Sample records for trough backarc rifts

  1. Inhomogeneous Crustal Structure of the Rifting in the Okinawa Trough, a Backarc Basin West of Kyushu, Japan, Deduced from Seismic Reflection and Refraction Data (United States)

    Nishizawa, A.; Kaneda, K.; Oikawa, M.; Horiuchi, D.; Fujioka, Y.; Okada, C.


    Several depressions found under the thick sediments in the East China Sea shelf have been considered as failed rift basins. Their formation age becomes progressively younger from NW to SE and the youngest rift basin is the Okinawa Trough, an active backarc basin of the Ryukyu (Nansei-Shoto) arc-trench system, to the southwest of Kyusyu, Japan. Its rifting is in progress and related hydrothermal activity is present in the trough. The knowledge of the crustal structure of the trough is fundamental to understand the current active tectonics and predict the future of the trough. We, Japan Coast Guard, have conducted extensive seismic reflection and refraction surveys in the Ryukyu region since 2008 and compiled the seismic structures of the Okinawa Trough. We will show the crustal structures along seven along-trough and ten across-trough seismic survey lines. The P-wave velocity models beneath the Okinawa Trough generally show a thinned continental/island arc crust consisting of upper, middle, and lower crusts. Moho depths below the trough were estimated mainly from Moho reflection (PmP) travel times. The crustal thickness of the trough is thinner than those of the East China Sea shelf and of the Ryukyu Islands. The depth of the Moho below the trough decreases from over 30 km in the north to about 13 km in the south, indicating a difference in degree of the rifting process. The position of the shallowest Moho along the across-trough lines in the northern trough does not necessarily correspond to the center of the trough defined as the deepest water depth, but it corresponds to the transition area between the East China Sea shelf and the Okinawa Trough. An M7.1 earthquake occurred at the transition area on Nov. 14, 2015 (JST) and many aftershocks were observed along the transition. This seismic activity demonstrated that the area is under rifting tectonics in the present.

  2. Crustal structure of the southern Okinawa Trough: Symmetrical rifting, submarine volcano, and potential mantle accretion in the continental back-arc basin (United States)

    Arai, Ryuta; Kodaira, Shuichi; Yuka, Kaiho; Takahashi, Tsutomu; Miura, Seiichi; Kaneda, Yoshiyuki


    Back-arc basins are a primary target to understand lithospheric evolution in extension associated with plate subduction. Most of the currently active back-arc basins formed in intraoceanic settings and host well-developed spreading centers where seafloor spreading has occurred. However, rift structure at its initial stage, a key to understand how the continental lithosphere starts to break in a magma-rich back-arc setting, is poorly documented. Here we present seismological evidence for structure of the southern Okinawa Trough, an active rift zone behind the Ryukyu subduction zone. We find that the southern Okinawa Trough exhibits an almost symmetric rift system across the rift axis (Yaeyama Rift) and that the sedimentary layers are highly cut by inward dipping normal faults. The rift structure also accompanies a narrow (2-7 km wide) on-axis intrusion resulted from passive upwelling of magma. On the other hand, an active submarine volcano is located 10 km away from the rift axis. The P wave velocity (Vp) model derived from seismic refraction data suggests that the crust has been significantly thinned from the original 25 km thick arc crust and the thinnest part with 12 km thickness occurs directly beneath the rift axis. The velocity model also reveals that there exists a thick layer with Vp of 6.5-7.2 km/s at lower crustal levels and may indicate that mantle materials accreted at the bottom of the crust during the crustal stretching. The abrupt crustal thinning and the velocity-depth profile suggest that the southern Okinawa Trough is at a transitional stage from continental rifting to seafloor spreading.

  3. Concentration of strain in a marginal rift zone of the Japan backarc during post-rift compression (United States)

    Sato, H.; Ishiyama, T.; Kato, N.; Abe, S.; Shiraishi, K.; Inaba, M.; Kurashimo, E.; Iwasaki, T.; Van Horne, A.; No, T.; Sato, T.; Kodaira, S.; Matsubara, M.; Takeda, T.; Abe, S.; Kodaira, C.


    Late Cenozoic deformation zones in Japan may be divided into two types: (1) arc-arc collision zones like those of Izu and the Hokkaido axial zone, and (2) reactivated back-arc marginal rift (BMR) systems. A BMR develops during a secondary rifting event that follows the opening of a back-arc basin. It forms close to the volcanic front and distant from the spreading center of the basin. In Japan, a BMR system developed along the Sea of Japan coast following the opening of the Japan Sea. The BMR appears to be the weakest, most deformable part of the arc back-arc system. When active rifting in the marginal basins ended, thermal subsidence, and then mechanical subsidence related to the onset of a compressional stress regime, allowed deposition of up to 5 km of post-rift, deep-marine to fluvial sedimentation. Continued compression produced fault-related folds in the post-rift sediments, in thin-skin style deformation. Shortening reached a maximum in the BMR system compared to other parts of the back-arc, suggesting that it is the weakest part of the entire system. We examined the structure of the BMR system using active source seismic investigation and earthquake tomography. The velocity structure beneath the marginal rift basin shows higher P-wave velocity in the upper mantle/lower crust which suggests significant mafic intrusion and thinning of the upper continental crust. The syn-rift mafic intrusive forms a convex shape, and the boundary between the pre-rift crust and the mafic intrusive dips outward. In the post-rift compressional stress regime, the boundary of the mafic body reactivated as a reverse fault, forming a large-scale wedge thrust and causing further subsidence of the rift basin. The driver of the intense shortening event along the Sea of Japan coast in SW Japan was the arrival of a buoyant young (15 Ma) Shikoku basin at the Nankai Trough. Subduction stalled and the backarc was compressed. As the buoyant basin cooled, subduction resumed, and the rate of

  4. Back-Arc Opening in the Western End of the Okinawa Trough Revealed From GNSS/Acoustic Measurements (United States)

    Chen, Horng-Yue; Ikuta, Ryoya; Lin, Cheng-Horng; Hsu, Ya-Ju; Kohmi, Takeru; Wang, Chau-Chang; Yu, Shui-Beih; Tu, Yoko; Tsujii, Toshiaki; Ando, Masataka


    We measured seafloor movement using a Global Navigation Satellite Systems (GNSS)/Acoustic technique at the south of the rifting valley in the western end of the Okinawa Trough back-arc basin, 60 km east of northeastern corner of Taiwan. The horizontal position of the seafloor benchmark, measured eight times between July 2012 and May 2016, showed a southeastward movement suggesting a back-arc opening of the Okinawa Trough. The average velocity of the seafloor benchmark shows a block motion together with Yonaguni Island. The westernmost part of the Ryukyu Arc rotates clockwise and is pulled apart from the Taiwan Island, which should cause the expansion of the Yilan Plain, Taiwan. Comparing the motion of the seafloor benchmark with adjacent seismicity, we suggest a gentle episodic opening of the rifting valley accompanying a moderate seismic activation, which differs from the case in the segment north off-Yonaguni Island where a rapid dyke intrusion occurs with a significant seismic activity.

  5. Extremely magnetized abyssal lavas erupted in active back-arc of the Okinawa Trough (United States)

    Fujii, M.; Sato, H.; Okino, K.


    Although high-amplitude of marine magnetic anomalies have been utilized for understanding for seafloor dynamics, the causal link between intensity of natural remanent magnetization and physical and chemical processes of extrusive rocks are still unclear. In addition, we essentially lack rock magnetic data of arc-back-arc lavas, which potentially provide strong constraints for understanding time- and spatial-dependent diversity of lava magnetization including mid-ocean ridge basalts. Here, we present new rock magnetic data of strongly magnetized basaltic rocks, which rank among the most magnetized in known oceanic basaltic rocks, from active back-arc region of the Okinawa Trough. We analyzed 27 non-oxidized (fresh) basaltic rock samples obtained from the active back-arc volcanoes, located at the segment boundary along back-arc rift. Their natural remanent magnetization ranges 7 A/m to >200 A/m, and has clear nonlinear relationship with both magnetic hysteresis signatures and titanomagnetite amount. The strongly magnetized lavas show large contribution of appropriate amount of SD titanomagnetite grains formed in proper crystal growth environments. The high-temperature thermomagnetic experiments demonstrate reversible curves in both heating and cooling with single Curie temperature. The Curie temperature shows up to 480°C for strongly magnetized lavas, which is much higher than that of mid-ocean ridge basalts mainly containing TM60, indicating that rich Fe and low Ti contents of titanomagnetite grains are main magnetic carrier. These observations clearly demonstrate that intensity of natural remanent magnetization is primarily controlled by cooling rate of lavas and ratio of Fe to Ti of titanomagnetite grains as well as bulk iron contents, with important implications towards marine magnetic anomalies and arc-back-arc volcanism.

  6. The Tethys Rifting of the Valencia Trough Basin (United States)

    Viñas, Marina; Ranero, César R.; Cameselle, Alejandra L.


    reaching deep into the sediment sequence, which provides an unprecedented view of the tectonic structure and distribution of synrift deposits across the entire basin, from the Iberian to the North Balearic margin (Figure 2). Here we first show that the seismic records provide full crustal-scale information. Later we discuss the tectonic and sedimentary structure that supports that crustal stretching and basin formation of the VTB occurred fundamentally during the Mesozoic times by strike-slip tectonics and not during Tertiary times by back-arc extension. We show that the current sea floor morphological configuration giving rise to the so-called Valencia Trough does not represent the changes in crystalline basement thickness related to rifting, but fundamentally a product of sediment dynamics, particularly by the development during post-Messinian times of the Ebro-river delta. Our results are significant to understand Tethyan rifting and need to be considered for plate kinematic reconstructions of the western Mediterranean.

  7. The magma plumbing system in the Mariana Trough back-arc basin at 18° N (United States)

    Lai, Zhiqing; Zhao, Guangtao; Han, Zongzhu; Huang, Bo; Li, Min; Tian, Liyan; Liu, Bo; Bu, Xuejiao


    Mafic magmas are common in back-arc basin, once stalled in the crust, these magmas may undergo different evolution. In this paper, compositional and textural variations of plagioclase as well as mineral-melt geothermobarometry are presented for basalts erupted from the central Mariana Trough (CMT). These data reveal crystallization conditions and we attempt a reconstruction of the magma plumbing system of the CMT. Plagioclase megacrysts, phenocrysts, microphenocrysts, microlites, olivine, spinel, and clinopyroxene have been recognized in basalt samples, using BSE images and compositional features. The last three minerals are homogeneous as microphenocrysts. Mineral-melt barometry indicates that plagioclase crystals crystallized and eventually grew into phenocrysts and megacrysts in mush zone with depth of 5-9 km, in which the normal zoning plagioclases crystallized in the interval of various batches of basic magma recharging. Plagioclase megacrysts and phenocrysts were dissolved and/or resorbed, when new basic magmas injected into the mush zone near Moho depth. It is inferred that magma extracted from the mush zone, and adiabatically ascended via different pathways. Some basaltic magmas underwent plagioclase and clinopyroxene microphenocrysts crystallization in low-pressure before eruption. Plagioclase microlites and outermost rims probably crystallized after eruption.

  8. Transfer fault earthquake in compressionally reactivated back-arc failed rift: 1948 Fukui earthquake (M7.1), Japan (United States)

    Ishiyama, Tatsuya; Kato, Naoko; Sato, Hiroshi; Koshiya, Shin


    Back-arc rift structures in many subduction zones are recognized as mechanically and thermally weak zones that possibly play important roles in strain accommodation at later post-rift stages within the overriding plates. In case of Miocene back-arc failed rift structures in the Sea of Japan in the Eurasian-Pacific subduction system, the mechanical contrasts between the crustal thrust wedges of the pre-rift continental crust and high velocity lower crust have fundamentally controlled the styles of post-rift, Quaternary active deformation (Ishiyama et al. 2016). In this study, we show a possibility that strike-slip M>7 devastating earthquakes in this region have been gregion enerated by reactivation of transfer faults highly oblique to the rift axes. The 1948 Fukui earthquake (M7.1), onshore shallow seismic event with a strike-slip faulting mechanism (Kanamori, 1973), resulted in more than 3,500 causalities and destructive damages on the infrastructures. While geophysical analyses on geodetic measurements based on leveling and triangulation networks clearly show coseismic left-lateral fault slip on a NNW striking vertical fault plane beneath the Fukui plain (Sagiya, 1999), no evidence for coseismic surface rupture has been identified based on both post-earthquake intensive fieldwork and recent reexamination of stereopair interpretations using 1/3,000 aerial photographs taken in 1948 (Togo et al., 2000). To find recognizable fault-related structures that deform Neogene basin fill sediments, we collected new 9.6-km-long high-resolution seismic reflection data across the geodetically estimated fault plane and adjacent subparallel active strike slip faults, using 925 offline recorders and Envirovib truck as a seismic source. A depth-converted section to 1.5 km depth contains discontinuous seismic reflectors correlated to Miocene volcaniclastic deposits and depression of the overlying Plio-Pleistocene sediments above the geodetically determined fault plane. We interpreted

  9. Composition and spatial evolution of mantle and fluids released beneath the active Southeast Mariana Forearc Rift: do they have arc or backarc basin signatures? (United States)

    Ribeiro, J. M.; Stern, R. J.; Kelley, K. A.; Ishizuka, O.; Anthony, E. Y.; Ren, M.; Manton, W. I.; Ohara, Y.; Reagan, M. K.; Bloomer, S. H.


    Fluids of progressively changing composition are released from the subducting slab. Whereas the composition and effects of deep fluids are understood from studying arcs and backarc basin (BAB) lavas, those released at shallower depths beneath forearcs are less well known. Forearc rifts give us a unique opportunity to study the composition of ultra-shallow subduction-related fluids. At the southern end of the Mariana arc, the S.E. Mariana Forearc Rift (SEMFR), was discovered by HMR-1 sonar swath mapping (Martinez et al. 2000, JGR), and investigated in July 2008 by the manned submersible Shinkai 6500. The rift extends from the trench to the BAB spreading axis, where a magma chamber was recently documented (Becker et al., 2010, G-cubed). SEMFR is opening due to continued widening of the Mariana Trough BAB. Two suites of tholeiitic pillow lavas were recovered from the N.E. flank of the rift (dive 1096; slab depth ~ 30 ± 5 km), indicating recent magmatic activity. Dive 1096 lavas consist of upper primitive basalts (Mg# ≥ 60) and lower fractionated, basaltic andesites (Mg# < 60), separated by a thin sediment layer. Geochemical and isotopic studies show that these lavas were produced by extensive hydrous melting (≥ 15%) of a common depleted MORB-like mantle (Nb/Yb ~ 1, ɛNd ~ 9.3), likely S. Mariana BAB mantle, that interacted with < 3% metasomatic fluids. Thermobarometry constraints (Lee et al., 2009, EPSL) suggest that the primary melts equilibrated with the mantle at ~ 28 km, just above the slab, with a mean temperature ~1230°C. The fluid was enriched in fluid-mobile elements (Rb, Ba, K, U, Sr, Pb, Cs), mobilized from the ultra-shallow slab at low temperature, as well as melt-mobile elements (e.g. Th, LREE), released deeper and hotter. These fluids contribute 100% Cs, 97% Rb, 99% Ba, 69% Th, 74% U, 80% K, 83% Pb, 71% Sr, 45% La, 33% Ce, 20% Nd and 11% Sm to the magma. SEMFR lavas acquired BAB-like deep subduction component as well as arc-like ultra

  10. Controlled-Source Seismic Imaging of Rift Processes and Earthquake Hazards in the Salton Trough (United States)

    Hole, J. A.; Stock, J. M.; Fuis, G. S.


    The NSF MARGINS program, the NSF EarthScope program, and the U.S. Geological Survey have funded a large seismic refraction and reflection survey of the Salton Trough in southern California and northern Mexico, including the Coachella, Imperial, and Mexicali Valleys. The purpose of this presentation is to communicate plans for the seismic project and encourage synergy with piggyback and complementary studies. Fieldwork is tentatively scheduled for January 2010. The goals of the project include both rifting processes at the northern end of the Gulf of California extensional province and earthquake hazards at the southern end of the San Andreas Fault system. In the central Salton Trough, North American lithosphere appears to have been rifted completely apart. The 20-22 km thick crust is apparently composed entirely of new crust added by magmatism from below and sedimentation from above. The seismic survey will investigate the style of continental breakup, the role and mode of magmatism, the effects of rapid Colorado River sedimentation upon extension and magmatism, and the partitioning of oblique extension. The southernmost San Andreas Fault is considered at high risk of producing a large damaging earthquake, yet structure of the fault and adjacent basins are not currently well constrained. To improve hazard models, the seismic survey will image the structure of the San Andreas and Imperial Faults, structure of sedimentary basins in the Salton Trough, and three-dimensional seismic velocity of the crust and uppermost mantle.

  11. The Salton Seismic Imaging Project (SSIP): Rift Processes and Earthquake Hazards in the Salton Trough (Invited) (United States)

    Hole, J. A.; Stock, J. M.; Fuis, G. S.; Rymer, M. J.; Murphy, J. M.; Sickler, R. R.; Criley, C. J.; Goldman, M.; Catchings, R. D.; Ricketts, J. W.; Gonzalez-Fernandez, A.; Driscoll, N.; Kent, G.; Harding, A. J.; Klemperer, S. L.


    The Salton Seismic Imaging Project (SSIP) and coordinated projects will acquire seismic data in and across the Salton Trough in southern California and northern Mexico, including the Coachella, Imperial, and Mexicali Valleys. These projects address both rifting processes at the northern end of the Gulf of California extensional province and earthquake hazards at the southern end of the San Andreas Fault system. In the central Salton Trough, North American lithosphere appears to have been rifted completely apart. Based primarily on a 1979 seismic refraction project, the 20-22 km thick crust is apparently composed entirely of new crust added by magmatism from below and sedimentation from above. The new data will constrain the style of continental breakup, the role and mode of magmatism, the effects of rapid Colorado River sedimentation upon extension and magmatism, and the partitioning of oblique extension. The southernmost San Andreas Fault is considered at high risk of producing a large damaging earthquake, yet structures of the fault and adjacent basins are poorly constrained. To improve hazard models, SSIP will image the geometry of the San Andreas and Imperial Faults, structure of sedimentary basins in the Salton Trough, and three-dimensional seismic velocity of the crust and uppermost mantle. SSIP and collaborating projects have been funded by several different programs at NSF and the USGS. These projects include seven lines of land refraction and low-fold reflection data, airguns and OBS data in the Salton Sea, coordinated fieldwork for onshore-offshore and 3-D data, and a densely sampled line of broadband stations across the trough. Fieldwork is tentatively scheduled for 2010. Preliminary work in 2009 included calibration shots in the Imperial Valley that quantified strong ground motion and proved lack of harm to agricultural irrigation tile drains from explosive shots. Piggyback and complementary studies are encouraged.

