the CANDU fuel element is manufactured of, and calibration foils, as well. (authors)

  9. Risk assessment of severe accident-induced steam generator tube rupture

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    This report describes the basis, results, and related risk implications of an analysis performed by an ad hoc working group of the U.S. Nuclear Regulatory Commission (NRC) to assess the containment bypass potential attributable to steam generator tube rupture (SGTR) induced by severe accident conditions. The SGTR Severe Accident Working Group, comprised of staff members from the NRC`s Offices of Nuclear Reactor Regulation (NRR) and Nuclear Regulatory Research (RES), undertook the analysis beginning in December 1995 to support a proposed steam generator integrity rule. The work drew upon previous risk and thermal-hydraulic analyses of core damage sequences, with a focus on the Surry plant as a representative example. This analysis yielded new results, however, derived by predicting thermal-hydraulic conditions of selected severe accident scenarios using the SCDAP/RELAP5 computer code, flawed tube failure modeling, and tube failure probability estimates. These results, in terms of containment bypass probability, form the basis for the findings presented in this report. The representative calculation using Surry plant data indicates that some existing plants could be vulnerable to containment bypass resulting from tube failure during severe accidents. To specifically identify the population of plants that may pose a significant bypass risk would require more definitive analysis considering uncertainties in some assumptions and plant- and design-specific variables. 46 refs., 62 figs., 37 tabs.

  10. Risk assessment of severe accident-induced steam generator tube rupture

    International Nuclear Information System (INIS)

    1998-03-01

    This report describes the basis, results, and related risk implications of an analysis performed by an ad hoc working group of the U.S. Nuclear Regulatory Commission (NRC) to assess the containment bypass potential attributable to steam generator tube rupture (SGTR) induced by severe accident conditions. The SGTR Severe Accident Working Group, comprised of staff members from the NRC's Offices of Nuclear Reactor Regulation (NRR) and Nuclear Regulatory Research (RES), undertook the analysis beginning in December 1995 to support a proposed steam generator integrity rule. The work drew upon previous risk and thermal-hydraulic analyses of core damage sequences, with a focus on the Surry plant as a representative example. This analysis yielded new results, however, derived by predicting thermal-hydraulic conditions of selected severe accident scenarios using the SCDAP/RELAP5 computer code, flawed tube failure modeling, and tube failure probability estimates. These results, in terms of containment bypass probability, form the basis for the findings presented in this report. The representative calculation using Surry plant data indicates that some existing plants could be vulnerable to containment bypass resulting from tube failure during severe accidents. To specifically identify the population of plants that may pose a significant bypass risk would require more definitive analysis considering uncertainties in some assumptions and plant- and design-specific variables. 46 refs., 62 figs., 37 tabs

  11. Development of the double-wall-tube steam generator. Evaluation of inner tube leak detection system

    International Nuclear Information System (INIS)

    Teraoku, Takuji; Kisohara, Naoyuki

    1995-01-01

    A double-wall-tube steam generator (DWT-SG) is considered to have possibility of eliminating a secondary heat transport system to realize a reliable and simplified FBR plant. Thus, basic tests for inner/outer tube leak detection and prototypical leak tests by use of the 1MWt DWT-SG model have been performed to evaluate the feasibility of DWT-SG. Their results demonstrated that the inner leak detection system can definitely detect a steam leak from an inner tube flaw. Analyses of the inner tube leak and detection behavior obtained in the 1MWt DWT-SG test enabled to estimate the performance of the inner tube detection system of the commercial DWT-SG system. (author)

  12. Investigation of reliability of EC method for inspection of VVER steam generator tubes

    International Nuclear Information System (INIS)

    Corak, Z.

    2004-01-01

    Complete and accurate non-destructive examinations (NDE) data provides the basis for performing mitigating actions and corrective repairs. It is important that detection and characterization of flaws are done properly at an early stage. EPRI Document PWR Steam Generator Examination Guidelines recommends an approach that is intended to provide the following: Ensure accurate assessment of steam generator tube integrity; Extend the reliable, cost effective, operating life of the steam generators, and Maximize the availability of the unit. Steam Generator Eddy Current Data Analysis Performance Demonstration represents the culmination of the intense two-year industry effort in the development of a performance demonstration program for eddy current testing (ECT) of steam generator tubing. It is referred to as the Industry Database (IDB) and provides a capability for individual organizations to implement SG ECT performance demonstration programs in accordance with the requirements specified in Appendices G and H of the ISI Guidelines. The Appendix G of EPRI Document PWR Steam Generator Examination Guidelines specifies personnel training and qualification requirements for NDE personnel who analyze NDE data for PWR steam generator tubing. Its purpose is to insure a continuing uniform knowledge base and skill level for data analysis. The European methodology document is intended to provide a general framework for development of qualifications for the inspection of specific components to ensure they are developed in a consistent way throughout Europe while still allowing qualification to be tailored in detail to meet different nation requirements. In the European methodology document one will not find a detailed description of how the inspection of a specific component should be qualified. A recommended practice is a document produced by ENIQ to support the production of detailed qualification procedures by individual countries. VVER SG tubes are inspected by EC method but a

  13. Vibration and wear characteristics of steam generator tubes

    International Nuclear Information System (INIS)

    Choi, Young Hwan

    2003-06-01

    This study investigates the fluid elastic instability characteristics of Steam Generator (SG) U-tubes with defect and the safety assessment of the potential for fretting-wear damages on Steam Generator (SG) U-tubes caused by foreign object in operating nuclear power plants. The operating SG shell-side flow field conditions for determining the fluid elastic instability or fretting-wear parameters such as damping ratio, added mass and flow velocity are obtained from three-dimensional SG flow calculation using the ATHOS3 code. To get the natural frequency, corresponding mode shape and participation factor, modal analyses are performed for the U-tubes either with axial or circumferential flaw with different sizes. Special emphases are on the effects of flaw orientation and size on the modal and instability characteristics of tubes, which are expressed in terms of the natural frequency, corresponding mode shape and stability ratio. Also, the wear rate of U-tube caused by foreign object is calculated using the Archard formula and the remaining life of the tube is predicted, and discussed in this study is the effect of the flow velocity and vibration of the tube on the remaining life of the tube. In addition, addressed is the effect of the internal pressure on the vibration and fretting-wear characteristics of the tube

  14. Detecting and Preventing Type flaws at Static Time

    DEFF Research Database (Denmark)

    Bodei, Chiara; Brodo, Linda; Degano, Pierpaolo

    2010-01-01

    A type flaw attack on a security protocol is an attack where an honest principal is cheated on interpreting a field in a message as the one with a type other than the intended one. In this paper, we shall present an extension of the LYSA calculus to cope with types, by using tags to represent...

  15. Gas and Oil Flow through Wellbore Flaws

    Science.gov (United States)

    Hatambeigi, M.; Anwar, I.; Reda Taha, M.; Bettin, G.; Chojnicki, K. N.; Stormont, J.

    2017-12-01

    We have measured gas and oil flow through laboratory samples that represent two important potential flow paths in wellbores associated with the Strategic Petroleum Reserve (SPR): cement-steel interfaces (microannuli) and cement fractures. Cement fractures were created by tensile splitting of cement cores. Samples to represent microannuli were created by placing thin steel sheets within split cement cores so flow is channeled along the cement-steel interface. The test sequence included alternating gas and oil flow measurements. The test fluids were nitrogen and silicone oil with properties similar to a typical crude oil stored in the SPR. After correcting for non-linear (inertial) flow when necessary, flows were interpreted as effective permeability and hydraulic aperture using the cubic law. For both samples with cement fractures and those with cement-steel interfaces, initial gas and oil permeabilities were comparable. Once saturated with oil, a displacement pressure had to be overcome to establish gas flow through a sample, and the subsequent gas permeability were reduced by more than 50% compared to its initial value. Keywords: wellbore integrity, leakage, fracture, microannulus, SPR. Sandia National Laboratories is a multi-mission laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of NTESS/Honeywell, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND2017-8168 A

  16. Determination of K-factors for arbitrarily shaped flaws at pressure vessel nozzle corners

    International Nuclear Information System (INIS)

    Bryson, J.W.

    1979-01-01

    Photoelastic and finite element studies are being conducted to determine Mode I stress intensity factor distributions along arbitrarily shaped flaw fronts at pressure vessel nozzle corners. Comparisons of results from NOZ-FLAW, BIGIF, and the photoelastic studies showed that (1) good agreement was obtained between NOZ-FLAW and the photoelastically determined K 1 's for the deep flaw in an ITV model, (2) good agreement was obtained between NOZ-FLAW BIGIF for shallow and moderately deep flaws in a BWR model, and (3) less satisfactory agreement was obtained between NOZ- FLAW and the photoelastic results for the BWR models, particularly for moderately deep to deep flaws. Attempts are presently being made at understanding and explaining the discrepancies between the two

  17. Electromagnetic methods for measuring materials properties of cylindrical rods and array probes for rapid flaw inspection

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Haiyan [Iowa State Univ., Ames, IA (United States)

    2005-01-01

    field in the presence of a finite a two-layer rod and a conductive tube. The results are in very good agreement with those obtained by using a 2D finite element code. In the third part, a new probe technology with enhanced flaw detection capability is described. The new probe can reduce inspection time through the use of multiple Hall sensors. A prototype Hall array probe has been built and tested with eight individual Hall sensor ICs and a racetrack coil. Electronic hardware was developed to interface the probes to an oscilloscope or an eddy current instrument. To achieve high spatial resolution and to limit the overall probe size, high-sensitivity Hall sensor arrays were fabricated directly on a wafer using photolithographic techniques and then mounted in their unencapsulated form. The electronic hardware was then updated to interface the new probes to a laptop computer.

  18. Acoustic emission/flaw relationships for inservice monitoring of LWRs

    International Nuclear Information System (INIS)

    Hutton, P.H.; Kurtz, R.J.; Friesel, M.A.; Skorpik, J.R.; Dawson, J.F.

    1991-10-01

    The program concerning Acoustic Emission/Flaw Relationships for Inservice Monitoring of LWRs was initiated in FY76 with the objective of validating the application of acoustic emission (AE) to monitor nuclear reactor pressure-containing components during operation to detect cracking. The program has been supported by the US Nuclear Regulatory Commission, Office of Nuclear Regulatory Research. Research and development has been performed by Pacific Northwest Laboratory, operated for the Department of Energy by Battelle Memorial Institute. The program has shown the feasibility of continuous, on-line AE monitoring to detect crack growth and produced validated methods for applying the technology. Included are relationships for estimating flaw severity from AE data and field applications at Watts Bar Unit 1 Reactor, Limerick Unit 1 Reactor, and the High Flux Isotope Reactor. This report discusses the program scope and organization, the three program phases and the results obtained, standard and code activities, and instrumentation and software developed under this program

  19. Current sample size conventions: Flaws, harms, and alternatives

    Directory of Open Access Journals (Sweden)

    Bacchetti Peter

    2010-03-01

    Full Text Available Abstract Background The belief remains widespread that medical research studies must have statistical power of at least 80% in order to be scientifically sound, and peer reviewers often question whether power is high enough. Discussion This requirement and the methods for meeting it have severe flaws. Notably, the true nature of how sample size influences a study's projected scientific or practical value precludes any meaningful blanket designation of value of information methods, simple choices based on cost or feasibility that have recently been justified, sensitivity analyses that examine a meaningful array of possible findings, and following previous analogous studies. To promote more rational approaches, research training should cover the issues presented here, peer reviewers should be extremely careful before raising issues of "inadequate" sample size, and reports of completed studies should not discuss power. Summary Common conventions and expectations concerning sample size are deeply flawed, cause serious harm to the research process, and should be replaced by more rational alternatives.

  20. Flaw imaging device for ultrasonic inspection of thick welds

    International Nuclear Information System (INIS)

    Wu, N.S.; Shi, J.H.

    1985-01-01

    This paper describes an ultrasonic imaging method and device for the inspection of thick welds in pressure vessels and nuclear power equipments. With the aid of micro-computer, flaw images can be presented in B-scan, C-scan, P-scan or quasi three-dimensional display. In the quasi-3D display, the tested object can be observed from any arbitrary angle of view

  1. Recent changes in French flaw evaluation procedures: RSE-M

    International Nuclear Information System (INIS)

    Faidy, C.

    2001-01-01

    After a general presentation of the RSE-M, the French Code which describes the rules for in-service inspection of nuclear power plant components, this paper will be focused on the major new developments of the flaw evaluation procedure: critical crack size evaluation, material properties, safety factors and the major validation tasks done to support the RSE-M, edition 2000. The paper will conclude on on-going development in this area. (author)

  2. Estimation of Back-Surface Flaw Depth by Laminated Piezoelectric Highpolymer Film

    Directory of Open Access Journals (Sweden)

    Akinobu YAMAMOTO

    2009-08-01

    Full Text Available Piezoelectric thin films have been used to visualize back surface flaws in plates. If the plate with a surface flaw is deformed, the strain distribution appears on the other surface reflecting the location and the shape of the flaw. Such surface strain distribution can be transformed into the electric potential distribution on the piezoelectric film mounted on the plate surface. This paper deals with a NDE technique to estimate the depth of a back-surface flaw from the electric potential distribution on a laminated piezoelectric thin film. It is experimentally verified that the flaw depth can be exactly estimated by the peak height of the electric potential distribution.

  3. Development and validation of a simulation tool dedicated to eddy current non destructive testing of tubes

    International Nuclear Information System (INIS)

    Reboud, Ch.

    2006-09-01

    Eddy current testing (ECT) technique is widely used in industrial fields such as iron and steel industry. Dedicated simulation tools provide a great assistance for the optimisation of ECT processes. CEA and the Vallourec Research Center have collaborated in order to develop a simulation tool of ECT of tubes. The volume integral method has been chosen for the resolution of Maxwell equations in a stratified medium, in order to get accurate results with a computation time short enough to carry out optimisation or inversion procedures. A fast model has been developed for the simulation of ECT of non magnetic tubes using specific external probes. New flaw geometries have been modelled: holes and notches with flat bottom. Validations of the developments, which have been integrated to the CIVA platform, have been carried out using experimental data recorded in laboratory conditions and in. industrial conditions, successively. The integral equations derived are solved using the Galerkin variant of the method of moments with pulse functions as projection functions. In order to overcome some memory limitations, other projection functions have been considered. A new discretization scheme based on non-uniform B-Splines of degree 1 or 2 has been implemented, which constitutes an original contribution to the existing literature. The decrease of the mesh size needed to get a given accuracy on the result may lead to the simulation of more complex ECT configurations. (author)

  4. Validation of favor code linear elastic fracture solutions for finite-length flaw geometries

    International Nuclear Information System (INIS)

    Dickson, T.L.; Keeney, J.A.; Bryson, J.W.

    1995-01-01

    One of the current tasks within the US Nuclear Regulatory Commission (NRC)-funded Heavy Section Steel Technology Program (HSST) at Oak Ridge National Laboratory (ORNL) is the continuing development of the FAVOR (Fracture, analysis of Vessels: Oak Ridge) computer code. FAVOR performs structural integrity analyses of embrittled nuclear reactor pressure vessels (RPVs) with stainless steel cladding, to evaluate compliance with the applicable regulatory criteria. Since the initial release of FAVOR, the HSST program has continued to enhance the capabilities of the FAVOR code. ABAQUS, a nuclear quality assurance certified (NQA-1) general multidimensional finite element code with fracture mechanics capabilities, was used to generate a database of stress-intensity-factor influence coefficients (SIFICs) for a range of axially and circumferentially oriented semielliptical inner-surface flaw geometries applicable to RPVs with an internal radius (Ri) to wall thickness (w) ratio of 10. This database of SIRCs has been incorporated into a development version of FAVOR, providing it with the capability to perform deterministic and probabilistic fracture analyses of RPVs subjected to transients, such as pressurized thermal shock (PTS), for various flaw geometries. This paper discusses the SIFIC database, comparisons with other investigators, and some of the benchmark verification problem specifications and solutions

  5. Analysis of potential for jet-impingement erosion from leaking steam generator tubes during severe accidents

    International Nuclear Information System (INIS)

    Majumdar, S.; Diercks, D. R.; Shack, W. J.

    2002-01-01

    This report summarizes analytical evaluation of crack-opening areas and leak rates of superheated steam through flaws in steam generator tubes and erosion of neighboring tubes due to jet impingement of superheated steam with entrained particles from core debris created during severe accidents. An analytical model for calculating crack-opening area as a function of time and temperature was validated with tests on tubes with machined flaws. A three-dimensional computational fluid dynamics code was used to calculate the jet velocity impinging on neighboring tubes as a function of tube spacing and crack-opening area. Erosion tests were conducted in a high-temperature, high-velocity erosion rig at the University of Cincinnati, using micrometer-sized nickel particles mixed in with high-temperature gas from a burner. The erosion results, together with analytical models, were used to estimate the erosive effects of superheated steam with entrained aerosols from the core during severe accidents

  6. Testing external surface of fuel element tubes for power nuclear reactors

    International Nuclear Information System (INIS)

    Naugol'nykh, O.G.; Nelyubin, Yu.V.

    1987-01-01

    Optical methods are regarded perspective for discovery and detection of flaws of external surfaces of fuel element tubes. The TV method has highest information content among them. Two mock-ups of facilities based on the TV method using a ''dissector'' type TV device and a TV tube with charge accumulation (vidikon) have been developed. It is concluded that complex testing - combination of ultrasonic, photoelectric and TV methods in a facility is necessary for discovery and analysis of the whole variety of flaws, though sensitivity of the TV method is enough for disclosure of all the main defects

  7. Proceedings of the twenty-fourth water reactor safety information meeting. Volume 2: Reactor pressure vessel embrittlement and thermal annealing; Reactor vessel lower head integrity; Evaluation and projection of steam generator tube condition and integrity

    Energy Technology Data Exchange (ETDEWEB)

    Monteleone, S. [comp.] [Brookhaven National Lab., Upton, NY (United States)

    1997-02-01

    This three-volume report contains papers presented at the Twenty-Fourth Water Reactor Safety Information Meeting held at the Bethesda Marriott Hotel, Bethesda, Maryland, October 21--23, 1996. The papers are printed in the order of their presentation in each session and describe progress and results of programs in nuclear safety research conducted in this country and abroad. Foreign participation in the meeting included papers presented by researchers from Czech Republic, Finland, France, Japan, Norway, Russia and United Kingdom. This volume is divided into the following sections: reactor pressure vessel embrittlement and thermal annealing; reactor vessel lower head integrity; and evaluation and projection of steam generator tube condition and integrity. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database.

  8. Proceedings of the twenty-fourth water reactor safety information meeting. Volume 2: Reactor pressure vessel embrittlement and thermal annealing; Reactor vessel lower head integrity; Evaluation and projection of steam generator tube condition and integrity

    International Nuclear Information System (INIS)

    Monteleone, S.

    1997-02-01

    This three-volume report contains papers presented at the Twenty-Fourth Water Reactor Safety Information Meeting held at the Bethesda Marriott Hotel, Bethesda, Maryland, October 21--23, 1996. The papers are printed in the order of their presentation in each session and describe progress and results of programs in nuclear safety research conducted in this country and abroad. Foreign participation in the meeting included papers presented by researchers from Czech Republic, Finland, France, Japan, Norway, Russia and United Kingdom. This volume is divided into the following sections: reactor pressure vessel embrittlement and thermal annealing; reactor vessel lower head integrity; and evaluation and projection of steam generator tube condition and integrity. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database

  9. Structural integrity aspects of reactor safety

    Indian Academy of Sciences (India)

    This is assessed by applying fracture mechanics principles. A number of methods are available to assess the integrity of flawed structures. The failure criterion in most of these methods is either fracture based or is plastic instability based. In order to ascertain the integrity of a flawed structure one has to perform two analyses, ...

  10. Working session 2: Tubing inspection

    International Nuclear Information System (INIS)

    Guerra, J.; Tapping, R.L.

    1997-01-01

    This session was attended by delegates from 10 countries, and four papers were presented. A wide range of issues was tabled for discussion. Realizing that there was limited time available for more detailed discussion, three topics were chosen for the more detailed discussion: circumferential cracking, performance demonstration (to focus on POD and sizing), and limits of methods. Two other subsessions were organized: one dealt with some challenges related to the robustness of current inspection methods, especially with respect to leaving cracked tubes in service, and the other with developing a chart of current NDE technology with recommendations for future development. These three areas are summarized in turn, along with conclusions and/or recommendations. During the discussions there were four presentations. There were two (Canada, Japan) on eddy current probe developments, both of which addressed multiarray probes that would detect a range of flaws, one (Spain) on circumferential crack detection, and one (JRC, Petten) on the recent PISC III results

  11. Rejection index for pressure tubes

    International Nuclear Information System (INIS)

    Mitchell, A.B.; Meneley, D.

    1989-10-01

    The objective of the present study was to establish a set of criteria (or Rejection Index) which could be used to decide whether a zirconium-2 1/2 w/o niobium pressure tube in a CANDU reactor should be removed from service due to in-service degradation. A critique of key issues associated with establishing a realistic rejection index was prepared. Areas of uncertainty in available information were identified and recommendations for further analysis and laboratory testing made. A Rejection Index based on the following limits has been recommended: 1) Limits related to design intent and normal operation: any garter spring must remain within the tolerance band specified for its design location; the annulus gas system must normally be operated in a circulating mode with a procedure in place for purging to prevent accumulation of deuterium. It must remain sensitive to leaks into any part of the systems; and pressure tube dimensions and distortions must be limited to maintain the fuel channels within the original design intent; 2) Limits related to defect tolerance: adequate time margins between occurrence of a leaking crack and unstable failure must be demonstrated for all fuel channels; long lap-type flaws are unacceptable; crack-like defects of any size are unacceptable; and score marks, frat marks and other defects with contoured profiles must fall below certain depth, length and stress intensity limits; and 3) Limits related to property degradation: at operating temperature each pressure tube must be demonstrated to have a critical length in excess of a stipulated value; the maximum equivalent hydrogen level in any pressure tube should not exceed a limit which should be defined taking into account the known history of that tube; the maximum equivalent hydrogen level in any rolled joint should not exceed a limit which is presently recommended as 200 ppm equivalent hydrogen; and the maximum diametral creep strain should be limited to less than 5%

  12. Enrichment and Ranking of the YouTube Tag Space and Integration with the Linked Data Cloud

    Science.gov (United States)

    Choudhury, Smitashree; Breslin, John G.; Passant, Alexandre

    The increase of personal digital cameras with video functionality and video-enabled camera phones has increased the amount of user-generated videos on the Web. People are spending more and more time viewing online videos as a major source of entertainment and "infotainment". Social websites allow users to assign shared free-form tags to user-generated multimedia resources, thus generating annotations for objects with a minimum amount of effort. Tagging allows communities to organise their multimedia items into browseable sets, but these tags may be poorly chosen and related tags may be omitted. Current techniques to retrieve, integrate and present this media to users are deficient and could do with improvement. In this paper, we describe a framework for semantic enrichment, ranking and integration of web video tags using Semantic Web technologies. Semantic enrichment of folksonomies can bridge the gap between the uncontrolled and flat structures typically found in user-generated content and structures provided by the Semantic Web. The enhancement of tag spaces with semantics has been accomplished through two major tasks: (1) a tag space expansion and ranking step; and (2) through concept matching and integration with the Linked Data cloud. We have explored social, temporal and spatial contexts to enrich and extend the existing tag space. The resulting semantic tag space is modelled via a local graph based on co-occurrence distances for ranking. A ranked tag list is mapped and integrated with the Linked Data cloud through the DBpedia resource repository. Multi-dimensional context filtering for tag expansion means that tag ranking is much easier and it provides less ambiguous tag to concept matching.

  13. Methodology of structural integrity assesment of CANDU-6 NPP fuel channels

    International Nuclear Information System (INIS)

    Radu, Vasile

    2004-01-01

    The paper describes the methodology of assessing the structural integrity in the CANDU-6 fuel channels making use of alternative methods of evaluation. An evaluation of the structural integrity of a CANDU-6 pressure tube made of Zr-2,5%Nb presenting both sharp and blunted defects is done. These analyses are made in compliance with the Canadian guide 'Pressure Tubes Fitness-for-service', and other two Recognizing procedures internationally adopted: the British procedure R6/Rev.4 and the American procedure API 579. Previously, the data base containing the data on materials property as well as the heat and dynamical loads in normal operation in CANDU-6 pressure tubes was established. Obtaining complete diagrams for structural integrity of pressure tubes with sharp and blunted defects in conditions of normal operation and long-term irradiation is the next step of the methodology to be developed. Modelling sharp and blunted defects on the inner side of pressure tubes, which can occur in normal reactor operating conditions is achieved by means of capabilities of pre-processing of two finite element analysis codes namely FEA-Crack and FEA-Flaw. The second part of the work deals with the analyses by finite element method of the fracture mechanics by means of the FEA-Crack code and with the evaluation of sharp and blunted defects by FAD diagrams in compliance with the British procedure R6/Rev.4. For typical models of blunted defects and thermo-mechanical loads specific to normal operation finite element analyses by FEA-Flaw codes were performed. Then FAD-iDHC diagrams were constructed to evaluate the initiation of the slow cracking under hydrogen/deuterium absorption, the known phenomenon of delayed hydride cracking (DHC)

  14. Crack depth measurement by flaw tip echo method

    International Nuclear Information System (INIS)

    Yoneyama, H.; Shibata, S.; Kishihami, M.; Takama, S.; Kazuoka, S.

    1985-01-01

    The depth of crack generated in the heat-affected zone of weldments in austenitic stainless steel piping by intergranular stress corrosion cracking is measured by flaw tip echo method. Cracks generated by intergranular stress corrosion generally possess complex configuration, and are moreover closed and devoid of gap, which render them difficult to measure by ultrasonic technique, but experiment with the proposed method proved the estimated crack depth to agree well with direct measurements made after the ultrasonic inspection by sectioning the crack, etching and observation by microscope. This new ultrasonic technique can thus be considered effective for estimating the depth of cracks produced by intergranular stress corrosion

  15. Windows Vista Kernel-Mode: Functions, Security Enhancements and Flaws

    Directory of Open Access Journals (Sweden)

    Mohammed D. ABDULMALIK

    2008-06-01

    Full Text Available Microsoft has made substantial enhancements to the kernel of the Microsoft Windows Vista operating system. Kernel improvements are significant because the kernel provides low-level operating system functions, including thread scheduling, interrupt and exception dispatching, multiprocessor synchronization, and a set of routines and basic objects.This paper describes some of the kernel security enhancements for 64-bit edition of Windows Vista. We also point out some weakness areas (flaws that can be attacked by malicious leading to compromising the kernel.

  16. Preventing, detecting & revising flaws in object property expressions

    CSIR Research Space (South Africa)

    Keet, CM

    2013-09-01

    Full Text Available four different ways how and where mistakes in object property expressions can occur. (i) Domain and range flaws in basic hierarchies; e.g. (simplified), hasParent v hasMother instead of has- Motherv hasParent in accordance with their domain and range... than the wordy OWL functional style syntax. We look into the “basic form” for sub-properties, i.e., S v R, in the remainder of this section and consider property chains in Section 3. To increase readability, we use R v C1 ×C2 as shortcut for domain...

  17. Ultrasonic signal processing for sizing under-clad flaws

    International Nuclear Information System (INIS)

    Shankar, R.; Paradiso, T.J.; Lane, S.S.; Quinn, J.R.

    1985-01-01

    Ultrasonic digital data were collected from underclad cracks in sample pressure vessel specimen blocks. These blocks were weld cladded under different processes to simulate actual conditions in US Pressure Water Reactors. Each crack was represented by a flaw-echo dynamic curve which is a plot of the transducer motion on the surface as a function of the ultrasonic response into the material. Crack depth sizing was performed by identifying in the dynamic curve the crack tip diffraction signals from the upper and lower tips. This paper describes the experimental procedure, digital signal processing methods used and algorithms developed for crack depth sizing

  18. Flawed reports of immunization complications: consequences for child health.

    Science.gov (United States)

    Zetterström, R

    2004-09-01

    Flawed studies about complications in vaccination programmes may have serious consequences for community health, as illustrated by a previous report on the adverse effect of pertussis vaccination and a more recent report about a suspected link between MMR vaccination and autistic spectrum disorders. The Editorial Board of The Lancet has apologized for having published a paper which has misled its readers about the risk of MMR vaccination. Due to the important role of TV and newspapers in giving information about health promotion, these media should also be willing to correct false information.

  19. Model-Based Interpretation and Experimental Verification of ECT Signals of Steam Generator Tubes

    International Nuclear Information System (INIS)

    Song, Sung Jin; Kim, Young Hwan; Kim, Eui Lae; Yim, Chang Jae; Lee, Jin Ho

    2004-01-01

    Model-based inversion tools for eddy current signals have been developed by combining neural networks and finite element modeling, for quantitative flaw characterization in steam generator tubes. In the present work, interpretation of experimental eddy current signals was carried out in order to validate the developed inversion tools. A database was constructed using the synthetic flaw signals generated by the finite element model. The hybrid neural networks composed of a PNN classifier and BPNN size estimators were trained using the synthetic signals. Experimental eddy current signals were obtained from axisymmetric artificial flaws. Interpretation of flaw signals was conducted by feeding the experimental signals into the neural networks. The interpretation was excellent, which shows that the developed inversion tools would be applicable to the Interpretation of real eddy current signals

  20. Ear Tubes

    Science.gov (United States)

    ... of the ear drum or eustachian tube, Down Syndrome, cleft palate, and barotrauma (injury to the middle ear caused by a reduction of air pressure, ... specialist) may be warranted if you or your child has experienced repeated ... fluid in the middle ear, barotrauma, or have an anatomic abnormality that ...

  1. Dynamic fracture tests for flawed nuclear piping and validation of LBB evaluation method

    International Nuclear Information System (INIS)

    Kashima, K.

    1998-01-01

    The international research program, 'IPIRG program', was proposed and managed by U.S. Nuclear Regulatory Commission from 1987 to 1996 to develop a fracture database and validate fracture mechanics technology for assessing the integrity of flawed nuclear piping. Seventeen Japanese organizations, including utilities companies, vendors and CRIEPI (the representative) jointly participated in the program. Many full-scale fracture tests, using US and Japanese pipes, were conducted under dynamic and cyclic loadings, simulating seismic conditions. The results from tests on Japanese pipes showed that the current LBB (Leak-Before-Break) evaluation method for Japanese pipes, originally developed and demonstrated for relatively small-diameter pipes subjected to quasi-static loading, could also be applied to large-diameter pipes and dynamic loading. (author)

  2. Eddy current probe and method for flaw detection in metals

    Science.gov (United States)

    Watjen, John P.

    1987-06-23

    A flaw detecting system is shown which includes a probe having a pair of ferrite cores with in-line gaps in close proximity to each other. An insulating, non-magnetic, non-conducting holder fills the gaps and supports the ferrite cores in a manner such that the cores form a generally V-shape. Each core is provided with an excitation winding and a detection winding. The excitation windings are connected in series or parallel with an rf port for connection thereof to a radio frequency source. The detection windings, which are differentially wound, are connected in series circuit to a detector port for connection to a voltage measuring instrument. The ferrite cores at the in-line gaps directly engage the metal surface of a test piece, and the probe is scanned along the test piece. In the presence of a flaw in the metal surface the detection winding voltages are unbalanced, and the unbalance is detected by the voltage measuring instrument. The insulating holder is provided with a profile which conforms to that of a prominent feature of the test piece to facilitate movement of the probe along the feature, typically an edge or a corner.

  3. Eddy current probe and method for flaw detection in metals

    Science.gov (United States)

    Watjen, J.P.

    1987-06-23

    A flaw detecting system is shown which includes a probe having a pair of ferrite cores with in-line gaps in close proximity to each other. An insulating, non-magnetic, non-conducting holder fills the gaps and supports the ferrite cores in a manner such that the cores form a generally V-shape. Each core is provided with an excitation winding and a detection winding. The excitation windings are connected in series or parallel with an rf port for connection thereof to a radio frequency source. The detection windings, which are differentially wound, are connected in series circuit to a detector port for connection to a voltage measuring instrument. The ferrite cores at the in-line gaps directly engage the metal surface of a test piece, and the probe is scanned along the test piece. In the presence of a flaw in the metal surface the detection winding voltages are unbalanced, and the unbalance is detected by the voltage measuring instrument. The insulating holder is provided with a profile which conforms to that of a prominent feature of the test piece to facilitate movement of the probe along the feature, typically an edge or a corner. 9 figs.

  4. Stepped frequency imaging for flaw monitoring: Final report

    International Nuclear Information System (INIS)

    Hildebrand, B.P.

    1988-09-01

    This report summarizes the results of research into the usefulness of stepped frequency imaging (SFI) to nuclear power plant inspection. SFI is a method for producing ultrasonic holographic images without the need to sweep a two-dimensional aperture with the transducer. Instead, the transducer may be translated along a line. At each position of the transducer the frequency is stepped over a finite preselected bandwidth. The frequency stepped data is then processed to synthesize the second dimension. In this way it is possible to generate images in regions that are relatively inaccessible to two-dimensional scanners. This report reviews the theory and experimental work verifying the technique, and then explores its possible applications in the nuclear power industry. It also outlines how this new capability can be incorporated into the SDL-1000 Imaging System previously developed for EPRI. The report concludes with five suggestions for uses for the SFI method. These are: monitoring suspect or repaired regions of feedwater nozzles; monitoring pipe cracks repaired by weld overlay; monitoring crack depth during test block production; imaging flaws where access is difficult; and imaging flaws through cladding without distortion

  5. Flaw-size measurement in a weld samples by ultrasonic frequency analysis

    International Nuclear Information System (INIS)

    Adler, L.; Cook, K.V.; Whaley, H.L. Jr.; McClung, R.W.

    1975-01-01

    An ultrasonic frequency-analysis technique was developed and applies to characterize flaws in an 8-in. (203-mm) thick heavy-section steel weld specimen. The technique applies a multitransducer system. The spectrum of the received broad-band signal is frequency analyzed at two different receivers for each of the flaws. From the two spectra, the size and orientation of the flaw are determined by the use of an analytic model proposed earlier. (auth)

  6. Fabrication Flaw Density and Distribution in the Repairs of Reactor Pressure Vessels

    International Nuclear Information System (INIS)

    Schuster, George J.; Doctor, Steven R.; Simonen, Fredric A.

    2006-01-01

    The Pacific Northwest National Laboratory (PNNL) is developing a generalized flaw size and density distribution for the population of U.S. reactor pressure vessels (RPVs). The purpose of the generalized flaw distribution is to predict vessel specific flaw rates for use in probabilistic fracture mechanics calculations that estimate vessel failure probability. Considerable progress has been made on the construction of an engineering data base of fabrication flaws in U.S. nuclear RPVs. The fabrication processes and product forms used to construct U.S. RPVs are represented in the data base. A validation methodology has been developed for characterizing the flaws for size, shape, orientation, and composition. The relevance of construction records has been established for describing fabrication processes and product forms. The fabrication flaws were detected in material removed from cancelled nuclear power plants using high sensitivity nondestructive ultrasonic testing, and validated by other nondestructive evaluation (NDE) techniques, and complemented by destructive testing. This paper describes research that has generated data on welding flaws, which indicated that the largest flaws occur in weld repairs. Recent research results confirm that repair flaws are complex in composition and may include cracks on the repair ends. Section III of the American Society of Mechanical Engineers (ASME) Boiler and Pressure Vessel Code for nuclear power plant components requires radiographic examinations (RT) of welds and requires repairs for RT indications that exceed code acceptable sizes. PNNL has previously obtained the complete construction records for two RPVs. Analysis of these records show a significant change in repair frequency.

  7. Neutron tubes

    Science.gov (United States)

    Leung, Ka-Ngo [Hercules, CA; Lou, Tak Pui [Berkeley, CA; Reijonen, Jani [Oakland, CA

    2008-03-11

    A neutron tube or generator is based on a RF driven plasma ion source having a quartz or other chamber surrounded by an external RF antenna. A deuterium or mixed deuterium/tritium (or even just a tritium) plasma is generated in the chamber and D or D/T (or T) ions are extracted from the plasma. A neutron generating target is positioned so that the ion beam is incident thereon and loads the target. Incident ions cause D-D or D-T (or T-T) reactions which generate neutrons. Various embodiments differ primarily in size of the chamber and position and shape of the neutron generating target. Some neutron generators are small enough for implantation in the body. The target may be at the end of a catheter-like drift tube. The target may have a tapered or conical surface to increase target surface area.

  8. Interrelation between in-service inspection and structural integrity in reactors residual lifetime assessment

    Energy Technology Data Exchange (ETDEWEB)

    Karzov, Georgy; Timofeev, Boris; Rozina, Marina [Central Research Inst. of Structural Materials ' Prometey' , St. Petersburg (Russian Federation)

    1999-07-01

    The object of this paper is to show that in-service inspection (ISI) is of a great importance in structural integrity provision of NPP equipment as it permits: to assess material properties degradation during operation, to describe production flaws propagation under operating factors influence, to detect flaws appearance from structural concentrators and corrosion damages and to observe their development, to verify material loading conditions in structure depending on operating damages. It is presented the detailed scheme of possible production and operating flaws development during structure lifetime. The following flaws distribution function are considered in the schema: distribution probability of detected flaws (detectability), distribution density of actual flaws, distribution density of detected flaws. On the basis of stated above functions it is performed the selection of reference flow size and its outline (surface and internal flaws, cracks in cladding). (author)

  9. On-Line Monitoring and Diagnostics of the Integrity of Nuclear Plant Steam Generators and Heat Exchangers, Volumes 1, 2

    Energy Technology Data Exchange (ETDEWEB)

    Upadhyaya, Belle R. [Univ. of Tennessee, Knoxville, TN (United States); Hines, J. Wesley [Univ. of Tennessee, Knoxville, TN (United States); Lu, Baofu [Univ. of Tennessee, Knoxville, TN (United States)

    2005-06-03

    wavelet transforms and image processing techniques for isolating flaw types. Development and implementation of a new nonlinear and non-stationary signal processing method, called the Hilbert-Huang transform (HHT), for flaw detection and location. This is a more robust and adaptive approach compared to the wavelet transform.Implementation of a moving-window technique in the time domain for detecting and quantifying flaw types in tubular structures. A window zooming technique was also developed for flaw location in tubes. Theoretical study of elastic wave propagation (longitudinal and shear waves) in metallic flat plates and tubing with and without flaws. Simulation of the Lamb wave propagation using the finite-element code ABAQUS. This enabled the verification of the experimental results. The research tasks included both analytical research and experimental studies. The experimental results helped to enhance the robustness of fault monitoring methods and to provide a systematic verification of the analytical results. The results of this research were disseminated in scientific meetings. The journal manuscript titled, "Structural Integrity Monitoring of Steam generator Tubing Using Transient Acoustic Signal Analysis," was published in IEEE Trasactions on Nuclear Science, Vol. 52, No. 1, February 2005. The new findings of this research have potential applications in aerospace and civil structures. The report contains a complete bibliography that was developed during the course of the project.

  10. Development and validation of a simulation tool dedicated to eddy current non destructive testing of tubes; Developpement d'un modele electromagnetique 3D pour la simulation du controle par Courants de Foucault de tubes en fabrication

    Energy Technology Data Exchange (ETDEWEB)

    Reboud, Ch

    2006-09-15

    Eddy current testing (ECT) technique is widely used in industrial fields such as iron and steel industry. Dedicated simulation tools provide a great assistance for the optimisation of ECT processes. CEA and the Vallourec Research Center have collaborated in order to develop a simulation tool of ECT of tubes. The volume integral method has been chosen for the resolution of Maxwell equations in a stratified medium, in order to get accurate results with a computation time short enough to carry out optimisation or inversion procedures. A fast model has been developed for the simulation of ECT of non magnetic tubes using specific external probes. New flaw geometries have been modelled: holes and notches with flat bottom. Validations of the developments, which have been integrated to the CIVA platform, have been carried out using experimental data recorded in laboratory conditions and in. industrial conditions, successively. The integral equations derived are solved using the Galerkin variant of the method of moments with pulse functions as projection functions. In order to overcome some memory limitations, other projection functions have been considered. A new discretization scheme based on non-uniform B-Splines of degree 1 or 2 has been implemented, which constitutes an original contribution to the existing literature. The decrease of the mesh size needed to get a given accuracy on the result may lead to the simulation of more complex ECT configurations. (author)

  11. Fatigue behaviour of 316 L stainless steel pipes containing flaws

    International Nuclear Information System (INIS)

    Bethmont, M.; Cheissoux, J.L.; Lebey, J.

    1981-01-01

    The main objective is to demonstrate that crack growth laws based on CT specimen testing are valid for piping products with realistic flaws under pressure and bending loads. The study is broken down into two phases: - crack growth experiments for various notch shapes in reduced scale piping (1/4) of reactor coolant piping at room temperature and at 285 0 C. - a numerical analysis to determine the K 1 stress intensity factor for tested notch shapes. Tests were carried out on piping with longitudinal and circumferential notches inside and outside. Fatigue crack growth rates are assessed through micrographic exams. The K 1 stress intensity factor was computed by finite element methods or the use of weight functions. (orig./GL)

  12. Design Flaws and Service System Breakdowns: Learning from Systems Thinking

    Directory of Open Access Journals (Sweden)

    David Ing

    2014-12-01

    Full Text Available In what ways might systems thinking be helpful to designers?  In the 21st century, the types of project with which designers have become engaged has expanded to include service systems.  Service systems are typically composites of mechanisms, organisms, human beings and ecologies.  Systems thinking is a perspective with theories, methods and practices that enables transcending disciplinary boundaries.  Application of systems thinking in designing a service system can aid in surfacing potential flaws and/or anticipating future breakdowns in functions, structures and/or processes. Designers and systems thinkers should work together to improve the nature of service systems.  As a starter set into these conversations, seven conditions are proposed as a starting context.  These conditions are presented neither as rigourously defined nor as exhaustive, but as an entry point into future joint engagement.

