WorldWideScience

Sample records for trypanosoma brucei hesperadin

  1. Taxonomy Icon Data: Trypanosoma brucei [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available Trypanosoma brucei Trypanosoma brucei Trypanosoma_brucei_L.png Trypanosoma_brucei_NL.png Trypanoso...ma_brucei_S.png Trypanosoma_brucei_NS.png http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Trypanoso...ma+brucei&t=L http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Trypanosoma+brucei&t=NL http://bioscie...ncedbc.jp/taxonomy_icon/icon.cgi?i=Trypanosoma+brucei&t=S http://biosciencedbc.jp.../taxonomy_icon/icon.cgi?i=Trypanosoma+brucei&t=NS http://togodb.biosciencedbc.jp/togodb/view/taxonomy_icon_comment_en?species_id=121 ...

  2. Characterization of Trypanosoma brucei gambiense stocks isolated ...

    African Journals Online (AJOL)

    Trypanosoma brucei gambiense was isolated twice from each of 23 patients in Côte d'Ivoire. Genetic characterization using RAPD (Random Primed Amplified Polymorphic DNA) showed additional variability within a given isoenzyme profile (zymodeme), confirming that this fingerprinting method has a higher discriminative ...

  3. Detection of Trypanosoma brucei gambiense and T. b. rhodesiense ...

    African Journals Online (AJOL)

    Detection of Trypanosoma brucei gambiense and T. b. rhodesiense in Glossina fuscipes fuscipes ( Diptera: Glossinidae ) and Stomoxys flies using the polymerase chain reaction (PCR) technique in southern Sudan.

  4. Malleable Mitochondrion of Trypanosoma brucei

    Czech Academy of Sciences Publication Activity Database

    Verner, Zdeněk; Basu, Somsuvro; Benz, C.; Dixit, S.; Dobáková, Eva; Faktorová, Drahomíra; Hashimi, Hassan; Horáková, Eva; Huang, Zhenqiu; Paris, Zdeněk; Peña-Diaz, Priscila; Ridlon, L.; Týč, Jiří; Wildridge, David; Zíková, Alena; Lukeš, Julius

    2015-01-01

    Roč. 315, 2015 Feb 07 (2015), s. 73-151 ISSN 1937-6448 R&D Projects: GA ČR GAP302/12/2513; GA MŠk LL1205; GA MŠk(CZ) EE2.3.30.0032; GA MŠk LH12104; GA ČR GAP305/12/2261 EU Projects: European Commission(XE) 316304 Institutional support: RVO:60077344 Keywords : Kinetoplast * Metabolism * Mitochondrial transport * Mitochondrion * RNA import * T. brucei * Trypanosome * kDNA Subject RIV: EE - Microbiology, Virology Impact factor: 3.752, year: 2015

  5. Studies on the glycosome of Trypanosoma brucei

    International Nuclear Information System (INIS)

    Aman, R.A.

    1985-01-01

    Glycosomes (microbodies) have been purified from bloodstream form Trypanosoma brucei by an improved procedure involving freezing and thawing live organisms in 15% glycerol prior to cell disruption. Highly purified organelles of bloodstream form T. brucei contain 11 major proteins of which 8 tentatively identified glycolytic enzymes make up about 90% of the total glycosomal protein. Treatment of these intact isolated organelles with the bisimidoester dimethylsuberimidate (DMSI) resulted in crosslinking of all glycosomal proteins into a large complex suggestive of juxtapositioning of the glycosomal proteins. The crosslinked complex was capable of catalyzing the multienzyme conversion of glucose to glycerol-3-phosphate but did not possess any special kinetic features different from those of the unaggregated enzymes represented by solubilized glycosomes. The multienzyme reaction had a lab phase associated with it and [ 14 C]-glucose label incorporation into sugar phosphate intermediates was effectively competed by unlabeled intermediates. Glycosomes were also purified from culture form T. brucei by several different procedures. Comparison of highly purified organelles from the two different life stages of the organism showed reduced specific activities and contents of the early glycolytic enzymes in organelles from the culture form with a decrease from 87% to 35% of the contribution of glycolytic enzymes to the total glycosomal protein

  6. Classical clinical signs in rats experimemtally infected with Trypanosoma brucei

    Directory of Open Access Journals (Sweden)

    Nwoha Rosemary Ijeoma Ogechi

    2015-02-01

    Full Text Available Objective: To investigate clinical signs in Trypanosoma brucei infection in albino rats. Methods: Fourteen rats grouped into 2 with 7 rats in each group were used to determine classical clinical manifestation of Trypanosoma brucei infection in rats. Group A rats were uninfected control and Group B rats were infected with Trypanosoma brucei. Results: Parasitaemia was recorded in Group B by (3.86±0.34 d and the peak of parasitaemia was observed at Day 5 post infection. Classical signs observed included squint eyes, raised whiskers, lethargy, no weight loss, pyrexia, isolation from the other rats, and starry hair coat. Conclusions: These signs could be diagnostic or aid in diagnosis of Trypanosoma brucei infection in rats.

  7. Role of cytokines in Trypanosoma brucei-induced anaemia: A ...

    African Journals Online (AJOL)

    species Trypanosoma brucei that are transmitted by a tsetse fly (Glossina spp.) ... of autologous immunoglobulin antibodies on the red cell surfaces and also to ... development for the detection and management of anaemia in trypanosomiasis.

  8. Non-cytochrome mediated mitochondrial ATP production in bloodstream form Trypanosoma brucei brucei

    NARCIS (Netherlands)

    Bienen, E. J.; Maturi, R. K.; Pollakis, G.; Clarkson, A. B.

    1993-01-01

    The life cycle of Trypanosoma brucei brucei involves a series of differentiation steps characterized by marked changes in mitochondrial development and function. The bloodstream forms of this parasite completely lack cytochromes and have not been considered to have any Krebs cycle function. It has

  9. Evaluation of In Vitro Activity of Essential Oils against Trypanosoma brucei brucei and Trypanosoma evansi

    Directory of Open Access Journals (Sweden)

    Nathan Habila

    2010-01-01

    Full Text Available Essential oils (EOs from Cymbopogon citratus (CC, Eucalyptus citriodora (EC, Eucalyptus camaldulensis (ED, and Citrus sinensis (CS were obtained by hydrodistillation process. The EOs were evaluated in vitro for activity against Trypanosoma brucei brucei (Tbb and Trypanosoma evansi (T. evansi. The EOs were found to possess antitrypanosomal activity in vitro in a dose-dependent pattern in a short period of time. The drop in number of parasite over time was achieved doses of 0.4 g/ml, 0.2 g/mL, and 0.1 g/mL for all the EOs. The concentration of 0.4 g/mL CC was more potent at 3 minutes and 2 minutes for Tbb and T. evansi, respectively. The GC-MS analysis of the EOs revealed presence of Cyclobutane (96.09% in CS, 6-octenal (77.11% in EC, Eucalyptol (75% in ED, and Citral (38.32% in CC among several other organic compounds. The results are discussed in relation to trypanosome chemotherapy.

  10. Troglitazone induces differentiation in Trypanosoma brucei

    International Nuclear Information System (INIS)

    Denninger, Viola; Figarella, Katherine; Schoenfeld, Caroline; Brems, Stefanie; Busold, Christian; Lang, Florian; Hoheisel, Joerg; Duszenko, Michael

    2007-01-01

    Trypanosoma brucei, a protozoan parasite causing sleeping sickness, is transmitted by the tsetse fly and undergoes a complex lifecycle including several defined stages within the insect vector and its mammalian host. In the latter, differentiation from the long slender to the short stumpy form is induced by a yet unknown factor of trypanosomal origin. Here we describe that some thiazolidinediones are also able to induce differentiation. In higher eukaryotes, thiazolidinediones are involved in metabolism and differentiation processes mainly by binding to the intracellular receptor peroxisome proliferator activated receptor γ. Our studies focus on the effects of troglitazone on bloodstream form trypanosomes. Differentiation was monitored using mitochondrial markers (membrane potential, succinate dehydrogenase activity, inhibition of oxygen uptake by KCN, amount of cytochrome transcripts), morphological changes (Transmission EM and light microscopy), and transformation experiments (loss of the Variant Surface Glycoprotein coat and increase of dihydroliponamide dehydrogenase activity). To further investigate the mechanisms responsible for these changes, microarray analyses were performed, showing an upregulation of expression site associated gene 8 (ESAG8), a potential differentiation regulator

  11. Genetic control of resistance to Trypanosoma brucei brucei infection in mice

    Czech Academy of Sciences Publication Activity Database

    Šíma, Matyáš; Havelková, Helena; Quan, L.; Svobodová, M.; Jarošíková, T.; Vojtíšková, Jarmila; Stassen, A. P. M.; Demant, P.; Lipoldová, Marie

    2011-01-01

    Roč. 5, č. 6 (2011), e1173 ISSN 1935-2735 R&D Projects: GA AV ČR IAA500520606; GA MŠk(CZ) LC06009 Grant - others:NIH-NCI(US) 1R01CA127162-01 Institutional research plan: CEZ:AV0Z50520514 Keywords : Trypanosoma brucei brucei * mouse recombinant congenic strains * Tbbr Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 4.716, year: 2011

  12. Regulation and spatial organization of PCNA in Trypanosoma brucei

    International Nuclear Information System (INIS)

    Kaufmann, Doris; Gassen, Alwine; Maiser, Andreas; Leonhardt, Heinrich; Janzen, Christian J.

    2012-01-01

    Highlights: ► Characterization of the proliferating cell nuclear antigen in Trypanosoma brucei (TbPCNA). ► TbPCNA is a suitable marker to detect replication in T. brucei. ► TbPCNA distribution and regulation is different compared to closely related parasites T. cruzi and Leishmania donovani. -- Abstract: As in most eukaryotic cells, replication is regulated by a conserved group of proteins in the early-diverged parasite Trypanosoma brucei. Only a few components of the replication machinery have been described in this parasite and regulation, sub-nuclear localization and timing of replication are not well understood. We characterized the proliferating cell nuclear antigen in T. brucei (TbPCNA) to establish a spatial and temporal marker for replication. Interestingly, PCNA distribution and regulation is different compared to the closely related parasites Trypanosoma cruzi and Leishmania donovani. TbPCNA foci are clearly detectable during S phase of the cell cycle but in contrast to T. cruzi they are not preferentially located at the nuclear periphery. Furthermore, PCNA seems to be degraded when cells enter G2 phase in T. brucei suggesting different modes of replication regulation or functions of PCNA in these closely related eukaryotes.

  13. Regulation and spatial organization of PCNA in Trypanosoma brucei

    Energy Technology Data Exchange (ETDEWEB)

    Kaufmann, Doris; Gassen, Alwine [University of Munich (LMU), Department Biology I, Genetics, Grosshaderner Str. 2-4, 82152 Martinsried (Germany); Maiser, Andreas; Leonhardt, Heinrich [University of Munich (LMU), Department Biology II, Grosshaderner Str. 2-4, 82152 Martinsried (Germany); Janzen, Christian J., E-mail: christian.janzen@uni-wuerzburg.de [University of Munich (LMU), Department Biology I, Genetics, Grosshaderner Str. 2-4, 82152 Martinsried (Germany)

    2012-03-23

    Highlights: Black-Right-Pointing-Pointer Characterization of the proliferating cell nuclear antigen in Trypanosoma brucei (TbPCNA). Black-Right-Pointing-Pointer TbPCNA is a suitable marker to detect replication in T. brucei. Black-Right-Pointing-Pointer TbPCNA distribution and regulation is different compared to closely related parasites T. cruzi and Leishmania donovani. -- Abstract: As in most eukaryotic cells, replication is regulated by a conserved group of proteins in the early-diverged parasite Trypanosoma brucei. Only a few components of the replication machinery have been described in this parasite and regulation, sub-nuclear localization and timing of replication are not well understood. We characterized the proliferating cell nuclear antigen in T. brucei (TbPCNA) to establish a spatial and temporal marker for replication. Interestingly, PCNA distribution and regulation is different compared to the closely related parasites Trypanosoma cruzi and Leishmania donovani. TbPCNA foci are clearly detectable during S phase of the cell cycle but in contrast to T. cruzi they are not preferentially located at the nuclear periphery. Furthermore, PCNA seems to be degraded when cells enter G2 phase in T. brucei suggesting different modes of replication regulation or functions of PCNA in these closely related eukaryotes.

  14. A tropical tale: how Naja nigricollis venom beats Trypanosoma brucei

    DEFF Research Database (Denmark)

    Martos Esteban, Andrea; Laustsen, Andreas Hougaard; Carrington, Mark

    Trypanosoma brucei is a parasitic protozoan species capable to infecting insect vectors whose bite further produces African sleeping sickness inhuman beings [1]. During the parasite’s extracellular life in the mammalian host,its outer coat, mainly composed of Variable Surface Glycoproteins (VSGs)...

  15. What controls glycolysis in bloodstream form Trypanosoma brucei?

    NARCIS (Netherlands)

    Bakker, B.M.; Michels, P.A.M.; Opperdoes, F.R.; Westerhoff, H.V.

    1999-01-01

    On the basis of the experimentally determined kinetic properties of the trypanosomal enzymes, the question is addressed of which step limits the glycolytic flux in bloodstream form Trypanosoma brucei. There appeared to be no single answer; in the physiological range, control shifted between the

  16. Trypanosoma brucei mitochondrial respiratome: Composition and organization in procyclic form

    KAUST Repository

    Acestor, Nathalie

    2011-05-24

    The mitochondrial respiratory chain is comprised of four different protein complexes (I-IV), which are responsible for electron transport and generation of proton gradient in the mitochondrial intermembrane space. This proton gradient is then used by F oF 1-ATP synthase (complex V) to produce ATP by oxidative phosphorylation. In this study, the respiratory complexes I, II, and III were affinity purified from Trypanosoma brucei procyclic form cells and their composition was determined by mass spectrometry. The results along with those that we previously reported for complexes IV and V showed that the respiratome of Trypanosoma is divergent because many of its proteins are unique to this group of organisms. The studies also identified two mitochondrial subunit proteins of respiratory complex IV that are encoded by edited RNAs. Proteomics data from analyses of complexes purified using numerous tagged component proteins in each of the five complexes were used to generate the first predicted protein-protein interaction network of the Trypanosoma brucei respiratory chain. These results provide the first comprehensive insight into the unique composition of the respiratory complexes in Trypanosoma brucei, an early diverged eukaryotic pathogen. © 2011 by The American Society for Biochemistry and Molecular Biology, Inc.

  17. Meiosis and Haploid Gametes in the Pathogen Trypanosoma brucei

    OpenAIRE

    Peacock, Lori; Bailey, Mick; Carrington, Mark; Gibson, Wendy

    2014-01-01

    Summary In eukaryote pathogens, sex is an important driving force in spreading genes for drug resistance, pathogenicity, and virulence [1]. For the parasitic trypanosomes that cause African sleeping sickness, mating occurs during transmission by the tsetse vector [2, 3] and involves meiosis [4], but haploid gametes have not yet been identified. Here, we show that meiosis is a normal part of development in the insect salivary glands for all subspecies of Trypanosoma brucei, including the human...

  18. Trypanosoma brucei Mitochondrial Respiratome: Composition and Organization in Procyclic Form

    Czech Academy of Sciences Publication Activity Database

    Acestor, N.; Zíková, Alena; Dalley, R. A.; Anupama, A.; Panigrahi, A. K.; Stuart, K. D.

    2011-01-01

    Roč. 10, č. 9 (2011), s. 1-14 ISSN 1535-9476 R&D Projects: GA ČR GP204/09/P563 Institutional research plan: CEZ:AV0Z60220518 Keywords : SUCCINATE DEHYDROGENASE * EDITED MESSENGER-RNA * COMPLEX-I * TRYPANOSOMA-BRUCEI * UBIQUINONE OXIDOREDUCTASE * TAP-TAG * PROTEIN INTERACTION * ALTERNATIVE OXIDASE * STATISTICAL-MODEL * MASS-SPECTROMETRY Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 7.398, year: 2011

  19. Trypanosoma brucei solanesyl-diphosphate synthase localizes to the mitochondrion

    Czech Academy of Sciences Publication Activity Database

    Lai, D.-H.; Bontempi, E. J.; Lukeš, Julius

    2012-01-01

    Roč. 183, č. 2 (2012), s. 189-192 ISSN 0166-6851 R&D Projects: GA ČR(CZ) GAP305/11/2179 Institutional support: RVO:60077344 Keywords : Trypanosoma brucei * Sleeping sickness * Ubiquinone * Solanesyl-diphosphate synthase * Digitonin permeabilization * In situ tagging Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.734, year: 2012 http://www.sciencedirect.com/science/article/pii/S0166685112000539

  20. Wild chimpanzees are infected by Trypanosoma brucei

    Directory of Open Access Journals (Sweden)

    Milan Jirků

    2015-12-01

    Finally, we demonstrated that the mandrill serum was able to efficiently lyse T. b. brucei and T. b. rhodesiense, and to some extent T. b. gambiense, while the chimpanzee serum failed to lyse any of these subspecies.

  1. Interaction between Trypanosoma brucei and Haemonchus ...

    African Journals Online (AJOL)

    In order to investigate the immunomodulatory influence of concurrent T. brucei and H. contortus infection in West African Dwarf (WAD) goats, 28 infected and 7 uninfected (control) of 8-9 months old male WAD goats were studied. The infected goats were separated into resistant (Class 1) and susceptible (Class 2) Faecal ...

  2. Phenolic Constituents of Medicinal Plants with Activity against Trypanosoma brucei

    Directory of Open Access Journals (Sweden)

    Ya Nan Sun

    2016-04-01

    Full Text Available Neglected tropical diseases (NTDs affect over one billion people all over the world. These diseases are classified as neglected because they impact populations in areas with poor financial conditions and hence do not attract sufficient research investment. Human African Trypanosomiasis (HAT or sleeping sickness, caused by the parasite Trypanosoma brucei, is one of the NTDs. The current therapeutic interventions for T. brucei infections often have toxic side effects or require hospitalization so that they are not available in the rural environments where HAT occurs. Furthermore, parasite resistance is increasing, so that there is an urgent need to identify novel lead compounds against this infection. Recognizing the wide structural diversity of natural products, we desired to explore and identify novel antitrypanosomal chemotypes from a collection of natural products obtained from plants. In this study, 440 pure compounds from various medicinal plants were tested against T. brucei by in a screening using whole cell in vitro assays. As the result, twenty-two phenolic compounds exhibited potent activity against cultures of T. brucei. Among them, eight compounds—4, 7, 11, 14, 15, 18, 20, and 21—showed inhibitory activity against T. brucei, with IC50 values below 5 µM, ranging from 0.52 to 4.70 μM. Based on these results, we attempt to establish some general trends with respect to structure-activity relationships, which indicate that further investigation and optimization of these derivatives might enable the preparation of potentially useful compounds for treating HAT.

  3. In vivo trypanocidal activity of Nymphaea lotus Linn. methanol extract against Trypanosoma brucei brucei

    Directory of Open Access Journals (Sweden)

    Muhammad Haruna Garba

    2015-10-01

    Full Text Available Objective: To evaluate the antitrypanosomal potentials of methanol extract of Nymphaea lotus Linn. (N. lotus with the aim of obtaining a new lead for formulating safe, inexpensive, nontoxic and readily available trypanocidal drugs. Methods: Seventy percent (v/v (methanol/water crude extract of N. lotus was evaluated for antitrypanosomal activity in experimental trypanosomiasis using Trypanosoma brucei bruceiinfected mice. Infected mice in different groups were administered intraperitoneally 100, 200, 300 and 400 mg/kg body weight/day of the crude for two weeks, while a positive control group was treated with standard drug, berenil. Results: The crude extract at a dose of 100 mg/kg body weight/day was more effective than the higher doses in completely clearing parasites from the blood of mice infected with Trypanosoma brucei brucei. Pre-treatment of healthy mice with the crude extract for 5 days before infection did not prevent the establishment of the infection, indicating that the extract had no prophylactic activity. Subinoculation of the blood and cerebrospinal fluid drawn from the cured mice into healthy mice failed to produce any infection within 50 days post inoculation. Administration of 1 000 mg/kg body weight of the crude extract led to the death of 50% of the experimental animals indicating a high level of toxicity of the extract at higher doses. Conclusions: This study has demonstrated the potency of the crude extract of N. lotus in treating experimental trypanosomiasis at lower doses.

  4. Iron-associated biology of Trypanosoma brucei.

    Czech Academy of Sciences Publication Activity Database

    Basu, Somsuvro; Horáková, Eva; Lukeš, Julius

    2016-01-01

    Roč. 1860, č. 2 (2016), s. 363-370 ISSN 0304-4165 R&D Projects: GA ČR(CZ) GA14-23986S; GA ČR GAP305/12/2261; GA MŠk(CZ) EE2.3.30.0032 EU Projects: European Commission(XE) COST Action CM1307; European Commission(XE) 316304 - MODBIOLIN Grant - others:AV ČR(CZ) M200961204 Institutional support: RVO:60077344 Keywords : iron * Fe/S cluster * heme * Trypanosoma * TAO Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 4.702, year: 2016

  5. CHARACTERIZATION AND ANTIPARASITIC ACTIVITY OF BENZOPHENONE THIOSEMICARBAZONES ON Trypanosoma brucei brucei

    Directory of Open Access Journals (Sweden)

    Georges C. Accrombessi

    2011-02-01

    Full Text Available The structure of four synthesized thiosemicarbazones, substituted or not, of benzophenone has been confirmed by spectrometrical analysis IR, NMR 1H and 13C. Their anti-trypanosomal activities were evaluated on Trypanosoma brucei brucei. Among these compounds, benzophenone 4 phenyl-3-thiosemicarbazone 4 has the highest activity with the half-inhibitory concentration (IC50 = 8.48 micromolar (µM. Benzophenone 4-methyl-3-thiosemicarbazone 3 and benzophenone thiosemicarbazone 1 showed moderate anti-trypanosomal activity with IC50 values equal to 23.27 µM and 67.17 µM respectively. Benzophenone 2 methyl-3-thiosemicarbazone 2 showed no activity up to IC50 = 371.74 µM.

  6. Crystal structure of arginine methyltransferase 6 from Trypanosoma brucei.

    Directory of Open Access Journals (Sweden)

    Chongyuan Wang

    Full Text Available Arginine methylation plays vital roles in the cellular functions of the protozoan Trypanosoma brucei. The T. brucei arginine methyltransferase 6 (TbPRMT6 is a type I arginine methyltransferase homologous to human PRMT6. In this study, we report the crystal structures of apo-TbPRMT6 and its complex with the reaction product S-adenosyl-homocysteine (SAH. The structure of apo-TbPRMT6 displays several features that are different from those of type I PRMTs that were structurally characterized previously, including four stretches of insertion, the absence of strand β15, and a distinct dimerization arm. The comparison of the apo-TbPRMT6 and SAH-TbPRMT6 structures revealed the fine rearrangements in the active site upon SAH binding. The isothermal titration calorimetry results demonstrated that SAH binding greatly increases the affinity of TbPRMT6 to a substrate peptide derived from bovine histone H4. The western blotting and mass spectrometry results revealed that TbPRMT6 methylates bovine histone H4 tail at arginine 3 but cannot methylate several T. brucei histone tails. In summary, our results highlight the structural differences between TbPRMT6 and other type I PRMTs and reveal that the active site rearrangement upon SAH binding is important for the substrate binding of TbPRMT6.

  7. The Oral Antimalarial Drug Tafenoquine Shows Activity against Trypanosoma brucei.

    Science.gov (United States)

    Carvalho, Luis; Martínez-García, Marta; Pérez-Victoria, Ignacio; Manzano, José Ignacio; Yardley, Vanessa; Gamarro, Francisco; Pérez-Victoria, José M

    2015-10-01

    The protozoan parasite Trypanosoma brucei causes human African trypanosomiasis, or sleeping sickness, a neglected tropical disease that requires new, safer, and more effective treatments. Repurposing oral drugs could reduce both the time and cost involved in sleeping sickness drug discovery. Tafenoquine (TFQ) is an oral antimalarial drug belonging to the 8-aminoquinoline family which is currently in clinical phase III. We show here that TFQ efficiently kills different T. brucei spp. in the submicromolar concentration range. Our results suggest that TFQ accumulates into acidic compartments and induces a necrotic process involving cell membrane disintegration and loss of cytoplasmic content, leading to parasite death. Cell lysis is preceded by a wide and multitarget drug action, affecting the lysosome, mitochondria, and acidocalcisomes and inducing a depolarization of the mitochondrial membrane potential, elevation of intracellular Ca(2+), and production of reactive oxygen species. This is the first report of an 8-aminoquinoline demonstrating significant in vitro activity against T. brucei. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  8. Novel molecular mechanism for targeting the parasite Trypanosoma brucei with snake venom toxins

    DEFF Research Database (Denmark)

    Martos Esteban, Andrea; Laustsen, Andreas Hougaard; Carrington, Mark

    Trypanosoma brucei is a parasitic protozoan species capable to infecting insect vectors whose bite further produces African sleeping sickness inhuman beings. During parasites’extracellular lives in the mammalian host, its outer coat, mainly composedof Variable surface glycoproteins (VSGs)[2...

  9. Intraclonal mating occurs during tsetse transmission of Trypanosoma brucei

    Directory of Open Access Journals (Sweden)

    Ferris Vanessa

    2009-09-01

    Full Text Available Abstract Background Mating in Trypanosoma brucei is a non-obligatory event, triggered by the co-occurrence of different strains in the salivary glands of the vector. Recombinants that result from intra- rather than interclonal mating have been detected, but only in crosses of two different trypanosome strains. This has led to the hypothesis that when trypanosomes recognize a different strain, they release a diffusible factor or pheromone that triggers mating in any cell in the vicinity whether it is of the same or a different strain. This idea assumes that the trypanosome can recognize self and non-self, although there is as yet no evidence for the existence of mating types in T. brucei. Results We investigated intraclonal mating in T. b. brucei by crossing red and green fluorescent lines of a single strain, so that recombinant progeny can be detected in the fly by yellow fluorescence. For strain 1738, seven flies had both red and green trypanosomes in the salivary glands and, in three, yellow trypanosomes were also observed, although they could not be recovered for subsequent analysis. Nonetheless, both red and non-fluorescent clones from these flies had recombinant genotypes as judged by microsatellite and karyotype analyses, and some also had raised DNA contents, suggesting recombination or genome duplication. Strain J10 produced similar results indicative of intraclonal mating. In contrast, trypanosome clones recovered from other flies showed that genotypes can be transmitted with fidelity. When a yellow hybrid clone expressing both red and green fluorescent protein genes was transmitted, the salivary glands contained a mixture of fluorescent-coloured trypanosomes, but only yellow and red clones were recovered. While loss of the GFP gene in the red clones could have resulted from gene conversion, some of these clones showed loss of heterozygosity and raised DNA contents as in the other single strain transmissions. Our observations suggest

  10. Mosaic VSGs and the scale of Trypanosoma brucei antigenic variation.

    Directory of Open Access Journals (Sweden)

    James P J Hall

    Full Text Available A main determinant of prolonged Trypanosoma brucei infection and transmission and success of the parasite is the interplay between host acquired immunity and antigenic variation of the parasite variant surface glycoprotein (VSG coat. About 0.1% of trypanosome divisions produce a switch to a different VSG through differential expression of an archive of hundreds of silent VSG genes and pseudogenes, but the patterns and extent of the trypanosome diversity phenotype, particularly in chronic infection, are unclear. We applied longitudinal VSG cDNA sequencing to estimate variant richness and test whether pseudogenes contribute to antigenic variation. We show that individual growth peaks can contain at least 15 distinct variants, are estimated computationally to comprise many more, and that antigenically distinct 'mosaic' VSGs arise from segmental gene conversion between donor VSG genes or pseudogenes. The potential for trypanosome antigenic variation is probably much greater than VSG archive size; mosaic VSGs are core to antigenic variation and chronic infection.

  11. Rab23 is a flagellar protein in Trypanosoma brucei

    Directory of Open Access Journals (Sweden)

    Field Mark C

    2011-06-01

    Full Text Available Abstract Background Rab small GTPases are important mediators of membrane transport, and orthologues frequently retain similar locations and functions, even between highly divergent taxa. In metazoan organisms Rab23 is an important negative regulator of Sonic hedgehog signaling and is crucial for correct development and differentiation of cellular lineages by virtue of an involvement in ciliary recycling. Previously, we reported that Trypanosoma brucei Rab23 localized to the nuclear envelope 1, which is clearly inconsistent with the mammalian location and function. As T. brucei is unicellular the potential that Rab23 has no role in cell signaling was possible. Here we sought to further investigate the role(s of Rab23 in T. brucei to determine if Rab23 was an example of a Rab protein with divergent function in distinct taxa. Methods/major findings The taxonomic distribution of Rab23 was examined and compared with the presence of flagella/cilia in representative taxa. Despite evidence for considerable secondary loss, we found a clear correlation between a conventional flagellar structure and the presence of a Rab23 orthologue in the genome. By epitope-tagging, Rab23 was localized and found to be present at the flagellum throughout the cell cycle. However, RNAi knockdown did not result in a flagellar defect, suggesting that Rab23 is not required for construction or maintenance of the flagellum. Conclusions The location of Rab23 at the flagellum is conserved between mammals and trypanosomes and the Rab23 gene is restricted to flagellated organisms. These data may suggest the presence of a Rab23-mediated signaling mechanism in trypanosomes.

  12. Telomeric expression sites are highly conserved in Trypanosoma brucei.

    Directory of Open Access Journals (Sweden)

    Christiane Hertz-Fowler

    Full Text Available Subtelomeric regions are often under-represented in genome sequences of eukaryotes. One of the best known examples of the use of telomere proximity for adaptive purposes are the bloodstream expression sites (BESs of the African trypanosome Trypanosoma brucei. To enhance our understanding of BES structure and function in host adaptation and immune evasion, the BES repertoire from the Lister 427 strain of T. brucei were independently tagged and sequenced. BESs are polymorphic in size and structure but reveal a surprisingly conserved architecture in the context of extensive recombination. Very small BESs do exist and many functioning BESs do not contain the full complement of expression site associated genes (ESAGs. The consequences of duplicated or missing ESAGs, including ESAG9, a newly named ESAG12, and additional variant surface glycoprotein genes (VSGs were evaluated by functional assays after BESs were tagged with a drug-resistance gene. Phylogenetic analysis of constituent ESAG families suggests that BESs are sequence mosaics and that extensive recombination has shaped the evolution of the BES repertoire. This work opens important perspectives in understanding the molecular mechanisms of antigenic variation, a widely used strategy for immune evasion in pathogens, and telomere biology.

  13. Analytical purification of a 60-kDa target protein of artemisinin detected in Trypanosoma brucei brucei

    Directory of Open Access Journals (Sweden)

    Benetode Konziase

    2015-12-01

    Full Text Available Here we describe the isolation and purity determination of Trypanosoma brucei (T. b. brucei candidate target proteins of artemisinin. The candidate target proteins were detected and purified from their biological source (T. b. brucei lysate using the diazirine-free biotinylated probe 5 for an affinity binding to a streptavidin-tagged resin and, subsequently, the labeled target proteins were purified by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE. We herein showed the electrophoresis gel and the immunoblotting film containing the 60-kDa trypanosomal candidate target protein of artemisinin as a single band, which was visualized on-gel by the reverse-staining method and on a Western blotting film by enhanced chemiluminescence. The data provided in this article are related to the original research article “Biotinylated probes of artemisinin with labeling affinity toward Trypanosoma brucei brucei target proteins”, by Konziase (Anal. Biochem., vol. 482, 2015, pp. 25–31. http://dx.doi.org/10.1016/j.ab.2015.04.020.

  14. The flagellum of Trypanosoma brucei: new tricks from an old dog

    Science.gov (United States)

    Ralston, Katherine S.; Hill, Kent L.

    2010-01-01

    African trypanosomes, i.e. Trypanosoma brucei and related sub-species, are devastating human and animal pathogens that cause significant human mortality and limit sustained economic development in sub-Saharan Africa. Trypanosoma brucei is a highly motile protozoan parasite and coordinated motility is central to both disease pathogenesis in the mammalian host and parasite development in the tsetse fly vector. Since motility is critical for parasite development and pathogenesis, understanding unique aspects of the T. brucei flagellum may uncover novel targets for therapeutic intervention in African sleeping sickness. Moreover, studies of conserved features of the T. brucei flagellum are directly relevant to understanding fundamental aspects of flagellum and cilium function in other eukaryotes, making T. brucei an important model system. The T. brucei flagellum contains a canonical 9 + 2 axoneme, together with additional features that are unique to kinetoplastids and a few closely-related organisms. Until recently, much of our knowledge of the structure and function of the trypanosome flagellum was based on analogy and inference from other organisms. There has been an explosion in functional studies in T. brucei in recent years, revealing conserved as well as novel and unexpected structural and functional features of the flagellum. Most notably, the flagellum has been found to be an essential organelle, with critical roles in parasite motility, morphogenesis, cell division and immune evasion. This review highlights recent discoveries on the T. brucei flagellum. PMID:18472102

  15. Exosome secretion affects social motility in Trypanosoma brucei.

    Directory of Open Access Journals (Sweden)

    Dror Eliaz

    2017-03-01

    Full Text Available Extracellular vesicles (EV secreted by pathogens function in a variety of biological processes. Here, we demonstrate that in the protozoan parasite Trypanosoma brucei, exosome secretion is induced by stress that affects trans-splicing. Following perturbations in biogenesis of spliced leader RNA, which donates its spliced leader (SL exon to all mRNAs, or after heat-shock, the SL RNA is exported to the cytoplasm and forms distinct granules, which are then secreted by exosomes. The exosomes are formed in multivesicular bodies (MVB utilizing the endosomal sorting complexes required for transport (ESCRT, through a mechanism similar to microRNA secretion in mammalian cells. Silencing of the ESCRT factor, Vps36, compromised exosome secretion but not the secretion of vesicles derived from nanotubes. The exosomes enter recipient trypanosome cells. Time-lapse microscopy demonstrated that cells secreting exosomes or purified intact exosomes affect social motility (SoMo. This study demonstrates that exosomes are delivered to trypanosome cells and can change their migration. Exosomes are used to transmit stress signals for communication between parasites.

  16. Meiosis and haploid gametes in the pathogen Trypanosoma brucei.

    Science.gov (United States)

    Peacock, Lori; Bailey, Mick; Carrington, Mark; Gibson, Wendy

    2014-01-20

    In eukaryote pathogens, sex is an important driving force in spreading genes for drug resistance, pathogenicity, and virulence. For the parasitic trypanosomes that cause African sleeping sickness, mating occurs during transmission by the tsetse vector and involves meiosis, but haploid gametes have not yet been identified. Here, we show that meiosis is a normal part of development in the insect salivary glands for all subspecies of Trypanosoma brucei, including the human pathogens. By observing insect-derived trypanosomes during the window of peak expression of meiosis-specific genes, we identified promastigote-like (PL) cells that interacted with each other via their flagella and underwent fusion, as visualized by the mixing of cytoplasmic red and green fluorescent proteins. PL cells had a short, wide body, a very long anterior flagellum, and either one or two kinetoplasts, but only the anterior kinetoplast was associated with the flagellum. Measurement of nuclear DNA contents showed that PL cells were haploid relative to diploid metacyclics. Trypanosomes are among the earliest diverging eukaryotes, and our results support the hypothesis that meiosis and sexual reproduction are ubiquitous in eukaryotes and likely to have been early innovations. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  17. Cancer in the parasitic protozoans Trypanosoma brucei and Toxoplasma gondii.

    Science.gov (United States)

    Lun, Zhao-Rong; Lai, De-Hua; Wen, Yan-Zi; Zheng, Ling-Ling; Shen, Ji-Long; Yang, Ting-Bo; Zhou, Wen-Liang; Qu, Liang-Hu; Hide, Geoff; Ayala, Francisco J

    2015-07-21

    Cancer is a general name for more than 100 malignant diseases. It is postulated that all cancers start from a single abnormal cell that grows out of control. Untreated cancers can cause serious consequences and deaths. Great progress has been made in cancer research that has significantly improved our knowledge and understanding of the nature and mechanisms of the disease, but the origins of cancer are far from being well understood due to the limitations of suitable model systems and to the complexities of the disease. In view of the fact that cancers are found in various species of vertebrates and other metazoa, here, we suggest that cancer also occurs in parasitic protozoans such as Trypanosoma brucei, a blood parasite, and Toxoplasma gondii, an obligate intracellular pathogen. Without treatment, these protozoan cancers may cause severe disease and death in mammals, including humans. The simpler genomes of these single-cell organisms, in combination with their complex life cycles and fascinating life cycle differentiation processes, may help us to better understand the origins of cancers and, in particular, leukemias.

  18. The activity of aminoglycoside antibiotics against Trypanosoma brucei.

    Science.gov (United States)

    Maina, N W; Kinyanjui, B; Onyango, J D; Auma, J E; Croj, S

    1998-01-01

    The trypanocidal activity of four aminoglycosides was determined against Trypanosoma brucei in vitro. The drug activity in descending order, was as follows; paromomycin kanamycin>gentamycin > neomycin. Paromomycin bad the highest activity and the concentration that inhibited 50% of trypanosome growth (IC50) was 11.4microM. The effect of paromomycin on the causative agents of the East African form of sleeping sickness - T.b. rhodesiense KETRI 265, 2285, 2545, 2562 and EATRO 110,112, 1152 was subsequently assessed. Variations sensitivities between the trypanosome populations were observed and IC50 values ranging from 13.01 to 43.06 microM recorded. However, when paromomycin was administered intraperitoneally (i.p) at 500 mg/kg, it was not effective in curing mice infected with T. b. rhodesienseKETRI 2545 the most drug-sensitive isolate in vitro. Lack of in vivo activity may be because the trypanosome is an extracellular parasite. The pharmacokinetics of paromomycin in the mouse model need to be determined.

  19. Mating compatibility in the parasitic protist Trypanosoma brucei.

    Science.gov (United States)

    Peacock, Lori; Ferris, Vanessa; Bailey, Mick; Gibson, Wendy

    2014-02-21

    Genetic exchange has been described in several kinetoplastid parasites, but the most well-studied mating system is that of Trypanosoma brucei, the causative organism of African sleeping sickness. Sexual reproduction takes place in the salivary glands (SG) of the tsetse vector and involves meiosis and production of haploid gametes. Few genetic crosses have been carried out to date and consequently there is little information about the mating compatibility of different trypanosomes. In other single-celled eukaryotes, mating compatibility is typically determined by a system of two or more mating types (MT). Here we investigated the MT system in T. brucei. We analysed a large series of F1, F2 and back crosses by pairwise co-transmission of red and green fluorescent cloned cell lines through experimental tsetse flies. To analyse each cross, trypanosomes were cloned from fly SG containing a mixture of both parents, and genotyped by microsatellites and molecular karyotype. To investigate mating compatibility at the level of individual cells, we directly observed the behaviour of SG-derived gametes in intra- or interclonal mixtures of red and green fluorescent trypanosomes ex vivo. Hybrid progeny were found in all F1 and F2 crosses and most of the back crosses. The success of individual crosses was highly variable as judged by the number of hybrid clones produced, suggesting a range of mating compatibilities among F1 progeny. As well as hybrids, large numbers of recombinant genotypes resulting from intraclonal mating (selfers) were found in some crosses. In ex vivo mixtures, red and green fluorescent trypanosome gametes were observed to pair up and interact via their flagella in both inter- and intraclonal combinations. While yellow hybrid trypanosomes were frequently observed in interclonal mixtures, such evidence of cytoplasmic exchange was rare in the intraclonal mixtures. The outcomes of individual crosses, particularly back crosses, were variable in numbers of both

  20. Cynaropicrin targets the trypanothione redox system in Trypanosoma brucei.

    Science.gov (United States)

    Zimmermann, Stefanie; Oufir, Mouhssin; Leroux, Alejandro; Krauth-Siegel, R Luise; Becker, Katja; Kaiser, Marcel; Brun, Reto; Hamburger, Matthias; Adams, Michael

    2013-11-15

    In mice cynaropicrin (CYN) potently inhibits the proliferation of Trypanosoma brucei-the causative agent of Human African Trypanosomiasis-by a so far unknown mechanism. We hypothesized that CYNs α,β-unsaturated methylene moieties act as Michael acceptors for glutathione (GSH) and trypanothione (T(SH)2), the main low molecular mass thiols essential for unique redox metabolism of these parasites. The analysis of this putative mechanism and the effects of CYN on enzymes of the T(SH)2 redox metabolism including trypanothione reductase, trypanothione synthetase, glutathione-S-transferase, and ornithine decarboxylase are shown. A two step extraction protocol with subsequent UPLC-MS/MS analysis was established to quantify intra-cellular CYN, T(SH)2, GSH, as well as GS-CYN and T(S-CYN)2 adducts in intact T. b. rhodesiense cells. Within minutes of exposure to CYN, the cellular GSH and T(SH)2 pools were entirely depleted, and the parasites entered an apoptotic stage and died. CYN also showed inhibition of the ornithine decarboxylase similar to the positive control eflornithine. Significant interactions with the other enzymes involved in the T(SH)2 redox metabolism were not observed. Alongside many other biological activities sesquiterpene lactones including CYN have shown antitrypanosomal effects, which have been postulated to be linked to formation of Michael adducts with cellular nucleophiles. Here the interaction of CYN with biological thiols in a cellular system in general, and with trypanosomal T(SH)2 redox metabolism in particular, thus offering a molecular explanation for the antitrypanosomal activity is demonstrated. At the same time, the study provides a novel extraction and analysis protocol for components of the trypanosomal thiol metabolism. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. The promoter for a variant surface glycoprotein gene expression site in Trypanosoma brucei

    NARCIS (Netherlands)

    Zomerdijk, J. C.; Ouellette, M.; ten Asbroek, A. L.; Kieft, R.; Bommer, A. M.; Clayton, C. E.; Borst, P.

    1990-01-01

    The variant-specific surface glycoprotein (VSG) gene 221 of Trypanosoma brucei is transcribed as part of a 60 kb expression site (ES). We have identified the promoter controlling this multigene transcription unit by the use of 221 chromosome-enriched DNA libraries and VSG gene 221 expression site

  2. Procyclic Trypanosoma brucei do not use Krebs cycle activity for energy generation

    NARCIS (Netherlands)

    Weelden, van S.W.H.; Fast, B.; Vogt, A.; Meer, van der P.; Saas, J.; Hellemond, van J.J.; Tielens, A.G.M.; Boshart, M.

    2003-01-01

    The importance of a functional Krebs cycle for energy generation in the procyclic stage of Trypanosoma brucei was investigated under physiological conditions during logarithmic phase growth of a pleomorphic parasite strain. Wild type procyclic cells and mutants with targeted deletion of the gene

  3. Trypanocidal action of bisphosphonium salts through a mitochondrial target in bloodstream form Trypanosoma brucei

    Czech Academy of Sciences Publication Activity Database

    Alkhaldi, A.A.M.; Martínek, Jan; Panicucci, Brian; Dardonville, C.; Zíková, Alena; de Koning, H.P.

    2016-01-01

    Roč. 6, č. 1 (2016), s. 23-34 ISSN 2211-3207 R&D Projects: GA MŠk LL1205 Institutional support: RVO:60077344 Keywords : Trypanosoma brucei * mitochondrion * FoF1 ATPase * succinate dehydrogenase * phosphonium salt * SDH complex Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 4.809, year: 2016

  4. Deciphering RNA Regulatory Elements Involved in the Developmental and Environmental Gene Regulation of Trypanosoma brucei.

    Science.gov (United States)

    Gazestani, Vahid H; Salavati, Reza

    2015-01-01

    Trypanosoma brucei is a vector-borne parasite with intricate life cycle that can cause serious diseases in humans and animals. This pathogen relies on fine regulation of gene expression to respond and adapt to variable environments, with implications in transmission and infectivity. However, the involved regulatory elements and their mechanisms of actions are largely unknown. Here, benefiting from a new graph-based approach for finding functional regulatory elements in RNA (GRAFFER), we have predicted 88 new RNA regulatory elements that are potentially involved in the gene regulatory network of T. brucei. We show that many of these newly predicted elements are responsive to both transcriptomic and proteomic changes during the life cycle of the parasite. Moreover, we found that 11 of predicted elements strikingly resemble previously identified regulatory elements for the parasite. Additionally, comparison with previously predicted motifs on T. brucei suggested the superior performance of our approach based on the current limited knowledge of regulatory elements in T. brucei.

  5. Comparative analysis of the kinomes of three pathogenic trypanosomatids: Leishmania major, Trypanosoma brucei and Trypanosoma cruzi

    Directory of Open Access Journals (Sweden)

    Ward Pauline N

    2005-09-01

    Full Text Available Abstract Background The trypanosomatids Leishmania major, Trypanosoma brucei and Trypanosoma cruzi cause some of the most debilitating diseases of humankind: cutaneous leishmaniasis, African sleeping sickness, and Chagas disease. These protozoa possess complex life cycles that involve development in mammalian and insect hosts, and a tightly coordinated cell cycle ensures propagation of the highly polarized cells. However, the ways in which the parasites respond to their environment and coordinate intracellular processes are poorly understood. As a part of an effort to understand parasite signaling functions, we report the results of a genome-wide analysis of protein kinases (PKs of these three trypanosomatids. Results Bioinformatic searches of the trypanosomatid genomes for eukaryotic PKs (ePKs and atypical PKs (aPKs revealed a total of 176 PKs in T. brucei, 190 in T. cruzi and 199 in L. major, most of which are orthologous across the three species. This is approximately 30% of the number in the human host and double that of the malaria parasite, Plasmodium falciparum. The representation of various groups of ePKs differs significantly as compared to humans: trypanosomatids lack receptor-linked tyrosine and tyrosine kinase-like kinases, although they do possess dual-specificity kinases. A relative expansion of the CMGC, STE and NEK groups has occurred. A large number of unique ePKs show no strong affinity to any known group. The trypanosomatids possess few ePKs with predicted transmembrane domains, suggesting that receptor ePKs are rare. Accessory Pfam domains, which are frequently present in human ePKs, are uncommon in trypanosomatid ePKs. Conclusion Trypanosomatids possess a large set of PKs, comprising approximately 2% of each genome, suggesting a key role for phosphorylation in parasite biology. Whilst it was possible to place most of the trypanosomatid ePKs into the seven established groups using bioinformatic analyses, it has not been

  6. Triacylglycerol Storage in Lipid Droplets in Procyclic Trypanosoma brucei.

    Directory of Open Access Journals (Sweden)

    Stefan Allmann

    Full Text Available Carbon storage is likely to enable adaptation of trypanosomes to nutritional challenges or bottlenecks during their stage development and migration in the tsetse. Lipid droplets are candidates for this function. This report shows that feeding of T. brucei with oleate results in a 4-5 fold increase in the number of lipid droplets, as quantified by confocal fluorescence microscopy and by flow cytometry of BODIPY 493/503-stained cells. The triacylglycerol (TAG content also increased 4-5 fold, and labeled oleate is incorporated into TAG. Fatty acid carbon can thus be stored as TAG in lipid droplets under physiological growth conditions in procyclic T. brucei. β-oxidation has been suggested as a possible catabolic pathway for lipids in T. brucei. A single candidate gene, TFEα1 with coding capacity for a subunit of the trifunctional enzyme complex was identified. TFEα1 is expressed in procyclic T. brucei and present in glycosomal proteomes, Unexpectedly, a TFEα1 gene knock-out mutant still expressed wild-type levels of previously reported NADP-dependent 3-hydroxyacyl-CoA dehydrogenase activity, and therefore, another gene encodes this enzymatic activity. Homozygous Δtfeα1/Δtfeα1 null mutant cells show a normal growth rate and an unchanged glycosomal proteome in procyclic T. brucei. The decay kinetics of accumulated lipid droplets upon oleate withdrawal can be fully accounted for by the dilution effect of cell division in wild-type and Δtfeα1/Δtfeα1 cells. The absence of net catabolism of stored TAG in procyclic T. brucei, even under strictly glucose-free conditions, does not formally exclude a flux through TAG, in which biosynthesis equals catabolism. Also, the possibility remains that TAG catabolism is completely repressed by other carbon sources in culture media or developmentally activated in post-procyclic stages in the tsetse.

  7. Stearoyl-CoA desaturase is an essential enzyme for the parasitic protist Trypanosoma brucei

    Energy Technology Data Exchange (ETDEWEB)

    Alloatti, Andres [Instituto de Biologia Molecular y Celular de Rosario (IBR), CONICET, Facultad de Ciencias Bioquimicas y Farmaceuticas, Universidad Nacional de Rosario, Santa Fe (Argentina); Gupta, Shreedhara; Gualdron-Lopez, Melisa; Nguewa, Paul A. [Research Unit for Tropical Diseases, de Duve Institute and Laboratory of Biochemistry, Universite Catholique de Louvain, Brussels (Belgium); Altabe, Silvia G. [Instituto de Biologia Molecular y Celular de Rosario (IBR), CONICET, Facultad de Ciencias Bioquimicas y Farmaceuticas, Universidad Nacional de Rosario, Santa Fe (Argentina); Deumer, Gladys; Wallemacq, Pierre [Department of Clinical Chemistry, Cliniques Universitaires Saint-Luc, LTAP, Universite Catholique de Louvain, Brussels (Belgium); Michels, Paul A.M. [Research Unit for Tropical Diseases, de Duve Institute and Laboratory of Biochemistry, Universite Catholique de Louvain, Brussels (Belgium); Uttaro, Antonio D., E-mail: toniuttaro@yahoo.com.ar [Instituto de Biologia Molecular y Celular de Rosario (IBR), CONICET, Facultad de Ciencias Bioquimicas y Farmaceuticas, Universidad Nacional de Rosario, Santa Fe (Argentina)

    2011-08-26

    Highlights: {yields} Inhibiting {Delta}9 desaturase drastically changes T. brucei's fatty-acid composition. {yields} Isoxyl specifically inhibits the {Delta}9 desaturase causing a growth arrest. {yields} RNA interference of desaturase expression causes a similar effect. {yields} Feeding T. brucei-infected mice with Isoxyl decreases the parasitemia. {yields} 70% of Isoxyl-treated mice survived the trypanosome infection. -- Abstract: Trypanosoma brucei, the etiologic agent of sleeping sickness, is exposed to important changes in nutrients and temperature during its life cycle. To adapt to these changes, the fluidity of its membranes plays a crucial role. This fluidity, mediated by the fatty-acid composition, is regulated by enzymes named desaturases. We have previously shown that the oleoyl desaturase is essential for Trypanosoma cruzi and T. brucei. In this work, we present experimental support for the relevance of stearoyl-CoA desaturase (SCD) for T. brucei's survival, in both its insect or procyclic-form (PCF) and bloodstream-form (BSF) stages. We evaluated this essentiality in two different ways: by generating a SCD knocked-down parasite line using RNA interference, and by chemical inhibition of the enzyme with two compounds, Isoxyl and a thiastearate with the sulfur atom at position 10 (10-TS). The effective concentration for 50% growth inhibition (EC{sub 50}) of PCF was 1.0 {+-} 0.2 {mu}M for Isoxyl and 5 {+-} 2 {mu}M for 10-TS, whereas BSF appeared more susceptible with EC{sub 50} values 0.10 {+-} 0.03 {mu}M (Isoxyl) and 1.0 {+-} 0.6 {mu}M (10-TS). RNA interference showed to be deleterious for both stages of the parasite. In addition, T. brucei-infected mice were fed with Isoxyl, causing a reduction of the parasitemia and an increase of the rodents' survival.

  8. Stearoyl-CoA desaturase is an essential enzyme for the parasitic protist Trypanosoma brucei

    International Nuclear Information System (INIS)

    Alloatti, Andres; Gupta, Shreedhara; Gualdron-Lopez, Melisa; Nguewa, Paul A.; Altabe, Silvia G.; Deumer, Gladys; Wallemacq, Pierre; Michels, Paul A.M.; Uttaro, Antonio D.

    2011-01-01

    Highlights: → Inhibiting Δ9 desaturase drastically changes T. brucei's fatty-acid composition. → Isoxyl specifically inhibits the Δ9 desaturase causing a growth arrest. → RNA interference of desaturase expression causes a similar effect. → Feeding T. brucei-infected mice with Isoxyl decreases the parasitemia. → 70% of Isoxyl-treated mice survived the trypanosome infection. -- Abstract: Trypanosoma brucei, the etiologic agent of sleeping sickness, is exposed to important changes in nutrients and temperature during its life cycle. To adapt to these changes, the fluidity of its membranes plays a crucial role. This fluidity, mediated by the fatty-acid composition, is regulated by enzymes named desaturases. We have previously shown that the oleoyl desaturase is essential for Trypanosoma cruzi and T. brucei. In this work, we present experimental support for the relevance of stearoyl-CoA desaturase (SCD) for T. brucei's survival, in both its insect or procyclic-form (PCF) and bloodstream-form (BSF) stages. We evaluated this essentiality in two different ways: by generating a SCD knocked-down parasite line using RNA interference, and by chemical inhibition of the enzyme with two compounds, Isoxyl and a thiastearate with the sulfur atom at position 10 (10-TS). The effective concentration for 50% growth inhibition (EC 50 ) of PCF was 1.0 ± 0.2 μM for Isoxyl and 5 ± 2 μM for 10-TS, whereas BSF appeared more susceptible with EC 50 values 0.10 ± 0.03 μM (Isoxyl) and 1.0 ± 0.6 μM (10-TS). RNA interference showed to be deleterious for both stages of the parasite. In addition, T. brucei-infected mice were fed with Isoxyl, causing a reduction of the parasitemia and an increase of the rodents' survival.

  9. Serum Iron and Nitric Oxide Production in Trypanosoma brucei ...

    African Journals Online (AJOL)

    JTEkanem

    reduction in the serum iron status and a modulation of nitric oxide synthase activity of T. brucei infected rats. ... inflammation and tissue damage15. ... The serum iron level was determined ... concentration or of total nitrate and nitrite ... 15. 16. 17. 18. Days. S e ru m iro n lev e l mg. /ml. Infected treated. Infected untreated. 0.

  10. Exploring the Trypanosoma brucei Hsp83 potential as a target for structure guided drug design.

    Directory of Open Access Journals (Sweden)

    Juan Carlos Pizarro

    Full Text Available Human African trypanosomiasis is a neglected parasitic disease that is fatal if untreated. The current drugs available to eliminate the causative agent Trypanosoma brucei have multiple liabilities, including toxicity, increasing problems due to treatment failure and limited efficacy. There are two approaches to discover novel antimicrobial drugs--whole-cell screening and target-based discovery. In the latter case, there is a need to identify and validate novel drug targets in Trypanosoma parasites. The heat shock proteins (Hsp, while best known as cancer targets with a number of drug candidates in clinical development, are a family of emerging targets for infectious diseases. In this paper, we report the exploration of T. brucei Hsp83--a homolog of human Hsp90--as a drug target using multiple biophysical and biochemical techniques. Our approach included the characterization of the chemical sensitivity of the parasitic chaperone against a library of known Hsp90 inhibitors by means of differential scanning fluorimetry (DSF. Several compounds identified by this screening procedure were further studied using isothermal titration calorimetry (ITC and X-ray crystallography, as well as tested in parasite growth inhibitions assays. These experiments led us to the identification of a benzamide derivative compound capable of interacting with TbHsp83 more strongly than with its human homologs and structural rationalization of this selectivity. The results highlight the opportunities created by subtle structural differences to develop new series of compounds to selectively target the Trypanosoma brucei chaperone and effectively kill the sleeping sickness parasite.

  11. Identification of compounds with anti-proliferative activity against Trypanosoma brucei brucei strain 427 by a whole cell viability based HTS campaign.

    Directory of Open Access Journals (Sweden)

    Melissa L Sykes

    Full Text Available Human African Trypanosomiasis (HAT is caused by two trypanosome sub-species, Trypanosoma brucei rhodesiense and Trypanosoma brucei gambiense. Drugs available for the treatment of HAT have significant issues related to difficult administration regimes and limited efficacy across species and disease stages. Hence, there is considerable need to find new alternative and less toxic drugs. An approach to identify starting points for new drug candidates is high throughput screening (HTS of large compound library collections. We describe the application of an Alamar Blue based, 384-well HTS assay to screen a library of 87,296 compounds against the related trypanosome subspecies, Trypanosoma brucei brucei bloodstream form lister 427. Primary hits identified against T.b. brucei were retested and the IC(50 value compounds were estimated for T.b. brucei and a mammalian cell line HEK293, to determine a selectivity index for each compound. The screening campaign identified 205 compounds with greater than 10 times selectivity against T.b. brucei. Cluster analysis of these compounds, taking into account chemical and structural properties required for drug-like compounds, afforded a panel of eight compounds for further biological analysis. These compounds had IC(50 values ranging from 0.22 µM to 4 µM with associated selectivity indices ranging from 19 to greater than 345. Further testing against T.b. rhodesiense led to the selection of 6 compounds from 5 new chemical classes with activity against the causative species of HAT, which can be considered potential candidates for HAT early drug discovery. Structure activity relationship (SAR mining revealed components of those hit compound structures that may be important for biological activity. Four of these compounds have undergone further testing to 1 determine whether they are cidal or static in vitro at the minimum inhibitory concentration (MIC, and 2 estimate the time to kill.

  12. Antitrypanosomal effect of methanolic extract of Zingiber officinale (ginger on Trypanosoma brucei brucei-infected Wistar mice

    Directory of Open Access Journals (Sweden)

    P. I. Kobo

    2014-10-01

    Full Text Available Aim: The study was carried out to determine the in vivo antitrypanosomal effect of methanolic extract of Zingiber officinale (ginger in Trypanosoma brucei brucei-infected mice. Materials and Methods: Twenty-five mice were randomly allocated into five groups of five animals each. Group I and II were given Tween 80 (1 ml/kg and diminazene aceturate (3.5 mg/kg to serve as untreated and treated controls, respectively. Groups III-V received the extract at 200, 400 and 800 mg/kg body weight, respectively. All treatments were given for 6 consecutive days and through the oral route. The mean body weight, mean survival period and daily level of parasitaemia were evaluated. Results: Acute toxicity showed the extract to be relatively safe. There was an insignificant increase in body weight and survival rate of mice treated with the extract. The level of parasitaemia in the extract treated groups was decreased. Conclusion: This study shows the in vivo potential of methanolic extract of Z. officinale in the treatment of trypanosomiasis.

  13. Neural Damage in Experimental Trypanosoma brucei gambiense Infection: The Suprachiasmatic Nucleus

    Directory of Open Access Journals (Sweden)

    Chiara Tesoriero

    2018-02-01

    Full Text Available Trypanosoma brucei (T. b. gambiense is the parasite subspecies responsible for most reported cases of human African trypanosomiasis (HAT or sleeping sickness. This severe infection leads to characteristic disruption of the sleep-wake cycle, recalling attention on the circadian timing system. Most animal models of the disease have been hitherto based on infection of laboratory rodents with the T. b. brucei subspecies, which is not infectious to humans. In these animal models, functional, rather than structural, alterations of the master circadian pacemaker, the hypothalamic suprachiasmatic nucleus (SCN, have been reported. Information on the SCN after infection with the human pathogenic T. b. gambiense is instead lacking. The present study was aimed at the examination of the SCN after T. b. gambiense infection of a susceptible rodent, the multimammate mouse, Mastomys natalensis, compared with T. b. brucei infection of the same host species. The animals were examined at 4 and 8 weeks post-infection, when parasites (T. b. gambiense or T. b. brucei were detected in the brain parenchyma, indicating that the disease was in the encephalitic stage. Neuron and astrocyte changes were examined with Nissl staining, immunophenotyping and quantitative analyses. Interestingly, significant neuronal loss (about 30% reduction was documented in the SCN during the progression of T. b. gambiense infection. No significant neuronal density changes were found in the SCN of T. b. brucei-infected animals. Neuronal cell counts in the hippocampal dentate gyrus of T. b. gambiense-infected M. natalensis did not point out significant changes, indicating that no widespread neuron loss had occurred in the brain. Marked activation of astrocytes was detected in the SCN after both T. b. gambiense and T. b. brucei infections. Altogether the findings reveal that neurons of the biological clock are highly susceptible to the infection caused by human pathogenic African trypanosomes

  14. Interactions among Trypanosoma brucei RAD51 paralogues in DNA repair and antigenic variation

    Science.gov (United States)

    Dobson, Rachel; Stockdale, Christopher; Lapsley, Craig; Wilkes, Jonathan; McCulloch, Richard

    2011-01-01

    Homologous recombination in Trypanosoma brucei is used for moving variant surface glycoprotein (VSG) genes into expression sites during immune evasion by antigenic variation. A major route for such VSG switching is gene conversion reactions in which RAD51, a universally conserved recombinase, catalyses homology-directed strand exchange. In any eukaryote, RAD51-directed strand exchange in vivo is mediated by further factors, including RAD51-related proteins termed Rad51 paralogues. These appear to be ubiquitously conserved, although their detailed roles in recombination remain unclear. In T. brucei, four putative RAD51 paralogue genes have been identified by sequence homology. Here we show that all four RAD51 paralogues act in DNA repair, recombination and RAD51 subnuclear dynamics, though not equivalently, while mutation of only one RAD51 paralogue gene significantly impedes VSG switching. We also show that the T. brucei RAD51 paralogues interact, and that the complexes they form may explain the distinct phenotypes of the mutants as well as observed expression interdependency. Finally, we document the Rad51 paralogues that are encoded by a wide range of protists, demonstrating that the Rad51 paralogue repertoire in T. brucei is unusually large among microbial eukaryotes and that one member of the protein family corresponds with a key, conserved eukaryotic Rad51 paralogue. PMID:21615552

  15. A haptoglobin-hemoglobin receptor conveys innate immunity to Trypanosoma brucei in humans

    DEFF Research Database (Denmark)

    Vanhollebeke, Benoit; De Muylder, Géraldine; Nielsen, Marianne J

    2008-01-01

    The protozoan parasite Trypanosoma brucei is lysed by apolipoprotein L-I, a component of human high-density lipoprotein (HDL) particles that are also characterized by the presence of haptoglobin-related protein. We report that this process is mediated by a parasite glycoprotein receptor, which...... binds the haptoglobin-hemoglobin complex with high affinity for the uptake and incorporation of heme into intracellular hemoproteins. In mice, this receptor was required for optimal parasite growth and the resistance of parasites to the oxidative burst by host macrophages. In humans, the trypanosome...... immunity against the parasite....

  16. Metabolic reprogramming during the Trypanosoma brucei life cycle [version 2; referees: 4 approved

    Directory of Open Access Journals (Sweden)

    Terry K. Smith

    2017-05-01

    Full Text Available Cellular metabolic activity is a highly complex, dynamic, regulated process that is influenced by numerous factors, including extracellular environmental signals, nutrient availability and the physiological and developmental status of the cell. The causative agent of sleeping sickness, Trypanosoma brucei, is an exclusively extracellular protozoan parasite that encounters very different extracellular environments during its life cycle within the mammalian host and tsetse fly insect vector. In order to meet these challenges, there are significant alterations in the major energetic and metabolic pathways of these highly adaptable parasites. This review highlights some of these metabolic changes in this early divergent eukaryotic model organism.

  17. Metabolic reprogramming during the Trypanosoma brucei life cycle [version 1; referees: 4 approved

    Directory of Open Access Journals (Sweden)

    Terry K. Smith

    2017-05-01

    Full Text Available Cellular metabolic activity is a highly complex, dynamic, regulated process that is influenced by numerous factors, including extracellular environmental signals, nutrient availability and the physiological and developmental status of the cell. The causative agent of sleeping sickness, Trypanosoma brucei, is an exclusively extracellular protozoan parasite that encounters very different extracellular environments during its life cycle within the mammalian host and tsetse fly insect vector. In order to meet these challenges, there are significant alterations in the major energetic and metabolic pathways of these highly adaptable parasites. This review highlights some of these metabolic changes in this early divergent eukaryotic model organism.

  18. In vitro susceptibility of Trypanosoma brucei brucei to selected essential oils and their major components.

    Science.gov (United States)

    Costa, Sonya; Cavadas, Cláudia; Cavaleiro, Carlos; Salgueiro, Lígia; do Céu Sousa, Maria

    2018-07-01

    Aiming for discovering effective and harmless antitrypanosomal agents, 17 essential oils and nine major components were screened for their effects on T. b. brucei. The essential oils were obtained by hydrodistillation from fresh plant material and analyzed by GC and GC-MS. The trypanocidal activity was assessed using blood stream trypomastigotes cultures of T. b. brucei and the colorimetric resazurin method. The MTT test was used to assess the cytotoxicity of essential oils on macrophage cells and Selectivity Indexes were calculated. Of the 17 essential oils screened three showed high trypanocidal activity (IC 50  oils had no cytotoxic effects on macrophage cells showing the highest values of Selectivity Index (63.4, 9.0 and 11.8, respectively). The oils of Distichoselinum tenuifolium, Lavandula viridis, Origanum virens, Seseli tortuosom, Syzygium aromaticum, and Thymbra capitata also exhibited activity (IC 50 of 10-25 μg/mL) but showed cytotoxicity on macrophages. Of the nine compounds tested, α-pinene (IC 50 of 2.9 μg/mL) and citral (IC 50 of 18.9 μg/mL) exhibited the highest anti-trypanosomal activities. Citral is likely the active component of C. citratus and α-pinene is responsible for the antitrypanosomal effects of J. oxycedrus. The present work leads us to propose the J. oxycedrus, C. citratus and L. luisieri oils as valuable sources of new molecules for African Sleeping Sickness treatment. Copyright © 2018 Elsevier Inc. All rights reserved.

  19. THE CYTOSOLIC AND GLYCOSOMAL GLYCERALDEHYDE-3-PHOSPHATE DEHYDROGENASE FROM TRYPANOSOMA-BRUCEI - KINETIC-PROPERTIES AND COMPARISON WITH HOMOLOGOUS ENZYMES

    NARCIS (Netherlands)

    LAMBEIR, AM; LOISEAU, AM; KUNTZ, DA; VELLIEUX, FM; MICHELS, PAM; OPPERDOES, FR

    1991-01-01

    The protozoan haemoflagellate Trypanosoma brucei has two NAD-dependent glyceraldehyde-3-phosphate dehydrogenase isoenzymes, each with a different localization within the cell. One isoenzyme is found in the cytosol, as in other eukaryotes, while the other is found in the glycosome, a microbody-like

  20. Mitochondrial translation factors of Trypanosoma brucei: elongation factor-Tu has a unique subdomain that is essential for its function

    Czech Academy of Sciences Publication Activity Database

    Cristodero, M.; Mani, J.; Oeljeklaus, S.; Aeberhard, L.; Hashimi, Hassan; Ramrath, D.J.F.; Lukeš, Julius; Warscheid, B.; Schneider, A.

    2013-01-01

    Roč. 90, č. 4 (2013), s. 744-755 ISSN 0950-382X R&D Projects: GA ČR GAP305/12/2261 Institutional support: RVO:60077344 Keywords : mitochondrial translation * Trypanosoma brucei * EF-Tu Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 5.026, year: 2013

  1. Adaptations in the glucose metabolism of procyclic Trypanosoma brucei isolates from Tsetse flies and during differentiation of bloodstream forms.

    NARCIS (Netherlands)

    van Grinsven, K.W.A.; van den Abbeele, J.; van den Bossche, P.; van Hellemond, J.J.; Tielens, A.G.M.

    2009-01-01

    Procyclic forms of Trypanosoma brucei isolated from the midguts of infected tsetse flies, or freshly transformed from a strain that is close to field isolates, do not use a complete Krebs cycle. Furthermore, short stumpy bloodstream forms produce acetate and are apparently metabolically preadapted

  2. Structure of a Trypanosoma brucei α/β-hydrolase fold protein with unknown function

    International Nuclear Information System (INIS)

    Merritt, Ethan A.; Holmes, Margaret; Buckner, Frederick S.; Van Voorhis, Wesley C.; Quartly, Erin; Phizicky, Eric M.; Lauricella, Angela; Luft, Joseph; DeTitta, George; Neely, Helen; Zucker, Frank; Hol, Wim G. J.

    2008-01-01

    T. brucei gene Tb10.6k15.0140 codes for an α/β-hydrolase fold protein of unknown function. The 2.2 Å crystal structure shows that members of this sequence family retain a conserved Ser residue at the expected site of a catalytic nucleophile, but that trypanosomatid sequences lack structural homologs for the other expected residues of the catalytic triad. The structure of a structural genomics target protein, Tbru020260AAA from Trypanosoma brucei, has been determined to a resolution of 2.2 Å using multiple-wavelength anomalous diffraction at the Se K edge. This protein belongs to Pfam sequence family PF08538 and is only distantly related to previously studied members of the α/β-hydrolase fold family. Structural superposition onto representative α/β-hydrolase fold proteins of known function indicates that a possible catalytic nucleophile, Ser116 in the T. brucei protein, lies at the expected location. However, the present structure and by extension the other trypanosomatid members of this sequence family have neither sequence nor structural similarity at the location of other active-site residues typical for proteins with this fold. Together with the presence of an additional domain between strands β6 and β7 that is conserved in trypanosomatid genomes, this suggests that the function of these homologs has diverged from other members of the fold family

  3. Identification of TOEFAZ1-interacting proteins reveals key regulators of Trypanosoma brucei cytokinesis.

    Science.gov (United States)

    Hilton, Nicholas A; Sladewski, Thomas E; Perry, Jenna A; Pataki, Zemplen; Sinclair-Davis, Amy N; Muniz, Richard S; Tran, Holly L; Wurster, Jenna I; Seo, Jiwon; de Graffenried, Christopher L

    2018-05-21

    The protist parasite Trypanosoma brucei is an obligate extracellular pathogen that retains its highly-polarized morphology during cell division and has evolved a novel cytokinetic process independent of non-muscle myosin II. The polo-like kinase homolog TbPLK is essential for transmission of cell polarity during division and for cytokinesis. We previously identified a putative TbPLK substrate named Tip of the Extending FAZ 1 (TOEFAZ1) as an essential kinetoplastid-specific component of the T. brucei cytokinetic machinery. We performed a proximity-dependent biotinylation (BioID) screen using TOEFAZ1 as a means to identify additional proteins that are involved in cytokinesis. Using quantitative proteomic methods, we identified nearly 500 TOEFAZ1-proximal proteins and characterized 59 in further detail. Among the candidates, we identified an essential putative phosphatase that regulates the expression level and localization of both TOEFAZ1 and TbPLK, a previously uncharacterized protein that is necessary for the assembly of a new cell posterior, and a microtubule plus-end directed orphan kinesin that is required for completing cleavage furrow ingression. The identification of these proteins provides new insight into T. brucei cytokinesis and establishes TOEFAZ1 as a key component of this essential and uniquely-configured process in kinetoplastids. This article is protected by copyright. All rights reserved. © 2018 John Wiley & Sons Ltd.

  4. Novel sterol metabolic network of Trypanosoma brucei procyclic and bloodstream forms

    Science.gov (United States)

    Nes, Craigen R.; Singha, Ujjal K.; Liu, Jialin; Ganapathy, Kulothungan; Villalta, Fernando; Waterman, Michael R.; Lepesheva, Galina I.; Chaudhuri, Minu; Nes, W. David

    2012-01-01

    Trypanosoma brucei is the protozoan parasite that causes African trypanosomiasis, a neglected disease of people and animals. Co-metabolite analysis, labelling studies using [methyl-2H3]-methionine and substrate/product specificities of the cloned 24-SMT (sterol C24-methyltransferase) and 14-SDM (sterol C14-demethylase) from T. brucei afforded an uncommon sterol metabolic network that proceeds from lanosterol and 31-norlanosterol to ETO [ergosta-5,7,25(27)-trien-3β-ol], 24-DTO [dimethyl ergosta-5,7,25(27)-trienol] and ergosterol [ergosta-5,7,22(23)-trienol]. To assess the possible carbon sources of ergosterol biosynthesis, specifically 13C-labelled specimens of lanosterol, acetate, leucine and glucose were administered to T. brucei and the 13C distributions found were in accord with the operation of the acetate–mevalonate pathway, with leucine as an alternative precursor, to ergostenols in either the insect or bloodstream form. In searching for metabolic signatures of procyclic cells, we observed that the 13C-labelling treatments induce fluctuations between the acetyl-CoA (mitochondrial) and sterol (cytosolic) synthetic pathways detected by the progressive increase in 13C-ergosterol production (control sterol synthesis that is further fluctuated in the cytosol, yielding distinct sterol profiles in relation to cell demands on growth. PMID:22176028

  5. Adenylate Cyclases of Trypanosoma brucei, Environmental Sensors and Controllers of Host Innate Immune Response.

    Science.gov (United States)

    Salmon, Didier

    2018-04-25

    Trypanosoma brucei , etiological agent of Sleeping Sickness in Africa, is the prototype of African trypanosomes, protozoan extracellular flagellate parasites transmitted by saliva ( Salivaria ). In these parasites the molecular controls of the cell cycle and environmental sensing are elaborate and concentrated at the flagellum. Genomic analyses suggest that these parasites appear to differ considerably from the host in signaling mechanisms, with the exception of receptor-type adenylate cyclases (AC) that are topologically similar to receptor-type guanylate cyclase (GC) of higher eukaryotes but control a new class of cAMP targets of unknown function, the cAMP response proteins (CARPs), rather than the classical protein kinase A cAMP effector (PKA). T. brucei possesses a large polymorphic family of ACs, mainly associated with the flagellar membrane, and these are involved in inhibition of the innate immune response of the host prior to the massive release of immunomodulatory factors at the first peak of parasitemia. Recent evidence suggests that in T. brucei several insect-specific AC isoforms are involved in social motility, whereas only a few AC isoforms are involved in cytokinesis control of bloodstream forms, attesting that a complex signaling pathway is required for environmental sensing. In this review, after a general update on cAMP signaling pathway and the multiple roles of cAMP, I summarize the existing knowledge of the mechanisms by which pathogenic microorganisms modulate cAMP levels to escape immune defense.

  6. Adenylate Cyclases of Trypanosoma brucei, Environmental Sensors and Controllers of Host Innate Immune Response

    Directory of Open Access Journals (Sweden)

    Didier Salmon

    2018-04-01

    Full Text Available Trypanosoma brucei, etiological agent of Sleeping Sickness in Africa, is the prototype of African trypanosomes, protozoan extracellular flagellate parasites transmitted by saliva (Salivaria. In these parasites the molecular controls of the cell cycle and environmental sensing are elaborate and concentrated at the flagellum. Genomic analyses suggest that these parasites appear to differ considerably from the host in signaling mechanisms, with the exception of receptor-type adenylate cyclases (AC that are topologically similar to receptor-type guanylate cyclase (GC of higher eukaryotes but control a new class of cAMP targets of unknown function, the cAMP response proteins (CARPs, rather than the classical protein kinase A cAMP effector (PKA. T. brucei possesses a large polymorphic family of ACs, mainly associated with the flagellar membrane, and these are involved in inhibition of the innate immune response of the host prior to the massive release of immunomodulatory factors at the first peak of parasitemia. Recent evidence suggests that in T. brucei several insect-specific AC isoforms are involved in social motility, whereas only a few AC isoforms are involved in cytokinesis control of bloodstream forms, attesting that a complex signaling pathway is required for environmental sensing. In this review, after a general update on cAMP signaling pathway and the multiple roles of cAMP, I summarize the existing knowledge of the mechanisms by which pathogenic microorganisms modulate cAMP levels to escape immune defense.

  7. Investigating the Chaperone Properties of a Novel Heat Shock Protein, Hsp70.c, from Trypanosoma brucei

    Directory of Open Access Journals (Sweden)

    Adélle Burger

    2014-01-01

    Full Text Available The neglected tropical disease, African Trypanosomiasis, is fatal and has a crippling impact on economic development. Heat shock protein 70 (Hsp70 is an important molecular chaperone that is expressed in response to stress and Hsp40 acts as its co-chaperone. These proteins play a wide range of roles in the cell and they are required to assist the parasite as it moves from a cold blooded insect vector to a warm blooded mammalian host. A novel cytosolic Hsp70, from Trypanosoma brucei, TbHsp70.c, contains an acidic substrate binding domain and lacks the C-terminal EEVD motif. The ability of a cytosolic Hsp40 from Trypanosoma brucei J protein 2, Tbj2, to function as a co-chaperone of TbHsp70.c was investigated. The main objective was to functionally characterize TbHsp70.c to further expand our knowledge of parasite biology. TbHsp70.c and Tbj2 were heterologously expressed and purified and both proteins displayed the ability to suppress aggregation of thermolabile MDH and chemically denatured rhodanese. ATPase assays revealed a 2.8-fold stimulation of the ATPase activity of TbHsp70.c by Tbj2. TbHsp70.c and Tbj2 both demonstrated chaperone activity and Tbj2 functions as a co-chaperone of TbHsp70.c. In vivo heat stress experiments indicated upregulation of the expression levels of TbHsp70.c.

  8. Chemical characterisation of Nigerian red propolis and its biological activity against Trypanosoma Brucei.

    Science.gov (United States)

    Omar, Ruwida M K; Igoli, John; Gray, Alexander I; Ebiloma, Godwin Unekwuojo; Clements, Carol; Fearnley, James; Ebel, Ru Angeli Edrada; Zhang, Tong; De Koning, Harry P; Watson, David G

    2016-01-01

    A previous study showed the unique character of Nigerian red propolis from Rivers State, Nigeria (RSN), with regards to chemical composition and activity against Trypanosoma brucei in comparison with other African propolis. To carry out fractionation and biological testing of Nigerian propolis in order to isolate compounds with anti-trypanosomal activity. To compare the composition of the RSN propolis with the composition of Brazilian red propolis. Profiling was carried out using HPLC-UV-ELSD and HPLC-Orbitrap-FTMS on extracts of two samples collected from RSN with data extraction using MZmine software. Isolation was carried out by normal phase and reversed phase MPLC. Elucidation of the compounds with a purity > 95% was performed by 1D/2D NMR HRMS and HRLC-MS(n) . Ten phenolic compounds were isolated or in the case of liquiritigenin partially purified. Data for nine of these correlated with literature reports of known compounds i.e. one isoflavanone, calycosin (1); two flavanones, liquiritigenin (2) and pinocembrin (5); an isoflavan, vestitol (3); a pterocarpan, medicarpin (4); two prenylflavanones, 8-prenylnaringenin (7) and 6-prenylnaringenin (8); and two geranyl flavonoids, propolin D (9) and macarangin (10). The tenth was elucidated as a previously undescribed dihydrobenzofuran (6). The isolated compounds were tested against Trypanosoma brucei and displayed moderate to high activity. Some of the compounds tested had similar activity against wild type T. brucei and two strains displaying pentamidine resistance. Nigerian propolis from RSN has some similarities with Brazilian red propolis. The propolis displayed anti-trypanosomal activity at a potentially useful level. Copyright © 2015 John Wiley & Sons, Ltd.