  12. Decadal Modulation of Repeating Slow Slip Event Activity in the Southwestern Ryukyu Arc Possibly Driven by Rifting Episodes at the Okinawa Trough (United States)

    Tu, Yoko; Heki, Kosuke


    We studied 38 slow slip events (SSEs) in 1997-2016 beneath the Iriomote Island, southwestern Ryukyu Arc, Japan, using continuous Global Navigation Satellite Systems data. These SSEs occur biannually on the same fault patch at a depth of 30 km on the subducting Philippine Sea Plate slab with average moment magnitudes (Mw) of 6.6. Here we show that the slip accumulation rate (cumulative slip/lapse time) of these SSEs fluctuated over a decadal time scale. The rate increased twice around 2002 and 2013 concurrently with earthquake swarms in the Okinawa Trough. This suggests that episodic activations of the back-arc spreading at the Okinawa Trough caused extra southward movement of the block south of the trough and accelerated convergence at the Ryukyu Trench.

  13. Origin and model of transform faults in the Okinawa Trough (United States)

    Liu, Bo; Li, Sanzhong; Jiang, Suhua; Suo, Yanhui; Guo, Lingli; Wang, Yongming; Zhang, Huixuan


    Transform faults in back-arc basins are the key to revealing the opening and development of marginal seas. The Okinawa Trough (OT) represents an incipient and active back-arc or marginal sea basin oriented in a general NE-SW direction. To determine the strikes and spatial distribution of transform faults in the OT, this paper dissects the NW- and NNE-SN-trending fault patterns on the basis of seismic profiles, gravity anomalies and region geological data. There are three main NW-trending transpressional faults in the OT, which are the seaward propagation of NW-trending faults in the East China Continent. The NNE-SN-trending faults with right-stepping distribution behave as right-lateral shearing. The strike-slip pull-apart process or transtensional faulting triggered the back-arc rifting or extension, and these faults evolved into transform faults with the emergence of oceanic crust. Thus, the transform fault patterns are inherited from pre-existing oblique transtensional faults at the offsets between rifting segments. Therefore, the OT performs the oblique spreading mechanism similar to nascent oceans such as the Red Sea and Gulf of Aden.

  14. Analysis of gravity anomalies in the Ulleung Basin (East Sea/Sea of Japan) and its implications for the crustal structure of rift-dominated back-arc basin (United States)

    Kim, Yoon-Mi; Lee, Sang-Mook


    The Ulleung Basin (UB), one of three major basins in the East Sea/Sea of Japan, is considered to represent a continental-rifting end-member of back-arc basin system, but is much less understood compared to the nearby Yamato Basin (YB) and Japan Basin (JB). This study examines the gravity anomalies of the UB since the variation in crustal thickness can provide important insights on the mode of extension during basin opening. Our analysis shows that the Moho depth (from the sea surface) varies from 16 km at the basin center to 22 km at the edges. However, within the central part of the basin, the crustal thickness (not including sediment) is more or less the same (10-12 km), by varying only about 10-20% of the total thickness, contrary to the previous suggestions. Our finding of anomalous but uniformly thick crust is consistent with the recent seismic results from the YB (14 km on average). A mantle residual gravity anomaly high (∼20 mGal) exists in the northeastern part of the UB. This feature is interpreted as the location of maximum extension (slightly thinner crust by ∼1 km). Together with another moderate gravity high to the southwest, the two anomalies form a NNE-SSW line, which corresponds to the direction of the major tectonic structures of the Korean Peninsula. We argue that the a massive magmatic emplacement took place extensively in the lower crust of the UB during the opening, significantly increasing its overall thickness to almost twice as that of the JB where a mid-ocean-ridge style seafloor spreading occurred. Two important post-opening processes took place after the formation of uniformly thick crust: post-rift volcanic intrusions in the north, especially in its northeast sections but had little effect on the residual gravity anomaly itself, and the deflection of crust in response to differential sediment loading towards the south, producing the median high in the basement in response to the flexural bending. We also conducted a simple test to

  15. Waveform anomaly caused by strong attenuation in the crust and upper mantle in the Okinawa Trough region (United States)

    Padhy, S.; Furumura, T.; Maeda, T.


    region. It is expected that simulation results help to resolve rift-induced crust and upper mantle anomalies in the trough showing maximum waveform distortion as we observed in broadband records, and will enhance understanding of tectonic processes related to back-arc rifting in the region.

  16. Mesozoic evolution of the Valencia trough: Implications for the understanding of the Western Mediterranean (United States)

    Etheve, Nathalie; Frizon de Lamotte, Dominique; Mohn, Geoffroy; Roca, Eduard; Gorini, Christian; Blanpied, Christian


    The Western Mediterranean records a multi-stage tectonic evolution characterized by a complex succession of rifting to compressive episodes during the Cenozoic. The Valencia through was formed in this geodynamic framework and is classically interpreted as an aborted Tertiary rift related to back-arc extension. Notably, the Tertiary rifting is superimposed to the Jurassic opening of the Tethys basin, the early Cretaceous opening of the Bay of Biscay-Pyrenees basins and the late Cretaceous-early Tertiary inversion of these basins (e.g. Iberian range, Catalan Coastal range). Since the last twenty years, many studies contributed to the understanding of the Tertiary history of this area, whereas the pre-Tertiary evolution of the Valencia trough remains poorly investigated. Therefore, we initiated a research project in the Valencia trough benefiting from the acquisition of high quality seismic surveys allowing a better imaging of the Mesozoic sequences. This PhD project aims to understand the mechanisms and the role of structural inheritance that controlled the evolution of the Valencia trough and its impact on the sedimentary infilling since the Mesozoic. The relation between the sedimentary infilling, subsidence and crustal thinning mechanisms during the Cenozoic are investigated aiming to unravel critical information on rifting processes. This study will be based on correlations between onshore and offshore observations. Structural and stratigraphic evolution will be defined on land and compared with seismic sections and well data at sea. Eventually, these data will enable us to propose coherent land-sea interpretations of the area, providing a better understanding of the tectono-stratigraphic context. Our poster show preliminary results obtained from fieldwork on the western margin of the Valencia trough coupled with seismic interpretations. Eventually, results of this study may lead to better constrain the kinematic reconstruction of the western Mediterranean

  17. Did the Bering Sea Form as a Cenozoic Backarc Basin? (United States)

    Stern, R. J.; Barth, G. A.; Scheirer, D. S.; Scholl, D. W.


    Understanding the origins of Bering Sea marginal basins (Aleutian, Bowers, and Komandorsky basins; AB, BB, KB) is key for reconstructing N. Pacific tectonic and magmatic evolution. New acquisitions and recompilations of MCS, OBS, and potential field data (Barth et al. poster. this session) for USGS Extended Continental Shelf project and selection of Aleutians as GeoPrisms Subduction Cycles and Deformation focus site stimulate reconsideration of BB, KB, and especially AB origins. AB has long been regarded as N. Pacific crust trapped when the Aleutian subduction began ~45-50 Ma. BB and KB probably formed together as Miocene backarc basins. Presence of Oligo-Miocene arc volcanics on Bowers and Shirshov ridges suggests that these are remnant arcs, orphaned by AB and KB opening. Seven lines of evidence suggest that AB formed as a Paleogene backarc basin: 1) AB heatflow suggests an age of about 44 Ma (Langseth et al 1980 JGR). 2) Formation of NNW-trending rift basins on Bering shelf (Navarin, Pribilof, and St. George basins) in Paleogene time indicate extension at this time. 3) The early Paleogene "red unconformity" of the Beringian margin could indicate uplift, erosion, and subsidence associated with AB opening. 4) ~N-S magnetic anomalies in AB contrasts with E-W Kula anomalies on N. Pacific, indicating that the two tracts of oceanic crust formed at different spreading ridges. 5) Thicker sediment in AB (2-4 km) vs. BB and KB (< 2km) indicates AB is older and is consistent with episodic and short-lived (~20 m.y. duration) opening expected for backarc basins. 6) Aleutian arc magmatic activity began ~50 Ma, about the same time that the Beringian arc shut down. This could also be reconciled by rifting of the Beringian arc to form the AB as backarc basin, accompanied by the displacement of arc magmatic activity to near the present Aleutian arc. 7) Formation of the Aleutian arc as ~3900 km long, nearly perfect small circle is easiest to reconcile with an easily deformed

  18. Origin of back-arc basins and effects of western Pacific subduction systems on eastern China geology (United States)

    Niu, Y.


    Assuming that subduction initiation is a consequence of lateral compositional buoyancy contrast within the lithosphere [1], and recognizing that subduction initiation within normal oceanic lithosphere is unlikely [1], we can assert that passive continental margins that are locations of the largest compositional buoyancy contrast within the lithosphere are the loci of future subduction zones [1]. We hypothesize that western Pacific back-arc basins were developed as and evolved from rifting at passive continental margins in response to initiation and continuation of subduction zones. This hypothesis can be tested by demonstrating that intra-oceanic island arcs must have basement of continental origin. The geology of the Islands of Japan supports this. The highly depleted forearc peridotites (sub-continental lithosphere material) from Tonga and Mariana offer independent lines of evidence for the hypothesis [1]. The origin and evolution of the Okinawa Trough (back-arc basin) and Ryukyu Arc/Trench systems represents the modern example of subduction initiation and back-arc basin formation along a (Chinese) continental margin. The observation why back-arc basins exit behind some subduction zones (e.g., western Pacific) but not others (e.g., in South America) depends on how the overlying plate responds to subduction, slab-rollback and trench retreat. In the western Pacific, trench retreat towards east results in the development of extension in the upper Eurasian plate and formation of back-arc basins. In the case of South America, where no back-arc basins form because trench retreat related extension is focused at the 'weakest' South Mid-Atlantic Ridge. It is thus conceptually correct that the South Atlantic is equivalent to a huge 'back-arc basin' although its origin may be different. Given the negative Clayperon slope of the Perovskite-ringwoodite phase transition at the 660 km mantle seismic discontinuity (660-D), slab penetration across the 660-D is difficult and

  19. Onshore-offshore seismic reflection profiling across the southern margin of the Sea of Japan: back-arc opening, shortening and active strike-slip deformation (United States)

    Sato, Hiroshi; Ishiyama, Tatsuya; Kato, Naoko; Toda, Shigeru; Kawasaki, Shinji; Fujiwara, Akira; Tanaka, Yasuhisa; Abe, Susumu


    M7-class crustal earthquakes of overlying plate in subduction system have tendency to increase before megathrust earthquake events. Due to stress buildup by the upcoming Nankai Trough megathrust earthquake, SW Japan has being seismically active for last 20 years. In terms of the mitigation of earthquake and tsunami hazards, to construct seismogenic source fault models is first step for evaluating the strong ground motions and height of tsunamis. Since 2013, we performed intense seismic profiling in and around the southern part of the Sea of Japan. In 2016, a 180-km-long onshore -offshore seismic survey was carried out across the volcanic arc and back-arc basins (from Kurayoshi to the Yamato basin). Onshore section, CMP seismic reflection data were collected using four vibroseis trucks and fixed 1150 channel recorders. Offshore part we acquired the seismic reflection data using 1950 cu inch air-guns towing a 4-km-long streamer cable. We performed CMP reflection and refraction tomography analysis. Obtained seismic section portrays compressively deformed rifted continental crust and undeformed oceanic back-arc basin, reflecting the rheological features. These basic structures were formed during the opening of the Sea of Japan in early Miocene. The sub-horizontal Pliocene sediments unconformably cover the folded Miocene sediments. The opening and clock-wise rotation of SW Japan has been terminated at 15 Ma and contacted to the young Shikoku basin along the Nankai trough. Northward motion of Philippine Sea plate (PHS) and the high thermal regime in the Shikoku basin produced the strong resistance along the Nankai trough. The main shortening deformation observed in the seismic section has been formed this tectonic event. After the initiation of the subduction along the Nankai trough, the rate of shortening deformation was decreased and the folded strata were covered by sub-horizontal Pliocene sediments. The thrusting trending parallel to the arc has been continued from

  20. Detailed magnetic and gravity surveys around the hydrothermal area off Kumejima Island in the Mid-Okinawa Trough, southwestern Japan (United States)

    Kitada, K.; Kasaya, T.; Iwamoto, H.; Nogi, Y.


    The Okinawa Trough is an active back-arc basin formed by the rifting associated with extension of the continental margin behind the Ryukyu trench. New hydrothermal sites were recently discovered off Kumejima Island in the Mid-Okinawa Trough and the hydrothermal mineral deposits were identified by seafloor surveys and rock samplings by ROV (e.g., JOGMEC, 2015). In order to characterize the sub-seafloor structures and the spatial distribution of the magmatic activity around the sites, we conducted the dense magnetic, gravity and bathymetric surveys with a line spacing of 0.5 nmi aboard the R/Vs Yokosuka and Kairei, operated by the Japan Agency for Marine-Earth Science and Technology (JAMSTEC) in 2016. The geophysical data collected during the previous cruises in the area by JAMSTEC were additionally used for this study. Magnetic anomaly was calculated by subtracting the IGRF model and the magnetization intensity was estimated by the method of Parker and Huestis (1974). Free-air gravity anomaly was calculated with subtracting the normal gravity field and with corrections of the drift and of the Eötvös effect. Bouguer gravity anomaly was calculated based on the method of Parker (1972). The magnetization intensity and the Bouguer gravity anomaly reveal three characteristics of the hydrothermal area off Kumejima Island: 1) The distribution of magnetization around the hydrothermal sites shows two different types of sub-seafloor magnetic features. One is corresponded to the submarine knolls with a relatively high magnetization of 4 A/M. The other is an ENE-WSW trending magnetization distribution with relatively high and low intensities, which is consistent with the trend of the bathymetric lineament. These features are considered to be formed by magmatism associated with submarine volcanoes and back-arc rifting. 2) The reduced magnetization zone corresponding to the hydrothermal area probably attributes to hydrothermal alteration of the host rock. 3) The hydrothermal

  1. Dynamics of diachronous back-arc extension: insights from 3D thermo-mechanical analogue experiments (United States)

    Boutelier, D. A.; Cruden, A. R.


    Subduction of an old, dense oceanic lithosphere can lead to rifting and extension of the magmatic arc. Such subduction systems are inherently three-dimensional with significant along-strike variations in the timing and style of deformation and magmatism. Geodynamic models used to explain such variations and associated trench curvature generally ignore the role of the overriding plate and its deformation. 3D thermo-mechanical analogue experiments are used to investigate the kinematics and dynamics of diachronous arc rifting and back-arc basin opening. In the models, horizontal tension increases in the upper plate until the magmatic arc lithosphere fails and back-arc opening occurs via slab rollback. This result corresponds well to previous 2D models of arc rifting and subsequent back-arc opening via trench rollback and the mechanics of retreating slabs in fluid dynamic experiments. However, in our experiments arc failure occurs diachronously, initiating near the model edge due to locally higher temperatures and lower strength and then propagating along strike, producing an arcuate plate boundary. The experiments demonstrate that trench rollback rate is limited by the propagation rate of arc failure. Conversely, slab rollback generates additional horizontal tension in the adjacent magmatic arc lithosphere, which drives along-strike propagation of arc failure. Feedback between the rates of trench rollback and arc failure propagation dictates the geometry of the back-arc basin in plan-view. The shape of the back-arc basin obtained in models fits remarkably well with that of the Mariana basin in the western Pacific. Experiments where the strength of the magmatic arc, or forearc varies along strike or where the negative buoyancy of the subducting plate varies along strike explore further the role of the slab edge and the trench-parallel tensile strength of the retreating forearc block.

  2. Mantle flow and oceanic crust formation during the opening of the Tyrrhenian back-arc basin (United States)

    Magni, Valentina


    The formation of the Tyrrhenian back-arc basin occurred through short-lived episodes of fast spreading alternated with periods of slow rifting. I present results from three-dimensional numerical models of laterally varying subduction to explain the mechanism of back-arc basin opening and its episodic spreading behaviour. Moreover, I explore the consequences of this alternation between fast and slow episodes of extension on the production of new oceanic crust in the back-arc basin. Results show that the presence of continental plates (i.e. Africa and Adria) nearby the oceanic subduction of the Ionian slab produces localised deformation within the overriding plate and it is, thus, crucial for the opening of the back-arc basin. Moreover, the occurrence of collision results in the formation of two slab windows at the ocean-continent boundaries, which is in very good agreement with what is observed in the Central Mediterranean, nearby the Calabrian slab. During the evolution of the system the trench velocity shows pulses of fast trench retreat that last a few millions of years. This is associated with episodes of more intense melting of the asthenosphere rising at the back-arc basin. Finally, these three-dimensional models are used to track the mantle flow throughout the model evolution and the source of the mantle melting at the spreading centre.

  3. Composition and biogeography of hydrothermal vent communities in Western Pacific Back-Arc Basins (United States)

    Desbruyères, Daniel; Hashimoto, Jun; Fabri, Marie-Claire

    Deep-sea hydrothermal vent communities have been located and studied over different geological and dynamic contexts: fast to slow mid-ocean ridges, back-arc basins, volcanic arcs, and active seamounts. The associated vent faunas belong to a small set of mostly endemic taxa relying on chemoautotrophic microbial production, able to stand extreme habitat conditions and to persist in a discontinuous and ephemeral environment. Because of their obligate relations to hydrothermal venting, they disperse only along ridges, stepping from one active hydrothermal vent to another. Discontinuities of the ridges or hydrological barriers can limit along-axis dispersal and thus favor allopatric speciation. Western Pacific back-arc basins are isolated spreading centers, which remain active during a short period of geological time, in the proximity of active and passive continental margins where cold seeps are frequent. The Rim of Fire region thus represents a complex area of potential exchanges between chemosynthetic-based ecosystems. Our present knowledge is restricted to active areas situated in five back-arc basins (Lau and North Fiji Basins, Manus Basin, Mariana Trough, Okinawa Trough) and two arc volcanoes (Izu-Ogasawara, Kermadec Arc). We here review the distribution and composition of vent-associated biological communities in these basins and arcs, and discuss the faunal affinities among them and the possible migration routes between them and the mid-ocean ridges.

  4. Drilling constraints on bimodal volcanism and subsequent formation of contrasted uppermost crustal compositions at the middle Okinawa Trough (United States)

    Yamasaki, T.; Takaya, Y.; Mukae, N.; Nagase, T.; Tindell, T.; Totsuka, S.; Uno, Y.; Yonezu, K.; Nozaki, T.; Ishibashi, J. I.; Kumagai, H.; Maeda, L.; Shipboard Scientist, C.