  13. Extensive burn injury caused by fundamental electronic cigarette design flaw.

    Science.gov (United States)

    Bohr, S; Almarzouqi, F; Pallua, N

    2016-09-30

    Currently, electronic cigarette (EC) devices are widely used as an alternative to conventional smoking. The underlying technical principle is an electric coil-based vaporizer unit, which vaporizes various solutions for inhalation purposes with a rechargeable lithium battery unit as power source. We report a case of extensive burn injury resulting from the thermal explosion of a battery unit within an EC device. Though internal thermal instabilities of lithium ion batteries are a known safety issue, the unique feature here is a pronounced amplification of the extent of burn injury due to an additional scalding burn mechanism that resulted from heating of the liquid reservoir adjacent to the battery. Thus, we demonstrate a relevant design flaw in various EC devices, which in the authors' opinion needs to be addressed both by manufacturers and safety regulations.

  14. Profitable failure: antidepressant drugs and the triumph of flawed experiments.

    Science.gov (United States)

    McGoey, Linsey

    2010-01-01

    Drawing on an analysis of Irving Kirsch and colleagues' controversial 2008 article in "PLoS [Public Library of Science] Magazine" on the efficacy of SSRI antidepressant drugs such as Prozac, I examine flaws within the methodologies of randomized controlled trials (RCTs) that have made it difficult for regulators, clinicians and patients to determine the therapeutic value of this class of drug. I then argue, drawing analogies to work by Pierre Bourdieu and Michael Power, that it is the very limitations of RCTs -- their inadequacies in producing reliable evidence of clinical effects -- that help to strengthen assumptions of their superiority as methodological tools. Finally, I suggest that the case of RCTs helps to explore the question of why failure is often useful in consolidating the authority of those who have presided over that failure, and why systems widely recognized to be ineffective tend to assume greater authority at the very moment when people speak of their malfunction.

  15. Improvement of ISI techniques by multi-frequency eddy current testing method for steam generator tube in PWR plant

    International Nuclear Information System (INIS)

    Endo, Takashi; Kamimura, Takeo; Nishihara, Masatoshi; Araki, Yasuo; Fukui, Shigetaka.

    1982-05-01

    Eddy current flaw detection techniques are applied to the in-service inspection (ISI) of steam generator tubes in pressurized water reactors (PWR) plant. To improve the reliability and operating efficiency of the plants, efforts are being made to develop eddy current testing methods of various kinds. Multi-frequency eddy current testing method, one of new method, has recently been applied to actual heat exchanger tubes, contributing to the improvement of the detectability and signal evaluation of the ISI. The outline of multi-frequency eddy current testing method and its effects on the improvement of flaw detecting and signal evaluation accuracy are described. (author)

  16. photomultiplier tubes

    CERN Multimedia

    photomultiplier tubes. A device to convert light into an electric signal (the name is often abbreviated to PM). Photomultipliers are used in all detectors based on scintillating material (i.e. based on large numbers of fibres which produce scintillation light at the passage of a charged particle). A photomultiplier consists of 3 main parts: firstly, a photocathode where photons are converted into electrons by the photoelectric effect; secondly, a multiplier chain consisting of a serie of dynodes which multiply the number of electron; finally, an anode, which collects the resulting current.

  17. photomultiplier tube

    CERN Multimedia

    photomultiplier tubes. A device to convert light into an electric signal (the name is often abbreviated to PM). Photomultipliers are used in all detectors based on scintillating material (i.e. based on large numbers of fibres which produce scintillation light at the passage of a charged particle). A photomultiplier consists of 3 main parts: firstly, a photocathode where photons are converted into electrons by the photoelectric effect; secondly, a multiplier chain consisting of a serie of dynodes which multiply the number of electron; finally, an anode, which collects the resulting current.

  18. Characterization of Flaws in the Elastic Medium by Time Domain Born Approximation

    International Nuclear Information System (INIS)

    Yi, J. Y.; Lee, S. K.; Lee, J. O.; Kim, Y. H.

    1983-01-01

    The impulse response function are studied using time domain Born approximation in two cases; firstly when the material parameters of a flaw are constant, secondly when the parameters are varying with positions. From the impulse response functions, characteristics can be learned about a flaw with high symmetry

  19. Optimization of probes for the integration of ET techniques in the inspection of tubes GGV; Optimizacion de sondas para la integracion de tecnicas ET en la inspeccion de tubos de GGV

    Energy Technology Data Exchange (ETDEWEB)

    Garcia Bueno, A.; Jimenez Garcia, J. J.; Hernandez Estrada, R.; Mendez Canete, M.

    2012-07-01

    The appearance of the degradation phenomenon called denting tubes in some models of GV, and the need to characterize this type of information and its consequences on the one hand, and to optimize the inspection times on the other, has shown the desirability of develop new probes that integrate different inspection techniques to obtain the maximum information from the degradation phenomena, the minimum inspection times.

  20. Heat Exchanger Tube Inspection of Nuclear Power Plants using IRIS Technique

    International Nuclear Information System (INIS)

    Yoon, Byung Sik; Yang, Seung Han; Song, Seok Yoon; Kim, Yong Sik; Lee, Hee Jong

    2005-01-01

    Inspection of heat exchange tubing include steam generator of nuclear power plant mostly performed with eddy current method. Recently, various inspection technique is available such as remote field eddy current, flux leakage and ultrasonic methods. Each of these techniques has its merits and limitations. Electromagnetic techniques are very useful to locate areas of concern but sizing is hard because of the difficult interpretation of an electric signature. On the other hand, ultrasonic methods are very accurate in measuring wall loss damage, and are reliable for detecting cracks. Additionally ultrasound methods is not affected by support plates or tube sheets and variation of electrical conductivity or permeability. Ultrasound data is also easier to analyze since the data displayed is generally the remaining wall thickness. It should be emphasized that ultrasound is an important tool for sizing defects in tubing. In addition, it can be used in situations where eddy current or remote field eddy current is not reliable, or as a flaw assessment tool to supplement the electromagnetic data. The need to develop specialized ultrasonic tools for tubing inspection was necessary considering the limitations of electromagnetic techniques to some common inspection problems. These problems the sizing of wall loss in carbon steel tubes near the tube sheet or support plate, sizing internal erosion damage, and crack detection. This paper will present an IRIS(Internal Rotating Inspection System) ultrasonic tube inspection technique for heat exchanger tubing in nuclear power plant and verify inspection reliability for artificial flaw embedded to condenser tube

  1. Defect detection and characterization in power plant tubing using ultrasonic guided waves

    International Nuclear Information System (INIS)

    Shin, H.J.; Yi, R.; Rose, J.L.

    1996-01-01

    The purpose of this study is to develop the utility of ultrasonic guided waves in tubing inspection. Major emphasis is placed on the practical implementation of an ultrasonic inspection system for heat exchanger and steam generator tubing. For the experimental study, a specially designed ultrasonic bore probe is used to generate and receive high power tone burst signals. Theoretically calculated dispersion curves form the basis for identifying the proper modes for inspection. Successful implementation of various mode selection criteria shows the capability of guided waves when used in conjunction with frequency tuning and particle displacement distribution optimization. The large distance tube and U-bend tube inspection capability of ultrasonic guided waves was demonstrated. Sample results for tubing inspection includes the detection of standard notches and overall inspection results for 4.75m long stainless steel heat exchanger tubes. Finally, classification and characterization potential of flaws in tubing using pattern recognition is introduced. (author)

  2. Analysis of order-statistic CFAR threshold estimators for improved ultrasonic flaw detection.

    Science.gov (United States)

    Saniie, J; Nagle, D T

    1992-01-01

    In the pulse-echo method using broadband transducers, flaw detection can be improved by using optimal bandpass filtering to resolve flaw echoes surrounded by grain scatterers. Optimal bandpass filtering is achieved by examining spectral information of the flaw and grain echoes where frequency differences have been experimentally shown to be predictable in the Rayleigh scattering region. Using optimal frequency band information, flaw echoes can then be discriminated by applying adaptive thresholding techniques based on surrounding range cells. The authors present order-statistic (OS) processors, ranked and trimmed mean (TM), to robustly estimate the threshold while censoring outliers. The design of these OS processors is accomplished analytically based on constant false-alarm rate (CFAR) detection. It is shown that OS-CFAR and TM-CFAR processors can detect flaw echoes robustly with the CFAR of 10 (-4) where the range cell used for the threshold estimate contains outliers.

  3. Evaluation of Effect by Internal Flow on Ultrasonic Testing Flaw Sizing in Piping

    International Nuclear Information System (INIS)

    Lee, Jeong Seok; Yoon, Byung Sik; Kim, Yong Sik

    2013-01-01

    In this study, the ultrasonic amplitude difference between air filled and water filled piping in nuclear power plant is compared by modeling approach. In this study, ultrasonic amplitude differences between air and water filled pipe are evaluated by modeling approach. Consequently, we propose the following results. The ultrasonic amplitude difference between air and water filled condition is measured by lower than 1 dB in modeling calculation. The flaw length sizing error between air and water filled condition shows same results based on 12 dB drop method even thought the amplitude difference is 1 dB. Most of the piping welds in nuclear power plants are inspected periodically using ultrasonic techniques to detect service-induced flaws such as IGSCC cracking. The inspection results provide information such as location, maximum amplitude response, ultrasonic length, height and finally the nature or flaw pattern. The founded flaw in ultrasonic inspection is accepted or rejected based on these information. Specially, the amplitude of flaw response is very important to estimate the flaw size. Currently the ultrasonic inspections in nuclear power plant components are performed by specific inspection procedure which describing inspection technique include inspection system, calibration methodology and flaw characterizing methodology. To perform ultrasonic inspection during in-service inspection, reference gain should be established before starting ultrasonic inspection by requirement of ASME code. This reference gain used as basic criteria to evaluate flaw sizing. Sometimes, a little difference in establishing reference gain between calibration and field condition can lead to deviation in flaw sizing. Due to this difference, the inspection result may cause flaw sizing error

  4. Toward Smart Aerospace Structures: Design of a Piezoelectric Sensor and Its Analog Interface for Flaw Detection

    Directory of Open Access Journals (Sweden)

    Hamza Boukabache

    2014-10-01

    Full Text Available Structural health monitoring using noninvasive methods is one of the major challenges that aerospace manufacturers face in this decade. Our work in this field focuses on the development and the system integration of millimetric piezoelectric sensors/ actuators to generate and measure specific guided waves. The aim of the application is to detect mechanical flaws on complex composite and alloy structures to quantify efficiently the global structures’ reliability. The study begins by a physical and analytical analysis of a piezoelectric patch. To preserve the structure’s integrity, the transducers are directly pasted onto the surface which leads to a critical issue concerning the interfacing layer. In order to improve the reliability and mitigate the influence of the interfacing layer, the global equations of piezoelectricity are coupled with a load transfer model. Thus we can determine precisely the shear strain developed on the surface of the structure. To exploit the generated signal, a high precision analog charge amplifier coupled to a double T notch filter were designed and scaled. Finally, a novel joined time-frequency analysis based on a wavelet decomposition algorithm is used to extract relevant structures signatures. Finally, this paper provides examples of application on aircraft structure specimens and the feasibility of the system is thus demonstrated.

  5. Toward Smart Aerospace Structures: Design of a Piezoelectric Sensor and Its Analog Interface for Flaw Detection

    Science.gov (United States)

    Boukabache, Hamza; Escriba, Christophe; Fourniols, Jean-Yves

    2014-01-01

    Structural health monitoring using noninvasive methods is one of the major challenges that aerospace manufacturers face in this decade. Our work in this field focuses on the development and the system integration of millimetric piezoelectric sensors/ actuators to generate and measure specific guided waves. The aim of the application is to detect mechanical flaws on complex composite and alloy structures to quantify efficiently the global structures' reliability. The study begins by a physical and analytical analysis of a piezoelectric patch. To preserve the structure's integrity, the transducers are directly pasted onto the surface which leads to a critical issue concerning the interfacing layer. In order to improve the reliability and mitigate the influence of the interfacing layer, the global equations of piezoelectricity are coupled with a load transfer model. Thus we can determine precisely the shear strain developed on the surface of the structure. To exploit the generated signal, a high precision analog charge amplifier coupled to a double T notch filter were designed and scaled. Finally, a novel joined time-frequency analysis based on a wavelet decomposition algorithm is used to extract relevant structures signatures. Finally, this paper provides examples of application on aircraft structure specimens and the feasibility of the system is thus demonstrated. PMID:25365457

  6. Toward smart aerospace structures: design of a piezoelectric sensor and its analog interface for flaw detection.

    Science.gov (United States)

    Boukabache, Hamza; Escriba, Christophe; Fourniols, Jean-Yves

    2014-10-31

    Structural health monitoring using noninvasive methods is one of the major challenges that aerospace manufacturers face in this decade. Our work in this field focuses on the development and the system integration of millimetric piezoelectric sensors/ actuators to generate and measure specific guided waves. The aim of the application is to detect mechanical flaws on complex composite and alloy structures to quantify efficiently the global structures' reliability. The study begins by a physical and analytical analysis of a piezoelectric patch. To preserve the structure's integrity, the transducers are directly pasted onto the surface which leads to a critical issue concerning the interfacing layer. In order to improve the reliability and mitigate the influence of the interfacing layer, the global equations of piezoelectricity are coupled with a load transfer model. Thus we can determine precisely the shear strain developed on the surface of the structure. To exploit the generated signal, a high precision analog charge amplifier coupled to a double T notch filter were designed and scaled. Finally, a novel joined time-frequency analysis based on a wavelet decomposition algorithm is used to extract relevant structures signatures. Finally, this paper provides examples of application on aircraft structure specimens and the feasibility of the system is thus demonstrated.

  7. Detectability of single and plural flaws by ultrasonic testing

    International Nuclear Information System (INIS)

    Iida, K.

    1985-01-01

    An outline and up-to-date test results of an eight year project of proving tests on the effectiveness of in-service inspection is described in the first part of the present paper. Effects on the detectability of such testing parameters as refraction angle, thickness of stainless steel cladding, inspectors, standard flaws in reference specimens, stress state subjected to defects are discussed. This is followed by a discussion of detection reproducibility, resolution and accuracy of inspected size of a defects. The latter part of the paper deals with up-to-date results of tests on resolution and shape determination of propagating adjacent and co-linear fatigue cracks by ultrasonic examination. It was found that real lengths of fatigue crack and EDM surface notch will be roughly estimated by 12 dB and 8 dB down methods, respectively. It is also concluded that the 10 dB down method is available for estimation of the inside distance of two co-linear surface cracks

  8. Design of Friction Stir Welding Tool for Avoiding Root Flaws.

    Science.gov (United States)

    Ji, Shude; Xing, Jingwei; Yue, Yumei; Ma, Yinan; Zhang, Liguo; Gao, Shuangsheng

    2013-12-12

    In order to improve material flow behavior during friction stir welding and avoid root flaws of weld, a tool with a half-screw pin and a tool with a tapered-flute pin are suggested. The effect of flute geometry in tool pins on material flow velocity is investigated by the software ANSYS FLUENT. Numerical simulation results show that high material flow velocity appears near the rotational tool and material flow velocity rapidly decreases with the increase of distance away from the axis of the tool. Maximum material flow velocity by the tool with the tapered-flute pin appears at the beginning position of flute and the velocity decreases with the increase of flow length in flute. From the view of increasing the flow velocity of material near the bottom of the workpiece or in the middle of workpiece, the tool with the half-screw pin and the tool with the tapered-flute pin are both better than the conventional tool.

  9. Enron Flaws In Organizational Architecture And Its Failure

    Directory of Open Access Journals (Sweden)

    Nguyen

    2015-08-01

    Full Text Available A series of corporate scandals at the beginning of last decade has given rise to the doubt on the efficiency of corporate governance practice in the United States. Of these scandals the collapse of Enron has exceptionally captured the public concern. It was the once seventh-largest company in the United States 1. It was rated the most innovative large company in America in Fortunes Most Admired Companies survey 2. In August 2000 its stock reached a peak of nearly 70 billion 3. However within a year its stock had become almost useless papers 2. It just was unbelievable for many people. What went wrong Was it due to the failure of corporate governance in general Actually the central factor leading to the collapse of Enron was the failure in its organizational architecture. This paper starts by providing an overview of corporate governance system with an emphasis on the corporate organizational architecture as its important facet. Then it discusses flaws in the organizational architecture of Enron and argues that these eventually led to the breakdown of the whole corporate governance system at Enron. Finally some implications and lessons for the practice of corporate governance are presented.

  10. Usability Flaws in Medication Alerting Systems: Impact on Usage and Work System

    Science.gov (United States)

    Ammenwerth, E.; Roehrer, E.; Pelayo, S.; Vasseur, F.; Beuscart-Zéphir, M.-C.

    2015-01-01

    Summary Objectives Previous research has shown that medication alerting systems face usability issues. There has been no previous attempt to systematically explore the consequences of usability flaws in such systems on users (i.e. usage problems) and work systems (i.e. negative outcomes). This paper aims at exploring and synthesizing the consequences of usability flaws in terms of usage problems and negative outcomes on the work system. Methods A secondary analysis of 26 papers included in a prior systematic review of the usability flaws in medication alerting was performed. Usage problems and negative outcomes were extracted and sorted. Links between usability flaws, usage problems, and negative outcomes were also analyzed. Results Poor usability generates a large variety of consequences. It impacts the user from a cognitive, behavioral, emotional, and attitudinal perspective. Ultimately, usability flaws have negative consequences on the workflow, the effectiveness of the technology, the medication management process, and, more importantly, patient safety. Only few complete pathways leading from usability flaws to negative outcomes were identified. Conclusion Usability flaws in medication alerting systems impede users, and ultimately their work system, and negatively impact patient safety. Therefore, the usability dimension may act as a hidden explanatory variable that could explain, at least partly, the (absence of) intended outcomes of new technology. PMID:26123906

  11. Detection and Characterization of Flaws in Sprayed on Foam Insulation with Pulsed Terahertz Frequency Electromagnetic Waves

    Science.gov (United States)

    Winfree, William P.; Madaras, Eric I.

    2005-01-01

    The detection and repair of flaws such as voids and delaminations in the sprayed on foam insulation of the external tank reduces the probability of foam debris during shuttle ascent. The low density of sprayed on foam insulation along with it other physical properties makes detection of flaws difficult with conventional techniques. An emerging technology that has application for quantitative evaluation of flaws in the foam is pulsed electromagnetic waves at terahertz frequencies. The short wavelengths of these terahertz pulses make them ideal for imaging flaws in the foam. This paper examines the application of terahertz pulses for flaw detection in foam characteristic of the foam insulation of the external tank. Of particular interest is the detection of voids and delaminations, encapsulated in the foam or at the interface between the foam and a metal backing. The technique is shown to be capable of imaging small voids and delaminations through as much as 20 cm of foam. Methods for reducing the temporal responses of the terahertz pulses to improve flaw detection and yield quantitative characterizations of the size and location of the flaws are discussed.

  12. Eddy current test of fin tubes for a heat exchanger

    International Nuclear Information System (INIS)

    KIm, Young Joo; Lee, Se Kyung; Chung, Min Hwa

    1992-01-01

    Eddy current probes were designed for the test of fin tubes. Fin tubes, often used for heat exchangers, have uneven outer and inner surfaces to enhance the heat emission. The surface roughness make it difficult to detect flaws employing eddy current test(ECT). In order to overcome the difficulties we performed two types of works, one is the delopment of ECT probes, and the other is the signal processing including fast Fourier transform and digital filtering. In the development of ECT probes, we adopted empirical design method. Our ECT probes for fin tubes are inside diameter type. And we are specially concerned about geometric features such as the widths of the coils composing an ECT probe. We fabricated four probes with various coil widths. Eddy current test was performed using those ECT probes on specimens with artificial flaws. After analyzing the output signals, we found that, in order for the effective testing, the width of a coil should be determined considering the pitch of the fins of a tube. And we also learned that the frequency filtering could improve the s/n ratio.

  13. On-Line Monitoring and Diagnostics of the Integrity of Nuclear Plant Steam Generators and Heat Exchangers.

    Energy Technology Data Exchange (ETDEWEB)

    Belle R. Upadhyaya; J. Wesley Hines

    2004-09-27

    The overall purpose of this Nuclear Engineering Education Research (NEER) project was to integrate new, innovative, and existing technologies to develop a fault diagnostics and characterization system for nuclear plant steam generators (SG) and heat exchangers (HX). Issues related to system level degradation of SG and HX tubing, including tube fouling, performance under reduced heat transfer area, and the damage caused by stress corrosion cracking, are the important factors that influence overall plant operation, maintenance, and economic viability of nuclear power systems. The research at The University of Tennessee focused on the development of techniques for monitoring process and structural integrity of steam generators and heat exchangers. The objectives of the project were accomplished by the completion of the following tasks. All the objectives were accomplished during the project period. This report summarizes the research and development activities, results, and accomplishments during June 2001-September 2004. (1) Development and testing of a high-fidelity nodal model of a U-tube steam generator (UTSG) to simulate the effects of fouling and to generate a database representing normal and degraded process conditions. Application of the group method of data handling (GMDH) method for process variable prediction. (2) Development of a laboratory test module to simulate particulate fouling of HX tubes and its effect on overall thermal resistance. Application of the GMDH technique to predict HX fluid temperatures, and to compare with the calculated thermal resistance. (3) Development of a hybrid modeling technique for process diagnosis and its evaluation using laboratory heat exchanger test data. (4) Development and testing of a sensor suite using piezo-electric devices for monitoring structural integrity of both flat plates (beams) and tubing. Experiments were performed in air, and in water with and without bubbly flow. (5) Development of advanced signal

  14. On-Line Monitoring and Diagnostics of the Integrity of Nuclear Plant Steam Generators and Heat Exchangers

    International Nuclear Information System (INIS)

    Upadhyaya, Belle R.; Wesley Hines, J.

    2004-01-01

    The overall purpose of this Nuclear Engineering Education Research (NEER) project was to integrate new, innovative, and existing technologies to develop a fault diagnostics and characterization system for nuclear plant steam generators (SG) and heat exchangers (HX). Issues related to system level degradation of SG and HX tubing, including tube fouling, performance under reduced heat transfer area, and the damage caused by stress corrosion cracking, are the important factors that influence overall plant operation, maintenance, and economic viability of nuclear power systems. The research at The University of Tennessee focused on the development of techniques for monitoring process and structural integrity of steam generators and heat exchangers. The objectives of the project were accomplished by the completion of the following tasks. All the objectives were accomplished during the project period. This report summarizes the research and development activities, results, and accomplishments during June 2001-September 2004. (1) Development and testing of a high-fidelity nodal model of a U-tube steam generator (UTSG) to simulate the effects of fouling and to generate a database representing normal and degraded process conditions. Application of the group method of data handling (GMDH) method for process variable prediction. (2) Development of a laboratory test module to simulate particulate fouling of HX tubes and its effect on overall thermal resistance. Application of the GMDH technique to predict HX fluid temperatures, and to compare with the calculated thermal resistance. (3) Development of a hybrid modeling technique for process diagnosis and its evaluation using laboratory heat exchanger test data. (4) Development and testing of a sensor suite using piezo-electric devices for monitoring structural integrity of both flat plates (beams) and tubing. Experiments were performed in air, and in water with and without bubbly flow. (5) Development of advanced signal

  15. Usability flaws of medication-related alerting functions: A systematic qualitative review.

    Science.gov (United States)

    Marcilly, Romaric; Ammenwerth, Elske; Vasseur, Francis; Roehrer, Erin; Beuscart-Zéphir, Marie-Catherine

    2015-06-01

    Medication-related alerting functions may include usability flaws that limit their optimal use. A first step on the way to preventing usability flaws is to understand the characteristics of these usability flaws. This systematic qualitative review aims to analyze the type of usability flaws found in medication-related alerting functions. Papers were searched via PubMed, Scopus and Ergonomics Abstracts databases, along with references lists. Paper selection, data extraction and data analysis was performed by two to three Human Factors experts. Meaningful semantic units representing instances of usability flaws were the main data extracted. They were analyzed through qualitative methods: categorization following general usability heuristics and through an inductive process for the flaws specific to medication-related alerting functions. From the 6380 papers initially identified, 26 met all eligibility criteria. The analysis of the papers identified a total of 168 instances of usability flaws that could be classified into 13 categories of usability flaws representing either violations of general usability principles (i.e. they could be found in any system, e.g. guidance and workload issues) or infractions specific to medication-related alerting functions. The latter refer to issues of low signal-to-noise ratio, incomplete content of alerts, transparency, presentation mode and timing, missing alert features, tasks and control distribution. The list of 168 instances of usability flaws of medication-related alerting functions provides a source of knowledge for checking the usability of medication-related alerting functions during their design and evaluation process and ultimately constructs evidence-based usability design principles for these functions. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Tracheostomy tube - eating

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/patientinstructions/000464.htm Tracheostomy tube - eating To use the sharing features on ... when you swallow foods or liquids. Eating and Tracheostomy Tubes When you get your tracheostomy tube, or ...

  17. Eustachian tube patency

    Science.gov (United States)

    Eustachian tube patency refers to how much the eustachian tube is open. The eustachian tube runs between the middle ear and the throat. It controls the pressure behind the eardrum and middle ear space. This helps keep ...

  18. Cohesive zone modelling of interface fracture near flaws in adhesive joints

    DEFF Research Database (Denmark)

    Hansen, Peter Feraren; Jensen, Henrik Myhre

    2004-01-01

    A cohesive zone model is suggested for modelling of interface fracture near flaws in adhesive joints. A shear-loaded adhesive joint bonded with a planar circular bond region is modelled using both the cohesive zone model and a fracture mechanical model. Results from the models show good agreement...... of crack propagation on the location and shape of the crack front and on the initial joint strength. Subsequently, the cohesive zone model is used to model interface fracture through a planar adhesive layer containing a periodic array of elliptical flaws. The effects of flaw shape are investigated, as well...

  19. Assessment of flaw detection probability in the case of pressure vessel materials

    International Nuclear Information System (INIS)

    Riikonen, H.; Raussi, J.; Tiainen, O.J.A.

    1983-01-01

    Shaffer has presented a method for assessing flaw detection probability in pressure retaining components. In this case study the usefulness of Shaffer's method is examined using inspection data from a BWR- plant piping and mathematical fittings for size distributions of detected flaws. It was seen that the size distribution function has to fulfill many conditions to be useful for assessing the detection probability of flaws. The discovery of a proper Shaffer's ω function appears to be the key factor for the usefulness of the model

  20. Gating techniques for ultrasonic thickness testing using flaw detectors

    Energy Technology Data Exchange (ETDEWEB)

    Holloway, P., E-mail: paul@hollowayndt.com [Holloway NDT & Engineering Inc., Georgetown, Ontario (Canada)

    2016-05-15

    The purpose of this article is to provide guidance on settings and methods, in particular the careful use of gating, to ensure accuracy of thickness testing on corroded steel and other metallic components. Specific applications include boiler tubes, tank floors, piping and vessels where the testing is performed from the OD or top surfaces, inspecting for metal loss due to corrosion on the opposite side. (author)

  1. Evaluation of the eddy-current method of inspecting steam generator tubing

    International Nuclear Information System (INIS)

    Flora, J.H.; Brown, S.D.; Weeks, J.R.

    1976-01-01

    The objective of this project has been to evaluate the eddy-current method of inspecting steam generator tubing by conducting a series of laboratory experiments with conventional eddy-current equipment. The experiments have involved obtaining eddy-current measurements on samples of 7/8-inch OD Inconel-600 tubing provided by the Westinghouse Nuclear Energy Systems Division. A variety of machined defects and some chemically induced flaws, such as stress corrosion cracks were fabricated in the tubing. Statistical evaluation of the data was employed to estimate the error encountered in measuring corrosion defects of various depths. It appears that the eddy-current technique can provide a reasonable measure of defect depth under certain conditions. On the other hand, the evaluation indicates that it is difficult to determine the depth of certain types of flaws with reliability and precision. Furthermore, although some defects as shallow as 10 percent of the tube wall could be detected, it was not possible to detect other types of flaws that were less than 40 percent deep even when the tube supports were not near the defects. The difficulty in detecting small volume flaws is attributed to low signal-to-noise ratio. Noise is a result of unwanted signals from test variables, such as wobble and variations in tube properties. The error in measurement of certain types of larger defects is associatedin part with test variables and also with the effects that the geometry of the defect has on the eddy-current signal patterns. The distortions in signal patterns caused by gradual wastage type defects and the poor reproducibility of signal patterns obtained from notches that represent stress corrosion cracks are described. Some developments that will rectify these detection and depth measurement problems are discussed

  2. Heat exchanger tube mounts

    Science.gov (United States)

    Wolowodiuk, W.; Anelli, J.; Dawson, B.E.

    1974-01-01

    A heat exchanger in which tubes are secured to a tube sheet by internal bore welding is described. The tubes may be moved into place in preparation for welding with comparatively little trouble. A number of segmented tube support plates are provided which allow a considerable portion of each of the tubes to be moved laterally after the end thereof has been positioned in preparation for internal bore welding to the tube sheet. (auth)

  3. Tube holding system

    International Nuclear Information System (INIS)

    Cunningham, R.C.

    1978-01-01

    A tube holding rig is described for the lateral support of tubes arranged in tight parcels in a heat exchanger. This tube holding rig includes not less than two tube supporting assemblies, with a space between them, located crosswise with respect to the tubes, each supporting assembly comprising a first set of parallel components in contact with the tubes, whilst a second set of components is also in contact with the tubes. These two sets of parts together define apertures through which the tubes pass [fr

  4. Flawed assessment process leads to under-use of alternatives in Sweden

    Directory of Open Access Journals (Sweden)

    Maite Zamacona

    2013-09-01

    Full Text Available Sweden is often held up as following ‘best practice’ in legislation with regard to detention and alternatives to detention but research by the Swedish Red Cross highlights a number of flaws.

  5. Calculation and evaluation methodology of the flawed pipe and the compute program development

    International Nuclear Information System (INIS)

    Liu Chang; Qian Hao; Yao Weida; Liang Xingyun

    2013-01-01

    Background: The crack will grow gradually under alternating load for a pressurized pipe, whereas the load is less than the fatigue strength limit. Purpose: Both calculation and evaluation methodology for a flawed pipe that have been detected during in-service inspection is elaborated here base on the Elastic Plastic Fracture Mechanics (EPFM) criteria. Methods: In the compute, the depth and length interaction of a flaw has been considered and a compute program is developed per Visual C++. Results: The fluctuating load of the Reactor Coolant System transients, the initial flaw shape, the initial flaw orientation are all accounted here. Conclusions: The calculation and evaluation methodology here is an important basis for continue working or not. (authors)

  6. Simplified probabilistic approach to determine safety factors in deterministic flaw acceptance criteria

    International Nuclear Information System (INIS)

    Barthelet, B.; Ardillon, E.

    1997-01-01

    The flaw acceptance rules in nuclear components rely on deterministic criteria supposed to ensure the safe operating of plants. The interest of having a reliable method of evaluating the safety margins and the integrity of components led Electricite de France to launch a study to link safety factors with requested reliability. A simplified analytical probabilistic approach is developed to analyse the failure risk in Fracture Mechanics. Assuming lognormal distributions of the main random variables, it is possible considering a simple Linear Elastic Fracture Mechanics model, to determine the failure probability as a function of mean values and logarithmic standard deviations. The 'design' failure point can be analytically calculated. Partial safety factors on the main variables (stress, crack size, material toughness) are obtained in relation with reliability target values. The approach is generalized to elastic plastic Fracture Mechanics (piping) by fitting J as a power law function of stress, crack size and yield strength. The simplified approach is validated by detailed probabilistic computations with PROBAN computer program. Assuming reasonable coefficients of variations (logarithmic standard deviations), the method helps to calibrate safety factors for different components taking into account reliability target values in normal, emergency and faulted conditions. Statistical data for the mechanical properties of the main basic materials complement the study. The work involves laboratory results and manufacture data. The results of this study are discussed within a working group of the French in service inspection code RSE-M. (authors)

  7. Flaws detection and localization in weld structure using the topological energy method

    Science.gov (United States)

    Lubeigt, Emma; Mensah, Serge; Rakotonarivo, Sandrine; Chaix, Jean-François; Gobillot, Gilles; Baqué, François

    2017-02-01

    The non-destructive testing of austenitic welds using ultrasound plays an important role in the assessment of the structural integrity and safety of critical structures in a nuclear reactor. The bedspring and the deck are complex welded structures of very restricted access; the ability to reliably detect and locate defects like cracks is therefore a difficult challenge. Ultrasonic testing is a well-recognized non-invasive technique which exhibits high characterization performances in homogeneous media (steel). However, its capabilities are hampered when operating in heterogeneous and anisotropic austenitic welds because of deviation and splitting of the ultrasonic beam. In order to rise to this important challenge, a model-based method is proposed, which takes into account a prior knowledge corresponding to the welding procedure specifications that condition the austenitic grains orientation within the weld and thus the wave propagation. The topological imaging method implemented is a differential approach which, compares signals from the reference defect-free medium to the inspected medium. It relies on combinations of two computed ultrasonic fields, one forward and one adjoint. Numerical simulations and experiments have been carried out to validate the practical relevance of this approach to detect and locate a flaw in a weld.

  8. Flaw assessment guide for high-temperature reactor components subject to creep-fatigue loading

    International Nuclear Information System (INIS)

    Ainsworth, R.A.; Takahashi, Y.

    1990-10-01

    A high-temperature flaw assessment procedure is described. This procedure is a result of a collaborative effort between Electric Power Research Institute in the United States, Central Research Institute of Electric Power Industry in Japan, and Nuclear Electric plc in the United Kingdom. The procedure addresses preexisting defects subject to creep-fatigue loading conditions. Laws employed to calculate the crack growth per cycle are defined in terms of fracture mechanics parameters and constants related to the component material. The crack-growth laws can be integrated to calculate the remaining life of a component or to predict the amount of crack extension in a given period. Fatigue and creep crack growth per cycle are calculated separately, and the total crack extension is taken as the simple sum of the two contributions. An interaction between the two propagation modes is accounted for in the material properties in the separate calculations. In producing the procedure, limitations of the approach have been identified. 25 refs., 1 fig

  9. Failure Analysis of a Service Tube

    Science.gov (United States)

    Xie, Zhongdong; Cai, Weiguo; Li, Zhenxing; Guan, YiMing; Zhang, Baocheng; Yang, XiaoTong

    2017-12-01

    One tube was cracked used in the primary reformer furnace in a fertilizer plant for two and half years. In order to find out the causes of cracking, the methods for chemical composition analysis, macro- and microstructure analysis, penetrant testing, weld analysis, crack and surface damage analysis, mechanics property analysis, high temperature endurance performance analysis, stress and wall thickness calculation were adopted. The integrated assessment results showed that the carbon content of the tube was in the lower limit of the standard range; the tube effective wall thickness was too small; local overheating leads to tube cracking in use process.

  10. Probability of detection model for the non-destructive inspection of steam generator tubes of PWRs

    Science.gov (United States)

    Yusa, N.

    2017-06-01

    This study proposes a probability of detection (POD) model to discuss the capability of non-destructive testing methods for the detection of stress corrosion cracks appearing in the steam generator tubes of pressurized water reactors. Three-dimensional finite element simulations were conducted to evaluate eddy current signals due to stress corrosion cracks. The simulations consider an absolute type pancake probe and model a stress corrosion crack as a region with a certain electrical conductivity inside to account for eddy currents flowing across a flaw. The probabilistic nature of a non-destructive test is simulated by varying the electrical conductivity of the modelled stress corrosion cracking. A two-dimensional POD model, which provides the POD as a function of the depth and length of a flaw, is presented together with a conventional POD model characterizing a flaw using a single parameter. The effect of the number of the samples on the PODs is also discussed.

  11. Measurement of flaw size in a weld sample by ultrasonic frequency analysis

    International Nuclear Information System (INIS)

    Whaley, H.L. Jr.; Adler, L.; Cook, K.V.; McClung, R.W.

    1975-05-01

    An ultrasonic frequency analysis technique has been developed and applied to the measurement of flaws in an 8-in.-thick heavy-section steel specimen belonging to the Pressure Vessel Research Committee program. Using the technique the flaws occurring in the weld area were characterized in quantitative terms of both dimension and orientation. Several modifications of the technique were made during the study to include the application of several transducers and to consider ultrasonic mode conversion. (U.S.)

  12. Ultrasonic Flaw Detection and Imaging through Reverberant Layers via Subspace Analysis and Projection

    Directory of Open Access Journals (Sweden)

    Ramazan Demirli

    2012-01-01

    Full Text Available Ultrasonic flaw detection and imaging through reverberant layers are challenging problems owing to the layer-induced reverberations and front surface reflections. These undesired signals present a strong clutter and mask the flaw echoes. In this paper, a subspace-based approach is developed for removing, or significantly reducing, the unwanted reverberations, enabling proper flaw detection and imaging. The technique utilizes a set of independent clutter-only reference measurements of the material through the layer. If these measurements are not available, array measurements of the material with flaws are used instead. The clutter, due to its high strength relative to the flaw reflections, forms a subspace spanned by the eigenvectors corresponding to the dominant eigenvalues of the data covariance matrix. The clutter subspace is estimated and removed using orthogonal subspace projection. The clutter usually occupies multidimension subspace that is dependent on the level of coupling, material inhomogeneity, surface roughness, and the sampling rate of the measurements. When the clutter-only reference is not available, information theoretic techniques are used to estimate the dimension of the clutter subspace so that clutter signals are sufficiently suppressed without distorting the flaw signals. The effectiveness of the proposed approach is demonstrated using simulations and real measurement results.

  13. A study on the measurement of flaw sizes by acoustical holography

    International Nuclear Information System (INIS)

    Yamamoto, M.; Ando, T.; Enami, K.; Yajima, M.; Fukui, S.

    1978-01-01

    As a means of evaluating the safety of flawed pressure vessels and other structures against fracture, fracture mechanics has come to be applied. For the application of fracture mechanics it is necessary to get information concerning the sizes and shapes of flaws. The ultrasonic flaw detection method which is widely used as a nondestructive inspection method cannot measure the sizes and shapes of flaws accurately. Considering that acoustical holography is an useful means for the measurement of flaws, we performed basic tests on this method and obtained the following results: (1) The measured values of artificial flaws (flat bottom drilled holes: 5 -- 36 mm) made on a steel plate with a thickness of 150 mm showed a good linear relation with their actual sizes and scatter in the measured values was +-3 -- 6 mm. (2) The measured values of fatigue cracks (length: 5 -- 57 mm) introduced into a steel plate with thickness of 150 mm also showed a good linear relation with their actual sizes and scatter in the measured values was +-3 mm. (3) It was found that acoustical holography can also be applied to heavy section cast steels. (4) The method of correcting distortion caused by curved surface was investigated by computer-aided simulation and it was considered that such distortion can be corrected by radial scanning of a transducer. (auth.)

  14. YouTube and Facebook

    DEFF Research Database (Denmark)

    Robertson, Scott P.; Vatrapu, Ravi; Medina, Richard

    This paper examines the links to YouTube from the Facebook “walls” of Barack Obama, Hillary Clinton, and John McCain over two years prior to the 2008 U.S. Presidential election. User-generated linkage patterns show how participants in these politically-related social networking dialogues used...... online video to make their points. We show a strong integration of the Web 2.0 and new media technologies of social networking and online video. We argue that political discussion in social networking environments can no longer be viewed as primarily textual, and that neither Facebook nor YouTube can...

  15. Applied research for profilometric testing of the state of interior surfaces in heat exchanger tubes

    International Nuclear Information System (INIS)

    Gyongyosi, Tiberiu; Panaitescu, Valeriu Nicolae

    2009-01-01

    Generally, the surface flaws identified at heat exchangers tubing are characteristic for the heat secondary systems, located on the external surfaces of the heat exchanger tubes and are mostly the results of the ageing phenomena in systems operation. The tests performed, with the impressing replicating device confirmed the applicability of the technique, functionality of the device and resulted in replicas on metal support, these being the hard copy of the negative of the test tube surface, allowing the profile measurement. The visual inspection of the replicas on the metallic support gives information about the surface geometry replicated, pointing out the marks, which belong to the same area under observation. The minimum and maximum values for the depth of the channel worked out in the inner test tube wall have been determined by profile graphic measurement on the replicas. The paper presents the structural and functional description of the experimental devices. The first results and some conclusions are also included. Two patent applications were submitted at State Office for Inventions and Trademarks (OSIM) covering the original data to protect royalty: 'The local pit flaws, scratches, incipient micro-cracks replicating device on inner cylindrical surfaces', under no. A/00299/17.04.2008 and 'The annular local flaw, incipient micro-cracks replicating device on inner cylindrical surface' under no. A/00300/17.04.2008

  16. Ultrasonic characterization of defects. Part 4. Study of realistic flaws in welded carbon steel

    Energy Technology Data Exchange (ETDEWEB)

    Lingvall, F.; Stepinski, T. [Uppsala Univ. (Sweden). Signals and Systems

    1999-02-01

    This report treats the ultrasonic measurements performed on the new V-welded carbon steel blocks and development of the algorithms for feature extraction, flaw position estimation, etc. Totally 36 different defects, divided into 8 types, were manufactured and implanted into the V-welds in the steel blocks. The flaw population can also be divided in two major groups: sharp flaws (various types of cracks and lack of fusion) and soft types of flaws (slag, porosity and over penetration). A large amount of B- and D-scan measurements were performed on these flaws using 6 different transducers. The evaluation of these measurements resulted in the conclusion that the signal variation for the same type of defects is rather large compared to the variation found in signals from artificial and simulated defects. The steel block measurements also revealed that some of the defects were hard to distinguish, particularly if traditional features like fall/raise times, pulse duration and echo dynamics are used. To overcome this difficulty more powerful feature extraction methods were proposed, like the discrete wavelet transform and principal component analysis. Another important subject that is treated in this report is the estimation of flaw positions from B-scans. The previously used, one dimensional method, appeared to be sensitive to errors in the steel block measurements which, in some cases, resulted in poor flaw position estimates. Therefore, a two dimensional approach was proposed which should result in more robust estimates due to the larger amount of data that is used for the estimation.