  9. Targeting the HSP60/10 chaperonin systems of Trypanosoma brucei as a strategy for treating African sleeping sickness.

    Science.gov (United States)

    Abdeen, Sanofar; Salim, Nilshad; Mammadova, Najiba; Summers, Corey M; Goldsmith-Pestana, Karen; McMahon-Pratt, Diane; Schultz, Peter G; Horwich, Arthur L; Chapman, Eli; Johnson, Steven M

    2016-11-01

    Trypanosoma brucei are protozoan parasites that cause African sleeping sickness in humans (also known as Human African Trypanosomiasis-HAT). Without treatment, T. brucei infections are fatal. There is an urgent need for new therapeutic strategies as current drugs are toxic, have complex treatment regimens, and are becoming less effective owing to rising antibiotic resistance in parasites. We hypothesize that targeting the HSP60/10 chaperonin systems in T. brucei is a viable anti-trypanosomal strategy as parasites rely on these stress response elements for their development and survival. We recently discovered several hundred inhibitors of the prototypical HSP60/10 chaperonin system from Escherichia coli, termed GroEL/ES. One of the most potent GroEL/ES inhibitors we discovered was compound 1. While examining the PubChem database, we found that a related analog, 2e-p, exhibited cytotoxicity to Leishmania major promastigotes, which are trypanosomatids highly related to Trypanosoma brucei. Through initial counter-screening, we found that compounds 1 and 2e-p were also cytotoxic to Trypanosoma brucei parasites (EC 50 =7.9 and 3.1μM, respectively). These encouraging initial results prompted us to develop a library of inhibitor analogs and examine their anti-parasitic potential in vitro. Of the 49 new chaperonin inhibitors developed, 39% exhibit greater cytotoxicity to T. brucei parasites than parent compound 1. While many analogs exhibit moderate cytotoxicity to human liver and kidney cells, we identified molecular substructures to pursue for further medicinal chemistry optimization to increase the therapeutic windows of this novel class of chaperonin-targeting anti-parasitic candidates. An intriguing finding from this study is that suramin, the first-line drug for treating early stage T. brucei infections, is also a potent inhibitor of GroEL/ES and HSP60/10 chaperonin systems. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Essential Assembly Factor Rpf2 Forms Novel Interactions within the 5S RNP in Trypanosoma brucei.

    Science.gov (United States)

    Kamina, Anyango D; Jaremko, Daniel; Christen, Linda; Williams, Noreen

    2017-01-01

    Ribosome biogenesis is a highly complex and conserved cellular process that is responsible for making ribosomes. During this process, there are several assembly steps that function as regulators to ensure proper ribosome formation. One of these steps is the assembly of the 5S ribonucleoprotein particle (5S RNP) in the central protuberance of the 60S ribosomal subunit. In eukaryotes, the 5S RNP is composed of 5S rRNA, ribosomal proteins L5 and L11, and assembly factors Rpf2 and Rrs1. Our laboratory previously showed that in Trypanosoma brucei , the 5S RNP is composed of 5S rRNA, L5, and trypanosome-specific RNA binding proteins P34 and P37. In this study, we characterize an additional component of the 5S RNP, the T. brucei homolog of Rpf2. This is the first study to functionally characterize interactions mediated by Rpf2 in an organism other than fungi. T . brucei Rpf2 (TbRpf2) was identified from tandem affinity purification using extracts prepared from protein A-tobacco etch virus (TEV)-protein C (PTP)-tagged L5, P34, and P37 cell lines, followed by mass spectrometry analysis. We characterized the binding interactions between TbRpf2 and the previously characterized members of the T. brucei 5S RNP. Our studies show that TbRpf2 mediates conserved binding interactions with 5S rRNA and L5 and that TbRpf2 also interacts with trypanosome-specific proteins P34 and P37. We performed RNA interference (RNAi) knockdown of TbRpf2 and showed that this protein is essential for the survival of the parasites and is critical for proper ribosome formation. These studies provide new insights into a critical checkpoint in the ribosome biogenesis pathway in T. brucei . IMPORTANCE Trypanosoma brucei is the parasitic protozoan that causes African sleeping sickness. Ribosome assembly is essential for the survival of this parasite through the different host environments it encounters during its life cycle. The assembly of the 5S ribonucleoprotein particle (5S RNP) functions as one of

  11. A Trypanosoma brucei kinesin heavy chain promotes parasite growth by triggering host arginase activity.

    Directory of Open Access Journals (Sweden)

    Géraldine De Muylder

    2013-10-01

    Full Text Available In order to promote infection, the blood-borne parasite Trypanosoma brucei releases factors that upregulate arginase expression and activity in myeloid cells.By screening a cDNA library of T. brucei with an antibody neutralizing the arginase-inducing activity of parasite released factors, we identified a Kinesin Heavy Chain isoform, termed TbKHC1, as responsible for this effect. Following interaction with mouse myeloid cells, natural or recombinant TbKHC1 triggered SIGN-R1 receptor-dependent induction of IL-10 production, resulting in arginase-1 activation concomitant with reduction of nitric oxide (NO synthase activity. This TbKHC1 activity was IL-4Rα-independent and did not mirror M2 activation of myeloid cells. As compared to wild-type T. brucei, infection by TbKHC1 KO parasites was characterized by strongly reduced parasitaemia and prolonged host survival time. By treating infected mice with ornithine or with NO synthase inhibitor, we observed that during the first wave of parasitaemia the parasite growth-promoting effect of TbKHC1-mediated arginase activation resulted more from increased polyamine production than from reduction of NO synthesis. In late stage infection, TbKHC1-mediated reduction of NO synthesis appeared to contribute to liver damage linked to shortening of host survival time.A kinesin heavy chain released by T. brucei induces IL-10 and arginase-1 through SIGN-R1 signaling in myeloid cells, which promotes early trypanosome growth and favors parasite settlement in the host. Moreover, in the late stage of infection, the inhibition of NO synthesis by TbKHC1 contributes to liver pathogenicity.

  12. Neural Damage in Experimental Trypanosoma brucei gambiense Infection: Hypothalamic Peptidergic Sleep and Wake-Regulatory Neurons

    Directory of Open Access Journals (Sweden)

    Claudia Laperchia

    2018-02-01

    Full Text Available Neuron populations of the lateral hypothalamus which synthesize the orexin (OX/hypocretin or melanin-concentrating hormone (MCH peptides play crucial, reciprocal roles in regulating wake stability and sleep. The disease human African trypanosomiasis (HAT, also called sleeping sickness, caused by extracellular Trypanosoma brucei (T. b. parasites, leads to characteristic sleep-wake cycle disruption and narcoleptic-like alterations of the sleep structure. Previous studies have revealed damage of OX and MCH neurons during systemic infection of laboratory rodents with the non-human pathogenic T. b. brucei subspecies. No information is available, however, on these peptidergic neurons after systemic infection with T. b. gambiense, the etiological agent of 97% of HAT cases. The present study was aimed at the investigation of immunohistochemically characterized OX and MCH neurons after T. b. gambiense or T. b. brucei infection of a susceptible rodent, the multimammate mouse, Mastomysnatalensis. Cell counts and evaluation of OX fiber density were performed at 4 and 8 weeks post-infection, when parasites had entered the brain parenchyma from the periphery. A significant decrease of OX neurons (about 44% reduction and MCH neurons (about 54% reduction was found in the lateral hypothalamus and perifornical area at 8 weeks in T. b. gambiense-infected M. natalensis. A moderate decrease (21% and 24% reduction, respectively, which did not reach statistical significance, was found after T. b. brucei infection. In two key targets of diencephalic orexinergic innervation, the peri-suprachiasmatic nucleus (SCN region and the thalamic paraventricular nucleus (PVT, densitometric analyses showed a significant progressive decrease in the density of orexinergic fibers in both infection paradigms, and especially during T. b. gambiense infection. Altogether the findings provide novel information showing that OX and MCH neurons are highly vulnerable to chronic

  13. An Atypical Mitochondrial Carrier That Mediates Drug Action in Trypanosoma brucei.

    Directory of Open Access Journals (Sweden)

    Juan P de Macêdo

    2015-05-01

    Full Text Available Elucidating the mechanism of action of trypanocidal compounds is an important step in the development of more efficient drugs against Trypanosoma brucei. In a screening approach using an RNAi library in T. brucei bloodstream forms, we identified a member of the mitochondrial carrier family, TbMCP14, as a prime candidate mediating the action of a group of anti-parasitic choline analogs. Depletion of TbMCP14 by inducible RNAi in both bloodstream and procyclic forms increased resistance of parasites towards the compounds by 7-fold and 3-fold, respectively, compared to uninduced cells. In addition, down-regulation of TbMCP14 protected bloodstream form mitochondria from a drug-induced decrease in mitochondrial membrane potential. Conversely, over-expression of the carrier in procyclic forms increased parasite susceptibility more than 13-fold. Metabolomic analyses of parasites over-expressing TbMCP14 showed increased levels of the proline metabolite, pyrroline-5-carboxylate, suggesting a possible involvement of TbMCP14 in energy production. The generation of TbMCP14 knock-out parasites showed that the carrier is not essential for survival of T. brucei bloodstream forms, but reduced parasite proliferation under standard culture conditions. In contrast, depletion of TbMCP14 in procyclic forms resulted in growth arrest, followed by parasite death. The time point at which parasite proliferation stopped was dependent on the major energy source, i.e. glucose versus proline, in the culture medium. Together with our findings that proline-dependent ATP production in crude mitochondria from TbMCP14-depleted trypanosomes was reduced compared to control mitochondria, the study demonstrates that TbMCP14 is involved in energy production in T. brucei. Since TbMCP14 belongs to a trypanosomatid-specific clade of mitochondrial carrier family proteins showing very poor similarity to mitochondrial carriers of mammals, it may represent an interesting target for drug

  14. Secondary Metabolites from Vietnamese Marine Invertebrates with Activity against Trypanosoma brucei and T. cruzi

    Directory of Open Access Journals (Sweden)

    Nguyen Phuong Thao

    2014-06-01

    Full Text Available Marine-derived natural products from invertebrates comprise an extremely diverse and promising source of the compounds from a wide variety of structural classes. This study describes the discovery of five marine natural products with activity against Trypanosoma species by natural product library screening using whole cell in vitro assays. We investigated the anti-trypanosomal activity of the extracts from the soft corals and echinoderms living in Vietnamese seas. Of the samples screened, the methanolic extracts of several marine organisms exhibited potent activities against cultures of Trypanosoma brucei and T. cruzi (EC50 < 5.0 μg/mL. Among the compounds isolated from these extracts, laevigatol B (1 from Lobophytum crassum and L. laevigatum, (24S-ergost-4-ene-3-one (2 from Sinularia dissecta, astropectenol A (3 from Astropecten polyacanthus, and cholest-8-ene-3β,5α,6β,7α-tetraol (4 from Diadema savignyi showed inhibitory activity against T. brucei with EC50 values ranging from 1.57 ± 0.14 to 14.6 ± 1.36 μM, relative to the positive control, pentamidine (EC50 = 0.015 ± 0.003 μM. Laevigatol B (1 and 5α-cholest-8(14-ene-3β,7α-diol (5 exhibited also significant inhibitory effects on T. cruzi. The cytotoxic activity of the pure compounds on mammalian cells was also assessed and found to be insignificant in all cases. This is the first report on the inhibitory effects of marine organisms collected in Vietnamese seas against Trypanosoma species responsible for neglected tropical diseases.

  15. Characterization of a Novel Class I Transcription Factor A (CITFA) Subunit That Is Indispensable for Transcription by the Multifunctional RNA Polymerase I of Trypanosoma brucei

    KAUST Repository

    Nguyen, T. N.; Nguyen, B. N.; Lee, J. H.; Panigrahi, A. K.; Gunzl, A.

    2012-01-01

    Trypanosoma brucei is the only organism known to have evolved a multifunctional RNA polymerase I (pol I) system that is used to express the parasite's ribosomal RNAs, as well as its major cell surface antigens, namely, the variant surface

  16. Central Nervous System Parasitosis and Neuroinflammation Ameliorated by Systemic IL-10 Administration in Trypanosoma brucei-Infected Mice.

    Directory of Open Access Journals (Sweden)

    Jean Rodgers

    Full Text Available Invasion of the central nervous system (CNS by African trypanosomes represents a critical step in the development of human African trypanosomiasis. In both clinical cases and experimental mouse infections it has been demonstrated that predisposition to CNS invasion is associated with a type 1 systemic inflammatory response. Using the Trypanosoma brucei brucei GVR35 experimental infection model, we demonstrate that systemic delivery of the counter-inflammatory cytokine IL-10 lowers plasma IFN-γ and TNF-α concentrations, CNS parasitosis and ameliorates neuro-inflammatory pathology and clinical symptoms of disease. The results provide evidence that CNS invasion may be susceptible to immunological attenuation.

  17. Enhanced succinic acid production in Aspergillus saccharolyticus by heterologous expression of fumarate reductase from Trypanosoma brucei

    DEFF Research Database (Denmark)

    Yang, Lei; Lübeck, Mette; Ahring, Birgitte K.

    2015-01-01

    production medium as well as the complete medium, but the measured enzyme activities were different depending on the media. Furthermore, a soluble NADH-dependent fumarate reductase gene (frd) from Trypanosoma brucei was inserted and expressed in A. saccharolyticus. The expression of the frd gene led......Aspergillus saccharolyticus exhibits great potential as a cell factory for industrial production of dicarboxylic acids. In the analysis of the organic acid profile, A. saccharolyticus was cultivated in an acid production medium using two different pH conditions. The specific activities...... of the enzymes, pyruvate carboxylase (PYC), malate dehydrogenase (MDH), and fumarase (FUM), involved in the reductive tricarboxylic acid (rTCA) branch, were examined and compared in cells harvested from the acid production medium and a complete medium. The results showed that ambient pH had a significant impact...

  18. Trypanosoma brucei gambiense trypanosomiasis in Terego county, northern Uganda, 1996: a lot quality assurance sampling survey.

    Science.gov (United States)

    Hutin, Yvan J F; Legros, Dominique; Owini, Vincent; Brown, Vincent; Lee, Evan; Mbulamberi, Dawson; Paquet, Christophe

    2004-04-01

    We estimated the pre-intervention prevalence of Trypanosoma brucei gambiense (Tbg) trypanosomiasis using the lot quality assurance sampling (LQAS) methods in 14 parishes of Terego County in northern Uganda. A total of 826 participants were included in the survey sample in 1996. The prevalence of laboratory confirmed Tbg trypanosomiasis adjusted for parish population sizes was 2.2% (95% confidence interval =1.1-3.2). This estimate was consistent with the 1.1% period prevalence calculated on the basis of cases identified through passive and active screening in 1996-1999. Ranking of parishes in four categories according to LQAS analysis of the 1996 survey predicted the prevalences observed during the first round of active screening in the population in 1997-1998 (P LQAS were validated by the results of the population screening, suggesting that these survey methods may be useful in the pre-intervention phase of sleeping sickness control programs.

  19. Handling uncertainty in dynamic models: the pentose phosphate pathway in Trypanosoma brucei.

    Directory of Open Access Journals (Sweden)

    Eduard J Kerkhoven

    Full Text Available Dynamic models of metabolism can be useful in identifying potential drug targets, especially in unicellular organisms. A model of glycolysis in the causative agent of human African trypanosomiasis, Trypanosoma brucei, has already shown the utility of this approach. Here we add the pentose phosphate pathway (PPP of T. brucei to the glycolytic model. The PPP is localized to both the cytosol and the glycosome and adding it to the glycolytic model without further adjustments leads to a draining of the essential bound-phosphate moiety within the glycosome. This phosphate "leak" must be resolved for the model to be a reasonable representation of parasite physiology. Two main types of theoretical solution to the problem could be identified: (i including additional enzymatic reactions in the glycosome, or (ii adding a mechanism to transfer bound phosphates between cytosol and glycosome. One example of the first type of solution would be the presence of a glycosomal ribokinase to regenerate ATP from ribose 5-phosphate and ADP. Experimental characterization of ribokinase in T. brucei showed that very low enzyme levels are sufficient for parasite survival, indicating that other mechanisms are required in controlling the phosphate leak. Examples of the second type would involve the presence of an ATP:ADP exchanger or recently described permeability pores in the glycosomal membrane, although the current absence of identified genes encoding such molecules impedes experimental testing by genetic manipulation. Confronted with this uncertainty, we present a modeling strategy that identifies robust predictions in the context of incomplete system characterization. We illustrate this strategy by exploring the mechanism underlying the essential function of one of the PPP enzymes, and validate it by confirming the model predictions experimentally.

  20. Functional characterisation and drug target validation of a mitotic kinesin-13 in Trypanosoma brucei.

    Directory of Open Access Journals (Sweden)

    Kuan Yoow Chan

    2010-08-01

    Full Text Available Mitotic kinesins are essential for faithful chromosome segregation and cell proliferation. Therefore, in humans, kinesin motor proteins have been identified as anti-cancer drug targets and small molecule inhibitors are now tested in clinical studies. Phylogenetic analyses have assigned five of the approximately fifty kinesin motor proteins coded by Trypanosoma brucei genome to the Kinesin-13 family. Kinesins of this family have unusual biochemical properties because they do not transport cargo along microtubules but are able to depolymerise microtubules at their ends, therefore contributing to the regulation of microtubule length. In other eukaryotic genomes sequenced to date, only between one and three Kinesin-13s are present. We have used immunolocalisation, RNAi-mediated protein depletion, biochemical in vitro assays and a mouse model of infection to study the single mitotic Kinesin-13 in T. brucei. Subcellular localisation of all five T. brucei Kinesin-13s revealed distinct distributions, indicating that the expansion of this kinesin family in kinetoplastids is accompanied by functional diversification. Only a single kinesin (TbKif13-1 has a nuclear localisation. Using active, recombinant TbKif13-1 in in vitro assays we experimentally confirm the depolymerising properties of this kinesin. We analyse the biological function of TbKif13-1 by RNAi-mediated protein depletion and show its central role in regulating spindle assembly during mitosis. Absence of the protein leads to abnormally long and bent mitotic spindles, causing chromosome mis-segregation and cell death. RNAi-depletion in a mouse model of infection completely prevents infection with the parasite. Given its essential role in mitosis, proliferation and survival of the parasite and the availability of a simple in vitro activity assay, TbKif13-1 has been identified as an excellent potential drug target.

  1. Population genetics of Trypanosoma brucei rhodesiense: clonality and diversity within and between foci.

    Directory of Open Access Journals (Sweden)

    Craig W Duffy

    2013-11-01

    Full Text Available African trypanosomes are unusual among pathogenic protozoa in that they can undergo their complete morphological life cycle in the tsetse fly vector with mating as a non-obligatory part of this development. Trypanosoma brucei rhodesiense, which infects humans and livestock in East and Southern Africa, has classically been described as a host-range variant of the non-human infective Trypanosoma brucei that occurs as stable clonal lineages. We have examined T. b. rhodesiense populations from East (Uganda and Southern (Malawi Africa using a panel of microsatellite markers, incorporating both spatial and temporal analyses. Our data demonstrate that Ugandan T. b. rhodesiense existed as clonal populations, with a small number of highly related genotypes and substantial linkage disequilibrium between pairs of loci. However, these populations were not stable as the dominant genotypes changed and the genetic diversity also reduced over time. Thus these populations do not conform to one of the criteria for strict clonality, namely stability of predominant genotypes over time, and our results show that, in a period in the mid 1990s, the previously predominant genotypes were not detected but were replaced by a novel clonal population with limited genetic relationship to the original population present between 1970 and 1990. In contrast, the Malawi T. b. rhodesiense population demonstrated significantly greater diversity and evidence for frequent genetic exchange. Therefore, the population genetics of T. b. rhodesiense is more complex than previously described. This has important implications for the spread of the single copy T. b. rhodesiense gene that allows human infectivity, and therefore the epidemiology of the human disease, as well as suggesting that these parasites represent an important organism to study the influence of optional recombination upon population genetic dynamics.

  2. Blocking variant surface glycoprotein synthesis alters endoplasmic reticulum exit sites/Golgi homeostasis in Trypanosoma brucei.

    Science.gov (United States)

    Ooi, Cher-Pheng; Smith, Terry K; Gluenz, Eva; Wand, Nadina Vasileva; Vaughan, Sue; Rudenko, Gloria

    2018-06-01

    The predominant secretory cargo of bloodstream form Trypanosoma brucei is variant surface glycoprotein (VSG), comprising ~10% total protein and forming a dense protective layer. Blocking VSG translation using Morpholino oligonucleotides triggered a precise pre-cytokinesis arrest. We investigated the effect of blocking VSG synthesis on the secretory pathway. The number of Golgi decreased, particularly in post-mitotic cells, from 3.5 ± 0.6 to 2.0 ± 0.04 per cell. Similarly, the number of endoplasmic reticulum exit sites (ERES) in post-mitotic cells dropped from 3.9 ± 0.6 to 2.7 ± 0.1 eight hours after blocking VSG synthesis. The secretory pathway was still functional in these stalled cells, as monitored using Cathepsin L. Rates of phospholipid and glycosylphosphatidylinositol-anchor biosynthesis remained relatively unaffected, except for the level of sphingomyelin which increased. However, both endoplasmic reticulum and Golgi morphology became distorted, with the Golgi cisternae becoming significantly dilated, particularly at the trans-face. Membrane accumulation in these structures is possibly caused by reduced budding of nascent vesicles due to the drastic reduction in the total amount of secretory cargo, that is, VSG. These data argue that the total flux of secretory cargo impacts upon the biogenesis and maintenance of secretory structures and organelles in T. brucei, including the ERES and Golgi. © 2018 The Authors. Traffic published by John Wiley & Sons Ltd.

  3. The Chemical Characterization of Nigerian Propolis samples and Their Activity Against Trypanosoma brucei.

    Science.gov (United States)

    Omar, Ruwida; Igoli, John O; Zhang, Tong; Gray, Alexander I; Ebiloma, Godwin U; Clements, Carol J; Fearnley, James; Edrada Ebel, RuAngeli; Paget, Tim; de Koning, Harry P; Watson, David G

    2017-04-19

    Profiling of extracts from twelve propolis samples collected from eight regions in Nigeria was carried out using high performance liquid chromatography (LC) coupled with evaporative light scattering (ELSD), ultraviolet detection (UV) and mass spectrometry (MS), gas chromatography mass spectrometry (GC-MS) and nuclear magnetic resonance spectroscopy (NMR). Principal component analysis (PCA) of the processed LC-MS data demonstrated the varying chemical composition of the samples. Most of the samples were active against Trypanosoma b. brucei with the highest activity being in the samples from Southern Nigeria. The more active samples were fractionated in order to isolate the component(s) responsible for their activity using medium pressure liquid chromatography (MPLC). Three xanthones, 1,3,7-trihydroxy-2,8-di-(3-methylbut-2-enyl)xanthone, 1,3,7-trihydroxy-4,8-di-(3-methylbut-2-enyl)xanthone a previously undescribed xanthone and three triterpenes: ambonic acid, mangiferonic acid and a mixture of α-amyrin with mangiferonic acid (1:3) were isolated and characterised by NMR and LC-MS. These compounds all displayed strong inhibitory activity against T.b. brucei but none of them had higher activity than the crude extracts. Partial least squares (PLS) modelling of the anti-trypanosomal activity of the sample extracts using the LC-MS data indicated that high activity in the extracts, as judged from LCMS 2 data, could be correlated to denticulatain isomers in the extracts.

  4. KREX2 is not essential for either procyclic or bloodstream form Trypanosoma brucei.

    Directory of Open Access Journals (Sweden)

    Jason Carnes

    Full Text Available Most mitochondrial mRNAs in Trypanosoma brucei require RNA editing for maturation and translation. The edited RNAs primarily encode proteins of the oxidative phosphorylation system. These parasites undergo extensive changes in energy metabolism between the insect and bloodstream stages which are mirrored by alterations in RNA editing. Two U-specific exonucleases, KREX1 and KREX2, are both present in protein complexes (editosomes that catalyze RNA editing but the relative roles of each protein are not known.The requirement for KREX2 for RNA editing in vivo was assessed in both procyclic (insect and bloodstream form parasites by methods that use homologous recombination for gene elimination. These studies resulted in null mutant cells in which both alleles were eliminated. The viability of these cells demonstrates that KREX2 is not essential in either life cycle stage, despite certain defects in RNA editing in vivo. Furthermore, editosomes isolated from KREX2 null cells require KREX1 for in vitro U-specific exonuclease activity.KREX2 is a U-specific exonuclease that is dispensable for RNA editing in vivo in T. brucei BFs and PFs. This result suggests that the U deletion activity, which is required for RNA editing, is primarily mediated in vivo by KREX1 which is normally found associated with only one type of editosome. The retention of the KREX2 gene implies a non-essential role or a role that is essential in other life cycle stages or conditions.

  5. Characterization of Trypanosoma brucei brucei S-adenosyl-L-methionine decarboxylase and its inhibition by Berenil, pentamidine and methylglyoxal bis(guanylhydrazone).

    Science.gov (United States)

    Bitonti, A J; Dumont, J A; McCann, P P

    1986-01-01

    Trypanosoma brucei brucei S-adenosyl-L-methionine (AdoMet) decarboxylase was found to be relatively insensitive to activation by putrescine as compared with the mammalian enzyme, being stimulated by only 50% over a 10,000-fold range of putrescine concentrations. The enzyme was not stimulated by up to 10 mM-Mg2+. The Km for AdoMet was 30 microM, similar to that of other eukaryotic AdoMet decarboxylases. T.b. brucei AdoMet decarboxylase activity was apparently irreversibly inhibited in vitro by Berenil and reversibly by pentamidine and methylglyoxal bis(guanylhydrazone). Berenil also inhibited trypanosomal AdoMet decarboxylase by 70% within 4 h after administration to infected rats and markedly increased the concentration of putrescine in trypanosomes that were exposed to the drug in vivo. Spermidine and spermine blocked the curative effect of Berenil on model mouse T.b. brucei infections. This effect of the polyamines was probably not due to reversal of Berenil's inhibitory effects on the AdoMet decarboxylase. PMID:3800910

  6. Repurposing a Library of Human Cathepsin L Ligands: Identification of Macrocyclic Lactams as Potent Rhodesain and Trypanosoma brucei Inhibitors.

    Science.gov (United States)

    Giroud, Maude; Dietzel, Uwe; Anselm, Lilli; Banner, David; Kuglstatter, Andreas; Benz, Jörg; Blanc, Jean-Baptiste; Gaufreteau, Delphine; Liu, Haixia; Lin, Xianfeng; Stich, August; Kuhn, Bernd; Schuler, Franz; Kaiser, Marcel; Brun, Reto; Schirmeister, Tanja; Kisker, Caroline; Diederich, François; Haap, Wolfgang

    2018-04-26

    Rhodesain (RD) is a parasitic, human cathepsin L (hCatL) like cysteine protease produced by Trypanosoma brucei ( T. b.) species and a potential drug target for the treatment of human African trypanosomiasis (HAT). A library of hCatL inhibitors was screened, and macrocyclic lactams were identified as potent RD inhibitors ( K i < 10 nM), preventing the cell-growth of Trypanosoma brucei rhodesiense (IC 50 < 400 nM). SARs addressing the S2 and S3 pockets of RD were established. Three cocrystal structures with RD revealed a noncovalent binding mode of this ligand class due to oxidation of the catalytic Cys25 to a sulfenic acid (Cys-SOH) during crystallization. The P-glycoprotein efflux ratio was measured and the in vivo brain penetration in rats determined. When tested in vivo in acute HAT model, the compounds permitted up to 16.25 (vs 13.0 for untreated controls) mean days of survival.

  7. Dynamics of Mitochondrial RNA-Binding Protein Complex in Trypanosoma brucei and Its Petite Mutant under Optimized Immobilization Conditions

    Czech Academy of Sciences Publication Activity Database

    Huang, Zhenqiu; Kaltenbrunner, S.; Šimková, Eva; Staněk, David; Lukeš, Julius; Hashimi, Hassan

    2014-01-01

    Roč. 13, č. 9 (2014), s. 1232-1240 ISSN 1535-9778 R&D Projects: GA ČR GAP305/12/2261; GA MŠk(CZ) EE2.3.30.0032 Institutional support: RVO:60077344 ; RVO:68378050 Keywords : mitochondrion * Trypanosoma brucei * YFP Subject RIV: EB - Genetics ; Molecular Biology; EB - Genetics ; Molecular Biology (UMG-J) Impact factor: 2.820, year: 2014

  8. Changes in blood sugar levels of rats experimentally infected with Trypanosoma brucei and treated with imidocarb dipropionate and diminazene aceturate

    Directory of Open Access Journals (Sweden)

    Nwoha Rosemary Ijeoma Ogechi

    2016-01-01

    Full Text Available Objective: To determine the effect of Trypanosoma brucei (T. brucei on blood sugar level of infected rats. Methods: The experiment was done with 42 albino rats grouped into 3 groups of 14 members each. Group A was uninfected (control group, Group B was infected with T. brucei and treated with diminazene aceturate, and Group C was infected with T. brucei and treated with imidocarb dipropionate. Blood samples were collected from the media canthus of the experimental rats on Days 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 for the assessment of change in blood sugar levels. The blood sugar levels were determined with a glucometer (Accu-chek active serial No. GN: 10023338. Results: By 4 to 5 days post infection, there was a significant increase (P 0.05 was observed in the groups when compared with the control group till Day 12 of the experiment. Conclusions: T. brucei caused a significant increase in blood sugar of infected rats.

  9. Transcriptome Profiling of Trypanosoma brucei Development in the Tsetse Fly Vector Glossina morsitans.

    Directory of Open Access Journals (Sweden)

    Amy F Savage

    Full Text Available African trypanosomes, the causative agents of sleeping sickness in humans and nagana in animals, have a complex digenetic life cycle between a mammalian host and an insect vector, the blood-feeding tsetse fly. Although the importance of the insect vector to transmit the disease was first realized over a century ago, many aspects of trypanosome development in tsetse have not progressed beyond a morphological analysis, mainly due to considerable challenges to obtain sufficient material for molecular studies. Here, we used high-throughput RNA-Sequencing (RNA-Seq to profile Trypanosoma brucei transcript levels in three distinct tissues of the tsetse fly, namely the midgut, proventriculus and salivary glands. Consistent with current knowledge and providing a proof of principle, transcripts coding for procyclin isoforms and several components of the cytochrome oxidase complex were highly up-regulated in the midgut transcriptome, whereas transcripts encoding metacyclic VSGs (mVSGs and the surface coat protein brucei alanine rich protein or BARP were extremely up-regulated in the salivary gland transcriptome. Gene ontology analysis also supported the up-regulation of biological processes such as DNA metabolism and DNA replication in the proventriculus transcriptome and major changes in signal transduction and cyclic nucleotide metabolism in the salivary gland transcriptome. Our data highlight a small repertoire of expressed mVSGs and potential signaling pathways involving receptor-type adenylate cyclases and members of a surface carboxylate transporter family, called PADs (Proteins Associated with Differentiation, to cope with the changing environment, as well as RNA-binding proteins as a possible global regulators of gene expression.

  10. Processing of the glycosomal matrix-protein import receptor PEX5 of Trypanosoma brucei

    International Nuclear Information System (INIS)

    Gualdrón-López, Melisa; Michels, Paul A.M.

    2013-01-01

    Highlights: ► Most eukaryotic cells have a single gene for the peroxin PEX5. ► PEX5 is sensitive to in vitro proteolysis in distantly related organisms. ► TbPEX5 undergoes N-terminal truncation in vitro and possibly in vivo. ► Truncated TbPEX5 is still capable of binding PTS1-containing proteins. ► PEX5 truncation is physiologically relevant or an evolutionary conserved artifact. -- Abstract: Glycolysis in kinetoplastid protists such as Trypanosoma brucei is compartmentalized in peroxisome-like organelles called glycosomes. Glycosomal matrix-protein import involves a cytosolic receptor, PEX5, which recognizes the peroxisomal-targeting signal type 1 (PTS1) present at the C-terminus of the majority of matrix proteins. PEX5 appears generally susceptible to in vitro proteolytic processing. On western blots of T. brucei, two PEX5 forms are detected with apparent M r of 100 kDa and 72 kDa. 5′-RACE-PCR showed that TbPEX5 is encoded by a unique transcript that can be translated into a protein of maximally 72 kDa. However, recombinant PEX5 migrates aberrantly in SDS–PAGE with an apparent M r of 100 kDa, similarly as observed for the native peroxin. In vitro protease susceptibility analysis of native and 35 S-labelled PEX5 showed truncation of the 100 kDa form at the N-terminal side by unknown parasite proteases, giving rise to the 72 kDa form which remains functional for PTS1 binding. The relevance of these observations is discussed

  11. Processing of the glycosomal matrix-protein import receptor PEX5 of Trypanosoma brucei

    Energy Technology Data Exchange (ETDEWEB)

    Gualdrón-López, Melisa [Research Unit for Tropical Diseases, de Duve Institute, Université catholique de Louvain, Brussels (Belgium); Michels, Paul A.M., E-mail: paul.michels@uclouvain.be [Research Unit for Tropical Diseases, de Duve Institute, Université catholique de Louvain, Brussels (Belgium)

    2013-02-01

    Highlights: ► Most eukaryotic cells have a single gene for the peroxin PEX5. ► PEX5 is sensitive to in vitro proteolysis in distantly related organisms. ► TbPEX5 undergoes N-terminal truncation in vitro and possibly in vivo. ► Truncated TbPEX5 is still capable of binding PTS1-containing proteins. ► PEX5 truncation is physiologically relevant or an evolutionary conserved artifact. -- Abstract: Glycolysis in kinetoplastid protists such as Trypanosoma brucei is compartmentalized in peroxisome-like organelles called glycosomes. Glycosomal matrix-protein import involves a cytosolic receptor, PEX5, which recognizes the peroxisomal-targeting signal type 1 (PTS1) present at the C-terminus of the majority of matrix proteins. PEX5 appears generally susceptible to in vitro proteolytic processing. On western blots of T. brucei, two PEX5 forms are detected with apparent M{sub r} of 100 kDa and 72 kDa. 5′-RACE-PCR showed that TbPEX5 is encoded by a unique transcript that can be translated into a protein of maximally 72 kDa. However, recombinant PEX5 migrates aberrantly in SDS–PAGE with an apparent M{sub r} of 100 kDa, similarly as observed for the native peroxin. In vitro protease susceptibility analysis of native and {sup 35}S-labelled PEX5 showed truncation of the 100 kDa form at the N-terminal side by unknown parasite proteases, giving rise to the 72 kDa form which remains functional for PTS1 binding. The relevance of these observations is discussed.

  12. Protein functional links in Trypanosoma brucei, identified by gene fusion analysis

    Directory of Open Access Journals (Sweden)

    Trimpalis Philip

    2011-07-01

    Full Text Available Abstract Background Domain or gene fusion analysis is a bioinformatics method for detecting gene fusions in one organism by comparing its genome to that of other organisms. The occurrence of gene fusions suggests that the two original genes that participated in the fusion are functionally linked, i.e. their gene products interact either as part of a multi-subunit protein complex, or in a metabolic pathway. Gene fusion analysis has been used to identify protein functional links in prokaryotes as well as in eukaryotic model organisms, such as yeast and Drosophila. Results In this study we have extended this approach to include a number of recently sequenced protists, four of which are pathogenic, to identify fusion linked proteins in Trypanosoma brucei, the causative agent of African sleeping sickness. We have also examined the evolution of the gene fusion events identified, to determine whether they can be attributed to fusion or fission, by looking at the conservation of the fused genes and of the individual component genes across the major eukaryotic and prokaryotic lineages. We find relatively limited occurrence of gene fusions/fissions within the protist lineages examined. Our results point to two trypanosome-specific gene fissions, which have recently been experimentally confirmed, one fusion involving proteins involved in the same metabolic pathway, as well as two novel putative functional links between fusion-linked protein pairs. Conclusions This is the first study of protein functional links in T. brucei identified by gene fusion analysis. We have used strict thresholds and only discuss results which are highly likely to be genuine and which either have already been or can be experimentally verified. We discuss the possible impact of the identification of these novel putative protein-protein interactions, to the development of new trypanosome therapeutic drugs.

  13. Channel-forming activities in the glycosomal fraction from the bloodstream form of Trypanosoma brucei.

    Directory of Open Access Journals (Sweden)

    Melisa Gualdron-López

    Full Text Available BACKGROUND: Glycosomes are a specialized form of peroxisomes (microbodies present in unicellular eukaryotes that belong to the Kinetoplastea order, such as Trypanosoma and Leishmania species, parasitic protists causing severe diseases of livestock and humans in subtropical and tropical countries. The organelles harbour most enzymes of the glycolytic pathway that is responsible for substrate-level ATP production in the cell. Glycolysis is essential for bloodstream-form Trypanosoma brucei and enzymes comprising this pathway have been validated as drug targets. Glycosomes are surrounded by a single membrane. How glycolytic metabolites are transported across the glycosomal membrane is unclear. METHODS/PRINCIPAL FINDINGS: We hypothesized that glycosomal membrane, similarly to membranes of yeast and mammalian peroxisomes, contains channel-forming proteins involved in the selective transfer of metabolites. To verify this prediction, we isolated a glycosomal fraction from bloodstream-form T. brucei and reconstituted solubilized membrane proteins into planar lipid bilayers. The electrophysiological characteristics of the channels were studied using multiple channel recording and single channel analysis. Three main channel-forming activities were detected with current amplitudes 70-80 pA, 20-25 pA, and 8-11 pA, respectively (holding potential +10 mV and 3.0 M KCl as an electrolyte. All channels were in fully open state in a range of voltages ±150 mV and showed no sub-conductance transitions. The channel with current amplitude 20-25 pA is anion-selective (P(K+/P(Cl-∼0.31, while the other two types of channels are slightly selective for cations (P(K+/P(Cl- ratios ∼1.15 and ∼1.27 for the high- and low-conductance channels, respectively. The anion-selective channel showed an intrinsic current rectification that may suggest a functional asymmetry of the channel's pore. CONCLUSIONS/SIGNIFICANCE: These results indicate that the membrane of glycosomes

  14. Chimerization at the AQP2–AQP3 locus is the genetic basis of melarsoprol–pentamidine cross-resistance in clinical Trypanosoma brucei gambiense isolates

    Directory of Open Access Journals (Sweden)

    Fabrice E. Graf

    2015-08-01

    Full Text Available Aquaglyceroporin-2 is a known determinant of melarsoprol–pentamidine cross-resistance in Trypanosoma brucei brucei laboratory strains. Recently, chimerization at the AQP2–AQP3 tandem locus was described from melarsoprol–pentamidine cross-resistant Trypanosoma brucei gambiense isolates from sleeping sickness patients in the Democratic Republic of the Congo. Here, we demonstrate that reintroduction of wild-type AQP2 into one of these isolates fully restores drug susceptibility while expression of the chimeric AQP2/3 gene in aqp2–aqp3 null T. b. brucei does not. This proves that AQP2–AQP3 chimerization is the cause of melarsoprol–pentamidine cross-resistance in the T. b. gambiense isolates.

  15. Anti-Parasitic Activities of Allium sativum and Allium cepa against Trypanosoma b. brucei and Leishmania tarentolae.

    Science.gov (United States)

    Krstin, Sonja; Sobeh, Mansour; Braun, Markus Santhosh; Wink, Michael

    2018-04-21

    Background: Garlics and onions have been used for the treatment of diseases caused by parasites and microbes since ancient times. Trypanosomiasis and leishmaniasis are a concern in many areas of the world, especially in poor countries. Methods: Trypanosoma brucei brucei and Leishmania tarentolae were used to investigate the anti-parasitic effects of dichloromethane extracts of Allium sativum (garlic) and Allium cepa (onion) bulbs. As a confirmation of known antimicrobial activities, they were studied against a selection of G-negative, G-positive bacteria and two fungi. Chemical analyses were performed using high-performance liquid chromatography (HPLC) and electrospray ionization-mass spectrometry (LC-ESI-MS/MS). Results: Chemical analyses confirmed the abundance of several sulfur secondary metabolites in garlic and one (zwiebelane) in the onion extract. Both extracts killed both types of parasites efficiently and inhibited the Trypanosoma brucei trypanothione reductase irreversibly. In addition, garlic extract decreased the mitochondrial membrane potential in trypanosomes. Garlic killed the fungi C. albicans and C. parapsilosis more effectively than the positive control. The combinations of garlic and onion with common trypanocidal and leishmanicidal drugs resulted in a synergistic or additive effect in 50% of cases. Conclusion: The mechanism for biological activity of garlic and onion appears to be related to the amount and the profile of sulfur-containing compounds. It is most likely that vital substances inside the parasitic cell, like trypanothione reductase, are inhibited through disulfide bond formation between SH groups of vital redox compounds and sulfur-containing secondary metabolites.

  16. Differential Editosome Protein Function between Life Cycle Stages of Trypanosoma brucei.

    Science.gov (United States)

    McDermott, Suzanne M; Guo, Xuemin; Carnes, Jason; Stuart, Kenneth

    2015-10-09

    Uridine insertion and deletion RNA editing generates functional mitochondrial mRNAs in Trypanosoma brucei. The mRNAs are differentially edited in bloodstream form (BF) and procyclic form (PF) life cycle stages, and this correlates with the differential utilization of glycolysis and oxidative phosphorylation between the stages. The mechanism that controls this differential editing is unknown. Editing is catalyzed by multiprotein ∼20S editosomes that contain endonuclease, 3'-terminal uridylyltransferase, exonuclease, and ligase activities. These editosomes also contain KREPB5 and KREPA3 proteins, which have no functional catalytic motifs, but they are essential for parasite viability, editing, and editosome integrity in BF cells. We show here that repression of KREPB5 or KREPA3 is also lethal in PF, but the effects on editosome structure differ from those in BF. In addition, we found that point mutations in KREPB5 or KREPA3 differentially affect cell growth, editosome integrity, and RNA editing between BF and PF stages. These results indicate that the functions of KREPB5 and KREPA3 editosome proteins are adjusted between the life cycle stages. This implies that these proteins are involved in the processes that control differential editing and that the 20S editosomes differ between the life cycle stages. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  17. Isothermal microcalorimetry, a new tool to monitor drug action against Trypanosoma brucei and Plasmodium falciparum.

    Directory of Open Access Journals (Sweden)

    Tanja Wenzler

    Full Text Available Isothermal microcalorimetry is an established tool to measure heat flow of physical, chemical or biological processes. The metabolism of viable cells produces heat, and if sufficient cells are present, their heat production can be assessed by this method. In this study, we investigated the heat flow of two medically important protozoans, Trypanosoma brucei rhodesiense and Plasmodium falciparum. Heat flow signals obtained for these pathogens allowed us to monitor parasite growth on a real-time basis as the signals correlated with the number of viable cells. To showcase the potential of microcalorimetry for measuring drug action on pathogenic organisms, we tested the method with three antitrypanosomal drugs, melarsoprol, suramin and pentamidine and three antiplasmodial drugs, chloroquine, artemether and dihydroartemisinin, each at two concentrations on the respective parasite. With the real time measurement, inhibition was observed immediately by a reduced heat flow compared to that in untreated control samples. The onset of drug action, the degree of inhibition and the time to death of the parasite culture could conveniently be monitored over several days. Microcalorimetry is a valuable element to be added to the toolbox for drug discovery for protozoal diseases such as human African trypanosomiasis and malaria. The method could probably be adapted to other protozoan parasites, especially those growing extracellularly.

  18. Flux Analysis of the Trypanosoma brucei Glycolysis Based on a Multiobjective-Criteria Bioinformatic Approach

    Directory of Open Access Journals (Sweden)

    Amine Ghozlane

    2012-01-01

    Full Text Available Trypanosoma brucei is a protozoan parasite of major of interest in discovering new genes for drug targets. This parasite alternates its life cycle between the mammal host(s (bloodstream form and the insect vector (procyclic form, with two divergent glucose metabolism amenable to in vitro culture. While the metabolic network of the bloodstream forms has been well characterized, the flux distribution between the different branches of the glucose metabolic network in the procyclic form has not been addressed so far. We present a computational analysis (called Metaboflux that exploits the metabolic topology of the procyclic form, and allows the incorporation of multipurpose experimental data to increase the biological relevance of the model. The alternatives resulting from the structural complexity of networks are formulated as an optimization problem solved by a metaheuristic where experimental data are modeled in a multiobjective function. Our results show that the current metabolic model is in agreement with experimental data and confirms the observed high metabolic flexibility of glucose metabolism. In addition, Metaboflux offers a rational explanation for the high flexibility in the ratio between final products from glucose metabolism, thsat is, flux redistribution through the malic enzyme steps.

  19. Identification and characterization of a stage specific membrane protein involved in flagellar attachment in Trypanosoma brucei.

    Directory of Open Access Journals (Sweden)

    Katherine Woods

    Full Text Available Flagellar attachment is a visibly striking morphological feature of African trypanosomes but little is known about the requirements for attachment at a molecular level. This study characterizes a previously undescribed membrane protein, FLA3, which plays an essential role in flagellar attachment in Trypanosoma brucei. FLA3 is heavily N-glycosylated, locates to the flagellar attachment zone and appears to be a bloodstream stage specific protein. Ablation of the FLA3 mRNA rapidly led to flagellar detachment and a concomitant failure of cytokinesis in the long slender bloodstream form but had no effect on the procyclic form. Flagellar detachment was obvious shortly after induction of the dsRNA and the newly synthesized flagellum was often completely detached after it emerged from the flagellar pocket. Within 12 h most cells possessed detached flagella alongside the existing attached flagellum. These results suggest that proteins involved in attachment are not shared between the new and old attachment zones. In other respects the detached flagella appear normal, they beat rapidly although directional motion was lost, and they possess an apparently normal axoneme and paraflagellar rod structure. The flagellar attachment zone appeared to be disrupted when FLA3 was depleted. Thus, while flagellar attachment is a constitutive feature of the life cycle of trypanosomes, attachment requires stage specific elements at the protein level.

  20. Relationship between Trypanosoma brucei rhodesiense genetic diversity and clinical spectrum among sleeping sickness patients in Uganda.

    Science.gov (United States)

    Kato, Charles D; Mugasa, Claire M; Nanteza, Ann; Matovu, Enock; Alibu, Vincent P

    2017-10-27

    Human African trypanosomiasis (HAT) due to Trypanosoma brucei rhodesiense in East and southern Africa is reported to be clinically diverse. We tested the hypothesis that this clinical diversity is associated with a variation in trypanosome genotypes. Trypanosome DNA isolated from HAT patients was genotyped using 7 microsatellite markers directly from blood spotted FTA cards following a whole genome amplification. All markers were polymorphic and identified 17 multi-locus genotypes with 56% of the isolates having replicate genotypes. We did not observe any significant clustering between isolates and bootstrap values across major tree nodes were insignificant. When genotypes were compared among patients with varying clinical presentation or outcome, replicate genotypes were observed at both extremes showing no significant association between genetic diversity and clinical outcome. Our study shows that T. b. rhodesiense isolates are homogeneous within a focus and that observed clinical diversity may not be associated with parasite genetic diversity. Other factors like host genetics and environmental factors might be involved in determining clinical diversity. Our study may be important in designing appropriate control measures that target the parasite.

  1. Three Redox States of Trypanosoma brucei Alternative Oxidase Identified by Infrared Spectroscopy and Electrochemistry

    Science.gov (United States)

    Maréchal, Amandine; Kido, Yasutoshi; Kita, Kiyoshi; Moore, Anthony L.; Rich, Peter R.

    2009-01-01

    Electrochemistry coupled with Fourier transform infrared (IR) spectroscopy was used to investigate the redox properties of recombinant alternative ubiquinol oxidase from Trypanosoma brucei, the organism responsible for African sleeping sickness. Stepwise reduction of the fully oxidized resting state of recombinant alternative ubiquinol oxidase revealed two distinct IR redox difference spectra. The first of these, signal 1, titrates in the reductive direction as an n = 2 Nernstian component with an apparent midpoint potential of 80 mV at pH 7.0. However, reoxidation of signal 1 in the same potential range under anaerobic conditions did not occur and only began with potentials in excess of 500 mV. Reoxidation by introduction of oxygen was also unsuccessful. Signal 1 contained clear features that can be assigned to protonation of at least one carboxylate group, further perturbations of carboxylic and histidine residues, bound ubiquinone, and a negative band at 1554 cm−1 that might arise from a radical in the fully oxidized protein. A second distinct IR redox difference spectrum, signal 2, appeared more slowly once signal 1 had been reduced. This component could be reoxidized with potentials above 100 mV. In addition, when both signals 1 and 2 were reduced, introduction of oxygen caused rapid oxidation of both components. These data are interpreted in terms of the possible active site structure and mechanism of oxygen reduction to water. PMID:19767647

  2. Overproduction, purification, crystallization and preliminary X-ray diffraction analysis of Trypanosoma brucei gambiense glycerol kinase

    International Nuclear Information System (INIS)

    Balogun, Emmanuel Oluwadare; Inaoka, Daniel Ken; Kido, Yasutoshi; Shiba, Tomoo; Nara, Takeshi; Aoki, Takashi; Honma, Teruki; Tanaka, Akiko; Inoue, Masayuki; Matsuoka, Shigeru; Michels, Paul A. M.; Harada, Shigeharu; Kita, Kiyoshi

    2010-01-01

    Glycerol kinase from human African trypanosomes has been purified and crystallized for X-ray structure analysis. In the bloodstream forms of human trypanosomes, glycerol kinase (GK; EC 2.7.1.30) is one of the nine glycosomally compartmentalized enzymes that are essential for energy metabolism. In this study, a recombinant Trypanosoma brucei gambiense GK (rTbgGK) with an N-terminal cleavable His 6 tag was overexpressed, purified to homogeneity and crystallized by the sitting-drop vapour-diffusion method using PEG 400 as a precipitant. A complete X-ray diffraction data set to 2.75 Å resolution indicated that the crystals belonged to the orthorhombic space group P2 1 2 1 2 1 , with unit-cell parameters a = 63.84, b = 121.50, c = 154.59 Å. The presence of two rTbgGK molecules in the asymmetric unit gives a Matthews coefficient (V M ) of 2.5 Å 3 Da −1 , corresponding to 50% solvent content

  3. Studies on the localization of Trypanosoma brucei in the female reproductive tract of bka mice and hooded lister rats

    International Nuclear Information System (INIS)

    Chipepa, J.A.S.; Brown, H.; Holmes, P.

    1991-01-01

    A study was conducted to establish whether Trypanosoma brucei migrated preferentially to the reproductive tracts of female BKA mice, or Hooded Lister rats and lodged there as the site of choice compared to other organs. Blood flow to the reproductive tracts, the liver and spleen was measured using red blood cells labelled with chromium- 51. The distribution of trypanosomes labelled with 75 Se-methionine. The average percentage of the blood flow to the reproductive tract was 0.21Plus or minus0.08 in mice, while the mean concentration of trypanosomes there was 0.30% in both mice and rats. Blood flow to the liver was lower than the percentage distribution of Se-labelled T.Brucei(5.17Plus or minus1.34 versus 8.1Plus or Minus1.2). There were, on the contrary, less labelled trypanosomes as compared to the mean blood flow to the spleen (0.54% plus or minus0.18 versus 2.10%pPlus or minus0.88). After 24 hours there were adequate numbers of T. brucei in the reproductive tract to cause parasitaemia in recipient mice. From these preliminary data it was concluded that T. brucei did not lodge in the reproductive organ system a site of choice. (author). 9 refs., 3 tabs

  4. Inhibitors of the mitochondrial cytochrome b-c1 complex inhibit the cyanide-insensitive respiration of Trypanosoma brucei.

    Science.gov (United States)

    Turrens, J F; Bickar, D; Lehninger, A L

    1986-06-01

    The cyanide-insensitive respiration of bloodstream trypomastigote forms of Trypanosoma brucei (75 +/- 8 nmol O2 min-1(mg protein)-1) is completely inhibited by the mitochondrial ubiquinone-like inhibitors 2-hydroxy-3-undecyl-1,4-naphthoquinone (UHNQ) and 5-n-undecyl-6-hydroxy-4,7-dioxobenzothiazole (UHDBT). The Ki values for UHDBT (30 nM) and UHNQ (2 microM) are much lower than the reported Ki for salicylhydroxamic acid (SHAM) (5 microM), a widely used inhibitor of the cyanide-insensitive oxidase. UHNQ also stimulated the glycerol-3-phosphate-dependent reduction of phenazine methosulfate, demonstrating that the site of UHNQ inhibition is on the terminal oxidase of the cyanide-insensitive respiration of T. brucei. These results suggest that a ubiquinone-like compound may act as an electron carrier between the two enzymatic components of the cyanide-insensitive glycerol-3-phosphate oxidase.

  5. ATG24 Represses Autophagy and Differentiation and Is Essential for Homeostasy of the Flagellar Pocket in Trypanosoma brucei.

    Directory of Open Access Journals (Sweden)

    Ana Brennand

    Full Text Available We have previously identified homologs for nearly half of the approximately 30 known yeast Atg's in the genome database of the human sleeping sickness parasite Trypanosoma brucei. So far, only a few of these homologs have their role in autophagy experimentally confirmed. Among the candidates was the ortholog of Atg24 that is involved in pexophagy in yeast. In T. brucei, the peroxisome-like organelles named glycosomes harbor core metabolic processes, especially glycolysis. In the autotrophic yeast, autophagy is essential for adaptation to different nutritional environments by participating in the renewal of the peroxisome population. We hypothesized that autophagic turnover of the parasite's glycosomes plays a role in differentiation during its life cycle, which demands adaptation to different host environments and associated dramatic changes in nutritional conditions. We therefore characterized T. brucei ATG24, the T. brucei ortholog of yeast Atg24 and mammalian SNX4, and found it to have a regulatory role in autophagy and differentiation as well as endocytic trafficking. ATG24 partially localized on endocytic membranes where it was recruited via PI3-kinase III/VPS34. ATG24 silencing severely impaired receptor-mediated endocytosis of transferrin, but not adsorptive uptake of a lectin, and caused a major enlargement of the flagellar pocket. ATG24 silencing approximately doubled the number of autophagosomes, suggesting a role in repressing autophagy, and strongly accelerated differentiation, in accordance with a role of autophagy in parasite differentiation. Overexpression of the two isoforms of T. brucei ATG8 fused to GFP slowed down differentiation, possibly by a dominant-negative effect. This was overcome by ATG24 depletion, further supporting its regulatory role.

  6. Processing of metacaspase 2 from Trypanosoma brucei (TbMCA2) broadens its substrate specificity.

    Science.gov (United States)

    Gilio, Joyce M; Marcondes, Marcelo F; Ferrari, Débora; Juliano, Maria A; Juliano, Luiz; Oliveira, Vitor; Machado, Maurício F M

    2017-04-01

    Metacaspases are members of the cysteine peptidase family and may be implicated in programmed cell death in plants and lower eukaryotes. These proteases exhibit calcium-dependent activity and specificity for arginine residues at P 1 . In contrast to caspases, they do not require processing or dimerization for activity. Indeed, unprocessed metacaspase-2 of Trypanosoma brucei (TbMCA2) is active; however, it has been shown that cleavages at Lys 55 and Lys 268 increase TbMCA2 hydrolytic activity on synthetic substrates. The processed TbMCA2 comprises 3 polypeptide chains that remain attached by non-covalent bonds. Replacement of Lys 55 and Lys 268 with Gly via site-directed mutagenesis results in non-processed but enzymatically active mutant, TbMCA2 K55/268G. To investigate the importance of this processing for the activity and specificity of TbMCA2, we performed activity assays comparing the non-processed mutant (TbMCA2 K55/268G) with the processed TbMCA2 form. Significant differences between TbMCA2 WT (processed form) and TbMCA2 K55/268G (non-processed form) were observed. Specifically, we verified that although non-processed TbMCA2 is active when assayed with small synthetic substrates, the TbMCA2 form does not exhibit hydrolytic activity on large substrates such as azocasein, while processed TbMCA2 is able to readily digest this protein. Such differences can be relevant for understanding the physiological regulation and function of TbMCA2. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. 3D Architecture of the Trypanosoma brucei Flagella Connector, a Mobile Transmembrane Junction.

    Directory of Open Access Journals (Sweden)

    Johanna L Höög

    2016-01-01

    Full Text Available Cellular junctions are crucial for the formation of multicellular organisms, where they anchor cells to each other and/or supportive tissue and enable cell-to-cell communication. Some unicellular organisms, such as the parasitic protist Trypanosoma brucei, also have complex cellular junctions. The flagella connector (FC is a three-layered transmembrane junction that moves with the growing tip of a new flagellum and attaches it to the side of the old flagellum. The FC moves via an unknown molecular mechanism, independent of new flagellum growth. Here we describe the detailed 3D architecture of the FC suggesting explanations for how it functions and its mechanism of motility.We have used a combination of electron tomography and cryo-electron tomography to reveal the 3D architecture of the FC. Cryo-electron tomography revealed layers of repetitive filamentous electron densities between the two flagella in the interstitial zone. Though the FC does not change in length and width during the growth of the new flagellum, the interstitial zone thickness decreases as the FC matures. This investigation also shows interactions between the FC layers and the axonemes of the new and old flagellum, sufficiently strong to displace the axoneme in the old flagellum. We describe a novel filament, the flagella connector fibre, found between the FC and the axoneme in the old flagellum.The FC is similar to other cellular junctions in that filamentous proteins bridge the extracellular space and are anchored to underlying cytoskeletal structures; however, it is built between different portions of the same cell and is unique because of its intrinsic motility. The detailed description of its structure will be an important tool to use in attributing structure / function relationships as its molecular components are discovered in the future. The FC is involved in the inheritance of cell shape, which is important for the life cycle of this human parasite.

  8. Trypanosoma brucei gambiense adaptation to different mammalian sera is associated with VSG expression site plasticity.

    Science.gov (United States)

    Cordon-Obras, Carlos; Cano, Jorge; González-Pacanowska, Dolores; Benito, Agustin; Navarro, Miguel; Bart, Jean-Mathieu

    2013-01-01

    Trypanosoma brucei gambiense infection is widely considered an anthroponosis, although it has also been found in wild and domestic animals. Thus, fauna could act as reservoir, constraining the elimination of the parasite in hypo-endemic foci. To better understand the possible maintenance of T. b. gambiense in local fauna and investigate the molecular mechanisms underlying adaptation, we generated adapted cells lines (ACLs) by in vitro culture of the parasites in different mammalian sera. Using specific antibodies against the Variant Surface Glycoproteins (VSGs) we found that serum ACLs exhibited different VSG variants when maintained in pig, goat or human sera. Although newly detected VSGs were independent of the sera used, the consistent appearance of different VSGs suggested remodelling of the co-transcribed genes at the telomeric Expression Site (VSG-ES). Thus, Expression Site Associated Genes (ESAGs) sequences were analysed to investigate possible polymorphism selection. ESAGs 6 and 7 genotypes, encoding the transferrin receptor (TfR), expressed in different ACLs were characterised. In addition, we quantified the ESAG6/7 mRNA levels and analysed transferrin (Tf) uptake. Interestingly, the best growth occurred in pig and human serum ACLs, which consistently exhibited a predominant ESAG7 genotype and higher Tf uptake than those obtained in calf and goat sera. We also detected an apparent selection of specific ESAG3 genotypes in the pig and human serum ACLs, suggesting that other ESAGs could be involved in the host adaptation processes. Altogether, these results suggest a model whereby VSG-ES remodelling allows the parasite to express a specific set of ESAGs to provide selective advantages in different hosts. Finally, pig serum ACLs display phenotypic adaptation parameters closely related to human serum ACLs but distinct to parasites grown in calf and goat sera. These results suggest a better suitability of swine to maintain T. b. gambiense infection supporting

  9. Trypanosoma brucei TBRGG1, a mitochondrial oligo(U)-binding protein that co-localizes with an in vitro RNA editing activity

    NARCIS (Netherlands)

    Vanhamme, L.; Perez-Morga, D.; Marchal, C.; Speijer, D.; Lambert, L.; Geuskens, M.; Alexandre, S.; Ismaïli, N.; Göringer, U.; Benne, R.; Pays, E.

    1998-01-01

    We report the characterization of a Trypanosoma brucei 75-kDa protein of the RGG (Arg-Gly-Gly) type, termed TBRGG1. Dicistronic and monocistronic transcripts of the TBRGG1 gene were produced by both alternative splicing and polyadenylation. TBRGG1 was found in two or three forms that differ in their

  10. The 2’-O-ribose methyltransferase for cap 1 of spliced leader RNA and U1 small nuclear RNA in Trypanosoma brucei

    Czech Academy of Sciences Publication Activity Database

    Zamudio, J. R.; Mittra, B.; Foldynová-Trantírková, Silvie; Zeiner, G. M.; Lukeš, Julius; Bujnicki, J. M.; Sturm, N. R.; Campbell, D. A.

    2007-01-01

    Roč. 27, č. 17 (2007), s. 6084-6092 ISSN 0270-7306 R&D Projects: GA MŠk 2B06129; GA MŠk LC07032 Institutional research plan: CEZ:AV0Z60220518 Keywords : methylation * Trypanosoma brucei * methyltransferase * RNA interference Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 6.420, year: 2007

  11. Proteome remodelling during development from blood to insect-form Trypanosoma brucei quantified by SILAC and mass spectrometry

    Directory of Open Access Journals (Sweden)

    Gunasekera Kapila

    2012-10-01

    Full Text Available Abstract Background Trypanosoma brucei is the causative agent of human African sleeping sickness and Nagana in cattle. In addition to being an important pathogen T. brucei has developed into a model system in cell biology. Results Using Stable Isotope Labelling of Amino acids in Cell culture (SILAC in combination with mass spectrometry we determined the abundance of >1600 proteins in the long slender (LS, short stumpy (SS mammalian bloodstream form stages relative to the procyclic (PC insect-form stage. In total we identified 2645 proteins, corresponding to ~30% of the total proteome and for the first time present a comprehensive overview of relative protein levels in three life stages of the parasite. Conclusions We can show the extent of pre-adaptation in the SS cells, especially at the level of the mitochondrial proteome. The comparison to a previously published report on monomorphic in vitro grown bloodstream and procyclic T. brucei indicates a loss of stringent regulation particularly of mitochondrial proteins in these cells when compared to the pleomorphic in vivo situation. In order to better understand the different levels of gene expression regulation in this organism we compared mRNA steady state abundance with the relative protein abundance-changes and detected moderate but significant correlation indicating that trypanosomes possess a significant repertoire of translational and posttranslational mechanisms to regulate protein abundance.

  12. Major surface glycoproteins of insect forms of Trypanosoma brucei are not essential for cyclical transmission by tsetse.

    Directory of Open Access Journals (Sweden)

    Erik Vassella

    Full Text Available Procyclic forms of Trypanosoma brucei reside in the midgut of tsetse flies where they are covered by several million copies of glycosylphosphatidylinositol-anchored proteins known as procyclins. It has been proposed that procyclins protect parasites against proteases and/or participate in tropism, directing them from the midgut to the salivary glands. There are four different procyclin genes, each subject to elaborate levels of regulation. To determine if procyclins are essential for survival and transmission of T. brucei, all four genes were deleted and parasite fitness was compared in vitro and in vivo. When co-cultured in vitro, the null mutant and wild type trypanosomes (tagged with cyan fluorescent protein maintained a near-constant equilibrium. In contrast, when flies were infected with the same mixture, the null mutant was rapidly overgrown in the midgut, reflecting a reduction in fitness in vivo. Although the null mutant is patently defective in competition with procyclin-positive parasites, on its own it can complete the life cycle and generate infectious metacyclic forms. The procyclic form of T. brucei thus differs strikingly from the bloodstream form, which does not tolerate any perturbation of its variant surface glycoprotein coat, and from other parasites such as Plasmodium berghei, which requires the circumsporozoite protein for successful transmission to a new host.

  13. The γ-tubulin complex in Trypanosoma brucei: molecular composition, subunit interdependence and requirement for axonemal central pair protein assembly

    Science.gov (United States)

    Zhou, Qing; Li, Ziyin

    2015-01-01

    The γ-tubulin complex constitutes a key component of the microtubule-organizing center and nucleates microtubule assembly. This complex differs in complexity in different organisms: the budding yeast contains the γ-tubulin small complex (γTuSC) composed of γ-tubulin, GCP2 and GCP3, whereas animals contain the γ-tubulin ring complex (γTuRC) composed of γTuSC and three additional proteins, GCP4, GCP5 and GCP6. In Trypanosoma brucei, the composition of the γ-tubulin complex remains elusive, and it is not known whether it also regulates assembly of the subpellicular microtubules and the spindle microtubules. Here we report that the γ-tubulin complex in T. brucei is composed of γ-tubulin and three GCP proteins, GCP2-GCP4, and is primarily localized in the basal body throughout the cell cycle. Depletion of GCP2 and GCP3, but not GCP4, disrupted the axonemal central pair microtubules, but not the subpellicular microtubules and the spindle microtubules. Furthermore, we showed that the γTuSC is required for assembly of two central pair proteins and that γTuSC subunits are mutually required for stability. Together, these results identified an unusual γ-tubulin complex in T. brucei, uncovered an essential role of γTuSC in central pair protein assembly, and demonstrated the interdependence of individual γTuSC components for maintaining a stable complex. PMID:26224545

  14. A target-based high throughput screen yields Trypanosoma brucei hexokinase small molecule inhibitors with antiparasitic activity.

    Directory of Open Access Journals (Sweden)

    Elizabeth R Sharlow

    2010-04-01

    Full Text Available The parasitic protozoan Trypanosoma brucei utilizes glycolysis exclusively for ATP production during infection of the mammalian host. The first step in this metabolic pathway is mediated by hexokinase (TbHK, an enzyme essential to the parasite that transfers the gamma-phospho of ATP to a hexose. Here we describe the identification and confirmation of novel small molecule inhibitors of bacterially expressed TbHK1, one of two TbHKs expressed by T. brucei, using a high throughput screening assay.Exploiting optimized high throughput screening assay procedures, we interrogated 220,233 unique compounds and identified 239 active compounds from which ten small molecules were further characterized. Computation chemical cluster analyses indicated that six compounds were structurally related while the remaining four compounds were classified as unrelated or singletons. All ten compounds were approximately 20-17,000-fold more potent than lonidamine, a previously identified TbHK1 inhibitor. Seven compounds inhibited T. brucei blood stage form parasite growth (0.03brucei parasites, Leishmania promastigotes, and mammalian cell lines. Analysis of two structurally related compounds, ebselen and SID 17387000, revealed that both were mixed inhibitors of TbHK1 with respect to ATP. Additionally, both compounds inhibited parasite lysate-derived HK activity. None of the compounds displayed structural similarity to known hexokinase inhibitors or human African trypanosomiasis therapeutics.The novel chemotypes identified here could represent leads for future therapeutic development against the African trypanosome.

  15. The F1 -ATPase from Trypanosoma brucei is elaborated by three copies of an additional p18-subunit.

    Science.gov (United States)

    Gahura, Ondřej; Šubrtová, Karolína; Váchová, Hana; Panicucci, Brian; Fearnley, Ian M; Harbour, Michael E; Walker, John E; Zíková, Alena

    2018-02-01

    The F-ATPases (also called the F 1 F o -ATPases or ATP synthases) are multi-subunit membrane-bound molecular machines that produce ATP in bacteria and in eukaryotic mitochondria and chloroplasts. The structures and enzymic mechanisms of their F 1 -catalytic domains are highly conserved in all species investigated hitherto. However, there is evidence that the F-ATPases from the group of protozoa known as Euglenozoa have novel features. Therefore, we have isolated pure and active F 1 -ATPase from the euglenozoan parasite, Trypanosoma brucei, and characterized it. All of the usual eukaryotic subunits (α, β, γ, δ, and ε) were present in the enzyme, and, in addition, two unique features were detected. First, each of the three α-subunits in the F 1 -domain has been cleaved by proteolysis in vivo at two sites eight residues apart, producing two assembled fragments. Second, the T. brucei F 1 -ATPase has an additional subunit, called p18, present in three copies per complex. Suppression of expression of p18 affected in vitro growth of both the insect and infectious mammalian forms of T. brucei. It also reduced the levels of monomeric and multimeric F-ATPase complexes and diminished the in vivo hydrolytic activity of the enzyme significantly. These observations imply that p18 plays a role in the assembly of the F 1 domain. These unique features of the F 1 -ATPase extend the list of special characteristics of the F-ATPase from T. brucei, and also, demonstrate that the architecture of the F 1 -ATPase complex is not strictly conserved in eukaryotes. © 2017 Federation of European Biochemical Societies.

  16. Effect of experimental single Ancylostoma caninum and mixed infections of Trypanosoma brucei and Trypanosoma congolense on the humoural immune response to anti-rabies vaccination in dogs

    Directory of Open Access Journals (Sweden)

    Nwoha Rosemary Ijeoma Ogechi

    2015-06-01

    Full Text Available Objective: To determine the effect of Ancylostoma caninum (A. caninum and trypanosome parasites on the immune response to vaccination in dogs in endemic environments. Methods: Sixteen dogs for the experiment were grouped into 4 of 4 members each. Group I was the uninfected control one, and GPII was infected with A. caninum; GPIII was infected with A. caninum/Trypanosoma congolense (T. congolense, and GPIV was infected with Trypanosoma brucei (T. brucei/A. caninum. The dogs were first vaccinated with antirabies vaccine before infecting GPII, GPIII and GPIV with A. caninum which were done 4 weeks after vaccination. By 2-week post-vaccination, trypanosome parasites were superimposed on both GPIII and GPIV. A secondary vaccination was given to GPI, GPII, GPIII, and GPIV by Week 12 of the experiment (4 weeks post treatment. Results: The prepatent period was (3.00 ± 1.40 days, in the conjunct infection of T. brucei/ A. caninum. It was (9.00 ± 1.10 days, in conjunct T. congolense/A. caninum. The prepatent period of A. caninum was (14.0 ± 2.0 days in the single A. caninum group and (13.0 ± 1.0 days in the conjunct trypanosome/A. caninum. At the 1st week after vaccination, the antibody titer in all the vaccinated groups (GPI, GPII, GPIII, and GPIV significantly increased (P < 0.05 and peaked at the 3rd week after vaccination. Following infections, there were marked significant decreases (P < 0.05 in the antibody production against rabies in GPII, GPIII and GPIV. The significant decrease (P < 0.05 in antibody titer was highest in the conjunct groups (GPIII and GPIV compared to the single infection (GPII. Treatment with diminazene aceturate and mebendazole did not significantly improve antibody response in the dogs. A secondary vaccination administered at the 12th week after the primary vaccination significantly increased (P < 0.05 the antibody titer with a peak at the 3rd week after the secondary vaccination. Conclusions: It was therefore concluded

  17. Dynamics of gamete production and mating in the parasitic protist Trypanosoma brucei.

    Science.gov (United States)

    Peacock, Lori; Bailey, Mick; Gibson, Wendy

    2016-07-20

    Sexual reproduction in Plasmodium falciparum and Trypanosoma brucei occurs in the insect vector and is important in generating hybrid strains with different combinations of parental characteristics. Production of hybrid parasite genotypes depends on the likelihood of co-infection of the vector with multiple strains. In mosquitoes, existing infection with Plasmodium facilitates the establishment of a second infection, although the asynchronicity of gamete production subsequently prevents mating. In the trypanosome/tsetse system, flies become increasingly refractory to infection as they age, so the likelihood of a fly acquiring a second infection also decreases. This effectively restricts opportunities for trypanosome mating to co-infections picked up by the fly on its first feed, unless an existing infection increases the chance of successful second infection as in the Plasmodium/mosquito system. Using green and red fluorescent trypanosomes, we compared the rates of trypanosome infection and hybrid production in flies co-infected on the first feed, co-infected on a subsequent feed 18 days after emergence, or fed sequentially with each trypanosome clone 18 days apart. Infection rates were highest in the midguts and salivary glands (SG) of flies that received both trypanosome clones in their first feed, and were halved when the infected feed was delayed to day 18. In flies fed the two trypanosome clones sequentially, the second clone often failed to establish a midgut infection and consequently was not present in the SG. Nevertheless, hybrids were recovered from all three groups of infected flies. Meiotic stages and gametes were produced continuously from day 11 to 42 after the infective feed, and in sequentially infected flies, the co-occurrence of gametes led to hybrid formation. We found that a second trypanosome strain can establish infection in the tsetse SG 18 days after the first infected feed, with co-mingling of gametes and production of trypanosome hybrids

  18. The use of yellow fluorescent hybrids to indicate mating in Trypanosoma brucei

    Directory of Open Access Journals (Sweden)

    Ferris Vanessa

    2008-02-01

    Full Text Available Abstract Background Trypanosoma brucei undergoes genetic exchange in its insect vector, the tsetse fly, by an unknown mechanism. The difficulties of working with this experimental system of genetic exchange have hampered investigation, particularly because the trypanosome life cycle stages involved cannot be cultured in vitro and therefore must be examined in the insect. Searching for small numbers of hybrid trypanosomes directly in the fly has become possible through the incorporation of fluorescent reporter genes, and we have previously carried out a successful cross using a reporter-repressor strategy. However, we could not be certain that all fluorescent trypanosomes observed in that cross were hybrids, due to mutations of the repressor leading to spontaneous fluorescence, and we have therefore developed an alternative strategy. Results To visualize the production of hybrids in the fly, parental trypanosome clones were transfected with a gene encoding Green Fluorescent Protein (GFP or Red Fluorescent Protein (RFP. Co-infection of flies with red and green fluorescent parental trypanosomes produced yellow fluorescent hybrids, which were easily visualized in the fly salivary glands. Yellow trypanosomes were not seen in midgut or proventricular samples and first appeared in the glands as epimastigotes as early as 13 days after fly infection. Cloned progeny originating from individual salivary glands had yellow, red, green or no fluorescence and were confirmed as hybrids by microsatellite, molecular karyotype and kinetoplast (mitochondrial DNA analyses. Hybrid clones showed biparental inheritance of both nuclear and kinetoplast genomes. While segregation and reassortment of the reporter genes and microsatellite alleles were consistent with Mendelian inheritance, flow cytometry measurement of DNA content revealed both diploid and polyploid trypanosomes among the hybrid progeny clones. Conclusion The strategy of using production of yellow hybrids

  19. Single-subunit oligosaccharyltransferases of Trypanosoma brucei display different and predictable peptide acceptor specificities.

    Science.gov (United States)

    Jinnelov, Anders; Ali, Liaqat; Tinti, Michele; Güther, Maria Lucia S; Ferguson, Michael A J

    2017-12-08

    Trypanosoma brucei causes African trypanosomiasis and contains three full-length oligosaccharyltransferase (OST) genes; two of which, Tb STT3A and Tb STT3B, are expressed in the bloodstream form of the parasite. These OSTs have different peptide acceptor and lipid-linked oligosaccharide donor specificities, and trypanosomes do not follow many of the canonical rules developed for other eukaryotic N -glycosylation pathways, raising questions as to the basic architecture and detailed function of trypanosome OSTs. Here, we show by blue-native gel electrophoresis and stable isotope labeling in cell culture proteomics that the Tb STT3A and Tb STT3B proteins associate with each other in large complexes that contain no other detectable protein subunits. We probed the peptide acceptor specificities of the OSTs in vivo using a transgenic glycoprotein reporter system and performed glycoproteomics on endogenous parasite glycoproteins using sequential endoglycosidase H and peptide: N -glycosidase-F digestions. This allowed us to assess the relative occupancies of numerous N -glycosylation sites by endoglycosidase H-resistant N -glycans originating from Man 5 GlcNAc 2 -PP-dolichol transferred by Tb STT3A, and endoglycosidase H-sensitive N -glycans originating from Man 9 GlcNAc 2 -PP-dolichol transferred by Tb STT3B. Using machine learning, we assessed the features that best define Tb STT3A and Tb STT3B substrates in vivo and built an algorithm to predict the types of N -glycan most likely to predominate at all the putative N -glycosylation sites in the parasite proteome. Finally, molecular modeling was used to suggest why Tb STT3A has a distinct preference for sequons containing and/or flanked by acidic amino acid residues. Together, these studies provide insights into how a highly divergent eukaryote has re-wired protein N -glycosylation to provide protein sequence-specific N -glycan modifications. Data are available via ProteomeXchange with identifiers PXD007236, PXD007267

  20. Minimum Information Loss Based Multi-kernel Learning for Flagellar Protein Recognition in Trypanosoma Brucei

    KAUST Repository

    Wang, Jim Jing-Yan

    2014-12-01

    Trypanosma brucei (T. Brucei) is an important pathogen agent of African trypanosomiasis. The flagellum is an essential and multifunctional organelle of T. Brucei, thus it is very important to recognize the flagellar proteins from T. Brucei proteins for the purposes of both biological research and drug design. In this paper, we investigate computationally recognizing flagellar proteins in T. Brucei by pattern recognition methods. It is argued that an optimal decision function can be obtained as the difference of probability functions of flagella protein and the non-flagellar protein for the purpose of flagella protein recognition. We propose to learn a multi-kernel classification function to approximate this optimal decision function, by minimizing the information loss of such approximation which is measured by the Kull back-Leibler (KL) divergence. An iterative multi-kernel classifier learning algorithm is developed to minimize the KL divergence for the problem of T. Brucei flagella protein recognition, experiments show its advantage over other T. Brucei flagellar protein recognition and multi-kernel learning methods. © 2014 IEEE.