    The Okinawa Trough (OT) is a young and actively spreading back-arc basin, extending behind the Ryukyu arc-trench system in the southeastern margin of the East China Sea. The OT is believed to be in an initial rifting stage (starting from 6-9 Ma), prior to the normal/stable seafloor spreading which constitutes the main stage of back-arc basin formation. Two drilling cruises ‒ the IODP Exp. 331 and SIP CK14-04 D/V Chikyu Cruise (Exp. 907) in 2010 and 2014 ‒ were conducted at the Iheya North Knoll, middle OT. The Iheya North Knoll is a domal volcanic complex consisting of small volcanic bodies. On these cruises, pumiceous gravel and altered rhyolitic rocks, as well as hemi-pelagic sediments, hydrothermal clay and Kuroko-type ores, were recovered from the upper 200 m of the crust. From Feb. 11, 2016 to Mar. 17, 2016, the SIP CK16-01 (Exp. 908) D/V Chikyu cruise was conducted at Iheya North Knoll and the sediment-covered rifting center of the Iheya-Minor Ridge area, middle OT. The Iheya-Minor ridge area is also an active hydrothermal field, located 25 km southeast of the Iheya North Knoll. In this area, basaltic rocks are widely distributed, and drilling has confirmed that the basaltic materials continue to 120 m below the seafloor. From an igneous petrological point of view, the volcanic rocks in the Okinawa Trough are characterized by bimodal basaltic and rhyolitic compositions, with a compositional gap between SiO2 = 56-66 wt%. The origin of the rhyolitic rock has been interpreted as magmatic differentiation of basaltic magma. However, the existence of an active basalt-hosted hydrothermal field in the Iheya-Minor ridge area suggests the presence of hot basaltic rocks at a shallow position in the crust, and reaching recharged seawater at this depth. Furthermore, the composition of felsic rocks just after the compositional gap (SiO2 = 67 wt%) is very similar to that of the minimum melt of a granitic system, and experimental partial melt of hydrous basalt. Therefore

  5. The Northeast Brazilian Rift System (United States)

    de Matos, Renato M. Darros


    change in rifting kinematics occurred, when the CP trend was aborted and major rifting initiated at the Equatorial branch. During the Aptian, while the Equatorial branch and Benue trough (Africa) experienced the main rift phase, the RTJ trend was aborted and the GSA trend developed a transitional phase between the rift and drift stage. The GSA trend and the offshore Potiguar basin represent the site of continued evolution into passive margin basins following the main rift episode.

  6. Some Major Element Systematics of Back-Arc Basin Basalts and Their Relation to Back-Arc Crustal Production (United States)

    Taylor, B.; Martinez, F.


    Regardless of spreading rate, the magma production of back-arc spreading centers is enhanced near the volcanic front, diminished at intermediate distances, and typical of mid-ocean ridges (MOR) far behind the arc (150-250 km). Martinez and Taylor (Nature, 2002) proposed that slab-supplied water enhances (flux) melting near the arc, but that melt-depleted mantle carried beneath the back-arc basin by wedge corner flow reduces (decompression) melting until, far behind the arc, sufficient fertile mantle is entrained. Here we investigate their model predictions by reviewing the geochemistry of spreading axis lavas from the Lau, Manus, Mariana and East Scotia Basins. We derive relations of the form Fe8=[FeO+0.5(8-MgO)]/[1+0.25(8-MgO)] to correct published glass analyses (to 8% MgO) for the effects of variable crystal fractionation. Arc-proximal, shallow, back-arc crust with arc-like compositions occurs in each basin. In the fast-spreading Lau and Manus Basins, the degree of arc influence (e.g., Ba/La and H2O) progressively decreases with distance from the volcanic front, although some BABB are erupted along with MORB even far from the arc. In the intermediate-spreading rate East Scotia Basin, the central spreading segments (E5-E7, >100 km from the arc) are MORB-like; the end segments (E2 and E9) as well as E4 are influenced by both arc and plume components. BABB dominate the slow-spreading rate Mariana Trough, but the mantle is extremely heterogeneous, with examples of arc- and MORB-like lavas erupted in close proximity. Na8, Fe8, Ti8, and Yb8 decreases, and Ba/La and H2O(8) increases, between the MORB-like and arc-like end members within each basin reflect greater total extents of melting of more depleted mantle that is enriched in slab-derived components. There are also systematic variations BETWEEN the four basins in Na8 (and Ti8, Yb8) versus Fe8 values that reflect regional differences in the degree of partial melting (Manus/Lau > Scotia/Mariana). The re

  7. Trough for piglets

    DEFF Research Database (Denmark)


    A trough is disclosed for supplying piglets with mineral supplements in the suckling period. The trough is designed to awaken the piglets' curiosity and thus make them root in the bottom of the trough, where the mineral supplements are dispensed in form of a dry powder mixture, and thus reduce...... spillage as compared to placing the mineral supplements on the floor of the pen. During the pre-weaning of the piglets the trough can be converted to serve as a normal trough for solid feed....

  8. Inversion tectonics of the benue trough | Mamah | Global Journal of ...

    African Journals Online (AJOL)

    Spreading was, however, arrested by the rotation of the hot spot plumes onto the shoulders of the trough such as unto the Cameroom volcanic line by a sequence of events including crustal thinning and doming, rifting and faulting, grabens and horst formation, volcanism and subsidence, imbricate sedimentation and ...

  9. First results from TN273 studies of the SE Mariana Forearc rift (United States)

    Ribeiro, J. M.; Stern, R. J.; Kelley, K. A.; Shaw, A. M.; Shimizu, N.; Martinez, F.; Ishii, T.; Ishizuka, O.; Manton, W. I.


    TN 273 aboard R/V Thomas Thompson (Dec. 22 2011- Jan. 22 2012) studied an unusual region of rifting affecting the southern Mariana forearc S.W. of Guam. The S.E. Mariana Forearc Rift (SEMFR) formed by diffuse tectonic and volcanic deformation (Martinez and Sleeper, this meeting) ~2.7-3.7 Ma ago to accommodate opening of the southernmost Mariana Trough backarc basin. A total of 730 km linear-track of SEMFR seafloor was surveyed with deep-towed side-scan sonar IMI-30. 14 dredges provided samples of SEMFR igneous rocks, analyzed for whole rock (WR) and glass compositions. These new results coupled with results of earlier investigations confirm that SEMFR is dominated by Miocene lavas along with minor gabbro and diabase. SEMFR lavas range in major element composition from primitive basalt to fractionated andesite (Mg# = 0.36-0.73; SiO2 = 50-57 wt%), mainly controlled by crystal fractionation. Rare Earth Element (REE) patterns range from LREE-depleted, N-MORB-like to flat patterns, reflecting different mantle processes (i.e. different sources, degree of melting …). Glassy rinds and olivine-hosted melt inclusions in these lavas contain variable volatile compositions (F = 75-358 ppm, S = 35-1126 ppm, Cl= 74-1400 ppm, CO2 = 15-520 ppm, 0.36-2.36 wt% H2O). SEMFR lavas show spider diagrams with positive anomalies in LILE and negative anomalies in HSFE. SEMFR lavas have backarc basin-like (BAB-like) chemical composition (H2O < 2.5wt%, Ba/Yb~20, Nb/Yb~1 and ɛNd~9) along with stronger enrichment in Rb and Cs than arc and BAB lavas, as demonstrated by their higher Rb/Th and Cs/Ba ratios in WR and glasses, which may reflect the role of the ultra-shallow fluids. Ultra-shallow fluids are derived from the top of the subducting slab, beneath the forearc, where most of the water and the fluid-mobile elements (Rb, Cs, Ba,) are thought to be released (Schmidt and Poli, 1998, EPSL, Savov et al., 2005, G-3). Our results suggest that i) SEMFR lavas formed by metasomatism of a BAB mantle

  10. Continental Rifts (United States)

    Rosendahl, B. R.

    Continental Rifts, edited by A. M. Quennell, is a new member of the Benchmark Papers in Geology Series, edited in toto by R. W. Fairbridge. In this series the individual volume editors peruse the literature on a given topic, select a few dozen papers of ostensibly benchmark quality, and then reorder them in some sensible fashion. Some of the original papers are republished intact, but many are chopped into “McNuggets™” of information. Depending upon the volume editor, the chopping process can range from a butchering job to careful and prudent pruning. The collecting, sifting, and reorganizing tasks are, of course, equally editor-sensitive. The end product of this series is something akin to a set of Reader's Digest of Geology.

  11. Seismic structure of the central US crust and upper mantle: Uniqueness of the Reelfoot Rift (United States)

    Pollitz, Fred; Mooney, Walter D.


    Using seismic surface waves recorded with Earthscope's Transportable Array, we apply surface wave imaging to determine 3D seismic velocity in the crust and uppermost mantle. Our images span several Proterozoic and early Cambrian rift zones (Mid-Continent Rift, Rough Creek Graben—Rome trough, Birmingham trough, Southern Oklahoma Aulacogen, and Reelfoot Rift). While ancient rifts are generally associated with low crustal velocity because of the presence of thick sedimentary sequences, the Reelfoot Rift is unique in its association with low mantle seismic velocity. Its mantle low-velocity zone (LVZ) is exceptionally pronounced and extends down to at least 200 km depth. This LVZ is of variable width, being relatively narrow (∼50km">∼50km wide) within the northern Reelfoot Rift, which hosts the New Madrid Seismic Zone (NMSZ). We hypothesize that this mantle volume is weaker than its surroundings and that the Reelfoot Rift consequently has relatively low elastic plate thickness, which would tend to concentrate tectonic stress within this zone. No other intraplate ancient rift zone is known to be associated with such a deep mantle low-velocity anomaly, which suggests that the NMSZ is more susceptible to external stress perturbations than other ancient rift zones.

  12. Comparative analyses of the bacterial community of hydrothermal deposits and seafloor sediments across Okinawa Trough (United States)

    Wang, Long; Yu, Min; Liu, Yan; Liu, Jiwen; Wu, Yonghua; Li, Li; Liu, Jihua; Wang, Min; Zhang, Xiao-Hua


    As an ideal place to study back-arc basins and hydrothermal eco-system, Okinawa Trough has attracted the interests of scientists for decades. However, there are still no in-depth studies targeting the bacterial community of the seafloor sediments and hydrothermal deposits in Okinawa Trough. In the present study, we reported the bacterial community of the surface deposits of a newly found hydrothermal field in the southern Okinawa Trough, and the horizontal and vertical variation of bacterial communities in the sediments of the northern Okinawa Trough. The hydrothermal deposits had a relatively high 16S rRNA gene abundance but low bacterial richness and diversity. Epsilonproteobacteria and Bacteroidetes were predominant in hydrothermal deposits whereas Deltaproteobacteria, Gammaproteobacteria and Chloroflexi were abundant across all samples. The bacterial distribution in the seafloor of Okinawa Trough was significantly correlated to the content of total nitrogen, and had consistent relationship with total carbon. Gradual changes of sulfur-oxidizing bacteria were found with the distance away from hydrothermal fields, while the hydrothermal activity did not influence the distribution of the major clades of sulfate-reducing bacteria. Higher abundance of the sulfur cycle related genes (aprA and dsrB), and lower abundance of the bacterial ammonia-oxidizing related gene (amoA) were quantified in hydrothermal deposits. In addition, the present study also compared the inter-field variation of Epsilonproteobacteria among multi-types of hydrothermal vents, revealing that the proportion and diversity of this clade were quite various.

  13. Arctic Lena Trough -- NOT a Mid-Ocean Ridge (United States)

    Snow, J. E.; Hellebrand, E.; Handt, A. V.; Nauret, F.; Gao, Y.; Feig, S.; Jovanovic, Z.


    space known as EM1 (See abstract in the Stan Hart Symposium), and bear more resemblance to alkaline rift magmas than to mid-ocean ridge volcanics. Thus Lena Trough is not a Mid-Ocean Ridge (in any event there is no ridge there), but represents a recent transition form between a continental rift and an oceanic one. The Lena Trough is also the only known modern analog of the Iberia Margin, the conjugate Newfoundland Margin, as well as the ophiolite complexes of the Western Alps. It is significant that there is no evidence for low-angle detachment at Lena Trough. Instead, the thick lithosphere at Lena Trough results in decidedly thick-skinned rift tectonics, with steeply dipping fault surfaces and relatively narrow basement blocks.

  14. Petroleum resources assessment of the Okinawa Trough

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Jae Ho; Kwak, Young Hoon; Bong, Pil Yoon; Son, Jin Dam; Cheong, Tae Jin; Lee, Ho Young; Ryu, Byung Jae; Son, Byeong Kook; Hwang, In Gul; Kwon, Young Ihn; Lee, Yong Joo; Kim, Hag Ju; Yi, Sung Soog; Park, Kwan Soon; Park, Keun Pil; Shin, Chang Soo; Sunwoo, Don [Korea Inst. of Geology Mining and Materials, Taejon (Korea, Republic of)


    The hydrocarbon potential has been evaluated for the Tertiary strata in the northwestern margin of the Okinawa Trough on the basis of the pale-ontological, petrological, geochemical data from two wells (Nikkan 8-9 and JDZ 7-3), and geophysical data. Abundant marine micro-fossils such as foraminifera, calcareous nannofossils and dinocysts were yielded in the sedimentary section of the above wells. Abundant palynomorphs originated from nearby onshore are also encountered. Based on nannofossils, the bio-stratigraphic zones from NN12 (Amaurolithus tricorniculatus Zone) to NN19 (Pseudoemiliania lacunosa Zone) are established. The sedimentary sequences are divided by local unconformity into Lower and Upper Groups, the ages of which are Late Miocene and Pliocene to Pleistocene, respectively. According to the geochemical analysis results, it is hard to expect a source rock that can generate enough hydrocarbons necessary for migration in the drilled intervals. Even though the thermal maturity reached the oil generation zone in the penetrated intervals, the calculation by the program GENEX of BEICIP shows that the amount of the generated hydrocarbons is not enough for the migration. A good source rock may be expected in the depth deeper than 4300 m horizon. Analysis of over 3300 Line-km of multichannel seismic data integrated with 2 well data serves to detail the structural and stratigraphic evolution of the western margin of the Okinawa Trough, offshore southern part of Korea peninsula. The overall tectonic style is characterized by a series of half-Graben and tilted fault blocks bounded by listric faults. Tectonics of the rift phase have been established on the basis of structural and stratigraphic analyses of depositional sequences and their seismic expressions. The potential hydrocarbon traps associated with titled fault block, fault and roll-over structure exist. (author). 44 refs.

  15. Geological interpretation of volcanism and segmentation of the Mariana back-arc spreading center between 12.7°N and 18.3°N (United States)

    Anderson, Melissa O.; Chadwick, William W.; Hannington, Mark D.; Merle, Susan G.; Resing, Joseph A.; Baker, Edward T.; Butterfield, David A.; Walker, Sharon L.; Augustin, Nico


    The relationships between tectonic processes, magmatism, and hydrothermal venting along ˜600 km of the slow-spreading Mariana back-arc between 12.7°N and 18.3°N reveal a number of similarities and differences compared to slow-spreading mid-ocean ridges. Analysis of the volcanic geomorphology and structure highlights the complexity of the back-arc spreading center. Here, ridge segmentation is controlled by large-scale basement structures that appear to predate back-arc rifting. These structures also control the orientation of the chains of cross-arc volcanoes that characterize this region. Segment-scale faulting is oriented perpendicular to the spreading direction, allowing precise spreading directions to be determined. Four morphologically distinct segment types are identified: dominantly magmatic segments (Type I); magmatic segments currently undergoing tectonic extension (Type II); dominantly tectonic segments (Type III); and tectonic segments currently undergoing magmatic extension (Type IV). Variations in axial morphology (including eruption styles, neovolcanic eruption volumes, and faulting) reflect magma supply, which is locally enhanced by cross-arc volcanism associated with N-S compression along the 16.5°N and 17.0°N segments. In contrast, cross-arc seismicity is associated with N-S extension and increased faulting along the 14.5°N segment, with structures that are interpreted to be oceanic core complexes—the first with high-resolution bathymetry described in an active back-arc basin. Hydrothermal venting associated with recent magmatism has been discovered along all segment types.

  16. Crustal structure, heat flux and mass transfer within a continental back-arc basin: Taupo Volcanic Zone, New Zealand (United States)

    Stern, T. A.; Benson, A.; Greve, A.


    New seismic crustal structure data combined with gravity analysis provide constraints on mass and heat transfer processes in a continental back-arc basin. A recent high resolution seismic refraction, wide-angle experiment across the Taupo Volcanic Zone (TVZ), New Zealand, shows the lower crust is dominated by a ~ 10 km thick, lozenge-shaped body with seismic P-wave velocities of 6.8-7.1 km/s. Seismic reflections define the top and bottom surface of the body at depths of ~ 15 and 25 km, respectively. This "rift-pillow" we interpret as a mafic under-plate that will be in various stages of cooling. Heat fluxes from the TVZ at a rate of about 4GW, and the area is extending at a rate of 10-16 mm/y. To sustain 4GW in steady state for this extension rate requires the continuous intrusion, then cooling, of a molten -layer about 10-15 km thick. Thus the rift pillow is likely to be the main source of heat and rhyolite volcanism that dominates the surface processes within the TVZ. On the southeastern margin of the TVZ lies the active volcanic arc of andesite and dacitic volcanoes. Directly beneath the arc at a depth of ~ 32 km we detect a bright seismic reflection of limited lateral extent (~ 18 km wide). The relative amplitude and negative phase of this reflection suggests a melt body of unknown thickness. We relate this melt body to corner of an upwelling of the mantle asthenosphere, which feeds the primary melts into the active volcanic arc, and also may supply melt to rift pillow structure in the central TVZ. Gravity anomalies across the central North Island are dominated by a long wavelength signal related to subduction. We remove this regional effect with 2-way, third-order polynomial to leave a residual that is largely due to the rifting process in the back arc basin. The residual signal has a classical rift signature of a central low of -55 mgals and gravity highs of about +10 mgals over the flanks of the TVZ. Using the detailed seismic data as a constraint we account

  17. Three-phase tectonic evolution of the Andaman backarc basin

    Digital Repository Service at National Institute of Oceanography (India)

    KameshRaju, K.A.

    to explore possible hydrothermal activity in the region, provided new i n- sights into the tectonic evoluti on of the backarc basin. Rao et al. 3 documented the absence of recognizable magnetic anomalies and presence of a thick pile of sediments, over..., very smooth t o- po graphic plane on either side characterizes segment C. Si n- gle - channel seismic reflection data over this segment depict a thick pile of sediments, with expressions of e x- tensional tectonics. Seismic eviden ce indicates...

  18. Haemoragisk Rift Valley Fever

    DEFF Research Database (Denmark)

    Fabiansen, Christian; Thybo, Søren


    A case of fatal hemorrhagic Rift Valley fever during an epidemic in Kenya's North Eastern Province in January 2007 is described.......A case of fatal hemorrhagic Rift Valley fever during an epidemic in Kenya's North Eastern Province in January 2007 is described....