  17. Effect of automated tube voltage selection, integrated circuit detector and advanced iterative reconstruction on radiation dose and image quality of 3rd generation dual-source aortic CT angiography: An intra-individual comparison.

    Science.gov (United States)

    Mangold, Stefanie; De Cecco, Carlo N; Wichmann, Julian L; Canstein, Christian; Varga-Szemes, Akos; Caruso, Damiano; Fuller, Stephen R; Bamberg, Fabian; Nikolaou, Konstantin; Schoepf, U Joseph

    2016-05-01

    To compare, on an intra-individual basis, the effect of automated tube voltage selection (ATVS), integrated circuit detector and advanced iterative reconstruction on radiation dose and image quality of aortic CTA studies using 2nd and 3rd generation dual-source CT (DSCT). We retrospectively evaluated 32 patients who had undergone CTA of the entire aorta with both 2nd generation DSCT at 120kV using filtered back projection (FBP) (protocol 1) and 3rd generation DSCT using ATVS, an integrated circuit detector and advanced iterative reconstruction (protocol 2). Contrast-to-noise ratio (CNR) was calculated. Image quality was subjectively evaluated using a five-point scale. Radiation dose parameters were recorded. All studies were considered of diagnostic image quality. CNR was significantly higher with protocol 2 (15.0±5.2 vs 11.0±4.2; pquality analysis revealed no significant differences for evaluation of attenuation (p=0.08501) but image noise was rated significantly lower with protocol 2 (p=0.0005). Mean tube voltage and effective dose were 94.7±14.1kV and 6.7±3.9mSv with protocol 2; 120±0kV and 11.5±5.2mSv with protocol 1 (pquality in comparison to 120kV imaging with FBP. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  18. Failure analysis of retired steam generator tubings

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hong Pyo; Kim, J. S.; Hwang, S. S. and others

    2005-04-15

    Degradation of steam generator leads to forced outage and extension of outage, which causes increase in repair cost, cost of purchasing replacement power and radiation exposure of workers. Steam generator tube rupture incident occurred in Uljin 4 in 2002, which made public sensitive to nuclear power plant. To keep nuclear energy as a main energy source, integrity of steam generator should be demonstrated. Quantitative relationship between ECT(eddy current test) signal and crack size is needed in assesment of integrity of steam generator in pressurized water reactor. However, it is not fully established for application in industry. Retired steam generator of Kori 1 has many kinds of crack such as circumferential and axial primary water stress corrosion crack and outer diameter stress corrosion crack(ODSCC). So, it can be used in qualifying and improving ECT technology and in condition monitoring assesment for crack detected in ISI(in service inspection). In addition, examination of pulled tube of Kori 1 retired steam generator will give information about effectiveness of non welded sleeving technology which was employed to repair defect tubes and remedial action which was applied to mitigate ODSCC. In this project, hardware such as semi hot lab. for pulled tube examination and modification transportation cask for pulled tube and software such as procedure of transportation of radioactive steam generator tube and non-destructive and destructive examination of pulled tube were established. Non-destructive and destructive examination of pulled tubes from Kori 1 retired steam generator were performed in semi hot lab. Remedial actions applied to Kori 1 retired steam generator, PWSCC trend and bulk water chemistry and crevice chemistry in Kori 1 were evaluated. Electrochemical decontamination technology for pulled tube was developed to reduce radiation exposure and enhance effectiveness of pulled tube examination. Multiparameter algorithm developed at ANL, USA was

  19. An investigation on compression strength analysis of commercial aluminium tube to aluminium 2025 tube plate by using TIG welding process

    Energy Technology Data Exchange (ETDEWEB)

    Kannan, S., E-mail: kannan.dgl201127@gmail.com [Department of Mechanical Engineering and Mining Machinery Engineering, Indian Institute of Technology (ISM), Dhanbad, Jharkhand, India, 826004 (India); Senthil Kumaran, S., E-mail: sskumaran@ymail.com [Research and Development Center, Department of Mechanical Engineering, RVS Educational Trust' s Group of Institutions, RVS School of Engineering and Technology, Dindigul, Tamilnadu, India, 624005 (India); Kumaraswamidhas, L.A., E-mail: lakdhas1978@gmail.com [Department of Mechanical Engineering and Mining Machinery Engineering, Indian School of Mines University, Dhanbad, Jharkhand, India, 826004 (India)

    2016-05-05

    In this present study, Tungsten inert gas (TIG) welding was applied to weld the dissimilar materials and authenticate the mechanical and metallurgical properties of tube to tube plate made up of commercial aluminium and Al 2025 respectively using an Zirconiated tungsten electrode along with filler material aluminium ER 2219. In total, twenty five pieces has been subjected to compression strength and hardness value to evaluate the optimal joint strength. The three optimization technique has been used in this experiment. Taguchi L{sub 25} orthogonal array is used to identify the most influencing process parameter which affects the joint strength. ANOVA method is measured for both compression strength and hardness to calculate the percentage of contribution for each process parameter. Genetic algorithm is used to validate the results obtained from the both experimental value and optimization value. The micro structural study is depicted the welding joints characterization in between tube to tube plate joints. The radiograph test is conducted to prove the welds are non-defective and no flaws are found during the welding process. The mechanical property of compression strength and hardness has been measured to obtain the optimal joint strength of the welded sample was about 174.846 MPa and 131.364 Hv respectively. - Highlights: • Commercial Al tube and Al 2025 tube plate successfully welded by TIG welding. • Compression strength and hardness value proves to obtain optimal joint strength. • The maximum compression and hardness was achieved in various input parameters.

  20. An investigation on compression strength analysis of commercial aluminium tube to aluminium 2025 tube plate by using TIG welding process

    International Nuclear Information System (INIS)

    Kannan, S.; Senthil Kumaran, S.; Kumaraswamidhas, L.A.

    2016-01-01

    In this present study, Tungsten inert gas (TIG) welding was applied to weld the dissimilar materials and authenticate the mechanical and metallurgical properties of tube to tube plate made up of commercial aluminium and Al 2025 respectively using an Zirconiated tungsten electrode along with filler material aluminium ER 2219. In total, twenty five pieces has been subjected to compression strength and hardness value to evaluate the optimal joint strength. The three optimization technique has been used in this experiment. Taguchi L 25 orthogonal array is used to identify the most influencing process parameter which affects the joint strength. ANOVA method is measured for both compression strength and hardness to calculate the percentage of contribution for each process parameter. Genetic algorithm is used to validate the results obtained from the both experimental value and optimization value. The micro structural study is depicted the welding joints characterization in between tube to tube plate joints. The radiograph test is conducted to prove the welds are non-defective and no flaws are found during the welding process. The mechanical property of compression strength and hardness has been measured to obtain the optimal joint strength of the welded sample was about 174.846 MPa and 131.364 Hv respectively. - Highlights: • Commercial Al tube and Al 2025 tube plate successfully welded by TIG welding. • Compression strength and hardness value proves to obtain optimal joint strength. • The maximum compression and hardness was achieved in various input parameters.

  1. Application of elastic and elastic-plastic fracture mechanics methods to surface flaws

    Science.gov (United States)

    Mccabe, Donald E.; Ernst, Hugo A.; Newman, James C., Jr.

    1992-01-01

    Fuel tanks that are a part of the External Tank assembly for the Space Shuttle are made of relatively thin 2219-T87 aluminum plate. These tanks contain about 917 m of fusion weld seam, all of which is nondestructively inspected for flaws and all those found are repaired. The tanks are subsequently proof-tested to a pressure that is sufficiently severe to cause weld metal yielding in a few local regions of the weld seam. The work undertaken in the present project was to develop a capability to predict flaw growth from undetected surface flaws that are assumed to be located in the highly stressed regions. The technical challenge was to develop R-curve prediction capability for surface cracks in specimens that contain the flaws of unusual sizes and shapes deemed to be of interest. The test techniques developed and the elastic-plastic analysis concepts adopted are presented. The flaws of interest were quite small surface cracks that were narrow-deep ellipses that served to exacerbate the technical difficulties involved.

  2. Simulating the X-Ray Image Contrast to Set-Up Techniques with Desired Flaw Detectability

    Science.gov (United States)

    Koshti, Ajay M.

    2015-01-01

    The paper provides simulation data of previous work by the author in developing a model for estimating detectability of crack-like flaws in radiography. The methodology is being developed to help in implementation of NASA Special x-ray radiography qualification, but is generically applicable to radiography. The paper describes a method for characterizing X-ray detector resolution for crack detection. Applicability of ASTM E 2737 resolution requirements to the model are also discussed. The paper describes a model for simulating the detector resolution. A computer calculator application, discussed here, also performs predicted contrast and signal-to-noise ratio calculations. Results of various simulation runs in calculating x-ray flaw size parameter and image contrast for varying input parameters such as crack depth, crack width, part thickness, x-ray angle, part-to-detector distance, part-to-source distance, source sizes, and detector sensitivity and resolution are given as 3D surfaces. These results demonstrate effect of the input parameters on the flaw size parameter and the simulated image contrast of the crack. These simulations demonstrate utility of the flaw size parameter model in setting up x-ray techniques that provide desired flaw detectability in radiography. The method is applicable to film radiography, computed radiography, and digital radiography.

  3. Development of flaw acceptance criteria for aging management of spent nuclear fuel multi-purpose canisters

    Energy Technology Data Exchange (ETDEWEB)

    Lam, Poh -Sang [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL). Materials Science and Technology; Sindelar, Robert L. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL). Materials Science and Technology

    2015-03-09

    A typical multipurpose canister (MPC) is made of austenitic stainless steel and is loaded with spent nuclear fuel assemblies. The canister may be subject to service-induced degradation when it is exposed to aggressive atmospheric environments during a possibly long-term storage period if the permanent repository is yet to be identified and readied. Because heat treatment for stress relief is not required for the construction of an MPC, stress corrosion cracking may be initiated on the canister surface in the welds or in the heat affected zone. An acceptance criteria methodology is being developed for flaw disposition should the crack-like defects be detected by periodic in-service Inspection. The first-order instability flaw sizes has been determined with bounding flaw configurations, that is, through-wall axial or circumferential cracks, and part-through-wall long axial flaw or 360° circumferential crack. The procedure recommended by the American Petroleum Institute (API) 579 Fitness-for-Service code (Second Edition) is used to estimate the instability crack length or depth by implementing the failure assessment diagram (FAD) methodology. The welding residual stresses are mostly unknown and are therefore estimated with the API 579 procedure. It is demonstrated in this paper that the residual stress has significant impact on the instability length or depth of the crack. The findings will limit the applicability of the flaw tolerance obtained from limit load approach where residual stress is ignored and only ligament yielding is considered.

  4. Development of flaw acceptance criteria for aging management of spent nuclear fuel multiple-purpose canisters

    Energy Technology Data Exchange (ETDEWEB)

    Lam, P. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL). Materials Science and Technology; Sindelar, R. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL). Materials Science and Technology

    2015-03-09

    A typical multipurpose canister (MPC) is made of austenitic stainless steel and is loaded with spent nuclear fuel assemblies. The canister may be subject to service-induced degradation when it is exposed to aggressive atmospheric environments during a possibly long-term storage period if the permanent repository is yet to be identified and readied. Because heat treatment for stress relief is not required for the construction of an MPC, stress corrosion cracking may be initiated on the canister surface in the welds or in the heat affected zone. An acceptance criteria methodology is being developed for flaw disposition should the crack-like defects be detected by periodic In-service Inspection. The first-order instability flaw sizes has been determined with bounding flaw configurations, that is, through-wall axial or circumferential cracks, and part-through-wall long axial flaw or 360° circumferential crack. The procedure recommended by the American Petroleum Institute (API) 579 Fitness-for-Service code (Second Edition) is used to estimate the instability crack length or depth by implementing the failure assessment diagram (FAD) methodology. The welding residual stresses are mostly unknown and are therefore estimated with the API 579 procedure. It is demonstrated in this paper that the residual stress has significant impact on the instability length or depth of the crack. The findings will limit the applicability of the flaw tolerance obtained from limit load approach where residual stress is ignored and only ligament yielding is considered.

  5. Mitigation of BSG damage caused by upstream flaw in the final optics assembly

    Science.gov (United States)

    Jiao, Zhaoyang; Sun, Mingying; Zhao, Dongfeng; Zhu, Jianqiang

    2016-07-01

    In high-power laser facilities for the inertial confinement fusion, there are many large-radius optical elements, which inevitably have some flaws on the surface. The flaws can cause optical intensity intensification and therefore damage the optical elements in the downstream, especially for the beam sampling grating (BSG), which is an important element in the final optics assembly. In this paper, several physical models are established to study the optical field enhancement in the BSG position modulated by upstream flaw. Firstly, when only the linear transportation is considered, it is found that there is a peak or valley of the maximum intensity after the focus lens compared with the ideal wave front. Meanwhile the influence of flaw has an effective range. Secondly, when the nonlinear effect of the focus lens is also considered, the peak maximum downstream is much bigger than the one for the linear consideration and the damage risk of the BSG there is much higher too. From the simulation, we can see that it is important to place the BSG in a properly selected position to mitigate the laser induced damage. The results could give some references to the mitigation of BSG damage caused by upstream flaws and the layout of the final optics assembly.

  6. Biaxial loading and shallow-flaw effects on crack-tip constraint and fracture-toughness

    Energy Technology Data Exchange (ETDEWEB)

    Pennell, W.E.; Bass, B.R.; Bryson, J.W.; McAfee, W.J.; Theiss, T.J.; Rao, M.C.

    1993-12-01

    Uniaxial tests of single-edged notched bend (SENB) specimens with both deep- and shallow-flaws have shown elevated fracture-toughness for the shallow flaws. The elevation in fracture-toughness for shallow flaws has been shown to be the result of reduced constraint at the crack-tip. Biaxial loading has the potential to increase constraint at the crack-tip and thereby reduce some of the shallow-flaw, fracture-toughness elevation. Biaxial fracture-toughness tests have shown that the shallow-flaw, fracture-toughness elevation is reduced but not eliminated by biaxial loading. Dual-parameter, fracture-toughness correlations have been proposed to reflect the effect of crack-tip constraint on fracture-toughness. Test results from the uniaxial and biaxial tests were analyzed using the dual-parameter technology. Discrepancies between analysis results and cleavage initiation site data from fractographic examinations indicate that the analysis models are in need of further refinement. Addition of a precleavage, ductile-tearing element to the analysis model has the potential to resolve the noted discrepancies.

  7. Application of elastic and elastic-plastic fracture mechanics methods to surface flaws

    Science.gov (United States)

    McCabe, Donald E.; Ernst, Hugo A.; Newman, James C., Jr.

    Fuel tanks that are a part of the External Tank assembly for the Space Shuttle are made of relatively thin 2219-T87 aluminum plate. These tanks contain about 917 m of fusion weld seam, all of which is nondestructively inspected for flaws and all those found are repaired. The tanks are subsequently proof-tested to a pressure that is sufficiently severe to cause weld metal yielding in a few local regions of the weld seam. The work undertaken in the present project was to develop a capability to predict flaw growth from undetected surface flaws that are assumed to be located in the highly stressed regions. The technical challenge was to develop R-curve prediction capability for surface cracks in specimens that contain the flaws of unusual sizes and shapes deemed to be of interest. The test techniques developed and the elastic-plastic analysis concepts adopted are presented. The flaws of interest were quite small surface cracks that were narrow-deep ellipses that served to exacerbate the technical difficulties involved.

  8. Regulation No. 0-31 on handling of radiation flaw-detectors

    International Nuclear Information System (INIS)

    1975-01-01

    The regulation contains mandatory design, commissioning, and operational requirements for laboratories using flaw-detectors emitting ionizing radiation; also, design, manufacturing, and operational requirements for the production of any type of X-ray or gamma-ray flaw-detectors. Laboratories carrying out non-destructive testing are either stationary or mobile. Conceptual and operating designs are elaborated, including the building and the laboratory lay-outs, the mains, water supply, and sewerage system technological lay-out, explanatory comments, and a lay-out of the shielding equipment. Approbated designs are implemented, and the laboratories commissioned to representatives of the State Sanitary Inspectorate. Licences are issued by the Ministry of Public Health (MPH) and the Committee on Peaceful Uses of Atomic Energy (CPUAE). Any flaw-detector has to conform to the Bulgarian State Standards and be coordinated with the MPH, the CPUAE, and the Central Laboratory for Nuclear Flaw-Detection (CLNFD). The laboratories are required to have operational instructions, an emergency plan, and to keep technological and dosimetric records. The latter are provided and processed by the relevant service at the Research Institute of Radiobiology and Radiation Hygiene. For operations involving of flaw-detectors, presence of at least two workers is required. (G.G.)

  9. Tracheostomy tube - speaking

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/patientinstructions/000465.htm Tracheostomy tube - speaking To use the sharing features on ... are even speaking devices that can help you. Tracheostomy Tubes and Speaking Air passing through vocal cords ( ...

  10. X-ray tubes

    International Nuclear Information System (INIS)

    Young, R.W.

    1979-01-01

    A form of x-ray tube is described which provides satisfactory focussing of the electron beam when the beam extends for several feet from gun to target. Such a tube can be used for computerised tomographic scanning. (UK)

  11. Neural Tube Defects

    Science.gov (United States)

    Neural tube defects are birth defects of the brain, spine, or spinal cord. They happen in the ... that she is pregnant. The two most common neural tube defects are spina bifida and anencephaly. In ...

  12. Jejunostomy feeding tube

    Science.gov (United States)

    ... may replace the tube every now and then. Cleaning the Skin Around the J-tube To clean ... this important distinction for online health information and services. Learn more about A.D.A.M.'s editorial ...

  13. Research on Ultrasonic Flaw Detection of Steel Weld in Spatial Grid Structure

    Science.gov (United States)

    Du, Tao; Sun, Jiandong; Fu, Shengguang; Zhang, Changquan; Gao, Qing

    2017-06-01

    The welding quality of spatial grid member is an important link in quality control of steel structure. The paper analyzed the reasons that the welding seam of small-bore pipe with thin wall grid structure is difficult to be detected by ultrasonic wave from the theoretical and practical aspects. A series of feasible detection methods was also proposed by improving probe and operation approaches in this paper, and the detection methods were verified by project cases. Over the years, the spatial grid structure is widely used the engineering by virtue of its several outstanding characteristics such as reasonable structure type, standard member, excellent space integrity and quick installation. The wide application of spatial grid structure brings higher requirements on nondestructive test of grid structure. The implementation of new Code for Construction Quality Acceptance of Steel Structure Work GB50205-2001 strengthens the site inspection of steel structure, especially the site inspection of ultrasonic flaw detection in steel weld. The detection for spatial grid member structured by small-bore and thin-walled pipes is difficult due to the irregular influence of sound pressure in near-field region of sound field, sound beam diffusion generated by small bore pipe and reduction of sensitivity. Therefore, it is quite significant to select correct detecting conditions. The spatial grid structure of welding ball and bolt ball is statically determinate structure with high-order axial force which is connected by member bars and joints. It is welded by shrouding or conehead of member bars and of member bar and bolt-node sphere. It is obvious that to ensure the quality of these welding positions is critical to the quality of overall grid structure. However, the complexity of weld structure and limitation of ultrasonic detection method cause many difficulties in detection. No satisfactory results will be obtained by the conventional detection technology, so some special

  14. Preliminary development of flaw evaluation procedures for delayed hydride cracking initiation under hydride non-ratcheting conditions

    Energy Technology Data Exchange (ETDEWEB)

    Xu, S.; Cui, J.; Kawa, D.; Shek, G.K.; Scarth, D.A. [Kinectrics Inc., Toronto, Ontario (Canada)

    2006-07-01

    The flaw evaluation procedure for Delayed Hydride Cracking (DHC) initiation currently provided in the CSA Standard N285.8 was developed for hydride ratcheting conditions, in which flaw-tip hydrides do not completely dissolve at peak temperature. Test results have shown that hydrided regions formed under non-ratcheting conditions, in which flaw-tip hydrides completely dissolve at peak temperature, have significantly higher resistance to cracking than those formed under ratcheting conditions. This paper presents some preliminary work on the development of a procedure for the evaluation of DHC initiation for flaws under hydride non-ratcheting conditions. (author)

  15. Experience in Ultrasonic Flaw Estimation and its Excavation on the Weldments of Nuclear Pressure Vessels

    International Nuclear Information System (INIS)

    Lee, J. P.; Park, D. Y.; Lim, H. T.; Kim, B. C.; Joo, Y. S.

    1991-01-01

    The importance and role of preservice and inservice inspection(PSI/ISI) for nuclear power plant components are intimately related to plant design, safety, reliability and operation etc.. The Korea Atomic Energy Research Institute(KAERI) has been performing PSI/ISI in Korea since the PSI of Kori nuclear power plant, unit 1 had been performed in 1977. KAERI has localized PSI/ISI technology and has done much experience in ultrasonic flaw detection, evaluation and its excavation on the weldments of large pressure vessels. The results of flaw estimation using ultrasonic examination are compared with the actual flaw sizes revealed by field excavation. KAERI's experience regarding PSI/ISI was described and some discussions were added

  16. Determination of Flaw Size and Depth From Temporal Evolution of Thermal Response

    Science.gov (United States)

    Winfree, William P.; Zalameda, Joseph N.; Cramer, Elliott; Howell, Patricia A.

    2015-01-01

    Simple methods for reducing the pulsed thermographic responses of flaws have tended to be based on either the spatial or temporal response. This independent assessment limits the accuracy of characterization. A variational approach is presented for reducing the thermographic data to produce an estimated size for a flaw that incorporates both the temporal and spatial response to improve the characterization. The size and depth are determined from both the temporal and spatial thermal response of the exterior surface above a flaw and constraints on the length of the contour surrounding the delamination. Examples of the application of the technique to simulation and experimental data acquired are presented to investigate the limitations of the technique.

  17. Flaw evaluation of thermally aged cast stainless steel in light-water reactor applications

    International Nuclear Information System (INIS)

    Lee, S.; Kuo, P.T.; Wichman, K.; Chopra, O.

    1997-01-01

    Cast stainless steel may be used in the fabrication of the primary loop piping, fittings, valve bodies, and pump casings in light-water reactors. However, this material is subject to embrittlement due to thermal aging at the reactor temperature, that is 290 o C (550 o F). The Argonne National Laboratory (ANL) recently completed a research program and the results indicate that the lower-bound fracture toughness of thermally aged cast stainless steel is similar to that of submerged arc welds (SAWs). Thus, the US Nuclear Regulatory Commission (NRC) staff has accepted the use of SAW flaw evaluation procedures in IWB-3640 of Section XI of the American Society of Mechanical Engineers (ASME) Boiler and Pressure Vessel Code to evaluate flaws in thermally aged cast stainless steel for a license renewal evaluation. Alternatively, utilities may estimate component-specific fracture toughness of thermally aged cast stainless steel using procedures developed at ANL for a case-by-case flaw evaluation. (Author)

  18. Teacher quality, appraisal and development: The flaws in the IQMS ...

    African Journals Online (AJOL)

    This article addresses the issue of how to monitor and develop the quality of teaching in schools by identifying the international lessons of teacher appraisal, monitoring and support systems and by interrogating the recently introduced South African Integrated Quality Management System (IQMS). The aim is to show why ...

  19. Nasogastric and feeding tubes.

    Science.gov (United States)

    Gharib, Ahmed M; Stern, Eric J; Sherbin, Vandy L; Rohrmann, Charles A

    1996-05-01

    Preview The authors' experience in a radiology department suggested to them that there is a wide range of beliefs among practitioners regarding proper placement of nasogastric and feeding tubes. Improper positioning can cause serious problems, as they explain. Indications for different tube positions, complications of incorrect tube placement, and directions for proper positioning are discussed and illustrated.

  20. On-Line Monitoring and Diagnostics of the Integrity of Nuclear Plant Steam Generators and Heat Exchangers

    Energy Technology Data Exchange (ETDEWEB)

    Belle R. Upadhyaya; J. Wesley Hines

    2004-09-27

    Integrity monitoring and flaw diagnostics of flat beams and tubular structures was investigated in this research task using guided acoustic signals. A piezo-sensor suite was deployed to activate and collect Lamb wave signals that propagate along metallic specimens. The dispersion curves of Lamb waves along plate and tubular structures are generated through numerical analysis. Several advanced techniques were explored to extract representative features from acoustic time series. Among them, the Hilbert-Huang transform (HHT) is a recently developed technique for the analysis of non-linear and transient signals. A moving window method was introduced to generate the local peak characters from acoustic time series, and a zooming window technique was developed to localize the structural flaws. The time-frequency analysis and pattern recognition techniques were combined for classifying structural defects in brass tubes. Several types of flaws in brass tubes were tested, both in the air and in water. The techniques also proved to be effective under background/process noise. A detailed theoretical analysis of Lamb wave propagation was performed and simulations were carried out using the finite element software system ABAQUS. This analytical study confirmed the behavior of the acoustic signals acquired from the experimental studies. The report presents the background the analysis of acoustic signals acquired from piezo-electric transducers for structural defect monitoring. A comparison of the use of time-frequency techniques, including the Hilbert-Huang transform, is presented. The report presents the theoretical study of Lamb wave propagation in flat beams and tubular structures, and the need for mode separation in order to effectively perform defect diagnosis. The results of an extensive experimental study of detection, location, and isolation of structural defects in flat aluminum beams and brass tubes are presented. The results of this research show the feasibility of on

  1. On-Line Monitoring and Diagnostics of the Integrity of Nuclear Plant Steam Generators and Heat Exchangers

    International Nuclear Information System (INIS)

    Upadhyaya, Belle R.; Hines, J. Wesley

    2004-01-01

    Integrity monitoring and flaw diagnostics of flat beams and tubular structures was investigated in this research task using guided acoustic signals. A piezo-sensor suite was deployed to activate and collect Lamb wave signals that propagate along metallic specimens. The dispersion curves of Lamb waves along plate and tubular structures are generated through numerical analysis. Several advanced techniques were explored to extract representative features from acoustic time series. Among them, the Hilbert-Huang transform (HHT) is a recently developed technique for the analysis of non-linear and transient signals. A moving window method was introduced to generate the local peak characters from acoustic time series, and a zooming window technique was developed to localize the structural flaws. The time-frequency analysis and pattern recognition techniques were combined for classifying structural defects in brass tubes. Several types of flaws in brass tubes were tested, both in the air and in water. The techniques also proved to be effective under background/process noise. A detailed theoretical analysis of Lamb wave propagation was performed and simulations were carried out using the finite element software system ABAQUS. This analytical study confirmed the behavior of the acoustic signals acquired from the experimental studies. The report presents the background the analysis of acoustic signals acquired from piezo-electric transducers for structural defect monitoring. A comparison of the use of time-frequency techniques, including the Hilbert-Huang transform, is presented. The report presents the theoretical study of Lamb wave propagation in flat beams and tubular structures, and the need for mode separation in order to effectively perform defect diagnosis. The results of an extensive experimental study of detection, location, and isolation of structural defects in flat aluminum beams and brass tubes are presented. The results of this research show the feasibility of on

  2. Acoustic emission. Flaw relationship for in-service monitoring of nuclear pressure vessels

    International Nuclear Information System (INIS)

    Hutton, P.H.; Kurtz, R.J.

    1980-01-01

    Acoustic emission (AE) testing has the potential of being a valuable NDI method with capability for continuous monitoring, high sensitivity, and remote flaw location. Tests of the method were carried out on ASTM A533 Grade B, Class 1 steel. Crack growth AE signals could be recognized. An AE/fracture mechanics relation was developed for flaw interpretation. Two intermediate vessel tests at ORNL under the HSST program were analyzed. A simulated reactor vessel test and installation of an AE sensing system on a reactor are planned

  3. Experimental analysis of solar thermal integrated MD system for cogeneration of drinking water and hot water for single family villa in dubai using flat plate and evacuated tube solar collectors

    DEFF Research Database (Denmark)

    Asim, Muhammad; Imran, Muhammad; Leung, Michael K.H.

    2017-01-01

    This paper presents the experimental analysis performed on solar thermal integrated membrane distillation (MD) system using flat plate and evacuated tube collectors. The system will be utilized for cogeneration of drinking water and domestic hot water for single family in Dubai comprising of four...... on MD setup at optimized flow rates of 6 L/min on hot side and 3 L/min on cold side for producing the desired distillate. The hot side and cold side MD temperature has been maintained between 60°C and 70°C, and 20°C and 30°C. The total annual energy demand comes out to be 8,223 kWh (6,000 k......Wh is for pure water and 2,223 kWh for hot water). The optimum aperture areas for flat plate and evacuated tube collector field have been identified as 8.5 and 7.5 m2, respectively. Annual energy consumption per liter for pure water production is 1, 0.85 and 0.7 kWh/L for different MD hot and cold inlet...

  4. Reconstruction as a Case Study in Flawed Conflict Transformation

    Science.gov (United States)

    2008-05-01

    and Viet Nam influenced his thinking on doctrine development. 7 United Nations, “Integrated Disarmament, Demobilization, Reintegration Standard...for labor that mitigated the southern financial issues that plagued the South at this time. These laws incorporated many social aspects into their...time, however, these codes did validate “slave marriages ” and granted Freedmen the right to own property, enter into contracts, and sue.64 While the

  5. 21 CFR 868.5800 - Tracheostomy tube and tube cuff.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Tracheostomy tube and tube cuff. 868.5800 Section... (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5800 Tracheostomy tube and tube cuff. (a) Identification. A tracheostomy tube and tube cuff is a device intended to be placed into a...

  6. Pressure tube replication techniques using the advanced NDE system

    International Nuclear Information System (INIS)

    Isherwood, A.; Jarron, D.; Travers, J.; Hanley, K.

    2006-01-01

    Periodic and in-service inspections of fuel channels are essential for the proper assessment of the structural integrity of these vital components. The arrival of new delivery devices for fuel channel inspections has driven new tooling for gathering and analyzing NDE data. The Advanced Non-Destructive Examination (ANDE) Replication System has been designed to compliment the ANDE Inspection System by providing a two plate replica system. These plates deliver a compound that makes a positive 3D mould of known ID flaws to gather information for flaw assessment. The two plate system, and the ability to retrieve and recharge the moulds in the reactor vault allows for gathering defect information with minimal critical path time. The ANDE Replication System was built on the foundation of CIGAR experience by a solid design team familiar with 3D CAD and manufacturing techniques. The tooling and controls went through a series of integration stages in the laboratory and then later with the Universal Delivery Machine (UDM) before being used on reactor starting in 2003. Once the inspection phase of an outage has been completed, the analysis team provides a list of flaw candidates that require 'root radius' information to complete the flaw assessment. This is a measure of how sharp the corners are in the defect. This data is used as part of the stress calculation that ultimately determines how many shutdown cycles that the reactor can have before that flaw must be re-inspected. The inspection tool is then swapped out of the delivery machine in the reactor vault using the versatile connectorized umbilical. The replication tool is loaded on the machine, charged with replica compound on each of the two plates, and then sent to the target channel(s). On channel, the operators use the same console as the ANDE Inspection System, but have a separate control system with a graphical display of the tool that shows its position in the channel with respect to the E-face. The axial and

  7. Regression analysis of pulsed eddy current signals for inspection of steam generator tube support structures

    International Nuclear Information System (INIS)

    Buck, J.; Underhill, P.R.; Mokros, S.G.; Morelli, J.; Krause, T.W.; Babbar, V.K.; Lepine, B.

    2015-01-01

    Nuclear steam generator (SG) support structure degradation and fouling can result in damage to SG tubes and loss of SG efficiency. Conventional eddy current technology is extensively used to detect cracks, frets at supports and other flaws, but has limited capabilities in the presence of multiple degradation modes or fouling. Pulsed eddy current (PEC) combined with principal components analysis (PCA) and multiple linear regression models was examined for the inspection of support structure degradation and SG tube off-centering with the goal of extending results to include additional degradation modes. (author)

  8. The PISC programme on defective steam generator tubes inspection. A status report

    International Nuclear Information System (INIS)

    Birac, C.; Comby, R.; Maciga, G.; Von Estorff, U.; Zanella, G.L.

    1994-06-01

    The general objective of the PISC Program (Programme for the Inspection of Steel Components) is to assess experimentally procedures and techniques in use for the in-service inspection of pressure components. The program is mainly a round robin test, the results of which are compared with real characteristics of the flaws obtained by destructive analysis. Materials tested are INCONEL 600 tubes, diameter 22.22 mm, wall thickness 1.27 mm. The technique applied is eddy current testing. The program of capability tests on loose tubes was started in 1990, the round robin tests ended in 1993. The preliminary results are presented. (R.P.). 8 refs., 9 figs., 4 tabs

  9. Technical Letter Report Development of Flaw Size Distribution Tables Including Effects of Flaw Depth Sizing Errors for Draft 10CFR 50.61a (Alternate PTS Rule) JCN-N6398, Task 4

    Energy Technology Data Exchange (ETDEWEB)

    Simonen, Fredric A.; Gosselin, Stephen R.; Doctor, Steven R.

    2013-04-22

    This document describes a new method to determine whether the flaws in a particular reactor pressure vessel are consistent with the assumptions regarding the number and sizes of flaws used in the analyses that formed the technical justification basis for the new voluntary alternative Pressurized Thermal Shock (PTS) rule (Draft 10 CFR 50.61a). The new methodology addresses concerns regarding prior methodology because ASME Code Section XI examinations do not detect all fabrication flaws, they have higher detection performance for some flaw types, and there are flaw sizing errors always present (e.g., significant oversizing of small flaws and systematic under sizing of larger flaws). The new methodology allows direct comparison of ASME Code Section XI examination results with values in the PTS draft rule Tables 2 and 3 in order to determine if the number and sizes of flaws detected by an ASME Code Section XI examination are consistent with those assumed in the probabilistic fracture mechanics calculations performed in support of the development of 10 CFR 50.61a.

  10. Thermodynamic analysis of a pulse tube engine

    International Nuclear Information System (INIS)

    Moldenhauer, Stefan; Thess, André; Holtmann, Christoph; Fernández-Aballí, Carlos

    2013-01-01

    Highlights: ► Numerical model of the pulse tube engine process. ► Proof that the heat transfer in the pulse tube is out of phase with the gas velocity. ► Proof that a free piston operation is possible. ► Clarifying the thermodynamic working principle of the pulse tube engine. ► Studying the influence of design parameters on the engine performance. - Abstract: The pulse tube engine is an innovative simple heat engine based on the pulse tube process used in cryogenic cooling applications. The working principle involves the conversion of applied heat energy into mechanical power, thereby enabling it to be used for electrical power generation. Furthermore, this device offers an opportunity for its wide use in energy harvesting and waste heat recovery. A numerical model has been developed to study the thermodynamic cycle and thereby help to design an experimental engine. Using the object-oriented modeling language Modelica, the engine was divided into components on which the conservation equations for mass, momentum and energy were applied. These components were linked via exchanged mass and enthalpy. The resulting differential equations for the thermodynamic properties were integrated numerically. The model was validated using the measured performance of a pulse tube engine. The transient behavior of the pulse tube engine’s underlying thermodynamic properties could be evaluated and studied under different operating conditions. The model was used to explore the pulse tube engine process and investigate the influence of design parameters.

  11. A Flue Gas Tube for Thermoelectric Generator

    DEFF Research Database (Denmark)

    2013-01-01

    The invention relates to a flue gas tube (FGT) (1) for generation of thermoelectric power having thermoelectric elements (8) that are integrated in the tube. The FTG may be used in combined heat and power (CHP) system (13) to produce directly electricity from waste heat from, e.g. a biomass boiler....... The CHP system may also be operated in a heating or cooling mode, thus being able to heat or cool water by feeding electricity to the system....

  12. NEI You Tube Videos: Amblyopia

    Medline Plus

    Full Text Available ... YouTube Videos >> NEI YouTube Videos: Amblyopia Listen NEI YouTube Videos YouTube Videos Home Age-Related Macular Degeneration ... Retinopathy of Prematurity Science Spanish Videos Webinars NEI YouTube Videos: Amblyopia Embedded video for NEI YouTube Videos: ...

  13. NEI You Tube Videos: Amblyopia

    Medline Plus

    Full Text Available ... YouTube Videos > NEI YouTube Videos: Amblyopia NEI YouTube Videos YouTube Videos Home Age-Related Macular Degeneration Amblyopia ... of Prematurity Science Spanish Videos Webinars NEI YouTube Videos: Amblyopia Embedded video for NEI YouTube Videos: Amblyopia ...

  14. NEI You Tube Videos: Amblyopia

    Medline Plus

    Full Text Available ... NEI YouTube Videos > NEI YouTube Videos: Amblyopia NEI YouTube Videos YouTube Videos Home Age-Related Macular Degeneration ... Retinopathy of Prematurity Science Spanish Videos Webinars NEI YouTube Videos: Amblyopia Embedded video for NEI YouTube Videos: ...

  15. Intentionally Flawed Manuscripts as Means for Teaching Students to Critically Evaluate Scientific Papers

    Science.gov (United States)

    Ferenc, Jaroslav; Cervenák, Filip; Bircák, Erik; Juríková, Katarína; Goffová, Ivana; Gorilák, Peter; Huraiová, Barbora; Plavá, Jana; Demecsová, Loriana; Duríková, Nikola; Galisová, Veronika; Gazdarica, Matej; Puškár, Marek; Nagy, Tibor; Nagyová, Sona; Mentelová, Lucia; Slaninová, Miroslava; Ševcovicová, Andrea; Tomáška, Lubomír

    2018-01-01

    As future scientists, university students need to learn how to avoid making errors in their own manuscripts, as well as how to identify flaws in papers published by their peers. Here we describe a novel approach on how to promote students' ability to critically evaluate scientific articles. The exercise is based on instructing teams of students to…

  16. Characterization of flaws in pipeline girth welds and austenitic piping welds using satellite pulses

    International Nuclear Information System (INIS)

    Gruber, G.; Schick, W.R.

    1985-01-01

    Three ultrasonic flaw-sizing techniques (amplitude-drop technique, satellite-pulse observation technique and peak-echo technique) were evaluated against ten planar and seven volumetric flaws in the girth welds of large-diameter pipe specimens. Ninety-five percent of the time, the throughwall-dimension estimates for the seventeen flaws yielded by the supplemented Satellite-Pulse Observation Technique (SPOT results combined with those of the Peak-Echo Technique (PET) in case of a planar flaw) were within 1.6 mm of the maximum values determined by metallographic examination. Two additional series of trials were carried out under blind test conditions to validate (1) the SPOT to size small intergranular stress corrosion cracks (IGSCC) in austenitic piping welds and (2) the Multipulse-Observation Sizing Technique (MOST) to size small-to-large IGSC cracks in the welds and heat-affected zones of boiling-water-reactor stainless steel piping. The MOST results are still awaiting confirmation by metallographic examination

  17. Non-destructive detection of flawed hazelnut kernels and lipid oxidation assessment using NIR spectroscopy

    NARCIS (Netherlands)

    Pannico, A.; Schouten, R.E.; Basile, B.; Woltering, E.J.; Cirillo, C.

    2015-01-01

    Microbial contamination, seed browning, bad taste and lipid oxidation are primary causes of quality deterioration in stored hazelnuts, affecting their marketability. The feasibility of NIR spectroscopy to detect flawed kernels and estimate lipid oxidation in in-shell and shelled hazelnuts was

  18. Flawed Implementation or Inconsistent Logics? Lessons from Higher Education Reform in Ukraine

    Science.gov (United States)

    Shaw, Marta A.

    2013-01-01

    This article investigates two competing explanations of why reforms associated with the Bologna process brought disappointing results in Ukraine. The lack of anticipated benefits from the reforms may stem either from a flawed implementation of the Bologna process, or from more fundamental differences between the models of higher education…

  19. Characterization of type, position and dimension of flaws by transit time locus curves of ultrasonic inspections - ALOK. Pt. 2

    International Nuclear Information System (INIS)

    Grohs, B.; Barbian, O.A.; Kappes, W.; Paul, H.