  1. Minimum Information Loss Based Multi-kernel Learning for Flagellar Protein Recognition in Trypanosoma Brucei

    KAUST Repository

    Wang, Jim Jing-Yan; Gao, Xin

    2014-01-01

    for the purposes of both biological research and drug design. In this paper, we investigate computationally recognizing flagellar proteins in T. Brucei by pattern recognition methods. It is argued that an optimal decision function can be obtained as the difference

  2. A role for Sar1 and ARF1 GTPases during Golgi biogenesis in the protozoan parasite Trypanosoma brucei

    Science.gov (United States)

    Yavuz, Sevil; Warren, Graham

    2017-01-01

    A single Golgi stack is duplicated and partitioned into two daughter cells during the cell cycle of the protozoan parasite Trypanosoma brucei. The source of components required to generate the new Golgi and the mechanism by which it forms are poorly understood. Using photoactivatable GFP, we show that the existing Golgi supplies components directly to the newly forming Golgi in both intact and semipermeabilized cells. The movement of a putative glycosyltransferase, GntB, requires the Sar1 and ARF1 GTPases in intact cells. In addition, we show that transfer of GntB from the existing Golgi to the new Golgi can be recapitulated in semipermeabilized cells and is sensitive to the GTP analogue GTPγS. We suggest that the existing Golgi is a key source of components required to form the new Golgi and that this process is regulated by small GTPases. PMID:28495798

  3. γ-Tubulin complex in Trypanosoma brucei: molecular composition, subunit interdependence and requirement for axonemal central pair protein assembly.

    Science.gov (United States)

    Zhou, Qing; Li, Ziyin

    2015-11-01

    γ-Tubulin complex constitutes a key component of the microtubule-organizing center and nucleates microtubule assembly. This complex differs in complexity in different organisms: the budding yeast contains the γ-tubulin small complex (γTuSC) composed of γ-tubulin, gamma-tubulin complex protein (GCP)2 and GCP3, whereas animals contain the γ-tubulin ring complex (γTuRC) composed of γTuSC and three additional proteins, GCP4, GCP5 and GCP6. In Trypanosoma brucei, the composition of the γ-tubulin complex remains elusive, and it is not known whether it also regulates assembly of the subpellicular microtubules and the spindle microtubules. Here we report that the γ-tubulin complex in T. brucei is composed of γ-tubulin and three GCP proteins, GCP2-GCP4, and is primarily localized in the basal body throughout the cell cycle. Depletion of GCP2 and GCP3, but not GCP4, disrupted the axonemal central pair microtubules, but not the subpellicular microtubules and the spindle microtubules. Furthermore, we showed that the γTuSC is required for assembly of two central pair proteins and that γTuSC subunits are mutually required for stability. Together, these results identified an unusual γ-tubulin complex in T. brucei, uncovered an essential role of γTuSC in central pair protein assembly, and demonstrated the interdependence of individual γTuSC components for maintaining a stable complex. © 2015 John Wiley & Sons Ltd.

  4. Trypanosoma brucei TbIF1 inhibits the essential F1-ATPase in the infectious form of the parasite.

    Directory of Open Access Journals (Sweden)

    Brian Panicucci

    2017-04-01

    Full Text Available The mitochondrial (mt FoF1-ATP synthase of the digenetic parasite, Trypanosoma brucei, generates ATP during the insect procyclic form (PF, but becomes a perpetual consumer of ATP in the mammalian bloodstream form (BF, which lacks a canonical respiratory chain. This unconventional dependence on FoF1-ATPase is required to maintain the essential mt membrane potential (Δψm. Normally, ATP hydrolysis by this rotary molecular motor is restricted to when eukaryotic cells experience sporadic hypoxic conditions, during which this compulsory function quickly depletes the cellular ATP pool. To protect against this cellular treason, the highly conserved inhibitory factor 1 (IF1 binds the enzyme in a manner that solely inhibits the hydrolytic activity. Intriguingly, we were able to identify the IF1 homolog in T. brucei (TbIF1, but determined that its expression in the mitochondrion is tightly regulated throughout the life cycle as it is only detected in PF cells. TbIF1 appears to primarily function as an emergency brake in PF cells, where it prevented the restoration of the Δψm by FoF1-ATPase when respiration was chemically inhibited. In vitro, TbIF1 overexpression specifically inhibits the hydrolytic activity but not the synthetic capability of the FoF1-ATP synthase in PF mitochondria. Furthermore, low μM amounts of recombinant TbIF1 achieve the same inhibition of total mt ATPase activity as the FoF1-ATPase specific inhibitors, azide and oligomycin. Therefore, even minimal ectopic expression of TbIF1 in BF cells proved lethal as the indispensable Δψm collapsed due to inhibited FoF1-ATPase. In summary, we provide evidence that T. brucei harbors a natural and potent unidirectional inhibitor of the vital FoF1-ATPase activity that can be exploited for future structure-based drug design.

  5. Proximity Interactions among Basal Body Components in Trypanosoma brucei Identify Novel Regulators of Basal Body Biogenesis and Inheritance

    Directory of Open Access Journals (Sweden)

    Hung Quang Dang

    2017-01-01

    Full Text Available The basal body shares similar architecture with centrioles in animals and is involved in nucleating flagellar axonemal microtubules in flagellated eukaryotes. The early-branching Trypanosoma brucei possesses a motile flagellum nucleated from the basal body that consists of a mature basal body and an adjacent pro-basal body. Little is known about the basal body proteome and its roles in basal body biogenesis and flagellar axoneme assembly in T. brucei. Here, we report the identification of 14 conserved centriole/basal body protein homologs and 25 trypanosome-specific basal body proteins. These proteins localize to distinct subdomains of the basal body, and several of them form a ring-like structure surrounding the basal body barrel. Functional characterization of representative basal body proteins revealed distinct roles in basal body duplication/separation and flagellar axoneme assembly. Overall, this work identified novel proteins required for basal body duplication and separation and uncovered new functions of conserved basal body proteins in basal body duplication and separation, highlighting an unusual mechanism of basal body biogenesis and inheritance in this early divergent eukaryote.

  6. In Silico Identification and in Vitro Activity of Novel Natural Inhibitors of Trypanosoma brucei Glyceraldehyde-3-phosphate-dehydrogenase

    Directory of Open Access Journals (Sweden)

    Fabian C. Herrmann

    2015-09-01

    Full Text Available As part of our ongoing efforts to identify natural products with activity against pathogens causing neglected tropical diseases, we are currently performing an extensive screening of natural product (NP databases against a multitude of protozoan parasite proteins. Within this project, we screened a database of NPs from a commercial supplier, AnalytiCon Discovery (Potsdam, Germany, against Trypanosoma brucei glyceraldehyde-3-phosphate dehydrogenase (TbGAPDH, a glycolytic enzyme whose inhibition deprives the parasite of energy supply. NPs acting as potential inhibitors of the mentioned enzyme were identified using a pharmacophore-based virtual screening and subsequent docking of the identified hits into the active site of interest. In a set of 700 structures chosen for the screening, 13 (1.9% were predicted to possess significant affinity towards the enzyme and were therefore tested in an in vitro enzyme assay using recombinant TbGAPDH. Nine of these in silico hits (69% showed significant inhibitory activity at 50 µM, of which two geranylated benzophenone derivatives proved to be particularly active with IC50 values below 10 µM. These compounds also showed moderate in vitro activity against T. brucei rhodesiense and may thus represent interesting starting points for further optimization.

  7. In Silico Identification and in Vitro Activity of Novel Natural Inhibitors of Trypanosoma brucei Glyceraldehyde-3-phosphate-dehydrogenase.

    Science.gov (United States)

    Herrmann, Fabian C; Lenz, Mairin; Jose, Joachim; Kaiser, Marcel; Brun, Reto; Schmidt, Thomas J

    2015-09-03

    As part of our ongoing efforts to identify natural products with activity against pathogens causing neglected tropical diseases, we are currently performing an extensive screening of natural product (NP) databases against a multitude of protozoan parasite proteins. Within this project, we screened a database of NPs from a commercial supplier, AnalytiCon Discovery (Potsdam, Germany), against Trypanosoma brucei glyceraldehyde-3-phosphate dehydrogenase (TbGAPDH), a glycolytic enzyme whose inhibition deprives the parasite of energy supply. NPs acting as potential inhibitors of the mentioned enzyme were identified using a pharmacophore-based virtual screening and subsequent docking of the identified hits into the active site of interest. In a set of 700 structures chosen for the screening, 13 (1.9%) were predicted to possess significant affinity towards the enzyme and were therefore tested in an in vitro enzyme assay using recombinant TbGAPDH. Nine of these in silico hits (69%) showed significant inhibitory activity at 50 µM, of which two geranylated benzophenone derivatives proved to be particularly active with IC50 values below 10 µM. These compounds also showed moderate in vitro activity against T. brucei rhodesiense and may thus represent interesting starting points for further optimization.

  8. Independent Analysis of the Flagellum Surface and Matrix Proteomes Provides Insight into Flagellum Signaling in Mammalian-infectious Trypanosoma brucei*

    Science.gov (United States)

    Oberholzer, Michael; Langousis, Gerasimos; Nguyen, HoangKim T.; Saada, Edwin A.; Shimogawa, Michelle M.; Jonsson, Zophonias O.; Nguyen, Steven M.; Wohlschlegel, James A.; Hill, Kent L.

    2011-01-01

    The flagellum of African trypanosomes is an essential and multifunctional organelle that functions in motility, cell morphogenesis, and host-parasite interaction. Previous studies of the trypanosome flagellum have been limited by the inability to purify flagella without first removing the flagellar membrane. This limitation is particularly relevant in the context of studying flagellum signaling, as signaling requires surface-exposed proteins in the flagellar membrane and soluble signaling proteins in the flagellar matrix. Here we employ a combination of genetic and mechanical approaches to purify intact flagella from the African trypanosome, Trypanosoma brucei, in its mammalian-infectious stage. We combined flagellum purification with affinity-purification of surface-exposed proteins to conduct independent proteomic analyses of the flagellum surface and matrix fractions. The proteins identified encompass a broad range of molecular functionalities, including many predicted to function in signaling. Immunofluorescence and RNA interference studies demonstrate flagellum localization and function for proteins identified and provide insight into mechanisms of flagellum attachment and motility. The flagellum surface proteome includes many T. brucei-specific proteins and is enriched for proteins up-regulated in the mammalian-infectious stage of the parasite life-cycle. The combined results indicate that the flagellum surface presents a diverse and dynamic host-parasite interface that is well-suited for host-parasite signaling. PMID:21685506

  9. Endogenous sterol biosynthesis is important for mitochondrial function and cell morphology in procyclic forms of Trypanosoma brucei.

    Science.gov (United States)

    Pérez-Moreno, Guiomar; Sealey-Cardona, Marco; Rodrigues-Poveda, Carlos; Gelb, Michael H; Ruiz-Pérez, Luis Miguel; Castillo-Acosta, Víctor; Urbina, Julio A; González-Pacanowska, Dolores

    2012-10-01

    Sterol biosynthesis inhibitors are promising entities for the treatment of trypanosomal diseases. Insect forms of Trypanosoma brucei, the causative agent of sleeping sickness, synthesize ergosterol and other 24-alkylated sterols, yet also incorporate cholesterol from the medium. While sterol function has been investigated by pharmacological manipulation of sterol biosynthesis, molecular mechanisms by which endogenous sterols influence cellular processes remain largely unknown in trypanosomes. Here we analyse by RNA interference, the effects of a perturbation of three specific steps of endogenous sterol biosynthesis in order to dissect the role of specific intermediates in proliferation, mitochondrial function and cellular morphology in procyclic cells. A decrease in the levels of squalene synthase and squalene epoxidase resulted in a depletion of cellular sterol intermediates and end products, impaired cell growth and led to aberrant morphologies, DNA fragmentation and a profound modification of mitochondrial structure and function. In contrast, cells deficient in sterol methyl transferase, the enzyme involved in 24-alkylation, exhibited a normal growth phenotype in spite of a complete abolition of the synthesis and content of 24-alkyl sterols. Thus, the data provided indicates that while the depletion of squalene and post-squalene endogenous sterol metabolites results in profound cellular defects, bulk 24-alkyl sterols are not strictly required to support growth in insect forms of T. brucei in vitro. Copyright © 2012 Australian Society for Parasitology Inc. Published by Elsevier Ltd. All rights reserved.

  10. TbPIF5 is a Trypanosoma brucei mitochondrial DNA helicase involved in processing of minicircle Okazaki fragments.

    Directory of Open Access Journals (Sweden)

    Beiyu Liu

    2009-09-01

    Full Text Available Trypanosoma brucei's mitochondrial genome, kinetoplast DNA (kDNA, is a giant network of catenated DNA rings. The network consists of a few thousand 1 kb minicircles and several dozen 23 kb maxicircles. Here we report that TbPIF5, one of T. brucei's six mitochondrial proteins related to Saccharomyces cerevisiae mitochondrial DNA helicase ScPIF1, is involved in minicircle lagging strand synthesis. Like its yeast homolog, TbPIF5 is a 5' to 3' DNA helicase. Together with other enzymes thought to be involved in Okazaki fragment processing, TbPIF5 localizes in vivo to the antipodal sites flanking the kDNA. Minicircles in wild type cells replicate unidirectionally as theta-structures and are unusual in that Okazaki fragments are not joined until after the progeny minicircles have segregated. We now report that overexpression of TbPIF5 causes premature removal of RNA primers and joining of Okazaki fragments on theta structures. Further elongation of the lagging strand is blocked, but the leading strand is completed and the minicircle progeny, one with a truncated H strand (ranging from 0.1 to 1 kb, are segregated. The minicircles with a truncated H strand electrophorese on an agarose gel as a smear. This replication defect is associated with kinetoplast shrinkage and eventual slowing of cell growth. We propose that TbPIF5 unwinds RNA primers after lagging strand synthesis, thus facilitating processing of Okazaki fragments.

  11. No gold standard estimation of the sensitivity and specificity of two molecular diagnostic protocols for Trypanosoma brucei spp. in Western Kenya.

    Directory of Open Access Journals (Sweden)

    Barend Mark de Clare Bronsvoort

    2010-01-01

    Full Text Available African animal trypanosomiasis is caused by a range of tsetse transmitted protozoan parasites includingTrypanosoma vivax, Trypanosoma congolense and Trypansoma brucei. In Western Kenya and other parts of East Africa two subspecies of T. brucei, T.b. brucei and the zoonoticT.b. rhodesiense, co-circulate in livestock. A range of polymerase chain reactions (PCR have been developed as important molecular diagnostic tools for epidemiological investigations of T. brucei s.l. in the animal reservoir and of its zoonotic potential. Quantification of the relative performance of different diagnostic PCRs is essential to ensure comparability of studies. This paper describes an evaluation of two diagnostic test systems for T. brucei using a T. brucei s.l. specific PCR [1] and a single nested PCR targeting the Internal Transcribed Spacer (ITS regions of trypanosome ribosomal DNA [2]. A Bayesian formulation of the Hui-Walter latent class model was employed to estimate their test performance in the absence of a gold standard test for detecting T.brucei s.l. infections in ear-vein blood samples from cattle, pig, sheep and goat populations in Western Kenya, stored on Whatman FTA cards. The results indicate that the system employing the T. brucei s.l. specific PCR (Se1=0.760 had a higher sensitivity than the ITS-PCR (Se2=0.640; both have high specificity (Sp1=0.998; Sp2=0.997. The true prevalences for livestock populations were estimated (pcattle=0.091, ppigs=0.066, pgoats=0.005, psheep=0.006, taking into account the uncertainties in the specificity and sensitivity of the two test systems. Implications of test performance include the required survey sample size; due to its higher sensitivity and specificity, the T. brucei s.l. specific PCR requires a consistently smaller sample size than the ITS-PCR for the detection of T. brucei s.l. However the ITS-PCR is able to simultaneously screen samples for other pathogenic trypanosomes and may thus be, overall, a better

  12. Trypanosoma brucei TbIF1 inhibits the essential Finf1/inf-ATPase in the infectious form of the parasite

    Czech Academy of Sciences Publication Activity Database

    Panicucci, Brian; Gahura, Ondřej; Zíková, Alena

    2017-01-01

    Roč. 11, č. 4 (2017), č. článku e0005552. ISSN 1935-2735 R&D Projects: GA MŠk(CZ) EE2.3.30.0032; GA ČR GA17-22248S; GA MŠk LL1205 Institutional support: RVO:60077344 Keywords : mt * TblF1 * Trypanosoma brucei Subject RIV: EE - Microbiology, Virology OBOR OECD: Infectious Diseases Impact factor: 3.834, year: 2016

  13. In or out? On the tightness of glycosomal compartmentalization of metabolites and enzymes in Trypanosoma brucei

    NARCIS (Netherlands)

    Haanstra, Jurgen R.; Bakker, Barbara M.; Michels, Paul A. M.

    Trypanosomatids sequester large parts of glucose metabolism inside specialised peroxisomes, called glycosomes. Many studies have shown that correct glycosomal compartmentalization of glycolytic enzymes is essential for bloodstream-form Trypanosoma brucel. The recent finding of pore-forming

  14. Novel 1,2-dihydroquinazolin-2-ones: Design, synthesis, and biological evaluation against Trypanosoma brucei.

    Science.gov (United States)

    Pham, ThanhTruc; Walden, Madeline; Butler, Christopher; Diaz-Gonzalez, Rosario; Pérez-Moreno, Guiomar; Ceballos-Pérez, Gloria; Gomez-Pérez, Veronica; García-Hernández, Raquel; Zecca, Henry; Krakoff, Emma; Kopec, Brian; Ichire, Ogar; Mackenzie, Caden; Pitot, Marika; Ruiz, Luis Miguel; Gamarro, Francisco; González-Pacanowska, Dolores; Navarro, Miguel; Dounay, Amy B

    2017-08-15

    In 2014, a published report of the high-throughput screen of>42,000 kinase inhibitors from GlaxoSmithKline against T. brucei identified 797 potent and selective hits. From this rich data set, we selected NEU-0001101 (1) for hit-to-lead optimization. Through our preliminary compound synthesis and SAR studies, we have confirmed the previously reported activity of 1 in a T. brucei cell proliferation assay and have identified alternative groups to replace the pyridyl ring in 1. Pyrazole 24 achieves improvements in both potency and lipophilicity relative to 1, while also showing good in vitro metabolic stability. The SAR developed on 24 provides new directions for further optimization of this novel scaffold for anti-trypanosomal drug discovery. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Spliced leader RNA silencing (SLS - a programmed cell death pathway in Trypanosoma brucei that is induced upon ER stress

    Directory of Open Access Journals (Sweden)

    Michaeli Shulamit

    2012-05-01

    Full Text Available Abstract Trypanosoma brucei is the causative agent of African sleeping sickness. The parasite cycles between its insect (procyclic form and mammalian hosts (bloodstream form. Trypanosomes lack conventional transcription regulation, and their genes are transcribed in polycistronic units that are processed by trans-splicing and polyadenylation. In trans-splicing, which is essential for processing of each mRNA, an exon, the spliced leader (SL is added to all mRNAs from a small RNA, the SL RNA. Trypanosomes lack the machinery for the unfolded protein response (UPR, which in other eukaryotes is induced under endoplasmic reticulum (ER stress. Trypanosomes respond to such stress by changing the stability of mRNAs, which are essential for coping with the stress. However, under severe ER stress that is induced by blocking translocation of proteins to the ER, treatment of cells with chemicals that induce misfolding in the ER, or extreme pH, trypanosomes elicit the spliced leader silencing (SLS pathway. In SLS, the transcription of the SL RNA gene is extinguished, and tSNAP42, a specific SL RNA transcription factor, fails to bind to its cognate promoter. SLS leads to complete shut-off of trans-splicing. In this review, I discuss the UPR in mammals and compare it to the ER stress response in T. brucei leading to SLS. I summarize the evidence supporting the notion that SLS is a programmed cell death (PCD pathway that is utilized by the parasites to substitute for the apoptosis observed in higher eukaryotes under prolonged ER stress. I present the hypothesis that SLS evolved to expedite the death process, and rapidly remove from the population unfit parasites that, by elimination via SLS, cause minimal damage to the parasite population.

  16. Sleep and rhythm changes at the time of Trypanosoma brucei invasion of the brain parenchyma in the rat.

    Science.gov (United States)

    Seke Etet, Paul F; Palomba, Maria; Colavito, Valeria; Grassi-Zucconi, Gigliola; Bentivoglio, Marina; Bertini, Giuseppe

    2012-05-01

    Human African trypanosomiasis (HAT), or sleeping sickness, is a severe disease caused by Trypanosoma brucei (T.b.). The disease hallmark is sleep alterations. Brain involvement in HAT is a crucial pathogenetic step for disease diagnosis and therapy. In this study, a rat model of African trypanosomiasis was used to assess changes of sleep-wake, rest-activity, and body temperature rhythms in the time window previously shown as crucial for brain parenchyma invasion by T.b. to determine potential biomarkers of this event. Chronic radiotelemetric monitoring in Sprague-Dawley rats was used to continuously record electroencephalogram, electromyogram, rest-activity, and body temperature in the same animals before (baseline recording) and after infection. Rats were infected with T.b. brucei. Data were acquired from 1 to 20 d after infection (parasite neuroinvasion initiates at 11-13 d post-infection in this model), and were compared to baseline values. Sleep parameters were manually scored from electroencephalographic-electromyographic tracings. Circadian rhythms of sleep time, slow-wave activity, rest-activity, and body temperature were studied using cosinor rhythmometry. Results revealed alterations of most of the analyzed parameters. In particular, sleep pattern and sleep-wake organization plus rest-activity and body temperature rhythms exhibited early quantitative and qualitative alterations, which became marked around the time interval crucial for parasite neuroinvasion or shortly after. Data derived from actigrams showed close correspondence with those from hypnograms, suggesting that rest-activity could be useful to monitor sleep-wake alterations in African trypanosomiasis.

  17. Mitochondrial tRNA import in Trypanosoma brucei is independent of thiolation and the Rieske protein

    Czech Academy of Sciences Publication Activity Database

    Paris, Zdeněk; RUBIO, M. A. T.; Lukeš, Julius; Alfonzo, J. D.

    2009-01-01

    Roč. 15, č. 7 (2009), s. 1398-1406 ISSN 1355-8382 R&D Projects: GA ČR GA204/06/1558; GA MŠk LC07032; GA MŠk 2B06129 Institutional research plan: CEZ:AV0Z60220518 Keywords : T. brucei * tRNA import * 2-thiolation * RIC * Rieske * Fe-S cluster Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 5.198, year: 2009

  18. The Aurora Kinase in Trypanosoma brucei plays distinctive roles in metaphase-anaphase transition and cytokinetic initiation.

    Directory of Open Access Journals (Sweden)

    Ziyin Li

    2009-09-01

    Full Text Available Aurora B kinase is an essential regulator of chromosome segregation with the action well characterized in eukaryotes. It is also implicated in cytokinesis, but the detailed mechanism remains less clear, partly due to the difficulty in separating the latter from the former function in a growing cell. A chemical genetic approach with an inhibitor of the enzyme added to a synchronized cell population at different stages of the cell cycle would probably solve this problem. In the deeply branched parasitic protozoan Trypanosoma brucei, an Aurora B homolog, TbAUK1, was found to control both chromosome segregation and cytokinetic initiation by evidence from RNAi and dominant negative mutation. To clearly separate these two functions, VX-680, an inhibitor of TbAUK1, was added to a synchronized T. brucei procyclic cell population at different cell cycle stages. The unique trans-localization pattern of the chromosomal passenger complex (CPC, consisting of TbAUK1 and two novel proteins TbCPC1 and TbCPC2, was monitored during mitosis and cytokinesis by following the migration of the proteins tagged with enhanced yellow fluorescence protein in live cells with time-lapse video microscopy. Inhibition of TbAUK1 function in S-phase, prophase or metaphase invariably arrests the cells in the metaphase, suggesting an action of TbAUK1 in promoting metaphase-anaphase transition. TbAUK1 inhibition in anaphase does not affect mitotic exit, but prevents trans-localization of the CPC from the spindle midzone to the anterior tip of the new flagellum attachment zone for cytokinetic initiation. The CPC in the midzone is dispersed back to the two segregated nuclei, while cytokinesis is inhibited. In and beyond telophase, TbAUK1 inhibition has no effect on the progression of cytokinesis or the subsequent G1, S and G2 phases until a new metaphase is attained. There are thus two clearly distinct points of TbAUK1 action in T. brucei: the metaphase-anaphase transition and

  19. YCF45 protein, usually associated with plastids, is targeted into the mitochondrion of Trypanosoma brucei

    Czech Academy of Sciences Publication Activity Database

    Týč, Jiří; Long, Shaojun; Jirků, Milan; Lukeš, Julius

    2010-01-01

    Roč. 173, č. 1 (2010), s. 43-47 ISSN 0166-6851 R&D Projects: GA ČR GA204/09/1667 Institutional research plan: CEZ:AV0Z60220518 Keywords : Trypanosoma * Plastid * Mitochondrion * Targeting * YCF45 * Horizontal gene transfer Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.875, year: 2010

  20. Molecular variation of Trypanosoma brucei subspecies as revealed by AFLP fingerprinting

    NARCIS (Netherlands)

    Agbo, E.E.C.; Majiwa, P.A.O.; Claassen, H.J.H.M.; Pas, te M.F.W.

    2002-01-01

    Genetic analysis of Trypanosoma spp. depends on the detection of variation between strains. We have used the amplified fragment length polymorphism (AFLP) technique to develop a convenient and reliable method for genetic characterization of Trypanosome (sub)species. AFLP accesses multiple

  1. Futile import of tRNAs and proteins into the mitochondrion of Trypanosoma brucei evansi

    Czech Academy of Sciences Publication Activity Database

    Paris, Zdeněk; Hashimi, Hassan; Lun, Sijia; Alfonzo, J. D.; Lukeš, Julius

    2011-01-01

    Roč. 176, č. 2 (2011), 116-120 ISSN 0166-6851 R&D Projects: GA ČR GA204/09/1667; GA MŠk LC07032 Institutional research plan: CEZ:AV0Z60220518 Keywords : Trypanosoma * tRNA * Protein import * Mitochondrion * Kinetoplast Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.551, year: 2011

  2. Functions and cellular localization of cysteine desulfurase and selenocysteine lyase in Trypanosoma brucei

    Czech Academy of Sciences Publication Activity Database

    Poliak, Pavel; Van Hoewyk, D.; Oborník, Miroslav; Zíková, Alena; Stuart, K. D.; Tachezy, J.; Pilon, M.; Lukeš, Julius

    2010-01-01

    Roč. 277, č. 2 (2010), s. 383-393 ISSN 1742-464X R&D Projects: GA ČR GA204/09/1667 Institutional research plan: CEZ:AV0Z60220518 Keywords : Fe–S cluster * mitochondrion * RNAi * selenoprotein * Trypanosoma Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.129, year: 2010

  3. Trypanosoma brucei Co-opts NK Cells to Kill Splenic B2 B Cells.

    Directory of Open Access Journals (Sweden)

    Deborah Frenkel

    2016-07-01

    Full Text Available After infection with T. brucei AnTat 1.1, C57BL/6 mice lost splenic B2 B cells and lymphoid follicles, developed poor parasite-specific antibody responses, lost weight, became anemic and died with fulminating parasitemia within 35 days. In contrast, infected C57BL/6 mice lacking the cytotoxic granule pore-forming protein perforin (Prf1-/- retained splenic B2 B cells and lymphoid follicles, developed high-titer antibody responses against many trypanosome polypeptides, rapidly suppressed parasitemia and did not develop anemia or lose weight for at least 60 days. Several lines of evidence show that T. brucei infection-induced splenic B cell depletion results from natural killer (NK cell-mediated cytotoxicity: i B2 B cells were depleted from the spleens of infected intact, T cell deficient (TCR-/- and FcγRIIIa deficient (CD16-/- C57BL/6 mice excluding a requirement for T cells, NKT cell, or antibody-dependent cell-mediated cytotoxicity; ii administration of NK1.1 specific IgG2a (mAb PK136 but not irrelevant IgG2a (myeloma M9144 prevented infection-induced B cell depletion consistent with a requirement for NK cells; iii splenic NK cells but not T cells or NKT cells degranulated in infected C57BL/6 mice co-incident with B cell depletion evidenced by increased surface expression of CD107a; iv purified NK cells from naïve C57BL/6 mice killed purified splenic B cells from T. brucei infected but not uninfected mice in vitro indicating acquisition of an NK cell activating phenotype by the post-infection B cells; v adoptively transferred C57BL/6 NK cells prevented infection-induced B cell population growth in infected Prf1-/- mice consistent with in vivo B cell killing; vi degranulated NK cells in infected mice had altered gene and differentiation antigen expression and lost cytotoxic activity consistent with functional exhaustion, but increased in number as infection progressed indicating continued generation. We conclude that NK cells in T. brucei

  4. Cell-cycle synchronisation of bloodstream forms of Trypanosoma brucei using Vybrant DyeCycle Violet-based sorting.

    Science.gov (United States)

    Kabani, Sarah; Waterfall, Martin; Matthews, Keith R

    2010-01-01

    Studies on the cell-cycle of Trypanosoma brucei have revealed several unusual characteristics that differ from the model eukaryotic organisms. However, the inability to isolate homogenous populations of parasites in distinct cell-cycle stages has limited the analysis of trypanosome cell division and complicated the understanding of mutant phenotypes with possible impact on cell-cycle related events. Although hydroxyurea-induced cell-cycle arrest in procyclic and bloodstream forms has been applied recently with success, such block-release protocols can complicate the analysis of cell-cycle regulated events and have the potential to disrupt important cell-cycle checkpoints. An alternative approach based on flow cytometry of parasites stained with Vybrant DyeCycle Orange circumvents this problem, but is restricted to procyclic form parasites. Here, we apply Vybrant Dyecycle Violet staining coupled with flow cytometry to effectively select different cell-cycle stages of bloodstream form trypanosomes. Moreover, the sorted parasites remain viable, although synchrony is rapidly lost. This method enables cell-cycle enrichment of populations of trypanosomes in their mammal infective stage, particularly at the G1 phase.

  5. Immunospecific immunoglobulins and IL-10 as markers for Trypanosoma brucei rhodesiense late stage disease in experimentally infected vervet monkeys

    DEFF Research Database (Denmark)

    Ngotho, Maina; Kagira, J.M.; Jensen, Henrik Michael Elvang

    2009-01-01

    and 140 days post-infection (dpi) respectively. Matched serum and CSF samples were obtained at regular intervals and immunospecific IgM, immunoglobulin G (IgG) and IL-10 were quantified by ELISA. RESULTS: There was no detectable immunospecific IgM and IgG in the CSF before 49 dpi. CSF IgM and Ig......OBJECTIVE: To determine the usefulness of IL-10 and immunoglobulin M (IgM) as biomarkers for staging HAT in vervet monkeys, a useful pathogenesis model for humans. METHODS: Vervet monkeys were infected with Trypanosoma brucei rhodesiense and subsequently given sub-curative and curative treatment 28...... curative treatment was given. After curative treatment, there was rapid and significant drop in serum IgM and IL-10 concentration as well as CSF WCC. However, the CSF IgM and IgG remained detectable to the end of the study. CONCLUSIONS: Serum and CSF concentrations of immunospecific IgM and CSF IgG changes...

  6. IL-6 is Upregulated in Late-Stage Disease in Monkeys Experimentally Infected with Trypanosoma brucei rhodesiense

    Directory of Open Access Journals (Sweden)

    Dawn Nyawira Maranga

    2013-01-01

    Full Text Available The management of human African trypanosomiasis (HAT is constrained by lack of simple-to-use diagnostic, staging, and treatment tools. The search for novel biomarkers is, therefore, essential in the fight against HAT. The current study aimed at investigating the potential of IL-6 as an adjunct parameter for HAT stage determination in vervet monkey model. Four adult vervet monkeys (Chlorocebus aethiops were experimentally infected with Trypanosoma brucei rhodesiense and treated subcuratively at 28 days after infection (dpi to induce late stage disease. Three noninfected monkeys formed the control group. Cerebrospinal fluid (CSF and blood samples were obtained at weekly intervals and assessed for various biological parameters. A typical HAT-like infection was observed. The late stage was characterized by significant (P<0.05 elevation of CSF IL-6, white blood cell count, and total protein starting 35 dpi with peak levels of these parameters coinciding with relapse parasitaemia. Brain immunohistochemical staining revealed an increase in brain glial fibrillary acidic protein expression indicative of reactive astrogliosis in infected animals which were euthanized in late-stage disease. The elevation of IL-6 in CSF which accompanied other HAT biomarkers indicates onset of parasite neuroinvasion and show potential for use as an adjunct late-stage disease biomarker in the Rhodesian sleeping sickness.

  7. Molecular Evidence of a Trypanosoma brucei gambiense Sylvatic Cycle in the Human African Trypanosomiasis Foci of Equatorial Guinea

    Directory of Open Access Journals (Sweden)

    Carlos eCordon-Obras

    2015-07-01

    Full Text Available Gambiense trypanosomiasis is considered an anthroponotic disease. Consequently, control programs are generally aimed at stopping transmission of Trypanosoma brucei gambiense (T. b. gambiense by detecting and treating human cases. However, the persistence of numerous foci despite efforts to eliminate this disease questions this strategy as unique tool to pursue the eradication. The role of animals as a reservoir of T. b. gambiense is still controversial, but could partly explain maintenance of the infection at hypo-endemic levels. In the present study, we evaluated the presence of T. b. gambiense in wild animals in Equatorial Guinea. The infection rate ranged from 0.8% in the insular focus of Luba to more than 12% in Mbini, a focus with a constant trickle of human cases. The parasite was detected in a wide range of animal species including four species never described previously as putative reservoirs. Our study comes to reinforce the hypothesis that animals may play a role in the persistence of T. b. gambiense transmission, being particularly relevant in low transmission settings. Under these conditions the integration of sustained vector control and medical interventions should be considered to achieve the elimination of Gambiense trypanosomiasis.

  8. Probing the metabolic network in bloodstream-form Trypanosoma brucei using untargeted metabolomics with stable isotope labelled glucose.

    Directory of Open Access Journals (Sweden)

    Darren J Creek

    2015-03-01

    Full Text Available Metabolomics coupled with heavy-atom isotope-labelled glucose has been used to probe the metabolic pathways active in cultured bloodstream form trypomastigotes of Trypanosoma brucei, a parasite responsible for human African trypanosomiasis. Glucose enters many branches of metabolism beyond glycolysis, which has been widely held to be the sole route of glucose metabolism. Whilst pyruvate is the major end-product of glucose catabolism, its transamination product, alanine, is also produced in significant quantities. The oxidative branch of the pentose phosphate pathway is operative, although the non-oxidative branch is not. Ribose 5-phosphate generated through this pathway distributes widely into nucleotide synthesis and other branches of metabolism. Acetate, derived from glucose, is found associated with a range of acetylated amino acids and, to a lesser extent, fatty acids; while labelled glycerol is found in many glycerophospholipids. Glucose also enters inositol and several sugar nucleotides that serve as precursors to macromolecule biosynthesis. Although a Krebs cycle is not operative, malate, fumarate and succinate, primarily labelled in three carbons, were present, indicating an origin from phosphoenolpyruvate via oxaloacetate. Interestingly, the enzyme responsible for conversion of phosphoenolpyruvate to oxaloacetate, phosphoenolpyruvate carboxykinase, was shown to be essential to the bloodstream form trypanosomes, as demonstrated by the lethal phenotype induced by RNAi-mediated downregulation of its expression. In addition, glucose derivatives enter pyrimidine biosynthesis via oxaloacetate as a precursor to aspartate and orotate.

  9. The import and function of diatom and plant frataxins in the mitochondrion of Trypanosoma brucei

    Czech Academy of Sciences Publication Activity Database

    Long, Shaojun; Vávrová, Zuzana; Lukeš, Julius

    2008-01-01

    Roč. 162, č. 1 (2008), s. 100-104 ISSN 0166-6851 R&D Projects: GA AV ČR IAA500960705; GA MŠk LC07032; GA MŠk 2B06129; GA ČR GA204/06/1558 Institutional research plan: CEZ:AV0Z60220518 Keywords : frataxin * mitochondrion * Trypanosoma * diatom * evolutionary conservativeness * import Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.951, year: 2008

  10. DEAD-box RNA helicase is dispensable for mitochondrial translation in Trypanosoma brucei

    Czech Academy of Sciences Publication Activity Database

    Richterová, Lenka; Vávrová, Zuzana; Lukeš, Julius

    2011-01-01

    Roč. 127, č. 1 (2011), 300-303 ISSN 0014-4894 R&D Projects: GA ČR GA204/09/1667; GA MŠk LC07032; GA MŠk 2B06129 Institutional research plan: CEZ:AV0Z60220518 Keywords : Trypanosoma * Mitochondrial translation * RNA helicase * Cytochrome c oxidase * Mitochondrion Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.122, year: 2011

  11. Mitochondrial fatty acid synthesis is required for normal mitochondrial morphology and function in Trypanosoma brucei

    Czech Academy of Sciences Publication Activity Database

    Guler, J. L.; Kriegová, Eva; Smith, T. K.; Lukeš, Julius; Englund, P. T.

    2008-01-01

    Roč. 67, č. 5 (2008), s. 1125-1142 ISSN 0950-382X R&D Projects: GA ČR GA204/06/1558; GA MŠk LC07032; GA MŠk 2B06129 Grant - others:NIH(US) AI21334; Wellcome Trust(GB) 067441 Institutional research plan: CEZ:AV0Z60220518 Keywords : Trypanosoma * mitochondrion * fatty acid * RNA interference Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 5.213, year: 2008

  12. Disparate phenotypic effects from the knockdown of various Trypanosoma brucei cytochrome c oxidase subunits

    Czech Academy of Sciences Publication Activity Database

    Gnipová, Anna; Panicucci, Brian; Paris, Zdeněk; Verner, Zdeněk; Horváth, A.; Lukeš, Julius; Zíková, Alena

    2012-01-01

    Roč. 184, č. 2 (2012), s. 90-98 ISSN 0166-6851 R&D Projects: GA AV ČR KJB500960901; GA ČR GA204/09/1667 Institutional research plan: CEZ:AV0Z60220518 Keywords : Trypanosoma * RNA interference * Mitochondrion * Respiratory complexes * Cytochrome c oxidase Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.734, year: 2012 http://www.sciencedirect.com/science/article/pii/S0166685112001065#

  13. Alba-domain proteins of Trypanosoma brucei are cytoplasmic RNA-binding proteins that interact with the translation machinery.

    Directory of Open Access Journals (Sweden)

    Jan Mani

    Full Text Available Trypanosoma brucei and related pathogens transcribe most genes as polycistronic arrays that are subsequently processed into monocistronic mRNAs. Expression is frequently regulated post-transcriptionally by cis-acting elements in the untranslated regions (UTRs. GPEET and EP procyclins are the major surface proteins of procyclic (insect midgut forms of T. brucei. Three regulatory elements common to the 3' UTRs of both mRNAs regulate mRNA turnover and translation. The glycerol-responsive element (GRE is unique to the GPEET 3' UTR and regulates its expression independently from EP. A synthetic RNA encompassing the GRE showed robust sequence-specific interactions with cytoplasmic proteins in electromobility shift assays. This, combined with column chromatography, led to the identification of 3 Alba-domain proteins. RNAi against Alba3 caused a growth phenotype and reduced the levels of Alba1 and Alba2 proteins, indicative of interactions between family members. Tandem-affinity purification and co-immunoprecipitation verified these interactions and also identified Alba4 in sub-stoichiometric amounts. Alba proteins are cytoplasmic and are recruited to starvation granules together with poly(A RNA. Concomitant depletion of all four Alba proteins by RNAi specifically reduced translation of a reporter transcript flanked by the GPEET 3' UTR. Pulldown of tagged Alba proteins confirmed interactions with poly(A binding proteins, ribosomal protein P0 and, in the case of Alba3, the cap-binding protein eIF4E4. In addition, Alba2 and Alba3 partially cosediment with polyribosomes in sucrose gradients. Alba-domain proteins seem to have exhibited great functional plasticity in the course of evolution. First identified as DNA-binding proteins in Archaea, then in association with nuclear RNase MRP/P in yeast and mammalian cells, they were recently described as components of a translationally silent complex containing stage-regulated mRNAs in Plasmodium. Our results are

  14. Divergent Small Tim Homologues Are Associated with TbTim17 and Critical for the Biogenesis of TbTim17 Protein Complexes in Trypanosoma brucei

    Science.gov (United States)

    Smith, Joseph T.; Singha, Ujjal K.; Misra, Smita

    2018-01-01

    ABSTRACT The small Tim proteins belong to a group of mitochondrial intermembrane space chaperones that aid in the import of mitochondrial inner membrane proteins with internal targeting signals. Trypanosoma brucei, the protozoan parasite that causes African trypanosomiasis, possesses multiple small Tim proteins that include homologues of T. brucei Tim9 (TbTim9) and Tim10 (TbTim10) and a unique small Tim that shares homology with both Tim8 and Tim13 (TbTim8/13). Here, we found that these three small TbTims are expressed as soluble mitochondrial intermembrane space proteins. Coimmunoprecipitation and mass spectrometry analysis showed that the small TbTims stably associated with each other and with TbTim17, the major component of the mitochondrial inner membrane translocase in T. brucei. Yeast two-hybrid analysis indicated direct interactions among the small TbTims; however, their interaction patterns appeared to be different from those of their counterparts in yeast and humans. Knockdown of the small TbTims reduced cell growth and decreased the steady-state level of TbTim17 and T. brucei ADP/ATP carrier (TbAAC), two polytopic mitochondrial inner membrane proteins. Knockdown of small TbTims also reduced the matured complexes of TbTim17 in mitochondria. Depletion of any of the small TbTims reduced TbTim17 import moderately but greatly hampered the stability of the TbTim17 complexes in T. brucei. Altogether, our results revealed that TbTim9, TbTim10, and TbTim8/13 interact with each other, associate with TbTim17, and play a crucial role in the integrity and maintenance of the levels of TbTim17 complexes. IMPORTANCE Trypanosoma brucei is the causative agent of African sleeping sickness. The parasite’s mitochondrion represents a useful source for potential chemotherapeutic targets. Similarly to yeast and humans, mitochondrial functions depend on the import of proteins that are encoded in the nucleus and made in the cytosol. Even though the machinery involved in this

  15. Ethyl Pyruvate Emerges as a Safe and Fast Acting Agent against Trypanosoma brucei by Targeting Pyruvate Kinase Activity.

    Directory of Open Access Journals (Sweden)

    Netsanet Worku

    Full Text Available Human African Trypanosomiasis (HAT also called sleeping sickness is an infectious disease in humans caused by an extracellular protozoan parasite. The disease, if left untreated, results in 100% mortality. Currently available drugs are full of severe drawbacks and fail to escape the fast development of trypanosoma resistance. Due to similarities in cell metabolism between cancerous tumors and trypanosoma cells, some of the current registered drugs against HAT have also been tested in cancer chemotherapy. Here we demonstrate for the first time that the simple ester, ethyl pyruvate, comprises such properties.The current study covers the efficacy and corresponding target evaluation of ethyl pyruvate on T. brucei cell lines using a combination of biochemical techniques including cell proliferation assays, enzyme kinetics, phasecontrast microscopic video imaging and ex vivo toxicity tests. We have shown that ethyl pyruvate effectively kills trypanosomes most probably by net ATP depletion through inhibition of pyruvate kinase (Ki = 3.0±0.29 mM. The potential of ethyl pyruvate as a trypanocidal compound is also strengthened by its fast acting property, killing cells within three hours post exposure. This has been demonstrated using video imaging of live cells as well as concentration and time dependency experiments. Most importantly, ethyl pyruvate produces minimal side effects in human red cells and is known to easily cross the blood-brain-barrier. This makes it a promising candidate for effective treatment of the two clinical stages of sleeping sickness. Trypanosome drug-resistance tests indicate irreversible cell death and a low incidence of resistance development under experimental conditions.Our results present ethyl pyruvate as a safe and fast acting trypanocidal compound and show that it inhibits the enzyme pyruvate kinase. Competitive inhibition of this enzyme was found to cause ATP depletion and cell death. Due to its ability to easily cross

  16. Interaction between the flagellar pocket collar and the hook complex via a novel microtubule-binding protein in Trypanosoma brucei.

    Directory of Open Access Journals (Sweden)

    Anna Albisetti

    2017-11-01

    Full Text Available Trypanosoma brucei belongs to a group of unicellular, flagellated parasites that are responsible for human African trypanosomiasis. An essential aspect of parasite pathogenicity is cytoskeleton remodelling, which occurs during the life cycle of the parasite and is accompanied by major changes in morphology and organelle positioning. The flagellum originates from the basal bodies and exits the cell body through the flagellar pocket (FP but remains attached to the cell body via the flagellum attachment zone (FAZ. The FP is an invagination of the pellicular membrane and is the sole site for endo- and exocytosis. The FAZ is a large complex of cytoskeletal proteins, plus an intracellular set of four specialised microtubules (MtQ that elongate from the basal bodies to the anterior end of the cell. At the distal end of the FP, an essential, intracellular, cytoskeletal structure called the flagellar pocket collar (FPC circumvents the flagellum. Overlapping the FPC is the hook complex (HC (a sub-structure of the previously named bilobe that is also essential and is thought to be involved in protein FP entry. BILBO1 is the only functionally characterised FPC protein and is necessary for FPC and FP biogenesis. Here, we used a combination of in vitro and in vivo approaches to identify and characterize a new BILBO1 partner protein-FPC4. We demonstrate that FPC4 localises to the FPC, the HC, and possibly to a proximal portion of the MtQ. We found that the C-terminal domain of FPC4 interacts with the BILBO1 N-terminal domain, and we identified the key amino acids required for this interaction. Interestingly, the FPC4 N-terminal domain was found to bind microtubules. Over-expression studies highlight the role of FPC4 in its association with the FPC, HC and FPC segregation. Our data suggest a tripartite association between the FPC, the HC and the MtQ.

  17. The miRNA and mRNA Signatures of Peripheral Blood Cells in Humans Infected with Trypanosoma brucei gambiense.

    Directory of Open Access Journals (Sweden)

    Smiths Lueong

    Full Text Available Simple, reliable tools for diagnosis of human African Trypanosomiases could ease field surveillance and enhance patient care. In particular, current methods to distinguish patients with (stage II and without (stage I brain involvement require samples of cerebrospinal fluid. We describe here an exploratory study to find out whether miRNAs from peripheral blood leukocytes might be useful in diagnosis of human trypanosomiasis, or for determining the stage of the disease. Using microarrays, we measured miRNAs in samples from Trypanosoma brucei gambiense-infected patients (9 stage I, 10 stage II, 8 seronegative parasite-negative controls and 12 seropositive, but parasite-negative subjects. 8 miRNAs (out of 1205 tested showed significantly lower expression in patients than in seronegative, parasite-negative controls, and 1 showed increased expression. There were no clear differences in miRNAs between patients in different disease stages. The miRNA profiles could not distinguish seropositive, but parasitologically negative samples from controls and results within this group did not correlate with those from the trypanolysis test. Some of the regulated miRNAs, or their predicted mRNA targets, were previously reported changed during other infectious diseases or cancer. We conclude that the changes in miRNA profiles of peripheral blood lymphocytes in human African trypanosomiasis are related to immune activation or inflammation, are probably disease-non-specific, and cannot be used to determine the disease stage. The approach has little promise for diagnostics but might yield information about disease pathology.

  18. Functional and structural insights revealed by molecular dynamics simulations of an essential RNA editing ligase in Trypanosoma brucei.

    Directory of Open Access Journals (Sweden)

    Rommie E Amaro

    2007-11-01

    Full Text Available RNA editing ligase 1 (TbREL1 is required for the survival of both the insect and bloodstream forms of Trypanosoma brucei, the parasite responsible for the devastating tropical disease African sleeping sickness. The type of RNA editing that TbREL1 is involved in is unique to the trypanosomes, and no close human homolog is known to exist. In addition, the high-resolution crystal structure revealed several unique features of the active site, making this enzyme a promising target for structure-based drug design. In this work, two 20 ns atomistic molecular dynamics (MD simulations are employed to investigate the dynamics of TbREL1, both with and without the ATP substrate present. The flexibility of the active site, dynamics of conserved residues and crystallized water molecules, and the interactions between TbREL1 and the ATP substrate are investigated and discussed in the context of TbREL1's function. Differences in local and global motion upon ATP binding suggest that two peripheral loops, unique to the trypanosomes, may be involved in interdomain signaling events. Notably, a significant structural rearrangement of the enzyme's active site occurs during the apo simulations, opening an additional cavity adjacent to the ATP binding site that could be exploited in the development of effective inhibitors directed against this protozoan parasite. Finally, ensemble averaged electrostatics calculations over the MD simulations reveal a novel putative RNA binding site, a discovery that has previously eluded scientists. Ultimately, we use the insights gained through the MD simulations to make several predictions and recommendations, which we anticipate will help direct future experimental studies and structure-based drug discovery efforts against this vital enzyme.

  19. Isolation of Trypanosoma brucei gambiense from cured and relapsed sleeping sickness patients and adaptation to laboratory mice.

    Directory of Open Access Journals (Sweden)

    Patient Pati Pyana

    Full Text Available BACKGROUND: Sleeping sickness due to Trypanosoma brucei (T.b. gambiense is still a major public health problem in some central African countries. Historically, relapse rates around 5% have been observed for treatment with melarsoprol, widely used to treat second stage patients. Later, relapse rates of up to 50% have been recorded in some isolated foci in Angola, Sudan, Uganda and Democratic Republic of the Congo (DRC. Previous investigations are not conclusive on whether decreased sensitivity to melarsoprol is responsible for these high relapse rates. Therefore we aimed to establish a parasite collection isolated from cured as well as from relapsed patients for downstream comparative drug sensitivity profiling. A major constraint for this type of investigation is that T.b. gambiense is particularly difficult to isolate and adapt to classical laboratory rodents. METHODOLOGY/PRINCIPAL FINDINGS: From 360 patients treated in Dipumba hospital, Mbuji-Mayi, D.R. Congo, blood and cerebrospinal fluid (CSF was collected before treatment. From patients relapsing during the 24 months follow-up, the same specimens were collected. Specimens with confirmed parasite presence were frozen in liquid nitrogen in a mixture of Triladyl, egg yolk and phosphate buffered glucose solution. Isolation was achieved by inoculation of the cryopreserved specimens in Grammomys surdaster, Mastomys natalensis and SCID mice. Thus, 85 strains were isolated from blood and CSF of 55 patients. Isolation success was highest in Grammomys surdaster. Forty strains were adapted to mice. From 12 patients, matched strains were isolated before treatment and after relapse. All strains belong to T.b. gambiense type I. CONCLUSIONS AND SIGNIFICANCE: We established a unique collection of T.b. gambiense from cured and relapsed patients, isolated in the same disease focus and within a limited period. This collection is available for genotypic and phenotypic characterisation to investigate the

  20. RNA interference analyses suggest a transcript-specific regulatory role for mitochondrial RNA-binding proteins MRP1 and MRP2 in RNA editing and other RNA processing in Trypanosoma brucei

    NARCIS (Netherlands)

    Vondrusková, Eva; van den Burg, Janny; Zíková, Alena; Ernst, Nancy Lewis; Stuart, Kenneth; Benne, Rob; Lukes, Julius

    2005-01-01

    Mitochondrial RNA-binding proteins MRP1 and MRP2 occur in a heteromeric complex that appears to play a role in U-insertion/deletion editing in trypanosomes. Reduction in the levels of MRP1 (gBP21) and/or MRP2 (gBP25) mRNA by RNA interference in procyclic Trypanosoma brucei resulted in severe growth

  1. Trypanosoma brucei gambiense: HMI-9 medium containing methylcellulose and human serum supports the continuous axenic in vitro propagation of the bloodstream form.

    Science.gov (United States)

    Van Reet, N; Pyana, P P; Deborggraeve, S; Büscher, P; Claes, F

    2011-07-01

    Trypanosoma brucei (T.b.) gambiense causes the chronic form of human African trypanosomiasis or sleeping sickness. One of the major problems with studying T.b. gambiense is the difficulty to isolate it from its original host and the difficult adaptation to in vivo and in vitro mass propagation. The objective of this study was to evaluate if an established method for axenic culture of pleomorphic bloodstream form T.b. brucei strains, based on methylcellulose containing HMI-9 medium, also facilitated the continuous in vitro propagation of other bloodstream form Trypanozoon strains, in particular of T.b. gambiense. Bloodstream form trypanosomes from one T.b. brucei, two T.b. rhodesiense, one T. evansi and seven T.b. gambiense strains were isolated from mouse blood and each was concurrently cultivated in liquid and methylcellulose-containing HMI-9 based medium, either with or without additional human serum supplementation, for over 10 consecutive sub passages. Although HMI-9 based medium supplemented with 1.1% (w/v) methylcellulose supported the continuous cultivation of all non-gambiense strains better than liquid media could, the in vitro cultivation of all gambiense strains was only achieved in HMI-9 based medium containing 1.1% (w/v) methylcellulose, 15% (v/v) fetal calf serum and 5% (v/v) heat-inactivated human serum. Copyright © 2011 Elsevier Inc. All rights reserved.

  2. Antitrypanosomal compounds from the essential oil and extracts of Keetia leucantha leaves with inhibitor activity on Trypanosoma brucei glyceraldehyde-3-phosphate dehydrogenase.

    Science.gov (United States)

    Bero, J; Beaufay, C; Hannaert, V; Hérent, M-F; Michels, P A; Quetin-Leclercq, J

    2013-02-15

    Keetia leucantha is a West African tree used in traditional medicine to treat several diseases among which parasitic infections. The dichloromethane extract of leaves was previously shown to possess growth-inhibitory activities on Plasmodium falciparum, Trypanosoma brucei brucei and Leishmania mexicana mexicana with low or no cytotoxicity (>100 μg/ml on human normal fibroblasts) (Bero et al. 2009, 2011). In continuation of our investigations on the antitrypanosomal compounds from this dichloromethane extract, we analyzed by GC-FID and GC-MS the essential oil of its leaves obtained by hydrodistillation and the major triterpenic acids in this extract by LC-MS. Twenty-seven compounds were identified in the oil whose percentages were calculated using the normalization method. The essential oil, seven of its constituents and the three triterpenic acids were evaluated for their antitrypanosomal activity on Trypanosoma brucei brucei bloodstream forms (Tbb BSF) and procyclic forms (Tbb PF) to identify an activity on the glycolytic process of trypanosomes. The oil showed an IC(50) of 20.9 μg/ml on Tbb BSF and no activity was observed on Tbb PF. The best antitrypanosomal activity was observed for ursolic acid with IC(50) of 2.5 and 6.5 μg/ml respectively on Tbb BSF and Tbb PF. The inhibitory activity on a glycolytic enzyme of T. brucei, glyceraldehyde-3-phosphate dehydrogenase (GAPDH), was also evaluated for betulinic acid, olenaolic acid, ursolic acid, phytol, α-ionone and β-ionone. The three triterpenic acids and β-ionone showed inhibitory activities on GAPDH with oleanolic acid being the most active with an inhibition of 72.63% at 20 μg/ml. This paper reports for the first time the composition and antitrypanosomal activity of the essential oil of Keetia leucantha. Several of its constituents and three triterpenic acids present in the dichloromethane leaves extract showed a higher antitrypanosomal activity on bloodstream forms of Tbb as compared to procyclic forms

  3. Trypanosoma brucei Invasion and T-Cell Infiltration of the Brain Parenchyma in Experimental Sleeping Sickness: Timing and Correlation with Functional Changes.

    Directory of Open Access Journals (Sweden)

    Claudia Laperchia

    2016-12-01

    Full Text Available The timing of Trypanosoma brucei entry into the brain parenchyma to initiate the second, meningoencephalitic stage of human African trypanosomiasis or sleeping sickness is currently debated and even parasite invasion of the neuropil has been recently questioned. Furthermore, the relationship between neurological features and disease stage are unclear, despite the important diagnostic and therapeutic implications.Using a rat model of chronic Trypanosoma brucei brucei infection we determined the timing of parasite and T-cell neuropil infiltration and its correlation with functional changes. Parasite DNA was detected using trypanosome-specific PCR. Body weight and sleep structure alterations represented by sleep-onset rapid eye movement (SOREM periods, reported in human and experimental African trypanosomiasis, were monitored. The presence of parasites, as well as CD4+ and CD8+ T-cells in the neuropil was assessed over time in the brain of the same animals by immunocytochemistry and quantitative analyses.Trypanosome DNA was present in the brain at day 6 post-infection and increased more than 15-fold by day 21. Parasites and T-cells were observed in the parenchyma from day 9 onwards. Parasites traversing blood vessel walls were observed in the hypothalamus and other brain regions. Body weight gain was reduced from day 7 onwards. SOREM episodes started in most cases early after infection, with an increase in number and duration after parasite neuroinvasion.These findings demonstrate invasion of the neuropil over time, after an initial interval, by parasites and lymphocytes crossing the blood-brain barrier, and show that neurological features can precede this event. The data thus challenge the current clinical and cerebrospinal fluid criteria of disease staging.

  4. Trypanosoma brucei Invasion and T-Cell Infiltration of the Brain Parenchyma in Experimental Sleeping Sickness: Timing and Correlation with Functional Changes.

    Science.gov (United States)

    Laperchia, Claudia; Palomba, Maria; Seke Etet, Paul F; Rodgers, Jean; Bradley, Barbara; Montague, Paul; Grassi-Zucconi, Gigliola; Kennedy, Peter G E; Bentivoglio, Marina

    2016-12-01

    The timing of Trypanosoma brucei entry into the brain parenchyma to initiate the second, meningoencephalitic stage of human African trypanosomiasis or sleeping sickness is currently debated and even parasite invasion of the neuropil has been recently questioned. Furthermore, the relationship between neurological features and disease stage are unclear, despite the important diagnostic and therapeutic implications. Using a rat model of chronic Trypanosoma brucei brucei infection we determined the timing of parasite and T-cell neuropil infiltration and its correlation with functional changes. Parasite DNA was detected using trypanosome-specific PCR. Body weight and sleep structure alterations represented by sleep-onset rapid eye movement (SOREM) periods, reported in human and experimental African trypanosomiasis, were monitored. The presence of parasites, as well as CD4+ and CD8+ T-cells in the neuropil was assessed over time in the brain of the same animals by immunocytochemistry and quantitative analyses. Trypanosome DNA was present in the brain at day 6 post-infection and increased more than 15-fold by day 21. Parasites and T-cells were observed in the parenchyma from day 9 onwards. Parasites traversing blood vessel walls were observed in the hypothalamus and other brain regions. Body weight gain was reduced from day 7 onwards. SOREM episodes started in most cases early after infection, with an increase in number and duration after parasite neuroinvasion. These findings demonstrate invasion of the neuropil over time, after an initial interval, by parasites and lymphocytes crossing the blood-brain barrier, and show that neurological features can precede this event. The data thus challenge the current clinical and cerebrospinal fluid criteria of disease staging.

  5. Methanolic leaf extract of Moringa oleifera improves the survivability rate, weight gain and histopathological changes of Wister rats infected with Trypanosoma brucei

    Directory of Open Access Journals (Sweden)

    A. Aremu

    2018-04-01

    Full Text Available Trypanosomosis is a major disease of Man and animals. This study investigated the effect of Moringa oleifera leaf extract on the survivability rate, weight gain and histopathological changes of Wister rats experimentally infected with Trypanosoma brucei. A total of thirty (30 rats randomly divided into six groups (A-F. Rats in group A remain untreated and uninfected while rates in group F were infected and untreated. Rats in groups B and C were treated with Moringa oleifera leave extract orally at 200 mg/kg for 14 days pre-infection and the treatment continued in B but not in C. Rats in groups D and E were treated with the extract orally for ninety days at 200 mg/kg (pre-infection and the treatment continued in D but not in E. The weight changes in all rats were monitored weekly. Rats in B-F groups were infected with 3 × 106 of Trypanosoma brucei per mL of blood. The results showed that all the infected rats died but the treated group survived extra two days when compared with the untreated group. The percentage weight gain of rats in groups B and C was high (23.9% and 21.1% respectively as against negative control (17.2%. The groups with chronic administration of the extract (D and E had a lower percentage weight gains (64.3% and 60.3% respectively when compared with negative control (71.8%. The histopathology results showed that the extract was a potent ameliorative agent that reduced neuronal degeneration and congestion in the brain and the spleen of the infected rats respectively. In conclusion, Moringa Oleifera leave extract has mitigative effects on the pathogenesis of trypanosomosis. Keywords: Histopathology, Moringa, Survivability, Trypanosoma, Weight, Wister rats

  6. Comparative Genomics of Glossina palpalis gambiensis and G. morsitans morsitans to Reveal Gene Orthologs Involved in Infection by Trypanosoma brucei gambiense.

    Science.gov (United States)

    Hamidou Soumana, Illiassou; Tchicaya, Bernadette; Rialle, Stéphanie; Parrinello, Hugues; Geiger, Anne

    2017-01-01

    Blood-feeding Glossina palpalis gambiense (Gpg) fly transmits the single-celled eukaryotic parasite Trypanosoma brucei gambiense (Tbg), the second Glossina fly African trypanosome pair being Glossina morsitans / T .brucei rhodesiense. Whatever the T. brucei subspecies, whereas the onset of their developmental program in the zoo-anthropophilic blood feeding flies does unfold in the fly midgut, its completion is taking place in the fly salivary gland where does emerge a low size metacyclic trypomastigote population displaying features that account for its establishment in mammals-human individuals included. Considering that the two Glossina - T. brucei pairs introduced above share similarity with respect to the developmental program of this African parasite, we were curious to map on the Glossina morsitans morsitans (Gmm), the Differentially Expressed Genes (DEGs) we listed in a previous study. Briefly, using the gut samples collected at days 3, 10, and 20 from Gpg that were fed or not at day 0 on Tbg-hosting mice, these DGE lists were obtained from RNA seq-based approaches. Here, post the mapping on the quality controlled DEGs on the Gmm genome, the identified ortholog genes were further annotated, the resulting datasets being compared. Around 50% of the Gpg DEGs were shown to have orthologs in the Gmm genome. Under one of the three Glossina midgut sampling conditions, the number of DEGs was even higher when mapping on the Gmm genome than initially recorded. Many Gmm genes annotated as "Hypothetical" were mapped and annotated on many distinct databases allowing some of them to be properly identified. We identify Glossina fly candidate genes encoding (a) a broad panel of proteases as well as (b) chitin-binding proteins, (c) antimicrobial peptide production-Pro3 protein, transferrin, mucin, atttacin, cecropin, etc-to further select in functional studies, the objectives being to probe and validated fly genome manipulation that prevents the onset of the developmental

  7. RNA-Seq analysis validates the use of culture-derived Trypanosoma brucei and provides new markers for mammalian and insect life-cycle stages.

    Science.gov (United States)

    Naguleswaran, Arunasalam; Doiron, Nicholas; Roditi, Isabel

    2018-04-02

    Trypanosoma brucei brucei, the parasite causing Nagana in domestic animals, is closely related to the parasites causing sleeping sickness, but does not infect humans. In addition to its importance as a pathogen, the relative ease of genetic manipulation and an innate capacity for RNAi extend its use as a model organism in cell and infection biology. During its development in its mammalian and insect (tsetse fly) hosts, T. b. brucei passes through several different life-cycle stages. There are currently four life-cycle stages that can be cultured: slender forms and stumpy forms, which are equivalent to forms found in the mammal, and early and late procyclic forms, which are equivalent to forms in the tsetse midgut. Early procyclic forms show coordinated group movement (social motility) on semi-solid surfaces, whereas late procyclic forms do not. RNA-Seq was performed on biological replicates of each life-cycle stage. These constitute the first datasets for culture-derived slender and stumpy bloodstream forms and early and late procyclic forms. Expression profiles confirmed that genes known to be stage-regulated in the animal and insect hosts were also regulated in culture. Sequence reads of 100-125 bases provided sufficient precision to uncover differential expression of closely related genes. More than 100 transcripts showed peak expression in stumpy forms, including adenylate cyclases and several components of inositol metabolism. Early and late procyclic forms showed differential expression of 73 transcripts, a number of which encoded proteins that were previously shown to be stage-regulated. Moreover, two adenylate cyclases previously shown to reduce social motility are up-regulated in late procyclic forms. This study validates the use of cultured bloodstream forms as alternatives to animal-derived parasites and yields new markers for all four stages. In addition to underpinning recent findings that early and late procyclic forms are distinct life-cycle stages

  8. Peptide-targeted delivery of a pH sensor for quantitative measurements of intraglycosomal pH in live Trypanosoma brucei.

    Science.gov (United States)

    Lin, Sheng; Morris, Meredith T; Ackroyd, P Christine; Morris, James C; Christensen, Kenneth A

    2013-05-28

    Studies of dynamic changes in organelles of protozoan parasite Trypanosoma brucei have been limited, in part because of the difficulty of targeting analytical probes to specific subcellular compartments. Here we demonstrate application of a ratiometric probe for pH quantification in T. brucei glycosomes. The probe consists of a peptide encoding the peroxisomal targeting sequence (F-PTS1, acetyl-CKGGAKL) coupled to fluorescein, which responds to pH. When incubated with living parasites, the probe is internalized within vesicular structures that colocalize with a glycosomal marker. Inhibition of uptake of F-PTS1 at 4 °C and pulse-chase colocalization with fluorescent dextran suggested that the probe is initially taken up by non-receptor-mediated endocytosis but is subsequently transported separately from dextran and localized within glycosomes, prior to the final fusion of labeled glycosomes and lysosomes as part of glycosomal turnover. Intraorganellar measurements and pH calibration with F-PTS1 in T. brucei glycosomes indicate that the resting glycosomal pH under physiological conditions is 7.4 ± 0.2. However, incubation in glucose-depleted buffer triggered mild acidification of the glycosome over a period of 20 min, with a final observed pH of 6.8 ± 0.3. This glycosomal acidification was reversed by reintroduction of glucose. Coupling of ratiometric fluorescent sensors and reporters to PTS peptides offers an invaluable tool for monitoring in situ glycosomal response(s) to changing environmental conditions and could be applied to additional kinetoplastid parasites.

  9. Trypanosoma brucei gambiense group 1 is distinguished by a unique amino acid substitution in the HpHb receptor implicated in human serum resistance.

    Directory of Open Access Journals (Sweden)

    Rebecca E Symula

    Full Text Available Trypanosoma brucei rhodesiense (Tbr and T. b. gambiense (Tbg, causative agents of Human African Trypanosomiasis (sleeping sickness in Africa, have evolved alternative mechanisms of resisting the activity of trypanosome lytic factors (TLFs, components of innate immunity in human serum that protect against infection by other African trypanosomes. In Tbr, lytic activity is suppressed by the Tbr-specific serum-resistance associated (SRA protein. The mechanism in Tbg is less well understood but has been hypothesized to involve altered activity and expression of haptoglobin haemoglobin receptor (HpHbR. HpHbR has been shown to facilitate internalization of TLF-1 in T.b. brucei (Tbb, a member of the T. brucei species complex that is susceptible to human serum. By evaluating the genetic variability of HpHbR in a comprehensive geographical and taxonomic context, we show that a single substitution that replaces leucine with serine at position 210 is conserved in the most widespread form of Tbg (Tbg group 1 and not found in related taxa, which are either human serum susceptible (Tbb or known to resist lysis via an alternative mechanism (Tbr and Tbg group 2. We hypothesize that this single substitution contributes to reduced uptake of TLF and thus may play a key role in conferring serum resistance to Tbg group 1. In contrast, similarity in HpHbR sequence among isolates of Tbg group 2 and Tbb/Tbr provides further evidence that human serum resistance in Tbg group 2 is likely independent of HpHbR function.

  10. Characterization of a Novel Class I Transcription Factor A (CITFA) Subunit That Is Indispensable for Transcription by the Multifunctional RNA Polymerase I of Trypanosoma brucei

    KAUST Repository

    Nguyen, T. N.

    2012-10-26

    Trypanosoma brucei is the only organism known to have evolved a multifunctional RNA polymerase I (pol I) system that is used to express the parasite\\'s ribosomal RNAs, as well as its major cell surface antigens, namely, the variant surface glycoprotein (VSG) and procyclin, which are vital for establishing successful infections in the mammalian host and the tsetse vector, respectively. Thus far, biochemical analyses of the T. brucei RNA pol I transcription machinery have elucidated the subunit structure of the enzyme and identified the class I transcription factor A (CITFA). CITFA binds to RNA pol I promoters, and its CITFA-2 subunit was shown to be absolutely essential for RNA pol I transcription in the parasite. Tandem affinity purification (TAP) of CITFA revealed the subunits CITFA-1 to -6, which are conserved only among kinetoplastid organisms, plus the dynein light chain DYNLL1. Here, by tagging CITFA-6 instead of CITFA-2, a complex was purified that contained all known CITFA subunits, as well as a novel proline-rich protein. Functional studies carried out in vivo and in vitro, as well as a colocalization study, unequivocally demonstrated that this protein is a bona fide CITFA subunit, essential for parasite viability and indispensable for RNA pol I transcription of ribosomal gene units and the active VSG expression site in the mammalian-infective life cycle stage of the parasite. Interestingly, CITFA-7 function appears to be species specific, because expression of an RNA interference (RNAi)-resistant CITFA-7 transgene from Trypanosoma cruzi could not rescue the lethal phenotype of silencing endogenous CITFA-7.

  11. Dihydroquinazolines as a novel class of Trypanosoma brucei trypanothione reductase inhibitors: discovery, synthesis, and characterization of their binding mode by protein crystallography.

    Science.gov (United States)

    Patterson, Stephen; Alphey, Magnus S; Jones, Deuan C; Shanks, Emma J; Street, Ian P; Frearson, Julie A; Wyatt, Paul G; Gilbert, Ian H; Fairlamb, Alan H

    2011-10-13

    Trypanothione reductase (TryR) is a genetically validated drug target in the parasite Trypanosoma brucei , the causative agent of human African trypanosomiasis. Here we report the discovery, synthesis, and development of a novel series of TryR inhibitors based on a 3,4-dihydroquinazoline scaffold. In addition, a high resolution crystal structure of TryR, alone and in complex with substrates and inhibitors from this series, is presented. This represents the first report of a high resolution complex between a noncovalent ligand and this enzyme. Structural studies revealed that upon ligand binding the enzyme undergoes a conformational change to create a new subpocket which is occupied by an aryl group on the ligand. Therefore, the inhibitor, in effect, creates its own small binding pocket within the otherwise large, solvent exposed active site. The TryR-ligand structure was subsequently used to guide the synthesis of inhibitors, including analogues that challenged the induced subpocket. This resulted in the development of inhibitors with improved potency against both TryR and T. brucei parasites in a whole cell assay.

  12. Response of Tripanosoma brucei brucei –induced anaemia to a ...

    African Journals Online (AJOL)

    A study was therefore carried out to determine the effect of the preparation on packed cell volume (PCV) and haemoglobin (Hb) concentrations in anaemic rabbits. The PCV and Hb concentrations of healthy rabbits infected with Trypanosoma brucei brucei were monitored for 49 days. T. b. brucei produced a significant ...

  13. Structures of Trypanosoma brucei methionyl-tRNA synthetase with urea-based inhibitors provide guidance for drug design against sleeping sickness.

    Directory of Open Access Journals (Sweden)

    Cho Yeow Koh

    2014-04-01

    Full Text Available Methionyl-tRNA synthetase of Trypanosoma brucei (TbMetRS is an important target in the development of new antitrypanosomal drugs. The enzyme is essential, highly flexible and displaying a large degree of changes in protein domains and binding pockets in the presence of substrate, product and inhibitors. Targeting this protein will benefit from a profound understanding of how its structure adapts to ligand binding. A series of urea-based inhibitors (UBIs has been developed with IC50 values as low as 19 nM against the enzyme. The UBIs were shown to be orally available and permeable through the blood-brain barrier, and are therefore candidates for development of drugs for the treatment of late stage human African trypanosomiasis. Here, we expand the structural diversity of inhibitors from the previously reported collection and tested for their inhibitory effect on TbMetRS and on the growth of T. brucei cells. The binding modes and binding pockets of 14 UBIs are revealed by determination of their crystal structures in complex with TbMetRS at resolutions between 2.2 Å to 2.9 Å. The structures show binding of the UBIs through conformational selection, including occupancy of the enlarged methionine pocket and the auxiliary pocket. General principles underlying the affinity of UBIs for TbMetRS are derived from these structures, in particular the optimum way to fill the two binding pockets. The conserved auxiliary pocket might play a role in binding tRNA. In addition, a crystal structure of a ternary TbMetRS•inhibitor•AMPPCP complex indicates that the UBIs are not competing with ATP for binding, instead are interacting with ATP through hydrogen bond. This suggests a possibility that a general 'ATP-engaging' binding mode can be utilized for the design and development of inhibitors targeting tRNA synthetases of other disease-causing pathogen.

  14. The orthologue of Sjögren's syndrome nuclear autoantigen 1 (SSNA1 in Trypanosoma brucei is an immunogenic self-assembling molecule.

    Directory of Open Access Journals (Sweden)

    Helen P Price

    Full Text Available Primary Sjögren's Syndrome (PSS is a highly prevalent autoimmune disease, typically manifesting as lymphocytic infiltration of the exocrine glands leading to chronically impaired lacrimal and salivary secretion. Sjögren's Syndrome nuclear autoantigen 1 (SSNA1 or NA14 is a major specific target for autoantibodies in PSS but the precise function and clinical relevance of this protein are largely unknown. Orthologues of the gene are absent from many of the commonly used model organisms but are present in Chlamyodomonas reinhardtii (in which it has been termed DIP13 and most protozoa. We report the functional characterisation of the orthologue of SSNA1 in the kinetoplastid parasite, Trypanosoma brucei. Both TbDIP13 and human SSNA1 are small coiled-coil proteins which are predicted to be remote homologues of the actin-binding protein tropomyosin. We use comparative proteomic methods to identify potential interacting partners of TbDIP13. We also show evidence that TbDIP13 is able to self-assemble into fibril-like structures both in vitro and in vivo, a property which may contribute to its immunogenicity. Endogenous TbDIP13 partially co-localises with acetylated α-tubulin in the insect procyclic stage of the parasite. However, deletion of the DIP13 gene in cultured bloodstream and procyclic stages of T. brucei has little effect on parasite growth or morphology, indicating either a degree of functional redundancy or a function in an alternative stage of the parasite life cycle.

  15. Trypanosoma brucei metabolite indolepyruvate decreases HIF-1α and glycolysis in macrophages as a mechanism of innate immune evasion.

    Science.gov (United States)

    McGettrick, Anne F; Corcoran, Sarah E; Barry, Paul J G; McFarland, Jennifer; Crès, Cécile; Curtis, Anne M; Franklin, Edward; Corr, Sinéad C; Mok, K Hun; Cummins, Eoin P; Taylor, Cormac T; O'Neill, Luke A J; Nolan, Derek P

    2016-11-29

    The parasite Trypanasoma brucei causes African trypanosomiasis, known as sleeping sickness in humans and nagana in domestic animals. These diseases are a major burden in the 36 sub-Saharan African countries where the tsetse fly vector is endemic. Untreated trypanosomiasis is fatal and the current treatments are stage-dependent and can be problematic during the meningoencephalitic stage, where no new therapies have been developed in recent years and the current drugs have a low therapeutic index. There is a need for more effective treatments and a better understanding of how these parasites evade the host immune response will help in this regard. The bloodstream form of T. brucei excretes significant amounts of aromatic ketoacids, including indolepyruvate, a transamination product of tryptophan. This study demonstrates that this process is essential in bloodstream forms, is mediated by a specialized isoform of cytoplasmic aminotransferase and, importantly, reveals an immunomodulatory role for indolepyruvate. Indolepyruvate prevents the LPS-induced glycolytic shift in macrophages. This effect is the result of an increase in the hydroxylation and degradation of the transcription factor hypoxia-inducible factor-1α (HIF-1α). The reduction in HIF-1α levels by indolepyruvate, following LPS or trypanosome activation, results in a decrease in production of the proinflammatory cytokine IL-1β. These data demonstrate an important role for indolepyruvate in immune evasion by T. brucei.

  16. Genetic and structural study of DNA-directed RNA polymerase II of Trypanosoma brucei, towards the designing of novel antiparasitic agents

    Directory of Open Access Journals (Sweden)

    Louis Papageorgiou

    2017-03-01

    Full Text Available Trypanosoma brucei brucei (TBB belongs to the unicellular parasitic protozoa organisms, specifically to the Trypanosoma genus of the Trypanosomatidae class. A variety of different vertebrate species can be infected by TBB, including humans and animals. Under particular conditions, the TBB can be hosted by wild and domestic animals; therefore, an important reservoir of infection always remains available to transmit through tsetse flies. Although the TBB parasite is one of the leading causes of death in the most underdeveloped countries, to date there is neither vaccination available nor any drug against TBB infection. The subunit RPB1 of the TBB DNA-directed RNA polymerase II (DdRpII constitutes an ideal target for the design of novel inhibitors, since it is instrumental role is vital for the parasite’s survival, proliferation, and transmission. A major goal of the described study is to provide insights for novel anti-TBB agents via a state-of-the-art drug discovery approach of the TBB DdRpII RPB1. In an attempt to understand the function and action mechanisms of this parasite enzyme related to its molecular structure, an in-depth evolutionary study has been conducted in parallel to the in silico molecular designing of the 3D enzyme model, based on state-of-the-art comparative modelling and molecular dynamics techniques. Based on the evolutionary studies results nine new invariant, first-time reported, highly conserved regions have been identified within the DdRpII family enzymes. Consequently, those patches have been examined both at the sequence and structural level and have been evaluated in regard to their pharmacological targeting appropriateness. Finally, the pharmacophore elucidation study enabled us to virtually in silico screen hundreds of compounds and evaluate their interaction capabilities with the enzyme. It was found that a series of chlorine-rich set of compounds were the optimal inhibitors for the TBB DdRpII RPB1 enzyme. All

  17. Megazol and its bioisostere 4H-1,2,4-triazole: comparing the trypanocidal, cytotoxic and genotoxic activities and their in vitro and in silico interactions with the Trypanosoma brucei nitroreductase enzyme

    Directory of Open Access Journals (Sweden)

    Alcione Silva de Carvalho

    2014-06-01

    Full Text Available Megazol (7 is a 5-nitroimidazole that is highly active against Trypanosoma cruzi and Trypanosoma brucei, as well as drug-resistant forms of trypanosomiasis. Compound 7 is not used clinically due to its mutagenic and genotoxic properties, but has been largely used as a lead compound. Here, we compared the activity of 7 with its 4H-1,2,4-triazole bioisostere (8 in bloodstream forms of T. brucei and T. cruzi and evaluated their activation by T. brucei type I nitroreductase (TbNTR enzyme. We also analysed the cytotoxic and genotoxic effects of these compounds in whole human blood using Comet and fluorescein diacetate/ethidium bromide assays. Although the only difference between 7 and 8 is the substitution of sulphur (in the thiadiazole in 7 for nitrogen (in the triazole in 8, the results indicated that 8 had poorer antiparasitic activity than 7 and was not genotoxic, whereas 7 presented this effect. The determination of Vmax indicated that although 8 was metabolised more rapidly than 7, it bounds to the TbNTR with better affinity, resulting in equivalent kcat/KM values. Docking assays of 7 and 8 performed within the active site of a homology model of the TbNTR indicating that 8 had greater affinity than 7.