  19. Mineralogy and geological significance of hydrothermal deposits from the Okinawa Trough (United States)

    Zhang, Xia; Zhai, Shikui; Yu, Zenghui; Wang, Shujie; Cai, Zongwei


    The study of hydrothermal deposits in the Okinawa Trough can help us to uncover the hydrothermal mineralization characteristics in the back-arc basin during the early expanding stage. Mineralogy and geological significance of hydrothermal deposits from both the middle and southern trough are studied in this paper. First of all, using optical microscope to confirm the mineral compositions, characteristics of crystal shape, paragenetic relationship and minerals crystallization order. Then the minerals chemical composition were analyzed in virtue of electron microprobe. On these basis, the paragenetic sequence and the mineralization characteristics of the hydrothermal deposits were discussed. The results show that the hydrothermal deposit from the mid-Okinawa Trough belongs to Zn-Cu-rich type, consisting dominantly of sulfide minerals such as sphalerite, chalcopyrite, pyrite, etc. The minerals crystallization order is first generation pyrite(PyI)-sphalerite-chalcopyrite-galena-second generation pyrite(PyII)-amorphous silica. While the deposit from the southern Okinawa Trough is Ba-Zn-Pb-rich type mainly composing of barite, sphalerite, galena, etc. The minerals crystallization order is barite-pyrite-sphalerite-tetrahedrite-galena-chalcopyrite-amorphous silica. Hydrothermal fluid temperature in the mid-Okinawa Trough undergoes a process from high to low, which is high up to 350 °C in the early stage, but decreasing gradually with the evolution of hydrothermal fluid. On the contrary, the hydrothermal activity in the southern Okinawa Trough is low temperature dominated, but the mineralization environment is unstable and the fluid temperature changes drastically during the period of hydrothermal activity.

  20. Tracing subducted sediment inputs to the Ryukyu arc-Okinawa Trough system: Evidence from thallium isotopes (United States)

    Shu, Yunchao; Nielsen, Sune G.; Zeng, Zhigang; Shinjo, Ryuichi; Blusztajn, Jerzy; Wang, Xiaoyuan; Chen, Shuai


    Sediments are actively subducted in virtually every arc worldwide. However, quantifying their contributions to arc lavas and thereby establishing budgets of how sediments participate in slab-mantle interaction is challenging. In this contribution we use thallium (Tl) abundances and isotopic compositions of lavas from the Ryukyu arc (including south Kyushu) and its back-arc basin, Okinawa Trough, to investigate the influence of sediments from arc to back-arc. We also present extensive geochemical data for sediments and altered oceanic crust (AOC) outboard of the northern (DSDP Sites 296, 442B, 443 and 444) and central (DSDP Sites 294 and 295) part of the Ryukyu arc. The Tl isotopic compositions of sediments change systematically from lighter outboard of northern Ryukyu arc to heavier outboard of central Ryukyu arc. The feature reflects the dominance of terrigenous material and pelagic sedimentation outboard of the northern and central Ryukyu arc, respectively. Central and northern sections of Ryukyu arc and Okinawa Trough display larger range of Tl isotopic variation than southern section, which is consistent with more pelagic provenance for sediments outboard of central and northern Ryukyu arcs than that of expected sediments outboard of southern Ryukyu arc. Identical Tl, Sr, Nd and Pb isotope variations are found when comparing arc and back arc lavas, which indicates that sediments fluxes also account for the Tl isotopic variations in the Okinawa Trough lavas. Two-end-member mixing models of Tl with Pb, Sr and Nd isotopes require sediment inputs ofOkinawa Trough. Bulk mixing between mantle and sediment end members predict very similar sediment fluxes when using Tl, Sr, Nd and Pb isotopes, which indicates that fractionation of these elements must have happened after mixing between mantle and sediments. This conclusion is corroborated by model calculations of mixing between sediment melts with fractionated Sr/Nd ratios and mantle wedge, which show that no arc lava

  1. When Rifts Meet Cratons (United States)

    Chen, W. P.; Ning, J.


    The longevity of cratons and the evolution of rifts are two outstanding issues in continental dynamics. Intriguingly, there are several active cases where the two seemingly antithetical tectonic settings abut each other. In most instances, rifting is not accompanied by widespread destruction of adjacent cratons. In the case of the East African rift system (EARS), the most prominent active rift system in the world, its western branch clearly circumvents the Tanzania craton and continues southward along the narrow Malawi rift. Meanwhile, a broad zone of scattered seismicity associated with normal faulting extends westward for about 1,000 km, as accentuated by the recent earthquake of Mw 6.8 in Botswana. Along the eastern branch of the EARS, the well-defined Kenya rift terminates against the Tanzania craton as a diffuse zone of extension (the northern Tanzania divergence.) Yet, farther southward, a band of concentrated seismicity follows the trace of the Davie ridge off the east coast of Africa for another 1,300 km. Similarly, the Ordos plateau (the western portion of the north China craton, NCC), comparable in size to the Tanzania craton, is straddled by the active Yinchuan and Shanxi rifts on its western and eastern flanks, respectively. Along the edges of the Colorado plateau, the very broad Basin and Range province of extension and the narrow Rio Grande rift surround the stable plateau. Therefore, it seems that rifting is not an effective process to destabilize cratons en masse. Widespread, low-angle detachment faulting and the intrusion of Mesozoic granitic plutons characterize the eastern portion of the NCC, an often-cited example of a craton's demise. Here we propose that these features are the consequence, not the cause of the destruction of the NCC. The exact cause(s) of this destruction process remain enigmatic, as the spatial extent of this event apparently reaches as far north as Lake Baikal.

  2. Geochemical features of trace and rare earth elements of pumice in middle Okinawa Trough and its indication of magmatic process (United States)

    Zhai, Shikui; Guo, Kun; Zong, Tong; Yu, Zenghui; Wang, Shujie; Cai, Zongwei; Zhang, Xia


    Pumice, the most widely distributed volcanic rock in Okinawa Trough, is loose and porous. Since its formation, it has definitely suffered from the denudation of the sea to different degrees. In order to truly reveal the geochemical features of pumice, we choose the method of mineral separation. Firstly, the phenocryst is separated from glass. Then the phenocryst is divided into light and heavy mineral compositions. By ICP-MS (inductively coupled plasma mass spectrometry) analytical technology, the contents of trace and rare earth elements in the whole pumice, the glass and the heavy and light mineral compositions are determined respectively. By researching the elemental geochemical features, the magma dynamic processes are found. It shows that the initial magma for the pumice in Okinawa Trough came from the depleted mantle, from which the N-MORB (normal type of mid-ocean ridge basalt) is formed, homologous with the local basalts. But they are formed in different periods of magma crystal fractionation. Featured with sufficient crystal fractionation for pumice, it is found that the earlier crystallizing minerals are olivine, plagioclase and pyroxene. The pumice magma, formed from the depleted mantle, was mixed with additional subduction-related materials (components), and contaminated with the mass from upper crust when it rose up into the crust. As the Okinawa Trough is a back-arc basin in its early back-arc spreading stage, its magmatism has a series of its own unique characteristics, different from not only the mid-ocean ridge expansion, but also the mature back-arc basin.

  3. Improvement Design of Parabolic Trough (United States)

    Ihsan, S. I.; Safian, M. A. I. M.; Taufek, M. A. M.; Mohiuddin, A. K. M.


    The performance of parabolic trough solar collector (PTSC) has been evaluated using different heat transfer working fluids; namely water and SAE20 W50 engine oil. New and slightly improved PTSC was developed to run the experimental study. Under the meteorological conditions of Malaysia, authors found that PTSC can operate at a higher temperature than water collector but the performance efficiency of collector using engine oil is much lower than the water collector.

  4. Crustal structure of the NE Rockall Trough from wide-angle seismic data modeling (United States)

    KlingelhöFer, F.; Edwards, R. A.; Hobbs, R. W.; England, R. W.


    Two wide-angle seismic lines located in the northern Rockall Trough were acquired in May 2000. One line (line E) crosses the trough from the continental shelf off Lewis to normal oceanic crust west of Lousy Bank in NW-SE direction. The other line (line D) intersects with line E, crosses the Wyville-Thomson Ridge in a SW-NE direction and ends in the Faeroe-Shetland Basin. Sonobuoy data and expanding spread profiles acquired in the same area have been remodeled. Analysis of the seismic data using travel times and amplitudes reveals an up to 5 km thick sedimentary basin including an up to 1.5 km thick basaltic layer which is present in most of the trough. Further conclusions of this study are that the Rockall Trough is underlain by highly stretched continental crust of ˜13 km thickness. The crust thickens to ˜24 km beneath Lousy Bank, which is interpreted to be of continental nature. Beneath the Hebrides continental shelf a three-layer continental crust of 26 km is modeled. An up to 12 km thick high-velocity layer is observed underneath the ocean-continent boundary and is interpreted as magmatic underplating resulting from excess volcanism during rifting. No evidence for an underplate layer could be distinguished beneath the trough area. Modeling of the structure of the Wyville-Thomson Ridge revealed no existing igneous core of the ridge confirming existing theories, that it is a compressional structure.

  5. The influence of a subduction component on magmatism in the Okinawa Trough: Evidence from thorium and related trace element ratios (United States)

    Guo, Kun; Zeng, Zhi-Gang; Chen, Shuai; Zhang, Yu-Xiang; Qi, Hai-Yan; Ma, Yao


    The Okinawa Trough (OT) is a back-arc, initial continental marginal sea basin located behind the Ryukyu Arc-Trench System. Formation and evolution of the OT have been intimately related to subduction of the Philippine Sea Plate (PSP) since the late Miocene; thus, the magma source of the trough has been affected by subduction components, as in the case of other active back-arc basins, including the Lau Basin (LB) and Mariana Trough (MT). We review all the available geochemical data relating to basaltic lavas from the OT and the middle Ryukyu Arc (RA) in this paper in order to determine the influence of the subduction components on the formation of arc and back-arc magmas within this subduction system. The results of this study reveal that the abundances of Th in OT basalts (OTBs) are higher than that in LB (LBBs) and MT basalts (MTBs) due to the mixing of subducted sediments and EMI-like enriched materials. The geochemical characteristics of Th and other trace element ratios indicate that the OTB originated from a more enriched mantle source (compared to N-mid-ocean ridge basalt, N-MORB) and was augmented by subducted sediments. Data show that the magma sources of the south OT (SOT) and middle Ryukyu Arc (MRA) basalts were principally influenced by subducted aqueous fluids and bulk sediments, which were potentially added into magma sources by accretion and underplating. At the same time, the magma sources of the middle OT (MOT) and Kobi-syo and Sekibi-Syo (KBS+SBS) basalts were impacted by subducted aqueous fluids from both altered oceanic crust (AOC) and sediment. The variable geochemical characteristics of these basalts are due to different Wadati-Benioff depths and tectonic environments of formation, while the addition of subducted bulk sediment to SOT and MRA basalts may be due to accretion and underplating, and subsequent to form mélange formation, which would occur partial melting after aqueous fluids are added. The addition of AOC and sediment aqueous fluid

  6. Microbial Communities of the Okinawa Backarc Basin Subvent Biosphere (United States)

    Brandt, L. D.; House, C. H.


    IODP Expedition 331 to the Okinawa backarc basin provided an opportunity to study the microbial stratigraphy within the sediments surrounding a hydrothermal vent. The Okinawa backarc basin is a sedimented region of the seafloor located on a continental margin, and also hosts a hydrothermal network within the subsurface. Site C0014 within the Iheya North hydrothermal field is located 450 m east of the active vent and has a surface temperature of 5°C with no evidence of hydrothermal alteration within the top 10 m. Temperature increases with depth at an estimated rate of 3°C/m and transitions from non-hydrothermal margin sediments to a hydrothermally altered regime below 10 m. Site C0014 is a unique location to study changes in microbial communities with depth, as the hydrothermal system generates a thermally and geochemically restrictive subvent biosphere. In this study, we utilized deep 16S rRNA sequencing of DNA from IODP Expedition 331 Site C0014 sediment horizons in order to assess diversity throughout the sediment column as well as determine the potential limits of the biosphere. Analysis of the amplicon data suggests that Archaea represent a significant proportion of the indigenous community throughout the top 15 m of sediment, where Archaea then abruptly disappear. Furthermore, a deeper classification of Archaeal sequences suggests a transition from a mesophilic community to a potentially thermophilic one, where there is an increasingly stronger signal of Miscellaneous Crenarchaeotic Group (MCG) followed by Terrestrial Hot Spring Crenarchaeotic Group (THSCG). Additionally, there are several horizons in which methanotrophy is likely supported, indicated by peaks in anaerobic methanotrophic Archaea. The cessation of Archaea as well as Chloroflexi, a common marine subsurface bacterial phylum, at approximately 15 meters below seafloor (mbsf) is suggestive of a potential boundary within Site C0014 in which the environmental conditions have become too restrictive

  7. Advanced photovoltaic-trough development

    Energy Technology Data Exchange (ETDEWEB)

    Spencer, R.; Yasuda, K.; Merson, B.


    The scope of the work on photvoltaic troughs includes analytical studies, hardware development, and component testing. Various aspects of the system have been optimized and improvements have been realized, particularly in the receiver and reflecting surface designs. An empirical system performance model has been developed that closely agrees with measured system performance. This in-depth study of single-axis reflecting linear focus photovoltaic concentrators will be very beneficial in the development of improved models for similar systems as well as other phtovoltaic concentrator designs.

  8. Solar photovoltaic reflective trough collection structure (United States)

    Anderson, Benjamin J.; Sweatt, William C.; Okandan, Murat; Nielson, Gregory N.


    A photovoltaic (PV) solar concentration structure having at least two troughs encapsulated in a rectangular parallelepiped optical plastic structure, with the troughs filled with an optical plastic material, the troughs each having a reflective internal surface and approximately parabolic geometry, and the troughs each including photovoltaic cells situated so that light impinging on the optical plastic material will be concentrated onto the photovoltaic cells. Multiple structures can be connected to provide a solar photovoltaic collection system that provides portable, efficient, low-cost electrical power.

  9. Rift Valley fever vaccines


    Ikegami, Tetsuro; Makino, Shinji


    Rift Valley fever virus (RVFV), which belongs to the genus Phlebovirus, family Bunyaviridae, is a negative-stranded RNA virus carrying a tripartite RNA genome. RVFV is transmitted by mosquitoes and causes large outbreaks among ruminants and humans in Africa and the Arabian Peninsula. Human patients develop an acute febrile illness, followed by a fatal hemorrhagic fever, encephalitis or ocular diseases, whereas ruminants experience abortions during outbreak. Effective vaccination of both human...

  10. Active spreading processes at ultraslow mid-ocean ridges: Unusual seismicity at the amagmatic Lena Trough, Arctic Ocean (United States)

    Läderach, Christine; Schlindwein, Vera; Riedel, Carsten


    Lena Trough is the southern continuation of the ultraslow-spreading Gakkel Ridge and with its position in the Fram Strait between Greenland and Spitsbergen it is the only deep-sea gateway to the Arctic Ocean. DFG funded Emmy Noether group 'Mid-Ocean Volcanoes and Earthquakes' located at Alfred Wegener Institute for Polar and Marine Research is focusing on the seismicity of ultraslow spreading ridges and is especially interested in Lena Trough as an ultraslow spreading ridge in a developing stage. The southern Lena Trough shows similarities to the northern Red Sea spreading centre which is in the early stage of development from continental to oceanic rift. Cochran postulated in 2003 that the continental crust within the water-covered Red Sea is less than 10 km thick and that the northern part of the Red Sea rift spreads ultraslow as well. At Lena Trough an actively spreading mid-ocean ridge with a narrow rift valley has already developed but continental crust lies within a short distance. Lena Trough is extending from 83°N/5°W to 80.3°N/2°W where it passes into the transform fault of the Spitsbergen Fracture Zone. The geometry of Lena Trough and certain asymmetric structures in the rift valley indicate oblique spreading and mostly tectonic and amagmatic rifting. There are several topographic highs west of the ridge axis which could be bounded by deep faults with normal faulting or detachment character exposing mantle material at the surface. Seismicity at the Lena Trough shows apparently the same asymmetric character with epicenters of teleseismically recorded earthquakes concentrating predominantly west of the ridge axis. The most frequent focal mechanism of the earthquakes within the rift valley is normal faulting, whereas strike-slip faults occur in the Spitsbergen Fracture Zone. We relocalized teleseismic earthquakes recorded from May 1973 to April 2009 in the region using a refined localization algorithm and could confirm systematic asymmetry in the

  11. Monitoring interseismic activity on the Ilan Plain (NE Taiwan) using Small Baseline PS-InSAR, GPS and leveling measurements: partitioning from arc-continent collision and backarc extension (United States)

    Su, Zhe; Hu, Jyr-Ching; Wang, Erchie; Li, Yongsheng; Yang, Yinghui; Wang, Pei-Ling


    The Ilan Plain, located in Northeast Taiwan, represents a transition zone between oblique collision (between the Luzon Arc and the Eurasian Plate) and backarc extension (the Okinawa Trough). The mechanism for this abrupt transition from arc-continent collision to backarc extension remains uncertain. We used Global Positioning System (GPS), leveling and multi-interferogram Small Baseline Persistent Scatterer Interferometry (SBAS-PSI) data to monitor the interseismic activity in the basin. A common reference site was selected for the data sets. The horizontal component of GPS and the vertical measurements of the leveling data were converted to line-of-sight (LOS) data and compared with the SBAS-PSI data. The comparison shows that the entire Ilan Plain is undergoing rapid subsidence at a maximum rate of -11 ± 2 mm yr-1 in the LOS direction. We speculate that vertical deformation and anthropogenic activity may play important roles in this deformation. We also performed a joint inversion modeling that combined both the DInSAR and strong motion data to constrain the source model of the 2005 Ilan earthquake. The best-fitting model predicts that the Sansing fault caused the 2005 Ilan earthquake. The observed transtensional deformation is dominated by the normal faulting with a minor left-lateral strike-slip motion. We compared our SBAS-PSI results with the short-term (2005-2009) groundwater level changes. The results indicate that although pumping-induced surface subsidence cannot be excluded, tectonic deformation, including rapid southward movement of the Ryukyu arc and backarc extension of the Okinawa Trough, characterizes the opening of the Ilan Plain. Furthermore, a series of normal and left-lateral strike-slip transtensional faults, including the Choshui and Sansing faults, form a bookshelf-like structure that accommodates the extension of the plain. Although situated in a region of complex structural interactions, the Ilan Plain is primarily controlled by extension

  12. Plate Speed-up and Deceleration during Continental Rifting: Insights from Global 2D Mantle Convection Models. (United States)

    Brune, S.; Ulvrova, M.; Williams, S.


    The surface of the Earth is divided into a jigsaw of tectonic plates, some carrrying continents that disperse and aggregate through time, forming transient supercontinents like Pangea and Rodinia. Here, we study continental rifting using large-scale numerical simulations with self-consistent evolution of plate boundaries, where continental break-up emerges spontaneously due to slab pull, basal drag and trench suction forces.We use the StagYY convection code employing a visco-plastic rheology in a spherical annulus geometry. We consider an incompressible mantle under the Boussinesq approximation that is basally and internally heated.We show that continental separation follows a characteristic evolution with three distinctive phases: (1) A pre-rift phase that typically lasts for several hundreds of millions of years with tectonic quiescence in the suture and extensional stresses that are slowly building up. (2) A rift phase that further divides into a slow rift period of several tens of millions of years where stresses continuously increase followed by a rift acceleration period featuring an abrupt stress drop within several millions of years. The speed-up takes place before lithospheric break-up and therefore affects the structural architecture of the rifted margins. (3) The drifting phase with initially high divergence rates persists over tens of millions of years until the system adjust to new conditions and the spreading typically slows down.By illustrating the geodynamic connection between subduction dynamics and rift evolution, our results allow new interpretations of plate tectonic reconstructions. Rift acceleration within the second phase of rifting is compensated by enhanced convergence rates at subduction zones. This model outcome predicts enhanced subduction velocities, e.g. between North America and the Farallon plate during Central Atlantic rifting 200 My ago, or closure of potential back-arc basins such as in the proto-Andean ranges of South America

  13. Mid-Continent Rift: Rift, LIP, or Both? (United States)

    Stein, C. A.; Stein, S. A.; Kley, J.; Hindle, D.; Keller, G. R., Jr.