    1981-01-01

    With automatic ultrasonic testing, flaws can be detected and described and thus characterized according to their type, position and dimensions. During scanning of a test object, the flaws are registered by many different pathways and many different acoustic irradiation directions. The transit time locus curve represents the distance between the relfecting points of a flaw and the source in dependence of the probe position; hence, information on flaw position and dimensions can be derived from this curve. If the sound velocity is known, the transit path can then be calculated from the transit time. This requires, above all, a constant sound velocity along the whole transit path. Various methods are presented for reconstructing the flaw border in the plane of incidence. (orig./RW) [de

  20. Probabilistic Fracture Mechanics of Reactor Pressure Vessels with Populations of Flaws

    Energy Technology Data Exchange (ETDEWEB)

    Spencer, Benjamin [Idaho National Lab. (INL), Idaho Falls, ID (United States); Backman, Marie [Univ. of Tennessee, Knoxville, TN (United States); Williams, Paul [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Hoffman, William [Idaho National Lab. (INL), Idaho Falls, ID (United States); Alfonsi, Andrea [Idaho National Lab. (INL), Idaho Falls, ID (United States); Dickson, Terry [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Bass, B. Richard [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Klasky, Hilda [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-09-01

    This report documents recent progress in developing a tool that uses the Grizzly and RAVEN codes to perform probabilistic fracture mechanics analyses of reactor pressure vessels in light water reactor nuclear power plants. The Grizzly code is being developed with the goal of creating a general tool that can be applied to study a variety of degradation mechanisms in nuclear power plant components. Because of the central role of the reactor pressure vessel (RPV) in a nuclear power plant, particular emphasis is being placed on developing capabilities to model fracture in embrittled RPVs to aid in the process surrounding decision making relating to life extension of existing plants. A typical RPV contains a large population of pre-existing flaws introduced during the manufacturing process. The use of probabilistic techniques is necessary to assess the likelihood of crack initiation at one or more of these flaws during a transient event. This report documents development and initial testing of a capability to perform probabilistic fracture mechanics of large populations of flaws in RPVs using reduced order models to compute fracture parameters. The work documented here builds on prior efforts to perform probabilistic analyses of a single flaw with uncertain parameters, as well as earlier work to develop deterministic capabilities to model the thermo-mechanical response of the RPV under transient events, and compute fracture mechanics parameters at locations of pre-defined flaws. The capabilities developed as part of this work provide a foundation for future work, which will develop a platform that provides the flexibility needed to consider scenarios that cannot be addressed with the tools used in current practice.

  1. Vibro-impact responses of a tube with tube--baffle interaction

    International Nuclear Information System (INIS)

    Shin, Y.S.; Sass, D.E.; Jendrzejczyk, J.A.

    1978-01-01

    The relatively small, inherent tube-to-baffle hole clearances associated with manufacturing tolerances in heat exchangers affect the vibrational characteristics and the response of the tube. Numerical studies were made to predict the vibro-impact response of a tube with tube-baffle interaction. The finite element method has been employed with a non-linear elastic contact spring-dashpot to model the effect of the relative approach between the tube and the baffle plate. The coupled equations of motion are directly integrated with a proportional system damping represented by a linear combination of mass and stiffness. Lumped mass approach with explicit time integration scheme was found to be a suitable choice for tube-baffle impacting analysis. Fourier analyses indicate that the higher mode contributions to the tube response are significant for strong tube-baffle impacting. The contact damping forces are negligible compared with the contact spring forces. The numerical analysis results are in reasonably good agreement with those of the experiments

  2. Lunar Lava Tube Sensing

    Science.gov (United States)

    York, Cheryl Lynn; Walden, Bryce; Billings, Thomas L.; Reeder, P. Douglas

    1992-01-01

    Large (greater than 300 m diameter) lava tube caverns appear to exist on the Moon and could provide substantial safety and cost benefits for lunar bases. Over 40 m of basalt and regolith constitute the lava tube roof and would protect both construction and operations. Constant temperatures of -20 C reduce thermal stress on structures and machines. Base designs need not incorporate heavy shielding, so lightweight materials can be used and construction can be expedited. Identification and characterization of lava tube caverns can be incorporated into current precursor lunar mission plans. Some searches can even be done from Earth. Specific recommendations for lunar lava tube search and exploration are (1) an Earth-based radar interferometer, (2) an Earth-penetrating radar (EPR) orbiter, (3) kinetic penetrators for lunar lava tube confirmation, (4) a 'Moon Bat' hovering rocket vehicle, and (5) the use of other proposed landers and orbiters to help find lunar lava tubes.

  3. Steam generator tube performance

    International Nuclear Information System (INIS)

    Tatone, O.S.; Pathania, R.S.

    1983-08-01

    A review of the performance of steam generator tubes in 110 water-cooled nuclear power reactors showed that tubes were plugged at 46 (42 percent) of the reactors. The number of tubes removed from service increased from 1900 (0.14 percent) in 1980 to 4692 (0.30 percent) in 1981. The leading causes of tube failures were stress corrosion cracking from the primary side, stress corrosion cracking (or intergranular attack) from the secondary side and pitting corrosion. The lowest incidence of corrosion-induced defects from the secondary side occurred in reactors that used all-volatile treatment since start-up. At one reactor a large number of degraded tubes were repaired by sleeving which is expected to become an important method of tube repair in the future

  4. Stress-induced light scattering method for the detection of latent flaws on fine polished glass substrates.

    Science.gov (United States)

    Sakata, Y; Sakai, K; Nonaka, K

    2014-08-01

    Fine polishing techniques, such as the chemical mechanical polishing treatment, are one of the most important technique to glass substrate manufacturing. Mechanical interaction in the form of friction occurs between the abrasive and the substrate surface during polishing, which may cause formation of latent flaws on the glass substrate surface. Fine polishing-induced latent flaws may become obvious during a subsequent cleaning process if glass surfaces are corroded away by chemical interaction with the cleaning liquid. Latent flaws thus reduce product yield. In general, non-destructive inspection techniques, such as the light-scattering methods, used to detect foreign matters on the glass substrate surface. However, it is difficult to detect latent flaws by these methods because the flaws remain closed. Authors propose a novel inspection technique for fine polishing-induced latent flaws by combining the light scattering method with stress effects, referred to as the stress-induced light scattering method (SILSM). SILSM is able to distinguish between latent flaws and particles on the surface. In this method, samples are deformed by an actuator and stress effects are induced around the tips of latent flaws. Due to the photoelastic effect, the refractive index of the material around the tip of a latent flaw is changed. This changed refractive index is in turn detected by a cooled charge-coupled device camera as variations in light scattering intensity. In this report, surface latent flaws are detected non-destructively by applying SILSM to glass substrates, and the utility of SILSM evaluated as a novel inspection technique.

  5. Development of a novel recycling system for waste cathode ray tube funnel glass based on the integration of nanoscale Fe0 with ball milling.

    Science.gov (United States)

    Wang, Chunfeng; Yao, Dan; Liu, Yang; Wu, Yufan; Shen, Jinyou

    2018-04-09

    A novel and effective system was developed for recycling cathode ray tube (CRT) funnel glass wastes. Initially, the combination of nanoscale Fe 0 with ball milling promoted lead transfer that was strongly encapsulated in the glass inner structure to the surface of funnel glass and/or adhere to iron substance due to the collapse of SiO bonds. This condition enhanced the dissolution of lead in the acid solution. A high lead extraction rate of 97.8% from funnel glass was achieved through nitric acid leaching by optimizing the operational parameters (Fe 0 /funnel glass mass ratio, 0.5:1; ball milling time; 72 h). Subsequently, lead sulfate, iron hydroxides, and sodium nitrate were gradually recovered from the acid leachate by using three simple operations, namely, sulfation, alkali neutralization, and salt evaporation. Meanwhile, the leaching results of short-term toxicity characteristic leaching (TCLP) and long-term multiple extraction procedures (MEP) clearly demonstrated that the residual high silica products (after acid leaching) had no impact on the environment and could be used to synthesize high value-added zeolites as raw materials. With the addition of Al sources, the complete conversion of high silica residues into high crystalline zeolites with high cation exchange capacity value was realized by applying an alkaline fusion method during the hydrothermal treatment. Furthermore, lead, NO - 3 , and SO 2- 4 concentrations of the resulting drainage were considerably lower than the relevant standard for surface water quality. Therefore, the proposed recycling system provided an eco-friendly and feasible technique for complete reutilization of obsolete CRT funnel glass. Copyright © 2018. Published by Elsevier Ltd.

  6. Integration

    DEFF Research Database (Denmark)

    Emerek, Ruth

    2004-01-01

    Bidraget diskuterer de forskellige intergrationsopfattelse i Danmark - og hvad der kan forstås ved vellykket integration......Bidraget diskuterer de forskellige intergrationsopfattelse i Danmark - og hvad der kan forstås ved vellykket integration...

  7. Manual tube welding torch

    International Nuclear Information System (INIS)

    Kiefer, J.H.; Smith, D.J.

    1981-01-01

    In a welding torch which fits over a tube intermediate the ends thereof for welding the juncture between the tube and a boss on the back side of a tube plate, a split housing encloses a tungsten electrode, a filler wire duct and a fiber optic bundle arranged to observe the welding process. A shielding gas duct is provided in the housing. A screw is provided for setting electrode/work distance. Difficult remote tube welding operations can be performed with the apparatus. (author)

  8. Steam generator tube performance

    International Nuclear Information System (INIS)

    Tatone, O.S.; Pathania, R.S.

    1984-10-01

    A review of the performance of steam generator tubes in 116 water-cooled nuclear power reactors showed that tubes were plugged at 54 (46 percent) of the reactors. The number of tubes removed from service decreased from 4 692 (0.30 percent) in 1981 to 3 222 (0.20 percent) in 1982. The leading causes of tube failures were stress corrosion cracking from the primary side, stress corrosion cracking (or intergranular attack) from the secondary side and pitting corrosion. The lowest incidence of corrosion-induced defects from the secondary side occurred in reactors that have used only volatile treatment, with or without condensate demineralization

  9. Wound tube heat exchanger

    Science.gov (United States)

    Ecker, Amir L.

    1983-01-01

    What is disclosed is a wound tube heat exchanger in which a plurality of tubes having flattened areas are held contiguous adjacent flattened areas of tubes by a plurality of windings to give a double walled heat exchanger. The plurality of windings serve as a plurality of effective force vectors holding the conduits contiguous heat conducting walls of another conduit and result in highly efficient heat transfer. The resulting heat exchange bundle is economical and can be coiled into the desired shape. Also disclosed are specific embodiments such as the one in which the tubes are expanded against their windings after being coiled to insure highly efficient heat transfer.

  10. Sapphire tube pressure vessel

    Science.gov (United States)

    Outwater, John O.

    2000-01-01

    A pressure vessel is provided for observing corrosive fluids at high temperatures and pressures. A transparent Teflon bag contains the corrosive fluid and provides an inert barrier. The Teflon bag is placed within a sapphire tube, which forms a pressure boundary. The tube is received within a pipe including a viewing window. The combination of the Teflon bag, sapphire tube and pipe provides a strong and inert pressure vessel. In an alternative embodiment, tie rods connect together compression fittings at opposite ends of the sapphire tube.

  11. Fuel nozzle tube retention

    Energy Technology Data Exchange (ETDEWEB)

    Cihlar, David William; Melton, Patrick Benedict

    2017-02-28

    A system for retaining a fuel nozzle premix tube includes a retention plate and a premix tube which extends downstream from an outlet of a premix passage defined along an aft side of a fuel plenum body. The premix tube includes an inlet end and a spring support feature which is disposed proximate to the inlet end. The premix tube extends through the retention plate. The spring retention feature is disposed between an aft side of the fuel plenum and the retention plate. The system further includes a spring which extends between the spring retention feature and the retention plate.

  12. Steam generator tube failures

    Energy Technology Data Exchange (ETDEWEB)

    MacDonald, P.E.; Shah, V.N.; Ward, L.W.; Ellison, P.G.

    1996-04-01

    A review and summary of the available information on steam generator tubing failures and the impact of these failures on plant safety is presented. The following topics are covered: pressurized water reactor (PWR), Canadian deuterium uranium (CANDU) reactor, and Russian water moderated, water cooled energy reactor (VVER) steam generator degradation, PWR steam generator tube ruptures, the thermal-hydraulic response of a PWR plant with a faulted steam generator, the risk significance of steam generator tube rupture accidents, tubing inspection requirements and fitness-for-service criteria in various countries, and defect detection reliability and sizing accuracy. A significant number of steam generator tubes are defective and are removed from service or repaired each year. This wide spread damage has been caused by many diverse degradation mechanisms, some of which are difficult to detect and predict. In addition, spontaneous tube ruptures have occurred at the rate of about one every 2 years over the last 20 years, and incipient tube ruptures (tube failures usually identified with leak detection monitors just before rupture) have been occurring at the rate of about one per year. These ruptures have caused complex plant transients which have not always been easy for the reactor operators to control. Our analysis shows that if more than 15 tubes rupture during a main steam line break, the system response could lead to core melting. Although spontaneous and induced steam generator tube ruptures are small contributors to the total core damage frequency calculated in probabilistic risk assessments, they are risk significant because the radionuclides are likely to bypass the reactor containment building. The frequency of steam generator tube ruptures can be significantly reduced through appropriate and timely inspections and repairs or removal from service.

  13. Steam generator tube failures

    International Nuclear Information System (INIS)

    MacDonald, P.E.; Shah, V.N.; Ward, L.W.; Ellison, P.G.

    1996-04-01

    A review and summary of the available information on steam generator tubing failures and the impact of these failures on plant safety is presented. The following topics are covered: pressurized water reactor (PWR), Canadian deuterium uranium (CANDU) reactor, and Russian water moderated, water cooled energy reactor (VVER) steam generator degradation, PWR steam generator tube ruptures, the thermal-hydraulic response of a PWR plant with a faulted steam generator, the risk significance of steam generator tube rupture accidents, tubing inspection requirements and fitness-for-service criteria in various countries, and defect detection reliability and sizing accuracy. A significant number of steam generator tubes are defective and are removed from service or repaired each year. This wide spread damage has been caused by many diverse degradation mechanisms, some of which are difficult to detect and predict. In addition, spontaneous tube ruptures have occurred at the rate of about one every 2 years over the last 20 years, and incipient tube ruptures (tube failures usually identified with leak detection monitors just before rupture) have been occurring at the rate of about one per year. These ruptures have caused complex plant transients which have not always been easy for the reactor operators to control. Our analysis shows that if more than 15 tubes rupture during a main steam line break, the system response could lead to core melting. Although spontaneous and induced steam generator tube ruptures are small contributors to the total core damage frequency calculated in probabilistic risk assessments, they are risk significant because the radionuclides are likely to bypass the reactor containment building. The frequency of steam generator tube ruptures can be significantly reduced through appropriate and timely inspections and repairs or removal from service

  14. Intermediate heat exchanger tube vibration induced by cross and parallel mixed flow

    International Nuclear Information System (INIS)

    Kawamura, Koji

    1986-01-01

    The characteristics of pool type LMFBR intermediate heat exchanger (IHX) tube vibrations induced by cross and parallel mixed flow were basically investigated. Secondary coolant in IHX tube bundle is mixed flow of parallel jit flow along the tube axis through flow holes in baffle plates and cross flow. By changing these two flow rate, flow distributions vary in the tube bundle. Mixed flow also induces vibrations which cause fretting wear and fatigue of tube. It is therefore very important to evaluate the tube vibration characteristics for estimating the tube integrity. The results show that the relationships between tube vibrations and flow distributions in the tube bundle were cleared, and mixed flow induced tube vibration could be evaluated on the base of the characteristics of both parallel and cross flow induced vibration. From these investigations it could be concluded that the characteristics of tube vibration for various flow distributions can be systematically evaluated. (author)

  15. Final report on development evaluation of Task Group 3 pressure tubes

    International Nuclear Information System (INIS)

    Fleck, R.G.; Price, E.G.; Cheadle, B.A.

    1983-11-01

    This report describes the production and evaluation of pressure tubes manufactured to the recommendations of Task Group 3 (TG3) of the Creep Engineering Design Plan. The Zr-2.5 wt percent Nb tubes were manufactured by modified production route to change their metallurgical structure and so reduce the in-service elongation rates. Three modified routes were investigated and a total of twenty-eight tubes produced. There were no difficulties in manufacture and the tubes satisfied the quality assurance and design specifications of reactor grade tubes. Metallurgical evaluation showed that the expected changes in microstructure had occurred but not to the extent anticipated. The TG3 tubes were found to have comparable properties to current tubes when tested for: tensile strength (irradiated and unirradiated); hydride cracking; stress to reorient hydrides; hydrogen diffusion; flaw tolerance; corrosion (irradiated and unirradiated); wear; rolled joint characteristics; irradiation creep and growth. Lower in-service elongation rates are expected for tubes produced by two of the modified routes

  16. Chest Tube Thoracostomy

    Science.gov (United States)

    ... in the space around the lungs (called a pleural effusion) . A chest tube may also be needed when a patient has ... or chest CT are also done to evaluate pleural fluid. If the X-ray shows a need for a chest tube to drain fluid or air, the procedure is ...

  17. Composite fuel-cladding tubes and its fabrication

    International Nuclear Information System (INIS)

    Higashinakagawa, Emiko; Kawashima, Junko; Sato, Kanemitsu; Kuwae, Ryosho.

    1985-01-01

    Purpose: To reduce stress-corrosion cracks in a fuel cladding tube. Method: By inserting the sleeve of pure zirconium forming a liner layer into the hollow billet of zirconium alloy as an outer tube, then the composed tube is completed through hot-extruding. Then, the composite tube is pressed, by cold working through several passes, into a tube with a predetermined smaller inner-diameter and thinner wall. Heat treatment is applied between each of the passes of the cold working to recrystallize the zirconium-alloy outer tube substantially, as well as to integrally join the outer tube and the liner layer metal-lurgically. It serves as a buffer for moderating the mechanical interaction with the fuel pellets, whereby the resistance to stress-corrosion cracks can be increased. (Moriyama, K.)

  18. Ventricular tachycardia following tube thoracotomy.

    Science.gov (United States)

    Hibbert, Benjamin; Lim, Toon Wei; Hibbert, Rebecca; Green, Martin; Gollob, Michael H; Davis, Darryl R

    2010-10-01

    Arrhythmias provoked by tube thoracotomy are a rare complication. We report a ventricular tachycardia after chest tube insertion for a device-related pneumothorax. Sinus rhythm was restored only by removal of the chest tube and insertion of a pliable pleural drain. Identification of the chest tube as an arrhythmic trigger following tube thoracotomy is essential in definitive management of refractory arrhythmias.

  19. Molybdenum Tube Characterization report

    Energy Technology Data Exchange (ETDEWEB)

    Beaux II, Miles Frank [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Usov, Igor Olegovich [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-02-07

    Chemical vapor deposition (CVD) techniques have been utilized to produce free-standing molybdenum tubes with the end goal of nuclear fuel clad applications. In order to produce tubes with properties desirable for this application, deposition rates were lowered requiring long deposition durations on the order of 50 hours. Standard CVD methods as well as fluidized-bed CVD (FBCVD) methods were applied towards these objectives. Characterization of the tubes produced in this manner revealed material suitable for fuel clad applications, but lacking necessary uniformity across the length of the tubes. The production of freestanding Mo tubes that possess the desired properties across their entire length represents an engineering challenge that can be overcome in a next iteration of the deposition system.

  20. Categorising YouTube

    DEFF Research Database (Denmark)

    Simonsen, Thomas Mosebo

    2011-01-01

    This article provides a genre analytical approach to creating a typology of the User Generated Content (UGC) of YouTube. The article investigates the construction of navigation processes on the YouTube website. It suggests a pragmatic genre approach that is expanded through a focus on YouTube’s...... technological affordances. Through an analysis of the different pragmatic contexts of YouTube, it is argued that a taxonomic understanding of YouTube must be analysed in regards to the vacillation of a user-driven bottom-up folksonomy and a hierarchical browsing system that emphasises a culture of competition...... and which favours the already popular content of YouTube. With this taxonomic approach, the UGC videos are registered and analysed in terms of empirically based observations. The article identifies various UGC categories and their principal characteristics. Furthermore, general tendencies of the UGC within...

  1. An integrated leak detection system for the ALMR steam generator

    International Nuclear Information System (INIS)

    Dayal, Y.; Gaubatz, D.C.; Wong, K.K.; Greene, D.A.

    1995-01-01

    The steam generator (SG) of the Advanced Liquid Metal Reactor (ALMR) system serves as a heat exchanger between the shell side secondary loop hot liquid sodium and the tube side water/steam mixture. A leak in the tube will result in the injection of the higher pressure water/steam into the sodium and cause an exothermic sodium-water reaction. An initial small leak (less than 1 gm/sec) can escalate into an intermediate size leak in a relatively short time by self enlargement of the original flaw and by initiating leaks in neighboring tubes. If not stopped, complete rupture of one or more tubes can cause injection rates of thousands of gm/sec and result in the over pressurization of the secondary loop rupture disk and dumping of the sodium to relieve pressure. The down time associated with severe sodium-water reaction damage has great adverse economic consequence. An integrated leak detection system (ILDS) has been developed which utilizes both chemical and acoustic sensors for improved leak detection. The system provides SG leak status to the reactor operator and is reliable enough to trigger automatic control action to protect the SG. The ILDS chemical subsystem uses conventional in-sodium and cover gas hydrogen detectors and incorporates knowledge based effects due to process parameters for improved reliability. The ILDS acoustic subsystem uses an array of acoustic sensors and incorporates acoustic beamforming technology for highly reliable and accurate leak identification and location. The new ILDS combines the small leak detection capability of the chemical system with the reliability and rapid detection/location capability of the acoustic system to provide a significantly improved level of protection for the SG over a wide range of operation conditions. (author)

  2. Visualization of flaws within heavy section ultrasonic test blocks using high energy computed tomography

    International Nuclear Information System (INIS)

    House, M.B.; Ross, D.M.; Janucik, F.X.; Friedman, W.D.; Yancey, R.N.

    1996-05-01

    The feasibility of high energy computed tomography (9 MeV) to detect volumetric and planar discontinuities in large pressure vessel mock-up blocks was studied. The data supplied by the manufacturer of the test blocks on the intended flaw geometry were compared to manual, contact ultrasonic test and computed tomography test data. Subsequently, a visualization program was used to construct fully three-dimensional morphological information enabling interactive data analysis on the detected flaws. Density isosurfaces show the relative shape and location of the volumetric defects within the mock-up blocks. Such a technique may be used to qualify personnel or newly developed ultrasonic test methods without the associated high cost of destructive evaluation. Data is presented showing the capability of the volumetric data analysis program to overlay the computed tomography and destructive evaluation (serial metallography) data for a direct, three-dimensional comparison

  3. Computational Reduction of Specimen Noise to Enable Improved Thermography Characterization of Flaws in Graphite Polymer Composites

    Science.gov (United States)

    Winfree, William P.; Howell, Patricia A.; Zalameda, Joseph N.

    2014-01-01

    Flaw detection and characterization with thermographic techniques in graphite polymer composites are often limited by localized variations in the thermographic response. Variations in properties such as acceptable porosity, fiber volume content and surface polymer thickness result in variations in the thermal response that in general cause significant variations in the initial thermal response. These result in a "noise" floor that increases the difficulty of detecting and characterizing deeper flaws. A method is presented for computationally removing a significant amount of the "noise" from near surface porosity by diffusing the early time response, then subtracting it from subsequent responses. Simulations of the thermal response of a composite are utilized in defining the limitations of the technique. This method for reducing the data is shown to give considerable improvement characterizing both the size and depth of damage. Examples are shown for data acquired on specimens with fabricated delaminations and impact damage.

  4. Arc-discharge system for nondestructive detection of flaws in thin ceramic coatings

    International Nuclear Information System (INIS)

    Scott, G.W.; Davis, E.V.

    1978-04-01

    The feasibility of nondestructively detecting small cracks or holes in plasma-sprayed ceramic coatings with an electric arc-discharge system was studied. We inspected ZrO 2 coatings 0.46 mm (0.018 in.) thick on Incoloy alloy 800 substrates. Cracks were artificially induced in controlled areas of the specimens by straining the substrates in tension. We designed and built a system to scan the specimen's surface at approximately 50 μm (0.002 in.) clearance with a sharp-pointed metal-tipped probe at high dc potential. The system measures the arc currents occurring at flaws, or plots a map of the scanned area showing points where the arc current exceeds a preset threshold. A theoretical model of the probe-specimen circuit shows constant dc potential to be the best choice for arc-discharge inspection of insulating coatings. Experimental observations and analysis of the data disclosed some potential for flaw description

  5. The SCC testing of nuclear steam generator tubing materials

    Science.gov (United States)

    Doherty, P. E.; Sarver, J. M.; Miglin, B. P.

    1996-05-01

    The integrity of heat-exchanger tubes in a nuclear reaction system is crucial for the safe operation of a power plant. In order to study the corrosion behavior of certain alloys, constant extension rate (CERT) tests were performed on alloy 690 and alloy 800 nuclear steam generator tubing specimens. In this article, the CERT test results (such as maximum stress achieved and crack morphology) are correlated to tubing microstructure, chemistry, and manufacturing processes.

  6. SELECTED ALGORITHMS OF BACKGROUND GENERATION USED FOR FLAW DETECTION IN WELDED JOINTS

    International Nuclear Information System (INIS)

    Chady, T.; Caryk, M.

    2008-01-01

    Effectiveness of flaws detection process using various algorithms of background generation and various algorithms of image thresholding was evaluated. The results of background generation using a median filter method, a polynomial approximation method and an iterative Gaussian approximation method were presented. The received background images were subtracted from the base image. After background subtraction process the global and local thresholding algorithms were applied. All analysis were carried out using digital radiographs of real welds

  7. Automated eddy-current installation AVD-01 for detecting flaws in fuel element cans

    International Nuclear Information System (INIS)

    Varvaritsa, V.P.; Martishchenko, L.G.; Popov, V.K.; Romanov, M.L.; Shlepnev, I.O.; Shmatok, V.P.

    1986-01-01

    This paper describes an automated installation for eddy-current flaw detection in thin-walled pipes with small diameter; its unified transport system makes it possible to use the installation in inspection lines and production lines of fuel elements. The article describes the structural diagrams of the installation and presents the results of investigations connected with the selection for establishing the optimum regimes and sensitivity of feedthrough transducers with focusing screens

  8. A simplified approach for assessing the leak-before-break for the flawed pressure vessels

    Energy Technology Data Exchange (ETDEWEB)

    Kannan, P. [Ramagundam Super Thermal Power Station, NTPC Ltd, Jyothinagar 505215 (India); Amirthagadeswaran, K.S. [Faculty of Mechanical Engineering, Government College of Technology, Coimbatore 641013 (India); Christopher, T. [Faculty of Mechanical Engineering, Government College of Engineering, Tirunelveli 627007 (India); Nageswara Rao, B., E-mail: bnrao52@rediffmail.com [Faculty of Mechanical Engineering, School of Mechanical and Civil Sciences, K L University, Green Fields, Vaddeswaram, Guntur 522502 (India)

    2016-06-15

    Surface cracks or embedded cracks in pressure vessels under service may grow and form stable through-thickness cracks causing leak prior to failure. If this leak-before-break phenomenon takes place, then there is a possibility of preventing the vessel failure. This paper presents a simplified approach for assessing the leak-before-break or failure of the flawed pressure vessels. This approach is validated through comparison of existing test data.

  9. Apparatus for the control of self-propelled gamma-flaw detector

    International Nuclear Information System (INIS)

    Kulekov, S.I.; Pavlov, A.S.

    1981-01-01

    A self-propelled device movable inside a pipeline for the radiographic detection of flaws in its weld joints comprises a reversible drive motor and a normally deactivated radiation emitter. Logical circuitry aboard the device, including a twostage memory, enables the selective energization of the drive motor and the activation of the radiation emitter during standstill in response to command pulses of different duration transmitted from an external radiation source through the pipeline wall and intercepted by one of two sensors

  10. Flawed Waveform Design of Augusto Aubry, Antonio Demaio et al.- (PREPRINT)

    Science.gov (United States)

    2018-02-01

    Transactions on Signal Processing. Report contains color . 14. ABSTRACT In this document, we provide a list of errors in [1] and in [2]. The highlighted flaws...the numerous articles put out by them on this subject, and on similar but related topics. Surprisingly, nonetheless, human psychology has a clear and...concise explanation. A. An Insight into Human Psychology : Kruger-Dunning Effect [3] The paper by Kruger and Dunning [3] reveals a fascinating insight

  11. Continuous AE monitoring of nuclear plants to detect flaws - status and future

    International Nuclear Information System (INIS)

    Hutton, P.H.

    1986-01-01

    This paper gives a brief commentary on the evolution of acoustic emission (AE) technology for continuous monitoring of nuclear reactors and the current status. The technical work described to support the status description has the objective of developing and validating the use of AE to detect, locate, and evaluate growing flaws in reactor pressure boundaries. The future of AE for continuous monitoring is discussed in terms of envisioned applications and further accomplishments required to achieve them. 12 refs.

  12. Stress analysis and damage evaluation of flawed composite laminates by hybrid-numerical methods

    Science.gov (United States)

    Yang, Yii-Ching

    1992-01-01

    Structural components in flight vehicles is often inherited flaws, such as microcracks, voids, holes, and delamination. These defects will degrade structures the same as that due to damages in service, such as impact, corrosion, and erosion. It is very important to know how a structural component can be useful and survive after these flaws and damages. To understand the behavior and limitation of these structural components researchers usually do experimental tests or theoretical analyses on structures with simulated flaws. However, neither approach has been completely successful. As Durelli states that 'Seldom does one method give a complete solution, with the most efficiency'. Examples of this principle is seen in photomechanics which additional strain-gage testing can only average stresses at locations of high concentration. On the other hand, theoretical analyses including numerical analyses are implemented with simplified assumptions which may not reflect actual boundary conditions. Hybrid-Numerical methods which combine photomechanics and numerical analysis have been used to correct this inefficiency since 1950's. But its application is limited until 1970's when modern computer codes became available. In recent years, researchers have enhanced the data obtained from photoelasticity, laser speckle, holography and moire' interferometry for input of finite element analysis on metals. Nevertheless, there is only few of literature being done on composite laminates. Therefore, this research is dedicated to this highly anisotropic material.

  13. Pleural controversy: optimal chest tube size for drainage.

    Science.gov (United States)

    Light, Richard W

    2011-02-01

    In recent years, a higher and higher percentage of patients with pleural effusions or pneumothorax are being treated with small-bore (10-14 F) chest tubes rather than large-bore (>20 F). However, there are very few randomized controlled studies comparing the efficacy and complication rates with the small- and large-bore catheters. Moreover, the randomized trials that are available have flaws in their design. The advantages of the small-bore catheters are that they are easier to insert and there is less pain with their insertion while they are in place. The placement of the small-bore catheters is probably more optimal when placement is done with ultrasound guidance. Small-bore chest tubes are recommended when pleurodesis is performed. The success of the small-bore indwelling tunnelled catheters that are left in place for weeks documents that the small-bore tubes do not commonly become obstructed with fibrin. Patients with complicated parapneumonic effusions are probably best managed with small-bore catheters even when the pleural fluid is purulent. Patients with haemothorax are best managed with large-bore catheters because of blood clots and the high volume of pleural fluid. Most patients with pneumothorax can be managed with aspiration or small-bore chest tubes. If these fail, a large-bore chest tube may be necessary. Patients on mechanical ventilation with barotrauma induced pneumothoraces are best managed with large-bore chest tubes. © 2011 The Author. Respirology © 2011 Asian Pacific Society of Respirology.

  14. Isolated Fallopian Tube Torsion

    Directory of Open Access Journals (Sweden)

    S. Kardakis

    2013-01-01

    Full Text Available Isolated torsion of the Fallopian tube is a rare gynecological cause of acute lower abdominal pain, and diagnosis is difficult. There are no pathognomonic symptoms; clinical, imaging, or laboratory findings. A preoperative ultrasound showing tubular adnexal masses of heterogeneous echogenicity with cystic component is often present. Diagnosis can rarely be made before operation, and laparoscopy is necessary to establish the diagnosis. Unfortunately, surgery often is performed too late for tube conservation. Isolated Fallopian tube torsion should be suspected in case of acute pelvic pain, and prompt intervention is necessary.

  15. YouTube and Academic Libraries: Building a Digital Collection

    Science.gov (United States)

    Cho, Allan

    2013-01-01

    Although still a relatively new technology with less than 10 years of history, YouTube's extensive reach and integration in mainstream society as well as lifelong learning habits of online users cannot be understated. This article examines how the YouTube collection at the University of British Columbia Library's Irving K. Barber Learning Centre…

  16. YouTube: Educational Potentials and Pitfalls

    Science.gov (United States)

    Jones, Troy; Cuthrell, Kristen

    2011-01-01

    The instructional potential of video technology in the classroom is promising, especially in light of the 21st Century Learning Framework (Siegle, 2009). Studies show positive gains in student outcomes as a result of the integration of video technology in instruction. This article explores potential uses of YouTube as an instructional aid in…

  17. Characterization of structure of flaws in silicate glass surfaces by ion-exchange in lithium salt melts

    International Nuclear Information System (INIS)

    Kolitsch, A.; Richter, E.

    1978-03-01

    A method for characterization of flaws structure in silicate glass surfaces by ion-exchange in lithium salt melts is demonstrated. The possibilities and limits of the method are shown and several applications are discussed. (author)

  18. Application of Fourier elastodynamics to direct and inverse problems for the scattering of elastic waves from flaws near surfaces

    International Nuclear Information System (INIS)

    Richardson, J.M.; Fertig, K.W. Jr.

    1983-01-01

    In order to inspect flaws which lie too close to the surface a Fourier elastodynamic formalism is proposed which enables one to decompose the elastodynamic system into separately charterizable parts by means of planes perpendicular to the z-axis. The process can be represented by a generalized transfer function relating the near-field scattered waves to the waves incident on a slab of material containing the flaw. The Fourier elastodynamics are applied to the characterization of the total scattering process involving a flaw at various distances from a plastic-water interface. An abbreviated discussion of Fourier elastodynamics is presented, and the results specialized to the case of spherical voids and inclusions bear an interface. Finally, the computational results for several ranges of temporal frequency and for a sequence of values of the distance from the flaw center to the interface are discussed

  19. Evaluation of Manual Ultrasonic Examinations Applied to Detect Flaws in Primary System Dissimilar Metal Welds at North Anna Power Station

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Michael T.; Diaz, Aaron A.; Doctor, Steven R.

    2012-06-01

    During a recent inservice inspection (ISI) of a dissimilar metal weld (DMW) in an inlet (hot leg) steam generator nozzle at North Anna Power Station Unit 1, several axially oriented flaws went undetected by the licensee's manual ultrasonic testing (UT) technique. The flaws were subsequently detected as a result of outside diameter (OD) surface machining in preparation for a full structural weld overlay. The machining operation uncovered the existence of two through-wall flaws, based on the observance of primary water leaking from the DMW. Further ultrasonic tests were then performed, and a total of five axially oriented flaws, classified as primary water stress corrosion cracking (PWSCC), were detected in varied locations around the weld circumference.

  20. Leak behavior of steam generator tube-to-tubesheet joints under creep condition: Experimental study

    International Nuclear Information System (INIS)

    Bahn, Chi Bum; Majumdar, Saurin; Kasza, Ken E.; Shack, William J.

    2013-01-01

    To address concerns regarding excessive leakage from throughwall cracks in steam generator tube-to-tubesheet joints under severe accident conditions, leak rate testing was conducted using tube-to-collar joint specimens. The tube interior and the interface between tube and collar (crevice) were pressurized independently using nitrogen gas. The leak rate through the crevice was almost zero when the specimens were pressurized at ∼500 °C; this low leak rate is attributed to thermal mismatch effects preventing much leakage. The near zero leak rate was maintained until the onset of large leakage at higher temperatures. The leak rate behavior after the onset of the large leakage was not much affected by the crevice length or heat-to-heat variation of Alloy 600 tubes. This suggests that once the crevice gap opens, the creep rate of the low alloy steel collar becomes dominant. Specimens with different tube diameters behaved essentially the same way. To simulate a flawed steam generator tube in the tubesheet, the crevice region was pressurized through a hole in the tube. This simulation resulted in essentially the same behavior as those specimens whose tubes and crevices were pressurized independently. Oxidation of low alloy steel collars in air tests can increase the flow resistance, and thus tests using nitrogen gas would provide more conservative leak rate data. Highlights: ► Leak rates were measured by using tube-to-collar joint specimens under creep condition. ► Leak rate through the joint interface was almost zero at ∼500 °C due to thermal mismatch. ► The near zero leak rate was maintained until the onset of large leakage at ∼680 °C. ► The leak behavior after the onset of the large leakage was not affected by hydraulic expansion length or tube heats.

  1. X-ray tube

    International Nuclear Information System (INIS)

    Webley, R.S.

    1975-01-01

    The object of the invention described is to provide an X-ray tube providing a scanned X-ray output which does not require a scanned electron beam. This is obtained by an X-ray tube including an anode which is rotatable about an axis, and a source of a beam of energy, for example an electron beam, arranged to impinge on a surface of the anode to generate X-radiation substantially at the region of incidence on the anode surface. The anode is rotatable about the axis to move the region of incidence over the surface. The anode is so shaped that the rotation causes the region of incidence to move in a predetermined manner relative to fixed parts of the tube so that the generated X-radiation is scanned in a predetermined manner relative to the tube. (UK)

  2. Tube Alinement for Machining

    Science.gov (United States)

    Garcia, J.

    1984-01-01

    Tool with stepped shoulders alines tubes for machining in preparation for welding. Alinement with machine tool axis accurate to within 5 mils (0.13mm) and completed much faster than visual setup by machinist.

  3. Steam generator tube performance

    International Nuclear Information System (INIS)

    Tatone, O.S.; Pathania, R.S.

    1982-04-01

    The performance of steam generator tubes in water-cooled nuclear power reactors has been reviewed for 1980. Tube defects occurred at 38% of the 97 reactors surveyed. This is a marginal improvement over 1979 when defects occurred at 41% of the reactors. The number of failed tubes was also lower, 0.14% of the tubes in service in 1980 compared with 0.20% of those in service in 1979. Analysis of the causes of these failures indicates that stress corrosion cracking was the leading failure mechanism. Reactors that used all-volatile treatment of secondary water, with or without full-flow condensate demineralization since start-up showed the lowest incidence of corrosion-related defects

  4. Ear tube insertion

    Science.gov (United States)

    ... mastoiditis) or the brain, or that damages nearby nerves Injury to the ear after sudden changes in ... does not heal after the tube falls out. Most of the time, these problems DO NOT last long. They also ...

  5. Tube Feeding Troubleshooting Guide

    Science.gov (United States)

    ... the diameter is measured in units known as French sizes, or “Fr”; a low profile tube also ... your quality of life. You are encouraged to speak with your physician, dietitian, home care company, or ...

  6. Magnesium tube hydroforming

    Energy Technology Data Exchange (ETDEWEB)

    Liewald, M.; Pop, R. [Institute for Metal Forming Technology (IFU), Stuttgart (Germany)

    2008-04-15

    Magnesium alloys reveal a good strength-to-weight ratio in the family of lightweight metals and gains potential to provide up to 30% mass savings compared to aluminium and up to 75 % compared to steel. The use of sheet magnesium alloys for auto body applications is however limited due to the relatively low formability at room temperature. Within the scope of this paper, extruded magnesium tubes, which are suitable for hydroforming applications, have been investigated. Results obtained at room temperature using magnesium AZ31 tubes show that circumferential strains are limited to a maximal value of 4%. In order to examine the influence of the forming temperature on tube formability, investigations have been carried out with a new die set for hot internal high pressure (IHP) forming at temperatures up to 400 C. Earlier investigations with magnesium AZ31 tubes have shown that fractures occur along the welding line at tubes extruded over a spider die, whereby a non-uniform expansion at bursting with an elongation value of 24% can be observed. A maximum circumferential strain of approx. 60% could be attained when seamless, mechanically pre-expanded and annealed tubes of the same alloy have been used. The effect of annealing time on materials forming properties shows a fine grained structure for sufficient annealing times as well as deterioration with a large increase at same time. Hence, seamless ZM21 tubes have been used in the current investigations. With these tubes, an increased tensile fracture strain of 116% at 350 C is observed as against 19% at 20 C, obtained by tensile testing of milled specimens from the extruded tubes. This behaviour is also seen under the condition of tool contact during the IHP forming process. To determine the maximum circumferential strain at different forming temperatures and strain rates, the tubes are initially bulged in a die with square cross-section under plane stress conditions. Thereafter, the tubes are calibrated by using an

  7. Power vacuum tubes handbook

    CERN Document Server

    Whitaker, Jerry

    2012-01-01

    Providing examples of applications, Power Vacuum Tubes Handbook, Third Edition examines the underlying technology of each type of power vacuum tube device in common use today. The author presents basic principles, reports on new development efforts, and discusses implementation and maintenance considerations. Supporting mathematical equations and extensive technical illustrations and schematic diagrams help readers understand the material. Translate Principles into Specific Applications This one-stop reference is a hands-on guide for engineering personnel involved in the design, specification,

  8. Reactor pressure vessel structural integrity research

    International Nuclear Information System (INIS)

    Pennell, W.E.; Corwin, W.R.

    1994-01-01

    Development continues on the technology used to assess the safety of irradiation-embrittled nuclear reactor pressure vessels (RPVs) containing flaws. Fracture mechanics tests on RPV steel, coupled with detailed elastic-plastic finite-element analyses of the crack-tip stress fields, have shown that (1) constraint relaxation at the crack tip of shallow surface flaws results in increased data scatter but no increase in the lower-bound fracture toughness, (2) the nil ductility temperature (NDT) performs better than the reference temperature for nil ductility transition (RT NDT ) as a normalizing parameter for shallow-flaw fracture toughness data, (3) biaxial loading can reduce the shallow-flaw fracture toughness, (4) stress-based dual-parameter fracture toughness correlations cannot predict the effect of biaxial loading on shallow-flaw fracture toughness because in-plane stresses at the crack tip are not influenced by biaxial loading, and (5) an implicit strain-based dual-parameter fracture toughness correlation can predict the effect of biaxial loading on shallow-flaw fracture toughness. Experimental irradiation investigations have shown that (1) the irradiation-induced shift in Charpy V-notch vs temperature behavior may not be adequate to conservatively assess fracture toughness shifts due to embrittlement, and (2) the wide global variations of initial chemistry and fracture properties of a nominally uniform material within a pressure vessel may confound accurate integrity assessments that require baseline properties

  9. Dynamics of tubes in fluid with tube-baffle interaction

    International Nuclear Information System (INIS)

    Chen, S.S.; Jendrzejczyk, J.A.; Wambsganss, M.W.