  18. RNA-seq de novo Assembly Reveals Differential Gene Expression in Glossina palpalis gambiensis Infected with Trypanosoma brucei gambiense vs. Non-Infected and Self-Cured Flies.

    Science.gov (United States)

    Hamidou Soumana, Illiassou; Klopp, Christophe; Ravel, Sophie; Nabihoudine, Ibouniyamine; Tchicaya, Bernadette; Parrinello, Hugues; Abate, Luc; Rialle, Stéphanie; Geiger, Anne

    2015-01-01

    Trypanosoma brucei gambiense (Tbg), causing the sleeping sickness chronic form, completes its developmental cycle within the tsetse fly vector Glossina palpalis gambiensis (Gpg) before its transmission to humans. Within the framework of an anti-vector disease control strategy, a global gene expression profiling of trypanosome infected (susceptible), non-infected, and self-cured (refractory) tsetse flies was performed, on their midguts, to determine differential genes expression resulting from in vivo trypanosomes, tsetse flies (and their microbiome) interactions. An RNAseq de novo assembly was achieved. The assembled transcripts were mapped to reference sequences for functional annotation. Twenty-four percent of the 16,936 contigs could not be annotated, possibly representing untranslated mRNA regions, or Gpg- or Tbg-specific ORFs. The remaining contigs were classified into 65 functional groups. Only a few transposable elements were present in the Gpg midgut transcriptome, which may represent active transpositions and play regulatory roles. One thousand three hundred and seventy three genes differentially expressed (DEGs) between stimulated and non-stimulated flies were identified at day-3 post-feeding; 52 and 1025 between infected and self-cured flies at 10 and 20 days post-feeding, respectively. The possible roles of several DEGs regarding fly susceptibility and refractoriness are discussed. The results provide new means to decipher fly infection mechanisms, crucial to develop anti-vector control strategies.

  19. Characterization of recombinant Trypanosoma brucei gambiense Translationally Controlled Tumor Protein (rTbgTCTP) and its interaction with Glossina midgut bacteria.

    Science.gov (United States)

    Bossard, Géraldine; Bartoli, Manon; Fardeau, Marie-Laure; Holzmuller, Philippe; Ollivier, Bernard; Geiger, Anne

    2017-09-03

    In humans, sleeping sickness (i.e. Human African Trypanosomiasis) is caused by the protozoan parasites Trypanosoma brucei gambiense (Tbg) in West and Central Africa, and T. b. rhodesiense in East Africa. We previously showed in vitro that Tbg is able to excrete/secrete a large number of proteins, including Translationally Controlled Tumor Protein (TCTP). Moreover, the tctp gene was described previously to be expressed in Tbg-infected flies. Aside from its involvement in diverse cellular processes, we have investigated a possible alternative role within the interactions occurring between the trypanosome parasite, its tsetse fly vector, and the associated midgut bacteria. In this context, the Tbg tctp gene was synthesized and cloned into the baculovirus vector pAcGHLT-A, and the corresponding protein was produced using the baculovirus Spodoptera frugicola (strain 9) / insect cell system. The purified recombinant protein rTbgTCTP was incubated together with bacteria isolated from the gut of tsetse flies, and was shown to bind to 24 out of the 39 tested bacteria strains belonging to several genera. Furthermore, it was shown to affect the growth of the majority of these bacteria, especially when cultivated under microaerobiosis and anaerobiosis. Finally, we discuss the potential for TCTP to modulate the fly microbiome composition toward favoring trypanosome survival.

  20. Transcriptome and proteome analyses and the role of atypical calpain protein and autophagy in the spliced leader silencing pathway in Trypanosoma brucei.

    Science.gov (United States)

    Hope, Ronen; Egarmina, Katarina; Voloshin, Konstantin; Waldman Ben-Asher, Hiba; Carmi, Shai; Eliaz, Dror; Drori, Yaron; Michaeli, Shulamit

    2016-10-01

    Under persistent ER stress, Trypanosoma brucei parasites induce the spliced leader silencing (SLS) pathway. In SLS, transcription of the SL RNA gene, the SL donor to all mRNAs, is extinguished, arresting trans-splicing and leading to programmed cell death (PCD). In this study, we investigated the transcriptome following silencing of SEC63, a factor essential for protein translocation across the ER membrane, and whose silencing induces SLS. The proteome of SEC63-silenced cells was analyzed with an emphasis on SLS-specific alterations in protein expression, and modifications that do not directly result from perturbations in trans-splicing. One such protein identified is an atypical calpain SKCRP7.1/7.2. Co-silencing of SKCRP7.1/7.2 and SEC63 eliminated SLS induction due its role in translocating the PK3 kinase. This kinase initiates SLS by migrating to the nucleus and phosphorylating TRF4 leading to shut-off of SL RNA transcription. Thus, SKCRP7.1 is involved in SLS signaling and the accompanying PCD. The role of autophagy in SLS was also investigated; eliminating autophagy through VPS34 or ATG7 silencing demonstrated that autophagy is not essential for SLS induction, but is associated with PCD. Thus, this study identified factors that are used by the parasite to cope with ER stress and to induce SLS and PCD. © 2016 John Wiley & Sons Ltd.

  1. Complex I (NADH:ubiquinone oxidoreductase) is active in but non-essential for procyclic Trypanosoma brucei

    Czech Academy of Sciences Publication Activity Database

    Verner, Zdeněk; Čermáková, P.; Škodová, Ingrid; Kriegová, Eva; Horváth, A.; Lukeš, Julius

    2011-01-01

    Roč. 175, č. 2 (2011), s. 196-200 ISSN 0166-6851 R&D Projects: GA ČR GA204/09/1667; GA ČR GD206/09/H026; GA MŠk 2B06129; GA MŠk LC07032 Institutional research plan: CEZ:AV0Z60220518 Keywords : Trypanosoma * Mitochondrion * Respiration * Complex I Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.551, year: 2011

  2. Alternative NADH dehydrogenase (NDH2): intermembrane-space-facing counterpart of mitochondrial complex I in the procyclic Trypanosoma brucei

    Czech Academy of Sciences Publication Activity Database

    Verner, Zdeněk; Škodová, Ingrid; Poláková, S.; Ďurišová-Benkovičková, V.; Horváth, A.; Lukeš, Julius

    2013-01-01

    Roč. 140, č. 3 (2013), s. 328-337 ISSN 0031-1820 R&D Projects: GA MŠk LC07032; GA ČR GA204/09/1667 Institutional support: RVO:60077344 Keywords : Trypanosoma * mitochondrion * dehydrogenase * respiration * NDH2 Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.350, year: 2013 http://journals.cambridge.org/action/displayAbstract?fromPage=online&aid=8838254

  3. The assembly of F1FO-ATP synthase is disrupted upon interference of RNA editing in Trypanosoma brucei

    Czech Academy of Sciences Publication Activity Database

    Hashimi, Hassan; Benkovičová, V.; Čermáková, P.; Lai, De Hua; Horváth, A.; Lukeš, Julius

    2010-01-01

    Roč. 40, č. 1 (2010), s. 45-54 ISSN 0020-7519 R&D Projects: GA ČR GA204/06/1558; GA AV ČR IAA500960705 Institutional research plan: CEZ:AV0Z60220518 Keywords : RNA editing * ATP synthase * mitochondrion * Trypanosoma * respiratory complex * membrane potential Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.822, year: 2010

  4. Mitochondrial localization of human frataxin is necessary but processing is not for rescuing frataxin deficiency in Trypanosoma brucei

    Czech Academy of Sciences Publication Activity Database

    Long, Shaojun; Jirků, Milan; Ayala, F. J.; Lukeš, Julius

    2008-01-01

    Roč. 105, č. 36 (2008), s. 13468-13473 ISSN 0027-8424 R&D Projects: GA AV ČR IAA500960705; GA MŠk LC07032; GA MŠk 2B06129; GA ČR GA204/06/1558 Institutional research plan: CEZ:AV0Z60220518 Keywords : frataxin * mitochondrion * Trypanosoma * Kinetoplastida Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 9.380, year: 2008

  5. Genotypic status of the TbAT1/P2 adenosine transporter of Trypanosoma brucei gambiense isolates from Northwestern Uganda following melarsoprol withdrawal.

    Directory of Open Access Journals (Sweden)

    Anne J N Kazibwe

    Full Text Available BACKGROUND: The development of arsenical and diamidine resistance in Trypanosoma brucei is associated with loss of drug uptake by the P2 purine transporter as a result of alterations in the corresponding T. brucei adenosine transporter 1 gene (TbAT1. Previously, specific TbAT1 mutant type alleles linked to melarsoprol treatment failure were significantly more prevalent in T. b. gambiense from relapse patients at Omugo health centre in Arua district. Relapse rates of up to 30% prompted a shift from melarsoprol to eflornithine (alpha-difluoromethylornithine, DFMO as first-line treatment at this centre. The aim of this study was to determine the status of TbAT1 in recent isolates collected from T. b. gambiense sleeping sickness patients from Arua and Moyo districts in Northwestern Uganda after this shift in first-line drug choice. METHODOLOGY AND RESULTS: Blood and cerebrospinal fluids of consenting patients were collected for DNA preparation and subsequent amplification. All of the 105 isolates from Omugo that we successfully analysed by PCR-RFLP possessed the TbAT1 wild type allele. In addition, PCR/RFLP analysis was performed for 74 samples from Moyo, where melarsoprol is still the first line drug; 61 samples displayed the wild genotype while six were mutant and seven had a mixed pattern of both mutant and wild-type TbAT1. The melarsoprol treatment failure rate at Moyo over the same period was nine out of 101 stage II cases that were followed up at least once. Five of the relapse cases harboured mutant TbAT1, one had the wild type, while no amplification was achieved from the remaining three samples. CONCLUSIONS/SIGNIFICANCE: The apparent disappearance of mutant alleles at Omugo may correlate with melarsoprol withdrawal as first-line treatment. Our results suggest that melarsoprol could successfully be reintroduced following a time lag subsequent to its replacement. A field-applicable test to predict melarsoprol treatment outcome and identify

  6. Proteomic Analysis of Intact Flagella of Procyclic Trypanosoma brucei Cells Identifies Novel Flagellar Proteins with Unique Sub-localization and Dynamics*

    Science.gov (United States)

    Subota, Ines; Julkowska, Daria; Vincensini, Laetitia; Reeg, Nele; Buisson, Johanna; Blisnick, Thierry; Huet, Diego; Perrot, Sylvie; Santi-Rocca, Julien; Duchateau, Magalie; Hourdel, Véronique; Rousselle, Jean-Claude; Cayet, Nadège; Namane, Abdelkader; Chamot-Rooke, Julia; Bastin, Philippe

    2014-01-01

    Cilia and flagella are complex organelles made of hundreds of proteins of highly variable structures and functions. Here we report the purification of intact flagella from the procyclic stage of Trypanosoma brucei using mechanical shearing. Structural preservation was confirmed by transmission electron microscopy that showed that flagella still contained typical elements such as the membrane, the axoneme, the paraflagellar rod, and the intraflagellar transport particles. It also revealed that flagella severed below the basal body, and were not contaminated by other cytoskeletal structures such as the flagellar pocket collar or the adhesion zone filament. Mass spectrometry analysis identified a total of 751 proteins with high confidence, including 88% of known flagellar components. Comparison with the cell debris fraction revealed that more than half of the flagellum markers were enriched in flagella and this enrichment criterion was taken into account to identify 212 proteins not previously reported to be associated to flagella. Nine of these were experimentally validated including a 14-3-3 protein not yet reported to be associated to flagella and eight novel proteins termed FLAM (FLAgellar Member). Remarkably, they localized to five different subdomains of the flagellum. For example, FLAM6 is restricted to the proximal half of the axoneme, no matter its length. In contrast, FLAM8 is progressively accumulating at the distal tip of growing flagella and half of it still needs to be added after cell division. A combination of RNA interference and Fluorescence Recovery After Photobleaching approaches demonstrated very different dynamics from one protein to the other, but also according to the stage of construction and the age of the flagellum. Structural proteins are added to the distal tip of the elongating flagellum and exhibit slow turnover whereas membrane proteins such as the arginine kinase show rapid turnover without a detectible polarity. PMID:24741115

  7. Proteomic analysis of intact flagella of procyclic Trypanosoma brucei cells identifies novel flagellar proteins with unique sub-localization and dynamics.

    Science.gov (United States)

    Subota, Ines; Julkowska, Daria; Vincensini, Laetitia; Reeg, Nele; Buisson, Johanna; Blisnick, Thierry; Huet, Diego; Perrot, Sylvie; Santi-Rocca, Julien; Duchateau, Magalie; Hourdel, Véronique; Rousselle, Jean-Claude; Cayet, Nadège; Namane, Abdelkader; Chamot-Rooke, Julia; Bastin, Philippe

    2014-07-01

    Cilia and flagella are complex organelles made of hundreds of proteins of highly variable structures and functions. Here we report the purification of intact flagella from the procyclic stage of Trypanosoma brucei using mechanical shearing. Structural preservation was confirmed by transmission electron microscopy that showed that flagella still contained typical elements such as the membrane, the axoneme, the paraflagellar rod, and the intraflagellar transport particles. It also revealed that flagella severed below the basal body, and were not contaminated by other cytoskeletal structures such as the flagellar pocket collar or the adhesion zone filament. Mass spectrometry analysis identified a total of 751 proteins with high confidence, including 88% of known flagellar components. Comparison with the cell debris fraction revealed that more than half of the flagellum markers were enriched in flagella and this enrichment criterion was taken into account to identify 212 proteins not previously reported to be associated to flagella. Nine of these were experimentally validated including a 14-3-3 protein not yet reported to be associated to flagella and eight novel proteins termed FLAM (FLAgellar Member). Remarkably, they localized to five different subdomains of the flagellum. For example, FLAM6 is restricted to the proximal half of the axoneme, no matter its length. In contrast, FLAM8 is progressively accumulating at the distal tip of growing flagella and half of it still needs to be added after cell division. A combination of RNA interference and Fluorescence Recovery After Photobleaching approaches demonstrated very different dynamics from one protein to the other, but also according to the stage of construction and the age of the flagellum. Structural proteins are added to the distal tip of the elongating flagellum and exhibit slow turnover whereas membrane proteins such as the arginine kinase show rapid turnover without a detectible polarity. © 2014 by The

  8. Structure determination of glycogen synthase kinase-3 from Leishmania major and comparative inhibitor structure-activity relationships with Trypanosoma brucei GSK-3

    Energy Technology Data Exchange (ETDEWEB)

    Ojo, Kayode K; Arakaki, Tracy L; Napuli, Alberto J; Inampudi, Krishna K; Keyloun, Katelyn R; Zhang, Li; Hol, Wim G.J.; Verlind, Christophe L.M.J.; Merritt, Ethan A; Van Voorhis, Wesley C [UWASH

    2012-04-24

    Glycogen synthase kinase-3 (GSK-3) is a drug target under intense investigation in pharmaceutical companies and constitutes an attractive piggyback target for eukaryotic pathogens. Two different GSKs are found in trypanosomatids, one about 150 residues shorter than the other. GSK-3 short (GeneDB: Tb927.10.13780) has previously been validated genetically as a drug target in Trypanosoma brucei by RNAi induced growth retardation; and chemically by correlation between enzyme and in vitro growth inhibition. Here, we report investigation of the equivalent GSK-3 short enzymes of L. major (LmjF18.0270) and L. infantum (LinJ18_V3.0270, identical in amino acid sequences to LdonGSK-3 short) and a crystal structure of LmajGSK-3 short at 2 Å resolution. The inhibitor structure-activity relationships (SARs) of L. major and L. infantum are virtually identical, suggesting that inhibitors could be useful for both cutaneous and visceral leishmaniasis. Leishmania spp. GSK-3 short has different inhibitor SARs than TbruGSK-3 short, which can be explained mostly by two variant residues in the ATP-binding pocket. Indeed, mutating these residues in the ATP-binding site of LmajGSK-3 short to the TbruGSK-3 short equivalents results in a mutant LmajGSK-3 short enzyme with SAR more similar to that of TbruGSK-3 short. The differences between human GSK-3β (HsGSK-3β) and LmajGSK-3 short SAR suggest that compounds which selectively inhibit LmajGSK-3 short may be found.

  9. Glycolipid precursors for the membrane anchor of Trypanosoma brucei variant surface glycoproteins. II. Lipid structures of phosphatidylinositol-specific phospholipase C sensitive and resistant glycolipids

    International Nuclear Information System (INIS)

    Mayor, S.; Menon, A.K.; Cross, G.A.

    1990-01-01

    A common diagnostic feature of glycosylinositol phospholipid (GPI)-anchored proteins is their release from the membrane by a phosphatidylinositol-specific phospholipase C (PI-PLC). However, some GPI-anchored proteins are resistant to this enzyme. The best characterized example of this subclass is the human erythrocyte acetylcholinesterase, where the structural basis of PI-PLC resistance has been shown to be the acylation of an inositol hydroxyl group(s). Both PI-PLC-sensitive and resistant GPI-anchor precursors (P2 and P3, respectively) have been found in Trypanosoma brucei, where the major surface glycoprotein is anchored by a PI-PLC-sensitive glycolipid anchor. The accompanying paper shows that P2 and P3 have identical glycans, indistinguishable from the common core glycan found on all the characterized GPI protein anchors. This paper shows that the single difference between P2 and P3, and the basis for the PI-PLC insusceptibility of P3, is a fatty acid, ester-linked to the inositol residue in P3. The inositol-linked fatty acid can be removed by treatment with mild base to restore PI-PLC sensitivity. Biosynthetic labeling experiments with [3H]palmitic acid and [3H]myristic acid show that [3H]palmitic acid specifically labels the inositol residue in P3 while [3H]myristic acid labels the diacylglycerol portion. Possible models to account for the simultaneous presence of PI-PLC-resistant and sensitive glycolipids are discussed in the context of available information on the biosynthesis of GPI-anchors

  10. A core MRB1 complex component is indispensable for RNA editing in insect and human infective stages of Trypanosoma brucei.

    Directory of Open Access Journals (Sweden)

    Michelle L Ammerman

    Full Text Available Uridine insertion/deletion RNA editing is a unique and vital process in kinetoplastids, required for creation of translatable open reading frames in most mitochondrially-encoded RNAs. Emerging as a key player in this process is the mitochondrial RNA binding 1 (MRB1 complex. MRB1 comprises an RNA-independent core complex of at least six proteins, including the GAP1/2 guide RNA (gRNA binding proteins. The core interacts in an RNA-enhanced or -dependent manner with imprecisely defined TbRGG2 subcomplexes, Armadillo protein MRB10130, and additional factors that comprise the dynamic MRB1 complex. Towards understanding MRB1 complex function in RNA editing, we present here functional characterization of the pentein domain-containing MRB1 core protein, MRB11870. Inducible RNAi studies demonstrate that MRB11870 is essential for proliferation of both insect vector and human infective stage T. brucei. MRB11870 ablation causes a massive defect in RNA editing, affecting both pan-edited and minimally edited mRNAs, but does not substantially affect mitochondrial RNA stability or processing of precursor transcripts. The editing defect in MRB1-depleted cells occurs at the initiation stage of editing, as pre-edited mRNAs accumulate. However, the gRNAs that direct editing remain abundant in the knockdown cells. To examine the contribution of MRB11870 to MRB1 macromolecular interactions, we tagged core complexes and analyzed their composition and associated proteins in the presence and absence of MRB11870. These studies demonstrated that MRB11870 is essential for association of GAP1/2 with the core, as well as for interaction of the core with other proteins and subcomplexes. Together, these data support a model in which the MRB1 core mediates functional interaction of gRNAs with the editing machinery, having GAP1/2 as its gRNA binding constituents. MRB11870 is a critical component of the core, essential for its structure and function.

  11. Sensitivity and Specificity of a Prototype Rapid Diagnostic Test for the Detection of Trypanosoma brucei gambiense Infection: A Multi-centric Prospective Study.

    Science.gov (United States)

    Bisser, Sylvie; Lumbala, Crispin; Nguertoum, Etienne; Kande, Victor; Flevaud, Laurence; Vatunga, Gedeao; Boelaert, Marleen; Büscher, Philippe; Josenando, Theophile; Bessell, Paul R; Biéler, Sylvain; Ndung'u, Joseph M

    2016-04-01

    A major challenge in the control of human African trypanosomiasis (HAT) is lack of reliable diagnostic tests that are rapid and easy to use in remote areas where the disease occurs. In Trypanosoma brucei gambiense HAT, the Card Agglutination Test for Trypanosomiasis (CATT) has been the reference screening test since 1978, usually on whole blood, but also in a 1/8 dilution (CATT 1/8) to enhance specificity. However, the CATT is not available in a single format, requires a cold chain for storage, and uses equipment that requires electricity. A solution to these challenges has been provided by rapid diagnostic tests (RDT), which have recently become available. A prototype immunochromatographic test, the SD BIOLINE HAT, based on two native trypanosomal antigens (VSG LiTat 1.3 and VSG LiTat 1.5) has been developed. We carried out a non-inferiority study comparing this prototype to the CATT 1/8 in field settings. The prototype SD BIOLINE HAT, the CATT Whole Blood and CATT 1/8 were systematically applied on fresh blood samples obtained from 14,818 subjects, who were prospectively enrolled through active and passive screening in clinical studies in three endemic countries of central Africa: Angola, the Democratic Republic of the Congo and the Central African Republic. One hundred and forty nine HAT cases were confirmed by parasitology. The sensitivity and specificity of the prototype SD BIOLINE HAT was 89.26% (95% confidence interval (CI) = 83.27-93.28) and 94.58% (95% CI = 94.20-94.94) respectively. The sensitivity and specificity of the CATT on whole blood were 93.96% (95% CI = 88.92-96.79) and 95.91% (95% CI = 95.58-96.22), and of the CATT 1/8 were 89.26% (95% CI = 83.27-93.28) and 98.88% (95% CI = 98.70-99.04) respectively. After further optimization, the prototype SD BIOLINE HAT could become an alternative to current screening methods in primary healthcare settings in remote, resource-limited regions where HAT typically occurs.

  12. Melarsoprol sensitivity profile of Trypanosoma brucei gambiense isolates from cured and relapsed sleeping sickness patients from the Democratic Republic of the Congo.

    Directory of Open Access Journals (Sweden)

    Patient Pyana Pati

    2014-10-01

    Full Text Available Sleeping sickness caused by Trypanosoma brucei (T.b. gambiense constitutes a serious health problem in sub-Sahara Africa. In some foci, alarmingly high relapse rates were observed in patients treated with melarsoprol, which used to be the first line treatment for patients in the neurological disease stage. Particularly problematic was the situation in Mbuji-Mayi, East Kasai Province in the Democratic Republic of the Congo with a 57% relapse rate compared to a 5% relapse rate in Masi-Manimba, Bandundu Province. The present study aimed at investigating the mechanisms underlying the high relapse rate in Mbuji-Mayi using an extended collection of recently isolated T.b. gambiense strains from Mbuji-Mayi and from Masi-Manimba.Forty five T.b. gambiense strains were used. Forty one were isolated from patients that were cured or relapsed after melarsoprol treatment in Mbuji-Mayi. In vivo drug sensitivity tests provide evidence of reduced melarsoprol sensitivity in these strains. This reduced melarsoprol sensitivity was not attributable to mutations in TbAT1. However, in all these strains, irrespective of the patient treatment outcome, the two aquaglyceroporin (AQP 2 and 3 genes are replaced by chimeric AQP2/3 genes that may be associated with resistance to pentamidine and melarsoprol. The 4 T.b. gambiense strains isolated in Masi-Manimba contain both wild-type AQP2 and a different chimeric AQP2/3. These findings suggest that the reduced in vivo melarsoprol sensitivity of the Mbuji-Mayi strains and the high relapse rates in that sleeping sickness focus are caused by mutations in the AQP2/AQP3 locus and not by mutations in TbAT1.We conclude that mutations in the TbAQP2/3 locus of the local T.b. gambiense strains may explain the high melarsoprol relapse rates in the Mbuji-Mayi focus but other factors must also be involved in the treatment outcome of individual patients.

  13. Haematological indices in Trypanosoma brucei brucei (Federe isolate infected Nigerian donkeys (Equus asinus treated with homidium and isometamidium chloride of ciprofloxacin in broiler chickens after single intravenous and intraingluvial administration

    Directory of Open Access Journals (Sweden)

    Queen Nneka Oparah

    2017-03-01

    Full Text Available The efficacy of intramuscular administration of Homidium chloride (Novidium® and Isometamidium chloride (Sécuridium® in Nigerian donkeys (Equus asinus experimentally infected with T. b. brucei (Federe isolate was investigated. Changes in haematological and serum biochemical indices were evaluated using clinical haematology and biochemistry methods. Red blood cell (RBC count for the negative control group was significantly higher than for the positive control, Novidium® and Sécuridium®-treatment groups. Haemoglobin (Hb concentration significantly reduced in the infected untreated group compared with other groups. Packed cell volume (PCV was significantly different between negative and positive controls, and also between the infected untreated and treatment groups. There was significant reduction in platelet counts post-infection and post-treatment. Mean corpuscular volume (MCV increased significantly in the treatment groups while mean corpuscular haemoglobin concentration (MCHC significantly reduced only in the Sécuridium®-treatment group. Lymphocyte count for infected untreated was non-significantly higher than for the uninfected controls, but treatment with both trypanocides recorded further increases, which were higher compared with that of the uninfected group. Post infection and treatment, aspartate aminotransferase (AST levels increased significantly. There were non-significant differences in electrolyte ion concentrations across the groups except for chloride ion which recorded a significant reduction in the Novidium®-treatment group. This experiment revealed that Nigerian donkeys infected with T. brucei brucei (Federe isolate developed symptoms of trypanosomosis; anaemia, lymphocytosis and thrombocytopenia. Treatment with the trypanocides ameliorated effects of the infection, and results suggest that immunosuppression may not be a substantial clinical manifestation of T. brucei brucei (Federe isolate trypanosomosis in Nigerian

  14. A tsetse and tabanid fly survey of African great apes habitats reveals the presence of a novel trypanosome lineage but the absence of Trypanosoma brucei

    Czech Academy of Sciences Publication Activity Database

    Votýpka, J.; Rádrová, J.; Skalický, T.; Jirků, M.; Jirsová, D.; Mihalca, A. D.; D'Amico, G.; Petrželková, Klára Judita; Modrý, D.; Lukeš, J.

    2015-01-01

    Roč. 45, č. 12 (2015), s. 741-748 ISSN 0020-7519 Institutional support: RVO:68081766 Keywords : Trypanosoma * Tsetse * Tabanids * African great apes * Gorillas * Transmission * Bloodmeal * Feeding preference Subject RIV: FN - Epidemiology, Contagious Diseases ; Clinical Immunology Impact factor: 4.242, year: 2015

  15. The essential function of the Trypanosoma brucei Trl1 homolog in procyclic cells is maturation of the intron-containing tRNATyr

    Czech Academy of Sciences Publication Activity Database

    Lopes, R.R.S.; Silveira, G. de O.; Eitler, R.; Vidal, R.S.; Kessler, A.; Hinger, S.; Paris, Zdeněk; Alfonzo, J. D.; Polycarpo, C.

    2016-01-01

    Roč. 22, č. 8 (2016), s. 1190-1199 ISSN 1355-8382 R&D Projects: GA ČR GJ15-21450Y Institutional support: RVO:60077344 Keywords : Trypanosoma * tRNA * tRNA editing * splicing * intron Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 4.605, year: 2016

  16. Trypanosoma brucei Inhibition by Essential Oils from Medicinal and Aromatic Plants Traditionally Used in Cameroon (Azadirachta indica, Aframomum melegueta, Aframomum daniellii, Clausena anisata, Dichrostachys cinerea and Echinops giganteus).

    Science.gov (United States)

    Kamte, Stephane L Ngahang; Ranjbarian, Farahnaz; Campagnaro, Gustavo Daniel; Nya, Prosper C Biapa; Mbuntcha, Hélène; Woguem, Verlaine; Womeni, Hilaire Macaire; Ta, Léon Azefack; Giordani, Cristiano; Barboni, Luciano; Benelli, Giovanni; Cappellacci, Loredana; Hofer, Anders; Petrelli, Riccardo; Maggi, Filippo

    2017-07-06

    Essential oils are complex mixtures of volatile components produced by the plant secondary metabolism and consist mainly of monoterpenes and sesquiterpenes and, to a minor extent, of aromatic and aliphatic compounds. They are exploited in several fields such as perfumery, food, pharmaceutics, and cosmetics. Essential oils have long-standing uses in the treatment of infectious diseases and parasitosis in humans and animals. In this regard, their therapeutic potential against human African trypanosomiasis (HAT) has not been fully explored. In the present work, we have selected six medicinal and aromatic plants ( Azadirachta indica , Aframomum melegueta , Aframomum daniellii , Clausena anisata , Dichrostachys cinerea , and Echinops giganteus ) traditionally used in Cameroon to treat several disorders, including infections and parasitic diseases, and evaluated the activity of their essential oils against Trypanosma brucei TC221. Their selectivity was also determined with Balb/3T3 (mouse embryonic fibroblast cell line) cells as a reference. The results showed that the essential oils from A. indica , A . daniellii , and E. giganteus were the most active ones, with half maximal inhibitory concentration (IC 50 ) values of 15.21, 7.65, and 10.50 µg/mL, respectively. These essential oils were characterized by different chemical compounds such as sesquiterpene hydrocarbons, monoterpene hydrocarbons, and oxygenated sesquiterpenes. Some of their main components were assayed as well on T. brucei TC221, and their effects were linked to those of essential oils.

  17. The intermembrane space protein Erv1 of Trypanosoma brucei is essential for mitochondrial Fe-S cluster assembly and operates alone

    Czech Academy of Sciences Publication Activity Database

    Haindrich, Alexander C.; Boudova, M.; Vancová, Marie; Peña-Diaz, Priscila; Horáková, Eva; Lukeš, Julius

    2017-01-01

    Roč. 214, JUN (2017), s. 47-51 ISSN 0166-6851 R&D Projects: GA ČR GA15-21974S; GA ČR(CZ) GA16-18699S Institutional support: RVO:60077344 Keywords : Trypanosoma * Erv1 * Fe-S cluster assembly * mitochondrion Subject RIV: EB - Genetics ; Molecular Biology OBOR OECD: Biochemistry and molecular biology Impact factor: 2.536, year: 2016

  18. A tsetse and tabanid fly survey of African great apes habitats reveals the presence of a novel trypanosome lineage but the absence of Trypanosoma brucei

    Czech Academy of Sciences Publication Activity Database

    Votýpka, Jan; Rádrová, Jana; Skalický, Tomáš; Jirků, Milan; Jirsová, D.; Mihalca, A. D.; D'Amico, G.; Petrželková, Klára Judita; Modrý, David; Lukeš, Julius

    2015-01-01

    Roč. 45, OCT 2015 (2015), s. 741-748 ISSN 0020-7519 R&D Projects: GA MŠk(CZ) EE2.3.30.0032 EU Projects: European Commission(XE) 316304 Grant - others:GA MŠk(CZ) EE2.3.20.0300 Institutional support: RVO:60077344 Keywords : Trypanosoma * Tsetse * Tabanids * African great apes * Gorillas * Transmission * Bloodmeal * Feeding preference Subject RIV: GJ - Animal Vermins ; Diseases, Veterinary Medicine Impact factor: 4.242, year: 2015

  19. Downregulation of the nuclear-encoded subunits of the complexes III and IV disrupts their respective complexes but not complex I in procyclic Trypanosoma brucei

    Czech Academy of Sciences Publication Activity Database

    Horváth, A.; Horáková, Eva; Dunajčíková, P.; Verner, Zdeněk; Pravdová, E.; Šlapetová, Iveta; Cuninková, Ľ.; Lukeš, Julius

    2005-01-01

    Roč. 58, č. 1 (2005), s. 116-130 ISSN 0950-382X R&D Projects: GA AV ČR IAA5022302 Grant - others:National Institutes of Health(US) 5R03TW6445-2 Institutional research plan: CEZ:AV0Z60220518 Keywords : respiratory complex * Trypanosoma * RNA interference Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 6.203, year: 2005

  20. Comparative analysis of respiratory chain and oxidative phosphorylation in Leishmania tarentolae, Crithidia fasciculata, Phytomonas serpens and procyclic stage of Trypanosoma brucei

    Czech Academy of Sciences Publication Activity Database

    Verner, Zdeněk; Čermáková, P.; Škodová, Ingrid; Kováčová, B.; Lukeš, Julius; Horváth, A.

    2014-01-01

    Roč. 193, č. 1 (2014), s. 55-65 ISSN 0166-6851 R&D Projects: GA ČR GAP305/12/2261; GA MŠk(CZ) EE2.3.30.0032; GA MŠk LH12104 Institutional support: RVO:60077344 Keywords : mitochondrion * oxidative phosphorylation * Trypanosoma * Leishmania * Phytomonas * Crithidia Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 1.787, year: 2014

  1. The Trypanosoma brucei La protein is a candidate poly(U) shield that impacts spliced leader RNA maturation and tRNA intron removal

    Czech Academy of Sciences Publication Activity Database

    Trantírková, Silvie; Paris, Zdeněk; Sturm, N. R.; Campbell, D. A.; Lukeš, Julius

    2005-01-01

    Roč. 35, č. 4 (2005), s. 359-366 ISSN 0020-7519 R&D Projects: GA AV ČR IAA5022302 Grant - others:NIH(US) AI34536; NIH(US) AI056034 Institutional research plan: CEZ:AV0Z60220518 Keywords : splicing * Trypanosoma * RNA interference Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.346, year: 2005

  2. Simultaneous depletion of Atm and Mdl rebalances cytosolic Fe-S cluster assembly but not heme import into the mitochondrion of Trypanosoma brucei

    Czech Academy of Sciences Publication Activity Database

    Horáková, Eva; Changmai, Piya; Paris, Zdeněk; Salmon, D.; Lukeš, Julius

    2015-01-01

    Roč. 282, č. 21 (2015), s. 4157-4175 ISSN 1742-464X R&D Projects: GA ČR(CZ) GAP305/11/2179; GA ČR GJ15-21450Y; GA MŠk LH12104 EU Projects: European Commission(XE) 316304 Institutional support: RVO:60077344 Keywords : Atm * Fe-S cluster * heme * Mdl * Trypanosoma Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 4.237, year: 2015

  3. Coenzyme Q10 prevented full blown splenomegaly and decreased melarsoprol-induced reactive encephalopathy in mice infected with Trypanosoma brucei rhodesiense

    Directory of Open Access Journals (Sweden)

    James Nyabuga Nyariki

    2015-03-01

    Full Text Available Objective: To establish the modulatory effects of coenzyme Q10 on experimental trypanosome infections in mice and evaluate the risk of occurrence and severity of melarsoprol-induced post treatment reactive encephalopathy (PTRE. Methods: Female Swiss white mice were orally administered with 200 mg/kg of coenzyme Q10 after which they were intraperitoneally inoculated with Trypanasoma brucei rhodesiense (T. b. rhodesiense. The resultant infection was allowed to develop and simulate all phases of human African trypanosomiasis and PTRE. Parasitaemia development, packed cell volume, haematological and pathological changes were determined. Results: A histological study in the brain tissue of T. b. rhodesiense infected mice demonstrated neuroinflammatory pathology which was highly amplified in the PTRE-induced groups. A prominent reduction in the severity of the neuroinflammatory response was detected when coenzyme-Q10 was administered. Furthermore, the mean tissue weight of spleen to body ratio in coenzyme Q10 supplemented group was significantly (P<0.05 different compared to un-supplemented groups, and clearly indicated that coenzyme Q10 prevented full blown splenomegaly pathogenesis by T. b. rhodesiense. A significant (P<0.05 increase in hemoglobin levels and red blood cells was observed in coenzyme Q10 mice compared to those infected and un-supplemented with coenzyme Q10. Conclusions: The capacity of coenzyme Q10 to alter the pathogenesis of T. b. rhodesiense infection in mice and following treatment with melarsoprol, may find application by rendering humans and animals less susceptible to deleterious effects of trypanosome infection such as splenomegaly and melarsoprol-induced PTRE and neurotoxicity.

  4. Wild chimpanzees are infected by Trypanosoma brucei

    Czech Academy of Sciences Publication Activity Database

    Jirků, Milan; Votýpka, Jan; Petrželková, Klára Judita; Jirků-Pomajbíková, K.; Kriegová, Eva; Vodička, R.; Lankester, F.; Leendertz, S. A. J.; Wittig, R. M.; Boesch, C.; Modrý, David; Ayala, F. J.; Leendertz, F. H.; Lukeš, Julius

    2015-01-01

    Roč. 4, č. 3 (2015), s. 277-282 ISSN 2213-2244 R&D Projects: GA MŠk(CZ) EE2.3.30.0032 EU Projects: European Commission(XE) 316304 Institutional support: RVO:60077344 Keywords : Trypanosomes * Chimpanzee * Non-human primates * Transmission * Diagnostics Subject RIV: GJ - Animal Vermins ; Diseases, Veterinary Medicine

  5. Wild chimpanzees are infected by Trypanosoma brucei

    Czech Academy of Sciences Publication Activity Database

    Jirků, M.; Votýpka, J.; Petrželková, Klára Judita; Jirků-Pomajbíková, K.; Kriegová, E.; Vodička, R.; Lankester, F.; Leendertz, S. A. J.; Wittig, R. M.; Boesch, C.; Modrý, D.; Ayala, F. J.; Leendertz, F. H.; Lukeš, J.

    2015-01-01

    Roč. 4, č. 3 (2015), s. 277-282 ISSN 0020-7519 Institutional support: RVO:68081766 Keywords : Trypanosomes * Chimpanzee * Non-human primates * Transmission * Diagnostics Subject RIV: EG - Zoology Impact factor: 4.242, year: 2015

  6. AcSDKP is down-regulated in anaemia induced by Trypanosoma ...

    African Journals Online (AJOL)

    We studied the responses of a tetrapeptide, AcSDKP, and IL-10, and their association with bone marrow nucleated cells in a Trypanosoma brucei brucei GVR35 experimental infection model. Methods Mouse infection was done intraperitoneally with 1 × 103 trypanosomes/mL. Mice were either infected or left uninfected (N ...

  7. Zoonotic trypanosomes in South East Asia : attempts to control Trypanosoma lewisi using human and animal trypanocidal drugs

    OpenAIRE

    Desquesnes, M.; Yangtara, S.; Kunphukhieo, P.; Jittapalapong, S.; Herder, Stéphane

    2016-01-01

    Beside typical human trypanosomes responsible of sleeping sickness in Africa and Chagas disease in Latin America, there is a growing number of reported atypical human infections due to Trypanosoma evansi, a livestock parasite, or Trypanosoma lewisi, a rat parasite, especially in Asia. Drugs available for the treatment of T. brucei ssp. in humans are obviously of choice for the control of T. evansi because it is derived from T. brucei. However, concerning T. lewisi, there is an urgent need to ...

  8. Arterial blood pressure changes in acute T. brucei infection of dogs ...

    African Journals Online (AJOL)

    The aim of this study is to find out the usefulness of serial arterial blood pressure measurements in predicting severity and outcome of acute Trypanosoma brucei infection in dogs. Twenty adult dogs of mixed sexes and aged between 2 and 5 years were used for this study. The dogs were of good cardiac health and were ...

  9. Multiple evolutionary origins of Trypanosoma evansi in Kenya.

    Directory of Open Access Journals (Sweden)

    Christine M Kamidi

    2017-09-01

    Full Text Available Trypanosoma evansi is the parasite causing surra, a form of trypanosomiasis in camels and other livestock, and a serious economic burden in Kenya and many other parts of the world. Trypanosoma evansi transmission can be sustained mechanically by tabanid and Stomoxys biting flies, whereas the closely related African trypanosomes T. brucei brucei and T. b. rhodesiense require cyclical development in tsetse flies (genus Glossina for transmission. In this study, we investigated the evolutionary origins of T. evansi. We used 15 polymorphic microsatellites to quantify levels and patterns of genetic diversity among 41 T. evansi isolates and 66 isolates of T. b. brucei (n = 51 and T. b. rhodesiense (n = 15, including many from Kenya, a region where T. evansi may have evolved from T. brucei. We found that T. evansi strains belong to at least two distinct T. brucei genetic units and contain genetic diversity that is similar to that in T. brucei strains. Results indicated that the 41 T. evansi isolates originated from multiple T. brucei strains from different genetic backgrounds, implying independent origins of T. evansi from T. brucei strains. This surprising finding further suggested that the acquisition of the ability of T. evansi to be transmitted mechanically, and thus the ability to escape the obligate link with the African tsetse fly vector, has occurred repeatedly. These findings, if confirmed, have epidemiological implications, as T. brucei strains from different genetic backgrounds can become either causative agents of a dangerous, cosmopolitan livestock disease or of a lethal human disease, like for T. b. rhodesiense.

  10. Serum total protein, albumin and globulin levels in Trypanosoma ...

    African Journals Online (AJOL)

    The effect of orally administered Scoparia dulcis on Trypanosoma brucei-induced changes in serum total protein, albumin and globulin were investigated in rabbits over a period of twenty eight days. Results obtained show that infection resulted in hyperproteinaemia, hyperglobulinaemia and hypoalbuminaemia. However ...

  11. Diversity and spation distribution of vectors and hosts of T. brucei gambiense in forest zones of Southern Cameroon: Epidemiological implications

    NARCIS (Netherlands)

    Massussi, J.A.; Mbida Mbida, J.A.; Djieto-Lordon, C.; Njiokou, F.; Laveissière, C.; Ploeg, van der J.D.

    2010-01-01

    Host and vector distribution of Trypanosoma brucei gambiense was studied in relation to habitat types and seasons. Six (19.35%) of the 31 mammal species recorded in Bipindi were reservoir hosts. Cercopithecus nictitans was confined to the undisturbed forest and the low intensive shifting cultivation

  12. Trypanosoma brucei mitochondrial respiratome: Composition and organization in procyclic form

    KAUST Repository

    Acestor, Nathalie; Zí ková , Alena; Dalley, Rachel A.; Anupama, Atashi; Panigrahi, Aswini Kumar; Stuart, Kenneth D.

    2011-01-01

    The mitochondrial respiratory chain is comprised of four different protein complexes (I-IV), which are responsible for electron transport and generation of proton gradient in the mitochondrial intermembrane space. This proton gradient is then used

  13. Mechanism of Trypanosoma brucei gambiense resistance to human serum

    DEFF Research Database (Denmark)

    Uzureau, Pierrick; Uzureau, Sophie; Lecordier, Laurence

    2013-01-01

    GP), which prevents APOL1 toxicity and induces stiffening of membranes upon interaction with lipids. Two additional features contribute to resistance to TLFs: reduction of sensitivity to APOL1 requiring cysteine protease activity, and TbHpHbR inactivation due to a L210S substitution. According...

  14. (Berenil(B)) in the Treatment of Experimental Trypanosoma brucei

    African Journals Online (AJOL)

    Dr Olaleye

    Fifty healthy adult albino rats of both sexes weighing between ... vessels, tissues, blood and central nervous system. (CNS) (Losos, 1986; Radostits et al., 1994; Sweetman,. 2002). The disease .... nutritional status of the host. Diminazene ...

  15. A comprehensive analysis of Trypanosoma brucei mitochondrial proteome

    Czech Academy of Sciences Publication Activity Database

    Panigrahi, A. K.; Ogata, Y.; Zíková, Alena; Anupama, A.; Dalley, R. A.; Acestor, N.; Myler, P. J.; Stuart, K. D.

    2009-01-01

    Roč. 9, č. 2 (2009), s. 434-450 ISSN 1615-9853 Keywords : database * mass spectrometry * mitochondrion * organelle fractionation Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 4.426, year: 2009

  16. Probing for primary functions of prohibitin in Trypanosoma brucei

    Czech Academy of Sciences Publication Activity Database

    Týč, Jiří; Faktorová, Drahomíra; Kriegová, Eva; Jirků, Milan; Vávrová, Zuzana; Maslov, D. A.; Lukeš, Julius

    2010-01-01

    Roč. 40, č. 1 (2010), s. 73-83 ISSN 0020-7519 R&D Projects: GA ČR GA204/09/1667; GA AV ČR IAA500960705; GA ČR(CZ) GP204/06/P423 Institutional research plan: CEZ:AV0Z60220518 Keywords : prohibitin * mitochondrion * morphology * mitochondrial translation Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.822, year: 2010

  17. Active transmission of Trypanosoma brucei gambiense Dutton, 1902 ...

    African Journals Online (AJOL)

    Thereafter, palpation for enlarged cervical lymph gland (ECLG) was followed by parasitological examination of aspirate using wet film, haematocrit centrifugation technique (HCT) and mini-anion exchange centrifugation technique (mAECT). Only one confirmed case of sleeping sickness was diagnosed out of the 491 ...

  18. Trypanosoma Infection Favors Brucella Elimination via IL-12/IFNγ-Dependent Pathways

    Directory of Open Access Journals (Sweden)

    Arnaud Machelart

    2017-07-01

    Full Text Available This study develops an original co-infection model in mice using Brucella melitensis, the most frequent cause of human brucellosis, and Trypanosoma brucei, the agent of African trypanosomiasis. Although the immunosuppressive effects of T. brucei in natural hosts and mice models are well established, we observed that the injection of T. brucei in mice chronically infected with B. melitensis induces a drastic reduction in the number of B. melitensis in the spleen, the main reservoir of the infection. Similar results are obtained with Brucella abortus- and Brucella suis-infected mice and B. melitensis-infected mice co-infected with Trypanosoma cruzi, demonstrating that this phenomenon is not due to antigenic cross-reactivity. Comparison of co-infected wild-type and genetically deficient mice showed that Brucella elimination required functional IL-12p35/IFNγ signaling pathways and the presence of CD4+ T cells. However, the impact of wild type and an attenuated mutant of T. brucei on B. melitensis were similar, suggesting that a chronic intense inflammatory reaction is not required to eliminate B. melitensis. Finally, we also tested the impact of T. brucei infection on the course of Mycobacterium tuberculosis infection. Although T. brucei strongly increases the frequency of IFNγ+CD4+ T cells, it does not ameliorate the control of M. tuberculosis infection, suggesting that it is not controlled by the same effector mechanisms as Brucella. Thus, whereas T. brucei infections are commonly viewed as immunosuppressive and pathogenic, our data suggest that these parasites can specifically affect the immune control of Brucella infection, with benefits for the host.

  19. Proteomics of Trypanosoma evansi infection in rodents.

    Science.gov (United States)

    Roy, Nainita; Nageshan, Rishi Kumar; Pallavi, Rani; Chakravarthy, Harshini; Chandran, Syama; Kumar, Rajender; Gupta, Ashok Kumar; Singh, Raj Kumar; Yadav, Suresh Chandra; Tatu, Utpal

    2010-03-22

    Trypanosoma evansi infections, commonly called 'surra', cause significant economic losses to livestock industry. While this infection is mainly restricted to large animals such as camels, donkeys and equines, recent reports indicate their ability to infect humans. There are no World Animal Health Organization (WAHO) prescribed diagnostic tests or vaccines available against this disease and the available drugs show significant toxicity. There is an urgent need to develop improved methods of diagnosis and control measures for this disease. Unlike its related human parasites T. brucei and T. cruzi whose genomes have been fully sequenced T. evansi genome sequence remains unavailable and very little efforts are being made to develop improved methods of prevention, diagnosis and treatment. With a view to identify potential diagnostic markers and drug targets we have studied the clinical proteome of T. evansi infection using mass spectrometry (MS). Using shot-gun proteomic approach involving nano-lc Quadrupole Time Of Flight (QTOF) mass spectrometry we have identified over 160 proteins expressed by T. evansi in mice infected with camel isolate. Homology driven searches for protein identification from MS/MS data led to most of the matches arising from related Trypanosoma species. Proteins identified belonged to various functional categories including metabolic enzymes; DNA metabolism; transcription; translation as well as cell-cell communication and signal transduction. TCA cycle enzymes were strikingly missing, possibly suggesting their low abundances. The clinical proteome revealed the presence of known and potential drug targets such as oligopeptidases, kinases, cysteine proteases and more. Previous proteomic studies on Trypanosomal infections, including human parasites T. brucei and T. cruzi, have been carried out from lab grown cultures. For T. evansi infection this is indeed the first ever proteomic study reported thus far. In addition to providing a glimpse into the

  20. Proteomics of Trypanosoma evansi infection in rodents.

    Directory of Open Access Journals (Sweden)

    Nainita Roy

    2010-03-01

    Full Text Available Trypanosoma evansi infections, commonly called 'surra', cause significant economic losses to livestock industry. While this infection is mainly restricted to large animals such as camels, donkeys and equines, recent reports indicate their ability to infect humans. There are no World Animal Health Organization (WAHO prescribed diagnostic tests or vaccines available against this disease and the available drugs show significant toxicity. There is an urgent need to develop improved methods of diagnosis and control measures for this disease. Unlike its related human parasites T. brucei and T. cruzi whose genomes have been fully sequenced T. evansi genome sequence remains unavailable and very little efforts are being made to develop improved methods of prevention, diagnosis and treatment. With a view to identify potential diagnostic markers and drug targets we have studied the clinical proteome of T. evansi infection using mass spectrometry (MS.Using shot-gun proteomic approach involving nano-lc Quadrupole Time Of Flight (QTOF mass spectrometry we have identified over 160 proteins expressed by T. evansi in mice infected with camel isolate. Homology driven searches for protein identification from MS/MS data led to most of the matches arising from related Trypanosoma species. Proteins identified belonged to various functional categories including metabolic enzymes; DNA metabolism; transcription; translation as well as cell-cell communication and signal transduction. TCA cycle enzymes were strikingly missing, possibly suggesting their low abundances. The clinical proteome revealed the presence of known and potential drug targets such as oligopeptidases, kinases, cysteine proteases and more.Previous proteomic studies on Trypanosomal infections, including human parasites T. brucei and T. cruzi, have been carried out from lab grown cultures. For T. evansi infection this is indeed the first ever proteomic study reported thus far. In addition to providing a

  1. Adaptation of Trypanosoma brucei to gradual loss of kinetoplast DNA: Trypanosoma equiperdum and Trypanosoma evansi are petite mutants of T. brucei

    Czech Academy of Sciences Publication Activity Database

    Lai, De Hua; Hashimi, Hassan; Lun, Z.-R.; Ayala, F. J.; Lukeš, Julius

    2008-01-01

    Roč. 105, č. 6 (2008), s. 1999-2004 ISSN 0027-8424 R&D Projects: GA AV ČR IAA500960705; GA MŠk LC07032; GA MŠk 2B06129; GA ČR GA204/06/1558 Institutional research plan: CEZ:AV0Z60220518 Keywords : RNA editing * surra * dourine * mitochondrion * Protozoa Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 9.380, year: 2008

  2. Molecular Confirmation of Trypanosoma evansi and Babesia bigemina in Cattle from Lower Egypt

    Directory of Open Access Journals (Sweden)

    Mahmoud M. Elhaig, Abdelfattah Selim, Mohamed M. Mahmoud and Eman K El-Gayar

    2016-11-01

    Full Text Available Trypanosomosis and babesiosis are economically important vector-borne diseases for animal health and productivity in developing countries. In Egypt, molecular epidemiological surveys on such diseases are scarce. In the present study, we examined 475 healthy and 25 clinically diagnosed cattle from three provinces in Lower Egypt, for Trypanosoma (T. and Babesia (B. infections using an ITS1 PCR assay that confirmed Trypanosoma species presence and an 18S rRNA assay that detected B. bigemina. Results confirmed Trypanosoma spp. and B. bigemina presence in 30.4% and 11% individuals, respectively, with eight animals (1.6% being co-infected with both hemoparasites. Subsequent type-specific PCRs revealed that all Trypanosoma PCR positive samples corresponded to T. evansi and that none of the animals harboured T. brucei gambiense or T. brucei rhodesiense. Nucleotide sequencing of the variable surface glycoprotein revealed the T. evansi cattle strain to be most closely related (99% nucleotide sequence identity to strains previously detected in dromedary camels in Egypt, while the 18S rRNA gene phylogeny confirmed the presence of a unique B. bigemina haplotype closely related to strains from Turkey and Brazil. Statistically significant differences in PCR prevalence were noted with respect to gender, clinical status and locality. These results confirm the presence of high numbers of carrier animals and signal the need for expanded surveillance and control efforts.

  3. Marker discovery in Trypanosoma vivax through GSS and comparative analysis. Preliminary data and perspectives

    International Nuclear Information System (INIS)

    Davila, A.M.R.; Guerreiro, L.T.A.; Souza, S.S.

    2005-01-01

    Trypanosoma vivax is a haemoparasite affecting the livestock industry in South America and Africa. Despite the high economic relevance of the disease caused by T. vivax, little work has been done on its molecular characterization, in contrast with human trypanosomes, such as T. brucei and T. cruzi. The present study reports the construction of a semi-normalized genomic library and the sequencing of 160 Genome Sequence Survey (GSS) ends of T. vivax. The analyses of this preliminary data show that this simple and rapid approach worked well to generate some potential new markers for this species. (author)

  4. Molecular characterization and classification of Trypanosoma spp. Venezuelan isolates based on microsatellite markers and kinetoplast maxicircle genes.

    Science.gov (United States)

    Sánchez, E; Perrone, T; Recchimuzzi, G; Cardozo, I; Biteau, N; Aso, P M; Mijares, A; Baltz, T; Berthier, D; Balzano-Nogueira, L; Gonzatti, M I

    2015-10-15

    Livestock trypanosomoses, caused by three species of the Trypanozoon subgenus, Trypanosoma brucei brucei, T. evansi and T. equiperdum is widely distributed throughout the world and constitutes an important limitation for the production of animal protein. T. evansi and T. equiperdum are morphologically indistinguishable parasites that evolved from a common ancestor but acquired important biological differences, including host range, mode of transmission, distribution, clinical symptoms and pathogenicity. At a molecular level, T. evansi is characterized by the complete loss of the maxicircles of the kinetoplastic DNA, while T. equiperdum has retained maxicircle fragments similar to those present in T. brucei. T. evansi causes the disease known as Surra, Derrengadera or "mal de cadeiras", while T. equiperdum is the etiological agent of dourine or "mal du coit", characterized by venereal transmission and white patches in the genitalia. Nine Venezuelan Trypanosoma spp. isolates, from horse, donkey or capybara were genotyped and classified using microsatellite analyses and maxicircle genes. The variables from the microsatellite data and the Procyclin PE repeats matrices were combined using the Hill-Smith method and compared to a group of T. evansi, T. equiperdum and T. brucei reference strains from South America, Asia and Africa using Coinertia analysis. Four maxicircle genes (cytb, cox1, a6 and nd8) were amplified by PCRfrom TeAp-N/D1 and TeGu-N/D1, the two Venezuelan isolates that grouped with the T. equiperdum STIB841/OVI strain. These maxicircle sequences were analyzed by nucleotide BLAST and aligned toorthologous genes from the Trypanozoon subgenus by MUSCLE tools. Phylogenetic trees were constructed using Maximum Parsimony (MP) and Maximum Likelihood (ML) with the MEGA5.1® software. We characterized microsatellite markers and Procyclin PE repeats of nine Venezuelan Trypanosoma spp. isolates with various degrees of virulence in a mouse model, and compared them to a

  5. Partial nucleotide sequence analysis of 18S ribosomal RNA gene of the four genotypes of Trypanosoma congolense

    International Nuclear Information System (INIS)

    Osanya, A.; Majiwa, P.A.O.; Kinyanjui, P.W.

    2006-01-01

    Specific oligonucleotide primers based on conserved nucleotide sequences of 18s ribisomal RNA (18s rRNA) gene of Trypanosoma brucei, Leishmania donovani, Triponema aequale and Lagenidium gigantum have been designed and used in the ploymerase chain reaction (PCR) to amplify genomic DNA from four different clones each representing a different genotypic group of T. congolence. PCR products of approximately 1Kb were generated using as template DNA from each of the trypanosomes. The PCR products cross-hybridized with genomic DNA from T.brucei, T. simiae and the four genotypes of T.congolense implying significant sequence homology of 18S rRNA gene among trypanosomes. The nucleotide sequence of a segment of the PCR products were determined by direct sequencing to provide partial nucleotide sequence of the 18s rRNA gene in each T.congolense genotypic group. The sequences obtained together with those that have been published for T.brucei reveals that although most regions show inter and intra species nucleotide identity, there are several sites where deletions, insertions and base changes have occured in nucleotide sequence of of T.brucei and the four genotypes of T.congolense.(author)

  6. Restriction fragment length polymorphism (RFLP) analysis of PCR products amplified from 18S ribosomal RNA gene of Trypanosoma congolense

    International Nuclear Information System (INIS)

    Osanyo, A.; Majiwa, P.W.

    2006-01-01

    Oligonucleotide primers were designed from the conserved nucleotide sequences of 18S ribosomal RNA (18S rRNA) gene of protozoans: Trypanosoma brucei, Leishmania donovani, Triponema aequale and Lagenidium gigantum. The primers were used in polymerace chain reaction (PCR) to generate PCR products of approximately 1 Kb using genomic DNA from T. brucei and the four genotypic groups of T. congolense as template. The five PCR products so produced were digested with several restriction enzymes and hybridized to a DNA probe made from T. brucei PCR product of the same 18S rRNA gene region. Most restriction enzyme digests revealed polymorphism with respect to the location of their recognition sites on the five PCR products. The restriction fragment length polymorphism (RFLP) pattern observed indicate that the 18S rRNA gene sequences of trypanosomes: T. brucei and the four genotypes of T.congolence group are heterogeneous. The results further demonstrate that the region that was amplified can be used in specific identification of trypanosomes species and subspecies.(author)

  7. Some liver function indices and blood parameters in T. brucei ...

    African Journals Online (AJOL)

    JTEkanem

    symptoms of African sleeping sickness9. Despite the prolific research ... is a disease for which both man and other animals whether ... on some symptoms caused by T. brucei infection. .... immune response is insufficient to clear infection21-23.

  8. Isolation of a human serum-resistant Trypanosoma brucei from a ...

    African Journals Online (AJOL)

    ... held at the Orie Orba market lairage in Udenu Local Government Area of Enugu State. ... it belonged, it was subjected to the blood incubation infectivity test. ... of 200 μl containing 106 trypanosomes were used to infect each mouse in three ...

  9. Pentamidine Is Not a Permeant but a Nanomolar Inhibitor of the Trypanosoma brucei Aquaglyceroporin-2.

    Science.gov (United States)

    Song, Jie; Baker, Nicola; Rothert, Monja; Henke, Björn; Jeacock, Laura; Horn, David; Beitz, Eric

    2016-02-01

    The chemotherapeutic arsenal against human African trypanosomiasis, sleeping sickness, is limited and can cause severe, often fatal, side effects. One of the classic and most widely used drugs is pentamidine, an aromatic diamidine compound introduced in the 1940s. Recently, a genome-wide loss-of-function screen and a subsequently generated trypanosome knockout strain revealed a specific aquaglyceroporin, TbAQP2, to be required for high-affinity uptake of pentamidine. Yet, the underlying mechanism remained unclear. Here, we show that TbAQP2 is not a direct transporter for the di-basic, positively charged pentamidine. Even though one of the two common cation filters of aquaglyceroporins, i.e. the aromatic/arginine selectivity filter, is unconventional in TbAQP2, positively charged compounds are still excluded from passing the channel. We found, instead, that the unique selectivity filter layout renders pentamidine a nanomolar inhibitor of TbAQP2 glycerol permeability. Full, non-covalent inhibition of an aqua(glycero)porin in the nanomolar range has not been achieved before. The remarkable affinity derives from an electrostatic interaction with Asp265 and shielding from water as shown by structure-function evaluation and point mutation of Asp265. Exchange of the preceding Leu264 to arginine abolished pentamidine-binding and parasites expressing this mutant were pentamidine-resistant. Our results indicate that TbAQP2 is a high-affinity receptor for pentamidine. Taken together with localization of TbAQP2 in the flagellar pocket of bloodstream trypanosomes, we propose that pentamidine uptake is by endocytosis.

  10. Pentamidine Is Not a Permeant but a Nanomolar Inhibitor of the Trypanosoma brucei Aquaglyceroporin-2.

    Directory of Open Access Journals (Sweden)

    Jie Song

    2016-02-01

    Full Text Available The chemotherapeutic arsenal against human African trypanosomiasis, sleeping sickness, is limited and can cause severe, often fatal, side effects. One of the classic and most widely used drugs is pentamidine, an aromatic diamidine compound introduced in the 1940s. Recently, a genome-wide loss-of-function screen and a subsequently generated trypanosome knockout strain revealed a specific aquaglyceroporin, TbAQP2, to be required for high-affinity uptake of pentamidine. Yet, the underlying mechanism remained unclear. Here, we show that TbAQP2 is not a direct transporter for the di-basic, positively charged pentamidine. Even though one of the two common cation filters of aquaglyceroporins, i.e. the aromatic/arginine selectivity filter, is unconventional in TbAQP2, positively charged compounds are still excluded from passing the channel. We found, instead, that the unique selectivity filter layout renders pentamidine a nanomolar inhibitor of TbAQP2 glycerol permeability. Full, non-covalent inhibition of an aqua(glyceroporin in the nanomolar range has not been achieved before. The remarkable affinity derives from an electrostatic interaction with Asp265 and shielding from water as shown by structure-function evaluation and point mutation of Asp265. Exchange of the preceding Leu264 to arginine abolished pentamidine-binding and parasites expressing this mutant were pentamidine-resistant. Our results indicate that TbAQP2 is a high-affinity receptor for pentamidine. Taken together with localization of TbAQP2 in the flagellar pocket of bloodstream trypanosomes, we propose that pentamidine uptake is by endocytosis.

  11. Trypanosoma brucei Tb927.2.6100 Is an Essential Protein Associated with Kinetoplast DNA

    KAUST Repository

    Beck, K.

    2013-05-06

    The mitochondrial DNA of trypanosomatid protozoa consists of a complex, intercatenated network of tens of maxicircles and thousands of minicircles. This structure, called kinetoplast DNA (kDNA), requires numerous proteins and multiprotein complexes for replication, segregation, and transcription. In this study, we used a proteomic approach to identify proteins that are associated with the kDNA network. We identified a novel protein encoded by Tb927.2.6100 that was present in a fraction enriched for kDNA and colocalized the protein with kDNA by fluorescence microscopy. RNA interference (RNAi) knockdown of its expression resulted in a growth defect and changes in the proportion of kinetoplasts and nuclei in the cell population. RNAi also resulted in shrinkage and loss of the kinetoplasts, loss of maxicircle and minicircle components of kDNA at similar rates, and (perhaps secondarily) loss of edited and pre-edited mRNA. These results indicate that the Tb927.2.6100 protein is essential for the maintenance of kDNA.

  12. The ADP/ATP Carrier and Its Relationship to Oxidative Phosphorylation in Ancestral Protist Trypanosoma brucei

    Czech Academy of Sciences Publication Activity Database

    Gnipová, Anna; Šubrtová, Karolína; Panicucci, Brian; Horváth, A.; Lukeš, Julius; Zíková, Alena

    2015-01-01

    Roč. 14, č. 3 (2015), s. 297-310 ISSN 1535-9778 R&D Projects: GA MŠk LL1205; GA ČR GAP302/12/2513 EU Projects: European Commission(XE) 316304 Institutional support: RVO:60077344 Keywords : cytochrome c-oxidase * structural basis * mitochondrial ATP synthase Subject RIV: EE - Microbiology, Virology Impact factor: 2.946, year: 2015

  13. Targeted insertion of the neomycin phosphotransferase gene into the tubulin gene cluster of Trypanosoma brucei

    NARCIS (Netherlands)

    ten Asbroek, A. L.; Ouellette, M.; Borst, P.

    1990-01-01

    Kinetoplastids are unicellular eukaryotes that include important parasites of man, such as trypanosomes and leishmanias. The study of these organisms received a recent boost from the development of transient transformation allowing the short-term expression of genes reintroduced into parasites like

  14. Dynamin-like proteins in Trypanosoma brucei: A division of labour between two paralogs?

    Czech Academy of Sciences Publication Activity Database

    Benz, C.; Stříbrná, Eva; Hashimi, Hassan; Lukeš, Julius

    2017-01-01

    Roč. 12, č. 5 (2017), č. článku e0177200. E-ISSN 1932-6203 R&D Projects: GA ČR GA15-21974S; GA ČR GA17-24036S; GA MŠk LL1601 Institutional support: RVO:60077344 Keywords : blood-stream forms * mitochondrial fission * sequence alignment * gtpase activity * single dynamin * life-cycle * endocytosis * fis1 * expression * surface Subject RIV: EB - Genetics ; Molecular Biology OBOR OECD: Biochemistry and molecular biology Impact factor: 2.806, year: 2016

  15. A leucine aminopeptidase is involved in kinetoplast DNA segregation in Trypanosoma brucei

    Czech Academy of Sciences Publication Activity Database

    Peña-Diaz, Priscila; Vancová, Marie; Resl, C.; Field, M.C.; Lukeš, Julius

    2017-01-01

    Roč. 13, č. 4 (2017), č. článku e1006310. E-ISSN 1553-7374 R&D Projects: GA MŠk(CZ) EE2.3.30.0032; GA ČR(CZ) GA16-18699S Institutional support: RVO:60077344 Keywords : site-specific recombination * basal body movements * mitochondrial-dna * leucyl aminopeptidase * crithidia-fasciculata * escherichia-coli * cell-cycle * minicircle replication * phylogenetic analysis * genome segregation Subject RIV: EB - Genetics ; Molecular Biology OBOR OECD: Genetics and heredity (medical genetics to be 3) Impact factor: 7.003, year: 2015

  16. Two flagellar BAR domain proteins in Trypanosoma brucei with stage-specific regulation

    Czech Academy of Sciences Publication Activity Database

    Číčová, Z.; Dejung, M.; Skalický, Tomáš; Eisenhuth, N.; Hanselmann, S.; Morriswood, B.; Figueiredo, L.M.; Butter, F.; Janzen, C. J.

    2016-01-01

    Roč. 6, 25 October (2016), č. článku 35826. ISSN 2045-2322 Institutional support: RVO:60077344 Keywords : variant surface glycoprotein * attachment zone filament * blood stream forms * life cycle stages * paraflagellar rod * stable transformation * cell morphogenesis * ortholog groups * psi blast * membrane Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 4.259, year: 2016

  17. Bloodstream form pre-adaptation to the tsetse fly inTrypanosoma brucei

    Directory of Open Access Journals (Sweden)

    Eva eRico

    2013-11-01

    Full Text Available African trypanosomes are sustained in the bloodstream of their mammalian hosts by their extreme capacity for antigenic variation. However, for life cycle progression, trypanosomes also must generate transmission stages called stumpy forms that are pre-adapted to survive when taken up during the bloodmeal of the disease vector, tsetse flies. These stumpy forms are rather different to the proliferative slender forms that maintain the bloodstream parasitaemia. Firstly, they are non proliferative and morphologically distinct, secondly, they show particular sensitivity to environmental cues that signal entry to the tsetse fly and, thirdly, they are relatively robust such that they survive the changes in temperature, pH and proteolytic environment encountered within the tsetse midgut. These characteristics require regulated changes in gene expression to pre-adapt the parasite and the use of environmental sensing mechanisms, both of which allow the rapid initiation of differentiation to tsetse midgut procyclic forms upon transmission. Interestingly, the generation of stumpy forms is also regulated and periodic in the mammalian blood, this being governed by a density-sensing mechanism whereby a parasite-derived signal drives cell cycle arrest and cellular development both to optimise transmission and to prevent uncontrolled parasite multiplication overwhelming the host.In this review we detail recent developments in our understanding of the molecular mechanisms that underpin the production of stumpy forms in the mammalian bloodstream and their signal perception pathways both in the mammalian bloodstream and upon entry into the tsetse fly. These discoveries are discussed in the context of conserved eukaryotic signalling and differentiation mechanisms. Further, their potential to act as targets for therapeutic strategies that disrupt parasite development either in the mammalian bloodstream or upon their transmission to tsetse flies is also discussed.

  18. TrypanoCyc : a community-led biochemical pathways database for Trypanosoma brucei

    NARCIS (Netherlands)

    Shameer, Sanu; Logan-Klumpler, Flora J; Vinson, Florence; Cottret, Ludovic; Merlet, Benjamin; Achcar, Fiona; Boshart, Michael; Berriman, Matthew; Breitling, Rainer; Bringaud, Frédéric; Bütikofer, Peter; Cattanach, Amy M; Bannerman-Chukualim, Bridget; Creek, Darren J; Crouch, Kathryn; de Koning, Harry P; Denise, Hubert; Ebikeme, Charles; Fairlamb, Alan H; Ferguson, Michael A J; Ginger, Michael L; Hertz-Fowler, Christiane; Kerkhoven, Eduard J; Mäser, Pascal; Michels, Paul A M; Nayak, Archana; Nes, David W; Nolan, Derek P; Olsen, Christian; Silva-Franco, Fatima; Smith, Terry K; Taylor, Martin C; Tielens, Aloysius G M|info:eu-repo/dai/nl/069043035; Urbaniak, Michael D; van Hellemond, Jaap J; Vincent, Isabel M; Wilkinson, Shane R; Wyllie, Susan; Opperdoes, Fred R; Barrett, Michael P; Jourdan, Fabien

    2015-01-01

    The metabolic network of a cell represents the catabolic and anabolic reactions that interconvert small molecules (metabolites) through the activity of enzymes, transporters and non-catalyzed chemical reactions. Our understanding of individual metabolic networks is increasing as we learn more about

  19. TrypanoCyc: A community-led biochemical pathways database for Trypanosoma brucei

    NARCIS (Netherlands)

    S. Shameer (Sanu); F.J. Logan-Klumpler (Flora J.); F. Vinson (Florence); L. Cottret (Ludovic); B. Merlet (Benjamin); F. Achcar (Fiona); M. Boshart (Michael); M. Berriman (Matthew); R. Breitling (Rainer); F. Bringaud (Frédéric); P. Bütikofer (Peter); A.M. Cattanach (Amy M.); B. Bannerman-Chukualim (Bridget); D.J. Creek (Darren J.); K. Crouch (Kathryn); H.P. De Koning (Harry P.); H. Denise (Hubert); C. Ebikeme (Charles); A.H. Fairlamb (Alan H.); M.A.J. Ferguson (Michael A. J.); M.L. Ginger (Michael L.); C. Hertz-Fowler (Christiane); E.J. Kerkhoven (Eduard); P. Mäser (Pascal); P.A.M. Michels (Paul); A. Nayak (Archana); D. Nes (DavidW.); D.P. Nolan (Derek P.); C. Olsen (Christian); F. Silva-Franco (Fatima); T.K. Smith (Terry K.); M.C. Taylor (Martin C.); A.G.M. Tielens (Aloysius); M.D. Urbaniak (Michael D.); J.J. van Hellemond (Jaap); I.M. Vincent (Isabel M.); S.R. Wilkinson (Shane R.); S. Wyllie (Susan); F.R. Opperdoes (Fred); M.P. Barrett (Michael P.); F. Jourdan (Fabien)

    2015-01-01

    textabstractThe metabolic network of a cell represents the catabolic and anabolic reactions that interconvert small molecules (metabolites) through the activity of enzymes, transporters and non-catalyzed chemical reactions. Our understanding of individualmetabolic networks is increasing as we learn

  20. Trypanosoma brucei Tb927.2.6100 Is an Essential Protein Associated with Kinetoplast DNA

    KAUST Repository

    Beck, K.; Acestor, N.; Schulfer, A.; Anupama, A.; Carnes, J.; Panigrahi, A. K.; Stuart, K.

    2013-01-01

    The mitochondrial DNA of trypanosomatid protozoa consists of a complex, intercatenated network of tens of maxicircles and thousands of minicircles. This structure, called kinetoplast DNA (kDNA), requires numerous proteins and multiprotein complexes for replication, segregation, and transcription. In this study, we used a proteomic approach to identify proteins that are associated with the kDNA network. We identified a novel protein encoded by Tb927.2.6100 that was present in a fraction enriched for kDNA and colocalized the protein with kDNA by fluorescence microscopy. RNA interference (RNAi) knockdown of its expression resulted in a growth defect and changes in the proportion of kinetoplasts and nuclei in the cell population. RNAi also resulted in shrinkage and loss of the kinetoplasts, loss of maxicircle and minicircle components of kDNA at similar rates, and (perhaps secondarily) loss of edited and pre-edited mRNA. These results indicate that the Tb927.2.6100 protein is essential for the maintenance of kDNA.

  1. Mitochondrial membrane potential-based genome-wide RNAi screen of Trypanosoma brucei

    Czech Academy of Sciences Publication Activity Database

    Verner, Zdeněk; Paris, Zdeněk; Lukeš, Julius

    2010-01-01

    Roč. 106, č. 5 (2010), s. 1241-1244 ISSN 0932-0113 Institutional research plan: CEZ:AV0Z60220518 Keywords : GENE-FUNCTION * INTERFERENCE * mitochondrion * SUBUNITS Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 1.812, year: 2010

  2. Mitochondrial and Nucleolar Localization of Cysteine Desulfurase Nfs and the Scaffold Protein Isu in Trypanosoma brucei

    Czech Academy of Sciences Publication Activity Database

    Kovářová, Julie; Horáková, Eva; Changmai, Piya; Vancová, Marie; Lukeš, Julius

    2014-01-01

    Roč. 13, č. 3 (2014), s. 353-362 ISSN 1535-9778 R&D Projects: GA ČR(CZ) GAP305/11/2179; GA MŠk LH12104; GA MŠk(CZ) EE2.3.30.0032 Institutional support: RVO:60077344 Keywords : transfer RNA * iron sulfur protein * blood stream forms Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.820, year: 2014

  3. Characterization of Two Mitochondrial Flavin Adenine Dinucleotide-Dependent Glycerol-3-Phosphate Dehydrogenases in Trypanosoma brucei

    Czech Academy of Sciences Publication Activity Database

    Škodová, Ingrid; Verner, Zdeněk; Bringaud, F.; Fabian, P.; Lukeš, Julius; Horváth, A.

    2013-01-01

    Roč. 12, č. 12 (2013), s. 1664-1673 ISSN 1535-9778 R&D Projects: GA ČR(CZ) GAP305/11/2179; GA ČR GD206/09/H026; GA MŠk LH12104 Institutional support: RVO:60077344 Keywords : alternative NADH dehydrogenase * inducible expression system * blood-stream forms * complex-I * procyclic trypanosomes * sleeping sickness * oxidase * localization * metabolism * cycle Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.179, year: 2013

  4. Proteomic Analysis of the Cell Cycle of Procylic Form Trypanosoma brucei.

    Science.gov (United States)

    Crozier, Thomas W M; Tinti, Michele; Wheeler, Richard J; Ly, Tony; Ferguson, Michael A J; Lamond, Angus I

    2018-06-01

    We describe a single-step centrifugal elutriation method to produce synchronous Gap1 (G1)-phase procyclic trypanosomes at a scale amenable for proteomic analysis of the cell cycle. Using ten-plex tandem mass tag (TMT) labeling and mass spectrometry (MS)-based proteomics technology, the expression levels of 5325 proteins were quantified across the cell cycle in this parasite. Of these, 384 proteins were classified as cell-cycle regulated and subdivided into nine clusters with distinct temporal regulation. These groups included many known cell cycle regulators in trypanosomes, which validates the approach. In addition, we identify 40 novel cell cycle regulated proteins that are essential for trypanosome survival and thus represent potential future drug targets for the prevention of trypanosomiasis. Through cross-comparison to the TrypTag endogenous tagging microscopy database, we were able to validate the cell-cycle regulated patterns of expression for many of the proteins of unknown function detected in our proteomic analysis. A convenient interface to access and interrogate these data is also presented, providing a useful resource for the scientific community. Data are available via ProteomeXchange with identifier PXD008741 (https://www.ebi.ac.uk/pride/archive/). © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  5. A paradigm shift: The mitoproteomes of procyclic and bloodstream Trypanosoma brucei are comparably complex

    Czech Academy of Sciences Publication Activity Database

    Zíková, Alena; Verner, Zdeněk; Nenarokova, Anna; Michele, P. A. M.; Lukeš, Julius

    2017-01-01

    Roč. 13, č. 12 (2017), č. článku e1006679. ISSN 1553-7366 R&D Projects: GA MŠk LL1205; GA MŠk LL1601; GA ČR GA17-22248S; GA ČR GA15-21974S; GA MŠk(CZ) LQ1604 Institutional support: RVO:60077344 Keywords : life-cycle stages * african trypanosomes * adp/atp carrier * krebs cycle * forms * mitochondrion * reveals * protein * metabolism * glucose Subject RIV: EB - Genetics ; Molecular Biology OBOR OECD: Biochemistry and molecular biology Impact factor: 6.608, year: 2016

  6. Both human ferredoxins equally efficiently rescue ferredoxin deficiency in Trypanosoma brucei

    Czech Academy of Sciences Publication Activity Database

    Changmai, Piya; Horáková, Eva; Long, Shaojun; Černotíková, Eva; McDonald, Lindsay M.; Bontempi, Esteban J.; Lukeš, Julius

    2013-01-01

    Roč. 89, č. 1 (2013), s. 135-151 ISSN 0950-382X R&D Projects: GA ČR(CZ) GAP305/11/2179; GA MŠk LH12104 Institutional support: RVO:60077344 Keywords : IRON-SULFUR CLUSTERS * CYTOCHROME-C-OXIDASE * BLOOD-STREAM FORM Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 5.026, year: 2013

  7. Crystal structures and inhibition of Trypanosoma brucei hypoxanthine-guanine phosphoribosyltransferase

    Czech Academy of Sciences Publication Activity Database

    Terán, D.; Hocková, Dana; Česnek, Michal; Zíková, Alena; Naesens, L.; Keough, D. T.; Guddat, L. W.