    North America's Midcontinent Rift (MCR) is traditionally considered to have formed by midplate extension and volcanism ~1.1 Ga that ended due to compression from the Grenville orogeny, the ~1.3 - ~0.98 Ga assembly of Amazonia (Precambrian northeast South America), Laurentia (Precambrian North America), and other continents into the supercontinent of Rodinia. We find that a more plausible scenario is that it formed as part of the rifting of Amazonia from Laurentia and became inactive once seafloor spreading was established. The MCR has aspects both of a continental rift - a segmented linear depression filled with sedimentary and igneous rocks - and a large igneous province (LIP). Comparison of areas and volumes for a range of continental LIPS shows that the MCR volcanic rocks are significantly thicker than the others. The MCR flood basalts have steeper dips and thicker overlying sediments than other continental flood basalts, and were deposited in a subsiding basin after most extension ended, indicating that they are better viewed as post-rift than syn-rift rocks. Hence we view the MCR as a LIP deposited in crust weakened by rifting, and thus first a rift and then a LIP.

  14. Rare gases in lavas from the ultraslow spreading Lena Trough, Arctic Ocean (United States)

    Nauret, F.; Moreira, M.; Snow, J. E.


    Mid-ocean ridge basalts (MORB) from the Arctic Ocean have been much less studied than those from the Indian, Atlantic, and Pacific due to the difficulty of access related to ice cover. In 2001 and 2004 the Arctic ridges (Gakkel Ridge and Lena Trough) were intensively sampled. In this study we present the first helium, neon, and argon concentrations and isotopic ratios in a suite of samples from the ultraslow spreading Lena Trough (˜0.75 cm/yr effective full rate). Central Lena Trough (CLT) lavas display 4He/3He between 89,710 and 97,530 (R/Ra between 7.4 and 8.1), similar to the mean MORB ratio of 90,000 ± 10,000 (R/Ra = 8 ± 1). In a three neon isotope diagram, the samples fall on the MORB line, without showing any excess of nucleogenic 21Ne. The 40Ar/36Ar ratios vary from 349 to 6964. CLT samples have a typical MORB He and Ne isotopic composition. Rare gases do not indicate any mantle heterogeneities or contribution of subcontinental lithospheric mantle, although this has been suggested previously on the basis of the Sr-Nd and Pb isotopic systems. Based on noble gas systematics, a DUPAL-like anomaly is not observed in the Arctic Ocean. We propose two possible models which reconcile the rare gases with these previous studies. The first is that the Lena Trough mantle has a marble cake structure with small-scale heterogeneities (<1 km), allowing rapid diffusion and homogenization of rare gases compared to elements such as Sr, Nd, and Pb. The second model proposes that the recycled component identified by other isotopic systems was fully degassed at a recent date. It would therefore have a negligible mass budget of rare gases compared to other isotopic systems. This would suggest that the mantle enrichment beneath Lena Trough was generated by rift-forming processes and not by recycling.

  15. Insights into Magmatic-Hydrothermal Processes in the Newly-Discovered Seafloor Massive Sulfide Deposits of the New Hebrides Arc-Backarc System, SW Pacific (United States)

    Anderson, M. O.; Hannington, M. D.; Haase, K. M.; Schwarz-Schampera, U.; McConachy, T.


    Magmatic processes leading to hydrothermal venting and the controls on the distribution of vents at two locations along the New Hebrides arc-backarc system are being revealed by new bathymetric data and geological maps interpreted from remotely operated vehicle dive videos. The Nifonea volcanic complex spans the width of the Vate Trough, a nascent backarc basin located ~50 km to the east of the New Hebrides arc. Hydrothermal activity occurs in the caldera at the summit of Nifonea at a water depth of ~1875 m. A NW-trending eruptive fissure cuts through the center of the caldera near the area of active venting. This fissure is associated with isolated pillow mounds and collapse features along its length, and is the source of extensive jumbled sheet flows that cover the caldera floor. Low-temperature, diffuse venting is widespread; active black smoker chimneys are localized on and around the pillow mounds, in clusters of ~20 x 20 m and growing directly on the flows. The impression is that the hydrothermal venting is young and not yet "organized," in large part because of the eruptive style dominated by collapsed sheet flows. The Tinakula seafloor massive sulfide (SMS) deposit is located in a much shallower (~1150 m), extended arc-backarc setting at the northern end of the New Hebrides arc, ~25 km from the arc front. Chimney fields occur along two corridors, and are associated with volcanic mounds and calderas. The eastern field occupies an area of ~1200 x 200 m, and the western sulfide field is ~500 x 100 m in size. The density of chimneys appears to be largely controlled by permeability of the volcanic facies, which are dominated by autoclastic and hyaloclastic breccias. Tinakula has been commercially drilled, offering insight into the third dimension of the system. This is one of the first studies of SMS deposits in the New Hebrides arc and fills a 'knowledge gap' in the occurrence of seafloor hydrothermal systems in arc-related settings of the Melanesian

  16. The life cycle of continental rifts: Numerical models of plate tectonics and mantle convection. (United States)

    Ulvrova, Martina; Brune, Sascha; Williams, Simon


    Plate tectonic processes and mantle convection form a self-organized system whose surface expression is characterized by repeated Wilson cycles. Conventional numerical models often capture only specific aspects of plate-mantle interaction, due to imposed lateral boundary conditions or simplified rheologies. Here we study continental rift evolution using a 2D spherical annulus geometry that does not require lateral boundary conditions. Instead, continental extension is driven self-consistently by slab pull, basal drag and trench suction forces. We use the numerical code StagYY to solve equations of conservation of mass, momentum and energy and transport of material properties. This code is capable of computing mantle convection with self-consistently generated Earth-like plate tectonics using a pseudo-plastic rheology. Our models involve an incompressible mantle under the Boussinesq approximation with internal heat sources and basal heating. Due to the 2D setup, our models allow for a comparably high resolution of 10 km at the mantle surface and 15 km at the core mantle boundary. Viscosity variations range over 7 orders of magnitude. We find that the causes for rift initiation are often related to subduction dynamics. Some rifts initiate due to increasing slab pull, others because of developing trench suction force, for instance by closure of an intra-oceanic back-arc basin. In agreement with natural settings, our models reproduce rifts forming in both young and old collision zones. Our experiments show that rift dynamics follow a characteristic evolution, which is independent of the specific setting: (1) continental rifts initiate during tens of million of years at low extension rates (few millimetres per year) (2) the extension velocity increases during less than 10 million years up to several tens of millimetres per year. This speed-up takes place before lithospheric break-up and affects the structural architecture of rifted margins. (3) high divergence rates

  17. Evidence for a Slow Spreading Ocean Ridge in the Southern Rockall Trough From Satellite Gravity Inversion and Seismic Data (United States)

    Chappell, A. R.; Kusznir, N. J.


    The southern Rockall Trough, located to the west of Ireland and the UK in the NE Atlantic, has been interpreted as both a Mesozoic intra-continental rift basin (O'Reilly 1995) and a mid Cretaceous ocean basin (e.g. Roberts et al. 1980). The continental rift hypothesis (O'Reilly 1995) requires differential stretching of the upper and lower crust and syn-tectonic cooling to mechanically explain the formation of 5-6km thick continental crust and allow serpentinisation of the upper mantle. In this model serpentinisation of the upper mantle is needed to explain low upper mantle seismic velocities. The serpentinisation has also been required to fit gravity modelling of seismic transects to the observed gravity (e.g. Shannon 1999). We use satellite gravity inversion to map Moho depth and crustal thickness (Chappell & Kusznir 2005) for the Rockall Trough area. The satellite gravity inversion is a 3D spectral method incorporating a correction for the residual lithosphere thermal gravity anomaly present in continental rifted margin lithosphere and oceanic lithosphere. The gravity inversion predicts Moho depth and geometry in agreement with wide-angle seismic estimates without invoking the extensive serpentinisation of the upper-mantle needed by the intra-continental rift hypothesis (O'Reilly 1995). Recent seismic modelling (Morewood 2005) suggests that the thin crust in the southern Rockall Trough does not have the seismic layering associated with oceanic crust formed at intermediate or fast spreading rates. Also, wide-angle seismic data shows low upper mantle seismic velocities are present and spatially associated with the thin 5-6km crust (Shannon 1999). These observations are consistent with models and observations of oceanic crust formed at slow spreading ocean ridges (Cannat 1996, Jokat 2003). Such models are based on a proportion of melt being retained in the upper mantle, producing low seismic velocities, and a reduced supply of melt to the crust, resulting in thin

  18. [Anatomical studying of the tear trough area]. (United States)

    Yang, Ningze; Qiu, Wei; Wang, Zhijun; Su, Xiaowei; Jia, Huafeng; Shi, Heng


    To explore the mechanism of the aging deformity of tear trough through the anatomic study of the tear trough region. 13 adult cadaveric heads (26 sides), including 9 male heads (18 sides) and 4 female heads (8 sides), aged 22-78 years old, were used. Anatomic study was performed around the orbital, especially tear trough region, with microsurgery instrument under microscope( x 10 times). The lower orbicularis retaining ligament was dissected and exposed. The anatomic location was recorded and photographed. (1) The anatomic layers of the tear trough region contains skin, subcutaneous tissue, orbicularis oculi muscle, periosteal membrane. There is no subcutaneous fat above the tear trough, while it exists below the tear trough, called malar fat pad. (2) There is a natural boundary between the septal and the orbital portions of the orbicularis oculi muscle of lower eyelid at surface of the orbital bone. The natural boundary, projected on the body surface corresponds to tear trough. The width of boundary is (2.06 +/- 0.15) mm on the vertical line through inner canthus and (3.25 +/- 0.12) mm on the vertical line through the lateral margin of the ala. The septal portion and the orbital portion of the orbicularis oculi muscle began to merge in (16.56 +/- 0.51) mm to inner canthus. (3) There is ligament attachment in the medial, upper and lower orbital and no ligament attachment in the lateral orbital. Orbicularis retaining ligament of lower eyelid is divided into two layers. (4) The medial of the upper layer of the orbicularis retaining ligament in lower eyelid originates from orbital margin and from preorbital walls laterally in (16.10 +/- 0.43) mm to the medial of lateral orbital margin, through orbicularis oculi muscle and ends at the skin. The lower layer of the orbicularis retaining ligament of lower eyelid originates from preorbital walls through orbicularis oculi muscle and its superficial fat, then ends at the skin. The length of tear trough is (16.56 +/- 0.51) mm

  19. The effect of deformation after backarc spreading between the rear arc and current volcanic front in Shikoku Basin obtained by seismic reflection survey (United States)

    Yamashita, M.; Takahashi, N.; Nakanishi, A.; Kodaira, S.; Tamura, Y.


    Detailed crustal structure information of a back-arc basin must be obtained to elucidate the mechanism of its opening. Especially, the Shikoku Basin, which occupies the northern part of the Philippine Sea Plate between the Kyushu-Palau Ridge and the Izu-Bonin (Ogasawara) Arc, is an important area to understand the evolution of the back-arc basins as a part of the growth process of the Philippine Sea. Especially, the crustal structure oft the east side of Shikoku Basin is complicated by colliding to the Izu Peninsula Japan Agency for Marine-Earth Science and Technology has been carried out many multi-channel seismic reflection surveys since 2004 in Izu-Bonin region. Kodaira et al. (2008) reported the results of a refraction seismic survey along a north-south profile within paleoarc in the rear arc (i.e., the Nishi-shichito ridge) about 150 km west of current volcanic front. According to their results, the variation relationship of crustal thickness between the rear arc and volcanic front is suggested the evidence of rifting from current volcanic arc. There is the en-echelon arrangement is located in the eastern side of Shikoku Basin from current arc to rear arc, and it is known to activate after ceased spreading at 15 Ma (Okino et al., 1994) of Shikoku Basin by geologic sampling of Ishizuka et al. (2003). Our MCS results are also recognized the recent lateral fault zone is located in east side of Shikoku Basin. We carried out high density grid multi-channel seismic reflection (MCS) survey using tuned airgun in order to obtain the relationship between the lateral faults and en-echelon arrangement in KR08-04 cruise. We identified the deformation of sediments in Shikoku Basin after activity of Kanbun seamount at 8 Ma in MCS profile. It is estimated to activate a part of the eastern side of Shikoku Basin after construction of en-echelon arrangement and termination of Shikoku Basin spreading. Based on analyses of magnetic and gravity anomalies, Yamazaki and Yuasa (1998

  20. Thermal and chemical variations of the Nigerian Benue trough lead-zinc-barite-fluorite deposits (United States)

    Ogundipe, Ibukun Emmanuel


    The Benue trough is an intra-continental rift initiated in the Cretaceous during the opening of the South Atlantic Ocean. Lead-zinc-barite-fluorite mineralization occurs along the 600 km axis of the trough in three discrete sub-basins which coincide with the lower, middle and upper mineral districts of the Benue Valley. Lithologically these sub-basins are dominated by black carbonaceous shale in the Lower Benue, platform carbonates in the Middle Benue and sandstones in the Upper Benue. Micro-thermometric analysis of fluid inclusions in sphalerite, fluorite, barite and quartz have shown that each mineral district has its own unique thermal and chemical imprint. For example, the temperature can be bracketed between 109 °C and 160 °C for lower Benue, 89 °C-144 °C for the Middle Benue and 176 °C-254 °C for the Upper Benue. Chemical differentiation also exists between each mineral district with the Lower Benue having 22 wt % equivalent NaCl while the Middle and Upper Benue have 18 and 16 wt % equivalent NaCl respectively. This study shows that inter-district thermal and chemical variations exist between the ore-stage sulfide and post-sulfide gangue minerals of the entire Benue Valley. Similarly, intra-district thermal and chemical variations have also been observed among all the paragenetic minerals of each district. The thermal variations may be as a result of variations in the geothermal gradient accompanying continental rifting from one district to the other. The variations in the chemistry between the Lower Benue and the Upper Benue paragenic minerals may be as a result of the distinct lithological differences across the Benue Trough.

  1. The Salton Seismic Imaging Project: Investigating Earthquake Hazards in the Salton Trough, Southern California (United States)

    Fuis, G. S.; Goldman, M.; Sickler, R. R.; Catchings, R. D.; Rymer, M. J.; Rose, E. J.; Murphy, J. M.; Butcher, L. A.; Cotton, J. A.; Criley, C. J.; Croker, D. S.; Emmons, I.; Ferguson, A. J.; Gardner, M. A.; Jensen, E. G.; McClearn, R.; Loughran, C. L.; Slayday-Criley, C. J.; Svitek, J. F.; Hole, J. A.; Stock, J. M.; Skinner, S. M.; Driscoll, N. W.; Harding, A. J.; Babcock, J. M.; Kent, G.; Kell, A. M.; Harder, S. H.


    The Salton Seismic Imaging Project (SSIP) is a collaborative effort between academia and the U.S. Geological Survey to provide detailed, subsurface 3-D images of the Salton Trough of southern California and northern Mexico. From both active- and passive-source seismic data that were acquired both onshore and offshore (Salton Sea), the resulting images will provide insights into earthquake hazards, rift processes, and rift-transform interaction at the southern end of the San Andreas Fault system. The southernmost San Andreas Fault (SAF) is considered to be at high-risk of producing a large damaging earthquake, yet the structure of this and other regional faults and that of adjacent sedimentary basins is not currently well understood. Seismic data were acquired from 2 to 18 March 2011. One hundred and twenty-six borehole explosions (10-1400 kg yield) were detonated along seven profiles in the Salton Trough region, extending from area of Palm Springs, California, to the southwestern tip of Arizona. Airguns (1500 and 3500 cc) were fired along two profiles in the Salton Sea and at points in a 2-D array in the southern Salton Sea. Approximately 2800 seismometers were deployed at over 4200 locations throughout the Salton Trough region, and 48 ocean-bottom seismometers were deployed at 78 locations beneath the Salton Sea. Many of the onshore explosions were energetic enough to be recorded and located by the Southern California Seismograph Network. The geometry of the SAF has important implications for energy radiation in the next major rupture. Prior potential field, seismicity, and InSAR data indicate that the SAF may dip moderately to the northeast from the Salton Sea to Cajon Pass in the Transverse Ranges. Much of SSIP was designed to test models of this geometry.

  2. The Rockall Trough, NE Atlantic: An Extinct Young Ocean Basin or a Failed Breakup Basin? (United States)

    Roberts, Alan; Kusznir, Nick; Alvey, Andy


    We investigate the crustal structure and composition of the Rockall Trough which is located in the NE Atlantic to the west of Ireland and the UK. The Rockall Trough is a large extensional basin formed in the Early Cretaceous and has dimensions of approximately 250 km in width and 1000 km in length. It is one of several basins formed during the complex Mesozoic northward propagation of rifting, continental breakup and sea-floor spreading initiation of the North Atlantic; other adjacent basins formed at this time include the Porcupine Trough to its east and the East and West Orphan Basins on the Canadian conjugate margin. To investigate the crustal structure of the Rockall Trough we have used three independent analyses of available 2D and 3D data: 1. 3D gravity inversion, using public-domain gravity and sediment-thickness information, has produced maps of (i) depth to Moho, (ii) crustal thickness (figure 1) and (iii) stretching/thinning factor across both margins. 2. Gravity inversion as above, but using public-domain gravity data combined with new proprietary 2D sediment-thickness information, has produced a series of cross-sections which show (i) depth to Moho, (ii) crustal thickness and (iii) stretching/thinning factor across both margins 3. Geodynamic modelling, comprising 2D flexural backstripping and forward modelling, has been used to produce (i) estimates of stretching/thinning factor, (ii) whole-crustal cross-sections and (iii) predictions of palaeobathymetry through time along a series of project-specific transects. Our analysis of the Rockall Trough shows a rapid shallowing of crustal basement thicknesses on the flanks of the basin with central values of crustal thickness typically 8-10 km consistent with previously published seismic estimates. An important question is whether this thin crust is hyper-extended continental crust or proto-oceanic crust. Locally isolated patches of crustal thicknesses as low as 3km are observed which are consistent with the

  3. Core Description and a Preliminarily Sedimentology Study of Site 1202D, Leg 195, in the Southern Okinawa Trough

    Directory of Open Access Journals (Sweden)

    Chi-Yue Huang


    Full Text Available ODP Site 1202 of Leg 195 was designed primarily for a high-resolution study of the paleoceanography of the Kuroshio Current in the southern Okinawa Trough off NE Taiwan. Four holes were drilled in which Hole 1202D is described in detail in this study for an assessment of core quality for paleoceanography study and understanding of sedimentological features, especially turbidite sedimentation and the sediment provenances during the Late Quaternary in the southern Okinawa Trough. Pelagic mud with insignificant silt or sand layers is observed from the core top down to 133 m (mbsf; Marine Isotope Stages 1-3, but the silt-sand layer ratio (SLR: total thickness of silt and sand layers / 1.5 m of core increases gradually from a value of 50 % between 223 and 279 m, followed by decreases to values 250 _ Slate fragments are commonly found in fine-grained turbidite dominant intervals (160 - 280 m, while mica flakes can be observed in the muds throughout the core. The major detrital components were derived primarily from the Miocene slate belt of the pre-collision accretionary prism of the Central Range in northern Taiwan. The occurrence of volcanics could represent submarine volcanic activity in the active-opening Okinawa Trough back-arc basin off NE Taiwan. Shallow-marine fossils including benthic foraminifers, echinoids, bryozoans and mollusks are also found in the fine-grained turbidite dominant intervals. These fossil assemblages could have been deposited in the shallow shelf and then transported to the depositional site along with voluminous terrigenous materials derived from Taiwan, via submarine channels or by slope failures due to frequent earthquakes induced by plate convergence/collision and extension in the southwestern Okinawa Trough off NE Taiwan. It is concluded that the top 133 m of the core is better suited for paleoceanographic reconstruction.