    1983-09-01

    Three series of tests are performed to evaluate the effects of tube to tube-support-plate (TSP) clearance on tube dynamic characteristics and instability phenomena for tube arrays in crossflow. Test results show that, for relatively large clearances, tubes may possess TSP-inactive modes in which the tubes rattle inside some of the tube-support-plate holes, and that the natural frequencies of TSP-inactive modes are lower than those of TSP-active modes, in which the support plates provide knife-edge type support. Tube response characteristics associated with TSP-inactive modes are sensitive to tube-to-TSP clearance, TSP thickness, excitation amplitude, tube alignment, and the fluid inside the clearance. In addition, tube response is intrinsically nonlinear, with the dominance of TSP-inactive or TSP-active modes depending on the magnitudes of different system parameters. In general, such a system is difficult to model; only a full-scale test can provide all the necessary characteristics. A tube array supported by TSPs with relatively large clearances may be subjected to dynamic instability in some of the TSP-inactive modes; tube response characteristics and impact forces on TSPs for a tube row are studied in detail in this report. Tube displacements associated with the instability of a TSP-inactive mode are small; however, impacts of the tube against TSPs may result in significant damage in a relatively short time. 52 figures

  10. Gastrostomy feeding tube - pump - child

    Science.gov (United States)

    ... tube feeding; PEG tube care; Feeding - gastrostomy tube - pump; G-tube - pump; Gastrostomy button - pump; Bard Button - pump; MIC-KEY - pump ... Gather supplies: Feeding pump (electronic or battery powered) Feeding ... pump (includes a feeding bag, drip chamber, roller clamp, ...

  11. NEI You Tube Videos: Amblyopia

    Medline Plus

    Full Text Available ... search for current job openings visit HHS USAJobs Home >> NEI YouTube Videos >> NEI YouTube Videos: Amblyopia Listen NEI YouTube Videos YouTube Videos Home Age-Related Macular Degeneration Amblyopia Animations Blindness Cataract ...

  12. 'Integration'

    DEFF Research Database (Denmark)

    Olwig, Karen Fog

    2011-01-01

    , while the countries have adopted disparate policies and ideologies, differences in the actual treatment and attitudes towards immigrants and refugees in everyday life are less clear, due to parallel integration programmes based on strong similarities in the welfare systems and in cultural notions...

  13. Digital Radiography Qualification of Tube Welding

    Science.gov (United States)

    Carl, Chad

    2012-01-01

    The Orion Project will be directing Lockheed Martin to perform orbital arc welding on commodities metallic tubing as part of the Multi Purpose Crew Vehicle assembly and integration process in the Operations and Checkout High bay at Kennedy Space Center. The current method of nondestructive evaluation is utilizing traditional film based x-rays. Due to the high number of welds that are necessary to join the commodities tubing (approx 470), a more efficient and expeditious method of nondestructive evaluation is desired. Digital radiography will be qualified as part of a broader NNWG project scope.

  14. Textual and language flaws: problems for Spanish doctors in producing abstracts in English

    Directory of Open Access Journals (Sweden)

    Lourdes Divasson Cilveti

    2006-04-01

    Full Text Available Scientific journals are the primary source of information for researchers. The number of articles currently indexed in databases is so large that it has become almost impossible to read every relevant article in a particular field. Thus, research paper abstracts (RPAs have acquired increasing importance. Several studies have shown that they are the skipping point, particularly among non-native English speakers. To our knowledge, little research has been carried out on RPA writing by Spanish doctors. It is thus the objective of this article to analyse the way abstracts are structured and linguistically realized by these professionals. We selected 30 RPAs written in English by Spanish speaking doctors from three leading Spanish journals on internal medicine. We recorded their textual level flaws by measuring the degree of informativeness with regard to three main variables: move patterning, ordering and structuring, and their language use flaws under two broad categories: ortho-typographic and grammatical. Length, use of hedges and keywords were also identified. 86.6% of the abstracts were informative, 13.3% uninformative while none of them could be classified as highly informative. With regard to the authors' use of language, over 70% presented some kind of flaws: 21.55% of these mistakes were ortho-typographic while 78.44% were grammatical. Our results support the need of designing specific units geared on the one hand towards explicit teaching of structured abstracts and on the other, towards the difficulties found by doctors because they lack language competence. They would also benefit from clearer guidelines from journal editors.

  15. Focussed probes ultrasonic follow-up of actual flaw growth during fatigue testing

    International Nuclear Information System (INIS)

    Cinotti, C.; Dufresne, J.; Prot, A.C.; Touffait, A.M.; Saglio, R.

    1979-01-01

    A programme was undertaken to follow-up the growth of actual flaws purposely introduced during the welding process of five test specimens. The aim of this programme is to measure the actual size of the cracks which develop from the known defects during the fatigue testing. The sizing method is based on the use of focussed probes, which allow good accuracy and repeatability, as well as good sensitivity. Examples are given of the first results: sizing before testing, then step by step during the fatigue testing and also under compression. This last point is very important in view of the ultrasonic testing during periodic in-service inspection

  16. Comparative investigation of micro-flaw models for the simulation of brittle fracture in rock

    CSIR Research Space (South Africa)

    Sellers, E

    1997-07-01

    Full Text Available investigation of micro-flaw models for the simulation of brittle fracture in rock E. Sellers, J. Napier Abstract The search for a numerical method to model fracture formation around deep level gold mine excava- tions had led to the development of the DIGS... geotechnical applications, it is important to be able to synthesize explicit damage processes as equivalent continuum models. It is hoped that the present work will provide a means to construct damage models that can summarize ef?ciently, at a scale of metres...

  17. RSE-M code progress in the field of examination evaluation and flaw acceptance criteria

    International Nuclear Information System (INIS)

    Barthelet, B.; Le Delliou, P.; Heliot, J.; Faidy, C.; Drubay, B.

    1995-01-01

    The RSE-M Code provides rules and requirements for in service inspection of light water cooled nuclear power plants. The code first edition was established by EDF and published in 1990 by AFCEN. In 1992, a second RSE-M project was launched by EDF and FRAMATOME with the objective to address a 1995 edition more completed considering the needs of owners, users, manufacturers and inspectors. This paper focuses on evaluation of examination results and presents the work done in the field of flaw acceptance criteria over the last three years. (author). 5 refs., 3 figs

  18. Categorising YouTube

    Directory of Open Access Journals (Sweden)

    Thomas Mosebo Simonsen

    2011-09-01

    Full Text Available This article provides a genre analytical approach to creating a typology of the User Generated Content (UGC of YouTube. The article investigates the construction of navigationprocesses on the YouTube website. It suggests a pragmatic genre approach that is expanded through a focus on YouTube’s technological affordances. Through an analysis of the different pragmatic contexts of YouTube, it is argued that a taxonomic understanding of YouTube must be analysed in regards to the vacillation of a user-driven bottom-up folksonomy and a hierarchical browsing system that emphasises a culture of competition and which favours the already popular content of YouTube. With this taxonomic approach, the UGC videos are registered and analysed in terms of empirically based observations. The article identifies various UGC categories and their principal characteristics. Furthermore, general tendencies of the UGC within the interacting relationship of new and old genres are discussed. It is argued that the utility of a conventional categorical system is primarily of analytical and theoretical interest rather than as a practical instrument.

  19. Probabilistic Estimation of Critical Flaw Sizes in the Primary Structure Welds of the Ares I-X Launch Vehicle

    Science.gov (United States)

    Pai, Shantaram S.; Hoge, Peter A.; Patel, B. M.; Nagpal, Vinod K.

    2009-01-01

    The primary structure of the Ares I-X Upper Stage Simulator (USS) launch vehicle is constructed of welded mild steel plates. There is some concern over the possibility of structural failure due to welding flaws. It was considered critical to quantify the impact of uncertainties in residual stress, material porosity, applied loads, and material and crack growth properties on the reliability of the welds during its pre-flight and flight. A criterion--an existing maximum size crack at the weld toe must be smaller than the maximum allowable flaw size--was established to estimate the reliability of the welds. A spectrum of maximum allowable flaw sizes was developed for different possible combinations of all of the above listed variables by performing probabilistic crack growth analyses using the ANSYS finite element analysis code in conjunction with the NASGRO crack growth code. Two alternative methods were used to account for residual stresses: (1) The mean residual stress was assumed to be 41 ksi and a limit was set on the net section flow stress during crack propagation. The critical flaw size was determined by parametrically increasing the initial flaw size and detecting if this limit was exceeded during four complete flight cycles, and (2) The mean residual stress was assumed to be 49.6 ksi (the parent material s yield strength) and the net section flow stress limit was ignored. The critical flaw size was determined by parametrically increasing the initial flaw size and detecting if catastrophic crack growth occurred during four complete flight cycles. Both surface-crack models and through-crack models were utilized to characterize cracks in the weld toe.

  20. Repair boundary for parent tube indications within the upper joint zone of hybrid expansion joint (HEJ) sleeved tubes

    International Nuclear Information System (INIS)

    Cullen, W.K.; Keating, R.F.

    1997-01-01

    In the Spring and Fall of 1994, and the Spring of 1995, crack-like indications were found in the upper hybrid expansion joint (HEJ) region of Steam Generator (S/G) tubes which had been sleeved using Westinghouse HEJ sleeves. As a result of these findings, analytic and test evaluations were performed to assess the effect of the degradation on the structural, and leakage, integrity of the sleeve/tube joint relative to the requirements of the United States Nuclear Regulatory Commission's (NRC) draft Regulatory Guide (RG) 1.121. The results of these evaluations demonstrated that tubes with implied or known crack-like circumferential parent tube indications (PTIs) located 1.1 inches or farther below the bottom of the hardroll upper transition, have sufficient, and significant, integrity relative to the requirements of RG 1.121. Thus, the purpose of this report is to provide background information related to the justification of the modified tube repair boundary

  1. Circumferential cracking of steam generator tubes

    International Nuclear Information System (INIS)

    Karwoski, K.J.

    1997-04-01

    On April 28, 1995, the U.S. Nuclear Regulatory Commission (NRC) issued Generic Letter (GL) 95-03, open-quote Circumferential Cracking of Steam Generator Tubes.close-quote GL 95-03 was issued to obtain information needed to verify licensee compliance with existing regulatory requirements regarding the integrity of steam generator tubes in domestic pressurized-water reactors (PWRs). This report briefly describes the design and function of domestic steam generators and summarizes the staff's assessment of the responses to GL 95-03. The report concludes with several observations related to steam generator operating experience. This report is intended to be representative of significant operating experience pertaining to circumferential cracking of steam generator tubes from April 1995 through December 1996. Operating experience prior to April 1995 is discussed throughout the report, as necessary, for completeness

  2. Assessment of image quality and low-contrast detectability in abdominal CT of obese patients: comparison of a novel integrated circuit with a conventional discrete circuit detector at different tube voltages

    International Nuclear Information System (INIS)

    Euler, A.; Heye, T.; Kekelidze, M.; Bongartz, G.; Schindera, Sebastian T.; Szucs-Farkas, Z.; Sommer, C.; Schmidt, B.

    2015-01-01

    To compare image quality and low-contrast detectability of an integrated circuit (IC) detector in abdominal CT of obese patients with conventional detector technology at low tube voltages. A liver phantom with 45 lesions was placed in a water container to mimic an obese patient and examined on two different CT systems at 80, 100 and 120 kVp. The systems were equipped with either the IC or conventional detector. Image noise was measured, and the contrast-to-noise-ratio (CNR) was calculated. Low-contrast detectability was assessed independently by three radiologists. Radiation dose was estimated by the volume CT dose index (CTDI vol ). The image noise was significantly lower, and the CNR was significantly higher with the IC detector at 80, 100 and 120 kVp, respectively (P = 0.023). The IC detector resulted in an increased lesion detection rate at 80 kVp (38.1 % vs. 17.2 %) and 100 kVp (57.0 % vs. 41.0 %). There was no difference in the detection rate between the IC detector at 100 kVp and the conventional detector at 120 kVp (57.0 % vs. 62.2 %). The CTDI vol at 80, 100 and 120 kVp measured 4.5-5.2, 7.3-7.9 and 9.8-10.2 mGy, respectively. The IC detector at 100 kVp resulted in similar low-contrast detectability compared to the conventional detector with a 120-kVp protocol at a radiation dose reduction of 37 %. (orig.)

  3. Fill tube fitted spheres

    International Nuclear Information System (INIS)

    Ives, B.H.

    1981-01-01

    The high temperature diffusion technique for fuel filling of some future direct drive cryogenic ICF targets may be unacceptable. The following describes a technique of fitting a 1 mm diameter x 6 μm thick glass microsphere with an approx. 50 μm O.D. glass fill tube. The process of laser drilling a 50 μm diameter hole in the microsphere wall, technique for making the epoxy joint between the sphere and fill tube, as well as the assembly procedure are also discussed

  4. Steam generator tube vibration study

    International Nuclear Information System (INIS)

    Enderlin, W.I.

    1986-01-01

    Chemical cleaning has been proposed to remove magnetite buildup in some pressurized water reactor steam generators. The US Nuclear Regulatory Commission (NRC) has expressed concern that such cleaning would combine with the tube denting caused by magnetite formation to enlarge tube/tube support plate clearances, increasing the level of flow-induced vibrations that could lead to unacceptably high tube wear and failure rates. In support of NRC, the Pacific Northwest Laboratory investigated whether such increased clearances would exacerbate tube fretting wear. Using a full-length scale model of a steam generator tube bundle, flow tests were conducted at an instrumented location through clearances representing as-built and post-cleaned tube conditions. Test results indicated little potential for increased tube wear as a result of chemical cleaning, under normal operating conditions at tube support locations similar to that tested

  5. Reliability assessment of hydraulic cylinders considering service loads and flaw distribution

    International Nuclear Information System (INIS)

    Altamura, Alessandra; Beretta, Stefano

    2012-01-01

    Manufacturing process, service conditions and material properties are all necessary requirements to a good design of tubular mechanical components subjected to fatigue. The most common approach to this design is usually deterministic, where a fixed NDT threshold, related to flaw acceptance limit, is set. However many uncertainties are left aside, i.e. the failure probability related to the fatigue strength under applied loads. This paper addresses the reliability evaluation of tubular mechanical components carrying some flaws and subjected to cyclic internal pressure variation. The aim is comparing the probability of failure obtained under several assumptions. A reliability assessment model, based on a random variable approach, has been implemented by using the Monte Carlo method. The analysis of the results, from a case study based on load spectra measurements of hydraulic cylinders of earth moving machines, has consented to evaluate the most important factors influencing the fatigue life prediction of these components. Highlights: ► Reliability evaluation of tubular components subjected to variable internal pressure. ► The dispersion of the threshold controls the stochasticity of crack growth. ► A random variable model has been developed using Monte Carlo. ► Initial crack size and spectrum shape are key factors in reliability evaluation.

  6. Evidence of a green luminescence band related to surface flaws in high purity silica glass

    Energy Technology Data Exchange (ETDEWEB)

    Fournier, J.; Neauport, J.; Grua, P. [CEA, CESTA, F-33114 Le Barp (France); Fournier, J.; Fargin, E.; Jubera, V. [Univ Bordeaux, CNRS, ICMCB, F-33608 Pessac (France); Talaga, D. [Univ Bordeaux, CNRS, ISM, F-33405 Talence (France); Jouannigot, S. [Univ Bordeaux 1, LCTS, SAFRAN, CNRS, CEA, UMR 5801, Pessac (France)

    2010-07-01

    Using luminescence con-focal microscopy under 325 nm laser excitation, we explore the populations of defects existing in or at the vicinity of macroscopic surface flaws in fused silica. We report our luminescence results on two types of surface flaws: laser damage and indentation on fused silica polished surfaces. Luminescence cartographies are made to show the spatial distribution of each kind of defect. Three bands, centered at 1.89 eV, 2.75 eV and 2.25 eV are evidenced on laser damage and indentations. The band centered at 2.25 eV was not previously reported in photo luminescence experiments on indentations and pristine silica, for excitation wavelengths of 325 nm or larger. The luminescent objects, expected to be trapped in sub-surface micro-cracks, are possibly involved in the first step of the laser damage mechanism when fused silica is enlightened at 351 nm laser in nanosecond regime. (authors)

  7. Residual stress improvement for pipe weld by means of induction heating pre-flawed pipe

    International Nuclear Information System (INIS)

    Umemoto, T.; Yoshida, K.; Okamoto, A.

    1980-01-01

    The intergranular stress corrosion cracking (IGSCC) has been found in type 304 stainless steel piping of several BWR plants. It is already well known that IGSCC is most likely to occur when three essential factors, material sensitization, high tensile stress and corrosive environment, are present. If the welding residual stress is sufficiently high (200 to approximately 400 MPa) in the inside piping surface near the welded joint, then it may be one of the biggest contributors to IGSCC. If the residual stress is reduced or reversed by some way, the IGSCC will be effectively mitigated. In this paper a method to improve the residual stress named IHSI (Induction Heating Stress Improvement) is explained. IHSI aims to improve the condition of residual stress in the inside pipe surface using the thermal stress induced by the temperature difference in pipe wall, that is produced when the pipe is heated from the outside surface by an induction heating coil and cooled on the inside surface by water simultaneously. This method becomes more attractive when it can be successfully applied to in-service piping which might have some pre-flaw. In order to verify the validity of IHSI for such piping, some experiments and calculations using finite element method were conducted. These results are mainly discussed in this paper from the view-points of residual stress, flaw behaviour during IHSI and material deterioration. (author)

  8. Research on Automatic Positioning System of Ultrasonic Testing of Wind Turbine Blade Flaws

    Science.gov (United States)

    Liu, Q. X.; Wang, Z. H.; Long, S. G.; Cai, M.; Cai, M.; Wang, X.; Chen, X. Y.; Bu, J. L.

    2017-11-01

    Ultrasonic testing technology has been used essentially in non-destructive testing of wind turbine blades. However, it is fact that the ultrasonic flaw detection method has inefficiently employed in recent years. This is because the testing result will illustrate a small deviation due to the artificial, environmental and technical factors. Therefore, it is an urgent technical demand for engineers to test the various flaws efficiently and quickly. An automatic positioning system has been designed in this paper to record the moving coordinates and the target distance in real time. Simultaneously, it could launch and acquire the sonic wave automatically. The ADNS-3080 optoelectronic chip is manufactured by Agilent Technologies Inc, which is also utilized in the system. With the combination of the chip, the power conversion module and the USB transmission module, the collected data can be transmitted from the upper monitor to the hardware that could process and control the data through software programming. An experiment has been designed to prove the reliability of automotive positioning system. The result has been validated by comparing the result collected form LABVIEW and actual plots on Perspex plane, it concludes that the system possesses high accuracy and magnificent meanings in practical engineering.

  9. Advanced nondestructive examination of the reactor vessel head penetration tube welds

    International Nuclear Information System (INIS)

    Cvitanovic, M.; Zado, V.

    1996-01-01

    Beside a referent code examination requirements, appearance of the service induced flaws on the Reactor Vessel Head (RVH) penetration tube welds forced development of remotely operated examination tools and techniques. Several systems were developed for examination of RVH PWR type while only one system for examination of VVER - 440 type RVH has been developed by Inetec. In this article the most advanced RVH VVER - 440 type examination techniques such as ultrasonic, eddy current and visual testing techniques as well as remotely operated tool are described. (author)

  10. Flawed Self-Assessment: Implications for Health, Education, and the Workplace.

    Science.gov (United States)

    Dunning, David; Heath, Chip; Suls, Jerry M

    2004-12-01

    Research from numerous corners of psychological inquiry suggests that self-assessments of skill and character are often flawed in substantive and systematic ways. We review empirical findings on the imperfect nature of self-assessment and discuss implications for three real-world domains: health, education, and the workplace. In general, people's self-views hold only a tenuous to modest relationship with their actual behavior and performance. The correlation between self-ratings of skill and actual performance in many domains is moderate to meager-indeed, at times, other people's predictions of a person's outcomes prove more accurate than that person's self-predictions. In addition, people overrate themselves. On average, people say that they are "above average" in skill (a conclusion that defies statistical possibility), overestimate the likelihood that they will engage in desirable behaviors and achieve favorable outcomes, furnish overly optimistic estimates of when they will complete future projects, and reach judgments with too much confidence. Several psychological processes conspire to produce flawed self-assessments. Research focusing on health echoes these findings. People are unrealistically optimistic about their own health risks compared with those of other people. They also overestimate how distinctive their opinions and preferences (e.g., discomfort with alcohol) are among their peers-a misperception that can have a deleterious impact on their health. Unable to anticipate how they would respond to emotion-laden situations, they mispredict the preferences of patients when asked to step in and make treatment decisions for them. Guided by mistaken but seemingly plausible theories of health and disease, people misdiagnose themselves-a phenomenon that can have severe consequences for their health and longevity. Similarly, research in education finds that students' assessments of their performance tend to agree only moderately with those of their teachers

  11. Fracture toughness determination in steam generator tubes

    International Nuclear Information System (INIS)

    Bergant M; Yawny, A; Perez Ipina, J

    2012-01-01

    The assessment of the structural integrity of steam generator tubes in nuclear power plants deserved increasing attention in the last years due to the negative impact related to their failures. In this context, elastic plastic fracture mechanics (EPFM) methodology appears as a potential tool for the analysis. The application of EPFM requires, necessarily, knowledge of two aspects, i.e., the driving force estimation in terms of an elastic plastic toughness parameter (e.g., J) and the experimental measurement of the fracture toughness of the material (e.g., the material J-resistance curve). The present work describes the development of a non standardized experimental technique aimed to determine J-resistance curves for steam generator tubes with circumferential through wall cracks. The tubes were made of Incoloy 800 (Ni: 30.0-35.0; Cr: 19.0-23.0; Fe: 35.5 min, % in weight). Due to its austenitic microstructure, this alloy shows very high toughness and is widely used in applications where a good corrosion resistance in aqueous environment or an excellent oxidation resistance in high temperature environment is required. Finally, a procedure for the structural integrity analysis of steam generator tubes with crack-like defects, based on a FAD diagram (Failure Assessment Diagram), is briefly described (author)

  12. Misdirected minitracheostomy tube

    Directory of Open Access Journals (Sweden)

    Ajmer Singh

    2017-01-01

    Full Text Available We report a patient who after an uneventful coronary artery bypass graft surgery and left ventricular aneurysmorrhaphy developed intracerebral hemorrhage and subsequently required minitracheostomy. Chest X-ray showed misdirected minitracheostomy tube facing upward toward the laryngeal opening which was repositioned using bronchoscope.

  13. A New Resonance Tube

    Science.gov (United States)

    Bates, Alan

    2017-01-01

    The measurement of the speed of sound in air with the resonance tube is a popular experiment that often yields accurate results. One approach is to hold a vibrating tuning fork over an air column that is partially immersed in water. The column is raised and lowered in the water until the generated standing wave produces resonance: this occurs at…

  14. Thoughts of accelerator tubes

    International Nuclear Information System (INIS)

    Larson, J.D.

    1977-01-01

    A brief, subjective review is given of mechanisms that may be limiting electrostatic accelerator tubes to present levels of performance. Suggestions are made for attacking these limitations with the purpose of stimulating the thinking of designers and users of electrostatic accelerators

  15. Thoughts of accelerator tubes

    Energy Technology Data Exchange (ETDEWEB)

    Larson, J D

    1977-01-01

    A brief, subjective review is given of mechanisms that may be limiting electrostatic accelerator tubes to present levels of performance. Suggestions are made for attacking these limitations with the purpose of stimulating the thinking of designers and users of electrostatic accelerators.

  16. Eustachian Tube Dysfunction

    Science.gov (United States)

    ... When it is inflated, the balloon opens a pathway for mucus and air to flow through the tube. This can help it function properly. FDA warning The U.S. Food and Drug Administration (FDA) advises against the use of ear candles. ...

  17. Tube-dwelling invertebrates

    NARCIS (Netherlands)

    Hölker, Franz; Vanni, Michael J.; Kuiper, Jan J.; Meile, Christof; Grossart, Hans Peter; Stief, Peter; Adrian, Rita; Lorke, Andreas; Dellwig, Olaf; Brand, Andreas; Hupfer, Michael; Mooij, Wolf M.; Nützmann, Gunnar; Lewandowski, Jörg

    2015-01-01

    There is ample evidence that tube-dwelling invertebrates such as chironomids significantly alter multiple important ecosystem functions, particularly in shallow lakes. Chironomids pump large water volumes, and associated suspended and dissolved substances, through the sediment and thereby compete

  18. Chest tube insertion

    Science.gov (United States)

    ... of your chest cavity. This is called the pleural space. It is done to allow your lungs to fully expand. ... pneumothorax ) Fluid buildup in the chest (called a pleural ... in the esophagus (the tube that allows food to go from the mouth ...

  19. Corrosion and Rupture of Steam Generator Tubings in PWRs

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Seong Sik; Kim, Hong Pyo

    2007-08-15

    This report is intended to provide corrosion engineers in the filed of nuclear energy with information on the corrosion and rupture behavior of steam generator tubing in PWRs. Various types of corrosion in PWR steam generator tubing have been reported all around the world, and countermeasures such as the addition of corrosion inhibitors, a water chemistry control, a tube plugging and sleeving have been applied. Steam generators equipped with alloy 600 tubing, which are not so resistant to a stress corrosion cracking (SCC), have generally been replaced with new steam generators made of alloy 690 TT (Thermally treated). Pull tube examination results which were performed of KAERI are summarized. The tubes were affected by a pitting, SCC, and a denting. Nondestructive examination method for the tubes and repair techniques are also reviewed. In addition, the regulatory guidance of some countries are reviewed. As a part of a tube integrity project in Korea, some results on a tube rupture and leak behaviors for axial cracks are also mentioned.

  20. Numerical predictions of heat transfer and pressure tube/calandria tube deformation during Calandria-tube Strain Contact Boiling (CSCB) tests

    Energy Technology Data Exchange (ETDEWEB)

    Tanase, A.; Szymanski, J.; El-Hawary, M.; Delja, A., E-mail: aurelian.tanase@cnsc-ccsn.gc.ca [Canadian Nuclear Safety Commission, Ottawa, ON (Canada)

    2015-07-01

    The assessment of fuel channel integrity during large break LOCA requires adequate prediction of the thermal-mechanical behaviour of the fuel channel following pressure tube ballooning into contact with the calandria tube. Analytical models developed for this purpose need to be calibrated and validated against experimental data. A new series of contact boiling tests was initiated by CNSC to provide additional data on calandria tube straining behaviour after PT/CT contact. This paper presents selected results of the first of these tests and their comparisons with predictions using analytical methodology developed by CNSC staff. (author)

  1. Multifrequency eddy current system for steam generator tubing inspection. Volume 2. Analytical studies

    International Nuclear Information System (INIS)

    Libby, H.L.

    1979-04-01

    A multifrequency eddy current testing system has been developed to test nuclear steam generator tubes and has been evaluated on a steam generator mockup. Results to date show that use of more than one inspection frequency facilitates electronic assessment of flaw depth, thereby reducing reliance on visual interpretation of signal information by operators. Details on the system design and an evaluation of the system's performance on a steam generator mockup are provided. The system consists of a four frequency signal generator, which excites the inspection coil, followed by a Walsh function instrument which extracts information from any two of the four frequencies present in the composite test signal. The extracted information is processed to discriminate against unwanted signals, such as those from probe wobble, and is then transmitted to the defect decision circuitry for additional processing. Results of the mockup tests show that the system has a higher probability of flaw detection in many cases than does a conventional single frequency test. Tutorial information is presented on algebraic solutions of simultaneous equations and on representation and analysis of signals using orthogonal functions. Examples illustrating the design of the multifrequency inspection system are included. Also presented is an analytical study of several candidate means for implementing electronic assessment of flaw depth

  2. Mechanical Behavior of 3D Crack Growth in Transparent Rock-Like Material Containing Preexisting Flaws under Compression

    Directory of Open Access Journals (Sweden)

    Hu-Dan Tang

    2015-01-01

    Full Text Available Mechanical behavior of 3D crack propagation and coalescence is investigated in rock-like material under uniaxial compression. A new transparent rock-like material is developed and a series of uniaxial compressive tests on low temperature transparent resin materials with preexisting 3D flaws are performed in laboratory, with changing values of bridge angle β (inclination between the inner tips of the two preexisting flaws of preexisting flaws in specimens. Furthermore, a theoretical peak strength prediction of 3D cracks coalescence is given. The results show that the coalescence modes of the specimens are varying according to different bridge angles. And the theoretical peak strength prediction agrees well with the experimental observation.

  3. Drift tubes of Linac 2

    CERN Multimedia

    Photographic Service

    1977-01-01

    Being redied for installation, those at the right are for tank 1, those on the left for tank 2. Contrary to Linac 1, which had drift-tubes supported on stems, here the tubes are suspended, for better mechanical stability.

  4. Rubens Flame-Tube Demonstration.

    Science.gov (United States)

    Ficken, George W.; Stephenson, Francis C.

    1979-01-01

    Investigates and explains the phenomenon associated with Rubens flame-tube demonstration, specifically the persistance of flames at regular intervals along the tube for few minutes after the gas is turned off. (GA)

  5. Prospects for stronger calandria tubes

    International Nuclear Information System (INIS)

    Ells, C.E.; Coleman, C.E.; Hosbons, R.R.; Ibrahim, E.F.; Doubt, G.L.

    1990-12-01

    The CANDU calandria tubes, made of seam welded and annealed Zircaloy-2, have given exemplary service in-reactor. Although not designed as a system pressure containment, calandria tubes may remain intact even in the face of pressure tube rupture. One such incident at Pickering Unit 2 demonstrated the economic advantage of such an outcome, and a case can be made for increasing the probability that other calandria tubes would perform in a similar fashion. Various methods of obtaining stronger calandria tubes are available, and reviewed here. When the tubes are internally pressurized, the weld is the weak section of the tube. Increasing the oxygen concentration in the starting sheet, and thickening the weld, are promising routes to a stronger tube

  6. Surveillance test of OWL-2 inpile tube

    International Nuclear Information System (INIS)

    Shimizu, Masatsugu; Itoh, Noboru

    1976-08-01

    A series of irradiation surveillance tests performed in integrity evaluation of an inpile tube for the test loop OWL-2 are described. Specimens were exposed to the neutron fluences from 1 x 10 20 to 3.4 x 10 21 n/cm 2 (>1 MeV), and subjected to post-irradiation tensile test at room temperature and service temperature 285 0 C. The strength increased and the ductility decreased with increasing neutron fluence. The reduction in fracture ductility due to neutron irradiation in the fluence range was insignificant, and the elongation of 33% was retained even for the maximum neutron fluence at 285 0 C. Little decrease of the ductility with fluence indicates that the tube would be in service for long time, ie to the integral fluence of 3.4 x 10 21 n/cm 2 . (auth.)

  7. Expansion lyre-shaped tube

    International Nuclear Information System (INIS)

    Andro, Jean.

    1973-01-01

    The invention relates the expansion lyre-shaped tube portions formed in dudgeoned tubular bundles between two bottom plates. An expansion lyre comprises at least two sets of tubes of unequal lengths coplanar and symmetrical with respect to the main tube axis, with connecting portions between the tubes forming said sets. The invention applies to apparatus such as heat exchangers, heaters, superheaters or breeders [fr

  8. NEI You Tube Videos: Amblyopia

    Science.gov (United States)

    ... NEI YouTube Videos: Amblyopia Listen NEI YouTube Videos YouTube Videos Home Age-Related Macular Degeneration Amblyopia Animations Blindness Cataract Convergence Insufficiency Diabetic Eye Disease Dilated Eye Exam Dry Eye For Kids Glaucoma Healthy Vision Tips Leber Congenital Amaurosis Low ...

  9. NEI You Tube Videos: Amblyopia

    Medline Plus

    Full Text Available ... NEI YouTube Videos: Amblyopia Listen NEI YouTube Videos YouTube Videos Home Age-Related Macular Degeneration Amblyopia Animations Blindness Cataract Convergence Insufficiency Diabetic Eye Disease Dilated Eye Exam Dry Eye For Kids Glaucoma Healthy Vision Tips Leber Congenital Amaurosis Low ...

  10. Neutron image intensifier tubes

    International Nuclear Information System (INIS)

    Verat, M.; Rougeot, H.; Driard, B.

    1983-01-01

    The most frequently used techniques in neutron radiography employ a neutron converter consisting of either a scintillator or a thin metal sheet. The radiation created by the neutrons exposes a photographic film that is in contact with the converter: in the direct method, the film is exposed during the time that the object is irradiated with neutrons; in the transfer method, the film is exposed after the irradiation of the object with neutrons. In industrial non-destructive testing, when many identical objects have to be checked, these techniques have several disadvantages. Non-destructive testing systems without these disadvantages can be constructed around neutron-image intensifier tubes. A description and the operating characteristics of neutron-image intensifier tubes are given. (Auth.)

  11. Neural tube defects

    Directory of Open Access Journals (Sweden)

    M.E. Marshall

    1981-09-01

    Full Text Available Neural tube defects refer to any defect in the morphogenesis of the neural tube, the most common types being spina bifida and anencephaly. Spina bifida has been recognised in skeletons found in north-eastern Morocco and estimated to have an age of almost 12 000 years. It was also known to the ancient Greek and Arabian physicians who thought that the bony defect was due to the tumour. The term spina bifida was first used by Professor Nicolai Tulp of Amsterdam in 1652. Many other terms have been used to describe this defect, but spina bifida remains the most useful general term, as it describes the separation of the vertebral elements in the midline.

  12. Temperature dependence of luminescence for different surface flaws in high purity silica glass

    International Nuclear Information System (INIS)

    Fournier, J.; Grua, P.; Neauport, J.; Fargin, E.; Jubera, V.; Talaga, D.; Del Guerzo, A.; Raffy, G.; Jouannigot, S.

    2013-01-01

    In situ temperature dependence of the Photoluminescence under 325 nm irradiation is used to investigate defect populations existing in different surface flaws in high purity fused silica. Five photoluminescence bands peaking at 1.9, 2.1, 2.3, 2.63 and 3.11 eV have been detected in the spectral area ranging from 1.6 up to 3.6 eV. The Gaussian deconvolution of spectra allows dividing the five luminescence bands in two categories. The former corresponds to bands showing a significant intensity enhancement while temperature decreases; the latter corresponds to bands remaining insensitive to the temperature evolution. Such a behavior brings new information on defects involved in laser damage mechanism at 351 nm in nanosecond regime. (authors)

  13. Distributed system for parallel data processing of ECT signals for electromagnetic flaw detection in materials

    International Nuclear Information System (INIS)

    Guliashki, Vassil; Marinova, Galia

    2002-01-01

    The paper proposes a distributed system for parallel data processing of ECT signals for flaw detection in materials. The measured data are stored in files on a host computer, where a JAVA server is located. The host computer is connected through Internet to a set of client computers, distributed geographically. The data are distributed from the host computer by means of the JAVA server to the client computers according their requests. The software necessary for the data processing is installed on each client computer in advance. The organization of the data processing on many computers, working simultaneously in parallel, leads to great time reducing, especially in cases when huge amount of data should be processed in very short time. (Author)

  14. Diagram Size vs. Layout Flaws: Understanding Quality Factors of UML Diagrams

    DEFF Research Database (Denmark)

    Störrle, Harald

    2016-01-01

    , though, is our third goal of extending our analysis aspects of diagram quality. Method: We improve our definition of diagram size and add a (provisional) definition of diagram quality as the number of topographic layout flaws. We apply these metrics on 60 diagrams of the five most commonly used types...... of UML diagram. We carefully analyze the structure of our diagram samples to ensure representativeness. We correlate diagram size and layout quality with modeler performance data obtained in previous experiments. The data set is the largest of its kind (n-156). Results: We replicate earlier findings......, and extend them to two new diagram types. We provide an improved definition of diagram size, and provide a definition of topographic layout quality, which is one more step towards a comprehensive definition of diagram quality as such. Both metrics are shown to be objectively applicable. We quantify...

  15. Developmental techniques for ultrasonic flaw detection and characterization in stainless steel

    International Nuclear Information System (INIS)

    Kupperman, D.S.

    1983-04-01

    Flaw detection and characterization by ultrasonic methods is particularly difficult for stainless steel. This paper focuses on two specific problem areas: (a) the inspection of centrifugally cast stainless steel (CCSS) and (b) the differentiation of intergranular stress-corrosion cracking (IGSCC) from geometrical reflectors such as the weld root. To help identify optimal conditions for the ultrasonic inspection of CCSS, the effect of frequency on propagation of longitudinal and shear waves was examined in both isotropic and anisotropic samples. Good results were obtained with isotropic CCSS and 0.5-MHz angle beam shear waves. The use of beam-scattering patterns (i.e. signal amplitude vs skew angle) as a tool for discriminating IGSCC from geometrical reflectors is also discussed

  16. An algorithm for analytical solution of basic problems featuring elastostatic bodies with cavities and surface flaws

    Science.gov (United States)

    Penkov, V. B.; Levina, L. V.; Novikova, O. S.; Shulmin, A. S.

    2018-03-01

    Herein we propose a methodology for structuring a full parametric analytical solution to problems featuring elastostatic media based on state-of-the-art computing facilities that support computerized algebra. The methodology includes: direct and reverse application of P-Theorem; methods of accounting for physical properties of media; accounting for variable geometrical parameters of bodies, parameters of boundary states, independent parameters of volume forces, and remote stress factors. An efficient tool to address the task is the sustainable method of boundary states originally designed for the purposes of computerized algebra and based on the isomorphism of Hilbertian spaces of internal states and boundary states of bodies. We performed full parametric solutions of basic problems featuring a ball with a nonconcentric spherical cavity, a ball with a near-surface flaw, and an unlimited medium with two spherical cavities.

  17. Gun Shows and Gun Violence: Fatally Flawed Study Yields Misleading Results

    Science.gov (United States)

    Hemenway, David; Webster, Daniel; Pierce, Glenn; Braga, Anthony A.

    2010-01-01

    A widely publicized but unpublished study of the relationship between gun shows and gun violence is being cited in debates about the regulation of gun shows and gun commerce. We believe the study is fatally flawed. A working paper entitled “The Effect of Gun Shows on Gun-Related Deaths: Evidence from California and Texas” outlined this study, which found no association between gun shows and gun-related deaths. We believe the study reflects a limited understanding of gun shows and gun markets and is not statistically powered to detect even an implausibly large effect of gun shows on gun violence. In addition, the research contains serious ascertainment and classification errors, produces results that are sensitive to minor specification changes in key variables and in some cases have no face validity, and is contradicted by 1 of its own authors’ prior research. The study should not be used as evidence in formulating gun policy. PMID:20724672

  18. Gun shows and gun violence: fatally flawed study yields misleading results.

    Science.gov (United States)

    Wintemute, Garen J; Hemenway, David; Webster, Daniel; Pierce, Glenn; Braga, Anthony A

    2010-10-01

    A widely publicized but unpublished study of the relationship between gun shows and gun violence is being cited in debates about the regulation of gun shows and gun commerce. We believe the study is fatally flawed. A working paper entitled "The Effect of Gun Shows on Gun-Related Deaths: Evidence from California and Texas" outlined this study, which found no association between gun shows and gun-related deaths. We believe the study reflects a limited understanding of gun shows and gun markets and is not statistically powered to detect even an implausibly large effect of gun shows on gun violence. In addition, the research contains serious ascertainment and classification errors, produces results that are sensitive to minor specification changes in key variables and in some cases have no face validity, and is contradicted by 1 of its own authors' prior research. The study should not be used as evidence in formulating gun policy.

  19. High-temperature flaw assessment procedure: A state-of-the-art survey

    International Nuclear Information System (INIS)

    Ruggles, M.B.; Takahashi, Y.

    1989-05-01

    High-temperature crack growth under cyclic, static, and combined loading is received with an emphasis on fracture mechanics aspects. Experimental studies of the effects of loading history, microstructure, temperature, and environment on crack growth behavior are described and interpreted. The experimental evidence is used to examine crack growth parameters and theoretical models for fatigue, creep, and creep-fatigue crack propagation at elevated temperatures. The limitations of both elastic and elastic-plastic fracture mechanics for high-temperature subcritical crack growth are assessed. Existing techniques for modeling critical crack growth/ligament instability failure are also presented. Related topics of defect modeling and engineering flaw assessment procedures, nondestructive evaluation methods, and probabilistic failure analysis are briefly discussed. 142 refs., 33 figs

  20. Fatigue flaw growth assessment and inclusion of stratification to the LBB assessment

    Energy Technology Data Exchange (ETDEWEB)

    Samohyl, P.

    1997-04-01

    The application of the LBB requires also fatigue flaw growth assessment. This analysis was performed for PWR nuclear power plants types VVER 440/230, VVER 440/213c, VVER 1000/320. Respecting that these NPP`s were designed according to Russian codes that differ from US codes it was needed to compare these approaches. Comparison with our experimental data was accomplished, too. Margins of applicability of the US methods and their modifications for the materials used for construction of Czech and Slovak NPP`s are shown. Computer code accomplishing the analysis according to described method is presented. Some measurement and calculations show that thermal stratifications in horizontal pipelines can lead to additive loads that are not negligible and can be dangerous. An attempt to include these loads induced by steady-state stratification was made.