    2016-01-01

    Roč. 6, Oct 27 (2016), č. článku 35894. ISSN 2045-2322 R&D Projects: GA ČR(CZ) GA16-06049S; GA MŠk LL1205 Institutional support: RVO:61388963 ; RVO:60077344 Keywords : enzyme inhibitors * acyclic nucleoside phosphonates * HGPRT Subject RIV: CC - Organic Chemistry; EE - Microbiology, Virology (BC-A) Impact factor: 4.259, year: 2016 http://www.nature.com/articles/srep35894

  8. Kinetoplast adaptations in American strains from Trypanosoma vivax

    Energy Technology Data Exchange (ETDEWEB)

    Greif, Gonzalo [Unidad de Biología Molecular, Institut Pasteur de Montevideo (Uruguay); Rodriguez, Matías [Sección Biomatemática, Facultad de Ciencias, Universidad de la Republica (Uruguay); Reyna-Bello, Armando [Departamento de Ciencias de la Vida, Carrera en Ingeniería en Biotecnología, Universidad de las Fuerzas Armadas (Ecuador); Centro de Estudios Biomédicos y Veterinarios, Universidad Nacional Experimental Simón Rodríguez-IDECYT, Caracas (Venezuela, Bolivarian Republic of); Robello, Carlos [Unidad de Biología Molecular, Institut Pasteur de Montevideo (Uruguay); Departamento de Bioquímica, Facultad de Medicina, Universidad de la República Uruguay (Uruguay); Alvarez-Valin, Fernando, E-mail: falvarez@fcien.edu.uy [Sección Biomatemática, Facultad de Ciencias, Universidad de la Republica (Uruguay)

    2015-03-15

    Highlights: • American T. vivax strains exhibit a drastic process of mitochondrial genome degradation. • T. vivax mitochondrial genes have among the fastest evolutionary rates in eukaryotes. • High rates of kDNA evolution are associated with relaxation of selective constrains. • Relaxed selective pressures are the result of mechanical transmission. • The evolutionary strategy of T. vivax differs from that of T. brucei-species complex. - Abstract: The mitochondrion role changes during the digenetic life cycle of African trypanosomes. Owing to the low abundance of glucose in the insect vector (tsetse flies) the parasites are dependent upon a fully functional mitochondrion, capable of performing oxidative phosphorylation. Nevertheless, inside the mammalian host (bloodstream forms), which is rich in nutrients, parasite proliferation relies on glycolysis, and the mitochondrion is partially redundant. In this work we perform a comparative study of the mitochondrial genome (kinetoplast) in different strains of Trypanosoma vivax. The comparison was conducted between a West African strain that goes through a complete life cycle and two American strains that are mechanically transmitted (by different vectors) and remain as bloodstream forms only. It was found that while the African strain has a complete and apparently fully functional kinetoplast, the American T. vivax strains have undergone a drastic process of mitochondrial genome degradation, in spite of the recent introduction of these parasites in America. Many of their genes exhibit different types of mutations that are disruptive of function such as major deletions, frameshift causing indels and missense mutations. Moreover, all but three genes (A6-ATPase, RPS12 and MURF2) are not edited in the American strains, whereas editing takes place normally in all (editable) genes from the African strain. Two of these genes, A6-ATPase and RPS12, are known to play an essential function during bloodstream stage

  9. Kinetoplast adaptations in American strains from Trypanosoma vivax

    International Nuclear Information System (INIS)

    Greif, Gonzalo; Rodriguez, Matías; Reyna-Bello, Armando; Robello, Carlos; Alvarez-Valin, Fernando

    2015-01-01

    Highlights: • American T. vivax strains exhibit a drastic process of mitochondrial genome degradation. • T. vivax mitochondrial genes have among the fastest evolutionary rates in eukaryotes. • High rates of kDNA evolution are associated with relaxation of selective constrains. • Relaxed selective pressures are the result of mechanical transmission. • The evolutionary strategy of T. vivax differs from that of T. brucei-species complex. - Abstract: The mitochondrion role changes during the digenetic life cycle of African trypanosomes. Owing to the low abundance of glucose in the insect vector (tsetse flies) the parasites are dependent upon a fully functional mitochondrion, capable of performing oxidative phosphorylation. Nevertheless, inside the mammalian host (bloodstream forms), which is rich in nutrients, parasite proliferation relies on glycolysis, and the mitochondrion is partially redundant. In this work we perform a comparative study of the mitochondrial genome (kinetoplast) in different strains of Trypanosoma vivax. The comparison was conducted between a West African strain that goes through a complete life cycle and two American strains that are mechanically transmitted (by different vectors) and remain as bloodstream forms only. It was found that while the African strain has a complete and apparently fully functional kinetoplast, the American T. vivax strains have undergone a drastic process of mitochondrial genome degradation, in spite of the recent introduction of these parasites in America. Many of their genes exhibit different types of mutations that are disruptive of function such as major deletions, frameshift causing indels and missense mutations. Moreover, all but three genes (A6-ATPase, RPS12 and MURF2) are not edited in the American strains, whereas editing takes place normally in all (editable) genes from the African strain. Two of these genes, A6-ATPase and RPS12, are known to play an essential function during bloodstream stage

  10. Activity of D-carnitine and its derivatives on Trypanosoma infections in rats and mice

    Directory of Open Access Journals (Sweden)

    Manganaro M.

    2003-06-01

    Full Text Available Little progress has been made in the treatment of African trypanosomiasis over the past decades. L-carnitine has a major role in glycolysis-based energy supply of blood trypanosomes for it stimulates constant ATP production. To investigate whether administration of the isomer D-carnitine could exert a competitive inhibition on the metabolic pathway of the L-form, possibily resulting in parasite replication inhibition, several formulations of this compound were tested on Trypanosoma lewisi and T. brucei rhodesiense in rodent models. High oral dosages of D-carnitine inner salt and proprionyl-D-carnitine were not toxic to animals and induced about 50 % parasite growth inhibition in reversible, i.e. competitive, fashion. A putative mechanism could be an interference in pyruvate kinase activity and hence ATP production. Considering both, lack of toxicity and inhibitory activity, D-carnitine may have a role in the treatment of African trypanosomiasis, in association with available trypanocidal drugs.

  11. Phylogenetic position of the giant anuran trypanosomes Trypanosoma chattoni, Trypanosoma fallisi, Trypanosoma mega, Trypanosoma neveulemairei, and Trypanosoma ranarum inferred from 18S rRNA gene sequences.

    Science.gov (United States)

    Martin, Donald S; Wright, André-Denis G; Barta, John R; Desser, Sherwin S

    2002-06-01

    Phylogenetic relationships within the kinetoplastid flagellates were inferred from comparisons of small-subunit ribosomal RNA gene sequences. These included 5 new gene sequences, Trypanosoma fallisi (2,239 bp), Trypanosoma chattoni (2,180 bp), Trypanosoma mega (2,211 bp), Trypanosoma neveulemairei (2,197 bp), and Trypanosoma ranarum (2,203 bp). Trees produced using maximum-parsimony and distance-matrix methods (least-squares, neighbor-joining, and maximum-likelihood), supported by strong bootstrap and quartet-puzzle analyses, indicated that the trypanosomes are a monophyletic group that divides into 2 major lineages, the salivarian trypanosomes and the nonsalivarian trypanosomes. The nonsalivarian trypanosomes further divide into 2 lineages, 1 containing trypanosomes of birds, mammals, and reptiles and the other containing trypanosomes of fish, reptiles, and anurans. Among the giant trypanosomes, T. chattoni is clearly shown to be distantly related to all the other anuran trypanosome species. Trypanosoma mega is closely associated with T. fallisi and T. ranarum, whereas T. neveulemairei and Trypanosoma rotatorium are sister taxa. The branching order of the anuran trypanosomes suggests that some toad trypanosomes may have evolved by host switching from frogs to toads.

  12. A proline racemase based PCR for identification of Trypanosoma vivax in cattle blood.

    Directory of Open Access Journals (Sweden)

    Regassa Fikru

    Full Text Available A study was conducted to develop a Trypanosoma vivax (T. vivax specific PCR based on the T. vivax proline racemase (TvPRAC gene. Forward and reverse primers were designed that bind at 764-783 bp and 983-1002 bp of the gene. To assess its specificity, TvPRAC PCR was conducted on DNA extracted from different haemotropic pathogens: T. vivax from Nigeria, Ethiopia and Venezuela, T. congolense Savannah type, T. brucei brucei, T. evansi, T. equiperdum, T. theileri, Theileria parva, Anaplasma marginale, Babesia bovis and Babesia bigemina and from bovine, goat, mouse, camel and human blood. The analytical sensitivity of the TvPRAC PCR was compared with that of the ITS-1 PCR and the 18S PCR-RFLP on a dilution series of T. vivax DNA in water. The diagnostic performance of the three PCRs was compared on 411 Ethiopian bovine blood specimens collected in a former study. TvPRAC PCR proved to be fully specific for T. vivax, irrespective of its geographical origin. Its analytical sensitivity was lower than that of ITS-1 PCR. On these bovine specimens, TvPRAC PCR detected 8.3% T. vivax infections while ITS-1 PCR and 18S PCR-RFLP detected respectively 22.6 and 6.1% T. vivax infections. The study demonstrates that a proline racemase based PCR could be used, preferably in combination with ITS-1 PCR, as a species-specific diagnostic test for T. vivax infections worldwide.

  13. A global comparison of the human and T. brucei degradomes gives insights about possible parasite drug targets.

    Directory of Open Access Journals (Sweden)

    Susan T Mashiyama

    Full Text Available We performed a genome-level computational study of sequence and structure similarity, the latter using crystal structures and models, of the proteases of Homo sapiens and the human parasite Trypanosoma brucei. Using sequence and structure similarity networks to summarize the results, we constructed global views that show visually the relative abundance and variety of proteases in the degradome landscapes of these two species, and provide insights into evolutionary relationships between proteases. The results also indicate how broadly these sequence sets are covered by three-dimensional structures. These views facilitate cross-species comparisons and offer clues for drug design from knowledge about the sequences and structures of potential drug targets and their homologs. Two protease groups ("M32" and "C51" that are very different in sequence from human proteases are examined in structural detail, illustrating the application of this global approach in mining new pathogen genomes for potential drug targets. Based on our analyses, a human ACE2 inhibitor was selected for experimental testing on one of these parasite proteases, TbM32, and was shown to inhibit it. These sequence and structure data, along with interactive versions of the protein similarity networks generated in this study, are available at http://babbittlab.ucsf.edu/resources.html.

  14. A global comparison of the human and T. brucei degradomes gives insights about possible parasite drug targets.

    Science.gov (United States)

    Mashiyama, Susan T; Koupparis, Kyriacos; Caffrey, Conor R; McKerrow, James H; Babbitt, Patricia C

    2012-01-01

    We performed a genome-level computational study of sequence and structure similarity, the latter using crystal structures and models, of the proteases of Homo sapiens and the human parasite Trypanosoma brucei. Using sequence and structure similarity networks to summarize the results, we constructed global views that show visually the relative abundance and variety of proteases in the degradome landscapes of these two species, and provide insights into evolutionary relationships between proteases. The results also indicate how broadly these sequence sets are covered by three-dimensional structures. These views facilitate cross-species comparisons and offer clues for drug design from knowledge about the sequences and structures of potential drug targets and their homologs. Two protease groups ("M32" and "C51") that are very different in sequence from human proteases are examined in structural detail, illustrating the application of this global approach in mining new pathogen genomes for potential drug targets. Based on our analyses, a human ACE2 inhibitor was selected for experimental testing on one of these parasite proteases, TbM32, and was shown to inhibit it. These sequence and structure data, along with interactive versions of the protein similarity networks generated in this study, are available at http://babbittlab.ucsf.edu/resources.html.

  15. Subcellular localization of glycolytic enzymes and characterization of intermediary metabolism of Trypanosoma rangeli.

    Science.gov (United States)

    Rondón-Mercado, Rocío; Acosta, Héctor; Cáceres, Ana J; Quiñones, Wilfredo; Concepción, Juan Luis

    2017-09-01

    velocity of glucose consumption is about 40% higher than that of procyclic Trypanosoma brucei, and four times faster than by T. cruzi epimastigotes under the same culture conditions. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Zoonotic trypanosomes in South East Asia: Attempts to control Trypanosoma lewisi using human and animal trypanocidal drugs.

    Science.gov (United States)

    Desquesnes, Marc; Yangtara, Sarawut; Kunphukhieo, Pawinee; Jittapalapong, Sathaporn; Herder, Stéphane

    2016-10-01

    Beside typical human trypanosomes responsible of sleeping sickness in Africa and Chagas disease in Latin America, there is a growing number of reported atypical human infections due to Trypanosoma evansi, a livestock parasite, or Trypanosoma lewisi, a rat parasite, especially in Asia. Drugs available for the treatment of T. brucei ssp. in humans are obviously of choice for the control of T. evansi because it is derived from T. brucei. However, concerning T. lewisi, there is an urgent need to determine the efficacy of trypanocidal drugs for the treatment in humans. In a recent study, pentamidine and fexinidazole were shown to have the best efficacy against one stock of T. lewisi in rats. In the present study suramin, pentamidine, eflornitine, nifurtimox, benznidazole and fexinidazole, were evaluated at low and high doses, in single day administration to normal rats experimentally infected with a stock of T. lewisi recently isolated in Thailand. Because none of these treatments was efficient, a trial was made with the most promising trypanocide identified in a previous study, fexinidazole 100mg/kg, in 5 daily administrations. Results observed were unclear. To confirm the efficacy of fexinidazole, a mixed infection protocol was set up in cyclophosphamide immunosuppressed rats. Animals were infected successively by T. lewisi and T. evansi, and received 10 daily PO administrations of 200mg/kg fexinidazole. Drastic effects were observed against T. evansi which was cleared from the rat's blood within 24 to 48h; however, the treatment did not affect T. lewisi which remained in high number in the blood until the end of the experiment. This mixed infection/treatment protocol clearly demonstrated the efficacy of fexinidazole against T. evansi and its inefficacy against T. lewisi. Since animal trypanocides were also recently shown to be inefficient, other protocols as well as other T. lewisi stocks should be investigated in further studies. Copyright © 2016. Published by

  17. Trypanosoma evansi and Surra: A Review and Perspectives on Origin, History, Distribution, Taxonomy, Morphology, Hosts, and Pathogenic Effects

    Directory of Open Access Journals (Sweden)

    Marc Desquesnes

    2013-01-01

    Full Text Available Trypanosoma evansi, the agent of “surra,” is a salivarian trypanosome, originating from Africa. It is thought to derive from Trypanosoma brucei by deletion of the maxicircle kinetoplastic DNA (genetic material required for cyclical development in tsetse flies. It is mostly mechanically transmitted by tabanids and stomoxes, initially to camels, in sub-Saharan area. The disease spread from North Africa towards the Middle East, Turkey, India, up to 53° North in Russia, across all South-East Asia, down to Indonesia and the Philippines, and it was also introduced by the conquistadores into Latin America. It can affect a very large range of domestic and wild hosts including camelids, equines, cattle, buffaloes, sheep, goats, pigs, dogs and other carnivores, deer, gazelles, and elephants. It found a new large range of wild and domestic hosts in Latin America, including reservoirs (capybaras and biological vectors (vampire bats. Surra is a major disease in camels, equines, and dogs, in which it can often be fatal in the absence of treatment, and exhibits nonspecific clinical signs (anaemia, loss of weight, abortion, and death, which are variable from one host and one place to another; however, its immunosuppressive effects interfering with intercurrent diseases or vaccination campaigns might be its most significant and questionable aspect.

  18. Variant surface glycoproteins from Venezuelan trypanosome isolates are recognized by sera from animals infected with either Trypanosoma evansi or Trypanosoma vivax.

    Science.gov (United States)

    Camargo, Rocío; Izquier, Adriana; Uzcanga, Graciela L; Perrone, Trina; Acosta-Serrano, Alvaro; Carrasquel, Liomary; Arias, Laura P; Escalona, José L; Cardozo, Vanessa; Bubis, José

    2015-01-15

    Salivarian trypanosomes sequentially express only one variant surface glycoprotein (VSG) on their cell surface from a large repertoire of VSG genes. Seven cryopreserved animal trypanosome isolates known as TeAp-ElFrio01, TEVA1 (or TeAp-N/D1), TeGu-N/D1, TeAp-Mantecal01, TeGu-TerecayTrino, TeGu-Terecay03 and TeGu-Terecay323, which had been isolated from different hosts identified in several geographical areas of Venezuela were expanded using adult albino rats. Soluble forms of predominant VSGs expressed during the early infection stages were purified and corresponded to concanavalin A-binding proteins with molecular masses of 48-67 kDa by sodium dodecyl sulfate-polyacrylamide gel electropohoresis, and pI values between 6.1 and 7.5. The biochemical characterization of all purified soluble VSGs revealed that they were dimers in their native form and represented different gene products. Sequencing of some of these proteins yielded peptides homologous to VSGs from Trypanosoma (Trypanozoon) brucei and Trypanosoma (Trypanozoon) evansi and established that they most likely are mosaics generated by homologous recombination. Western blot analysis showed that all purified VSGs were cross-reacting antigens that were recognized by sera from animals infected with either T. evansi or Trypanosoma (Dutonella) vivax. The VSG glycosyl-phosphatidylinositol cross-reacting determinant epitope was only partially responsible for the cross-reactivity of the purified proteins, and antibodies appeared to recognize cross-reacting conformational epitopes from the various soluble VSGs. ELISA experiments were performed using infected bovine sera collected from cattle in a Venezuelan trypanosome-endemic area. In particular, soluble VSGs from two trypanosome isolates, TeGu-N/D1 and TeGu-TeracayTrino, were recognized by 93.38% and 73.55% of naturally T. vivax-infected bovine sera, respectively. However, approximately 70% of the sera samples did not recognize all seven purified proteins. Hence, the

  19. Genome and Phylogenetic Analyses of Trypanosoma evansi Reveal Extensive Similarity to T. brucei and Multiple Independent Origins for Dyskinetoplasty

    Czech Academy of Sciences Publication Activity Database

    Carnes, J.; Anupama, A.; Balmer, O.; Jackson, A.; Lewis, M.; Brown, R.; Cestari, I.; Desquesnes, M.; Gendrin, C.; Hertz-Fowler, C.; Imamura, H.; Ivens, A.; Kořený, Luděk; Lai, De Hua; MacLeod, A.; McDermott, S.; Merritt, C.; Monnerat, S.; Moon, W.; Myler, P.; Phan, I.; Ramasamy, G.; Sivam, D.; Zhao-Rong, L.; Lukeš, Julius; Stuart, K.; Schnaufer, A.

    2015-01-01

    Roč. 9, č. 1 (2015), e3404 ISSN 1935-2735 R&D Projects: GA MŠk(CZ) EE2.3.30.0032 EU Projects: European Commission(XE) 316304 Institutional support: RVO:60077344 Keywords : blood stream forms * kinetoplast DNA * mitochondrial ribosomes Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.948, year: 2015

  20. A static-cidal assay for Trypanosoma brucei to aid hit prioritisation for progression into drug discovery programmes.

    Directory of Open Access Journals (Sweden)

    Manu De Rycker

    Full Text Available Human African Trypanosomiasis is a vector-borne disease of sub-Saharan Africa that causes significant morbidity and mortality. Current therapies have many drawbacks, and there is an urgent need for new, better medicines. Ideally such new treatments should be fast-acting cidal agents that cure the disease in as few doses as possible. Screening assays used for hit-discovery campaigns often do not distinguish cytocidal from cytostatic compounds and further detailed follow-up experiments are required. Such studies usually do not have the throughput required to test the large numbers of hits produced in a primary high-throughput screen. Here, we present a 384-well assay that is compatible with high-throughput screening and provides an initial indication of the cidal nature of a compound. The assay produces growth curves at ten compound concentrations by assessing trypanosome counts at 4, 24 and 48 hours after compound addition. A reduction in trypanosome counts over time is used as a marker for cidal activity. The lowest concentration at which cell killing is seen is a quantitative measure for the cidal activity of the compound. We show that the assay can identify compounds that have trypanostatic activity rather than cidal activity, and importantly, that results from primary high-throughput assays can overestimate the potency of compounds significantly. This is due to biphasic growth inhibition, which remains hidden at low starting cell densities and is revealed in our static-cidal assay. The assay presented here provides an important tool to follow-up hits from high-throughput screening campaigns and avoid progression of compounds that have poor prospects due to lack of cidal activity or overestimated potency.

  1. Key indicators for the monitoring and evaluation of control programmes of human African trypanosomiasis due to Trypanosoma brucei gambiense.

    Science.gov (United States)

    Bouchet, B; Legros, D; Lee, E

    1998-06-01

    Very little research has been devoted to the design of epidemiological tools for the monitoring and evaluation of National Human African Trypanosomiasis (HAT) Control Programmes and daily management decisions are made in the absence of accurate knowledge of the situation. This paper identifies key indicators necessary to make decisions in the field and constantly adjust control activities to changing situations. Examples are derived from the Médecins Sans Frontières (MSF) HAT Control Programme in Adjumani, Uganda. Based on the principles of quality assurance, the focus is placed on process indicators. A conceptual framework derived from a system view/planning cycle perspective is also described for the construction of indicators. Finally, some specific challenging aspects of the epidemiology of HAT are presented and the limitations of the interpretation of the indicators discussed.

  2. Solanesyl Diphosphate Synthase, an Enzyme of the Ubiquinone Synthetic Pathway, Is Required throughout the Life Cycle of Trypanosoma brucei

    Czech Academy of Sciences Publication Activity Database

    Lai, De Hua; Poropat, E.; Pravia, C.; Landoni, M.; Couto, A.S.; Pérez Rojo, F.G.; Fuchs, A.G.; Dubin, M.; Elingold, I.; Rodríguez, J.B.; Ferella, M.; Esteva, M.I.; Bontempi, Esteban J.; Lukeš, Julius

    2014-01-01

    Roč. 13, č. 2 (2014), s. 320-328 ISSN 1535-9778 R&D Projects: GA ČR(CZ) GAP305/11/2179; GA MŠk LH12104; GA MŠk(CZ) EE2.3.30.0032 Institutional support: RVO:60077344 Keywords : RNA interference * procyclic form * NADH dehydrogenase Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.820, year: 2014

  3. Cytosolic iron-sulphur protein assembly is functionally conserved and essential in procyclic and bloodstream Trypanosoma brucei

    Czech Academy of Sciences Publication Activity Database

    Basu, Somsuvro; Netz, D. J.; Haindrich, A. C.; Herlerth, N.; Lagny, T. J.; Pierik, A. J.; Lill, R.; Lukeš, Julius

    2014-01-01

    Roč. 93, č. 5 (2014), s. 897-910 ISSN 0950-382X R&D Projects: GA ČR(CZ) GAP305/11/2179; GA MŠk LH12104; GA MŠk(CZ) EE2.3.30.0032 Institutional support: RVO:60077344 Keywords : inducible expression system * Cfd1- Nbp35 complex * DNA metabolism * Fe/S proteins * transfer-RNA * cluster * mitochondrial * maturation * biogenesis * yeast Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 4.419, year: 2014

  4. The Fe/S Cluster Assembly Protein Isd11 Is Essential for tRNA Thiolation in Trypanosoma brucei

    Czech Academy of Sciences Publication Activity Database

    Paris, Zdeněk; Changmai, Piya; RUBIO, M. A. T.; Zíková, Alena; Stuart, K. D.; Alfonzo, J. D.; Lukeš, Julius

    2010-01-01

    Roč. 285, č. 29 (2010), s. 22394-22402 ISSN 0021-9258 R&D Projects: GA ČR GA204/09/1667 Institutional research plan: CEZ:AV0Z60220518 Keywords : IRON-SULFUR PROTEINS * SACCHAROMYCES-CEREVISIAE * CYSTEINE DESULFURASE * THIO- MODIFICATION * FRATAXIN Subject RIV: EB - Genetic s ; Molecular Biology Impact factor: 5.328, year: 2010

  5. Detection of Trypanosoma brucei parasites in blood samples using real-time nucleic acid sequence-based amplification

    NARCIS (Netherlands)

    Mugasa, Claire M.; Schoone, Gerard J.; Ekangu, Rosine A.; Lubega, George W.; Kager, Piet A.; Schallig, Henk D. F. H.

    2008-01-01

    Currently, the conventional diagnosis of human African trypanosomiasis (HAT) is by microscopic demonstration of trypomastigotes in blood, lymph, and/or cerebrospinal fluid. However, microscopic diagnosis of HAT is not sensitive enough and may give false-negative results, thus, denying the patient

  6. RSM22, mtYsxC and PNKD-like proteins are required for mitochondrial translation in Trypanosoma brucei

    Czech Academy of Sciences Publication Activity Database

    Týč, Jiří; Novotná, L.; Peña-Diaz, Priscila; Maslov, D. A.; Lukeš, Julius

    2017-01-01

    Roč. 34, MAY (2017), s. 67-74 ISSN 1567-7249 R&D Projects: GA ČR GA15-21974S Institutional support: RVO:60077344 Keywords : PNKD * YsxC * YihA * mitochondrial ribosome * LSU * SSU Subject RIV: EB - Genetics ; Molecular Biology OBOR OECD: Genetics and heredity (medical genetics to be 3) Impact factor: 3.704, year: 2016

  7. Functional characterization of two paralogs that are novel RNA binding proteins influencing mitochondrial transcripts of Trypanosoma brucei

    Czech Academy of Sciences Publication Activity Database

    Kafková, Lucie; Ammerman, M. L.; Faktorová, D.; Fisk, J. C.; Zimmer, S.L.; Sobotka, Roman; Read, L. K.; Lukeš, Julius; Hashimi, Hassan

    2012-01-01

    Roč. 18, č. 10 (2012), s. 1846-1861 ISSN 1355-8382 R&D Projects: GA ČR GA204/09/1667 Institutional support: RVO:60077344 ; RVO:61388971 Keywords : RNA editing * RNA binding protein * ribonuclear protein (RNP) * mitochondria * trypanosome Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 5.088, year: 2012 http://rnajournal.cshlp.org/content/18/10/1846

  8. A Core MRB1 Complex Component Is Indispensable for RNA Editing in Insect and Human Infective Stages of Trypanosoma brucei

    Czech Academy of Sciences Publication Activity Database

    Ammerman, M. L.; Tomasello, D. L.; Faktorová, Drahomíra; Kafková, L.; Hashimi, Hassan; Lukeš, Julius; Read, L. K.

    2013-01-01

    Roč. 8, č. 10 (2013), e78015 E-ISSN 1932-6203 R&D Projects: GA ČR(CZ) GAP305/11/2179; GA ČR GAP305/12/2261 Institutional support: RVO:60077344 Keywords : inducible expression system * life cycle stages * accessory factor * binding factor Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.534, year: 2013

  9. The FoF1-ATP synthase complex contains novel subunits and is essential for procyclic Trypanosoma brucei

    Czech Academy of Sciences Publication Activity Database

    Zíková, Alena; Schnaufer, A.; Dalley, A. R.; Panigrahi, A. K.; Stuart, K. D.

    2009-01-01

    Roč. 5, č. 5 (2009), s. 1-15 E-ISSN 1932-6203 Keywords : mitochondrion * respiratory chain * / ATP synthase * TAP-tag * RNAi Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 4.351, year: 2009

  10. Persistent ER stress induces the spliced leader RNA silencing pathway (SLS, leading to programmed cell death in Trypanosoma brucei.

    Directory of Open Access Journals (Sweden)

    Hanoch Goldshmidt

    2010-01-01

    Full Text Available Trypanosomes are parasites that cycle between the insect host (procyclic form and mammalian host (bloodstream form. These parasites lack conventional transcription regulation, including factors that induce the unfolded protein response (UPR. However, they possess a stress response mechanism, the spliced leader RNA silencing (SLS pathway. SLS elicits shut-off of spliced leader RNA (SL RNA transcription by perturbing the binding of the transcription factor tSNAP42 to its cognate promoter, thus eliminating trans-splicing of all mRNAs. Induction of endoplasmic reticulum (ER stress in procyclic trypanosomes elicits changes in the transcriptome similar to those induced by conventional UPR found in other eukaryotes. The mechanism of up-regulation under ER stress is dependent on differential stabilization of mRNAs. The transcriptome changes are accompanied by ER dilation and elevation in the ER chaperone, BiP. Prolonged ER stress induces SLS pathway. RNAi silencing of SEC63, a factor that participates in protein translocation across the ER membrane, or SEC61, the translocation channel, also induces SLS. Silencing of these genes or prolonged ER stress led to programmed cell death (PCD, evident by exposure of phosphatidyl serine, DNA laddering, increase in reactive oxygen species (ROS production, increase in cytoplasmic Ca(2+, and decrease in mitochondrial membrane potential, as well as typical morphological changes observed by transmission electron microscopy (TEM. ER stress response is also induced in the bloodstream form and if the stress persists it leads to SLS. We propose that prolonged ER stress induces SLS, which serves as a unique death pathway, replacing the conventional caspase-mediated PCD observed in higher eukaryotes.

  11. Modulation of flagellum attachment zone protein FLAM3 and regulation of the cell shape in Trypanosoma brucei life cycle transitions

    Czech Academy of Sciences Publication Activity Database

    Sunter, J.C.; Benz, C.; Andre, L.; Whipple, S.; McKean, P.G.; Gull, K.; Ginger, M. L.; Lukeš, Julius

    2015-01-01

    Roč. 128, č. 16 (2015), s. 3117-3130 ISSN 0021-9533 R&D Projects: GA MŠk(CZ) EE2.3.30.0032; GA MŠk LH12104 EU Projects: European Commission(XE) 316304 Institutional support: RVO:60077344 Keywords : Trypanosomes * Morphogenesis * Flagellum attachment zone Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 4.706, year: 2015

  12. Trypanosoma evansi isolated from capybara (Hidrochaeris hidrochaeris

    Directory of Open Access Journals (Sweden)

    Karina Muñoz

    2001-10-01

    Full Text Available A study was conducted to determine the morphological and biometric characteristics of Trypanosoma isolated from 50 capybaras animals, raised in captivity in the Peruvian Amazon. Trypanosoma was found in 14 blood samples using the microhaematocrit, wide drop, and Giemsa-stain methods and T. evansi was identified through morphological details in all 14 positive samples (the subterminal kinetoplast, the developed undulating membrane, and a long free flagellum were used for the identification of the agent.

  13. The Effectiveness of Natural Diarylheptanoids against Trypanosoma cruzi: Cytotoxicity, Ultrastructural Alterations and Molecular Modeling Studies.

    Directory of Open Access Journals (Sweden)

    Vitor Sueth-Santiago

    Full Text Available Curcumin (CUR is the major constituent of the rhizomes of Curcuma longa and has been widely investigated for its chemotherapeutic properties. The well-known activity of CUR against Leishmania sp., Trypanosoma brucei and Plasmodium falciparum led us to investigate its activity against Trypanosoma cruzi. In this work, we tested the cytotoxic effects of CUR and other natural curcuminoids on different forms of T. cruzi, as well as the ultrastructural changes induced in epimastigote form of the parasite. CUR was verified as the curcuminoid with more significant trypanocidal properties (IC50 10.13 μM on epimastigotes. Demethoxycurcumin (DMC was equipotent to CUR (IC50 11.07 μM, but bisdemethoxycurcumin (BDMC was less active (IC50 45.33 μM and cyclocurcumin (CC was inactive. In the experiment with infected murine peritoneal macrophages all diarylheptanoids were more active than the control in the inhibition of the trypomastigotes release. The electron microscopy images showed ultrastructural changes associated with the cytoskeleton of the parasite, indicating tubulin as possible target of CUR in T. cruzi. The results obtained by flow cytometry analysis of DNA content of the parasites treated with natural curcuminoids suggested a mechanism of action on microtubules related to the paclitaxel`s mode of action. To better understand the mechanism of action highlighted by electron microscopy and flow cytometry experiments we performed the molecular docking of natural curcuminoids on tubulin of T. cruzi in a homology model and the results obtained showed that the observed interactions are in accordance with the IC50 values found, since there CUR and DMC perform similar interactions at the binding site on tubulin while BDMC do not realize a hydrogen bond with Lys163 residue due to the absence of methoxyl groups. These results indicate that trypanocidal properties of CUR may be related to the cytoskeletal alterations.

  14. 21 CFR 866.3870 - Trypanosoma spp. serological reagents.

    Science.gov (United States)

    2010-04-01

    ... (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents § 866.3870 Trypanosoma... consist of antigens and antisera used in serological tests to identify antibodies to Trypanosoma spp. in...

  15. Characterization of plasma menbrane polypeptides of trypanosoma from bats

    OpenAIRE

    Pinho,R. T.; Simone,Giovanni de

    1989-01-01

    Cell surface proteins of Trypanosoma dionisii, Trypanosoma vespertilionis and Trypanosoma sp. (M238) were radiodinated and their distribution both in the detergent-poor (DPP) and dertergent-enriched phase (DRP) was studied using a phase separation technique in Triton X-114 as well as polyacrylamide gel electrophoresis in sodium dodecyl sulphate (SDS-PAGE). Significant differences were observed in the proteins present in the DRP when the three species of trypanosoma were compared. Two major ba...

  16. Antiparasitic activity of diallyl trisulfide (Dasuansu) on human and animal pathogenic protozoa (Trypanosoma sp., Entamoeba histolytica and Giardia lamblia) in vitro.

    Science.gov (United States)

    Lun, Z R; Burri, C; Menzinger, M; Kaminsky, R

    1994-03-01

    Garlic (Allium sativum L.) and one of its major components, allicin, have been known to have antibacterial and antifungal activity for a long time. Diallyl trisulfide is a chemically stable final transformation product of allicin which was synthesized in 1981 in China and used for treatment of bacterial, fungal and parasitic infections in man. The activity of diallyl trisulfide was investigated in several important protozoan parasites in vitro. The IC50 (concentration which inhibits metabolism or growth of parasites by 50%) for Trypanosoma brucei brucei, T.b. rhodesiense, T.b. gambiense, T. evansi, T. congolense and T. equiperdum was in the range of 0.8-5.5 micrograms/ml. IC50 values were 59 micrograms/ml for Entamoeba histolytica and 14 micrograms/ml for Giardia lamblia. The cytotoxicity of the compound was evaluated on two fibroblast cell lines (MASEF, Mastomys natalensis embryo fibroblast and HEFL-12, human embryo fibroblast) in vitro. The maximum tolerated concentration for both cell lines was 25 micrograms/ml. The results indicate that the compound has potential to be used for treatment of several human and animal parasitic diseases.

  17. Profiling the anti-protozoal activity of anti-cancer HDAC inhibitors against Plasmodium and Trypanosoma parasites.

    Science.gov (United States)

    Engel, Jessica A; Jones, Amy J; Avery, Vicky M; Sumanadasa, Subathdrage D M; Ng, Susanna S; Fairlie, David P; Skinner-Adams, Tina; Andrews, Katherine T

    2015-12-01

    Histone deacetylase (HDAC) enzymes work together with histone acetyltransferases (HATs) to reversibly acetylate both histone and non-histone proteins. As a result, these enzymes are involved in regulating chromatin structure and gene expression as well as other important cellular processes. HDACs are validated drug targets for some types of cancer, with four HDAC inhibitors clinically approved. However, they are also showing promise as novel drug targets for other indications, including malaria and other parasitic diseases. In this study the in vitro activity of four anti-cancer HDAC inhibitors was examined against parasites that cause malaria and trypanosomiasis. Three of these inhibitors, suberoylanilide hydroxamic acid (SAHA; vorinostat(®)), romidepsin (Istodax(®)) and belinostat (Beleodaq(®)), are clinically approved for the treatment of T-cell lymphoma, while the fourth, panobinostat, has recently been approved for combination therapy use in certain patients with multiple myeloma. All HDAC inhibitors were found to inhibit the growth of asexual-stage Plasmodium falciparum malaria parasites in the nanomolar range (IC50 10-200 nM), while only romidepsin was active at sub-μM concentrations against bloodstream form Trypanosoma brucei brucei parasites (IC50 35 nM). The compounds were found to have some selectivity for malaria parasites compared with mammalian cells, but were not selective for trypanosome parasites versus mammalian cells. All compounds caused hyperacetylation of histone and non-histone proteins in P. falciparum asexual stage parasites and inhibited deacetylase activity in P. falciparum nuclear extracts in addition to recombinant PfHDAC1 activity. P. falciparum histone hyperacetylation data indicate that HDAC inhibitors may differentially affect the acetylation profiles of histone H3 and H4.

  18. Profiling the anti-protozoal activity of anti-cancer HDAC inhibitors against Plasmodium and Trypanosoma parasites

    Directory of Open Access Journals (Sweden)

    Jessica A. Engel

    2015-12-01

    Full Text Available Histone deacetylase (HDAC enzymes work together with histone acetyltransferases (HATs to reversibly acetylate both histone and non-histone proteins. As a result, these enzymes are involved in regulating chromatin structure and gene expression as well as other important cellular processes. HDACs are validated drug targets for some types of cancer, with four HDAC inhibitors clinically approved. However, they are also showing promise as novel drug targets for other indications, including malaria and other parasitic diseases. In this study the in vitro activity of four anti-cancer HDAC inhibitors was examined against parasites that cause malaria and trypanosomiasis. Three of these inhibitors, suberoylanilide hydroxamic acid (SAHA; vorinostat®, romidepsin (Istodax® and belinostat (Beleodaq®, are clinically approved for the treatment of T-cell lymphoma, while the fourth, panobinostat, has recently been approved for combination therapy use in certain patients with multiple myeloma. All HDAC inhibitors were found to inhibit the growth of asexual-stage Plasmodium falciparum malaria parasites in the nanomolar range (IC50 10–200 nM, while only romidepsin was active at sub-μM concentrations against bloodstream form Trypanosoma brucei brucei parasites (IC50 35 nM. The compounds were found to have some selectivity for malaria parasites compared with mammalian cells, but were not selective for trypanosome parasites versus mammalian cells. All compounds caused hyperacetylation of histone and non-histone proteins in P. falciparum asexual stage parasites and inhibited deacetylase activity in P. falciparum nuclear extracts in addition to recombinant PfHDAC1 activity. P. falciparum histone hyperacetylation data indicate that HDAC inhibitors may differentially affect the acetylation profiles of histone H3 and H4.

  19. THE USE OF MULTIPLE DISPLACEMENT AMPLIFICATION TO INCREASE THE DETECTION AND GENOTYPING OF TRYPANOSOMA SPECIES SAMPLES IMMOBILISED ON FTA FILTERS

    Science.gov (United States)

    MORRISON, LIAM J.; McCORMACK, GILLIAN; SWEENEY, LINDSAY; LIKEUFACK, ANNE C. L.; TRUC, PHILIPPE; TURNER, C. MICHAEL; TAIT, ANDY; MacLEOD, ANNETTE

    2007-01-01

    Whole genome amplification methods are a recently developed tool for amplifying DNA from limited template. We report its application in trypanosome infections, characterised by low parasitaemias. Multiple Displacement Amplification (MDA) amplifies DNA with a simple in vitro step, and was evaluated on mouse blood samples on FTA filter cards with known numbers of Trypanosoma brucei parasites. The data showed a twenty-fold increase in the number of PCRs possible per sample, using primers diagnostic for the multi-copy ribosomal ITS region or 177 bp repeats, and a twenty-fold increase in sensitivity over nested PCR against a single copy microsatellite. Using MDA for microsatellite genotyping caused allele dropout at low DNA concentrations, which was overcome by pooling multiple MDA reactions. The validity of using MDA was established with samples from Human African Trypanosomiasis patients. The use of MDA allows maximal use of finite DNA samples and may prove a valuable tool in studies where multiple reactions are necessary, such as population genetic analyses. PMID:17556624

  20. Complete in vitro life cycle of Trypanosoma congolense: development of genetic tools.

    Directory of Open Access Journals (Sweden)

    Virginie Coustou

    Full Text Available BACKGROUND: Animal African trypanosomosis, a disease mainly caused by the protozoan parasite Trypanosoma congolense, is a major constraint to livestock productivity and has a significant impact in the developing countries of Africa. RNA interference (RNAi has been used to study gene function and identify drug and vaccine targets in a variety of organisms including trypanosomes. However, trypanosome RNAi studies have mainly been conducted in T. brucei, as a model for human infection, largely ignoring livestock parasites of economical importance such as T. congolense, which displays different pathogenesis profiles. The whole T. congolense life cycle can be completed in vitro, but this attractive model displayed important limitations: (i genetic tools were currently limited to insect forms and production of modified infectious BSF through differentiation was never achieved, (ii in vitro differentiation techniques lasted several months, (iii absence of long-term bloodstream forms (BSF in vitro culture prevented genomic analyses. METHODOLOGY/PRINCIPAL FINDINGS: We optimized culture conditions for each developmental stage and secured the differentiation steps. Specifically, we devised a medium adapted for the strenuous development of stable long-term BSF culture. Using Amaxa nucleofection technology, we greatly improved the transfection rate of the insect form and designed an inducible transgene expression system using the IL3000 reference strain. We tested it by expression of reporter genes and through RNAi. Subsequently, we achieved the complete in vitro life cycle with dramatically shortened time requirements for various wild type and transgenic strains. Finally, we established the use of modified strains for experimental infections and underlined a host adaptation phase requirement. CONCLUSIONS/SIGNIFICANCE: We devised an improved T. congolense model, which offers the opportunity to perform functional genomics analyses throughout the whole life

  1. Development of an aptamer-based concentration method for the detection of Trypanosoma cruzi in blood.

    Directory of Open Access Journals (Sweden)

    Rana Nagarkatti

    Full Text Available Trypanosoma cruzi, a blood-borne parasite, is the etiological agent of Chagas disease. T. cruzi trypomastigotes, the infectious life cycle stage, can be detected in blood of infected individuals using PCR-based methods. However, soon after a natural infection, or during the chronic phase of Chagas disease, the number of parasites in blood may be very low and thus difficult to detect by PCR. To facilitate PCR-based detection methods, a parasite concentration approach was explored. A whole cell SELEX strategy was utilized to develop serum stable RNA aptamers that bind to live T. cruzi trypomastigotes. These aptamers bound to the parasite with high affinities (8-25 nM range. The highest affinity aptamer, Apt68, also demonstrated high specificity as it did not interact with the insect stage epimastigotes of T. cruzi nor with other related trypanosomatid parasites, L. donovani and T. brucei, suggesting that the target of Apt68 was expressed only on T. cruzi trypomastigotes. Biotinylated Apt68, immobilized on a solid phase, was able to capture live parasites. These captured parasites were visible microscopically, as large motile aggregates, formed when the aptamer coated paramagnetic beads bound to the surface of the trypomastigotes. Additionally, Apt68 was also able to capture and aggregate trypomastigotes from several isolates of the two major genotypes of the parasite. Using a magnet, these parasite-bead aggregates could be purified from parasite-spiked whole blood samples, even at concentrations as low as 5 parasites in 15 ml of whole blood, as detected by a real-time PCR assay. Our results show that aptamers can be used as pathogen specific ligands to capture and facilitate PCR-based detection of T. cruzi in blood.

  2. Species-specific markers for the differential diagnosis of Trypanosoma cruzi and Trypanosoma rangeli and polymorphisms detection in Trypanosoma rangeli.

    Science.gov (United States)

    Ferreira, Keila Adriana Magalhães; Fajardo, Emanuella Francisco; Baptista, Rodrigo P; Macedo, Andrea Mara; Lages-Silva, Eliane; Ramírez, Luis Eduardo; Pedrosa, André Luiz

    2014-06-01

    Trypanosoma cruzi and Trypanosoma rangeli are kinetoplastid parasites which are able to infect humans in Central and South America. Misdiagnosis between these trypanosomes can be avoided by targeting barcoding sequences or genes of each organism. This work aims to analyze the feasibility of using species-specific markers for identification of intraspecific polymorphisms and as target for diagnostic methods by PCR. Accordingly, primers which are able to specifically detect T. cruzi or T. rangeli genomic DNA were characterized. The use of intergenic regions, generally divergent in the trypanosomatids, and the serine carboxypeptidase gene were successful. Using T. rangeli genomic sequences for the identification of group-specific polymorphisms and a polymorphic AT(n) dinucleotide repeat permitted the classification of the strains into two groups, which are entirely coincident with T. rangeli main lineages, KP1 (+) and KP1 (-), previously determined by kinetoplast DNA (kDNA) characterization. The sequences analyzed totalize 622 bp (382 bp represent a hypothetical protein sequence, and 240 bp represent an anonymous sequence), and of these, 581 (93.3%) are conserved sites and 41 bp (6.7%) are polymorphic, with 9 transitions (21.9%), 2 transversions (4.9%), and 30 (73.2%) insertion/deletion events. Taken together, the species-specific markers analyzed may be useful for the development of new strategies for the accurate diagnosis of infections. Furthermore, the identification of T. rangeli polymorphisms has a direct impact in the understanding of the population structure of this parasite.

  3. Multiple Trypanosoma infections are common amongst Glossina species in the new farming areas of Rufiji district, Tanzania

    Directory of Open Access Journals (Sweden)

    Malele Imna I

    2011-11-01

    Full Text Available Abstract Background Tsetse flies and trypanosomiasis are among several factors that constrain livestock development in Tanzania. Over the years Rufiji District was excluded from livestock production owing to tsetse fly infestation, however, a few years ago there was an influx of livestock following evictions aimed at conserving the Usangu wetlands. Methods A study was conducted to determine the efficiency of available traps for catching tsetse flies, Glossina species infesting the area, their infection rates and Trypanosoma species circulating in the area. Trapping was conducted during the semi dry season for a total of 30 days (ten days each month during the onset of the dry season of May - July 2009. Harvested flies after every 24 hours were dissected and examined under a light microscope for trypanosome infections and whole fly DNA was extracted from 82 flies and analyzed for trypanosomes by polymerase chain reaction (PCR using different sets of primers. Results The proportions of total tsetse catches per trap were in the following decreasing order S3 (33%, H-Trap (27%, Pyramidal (19%, sticky panel (11% and biconical trap (10%. Of the 1200 trapped flies, 75.6% were identified as Glossina pallidipes, 11.7% as G. brevipalpis, 9.6% as G. austeni and 3.0% G. morsitans morsitans. Dissections revealed the overall infection rate of 6.6% (13/197. Whole DNA was extracted from 82 tsetse flies and the prevalence of trypanosomes circulating in the area in descending order was 92.7% (76/82 for T. simiae; 70.7% (58/82 for T. brucei types; 48.8% (40/82 for the T. vivax types and 32.9% (27/82 for the T. congolense types as determined by PCR. All trypanosome types were found in all tsetse species analysed except for the T. congolense types, which were absent in G. m. morsitans. None of the T. brucei positive samples contained human infective trypanosomes by SRA - PCR test Conclusion All tsetse species found in Rufiji are biologically important in the

  4. Vaccination with Trypanosoma rangeli induces resistance of guinea pigs to virulent Trypanosoma cruzi.

    Science.gov (United States)

    Basso, B; Moretti, E; Fretes, R

    2014-01-15

    Chagas' disease, endemic in Latin America, is spread in natural environments through animal reservoirs, including marsupials, mice and guinea pigs. Farms breeding guinea pigs for food are located in some Latin-American countries with consequent risk of digestive infection. The aim of this work was to study the effect of vaccination with Trypanosoma rangeli in guinea pigs challenged with Trypanosoma cruzi. Animals were vaccinated with fixated epimastigotes of T. rangeli, emulsified with saponin. Controls received only PBS. Before being challenged with T. cruzi, parasitemia, survival rates and histological studies were performed. The vaccinated guinea pigs revealed significantly lower parasitemia than controls (pguinea pigs and dogs. The development of vaccines for use in animals, like domestic dogs and guinea pigs in captivity, opens up new opportunities for preventive tools, and could reduce the risk of infection with T. cruzi in the community. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. Quantitative Proteomic and Phosphoproteomic Analysis of Trypanosoma cruzi Amastigogenesis

    DEFF Research Database (Denmark)

    Queiroz, Rayner M L; Charneau, Sebastien; Mandacaru, Samuel C

    2014-01-01

    Chagas disease is a tropical neglected disease endemic in Latin America and it is caused by the protozoan Trypanosoma cruzi. The parasite has four major life stages: epimastigote, metacyclic trypomastigote, bloodstream trypomastigote and amastigote. The differentiation from infective trypomastigo......Chagas disease is a tropical neglected disease endemic in Latin America and it is caused by the protozoan Trypanosoma cruzi. The parasite has four major life stages: epimastigote, metacyclic trypomastigote, bloodstream trypomastigote and amastigote. The differentiation from infective...

  6. The T. brucei TRM5 methyltransferase plays an essential role in mitochondrial protein synthesis and function

    Czech Academy of Sciences Publication Activity Database

    Paris, Z.; Horáková, Eva; Rubio, M.A.T.; Sample, P.; Fleming, I.M.C.; Armocida, S.; Lukeš, Julius; Alfonzo, J. D.

    2013-01-01

    Roč. 19, č. 5 (2013), s. 649-658 ISSN 1355-8382 R&D Projects: GA ČR(CZ) GAP305/11/2179; GA MŠk LH12104 Institutional support: RVO:60077344 Keywords : Trypanosoma * tRNA * methylation * tRNA import * mitochondrion Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 4.622, year: 2013

  7. The haemoculture of Trypanosoma minasense chagas, 1908

    Directory of Open Access Journals (Sweden)

    Mariangela Ziccardi

    1996-08-01

    Full Text Available Trypanosoma minasense was isolated for the first time in blood axenic culture from a naturally infected marmoset, Callithrix penicillata, from Brazil. The parasite grew profusely in an overlay of Roswell Park Memorial Institute medium plus 20% foetal bovine serum, on Novy, McNeal and Nicolle medium (NNN , at 27°C, with a peak around 168 hr. The morphometry of cultural forms of T. minasense, estimates of cell population size and comparative growth in four different media overlays always with NNN, were studied. The infectivity of cultural forms to marmosets (C. penicillata and C. jacchus and transformation of epimastigotes into metacyclic-like forms in axenic culture in the presence of chitin derivates (chitosan were evaluated.

  8. Complementation of essential yeast GPI mannosyltransferase mutations suggests a novel specificity for certain Trypanosoma and Plasmodium PigB proteins.

    Directory of Open Access Journals (Sweden)

    Leslie K Cortes

    Full Text Available The glycosylphosphatidylinositol (GPI anchor is an essential glycolipid that tethers certain eukaryotic proteins to the cell surface. The core structure of the GPI anchor is remarkably well conserved across evolution and consists of NH2-CH2-CH2-PO4-6Manα1,2Manα1,6Manα1,4-GlcNα1,6-myo-inositol-PO4-lipid. The glycan portion of this structure may be modified with various side-branching sugars or other compounds that are heterogeneous and differ from organism to organism. One such modification is an α(1,2-linked fourth mannose (Man-IV that is side-branched to the third mannose (Man-III of the trimannosyl core. In fungi and mammals, addition of Man-III and Man-IV occurs by two distinct Family 22 α(1,2-mannosyltransferases, Gpi10/PigB and Smp3/PigZ, respectively. However, in the five protozoan parasite genomes we examined, no genes encoding Smp3/PigZ proteins were observed, despite reports of tetramannosyl-GPI structures (Man4-GPIs being produced by some parasites. In this study, we tested the hypothesis that the Gpi10/PigB proteins produced by protozoan parasites have the ability to add both Man-III and Man-IV to GPI precursors. We used yeast genetics to test the in vivo specificity of Gpi10/PigB proteins from several Plasmodium and Trypanosoma species by examining their ability to restore viability to Saccharomyces cerevisiae strains harboring lethal defects in Man-III (gpi10Δ or Man-IV (smp3Δ addition to GPI precursor lipids. We demonstrate that genes encoding PigB enzymes from T. cruzi, T. congolense and P. falciparum are each capable of separately complementing essential gpi10Δ and smp3Δ mutations, while PIGB genes from T. vivax and T. brucei only complement gpi10Δ. Additionally, we show the ability of T. cruzi PIGB to robustly complement a gpi10Δ/smp3Δ double mutant. Our data suggest that certain Plasmodium and Trypanosoma PigB mannosyltransferases can transfer more than one mannose to GPI precursors in vivo, and suggest a novel

  9. Partial characterization of the cross-reacting determinant, a carbohydrate epitope shared by decay accelerating factor and the variant surface glycoprotein of the African Trypanosoma brucei.

    Science.gov (United States)

    Shak, S; Davitz, M A; Wolinsky, M L; Nussenzweig, V; Turner, M J; Gurnett, A

    1988-03-15

    The variant surface glycoprotein (VSG) of the African trypanosome is anchored in the cell membrane by a complex glycan attached to phosphatidylinositol. The carboxyl terminal portion of VSG contains a cryptic carbohydrate epitope, the cross-reacting determinant (CRD), that is revealed only after removal of the diacylglycerol by phosphatidylinositol-specific phospholipase C (PIPLC) or VSG lipase. Recently, we have shown that after hydrolysis by PIPLC, decay-accelerating factor (DAF)--a mammalian phosphatidylinositol-anchored protein--also contains the CRD epitope. Using a two site immunoradiometric assay in which the capturing antibody is a monoclonal antibody to DAF and the revealing antibody is anti-CRD, we now show that sugar phosphates significantly inhibited the binding of anti-CRD antibody to DAF released by PIPLC. DL-myo-inositol 1,2-cyclic phosphate was the most potent inhibitor of binding (IC50 less than 10(-8) M). Other sugar phosphates, such as alpha-D-glucose-1-phosphate, which also possess adjacent hydroxyl and phosphate moieties in cis also inhibited binding at low concentrations (IC50 = 10(-5) to 10(-4) M). In contrast, sugar phosphates which do not possess adjacent hydroxyl and phosphate moieties in cis and simple sugars weakly inhibited binding (IC50 greater than 10(-3) M). These results suggest that myo-inositol 1,2-cyclic phosphate contributes significantly to the epitope recognized by the anti-CRD antibody and is consistent with analysis of the carboxyl terminus of VSG, which also suggested the presence of the cyclic inositol phosphate. In light of the recent findings that human serum contains a glycan-phosphatidyl-inositol-specific phospholipase D, which converts DAF from a hydrophobic to a hydrophilic form lacking the CRD, the observation that the phosphate is crucial for expression of the epitope may be relevant in understanding the origin of CRD-negative DAF in urine and plasma.

  10. Knock-downs of mitochondrial iron-sulfur cluster assembly proteins IscS and IscU down-regulate the active mitochondrion of procyclic Trypanosoma brucei

    Czech Academy of Sciences Publication Activity Database

    Šmíd, O.; Horáková, Eva; Vilímová, V.; Hrdý, I.; Cammack, R.; Horváth, A.; Lukeš, Julius; Tachezy, J.

    2006-01-01

    Roč. 281, č. 39 (2006), s. 28679-28686 ISSN 0021-9258 R&D Projects: GA ČR GA204/04/0435; GA AV ČR IAA5022302 Institutional research plan: CEZ:AV0Z60220518 Keywords : IscS * IscU * FeS Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 5.808, year: 2006

  11. Stage-specific requirement for Isa1 and Isa2 proteins in the mitochondrion of Trypanosoma brucei and heterologous rescue by human and Blastocystis orthologues

    Czech Academy of Sciences Publication Activity Database

    Long, Shaojun; Changmai, Piya; Tsaousis, A.D.; Skalický, Tomáš; Verner, Zdeněk; Wen, Yan-Zi; Roger, A. J.; Lukeš, Julius

    2011-01-01

    Roč. 81, č. 6 (2011), 1403-1418 ISSN 0950-382X R&D Projects: GA ČR GA204/09/1667; GA MŠk LC07032; GA MŠk 2B06129 Institutional research plan: CEZ:AV0Z60220518 Keywords : IRON-SULFUR CLUSTER * ESCHERICHIA-COLI * ASSEMBLY PROTEIN * SACCHAROMYCES-CEREVISIAE * AZOTOBACTER-VINELANDII * CYSTEINE DESULFURASE * CRYSTAL-STRUCTURE * BINDING ACTIVITY * GENE-CLUSTER Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 5.010, year: 2011

  12. An advanced system of the mitochondrial processing peptidase and core protein family in Trypanosoma brucei and multiple origins of the core I subunit in eukaryotes

    Czech Academy of Sciences Publication Activity Database

    Mach, J.; Poliak, Pavel; Matušková, Anna; Žárský, V.; Janata, Jiří; Lukeš, Julius; Tachezy, J.

    2013-01-01

    Roč. 5, č. 5 (2013), s. 860-875 ISSN 1759-6653 R&D Projects: GA ČR(CZ) GAP305/11/2179; GA ČR(CZ) GAP305/11/1061; GA MŠk(CZ) EE2.3.20.0055 Institutional support: RVO:60077344 ; RVO:61388971 Keywords : bc1 complex * evolution * mitochondrial processing peptidase * mitochondrial targeting sequence * trypanosome Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 4.532, year: 2013

  13. The Trypanosoma brucei TbHrg protein is a heme transporter involved in the regulation of stage-specific morphological transitions

    Czech Academy of Sciences Publication Activity Database

    Horáková, Eva; Changmai, Piya; Vancová, Marie; Sobotka, Roman; Van den Abbeele, J.; Vanhollebeke, B.; Lukeš, Julius

    2017-01-01

    Roč. 292, č. 17 (2017), s. 6998-7010 ISSN 0021-9258 R&D Projects: GA ČR(CZ) GA16-18699S EU Projects: European Commission COST action CA15133 Institutional support: RVO:60077344 ; RVO:61388971 Keywords : life-cycle stages * surface glycoprotein * wide analysis * tsetse-fly * differentiation * biosynthesis * pathway * forms * quantification * mitochondrion Subject RIV: EB - Genetics ; Molecular Biology OBOR OECD: Biochemistry and molecular biology Impact factor: 4.125, year: 2016

  14. Molecular diagnosis of cattle trypanosomes in Venezuela: evidences of Trypanosoma evansi and Trypanosoma vivax infections.

    Science.gov (United States)

    Ramírez-Iglesias, J R; Eleizalde, M C; Reyna-Bello, A; Mendoza, M

    2017-06-01

    In South America Trypanosoma evansi has been determined by molecular methods in cattle from Bolivia, Brazil, Colombia and Peru, reason for which the presence of this parasite is not excluded in Venezuelan livestock. Therefore, the aim of this study was to perform parasitological and molecular diagnosis of cattle trypanosomosis in small livestock units from two regions in this country. The parasitological diagnosis was carried out by MHCT and the molecular by PCR using genus-specific ITS1 primers that differentiate T. vivax and T. evansi infections. 47 cattle were evaluated in the "Laguneta de la Montaña" sector, Miranda State, where 3 animals were diagnosed as positive (6.4 %) by MHCT and 14 (30 %) by PCR as Trypanosoma spp., out of which 9 animals resulted positive for T. vivax , 3 for T. evansi and 2 with double infections. Whilst in the "San Casimiro" sector, State of Aragua, out of the 38 cattle evaluated 7 animals were diagnosed as positive (18.4 %) by MHCT and 19 (50 %) by PCR, determining only the presence of T. evansi in this locality. The molecular diagnosis by PCR using ITS1 primers allowed T. evansi detection in cattle field populations, which suggests the possible role of these animals as reservoirs in the epidemiology of the disease caused by T. evansi in Venezuela.

  15. Gastrointestinal parasites and Trypanosoma evansi in buffaloes

    International Nuclear Information System (INIS)

    Sani, R.A.; Chandrawathani, P.; Rosli, M.

    1990-01-01

    Gastrointestinal parasitism is common in buffalo calves. The effect of helminths on growth was studied by administration of an anthelmintic to buffalo calves following natural infections with gastrointestinal parasites. In studies conducted on calves belonging to an institute and a smallholder farmer, the treated calves showed improved weight gains. Serial parasitic examinations showed these animals had moderate to high faecal counts with Strongyloides, Toxocara vitulorum and Haemonchus eggs and Eimeria oocytes. In another study, there was no live weight advantage in treated over untreated calves. Few animals in this study had evidence of parasites and even those which were infested had low faecal egg counts. Hence, in general, helminths at certain levels of infection do affect the live weight gains of young buffalo calves. The prevalence of Trypanosoma evansi, as assessed parasitologically using the haematocrit centrifugation technique and mice inoculation, was 2.7 and 1%, respectively, in cattle and buffaloes. The serological prevalence using the enzyme linked immunosorbent assay was 35 and 2% for cattle and buffaloes, respectively. (author). 6 refs, 5 figs, 2 tabs

  16. Cell signaling during Trypanosoma cruzi invasion

    Directory of Open Access Journals (Sweden)

    Fernando Yukio Maeda

    2012-11-01

    Full Text Available Cell signaling is an essential requirement for mammalian cell invasion by Trypanosoma cruzi. Depending on the parasite strain and the parasite developmental form, distinct signaling pathways may be induced. In this short review, we focus on the data coming from studies with metacyclic trypomastigotes (MT generated in vitro and tissue culture-derived trypomastigotes (TCT, used as counterparts of insect-borne and bloodstream parasites respectively. During invasion of host cells by MT or TCT, intracellular Ca2+ mobilization and host cell lysosomal exocytosis are triggered. Invasion mediated by MT surface molecule gp82 requires the activation of mammalian target of rapamycin (mTOR, phosphatidylinositol 3-kinase (PI3K and protein kinase C (PKC in the host cell, associated with Ca2+-dependent disruption of the actin cytoskeleton. In MT, protein tyrosine kinase (PTK, PI3K, phospholipase C (PLC and PKC appear to be activated. TCT invasion, on the other hand, does not rely on mTOR activation, rather on target cell PI3K, and may involve the host cell autophagy for parasite internalization. Enzymes, such oligopeptidase B and the major T. cruzi cysteine proteinase cruzipain, have been shown to generate molecules that induce target cell Ca2+ signal. In addition, TCT may trigger host cell responses mediated by TGF-β receptor or integrin family member. Further investigations are needed for a more complete and detailed picture of T. cruzi invasion.

  17. Flagellar Motility of Trypanosoma cruzi Epimastigotes

    Directory of Open Access Journals (Sweden)

    G. Ballesteros-Rodea

    2012-01-01

    Full Text Available The hemoflagellate Trypanosoma cruzi is the causative agent of American trypanosomiasis. Despite the importance of motility in the parasite life cycle, little is known about T. cruzi motility, and there is no quantitative description of its flagellar beating. Using video microscopy and quantitative vectorial analysis of epimastigote trajectories, we find a forward parasite motility defined by tip-to-base symmetrical flagellar beats. This motion is occasionally interrupted by base-to-tip highly asymmetric beats, which represent the ciliary beat of trypanosomatid flagella. The switch between flagellar and ciliary beating facilitates the parasite's reorientation, which produces a large variability of movement and trajectories that results in different distance ranges traveled by the cells. An analysis of the distance, speed, and rotational angle indicates that epimastigote movement is not completely random, and the phenomenon is highly dependent on the parasite behavior and is characterized by directed and tumbling parasite motion as well as their combination, resulting in the alternation of rectilinear and intricate motility paths.

  18. Differential gene expression during Trypanosoma cruzi metacyclogenesis

    Directory of Open Access Journals (Sweden)

    Marco Aurelio Krieger

    1999-09-01

    Full Text Available The transformation of epimastigotes into metacyclic trypomastigotes involves changes in the pattern of expressed genes, resulting in important morphological and functional differences between these developmental forms of Trypanosoma cruzi. In order to identify and characterize genes involved in triggering the metacyclogenesis process and in conferring to metacyclic trypomastigotes their stage specific biological properties, we have developed a method allowing the isolation of genes specifically expressed when comparing two close related cell populations (representation of differential expression or RDE. The method is based on the PCR amplification of gene sequences selected by hybridizing and subtracting the populations in such a way that after some cycles of hybridization-amplification genes specific to a given population are highly enriched. The use of this method in the analysis of differential gene expression during T. cruzi metacyclogenesis (6 hr and 24 hr of differentiation and metacyclic trypomastigotes resulted in the isolation of several clones from each time point. Northern blot analysis showed that some genes are transiently expressed (6 hr and 24 hr differentiating cells, while others are present in differentiating cells and in metacyclic trypomastigotes. Nucleotide sequencing of six clones characterized so far showed that they do not display any homology to gene sequences available in the GeneBank.

  19. First record of Trypanosoma chattoni in Brazil and occurrence of other Trypanosoma species in Brazilian frogs (Anura, Leptodactylidae).

    Science.gov (United States)

    Lemos, M; Morais, D H; Carvalho, V T; D'Agosto, M

    2008-02-01

    The present study provides the first record of Trypanosoma chattoni Mathis and Leger, 1911, in a new host, Leptodactylus fuscus Schneider, 1799 (Anura, Leptodactylidae), and the occurrence of Trypanosoma rotatorium-like species in Leptodactylus chaquensis Cei, 1950. The anurans were captured in the State of Mato Grosso, Brazil. Blood samples were obtained by cardiac puncture, and blood smears were examined for the presence of hemoparasites. The Trypanosoma rotatorium-like species in this study refers to a short-bodied trypomastigote that has a conspicuous undulating membrane but lacks a free flagellum; T. chattoni refers to a monomorphic parasite that has a rounded body, a kinetoplast adjacent to the nucleus, and a short flagellum.

  20. EPIDEMIOLOGÍA MOLECULAR DE TRYPANOSOMA CRUZI

    Directory of Open Access Journals (Sweden)

    Felipe Guhl

    2013-01-01

    Full Text Available La enfermedad de Chagas causada por el parásito Trypanosoma cruzi es una zoonosis compleja, ampliamente distribuida en el continente americano. La infección puede ser adquirida a través de las heces de insectos triatominos, transfusión de sangre, trasplante de órganos, vía oral, por transmisión congénita y por accidentes de laboratorio. El completo entendimiento de la etiología y epidemiología de la enfermedad de Chagas a través de su distribución geográfica es complejo y permanece bajo intensa investigación hasta la actualidad. Los recientes estudios sobre la variabilidad genética del parásito han dado nuevas luces de los diferentes escenarios de los ciclos de transmisión de la enfermedad y su patogénesis en humanos. El propósito principal para la caracterización molecular de T.cruzi y sus múltiples genotipos está dirigido hacia su asociación con la clínica y la patogenesis de la enfermedad, así como al esclarecimiento de los diferentes escenarios de transmisión y los aspectos coevolutivos relacionados con reservorios e insectos vectores. La caracterización molecular de los diferentes aislamientos a partir de humanos, insectos y reservorios, ha permitido identificar la amplia variabilidad genética del parásito, abriendo nuevos caminos hacia la búsqueda de nuevos blancos terapéuticos y pruebas diagnósticas más específicas que contribuyan a mitigar la enfermedad de Chagas.

  1. Trypanosoma cruzi: avirulence of the PF strain to Callithrix marmosets

    Directory of Open Access Journals (Sweden)

    Humberto Menezes

    1981-06-01

    Full Text Available Callithrix jacchus geoffroy marmosets (HumBol. 1812 were injected once subcutaneously with 10.000 parasites/g body weight and followed for a period of six months. The PF strain of Trypanosoma cruzi was used. Follow-up was done through blood cultures, xenodiagnosis, serological tests, and ECG. A small number of normaI animais served as control.

  2. Role of sialic acids in the midguts of Trypanosoma congolense ...

    African Journals Online (AJOL)

    Administrator

    total sialic acid concentration. The relevance of these findings to the role of sialic acids in the midgut of. T. congolense infected C.p. pipiense mosquitoes is discussed in this paper. Key words: Trypanosoma congolense, Culex pipiense pipiense, sialic acid, midgut. INTRODUCTION. The Culex pipiense pipiense mosquito is ...

  3. DNA content analysis allows discrimination between Trypanosoma cruzi and Trypanosoma rangeli.

    Science.gov (United States)

    Naves, Lucila Langoni; da Silva, Marcos Vinícius; Fajardo, Emanuella Francisco; da Silva, Raíssa Bernardes; De Vito, Fernanda Bernadelli; Rodrigues, Virmondes; Lages-Silva, Eliane; Ramírez, Luis Eduardo; Pedrosa, André Luiz

    2017-01-01

    Trypanosoma cruzi, a human protozoan parasite, is the causative agent of Chagas disease. Currently the species is divided into six taxonomic groups. The genome of the CL Brener clone has been estimated to be 106.4-110.7 Mb, and DNA content analyses revealed that it is a diploid hybrid clone. Trypanosoma rangeli is a hemoflagellate that has the same reservoirs and vectors as T. cruzi; however, it is non-pathogenic to vertebrate hosts. The haploid genome of T. rangeli was previously estimated to be 24 Mb. The parasitic strains of T. rangeli are divided into KP1(+) and KP1(-). Thus, the objective of this study was to investigate the DNA content in different strains of T. cruzi and T. rangeli by flow cytometry. All T. cruzi and T. rangeli strains yielded cell cycle profiles with clearly identifiable G1-0 (2n) and G2-M (4n) peaks. T. cruzi and T. rangeli genome sizes were estimated using the clone CL Brener and the Leishmania major CC1 as reference cell lines because their genome sequences have been previously determined. The DNA content of T. cruzi strains ranged from 87,41 to 108,16 Mb, and the DNA content of T. rangeli strains ranged from 63,25 Mb to 68,66 Mb. No differences in DNA content were observed between KP1(+) and KP1(-) T. rangeli strains. Cultures containing mixtures of the epimastigote forms of T. cruzi and T. rangeli strains resulted in cell cycle profiles with distinct G1 peaks for strains of each species. These results demonstrate that DNA content analysis by flow cytometry is a reliable technique for discrimination between T. cruzi and T. rangeli isolated from different hosts.

  4. Transcriptome-wide analysis of the Trypanosoma cruzi proliferative cycle identifies the periodically expressed mRNAs and their multiple levels of control.

    Directory of Open Access Journals (Sweden)

    Santiago Chávez

    Full Text Available Trypanosoma cruzi is the protozoan parasite causing American trypanosomiasis or Chagas disease, a neglected parasitosis with important human health impact in Latin America. The efficacy of current therapy is limited, and its toxicity is high. Since parasite proliferation is a fundamental target for rational drug design, we sought to progress into its understanding by applying a genome-wide approach. Treating a TcI linage strain with hydroxyurea, we isolated epimastigotes in late G1, S and G2/M cell cycle stages at 70% purity. The sequencing of each phase identified 305 stage-specific transcripts (1.5-fold change, p≤0.01, coding for conserved cell cycle regulated proteins and numerous proteins whose cell cycle dependence has not been recognized before. Comparisons with the parasite T. brucei and the human host reveal important differences. The meta-analysis of T. cruzi transcriptomic and ribonomic data indicates that cell cycle regulated mRNAs are subject to sub-cellular compartmentalization. Compositional and structural biases of these genes- including CAI, GC content, UTR length, and polycistron position- may contribute to their regulation. To discover nucleotide motifs responsible for the co-regulation of cell cycle regulated genes, we looked for overrepresented motifs at their UTRs and found a variant of the cell cycle sequence motif at the 3' UTR of most of the S and G2 stage genes. We additionally identified hairpin structures at the 5' UTRs of a high proportion of the transcripts, suggesting that periodic gene expression might also rely on translation initiation in T. cruzi. In summary, we report a comprehensive list of T. cruzi cell cycle regulated genes, including many previously unstudied proteins, we show evidence favoring a multi-step control of their expression, and we identify mRNA motifs that may mediate their regulation. Our results provide novel information of the T. cruzi proliferative proteins and the integrated levels of

  5. [Esophageal motor disorders in asymptomatic subjects with Trypanosoma cruzi infection].

    Science.gov (United States)

    Torres-Aguilera, M; Remes-Troche, J M; Roesch-Dietlen, F; Vázquez-Jiménez, J G; De la Cruz-Patiño, E; Grube-Pagola, P; Ruiz-Juárez, I

    2011-01-01

    The indeterminate chronic or "asymptomatic" phase of Trypanosoma cruzi (Chagas' disease) infection is characterized by the absence of gastrointestinal symptoms, and has an estimated duration of 20 to 30 years. However, the intramural denervation that induces dysfunction of the gastrointestinal tract is progressive. Recently, epidemiological studies have shown that the seroprevalence for this infection in our area ranges between 2% and 3% of the population. To detect the presence of esophageal motor disorders in asymptomatic individuals chronically infected with Trypanosoma cruzi using standard esophageal manometry. A cross sectional study in 28 asymptomatic subjects (27 men, age 40.39 ± 10.79) with serological evidence of infection with Trypanosoma cruzi was performed. In all cases demographic characteristics, gastrointestinal symptoms and esophageal motility disorders using conventional manometry were analyzed. In this study 54% (n = 15) of asymptomatic subjects had an esophageal motor disorder: 5 (18%) had nutcracker esophagus, 5 (18%) nonspecific esophageal motor disorders, 3 (11%) hypertensive lower esophageal sphincter (LES), 1 (4%) an incomplete relaxation of the LES and 1 (4%) had chagasic achalasia. More than half of patients that course with Chagas' disease in the indeterminate phase and that are apparently asymptomatic have impaired esophageal motility. Presence of hypertensive LES raises the possibility that this alteration represents an early stage in the development of chagasic achalasia.

  6. Rational Design of a New Trypanosoma rangeli Trans-Sialidase for Efficient Sialylation of Glycans

    DEFF Research Database (Denmark)

    Jers, Carsten; Michalak, Malwina; Larsen, Dorte Møller

    2014-01-01

    This paper reports rational engineering of Trypanosoma rangeli sialidase to develop an effective enzyme for a potentially important type of reactivity: production of sialylated prebiotic glycans. The Trypanosoma cruzi trans-sialidase and the homologous T. rangeli sialidase has previously been use...

  7. Melophagus ovinus and Trypanosoma (Megatrypanum) melophagium in ovines in the State of Minas Gerais, Brasil

    OpenAIRE

    Costa, José Oswaldo; Lima, Walter dos Santos; Leite, Antonio César Rios; Guimarães, Marcos Pezzi; Torres, Liléia Diotaiuti

    1983-01-01

    Neste trabalho Melophagus ovinus é identificado pela primeira vez no Estado de Minas Gerais e Trypanosoma (Megatrypanum) melophagium tem sua primeira ocorrência registrada no Brasil.Melophagus ovinus is identified for the first time in Minas Gerais State and Trypanosoma (Megatrypanum) melophagium in Brazil.

  8. Perspectives on the Trypanosoma cruzi–host cell receptor interactions

    Science.gov (United States)

    Villalta, Fernando; Scharfstein, Julio; Ashton, Anthony W.; Tyler, Kevin M.; Guan, Fangxia; Mukherjee, Shankar; Lima, Maria F.; Alvarez, Sandra; Weiss, Louis M.; Huang, Huan; Machado, Fabiana S.

    2009-01-01

    Chagas disease is caused by the parasite Trypanosoma cruzi. The critical initial event is the interaction of the trypomastigote form of the parasite with host receptors. This review highlights recent observations concerning these interactions. Some of the key receptors considered are those for thromboxane, bradykinin, and for the nerve growth factor TrKA. Other important receptors such as galectin-3, thrombospondin, and laminin are also discussed. Investigation into the molecular biology and cell biology of host receptors for T. cruzi may provide novel therapeutic targets. PMID:19283409

  9. Trypanosoma sp. diversity in Amazonian bats (Chiroptera; Mammalia) from Acre State, Brazil.

    Science.gov (United States)

    Dos Santos, Francisco C B; Lisboa, Cristiane V; Xavier, Samanta C C; Dario, Maria A; Verde, Rair de S; Calouro, Armando M; Roque, André Luiz R; Jansen, Ana M

    2017-11-16

    Bats are ancient hosts of Trypanosoma species and their flying ability, longevity and adaptability to distinct environments indicate that they are efficient dispersers of parasites. Bats from Acre state (Amazon Biome) were collected in four expeditions conducted in an urban forest (Parque Zoobotânico) and one relatively more preserved area (Seringal Cahoeira) in Rio Branco and Xapuri municipalities. Trypanosoma sp. infection was detected by hemoculture and fresh blood examination. Isolated parasite species were identified by the similarity of the obtained DNA sequence from 18S rDNA polymerase chain reaction and reference strains. Overall, 367 bats from 23 genera and 32 species were examined. Chiropterofauna composition was specific to each municipality, although Artibeus sp. and Carollia sp. prevailed throughout. Trypanosoma sp. infection was detected in 85 bats (23·2%). The most widely distributed and prevalent genotypes were (in order) Trypanosoma cruzi TcI, T. cruzi marinkellei, Trypanosoma dionisii, T. cruzi TcIV and Trypanosoma rangeli. At least one still-undescribed Trypanosoma species was also detected in this study. The detection of T. cruzi TcI and TcIV (the ones associated with Chagas disease in Amazon biome) demonstrates the putative importance of these mammal hosts in the epidemiology of the disease in the Acre State.