  4. Geophysical imaging of buried volcanic structures within a continental back-arc basin

    DEFF Research Database (Denmark)

    Stratford, Wanda Rose; Stern, T.A.


    Hidden beneath the ~2 km thick low-velocity volcaniclastics on the western margin of the Central Volcanic Region, North Island, New Zealand, are two structures that represent the early history of volcanic activity in a continental back-arc. These ~20×20 km structures, at Tokoroa and Mangakino, fo...

  5. Analogue modeling of arc and backarc deformation in the New Hebrides arc and North Fiji Basin

    NARCIS (Netherlands)

    Schellart, W. P.; Lister, G. S.; Jessell, M. W.

    In most backarc basins, extension is perpendicular to the arc. Thus individual spreading ridges extend approximately parallel to the arc. In the North Fiji Basin, however, several ancient and active spreading ridges strike 70°-90° to the New Hebrides arc. These high-angle spreading ridges relocated

  6. From stretching to mantle exhumation in a triangular backarc basin (Vavilov basin, Tyrrhenian Sea, Western Mediterranean)

    NARCIS (Netherlands)

    Milia, A.; Torrente, M. M.; Tesauro, M.


    In this study, we describe the mode of extension of the Vavilov, a fossil backarc basin, triangle-shaped (approximately 240. km-wide and 200. km-long), located between Sardinia margin to the west and Campania margin to the east. We combine the analysis of recent geophysical and geological data, in

  7. Seismological Imaging of Melt Production Regions Beneath the Backarc Spreading Center and Volcanic Arc, Mariana Islands (United States)

    Wiens, Douglas; Pozgay, Sara; Barklage, Mitchell; Pyle, Moira; Shiobara, Hajime; Sugioka, Hiroko


    We image the seismic velocity and attenuation structure of the mantle melt production regions associated with the Mariana Backarc Spreading Center and Mariana Volcanic Arc using data from the Mariana Subduction Factory Imaging Experiment. The passive component of this experiment consisted of 20 broadband seismographs deployed on the island chain and 58 ocean-bottom seismographs from June, 2003 until April, 2004. We obtained the 3D P and S wave velocity structure of the Mariana mantle wedge from a tomographic inversion of body wave arrivals from local earthquakes as well as P and S arrival times from large teleseismic earthquakes determined by multi-channel cross correlation. We also determine the 2-D attenuation structure of the mantle wedge using attenuation tomography based on local and regional earthquake spectra, and a broader-scale, lower resolution 3-D shear velocity structure from inversion of Rayleigh wave phase velocities using a two plane wave array analysis approach. We observe low velocity, high attenuation anomalies in the upper mantle beneath both the arc and backarc spreading center. These anomalies are separated by a higher velocity, lower attenuation region at shallow depths (< 80 km), implying distinct magma production regions for the arc and backarc in the uppermost mantle. The largest magnitude anomaly beneath the backarc spreading center is found at shallower depth (25-50 km) compared to the arc (50-100 km), consistent with melting depths estimated from the geochemistry of arc and backarc basalts (K. Kelley, pers. communication). The velocity and attenuation signature of the backarc spreading center is narrower than the corresponding anomaly found beneath the East Pacific Rise by the MELT experiment, perhaps implying a component of focused upwelling beneath the spreading center. The strong velocity and attenuation anomaly beneath the spreading center contrasts strongly with preliminary MT inversion results showing no conductivity anomaly in the

  8. The Opening of the Tyrrhenian Back-arc Basin and the Formation of New Oceanic Crust (United States)

    Magni, V.


    The opening of the Tyrrhenian basin in the Central Mediterranean is a well-documented example of back-arc extension, which is characterized by short-lived episodes of fast spreading. We present results from three-dimensional numerical models of laterally varying subduction to explain the mechanism of back-arc basin opening and its episodic spreading behaviour. Moreover, we explore the consequences of this alternation between fast and slow episodes of extension on the production of new oceanic crust in the back-arc basin. Our results show that the presence of continental plates (i.e. Africa and Adria) nearby the oceanic subduction of the Ionian slab produces localised deformation within the overriding plate and it is, thus, crucial for the opening of the back-arc basin. During this process the trench retreating velocity dramatically increases for a few million of years. This is associated with an episode of intense melt production of the asthenosphere rising at the back-arc basin. Afterwards, the slab breaks off forming slab windows at the ocean/continent boundaries and causing a second pulse of fast extension. This is in very good agreement with what is observed in the Central Mediterranean, where two slab window formed: one in northern Africa around 12-10 Ma, and propagates laterally westward beneath Sicily until the Middle Pleistocene, and a second one beneath the Central Apennines in the Middle Pleistocene. Finally, these three-dimensional models are used to track the mantle flow throughout the model evolution and the source of the mantle melting at the spreading centre.

  9. The Triassic detrital units in the East-Mediterranean realm: back-arcs opening and Cimmerian collision (United States)

    Moix, P.; Stampfli, G. M.


    Late Permian and principally Triassic detrital units play an important role in deciphering the geodynamic evolution of the East-Mediterranean area. Some of these units are related to diffuse rifting along the southern margin of Eurasia, whereas others reflect the Cimmerian collision between Gondwana and post-Variscan Eurasia-derived terranes. Several differences within these Triassic detrital units should be noted: they have a different timing of deposition, they are found in autochthonous, para-autochthonous or allochthonous position, and they have different types of substratum and cover series. In addition, the nature of the recycled material is also decisive to make the difference between orogen and rift-related sediments. The investigated sandstones, breccias and conglomerates usually range in age from the Anisian (Scythian?) to the Late Triassic (sometimes Liassic) and are especially well-developed during the Carnian-Norian interval. From the Late Permian to the Late Triassic, the Variscan Cordillera was affected by orogen-scale collapse, leading to widespread rifting, related to slab roll-back of the northward subducting Palaeotethys. This provoked the opening of a series of back-arc basins (i.e. Meliata-Hallstatt, Maliac and Pindos oceans). At the same time, this subduction detached by slab-pull a series of Cimmerian terranes along the northern border of Gondwana and opened the Neotethys to the south of them. The final closure of the Palaeotethys (Cimmerian Event) between the Taurus and the Anatolian terranes produced at places large flysch-molasse deposits often sealed by Jurassic platforms. In southern Europe, the diffuse rifting along the southern margin of Eurasia is recognized in the Carnic Alps. The Carboniferous fore-arc flysch basin (Hochwipfel and Dimon fms) is sealed by a shallow-water sequence of Pennsylvanian-Early Permian age (Pramolo, Rattendorf and Trogkofel groups). The Late Permian rifting is marked by the deposition of the Val Gardena

  10. Geochemical and Sr-Nd-Pb-Li isotopic characteristics of volcanic rocks from the Okinawa Trough: Implications for the influence of subduction components and the contamination of crustal materials (United States)

    Guo, Kun; Zhai, Shikui; Yu, Zenghui; Wang, Shujie; Zhang, Xia; Wang, Xiaoyuan


    The Okinawa Trough is an infant back-arc basin developed along the Ryukyu arc. This paper provides new major and trace element and Sr-Nd-Pb-Li isotope data of volcanic rocks in the Okinawa Trough and combines the published geochemical data to discuss the composition of magma source, the influence of subduction component, and the contamination of crustal materials, and calculate the contribution between subduction sediment and altered oceanic crust in the subduction component. The results showed that there are 97% DM and 3% EMI component in the mantle source in middle trough (MS), which have been influenced by subduction sediment. The Li-Nd isotopes indicate that the contribution of subduction sediment and altered oceanic crust in subduction component are 4 and 96%, respectively. The intermediate-acidic rocks suffer from contamination of continental crust material in shallow magma chamber during fractional crystallization. The acidic rocks in south trough have experienced more contamination of crustal material than those from the middle and north trough segments.

  11. Aerial mulching techniques-trough fire (United States)

    Robert. Faust


    The Trough fire occurred in August 2001 on the Mendocino National Forest of northern California. A burned area emergency rehabilitation team evaluated the fire effects on the watershed. Concerns were soil from the denuded slopes moving into streams affecting fishery values, reservoir sedimentation and storm runoff plugging culverts leading to road wash outs. Past...

  12. Is the Proterozoic Ladoga Rift (SE Baltic Shield) a rift?

    DEFF Research Database (Denmark)

    Artemieva, Irina; Shulgin, Alexey


    , and geophysical characteristics typical of continental rifts in general and demonstrate that, except for magmatic and, perhaps, some gravity signature, the Lake Ladoga region lacks any other rift features. We also compare the geophysical data from the Lake Ladoga region with similar in age Midcontinent and Valday......) supercontinent, which led to magma intrusions as a series of mafic dykes along lithosphere weakness zones and ponding of small magma pockets within the cratonic lithosphere. Consequent magma cooling and its partial transition to eclogite facies could have led to the formation of a series of basement depressions...

  13. Inflammation Is Associated with Voriconazole Trough Concentrations (United States)

    van Wanrooy, Marjolijn J. P.; Span, Lambert F. R.; Rodgers, Michael G. G.; van den Heuvel, Edwin R.; Uges, Donald R. A.; van der Werf, Tjip S.; Kosterink, Jos G. W.


    Voriconazole concentrations display a large variability, which cannot completely be explained by known factors. Inflammation may be a contributing factor, as inflammatory stimuli can change the activities and expression levels of cytochrome P450 isoenzymes. We explored the correlation between inflammation, reflected by C-reactive protein (CRP) concentrations, and voriconazole trough concentrations. A retrospective chart review of patients with at least one steady-state voriconazole trough concentration and a CRP concentration measured on the same day was performed. A total of 128 patients were included. A significantly (P voriconazole trough concentration was observed in patients with severe inflammation (6.2 mg/liter; interquartile range [IQR], 3.4 to 8.7 mg/liter; n = 20) than in patients with moderate inflammation (3.4 mg/liter; IQR, 1.6 to 5.4 mg/liter; n = 60) and in patients with no to mild inflammation (1.6 mg/liter; IQR, 0.8 to 3.0 mg/liter; n = 48). The patients in all three groups received similar voriconazole doses based on mg/kg body weight (P = 0.368). Linear regression analyses, both unadjusted and adjusted for covariates of gender, age, dose, route of administration, liver enzymes, and interacting coadministered medications, showed a significant association between voriconazole and CRP concentration (P voriconazole trough concentration increased by 0.015 mg/liter (unadjusted 95% confidence interval [CI], 0.011 to 0.020 mg/liter; adjusted 95% CI, 0.011 to 0.019 mg/liter). Inflammation, reflected by the C-reactive protein concentration, is associated with voriconazole trough concentrations. Further research is necessary to assess if taking the inflammatory status of a patient into account is helpful in therapeutic drug monitoring of voriconazole to maintain concentrations in the therapeutic window, thereby possibly preventing suboptimal treatment or adverse events. PMID:25223994

  14. The East African rift system (United States)

    Chorowicz, Jean


    This overview paper considers the East African rift system (EARS) as an intra-continental ridge system, comprising an axial rift. It describes the structural organization in three branches, the overall morphology, lithospheric cross-sections, the morphotectonics, the main tectonic features—with emphasis on the tension fractures—and volcanism in its relationships with the tectonics. The most characteristic features in the EARS are narrow elongate zones of thinned continental lithosphere related to asthenospheric intrusions in the upper mantle. This hidden part of the rift structure is expressed on the surface by thermal uplift of the rift shoulders. The graben valleys and basins are organized over a major failure in the lithospheric mantle, and in the crust comprise a major border fault, linked in depth to a low angle detachment fault, inducing asymmetric roll-over pattern, eventually accompanied by smaller normal faulting and tilted blocks. Considering the kinematics, divergent movements caused the continent to split along lines of preexisting lithospheric weaknesses marked by ancient tectonic patterns that focus the extensional strain. The hypothesis favored here is SE-ward relative divergent drifting of a not yet well individualized Somalian plate, a model in agreement with the existence of NW-striking transform and transfer zones. The East African rift system comprises a unique succession of graben basins linked and segmented by intracontinental transform, transfer and accommodation zones. In an attempt to make a point on the rift system evolution through time and space, it is clear that the role of plume impacts is determinant. The main phenomenon is formation of domes related to plume effect, weakening the lithosphere and, long after, failure inducing focused upper mantle thinning, asthenospheric intrusion and related thermal uplift of shoulders. The plume that had formed first at around 30 Ma was not in the Afar but likely in Lake Tana region (Ethiopia

  15. Mantle enrichment by volatiles as the Nazca plate subducts beneath the Payenia backarc of the Southern Volcanic Zone, Argentina

    DEFF Research Database (Denmark)

    Brandt, Frederik Ejvang

    , minerals, fluid and melt inclusions from the Payenia backarc province of the Andean Southern Volcanic Zone. Major emphasis has been on olivine hosted melt inclusions. The study gives evidence for the role of fluids in the metasomatism of the backarc mantle, and outlines the trend of the variation...... of the metasomatism in Payenia, which is also characterized by a variation in oxidation state and other geochemical parameters of the melt inclusions, and is moreover related to mantle lithological variations. The mantle metasomatism by melts of subducted crust and fluid-borne enrichment is quantitatively modelled......, the origin of Chlorine is explained via slab-derived fluids, and the contrast between backarc and frontal arc magmas is discussed. These results add to the understanding of the origin of the complexities in the mantle wedge under arc-backarc in a subduction zone which has transition to flat slab conditions...

  16. Rift propagation at craton margin.: Distribution of faulting and volcanism in the North Tanzanian Divergence (East Africa) during Neogene times (United States)

    Le Gall, B.; Nonnotte, P.; Rolet, J.; Benoit, M.; Guillou, H.; Mousseau-Nonnotte, M.; Albaric, J.; Deverchère, J.


    A revised kinematic model is proposed for the Neogene tectono-magmatic development of the North Tanzanian Divergence where the axial valley in S Kenya splits southwards into a wide diverging pattern of block faulting in association with the disappearance of volcanism. Propagation of rifting along the S Kenya proto-rift during the last 8 Ma is first assumed to have operated by linkage of discrete magmatic cells as far S as the Ngorongoro-Kilimanjaro transverse volcanic belt that follows the margin of cratonic blocks in N Tanzania. Strain is believed to have nucleated throughout the thermally-weakened lithosphere in the transverse volcanic belt that might have later linked the S Kenya and N Tanzania rift segments with marked structural changes along-strike. The North Tanzanian Divergence is now regarded as a two-armed rift pattern involving: (1) a wide domain of tilted fault blocks to the W (Mbulu) that encompasses the Eyasi and Manyara fault systems, in direct continuation with the Natron northern trough. The reactivation of basement fabrics in the cold and intact Precambrian lithosphere in the Mbulu domain resulted in an oblique rift pattern that contrasts with the orthogonal extension that prevailed in the Magadi-Natron trough above a more attenuated lithosphere. (2) To the E, the Pangani horst-like range is thought to be a younger (< 1 Ma) structure that formed in response to the relocation of extension S of the Kilimanjaro magmatic center. A significant contrast in the mechanical behaviour of the stretched lithosphere in the North Tanzanian diverging rift is assumed to have occurred on both sides of the Masai cratonic block with a mid-crustal decoupling level to the W where asymmetrical fault-basin patterns are dominant (Magadi-Natron and Mbulu), whereas a component of dynamical uplift is suspected to have caused the topographic elevation of the Pangani range in relation with possible far-travelled mantle melts produced at depth further N.

  17. Amagmatic Accretionary Segments, Ultraslow Spreading and Non-Volcanic Rifted Margins (Invited) (United States)

    Dick, H. J.; Snow, J. E.


    and Cretaceous. Miocene Lena Trough is a new mid-ocean rift plate boundary and the final event in the separation of the North American and Eurasian continents. Mapping and sampling of Lena Trough confirms that it is both oblique and amagmatic, showing that initiation of seafloor spreading at a non-volcanic rifted continental margin follows the same pattern as ultraslow spreading ridges.

  18. Exploring Unconventional Hydrocarbons in the Makó Trough, Pannonian basin, Hungary: Results and Challenges (United States)

    Horvath, Anita; Bada, Gabor; Szafian, Peter; Sztano, Orsolya; Law, Ben; Wallis, Rod


    the potential reservoirs yield a cell volume as great as several hundred km3 - the largest single prospective gas occurrence in Hungary to date. Due to its novelty and complexity, the exploration of this unconventional resource demands the concurrent application of a wider range of geological and geophysical methods. In this presentation, we use selected examples to give an idea of where we stand on the way toward understanding the Makó Trough, particularly in terms of the geometric and structural features of the basin, the depositional (basin-fill) processes, and of the maturation history and accumulation properties of hydrocarbons. The geophysical surveys were purpose-designed to enable the mapping of the deep sedimentary trough and the sediments deposited in it. The data acquired to date suggest that the basin-centered gas accumulation occurred in the Lower Pannonian strata (11-6? Ma). Interpreting the 3D seismic data, the structural features and sedimentology of the basin can be studied in excellent resolution, while the integration of the seismic information with the geological data obtained from the wells allows us to interpret local well information extensively to gain a deeper, three-dimensional understanding of the basin. The sedimentary sequence filling up the Makó Trough displays distinct stratigraphic units separated by unconformities. Mapping the top of the pre-Neogene basement provides valuable insight into the nature of the paleo-geomorphological elements and the sedimentary environment at the onset of rifting. Paleontological information dates the syn-rift sediments of the trough to the Late Miocene (Early Pannonian), suggesting that the most intensive phase of basin evolution here was delayed by a few million years compared to adjacent areas. For the environmental reconstruction of the post-rift sedimentary sequence, we start with the assumption that initially a starved basin existed here, where sedimentation could not keep up with the rate of

  19. Tectonic inheritance in the development of the Kivu - north Tanganyika rift segment of the East African Rift System: role of pre-existing structures of Precambrian to early Palaeozoic origin. (United States)

    Delvaux, Damien; Fiama Bondo, Silvanos; Ganza Bamulezi, Gloire


    The present architecture of the junction between the Kivu rift basin and the north Tanganyika rift basin is that of a typical accommodation zone trough the Ruzizi depression. However, this structure appeared only late in the development of the Western branch of the East African Rift System and is the result of a strong control by pre-existing structures of Precambrian to early Palaeozoic origin. In the frame of a seismic hazard assessment of the Kivu rift region, we (Delvaux et al., 2016) constructed homogeneous geological, structural and neotectonic maps cross the five countries of this region, mapped the pre-rift, early rift and Late Quaternary faults and compiled the existing knowledge on thermal springs (assumed to be diagnostic of current tectonic activity along faults). We also produced also a new catalogue of historical and instrumental seismicity and defined the seismotectonic characteristics (stress field, depth of faulting) using published focal mechanism data. Rifting in this region started at about 11 Ma by initial doming and extensive fissural basaltic volcanism along normal faults sub-parallel to the axis of the future rift valley, as a consequence of the divergence between the Nubia and the Victoria plate. In a later stage, starting around 8-7 Ma, extension localized along a series of major border faults individualizing the subsiding tectonic basins from the uplifting rift shoulders, while lava evolved towards alkali basaltic composition until 2.6 Ma. During this stage, initial Kivu rift valley was extending linearly in a SSW direction, much further than its the actual termination at Bukavu, into the Mwenga-Kamituga graben, up to Namoya. The SW extremity of this graben was linked via a long oblique transfer zone to the central part of Lake Tanganyika, itself reactivating an older ductile-brittle shear zone. In the late Quaternary-early Holocene, volcanism migrated towards the center of the basin, with the development of the Virunga volcanic massif

  20. Crustal Structure in the Southern Rockall Trough from Satellite Gravity Data: Evidence for Sea-floor Spreading (United States)

    Chappell, A.; Kusznir, N. J.