  1. Security Flaws in an Efficient Pseudo-Random Number Generator for Low-Power Environments

    Science.gov (United States)

    Peris-Lopez, Pedro; Hernandez-Castro, Julio C.; Tapiador, Juan M. E.; Millán, Enrique San; van der Lubbe, Jan C. A.

    In 2004, Settharam and Rhee tackled the design of a lightweight Pseudo-Random Number Generator (PRNG) suitable for low-power environments (e.g. sensor networks, low-cost RFID tags). First, they explicitly fixed a set of requirements for this primitive. Then, they proposed a PRNG conforming to these requirements and using a free-running timer [9]. We analyze this primitive discovering important security faults. The proposed algorithm fails to pass even relatively non-stringent batteries of randomness such as ENT (i.e. a pseudorandom number sequence test program). We prove that their recommended PRNG has a very short period due to the flawed design of its core. The internal state can be easily revealed, compromising its backward and forward security. Additionally, the rekeying algorithm is defectively designed mainly related to the unpractical value proposed for this purpose.

  2. The flaw-detected coating and its applications in R&M of aircrafts

    Science.gov (United States)

    Hu, Feng; Liu, Mabao; Lü, Zhigang

    2009-07-01

    A monitoring method called ICM (Intelligent Coating Monitoring), which is based mainly on the intelligent coating sensors, has the capability to monitor crack initiation and growth in fatigue test coupons has been suggested in this study. The intelligent coating sensor is normally consisted of three layers: driving layer, sensing layer and protective layer where necessary. Fatigue tests with ICM for various materials demonstrate the capability to detect cracks with lfuel tank of an aircraft), or (ii) to take advantage of early detection and apply less invasive life-extension repairs, as well as reduce interruption of service when flaws are detected. Implementation of ICM is expected to improve fleet management practices and modify damage tolerance assumptions.

  3. The Seductive-Plausibility of Patent Hold-Up Myths — A Flawed Historiography of Patents

    DEFF Research Database (Denmark)

    Howells, John; Katznelson, Ron D

    In previous work we have shown that a flawed historiography of patents continues to be the basis for patent policy advocacy. We set out objective standards of evidence that allegations of development block due to assertion of patents must meet. We show the extent of the errors in the historical...... record in the aircraft, automobile, radio and incandescent lamp technologies. We then evaluate how they measure against the objective standards. We find many simple errors and that an absence of indicia of development block characterise scholarship alleging that assertion of patents blocked development...... of multiple case studies subjected to such standards justifies the rebuttable presumption that “pioneer patents have never blocked development”....

  4. Monitoring of pipeline hydrostatic testing with artificial flaws applying acoustic emission and ultra-sonic techniques; Monitoracao de teste hidrostatico de tubos com descontinuidades artificiais empregando as tecnicas de emissao acustica e ultra-som

    Energy Technology Data Exchange (ETDEWEB)

    Soares, Sergio Damasceno [PETROBRAS, Rio de Janeiro, RJ (Brazil). Centro de Pesquisas (CENPES)

    2003-07-01

    Charts and parameters used to perform and analyzing the acoustic emission data collected during the hydrostatic test in pipe samples build in API XL 60 with 20 inches of diameter and 14 millimeters of thickness are shown. These pipes had internal and external artificial flaws done by electro-erosion process with aspect ratio 1 x 20. A relationship between acoustic emission results, ultrasound and J-Integral were established using the applied pressurization sequence. Characteristics values of acoustic emission signals were shown as a criteria of field tests. (author)

  5. CRL X-ray tube

    International Nuclear Information System (INIS)

    Kolchevsky, N.N.; Petrov, P.V.

    2015-01-01

    A novel types of X-ray tubes with refractive lenses are proposed. CRL-R X-ray tube consists of Compound Refractive Lens- CRL and Reflection X-ray tube. CRL acts as X-ray window. CRL-T X-ray consists of CRL and Transmission X-ray tube. CRL acts as target for electron beam. CRL refractive lens acts as filter, collimator, waveguide and focusing lens. Properties and construction of the CRL X-ray tube are discussed. (authors)

  6. CRL X-RAY TUBE

    OpenAIRE

    Kolchevsky, N. N.; Petrov, P. V.

    2015-01-01

    A novel types of X-ray tubes with refractive lenses are proposed. CRL-R X-ray tube consists of Compound Refractive Lens- CRL and Reflection X-ray tube. CRL acts as X-ray window. CRL-T X-ray consists of CRL and Transmission X-ray tube. CRL acts as target for electron beam. CRL refractive lens acts as filter, collimator, waveguide and focusing lens. Properties and construction of the CRL X-ray tube are discussed.

  7. Performance demonstration tests for eddy current inspection of steam generator tubing

    Energy Technology Data Exchange (ETDEWEB)

    Kurtz, R.J.; Heasler, P.G.; Anderson, C.M.

    1996-05-01

    This report describes the methodology and results for development of performance demonstration tests for eddy current (ET) inspection of steam generator tubes. Statistical test design principles were used to develop the performance demonstration tests. Thresholds on ET system inspection performance were selected to ensure that field inspection systems would have a high probability of detecting and and correctly sizing tube degradation. The technical basis for the ET system performance thresholds is presented in detail. Statistical test design calculations for probability of detection and flaw sizing tests are described. A recommended performance demonstration test based on the design calculations is presented. A computer program for grading the probability of detection portion of the performance demonstration test is given.

  8. Performance demonstration tests for eddy current inspection of steam generator tubing

    International Nuclear Information System (INIS)

    Kurtz, R.J.; Heasler, P.G.; Anderson, C.M.

    1996-05-01

    This report describes the methodology and results for development of performance demonstration tests for eddy current (ET) inspection of steam generator tubes. Statistical test design principles were used to develop the performance demonstration tests. Thresholds on ET system inspection performance were selected to ensure that field inspection systems would have a high probability of detecting and and correctly sizing tube degradation. The technical basis for the ET system performance thresholds is presented in detail. Statistical test design calculations for probability of detection and flaw sizing tests are described. A recommended performance demonstration test based on the design calculations is presented. A computer program for grading the probability of detection portion of the performance demonstration test is given

  9. Inspection of small multi-layered plastic tubing during extrusion, using low-energy X-ray beams

    International Nuclear Information System (INIS)

    Armentrout, C.; Basinger, T.; Beyer, J.; Colesa, B.; Olsztyn, P.; Smith, K.; Strandberg, C.; Sullivan, D.; Thomson, J.

    1999-01-01

    The automotive industry uses nylon tubing with a thin ETFE (ethylene-tetrafluroethylene) inner layer to carry fuel from the tank to the engine. This fluorocarbon inner barrier layer is important to reduce the migration of hydrocarbons into the environment. Pilot Industries has developed a series of real-time inspection stations for dimensional measurements and flaw detection during the extrusion of this tubing. These stations are named LERA TM (low-energy radioscopic analysis), use a low energy X-ray source, a special high-resolution image converter and intensifier (ICI) stage, image capture hardware, a personal computer, and software that was specially designed to meet this task. Each LERA TM station operates up to 20 h a day, 6 days a week and nearly every week of the year. The tubing walls are 1-2 mm thick and the outer layer is nylon and the inner 0.2 mm thick layer is ethylene-tetrafluroethylene

  10. Design of Tunnel Magnetoresistive-Based Circular MFL Sensor Array for the Detection of Flaws in Steel Wire Rope

    Directory of Open Access Journals (Sweden)

    Liu Xiucheng

    2016-01-01

    Full Text Available Tunnel magnetoresistive (TMR devices have superior performances in weak magnetic field detection. In this study, TMR devices were first employed to form a circular magnetic flux leakage (MFL sensor for slight wire rope flaw detection. Two versions of this tailor-made circular TMR-based sensor array were presented for the inspection of wire ropes with the diameters of 14 mm and 40 mm, respectively. Helmholtz-like coils or a ferrite magnet-based magnetizer was selected to provide the proper magnetic field, in order to meet the technical requirements of the TMR devices. The coefficient of variance in the flaw detection performance of the sensor array elements was experimentally estimated at 4.05%. Both versions of the MFL sensor array were able to detect multiple single-broken wire flaws in the wire ropes. The accurate axial and circumferential positions of these broken wire flaws were estimated from the MFL scanning image results. In addition, the proposed TMR-based sensor array was applied to detect the MFL signal induced by slight surface wear defects. A mutual correlation analysis method was used to distinguish the signals caused by the lift-off fluctuation from the MFL scanning image results. The MFL sensor arrays presented in this study provide inspiration for the designing of tailor-made TMR-based circular sensor arrays for cylindrical ferromagnetic structural inspections.

  11. The criterion for blanking-off heat-transfer tubes in the steam generators at VVER-based nuclear power plants based on the results of eddy-current examination

    Science.gov (United States)

    Lunin, V. P.; Zhdanov, A. G.; Chegodaev, V. V.; Stolyarov, A. A.

    2015-05-01

    The problem of defining the criterion for blanking off heat-transfer tubes in the steam generators at nuclear power plants on the basis of signals obtained from the standard multifrequency eddy-current examination is considered. The decision about blanking off one or another tube is presently made with reference to one parameter of the relevant signal at the working frequency, namely, with reference to its phase, which directly depends on the depth of the flaw being detected, i.e., a crack in the tube. The crack depth equal to 60% of the tube wall thickness is regarded to be the critical one, at which a decision about withdrawing such a tube out from operation (blanking off) must be taken. However, since mechanical tensile rupture tests of heat-transfer tubes show the possibility of their further use with such flaws, the secondary parameter of the signal, namely, its amplitude, must be used for determining the blanking-off criterion. The signals produced by the standard flow-type transducers in response to flaws in the form of a longitudinal crack having the depth and length within the limits permitted by the relevant regulations were calculated using 3D finite-element modeling. Based on the obtained results, the values of the eddy-current signal amplitude were determined, which, together with the signal phase value, form a new amplitude-phase criterion for blanking off heat-transfer tubes. For confirming the effectiveness of this technique, the algorithm for revealing the signal indications satisfying the proposed amplitude-phase criterion was tested on real signals obtained from operational eddy-current examination of the state of steam generator heat-transfer tubes carried out within the framework of planned preventive repair.

  12. Preliminary Study on Biosynthesis of Bacterial Nanocellulose Tubes in a Novel Double-Silicone-Tube Bioreactor for Potential Vascular Prosthesis.

    Science.gov (United States)

    Hong, Feng; Wei, Bin; Chen, Lin

    2015-01-01

    Bacterial nanocellulose (BNC) has demonstrated a tempting prospect for applications in substitute of small blood vessels. However, present technology is inefficient in production and BNC tubes have a layered structure that may bring danger after implanting. Double oxygen-permeable silicone tubes in different diameters were therefore used as a tube-shape mold and also as oxygenated supports to construct a novel bioreactor for production of the tubular BNC materials. Double cannula technology was used to produce tubular BNC via cultivations with Acetobacter xylinum, and Kombucha, a symbiosis of acetic acid bacteria and yeasts. The results indicated that Kombucha gave higher yield and productivity of BNC than A. xylinum. Bacterial nanocellulose was simultaneously synthesized both on the inner surface of the outer silicone tube and on the outer surface of the inner silicone tube. Finally, the nano BNC fibrils from two directions formed a BNC tube with good structural integrity. Scanning electron microscopy inspection showed that the tubular BNC had a multilayer structure in the beginning but finally it disappeared and an intact BNC tube formed. The mechanical properties of BNC tubes were comparable with the reported value in literatures, demonstrating a great potential in vascular implants or in functional substitutes in biomedicine.

  13. Preliminary Study on Biosynthesis of Bacterial Nanocellulose Tubes in a Novel Double-Silicone-Tube Bioreactor for Potential Vascular Prosthesis

    Directory of Open Access Journals (Sweden)

    Feng Hong

    2015-01-01

    Full Text Available Bacterial nanocellulose (BNC has demonstrated a tempting prospect for applications in substitute of small blood vessels. However, present technology is inefficient in production and BNC tubes have a layered structure that may bring danger after implanting. Double oxygen-permeable silicone tubes in different diameters were therefore used as a tube-shape mold and also as oxygenated supports to construct a novel bioreactor for production of the tubular BNC materials. Double cannula technology was used to produce tubular BNC via cultivations with Acetobacter xylinum, and Kombucha, a symbiosis of acetic acid bacteria and yeasts. The results indicated that Kombucha gave higher yield and productivity of BNC than A. xylinum. Bacterial nanocellulose was simultaneously synthesized both on the inner surface of the outer silicone tube and on the outer surface of the inner silicone tube. Finally, the nano BNC fibrils from two directions formed a BNC tube with good structural integrity. Scanning electron microscopy inspection showed that the tubular BNC had a multilayer structure in the beginning but finally it disappeared and an intact BNC tube formed. The mechanical properties of BNC tubes were comparable with the reported value in literatures, demonstrating a great potential in vascular implants or in functional substitutes in biomedicine.

  14. Preliminary Study on Biosynthesis of Bacterial Nanocellulose Tubes in a Novel Double-Silicone-Tube Bioreactor for Potential Vascular Prosthesis

    Science.gov (United States)

    Wei, Bin; Chen, Lin

    2015-01-01

    Bacterial nanocellulose (BNC) has demonstrated a tempting prospect for applications in substitute of small blood vessels. However, present technology is inefficient in production and BNC tubes have a layered structure that may bring danger after implanting. Double oxygen-permeable silicone tubes in different diameters were therefore used as a tube-shape mold and also as oxygenated supports to construct a novel bioreactor for production of the tubular BNC materials. Double cannula technology was used to produce tubular BNC via cultivations with Acetobacter xylinum, and Kombucha, a symbiosis of acetic acid bacteria and yeasts. The results indicated that Kombucha gave higher yield and productivity of BNC than A. xylinum. Bacterial nanocellulose was simultaneously synthesized both on the inner surface of the outer silicone tube and on the outer surface of the inner silicone tube. Finally, the nano BNC fibrils from two directions formed a BNC tube with good structural integrity. Scanning electron microscopy inspection showed that the tubular BNC had a multilayer structure in the beginning but finally it disappeared and an intact BNC tube formed. The mechanical properties of BNC tubes were comparable with the reported value in literatures, demonstrating a great potential in vascular implants or in functional substitutes in biomedicine. PMID:26090420

  15. Operative behaviour of a condenser tube under ETA chemistry

    International Nuclear Information System (INIS)

    Chocron, Mauricio; Burkart, Arturo; Rodriguez, Ivanna; Raul, Manera; Diego, Quinteros

    2012-09-01

    Among the various recommendations for the surveillance of the integrity of the materials of the Secondary Cycle (Balance of Plant) it is the periodic removal of a steam generator tube and a condenser tube and their analysis. It considers assessment of the water chemistry, corrosion and the reciprocal effect on or from other components of the cycle. Embalse N.P.P. is a CANDU 6 type, Pressurized Heavy Water Reactor, located in Cordoba Province, Argentina. Previous papers have shown results on tubes removed from the steam generators (Bordoni et al., NPC'08, September 15-18, 2008, Berlin, Germany; 6 th Canadian Nuclear Society - Steam Generators Conference, November 8-11, 2009, Toronto, Canada). Considering that the Embalse BOP has mixed metallurgy, i.e., steam generator tubes made of A800, piping made of ferrous alloys and condenser tubes made of Admiralty Brass and also taking into account that the chemistry has been modified from Morpholine control to ETA control (Fernandez et. al, NPC'2010, October 3-7, Quebec City, Canada), it has been decided to remove and analyze a condenser tube that has been placed in operation coincidently with the establishment of the ETA chemical control. The extraction is dated along with the November 2011 Plant Programmed Outage. Objectives are assessing the operative behavior of the tube performing visual and optical microscope inspection, SEM analysis of the oxides and deposits in exposed surfaces and occluded locations like tube sheet and other tests as well. Results are compared to the same analysis performed on a new tube in storage and integrated with the chemical operative figures of the cycle during the period: chemical data and corrosion products transport. (authors)

  16. Free compression tube. Applications

    Science.gov (United States)

    Rusu, Ioan

    2012-11-01

    During the flight of vehicles, their propulsion energy must overcome gravity, to ensure the displacement of air masses on vehicle trajectory, to cover both energy losses from the friction between a solid surface and the air and also the kinetic energy of reflected air masses due to the impact with the flying vehicle. The flight optimization by increasing speed and reducing fuel consumption has directed research in the aerodynamics field. The flying vehicles shapes obtained through studies in the wind tunnel provide the optimization of the impact with the air masses and the airflow along the vehicle. By energy balance studies for vehicles in flight, the author Ioan Rusu directed his research in reducing the energy lost at vehicle impact with air masses. In this respect as compared to classical solutions for building flight vehicles aerodynamic surfaces which reduce the impact and friction with air masses, Ioan Rusu has invented a device which he named free compression tube for rockets, registered with the State Office for Inventions and Trademarks of Romania, OSIM, deposit f 2011 0352. Mounted in front of flight vehicles it eliminates significantly the impact and friction of air masses with the vehicle solid. The air masses come into contact with the air inside the free compression tube and the air-solid friction is eliminated and replaced by air to air friction.

  17. Shock tube Multiphase Experiments

    Science.gov (United States)

    Middlebrooks, John; Allen, Roy; Paudel, Manoj; Young, Calvin; Musick, Ben; McFarland, Jacob

    2017-11-01

    Shock driven multiphase instabilities (SDMI) are unique physical phenomena that have far-reaching practical applications in engineering and science. The instability is present in high energy explosions, scramjet combustors, and supernovae events. The SDMI arises when a multiphase interface is impulsively accelerated by the passage of a shockwave. It is similar in development to the Richtmyer-Meshkov (RM) instability however, particle-to-gas coupling is the driving mechanism of the SDMI. As particle effects such as lag and phase change become more prominent, the SDMI's development begins to significantly deviate from the RM instability. We have developed an experiment for studying the SDMI in our shock tube facility. In our experiments, a multiphase interface is created using a laminar jet and flowed into the shock tube where it is accelerated by the passage of a planar shockwave. The interface development is captured using CCD cameras synchronized with planar laser illumination. This talk will give an overview of new experiments conducted to examine the development of a shocked cylindrical multiphase interface. The effects of Atwood number, particle size, and a second acceleration (reshock) of the interface will be discussed.

  18. Shock Tube as an Impulsive Application Device

    Directory of Open Access Journals (Sweden)

    Soumya Ranjan Nanda

    2017-01-01

    Full Text Available Current investigations solely focus on application of an impulse facility in diverse area of high-speed aerodynamics and structural mechanics. Shock tube, the fundamental impulse facility, is specially designed and calibrated for present objectives. Force measurement experiments are performed on a hemispherical test model integrated with the stress wave force balance. Similar test model is considered for heat transfer measurements using coaxial thermocouple. Force and heat transfer experiments demonstrated that the strain gauge and thermocouple have lag time of 11.5 and 9 microseconds, respectively. Response time of these sensors in measuring the peak load is also measured successfully using shock tube facility. As an outcome, these sensors are found to be suitable for impulse testing. Lastly, the response of aluminum plates subjected to impulsive loading is analyzed by measuring the in-plane strain produced during deformation. Thus, possibility of forming tests in shock is also confirmed.

  19. French RSE-M and RCC-MR code appendices for flaw analysis: Presentation of the fracture parameters calculation-Part IV: Cracked elbows

    Energy Technology Data Exchange (ETDEWEB)

    Marie, S. [CEA Saclay, DEN/DM2S/SEMT/LISN, 91191 Gif sur Yvette Cedex (France)], E-mail: stephane.marie@cea.fr; Chapuliot, S.; Kayser, Y. [CEA Saclay, DEN/DM2S/SEMT/LISN, 91191 Gif sur Yvette Cedex (France); Lacire, M.H. [CEA Saclay, DEN/DDIN, 91191 Gif sur Yvette Cedex (France); Drubay, B. [CEA Saclay, DEN/DM2S/SEMT/LISN, 91191 Gif sur Yvette Cedex (France); Barthelet, B. [EDF/EPN, Site Cap Ampere, 1 Place Pleyel 93207, Saint Denis Cedex 1 (France); Le Delliou, P. [EDF Pole Industrie - Division R and D, Site des Renardieres, Route de Sens, Ecuelles, 77250 Moret sur Loing Cedex (France); Rougier, V. [EDF/UTO, SIS/GAM, 6, Avenue Montaigne, 93192 Noisy le Grand (France); Naudin, C. [EDF/SEPTEN, 12-14, avenue Dutrievoz, 69628 Villeurbanne Cedex (France); Gilles, P.; Triay, M. [AREVA ANP, Tour AREVA, 92084 Paris La Defense Cedex 16 (France)

    2007-10-15

    Two French nuclear codes include flaw assessment procedures: the RSE-M Code 'Rules for In-service Inspection of Nuclear Power Plant Components' and the RCC-MR code 'Design and Construction rules for mechanical components of FBR nuclear islands and high temperature applications'. Development of analytical methods has been made for the last 10 years through a collaboration between CEA, EDF and AREVA-NP, and through R and D actions involving CEA and IRSN. These activities have led to unification of the common methods of the two codes. The calculation of fracture mechanics parameters, and in particular the stress intensity factor K{sub I} and the J integral, has been widely developed for industrial configurations. All the developments have been integrated in the 2005 edition of RSE-M and in 2007 edition of RCC-MR. This series of papers is composed of five parts: the first presents an overview of the methods proposed in the RCC-MR and RSE-M codes. Parts II-IV provide compendia for specific components. The geometries are plates (part II), pipes (part III) and elbows (part IV). Part V presents validation of the methods, with details on their accuracy. This paper presents the stress intensity factor and J calculation for cracked elbows. General data applicable for all defect geometries are first presented, and then, compendia for K{sub I} and {sigma}{sub ref} calculations are provided for the available defect geometries.

  20. French RSE-M and RCC-MR code appendices for flaw analysis: Presentation of the fracture parameters calculation-Part V: Elements of validation

    Energy Technology Data Exchange (ETDEWEB)

    Marie, S. [CEA Saclay, DEN/DM2S/SEMT/LISN, 91191 Gif sur Yvette Cedex (France)], E-mail: stephane.marie@cea.fr; Chapuliot, S.; Kayser, Y. [CEA Saclay, DEN/DM2S/SEMT/LISN, 91191 Gif sur Yvette Cedex (France); Lacire, M.H. [CEA Saclay, DEN/DDIN, 91191 Gif sur Yvette Cedex (France); Drubay, B. [CEA Saclay, DEN/DM2S/SEMT/LISN, 91191 Gif sur Yvette Cedex (France); Barthelet, B. [EDF/EPN, Site Cap Ampere, 1 place Pleyel 93207, Saint Denis Cedex 1 (France); Le Delliou, P. [EDF Pole Industrie-Division R and D, Site des Renardieres, Route de Sens, Ecuelles, 77250 Moret sur Loing Cedex (France); Rougier, V. [EDF/UTO, SIS/GAM, 6, avenue Montaigne, 93192 Noisy le Grand (France); Naudin, C. [EDF/SEPTEN, 12-14, avenue Dutrievoz, 69628 Villeurbanne Cedex (France); Gilles, P.; Triay, M. [AREVA ANP, Tour AREVA, 92084 Paris La Defense Cedex 16 (France)

    2007-10-15

    French nuclear codes include flaw assessment procedures: the RSE-M Code 'Rules for In-service Inspection of Nuclear Power Plant Components' and the RCC-MR code 'Design and Construction Rules for Mechanical Components of FBR Nuclear Islands and High Temperature Applications'. Development of analytical methods has been made for the last 10 years in the framework of a collaboration between CEA, EDF and AREVA-NP, and by R and D actions involving CEA and IRSN. These activities have led to a unification of the common methods of the two codes. The calculation of fracture mechanics parameters, in particular the stress intensity factor K{sub I} and the J integral, has been widely developed for industrial configurations. All the developments have been integrated in the 2005 edition of RSE-M and in 2007 edition of RCC-MR. This series of articles consists of 5 parts: the first part presents an overview of the methods proposed in the RCC-MR and RSE-M codes. Parts II-IV provide the compendia for specific components. The geometries are plates (part II), pipes (part III) and elbows (part IV). This part presents validation of the methods, with details on the process followed for their development and of the evaluation accuracy of the proposed analytical methods.

  1. French RSE-M and RCC-MR code appendices for flaw analysis: Presentation of the fracture parameters calculation-Part V: Elements of validation

    International Nuclear Information System (INIS)

    Marie, S.; Chapuliot, S.; Kayser, Y.; Lacire, M.H.; Drubay, B.; Barthelet, B.; Le Delliou, P.; Rougier, V.; Naudin, C.; Gilles, P.; Triay, M.

    2007-01-01

    French nuclear codes include flaw assessment procedures: the RSE-M Code 'Rules for In-service Inspection of Nuclear Power Plant Components' and the RCC-MR code 'Design and Construction Rules for Mechanical Components of FBR Nuclear Islands and High Temperature Applications'. Development of analytical methods has been made for the last 10 years in the framework of a collaboration between CEA, EDF and AREVA-NP, and by R and D actions involving CEA and IRSN. These activities have led to a unification of the common methods of the two codes. The calculation of fracture mechanics parameters, in particular the stress intensity factor K I and the J integral, has been widely developed for industrial configurations. All the developments have been integrated in the 2005 edition of RSE-M and in 2007 edition of RCC-MR. This series of articles consists of 5 parts: the first part presents an overview of the methods proposed in the RCC-MR and RSE-M codes. Parts II-IV provide the compendia for specific components. The geometries are plates (part II), pipes (part III) and elbows (part IV). This part presents validation of the methods, with details on the process followed for their development and of the evaluation accuracy of the proposed analytical methods

  2. French RSE-M and RCC-MR code appendices for flaw analysis: Presentation of the fracture parameters calculation-Part IV: Cracked elbows

    International Nuclear Information System (INIS)

    Marie, S.; Chapuliot, S.; Kayser, Y.; Lacire, M.H.; Drubay, B.; Barthelet, B.; Le Delliou, P.; Rougier, V.; Naudin, C.; Gilles, P.; Triay, M.

    2007-01-01

    Two French nuclear codes include flaw assessment procedures: the RSE-M Code 'Rules for In-service Inspection of Nuclear Power Plant Components' and the RCC-MR code 'Design and Construction rules for mechanical components of FBR nuclear islands and high temperature applications'. Development of analytical methods has been made for the last 10 years through a collaboration between CEA, EDF and AREVA-NP, and through R and D actions involving CEA and IRSN. These activities have led to unification of the common methods of the two codes. The calculation of fracture mechanics parameters, and in particular the stress intensity factor K I and the J integral, has been widely developed for industrial configurations. All the developments have been integrated in the 2005 edition of RSE-M and in 2007 edition of RCC-MR. This series of papers is composed of five parts: the first presents an overview of the methods proposed in the RCC-MR and RSE-M codes. Parts II-IV provide compendia for specific components. The geometries are plates (part II), pipes (part III) and elbows (part IV). Part V presents validation of the methods, with details on their accuracy. This paper presents the stress intensity factor and J calculation for cracked elbows. General data applicable for all defect geometries are first presented, and then, compendia for K I and σ ref calculations are provided for the available defect geometries

  3. Bacterial Biofilms in Jones Tubes.

    Science.gov (United States)

    Ahn, Eric S; Hauck, Matthew J; Kirk Harris, Jonathan; Robertson, Charles E; Dailey, Roger A

    To investigate the presence and microbiology of bacterial biofilms on Jones tubes (JTs) by direct visualization with scanning electron microscopy and polymerase chain reaction (PCR) of representative JTs, and to correlate these findings with inflammation and/or infection related to the JT. In this study, prospective case series were performed. JTs were recovered from consecutive patients presenting to clinic for routine cleaning or recurrent irritation/infection. Four tubes were processed for scanning electron microscopy alone to visualize evidence of biofilms. Two tubes underwent PCR alone for bacterial quantification. One tube was divided in half and sent for scanning electron microscopy and PCR. Symptoms related to the JTs were recorded at the time of recovery. Seven tubes were obtained. Five underwent SEM, and 3 out of 5 showed evidence of biofilms (60%). Two of the 3 biofilms demonstrated cocci and the third revealed rods. Three tubes underwent PCR. The predominant bacteria identified were Pseudomonadales (39%), Pseudomonas (16%), and Staphylococcus (14%). Three of the 7 patients (43%) reported irritation and discharge at presentation. Two symptomatic patients, whose tubes were imaged only, revealed biofilms. The third symptomatic patient's tube underwent PCR only, showing predominantly Staphylococcus (56%) and Haemophilus (36%) species. Two of the 4 asymptomatic patients also showed biofilms. All symptomatic patients improved rapidly after tube exchange and steroid antibiotic drops. Bacterial biofilms were variably present on JTs, and did not always correlate with patients' symptoms. Nevertheless, routine JT cleaning is recommended to treat and possibly prevent inflammation caused by biofilms.

  4. Failure analysis of boiler tube

    International Nuclear Information System (INIS)

    Mehmood, K.; Siddiqui, A.R.

    2007-01-01

    Boiler tubes are energy conversion components where heat energy is used to convert water into high pressure superheated steam, which is then delivered to a turbine for electric power generation in thermal power plants or to run plant and machineries in a process or manufacturing industry. It was reported that one of the tubes of a fire-tube boiler used in a local industry had leakage after the formation of pits at the external surface of the tube. The inner side of the fire tube was working with hot flue gasses with a pressure of 10 Kg/cm/sup 2/ and temperature 225 degree C. The outside of the tube was surrounded by feed water. The purpose of this study was to determine the cause of pits developed at the external surface of the failed boiler tube sample. In the present work boiler tube samples of steel grade ASTM AI61/ASTM A192 were analyzed using metallographic analysis, chemical analysis, and mechanical testing. It was concluded that the appearance of defects on the boiler tube sample indicates cavitation type corrosion failure. Cavitation damage superficially resembled pitting, but surface appeared considerably rougher and had many closely spaced pits. (author)

  5. YouTube and 'psychiatry'.

    Science.gov (United States)

    Gordon, Robert; Miller, John; Collins, Noel

    2015-12-01

    YouTube is a video-sharing website that is increasingly used to share and disseminate health-related information, particularly among younger people. There are reports that social media sites, such as YouTube, are being used to communicate an anti-psychiatry message but this has never been confirmed in any published analysis of YouTube clip content. This descriptive study revealed that the representation of 'psychiatry' during summer 2012 was predominantly negative. A subsequent smaller re-analysis suggests that the negative portrayal of 'psychiatry' on YouTube is a stable phenomenon. The significance of this and how it could be addressed are discussed.

  6. Radiation-resistant camera tube

    International Nuclear Information System (INIS)

    Kuwahata, Takao; Manabe, Sohei; Makishima, Yasuhiro

    1982-01-01

    It was a long time ago that Toshiba launched on manufacturing black-and-white radiation-resistant camera tubes employing nonbrowning face-plate glass for ITV cameras used in nuclear power plants. Now in compliance with the increasing demand in nuclear power field, the Company is at grips with the development of radiation-resistant single color-camera tubes incorporating a color-stripe filter for color ITV cameras used under radiation environment. Herein represented are the results of experiments on characteristics of materials for single color-camera tubes and prospects for commercialization of the tubes. (author)

  7. Learning from YouTube [Video Book

    Science.gov (United States)

    Juhasz, Alexandra

    2011-01-01

    YouTube is a mess. YouTube is for amateurs. YouTube dissolves the real. YouTube is host to inconceivable combos. YouTube is best for corporate-made community. YouTube is badly baked. These are a few of the things Media Studies professor Alexandra Juhasz (and her class) learned about YouTube when she set out to investigate what actually happens…

  8. Thermionic integrated circuits: electronics for hostile environments

    International Nuclear Information System (INIS)

    Lynn, D.K.; McCormick, J.B.; MacRoberts, M.D.J.; Wilde, D.K.; Dooley, G.R.; Brown, D.R.

    1985-01-01

    Thermionic integrated circuits combine vacuum tube technology with integrated circuit techniques to form integrated vacuum triode circuits. These circuits are capable of extended operation in both high-temperature and high-radiation environments

  9. Flaw size estimation by ultrasonic testing of welded joints of unalloyed and low-alloy steels

    International Nuclear Information System (INIS)

    Edelmann, X.

    1987-01-01

    Many sound beams have been measured and their dimensions have been compared with theoretical models. The characteristics of those beams used in actual examination should be measured before starting and be taken into account during this examination. Measurements on different reference reflectors have been performed. Both maximum of reflected amplitude ('static behaviour') and amplitude change during probe movement ('echodynamic behaviour') have been investigated. A slide rule has been worked out which allows one to compare the amplitudes of the most important reference reflectors: side drilled hole, disc reflector (flat bottom hole), sphere, stripe of infinite length, and infinite plane. A first judgement of ultrasonic results achieved with different sound beam diameters, frequencies and angles of incidence, with regard to the relevance of a defect is possible. The echodynamic information is most important for sizing deep defects. By means of well-defined conventional ultrasonic techniques, taking into account sound beam characteristics, sufficient accuracy is possible. Even the quite difficult case of sizing intergranular stress corrosion cracking in the heat affected zone of austenitic welds could be solved with good reliability. In spite of the good capabilities of sizing defects practical limits have to be taken into account. Defects under compressive stresses might be transparent to ultrasound and therefore remain undefected. Bad geometrical conditions of the component to be examined might limit reliability of ultrasonic examination. The sizing capabilities must be judged in this context. Nevertheless the described procedures give an opportunity for realisation of improvements towards better flaw size estimation. (orig./HP) [de

  10. Another look: is there a flaw to current hip septic arthritis diagnostic algorithms?

    Science.gov (United States)

    Uzoigwe, Chika Edward

    2014-05-01

    Septic arthritis is an emergency. In 1999 Kocher et al. identified four clinical criteria to distinguish hip septic arthritis from transient synovitis in children (nonweightbearing, erythrocyte sedimentation rate ≥ 40 mm/L, white blood cell count > 12 × 10(9)/L, temperature > 38.5°C). Subsequent authors evaluating the same criteria produced conflicting results. This calls into question the use of such diagnostic algorithms. The reasons for the differences remain unclear. To what degree do studies, evaluating the predictive ability of diagnostic algorithms for septic arthritis, differ with regard to their results? Why do these differences exist? Is there a flaw in the statistical handling of the data? Using PubMed, original studies evaluating the clinical criteria for distinguishing hip septic arthritis and transient synovitis in children were identified. Clinical and statistical methods were examined. Six studies evaluated the clinical criteria. Two found all four criteria able to distinguish septic arthritis from transient synovitis. There was significant variation between the studies in the risk engendered by the presence of each criteria. The differences were the result of the fact that in all cases, sample sizes were too small and in three cases, there were too few episodes of septic arthritis for a reliable predictive algorithm to be produced. Differing results between studies appear as a result of sample size and insufficient cases of septic arthritis in some cohorts. Transferable and reliable results can be achieved if sufficiently large samples with an adequate number of cases of septic arthritis are recruited.

  11. Marine Protected Dramas: The Flaws of the Brazilian National System of Marine Protected Areas

    Science.gov (United States)

    Gerhardinger, Leopoldo C.; Godoy, Eduardo A. S.; Jones, Peter J. S.; Sales, Gilberto; Ferreira, Beatrice P.

    2011-04-01

    This article discusses the current problems and issues associated with the implementation of a National System of Marine Protected Areas in Brazil. MPA managers and higher governmental level authorities were interviewed about their perceptions of the implementation of a national MPA strategy and the recent changes in the institutional arrangement of government marine conservation agencies. Interviewees' narratives were generally pessimistic and the National System was perceived as weak, with few recognizable marine conservation outcomes on the ground. The following major flaws were identified: poor inter-institutional coordination of coastal and ocean governance; institutional crisis faced by the national government marine conservation agency; poor management within individual MPAs; problems with regional networks of marine protected areas; an overly bureaucratic management and administrative system; financial shortages creating structural problems and a disconnect between MPA policy and its delivery. Furthermore, a lack of professional motivation and a pessimistic atmosphere was encountered during many interviews, a malaise which we believe affects how the entire system is able to respond to crises. Our findings highlight the need for a better understanding of the role of `leadership' in the performance of socio-ecological systems (such as MPA networks), more effective official evaluation mechanisms, more localized audits of (and reforms if necessary to) Brazil's federal biodiversity conservation agency (ICMBio), and the need for political measures to promote state leadership and support. Continuing to focus on the designation of more MPAs whilst not fully addressing these issues will achieve little beyond fulfilling, on paper, Brazil's international marine biodiversity commitments.

  12. Is the concept of Avian Pathogenic Escherichia coli (APEC as a single pathotype is fundamentally flawed?

    Directory of Open Access Journals (Sweden)

    Paul eWigley

    2014-10-01

    Full Text Available Avian Pathogenic Escherichia coli (APEC is a major pathogen within the poultry industry. However disease, especially in broiler chickens, may be caused by range of E. coli genotypes that carry few, if any, virulence factors associated with APEC. Furthermore commensal E. coli in the intestines healthy birds may carry an array of APEC virulence factors suggesting they have potential to cause disease when opportunity arises. Given the diseases caused by APEC, namely colibacillosis and salpingitis peritonitis syndrome, are syndromic in nature and the great diversity of the strains causing disease we suggest it is wrong to consider disease is the result of a single APEC pathotype . Whilst it is clear certain pathogenic E. coli can be considered as APEC, much of the disease associated with E. coli in domestic poultry is as much a consequence of increased host susceptibility due to stress, immunosuppression, co-infection or poor welfare. This leads to more ‘opportunistic’ infections rather than the result of infection with a specific pathotype. As such the current use of the term APEC for all cases of E. coli infection in the chicken is fundamentally flawed.

  13. PowerPoint® Presentation Flaws and Failures: A Psychological Analysis

    Directory of Open Access Journals (Sweden)

    Stephen Michael Kosslyn

    2012-07-01

    Full Text Available Electronic slideshow presentations are often faulted anecdotally, but little empirical work has documented their faults. Three studies reported here document psychological causes of their flaws. In Study 1 we found that eight psychological principles are often violated in PowerPoint® presentations, across different fields—for example, academic research presentations generally were no better or worse than business presentations. In Study 2 we found that respondents reported having noticed, and having been annoyed by, specific problems in presentations arising from violations of particular psychological principles. Finally, in Study 3 we showed that observers are not highly accurate in recognizing when slides violated a specific psychological rule. Furthermore, even when they correctly identified the violation, they often could not explain the nature of the problem. In sum, the psychological foundations for effective slideshow presentation design are neither obvious nor necessarily intuitive, and presentation designers in all fields, from education to business to government, could benefit from explicit instruction in relevant aspects of psychology.

  14. A surface flaw sizing study by time-of-flight ultrasonic technique

    International Nuclear Information System (INIS)

    Lamy, C.A.

    1990-07-01

    In this work, sizing of inclined slits and surface cracks in ferritic steel using the ultrasonic time-of-flight technique was studied. The surface cracks were vertical and inclined, nut the slits were only inclined. It was surface Rayleigh wave that was converted to shear wave mode in the material. The specimens with surface crack were submitted to a three four point loading fracture mechanics tests, so that the region of the crack tip became under an increasing tensile stress. Thus, the ultrasonic crack sizing could be compared to the material stress intensity factor (K) of the material for different loadings. Results show that the greater the slope and/or lenght of the slits the greater its subsizing. Vertical cracks int he parent metal are reliably and accuratly sized; in the weld the same remark held if one increases the gain of ultrasonic flaw detector to compensate for the weld attenuation phenomenon. Sizing of inclined cracks in the parent metal shows the same trends of the inclined slits, differing only in slopes over 30 sup(0) where the sizing in surface cracks is no longer reliable. A new appraisal procedure here proposed made reliable these results. The techniques employed in this work lead to reliable and accurate results for sizing of different slits and cracks. It should be noted however that good results are only obtained if a tensile stress state exists in the neighbourhood of the c rack tip. (author)

  15. The mystery of communion in narcissism: The success-as-a-flaw effect

    Directory of Open Access Journals (Sweden)

    Drat-Ruszczak Krystyna

    2014-12-01

    Full Text Available In the present paper we consider the specific relationship between communal and agentic functioning of narcissistic individuals. The study was aimed to test whether narcissist’s aggression is due to not only negative information about their agency but also positive information about their communion. Whereas the first effect is well- documented in empirical studies, the second effect has been revealed in our prior research. The results of the present study confirmed both effects: negative information about one’s agency increased aggressive tendencies (operationalized as a display of demeaning behavior and decreased state self-esteem, while positive information about one’s communion resulted only in displaced aggression. The aggressive response to positive communal information is discussed as the success-as-aflaw effect, which we mean as inverse of the failure-as-an asset effect. According to the success-as-a-flaw effect, positive outcomes in the communal domain, considered by narcissists to be an evidence of low-status, are threatening for the grandiose self, based on the domain of agency. The social cognitive and clinical approach is employed to interpret these results.