  10. Trypanosoma cruzi: Transporte de metabolitos esenciales obtenidos del hospedador Trypanosoma cruzi: Transport of essential metabolites acquired from the host

    Directory of Open Access Journals (Sweden)

    Claudio A. Pereira

    2008-10-01

    Full Text Available El Trypanosoma cruzi es el agente causal de la enfermedad de Chagas, endémica en Argentina y en toda América Latina. Presenta numerosas características metabólicas diferenciales respecto a sus hospedadores insectos y mamíferos. Algunas de estas diferencias fueron consecuencia de millones de años de adaptación al parasitismo en los cuales estos organismos protozoarios reemplazaron, a lo largo de su evolución, muchas rutas metabólicas de biosíntesis por sistemas de transporte de metabolitos desde el hospedador. En esta revisión se describen los avances en el conocimiento de los sistemas de transporte tanto bioquímicos como también de las moléculas involucradas en dichos procesos. Se aborda con especial énfasis los transportadores de aminoácidos y poliaminas de T. cruzi de la familia AAAP (Amino Acid/Auxin Permeases ya que parece ser exclusiva de los tripanosomátidos. Teniendo en cuenta que estas moléculas se encuentran completamente ausentes en mamíferos podrían ser consideradas como potenciales blancos contra el Trypanosoma cruzi.Trypanosoma cruzi is the etiological agent of Chagas disease, a disease endemic not only in Argentina but also in all of Latinamerica. T. cruzi presents several metabolic characteristics which are completely absent in its insect vectors and in mammalian hosts. Some of these differences were acquired after millions of years of adaptation to parasitism, during which this protozoan replaced many biosynthetic routes for transport systems. In the present review, we describe the advances in the knowledge of T. cruzi transport processes and the molecules involved. In particular, we focus on aminoacid and polyamine transporters from the AAAP family (Amino Acid/Auxin Permeases, because they seem to be exclusive transporters from trypanosomatids. Taking into account that these permeases are completely absent in mammals, they could be considered as a potential target against Trypanosoma cruzi.

  11. Benznidazole induces in vitro anaerobic metabolism in Trypanosoma cruzi epimastigotes

    Directory of Open Access Journals (Sweden)

    Marina Clare Vinaud

    2017-11-01

    Full Text Available Objective: To determine the biochemical alterations of the energetic metabolism of Trypanosoma cruzi epimastigotes in vitro exposed to different concentrations of benzinidazole. Methods: Biochemical analyses were performed at 3, 6 (log phase, 9 and 12 (stationary phase days of culture. Parasites were exposed to five concentrations of benzinidazole. Glycolysis, tricarboxilic acid cycle and fatty acids oxidation pathways were quantified through chromatography. Glucose, urea and creatinine were quantified through spectrophotometric analysis. Results: Anaerobic fermentation and fatty acids oxidation were increased in the stationary phase of the culture. Benzinidazole at high concentrations induced anaerobic metabolism in the log phase of the culture while the parasites exposed to the lower concentrations preferred the citric acid cycle as energy production pathway. Benzinidazole did not influence on the proteins catabolism. Conclusions: It is possible to conclude that there are metabolic differences between evolutive forms of Trypanosoma cruzi and the main drug used for its treatment induces the anaerobic metabolism in the parasite, possibly impairing the mitochondrial pathways.

  12. Aqueous extract of Hibiscus sabdarrifa calyx alleviates anemia and ...

    African Journals Online (AJOL)

    Aqueous extract of Hibiscus sabdarrifa calyx alleviates anemia and organ damage in Trypanosoma brucei brucei infected rats. IA Umar, E Daikwo, NG Maryoms, A Gidado, LB Buratai, FS Saka, MA Ibrahim ...

  13. 25 original article hematological derangement patterns in nigerian

    African Journals Online (AJOL)

    boaz

    backdrop of emerging new trypanosome strains, is not well known. ..... (1, 26) had been associated with events leading to anemia in .... Trypanosoma brucei brucei infected mice. International .... Procedures, Mosby , New York, 1995 pp 23-. 68.

  14. Visual genome-wide RNAi screening to identify human host factors required for Trypanosoma cruzi infection

    CSIR Research Space (South Africa)

    Genovesio, A

    2011-05-01

    Full Text Available The protozoan parasite Trypanosoma cruzi is the etiologic agent of Chagas disease, a neglected tropical infection that affects millions of people in the Americas. Current chemotherapy relies on only two drugs that have limited efficacy...

  15. Parasite Genome Projects and the Trypanosoma cruzi Genome Initiative

    Directory of Open Access Journals (Sweden)

    Wim Degrave

    1997-11-01

    Full Text Available Since the start of the human genome project, a great number of genome projects on other "model" organism have been initiated, some of them already completed. Several initiatives have also been started on parasite genomes, mainly through support from WHO/TDR, involving North-South and South-South collaborations, and great hopes are vested in that these initiatives will lead to new tools for disease control and prevention, as well as to the establishment of genomic research technology in developing countries. The Trypanosoma cruzi genome project, using the clone CL-Brener as starting point, has made considerable progress through the concerted action of more than 20 laboratories, most of them in the South. A brief overview of the current state of the project is given

  16. Electron Microscopy Analysis of the Nucleolus of Trypanosoma cruzi

    Science.gov (United States)

    López-Velázquez, Gabriel; Hernández, Roberto; López-Villaseñor, Imelda; Reyes-Vivas, Horacio; Segura-Valdez, María De L.; Jiménez-García, Luis F.

    2005-08-01

    The nucleolus is the main site for synthesis and processing of ribosomal RNA in eukaryotes. In mammals, plants, and yeast the nucleolus has been extensively characterized by electron microscopy, but in the majority of the unicellular eukaryotes no such studies have been performed. Here we used ultrastructural cytochemical and immunocytochemical techniques as well as three-dimensional reconstruction to analyze the nucleolus of Trypanosoma cruzi, which is an early divergent eukaryote of medical importance. In T. cruzi epimastigotes the nucleolus is a spherical intranuclear ribonucleoprotein organelle localized in a relatively central position within the nucleus. Dense fibrillar and granular components but not fibrillar centers were observed. In addition, nuclear bodies resembling Cajal bodies were observed associated to the nucleolus in the surrounding nucleoplasm. Our results provide additional morphological data to better understand the synthesis and processing of the ribosomal RNA in kinetoplastids.

  17. Lysophosphatidylcholine: A Novel Modulator of Trypanosoma cruzi Transmission

    Science.gov (United States)

    Silva-Neto, Mário A. C.; Carneiro, Alan B.; Silva-Cardoso, Livia; Atella, Georgia C.

    2012-01-01

    Lysophosphatidylcholine is a bioactive lipid that regulates a large number of cellular processes and is especially present during the deposition and infiltration of inflammatory cells and deposition of atheromatous plaque. Such molecule is also present in saliva and feces of the hematophagous organism Rhodnius prolixus, a triatominae bug vector of Chagas disease. We have recently demonstrated that LPC is a modulator of Trypanosoma cruzi transmission. It acts as a powerful chemoattractant for inflammatory cells at the site of the insect bite, which will provide a concentrated population of cells available for parasite infection. Also, LPC increases macrophage intracellular calcium concentrations that ultimately enhance parasite invasion. Finally, LPC inhibits NO production by macrophages stimulated by live T. cruzi, and thus interferes with the immune system of the vertebrate host. In the present paper, we discuss the main signaling mechanisms that are likely used by such molecule and their eventual use as targets to block parasite transmission and the pathogenesis of Chagas disease. PMID:22132309

  18. First report of Trypanosoma vegrandis in koalas (Phascolarctos cinereus).

    Science.gov (United States)

    Barbosa, Amanda; Austen, Jill; Gillett, Amber; Warren, Kristin; Paparini, Andrea; Irwin, Peter; Ryan, Una

    2016-08-01

    The present study describes the first report of Trypanosoma vegrandis in koalas using morphology and sequence analysis of the 18S rRNA gene. The prevalence of T. vegrandis in koalas was 13.6% (6/44). It is likely that the small size of T. vegrandis (<10μm in length), coupled with the difficulties in amplifying DNA of this parasite in mixed infections using trypanosome generic primers, are the reason why this organism has not been identified in koalas until now. This study highlights the importance of further research comprising a larger sample size to determine the prevalence of T. vegrandis in koalas as well as its potential impacts upon this marsupial species' health. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  19. Semisolid liver infusion tryptose supplemented with human urine allows growth and isolation of Trypanosoma cruzi and Trypanosoma rangeli clonal lineages

    Directory of Open Access Journals (Sweden)

    Emanuella Francisco Fajardo

    2016-06-01

    Full Text Available Abstract: INTRODUCTION This work shows that 3% (v/v human urine (HU in semisolid Liver Infusion Tryptose (SSL medium favors the growth of Trypanosoma cruzi and T. rangeli. METHODS Parasites were plated as individual or mixed strains on SSL medium and on SSL medium with 3% human urine (SSL-HU. Isolate DNA was analyzed using polymerase chain reaction (PCR and pulsed-field gel electrophoresis (PFGE. RESULTS SSL-HU medium improved clone isolation. PCR revealed that T. cruzi strains predominate on mixed-strain plates. PFGE confirmed that isolated parasites share the same molecular karyotype as parental cell lines. CONCLUSIONS SSL-HU medium constitutes a novel tool for obtaining T. cruzi and T. rangeli clonal lineages.

  20. Trypanosoma cruzi, cancer and the Cold War Trypanosoma cruzi, câncer e a Guerra Fria

    Directory of Open Access Journals (Sweden)

    Nikolai Krementsov

    2009-07-01

    Full Text Available In the summer of 1946, the international community of cancer researchers was inspired by the announcement that two Soviet scientists, Nina Kliueva and Grigorii Roskin, had discovered anticancer properties in culture extracts made from the South American protozoan, Trypanosoma cruzi, and had produced a preparation - named after its discoverers KR - which showed clear therapeutic effects on cancer patients. Research teams from various countries enthusiastically pursued the promising new line of investigation. The story of the rise and fall of interest in the anticancer properties of T. cruzi in different countries suggests that during the second half of the twentieth century, the Cold War competition between the superpowers played an important role in shaping the research agendas of cancer studies.No verão de 1946, a comunidade internacional que desenvolve pesquisas sobre o câncer, inspirou-se no anúncio de que dois cientistas soviéticos, Nina Kliueva e Grigorii Roskin, descobriram propriedades anticancerígenas em cultura extraída do protozoário existente na América Latina, o Trypanosoma cruzi e produziram um preparado que foi denominado com as iniciais KR - em sua homenagem. Grupos de pesquisadores de diversos países buscaram com entusiasmo as promessas dessa nova linha de investigação. A história da ascensão e queda do interesse nas propriedades anticâncer do T. cruzzi em diferentes países sugere que durante a segunda metade do século 20, a Guerra Fria teve um papel importante na definição das agendas de pesquisas sobre o câncer.

  1. Melophagus ovinus e Trypanosoma (Megatrypanum melophagium em ovinos no Estado de Minas Gerais, Brasil Melophagus ovinus and Trypanosoma (Megatrypanum melophagium in ovines in the State of Minas Gerais, Brasil

    Directory of Open Access Journals (Sweden)

    José Oswaldo Costa

    1983-03-01

    Full Text Available Neste trabalho Melophagus ovinus é identificado pela primeira vez no Estado de Minas Gerais e Trypanosoma (Megatrypanum melophagium tem sua primeira ocorrência registrada no Brasil.Melophagus ovinus is identified for the first time in Minas Gerais State and Trypanosoma (Megatrypanum melophagium in Brazil.

  2. Natural infection of the sand fly Phlebotomus kazeruni by Trypanosoma species in Pakistan

    Directory of Open Access Journals (Sweden)

    Iwata Hiroyuki

    2010-02-01

    Full Text Available Abstract The natural infection of phlebotomine sand flies by Leishmania parasites was surveyed in a desert area of Pakistan where cutaneous leishmaniasis is endemic. Out of 220 female sand flies dissected, one sand fly, Phlebotomus kazeruni, was positive for flagellates in the hindgut. Analyses of cytochrome b (cyt b, glycosomal glyceraldehyde phosphate dehydrogenase (gGAPDH and small subunit ribosomal RNA (SSU rRNA gene sequences identified the parasite as a Trypanosoma species of probably a reptile or amphibian. This is the first report of phlebotomine sand flies naturally infected with a Trypanosoma species in Pakistan. The possible infection of sand flies with Trypanosoma species should be taken into consideration in epidemiological studies of vector species in areas where leishmaniasis is endemic.

  3. Trypanosoma cruzi strain TcIV infects raccoons from Illinois

    Directory of Open Access Journals (Sweden)

    Cailey Vandermark

    Full Text Available BACKGROUND The northern limits of Trypanosoma cruzi across the territory of the United States remain unknown. The known vectors Triatoma sanguisuga and T. lecticularia find their northernmost limits in Illinois; yet, earlier screenings of those insects did not reveal the presence of the pathogen, which has not been reported in vectors or reservoir hosts in this state. OBJECTIVES Five species of medium-sized mammals were screened for the presence of T. cruzi. METHODS Genomic DNA was isolated from heart, spleen and skeletal muscle of bobcats (Lynx rufus, n = 60, raccoons (Procyon lotor, n = 37, nine-banded armadillos (Dasypus novemcinctus, n = 5, Virginia opossums (Didelphis virginiana, n = 3, and a red fox (Vulpes vulpes. Infections were detected targeting DNA from the kinetoplast DNA minicircle (kDNA and satellite DNA (satDNA. The discrete typing unit (DTU was determined by amplifying two gene regions: the Spliced Leader Intergenic Region (SL, via a multiplex polymerase chain reaction, and the 24Sα ribosomal DNA via a heminested reaction. Resulting sequences were used to calculate their genetic distance against reference DTUs. FINDINGS 18.9% of raccoons were positive for strain TcIV; the rest of mammals tested negative. MAIN CONCLUSIONS These results confirm for the first time the presence of T. cruzi in wildlife from Illinois, suggesting that a sylvatic life cycle is likely to occur in the region. The analyses of sequences of SL suggest that amplicons resulting from a commonly used multiplex reaction may yield non-homologous fragments.

  4. Polyclonal antibodies for the detection of Trypanosoma cruzi circulating antigens.

    Directory of Open Access Journals (Sweden)

    Edith S Málaga-Machaca

    2017-11-01

    Full Text Available Detection of Trypanosoma cruzi antigens in clinical samples is considered an important diagnostic tool for Chagas disease. The production and use of polyclonal antibodies may contribute to an increase in the sensitivity of immunodiagnosis of Chagas disease.Polyclonal antibodies were raised in alpacas, rabbits, and hens immunized with trypomastigote excreted-secreted antigen, membrane proteins, trypomastigote lysate antigen and recombinant 1F8 to produce polyclonal antibodies. Western blot analysis was performed to determine specificity of the developed antibodies. An antigen capture ELISA of circulating antigens in serum, plasma and urine samples was developed using IgY polyclonal antibodies against T. cruzi membrane antigens (capture antibody and IgG from alpaca raised against TESA. A total of 33 serum, 23 plasma and 9 urine samples were analyzed using the developed test. Among serum samples, compared to serology, the antigen capture ELISA tested positive in 55% of samples. All plasma samples from serology positive subjects were positive in the antigen capture ELISA. All urine positive samples had corresponding plasma samples that were also positive when tested by the antigen capture ELISA.Polyclonal antibodies are useful for detection of circulating antigens in both the plasma and urine of infected individuals. Detection of antigens is direct evidence of the presence of the parasite, and could be a better surrogate of current infection status.

  5. Trypanosoma avium of raptors (Falconiformes): phylogeny and identification of vectors.

    Science.gov (United States)

    Votýpka, J; Oborník, M; Volf, P; Svobodová, M; Lukes, J

    2002-09-01

    Avian trypanosomes are widespread parasites of birds, the transmission of which remains mostly unclear, with various blood-sucking insects mentioned as possible vectors. A search for vectors of trypanosomes of sparrowhawk (Accipiter nisus), buzzard (Buteo buteo), lesser-spotted eagle (Aquila pomarina) and kestrel (Falco tinnunculus) was performed in Czech and Slovak Republics. Black flies (Eusimulium spp.), hippoboscid flies (Ornithomyia avicularia), mosquitoes (Culex pipiens pipiens) and biting midges (Culicoides spp.), trapped while attempting to feed on raptor nestlings, were found to contain trypanosomatids in their intestine. Trypanosomes from the raptors and blood-sucking insects were isolated, and their 18S rRNA sequences were used for species identification and for the inference of intra- and interspecific relationships. Together with the trypanosome isolated from a black fly, the bird trypanosomes formed a well-supported Trypanosoma avium clade. The isolates derived from hippoboscid flies and mosquitoes are most likely also avian trypanosomes infecting birds other than the studied raptors. Analysis of the kinetoplast, that has features characteristic for the avian trypanosomes (minicircle size; dimensions of the kinetoplast disc), provided further evidence for the identification of vectors. It is suggested that all trypanosomes isolated from raptors included in this study belong to the T. avium complex and are transmitted by the ornithophilic simuliids such as Eusimulium securiforme.

  6. [Trypanosoma cruzi in triatomines from Nuevo Leon, Mexico].

    Science.gov (United States)

    Molina-Garza, Zinnia Judith; Rosales-Encina, José Luis; Galaviz-Silva, Lucio; Molina-Garza, Daniel

    2007-01-01

    To determine the prevalence of Trypanosoma cruzi in triatomines from Nuevo León using the standardization of an improved enzyme-linked immunosorbent assay test. From July to September 2005, 52 triatomines were captured in General Terán, a municipality located in Nuevo León. They were analyzed using optical microscopy (OM) and a polymerase chain reaction (PCR), as standards of reference, to develop a technique for detecting the parasite using enzyme-linked immunosorbent assay (ELISA). Using OM and PCR, 31 triatomines were found to be positive and 21 negative. Using ELISA, 27 samples were identified as positive and 25 negative (specificity 100%, sensitivity 87%, negative predictive value 84%, and positive predictive value 100%). The prevalence of infected triatomines was 59.61% with OM and PCR, and 51.92% with ELISA. Our data confirm that the ELISA assay in triatomines is a fast, reliable and useful tool. Since it was possible to simultaneously analyze a large number of samples with high sensibility and specificity values, the ELISA test proves to be useful for new epidemiologic studies having a high number of vectors. It is also less expensive than PCR. It is therefore recommended for epidemiological and preventive surveillance programs as a first screening test before conducting a confirmatory test using PCR.

  7. Heterogeneous infectiousness in guinea pigs experimentally infected with Trypanosoma cruzi.

    Science.gov (United States)

    Castillo-Neyra, Ricardo; Borrini Mayorí, Katty; Salazar Sánchez, Renzo; Ancca Suarez, Jenny; Xie, Sherrie; Náquira Velarde, Cesar; Levy, Michael Z

    2016-02-01

    Guinea pigs are important reservoirs of Trypanosoma cruzi, the causative parasite of Chagas disease, and in the Southern Cone of South America, transmission is mediated mainly by the vector Triatoma infestans. Interestingly, colonies of Triatoma infestans captured from guinea pig corrals sporadically have infection prevalence rates above 80%. Such high values are not consistent with the relatively short 7-8 week parasitemic period that has been reported for guinea pigs in the literature. We experimentally measured the infectious periods of a group of T. cruzi-infected guinea pigs by performing xenodiagnosis and direct microscopy each week for one year. Another group of infected guinea pigs received only direct microscopy to control for the effect that inoculation by triatomine saliva may have on parasitemia in the host. We observed infectious periods longer than those previously reported in a number of guinea pigs from both the xenodiagnosis and control groups. While some guinea pigs were infectious for a short time, other "super-shedders" were parasitemic up to 22 weeks after infection, and/or positive by xenodiagnosis for a year after infection. This heterogeneity in infectiousness has strong implications for T. cruzi transmission dynamics and control, as super-shedder guinea pigs may play a disproportionate role in pathogen spread. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  8. mRNA localization mechanisms in Trypanosoma cruzi.

    Directory of Open Access Journals (Sweden)

    Lysangela R Alves

    Full Text Available Asymmetric mRNA localization is a sophisticated tool for regulating and optimizing protein synthesis and maintaining cell polarity. Molecular mechanisms involved in the regulated localization of transcripts are widespread in higher eukaryotes and fungi, but not in protozoa. Trypanosomes are ancient eukaryotes that branched off early in eukaryote evolution. We hypothesized that these organisms would have basic mechanisms of mRNA localization. FISH assays with probes against transcripts coding for proteins with restricted distributions showed a discrete localization of the mRNAs in the cytoplasm. Moreover, cruzipain mRNA was found inside reservosomes suggesting new unexpected functions for this vacuolar organelle. Individual mRNAs were also mobilized to RNA granules in response to nutritional stress. The cytoplasmic distribution of these transcripts changed with cell differentiation, suggesting that localization mechanisms might be involved in the regulation of stage-specific protein expression. Transfection assays with reporter genes showed that, as in higher eukaryotes, 3'UTRs were responsible for guiding mRNAs to their final location. Our results strongly suggest that Trypanosoma cruzi have a core, basic mechanism of mRNA localization. This kind of controlled mRNA transport is ancient, dating back to early eukaryote evolution.

  9. Trypanosoma cruzi. Surface antigens of blood and culture forms

    International Nuclear Information System (INIS)

    Nogueira, N.; Chaplan, S.; Tydings, J.D.; Unkeless, J.; Cohn, Z.

    1981-01-01

    The surface polypeptides of both cultured and blood forms of Trypanosoma cruzi were iodinated by the glucose oxidase-lactoperoxidase technique. Blood-form trypomastigotes (BFT) isolated form infected mice displayed a major 90,000-Mr component. In contrast, both epimastigotes and trypomastigotes obtained form acellular cultures expressed a smaller 75,000-Mr peptide. Both major surface components were presumably glycoproteins in terms of their binding to concanavalin A-Sepharose 4B. Within a 3-h period, both blood and culture forms synthesized their respective surface glycoproteins (90,000 Mr and 75,000 Mr, respectively in vitro. [/sub 35/S]methionine-labeled surface peptides were immunoprecipitated with immune sera of both human and murine origin. A panel of sera form patients with chronic Chagas' disease and hyperimmunized mice recognized similar surface peptides. These immunogens were the same components as the major iodinated species. The major BFT surface peptide was readily removed by trypsin treatment of the parasites, although the procedure did not affect the 75,000-Mr peptide from the culture forms. Two-dimensional polyacrylamide gel electrophoresis revealed that the 90,000-Mr peptide found on BFT was an acidic protein of isoelectric point (pI) 5.0, whereas, the 75,000-Mr peptide form culture-form trypomastigotes has a pI of 7.2. The 90,000-Mr component is thought to be responsible for the anti-phagocytic properties of the BFT

  10. Early Trypanosoma cruzi Infection Reprograms Human Epithelial Cells

    Directory of Open Access Journals (Sweden)

    María Laura Chiribao

    2014-01-01

    Full Text Available Trypanosoma cruzi, the causative agent of Chagas disease, has the peculiarity, when compared with other intracellular parasites, that it is able to invade almost any type of cell. This property makes Chagas a complex parasitic disease in terms of prophylaxis and therapeutics. The identification of key host cellular factors that play a role in the T. cruzi invasion is important for the understanding of disease pathogenesis. In Chagas disease, most of the focus is on the response of macrophages and cardiomyocytes, since they are responsible for host defenses and cardiac lesions, respectively. In the present work, we studied the early response to infection of T. cruzi in human epithelial cells, which constitute the first barrier for establishment of infection. These studies identified up to 1700 significantly altered genes regulated by the immediate infection. The global analysis indicates that cells are literally reprogrammed by T. cruzi, which affects cellular stress responses (neutrophil chemotaxis, DNA damage response, a great number of transcription factors (including the majority of NFκB family members, and host metabolism (cholesterol, fatty acids, and phospholipids. These results raise the possibility that early host cell reprogramming is exploited by the parasite to establish the initial infection and posterior systemic dissemination.

  11. Production of amastigotes from metacyclic trypomastigotes of Trypanosoma cruzi

    Directory of Open Access Journals (Sweden)

    Víctor T Contreras

    2002-12-01

    Full Text Available Attempts to recreate all the developmental stages of Trypanosoma cruzi in vitro have thus far been met with partial success. It is possible, for instance, to produce trypomastigotes in tissue culture and to obtain metacyclic trypomastigotes in axenic conditions. Even though T. cruzi amastigotes are known to differentiate from trypomastigotes and metacyclic trypomastigotes, it has only been possible to generate amastigotes in vitro from the tissue-culture-derived trypomastigotes. The factors and culture conditions required to trigger the transformation of metacyclic trypomastigotes into amastigotes are as yet undetermined. We show here that pre-incubation of metacyclic trypomastigotes in culture (MEMTAU medium at 37°C for 48 h is sufficient to commit the parasites to the transformation process. After 72 h of incubation in fresh MEMTAU medium, 90% of the metacyclic parasites differentiate into forms that are morphologically indistinguishable from normal amastigotes. SDS-PAGE, Western blot and PAABS analyses indicate that the transformation of axenic metacyclic trypomastigotes to amastigotes is associated with protein, glycoprotein and antigenic modifications. These data suggest that (a T. cruzi amastigotes can be obtained axenically in large amounts from metacyclic trypomastigotes, and (b the amastigotes thus obtained are morphological, biological and antigenically similar to intracellular amastigotes. Consequently, this experimental system may facilitate a direct, in vitro assessment of the mechanisms that enable T. cruzi metacyclic trypomastigotes to transform into amastigotes in the cells of mammalian hosts.

  12. Geographical Distribution of Trypanosoma cruzi Genotypes in Venezuela

    Science.gov (United States)

    Carrasco, Hernán J.; Segovia, Maikell; Llewellyn, Martin S.; Morocoima, Antonio; Urdaneta-Morales, Servio; Martínez, Cinda; Martínez, Clara E.; Garcia, Carlos; Rodríguez, Marlenes; Espinosa, Raul; de Noya, Belkisyolé A.; Díaz-Bello, Zoraida; Herrera, Leidi; Fitzpatrick, Sinead; Yeo, Matthew; Miles, Michael A.; Feliciangeli, M. Dora

    2012-01-01

    Chagas disease is an endemic zoonosis native to the Americas and is caused by the kinetoplastid protozoan parasite Trypanosoma cruzi. The parasite is also highly genetically diverse, with six discrete typing units (DTUs) reported TcI – TcVI. These DTUs broadly correlate with several epidemiogical, ecological and pathological features of Chagas disease. In this manuscript we report the most comprehensive evaluation to date of the genetic diversity of T. cruzi in Venezuela. The dataset includes 778 samples collected and genotyped over the last twelve years from multiple hosts and vectors, including nine wild and domestic mammalian host species, and seven species of triatomine bug, as well as from human sources. Most isolates (732) can be assigned to the TcI clade (94.1%); 24 to the TcIV group (3.1%) and 22 to TcIII (2.8%). Importantly, among the 95 isolates genotyped from human disease cases, 79% belonged to TcI - a DTU common in the Americas, however, 21% belonged to TcIV- a little known genotype previously thought to be rare in humans. Furthermore, were able to assign multiple oral Chagas diseases cases to TcI in the area around the capital, Caracas. We discuss our findings in the context of T. cruzi DTU distributions elsewhere in the Americas, and evaluate the impact they have on the future of Chagas disease control in Venezuela. PMID:22745843

  13. Anti-Trypanosoma cruzi antibody detection in eastern Andalusia (Spain).

    Science.gov (United States)

    Marín, Clotilde; Concha-Valdez, Fanny; Cañas, Rocío; Gutiérrez-Sánchez, Ramón; Sánchez-Moreno, Manuel

    2014-03-01

    Chagas disease caused by the protozoan haemoflagellate Trypanosoma cruzi is no longer found exclusively in Latin America; the disease is occurring in Europe, and Spain is the country with the highest prevalence. Our aim was to detect anti-T. cruzi antibodies in blood donors from southeast Spain, and we performed eight serological diagnostic assays on each of 550 blood samples collected in March-June 2010. Two in-house ELISA methods were used to test against a parasite lysate (ELISA-H) and the semi-purified superoxide dismutase excreted by T. cruzi (ELISA-SODe); we also used the Western blot technique against the same antigen (WB-SODe), indirect immunofluorescence (IFA) and four commercial tests. The serological test results showed a range of seroprevalence values, the lowest being 1.1%, determined by IFA and two commercial tests (Ab rapid and Chagascreen); other values were: 1.3% (commercial ELISA [Chagas ELISA IgG+IgM]); 2.1% (immunochromatographic test [Stick Chagas]); 2.7% (ELISA-H); 4.0% (WB-SODe); and 4.2%, the highest value (ELISA-SODe). The excellent specificity of SODe antigen for the detection of antibodies to T. cruzi in donors lead us to affirm that the serological test performed with this biomarker could provide a useful screening and confirmatory test method for cases of Chagas disease.

  14. Effects of azadirachtin on Rhodnius prolixus: immunity and trypanosoma interaction

    Directory of Open Access Journals (Sweden)

    Patricia de Azambuja

    1992-01-01

    Full Text Available The effects of azadirachtin, a tetranortriterpenoid from the neem tree Aradirachta indica J. on both immunity and Trypanosoma cruzi interaction within Rhodniusprolixus and other triatomines, were presented Given through a blood meal, azadirachtin affected the immune reactivity as shown by a significant reduction in numbers of hemocytes and consequently nodule formation follwing challenge with Enterobacter cloacae ß12, reduction in ability to produce antibacterial activities in the hemolymph when injected with bacteria, and decreased ability to destroy the infection caused by inoculation of E. cloacae cells. A single dose of azadirachtin was able to block the development of T. cruzi in R. prolixus if given through the meal at different intervals, together with, before or after parasite infection. Similary, these results were observed with different triatomine species and different strains of T. cruzi. Azadirachtin induced a permanent resistance of the vector against reinfection with T. cruzi. The significance of these data is discussed in relation to the general mode of azadirachtin action in insects.

  15. In vitro effects of citral on Trypanosoma cruzi metacyclogenesis

    Directory of Open Access Journals (Sweden)

    Josiane Cardoso

    2010-12-01

    Full Text Available Citral, the main constituent of lemongrass (Cymbopogon citratus essential oil, was added to Trypanosoma cruzi cultures grown in TAU3AAG medium to observe the effect on the epimastigote-to-trypomastigote differentiation process (metacyclogenesis. Our results showed that citral (20 μg/mL did not affect epimastigote viability or inhibit the differentiation process. Concentrations higher than 60 μg/mL, however, led to 100% cell death (both epimastigote and trypomastigote forms. Although epimastigotes incubated with 30 μg/mL citral were viable and able to adhere to the substrate, we observed around 50% inhibition in metacyclogenesis, with a calculated concentration that inhibited metacyclogenesis by 50% after 24 h (IC50/24 h of about 31 μg/mL. Treatment with 30 μg/mL citral did not hinder epimastigote multiplication because epimastigote growth resumed when treated cells were transferred to a drug-free liver infusion tryptose culture medium. Metacyclogenesis was almost totally abolished at 40 μg/mL after 24 h of incubation. Furthermore, the metacyclic trypomastigotes obtained in vitro were similarly susceptible to citral, with an IC50/24 h, concentration that killed 50% of the cells after 24 h, of about 24.5 μg/mL. Therefore, citral appears to be a good candidate as an inhibitory drug for further studies analyzing the T. cruzi metacyclogenesis process.

  16. Lysophosphatidylcholine: A Novel Modulator of Trypanosoma cruzi Transmission

    Directory of Open Access Journals (Sweden)

    Mário A. C. Silva-Neto

    2012-01-01

    Full Text Available Lysophosphatidylcholine is a bioactive lipid that regulates a large number of cellular processes and is especially present during the deposition and infiltration of inflammatory cells and deposition of atheromatous plaque. Such molecule is also present in saliva and feces of the hematophagous organism Rhodnius prolixus, a triatominae bug vector of Chagas disease. We have recently demonstrated that LPC is a modulator of Trypanosoma cruzi transmission. It acts as a powerful chemoattractant for inflammatory cells at the site of the insect bite, which will provide a concentrated population of cells available for parasite infection. Also, LPC increases macrophage intracellular calcium concentrations that ultimately enhance parasite invasion. Finally, LPC inhibits NO production by macrophages stimulated by live T. cruzi, and thus interferes with the immune system of the vertebrate host. In the present paper, we discuss the main signaling mechanisms that are likely used by such molecule and their eventual use as targets to block parasite transmission and the pathogenesis of Chagas disease.

  17. Seropositivity for Trypanosoma cruzi in domestic dogs from Sonora, Mexico.

    Science.gov (United States)

    Arce-Fonseca, Minerva; Carrillo-Sánchez, Silvia C; Molina-Barrios, Ramón M; Martínez-Cruz, Mariana; Cedillo-Cobián, Jesús R; Henao-Díaz, Yuly A; Rodríguez-Morales, Olivia

    2017-09-05

    Chagas disease is an important health problem in Latin America due to its incapacitating effects and associated mortality. Studies on seropositivity for Trypanosoma cruzi in Mexican dogs have demonstrated a direct correlation between seropositivity in humans and dogs, which can act as sentinels for the disease in this region. The objective of this study was to determine the seropositivity for T.cruzi infection in dogs from Sonora, a northern borderstate of Mexico. Responsible pet owners were selected at random from an urban area of Empalme municipality, Sonora, Mexico, and from there, 180 dog samples were collected. Anti-T. cruzi antibodies were determined using the enzyme-linked immunosorbent assay (ELISA) method. Reactive ELISA sera were processed by indirect immunofluorescence to confirm the presence of anti-T. cruzi antibodies. For the statistical analysis, chi-square tests were conducted. Dogs' sera showed a seropositivity rate of 4.44%. The rate of seropositivity was not associated with the dogs' age, sex, or socioeconomics pertaining to the geographical area. One sample (1/180, 0.55%) showed the acute state of the disease. The study found a presence of anti-T. cruzi antibodies in dogs in this area, which suggests vector transmission. There is a need for active surveillance programs throughout the state of Sonora and vector control strategies should also be implemented in endemic regions.

  18. Diterpenoids from Azorella compacta (Umbelliferae active on Trypanosoma cruzi

    Directory of Open Access Journals (Sweden)

    Araya Jorge E

    2003-01-01

    Full Text Available The anti-Trypanosoma cruzi activity of natural products isolated from Azorella compacta was evaluated, with particular emphasis on their effect against intracellular amastigotes. Five diterpenoids from A. compacta derived from mulinane and azorellane were isolated and identified. Only two products, named azorellanol (Y-2 and mulin-11,3-dien-20-oic acid (Y-5, showed trypanocidal activity against all stages of T. cruzi including intracellular amastigotes. At 10 µM, these compounds displayed a strong lytic activity. It ranged from 88.4 ± 0.6 to 99.0 ± 1 % for all strains and stages evaluate, with an IC50 /18 h values of 20-84 µM and 41-87 µM, respectively. The development of intracellular amastigotes was also inhibited by nearly 60% at 25 µM. The trypanocidal molecules Y-2 and Y-5 did show different degrees of cytotoxicity depending on the cell line tested, with an IC50 /24 h ranging from 33.2 to 161.2 µM. We evaluated the effect of diterpenoids against intracellular T. cruzi forms by immunofluorescent identification of a specific membrane molecular marker (Ssp-4 antigen of the T. cruzi amastigote forms. The accuracy and reproducibility of the measurements were found to be outstanding when examined by confocal microscopy.

  19. Prevalence of Trypanosoma cruzi/HIV coinfection in southern Brazil

    Directory of Open Access Journals (Sweden)

    Dulce Stauffert

    2017-03-01

    Full Text Available Chagas disease reactivation has been a defining condition for acquired immune deficiency syndrome in Brazil for individuals coinfected with Trypanosoma cruzi and HIV since 2004. Although the first coinfection case was reported in the 1980s, its prevalence has not been firmly established. In order to know coinfection prevalence, a cross-sectional study of 200 HIV patients was performed between January and July 2013 in the city of Pelotas, in southern Rio Grande do Sul, an endemic area for Chagas disease. Ten subjects were found positive for T. cruzi infection by chemiluminescence microparticle immunoassay and indirect immunofluorescence. The survey showed 5% coinfection prevalence among HIV patients (95% CI: 2.0–8.0, which was 3.8 times as high as that estimated by the Ministry of Health of Brazil. Six individuals had a viral load higher than 100,000 copies per μL, a statistically significant difference for T. cruzi presence. These findings highlight the importance of screening HIV patients from Chagas disease endemic areas.

  20. The morphology of ovine Trypanosoma melophagium (zoomastigophorea: kinetoplastida).

    Science.gov (United States)

    Büscher, G; Friedhoff, K T

    1984-02-01

    Morphologic and biometric data on bloodstream stages of Trypanosoma melophagium are presented. An increasing parasitemia with 111 trypomastigote stages of T. melophagium were found in Giemsa-stained thin blood smears taken from a splenectomized, cortisone-treated sheep recently infested with Melophagus ovinus infected with T. melophagium . The arithmetic mean and standard deviation in micron of the distances between posterior end and kinetoplast were 14.7 and 2.9, from the kinetoplastic to the center of the nucleus 5.1 and 1.1, and from there to the anterior end 19.5 and 1.9. The free flagellum measured 6.0 microns +/- 1.6 microns. The median and the range of the central 70% of values (median +/- 35%) of the nuclear index were 1.1 and 0.9-1.2 and of the kinetoplastic index 3.8 and 3.3-4.9. The same data in microns for the maximal width were 3.1 and 2.1-4.6, and for the width at the level of the nucleus 2.9 and 2.2-4.6. The larger and smaller diameters of the nucleus measured 2.6 (2.2-3.7) micron and 1.7 (1.3-1.7) micron, respectively. The corresponding kinetoplast diameters were 1.1 (0.9-1.3) microns and 0.9 (0.6-0.9) micron, respectively.

  1. Development of resazurin-based assay in 384-well format for high throughput whole cell screening of Trypanosoma brucei rhodesiense strain STIB 900 for the identification of potential anti-trypanosomal agents.

    Science.gov (United States)

    Lim, Kah Tee; Zahari, Zuriati; Amanah, Azimah; Zainuddin, Zafarina; Adenan, Mohd Ilham

    2016-03-01

    To accelerate the discovery of novel leads for the treatment of Human African Trypanosomiasis (HAT), it is necessary to have a simple, robust and cost-effective assay to identify positive hits by high throughput whole cell screening. Most of the fluorescence assay was made in black plate however in this study the HTS assay developed in 384-well format using clear plate and black plate, for comparison. The HTS assay developed is simple, sensitive, reliable and reproducible in both types of plates. Assay robustness and reproducibility were determined under the optimized conditions in 384-well plate was well tolerated in the HTS assay, including percentage of coefficient of variation (% CV) of 4.68% and 4.74% in clear and black 384-well plate, signal-to-background ratio (S/B) of 12.75 in clear 384-well plate and 12.07 in black 384-well plate, Z' factor of 0.79 and 0.82 in clear 384-well plate and black 384-well plate, respectively and final concentration of 0.30% dimethylsulfoxide (DMSO) in both types of plate. Drug sensitivity was found to be comparable to the reported anti-trypanosomal assay in 96-well format. The reproducibility and sensitivity of this assay make it compliant to automated liquid handler use in HTS applications. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Trypanosoma cruzi: vertebrate and invertebrate cycles in the same mammal host, the opossum Didelphis marsupialis

    Directory of Open Access Journals (Sweden)

    Maria P. Deane

    1984-12-01

    Full Text Available Epimastigotes multiplying extracellularly and metacyclic trypomastigotes, stages that correspond to the cycle of Trypanosoma cruzi in the intestinal lumen of its insect vector, were consistently found in the lumen of the anal glands of opossums Didelphis marsupialis inoculated subcutaneously with infective feces of triatomid bugs.No gambá (Didelphis marsupialis foi observado um ciclo extracelular do Trypanosoma cruzi: o parasita crescia abundantemente no material de secreção acumulado no lumen das glandulas anais de animais criados em cativeiro e infectados por via subcutanea com fezes de triatomineos.

  3. Active transcription and ultrastructural changes during Trypanosoma cruzi metacyclogenesis

    Directory of Open Access Journals (Sweden)

    Ludmila R.P. Ferreira

    2008-03-01

    Full Text Available The differentiation of proliferating epimastigote forms of Trypanosoma cruzi , the protozoan parasite that causes Chagas’ disease, into the infective and non-proliferating metacyclic forms can be reproduced in the laboratory by incubating the cells in a chemically-defined medium that mimics the urine of the insect vector. Epimastigotes have a spherical nucleus, a flagellum protruding from the middle of the protozoan cell, and a disk-shaped kinetoplast - an organelle that corresponds to the mitochondrial DNA. Metacyclic trypomastigotes have an elongated shape with the flagellum protruding from the posterior portion of the cell and associated with a spherical kinetoplast. Here we describe the morphological events of this transformation and characterize a novel intermediate stage by three-dimensional reconstruction of electron microscope serial sections. This new intermediate stage is characterized by a kinetoplast compressing an already elongated nucleus, indicating that metacyclogenesis involves active movements of the flagellar structure relative to the cell body. As transcription occurs more intensely in proliferating epimastigotes than in metacyclics, we also examined the presence of RNA polymerase II and measured transcriptional activity during the differentiation process. Both the presence of the enzyme and transcriptional activity remain unchanged during all steps of metacyclogenesis. RNA polymerase II levels and transcriptional activity only decrease after metacyclics are formed. We suggest that transcription is required during the epimastigote-to-metacyclic trypomastigote differentiation process, until the kinetoplast and flagellum reach the posterior position of the parasites in the infective form.A diferenciação de formas epimastigotas (proliferativas do Trypanosoma cruzi, parasita protozoário causador da doença de Chagas, em formas metacíclicas tripomastigotas (infectivas e não proliferativas, pode ser reproduzida em laborat

  4. Molecular basis of mammalian cell invasion by Trypanosoma cruzi

    Directory of Open Access Journals (Sweden)

    Nobuko Yoshida

    2006-03-01

    Full Text Available Establishment of infection by Trypanosoma cruzi, the agent of Chagas' disease, depends on a series of events involving interactions of diverse parasite molecules with host components. Here we focus on the mechanisms of target cell invasion by metacyclic trypomastigotes (MT and mammalian tissue culture trypomastigotes (TCT. During MT or TCT internalization, signal transduction pathways are activated both in the parasite and the target cell, leading to Ca2+ mobilization. For cell adhesion, MT engage surface glycoproteins, such as gp82 and gp35/50, which are Ca2+ signal-inducing molecules. In T. cruzi isolates that enter host cells in gp82-mediated manner, parasite protein tyrosine kinase as well as phospholipase C are activated, and Ca2+ is released from I P3-sensitive stores, whereas in T. cruzi isolates that attach to target cells mainly through gp35/50, the signaling pathway involving adenylate cyclase appears to be stimulated, with Ca2+ release from acidocalciosomes. In addition, T. cruzi isolate-dependent inhibitory signals, mediated by MT-specific gp90, may be triggered both in the host cell and the parasite. The repertoire of TCT molecules implicated in cell invasion includes surface glycoproteins of gp85 family, with members containing binding sites for laminin and cytokeratin 18, enzymes such as cruzipain, trans-sialidase, and an oligopeptidase B that generates a Ca2+-agonist from a precursor molecule.O estabelecimento da infecção por Trypanosoma cruzi, o agente da doença de Chagas, depende de uma série de eventos envolvendo interações de diversas moléculas do parasita com componentes do hospedeiro. Focalizamos aqui os mecanismos de invasão celular por tripomastigotas metacíclicos (TM e por tripomastigotas de cultura de tecido (TCT. Durante a internalização de TM ou TCT, vias de transdução de sinal são ativadas tanto no parasita como na célula alvo, acarretando a mobilização de Ca2+. Para adesão, TM utiliza as glicoprote

  5. Eco-epidemiological aspects of Trypanosoma cruzi, Trypanosoma rangeli and their vector (Rhodnius pallescens in Panama Generalidades do Trypanosoma cruzi, do Trypanosoma rangeli e do seu vetor (Rhodnius pallescens no Panamá

    Directory of Open Access Journals (Sweden)

    Ana Maria de Vasquez

    2004-08-01

    Full Text Available The eco-epidemiology of T. cruzi infection was investigated in the Eastern border of the Panama Canal in Central Panama. Between 1999 and 2000, 1110 triatomines were collected: 1050 triatomines (94.6% from palm trees, 27 (2.4% from periurban habitats and 33 (3.0% inside houses. All specimens were identified as R. pallescens. There was no evidence of vector domiciliation. Salivary glands from 380 R. pallescens revealed a trypanosome natural infection rate of 7.6%, while rectal ampoule content from 373 triatomines was 45%. Isoenzyme profiles on isolated trypanosomes demonstrated that 85.4% (n = 88 were T. cruzi and 14.6% (n = 15 were T. rangeli. Blood meal analysis from 829 R. pallescens demonstrated a zoophilic vector behavior, with opossums as the preferential blood source. Seroprevalence in human samples from both study sites was less than 2%. Our results demonstrate that T. cruzi survives in the area in balanced association with R. pallescens, and with several different species of mammals in their natural niches. However, the area is an imminent risk of infection for its population, consequently it is important to implement a community educational program regarding disease knowledge and control measures.A epidemiologia da infecção do T. cruzi foi investigada na margem oriental do canal do Panamá, na região central da Republica do Panamá. A informação obtida durante o estudo avaliou fatores de risco da doença de Chagas nesta área. Entre 1999 e 2000, 1110 triatomíneos foram coletados: 1050 triatomíneos (94,6% em palmeiras, 27 (2,4% em habitats periurbanos e 33 (3,0% no interior de casas. Todos os espécimens foram identificados como R. pallescens. Não havia nenhuma evidência de domiciliação do vetor. O exame de glândulas salivares de 380 R. pallescens revelaram taxa de infecção natural por Trypanosoma de 7,6%, mas o conteúdo da ampola rectal de 373 triatomíneos mostrou 45% de positividade. Os perfis de isoenzimas em

  6. The regulation of autophagy differentially affects Trypanosoma cruzi metacyclogenesis.

    Directory of Open Access Journals (Sweden)

    María Cristina Vanrell

    2017-11-01

    Full Text Available Autophagy is a cellular process required for the removal of aged organelles and cytosolic components through lysosomal degradation. All types of eukaryotic cells from yeasts to mammalian cells have the machinery to activate autophagy as a result of many physiological and pathological situations. The most frequent stimulus of autophagy is starvation and the result, in this case, is the fast generation of utilizable food (e.g. amino acids and basic nutrients to maintain the vital biological processes. In some organisms, starvation also triggers other associated processes such as differentiation. The protozoan parasite Trypanosoma cruzi undergoes a series of differentiation processes throughout its complex life cycle. Although not all autophagic genes have been identified in the T. cruzi genome, previous works have demonstrated the presence of essential autophagic-related proteins. Under starvation conditions, TcAtg8, which is the parasite homolog of Atg8/LC3 in other organisms, is located in autophagosome-like vesicles. In this work, we have characterized the autophagic pathway during T. cruzi differentiation from the epimastigote to metacyclic trypomastigote form, a process called metacyclogenesis. We demonstrated that autophagy is stimulated during metacyclogenesis and that the induction of autophagy promotes this process. Moreover, with exception of bafilomycin, other classical autophagy modulators have similar effects on T. cruzi autophagy. We also showed that spermidine and related polyamines can positively regulate parasite autophagy and differentiation. We concluded that both polyamine metabolism and autophagy are key processes during T. cruzi metacyclogenesis that could be exploited as drug targets to avoid the parasite cycle progression.

  7. Protein 3-nitrotyrosine formation during Trypanosoma cruzi infection in mice

    Directory of Open Access Journals (Sweden)

    M. Naviliat

    2005-12-01

    Full Text Available Nitric oxide (·NO is a diffusible messenger implicated in Trypanosoma cruzi resistance. Excess production of ·NO and oxidants leads to the generation of nitrogen dioxide (·NO2, a strong nitrating agent. Tyrosine nitration is a post-translational modification resulting from the addition of a nitro (-NO2 group to the ortho-position of tyrosine residues. Detection of protein 3-nitrotyrosine is regarded as a marker of nitro-oxidative stress and is observed in inflammatory processes. The formation and role of nitrating species in the control and myocardiopathy of T. cruzi infection remain to be studied. We investigated the levels of ·NO and protein 3-nitrotyrosine in the plasma of C3H and BALB/c mice and pharmacologically modulated their production during the acute phase of T. cruzi infection. We also looked for protein 3-nitrotyrosine in the hearts of infected animals. Our results demonstrated that C3H animals produced higher amounts of ·NO than BALB/c mice, but their generation of peroxynitrite was not proportionally enhanced and they had higher parasitemias. While N G-nitro-arginine methyl ester treatment abolished ·NO production and drastically augmented the parasitism, mercaptoethylguanidine and guanido-ethyl disulfide, at doses that moderately reduced the ·NO and 3-nitrotyrosine levels, paradoxically diminished the parasitemia in both strains. Nitrated proteins were also demonstrated in myocardial cells of infected mice. These data suggest that the control of T. cruzi infection depends not only on the capacity to produce ·NO, but also on its metabolic fate, including the generation of nitrating species that may constitute an important element in parasite resistance and collateral myocardial damage.

  8. Targeted screening strategies to detect Trypanosoma cruzi infection in children.

    Directory of Open Access Journals (Sweden)

    Michael Z Levy

    2007-12-01

    Full Text Available Millions of people are infected with Trypanosoma cruzi, the causative agent of Chagas disease in Latin America. Anti-trypanosomal drug therapy can cure infected individuals, but treatment efficacy is highest early in infection. Vector control campaigns disrupt transmission of T. cruzi, but without timely diagnosis, children infected prior to vector control often miss the window of opportunity for effective chemotherapy.We performed a serological survey in children 2-18 years old living in a peri-urban community of Arequipa, Peru, and linked the results to entomologic, spatial and census data gathered during a vector control campaign. 23 of 433 (5.3% [95% CI 3.4-7.9] children were confirmed seropositive for T. cruzi infection by two methods. Spatial analysis revealed that households with infected children were very tightly clustered within looser clusters of households with parasite-infected vectors. Bayesian hierarchical mixed models, which controlled for clustering of infection, showed that a child's risk of being seropositive increased by 20% per year of age and 4% per vector captured within the child's house. Receiver operator characteristic (ROC plots of best-fit models suggest that more than 83% of infected children could be identified while testing only 22% of eligible children.We found evidence of spatially-focal vector-borne T. cruzi transmission in peri-urban Arequipa. Ongoing vector control campaigns, in addition to preventing further parasite transmission, facilitate the collection of data essential to identifying children at high risk of T. cruzi infection. Targeted screening strategies could make integration of diagnosis and treatment of children into Chagas disease control programs feasible in lower-resource settings.

  9. Sialic Acid Glycobiology Unveils Trypanosoma cruzi Trypomastigote Membrane Physiology.

    Directory of Open Access Journals (Sweden)

    Andrés B Lantos

    2016-04-01

    Full Text Available Trypanosoma cruzi, the flagellate protozoan agent of Chagas disease or American trypanosomiasis, is unable to synthesize sialic acids de novo. Mucins and trans-sialidase (TS are substrate and enzyme, respectively, of the glycobiological system that scavenges sialic acid from the host in a crucial interplay for T. cruzi life cycle. The acquisition of the sialyl residue allows the parasite to avoid lysis by serum factors and to interact with the host cell. A major drawback to studying the sialylation kinetics and turnover of the trypomastigote glycoconjugates is the difficulty to identify and follow the recently acquired sialyl residues. To tackle this issue, we followed an unnatural sugar approach as bioorthogonal chemical reporters, where the use of azidosialyl residues allowed identifying the acquired sugar. Advanced microscopy techniques, together with biochemical methods, were used to study the trypomastigote membrane from its glycobiological perspective. Main sialyl acceptors were identified as mucins by biochemical procedures and protein markers. Together with determining their shedding and turnover rates, we also report that several membrane proteins, including TS and its substrates, both glycosylphosphatidylinositol-anchored proteins, are separately distributed on parasite surface and contained in different and highly stable membrane microdomains. Notably, labeling for α(1,3Galactosyl residues only partially colocalize with sialylated mucins, indicating that two species of glycosylated mucins do exist, which are segregated at the parasite surface. Moreover, sialylated mucins were included in lipid-raft-domains, whereas TS molecules are not. The location of the surface-anchored TS resulted too far off as to be capable to sialylate mucins, a role played by the shed TS instead. Phosphatidylinositol-phospholipase-C activity is actually not present in trypomastigotes. Therefore, shedding of TS occurs via microvesicles instead of as a fully

  10. Prevalence of Trypanosoma vivax in cattle in central Sudan

    International Nuclear Information System (INIS)

    Fadl, M.; Babiker, H.I.; Bakheit, M.A.; A Rahman, A.H.

    2000-01-01

    The study was conducted to validate an antibody-detection ELISA test (Ab-ELISA) using pre-coated ELISA plates with crude antigen preparation of Trypanosoma vivax and to study the prevalence of T. vivax infection in central Sudan. A total of 704 blood samples were collected from cattle in central Sudan, a known endemic area of T. vivax infection. Additionally, 74 blood samples were collected from northern Sudan (Atbra town), an area presumed to be T. vivax-free. Sera were collected during the period September 1998 to May 1999 during three different seasons (summer, autumn and winter). Under the existing laboratory conditions, the test showed a clear distinction between different controls, i.e. strong positive control (C++), weak positive control (C+), negative control (C-) and the conjugate control (Cc). A percent positivity of 25% was taken as a cut-off value to determine the positivity or negativity of the test. The acceptable optical density range of strong positive control (C++) was 0.65-1.22. Lower and upper percent positivity limits for different controls were also determined. The study showed that T. vivax is endemic in central Sudan with 1.4% prevalence based on parasitological examination and 29.26% on Ab-ELISA. The infection rate was significantly higher during the autumn and winter than in summer. Young cattle showed significantly lower infection rates than adults as indicated by both the parasitological and the Ab-ELISA test. In relation to husbandry practice, migratory cattle showed significantly higher rates of prevalence than resident cattle. There was no significant difference in average packed red cell volume (PCV) values between ELISA positive and ELISA negative animals. Calves of less than one year of age showed significantly lower PCV values when belonging to migratory herds than to resident herds. (author)

  11. Congenital Trypanosoma cruzi Transmission in Santa Cruz, Bolivia

    Science.gov (United States)

    Bern, Caryn; Verastegui, Manuela; Gilman, Robert H.; LaFuente, Carlos; Galdos-Cardenas, Gerson; Calderon, Maritza; Pacori, Juan; Abastoflor, Maria del Carmen; Aparicio, Hugo; Brady, Mark F.; Ferrufino, Lisbeth; Angulo, Noelia; Marcus, Sarah; Sterling, Charles; Maguire, James H.

    2017-01-01

    Background We conducted a study of congenital Trypanosoma cruzi infection in Santa Cruz, Bolivia. Our objective was to apply new tools to identify weak points in current screening algorithms, and find ways to improve them. Methods Women presenting for delivery were screened by rapid and conventional serological tests. For infants of infected mothers, blood specimens obtained on days 0, 7, 21, 30, 90, 180, and 270 were concentrated and examined microscopically; serological tests were performed for the day 90, 180, and 270 specimens. Maternal and infant specimens, including umbilical tissue, were tested by polymerase chain reaction (PCR) targeting the kinetoplast minicircle and by quantitative PCR. Results Of 530 women, 154 (29%) were seropositive. Ten infants had congenital T. cruzi infection. Only 4 infants had positive results of microscopy evaluation in the first month, and none had positive cord blood microscopy results. PCR results were positive for 6 (67%) of 9 cord blood and 7 (87.5%) of 8 umbilical tissue specimens. PCR-positive women were more likely to transmit T. cruzi than were seropositive women with negative PCR results (P < .05). Parasite loads determined by quantitative PCR were higher for mothers of infected infants than for seropositive mothers of uninfected infants (P < .01). Despite intensive efforts, only 58% of at-risk infants had a month 9 specimen collected. Conclusions On the basis of the low sensitivity of microscopy in cord blood and high rate of loss to follow-up, we estimate that current screening programs miss one-half of all infected infants. Molecular techniques may improve early detection. PMID:19877966

  12. Functional characterization of 8-oxoguanine DNA glycosylase of Trypanosoma cruzi.

    Directory of Open Access Journals (Sweden)

    Carolina Furtado

    Full Text Available The oxidative lesion 8-oxoguanine (8-oxoG is removed during base excision repair by the 8-oxoguanine DNA glycosylase 1 (Ogg1. This lesion can erroneously pair with adenine, and the excision of this damaged base by Ogg1 enables the insertion of a guanine and prevents DNA mutation. In this report, we identified and characterized Ogg1 from the protozoan parasite Trypanosoma cruzi (TcOgg1, the causative agent of Chagas disease. Like most living organisms, T. cruzi is susceptible to oxidative stress, hence DNA repair is essential for its survival and improvement of infection. We verified that the TcOGG1 gene encodes an 8-oxoG DNA glycosylase by complementing an Ogg1-defective Saccharomyces cerevisiae strain. Heterologous expression of TcOGG1 reestablished the mutation frequency of the yeast mutant ogg1(-/- (CD138 to wild type levels. We also demonstrate that the overexpression of TcOGG1 increases T. cruzi sensitivity to hydrogen peroxide (H(2O(2. Analysis of DNA lesions using quantitative PCR suggests that the increased susceptibility to H(2O(2 of TcOGG1-overexpressor could be a consequence of uncoupled BER in abasic sites and/or strand breaks generated after TcOgg1 removes 8-oxoG, which are not rapidly repaired by the subsequent BER enzymes. This hypothesis is supported by the observation that TcOGG1-overexpressors have reduced levels of 8-oxoG both in the nucleus and in the parasite mitochondrion. The localization of TcOgg1 was examined in parasite transfected with a TcOgg1-GFP fusion, which confirmed that this enzyme is in both organelles. Taken together, our data indicate that T. cruzi has a functional Ogg1 ortholog that participates in nuclear and mitochondrial BER.

  13. Comprehensive proteomic analysis of Trypanosoma cruzi epimastigote cell surface proteins by two complementary methods

    DEFF Research Database (Denmark)

    Queiroz, Rayner M L; Charneau, Sébastien; Motta, Flávia N

    2013-01-01

    Trypanosoma cruzi is a protozoan that causes Chagas' disease, a neglected infectious illness that affects millions of people, mostly in Latin America. Here, the cell surface subproteome of the T. cruzi epimastigote life form was characterized. In order to prepare samples enriched in epimastigote...

  14. Cell surface proteome analysis of human-hosted Trypanosoma cruzi life stages

    DEFF Research Database (Denmark)

    Queiroz, Rayner M L; Charneau, Sébastien; Bastos, Izabela M D

    2014-01-01

    Chagas' disease is a neglected infectious illness, caused by the protozoan Trypanosoma cruzi. It remains a challenging health issue in Latin America, where it is endemic, and so far there is no immunoprophylatic vaccine or satisfactory chemotherapic treatment for its chronic stage. The present work...

  15. Kinetic properties and inhibition of Trypanosoma cruzi 3-hydroxy-3-methylglutaryl CoA reductase

    DEFF Research Database (Denmark)

    Hurtado-Guerrrero, Ramón; Pena Diaz, Javier; Montalvetti, Andrea

    2002-01-01

    A detailed kinetic analysis of the recombinant soluble enzyme 3-hydroxy-3-methylglutaryl CoA reductase (HMGR) from Trypanosoma cruzi has been performed. The enzyme catalyzes the normal anabolic reaction and the reductant is NADPH. It also catalyzes the oxidation of mevalonate but at a lower propo...

  16. The effect of the diterpene 5-epi-icetexone on the cell cycle of Trypanosoma cruzi.

    NARCIS (Netherlands)

    Lozano, E.; Barrera, P.; Tonn, C.; Nieto, M.; Sartor, T.; Sosa, M.A.

    2012-01-01

    Numerous natural compounds have been used against Trypanosoma cruzi, the causative agent of Chagas' disease. Here, we studied the effect of the diterpene 5-epi-icetexone on growth and morphology of parasites synchronized with hydroxyurea, at different periods of time after removal of the nucleotide.

  17. Lack of evidence for integration of Trypanosoma cruzi minicircle DNA in South American human genomes

    Czech Academy of Sciences Publication Activity Database

    Flegontova, Olga; Lukeš, Julius; Flegontov, Pavel

    2012-01-01

    Roč. 42, č. 5 (2012), s. 437-441 ISSN 0020-7519 Grant - others:GA MŠk(CZ) LM2010005 Institutional support: RVO:60077344 Keywords : Trypanosoma cruzi * Kinetoplast minicircle * Chagas disease * Horizontal gene transfer * Human genome Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.637, year: 2012 http://www.sciencedirect.com/science/article/pii/S0020751912000781

  18. Analysis of the mitochondrial maxicircle of Trypanosoma lewisi, a neglected human pathogen

    Czech Academy of Sciences Publication Activity Database

    Lin, R.-H.; Lai, D.-H.; Zheng, L.-L.; Wu, J.; Lukeš, Julius; Hide, G.; Lun, Z.-R.

    2015-01-01

    Roč. 8, 30 December 2015 (2015), s. 665 ISSN 1756-3305 Institutional support: RVO:60077344 Keywords : Trypanosoma lewisi * Kinetoplast maxicircle * Mitochondrial DNA * RNA editing * Palindrome Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.234, year: 2015

  19. Efficacy of some essential oils in mice infected with Trypanosoma cruzi

    African Journals Online (AJOL)

    Purpose: To evaluate the efficacy of orally administered Cymbopogon citratus, Zingiber officinale and Syzygium aromaticum essential oils (EOs) in mice infected with Trypanosoma cruzi. Methods: Three experiments were conducted with 48 Swiss mice each. The animals were inoculated with 2 x 106 metacyclic ...

  20. Trypanosoma cruzi in the chicken model: Chagas-like heart disease in the absence of parasitism

    Czech Academy of Sciences Publication Activity Database

    Teixeira, A.R.L.; Gomes, C.; Nitz, N.; Sousa, A.O.; Alvez, R.M.; Guimaro, M.C.; Cordeiro, C.; Bernal, F.M.; Rosa, A.C.; Hejnar, Jiří; Leonardecz, E.; Hecht, M.M.

    2011-01-01

    Roč. 5, č. 3 (2011), e1000 ISSN 1935-2735 Institutional research plan: CEZ:AV0Z50520514 Keywords : Chagas disease * Trypanosoma cruzi * kDNA minicircles * inbred chicken Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 4.716, year: 2011

  1. Trypanocidal activity of human plasma on Trypanosoma evansi in mice Atividade tripanocida do plasma humano sobre Trypanosoma evansi em camundongos

    Directory of Open Access Journals (Sweden)

    Aleksandro Schafer Da Silva

    2012-03-01

    Full Text Available This study aimed to test an alternative protocol with human plasma to control Trypanosoma evansi infection in mice. Plasma from an apparently 27-year-old healthy male, blood type A+, was used in the study. A concentration of 100 mg.dL-1 apolipoprotein L1 (APOL1 was detected in the plasma. Forty mice were divided into four groups with 10 animals each. Group A comprised uninfected animals. Mice from groups B, C and D were inoculated with a T. evansi isolate. Group B was used as a positive control. At three days post-infection (DPI, the mice were administered intraperitoneally with human plasma. A single dose of 0.2 mL plasma was given to those in group C. The mice from group D were administered five doses of 0.2 mL plasma with a 24 hours interval between the doses. Group B showed high increasing parasitemia that led to their death within 5 DPI. Both treatments eliminated parasites from the blood and increased the longevity of animals. An efficacy of 50 (group C and 80% (group D of human plasma trypanocidal activity was found using PCR. This therapeutic success was likely achieved in the group D due to their higher levels of APOL1 compared with group C.Este estudo teve como objetivo testar um protocolo alternativo com plasma humano para controlar a infecção por Trypanosoma evansi em camundongos. O plasma foi oriundo de um homem aparentemente saudável, com idade entre 27 anos e tipo de sangue A+. Foi detectada uma concentração de 100 mg.dL -1 de apolipoproteína L1 (APOL1 no plasma. Quarenta camundongos foram divididos em quatro grupos, contendo dez animais cada. Grupo A, composto de animais não infectados. Os roedores dos grupos B, C e D foram inoculados intraperitonealmente com um isolado de T. evansi. O Grupo B foi usado como um controle positivo. Três dias pós-infecção (DPI, os camundongos foram tratados com plasma humano. Uma dose única de 0,2 mL de plasma foi administrada nos roedores do grupo C. Os ratos do grupo D receberam cinco

  2. EXPERIMENTAL INFECTION BY Trypanosoma vivax IN GOATS INFECÇÃO EXPERIMENTAL EM CAPRINOS COM Trypanosoma vivax

    Directory of Open Access Journals (Sweden)

    Francisco David Nascimento Sousa

    2008-10-01

    Full Text Available

    Four goats were infected intravenously with 1.0 mL of cattle blood containing about 1.25 x 105 Trypanosoma vivax derived from spontaneous outbreak in cattle at Catolé do Rocha city, Paraíba, Brazil. Other four goats were used as controls. Parasitemia and body temperature were determined daily for 40 days. Animals were weighted each 7 days, and blood samples for blood cells counts were collected each 5 days. It was obtained a sample of liquor from each animal before death; cerebrospinal fluid samples were submitted to biochemical and cytological evaluations, density determination and parasite detection. A positive correlation was found between body temperature and parasitemia in infected animals. These animals presented anemia, leukopenia, hypoglycemia, decreased serum levels of total proteins and cholesterol, and nervous symptoms. Examination of cerebrospinal fluid resulted in decrease of glucose levels and increase in lactate dehydrogenase, cell counts and presence of the parasite. At necropsy it was found pale carcass, generalized infartation of lymphonodes, pulmonary edema, and liquid accumulation of pericardium. Histological changes were characterized by interstitial pneumonia, miocarditis, cardiac fibrosis, meningitis, and encephalitis. All observed changes confirm patogenicity of T. vivax.

    KEY WORDS: Experimental infection, trypanosomiasis, patogenicity.

    Quatro caprinos foram infectados experimentalmente por via intravenosa com 1,0 ml de sangue contendo aproximadamente 1,25 x 105 tripanossomas/ml, utilizando-se um isolado de Trypanosoma vivax de bovinos infectados naturalmente no município de Catolé do Rocha, Paraíba. A parasitemia e a temperatura foram determinadas diariamente durante quarenta dias. A cada cinco dias realizaram-se coletas de sangue para hemograma e análise bioquímica sérica. Antes do

  3. SHORT COMMUNICATION

    African Journals Online (AJOL)

    2007-05-02

    May 2, 2007 ... caused by morphologically indistinguishable subspecies of Trypanosoma brucei. The two forms are West African sleeping sickness, caused by. T. brucei gambiense and East African sleeping sickness, caused by T. brucei rhodesiense. In Tanzania HAT is one of the major public health problems and was ...

  4. In vitro trypanocidal effect of methanolic extract of some Nigerian ...

    African Journals Online (AJOL)

    Methanol extracts from twenty three plants harvested from the Savannah vegetation belt of Nigeria were analyzed in vitro for trypanocidal activity against Trypanosoma brucei brucei and Trypanosoma congolense at concentrations of 4 mg/ml, 0.4 mg/ml and 0.04 mg/ml. Extracts of Khaya senegalensis, Piliostigma ...

  5. Diverse inhibitor chemotypes targeting Trypanosoma cruzi CYP51.

    Directory of Open Access Journals (Sweden)

    Shamila S Gunatilleke

    Full Text Available Chagas Disease, a WHO- and NIH-designated neglected tropical disease, is endemic in Latin America and an emerging infection in North America and Europe as a result of population moves. Although a major cause of morbidity and mortality due to heart failure, as well as inflicting a heavy economic burden in affected regions, Chagas Disease elicits scant notice from the pharmaceutical industry because of adverse economic incentives. The discovery and development of new routes to chemotherapy for Chagas Disease is a clear priority.The similarity between the membrane sterol requirements of pathogenic fungi and those of the parasitic protozoon Trypanosoma cruzi, the causative agent of Chagas human cardiopathy, has led to repurposing anti-fungal azole inhibitors of sterol 14α-demethylase (CYP51 for the treatment of Chagas Disease. To diversify the therapeutic pipeline of anti-Chagasic drug candidates we exploited an approach that included directly probing the T. cruzi CYP51 active site with a library of synthetic small molecules. Target-based high-throughput screening reduced the library of ∼104,000 small molecules to 185 hits with estimated nanomolar K(D values, while cross-validation against T. cruzi-infected skeletal myoblast cells yielded 57 active hits with EC(50 <10 µM. Two pools of hits partially overlapped. The top hit inhibited T. cruzi with EC(50 of 17 nM and was trypanocidal at 40 nM.The hits are structurally diverse, demonstrating that CYP51 is a rather permissive enzyme target for small molecules. Cheminformatic analysis of the hits suggests that CYP51 pharmacology is similar to that of other cytochromes P450 therapeutic targets, including thromboxane synthase (CYP5, fatty acid ω-hydroxylases (CYP4, 17α-hydroxylase/17,20-lyase (CYP17 and aromatase (CYP19. Surprisingly, strong similarity is suggested to glutaminyl-peptide cyclotransferase, which is unrelated to CYP51 by sequence or structure. Lead compounds developed by pharmaceutical

  6. The Complement System: A Prey of Trypanosoma cruzi

    Directory of Open Access Journals (Sweden)

    Kárita C. F. Lidani

    2017-04-01

    Full Text Available Trypanosoma cruzi is a protozoan parasite known to cause Chagas disease (CD, a neglected sickness that affects around 6–8 million people worldwide. Originally, CD was mainly found in Latin America but more recently, it has been spread to countries in North America, Asia, and Europe due the international migration from endemic areas. Thus, at present CD represents an important concern of global public health. Most of individuals that are infected by T. cruzi may remain in asymptomatic form all lifelong, but up to 40% of them will develop cardiomyopathy, digestive mega syndromes, or both. The interaction between the T. cruzi infective forms and host-related immune factors represents a key point for a better understanding of the physiopathology of CD. In this context, the complement, as one of the first line of host defense against infection was shown to play an important role in recognizing T. cruzi metacyclic trypomastigotes and in controlling parasite invasion. The complement consists of at least 35 or more plasma proteins and cell surface receptors/regulators, which can be activated by three pathways: classical (CP, lectin (LP, and alternative (AP. The CP and LP are mainly initiated by immune complexes or pathogen-associated molecular patterns (PAMPs, respectively, whereas AP is spontaneously activated by hydrolysis of C3. Once activated, several relevant complement functions are generated which include opsonization and phagocytosis of particles or microorganisms and cell lysis. An important step during T. cruzi infection is when intracellular trypomastigotes are release to bloodstream where they may be target by complement. Nevertheless, the parasite uses a sequence of events in order to escape from complement-mediated lysis. In fact, several T. cruzi molecules are known to interfere in the initiation of all three pathways and in the assembly of C3 convertase, a key step in the activation of complement. Moreover, T. cruzi promotes secretion

  7. Aspects of resistance to experimental infection with Trypanosoma cruzi

    International Nuclear Information System (INIS)

    Dias, Viviane Liotti

    2010-01-01

    Chagas disease, a zoonosis caused by the protozoan Trypanosoma cruzi, has a wide distribution in Latin America and extends from the southern part of the United States to Argentina. A number of 10 million of infected people is estimated and another 25 million exposed to the risk. Although discovered over a century, Chagas disease is still a serious infection that causes great socioeconomic impact, with no effective treatment at the chronic phase and in which, a lack of scientific knowledge can be observed. The main goal of this work was that obtaining and using consomic strain of mice, the resistance could be investigated. Consomic strains were produced by programmed mating, in which the animals were monitored with DNA polymorphic markers, and one of his chromosomes was replaced by his homologue from another strain. As parental, were used, the inbred strains C57BL/6/J Unib with resistant phenotype (donor) and as receiver, the A/JUnib strain, that has a susceptible phenotype. These models were used to produce five consomic strains: for the chromosomes 7 (CSs7), 11 (CSs11), 14 (CSs14), 17 (CSs17) and 19 (CSs19), described by Passos et al. (2003) as important in controlling infection caused by the Y strain of T. cruzi. In experimental testing, the consomics were inoculated intraperitoneally at doses of 10 1 , 10 2 , 10 3 and 10 4 using as control, animals from both parental lines. In all consomics, resistance was higher than that observed in the susceptible parental. In a second protocol, the consomics were mated with scheduled associations and the progenies were challenged with inocula employing increasing doses of trypomastigotes. The resistance observed in this group was also higher than that observed in the parental with susceptible phenotype. The observed results demonstrate that the use of the consomic strains that were produced order to assess the contribution of each chromosome in the resistance, as well as the effects of association between chromosomes are an

  8. Aspects of resistance to experimental infection with Trypanosoma cruzi; Aspectos da resistencia a infecao experimental com Trypanosoma cruzi

    Energy Technology Data Exchange (ETDEWEB)

    Dias, Viviane Liotti

    2010-07-01

    Chagas disease, a zoonosis caused by the protozoan Trypanosoma cruzi, has a wide distribution in Latin America and extends from the southern part of the United States to Argentina. A number of 10 million of infected people is estimated and another 25 million exposed to the risk. Although discovered over a century, Chagas disease is still a serious infection that causes great socioeconomic impact, with no effective treatment at the chronic phase and in which, a lack of scientific knowledge can be observed. The main goal of this work was that obtaining and using consomic strain of mice, the resistance could be investigated. Consomic strains were produced by programmed mating, in which the animals were monitored with DNA polymorphic markers, and one of his chromosomes was replaced by his homologue from another strain. As parental, were used, the inbred strains C57BL/6/J Unib with resistant phenotype (donor) and as receiver, the A/JUnib strain, that has a susceptible phenotype. These models were used to produce five consomic strains: for the chromosomes 7 (CSs7), 11 (CSs11), 14 (CSs14), 17 (CSs17) and 19 (CSs19), described by Passos et al. (2003) as important in controlling infection caused by the Y strain of T. cruzi. In experimental testing, the consomics were inoculated intraperitoneally at doses of 10{sup 1}, 10{sup 2}, 10{sup 3} and 10{sup 4} using as control, animals from both parental lines. In all consomics, resistance was higher than that observed in the susceptible parental. In a second protocol, the consomics were mated with scheduled associations and the progenies were challenged with inocula employing increasing doses of trypomastigotes. The resistance observed in this group was also higher than that observed in the parental with susceptible phenotype. The observed results demonstrate that the use of the consomic strains that were produced order to assess the contribution of each chromosome in the resistance, as well as the effects of association between

  9. Molecular characterization and interactome analysis of Trypanosoma cruzi tryparedoxin II.

    Science.gov (United States)

    Arias, Diego G; Piñeyro, María Dolores; Iglesias, Alberto A; Guerrero, Sergio A; Robello, Carlos

    2015-04-29

    Trypanosoma cruzi, the causative agent of Chagas disease, possesses two tryparedoxins (TcTXNI and TcTXNII), belonging to the thioredoxin superfamily. TXNs are oxidoreductases which mediate electron transfer between trypanothione and peroxiredoxins. This constitutes a difference with the host cells, in which these activities are mediated by thioredoxins. These differences make TXNs an attractive target for drug development. In a previous work we characterized TcTXNI, including the redox interactome. In this work we extend the study to TcTXNII. We demonstrate that TcTXNII is a transmembrane protein anchored to the surface of the mitochondria and endoplasmic reticulum, with a cytoplasmatic orientation of the redox domain. It would be expressed during the metacyclogenesis process. In order to continue with the characterization of the redox interactome of T. cruzi, we designed an active site mutant TcTXNII lacking the resolving cysteine, and through the expression of this mutant protein and incubation with T. cruzi proteins, heterodisulfide complexes were isolated by affinity chromatography and identified by mass spectrometry. This allowed us to identify sixteen TcTXNII interacting proteins, which are involved in a wide range of cellular processes, indicating the relevance of TcTXNII, and contributing to our understanding of the redox interactome of T. cruzi. T. cruzi, the causative agent of Chagas disease, constitutes a major sanitary problem in Latin America. The number of estimated infected persons is ca. 8 million, 28 million people are at risk of infection and ~20,000 deaths occur per year in endemic regions. No vaccines are available at present, and most drugs currently in use were developed decades ago and show variable efficacy with undesirable side effects. The parasite is able to live and prolipherate inside macrophage phagosomes, where it is exposed to cytotoxic reactive oxygen and nitrogen species, derived from macrophage activation. Therefore, T. cruzi

  10. Characterization of plasma menbrane polypeptides of trypanosoma from bats Caracterização de polipeptídeos de membrana plasmática de tripanosomas de morcegos

    OpenAIRE

    R. T. Pinho; Giovanni de Simone

    1989-01-01

    Cell surface proteins of Trypanosoma dionisii, Trypanosoma vespertilionis and Trypanosoma sp. (M238) were radiodinated and their distribution both in the detergent-poor (DPP) and dertergent-enriched phase (DRP) was studied using a phase separation technique in Triton X-114 as well as polyacrylamide gel electrophoresis in sodium dodecyl sulphate (SDS-PAGE). Significant differences were observed in the proteins present in the DRP when the three species of trypanosoma were compared. Two major ba...

  11. Comprehensive glycoprofiling of the epimastigote and trypomastigote stages of Trypanosoma cruzi

    DEFF Research Database (Denmark)

    Alves, Maria Julia Manso; Kawahara, Rebeca; Viner, Rosa

    2017-01-01

    Trypanosoma cruzi, the protozoan that causes Chagas disease, has a complex life cycle involving insect and mammalian hosts and distinct developmental stages. During T. cruzi developmental stages, glycoproteins play important role in the host-parasite interaction, such as cellular recognition, host...... the significant T. cruzi stage-specific expression of glycoproteins that can help to better understand the T. cruzi phenotype and response caused by the interaction with different hosts during its complex life cycle. BIOLOGICAL SIGNIFICANCE: Chagas disease caused by the protozoan Trypanosoma cruzi is a neglected...... disease which affects millions of people especially in Latin America. The absence of efficient drugs and vaccines against Chagas disease stimulates the search for novel targets. Glycoproteins are very attractive therapeutic candidate targets since they mediate key processes in the host...