    The southern Rockall Trough south of 57 N has previously been interpreted as either an intra-continental rift floored with highly extended continental crust, or a failed oceanic rift formed by Cretaceous sea floor spreading. Satellite gravity, bathymetry data and seismic estimates of sediment thickness are used to derive crustal basement thickness for the southern Rockall Trough and adjacent regions using a gravity inversion method incorporating a correction for the large negative thermal gravity component present in oceanic and stretched continental lithosphere. The marine Bouguer anomaly, derived from satellite free air gravity (Sandwell & Smith 1997) and Gebco 2003 bathymetry data, is inverted using the method of Oldenberg (1974), incorporating an iteratively applied thermal anomaly correction, to give Moho depth. For oceanic crust the thermal anomaly correction is calculated using isochron ages (Muller et al. 1997) and for continental crust from the beta stretching factors resulting from gravity derived crustal basement thickness and an assumed rift age. When sediment thickness and volcanic addition are assumed to be zero, the resulting upper bound of crustal thickness from the gravity inversion is as little as 10 km in the southern Rockall Trough. A segmented axial thickening of the crust at the centre of the Rockall Trough is predicted, between the Barra volcanic ridge and the Anton Dohrn seamount and is interpreted as having a volcanic origin. Inclusion of a sediment thickness correction in the gravity inversion further reduces predicted crustal thickness. A pseudo-sediment-thickness map has been constructed from the available wide-angle data and incorporated in the gravity inversion. The addition of up to 5.5 km of sediment in the gravity inversion reduces the upper bound of crustal thickness to less than 3 km in some locations. The segmented axial thickening and thin crust shown by the gravity inversion, the lack of intra-basinal faulting, and the volcanic

  1. Volcanism in slab tear faults is larger than in island-arcs and back-arcs. (United States)

    Cocchi, Luca; Passaro, Salvatore; Tontini, Fabio Caratori; Ventura, Guido


    Subduction-transform edge propagators are lithospheric tears bounding slabs and back-arc basins. The volcanism at these edges is enigmatic because it is lacking comprehensive geological and geophysical data. Here we present bathymetric, potential-field data, and direct observations of the seafloor on the 90 km long Palinuro volcanic chain overlapping the E-W striking tear of the roll-backing Ionian slab in Southern Tyrrhenian Sea. The volcanic chain includes arc-type central volcanoes and fissural, spreading-type centers emplaced along second-order shears. The volume of the volcanic chain is larger than that of the neighbor island-arc edifices and back-arc spreading center. Such large volume of magma is associated to an upwelling of the isotherms due to mantle melts upraising from the rear of the slab along the tear fault. The subduction-transform edge volcanism focuses localized spreading processes and its magnitude is underestimated. This volcanism characterizes the subduction settings associated to volcanic arcs and back-arc spreading centers.

  2. ethiopian rift and adjacent highlands

    African Journals Online (AJOL)

    ABSTRACT: Remotely sensed thermal-infrared spectral data can be used to derive surface temperature of any object if the optical and thermal properties are known. In this study 1M band six has been used to assess the spatial variability of the kinetic temperature of the central Ethiopian rift lakes and adjacent highlands.

  3. Lena Trough MORB: Trace Element and Isotopic Composition of a Very Slow Spreading Ridge (United States)

    Nauret, F.; Weis, D.; Snow, J. E.


    Extreme non-hotspot MORB compositions are less straightforward to explain than comparable OIB's, where all manner of enriched components may be derived from plume material. Here we report a new isotope and trace element study of dredged samples from the ultra-slow (7.5 mm/yr effective full-rate) Lena Trough rift in the Arctic Ocean and the western end of Gakkel Ridge (13mm/yr full rate). The few basalts found in Lena Trough are alkali-MORB with an extreme enrichment of incompatible trace elements, particularly alkalies and Ba (Ba/Th=350±50, Ba/Nb=17±1, Nb/U=69±, (La/Sm)PM=1.39±0.25) and by a garnet-source signature with (Dy/Yb)PM=1.22±0.06. The range of radiogenic isotopic ratios is 87Sr/86Sr=0.7036-0.7044, 143Nd/144Nd=0.51277-0.51230, 206Pb/204Pb=17.75-17.99, 207Pb/204Pb=15.41-15.44 and 208Pb/204Pb=37.54-37.79. In comparison, Western Gakkel Ridge MORB compositions are similar to N-MORB (Ba/Th=143±60, Ba/Nb=11±3, Nb/U=45±6, 87Sr/86Sr=0.7029-0.7030, 143Nd/144Nd=0.51307-0.51310, 206Pb/204Pb=17.97-18.08, 207Pb/204Pb=15.43-15.44, and 208Pb/204Pb=37.73-37.81). The Lena Trough high-precision MC-ICP-MS Pb data define linear Pb-Pb arrays extending to quite unradiogenic values. These arrays extend towards the more radiogenic values of some Gakkel MORBs, which show very limited variations on their own. Together with negative linear correlations between trace element ratios and Nd-Pb isotope systematics, we interpret these Pb linear arrays as reflecting mixing between a DMM component (similar to Gakkel Ridge MORB source) and a highly enriched component, with radiogenic Sr isotopes but low Nd and Pb isotopic ratios. The Lena Trough source contains residual garnet and is preferentially sampled by low degree partial melting. The source of the enriched component of the Lena Trough alkali MORB is interpreted to be olivine-free pyroxenite, taking into account the shallow pressure of partial melting, indicated by major elements. This is a clear indication of a "mantle vein

  4. Organic geochemical characterization of potential hydrocarbon source rocks in the upper Benue Trough

    International Nuclear Information System (INIS)

    Obaje, N. G.; Pearson, M. J.; Suh, C. E.; Dada, S. S.


    The Upper Benue Trough of Nigeria is the northeastern most portion of the Benue rift structure that extends from the northern limit of the Niger Delta in the south to the southern limit of the Chad basin int he northeast. this portion of the trough is made up of two arms: the Gongola Arm and the Yola Arm. Stratigraphic sequence in the Gongola Arm comprises the continental Albian Bima Sandstone, the transitional Cenomanian Yolde Formation and the marine Turonian - Santonian Gongila, Pindiga, and Fika Formations. Overlying these are the continental Campane - Maastrichtian Gombe Sandstone and the Tertiary Kerri - Kerri Formation. In the Yola Arm, the Turonian - Santonian sequence is replaced by the equally marine Dukul, Jessu, Sekuliye Formations, Numanha Shale, and the Lamja Sandstone. Organic geochemical studies have been carried on outcrop sample form the Gongila, Pindiga, Dukul Formations, the Fika shale and the shaly units of the Gombe Sandstone, with the aim of assessing their source rock potential. Gas Chromatography (GC), Gas Chromatography - Mass Spectrometry (C - MS), and Rock Eval Pyrolysis were the major organic geochemical tools employed. Biomaker hydrocarbon signatures obtained from the GC - MS and the Rock Eval Pyrolysis results indicate that all he formations studied, except the Dukul formation, are immature and are all lean in organic matter

  5. Post-Pan-African tectonic evolution of South Malawi in relation to the Karroo and recent East African rift systems (United States)

    Castaing, C.


    Structural studies conducted in the Lengwe and Mwabvi Karroo basins and in the basement in South Malawi, using regional maps and published data extended to cover Southeast Africa, serve to propose a series of geodynamic reconstructions which reveal the persistence of an extensional tectonic regime, the minimum stress σ3 of which has varied through time. The period of Karroo rifting and the tholeiitic and alkaline magmatism which terminated it, were controlled by NW-SE extension, which resulted in the creation of roughly NE-SW troughs articulated by the Tanganyika-Malawi and Zambesi pre-transform systems. These were NW-SE sinistral-slip systems with directions of movement dipping slightly to the Southeast, which enabled the Mwanza fault to play an important role in the evolution of the Karroo basins of the Shire Valley. The Cretaceous was a transition period between the Karroo rifting and the formation of the Recent East African Rift System. Extension was NE-SW, with some evidence for a local compressional episode in the Lengwe basin. Beginning in the Cenozoic, the extension once more became NW-SE and controlled the evolution in transtension of the Recent East African Rift System. This history highlights the major role of transverse faults systems dominated by strike-slip motion in the evolution and perpetuation of the continental rift systems. These faults are of a greater geological persistence than the normal faults bounding the grabens, especially when they are located on major basement anisotropies.

  6. Parabolic Trough Solar Collector Initial Trials


    Ghalya Pikra; Agus Salim; Andri Joko Purwanto; Zaidan Eddy


    This paper discusses initial trials of parabolic trough solar collector (PTSC) in Bandung. PTSC model consists of concentrator, absorber and tracking system. Concentrator designs are made with 2m aperture width, 6m length and 0.75m focal distance. The design is equipped with an automatic tracking system which is driven using 12V and 24Watt DC motor with 0.0125rpm rotational speed. Absorber/receiver is designed with evacuated tube type, with 1 inch core diameter and tube made of AISI304 and co...

  7. The origin and evolution of the Cretaceous Benue Trough (Nigeria) (United States)

    Benkhelil, J.

    The intracontinental Benue Trough was initiated during the Lower Cretaceous in relation with the Atlantic Ocean opening. The first stage of its evolution started in the Aptian, forming isolated basins with continental sedimentation. In the Albian times, a great delta developed in the Upper Benue Trough, while the first marine transgression coming from the opening Gulf of Guinea occurred in the south and reached the Middle Benue. The widespread Turonian transgression made the Atlantic and Tethys waters communicate through the Sahara, Niger basins and the Benue Trough. The tectonic evolution of the Benue Trough was closely controlled by transcurrent faulting through an axial fault system, developing local compressional and tensional regimes and resulting in basins and basement horsts along releasing and restraining bends of the faults. Two major compressional phases occurred: in the Abakaliki area (southern Benue) during the Santonian; and at the end of the Cretaceous in the Upper Benue Trough. In Abakaliki, the sedimentary infilling was severely deformed through folding and flattening, and moderate folding and fracturing occurred in the northeast. The Cretaceous magmatism was restricted to main fault zones in most of the trough but was particularly active in the Abakaliki Trough, where it has alkaline affinities. From Albian to Santonian, the magmatism was accompanied in part of the Abakaliki Trough by a low-grade metamorphism. Geophysical data indicate a crustal thinning beneath the Benue Trough and, at a superficial level, an axial basement high flanked by two elongated deep basins including isolated sub-basins. The model of the tectonic evolution of the trough is based upon a general sinistral wrenching along the trough responsible for the structural arrangement and the geometry of the sub-basins. During the early stages of the Gulf of Guinea opening the Benue Trough was probably the expression on land of the Equatorial Fracture Zones.

  8. Are Vancomycin Trough Concentrations Adequate for Optimal Dosing? (United States)

    Youn, Gilmer; Jones, Brenda; Jelliffe, Roger W.; Drusano, George L.; Rodvold, Keith A.; Lodise, Thomas P.


    The current vancomycin therapeutic guidelines recommend the use of only trough concentrations to manage the dosing of adults with Staphylococcus aureus infections. Both vancomycin efficacy and toxicity are likely to be related to the area under the plasma concentration-time curve (AUC). We assembled richly sampled vancomycin pharmacokinetic data from three studies comprising 47 adults with various levels of renal function. With Pmetrics, the nonparametric population modeling package for R, we compared AUCs estimated from models derived from trough-only and peak-trough depleted versions of the full data set and characterized the relationship between the vancomycin trough concentration and AUC. The trough-only and peak-trough depleted data sets underestimated the true AUCs compared to the full model by a mean (95% confidence interval) of 23% (11 to 33%; P = 0.0001) and 14% (7 to 19%; P vancomycin MIC is 1 mg/liter, approximately 60% are expected to have a trough concentration below the suggested minimum target of 15 mg/liter for serious infections, which could result in needlessly increased doses and a risk of toxicity. Our data indicate that adjustment of vancomycin doses on the basis of trough concentrations without a Bayesian tool results in poor achievement of maximally safe and effective drug exposures in plasma and that many adults can have an adequate vancomycin AUC with a trough concentration of <15 mg/liter. PMID:24165176

  9. Evolution of the Adria-Europe plate boundary in the northern Dinarides: From continent-continent collision to back-arc extension (United States)

    Ustaszewski, Kamil; Kounov, Alexandre; Schmid, Stefan M.; Schaltegger, Urs; Krenn, Erwin; Frank, Wolfgang; Fügenschuh, Bernhard


    The Sava Zone of the northern Dinarides is part of the Cenozoic Adria-Europe plate boundary. Here Late Cretaceous subduction of remnants of Meliata-Vardar oceanic lithosphere led to the formation of a suture, across which upper plate European-derived units of Tisza-Dacia were juxtaposed with Adria-derived units of the Dinarides. Late Cretaceous siliciclastic sediments, deposited on the Adriatic plate, were incorporated into an accretionary wedge that evolved during the initial stages of continent-continent collision. Structurally deeper parts of the exposed accretionary wedge underwent amphibolite-grade metamorphism. Grt-Pl-Ms-Bt thermobarometry and multiphase equilibria indicate temperatures between 550°C and 630°C and pressures between 5 and 7 kbar for this event. Peak metamorphic conditions were reached at around 65 Ma. Relatively slow cooling from peak metamorphic conditions throughout most of the Paleogene was possibly induced by hanging wall erosion in conjunction with southwest directed propagation of thrusting in the Dinarides. Accelerated cooling took place in Miocene times, when the Sava Zone underwent substantial extension that led to the exhumation of the metamorphosed units along a low-angle detachment. Footwall exhumation started under greenschist facies conditions and was associated with top-to-the-north tectonic transport, indicating exhumation from below European plate units. Extension postdates the emplacement of a 27 Ma old granitoid that underwent solid-state deformation under greenschist facies conditions. The 40Ar/39Ar sericite and zircon and apatite fission track ages from the footwall allow bracketing this extensional unroofing between 25 and 14 Ma. This extension is hence linked to Miocene rift-related subsidence in the Pannonian basin, which represents a back-arc basin formed due to subduction rollback in the Carpathians.

  10. Back-arc extension in the Andaman Sea: Tectonic and magmatic processes imaged by high-precision teleseismic double-difference earthquake relocation

    Digital Repository Service at National Institute of Oceanography (India)

    Diehl, T.; Waldhauser, F.; Cochran, J. R.; KameshRaju, K.A.; Seeber, L.; Schaff, D.; Engdahl, E.R.

    -scale structure and spatiotemporal behavior of active faults in the Andaman Sea. The new data reveal that back-arc extension is primarily accommodated at the Andaman Back-Arc Spreading Center (ABSC) at approx. 10 degrees, which hosted three major earthquake swarms...

  11. The Coupling of Back-arc Extension, Extrusion and Subduction Dynamics in the Eastern Mediterranean (United States)

    Capitanio, Fabio A.


    Extension in the Aegean Sea and lateral Anatolian extrusion are contrasting and seemingly unrelated examples of continental tectonics In the Eastern Mediterranean. It is acknowledged that these must reconcile with the dynamics of Tethys closure and following continental collision along the convergent margin, however the underlying mechanisms have been difficult to pinpoint, thus far. Three-dimensional numerical modelling of the dynamics of subduction and coupling with the mantle and upper plates allows probing the evolution of similar areas, supporting inferences on the ultimate causes for the continental tectonics. I will present models that reproduce the force balance of subducting slabs' buoyancy, mantle flow and upper plate interiors, and emphasise the role of perturbations in the force balance that may have followed slab breakoff, collision and trench land-locking reconstructed during the oceanic closure in the Eastern Mediterranean. These perturbations lead to a range of different margin motions and strain regimes in the upper plate, from rollback and back-arc spreading, to indentation and extrusion along the collisional margin. Different spatial and temporal fingerprints are illustrated for these processes, and while the trench rollback and back-arc spreading are rather stable features, extrusion is transient. When these regimes overlap, rapid and complex rearrangements of the tectonics in the upper plate are the result. The remarkable similarity between the models' and the Eastern Mediterranean tectonic regimes and geophysical observable allows proposing viable driving mechanisms and support inferences on the Miocene-to-Pliocene evolution of this puzzling area.

  12. Rift Valley fever outbreak, southern Mauritania, 2012. (United States)

    Sow, Abdourahmane; Faye, Ousmane; Ba, Yamar; Ba, Hampathé; Diallo, Diawo; Faye, Oumar; Loucoubar, Cheikh; Boushab, Mohamed; Barry, Yahya; Diallo, Mawlouth; Sall, Amadou Alpha


    After a period of heavy rainfall, an outbreak of Rift Valley fever occurred in southern Mauritania during September-November 2012. A total of 41 human cases were confirmed, including 13 deaths, and 12 Rift Valley fever virus strains were isolated. Moudjeria and Temchecket Departments were the most affected areas.

  13. Alleviate Cellular Congestion Through Opportunistic Trough Filling

    Directory of Open Access Journals (Sweden)

    Yichuan Wang


    Full Text Available The demand for cellular data service has been skyrocketing since the debut of data-intensive smart phones and touchpads. However, not all data are created equal. Many popular applications on mobile devices, such as email synchronization and social network updates, are delay tolerant. In addition, cellular load varies significantly in both large and small time scales. To alleviate network congestion and improve network performance, we present a set of opportunistic trough filling schemes that leverage the time-variation of network congestion and delay-tolerance of certain traffic in this paper. We consider average delay, deadline, and clearance time as the performance metrics. Simulation results show promising performance improvement over the standard schemes. The work shed lights on addressing the pressing issue of cellular overload.