  16. Robust and reliable banknote authentification and print flaw detection with opto-acoustical sensor fusion methods

    Science.gov (United States)

    Lohweg, Volker; Schaede, Johannes; Türke, Thomas

    2006-02-01

    The authenticity checking and inspection of bank notes is a high labour intensive process where traditionally every note on every sheet is inspected manually. However with the advent of more and more sophisticated security features, both visible and invisible, and the requirement of cost reduction in the printing process, it is clear that automation is required. As more and more print techniques and new security features will be established, total quality security, authenticity and bank note printing must be assured. Therefore, this factor necessitates amplification of a sensorial concept in general. We propose a concept for both authenticity checking and inspection methods for pattern recognition and classification for securities and banknotes, which is based on the concept of sensor fusion and fuzzy interpretation of data measures. In the approach different methods of authenticity analysis and print flaw detection are combined, which can be used for vending or sorting machines, as well as for printing machines. Usually only the existence or appearance of colours and their textures are checked by cameras. Our method combines the visible camera images with IR-spectral sensitive sensors, acoustical and other measurements like temperature and pressure of printing machines.

  17. Tube to tube excursive instability - sensitivities and transients

    International Nuclear Information System (INIS)

    Brown, M.; Layland, M.W.

    1980-01-01

    A simple basic analysis of excursive instability in a boiler tube shows how it depends upon operating conditions and physical properties. A detailed mathematical model of an AGR boiler is used to conduct a steady state parameter sensitivity survey. It is possible from this basis to anticipate the effects of changes in operating conditions and changes in design parameters upon tube to tube stability. Dynamic responses of tubes operating near the stability threshold are examined using a mathematical model. Simulated excursions are triggered by imparting small abrupt pressure changes on the boiler inlet pressure. The influences of the magnitude of the pressure change, waterside friction factor and gas side coupling between tubes are examined. (author)

  18. Nasogastric tube syndrome induced by an indwelling long intestinal tube.

    Science.gov (United States)

    Sano, Naoki; Yamamoto, Masayoshi; Nagai, Kentaro; Yamada, Keiichi; Ohkohchi, Nobuhiro

    2016-04-21

    The nasogastric tube (NGT) has become a frequently used device to alleviate gastrointestinal symptoms. Nasogastric tube syndrome (NTS) is an uncommon but potentially life-threatening complication of an indwelling NGT. NTS is characterized by acute upper airway obstruction due to bilateral vocal cord paralysis. We report a case of a 76-year-old man with NTS, induced by an indwelling long intestinal tube. He was admitted to our hospital for treatment of sigmoid colon cancer. He underwent sigmoidectomy to release a bowel obstruction, and had a long intestinal tube inserted to decompress the intestinal tract. He presented acute dyspnea following prolonged intestinal intubation, and bronchoscopy showed bilateral vocal cord paralysis. The NGT was removed immediately, and tracheotomy was performed. The patient was finally discharged in a fully recovered state. NTS be considered in patients complaining of acute upper airway obstruction, not only with a NGT inserted but also with a long intestinal tube.

  19. A New Resonance Tube

    Science.gov (United States)

    Bates, Alan

    2017-12-01

    The measurement of the speed of sound in air with the resonance tube is a popular experiment that often yields accurate results. One approach is to hold a vibrating tuning fork over an air column that is partially immersed in water. The column is raised and lowered in the water until the generated standing wave produces resonance: this occurs at the point where sound is perceived to have maximum loudness, or at the point where the amplitude of the standing wave has maximum value, namely an antinode. An antinode coincides with the position of the tuning fork, beyond the end of the air column, which consequently introduces an end correction. One way to minimize this end correction is to measure the distance between consecutive antinodes.

  20. Piezoelectric Rotary Tube Motor

    Science.gov (United States)

    Fisher, Charles D.; Badescu, Mircea; Braun, David F.; Culhane, Robert

    2011-01-01

    A custom rotary SQUIGGLE(Registered TradeMark) motor has been developed that sets new benchmarks for small motor size, high position resolution, and high torque without gear reduction. Its capabilities cannot be achieved with conventional electromagnetic motors. It consists of piezoelectric plates mounted on a square flexible tube. The plates are actuated via voltage waveforms 90 out of phase at the resonant frequency of the device to create rotary motion. The motors were incorporated into a two-axis postioner that was designed for fiber-fed spectroscopy for ground-based and space-based projects. The positioner enables large-scale celestial object surveys to take place in a practical amount of time.

  1. Pressure tube reactor

    International Nuclear Information System (INIS)

    Matsumoto, Tomoyuki; Fujino, Michihira.

    1980-01-01

    Purpose: To equalize heavy water flow distribution by providing a nozzle for externally injecting heavy water from a vibration preventive plate to the upper portion to feed the heavy water in a pressure tube reactor and swallowing up heavy water in a calandria tank to supply the heavy water to the reactor core above the vibration preventive plate. Constitution: A moderator injection nozzle is mounted on the inner wall of a calandria tank. Heavy water is externally injected above the vibration preventive plate, and heavy water in the calandria tank is swallowed up to supply the heavy water to the core reactor above the vibration preventive plate. Therefore, the heavy water flow distribution can be equalized over the entire reactor core, and the distribution of neutron absorber dissolved in the heavy water is equalized. (Yoshihara, H.)

  2. Primary Fallopian Tube Carcinoma

    Directory of Open Access Journals (Sweden)

    Prasad K Shetty

    2011-01-01

    Full Text Available Primary Fallopian Tube Carcinoma (PFTC is rare and accounts for about 0.3% of all gynecologic cancers. Less than 1500 cases have been reported in the literature. It arises in postmenopausal women and typically presents with abdominal pelvic pain, vaginal bleeding and watery discharge. However, a correct diagnosis is rarely achieved preoperative, and in many cases, the diagnosis is made after incidental surgery for unrelated conditions commonly being ovarian carcinoma . Compared with ovarian carcinoma, PFTC more often presents at early stages, but it has a worse prognosis. PFTC is usually managed in the same manner as ovarian cancer. We report a case of Left PFTC that presented as Left ovarian mass, and we briefly review the literature.

  3. Leak-before-break concept for evaluation of flows detected in pressure tubes in a Candu type reactor

    International Nuclear Information System (INIS)

    Crespi, J.C.

    1992-01-01

    This paper reviews the role of the Leak-Before-Break concept for evaluation of flaws detected in cold-worked Zr 2.5% Nb pressure tubes in a CANDU type reactors. The acceptance criteria are intended to prevent failure by brittle fracture, plastic collapse of the ligament and delayed hydride cracking. The methodology developed here was of great help in order to establish the operative conditions for fuel channel garter springs repositioning by means of the SLA Rette tool at Embalse Nuclear Generating Station, Cordoba, Argentina. (author)

  4. Characterization of tube support alloys

    International Nuclear Information System (INIS)

    Vaia, A.R.

    1985-01-01

    The involvement and relationship of carbon steel corrosion products in the tube denting phenomenon promoted an intensive research effort to: 1) understand, reproduce, and arrest the denting process, and 2) evaluate alternative tube support materials to provide additional corrosion resistance. The paper summarizes a corrosion testing program for the verification of type 405 stainless steel under acid or all volatile treatment conditions

  5. Flaming on YouTube

    NARCIS (Netherlands)

    Moor, Peter J.; Heuvelman, A.; Verleur, R.

    2010-01-01

    In this explorative study, flaming on YouTube was studied using surveys of YouTube users. Flaming is defined as displaying hostility by insulting, swearing or using otherwise offensive language. Three general conclusions were drawn. First, although many users said that they themselves do not flame,

  6. NEI You Tube Videos: Amblyopia

    Medline Plus

    Full Text Available ... Amaurosis Low Vision Refractive Errors Retinopathy of Prematurity Science Spanish Videos Webinars NEI YouTube Videos: Amblyopia Embedded video for NEI YouTube Videos: Amblyopia NEI Home Contact Us A-Z Site Map NEI on Social Media Information in Spanish (Información en español) Website, ...

  7. Use of flawed multiple-choice items by the New England Journal of Medicine for continuing medical education.

    Science.gov (United States)

    Stagnaro-Green, Alex S; Downing, Steven M

    2006-09-01

    Physicians in the United States are required to complete a minimum number of continuing medical education (CME) credits annually. The goal of CME is to ensure that physicians maintain their knowledge and skills throughout their medical career. The New England Journal of Medicine (NEJM) provides its readers with the opportunity to obtain weekly CME credits. Deviation from established item-writing principles may result in a decrease in validity evidence for tests. This study evaluated the quality of 40 NEJM MCQs using the standard evidence-based principles of effective item writing. Each multiple-choice item reviewed had at least three item flaws, with a mean of 5.1 and a range of 3 to 7. The results of this study demonstrate that the NEJM uses flawed MCQs in its weekly CME program.

  8. Non-destructive testing and flaw evaluation as a means of improving the reliability of reactor components

    International Nuclear Information System (INIS)

    Prot, A.C.; Saglio, R.; Asty, M.; Pigeon, M.

    1978-01-01

    The paper reports on developments in those non-destructive testing techniques which can contribute to the reliability of nuclear components, especially in techniques to be used for periodic inspection. A description is given of the most recent improvements in ultrasonic testing, eddy currents and acoustic emission, emphasis being placed on what they can contribute to reliability. For example, it is shown how the systematic use of a flaw sizing technique can improve techniques for analysing the harmful effects of flaws (e.g. fracture mechanics analysis). There is also a description of the problem of the large differences between tests carried out in fabrication and the more sophisticated tests used in periodic inspection and it is shown what effect this can have on the reliability of facilities. The importance of problems associated with the testing of austenitic steels and welds of dissimilar metals is stressed, as is the need for finding solutions to these problems quickly. (author)

  9. 27 CFR 40.352 - Cigarette tubes.

    Science.gov (United States)

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 2 2010-04-01 2010-04-01 false Cigarette tubes. 40.352... OF THE TREASURY (CONTINUED) TOBACCO MANUFACTURE OF TOBACCO PRODUCTS, CIGARETTE PAPERS AND TUBES, AND PROCESSED TOBACCO Manufacture of Cigarette Papers and Tubes Taxes § 40.352 Cigarette tubes. Cigarette tubes...

  10. Preliminary experimental results for a non-intrusive scheme for the detection of flaws in metal pipelines

    Science.gov (United States)

    Aydin, K.; Shinde, S.; Suhail, M.; Vyas, A.; Zieher, K. W.

    2002-05-01

    An acoustic pulse echo scheme for non-intrusive detection of flaws in metal pipelines has been investigated in the laboratory. The primary pulse is generated by a pulsed magnetic field enclosing a short section of a free pipe. The detection is by an electrostatic detector surrounding a short section of the pipe. Reflected pulses from thin areas, with a longitudinal extension of about one pipe radius and a reduction of the wall thickness of 40%, can be detected clearly.

  11. HF electronic tubes. Technologies, grid tubes and klystrons

    International Nuclear Information System (INIS)

    Lemoine, Th.

    2009-01-01

    This article gives an overview of the basic technologies of electronic tubes: cathodes, electronic optics, vacuum and high voltage. Then the grid tubes, klystrons and inductive output tubes (IOT) are introduced. Content: 1 - context and classification; 2 - electronic tube technologies: cathodes, electronic optics, magnetic confinement (linear tubes), periodic permanent magnet (PPM) focussing, collectors, depressed collectors; 3 - vacuum technologies: vacuum quality, surface effects and interaction with electrostatic and RF fields, secondary emission, multipactor effect, thermo-electronic emission; 4 - grid tubes: operation of a triode, tetrodes, dynamic operation and classes of use, 'common grid' and 'common cathode' operation, ranges of utilisation and limitations, operation of a tetrode on unadjusted load, lifetime of a tetrode, uses of grid tubes; 5 - klystrons: operation, impact of space charge, multi-cavity klystrons, interaction efficiency, extended interaction klystrons, relation between interaction efficiency, perveance and efficiency, ranges of utilization and power limitations, multi-beam klystrons and sheet beam klystrons, operation on unadjusted load, klystron band pass and lifetime, uses; 6 - IOT: principle of operation, ranges of utilisation and limitations, interaction efficiency and depressed collector IOT, IOT lifetime and uses. (J.S.)

  12. Combining usability evaluations to highlight the chain that leads from usability flaws to usage problems and then negative outcomes.

    Science.gov (United States)

    Watbled, Ludivine; Marcilly, Romaric; Guerlinger, Sandra; Bastien, J-M Christian; Beuscart-Zéphir, Marie-Catherine; Beuscart, Régis

    2018-02-01

    Poor usability of health technology is thought to diminish work system performance, increase error rates and, potentially, harm patients. The present study (i) used a combination of usability evaluation methods to highlight the chain that leads from usability flaws to usage problems experienced by users and, ultimately, to negative patient outcomes, and (ii) validated this approach by studying two different discharge summary production systems. To comply with quality guidelines, the process of drafting and sending discharge summaries is increasingly being automated. However, the usability of these systems may modify their impact (or the absence thereof) in terms of production times and quality, and must therefore be evaluated. Here, we applied three successive techniques for usability evaluation (heuristic evaluation, user testing and field observation) to two discharge summary production systems (underpinned by different technologies). The systems' main usability flaws led respectively to an increase in the time need to produce a discharge summary and the risk of patient misidentification. Our results are discussed with regard to the possibility of linking the usability flaws, usage problems and the negative outcomes by successively applying three methods for evaluating usability (heuristic evaluation, user testing and in situ observations) throughout the system development life cycle. Copyright © 2018 Elsevier Inc. All rights reserved.

  13. A Critical Assessment of Child Custody Evaluations: Limited Science and a Flawed System.

    Science.gov (United States)

    Emery, Robert E; Otto, Randy K; O'Donohue, William T

    2005-07-01

    further scientific investigation. We see the system for resolving custody disputes as deeply flawed, for reasons that go beyond the problem of limited science. The coupling of the vague "best interests of the child" test with the American adversary system of justice puts judges in the position of trying to perform an impossible task, and it exacerbates parental conflict and problems in parenting and coparenting, which psychological science clearly shows to be key factors predicting children's psychological difficulties in response to their parents' separation and divorce. Our analysis of the flawed system, together with our desire to sharply limit custody disputes and custody evaluations, leads us to propose three reforms. First, we urge continued efforts to encourage parents to reach custody agreements on their own-in divorce mediation, through collaborative law, in good-faith attorney negotiations, in therapy, and in other forums. Some such efforts have been demonstrated to improve parent-parent and parent-child relationships long after divorce, and they embrace the philosophical position that, in the absence of abuse or neglect, parents themselves should determine their children's best interests after separation, just as they do in marriage. Second, we urge state legislatures to move toward adopting more clear and determinative custody rules, a step that would greatly clarify the terms of the marriage contract, limit the need for custody evaluations, and sharply narrow the scope of the evaluation process. We find particular merit in the proposed "approximation rule" (recently embraced by the American Law Institute), in which postdivorce parenting arrangements would approximate parenting involvement in marriage. Third and finally, we recommend that custody evaluators follow the law and only offer opinions for which there is an adequate scientific basis. Related to this, we urge professional bodies to enact more specific standards of practice on this and related issues

  14. Pulsed Drift Tube Accelerator

    International Nuclear Information System (INIS)

    Faltens, A.

    2004-01-01

    The pulsed drift-tube accelerator (DTA) concept was revived by Joe Kwan and John Staples and is being considered for the HEDP/WDM application. It could be used to reach the full energy or as an intermediate accelerator between the diode and a high gradient accelerator such as multi-beam r.f. In the earliest LBNL HIF proposals and conceptual drivers it was used as an extended injector to reach energies where an induction linac with magnetic quadrupoles is the best choice. For HEDP, because of the very short pulse duration, the DTA could provide an acceleration rate of about 1MV/m. This note is divided into two parts: the first, a design based on existing experience; the second, an optimistic extrapolation. The first accelerates 16 parallel K + beams at a constant line charge density of 0.25(micro) C/m per beam to 10 MeV; the second uses a stripper and charge selector at around 4MeV followed by further acceleration to reach 40 MeV. Both benefit from more compact sources than the present 2MV injector source, although that beam is the basis of the first design and is a viable option. A pulsed drift-tube accelerator was the first major HIF experiment at LBNL. It was designed to produce a 2(micro)s rectangular 1 Ampere C s + beam at 2MeV. It ran comfortably at 1.6MeV for several years, then at lower voltages and currents for other experiments, and remnants of that experiment are in use in present experiments, still running 25 years later. The 1A current, completely equivalent to 1.8A K + , was chosen to be intermediate between the beamlets appropriate for a multi-beam accelerator, and a single beam of, say, 10A, at injection energies. The original driver scenarios using one large beam on each side of the reactor rapidly fell out of favor because of the very high transverse and longitudinal fields from the beam space charge, circa 1MV/cm and 250 kV/cm respectively, near the chamber and because of aberrations in focusing a large diameter beam down to a 1mm radius spot at a

  15. Development of a method to characterize high-protein dairy powders using an ultrasonic flaw detector.

    Science.gov (United States)

    Hauser, M; Amamcharla, J K

    2016-02-01

    Dissolution behavior of high-protein dairy powders plays a critical role for achieving functional and nutritional characteristics of a finished food product. Current methods for evaluating powder dissolution properties are time consuming, difficult to reproduce, and subjective. Ultrasound spectroscopy is a rapid and precise method, but requires expensive equipment and skilled technicians to carry out the tests. In the present study, an ultrasonic flaw detector (UFD) was used as an economical alternative to characterize the powder dissolution properties. The objective of study was to develop a method to characterize the dissolution behavior of milk protein concentrate (MPC) using a UFD. The experimental setup included a UFD connected to a 1-MHz immersion transducer that was kept a constant distance from a reflector plate. To validate the method, 2 batches of MPC80 from a commercial manufacturer were procured and stored at 25 and 40°C for 4 wk. Focus beam reflectance measurement and solubility index were used as reference methods. Relative ultrasound velocity and ultrasound attenuation were acquired during the dissolution of MPC samples. To characterize the MPC dissolution, 4 parameters including standard deviation of relative velocity, area under the attenuation curve, and peak attenuation were extracted from ultrasound data. As the storage temperature and time increased, the area under the attenuation curve and peak height decreased, indicating a loss of solubility. The proposed UFD-based method was able to capture the changes in dissolution of MPC during storage at 25 and 40°C. It was observed that a high-quality MPC had a low standard deviation and a larger area under the attenuation curve. As the MPC aged at 40°C, the particle dispersion rate decreased and, consequently, an increase in standard deviation and reduction in area were observed. Overall, the UFD can be a low-cost method to characterize the dissolution behavior of high-protein dairy powders

  16. Using four-phased unit-based patient safety walkrounds to uncover correctable system flaws.

    Science.gov (United States)

    Taylor, April M; Chuo, John; Figueroa-Altmann, Ana; DiTaranto, Susan; Shaw, Kathy N

    2013-09-01

    A unit-based Patient Safety Leadership Walkrounds (PSWR) model was deployed in six medical/surgical units at The Children's Hospital of Philadelphia to identify patient safety issues in the clinical microsystem. Specific objectives of PSWR were to (1) provide a forum for frontline staff to freely report and discuss patient safety problems with unit local leaders, (2) improve teamwork and communication within and across units, and (3) develop a supportive environment in which staff and leaders brainstorm on potential solutions. Baseline data collection and discussion with leaders and staff from the pilot units were used to create a standard set of safety tools and questions. Through multiple Plan-Do-Study-Act cycles, safety tools and questions were refined, while the process of walkrounds in each of the six pilot units was customized. Leaders in all six pilot units indicated that PSWR helped them to uncover previously unidentified safety concerns. Top-impact areas included nurse-medical team relationship, work-flow flaws, equipment defects, staff education, and medication safety. The project engaged 149 individuals across all disciplines, including 33 physicians, and entailed 34 PSWR in its first year. Information from these pilot units initiated safety changes that spread across multiple units, with identification of hospital-wide quality and patient safety issues. For participating units, the PSWR process is a situational awareness tool that helps management periodically assess new or unresolved vulnerabilities that may affect safety and care quality on the unit. Unit-based PSWR help identify safety concerns at the microsystem level while improving communication about safety events across units and to hospital leaders in the macrosystem.

  17. Have recent earthquakes exposed flaws in or misunderstandings of probabilistic seismic hazard analysis?

    Science.gov (United States)

    Hanks, Thomas C.; Beroza, Gregory C.; Toda, Shinji

    2012-01-01

    In a recent Opinion piece in these pages, Stein et al. (2011) offer a remarkable indictment of the methods, models, and results of probabilistic seismic hazard analysis (PSHA). The principal object of their concern is the PSHA map for Japan released by the Japan Headquarters for Earthquake Research Promotion (HERP), which is reproduced by Stein et al. (2011) as their Figure 1 and also here as our Figure 1. It shows the probability of exceedance (also referred to as the “hazard”) of the Japan Meteorological Agency (JMA) intensity 6–lower (JMA 6–) in Japan for the 30-year period beginning in January 2010. JMA 6– is an earthquake-damage intensity measure that is associated with fairly strong ground motion that can be damaging to well-built structures and is potentially destructive to poor construction (HERP, 2005, appendix 5). Reiterating Geller (2011, p. 408), Stein et al. (2011, p. 623) have this to say about Figure 1: The regions assessed as most dangerous are the zones of three hypothetical “scenario earthquakes” (Tokai, Tonankai, and Nankai; see map). However, since 1979, earthquakes that caused 10 or more fatalities in Japan actually occurred in places assigned a relatively low probability. This discrepancy—the latest in a string of negative results for the characteristic model and its cousin the seismic-gap model—strongly suggest that the hazard map and the methods used to produce it are flawed and should be discarded. Given the central role that PSHA now plays in seismic risk analysis, performance-based engineering, and design-basis ground motions, discarding PSHA would have important consequences. We are not persuaded by the arguments of Geller (2011) and Stein et al. (2011) for doing so because important misunderstandings about PSHA seem to have conditioned them. In the quotation above, for example, they have confused important differences between earthquake-occurrence observations and ground-motion hazard calculations.

  18. Swedish-Norwegian tradable green certificates: Scheme design flaws and perceived investment barriers

    International Nuclear Information System (INIS)

    Linnerud, Kristin; Simonsen, Morten

    2017-01-01

    The EU Commission recommends using market-based support schemes for renewable-electricity projects. One example is the Swedish-Norwegian tradable green certificate scheme. We examine whether design features in the Norwegian part of this scheme, specifically, the scheme's short duration and the way it is to be abruptly terminated, contribute to investors' perceptions of barriers. We apply econometric techniques on primary data collected in two surveys of Norwegian investors in hydropower, and we use real options theory to predict and interpret investors' responses. We show that: (1) immediately after the scheme was introduced, investors are eager to lock in future subsidies by investing immediately and concerned with factors that may delay the completion of their projects; (2) as the certificate deadline neared, investors have become increasingly pessimistic and concerned with economic and risk barriers. Investors in big hydropower plants with regulation reservoirs are particularly concerned with the risk of not completing their projects in time to gain the right to sell certificates. These findings are consistent with the predicted responses to the scheme design derived from real options theory. In contrast to earlier studies, we find no difference in responses to the scheme design across investor types. - Highlights: • The Swedish-Norwegian tradable green certificate scheme is intended to promote cost-efficiency. • We examine the optimism about and barriers against investing in new hydropower projects in Norway. • We find that scheme design may have contributed to barriers against Norwegian hydropower projects. • Thus, scheme design flaws may have prevented the scheme from working as intended. • These findings are consistent with real options theory predictions.

  19. Water-storage-tube systems. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Hemker, P.

    1981-12-24

    Passive solar collection/storage/distribution systems were surveyed, designed, fabricated, and mechanically and thermally tested. The types studied were clear and opaque fiberglass tubes, metal tubes with plastic liners, and thermosyphoning tubes. (MHR)

  20. Conditioning and breakdown phenomena in accelerator tubes

    International Nuclear Information System (INIS)

    Skorka, S.J.

    1979-01-01

    Important breakdown mechanisms in accelerator tubes are reviewed, and discharge phenomena in NEC tubes are deduced from the surface appearance of the electrodes and insulators of a used tube. Microphotos of these surfaces are shown

  1. Eddy current signal comparison for tube identification

    Science.gov (United States)

    Glass, S. W.; Vojvodic, R.

    2015-03-01

    Inspection of nuclear power plant steam generator tubes is required to justify continued safe plant operation. The steam generators consist of thousands of tubes with nominal diameters of 15 to 22mm, approximately 1mm wall thickness, and 20 to 30m in length. The tubes are inspected by passing an eddy current probe through the tubes from tube end to tube end. It is critical to know exactly which tube identification (row and column) is associated with each tube's data. This is controlled by a precision manipulator that provides the tube ID to the eddy current system. Historically there have been some instances where the manipulator incorrectly reported the tube ID. This can have serious consequences including lack of inspection of a tube, or if a pluggable indication is detected, the tube is likely to be mis-plugged thereby risking a primary to secondary leak.

  2. The Flawed Characters in the Campaign: Prestige Newspaper Assessments of the 1992 Presidential Candidates' Integrity and Competence.

    Science.gov (United States)

    King, Erika G.

    1995-01-01

    Examines coverage in three leading newspapers, finding that explicit assessments of the 1992 presidential candidates' character were present in seven percent of all news articles and one-third of op-ed items, with the vast majority unfavorable. Shows that Bill Clinton was consistently assessed as a "slippery obfuscator," George Bush as…

  3. [Laryngeal tube II : alternative airway for children?].

    Science.gov (United States)

    Schalk, R; Scheller, B; Peter, N; Rosskopf, W; Byhahn, C; Zacharowski, K; Meininger, D

    2011-06-01

    Difficult airway situations both expected and unexpected, present major challenges to every anesthesiologist, especially in pediatric anesthesia. However, the integration of extraglottic airway devices, such as the laryngeal mask, into the algorithm of difficult airways has improved the handling of difficult airway situations. A device for establishing a supraglottic airway, the laryngeal tube (LT), was introduced in 1999. The LT is an extraglottic airway designed to secure a patent airway during either spontaneous breathing or controlled ventilation. The design of the device has been revised several times and a further development is the LTS II/LTS-D, which provides an additional channel for the insertion of a gastric drain tube. This article reports on the successful use of the LTS II in 12 children aged from 2 days to 6 years when endotracheal intubation, alternative mask or laryngeal mask ventilation failed. Use of the LTS II was associated with a high level of success, securing the airway when other techniques had failed. The potential advantage of the LTS II over the standard LT is an additional suction port, which allows gastric tube placement and can be used as an indirect indicator of correct placement. With a modified insertion technique using an Esmarch manoeuvre, placement was simple and fast to perform. In emergency situations when direct laryngoscopy fails or is too time-consuming the LTS II tube is recommended as an alternative device to secure the airway. As with all extraglottic airway devices, familiarity and clinical experience with the respective device and the corresponding insertion technique are essential for safe and successful use, especially in emergency situations.

  4. mouseTube

    Science.gov (United States)

    Torquet, Nicolas; de Chaumont, Fabrice; Faure, Philippe; Bourgeron, Thomas; Ey, Elodie

    2016-01-01

    Ultrasonic vocalisation is a broadly used proxy to evaluate social communication in mouse models of neuropsychiatric disorders. The efficacy and robustness of testing these models suffer from limited knowledge of the structure and functions of these vocalisations as well as of the way to analyse the data. We created mouseTube , an open database with a web interface, to facilitate sharing and comparison of ultrasonic vocalisations data and metadata attached to a recording file. Metadata describe 1) the acquisition procedure, e.g ., hardware, software, sampling frequency, bit depth; 2) the biological protocol used to elicit ultrasonic vocalisations; 3) the characteristics of the individual emitting ultrasonic vocalisations ( e.g. , strain, sex, age). To promote open science and enable reproducibility, data are made freely available. The website provides searching functions to facilitate the retrieval of recording files of interest. It is designed to enable comparisons of ultrasonic vocalisation emission between strains, protocols or laboratories, as well as to test different analysis algorithms and to search for protocols established to elicit mouse ultrasonic vocalisations. Over the long term, users will be able to download and compare different analysis results for each data file. Such application will boost the knowledge on mouse ultrasonic communication and stimulate sharing and comparison of automatic analysis methods to refine phenotyping techniques in mouse models of neuropsychiatric disorders.

  5. X-ray tube

    International Nuclear Information System (INIS)

    Mayo, B.J.

    1980-01-01

    An x-ray tube in which the x-ray origin is scanned on a circle around the patient, comprises a ring-shaped anode, an electron beam travelling along a circular path being deflected onto the anode at the desired positions. The electron beam path may be in a plane parallel to the anode and perhaps at the same radius. It may be in the same plane as a transmission target/anode and at a greater radius. The anode should extend over at least 180 0 although it may extend to 360 0 . Electrostatic means may be provided to constrain the beam to the circular path and further electrostatic means deflect it to the anode of the beam and ensure it is focused at the point of incidence. Collimators provide a planar fan-shaped beam and the anode may be shaped to attenuate side lobes of the radiation. Electrode collects electrons not deflected. The focal regions may be adjacent or otherwise. Coils may provide periodic focusing to overcome space charge dispersion and dynamic adjustment of the focusing before deflection ensures focusing at target incidence. Focusing may be absent near the deflection region, and current in the coil section near the focal region should be zero. (author)

  6. Flux tubes at finite temperature

    Energy Technology Data Exchange (ETDEWEB)

    Cea, Paolo [INFN, Sezione di Bari,Via G. Amendola 173, I-70126 Bari (Italy); Dipartimento di Fisica dell’Università di Bari,Via G. Amendola 173, I-70126 Bari (Italy); Cosmai, Leonardo [INFN, Sezione di Bari,Via G. Amendola 173, I-70126 Bari (Italy); Cuteri, Francesca; Papa, Alessandro [Dipartimento di Fisica, Università della Calabria & INFN-Cosenza,Ponte Bucci, cubo 31C, I-87036 Rende (Cosenza) (Italy)

    2016-06-07

    The chromoelectric field generated by a static quark-antiquark pair, with its peculiar tube-like shape, can be nicely described, at zero temperature, within the dual superconductor scenario for the QCD confining vacuum. In this work we investigate, by lattice Monte Carlo simulations of the SU(3) pure gauge theory, the fate of chromoelectric flux tubes across the deconfinement transition. We find that, if the distance between the static sources is kept fixed at about 0.76 fm ≃1.6/√σ and the temperature is increased towards and above the deconfinement temperature T{sub c}, the amplitude of the field inside the flux tube gets smaller, while the shape of the flux tube does not vary appreciably across deconfinement. This scenario with flux-tube “evaporation” above T{sub c} has no correspondence in ordinary (type-II) superconductivity, where instead the transition to the phase with normal conductivity is characterized by a divergent fattening of flux tubes as the transition temperature is approached from below. We present also some evidence about the existence of flux-tube structures in the magnetic sector of the theory in the deconfined phase.

  7. Inspection of ferromagnetic support structures from within alloy 800 steam generator tubes using pulsed eddy current

    Science.gov (United States)

    Buck, Jeremy Andrew

    Nondestructive testing is a critical aspect of component lifetime management. Nuclear steam generator (SG) tubes are the thinnest barrier between irradiated primary heat transport system and the secondary heat transport system, whose components are not rated for large radiation fields. Conventional eddy current testing (ECT) and ultrasonic testing are currently employed for inspecting SG tubes, with the former doing most inspections due to speed and reliability based on an understanding of how flaws affect coil impedance parameters when conductors are subjected to harmonically induced currents. However, when multiple degradation modes are present simultaneously near ferromagnetic materials, such as tube fretting, support structure corrosion, and magnetite fouling, ECT reliability decreases. Pulsed eddy current (PEC), which induces transient eddy currents via square wave excitation, has been considered in this thesis to simultaneously examine SG tube and support structure conditions. An array probe consisting of a central driver, coaxial with the tube, and an array of 8 sensing coils, was used in this thesis to perform laboratory measurements. The probe was delivered from the inner diameter (ID) of the SG tube, where support hole diameter, tube frets, and 2D off-centering were varied. When considering two variables simultaneously, scores obtained from a modified principal components analysis (MPCA) were sufficient for parameter extraction. In the case of hole ID variation with two dimensional tube off-centering (three parameters), multiple linear regression (MLR) of the MPCA scores provided good estimates of parameters. However, once a fourth variable, outer diameter tube frets, was introduced, MLR proved insufficient. Artificial neural networks (ANNs) were investigated in order to perform pattern recognition on the MPCA scores to simultaneously extract the four measurement parameters from the data. All models throughout this thesis were created and validated using

  8. Study of creep collapse of tubes subject to external pressure at elevated temperature

    International Nuclear Information System (INIS)

    Takikawa, N.

    1982-01-01

    Intermediate heat exchanger (IHX) tubes of VHTR form the boundary between the primary and secondary coolants of the reactor. The tubes are subject to external pressures at a postulated secondary coolant depressurization accident, which might lead to creep collapse. Therefore, it is necessary to ensure the integrity against creep collapse by analysis. The objective of this work is to study a simplified analytical method for predicting collapse time of a curved tube subjected to an external pressure. The study is made based on the comparison of experimental collapse time of curved and straight tubes. Creep collapse tests were conducted under an elevated temperature and an external pressure. Test results showed that curved tubes had longer collapse time than straight tubes with the same cross sectional ovality. The simplified analytical method for a curved tube is proposed in this report, which is to compute collapse time of a straight tube with the same ovality. And in this method the computed time is considered as collapse time of the curved tube. The above test results show that this simplified method gives the conservative collapse time. And it is confirmed by additional IHX tube tests that the method is applicable to creep collapse analysis of IHX tubes

  9. PEG tubes: dealing with complications.

    Science.gov (United States)

    Malhi, Hardip; Thompson, Rosie

    A percutaneous endoscopic gastronomy tube can be used to deliver nutrition, hydration and medicines directly into the patient's stomach. Patients will require a tube if they are unable to swallow safely, putting them at risk of aspiration of food, drink and medicines into their lungs. It is vital that nurses are aware of the complications that may arise when caring for a patient with a PEG tube. It is equally important that nurses know how to deal with these complications or from where tc seek advice. This article provides a quick troubleshooting guide to help nurses deal with complications that can arise with PEG feeding.

  10. Rigid inflatable gastrostomy tube malposition

    Directory of Open Access Journals (Sweden)

    Timothy E. Murray, MB, MCh, MRCS, FFR

    2017-12-01

    Full Text Available Rigid inflatable gastrostomy (RIG tubes are widely used in contemporary clinical practice for a variety of indications. Insertion of RIG tubes is associated with a high technical success rate and low incidence of mortality. In this case report, a procedural pitfall associated with intraperitoneal-extragastric malposition is described. Rigorous assessment of abdominal radiographs, as well as awareness of the expected appearance of the RIG tube and gastropexy T-fasteners, allows the abdominal radiologist to detect early RIG position in the early postprocedural period. Abdominal radiography is a widely available and inexpensive technique. The high spatial resolution it provides makes it a valuable tool in determining hardware position.

  11. Expansion tube test time predictions

    Science.gov (United States)

    Gourlay, Christopher M.

    1988-01-01

    The interaction of an interface between two gases and strong expansion is investigated and the effect on flow in an expansion tube is examined. Two mechanisms for the unsteady Pitot-pressure fluctuations found in the test section of an expansion tube are proposed. The first mechanism depends on the Rayleigh-Taylor instability of the driver-test gas interface in the presence of a strong expansion. The second mechanism depends on the reflection of the strong expansion from the interface. Predictions compare favorably with experimental results. The theory is expected to be independent of the absolute values of the initial expansion tube filling pressures.

  12. Teen Videos on YouTube: Features and Digital Vulnerabilities

    Science.gov (United States)

    Montes-Vozmediano, Manuel; García-Jiménez, Antonio; Menor-Sendra, Juan

    2018-01-01

    As a mechanism for social participation and integration and for the purpose of building their identity, teens make and share videos on platforms such as YouTube of which they are also content consumers. The vulnerability conditions that occur and the risks to which adolescents are exposed, both as creators and consumers of videos, are the focus of…

  13. An Uncoventional Approach for a Straw Tube-Microstrip Detector

    OpenAIRE

    Basile, E.; Bellucci, F.; Benussi, L.; Bertani, M.; Bianco, S.; Caponero, M. A.; Colonna, D.; Di Falco, F.; Fabbri, F. L.; Felli, F.; Giardoni, M.; La Monaca, A.; Mensitieri, G.; Ortenzi, B.; Pallotta, M.

    2004-01-01

    We report on a novel concept of silicon microstrips and straw tubes detector, where integration is accomplished by a straw module with straws not subjected to mechanical tension in a Rohacell lattice and carbon fiber reinforced plastic shell. Results on mechanical and test beam performances are reported on as well.

  14. High precision optical fiber alignment using tube laser bending

    NARCIS (Netherlands)

    Folkersma, Ger; Römer, Gerardus Richardus, Bernardus, Engelina; Brouwer, Dannis Michel; Herder, Justus Laurens

    2016-01-01

    In this paper, we present a method to align optical fibers within 0.2 μm of the optimal position, using tube laser bending and in situ measuring of the coupling efficiency. For near-UV wavelengths, passive alignment of the fibers with respect to the waveguides on photonic integrated circuit chips

  15. Steam generator tube fitness-for-service guidelines

    International Nuclear Information System (INIS)

    Gorman, J.A.; Harris, J.E.; Lowenstein, D.B.

    1995-07-01

    The objectives of this project were to characterize defect mechanisms which could affect the integrity of steam generator tubes, to review and critique state-of-the-art Canadian and international steam generator tube fitness-for-service criteria and guidelines, and to obtain recommendations for criteria that could be used to assess fitness-for service guidelines for steam generator tubes containing defects in Canadian power plant service. Degradation mechanisms, that could affect CANDU steam generator tubes in Canada, have been characterized. The design standards and safety criteria that apply to steam generator tubing in nuclear power plant service in Canada and in Belgium, France, Japan, Spain, Sweden, and the USA have been reviewed and described. The fitness-for-service guidelines used for a variety of specific defect types in Canada and internationally have been evaluated and described in detail in order to highlight the considerations involved in developing such defect specific guidelines. Existing procedures for defect assessment and disposition have been identified, including inspection and examination practices. The approaches used in Canada and in Belgium, France, Japan, Spain, Sweden, and the USA for fitness-for-service guidelines were compared and contrasted for a variety of defect mechanisms. The strengths and weaknesses of the various approaches have been assessed. The report presents recommendations on approaches that may be adopted in the development of fitness-for-service guidelines for use in the dispositioning of steam generator tubing defects in Canada. (author). 175 refs., 2 tabs., 28 figs

  16. NEI You Tube Videos: Amblyopia

    Medline Plus

    Full Text Available ... and Aging Program African American Program Training and Jobs Fellowships NEI Summer Intern Program Diversity In Vision ... DIVRO) Student Training Programs To search for current job openings visit HHS USAJobs Home >> NEI YouTube Videos >> ...

  17. Tube-wave seismic imaging

    Science.gov (United States)

    Korneev, Valeri A [LaFayette, CA

    2009-05-05

    The detailed analysis of cross well seismic data for a gas reservoir in Texas revealed two newly detected seismic wave effects, recorded approximately 2000 feet above the reservoir. A tube-wave (150) is initiated in a source well (110) by a source (111), travels in the source well (110), is coupled to a geological feature (140), propagates (151) through the geological feature (140), is coupled back to a tube-wave (152) at a receiver well (120), and is and received by receiver(s) (121) in either the same (110) or a different receiving well (120). The tube-wave has been shown to be extremely sensitive to changes in reservoir characteristics. Tube-waves appear to couple most effectively to reservoirs where the well casing is perforated, allowing direct fluid contact from the interior of a well case to the reservoir.

  18. NEI You Tube Videos: Amblyopia

    Medline Plus

    Full Text Available ... and Aging Program African American Program Training and Jobs Fellowships NEI Summer Intern Program Diversity In Vision ... DIVRO) Student Training Programs To search for current job openings visit HHS USAJobs Home > NEI YouTube Videos > ...

  19. Lunar Core Drive Tubes Summary

    Data.gov (United States)

    National Aeronautics and Space Administration — Contains a brief summary and high resolution imagery from various lunar rock and core drive tubes collected from the Apollo and Luna missions to the moon.

  20. NEI You Tube Videos: Amblyopia

    Medline Plus

    Full Text Available ... questions Clinical Studies Publications Catalog Photos and Images Spanish Language Information Grants and Funding Extramural Research Division ... Low Vision Refractive Errors Retinopathy of Prematurity Science Spanish Videos Webinars NEI YouTube Videos: Amblyopia Embedded video ...

  1. Conditioning of NEC accelerator tubes

    International Nuclear Information System (INIS)

    Yntema, J.L.

    1979-01-01

    The conditioning process of NEC tubes was investigated by recording the fluctuations observed with a residual gas analyzer for a fixed mass and a simultaneous recording of the current fluctuations in background pressure

  2. NEI You Tube Videos: Amblyopia

    Medline Plus

    Full Text Available ... Disease Education Program Glaucoma Education Program Low Vision Education Program Hispanic/Latino ... To search for current job openings visit HHS USAJobs Home » NEI YouTube ...

  3. Automated Determination of Oxygen-Dependent Enzyme Kinetics in a Tube-in-Tube Flow Reactor

    DEFF Research Database (Denmark)

    Ringborg, Rolf Hoffmeyer; Pedersen, Asbjørn Toftgaard; Woodley, John

    2017-01-01

    and limited oxygen supply. Here, we present a novel method for the collection of such kinetic data using a pressurized tube-in-tube reactor, operated in the low-dispersed flow regime to generate time-series data, with minimal material consumption. Experimental development and validation of the instrument......Enzyme-mediated oxidation is of particular interest to synthetic organic chemists. However, the implementation of such systems demands knowledge of enzyme kinetics. Conventionally collecting kinetic data for biocatalytic oxidations is fraught with difficulties such as low oxygen solubility in water...... revealed not only the high degree of accuracy of the kinetic data obtained, but also the necessity of making measurements in this way to enable the accurate evaluation of high KMO enzyme systems. For the first time, this paves the way to integrate kinetic data into the protein engineering cycle....