  12. A case of Trypanosoma congolense savannah type infection and its management in a dog

    Directory of Open Access Journals (Sweden)

    Peter Kimeli

    2014-12-01

    Full Text Available A case of Trypanosoma congolense savannah type infection in a 4-year old German shepherd dog weighing 26-kg was presented to the Small Animal Clinic, University of Nairobi, Kenya, with the history of anorexia and difficulty in breathing. The clinical manifestations were fever, pale mucous membrane, dyspnea and wasting. Blood examination revealed the existence of trypanosome parasites, and showed mild anemia. Internal Transcribed Spacer (ITS based polymerase chain reaction confirmed the presence of Trypanosoma congolense savannah type. Along with supporting therapy, the case was successfully managed using diminazene aceturate injection (dosed at 3.5 mg/kg body weight through intramuscular route. Complete recovery of the case was observed on day 6 of post-treatment.

  13. Anti-Trypanosoma cruzi and cytotoxic activities of Eugenia uniflora L.

    Science.gov (United States)

    Santos, Karla K A; Matias, Edinardo F F; Tintino, Saulo R; Souza, Celestina E S; Braga, Maria F B M; Guedes, Gláucia M M; Rolón, Miriam; Vega, Celeste; de Arias, Antonieta Rojas; Costa, José G M; Menezes, Irwin R A; Coutinho, Henrique D M

    2012-05-01

    Chagas disease is caused by Trypanosoma cruzi, being considered a public health problem. An alternative to combat this pathogen is the use of natural products isolated from fruits such as Eugenia uniflora, a plant used by traditional communities as food and medicine due to its antimicrobial and biological activities. Ethanolic extract from E. uniflora was used to evaluate in vitro anti-epimastigote and cytotoxic activity. This is the first record of anti-Trypanosoma activity of E. uniflora, demonstrating that a concentration presenting 50% of activity (EC(50)) was 62.76 μg/mL. Minimum inhibitory concentration (MIC) was ≤ 1024 μg/mL. Our results indicate that E. uniflora could be a source of plant-derived natural products with anti-epimastigote activity with low toxicity. Copyright © 2012 Elsevier Inc. All rights reserved.

  14. The isolation and identification of Trypanosoma cruzi from raccoons in Maryland

    Science.gov (United States)

    Walton, B.C.; Bauman, P.M.; Diamond, L.S.; Herman, C.M.

    1958-01-01

    Five raccoons trapped at Patuxent Research Refuge, Laurel, Maryland, were found to have trypanosomes in the blood which were morphologically indistinguishable from Trypanosoma cruzi on stained smears. The organism grew well in culture. It developed and reproduced in Triatoma protracta, T. infestans, T. phyllosoma, and Rhodnius prolixus. Experimental infections were produced in raccoons, opossums, mice, rats, and monkeys by inoculation of blood, culture, and triatome forms. Typical leishmaniform bodies were found in tissue sections of cardiac muscle fibers from naturally and experimentally infected animals. Cross agglutinations carried out with Iiving cultural forms and rabbit antisera demonstrated a close antigenic relationship between the raccoon trypanosome and T. cruzi (Brazil strain). On the basis of (1) morphology, (2) presence of leishmaniform tissue stages, (3) development in triatomes, (4) infectivity to a variety of mammals, (5) culture characteristics, and (6) cross reactions in serological tests, this parasite is considered conspecific with Trypanosoma cruzi (Chagas, 1909), the causative agent of American human trypanosomiasis.

  15. Landscape epidemiology in urban environments: The example of rodent-borne Trypanosoma in Niamey, Niger.

    Science.gov (United States)

    Rossi, Jean-Pierre; Kadaouré, Ibrahima; Godefroid, Martin; Dobigny, Gauthier

    2017-10-05

    Trypanosomes are protozoan parasites found worldwide, infecting humans and animals. In the past decade, the number of reports on atypical human cases due to Trypanosoma lewisi or T. lewisi-like has increased urging to investigate the multiple factors driving the disease dynamics, particularly in cities where rodents and humans co-exist at high densities. In the present survey, we used a species distribution model, Maxent, to assess the spatial pattern of Trypanosoma-positive rodents in the city of Niamey. The explanatory variables were landscape metrics describing urban landscape composition and physiognomy computed from 8 land-cover classes. We computed the metrics around each data location using a set of circular buffers of increasing radii (20m, 40m, 60m, 80m and 100m). For each spatial resolution, we determined the optimal combination of feature class and regularization multipliers by fitting Maxent with the full dataset. Since our dataset was small (114 occurrences) we expected an important uncertainty associated to data partitioning into calibration and evaluation datasets. We thus performed 350 independent model runs with a training dataset representing a random subset of 80% of the occurrences and the optimal Maxent parameters. Each model yielded a map of habitat suitability over Niamey, which was transformed into a binary map implementing a threshold maximizing the sensitivity and the specificity. The resulting binary maps were combined to display the proportion of models that indicated a good environmental suitability for Trypanosoma-positive rodents. Maxent performed better with landscape metrics derived from buffers of 80m. Habitat suitability for Trypanosoma-positive rodents exhibited large patches linked to urban features such as patch richness and the proportion of landscape covered by concrete or tarred areas. Such inferences could be helpful in assessing areas at risk, setting of monitoring programs, public and medical staff awareness or even

  16. Genome and transcriptome studies of the protozoan parasites Trypanosoma cruzi and Giardia intestinalis

    OpenAIRE

    Franzén, Oscar

    2012-01-01

    Trypanosoma cruzi and Giardia intestinalis are two human pathogens and protozoan parasites responsible for the diseases Chagas disease and giardiasis, respectively. Both diseases cause su ering and illness in several million individuals. The former disease occurs primarily in South America and Central America, and the latter disease occurs worldwide. Current therapeutics are toxic and lack e cacy, and potential vaccines are far from the market. Increased knowledge about the bio...

  17. Population genetic analysis of Colombian Trypanosoma cruzi isolates revealed by enzyme electrophoretic profiles

    OpenAIRE

    Ruiz-Garcia, Manuel; Montilla, Marleny; Nicholls, Sebastian; Alvarez, Diana

    2001-01-01

    Although Colombia presents an enormous biological diversity, few studies have been conducted on the population genetics of Trypanosoma cruzi. This study was carried out with 23 Colombian stocks of this protozoa analyzed for 13 isoenzymatic loci. The Hardy-Weinberg equilibrium, the genetic diversity and heterogeneity, the genetic relationships and the possible spatial structure of these 23 Colombian stocks of T. cruzi were estimated. The majority of results obtained are in agreement with a clo...

  18. First Case of Natural Infection in Pigs: Review of Trypanosoma cruzi Reservoirs in Mexico

    Directory of Open Access Journals (Sweden)

    Paz María Salazar-Schettino

    1997-07-01

    Full Text Available An epidemiological research project was performed in the State of Morelos including collection of samples for blood smears and culture, serological tests, and xenodiagnoses from a total of 76 domestic and peridomestic mammals. Two strains of Trypanosoma cruzi were isolated by haemocultures; one from a pig (Sus scrofa, the first case of natural infection reported in Mexico, and the other from a dog (Canis familiaris. This study summarizes current information in Mexico concerning confirmed reservoirs of T. cruzi

  19. Developmental and Ultrastructural Characterization and Phylogenetic Analysis of Trypanosoma herthameyeri n. sp. of Brazilian Leptodactilydae Frogs.

    Science.gov (United States)

    Attias, Márcia; Sato, Lyslaine H; Ferreira, Robson C; Takata, Carmen S A; Campaner, Marta; Camargo, Erney P; Teixeira, Marta M G; de Souza, Wanderley

    2016-09-01

    We described the phylogenetic affiliation, development in cultures and ultrastructural features of a trypanosome of Leptodacylus chaquensis from the Pantanal biome of Brazil. In the inferred phylogeny, this trypanosome nested into the Anura clade of the basal Aquatic clade of Trypanosoma, but was separate from all known species within this clade. This finding enabled us to describe it as Trypanosoma herthameyeri n. sp., which also infects other Leptodacylus species from the Pantanal and Caatinga biomes. Trypanosoma herthameyeri multiplies as small rounded forms clumped together and evolving into multiple-fission forms and rosettes of epimastigotes released as long forms with long flagella; scarce trypomastigotes and glove-like forms are common in stationary-phase cultures. For the first time, a trypanosome from an amphibian was observed by field emission scanning electron microscopy, revealing a cytostome opening, well-developed flagellar lamella, and many grooves in pumpkin-like forms. Transmission electron microscopy showed highly developed Golgi complexes, relaxed catenation of KDNA, and a rich set of spongiome tubules in a regular parallel arrangement to the flagellar pocket as confirmed by electron tomography. Considering the basal position in the phylogenetic tree, developmental and ultrastructural data of T. herthameyeri are valuable for evolutionary studies of trypanosome architecture and cell biology. © 2016 The Author(s) Journal of Eukaryotic Microbiology © 2016 International Society of Protistologists.

  20. Trypanocidal drugs for chronic asymptomatic Trypanosoma cruzi infection.

    Science.gov (United States)

    Villar, Juan Carlos; Perez, Juan Guillermo; Cortes, Olga Lucia; Riarte, Adelina; Pepper, Micah; Marin-Neto, Jose Antonio; Guyatt, Gordon H

    2014-05-27

    Prevention of chronic chagasic cardiomyopathy (CCC) by treating infected populations with trypanocidal therapy (TT) remains a challenge. Despite a renewed enthusiasm for TT, uncertainty regarding its efficacy, concerns about its safety and limited availability remain barriers for a wider use of conventional drugs. We have updated a previous version of this review. To systematically search, appraise, identify and extract data from eligible studies comparing the outcome of cohorts of seropositive individuals to Trypanosoma cruzi exposed to TT versus placebo or no treatment. We sought eligible studies in electronic databases (Cochrane Central Register of Controlled Trials (CENTRAL), Issue 1, 2014); MEDLINE (Ovid, 1946 to January week 5 2014); EMBASE (Ovid, 1980 to 2014 week 6) and LILACS (up to 6 May 2010)) by combining terms related with the disease and the treatment. The search also included a Google search, handsearch for references in review or selected articles, and search of expert files. We applied no language restrictions. Review authors screened the retrieved references for eligibility (those dealing with human participants treated with TT) and then assessed the pre-selected studies in full for inclusion. We included randomised controlled trials (RCTs) and observational studies that provided data on either mortality or clinical progression of CCC after at least four years of follow-up. Teams of two review authors independently carried out the study selection, data extraction and risk of bias assessment, with a referee resolving disagreement within the pairs. Data collection included study design, characteristics of the population and interventions or exposures and outcome measures. We defined categories of outcome data as parasite-related (positive serology, xenodiagnosis or polymerase chain reaction (PCR) after TT) and participant-related (including efficacy outcomes such as progression towards CCC, all-cause mortality and side effects of TT). We reported

  1. Stomoxys calcitrans as possible vector of Trypanosoma evansi among camels in an affected area of the Canary Islands, Spain

    Directory of Open Access Journals (Sweden)

    Noé Francisco Rodríguez

    2014-07-01

    Full Text Available Introduction Trypanosoma evansi was first identified in the Canary Islands in 1997, and is still present in a small area of the Archipelago. To date, the disease has exclusively affected camel herds, and has not been detected in any other animal hosts. However potential vectors of Trypanosoma evansi must be identified. Methods One Nzi trap was placed on a camel farm located in the infected area for a period of one year. Results Two thousand five hundred and five insects were trapped, of which Stomoxys calcitrans was the sole hematophagous vector captured. Conclusions Stomoxys calcitrans could be exclusively responsible for the transmission of Trypanosoma evansi among camels in the surveyed area, as other species do not seem to be infected by S. calcitrans in the presence of camels.

  2. Estudo do papel funcional da cisteína sintase e da cistationina B-sintase na resposta ao estresse oxidativo e nitrosativo em leishmania (viannia) braziliensis, trypanosoma rangeli e trypanosoma cruzi

    OpenAIRE

    Romero Calderon, Ibeth Cristina

    2014-01-01

    Tese (doutorado) - Universidade Federal de Santa Catarina, Centro de Ciências Biológicas, Programa de Pós-Graduação em Biotecnologia e Biociências, Florianópolis, 2014 Leishmania (Viannia) braziliensis, Trypanosoma rangeli e o Trypanosoma cruzi são parasitos hemoflagelados pertencentes à Ordem Kinetoplastida, família Trypanosomatidae, capazes de infectar insetos, animais silvestres e domésticos, assim como o homem. Durante seu ciclo de vida, estes parasitos são expostos a uma grande quanti...

  3. Utilización de Lepidium Peruvianum Maca, como medio de cultivo para el crecimiento de Trypanosoma Cruzi

    OpenAIRE

    Saldaña C, Charles; Córdova P, Ofelia; Vargas V¹, Franklin

    2006-01-01

    Por sus características nutritivas de alto valor, se ensayó la posible utilidad del Lepidium peruvianum maca, como un medio para cultivar Trypanosoma cruzi. Bajo condiciones experimentales se procedió a incubar epimastigotes de T. cruzi en cuatro medios de cultivo bifásicos diferentes, a base de Lepidium peruvianum maca, los cuales fueron comparados con el medio de cultivo BHI como control. La incorporación de maca como medio de cultivo permitió el crecimiento de Trypanosoma cruzi; se determi...

  4. Efecto inmunosupresor de la infección por Trypanosoma musculi (Mastigophora: Trypanosomatidae en la toxoplasmosis experimental Immunosuppressor effect of Trypanosoma musculi (Mastigophora: Trypanosomatidae on experimental toxoplasmosis

    Directory of Open Access Journals (Sweden)

    Loretta Piccolo-Johanning

    2013-06-01

    Full Text Available La prevalencia de infecciones por Toxoplasma gondii en el ser humano es de 5-90% según la zona geográfica; en Costa Rica por ejemplo, la seroprevalencia es de un 58%, por lo que es importante comprender algunos procesos inmunológicos, propios en estas afectaciones parasitarias. Con el objeto de determinar si el Trypanosoma musculi ejerce procesos de inmunosupresión sobre Toxoplasma gondii se realizó un experimento en el que se inocularon ratones Swiss con T. musculi cuatro, cinco, seis y siete días previos a la infección con T. gondii, ocurriendo la inmunosupresión cuando la inoculación con T. musculi fue hecha cuatro días antes. Además, la cantidad de tripomastigotos inoculados no influyó en el proceso. Se probaron tres cepas de T. gondii aisladas de las heces de un gato casero (TFC, de un Leopardus pardalis (TLP, de un Leopardus wiedii y de la carne de un Bos taurus (TBT. La cepa TLP resultó ser muy patógena, matando a los animales en un tiempo corto, independientemente de la inoculación con T. musculi; para las otras cepas se mantuvo el patrón de inmunosupresión en los ratones. Se reporta entonces un modelo experimental de inmunosupresión, aspecto muy en boga en este momento, por su relación con enfermedades que inducen esta condición en el ser humano, especialmente a enfermedades como el cáncer y el SIDA. Este modelo es más fácil de aplicar experimentalmente que el correspondiente con T. lewisi previamente descrito, el cual usa ratas blancas de más difícil manejo que los ratones usados en este estudio.The immunosuppression caused by species of the gender Trypanosoma has been widely documented. The influence over experimental infections with Toxoplasma gondii is evident when using Trypanosoma lewisi, a natural parasite of white rats. We decided to test the effect of Trypanosoma musculi from mice, an organism with very similar biological characteristics to T. lewisi, to see if this trypanosomatid could induce a similar

  5. Mode of Action of the Sesquiterpene Lactones Psilostachyin and Psilostachyin C on Trypanosoma cruzi.

    Directory of Open Access Journals (Sweden)

    Valeria P Sülsen

    Full Text Available Trypanosoma cruzi is the causative agent of Chagas' disease, which is a major endemic disease in Latin America and is recognized by the WHO as one of the 17 neglected tropical diseases in the world. Psilostachyin and psilostachyin C, two sesquiterpene lactones isolated from Ambrosia spp., have been demonstrated to have trypanocidal activity. Considering both the potential therapeutic targets present in the parasite, and the several mechanisms of action proposed for sesquiterpene lactones, the aim of this work was to characterize the mode of action of psilostachyin and psilostachyin C on Trypanosoma cruzi and to identify the possible targets for these molecules. Psilostachyin and psilostachyin C were isolated from Ambrosia tenuifolia and Ambrosia scabra, respectively. Interaction of sesquiterpene lactones with hemin, the induction of oxidative stress, the inhibition of cruzipain and trypanothione reductase and their ability to inhibit sterol biosynthesis were evaluated. The induction of cell death by apoptosis was also evaluated by analyzing phosphatidylserine exposure detected using annexin-V/propidium iodide, decreased mitochondrial membrane potential, assessed with Rhodamine 123 and nuclear DNA fragmentation evaluated by the TUNEL assay. Both STLs were capable of interacting with hemin. Psilostachyin increased about 5 times the generation of reactive oxygen species in Trypanosoma cruzi after a 4h treatment, unlike psilostachyin C which induced an increase in reactive oxygen species levels of only 1.5 times. Only psilostachyin C was able to inhibit the biosynthesis of ergosterol, causing an accumulation of squalene. Both sesquiterpene lactones induced parasite death by apoptosis. Upon evaluating the combination of both compounds, and additive trypanocidal effect was observed. Despite their structural similarity, both sesquiterpene lactones exerted their anti-T. cruzi activity through interaction with different targets. Psilostachyin

  6. Vector-borne transmission of Trypanosoma cruzi among captive Neotropical primates in a Brazilian zoo.

    Science.gov (United States)

    Minuzzi-Souza, Thaís Tâmara Castro; Nitz, Nadjar; Knox, Monique Britto; Reis, Filipe; Hagström, Luciana; Cuba, César A Cuba; Hecht, Mariana Machado; Gurgel-Gonçalves, Rodrigo

    2016-01-26

    Neotropical primates are important sylvatic hosts of Trypanosoma cruzi, the etiological agent of Chagas disease. Infection is often subclinical, but severe disease has been described in both free-ranging and captive primates. Panstrongylus megistus, a major T. cruzi vector, was found infesting a small-primate unit at Brasília zoo (ZooB), Brazil. ZooB lies close to a gallery-forest patch where T. cruzi circulates naturally. Here, we combine parasitological and molecular methods to investigate a focus of T. cruzi infection involving triatomine bugs and Neotropical primates at a zoo located in the Brazilian Savannah. We assessed T. cruzi infection in vectors using optical microscopy (n = 34) and nested PCR (n = 50). We used quantitative PCR (qPCR) to examine blood samples from 26 primates and necropsy samples from two primates that died during the study. We determined parasite lineages in five vectors and two primates by comparing glucose-6-phosphate isomerase (G6pi) gene sequences. Trypanosoma cruzi was found in 44 vectors and 17 primates (six genera and eight species); one Mico chrysoleucus and one Saguinus niger had high parasitaemias. Trypanosoma cruzi DNA was detected in three primates born to qPCR-negative mothers at ZooB and in the two dead specimens. One Callithrix geoffroyi became qPCR-positive over a two-year follow-up. All G6pi sequences matched T. cruzi lineage TcI. Our findings strongly suggest vector-borne T. cruzi transmission within a small-primate unit at ZooB - with vectors, and perhaps also parasites, presumably coming from nearby gallery forest. Periodic checks for vectors and parasites would help eliminate T. cruzi transmission foci in captive-animal facilities. This should be of special importance for captive-breeding programs involving endangered mammals, and would reduce the risk of accidental T. cruzi transmission to keepers and veterinarians.

  7. Acerca del ciclo evolutivo del Trypanosoma (Schizotrypanum cruzi Chagas 1909, en sus fases tisular y hematica

    Directory of Open Access Journals (Sweden)

    Cecilio Romaña

    1956-06-01

    Full Text Available El autor pasa en revista los trabajos publicados sobre el ciclo evolutivo del Trypanosoma (S. cruzi en el huésped vertebrado, desde el descubrimiento de la enfermedad hasta nuestros días. Luego analiza las ideas de los autores modernos, fundadas en gran parte en las observaciones que ya en 1914 realizaron MAYER y ROCHA LIMA de las cuales participan actualmente ROMAÑA y MEYER, ELKELES y WOOD. Finalmente expressa que a partir de los tripanosomas infectantes los parásitos que penetram en el protoplasma celular pueden seguir dos mecanismos en su evolución hacia cuerpos leishmanioides: 1.º Por "regresión fusiforme" y 2.º por "regresión orbicular"; llegados a la forma leishmanioide los parásitos se multiplican por división binaria, una vez lleno el protoplasma celular, siguen un processo inverso de transformación hacia tripanosoma que puede seguir igualmente dos mecanismos diversos: 1. "progresión fusiforme" y 2.º "progresión orbicular". Estos diversos mecanismos de transformación están esquematizados en la fig. N.º 1 del trabajo.The author reviews published works about the evolutive cycle of the Trypanosoma cruzi in the vertebrate host, from the discovery of the disease to our days. Then, he analyzes the ideas of the modern authors who based themselves on the observations made formerly, in 1914, by MAYER & ROCHA LIMA, ideas that ROMAÑA and MEYER, ELKELES and WOOD agree at the present time. Last, he states that, from the infective trypanosomas, the parasites which enter the cellular protoplasma may follow two systems to perform their evolution up to leishmanioid bodies: 1.] by fusiform regression, 2.º by an orbicular regression. Once the parasites reach the leishmanioid forms, they multiply by binary division. When the celular protoplasm is filled up with the parasites, these follow an inverted transformation up to trypanosoma state, following also two systems; similar to the repression 1.º a fusiform progression, 2.º an

  8. The capybara (Hydrochoerus hydrochaeris) as a reservoir host for Trypanosoma evansi.

    Science.gov (United States)

    Morales, G A; Wells, E A; Angel, D

    1976-10-01

    Discovery of two ill horses and three dogs naturally infected with Trypanosoma evansi near an experimental station in the Eastern Plains of Colombia led to a search for reservoir hosts of the parasite. Infection was detected in 8/33 healthy capybaras (Hydrochoerus hydrochaeris), none of the remaining 14 horses, and none of 32 Zebu cattle (Bos indicus), 18 paca (Cuniculus paca) and 20 spiny rats (Proechimys sp.). Contrary to common opinion, the results indicated a carrier state in the capybara. Diagnosis was based on morphology, behaviour in albino rats, and pathogenicity and host range in domestic animals.

  9. Heterogeneities in the Ecoepidemiology of Trypanosoma cruzi Infection in Rural Communities of the Argentinean Chaco

    OpenAIRE

    Cardinal, M. Victoria; Orozco, M. Marcela; Enriquez, Gustavo F.; Ceballos, Leonardo A.; Gaspe, María Sol; Alvarado-Otegui, Julián A.; Gurevitz, Juan M.; Kitron, Uriel; Gürtler, Ricardo E.

    2014-01-01

    We conducted a cross-sectional survey of Trypanosoma cruzi infection of Triatoma infestans as well as dogs and cats in 327 households from a well-defined rural area in northeastern Argentina to test whether the household distribution of infection differed between local ethnic groups (Tobas and Creoles) and identify risk factors for host infection. Overall prevalence of infection of bugs (27.2%; 95% confidence interval = 25.3–29.3%), dogs (26.0%; 95% confidence interval = 23.3–30.1%), and cats...

  10. Sialoglycoconjugates in Trypanosoma cruzi-host cell interaction: possible biological model - a review

    Directory of Open Access Journals (Sweden)

    Alane Beatriz Vermelho

    1994-03-01

    Full Text Available A number of glycoconjugates, including glycolipids and glycoproteins, participate in the process of host-cell invasion by Trypanosoma cruzi and one of the most important carbohydrates involved on this interaction is sialic acid. It is known that parasite trans-sialidase participates with sialic acid in a coordinated fashion in the initial stages of invasion. Given the importance of these sialogycoconjugates, this review sets out various possible biological models for the interaction between the parasite and mammalian cells that possess a sialylated receptor/ligand system.

  11. Metabolic labeling with (14C)-glucose of bloodstream and cell culture trypanosoma cruzi trypomastigotes:

    International Nuclear Information System (INIS)

    Lederkremer, R.M. de; Groisman, J.F.; Lima, C.; Katzin, A.

    1990-01-01

    Trypomastigote forms of Trypanosoma cruzi from infected mouse blood and from cell culture were metabolically labeled by incubation with D-( 14 C)-glucose. Analysis by polyacrylamide gel electrophoresis of lysates from parasites of two strains (RA and CA 1 ) showed a significantly different pattern. The difference was mainly quantitative when the blood and cell culture trypomastigotes of the RA strain were compared. Analysis of the culture medium by paper electrophoresis showed an anionic exometabolite only in the blood forms of both strains. (Author) [es

  12. Studies on the virulence and attenuation of Trypanosoma cruzi using immunodeficient animals

    Directory of Open Access Journals (Sweden)

    Basombrío Miguel Ángel

    2000-01-01

    Full Text Available Tissue invasion and pathology by Trypanosoma cruzi result from an interaction between parasite virulence and host immunity. Successive in vivo generations of the parasite select populations with increasing ability to invade the host. Conversely, prolonged in vitro selection of the parasite produces attenuated sublines with low infectivity for mammals. One such subline (TCC clone has been extensively used in our laboratory as experimental vaccine and tested in comparative experiments with its virulent ancestor (TUL. The experiments here reviewed aimed at the use of immunodeficient mice for testing the infectivity of TCC parasites. It has not been possible to obtain virulent, revertant sublines by prolonged passaged in such mice.

  13. Drug discovery for Chagas disease should consider Trypanosoma cruzi strain diversity

    Directory of Open Access Journals (Sweden)

    Bianca Zingales

    2014-09-01

    Full Text Available This opinion piece presents an approach to standardisation of an important aspect of Chagas disease drug discovery and development: selecting Trypanosoma cruzi strains for in vitro screening. We discuss the rationale for strain selection representing T. cruzi diversity and provide recommendations on the preferred parasite stage for drug discovery, T. cruzi discrete typing units to include in the panel of strains and the number of strains/clones for primary screens and lead compounds. We also consider experimental approaches for in vitro drug assays. The Figure illustrates the current Chagas disease drug-discovery and development landscape.

  14. Inositol metabolism in Trypanosoma cruzi: potential target for chemotherapy against Chagas' disease

    Directory of Open Access Journals (Sweden)

    MECIA M. OLIVEIRA

    2000-09-01

    Full Text Available Chagas' disease is a debilitating and often fatal disease caused by the protozoan parasite Trypanosoma cruzi. The great majority of surface molecules in trypanosomes are either inositol-containing phospholipids or glycoproteins that are anchored into the plasma membrane by glycosylphosphatidylinositol anchors. The polyalcohol myo-inositol is the precursor for the biosynthesis of these molecules. In this brief review, recent findings on some aspects of the molecular and cellular fate of inositol in T. cruzi life cycle are discussed and identified some points that could be targets for the development of parasite-specific therapeutic agents.

  15. Histopathologic identification of Trypanosoma cruzi (Chagas' encephalitis in an AIDS patient

    Directory of Open Access Journals (Sweden)

    Dimath Alyemni

    2017-03-01

    Full Text Available Trypanosoma cruzi (Chagas' encephalitis is an uncommon manifestation of T. cruzi infection, typically seen in immunocompromised patients. Encephalitis results from the reactivation of chronic infection predominately in individuals from endemic areas. Increased awareness of this complication is essential especially with increased migration of patients from endemic areas with concomitant HIV infection. Here we report a case of Chagas' encephalitis in an AIDS patient from Mexico in which there was no evidence of acute serologic, CSF, or blood infection by T. cruzi trypomastigotes.

  16. Presence of Trypanosoma cruzi in tissues of experimentally infected Wistar rats and their fetuses

    OpenAIRE

    Alarcón, Maritza; Lugo de Yarbuh, Ana; Moreno, Elio A; Payares, Gilberto; Araujo, Sonia; Colmenares, Melisa

    2006-01-01

    Este estudio fue realizado con un grupo de ratas juveniles hembras (Rattus norvegicus) cepa Wistar con 20 días de nacidas y 250 grs. de peso. Cada rata fue inoculada inyectándole por vía intraperitoneal 0.1 mL de la suspensión sanguínea con 1x105 tripomastigotes sanguícolas de Trypanosoma cruzi (cepa I/PAS/VE/00/PLANALTO). Los parásitos fueron aislados de Panstrongylus geniculatus, naturalmente infectado y capturado en un área urbana del valle de Caracas, Venezuela y mantenidos en ratones NMR...

  17. Avances en el estudio de la Adenilato Quinasa Nuclear de Trypanosoma cruzi

    OpenAIRE

    Cámara, María de los Milagros

    2012-01-01

    Trypanosoma cruzi, el agente etiológico del Mal de Chagas es un eucariota inferior en donde el control de la expresión génica recae mayormente en mecanismos postraduccionales. Durante todo su ciclo de vida se observan fluctuaciones en la expresión génica. En la presente tesis se realizó el estudio de una adenilato quinasa nuclear (TcADKn) que se encuentra involucrada en la biogénesis ribosomal. Las adenilato quinasas nucleares han sido descriptas en muy pocos organismos, se las ha asociado al...

  18. Insight into the exoproteome of the tissue-derived trypomastigote form of trypanosoma cruzi

    DEFF Research Database (Denmark)

    Queiroz, Rayner M L; Ricart, Carlos A O; Machado, Mara O

    2016-01-01

    The protozoan parasite Trypanosoma cruzi causes Chagas disease, one of the major neglected infectious diseases. It has the potential to infect any nucleated mammalian cell. The secreted/excreted protein repertoire released by T. cruzi trypomastigotes is crucial in host-pathogen interactions...

  19. Rodent-borne Trypanosoma from cities and villages of Niger and Nigeria: A special role for the invasive genus Rattus?

    Science.gov (United States)

    Tatard, C; Garba, M; Gauthier, P; Hima, K; Artige, E; Dossou, D K H J; Gagaré, S; Genson, G; Truc, P; Dobigny, G

    2017-07-01

    Although they are known to sometimes infect humans, atypical trypanosomes are very poorly documented, especially in Africa where one lethal case has yet been described. Here we conducted a survey of rodent-borne Trypanosoma in 19 towns and villages of Niger and Nigeria, with a special emphasis on Niamey, the capital city of Niger. The 1298 rodents that were captured yielded 189 qPCR-positive animals from 14 localities, thus corresponding to a 14.6% overall prevalence. Rats, especially black rats, displayed particularly elevated prevalence (27.4%), with some well sampled sites showing 40-50% and up to 68.8% of Trypanosoma-carrying individuals. Rattus were also characterized by significantly lower Ct values than in the other non-Rattus species. DNA sequences could be obtained for 43 rodent-borne Trypanosoma and corresponded to 41 T. lewisi (all from Rattus) and 2 T. microti (from Cricetomys gambianus). These results, together with data compiled from the available literature, suggest that Rattus may play a particular role for the maintaining and circulation of Trypanosoma, especially T. lewisi, in Africa. Taken into account its strong abilities to invade coastal and inland regions of the continent, we believe that this genus deserves a particular attention in regards to potentially under-looked but emerging atypical trypanosome-related diseases. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Structural model of a putrescine-cadaverine permease from Trypanosoma cruzi predicts residues vital for transport and ligand binding

    NARCIS (Netherlands)

    Soysa, R.; Venselaar, H.; Poston, J.; Ullman, B.; Hasne, M.P.

    2013-01-01

    The TcPOT1.1 gene from Trypanosoma cruzi encodes a high affinity putrescine-cadaverine transporter belonging to the APC (amino acid/polyamine/organocation) transporter superfamily. No experimental three-dimensional structure exists for any eukaryotic member of the APC family, and thus the structural

  1. Phylogeny and morphological variability of trypanosomes from African pelomedusid turtles with redescription of Trypanosoma mocambicum Pienaar, 1962

    Czech Academy of Sciences Publication Activity Database

    Dvořáková, N.; Čepička, I.; Qablan, M. A.; Gibson, W.; Blažek, Radim; Široký, P.

    2015-01-01

    Roč. 166, č. 6 (2015), s. 599-608 ISSN 1434-4610 Institutional support: RVO:68081766 Keywords : Trypanosoma * turtle * Pelusios * polymorphism * phylogeny * SSU rRNA gene Subject RIV: EG - Zoology Impact factor: 2.898, year: 2015

  2. Trypanosoma cruzi: strain selection by diferent schedules of mouse passage of an initially mixed infection

    Directory of Open Access Journals (Sweden)

    Maria P. Deane

    1984-12-01

    Full Text Available From an initial double infection in mice, established by simultaneous and equivalent inocula of bloodstream forms of strains Y and F of Trypanosoma cruzi, two lines were derived by subinoculations: one (W passaged every week, the other (M every month. Through biological and biochemical methods only the Y strain was identified at the end of the 10th and 16th passages of line W and only the F strain at the 2nd and 4th passages of line M. The results illustrate strain selection through laboratory manipulation of initially mixed populations of T. cruzi.De uma infecção inicialmente dupla em camundongo, estabelecida por inóculo simultaneo e equivalente de formas sanguíneas das cepas Y e F de Trypanosoma cruzi, duas linhagens foram originadas por subinoculações: uma (W passada casa semana, a outra (M cada mês. Por métodos biológicos e bioquímicos apenas a cepa Y foi identificada ao fim a 10a. e 16a. passagens da linhagem W e apenas a cepa F na 2a. e 4a.passagens de linhagem M. Os resultados demonstram a seleção de cepas através de manipulação em laboratorio de populações inicialmente mistas de T. cruzi.

  3. Moderate physical exercise protects myenteric metabolically more active neurons in mice infected with Trypanosoma cruzi.

    Science.gov (United States)

    Moreira, Neide Martins; de Moraes, Solange Marta Franzói; Dalálio, M M O; Gomes, Mônica Lúcia; Sant'ana, D M G; de Araújo, Silvana Marques

    2014-02-01

    Trypanosoma cruzi causes neuronal myenteric depopulation compromising intestinal function. The purpose of this study was to evaluate the influence of moderate physical exercise on NADH diaphorase (NADH-d)-positive neurons in the myenteric plexus and intestinal wall of the colon in mice infected with T. cruzi. Forty 30-day-old male Swiss mice were divided into the following groups: trained infected (TI), sedentary infected (SI), trained control (TC), and sedentary control. The TC and TI groups were subjected to a moderate physical exercise program on a treadmill for 8 weeks. Three days after finishing physical exercise, the TI and SI groups were intraperitoneally inoculated with 1,300 blood trypomastigotes of the Y strain of Trypanosoma cruzi. Parasitemia was evaluated from days 4 to 61 after inoculation. On day 75 of infection, myenteric neurons in the colon were quantified (NADH-d), and inflammatory foci were counted. Tumor necrosis factor-α (TNF-α) and transforming growth factor-β (TGF-β) levels were evaluated in plasma. The results were compared using analysis of variance and the Kruskal-Wallis test at a 5 % significance level. Moderate physical exercise reduced the parasite peak on day 8 of infection (p = 0.0132) and total parasitemia (p = 0.0307). It also prevented neuronal depopulation (p  0.05). These results reinforce the therapeutic benefits of moderate physical exercise for T. cruzi infection.

  4. Seroprevalence of Trypanosoma cruzi in blood donors at the National Blood Transfusion Services--Guyana.

    Science.gov (United States)

    Bwititi, P T; Browne, J

    2012-09-01

    Blood transfusion is an important transmission route of Trypanosoma cruzi (T cruzi), a major parasitic infection in Central and South America. The limited treatment options are most effective in acute Chagas' infection. At present, there is no current data on the prevalence of T cruzi in the blood donor population of Guyana. This information is necessary to protect the supply of the blood donation programme. This study sought to determine the prevalence of T cruzi in the blood supply at the National Blood Transfusion Services of Guyana with the hope of providing knowledge to the on-going surveillance for Chagas' disease worldwide and therefore address the risk of its spread by blood transfusion. Two commercialized ELISAs utilizing crude or recombinant T cruzi antigens were used to study 2000 blood samples voluntarily donated for the purpose of altruistic or family replacement donation retrospectively. The results showed that approximately 1 in 286 donations tested positive for antibodies to T cruzi. These results indicate that T cruzi continues to be a risk in Guyana and there is a need to continue screening donated blood. Trypanosoma cruzi is a life-long infection and infected persons may be asymptomatic chronic carriers of the disease. Education, housing improvement, and controlled use of insecticides should be introduced to contain Chagas' disease.

  5. Trans-sialidase inhibition assay detects Trypanosoma cruzi infection in different wild mammal species.

    Science.gov (United States)

    Sartor, Paula A; Ceballos, Leonardo A; Orozco, Marcela M; Cardinal, Marta V; Gürtler, Ricardo E; Leguizamón, María S

    2013-08-01

    The detection of Trypanosoma cruzi infection in mammals is crucial for understanding the eco-epidemiological role of the different species involved in parasite transmission cycles. Xenodiagnosis (XD) and hemoculture (HC) are routinely used to detect T. cruzi in wild mammals. Serological methods are much more limited because they require the use of specific antibodies to immunoglobulins of each mammalian species susceptible to T. cruzi. In this study we detected T. cruzi infection by trans-sialidase (TS) inhibition assay (TIA). TIA is based on the antibody neutralization of a recombinant TS that avoids the use of anti-immunoglobulins. TS activity is not detected in the co-endemic protozoan parasites Leishmania spp and T. rangeli. In the current study, serum samples from 158 individuals of nine wild mammalian species, previously tested by XD, were evaluated by TIA. They were collected from two endemic areas in northern Argentina. The overall TIA versus XD co-reactivity was 98.7% (156/158). All 18 samples from XD-positive mammals were TIA-positive (co-positivity, 100%) and co-negativity was 98.5% (138/140). Two XD-negative samples from a marsupial (Didelphis albiventris) and an edentate (Dasypus novemcinctus) were detected by TIA. TIA could be used as a novel tool for serological detection of Trypanosoma cruzi in a wide variety of sylvatic reservoir hosts.

  6. Molecular profiles of Venezuelan isolates of Trypanosoma sp. by random amplified polymorphic DNA method.

    Science.gov (United States)

    Perrone, T M; Gonzatti, M I; Villamizar, G; Escalante, A; Aso, P M

    2009-05-12

    Nine Trypanosoma sp. Venezuelan isolates, initially presumed to be T. evansi, were collected from three different hosts, capybara (Apure state), horse (Apure state) and donkey (Guarico state) and compared by the random amplification polymorphic DNA technique (RAPD). Thirty-one to 46 reproducible fragments were obtained with 12 of the 40 primers that were used. Most of the primers detected molecular profiles with few polymorphisms between the seven horse, capybara and donkey isolates. Quantitative analyses of the RAPD profiles of these isolates revealed a high degree of genetic conservation with similarity coefficients between 85.7% and 98.5%. Ten of the primers generated polymorphic RAPD profiles with two of the three Trypanosoma sp. horse isolates, namely TeAp-N/D1 and TeGu-N/D1. The similarity coefficient between these two isolates and the rest, ranged from 57.9% to 68.4% and the corresponding dendrogram clustered TeAp-N/D1 and Te Gu-N/D1 in a genetically distinct group.

  7. Trypanosoma cf. varani in an imported ball python (Python reginus) from Ghana.

    Science.gov (United States)

    Sato, Hiroshi; Takano, Ai; Kawabata, Hiroki; Une, Yumi; Watanabe, Haruo; Mukhtar, Maowia M

    2009-08-01

    Peripheral blood from a ball python (Python reginus) imported from Ghana was cultured in Barbour-Stoenner-Kelly (BSK) medium for Borrelia spp. isolation, resulting in the prominent appearance of free, and clusters of, trypanosomes in a variety of morphological forms. The molecular phylogenetic characterization of these cultured trypanosomes, using the small subunit rDNA, indicated that this python was infected with a species closely related to Trypanosoma varani Wenyon, 1908, originally described in the Nile monitor lizard (Varanus niloticus) from Sudan. Furthermore, nucleotide sequences of glycosomal glyceraldehyde-3-phosphate dehydrogenase gene of both isolates showed few differences. Giemsa-stained blood smears, prepared from the infected python 8 mo after the initial observation of trypanosomes in hemoculture, contained trypomastigotes with a broad body and a short, free flagellum; these most closely resembled the original description of T. varani, or T. voltariae Macfie, 1919 recorded in a black-necked spitting cobra (Naja nigricollis) from Ghana. It is highly possible that lizards and snakes could naturally share an identical trypanosome species. Alternatively, lizards and snakes in the same region might have closely related, but distinct, Trypanosoma species as a result of sympatric speciation. From multiple viewpoints, including molecular phylogenetic analyses, reappraisal of trypanosome species from a wide range of reptiles in Africa is needed to clarify the relationship of recorded species, or to unmask unrecorded species.

  8. Molecular epidemiology of Trypanosoma cruzi and Triatoma dimidiata in costal Ecuador.

    Science.gov (United States)

    Wong, Yim Yan; Sornosa Macias, Karen Jeniffer; Guale Martínez, Doris; Solorzano, Luis F; Ramirez-Sierra, Maria Jesus; Herrera, Claudia; Dumonteil, Eric

    2016-07-01

    Chagas disease is a neglected tropical disease caused by the protozoan parasite Trypanosoma cruzi. In Ecuador, Triatoma dimidiata and Rhodnius ecuadoriensis are the main vector species, responsible for over half of the cases of T. cruzi infection in the country. T. dimidiata is believed to have been introduced in Ecuador during colonial times, and its elimination from the country is thus believed to be feasible. We investigated here the molecular ecology of T. dimidiata and T. cruzi in costal Ecuador to further guide control efforts. Analysis of the Internal Transcribed Spacer 2 (ITS-2) of 23 specimens from Progreso, Guayas, unambiguously supported the likely importation of T. dimidiata from Central America to Ecuador. The observation of a very high parasite infection rate (54%) and frequent feeding on humans (3/5) confirmed a continued risk of transmission to humans. All genotyped parasites corresponded to TcI DTU and Trypanosoma rangeli was not detected in T. dimidiata. TcI subgroups corresponded to TcIa (25%), and mixed infections with TcIa and TcId (75%). Further studies should help clarify T. cruzi genetic structure in the country, and the possible impact of the introduction of T. dimidiata on the circulating parasite strains. The elevated risk posed by this species warrants continuing efforts for its control, but its apparent mobility between peridomestic and domestic habitats may favor reinfestation following insecticide spraying. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Plants of Brazilian restingas with tripanocide activity against Trypanosoma cruzi strains.

    Science.gov (United States)

    Faria, Robson Xavier; Souza, André Luis Almeida; Lima, Barbara; Tietbohl, Luis Armando Candido; Fernandes, Caio Pinho; Amaral, Raquel Rodrigues; Ruppelt, Bettina Monika; Santos, Marcelo Guerra; Rocha, Leandro

    2017-12-01

    Chagas disease is caused by the Trypanosoma cruzi affecting millions of people, and widespread throughout Latin America. This disease exhibits a problematic chemotherapy. Benznidazole, which is the drug currently used as standard treatment, lamentably evokes several adverse reactions. Among other options, natural products have been tested to discover a novel therapeutic drug for this disease. A lot of plants from the Brazilian flora did not contain studies about their biological effects. Restinga de Jurubatiba from Brazil is a sandbank ecosystem poorly studied in relation to plant biological activity. Thus, three plant species from Restinga de Jurubatiba were tested against in vitro antiprotozoal activity. Among six extracts obtained from leaves and stem parts and 2 essential oils derived from leave parts, only 3 extracts inhibited epimastigote proliferation. Substances present in the extracts with activity were isolated (quercetin, myricetin, and ursolic acid), and evaluated in relation to antiprotozoal activity against epimastigote Y and Dm28 Trypanosoma cruzi strains. All isolated substances were effective to reduce protozoal proliferation. Essentially, quercetin and myricetin did not cause mammalian cell toxicity. In summary, myricetin and quercetin molecule can be used as a scaffold to develop new effective drugs against Chagas's disease.

  10. Prevalence of antibodies to Trypanosoma cruzi, Toxoplasma gondii, Encephalitozonn cuniculi, Sarcocystis neurona, Besnoitia darlingi, and Neospora caninum in North American opossum, Didelphis virginiana, from Southern Louisian

    Science.gov (United States)

    We examined the prevalence of antibodies to zoonotic protozoan parasites (Trypanosoma cruzi, Toxoplasma gondii, and Encephalitozoon cuniculi) and protozoan’s of veterinary importance (Neospora caninum, Sarcocystis neurona and Besnoitia darlingi) in a population of North American opossums (Didelphis...

  11. Trypanosoma teixeirae: A new species belonging to the T. cruzi clade causing trypanosomosis in an Australian little red flying fox (Pteropus scapulatus).

    Science.gov (United States)

    Barbosa, Amanda D; Mackie, John T; Stenner, Robyn; Gillett, Amber; Irwin, Peter; Ryan, Una

    2016-06-15

    Little is known about the genetic diversity and pathogenicity of trypanosomes in Australian bats. Recently a novel trypanosome species was identified in an adult female little red flying fox (Pteropus scapulatus) with clinical and pathological evidence of trypanosomosis. The present study used morphology and molecular methods to demonstrate that this trypanosome is a distinct species and we propose the name Trypanosoma teixeirae sp. n. Morphological comparison showed that its circulating trypomastigotes were significantly different from those of Trypanosoma pteropi and Trypanosoma hipposideri, two species previously described from Australian bats. Genetic information was not available for T. pteropi and T. hipposideri but phylogenetic analyses at the 18S ribosomal RNA (rRNA) and glycosomal glyceraldehyde phosphate dehydrogenase (gGAPDH) loci indicated that T. teixeirae sp. n. was genetically distinct and clustered with other bat-derived trypanosome species within the Trypanosoma cruzi clade. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. [Early stages of development of Trypanosoma rotatorium (Mayer, 1843) from peripheral blood and internal organs of Anurans Bufo bufo (Linnaeus) and Rana sp. (Anura)].

    Science.gov (United States)

    Malysheva, M N

    2014-01-01

    The data on the fauna of trypanosomes of Anura of the Leningrad Province are given. The initial development stages of Trypanosoma rotatorium in peripheral blood and internal organs of the frog are described for the first time.

  13. On the tissular parasitism of Trypanosoma cruzi y strain in swiss mice Sobre o parasitismo tecidual da cepa Y do Trypanosoma cruzi em camundongos albinos (Swiss-Webster

    Directory of Open Access Journals (Sweden)

    Maria Auxiliadora de Sousa

    1984-12-01

    Full Text Available A review of the tissular parasitism of Trypanosoma cruzi Y strain in Swiss mice was carried out. This strain parasitized preferentially smooth, skeletal and cardiac muscle fibers, with low transitory spleen and liver parasitism, as previously found by some Authors, although differing from other reports. These results can be related to the host genetical constitution and/or the degree of the strain virulence at the time of this study. Furthermore, we discuss that the high macrophagotropism reported for this strain in some instances could be an artificially induced condition resulting from its serial maintenance in mice, either for a longer time and/or by using young animals. The heavy parasitism and inflammation observed in the bladder, pancreas and spermatic duct of some inoculated mice, as well as the testis parasitization, were also noteworthy findings.Através deste trabalho fizemos uma revisão do parasitismo tecidual da cepa Y do Trypanosoma cruzi em camundongos albinos (Swiss-Webster. Esta cepa parasitou preferencialmente as fibras musculares lisas, esqueléticas e cardíacas, sendo baixo e transitório seu parasitismo do baço e fígado, conforme já observado por alguns Autores, embora diferindo de outros achados. Estes resultados podem estar relacionados com o padrão genético do hospedeiro e/ou com o grau de virulência da cepa por ocasião deste estudo. Além do mais, discutimos a possibilidade de que o intenso macrofagotropismo descrito para esta cepa em algumas ocasiões possa ser uma condição artificialmente induzida através de sua manutenção seriada em camundongos por tempo prolongado e/ou pelo uso de animais jovens. Também são dignos de nota, o intenso parasitismo e inflamação da bexiga, pâncreas e canal espermático de alguns animais inoculados, assim como, o encontro de ninhos de amastigotas no testículo.

  14. Humoral immune response of horses experimentally infected with Trypanosoma evansi/ Resposta imune humoral de eqüinos infectados experimentalmente com Trypanosoma evansi

    Directory of Open Access Journals (Sweden)

    Lúcia Padilha Cury Thomaz de Aquino

    2001-05-01

    Full Text Available Six adult horses were experimentally infected with Trypanosoma evansi (106 parasites. Three other adult horses served as negative control. Serum samples of the experimentally infected horses with T. evansi and non-infected controls horses were obtained before inoculation, and daily thereafter until 14 days post infection (DPI. After that time the serum samples were obtained weekly. Sera of the infected and non-infected control horses was tested by indirect fluorescent antibody test (IFAT and enzyme-linked immunosorbent assay (ELISA for the detection of antibodies against T. evansi. Both ELISA and IFAT detected trypanosomal antibodies shortly after infection and showed progressive increases in antibodies levels during early stages of infection. The responses started on the eighth and eleventh DPI. Maximum IFAT and ELISA values were reached after four weeks of infection and were maintained at this level until the end of the period of study.Seis eqüinos foram inoculados com 106 tripomastigota sangüícolas de Trypanosoma evansi. Três outros animais foram mantidos como testemunhas. Amostras de soro sangüíneo foram obtidas de todos os animais, antes da inoculação, e diariamente até o 14º dia pós inoculação (DPI; após este período uma vez por semana. Pesquisa de anticorpos anti- T. evansi, foram realizadas através da reação de imunofluorescência indireta (RIFI e do ensaio de imunoabsorção enzimática (ELISA. A resposta imune humoral, detectada através da RIFI e do ELISA, iniciou-se, em média, a partir do oitavo DPI, alcançando títulos máximos após quatro semanas de evolução, e os titulos de anticorpos anti- T. evansi mantiveram-se elevadas até o término das observações.

  15. Estudios sobre Trypanosoma rangeli Tejera, 1920: VIII. Respuesta a las reinfecciones en dos mamíferos Trypanosoma rangeli Tejera, 1920: VIII. Responses to reinfections in 2 mammals

    Directory of Open Access Journals (Sweden)

    N. Añez

    1985-06-01

    Full Text Available Bajo condiciones experimentales se estudia el curso de la infección primaria y la respuesta a las reinfecciones por Trypanosoma rangeli en ratones albinos y Didelphis marsupialis. Durante el curso de la infección primaria en ratones, se observa una parasitemia relativamente baja y de corta duración. Los mismos muestran durante la primera reinfección una parasitemia escasa de cuatro días de duración, siendo resistentes a las sucesivas reinfecciones con T. rangeli. Los ejemplares de D. marsupialis exhiben una parasitemia de más larga duración, pero con un nivel de parásitos sanguícolas mucho menor que el detectado en el modelo ratón, siendo la respuesta a las reinfecciones similar a la observada en ratones. Se detectan anticuerpos hemaglutinantes en los sueros inmunes de ratones y Didelphis marsupialis, sometidos a la reinfección por T. rangeli. Se especula sobre la posible acción sinérgica de una respuesta inmune en el sitio de deposición en contra de las formas metacíclicas de T. rangeli y la acción de anticuerpos circulantes en contra de las formas sanguícolas, para explicar la resistencia de ambos modelos a las reinfecciones por T. rangeli.Under experimental conditions, the course of the infection and the response to the reinfection by Trypanosoma rangeli in mice and Didelphis marsupialis, are studied. During the initial infection the mice show a relatively low parasitaemia and a short patent period. A scanty parasitaemia level of four days length, was observed following the first reinfection, being the mice resistant to new reinfections by T. rangeli. In opossums a lower parasitaemia and a longer patent period than that detected in mice, were observed during the initial infection. The response to reinfections in this mammal, was similar to that observed in mice. After reinfection with T. rangeli, haemagglutinant antibodies in immune-sera of both mice and opossums, were detected. The possible immune-response at the site of

  16. Infections of Hypostomus spp. by Trypanosoma spp. and leeches: a study of hematology and record of these hirudineans as potential vectors of these hemoflagellates

    Directory of Open Access Journals (Sweden)

    Lincoln Lima Corrêa

    Full Text Available Abstract Among Kinetoplastida, the Trypanosoma is the genus with the highest occurrence infecting populations of marine fish and freshwater in the world, with high levels of prevalence, causing influences fish health and consequent economic losses, mainly for fish populations in situation stress. This study investigated infections of Hypostomus spp. by Trypanosoma spp. and leeches, as well as blood parameters of this host in the network of tributaries of the Tapajós River in the state of Pará, in the eastern Amazon region in Brazil. Of the 47 hosts examined, 89.4% were parasitized by Trypanosoma spp. and 55.4% also had leeches attached around the mouth. The intensity of Trypanosoma spp. increased with the size of the host, but the body conditions were not influenced by the parasitism. The number of red blood cells, and hemoglobin, mean corpuscular volume (MCV, mean corpuscular hemoglobin concentration (MCHC, mean corpuscular hemoglobin (MCH, total number of leukocytes and thrombocytes showed variations and negative correlation with the intensity of Trypanosoma spp. in the blood of the hosts. The results suggest that the leeches were vectors of Trypanosoma spp. in Hypostomus spp.

  17. Effects of betamethasone on the course of experimentai. Infection with Trypanosoma cruzi

    Directory of Open Access Journals (Sweden)

    Frederico G.C. Abath

    1986-09-01

    Full Text Available In this experiment, the effect of betamethasone administered in the early post- acute infection of mice by Trypanosoma cruzi was studied. This drug was administered during 30 days after the 42nd day of infection in a dose of 0.15 mg/day. The betamethasone treatment did not cause fresh outbreaks of parasitemia and the histopathological findings in the chronic phase were not different from those in the control group. The higher cumulative mortality after treatment in the experimental group was due to superimposed bacterial infections. Outbred albino mice infected with low numbers ofY strain Trypanosoma cruzi trypomastigotes were not suitable models for Chagas' disease, since after 7 months of observation only mild histological lesions developed in all the animais. Prolonged betamethasone treatment of mice infected with low numbers o/Trypanosoma cruzi of the Y strain, during the post-acute phase did not aggravate the course of infection.Foram estudados os efeitos da betametasona administrada na fase pós-aguda imediata de uma infecção pelo T. cruzi em camundongos. O tratamento consistiu de 30 doses diárias de 0,15 mg de betametasona, a partir de 42° dia de infecção, não havendo aparecimento de novos surtos de parasitemia. No tempo de duração do experimento (7 meses não houve diferença entre as lesões histopatológicas dos animais tratados e dos não tratados. O grupo experimental apresentou uma maior mortalidade acumulada no 75º dia de infecção, o que pode ser atribuído a infecções bacterianas associadas. Por outro lado, camundongos albinos "outbred", infectados com baixo inóculo, não se apresentaram como bom modelo de doença de Chagas, já que não desenvolveram lesões importantes nem na fase aguda nem após 7 meses de infecção. Em conclusão, o tratamento imunosupressivo prolongado, após a fase aguda de uma infecção mínima com a cepa Ydo T. cruzi não tem influência sobre o curso da infecção, pelo menos no que tange

  18. Unraveling the differences of the hydrolytic activity of Trypanosoma cruzi trans-sialidase and Trypanosoma rangeli sialidase: a quantum mechanics-molecular mechanics modeling study.

    Science.gov (United States)

    Bueren-Calabuig, Juan A; Pierdominici-Sottile, Gustavo; Roitberg, Adrian E

    2014-06-05

    Chagas' disease, also known as American trypanosomiasis, is a lethal, chronic disease that currently affects more than 10 million people in Central and South America. The trans-sialidase from Trypanosoma cruzi (T. cruzi, TcTS) is a crucial enzyme for the survival of this parasite: sialic acids from the host are transferred to the cell surface glycoproteins of the trypanosome, thereby evading the host's immune system. On the other hand, the sialidase of T. rangeli (TrSA), which shares 70% sequence identity with TcTS, is a strict hydrolase and shows no trans-sialidase activity. Therefore, TcTS and TrSA represent an excellent framework to understand how different catalytic activities can be achieved with extremely similar structures. By means of combined quantum mechanics-molecular mechanics (QM/MM, SCC-DFTB/Amberff99SB) calculations and umbrella sampling simulations, we investigated the hydrolysis mechanisms of TcTS and TrSA and computed the free energy profiles of these reactions. The results, together with our previous computational investigations, are able to explain the catalytic mechanism of sialidases and describe how subtle differences in the active site make TrSA a strict hydrolase and TcTS a more efficient trans-sialidase.

  19. Fertility of the Small East African goat following pre-pubertal infection with Trypanosoma congolense

    International Nuclear Information System (INIS)

    O'Hara, H.B.; Gombe, S.

    1991-01-01

    Pre-pubertal male and female Small East African goats were infected with Trypanosoma congolense at 4-5 months of age. Changes in body weight and haemogram were monitored weekly. Progesterone and testosterone measurements were made three times weekly until the goats either reached puberty or 18 months of age. Onset of puberty was determined from observation of oestrus behaviour, mating or increase in libidio; this was confirmed by elevation in plasma progesterone or testosterone levels. Trypanosomiasis affected pre-pubertal goats by reducing body weight gain and delaying onset of puberty. Histological examination of the gonads showed pronounced pathological changes. These effects were reversed by treatment with isometamidium chloride (Samorin, May and Baker). It was concluded that early treatment of infected goats before serious gonadal damage could occur allowed full restoration of reproductive function. (author). 6 refs, 4 figs, 1 tab

  20. A new bianthron glycoside as inhibitor of Trypanosoma cruzi glyceraldehyde 3-phosphate dehydrogenase activity

    International Nuclear Information System (INIS)

    Macedo, Edangelo M.S. de; Silva, Maria G.V.; Wiggers, Helton J.; Montanari, Carlos A.; Braz-Filho, Raimundo; Andricopulo, Adriano D.

    2009-01-01

    A phytochemical investigation of the ethanolic extract of stalks of Senna martiana Benth. (Leguminoseae), native specie of northeast Brazil, resulted in the isolation and spectroscopic characterization of a new bianthrone glycoside, martianine 1 (10,10'-il-chrysophanol-10-oxi- 10,10'-bi-glucosyl). Its identification was established by HRMS, IR and 2D NMR experiments. The evaluation of martianine trypanocidal activity was carried out against gliceraldehyde 3-phosphate dehydrogenase enzyme from Trypanosoma cruzi. Its inhibitory constant (K i ) is in the low micromolar concentration and it was determined by isothermal titration calorimetry to be 27.3 +-2.47 μmol L -1 . The non-competitive mechanism is asserted to be putative of the mode of action martianine displays against T. cruzi GAPDH. Results show that martianine has a great potential to become new lead molecule by inhibiting this key enzyme and for the development of new drugs against Chagas disease. (author)

  1. Selection and optimization of hits from a high-throughput phenotypic screen against Trypanosoma cruzi.

    Science.gov (United States)

    Keenan, Martine; Alexander, Paul W; Chaplin, Jason H; Abbott, Michael J; Diao, Hugo; Wang, Zhisen; Best, Wayne M; Perez, Catherine J; Cornwall, Scott M J; Keatley, Sarah K; Thompson, R C Andrew; Charman, Susan A; White, Karen L; Ryan, Eileen; Chen, Gong; Ioset, Jean-Robert; von Geldern, Thomas W; Chatelain, Eric

    2013-10-01

    Inhibitors of Trypanosoma cruzi with novel mechanisms of action are urgently required to diversify the current clinical and preclinical pipelines. Increasing the number and diversity of hits available for assessment at the beginning of the discovery process will help to achieve this aim. We report the evaluation of multiple hits generated from a high-throughput screen to identify inhibitors of T. cruzi and from these studies the discovery of two novel series currently in lead optimization. Lead compounds from these series potently and selectively inhibit growth of T. cruzi in vitro and the most advanced compound is orally active in a subchronic mouse model of T. cruzi infection. High-throughput screening of novel compound collections has an important role to play in diversifying the trypanosomatid drug discovery portfolio. A new T. cruzi inhibitor series with good drug-like properties and promising in vivo efficacy has been identified through this process.

  2. A Highly Sensitive Rapid Diagnostic Test for Chagas Disease That Utilizes a Recombinant Trypanosoma cruzi Antigen

    Science.gov (United States)

    Barfield, C. A.; Barney, R. S.; Crudder, C. H.; Wilmoth, J. L.; Stevens, D. S.; Mora-Garcia, S.; Yanovsky, M. J.; Weigl, B. H.; Yanovsky, J.

    2011-01-01

    Improved diagnostic tests for Chagas disease are urgently needed. A new lateral flow rapid test for Chagas disease is under development at PATH, in collaboration with Laboratorio Lemos of Argentina, which utilizes a recombinant antigen for detection of antibodies to Trypanosoma cruzi. To evaluate the performance of this test, 375 earlier characterized serum specimens from a region where Chagas is endemic were tested using a reference test (the Ortho T. cruzi ELISA, Johnson & Johnson), a commercially available rapid test (Chagas STAT-PAK, Chembio), and the PATH–Lemos rapid test. Compared to the composite reference tests, the PATH–Lemos rapid test demonstrated an optimal sensitivity of 99.5% and specificity of 96.8%, while the Chagas STAT-PAK demonstrated a sensitivity of 95.3% and specificity of 99.5%. These results indicate that the PATH–Lemos rapid test shows promise as an improved and reliable tool for screening and diagnosis of Chagas disease. PMID:21342808

  3. Genetic characterization of Trypanosoma cruzi natural clones from the state of Paraíba, Brazil

    Directory of Open Access Journals (Sweden)

    Christian Barnabé

    2005-05-01

    Full Text Available Eighteen Trypanosoma cruzi stocks from the state of Paraíba, Brazil, isolated from man, wild mammals, and triatomine bugs were studied by multilocus enzyme electrophoresis and random primed amplified polymorphic DNA. Despite the low number of stocks, a notable genetic, genotypic, and phylogenetic diversity was recorded. The presence of the two main phylogenetic subdivisions, T. cruzi I and II, was recorded. The strong linkage disequilibrium observed in the population under survey suggests that T. cruzi undergoes predominant clonal evolution in this area too, although this result should be confirmed by a broader sample. The pattern of clonal variation does not suggests a recent origin by founder effect with a limited number of different genotypes.

  4. Prevalencia de infeccion a Trypanosoma cruzi en donadores de sangre en el Estado de Jalisco, Mexico

    Directory of Open Access Journals (Sweden)

    Francisco Trujillo Contreras

    1993-06-01

    Full Text Available Durante el periodo de Octubre de 1991 a Marzo de 1992, se tomaron 3419 muestras de donadores de sangre de 12 localidades rurales y de 8 hospitales urbanos a los que se les realizo un estúdio serológico mediante la reacción de hemaglutinación indirecta encontrándose anticuerpos contra Trypanosoma cruzi en 44 indivíduos 39 masculinosy 5 femininos. El 90,9% de donantes fueron masculinos. De acuerdo a su procedencia, el 73,5% fué del área urbana y el 26,5% del área rural. De acuerdo a los resultados el riesgo de transmisión de T. cruzi por transfusión sanguinea está latente por la creciente urbanización de la enfermedad de Chagas.

  5. Production and expression of inflammation and angiogenic parameters triggered by different genetic population of Trypanosoma cruzi.

    OpenAIRE

    Shrestha, Deena

    2014-01-01

    Programa de Pós-Graduação em Ciências Biológicas. Núcleo de Pesquisas em Ciências Biológicas, Pró-Reitoria de Pesquisa e Pós Graduação, Universidade Federal de Ouro Preto. A cardiopatia induzida pela infecção pelo Trypanosoma cruzi aprensenta a inflamação como sua principal característica imunopatológica. Differente células inflamatórias contribuem para a produção de mediatores inflamatorios e regulatórios promotores diretos ou indiretos do processo denominado angiogênese inflamatória. As ...

  6. Genómica del Trypanosoma cruzi. Nuevas oportunidades para tratar el mal de Chagas

    Directory of Open Access Journals (Sweden)

    Jorge A. Huete-Pérez

    2006-12-01

    Full Text Available LA SECUENCIACIÓN DEL GENOMA HUMANO PUBLICADA EN FEBRERO de 2001 ha sido considerada como el hito científico más importante del siglo XX. La secuenciación, cuatro años más tarde, de tres parásitos tripanosmatidas, entre ellos el Trypanosoma cruzi, podría ser también catalogada como uno de los acontecimientos científicos más importantes para la salud publica del continente americano. Aquí se presenta un panorama general sobre los resultados más significativos del estudio geonómico del T. cruzi, se abordan los trabajos realizados por nuestro laboratorio en la Universidad Centroamericana, finalizando con una discusión sobre las perspectivas del uso de la genómica en Nicaragua.

  7. Effects of water deprivation on renal hydroelectrolytic excretion in chronically Trypanosoma cruzi-infected rats

    Directory of Open Access Journals (Sweden)

    T.T. Rosa

    1995-03-01

    Full Text Available The effect of an 8 hour-period of water deprivation on fluid and electrolyte renal excretion was investigated in male Wistar rats infected with the strain São Felipe (12SF of Trypanosoma cruzi, in comparison with age and sex matched non-infected controls. The median percent reductions in the urinary flow (-40% v -63% and excretion ofsodium (-57% v-79% were smaller in chagasic than in control rats, respectively. So, chagasic rats excreted more than controls. On the other hand, the median percent decrement in the clearance of creatinine was higher in chagasic (-51% than in controls (-39%. Thus, chagasic rats showed some disturbed renal hydroelectrolytic responses to water deprivation, expressed by smaller conservation, or higher excretion of water and sodium in association with smaller glomerularfiltration rate. This fact denoted an elevation in the fractional excretion of sodium and water.

  8. [Seroprevalence of Trypanosoma cruzi infection in the rural population of Sucre State, Venezuela].

    Science.gov (United States)

    García-Jordán, Noris; Berrizbeitia, Mariolga; Rodríguez, Jessicca; Concepción, Juan Luis; Cáceres, Ana; Quiñones, Wilfredo

    2017-10-26

    The current study aimed to determine the seroprevalence of Trypanosoma cruzi infection in Sucre State, Venezuela, and its association with epidemiological risk factors. The cluster sampling design allowed selecting 96 villages and 576 dwellings in the State's 15 municipalities. A total of 2,212 serum samples were analyzed by ELISA, HAI, and IFI. Seroprevalence in Sucre State was 3.12%. Risk factors associated with T. cruzi infection were: accumulated garbage, flooring and wall materials, type of dwelling, living in a house with wattle and daub walls and/or straw roofing, living in a house with risky walls and roofing, risky buildings and wattle and daub outbuildings, poultry inside the human dwelling, and presence of firewood. Infection was associated with individual age, and three seropositive cases were found in individuals less than 15 years of age. Sucre State has epidemiological factors that favor the risk of acquiring T. cruzi infection.

  9. Seroprevalence of human Trypanosoma cruzi infection in diferent geografic zones of Chiapas, Mexico.

    Science.gov (United States)

    Mazariego-Arana, M A; Monteón, V M; Ballinas-Verdugo, M A; Hernández-Becerril, N; Alejandre-Aguilar, R; Reyes, P A

    2001-01-01

    A serologic survey was carried out in four different geographic zones of Chiapas, Mexico. A total of 1,333 samples were collected from residents of thirteen communities located on the Coast, Central Mountain, Lacandon Forest and a zone called Mesochiapas. One hundred and fifty one seropositive individuals (11.3%) were identified. Human Trypanosoma cruzi infection was influenced by geography. In the Lacandon Forest and Central Mountains there was a higher seroprevalence 32.1 and 13.8% respectively, than on the coast (1.2%). In Mesochiapas there were no seropositive individuals among the 137 persons tested. An active transmission is probably continuing because seropositive cases (13.8%) were detected in children under 10 years of age. The vector recognized on the Coast was Triatoma dimidiata while in the Lacandon Forest it was Rhodnius prolixus.

  10. Population genetic analysis of Colombian Trypanosoma cruzi isolates revealed by enzyme electrophoretic profiles

    Directory of Open Access Journals (Sweden)

    Manuel Ruiz-Garcia

    2001-01-01

    Full Text Available Although Colombia presents an enormous biological diversity, few studies have been conducted on the population genetics of Trypanosoma cruzi. This study was carried out with 23 Colombian stocks of this protozoa analyzed for 13 isoenzymatic loci. The Hardy-Weinberg equilibrium, the genetic diversity and heterogeneity, the genetic relationships and the possible spatial structure of these 23 Colombian stocks of T. cruzi were estimated. The majority of results obtained are in agreement with a clonal population structure. Nevertheless, two aspects expected in a clonal structure were not discovered in the Colombian T. cruzi stocks. There was an absence of given zymodemes over-represented from a geographical point of view and the presumed temporal stabilizing selective phenomena was not observed either in the Colombian stocks sampled several times through the years of the study. Some hypotheses are discussed in order to explain the results found.

  11. African trypanosomiasis with special reference to Egyptian Trypanosoma evansi: is it a neglected zoonosis?

    Science.gov (United States)

    El-Bahnasawy, Mamdouh M M; Khater, Mai Kh A; Morsy, Tosson A

    2014-12-01

    Trypanosomes (including humans) are blood and sometimes tissue parasites of the order Kinetoplastida, family Trypanosomatidae, genus Trypanosoma, principally transmitted by biting insects where most of them undergo a biological cycle. They are divided into Stercoraria with the posterior station inoculation, including T. cruzi, both an extra- and intracellular parasite that causes Chagas disease, a major human disease affecting 15 million people and threatening 100 million people in Latin America, and the Salivaria with the anterior station inoculation, mainly African livestock pathogenic trypanosomes, including the agents of sleeping sickness, a major human disease affecting around half a million people and threatening 60 million people in Africa. Now, T. evansi was reported in man is it required to investigate its zoonotic potential?

  12. The effect of Bulgarian propolis against Trypanosoma cruzi and during its interaction with host cells

    Directory of Open Access Journals (Sweden)

    Andréia Pires Dantas

    2006-03-01

    Full Text Available Propolis has shown activity against pathogenic microorganisms that cause diseases in humans and animals. The ethanol (Et-Blg and acetone (Ket-Blg extracts from a Bulgarian propolis, with known chemical compositions, presented similar activity against tissue culture-derived amastigotes. The treatment of Trypanosoma cruzi-infected skeletal muscle cells with Et-Blg led to a decrease of infection and of the intracellular proliferation of amastigotes, while damage to the host cell was observed only at concentration 12.5 times higher than those affecting the parasite. Ultrastructural analysis of the effect of both extracts in epimastigotes revealed that the main targets were the mitochondrion and reservosomes. Et-Blg also affected the mitochondrion-kinetoplast complex in trypomastigotes, offering a potential target for chemotherapeutic agents.

  13. The role of adaptations in two-strain competition for sylvatic Trypanosoma cruzi transmission.

    Science.gov (United States)

    Kribs-Zaleta, Christopher M; Mubayi, Anuj

    2012-01-01

    This study presents a continuous-time model for the sylvatic transmission dynamics of two strains of Trypanosoma cruzi enzootic in North America, in order to study the role that adaptations of each strain to distinct modes of transmission (classical stercorarian transmission on the one hand, and vertical and oral transmission on the other) may play in the competition between the two strains. A deterministic model incorporating contact process saturation predicts competitive exclusion, and reproductive numbers for the infection provide a framework for evaluating the competition in terms of adaptive trade-off between distinct transmission modes. Results highlight the importance of oral transmission in mediating the competition between horizontal (stercorarian) and vertical transmission; its presence as a competing contact process advantages vertical transmission even without adaptation to oral transmission, but such adaptation appears necessary to explain the persistence of (vertically-adapted) T. cruzi IV in raccoons and woodrats in the southeastern United States.

  14. Seroprevalence of Trypanosoma cruzi in rural Ecuador and clustering of seropositivity within households.

    Science.gov (United States)

    Black, Carla L; Ocaña-Mayorga, Sofía; Riner, Diana K; Costales, Jaime A; Lascano, Mauricio S; Arcos-Terán, Laura; Preisser, John S; Seed, J Richard; Grijalva, Mario J

    2009-12-01

    We performed a cross-sectional study of Trypanosoma cruzi seroprevalence in 14 communities in three provinces of Ecuador and estimated the magnitude of the association of seropositive individuals within households. A total of 3,286 subjects from 997 households were included. Seroprevalence was 5.7%, 1.0%, and 3.6% in subjects in the Manabí, Guayas, and Loja provinces, respectively. Seroprevalence increased with increasing age in Manabí and Guayas, whereas in Loja, the highest prevalence occurred in children Loja, the odds of seropositivity were more than two times greater for an individual living in a household with another seropositive person. Our results indicate that transmission of T. cruzi is ongoing in Ecuador, although intensity of transmission and mechanisms of interaction between humans and the insect vectors of disease vary between geographic regions.

  15. The Role of Heme and Reactive Oxygen Species in Proliferation and Survival of Trypanosoma cruzi

    Directory of Open Access Journals (Sweden)

    Marcia Cristina Paes

    2011-01-01

    Full Text Available Trypanosoma cruzi, the protozoan responsible for Chagas disease, has a complex life cycle comprehending two distinct hosts and a series of morphological and functional transformations. Hemoglobin degradation inside the insect vector releases high amounts of heme, and this molecule is known to exert a number of physiological functions. Moreover, the absence of its complete biosynthetic pathway in T. cruzi indicates heme as an essential molecule for this trypanosomatid survival. Within the hosts, T. cruzi has to cope with sudden environmental changes especially in the redox status and heme is able to increase the basal production of reactive oxygen species (ROS which can be also produced as byproducts of the parasite aerobic metabolism. In this regard, ROS sensing is likely to be an important mechanism for the adaptation and interaction of these organisms with their hosts. In this paper we discuss the main features of heme and ROS susceptibility in T. cruzi biology.

  16. Trypanosoma cruzi in the anal glands of urban opossums: I- isolation and experimental infections

    Directory of Open Access Journals (Sweden)

    S Urdaneta-Morales

    1996-08-01

    Full Text Available Opossums (Didelphis marsupialis captured in intensely urbanized areas of the city of Caracas, Venezuela, were found infected with Trypanosoma cruzi. The developmental cycle of trypomastigote-epimastigote-metacyclic infective trypomastigote, usually occurring in the intestine of the triatomine vector, was taking place in the anal odoriferous glands of the opossums. Material from the glands, inoculated in young, healthy opossums and white mice by different routes, subcutaneously, intraperitoneally, orally, and into the eye, induced T. cruzi infections in all animals. Parasitemia, invasion of cardiac and skeletal muscle, and intracellular multiplication of amastigotes were observed. Inoculation of metacyclics from anal glands, cultured in LIT medium, gave equivalent results. All opossums survived; all mice died. Excreta of opossums may thus transmit Chagas' disease by contamination, even in urban areas where insect vectors are not present.

  17. Aspectos ultra-estruturais da forma epimastigota do Trypanosoma cruzi em meio LIT

    Directory of Open Access Journals (Sweden)

    Wanderley de Souza

    1975-06-01

    Full Text Available E feito um estudo da ultra-estrutura da forma epismastigota do Trypanosoma cruzi mantida em meio de cultivo acelular. O núcleo das formas em divisão apresenta um aspecto homogêneo. Microtúbulos intranucleares são observados durante a divisão. No entanto, a membrana nuclear permanece íntegra. O citoplasma apresenta-se com vacúolos de dimensões e aspectos variados. Com o método do ácido periódico-tiosemicarbazida-proteinato de prata, polissacaríáeos e/ou glicoproteínas foram localizados na membrana celular e na membrana que delimita certos vacúolos citoplasmáticos.

  18. Mechanism of Trypanosoma cruzi Placenta Invasion and Infection: The Use of Human Chorionic Villi Explants

    Directory of Open Access Journals (Sweden)

    Ricardo E. Fretes

    2012-01-01

    Full Text Available Congenital Chagas disease, a neglected tropical disease, endemic in Latin America, is associated with premature labor and miscarriage. During vertical transmission the parasite Trypanosoma cruzi (T. cruzi crosses the placental barrier. However, the exact mechanism of the placental infection remains unclear. We review the congenital transmission of T. cruzi, particularly the role of possible local placental factors that contribute to the vertical transmission of the parasite. Additionally, we analyze the different methods available for studying the congenital transmission of the parasite. In that context, the ex vivo infection with T. cruzi trypomastigotes of human placental chorionic villi constitutes an excellent tool for studying parasite infection strategies as well as possible local antiparasitic mechanisms.

  19. First report of surra (Trypanosoma evansi infection in a Tunisian dog

    Directory of Open Access Journals (Sweden)

    Rjeibi Mohamed Ridha

    2015-01-01

    Full Text Available Trypanosoma evansi, the agent of surra, is a salivarian trypanosome, originating from Africa. Surra is a major disease in camels, equines and dogs, in which it can often be fatal in the absence of treatment. Animals exhibit nonspecific clinical signs (anaemia, loss of weight and abortion. In the present survey, a blood sample was collected in Sousse (Central Tunisia from a dog that presented clinical signs of trypanosomiasis. Giemsa-stained blood smears and PCR were performed. ITS1 sequences from blood had 99.8 and 99.5% homology with published T. evansi sequences from cattle and camels, respectively. To our knowledge, this is the first report of T. evansi in a Tunisian dog.