  4. Eddy current tube testing unit

    International Nuclear Information System (INIS)

    Dufayet, J.P.; Duret, G.

    1975-01-01

    The unit described can check a wide variety of tubes in quick succession and its modular design gives it a high degree of versability. Suitably defined working conditions and specific fittings enable most of the faults encountered in the manufacture of a tube to be detected. By appropriate means of selection based on signal amplitude, phase and frequency analyses it is possible to adapt selection criteria to the seriousness of the different categories of defect [fr

  5. Electronics for proportional drift tubes

    International Nuclear Information System (INIS)

    Fremont, G.; Friend, B.; Mess, K.H.; Schmidt-Parzefall, W.; Tarle, J.C.; Verweij, H.; CERN-Hamburg-Amsterdam-Rome-Moscow Collaboration); Geske, K.; Riege, H.; Schuett, J.; CERN-Hamburg-Amsterdam-Rome-Moscow Collaboration); Semenov, Y.; CERN-Hamburg-Amsterdam-Rome-Moscow Collaboration)

    1980-01-01

    An electronic system for the read-out of a large number of proportional drift tubes (16,000) has been designed. This system measures deposited charge and drift-time of the charge of a particle traversing a proportional drift tube. A second event can be accepted during the read-out of the system. Up to 40 typical events can be collected and buffered before a data transfer to a computer is necessary. (orig.)

  6. The YouTube reader

    OpenAIRE

    Snickars, Pelle; Vonderau, Patrick

    2009-01-01

    YouTube has come to epitomize the possibilities of digital culture. With more than seventy million unique users a month and approximately eighty million videos online, this brand-name video distribution platform holds the richest repository of popular culture on the Internet. As the fastest growing site in the history of the Web, YouTube promises endless new opportunities for amateur video, political campaigning, entertainment formats, and viral marketing—a clip culture that has seemed to out...

  7. Consolidation of flaw-tolerant layered structures by the insertion of reactive layers

    Directory of Open Access Journals (Sweden)

    Baudín, C.

    2009-10-01

    Full Text Available The processing parameters to obtain a laminate consisting of very thin alumina-aluminium titanate crack deflecting layered structures sandwiched between relatively thick load bearing alumina layers are described. The optimum processing conditions for the insertion of reactive layers to improve joining during sintering have been established. Pre-sintered alumina tapes were used as the load bearing components while the internal structures were shaped by a combination of electrophoretic deposition (EPD and dipping. The dipped layers acted as reactive layers during sintering. The thickness of the dipped layers has to be controlled in order to avoid the disappearance of the EPD structure during sintering as well as the cracking of the coating during drying or handling. The specimens were mechanically tested in three points bending with the applied load perpendicular to the layers and the fracture surfaces were observed by scanning electron microscopy. The obtained structure presents crack deflection at the microstructural scale during fracture which confers it flaw tolerance.

    Se describen los parámetros de procesamiento mas adecuados para obtener laminados constituidos por capas finas de alúmina-titanato de aluminio deflectoras de grietas alternadas con capas gruesas de alúmina resistentes a las cargas. Estas últimas se han fabricado a partir de láminas obtenidas por colaje en cinta y presintetizadas. Las estructuras con capacidad para la deflexión de las grietas se conformaron mediante una combinación de deposición electroforética e inmersión. Se han establecido las condiciones óptimas para que las capas obtenidas por inmersión actúen como capas reactivas durante la sinterización, sin que desaparezca la estructura EPD durante la sinterización ni se produzca el agrietamiento durante el secado y la manipulación de la estructura. El comportamiento mecánico de las estructuras laminadas obtenidas se analizó mediante

  8. Current and historical perspectives on methodological flaws in processing umbilical cord blood.

    Science.gov (United States)

    Mehrishi, J N

    2013-11-01

    Umbilical cord blood (UCB) hematopoietic stem cells (HSC-CD34+) are valuable for treating malignant or nonmalignant disease. Processing UCB by HESPAN-6% and anti-CD34-Miltenyi particles provides insufficient cells for treating adults. Physicochemical-electrokinetic studies on UCB-mononuclear cells (MNCs) under conditions of delayed processing, ice or very low temperatures, and some cell separation media identified artifacts introduced by procedures. Adsorption of biomaterials from cell damage by temperature, degradation products after using enzymes, harsh reagents, dithiothreitol, and HESPAN affect cell properties and distribution. Miltenyi particles internalized by cells could release iron that accumulating in liver or spleen would then risk toxicity. Summary topics included the effects of temperature, HESPAN (fast sedimenting agent), glycoproteases, DNase, and dithiothreitol risk affecting cell receptors in recognition, "homing," leading to possible unintended iatrogenic bioeffects should such cells be transfused into humans. The loss of undetectable and uncaptured low CD34 antigen-bearing cells by Miltenyi particles seems to occur when the current methods of isolation of CD34+ cells and other cells are critically assessed. The purpose here is to highlight and suggest avoiding the procedural flaws involved. Preventing ice temperatures avoids ice-damaged platelets releasing biomaterials that are adsorbed on cells altering UBC-MNCs/HSC properties and cell loss. Omitting the positive selection with antibody-linked Miltenyi particles obviates the use of harsh reagents to release the cells. Internalized Miltenyi particles are a toxicity hazard that needs investigations. Achieving approximately 5% yields of CD34+ cells (153 × 10(5) /110 mL cord-placenta blood) is a major advance holding great promise, for the first time increasing the prospect of stem cell therapy of 70-kg adults, using a single UCB donation (with dose of 1.5 × 10(5) cells/kg) and

  9. YouTube: An emerging tool in anatomy education.

    Science.gov (United States)

    Jaffar, Akram Abood

    2012-01-01

    The use of online social networks in medical education can remodel and enhance anatomy teaching and learning; one such network is the video-sharing site YouTube. Limited research in the literature exists on the use of YouTube as a platform for anatomy education. The aim of this study is to assess student's perceptions and patterns of usage of this resource, as well as the effectiveness of YouTube videos within a problem-based learning (PBL) curriculum. The study was conducted on 91 second-year medical students for whom video links were suggested throughout the academic year. In addition, the Human Anatomy Education (HAE) Channel was launched on YouTube to support classroom teaching with videos that emphasized applied aspects of anatomy. The results demonstrated that 98% of the students used YouTube as an online information resource, albeit in different frequencies. Out of the 86% who have been to the HAE Channel, 92% agreed/strongly agreed that the channel helped them learn anatomy. The study also reports the popularity of and awareness about using YouTube as a social network as well as in learning. Based on these findings, YouTube can be considered as an effective tool to enhance anatomy instruction if the videos are scrutinized, diversified, and aimed toward course objectives. Faculty of average computer literacy should be enabled to produce videos on their own YouTube channels to support independent learning and integration in a PBL curriculum. The methods described for capturing and editing the videos can be used as a prototype. Copyright © 2012 American Association of Anatomists.

  10. Theoretical-experimental assessment of the variables affecting fretting of Atucha I nuclear power plant utility steam generators tubes

    International Nuclear Information System (INIS)

    Kulichevsky, Raul M.

    1995-01-01

    Fretting wear of Steam Generator tubes caused by flow induced vibrations generates uncertainty on their integrity. The knowledge of the controlling variables of the wear process may give a criterion to evaluate the tubes residual life. Information on vibratory response and dynamic interaction between tubes and their supports are prerequisites for understanding the relationship between fretting wear and tube vibration. Experimental results of the vibratory response of an Atucha-I nuclear power plant type U-tube, the influence of tube/support clearance on this response and a study of tube/support dynamic interaction, which allow the verification of a finite element model of this type of tubes, are presented in this work. Also wear results for the Incoloy 800/DIN 1.4550 austenitic stainless steel pair of materials and a first evaluation of the wear constant of this pair are presented. (author)

  11. Dermatology on YouTube.

    Science.gov (United States)

    Boyers, Lindsay N; Quest, Tyler; Karimkhani, Chante; Connett, Jessica; Dellavalle, Robert P

    2014-06-15

    YouTube, reaches upwards of six billion users on a monthly basis and is a unique source of information distribution and communication. Although the influence of YouTube on personal health decision-making is well established, this study assessed the type of content and viewership on a broad scope of dermatology related content on YouTube. Select terms (i.e. dermatology, sun protection, skin cancer, skin cancer awareness, and skin conditions) were searched on YouTube. Overall, the results included 100 videos with over 47 million viewers. Advocacy was the most prevalent content type at 24% of the total search results. These 100 videos were "shared" a total of 101,173 times and have driven 6,325 subscriptions to distinct YouTube user pages. Of the total videos, 35% were uploaded by or featured an MD/DO/PhD in dermatology or other specialty/field, 2% FNP/PA, 1% RN, and 62% other. As one of the most trafficked global sites on the Internet, YouTube is a valuable resource for dermatologists, physicians in other specialties, and the general public to share their dermatology-related content and gain subscribers. However, challenges of accessing and determining evidence-based data remain an issue.

  12. Flux tubes in U(1) - Do they attract or repel each other?

    International Nuclear Information System (INIS)

    Zach, M.; Faber, M.; Skala, P.

    1998-01-01

    The dually transformed path integral of four-dimensional U(1) lattice gauge theory is used for a numerical investigation of multiply charged systems and the interaction between flux tubes. For this aim, it is convenient to implement periodically closed flux tubes (torelons) in the dual formulation. We calculate the free energy as well as the total electro-magnetic energy of doubly charged flux tubes as a function of the coupling β. The main results are that the string tension scales proportionally to the charge (contrary to the Coulomb potential) and in the range 0.9<β<1.0 we find a clear signal for attraction between flux tubes. (orig.)

  13. Pressure distribution over tube surfaces of tube bundle subjected to two phase cross flow

    International Nuclear Information System (INIS)

    Sim, Woo Gun

    2013-01-01

    Two phase vapor liquid flows exist in many shell and tube heat exchangers such as condensers, evaporators and nuclear steam generators. To understand the fluid dynamic forces acting on a structure subjected to a two phase flow, it is essential to obtain detailed information about the characteristics of a two phase flow. The characteristics of a two phase flow and the flow parameters were introduced, and then, an experiment was performed to evaluate the pressure loss in the tube bundles and the fluid dynamic force acting on the cylinder owing to the pressure distribution. A two phase flow was pre mixed at the entrance of the test section, and the experiments were undertaken using a normal triangular array of cylinders subjected to a two phase cross flow. The pressure loss along the flow direction in the tube bundles was measured to calculate the two phase friction multiplier, and the multiplier was compared with the analytical value. Furthermore, the circular distributions of the pressure on the cylinders were measured. Based on the distribution and the fundamental theory of two phase flow, the effects of the void fraction and mass flux per unit area on the pressure coefficient and the drag coefficient were evaluated. The drag coefficient was calculated by integrating the measured pressure coefficient and the drag coefficient were evaluated. The drag coefficient was calculated by integrating the measured pressure on the tube by a numerical method. It was found that for low mass fluxes, the measured two phase friction multipliers agree well with the analytical results, and good agreement for the effect of the void fraction on the drag coefficients, as calculated by the measured pressure distributions, is shown qualitatively, as compared to the existing experimental results

  14. Preliminary fracture analysis of the core pressure boundary tube for the Advanced Neutron Source Research Reactor

    International Nuclear Information System (INIS)

    Schulz, K.C.

    1995-08-01

    The outer core pressure boundary tube (CPBT) of the Advanced neutron Source (ANS) reactor being designed at Oak Ridge National Laboratory is currently specified as being composed of 6061-T6 aluminum. ASME Boiler and Pressure Vessel Code fracture analysis rules for nuclear components are based on the use of ferritic steels; the expressions, tables, charts and equations were all developed from tests and analyses conducted for ferritic steels. Because of the nature of the Code, design with thin aluminum requires analytical approaches that do not directly follow the Code. The intent of this report is to present a methodology comparable to the ASME Code for ensuring the prevention of nonductile fracture of the CPBT in the ANS reactor. 6061-T6 aluminum is known to be a relatively brittle material; the linear elastic fracture mechanics (LEFM) approach is utilized to determine allowable flaw sizes for the CPBT. A J-analysis following the procedure developed by the Electric Power Research Institute was conducted as a check; the results matched those for the LEFM analysis for the cases analyzed. Since 6061-T6 is known to embrittle when irradiated, the reduction in K Q due to irradiation is considered in the analysis. In anticipation of probable requirements regarding maximum allowable flaw size, a survey of nondestructive inspection capabilities is also presented. A discussion of probabilistic fracture mechanics approaches, principally Monte Carlo techniques, is included in this report as an introduction to what quantifying the probability of nonductile failure of the CPBT may entail

  15. Tube Map Interface for a Coupled Scheduling and Diagnostics System Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose the concept of a tube map display as a means to effectively integrate schedule timeline information and fault diagnosis data into a single high value...

  16. French RSE-M and RCC-MR code appendices for flaw analysis: Presentation of the fracture parameters calculation-Part I: General overview

    Energy Technology Data Exchange (ETDEWEB)

    Marie, S. [CEA Saclay, DEN/DM2S/SEMT/LISN, 91191 Gif sur Yvette Cedex (France)], E-mail: stephane.marie@cea.fr; Chapuliot, S.; Kayser, Y. [CEA Saclay, DEN/DM2S/SEMT/LISN, 91191 Gif sur Yvette Cedex (France); Lacire, M.H. [CEA Saclay, DEN/DDIN, 91191 Gif sur Yvette Cedex (France); Drubay, B. [CEA Saclay, DEN/DM2S/SEMT/LISN, 91191 Gif sur Yvette Cedex (France); Barthelet, B. [EDF/EPN, Site Cap Ampere, 1 place Pleyel 93207, Saint Denis Cedex 1 (France); Le Delliou, P. [EDF Pole Industrie-Division R and D, Site des Renardieres, Route de Sens, Ecuelles, 77250 Moret sur Loing Cedex (France); Rougier, V. [EDF/UTO SIS/GAM, 6, avenue Montaigne, 93192 Noisy le Grand (France); Naudin, C. [EDF/SEPTEN, 12-14, avenue Dutrievoz, 69628 Villeurbanne Cedex (France); Gilles, P.; Triay, M. [AREVA ANP, Tour AREVA, 92084 Paris La Defense Cedex 16 (France)

    2007-10-15

    Two French nuclear codes include flaw assessment procedures: the RSE-M code 'Rules for In-service Inspection of Nuclear Power Plant Components' and the RCC-MR code 'Design and Construction rules for mechanical components of FBR nuclear islands and high temperature applications'. An important effort of development of these analytical methods has been made for the last 10 years in the frame of a collaboration between CEA, EDF and AREVA-NP, and in the frame of R and D actions involving CEA and IRSN. These activities have led to a unification of the common methods of the two codes. The calculation of fracture mechanics parameters, and in particular the stress intensity factor K{sub I} and the J integral, has been widely developed for industrial configurations. All developments have been integrated in the 2005 edition of RSE-M and in the 2007 edition of RCC-MR. This series of articles is composed of five parts: this first one presents an overview of the methods proposed in the RCC-MR and RSE-M codes. Parts II-IV provide compendia for specific components: plates (part II), pipes (part III) and elbows (part IV). Finally, part V presents the validation elements of the methods, with details on the process followed for their development and on evaluation of the accuracy of the proposed analytical methods. This first article of the series presents an overview of the calculation of K{sub I} and J in these two codes and describes briefly the defect assessment analyses. Specific details in the Appendix A16 of RCC-MR (LBB procedure and creep analyses) are also introduced in this article.

  17. French RSE-M and RCC-MR code appendices for flaw analysis: Presentation of the fracture parameters calculation-Part II: Cracked plates

    Energy Technology Data Exchange (ETDEWEB)

    Marie, S. [CEA Saclay, DEN/DM2S/SEMT/LISN, 91191 Gif sur Yvette Cedex (France)], E-mail: stephane.marie@cea.fr; Chapuliot, S.; Kayser, Y. [CEA Saclay, DEN/DM2S/SEMT/LISN, 91191 Gif sur Yvette Cedex (France); Lacire, M.H. [CEA Saclay, DEN/DDIN, 91191 Gif sur Yvette Cedex (France); Drubay, B. [CEA Saclay, DEN/DM2S/SEMT/LISN, 91191 Gif sur Yvette Cedex (France); Barthelet, B. [EDF/EPN, Site Cap Ampere, 1 place Pleyel 93207, Saint Denis Cedex 1 (France); Le Delliou, P. [EDF Pole Industrie-Division R and D, Site des Renardieres, Route de Sens, Ecuelles, 77250 Moret sur Loing Cedex (France); Rougier, V. [EDF/UTO SIS/GAM, 6, avenue Montaigne, 93192 Noisy le Grand (France); Naudin, C. [EDF/SEPTEN, 12-14, avenue Dutrievoz, 69628 Villeurbanne Cedex (France); Gilles, P.; Triay, M. [AREVA ANP, Tour AREVA, 92084 Paris La Defense Cedex 16 (France)

    2007-10-15

    French nuclear codes include flaw assessment procedures: the RSE-M Code 'Rules for In-service Inspection of Nuclear Power Plant Components' and the RCC-MR code 'Design and Construction rules for mechanical components of FBR nuclear islands and high temperature applications'. An important effort of development of these analytical methods has been made for the last 10 years in the frame of a collaboration between CEA, EDF and AREVA-NP, and in the frame of R and D actions involving CEA and IRSN. These activities have led to a unification of the common methods of the two codes. The calculation of fracture mechanics parameters, and in particular the stress intensity factor K{sub I} and the J integral, has been widely developed for industrial configurations. All the developments have been integrated in the 2005 edition of RSE-M and in the 2007 edition of RCC-MR. This series of articles is composed of 5 parts: the first part presents an overview of the methods proposed in the RCC-MR and RSE-M codes. Parts II-IV provide compendia for specific components. The geometries are plates (part II), pipes (part III) and elbows (part IV). Finally, part V presents the validation elements of the methods, with details on the process followed for the development and evaluation of the accuracy of the proposed analytical methods. This second article in the series presents all details for the stress intensity factor and J calculations for cracked plates. General data applicable for all defect geometries are first presented, and then, available defect geometries where compendia for K{sub I} and {sigma}{sub ref} calculation are provided are given.

  18. French RSE-M and RCC-MR code appendices for flaw analysis: Presentation of the fracture parameters calculation-Part III: Cracked pipes

    Energy Technology Data Exchange (ETDEWEB)

    Marie, S. [CEA Saclay, DEN/DM2S/SEMT/LISN, 91191 Gif sur Yvette Cedex (France)], E-mail: stephane.marie@cea.fr; Chapuliot, S.; Kayser, Y. [CEA Saclay, DEN/DM2S/SEMT/LISN, 91191 Gif sur Yvette Cedex (France); Lacire, M.H. [CEA Saclay, DEN/DDIN, 91191 Gif sur Yvette Cedex (France); Drubay, B. [CEA Saclay, DEN/DM2S/SEMT/LISN, 91191 Gif sur Yvette Cedex (France); Barthelet, B. [EDF/EPN, Site Cap Ampere, 1 place Pleyel 93207, Saint Denis Cedex 1 (France); Le Delliou, P. [EDF Pole Industrie-Division R and D, Site des Renardieres, Route de Sens, Ecuelles, 77250 Moret sur Loing Cedex (France); Rougier, V. [EDF/UTO SIS/GAM, 6, avenue Montaigne, 93192 Noisy le Grand (France); Naudin, C. [EDF/SEPTEN, 12-14, Avenue Dutrievoz, 69628 Villeurbanne Cedex (France); Gilles, P.; Triay, M. [AREVA ANP, Tour AREVA, 92084 Paris La Defense Cedex 16 (France)

    2007-10-15

    French nuclear codes include flaw assessment procedures: the RSE-M Code 'Rules for In-service Inspection of Nuclear Power Plant Components' and the RCC-MR code 'Design and Construction rules for mechanical components of FBR nuclear islands and high-temperature applications'. An important effort of development of these analytical methods has been made for the last 10 years in the frame of collaboration between CEA, EDF and AREVA-NP, and in the frame of R and D actions involving CEA and IRSN. These activities have led to a unification of the common methods of the two codes. The calculation of fracture mechanics parameters, and in particular the stress-intensity factor K{sub I} and the J integral, has been widely developed for industrial configurations. All the developments have been integrated in the 2005 edition of the RSE-M and in the 2007 edition of the RCC-MR. This series of articles is composed of 5 parts: the first part presents an overview of the methods proposed in the RCC-MR and RSE-M codes. Parts II-IV provide compendia for specific components. The geometries are plates (part II), pipes (part III) and elbows (part IV). Part V presents validation, with details on the accuracy of the proposed analytical method. This third part in the series presents details of the stress intensity factor and J calculations for cracked pipes. General data applicable for all defect geometries are first presented, and then, compendia for K{sub I} and {sigma}{sub ref} calculations are provided for specific cases.

  19. French RSE-M and RCC-MR code appendices for flaw analysis: Presentation of the fracture parameters calculation-Part II: Cracked plates

    International Nuclear Information System (INIS)

    Marie, S.; Chapuliot, S.; Kayser, Y.; Lacire, M.H.; Drubay, B.; Barthelet, B.; Le Delliou, P.; Rougier, V.; Naudin, C.; Gilles, P.; Triay, M.

    2007-01-01

    French nuclear codes include flaw assessment procedures: the RSE-M Code 'Rules for In-service Inspection of Nuclear Power Plant Components' and the RCC-MR code 'Design and Construction rules for mechanical components of FBR nuclear islands and high temperature applications'. An important effort of development of these analytical methods has been made for the last 10 years in the frame of a collaboration between CEA, EDF and AREVA-NP, and in the frame of R and D actions involving CEA and IRSN. These activities have led to a unification of the common methods of the two codes. The calculation of fracture mechanics parameters, and in particular the stress intensity factor K I and the J integral, has been widely developed for industrial configurations. All the developments have been integrated in the 2005 edition of RSE-M and in the 2007 edition of RCC-MR. This series of articles is composed of 5 parts: the first part presents an overview of the methods proposed in the RCC-MR and RSE-M codes. Parts II-IV provide compendia for specific components. The geometries are plates (part II), pipes (part III) and elbows (part IV). Finally, part V presents the validation elements of the methods, with details on the process followed for the development and evaluation of the accuracy of the proposed analytical methods. This second article in the series presents all details for the stress intensity factor and J calculations for cracked plates. General data applicable for all defect geometries are first presented, and then, available defect geometries where compendia for K I and σ ref calculation are provided are given

  20. French RSE-M and RCC-MR code appendices for flaw analysis: Presentation of the fracture parameters calculation-Part I: General overview

    International Nuclear Information System (INIS)

    Marie, S.; Chapuliot, S.; Kayser, Y.; Lacire, M.H.; Drubay, B.; Barthelet, B.; Le Delliou, P.; Rougier, V.; Naudin, C.; Gilles, P.; Triay, M.

    2007-01-01

    Two French nuclear codes include flaw assessment procedures: the RSE-M code 'Rules for In-service Inspection of Nuclear Power Plant Components' and the RCC-MR code 'Design and Construction rules for mechanical components of FBR nuclear islands and high temperature applications'. An important effort of development of these analytical methods has been made for the last 10 years in the frame of a collaboration between CEA, EDF and AREVA-NP, and in the frame of R and D actions involving CEA and IRSN. These activities have led to a unification of the common methods of the two codes. The calculation of fracture mechanics parameters, and in particular the stress intensity factor K I and the J integral, has been widely developed for industrial configurations. All developments have been integrated in the 2005 edition of RSE-M and in the 2007 edition of RCC-MR. This series of articles is composed of five parts: this first one presents an overview of the methods proposed in the RCC-MR and RSE-M codes. Parts II-IV provide compendia for specific components: plates (part II), pipes (part III) and elbows (part IV). Finally, part V presents the validation elements of the methods, with details on the process followed for their development and on evaluation of the accuracy of the proposed analytical methods. This first article of the series presents an overview of the calculation of K I and J in these two codes and describes briefly the defect assessment analyses. Specific details in the Appendix A16 of RCC-MR (LBB procedure and creep analyses) are also introduced in this article

  1. Multi-anode wire straw tube tracker

    International Nuclear Information System (INIS)

    Oh, S.H.; Ebenstein, W.L.; Wang, C.W.

    2011-01-01

    We report on a test of a straw tube detector design having several anode (sense) wires inside a straw tube. The anode wires form a circle inside the tube and are read out independently. This design could solve several shortcomings of the traditional single wire straw tube design such as double hit capability and stereo configuration.

  2. 21 CFR 872.6570 - Impression tube.

    Science.gov (United States)

    2010-04-01

    ... DEVICES DENTAL DEVICES Miscellaneous Devices § 872.6570 Impression tube. (a) Identification. An impression tube is a device consisting of a hollow copper tube intended to take an impression of a single tooth... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Impression tube. 872.6570 Section 872.6570 Food...

  3. 27 CFR 41.35 - Cigarette tubes.

    Science.gov (United States)

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 2 2010-04-01 2010-04-01 false Cigarette tubes. 41.35... OF THE TREASURY (CONTINUED) TOBACCO IMPORTATION OF TOBACCO PRODUCTS, CIGARETTE PAPERS AND TUBES, AND PROCESSED TOBACCO Taxes Tax Rates § 41.35 Cigarette tubes. Cigarette tubes are taxed at the following rates...

  4. Tubing vs. buckets: a cost comparison

    Science.gov (United States)

    Neil K. Huyler

    1975-01-01

    Equipment investment for tubing-vacuum systems was significantly less than that for bucket systems. Tubing-vacuum systems required about 22 percent less labor input, the major labor input being completed before sap-flow periods. Annual cost of operation was less for tubing-vacuum than the bucket system. Small tubing-vacuum operations showed more profit potential than...

  5. Review of damages of nuclear power plants steam generator's tubes and way of detecting by using eddy current method

    International Nuclear Information System (INIS)

    Stanic, D.

    1996-01-01

    Steam generator tubing integrity is very important factor for reliable and safe operation of NPP. Several different types of tube degradation mechanisms were experienced in SG operation. To avoid possible tube rupture and primary-to-secondary leak, the EC examination of tubing should be performed. Different eddy current techniques may be used for detecting defects and theirs characterization. A comparison of data analysis results with pulled tube destructive metallography results can provide valuable insights in determining the capability of existing technology and provide guidance for procedure or technology improvements. (author)

  6. A general approach to flaw simulation in castings by superimposing projections of 3D models onto real X-ray images

    International Nuclear Information System (INIS)

    Hahn, D.; Mery, D.

    2003-01-01

    In order to evaluate the sensitivity of defect inspection systems, it is convenient to examine simulated data. This gives the possibility to tune the parameters of the inspection method and to test the performance of the system in critical cases. In this paper, a practical method for the simulation of defects in radioscopic images of aluminium castings is presented. The approach simulates only the flaws and not the whole radioscopic image of the object under test. A 3D mesh is used to model a flaw with complex geometry, which is projected and superimposed onto real radioscopic images of a homogeneous object according to the exponential attenuation law for X- rays. The new grey value of a pixel, where the 3D flaw is projected, depends only on four parameters: (a) the grey value of the original X-ray image without flaw; (b) the linear absorption coefficient of the examined material; (c) the maximal thickness observable in the radioscopic image; and (d) the length of the intersection of the 3D flaw with the modelled X-ray beam, that is projected into the pixel. A simulation of a complex flaw modelled as a 3D mesh can be performed in any position of the castings by using the algorithm described in this paper. This allows the evaluation of the performance of defect inspection systems in cases where the detection is known to be difficult. In this paper, we show experimental results on real X-ray images of aluminium wheels, in which 3D flaws like blowholes, cracks and inclusions are simulated

  7. Ultrasonic wall thickness gauging for ferritic steam generator tubing as an in-service inspection tool

    International Nuclear Information System (INIS)

    Haesen, W.M.J.; Tromp, Th.J.

    1980-01-01

    In-service inspection of LWR steam generators is more or less a standard routine operation. The situation can be very different for LMFBRs. For the SNR 300 (Kalkar Power Station) the situation is different because the steam generators have ferritic tubing. The tube walls are comparatively thick, 2 to 4.5 mm. During inservice examinations the steam generators will be drained on both sides, however on the sodium side a sodium film will be present. Furthermore the SNR 300 will have two types of steam generator. A straight tube design and a helical coil design will be used. Both types consist of a evaporator and superheater. The steam generators are of course not radioactive. It is obvious that in this case the eddy current (EC) technique is not an enviable inservice inspection tool. Basically EC is a surface flaw detection technique. Only the saturation magnetisation method will improve the EC technique sufficiently for ferritic material. However the 'in bore examination' with the saturation technique was, in case of the SNR 300 steam generator tubing, considered impossible since the inner diameters are fairly small. Furthermore sodium traces may influence the EC method. Although multifrequency methods can solve this problem, EC is not considered as a useful tool for examining ferritic tubing. Another method is to employ the 'stray flux' method which is under development with the TNO organization in Holland. The EC and stray flux method do have one drawback, these methods do not detect gradual changes in wall thickness. Ultrasonic examinations will be used in the SNR 300 as the main inspection tool for the steam generators. In this paper the reasons why ultrasonic examination was selected are explained. The results of the development work on this subject are discussed

  8. Analysis of forming limit in tube hydroforming

    International Nuclear Information System (INIS)

    Kim, Chan Il; Yang, Seung Hang; Kim, Young Suk

    2013-01-01

    The automotive industry has shown increasing interest in tube hydroforming. Despite many automobile structural parts being produced from cylindrical tubes, failures frequently occur during tube hydroforming under improper forming conditions. These problems include wrinkling, buckling, folding back, and bursting. We perform analytical studies to determine forming limits in tube hydroforming and demonstrate how these forming limits are influenced by the loading path. Theoretical results for the forming limits of wrinkling and bursting are compared with experimental results for an aluminum tube.

  9. Physics of magnetic flux tubes

    CERN Document Server

    Ryutova, Margarita

    2015-01-01

    This book is the first account of the physics of magnetic flux tubes from their fundamental properties to collective phenomena in an ensembles of flux tubes. The physics of magnetic flux tubes is absolutely vital for understanding fundamental physical processes in the solar atmosphere shaped and governed by magnetic fields. High-resolution and high cadence observations from recent space and  ground-based instruments taken simultaneously at different heights and temperatures not only show the ubiquity of filamentary structure formation but also allow to study how various events are interconnected by system of magnetic flux tubes. The book covers both theory and observations. Theoretical models presented in analytical and phenomenological forms are tailored for practical applications. These are welded with state-of-the-art observations from early decisive ones to the most recent data that open a new phase-space for exploring the Sun and sun-like stars. Concept of magnetic flux tubes is central to various magn...

  10. Performance characterization of the TRW 35K pulse tube cooler

    International Nuclear Information System (INIS)

    Collins, S.A.; Johnson, D.L.; Smedley, G.T.; Ross, R.G. Jr.

    1996-01-01

    The TRW 35K pulse tube cooler is configured as an integral cooler, with the pulse tube attached perpendicular to a pair of compressors operating into a common compression chamber. The cooler was optimized for 35K operation and has a nominal cooling capacity of 850 mW at 35 K with a cooler input power of 200 W. It also provides 2 W of cooling at 60 K for 90 W of input power. The cooler was extensively characterized by JPL, measuring the thermal performance and the cooler-generated vibration and EMI as a function of piston stroke and offset position. The thermal performance was found to be quite sensitive to the piston offset position. The pulse tube parasitic conduction levels were also measured and shown to have a strong angular dependence relative to gravity. Magnetic shielding studies were performed to examine radiated magnetic emission levels from compressors with and without shielding

  11. On hydraulics of capillary tubes

    Directory of Open Access Journals (Sweden)

    N.G. Aloyan

    2016-03-01

    Full Text Available The article considers the laws of motion of water in the capillary tubes, taken as a model for flowing well, on the analogical net count device. For capillary tube the lower limit value of flow rate is empirically determined above which the total hydraulic resistance of the capillary is practically constant. The specificity of the phenomenon is that the regime of motion, by a Reynolds number, for a given flow rate still remains laminar. This circumstance can perplex the specialists, so the author invites them to the scientific debate on the subject of study. Obviously, to identify the resulting puzzle it is necessary to conduct a series of experiments using capillaries of different lengths and diameters and with different values of overpressure. The article states that in tubes with very small diameter the preliminary magnitude of capillary rise of water in the presence of flow plays no role and can be neglected.

  12. Patient identification and tube labelling

    DEFF Research Database (Denmark)

    van Dongen-Lases, Edmée C; Cornes, Michael P; Grankvist, Kjell

    2016-01-01

    of phlebotomy procedures with the CLSI H3-A6 guideline was unacceptably low, and that patient identification and tube labelling are amongst the most critical steps in need of immediate attention and improvement. The process of patient identification and tube labelling is an essential safety barrier to prevent......Venous blood sampling (phlebotomy) is the most common invasive procedure performed in patient care. Guidelines on the correct practice of phlebotomy are available, including the H3-A6 guideline issued by the Clinical Laboratory Standards Institute (CLSI). As the quality of practices and procedures...... patient identity mix-up. Therefore, the EFLM Working Group aims to encourage and support worldwide harmonisation of patient identification and tube labelling procedures in order to reduce the risk of preanalytical errors and improve patient safety. With this Position paper we wish to raise awareness...

  13. Drift tubes of Linac 2

    CERN Multimedia

    CERN PhotoLab

    1977-01-01

    With the advent of the 800 MeV PS Booster in 1972, the original injector of the PS, a 50 MeV Alvarez-type proton linac, had reached its limits, in terms of intensity and stability. In 1973 one therefore decided to build a new linac (Linac 2), also with a drift-tube Alvarez structure and an energy of 50 MeV. It had a new Cockcroft-Walton preinjector with 750 keV, instead of the previous one with 500 keV. Linac 2 was put into service in 1980. The old Linac 1 was then used for the study of, and later operation with, various types of ions. This picture shows Linac 2 drift-tubes, suspended on stems coming from the top, in contrast to Linac 1, where the drift-tubes stood on stems coming from the bottom.

  14. A study on the effect of flaw detection probability assumptions on risk reduction achieved by non-destructive inspection

    International Nuclear Information System (INIS)

    Cronvall, O.; Simola, K.; Männistö, I.; Gunnars, J.; Alverlind, L.; Dillström, P.; Gandossi, L.

    2012-01-01

    Leakages and ruptures of piping components lead to reduction or loss of the pressure retaining capability of the system, and thus contribute to the overall risk associated with nuclear power plants. In-service inspection (ISI) aims at verifying that defects are not present in components of the pressure boundary or, if defects are present, ensuring that these are detected before they affect the safe operation of the plant. Reliability estimates of piping are needed e.g., in probabilistic safety assessment (PSA) studies, risk-informed ISI (RI-ISI) applications, and other structural reliability assessments. Probabilistic fracture mechanics models can account for ISI reliability, but a quantitative estimate for the latter is needed. This is normally expressed in terms of probability of detection (POD) curves, which correlate the probability of detecting a flaw with flaw size. A detailed POD curve is often difficult (or practically impossible) to obtain. If sufficient risk reduction can be shown by using simplified (but reasonably conservative) POD estimates, more complex PODs are not needed. This paper summarises the results of a study on the effect of piping inspection reliability assumptions on failure probability using structural reliability models. The main interest was to investigate whether it is justifiable to use a simplified POD curve. Further, the study compared various structural reliability calculation approaches for a set of analysis cases. The results indicate that the use of a simplified POD could be justifiable in RI-ISI applications.

  15. Design and Fabrication of Carbon Nano tube for Medical Application

    International Nuclear Information System (INIS)

    Azniza Abas; Nuzaihan, M.N.; Hafiza, N.; Nazwa, T.

    2011-01-01

    Carbon nano tubes or known as CNTs are allotropes of carbon with a cylindrical nano structure. They exhibit extraordinary strength and unique electrical properties, and are efficient thermal conductors [1]. Due to its ordinary properties this research will based on BIOSENSOR device. Normally these CNTs biosensor are based on an enzyme catalyzed reaction that will produce either electrons or protons. In particular, it is useful in genetic profiling of human diseases, which includes in identifying genes that are expressed in certain diseases such as cancer [2]. This research will based on design and fabricate sensor or device using carbon nano tube and integrate carbon nano tube (CNTs) onto wafer using combination of dichlorophosphate and nano manipulation. Carbon nano tubes device mask are design using AUTOCAD software; there is four mask involved, first mask is Gate Formation,second mask is insulation layer third mask is source and drain and final mask forth mask is used as test channel. For fabrication and optimization of biosensor using carbon nano tube CNT that will be involve both microfabrication and nano fabrication. This process will involve conventional photolithography process, electron beam evaporator, thermal oxidation and wet etching process. To inspect and characterize carbon nano tube electrical properties it will involve tools such as SEM, AFM, Dielectric Analyzer, IV-CV and Semiconductor Parametric Analyzer system. This inspection is very important to produce a perfect profile to produce a good biosensor based on carbon nano tube structure. Preparation of various samples for testing functionality of the device this various samples and conditions will be done to ensure the detection is precise. Conductivity and capacitance effect will be tested electrically to detect the hybridization of the sample. (author)

  16. Flaw preparations for HSST program vessel fracture mechanics testing: mechanical-cyclic pumping and electron-beam weld-hydrogen-charge cracking schemes

    International Nuclear Information System (INIS)

    Holz, P.P.

    1980-06-01

    The purpose of the document is to present schemes for flaw preparations in heavy section steel. The ability of investigators to grow representative sharp cracks of known size, location, and orientation is basic to representative field testing to determine data for potential flaw propagation, fracture behavior, and margin against fracture for high-pressure-, high-temperature-service steel vessels subjected to increasing pressurization and/or thermal shock. Gaging for analytical stress and strain procedures and ultrasonic and acoustic emission instrumentation can then be applied to monitor the vessel during testing and to study crack growth. This report presents flaw preparations for HSST fracture mechanics testing. Cracks were grown by two techniques: (1) a mechanical method wherein a premachined notch was sharpened by pressurization and (2) a method combining electron-beam welds and hydrogen charging to crack the chill zone of a rapidly placed autogenous weld. The mechanical method produces a naturally occurring growth shape controlled primarily by the shape of the machined notch; the welding-electrochemical method produces flaws of uniform depth from the surface of a wall or machined notch. Theories, details, discussions, and procedures are covered for both of the flaw-growing schemes

  17. Miniature X-Ray Tubes

    Science.gov (United States)

    Bearman, Gregory H.

    1995-01-01

    Miniature x-ray tubes proposed for use in portable instruments used to analyze minerals. Electrons from field emitter (instead of thermionic emitter) accelerated to target to generate x-rays. Fabricated from silicon wafers, micromachined field emitters (MFEs) not subject to breakage or restrictions on lifetimes, and tolerate vacuums that filaments cannot. Miniature x-ray tubes very robust, immune to shock and vibration, and permanently sealed with getter for continued pumping. Combined with solid-state x-ray detectors for analysis of x-ray fluorescence.

  18. Opposed slant tube diabatic sorber

    Science.gov (United States)

    Erickson, Donald C.

    2004-01-20

    A sorber comprised of at least three concentric coils of tubing contained in a shell with a flow path for liquid sorbent in one direction, a flow path for heat transfer fluid which is in counter-current heat exchange relationship with sorbent flow, a sorbate vapor port in communication with at least one of sorbent inlet or exit ports, wherein each coil is coiled in opposite direction to those coils adjoining it, whereby the opposed slant tube configuration is achieved, with structure for flow modification in the core space inside the innermost coil.

  19. Pump element for a tube pump

    DEFF Research Database (Denmark)

    2011-01-01

    The invention relates to a tube pump comprising a tube and a pump element inserted in the tube, where the pump element comprises a rod element and a first and a second non-return valve member positioned a distance apart on the rod element. The valve members are oriented in the same direction...... portion acts to alternately close and open the valve members thereby generating a fluid flow through the tube. The invention further relates to a pump element comprising at least two non-return valve members connected by a rod element, and for insertion in an at least partly flexible tube in such tube...... pump as mentioned above, thereby acting to generate a fluid flow through the tube upon repeated deformation of the tube between the two valve members. The pump element may comprise a connecting part for coupling to another tube and may comprise a sealing part establishing a fluid tight connection...

  20. Critical heat flux in CANDU moderator following a pressure tube to calandria tube contact - part I

    International Nuclear Information System (INIS)

    Behdadi, A.; Luxat, J.C.

    2011-01-01

    Heavy water moderator surrounding each fuel channel is one of the important features in CANDU reactors that act as a heat sink for the fuel in the situations where other means of heat removal fail. In the critical break LOCA scenario, fuel cooling becomes severely degraded due to rapid flow reduction in the affected flow pass of the heat transport system. This can result in pressure tubes experiencing significant heat-up while coolant pressure is still high, thereby causing uniform thermal creep strain (ballooning) of the pressure tube (PT) into contact with its calandria tube (CT). The contact of the hot PT with the CT causes rapid redistribution of stored heat from the PT to CT and a large spike in heat flux from the CT to the moderator fluid. For lower subcooling conditions of the moderator, this heat flux spike can cause dryout of the CT. This can detrimentally affect channel integrity if the CT post-dryout temperature becomes sufficiently high to result in thermal creep strain deformation. The focus of this research is to develop a mechanistic model to predict Critical Heat Flux (CHF) on the CT surface following a contact with its pressure tube. A COMSOL multi-physics model using a two-dimensional transient fluid-thermal analysis of the CT surface undergoing heat up is used to predict flow and temperature profile on the CT surface. A mechanistic CHF model is to be proposed based on a concept of wall dry patch formation, prevention of rewetting and subsequent dry patch spreading. (author)