  20. Transcriptional profiling of cattle infected with Trypanosoma congolense highlights gene expression signatures underlying trypanotolerance and trypanosusceptibility

    Directory of Open Access Journals (Sweden)

    Naessens Jan

    2009-05-01

    Full Text Available Abstract Background African animal trypanosomiasis (AAT caused by tsetse fly-transmitted protozoa of the genus Trypanosoma is a major constraint on livestock and agricultural production in Africa and is among the top ten global cattle diseases impacting on the poor. Here we show that a functional genomics approach can be used to identify temporal changes in host peripheral blood mononuclear cell (PBMC gene expression due to disease progression. We also show that major gene expression differences exist between cattle from trypanotolerant and trypanosusceptible breeds. Using bovine long oligonucleotide microarrays and real time quantitative reverse transcription PCR (qRT-PCR validation we analysed PBMC gene expression in naïve trypanotolerant and trypanosusceptible cattle experimentally challenged with Trypanosoma congolense across a 34-day infection time course. Results Trypanotolerant N'Dama cattle displayed a rapid and distinct transcriptional response to infection, with a ten-fold higher number of genes differentially expressed at day 14 post-infection compared to trypanosusceptible Boran cattle. These analyses identified coordinated temporal gene expression changes for both breeds in response to trypanosome infection. In addition, a panel of genes were identified that showed pronounced differences in gene expression between the two breeds, which may underlie the phenomena of trypanotolerance and trypanosusceptibility. Gene ontology (GO analysis demonstrate that the products of these genes may contribute to increased mitochondrial mRNA translational efficiency, a more pronounced B cell response, an elevated activation status and a heightened response to stress in trypanotolerant cattle. Conclusion This study has revealed an extensive and diverse range of cellular processes that are altered temporally in response to trypanosome infection in African cattle. Results indicate that the trypanotolerant N'Dama cattle respond more rapidly and with a

  1. Prevalencia de infeccion a Trypanosoma cruzi en donadores de sangre en el Estado de Jalisco, Mexico

    Directory of Open Access Journals (Sweden)

    Francisco Trujillo Contreras

    1993-06-01

    Full Text Available Durante el periodo de Octubre de 1991 a Marzo de 1992, se tomaron 3419 muestras de donadores de sangre de 12 localidades rurales y de 8 hospitales urbanos a los que se les realizo un estúdio serológico mediante la reacción de hemaglutinación indirecta encontrándose anticuerpos contra Trypanosoma cruzi en 44 indivíduos 39 masculinosy 5 femininos. El 90,9% de donantes fueron masculinos. De acuerdo a su procedencia, el 73,5% fué del área urbana y el 26,5% del área rural. De acuerdo a los resultados el riesgo de transmisión de T. cruzi por transfusión sanguinea está latente por la creciente urbanización de la enfermedad de Chagas.A Chagas Disease serological study was done frorn October 1991 to March 1992 and 3419 samples were takenfrom people who donated blood at 12 county areas of Jalisco, México and 8 urban hospitais, by means of indirect hemagglutination reaction. The results indicate that: 73.5% of the donors were from urban area, 26.5% were from rural areas; 1.28% of the donors (N=44 were considered infected. Thirty nine of them (1.14 were males and 5 females. According to the above mentioned data, we can confirm that the risk of transmission of Trypanosoma cruzi can occur by blood transfusion and this is potentially latent because of the growing urbanization of Chagas disease.

  2. Interactions between 4-aminoquinoline and heme: Promising mechanism against Trypanosoma cruzi

    Directory of Open Access Journals (Sweden)

    Guilherme Curty Lechuga

    2016-12-01

    Full Text Available Chagas disease is a neglected tropical disease caused by the flagellated protozoan Trypanosoma cruzi. The current drugs used to treat this disease have limited efficacy and produce severe side effects. Quinolines, nitrogen heterocycle compounds that form complexes with heme, have a broad spectrum of antiprotozoal activity and are a promising class of new compounds for Chagas disease chemotherapy. In this study, we evaluated the activity of a series of 4-arylaminoquinoline-3-carbonitrile derivatives against all forms of Trypanosoma cruzi in vitro. Compound 1g showed promising activity against epimastigote forms when combined with hemin (IC50<1 μM, with better performance than benznidazole, the reference drug. This compound also inhibited the viability of trypomastigotes and intracellular amastigotes. The potency of 1g in combination with heme was enhanced against epimastigotes and trypomastigotes, suggesting a similar mechanism of action that occurs in Plasmodium spp. The addition of hemin to the culture medium increased trypanocidal activity of analog 1g without changing the cytotoxicity of the host cell, reaching an IC50 of 11.7 μM for trypomastigotes. The mechanism of action was demonstrated by the interaction of compound 1g with hemin in solution and prevention of heme peroxidation. Compound 1g and heme treatment induced alterations of the mitochondrion-kinetoplast complex in epimastigotes and trypomastigotes and also, accumulation of electron-dense deposits in amastigotes as visualized by transmission electron microscopy. The trypanocidal activity of 4-aminoquinolines and the elucidation of the mechanism involving interaction with heme is a neglected field of research, given the parasite's lack of heme biosynthetic pathway and the importance of this cofactor for parasite survival and growth. The results of this study can improve and guide rational drug development and combination treatment strategies.

  3. Trypanosoma cruzi Detection in Colombian Patients with a Diagnosis of Esophageal Achalasia.

    Science.gov (United States)

    Panesso-Gómez, Santiago; Pavia, Paula; Rodríguez-Mantilla, Iván Enrique; Lasso, Paola; Orozco, Luis A; Cuellar, Adriana; Puerta, Concepción J; Mendoza de Molano, Belén; González, John M

    2018-03-01

    Achalasia is a motility disorder of the esophagus that might be secondary to a chronic Trypanosoma cruzi infection. Several studies have investigated esophageal achalasia in patients with Chagas disease (CD) in Latin America, but no related studies have been performed in Colombia. The goals of the present study were to determine the presence of anti- T. cruzi antibodies in patients with esophageal achalasia who visited a referral hospital in Bogotá, Colombia, and to detect the presence of the parasite and its discrete typing units (DTUs). This cross-sectional study was conducted in adult patients (18-65 years old) who were previously diagnosed with esophageal achalasia and from whom blood was drawn to assess antibodies against T. cruzi using four different serological tests. Trypanosoma cruzi DNA was detected by conventional polymerase chain reaction (cPCR) and quantitative polymerase chain reaction (qPCR). In total, 38 patients, with an average age of 46.6 years (standard deviation of ±16.2) and comprising 16 men and 22 women, were enrolled. Five (13.15%) patients were found to be positive for anti- T. cruzi antibodies by indirect immunofluorescence assay (IFA), and two patients who were negative according to IFA were reactive by both enzyme-linked immunosorbent assay and immunoblot (5.3%). Parasite DNA was detected in two of these seven patients by cPCR and in one of these by qPCR. The parasite DTU obtained was TcI. In summary, this study identified T. cruzi in Colombian patients with esophageal achalasia, indicating that digestive compromise could also be present in patients with chronic CD.

  4. Interactions between 4-aminoquinoline and heme: Promising mechanism against Trypanosoma cruzi.

    Science.gov (United States)

    Lechuga, Guilherme Curty; Borges, Júlio Cesar; Calvet, Claudia Magalhães; de Araújo, Humberto Pinheiro; Zuma, Aline Araujo; do Nascimento, Samara Braga; Motta, Maria Cristina Machado; Bernardino, Alice Maria Rolim; Pereira, Mirian Claudia de Souza; Bourguignon, Saulo Cabral

    2016-12-01

    Chagas disease is a neglected tropical disease caused by the flagellated protozoan Trypanosoma cruzi. The current drugs used to treat this disease have limited efficacy and produce severe side effects. Quinolines, nitrogen heterocycle compounds that form complexes with heme, have a broad spectrum of antiprotozoal activity and are a promising class of new compounds for Chagas disease chemotherapy. In this study, we evaluated the activity of a series of 4-arylaminoquinoline-3-carbonitrile derivatives against all forms of Trypanosoma cruzi in vitro. Compound 1g showed promising activity against epimastigote forms when combined with hemin (IC50<1 μM), with better performance than benznidazole, the reference drug. This compound also inhibited the viability of trypomastigotes and intracellular amastigotes. The potency of 1g in combination with heme was enhanced against epimastigotes and trypomastigotes, suggesting a similar mechanism of action that occurs in Plasmodium spp. The addition of hemin to the culture medium increased trypanocidal activity of analog 1g without changing the cytotoxicity of the host cell, reaching an IC50 of 11.7 μM for trypomastigotes. The mechanism of action was demonstrated by the interaction of compound 1g with hemin in solution and prevention of heme peroxidation. Compound 1g and heme treatment induced alterations of the mitochondrion-kinetoplast complex in epimastigotes and trypomastigotes and also, accumulation of electron-dense deposits in amastigotes as visualized by transmission electron microscopy. The trypanocidal activity of 4-aminoquinolines and the elucidation of the mechanism involving interaction with heme is a neglected field of research, given the parasite's lack of heme biosynthetic pathway and the importance of this cofactor for parasite survival and growth. The results of this study can improve and guide rational drug development and combination treatment strategies. Copyright © 2016 The Authors. Published by Elsevier

  5. Heme A synthesis and CcO activity are essential for Trypanosoma cruzi infectivity and replication.

    Science.gov (United States)

    Merli, Marcelo L; Cirulli, Brenda A; Menéndez-Bravo, Simón M; Cricco, Julia A

    2017-06-27

    Trypanosoma cruzi , the causative agent of Chagas disease, presents a complex life cycle and adapts its metabolism to nutrients' availability. Although T. cruzi is an aerobic organism, it does not produce heme. This cofactor is acquired from the host and is distributed and inserted into different heme-proteins such as respiratory complexes in the parasite's mitochondrion. It has been proposed that T. cruzi's energy metabolism relies on a branched respiratory chain with a cytochrome c oxidase-type aa 3 (C c O) as the main terminal oxidase. Heme A, the cofactor for all eukaryotic C c O, is synthesized via two sequential enzymatic reactions catalyzed by heme O synthase (HOS) and heme A synthase (HAS). Previously, TcCox10 and TcCox15 ( Trypanosoma cruzi Cox10 and Cox15 proteins) were identified in T. cruzi They presented HOS and HAS activity, respectively, when they were expressed in yeast. Here, we present the first characterization of TcCox15 in T. cruzi , confirming its role as HAS. It was differentially detected in the different T. cruzi stages, being more abundant in the replicative forms. This regulation could reflect the necessity of more heme A synthesis, and therefore more C c O activity at the replicative stages. Overexpression of a non-functional mutant caused a reduction in heme A content. Moreover, our results clearly showed that this hindrance in the heme A synthesis provoked a reduction on C c O activity and, in consequence, an impairment on T. cruzi survival, proliferation and infectivity. This evidence supports that T. cruzi depends on the respiratory chain activity along its life cycle, being C c O an essential terminal oxidase. © 2017 The Author(s); published by Portland Press Limited on behalf of the Biochemical Society.

  6. Congenital transmission of Trypanosoma cruzi in Argentina, Honduras, and Mexico: study protocol

    Science.gov (United States)

    2013-01-01

    Background Trypanosoma cruzi has been divided into Discrete Typing Units I and non-I (II-VI). T. cruzi I is predominant in Mexico and Central America, while non-I is predominant in most of South America, including Argentina. Little is known about congenital transmission of T. cruzi I. The specific aim of this study is to determine the rate of congenital transmission of T. cruzi I compared to non-I. Methods/design We are conducting a prospective study to enroll at delivery, 10,000 women in Argentina, 7,500 women in Honduras, and 13,000 women in Mexico. We are measuring transmitted maternal T. cruzi antibodies by performing two rapid tests in cord blood (Stat-Pak, Chembio, Medford, New York, and Trypanosoma Detect, InBios, Seattle, Washington). If at least one of the results is positive, we are identifying infants who are congenitally infected by performing parasitological examinations on cord blood and at 4–8 weeks, and serological follow-up at 10 months. Serological confirmation by ELISA (Wiener, Rosario, Argentina) is performed in cord and maternal blood, and at 10 months. We also are performing T. cruzi standard PCR, real-time quantitative PCR and genotyping on maternal venous blood and on cord blood, and serological examinations on siblings. Data are managed by a Data Center in Montevideo, Uruguay. Data are entered online at the sites in an OpenClinica data management system, and digital pictures of data forms are sent to the Data Center for quality control. Weekly reports allow for rapid feedback to the sites. Trial registration Observational study with ClinicalTrials.gov Identifier NCT01787968 PMID:24119247

  7. High Trypanosoma cruzi infection prevalence associated with minimal cardiac pathology among wild carnivores in central Texas

    Directory of Open Access Journals (Sweden)

    Rachel Curtis-Robles

    2016-08-01

    Full Text Available Infection with the zoonotic vector-borne protozoal parasite Trypanosoma cruzi causes Chagas disease in humans and dogs throughout the Americas. Despite the recognized importance of various wildlife species for perpetuating Trypanosoma cruzi in nature, relatively little is known about the development of cardiac disease in infected wildlife. Using a cross-sectional study design, we collected cardiac tissue and blood from hunter-donated wildlife carcasses- including raccoon (Procyon lotor, coyote (Canis latrans, gray fox (Urocyon cinereoargenteus, and bobcat (Lynx rufus – from central Texas, a region with established populations of infected triatomine vectors and increasing diagnoses of Chagas disease in domestic dogs. Based on PCR analysis, we found that 2 bobcats (14.3%, 12 coyotes (14.3%, 8 foxes (13.8%, and 49 raccoons (70.0% were positive for T. cruzi in at least one sample (right ventricle, apex, and/or blood clot. Although a histologic survey of right ventricles showed that 21.1% of 19 PCR-positive hearts were characterized by mild lymphoplasmocytic infiltration, no other lesions and no amastigotes were observed in any histologic section. DNA sequencing of the TcSC5D gene revealed that raccoons were infected with T. cruzi strain TcIV, and a single racoon harbored a TcI/TcIV mixed infection. Relative to other wildlife species tested here, our data suggest that raccoons may be important reservoirs of TcIV in Texas and a source of infection for indigenous triatomine bugs. The overall high level of infection in this wildlife community likely reflects high levels of vector contact, including ingestion of bugs. Although the relationship between the sylvatic cycle of T. cruzi transmission and human disease risk in the United States has yet to be defined, our data suggest that hunters and wildlife professionals should take precautions to avoid direct contact with potentially infected wildlife tissues.

  8. Epidemiology of Babesia, Anaplasma and Trypanosoma species using a new expanded reverse line blot hybridization assay.

    Science.gov (United States)

    Paoletta, Martina Soledad; López Arias, Ludmila; de la Fournière, Sofía; Guillemi, Eliana Carolina; Luciani, Carlos; Sarmiento, Néstor Fabián; Mosqueda, Juan; Farber, Marisa Diana; Wilkowsky, Silvina Elizabeth

    2018-02-01

    Vector-borne hemoparasitic infections are a major problem that affects livestock industries worldwide, particularly in tropical and subtropical regions. In this work, a reverse line blot (RLB) hybridization assay was developed for the simultaneous detection and identification of Anaplasma, Babesia and bovine trypanosomes, encompassing in this way the most relevant hemoparasites that affect cattle. A total of 186 bovine blood samples collected from two different ecoepidemiological regions of northeast Argentina, with and without tick control, were analyzed with this new RLB. High diversity of parasites, such as Babesia bovis, B. bigemina, Anaplasma marginale and three different Trypanosoma species, was found. High rates of coinfections were also detected, and significant differences were observed not only in the prevalence of parasites but also in the level of coinfections between the two analyzed areas. Regarding the Trypanosoma genus, we provide molecular evidence of the presence of T. vivax and T. theileri for the first time in Argentina. Besides, since the RLB is a prospective tool, it allowed the identification of a yet unknown bovine trypanosome which could not be assigned to any of the bovine species known so far. In the present study we provide new insights on the prevalence of several pathogens that directly impact on livestock production in Argentina. The RLB assay developed here allows to identify simultaneously numerous pathogenic species which can also be easily expanded to detect other blood borne pathogens. These characteristics make the RLB hybridization assay an essential tool for epidemiological survey of all vector-borne pathogens. Copyright © 2017 Elsevier GmbH. All rights reserved.

  9. Projected future distributions of vectors of Trypanosoma cruzi in North America under climate change scenarios.

    Directory of Open Access Journals (Sweden)

    Miroslava Garza

    2014-05-01

    Full Text Available Chagas disease kills approximately 45 thousand people annually and affects 10 million people in Latin America and the southern United States. The parasite that causes the disease, Trypanosoma cruzi, can be transmitted by insects of the family Reduviidae, subfamily Triatominae. Any study that attempts to evaluate risk for Chagas disease must focus on the ecology and biogeography of these vectors. Expected distributional shifts of vector species due to climate change are likely to alter spatial patterns of risk of Chagas disease, presumably through northward expansion of high risk areas in North America.We forecast the future (2050 distributions in North America of Triatoma gerstaeckeri and T. sanguisuga, two of the most common triatomine species and important vectors of Trypanosoma cruzi in the southern United States. Our aim was to analyze how climate change might affect the future shift of Chagas disease in North America using a maximum entropy algorithm to predict changes in suitable habitat based on vector occurrence points and predictive environmental variables. Projections based on three different general circulation models (CCCMA, CSIRO, and HADCM3 and two IPCC scenarios (A2 and B2 were analyzed. Twenty models were developed for each case and evaluated via cross-validation. The final model averages result from all twenty of these models. All models had AUC >0.90, which indicates that the models are robust. Our results predict a potential northern shift in the distribution of T. gerstaeckeri and a northern and southern distributional shift of T. sanguisuga from its current range due to climate change.The results of this study provide baseline information for monitoring the northward shift of potential risk from Chagas disease in the face of climate change.

  10. Trypanosoma janseni n. sp. (Trypanosomatida: Trypanosomatidae isolated from Didelphis aurita (Mammalia: Didelphidae in the Atlantic Rainforest of Rio de Janeiro, Brazil: integrative taxonomy and phylogeography within the Trypanosoma cruzi clade

    Directory of Open Access Journals (Sweden)

    Camila Madeira Tavares Lopes

    Full Text Available BACKGROUND Didelphis spp. are a South American marsupial species that are among the most ancient hosts for the Trypanosoma spp. OBJECTIVES We characterise a new species (Trypanosoma janseni n. sp. isolated from the spleen and liver tissues of Didelphis aurita in the Atlantic Rainforest of Rio de Janeiro, Brazil. METHODS The parasites were isolated and a growth curve was performed in NNN and Schneider's media containing 10% foetal bovine serum. Parasite morphology was evaluated via light microscopy on Giemsa-stained culture smears, as well as scanning and transmission electron microscopy. Molecular taxonomy was based on a partial region (737-bp of the small subunit (18S ribosomal RNA gene and 708 bp of the nuclear marker, glycosomal glyceraldehyde-3-phosphate dehydrogenase (gGAPDH genes. Maximum likelihood and Bayesian inference methods were used to perform a species coalescent analysis and to generate individual and concatenated gene trees. Divergence times among species that belong to the T. cruzi clade were also inferred. FINDINGS In vitro growth curves demonstrated a very short log phase, achieving a maximum growth rate at day 3 followed by a sharp decline. Only epimastigote forms were observed under light and scanning microscopy. Transmission electron microscopy analysis showed structures typical to Trypanosoma spp., except one structure that presented as single-membraned, usually grouped in stacks of three or four. Phylogeography analyses confirmed the distinct species status of T. janseni n. sp. within the T. cruzi clade. Trypanosoma janseni n. sp. clusters with T. wauwau in a well-supported clade, which is exclusive and monophyletic. The separation of the South American T. wauwau + T. janseni coincides with the separation of the Southern Super Continent. CONCLUSIONS This clade is a sister group of the trypanosomes found in Australian marsupials and its discovery sheds light on the initial diversification process based on what we currently

  11. Trypanosoma janseni n. sp. (Trypanosomatida: Trypanosomatidae) isolated from Didelphis aurita (Mammalia: Didelphidae) in the Atlantic Rainforest of Rio de Janeiro, Brazil: integrative taxonomy and phylogeography within the Trypanosoma cruzi clade.

    Science.gov (United States)

    Lopes, Camila Madeira Tavares; Menna-Barreto, Rubem Figueiredo Sadok; Pavan, Márcio Galvão; Pereira, Mirian Cláudia De Souza; Roque, André Luiz R

    2018-01-01

    Didelphis spp. are a South American marsupial species that are among the most ancient hosts for the Trypanosoma spp. We characterise a new species (Trypanosoma janseni n. sp.) isolated from the spleen and liver tissues of Didelphis aurita in the Atlantic Rainforest of Rio de Janeiro, Brazil. The parasites were isolated and a growth curve was performed in NNN and Schneider's media containing 10% foetal bovine serum. Parasite morphology was evaluated via light microscopy on Giemsa-stained culture smears, as well as scanning and transmission electron microscopy. Molecular taxonomy was based on a partial region (737-bp) of the small subunit (18S) ribosomal RNA gene and 708 bp of the nuclear marker, glycosomal glyceraldehyde-3-phosphate dehydrogenase (gGAPDH) genes. Maximum likelihood and Bayesian inference methods were used to perform a species coalescent analysis and to generate individual and concatenated gene trees. Divergence times among species that belong to the T. cruzi clade were also inferred. In vitro growth curves demonstrated a very short log phase, achieving a maximum growth rate at day 3 followed by a sharp decline. Only epimastigote forms were observed under light and scanning microscopy. Transmission electron microscopy analysis showed structures typical to Trypanosoma spp., except one structure that presented as single-membraned, usually grouped in stacks of three or four. Phylogeography analyses confirmed the distinct species status of T. janseni n. sp. within the T. cruzi clade. Trypanosoma janseni n. sp. clusters with T. wauwau in a well-supported clade, which is exclusive and monophyletic. The separation of the South American T. wauwau + T. janseni coincides with the separation of the Southern Super Continent. This clade is a sister group of the trypanosomes found in Australian marsupials and its discovery sheds light on the initial diversification process based on what we currently know about the T. cruzi clade.

  12. Trypanosoma cruzi prevalence and clinical forms in blood donor candidates in Brazil Prevalência e formas clínicas de Trypanosoma cruzi em candidatos a doadores de sangue no Brasil

    Directory of Open Access Journals (Sweden)

    H J Silveira

    2003-12-01

    Full Text Available The prevalence and clinical forms of Trypanosoma cruzi were evaluated among blood donor candidates attended at a general hospital in Rio de Janeiro, Brazil, from January 1997 to April 1999. The investigation was done by means of the indirect hemagglutination test and was confirmed via ELISA. Data were collected from clinical examinations, conventional electrocardiogram, chest radiography and echocar-diography. The results showed that despite Trypanosoma cruzi prevalence of 1.17% (128 patients, mainly in males aged 40 years or over, 70.8% of these patients, mainly males aged 19 to 39 years, demonstrated abnormalities that allowed the diagnosis of cardiopathy and/or esophagopathy. This once again corroborates the importance of Trypanosoma cruzi infection in urban centers.A prevalência e a manifestação das formas clinicas de Trypanosoma cruzi foram avaliadas em candidatos a doadores de sangue atendidos em um hospital geral de Nova Iguaçu, Rio de Janeiro, Brasil, no período de janeiro de 1997 a abril de 1999. A pesquisa sorológica foi realizada por meio do teste de hemaglutinação indireta e confirmada pelo ELISA. Os dados foram coletados considerando os exames clínicos, eletrocardiograma convencional, radiografia de tórax e ecocardiografia. Os resultados demonstraram que, apesar da prevalência ser de 1,17% (128 pacientes, principalmente entre homens com idade igual ou superior a 40 anos, 70,8%, principalmente de homens entre 19 e 39 anos, demonstraram alterações que permitiram o diagnóstico de cardiopatias e/ou esofagopatias, ratificando mais uma vez sua importância nos centros urbanos.

  13. PCR-Based Detection of Trypanosoma evansi Infection in Semi-Captive Asiatic Black Bears (Ursus thibetanus

    Directory of Open Access Journals (Sweden)

    Maliha Shahid, Safia Janjua*, Fakhar-i-Abbas and Jan Schmidt Burbach1

    2013-11-01

    Full Text Available Clinical signs, viz lethargy, increased heart rate and reduced appetite, making trypanosomiasis a possible differential diagnosis, were found in five out of twenty semi-captive Asiatic black bears (Ursus thibetanus in a sanctuary, located in Kund, District Sawabi, KPK, Pakistan. Microscopic examination of blood samples of bears expressing clinical signs and symptoms revealed the presence of haemoflagellates, which was found to be trypanosomes. Subsequently, the PCR technique was exploited to screen for the presence of trypanosomal species in all bears’ blood samples. Blood samples from 20 individual bears were screened using three sets of primers specific to Trypanosoma evansi species. Three primer pairs used are equally effective in successful detection of the parasite. Two out of five, diseased bears died prior to any trypanosoma specific medication while the rest were given an administered dose of Melarsomine (Immiticide. The treated bears survived and were assured to be aparasitemic on post-treatment examination after six weeks.

  14. 3-H-[1,2]Dithiole as a New Anti-Trypanosoma cruzi Chemotype: Biological and Mechanism of Action Studies

    Directory of Open Access Journals (Sweden)

    Marcos Couto

    2015-08-01

    Full Text Available The current pharmacological Chagas disease treatments, using Nifurtimox or Benznidazole, show limited therapeutic results and are associated with potential side effects, like mutagenicity. Using random screening we have identified new chemotypes that were able to inhibit relevant targets of the Trypanosoma cruzi. We found 3H-[1,2]dithioles with the ability to inhibit Trypanosoma cruzi triosephosphate isomerase (TcTIM. Herein, we studied the structural modifications of this chemotype to analyze the influence of volume, lipophilicity and electronic properties in the anti-T. cruzi activity. Their selectivity to parasites vs. mammalian cells was also examined. To get insights into a possible mechanism of action, the inhibition of the enzymatic activity of TcTIM and cruzipain, using the isolated enzymes, and the inhibition of membrane sterol biosynthesis and excreted metabolites, using the whole parasite, were achieved. We found that this structural framework is interesting for the generation of innovative drugs for the treatment of Chagas disease.

  15. Evaluation of the immune response to CRA and FRA recombinant antigens of Trypanosoma cruzi in C57BL/6 mice.

    Science.gov (United States)

    Pereira, Valéria Rêgo Alves; de Lorena, Virginia Maria Barros; Nakazawa, Mineo; da Silva, Ana Paula Galvão; Montarroyos, Ulisses; Correa-Oliveira, Rodrigo; Gomes, Yara de Miranda

    2003-01-01

    Humoral and cellular immune responses were evaluated in 44 C57BL/6 mice immunized with the Trypanosoma cruzi recombinant antigens CRA and FRA. Both antigens induced cutaneous immediate-type hypersensitivity response. The levels of IgG1, IgG2a, IgG2b and IgG3 were high in CRA immunized mice. IgG3 was the predominant isotype. Although no difference in antibody levels was observed in FRA-immunized mice when compared to control mice, both antigens were able to induce lymphoproliferation in immunized mice. Significant differences were observed between incorporation of [ H]- thymidine by spleen cell stimulated in vitro with CRA or FRA and the control group. These results suggest that CRA and FRA could be involved in mechanisms of resistance to Trypanosoma cruzi infection.

  16. Acute Trypanosoma cruzi Infection in Mouse Induces Infertility or Placental Parasite Invasion and Ischemic Necrosis Associated with Massive Fetal Loss

    OpenAIRE

    Mjihdi, Abdelkarim; Lambot, Marie-Alexandra; Stewart, Ian J.; Detournay, Olivier; Noël, Jean-Christophe; Carlier, Yves; Truyens, Carine

    2002-01-01

    Pathogens may impair reproduction in association or not with congenital infections. We have investigated the effect of acute infection with Trypanosoma cruzi, the protozoan agent of Chagas’ disease in Latin America, on reproduction of mice. Although mating of infected mice occurred at a normal rate, 80% of them did not become gravid. In the few gravid infected mice, implantation numbers were as in uninfected control mice, but 28% of fetuses resorbed. Such infertility and early fetal losses we...

  17. Hosts and vectors of Trypanosoma cruzi discrete typing units in the Chagas disease endemic region of the Paraguayan Chaco

    OpenAIRE

    ACOSTA, NIDIA; L?PEZ, ELSA; LEWIS, MICHAEL D.; LLEWELLYN, MARTIN S.; G?MEZ, ANA; ROM?N, FABIOLA; MILES, MICHAEL A.; YEO, MATTHEW

    2017-01-01

    SUMMARY Active Trypanosoma cruzi transmission persists in the Gran Chaco region, which is considered hyperendemic for Chagas disease. Understanding domestic and sylvatic transmission cycles and therefore the relationship between vectors and mammalian hosts is crucial to designing and implementing improved effective control strategies. Here we describe the species of triatomine vectors and the sylvatic mammal reservoirs of T. cruzi, in different localities of the Paraguayan and Bolivian Chaco....

  18. Observations on placentome diameters in gestating West African ...

    African Journals Online (AJOL)

    ADEYEYE

    2015-09-09

    /10.4314/sokjvs.v13i3.4. Observations on placentome diameters in gestating West. African dwarf does experimentally infected with Trypanosoma brucei. OO Leigh. Department of Veterinary Surgery and Reproduction, ...

  19. Relationship between some serum electrolytes and ...

    African Journals Online (AJOL)

    ADEYEYE

    2014-02-03

    Feb 3, 2014 ... The effect of Trypanosoma brucei infection on changes in concentration of some serum electrolytes and the ... the modulatory responses of the autonomic nervous system ..... Concurrent hyponatremia and hypocalcemia have.

  20. Untitled

    African Journals Online (AJOL)

    BW) ..... 2nd Edition. Leslie, H., Frank ... biochemical changes in human and animal ... (2001): Indigenous genetic resources: A Trypanosoma brucei and H. contortus infection sustainable ... Inventory and Management Limited 12 pp. SHAIB, B.

  1. Sierra Leone Journal of Biomedical Research 38 Original Article

    African Journals Online (AJOL)

    ). 38 ... Sleeping sickness or Human African Trypanosomiasis (HAT) caused by Trypanosoma brucei .... end of the 1930th produced new social and .... use) resulted in the radical diminishing of the game ..... strains isolated from pigs in Liberia.

  2. Infecção via oral por Trypanosoma evansi em animais de laboratório Oral infection by Trypanosoma evansi in rats and mice

    Directory of Open Access Journals (Sweden)

    Aleksandro Schafer da Silva

    2007-06-01

    Full Text Available Testou-se a infecção de Trypanosoma evansi pela via oral em ratos e camundongos, através de sangue contaminado de ambas as espécies. Dez ratos e dez camundongos foram alocados em quatro grupos iguais A e B (ratos, C e D (camundongos. Os grupos A e C receberam sangue contaminado de um rato e o grupo B e D de um camundongo, através de uma sonda. O volume de sangue administrado foi de 0,2ml, o qual apresentava uma concentração de 10(7 tripanossomas ml-1. Os animais foram mantidos em temperatura e umidade constantes (25°C e 80% UR, sendo realizados esfregaços sanguíneos diários para identificar o período pré-patente e a evolução do parasita na circulação. Nos grupos A e B, o período pré-patente variou de 19 a 25 dias, e o período entre a detecção dos parasitas e a morte dos animais foi em média de 12,7 dias. Os camundongos do grupo C e D não apresentaram infecção pelo parasita, sendo estes avaliados por 60 dias. Os ratos foram susceptíveis a infecção por T. evansi pela via oral; entretanto, os camundongos não se contaminaram com o protozoário por via digestiva.In this research, Trypanosoma evansi infection was tested in rats and mice by oral ingestion of contaminated blood. Groups of ten rats and ten mice were disposed in four experimental groups: A and B (rats, C and D (mice. The groups A and C were contaminated by rat-contaminated blood; B and C groups by mouse-contaminated blood. The blood was given using a probe filled with 0.2ml of contaminated blood with 10(7 trypanosomes ml-1. These animals were maintained at constant temperature and humidity (25°C and 80% UR. Dairy blood smear were done to identify the prepatent period and evolution of parasite in the circulation. In the A and B groups, the pre latency period varied from 19 to 25 days and the period of parasite detection and animals death was an average of 12.7 days. The C and D groups did not present infection by the parasite even when evaluated for 60 days

  3. Prevalence of antibodies against Trypanosoma cruzi in pregnant women in endemic areas of the department of Boyacá, Colombia

    Directory of Open Access Journals (Sweden)

    Suescún-Carrero, Sandra Helena

    2017-10-01

    Full Text Available Objective: To determine the prevalence of antibodies against Trypanosoma cruzi in pregnant women in endemic areas of Boyacá, Colombia, in 2012 and 2013. Materials and methods: Cross-sectional study of 566 pregnant women from endemic municipalities of Boyacá. Samples were analyzed by means of serological tests for Chagas, namely: IgG ELISA, indirect immunofluorescence and indirect hemagglutination. Cases with positive results in two tests were considered as confirmed. Results: The overall prevalence of antibodies against Trypanosoma cruzi was 2.5 % (14/566. Municipalities with the highest prevalence were Chitaraque (8.3 %, and Soatá (3.3 %. Average age of positive women was 32.6 years, and their gestational period, 18.1 weeks. We found a statistically significant association between age and the presence of antibodies against Trypanosoma cruzi. Conclusion: Prevalence of antibodies against T. cruzi in pregnant women demonstrates the importance of the monitoring program for Chagas disease in pregnancy, as a method for congenital disease control.

  4. Trypanosoma evansi

    African Journals Online (AJOL)

    Parasitaemia in the untreated control and the treated rats were monitored using Haematocrit Centrifuge Technique. (HCT) twice weekly. Two rats from each group were sacrificed at 45 dpi; visceral ... Protozoology laboratory of the Department of. Veterinary Parasitology and Entomology, Ahmadu Bello. University, Zaria for ...

  5. Contribución al conocimiento de los reservorios del Trypanosoma cruzi (Chagas,1909 en la Provincia de Corrientes, Argentina Contribution to knowledge of reservoirs of Trypanosoma cruzi (Chagas, 1909 in Corrientes Province, Argentina

    Directory of Open Access Journals (Sweden)

    María Esther Bar

    1999-06-01

    Full Text Available Con el propósito de identificar a reservorios del Trypanosoma cruzi se investigaron 60 mamíferos en los Departamentos Capital y San Luis del Palmar. Se examinaron: primates, roedores, marsupiales, carnívoros y edentados; 40 vivían en cautiverio y 20 fueron capturados mediante trampas en una comunidad rural forestal. Los mamíferos fueron analizados por xenodiagnóstico, empleándose ninfas de 3o o 4o estadío de Triatoma infestans ayunadas durante 2 semanas. Las heces de los triatominos fueron observadas al microscopio (400x a los 30, 60 y 90 días post-alimentación. En 2 Saimiri sciureus y en 1 Cebus apella se constató infección por tripanosomas cruziformes. Se concluye que la parasitemia detectada fue baja. La presencia de Didelphis albiventris, reservorio potencial del Trypanosoma cruzi , en una zona de transmisión activa del parásito representa un factor de riesgo, por lo que son necesarias futuras investigaciones epidemiológicas para determinar la real diagnosis de esta parasitosis en la provincia de Corrientes, Argentina.In order to identify Trypanosoma cruzi reservoirs in transmission areas, 60 mammals in Capital and San Luis del Palmar Departments, Corrientes, Argentina were studied. Primates, rodents, carnivores, marsupials and edentates were investigated, 40 of them living in captivity and 20 caught with traps in a rural area. The mammals were examined by xenodiagnosis and third or fourth instars nymphs of Triatoma infestans starved for 2 weeks were used. The feces were microscopically observed (400x for Trypanosoma cruzi infection at 30, 60 and 90 days after feeding. Trypanosoma cruzi-like parasites were identified in 2 Saimiri sciureus and 1 Cebus apella analyzed by xenodiagnosis. It was concluded that parasitemia was low. Howewer, the presence in a forest area of Didelphis albiventris, potential reservoir of the parasite, indicates a risk factor and deserves further epidemiological study for a true diagnosis of this

  6. Reseña Histórica de algunos estudios Colombianos sobre Trypanosoma rangeli

    Directory of Open Access Journals (Sweden)

    Hernando Groot Liévano

    2000-08-01

    Full Text Available

    Parecerá extraño que uno de los primeros artículos de esta revista no se refiera a la enfermedad de Chagas. Tanto es así que cuando el doctor Felipe Guhl tuvo la idea de llamarme para esta presentación, mi primera respuesta fue negativa porque, obviamente debería hablarse del Trypanosoma cruzi y no del Trypanosoma rangeli. El presente artículo es un breve recuento de mi experiencia con este parásito y su importancia dado que coexiste con el T. cruzi y que, en ocasiones la diferenciación morfológica entre los dos no es tan clara cuando se examinan preparaciones de sangre en “gota gruesa” de vertebrados o preparaciones del contenido intestinal de los insectos vectores, y además porque tiene ciertas relaciones inmunológicas que es necesario tener en cuenta para evitar posibles confusiones. Por otra parte, su distribución geográfica es muy amplia extendiéndose desde México hasta el Perú y el Brasil.

    El Trypanosoma rangeli, llamado así por un distinguido médico y posteriormente diplomático de Venezuela, el doctor Enrique Tejera, quien encontró en los chipos, o sea en los Rhodnius prolixus de Venezuela, un pequeño flagelado muy largo, bastante diferente del Trypanosoma cruzi y resolvió ponerle el nombre de Trypanosoma o Crithidia rangeli pues no estaba muy seguro del género en el cual debía colocarlo. Evidentemente, sólo había visto la morfología de estos flagelados en el intestino de los Rhodnius y por consiguiente no tenía ningún otro elemento para identi-ficarlos.

    Únicamente comprobó que eran diferentes del cruzi. ¿Por qué le dedicó su descubrimiento a Rangel? Creo que es importante que nosotros los latinoamericanos conozcamos bien los valores científicos que han habido en nuestros países y en vez de preocuparnos por las artificiales fronteras políticas, lo cual en nada contribuye al progreso de la ciencia, comencemos a tener claro conocimiento de lo que en todas estas naciones hermanas por

  7. Experiências sôbre a transmissão do Trypanosoma cruzi por sanguessugas e de tripanosomas de vertebrados de sangue frio por triatomíneos Experiments of the transmission of Trypanosoma cruzi by leechs and cold blooded vertebrate trypanosomas by triatominae

    Directory of Open Access Journals (Sweden)

    Samuel B. Pessôa

    1969-06-01

    Full Text Available Observou-se que o Trypanosoma cruzi não se multiplica na sanguessuga (Haementeria lutzi Pinto; os tripanosomas sugados degeneram após algum tempo; outros permanecem aparentemente normais, porém 48 horas após a ingestão infectante acabam morrendo. Observou-se ainda que os tripanosomas parasitas da rã (T. rotatorium e T. leptodactyli bem como o T. hogei, parasita da serpente Rachidelus brazili, não se multiplicam no intestino dos triatomíneos. O mais resistente (o T. leptodactyli, permanece vivo até 72 horas após a ingestão infectante, porém as outras duas espécies (T. rotatorium e T. hogei não resistem mais de 24 horas após serem sugadas pelos triatomíneos.Trypanosoma cruzi does not reproduce itself in the leech (Haementerm lutzi Pinto; the ingested trypanosomes degenerate after some time; other organisms remain apparently normal, however dying 48 hours after the feeding of the leechs. The parasite trypanosomas of the frog (T. rotatorium and T. leptodactyli as well as those parasiting the ophidian Rachidelus brazili (T. hogei do not multiply in the intestine of the triatominae. The most resistent species (T. leptocbactyli remains alive 72 hours after the feeding of the triatominae; the other two, however, do not survive more than 24 hours.

  8. Increased genetic diversity and prevalence of co-infection with Trypanosoma spp. in koalas (Phascolarctos cinereus and their ticks identified using next-generation sequencing (NGS.

    Directory of Open Access Journals (Sweden)

    Amanda D Barbosa

    Full Text Available Infections with Trypanosoma spp. have been associated with poor health and decreased survival of koalas (Phascolarctos cinereus, particularly in the presence of concurrent pathogens such as Chlamydia and koala retrovirus. The present study describes the application of a next-generation sequencing (NGS-based assay to characterise the prevalence and genetic diversity of trypanosome communities in koalas and two native species of ticks (Ixodes holocyclus and I. tasmani removed from koala hosts. Among 168 koalas tested, 32.2% (95% CI: 25.2-39.8% were positive for at least one Trypanosoma sp. Previously described Trypanosoma spp. from koalas were identified, including T. irwini (32.1%, 95% CI: 25.2-39.8%, T. gilletti (25%, 95% CI: 18.7-32.3%, T. copemani (27.4%, 95% CI: 20.8-34.8% and T. vegrandis (10.1%, 95% CI: 6.0-15.7%. Trypanosoma noyesi was detected for the first time in koalas, although at a low prevalence (0.6% 95% CI: 0-3.3%, and a novel species (Trypanosoma sp. AB-2017 was identified at a prevalence of 4.8% (95% CI: 2.1-9.2%. Mixed infections with up to five species were present in 27.4% (95% CI: 21-35% of the koalas, which was significantly higher than the prevalence of single infections 4.8% (95% CI: 2-9%. Overall, a considerably higher proportion (79.7% of the Trypanosoma sequences isolated from koala blood samples were identified as T. irwini, suggesting this is the dominant species. Co-infections involving T. gilletti, T. irwini, T. copemani, T. vegrandis and Trypanosoma sp. AB-2017 were also detected in ticks, with T. gilletti and T. copemani being the dominant species within the invertebrate hosts. Direct Sanger sequencing of Trypanosoma 18S rRNA gene amplicons was also performed and results revealed that this method was only able to identify the genotypes with greater amount of reads (according to NGS within koala samples, which highlights the advantages of NGS in detecting mixed infections. The present study provides new insights

  9. Increased genetic diversity and prevalence of co-infection with Trypanosoma spp. in koalas (Phascolarctos cinereus) and their ticks identified using next-generation sequencing (NGS).

    Science.gov (United States)

    Barbosa, Amanda D; Gofton, Alexander W; Paparini, Andrea; Codello, Annachiara; Greay, Telleasha; Gillett, Amber; Warren, Kristin; Irwin, Peter; Ryan, Una

    2017-01-01

    Infections with Trypanosoma spp. have been associated with poor health and decreased survival of koalas (Phascolarctos cinereus), particularly in the presence of concurrent pathogens such as Chlamydia and koala retrovirus. The present study describes the application of a next-generation sequencing (NGS)-based assay to characterise the prevalence and genetic diversity of trypanosome communities in koalas and two native species of ticks (Ixodes holocyclus and I. tasmani) removed from koala hosts. Among 168 koalas tested, 32.2% (95% CI: 25.2-39.8%) were positive for at least one Trypanosoma sp. Previously described Trypanosoma spp. from koalas were identified, including T. irwini (32.1%, 95% CI: 25.2-39.8%), T. gilletti (25%, 95% CI: 18.7-32.3%), T. copemani (27.4%, 95% CI: 20.8-34.8%) and T. vegrandis (10.1%, 95% CI: 6.0-15.7%). Trypanosoma noyesi was detected for the first time in koalas, although at a low prevalence (0.6% 95% CI: 0-3.3%), and a novel species (Trypanosoma sp. AB-2017) was identified at a prevalence of 4.8% (95% CI: 2.1-9.2%). Mixed infections with up to five species were present in 27.4% (95% CI: 21-35%) of the koalas, which was significantly higher than the prevalence of single infections 4.8% (95% CI: 2-9%). Overall, a considerably higher proportion (79.7%) of the Trypanosoma sequences isolated from koala blood samples were identified as T. irwini, suggesting this is the dominant species. Co-infections involving T. gilletti, T. irwini, T. copemani, T. vegrandis and Trypanosoma sp. AB-2017 were also detected in ticks, with T. gilletti and T. copemani being the dominant species within the invertebrate hosts. Direct Sanger sequencing of Trypanosoma 18S rRNA gene amplicons was also performed and results revealed that this method was only able to identify the genotypes with greater amount of reads (according to NGS) within koala samples, which highlights the advantages of NGS in detecting mixed infections. The present study provides new insights on the

  10. Trypanocidal activity of the aqueous leave extract of Holarrhena ...

    African Journals Online (AJOL)

    This study evaluated the trypanocidal activity of aqueous extracts of leaves of young Holarrhena africana. The trypanocidal activity was evaluated by treatment of mice infected with Trypanosoma brucei brucei at the peak of infection. The aqueous extract was administered intraperitoneally for 5 consecutive days with varied ...

  11. Effect of Tetracycline on Late-stage African trypanosomiasis in Rats ...

    African Journals Online (AJOL)

    Effect of Tetracycline on Late-stage African trypanosomiasis in Rats. T.O. Johnson, J.T. Ekanem. Abstract. The effect of tetracycline on late stage African trypanosomiasis was examined in an in vivo experiment using rats infected with Trypanosoma brucei brucei. Infected rats were treated on the 5th day of infection with ...

  12. Diminazene aceturate-sodium oleate complex for the treatment of ...

    African Journals Online (AJOL)

    The aim of this study is to improve the efficacy of diminazene aceturate via complex formation with sodium oleate. The complex was subjected to various in vitro and in vivo tests to assess its properties, toxicity and efficacy against Trypanosoma brucei brucei infections in comparison to pure drug. Results revealed that the ...

  13. Effects on haematological parameters and pathology of internal ...

    African Journals Online (AJOL)

    Effects on haematological parameters and pathology of internal organs of Trypanosoma brucei brucei infected albino rats. ... Group A served as the control (uninfected). ... The gross pathological effects on the internal organs showed significant enlargement of the spleen (splenomegaly) and slight enlargement of the liver ...

  14. Anti-Trypanosomal Potential Of Momordica Balsamina Linn Fruit ...

    African Journals Online (AJOL)

    The search for new trypanocides has not been keenly pursued due to high cost of design and development with no promise of financial returns. Momordica balsamina fruit pulp extract was screened for antitrypanosomal activity in experimental Trypanosoma brucei brucei infection in rabbits. The extract was administered ...

  15. Anti-trypanosomal effect of Malva sylvestris (Malvaceae) extract on a ...

    African Journals Online (AJOL)

    Methods: Sleeping sickness was induced by the intraperitoneal injection of ... count in the blood and CSF of mice with Trypanosoma brucei brucei-induced sleeping sickness compared ... The whole plant of Malva sylvestris was collected ... The animals were anesthetized by ... significantly (p < 0.01) improved the weight of.

  16. Comparative antitrypanosomal screening of methanolic extracts of ...

    African Journals Online (AJOL)

    The in vitro and in vivo activities of methanolic extracts of defatted leaves and stems of Khaya senegalensis and Moringa oleifera on Trypanosoma brucei brucei were investigated and compared. The in vitro assessment involved incubating the parasite (in triplicate) in the presence of various extract concentrations in a ...

  17. 836 IJBCS-Article-Anthony Dawet

    African Journals Online (AJOL)

    KODJIO NORBERT

    et al. (2001) reported that Cassia occidentalis,. Morinda morindoides and Phyllanthus niruri significantly reduced parasitaemia in. Plasmodium berghei infected mice. A study conducted by Bala et al. (2006) showed that Aloe vera and Coriandrum sativum were not generally effective in eliminating Trypanosoma brucei brucei.

  18. Bio-Research - Vol 3, No 1 (2005)

    African Journals Online (AJOL)

    Preliminary studies on the efficacy of aloe vera (Aloe barbadensis) extracts on experimental Trypanosoma brucei brucei infection of mice · EMAIL FULL TEXT EMAIL FULL TEXT · DOWNLOAD FULL TEXT DOWNLOAD FULL TEXT. N Ivoke, 21-25. http://dx.doi.org/10.4314/br.v3i1.28565 ...

  19. Hemoglobin is a co-factor of human trypanosome lytic factor

    DEFF Research Database (Denmark)

    Widener, Justin; Nielsen, Marianne Jensby; Shiflett, April

    2007-01-01

    Trypanosome lytic factor (TLF) is a high-density lipoprotein (HDL) subclass providing innate protection to humans against infection by the protozoan parasite Trypanosoma brucei brucei. Two primate-specific plasma proteins, haptoglobin-related protein (Hpr) and apolipoprotein L-1 (ApoL-1), have be...

  20. Browse Title Index

    African Journals Online (AJOL)

    Items 1 - 50 of 272 ... Vol 12, No 2 (2014), Cryptosporidium infection in cattle in Ogun state, ... Vol 7, No 1 (2008), An overview of mastitis in Sokoto red goat, Nigeria ... trypanosoma brucei brucei infection, treatment and re-infection, Abstract PDF.

  1. Therapeutic Efficacy Of Cotecxin (R) alone and Its Combination with ...

    African Journals Online (AJOL)

    The therapeutic efficacy of Cotecxin(R) (Dihydroartemisinin) alone and its combination with diminazene aceturate (Berenil(R)) was studied in rats infected with Federe strain of Trypanosoma brucei brucei. Fifty healthy adult albino rats of both sexes weighing between 100-180g used were divided into five groups (A-E) of 10 ...

  2. Trypanosoma cruzi in dogs: electrocardiographic and echocardiographic evaluation, in Malinalco, State of Mexico

    Directory of Open Access Journals (Sweden)

    González-Vieyra SD

    2011-12-01

    Full Text Available Sandra Díaz González-Vieyra1, Ninfa Ramírez-Durán2, Ángel H Sandoval-Trujillo3, Juan C Vázquez-Chagoyán1, Humberto G Monroy-Salazar1, Alberto Barbabosa-Pliego11Research Center of Advanced Studies in Animal Health, Veterinary Husbandry School, 2Medical and Ambiental Microbiology, Research Center of Advanced Studies in Health Science, School of Medicine, Autonomous University of the State of Mexico, Toluca, Mexico; 3Department of Biological Systems, Metropolitan Autonomous University, Xochimilco, Mexico City, MexicoAbstract: Chagas disease caused by Trypanosoma cruzi is an important public health problem in Latin America. Dogs are considered a risk factor for human Chagas disease, a sentinel for T. cruzi infection in endemic regions and an animal model to study pathological aspects of the disease. The potential use of dogs as indicators of human cardiac pathogenicity of local T. cruzi strains has been studied insufficiently. We studied electrocardiographic (EKG and echocardiographic (ECG alteration frequencies observed in an open population of dogs in Malinalco, Mexico, and determined if such frequencies were statistically associated with T. cruzi infection in dogs. Animals (n = 139 were clinically examined and owners were asked to answer a questionnaire about dogs’ living conditions. Two commercial serological tests (IHA, ELISA were conducted to detect anti-T. cruzi serum antibodies. Significant differences between seropositive and seronegative animals in cardiomyopathic frequencies were detected through EKG and ECG (P < 0.05. Thirty dogs (21.58% were serologically positive to anti-T. cruzi antibodies (to ELISA and IHA assays, of which nine (30% had EKG and/or ECG alterations. From the remaining 104 (78.42% seronegative animals, five (4.5% had EKG and/or ECG abnormalities. Our data support the hypothesis that most EKG and ECG alterations found in dogs from Malinalco could be associated with T. cruzi infection. Considering the dog as a

  3. Distantiae transmission of Trypanosoma cruzi: a new epidemiological feature of acute Chagas disease in Brazil.

    Directory of Open Access Journals (Sweden)

    Samanta Cristina das Chagas Xavier

    2014-05-01

    Full Text Available BACKGROUND: The new epidemiological scenario of orally transmitted Chagas disease that has emerged in Brazil, and mainly in the Amazon region, needs to be addressed with a new and systematic focus. Belém, the capital of Pará state, reports the highest number of acute Chagas disease (ACD cases associated with the consumption of açaí juice. METHODOLOGY/PRINCIPAL FINDINGS: The wild and domestic enzootic transmission cycles of Trypanosoma cruzi were evaluated in the two locations (Jurunas and Val-de Cães that report the majority of the autochthonous cases of ACD in Belém city. Moreover, we evaluated the enzootic cycle on the three islands that provide most of the açaí fruit that is consumed in these localities. We employed parasitological and serological tests throughout to evaluate infectivity competence and exposure to T. cruzi. In Val-de-Cães, no wild mammal presented positive parasitological tests, and 56% seroprevalence was observed, with low serological titers. Three of 14 triatomines were found to be infected (TcI. This unexpected epidemiological picture does not explain the high number of autochthonous ACD cases. In Jurunas, the cases of ACD could not be autochthonous because of the absence of any enzootic cycle of T. cruzi. In contrast, in the 3 island areas from which the açaí fruit originates, 66.7% of wild mammals and two dogs displayed positive hemocultures, and 15.6% of triatomines were found to be infected by T. cruzi. Genotyping by mini-exon gene and PCR-RFLP (1f8/Akw21I targeting revealed that the mammals and triatomines from the islands harbored TcI and Trypanosoma rangeli in single and mixed infections. CONCLUSION/SIGNIFICANCE: These findings show that cases of Chagas disease in the urban area of Belém may be derived from infected triatomines coming together with the açaí fruits from distant islands. We term this new epidemiological feature of Chagas disease as "Distantiae transmission".

  4. Trypanocide Treatment of Women Infected with Trypanosoma cruzi and Its Effect on Preventing Congenital Chagas

    Science.gov (United States)

    Fabbro, Diana L.; Danesi, Emmaria; Olivera, Veronica; Codebó, Maria Olenka; Denner, Susana; Heredia, Cecilia; Streiger, Mirtha; Sosa-Estani, Sergio

    2014-01-01

    With the control of the vectorial and transfusional routes of infection with Trypanosoma cruzi, congenital transmission has become an important source of new cases. This study evaluated the efficacy of trypanocidal therapy to prevent congenital Chagas disease and compared the clinical and serological evolution between treated and untreated infected mothers. We conducted a multicenter, observational study on a cohort of mothers infected with T. cruzi, with and without trypanocidal treatment before pregnancy. Their children were studied to detect congenital infection. Among 354 “chronically infected mother-biological child” pairs, 132 were treated women and 222 were untreated women. Among the children born to untreated women, we detected 34 infected with T. cruzi (15.3%), whose only antecedent was maternal infection. Among the 132 children of previously treated women, no infection with T. cruzi was found (0.0%) (p<0.05). Among 117 mothers with clinical and serological follow up, 71 had been treated and 46 were untreated. The women were grouped into three groups. Group A: 25 treated before 15 years of age; Group B: 46 treated at 15 or more years of age; Group C: untreated, average age of 29.2±6.2 years at study entry. Follow-up for Groups A, B and C was 16.3±5.8, 17.5±9.2 and 18.6±8.6 years respectively. Negative seroconversion: Group A, 64.0% (16/25); Group B, 32.6% (15/46); Group C, no seronegativity was observed. Clinical electrocardiographic alterations compatible with chagasic cardiomyopathy: Group A 0.0% (0/25); B 2.2% (1/46) and C 15.2% (7/46). The trypanocidal treatment of women with chronic Chagas infection was effective in preventing the congenital transmission of Trypanosoma cruzi to their children; it had also a protective effect on the women's clinical evolution and deparasitation could be demonstrated in many treated women after over 10 years of follow up. PMID:25411847

  5. Trypanocide treatment of women infected with Trypanosoma cruzi and its effect on preventing congenital Chagas.

    Science.gov (United States)

    Fabbro, Diana L; Danesi, Emmaria; Olivera, Veronica; Codebó, Maria Olenka; Denner, Susana; Heredia, Cecilia; Streiger, Mirtha; Sosa-Estani, Sergio

    2014-11-01

    With the control of the vectorial and transfusional routes of infection with Trypanosoma cruzi, congenital transmission has become an important source of new cases. This study evaluated the efficacy of trypanocidal therapy to prevent congenital Chagas disease and compared the clinical and serological evolution between treated and untreated infected mothers. We conducted a multicenter, observational study on a cohort of mothers infected with T. cruzi, with and without trypanocidal treatment before pregnancy. Their children were studied to detect congenital infection. Among 354 "chronically infected mother-biological child" pairs, 132 were treated women and 222 were untreated women. Among the children born to untreated women, we detected 34 infected with T. cruzi (15.3%), whose only antecedent was maternal infection. Among the 132 children of previously treated women, no infection with T. cruzi was found (0.0%) (p<0.05). Among 117 mothers with clinical and serological follow up, 71 had been treated and 46 were untreated. The women were grouped into three groups. Group A: 25 treated before 15 years of age; Group B: 46 treated at 15 or more years of age; Group C: untreated, average age of 29.2 ± 6.2 years at study entry. Follow-up for Groups A, B and C was 16.3 ± 5.8, 17.5 ± 9.2 and 18.6 ± 8.6 years respectively. Negative seroconversion: Group A, 64.0% (16/25); Group B, 32.6% (15/46); Group C, no seronegativity was observed. Clinical electrocardiographic alterations compatible with chagasic cardiomyopathy: Group A 0.0% (0/25); B 2.2% (1/46) and C 15.2% (7/46). The trypanocidal treatment of women with chronic Chagas infection was effective in preventing the congenital transmission of Trypanosoma cruzi to their children; it had also a protective effect on the women's clinical evolution and deparasitation could be demonstrated in many treated women after over 10 years of follow up.

  6. Diminazene aceturate (Berenil modulates the host cellular and inflammatory responses to Trypanosoma congolense infection.

    Directory of Open Access Journals (Sweden)

    Shiby Kuriakose

    Full Text Available BACKGROUND: Trypanosoma congolense are extracellular and intravascular blood parasites that cause debilitating acute or chronic disease in cattle and other domestic animals. Diminazene aceturate (Berenil has been widely used as a chemotherapeutic agent for trypanosomiasis in livestock since 1955. As in livestock, treatment of infected highly susceptible BALB/c mice with Berenil leads to rapid control of parasitemia and survival from an otherwise lethal infection. The molecular and biochemical mechanisms of action of Berenil are still not very well defined and its effect on the host immune system has remained relatively unstudied. Here, we investigated whether Berenil has, in addition to its trypanolytic effect, a modulatory effect on the host immune response to Trypanosoma congolense. METHODOLOGY/PRINCIPAL FINDINGS: BALB/c and C57BL/6 mice were infected intraperitoneally with T. congolense, treated with Berenil and the expression of CD25 and FoxP3 on splenic cells was assessed directly ex vivo. In addition, serum levels and spontaneous and LPS-induced production of pro-inflammatory cytokines by splenic and hepatic CD11b⁺ cells were determined by ELISA. Berenil treatment significantly reduced the percentages of CD25⁺ cells, a concomitant reduction in the percentage of regulatory (CD4⁺Foxp3⁺ T cells and a striking reduction in serum levels of disease exacerbating pro-inflammatory cytokines including IL-6, IL-12, TNF and IFN-γ. Furthermore, Berenil treatment significantly suppressed spontaneous and LPS-induced production of inflammatory cytokines by splenic and liver macrophages and significantly ameliorated LPS-induced septic shock and the associated cytokine storm. CONCLUSIONS/SIGNIFICANCE: Collectively, these results provide evidence that in addition to its direct trypanolytic effect, Berenil also modulates the host immune response to the parasite in a manner that dampen excessive immune activation and production of pathology

  7. Triatominae-Trypanosoma cruzi/T. rangeli: Vector-parasite interactions.

    Science.gov (United States)

    Vallejo, G A; Guhl, F; Schaub, G A

    2009-01-01

    Of the currently known 140 species in the family Reduviidae, subfamily Triatominae, those which are most important as vectors of the aetiologic agent of Chagas disease, Trypanosoma cruzi, belong to the tribes Triatomini and Rhodniini. The latter not only transmit T. cruzi but also Trypanosoma rangeli, which is considered apathogenic for the mammalian host but can be pathogenic for the vectors. Using different molecular methods, two main lineages of T. cruzi have been classified, T. cruzi I and T. cruzi II. Within T. cruzi II, five subdivisions are recognized, T. cruzi IIa-IIe, according to the variability of the ribosomal subunits 24Salpha rRNA and 18S rRNA. In T. rangeli, differences in the organization of the kinetoplast DNA separate two forms denoted T. rangeli KP1+ and KP1-, although differences in the intergenic mini-exon gene and of the small subunit rRNA (SSU rRNA) suggest four subpopulations denoted T. rangeli A, B, C and D. The interactions of these subpopulations of the trypanosomes with different species and populations of Triatominae determine the epidemiology of the human-infecting trypanosomes in Latin America. Often, specific subpopulations of the trypanosomes are transmitted by specific vectors in a particular geographic area. Studies centered on trypanosome-triatomine interaction may allow identification of co-evolutionary processes, which, in turn, could consolidate hypotheses of the evolution and the distribution of T. cruzi/T. rangeli-vectors in America, and they may help to identify the mechanisms that either facilitate or impede the transmission of the parasites in different vector species. Such mechanisms seem to involve intestinal bacteria, especially the symbionts which are needed by the triatomines to complete nymphal development and to produce eggs. Development of the symbionts is regulated by the vector. T. cruzi and T. rangeli interfere with this system and induce the production of antibacterial substances. Whereas T. cruzi is only

  8. Biochemical behavior of Trypanosoma cruzi strains isolated from mice submitted to specific chemotherapy

    Directory of Open Access Journals (Sweden)

    Jesila Pinto M. Marretto

    1994-12-01

    Full Text Available To investigate the influence of chemotherapy on the biochemical beha vior of Trypanosoma cruzi strains, three groups of mice were infected with one of three strains of T. cruzi of different biological and isoenzymic patterns (Peruvian, 21 SF and Colombian strains. Each group was subdivided into subgroups: 1 - treated with nifurtimox; 2 - treated with benznidazole and 3 - untreated infected controls. At the end of treatment, that lasted for 90 days, xenodiagnosis, sub inoculation of blood into new born mice and haemoculture were performed as tests of cure. From the positive tests, 22 samples of T. cruzi were isolated from all subgroups. Electrophoretic analysis of the isoenzymes PGM, GP1, ALAT and AS AT failed to show any difference between parasite strains isolated from treated and untreated mice, which indicates that no detectable clonal selection or parasite genetic markers alterations concerning the isoenzymes analysed have been determined by treatment with drugs of recognized antiparasitic effect, suggesting stability of the phenotypic characteristics of the three biological types of T. cruzi strains.Com o objetivo de investigar a influência da quimioterapia no padrão bioquímico de diferentes cepas do Trypanosoma cruzi, três grupos de camundongos foram infectados respectivamente com as cepas Peruana, 21 SF e Colombiana, que correspondem a diferentes padrões biológicos e isoenzimáticos. Cada grupo foi subdividido em subgrupos: 1 - tratados com nifurtimox; 2 - tratados com benzonidazol; 3- controles infectados não tratados. Ao final do tratamento que durou 90 dias, os animais foram submetidos a testes parasitológicos de cura: xenodiagnóstico, subinoculação do sangue em camundongos recém-nascidos e hemocultura em meio Warren. A partir da positivação destes testes, foram isoladas 22 amostras do T. cruzi dos três subgrupos. A análise eletroforética dos extratos enzimáticos obtidos após cultura para as enzimas PGM, GPI, ALAT e

  9. Trypanosoma cruzi Evades the Complement System as an Efficient Strategy to Survive in the Mammalian Host: The Specific Roles of Host/Parasite Molecules and Trypanosoma cruzi Calreticulin

    Directory of Open Access Journals (Sweden)

    Galia Ramírez-Toloza

    2017-09-01

    Full Text Available American Trypanosomiasis is an important neglected reemerging tropical parasitism, infecting about 8 million people worldwide. Its agent, Trypanosoma cruzi, exhibits multiple mechanisms to evade the host immune response and infect host cells. An important immune evasion strategy of T. cruzi infective stages is its capacity to inhibit the complement system activation on the parasite surface, avoiding opsonizing, immune stimulating and lytic effects. Epimastigotes, the non-infective form of the parasite, present in triatomine arthropod vectors, are highly susceptible to complement-mediated lysis while trypomastigotes, the infective form, present in host bloodstream, are resistant. Thus T. cruzi susceptibility to complement varies depending on the parasite stage (amastigote, trypomastigotes or epimastigote and on the T. cruzi strain. To avoid complement-mediated lysis, T. cruzi trypomastigotes express on the parasite surface a variety of complement regulatory proteins, such as glycoprotein 58/68 (gp58/68, T. cruzi complement regulatory protein (TcCRP, trypomastigote decay-accelerating factor (T-DAF, C2 receptor inhibitor trispanning (CRIT and T. cruzi calreticulin (TcCRT. Alternatively, or concomitantly, the parasite captures components with complement regulatory activity from the host bloodstream, such as factor H (FH and plasma membrane-derived vesicles (PMVs. All these proteins inhibit different steps of the classical (CP, alternative (AP or lectin pathways (LP. Thus, TcCRP inhibits the CP C3 convertase assembling, gp58/68 inhibits the AP C3 convertase, T-DAF interferes with the CP and AP convertases assembling, TcCRT inhibits the CP and LP, CRIT confers ability to resist the CP and LP, FH is used by trypomastigotes to inhibit the AP convertases and PMVs inhibit the CP and LP C3 convertases. Many of these proteins have similar molecular inhibitory mechanisms. Our laboratory has contributed to elucidate the role of TcCRT in the host

  10. Bioenergetic profiling of Trypanosoma cruzi life stages using Seahorse extracellular flux technology.

    Science.gov (United States)

    Shah-Simpson, Sheena; Pereira, Camila F A; Dumoulin, Peter C; Caradonna, Kacey L; Burleigh, Barbara A

    2016-08-01

    Energy metabolism is an attractive target for the development of new therapeutics against protozoan pathogens, including Trypanosoma cruzi, the causative agent of human Chagas disease. Despite emerging evidence that mitochondrial electron transport is essential for the growth of intracellular T. cruzi amastigotes in mammalian cells, fundamental knowledge of mitochondrial energy metabolism in this parasite life stage remains incomplete. The Clark-type electrode, which measures the rate of oxygen consumption, has served as the traditional tool to study mitochondrial energetics and has contributed to our understanding of it in T. cruzi. Here, we evaluate the Seahorse XF(e)24 extracellular flux platform as an alternative method to assess mitochondrial bioenergetics in isolated T. cruzi parasites. We report optimized assay conditions used to perform mitochondrial stress tests with replicative life cycle stages of T. cruzi using the XF(e)24 instrument, and discuss the advantages and potential limitations of this methodology, as applied to T. cruzi and other trypanosomatids. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Enhancing effects of gamma interferon on phagocytic cell association with and killing of Trypanosoma cruzi

    Science.gov (United States)

    Wirth, J. J.; Kierszenbaum, F.; Sonnenfeld, G.; Zlotnik, A.

    1985-01-01

    Results are reported from a study of the influence gamma interferon (GIFN) and interleukin 2 (IL2) have on the capability of P388D1 cells and mouse resident peritoneal macrophages (MPM) to attach to the blood-resident parasites Trypanosoma cruzi and kill them. Cultures of trypomastigote forms of the Tulahuen strain of T. cruzi grown in bovine serum were introduced into peritoneal cells of mice, along with P388D1 cells incubated with GIFN, IL2 and both. Control cells were also maintained. Statistical analysis were then performed on data on counts of the number of dead T. Cruzi cells. The GIFN enhanced the interaction of MPM and P388D1 cells with the surface of T. Cruzi, provided the interaction was given over 12 hr to take place. A depression of the cytotoxicity of P388D1 cells was attributed to mediation by H2O2, an effect partially offset by incubation with the lymphokine GIFN.

  12. Protein preparation, crystallization and preliminary X-ray analysis of Trypanosoma cruzi nucleoside diphosphate kinase 1

    International Nuclear Information System (INIS)

    Gómez Barroso, J. A.; Pereira, H.; Miranda, M.; Pereira, C.; Garratt, R. C.; Aguilar, C. F.

    2010-01-01

    T. cruzi TcNDPK1 was overexpressed in Escherichia coli as an N-terminally poly-His-tagged fusion protein and crystallized. The flagellated protozoan parasite Trypanosoma cruzi is the aetiological agent of Chagas disease. Nucleoside diphosphate kinases (NDPKs) are enzymes that are involved in energy management and nucleoside balance in the cell. T. cruzi TcNDPK1, a canonical isoform, was overexpressed in Escherichia coli as an N-terminally poly-His-tagged fusion protein and crystallized. Crystals grew after 72 h in 0.2 M MgCl 2 , 20% PEG 3350. Data were collected to 3.5 Å resolution using synchrotron X-ray radiation at the National Synchrotron Light Laboratory (Campinas, Brazil). The crystals belonged to the trigonal space group P3, with unit-cell parameters a = b = 127.84, c = 275.49 Å. Structure determination is under way and will provide relevant information that may lead to the first step in rational drug design for the treatment of Chagas disease

  13. Differential expression profiles in the midgut of Triatoma infestans infected with Trypanosoma cruzi.

    Directory of Open Access Journals (Sweden)

    Diego S Buarque

    Full Text Available Chagas disease, or American trypanosomiasis, is a parasitic disease caused by the protozoan Trypanosoma cruzi and is transmitted by insects from the Triatominae subfamily. To identify components involved in the protozoan-vector relationship, we constructed and analyzed cDNA libraries from RNA isolated from the midguts of uninfected and T. cruzi-infected Triatoma infestans, which are major vectors of Chagas disease. We generated approximately 440 high-quality Expressed Sequence Tags (ESTs from each T. infestans midgut cDNA library. The sequences were grouped in 380 clusters, representing an average length of 664.78 base pairs (bp. Many clusters were not classified functionally, representing unknown transcripts. Several transcripts involved in different processes (e.g., detoxification showed differential expression in response to T. cruzi infection. Lysozyme, cathepsin D, a nitrophorin-like protein and a putative 14 kDa protein were significantly upregulated upon infection, whereas thioredoxin reductase was downregulated. In addition, we identified several transcripts related to metabolic processes or immunity with unchanged expressions, including infestin, lipocalins and defensins. We also detected ESTs encoding juvenile hormone binding protein (JHBP, which seems to be involved in insect development and could be a target in control strategies for the vector. This work demonstrates differential gene expression upon T. cruzi infection in the midgut of T. infestans. These data expand the current knowledge regarding vector-parasite interactions for Chagas disease.

  14. Usefulness of microsatellite typing in population genetic studies of Trypanosoma cruzi

    Directory of Open Access Journals (Sweden)

    Macedo Andrea M

    2001-01-01

    Full Text Available Through microsatellite analysis of 53 monoclonal populations of Trypanosoma cruzi, we found a remarkable degree of genetic polymorphism with no single multilocus genotype being observed more than once. The microsatellite profile proved to be stable during 70 generations of the CL Brener clone in culture. The microsatellite profiling presented also high diagnostic sensitivity since DNA amplifications could be achieved with less than 100 fg DNA, corresponding to half parasite total DNA content. Based on these technical attributes the microsatellite assay turns out to be an important tool for direct typing T. cruzi in biological samples. By using this approach we were able to type T. cruzi in feces of artificially infected bugs and in single cells sorted by FACS. The microsatellites have shown to be excellent markers for T. cruzi phylogenetic reconstruction. We used maximum parsimony based on the minimum number of mutational steps to build an unrooted Wagner network, which confirms previous conclusions based on the analysis of the D7 domain of the LSU rDNA gene that T. cruzi is composed by two major groups. We also obtained evidence that strains belonging to rRNA group 2 are subdivided into two genetically distant clusters, and that one of these clusters is more related to rRNA group 1/2. These results suggest different origins for these strains.

  15. Trypanosoma cruzi strains from triatomine collected in Bahia and Rio Grande do Sul, Brazil

    Directory of Open Access Journals (Sweden)

    Aline Rimoldi Ribeiro

    2014-04-01

    Full Text Available OBJECTIVE Collection of triatomines in domestic, peridomestic and sylvatic environments in states of Bahia and Rio Grande do Sul, Northeastern and Southern Brazil respectively, and isolation of Trypanosoma cruzi strains. METHODS First, the captured triatomines were identified using insect identification keys, then their intestinal content was examined by abdominal compression, and the samples containing trypanosomatid forms were inoculated in LIT medium and Swiss mice. RESULTS Six triatomine species were collected in cities in Bahia, namely Panstrongylus geniculatus (01, Triatoma melanocephala (11, T. lenti (94, T. pseudomaculata (02, T. sherlocki (26 and T. sordida (460, and two in cities in Rio Grande do Sul, namely T. circummaculata (11 and T. rubrovaria (115. Out of the specimens examined, T. cruzi was isolated from 28 triatomine divided into four different species: T. melanocephala (one, T. lenti (one, T. rubrovaria (16 and T. sordida (10. Their index of natural infection by T. cruzi was 6.4%. CONCLUSIONS The isolation of T. cruzi strains from triatomines found in domestic and peridomestic areas shows the potential risk of transmission of Chagas disease in the studied cities. The maintenance of those T. cruzi strains in laboratory is intended to promote studies that facilitate the understanding of the parasite-vector-host relationship.

  16. Benznidazole biotransformation and multiple targets in Trypanosoma cruzi revealed by metabolomics.

    Directory of Open Access Journals (Sweden)

    Andrea Trochine

    2014-05-01

    Full Text Available The first line treatment for Chagas disease, a neglected tropical disease caused by the protozoan parasite Trypanosoma cruzi, involves administration of benznidazole (Bzn. Bzn is a 2-nitroimidazole pro-drug which requires nitroreduction to become active, although its mode of action is not fully understood. In the present work we used a non-targeted MS-based metabolomics approach to study the metabolic response of T. cruzi to Bzn.Parasites treated with Bzn were minimally altered compared to untreated trypanosomes, although the redox active thiols trypanothione, homotrypanothione and cysteine were significantly diminished in abundance post-treatment. In addition, multiple Bzn-derived metabolites were detected after treatment. These metabolites included reduction products, fragments and covalent adducts of reduced Bzn linked to each of the major low molecular weight thiols: trypanothione, glutathione, γ-glutamylcysteine, glutathionylspermidine, cysteine and ovothiol A. Bzn products known to be generated in vitro by the unusual trypanosomal nitroreductase, TcNTRI, were found within the parasites, but low molecular weight adducts of glyoxal, a proposed toxic end-product of NTRI Bzn metabolism, were not detected.Our data is indicative of a major role of the thiol binding capacity of Bzn reduction products in the mechanism of Bzn toxicity against T. cruzi.

  17. Immobilization of NTPDase-1 from Trypanosoma cruzi and Development of an Online Label-Free Assay.

    Science.gov (United States)

    Calil, Felipe Antunes; Lima, Juliana Maria; de Oliveira, Arthur Henrique Cavalcante; Mariotini-Moura, Christiane; Fietto, Juliana Lopes Rangel; Cardoso, Carmen Lucia

    2016-01-01

    The use of IMERs (Immobilized Enzyme Reactors) as a stationary phase coupled to high performance chromatographic systems is an interesting approach in the screening of new ligands. In addition, IMERs offer many advantages over techniques that employ enzymes in solution. The enzyme nucleoside triphosphate diphosphohydrolase (NTPDase-1) from Trypanosoma cruzi acts as a pathogen infection facilitator, so it is a good target in the search for inhibitors. In this paper, immobilization of NTPDase-1 afforded ICERs (Immobilized Capillary Enzyme Reactors). A liquid chromatography method was developed and validated to monitor the ICER activity. The conditions for the application of these bioreactors were investigated, and excellent results were obtained. The enzyme was successfully immobilized, as attested by the catalytic activity detected in the Tc NTPDase-1-ICER chromatographic system. Kinetic studies on the substrate ATP gave K M of 0.317 ± 0.044 mmol·L -1 , which still presented high affinity compared to in solution. Besides that, the ICER was stable for 32 days, enough time to investigate samples of possible inhibitors, including especially the compound Suramin, that inhibited 51% the enzyme activity at 100  µ mol·L -1 , which is in accordance with the data for the enzyme in solution.

  18. Immobilization of NTPDase-1 from Trypanosoma cruzi and Development of an Online Label-Free Assay

    Directory of Open Access Journals (Sweden)

    Felipe Antunes Calil

    2016-01-01

    Full Text Available The use of IMERs (Immobilized Enzyme Reactors as a stationary phase coupled to high performance chromatographic systems is an interesting approach in the screening of new ligands. In addition, IMERs offer many advantages over techniques that employ enzymes in solution. The enzyme nucleoside triphosphate diphosphohydrolase (NTPDase-1 from Trypanosoma cruzi acts as a pathogen infection facilitator, so it is a good target in the search for inhibitors. In this paper, immobilization of NTPDase-1 afforded ICERs (Immobilized Capillary Enzyme Reactors. A liquid chromatography method was developed and validated to monitor the ICER activity. The conditions for the application of these bioreactors were investigated, and excellent results were obtained. The enzyme was successfully immobilized, as attested by the catalytic activity detected in the TcNTPDase-1-ICER chromatographic system. Kinetic studies on the substrate ATP gave KM of 0.317 ± 0.044 mmol·L−1, which still presented high affinity compared to in solution. Besides that, the ICER was stable for 32 days, enough time to investigate samples of possible inhibitors, including especially the compound Suramin, that inhibited 51% the enzyme activity at 100 µmol·L−1, which is in accordance with the data for the enzyme in solution.

  19. Interaction between Didelphis albiventris and Triatoma infestans in relation to Trypanosoma cruzi transmission

    Directory of Open Access Journals (Sweden)

    Nicolás J. Schweigmann

    1995-12-01

    Full Text Available This paper attempts to prove if a high Trypanosoma cruzi prevalence of opossums might be reached with few potential infective contacts. One non-infected Didelphis albiventris to T. cruzi and 10 infected nymphs of Triatoma infestans were left together during 23 hr in a device that simulated a natural opossum burrow. Twenty-six replicates were perfomed using marsupials and triatomines only once. Potentially infective contacts occurred in all the trials. From the 26 opossums used in trials, 54% did not eat any bug. Of the 260 bugs used, 21% were predated. In the 25 trials involving 205 surving bugs, 36 % of them did not feed. In 15/25 cases, maior ou igual a 60% of the triatomines were able to feed. The parasitological follow-up of 24 opossums showed that among 10 that had eaten bugs, 4 turned out infected and among the 14 that had not predate, 3 (21% became positive. In sum, 7/24 (29% of the marsupials acquired the infection after the experiment. This infection rate was similar to the prevalences found for the opossum population of Santiago del Estero, Argentina, suggesting that the prevalences observed in the field might be reached if each marsupial would encounter infected bugs just once in its lifetime.

  20. Studying nanotoxic effects of CdTe quantum dots in Trypanosoma cruzi

    Directory of Open Access Journals (Sweden)

    Cecilia Stahl Vieira

    2011-03-01

    Full Text Available Semiconductor nanoparticles, such as quantum dots (QDs, were used to carry out experiments in vivo and ex vivo with Trypanosoma cruzi. However, questions have been raised regarding the nanotoxicity of QDs in living cells, microorganisms, tissues and whole animals. The objective of this paper was to conduct a QD nanotoxicity study on living T. cruzi protozoa using analytical methods. This was accomplished using in vitro experiments to test the interference of the QDs on parasite development, morphology and viability. Our results show that after 72 h, a 200 μM cadmium telluride (CdTe QD solution induced important morphological alterations in T. cruzi, such as DNA damage, plasma membrane blebbing and mitochondrial swelling. Flow cytometry assays showed no damage to the plasma membrane when incubated with 200 μM CdTe QDs for up to 72 h (propidium iodide cells, giving no evidence of classical necrosis. Parasites incubated with 2 μM CdTe QDs still proliferated after seven days. In summary, a low concentration of CdTe QDs (2 μM is optimal for bioimaging, whereas a high concentration (200 μM CdTe could be toxic to cells. Taken together, our data indicate that 2 μM QD can be used for the successful long-term study of the parasite-vector interaction in real time.