  14. Submarine basaltic fountain eruptions in a back-arc basin during the opening of the Japan Sea (United States)

    Hosoi, Jun; Amano, Kazuo


    Basaltic rock generated during the middle Miocene opening of the Japan Sea, is widely distributed on the back-arc side of the Japanese archipelago. Few studies have investigated on submarine volcanism related to opening of the Japan Sea. The present study aimed to reconstruct details of the subaqueous volcanism that formed the back-arc basin basalts (BABB) during this event, and to discuss the relationship between volcanism and the tectonics of back-arc opening, using facies analyses based on field investigation. The study area of the southern Dewa Hills contains well-exposed basalt related to the opening of the Japan Sea. Five types of basaltic rock facies are recognized: (1) coherent basalt, (2) massive platy basalt, (3) jigsaw-fit monomictic basaltic breccia, (4) massive or stratified coarse monomictic basaltic breccia with fluidal clasts, and (5) massive or stratified fine monomictic basaltic breccia. The basaltic rocks are mainly hyaloclastite. Based on facies distributions, we infer that volcanism occurred along fissures developed mainly at the center of the study area. Given that the rocks contain many fluidal clasts, submarine lava fountaining is inferred to have been the dominant eruption style. The basaltic rocks are interpreted as the products of back-arc volcanism that occurred by tensional stress related to opening of the Japan Sea, which drove strong tectonic subsidence and active lava fountain volcanism.

  15. Neotectonics of the Roer Valley Rift System, the Netherlands.

    NARCIS (Netherlands)

    Houtgast, R.F.; van Balen, R.T.


    The Roer Valley Rift System (RVRS) is located in the southern part of the Netherlands and adjacent parts of Germany and Belgium. The last rifting episode of the RVRS started in the Late Oligocene and is still ongoing. The present-day seismic activity in the rift system is part of that last rifting

  16. Strike-slip tectonics during rift linkage (United States)

    Pagli, C.; Yun, S. H.; Ebinger, C.; Keir, D.; Wang, H.


    The kinematics of triple junction linkage and the initiation of transforms in magmatic rifts remain debated. Strain patterns from the Afar triple junction provide tests of current models of how rifts grow to link in area of incipient oceanic spreading. Here we present a combined analysis of seismicity, InSAR and GPS derived strain rate maps to reveal that the plate boundary deformation in Afar is accommodated primarily by extensional tectonics in the Red Sea and Gulf of Aden rifts, and does not require large rotations about vertical axes (bookshelf faulting). Additionally, models of stress changes and seismicity induced by recent dykes in one sector of the Afar triple junction provide poor fit to the observed strike-slip earthquakes. Instead we explain these patterns as rift-perpendicular shearing at the tips of spreading rifts where extensional strains terminate against less stretched lithosphere. Our results demonstrate that rift-perpendicular strike-slip faulting between rift segments achieves plate boundary linkage during incipient seafloor spreading.

  17. Seismic evidence of effects of water on melt transport in the Lau back-arc mantle. (United States)

    Wei, S Shawn; Wiens, Douglas A; Zha, Yang; Plank, Terry; Webb, Spahr C; Blackman, Donna K; Dunn, Robert A; Conder, James A


    Processes of melt generation and transport beneath back-arc spreading centres are controlled by two endmember mechanisms: decompression melting similar to that at mid-ocean ridges and flux melting resembling that beneath arcs. The Lau Basin, with an abundance of spreading ridges at different distances from the subduction zone, provides an opportunity to distinguish the effects of these two different melting processes on magma production and crust formation. Here we present constraints on the three-dimensional distribution of partial melt inferred from seismic velocities obtained from Rayleigh wave tomography using land and ocean-bottom seismographs. Low seismic velocities beneath the Central Lau Spreading Centre and the northern Eastern Lau Spreading Centre extend deeper and westwards into the back-arc, suggesting that these spreading centres are fed by melting along upwelling zones from the west, and helping to explain geochemical differences with the Valu Fa Ridge to the south, which has no distinct deep low-seismic-velocity anomalies. A region of low S-wave velocity, interpreted as resulting from high melt content, is imaged in the mantle wedge beneath the Central Lau Spreading Centre and the northeastern Lau Basin, even where no active spreading centre currently exists. This low-seismic-velocity anomaly becomes weaker with distance southward along the Eastern Lau Spreading Centre and the Valu Fa Ridge, in contrast to the inferred increase in magmatic productivity. We propose that the anomaly variations result from changes in the efficiency of melt extraction, with the decrease in melt to the south correlating with increased fractional melting and higher water content in the magma. Water released from the slab may greatly reduce the melt viscosity or increase grain size, or both, thereby facilitating melt transport.

  18. Cobbles in Troughs Between Meridiani Ripples (United States)


    As NASA's Mars Exploration Rover Opportunity continues to traverse from 'Erebus Crater' toward 'Victoria Crater,' the rover navigates along exposures of bedrock between large, wind-blown ripples. Along the way, scientists have been studying fields of cobbles that sometimes appear on trough floors between ripples. They have also been studying the banding patterns seen in large ripples. This view, obtained by Opportunity's panoramic camera on the rover's 802nd Martian day (sol) of exploration (April 27, 2006), is a mosaic spanning about 30 degrees. It shows a field of cobbles nestled among wind-driven ripples that are about 20 centimeters (8 inches) high. The origin of cobble fields like this one is unknown. The cobbles may be a lag of coarser material left behind from one or more soil deposits whose finer particles have blown away. The cobbles may be eroded fragments of meteoritic material, secondary ejecta of Mars rock thrown here from craters elsewhere on the surface, weathering remnants of locally-derived bedrock, or a mixture of these. Scientists will use the panoramic camera's multiple filters to study the rock types, variability and origins of the cobbles. This is an approximately true-color rendering that combines separate images taken through the panoramic camera's 753-nanometer, 535-nanometer and 432-nanometer filters.

  19. Parabolic Trough Solar Collector Initial Trials

    Directory of Open Access Journals (Sweden)

    Ghalya Pikra


    Full Text Available This paper discusses initial trials of parabolic trough solar collector (PTSC in Bandung. PTSC model consists of concentrator, absorber and tracking system. Concentrator designs are made with 2m aperture width, 6m length and 0.75m focal distance. The design is equipped with an automatic tracking system which is driven using 12V and 24Watt DC motor with 0.0125rpm rotational speed. Absorber/receiver is designed with evacuated tube type, with 1 inch core diameter and tube made of AISI304 and coated with black oxide, the outer tube is borosilicate glass with a 70 mm diameter and 1.5 m length. Working fluid stored in single type of thermal storage tank, a single phase with 37.7 liter volume. PTSC model testing carried out for 2 hours and 10 minutes produces heat output and input of 11.5 kW and 0.64 kW respectively. 

  20. Reconstructions before rifting and drifting reveal the geological connections between Antarctica and its conjugates in Gondwanaland (United States)

    Veevers, J. J.


    The initial (200-175 Ma) breakup of Pangea was marked by the emplacement of the Large Igneous Provinces (LIPs) of Karoo-Ferrar-SE Australia (KFS) in the back-arc of Panthalassan subduction and by the Central Atlantic Magmatic Province (CAMP) between Africa and the Americas. Seafloor spreading 190-180 Ma (Stage 1) about the CAMP split Pangea into northern (Laurasia) and southern (Gondwanaland) parts. Subsequent stages at 167 Ma (2), 147 Ma (3), 130 Ma (4), 118 Ma (5), and 83 Ma (6) split conjugate Africa, South America, India, Australia, and Zealandia from Antarctica. Here I review the reconstruction of Antarctica in Gondwanaland. First, seafloor spreading is unwound to re-unite the continent-ocean boundaries (COBs), then the extended (rifted) crust about the suture is restored to its original thickness. A comprehensive review of the U-Pb zircon geochronology of the reconstructed margins of Antarctica and its conjugates shows that certain coeval structures are aligned across the suture. Cross structures of high-order spatial continuity and age correlation are the Lambert-Mahanadi Rift, Pranhita-Godavari-Robert Glacier trend, Gawler-Adélie Craton, and western part of the Gondwanide Fold Belt. Cross structures of high-order age correlation but low structural continuity or alignment are, from Africa to Antarctica, the East African-Antarctic Orogen, the Natal and Maud Belts, the Umkondo Group-Ritscherflya Supergroup and LIP, and the Kalahari-Grunehogna Craton; from Antarctica to Zealandia, the Ross-Western and Amundsen-Eastern Provinces; and from Africa through Antarctica to Australia the KFS LIP.

  1. 1.90–1.88 Ga arc and back-arc basin in the Orijärvi area, SW Finland

    Directory of Open Access Journals (Sweden)

    Markku Väisänen


    tectonomagmatic discrimination diagrams the Orijärvi and Kisko formations plot in the island arc field and the Salittu formation plots in the E-MORB field. High LILE/HFSE ratios, typical of subduction-related volcanic rocks, characterize the Orijärvi and Kisko formations, whereas such a subduction component is less prominent in the Toija formation and is missing in the Salittu formation. Geochemistry and age relationships suggest that the Orijärvi formation was formed during the initial stages of volcanic arc evolution in an extensional tectonic regime, and the Kisko formation represents a mature stage of arc evolution. Subsequent extension of the island arc is manifested by the ultramafic/mafic Salittu formation with E-MORB-like chemistry, interpreted to indicate a back-arc basin. The Toija formation might represent an initial stage of back-arc rifting.

  2. Technical Manual for the SAM Physical Trough Model

    Energy Technology Data Exchange (ETDEWEB)

    Wagner, M. J.; Gilman, P.


    NREL, in conjunction with Sandia National Lab and the U.S Department of Energy, developed the System Advisor Model (SAM) analysis tool for renewable energy system performance and economic analysis. This paper documents the technical background and engineering formulation for one of SAM's two parabolic trough system models in SAM. The Physical Trough model calculates performance relationships based on physical first principles where possible, allowing the modeler to predict electricity production for a wider range of component geometries than is possible in the Empirical Trough model. This document describes the major parabolic trough plant subsystems in detail including the solar field, power block, thermal storage, piping, auxiliary heating, and control systems. This model makes use of both existing subsystem performance modeling approaches, and new approaches developed specifically for SAM.

  3. Floor cooler for floor trough of a nuclear reactor

    International Nuclear Information System (INIS)

    Friedrich, H.J.


    Cooling pipes are situated below the floor trough of a BWR, which are connected to the annular distribution or collection pipes. The distribution and collection pipes are connected by parallel hairpin pipes with involute shape to the centre of the floor trough. These hairpin pipes are situated in a lower plane than the annular distribution pipe to the centre and in a higher plane from the centre to the outer annular collector pipe. (orig./HP) [de

  4. Climatology of the autumn Red Sea trough (United States)

    Awad, Adel M.; Mashat, Abdul-Wahab S.


    In this study, the Sudan low and the associated Red Sea trough (RST) are objectively identified using the mean sea level pressure (SLP) data from the National Center for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR) reanalysis dataset covering the period 1955-2015. The Sudan low was detected in approximately 60.6% of the autumn periods, and approximately 83% of the detected low-pressure systems extended into RSTs, with most generated at night and during cold months. The distribution of the RSTs demonstrated that Sudan, South Sudan and Red Sea are the primary development areas of the RSTs, generating 97% of the RSTs in the study period. In addition, the outermost areas affected by RSTs, which include the southern, central and northern Red Sea areas, received approximately 91% of the RSTs originating from the primary generation areas. The synoptic features indicated that a Sudan low developed into an RST when the Sudan low deepened in the atmosphere, while the low pressures over the southern Arabian Peninsula are shallow and the anticyclonic systems are weakened over the northern Red Sea. Moreover, stabile areas over Africa and Arabian Peninsula form a high stability gradient around the Red Sea and the upper maximum winds weaken. The results of the case studies indicate that RSTs extend northward when the upper cyclonic and anticyclonic systems form a high geopotential gradient over Arabian Peninsula. Furthermore, the RST is oriented from the west to the east when the Azores high extends eastward and the Siberian high shrinks eastward or shifts northward.

  5. The De Long Trough: a newly discovered glacial trough on the East Siberian continental margin

    Directory of Open Access Journals (Sweden)

    M. O'Regan


    Full Text Available Ice sheets extending over parts of the East Siberian continental shelf have been proposed for the last glacial period and during the larger Pleistocene glaciations. The sparse data available over this sector of the Arctic Ocean have left the timing, extent and even existence of these ice sheets largely unresolved. Here we present new geophysical mapping and sediment coring data from the East Siberian shelf and slope collected during the 2014 SWERUS-C3 expedition (SWERUS-C3: Swedish – Russian – US Arctic Ocean Investigation of Climate-Cryosphere-Carbon Interactions. The multibeam bathymetry and chirp sub-bottom profiles reveal a set of glacial landforms that include grounding zone formations along the outer continental shelf, seaward of which lies a  >  65 m thick sequence of glacio-genic debris flows. The glacial landforms are interpreted to lie at the seaward end of a glacial trough – the first to be reported on the East Siberian margin, here referred to as the De Long Trough because of its location due north of the De Long Islands. Stratigraphy and dating of sediment cores show that a drape of acoustically laminated sediments covering the glacial deposits is older than ∼ 50 cal kyr BP. This provides direct evidence for extensive glacial activity on the Siberian shelf that predates the Last Glacial Maximum and most likely occurred during the Saalian (Marine Isotope Stage (MIS 6.

  6. Weak Lensing by Galaxy Troughs in DES Science Verification Data

    Energy Technology Data Exchange (ETDEWEB)

    Gruen, D. [Ludwig Maximilian Univ., Munich (Germany); Max Planck Inst. for Extraterrestrial Physics, Garching (Germany). et al.


    We measure the weak lensing shear around galaxy troughs, i.e. the radial alignment of background galaxies relative to underdensities in projections of the foreground galaxy field over a wide range of redshift in Science Verification data from the Dark Energy Survey. Our detection of the shear signal is highly significant (10σ–15σ for the smallest angular scales) for troughs with the redshift range z ϵ [0.2, 0.5] of the projected galaxy field and angular diameters of 10 arcmin…1°. These measurements probe the connection between the galaxy, matter density, and convergence fields. By assuming galaxies are biased tracers of the matter density with Poissonian noise, we find agreement of our measurements with predictions in a fiducial Λ cold dark matter model. Furthermore, the prediction for the lensing signal on large trough scales is virtually independent of the details of the underlying model for the connection of galaxies and matter. Our comparison of the shear around troughs with that around cylinders with large galaxy counts is consistent with a symmetry between galaxy and matter over- and underdensities. In addition, we measure the two-point angular correlation of troughs with galaxies which, in contrast to the lensing signal, is sensitive to galaxy bias on all scales. Finally, the lensing signal of troughs and their clustering with galaxies is therefore a promising probe of the statistical properties of matter underdensities and their connection to the galaxy field.

  7. Temporal and geochemical evolution of Miocene volcanism in the Andean back-arc between 36°S and 38°S and U-series analyses of young volcanic centers in the arc and back-arc, Argentina

    DEFF Research Database (Denmark)

    Dyhr, Charlotte Thorup

    New 40Ar/39Ar, major and trace element, and Sr, Nd and Pb isotopic data for the c. 24-7 Ma volcanic rocks from the Andean back-arc (35°S – 38°S) in the Mendoza and Neuquén (Argentina) regions shed light on the Miocene evolution of the back-arc of the Southern Volcanic Zone. Incipient shallowing....... Geochemical characteristics indicate a back-arc mantle devoid of arc-like components and with a strong OIB-like signature. They erupted at a time of extension along the Andean margin. After 20 Ma, basaltic – trachyandesitic lavas with a more depleted isotopic and incompatible trace element signature...... and showing evidence of a weak, but temporally increasing, arc component in the mantle source were erupted in a contractional regime. The increasing arc-influence in lavas erupted up to 500 km east of the trench indicates a shallowing of the subducting zone. A long period of volcanic quiescence followed...

  8. Crustal characteristic variation in the central Yamato Basin, Japan Sea back-arc basin, deduced from seismic survey results (United States)

    Sato, Takeshi; No, Tetsuo; Miura, Seiichi; Kodaira, Shuichi


    The crustal structure of the Yamato Bank, the central Yamato Basin, and the continental shelf in the southern Japan Sea back-arc basin is obtained based on a seismic survey using ocean bottom seismographs and seismic shot to elucidate the back-arc basin formation processes. The central Yamato Basin can be divided into three domains based on the crustal structure: the deep basin, the seamount, and the transition domains. In the deep basin domain, the crust without the sedimentary layer is about 12-13 km thick. Very few units have P-wave velocity of 5.4-6.0 km/s, which corresponds to the continental upper crust. In the seamount and transition domains, the crust without the sedimentary layer is about 12-16 km thick. The P-wave velocities of the upper and lower crusts differs among the deep basin, the seamount, and the transition domains. These results indicate that the central Yamato Basin displays crustal variability in different domains. The crust of the deep basin domain is oceanic in nature and suggests advanced back-arc basin development. The seamount domain might have been affected by volcanic activity after basin opening. In the transition domain, the crust comprises mixed characters of continental and oceanic crust. This crustal variation might represent the influence of different processes in the central Yamato Basin, suggesting that crustal development was influenced not only by back-arc opening processes but also by later volcanic activity. In the Yamato Bank and continental shelf, the upper crust has thickness of about 17-18 km and P-wave velocities of 3.3-4.1 to 6.6 km/s. The Yamato Bank and the continental shelf suggest a continental crustal character.

  9. Facies analysis, depositional environments and paleoclimate of the Cretaceous Bima Formation in the Gongola Sub - Basin, Northern Benue Trough, NE Nigeria (United States)

    Shettima, B.; Abubakar, M. B.; Kuku, A.; Haruna, A. I.


    to tropical climatic conditions. This favors pedogenic activities which are manifested in the several occurrences of paleosols. Pronounced periods of arid climatic conditions are also notable from the subordinate smectite mineralization. Chlorite mineralization at some localities is indicative of elevation of the provenance area, and this is synonymous with deposition of the Bima Formation, because of its syn - depositional tectonics. The absences of lacustrine shales in the syn - rift stratigraphic architecture of the Bima Formation indicates that the lower Cretaceous petroleum system that are common in the West and Central African Rift basins are generally barren in the Gongola Sub - basin of the Northern Benue Trough.

  10. Insights into Rift Initiation, Evolution, and Failure from North America's Midcontinent Rift (United States)

    Stein, C. A.; Stein, S.; Elling, R. P.; Keller, G. R.; Kley, J.; Wysession, M. E.


    Recent studies of the Midcontinent Rift (MCR) near Lake Superior give insights into how some rifts start, evolve, and fail because the rift-filling volcanic and sedimentary rocks are exposed at the surface and well imaged by deep seismic reflection and gravity data. The MCR was traditionally considered to have formed by midplate extension and volcanism 1.1 Ga that ended due to compression from the Grenville orogeny, the 1.3 - 0.98 Ga assembly of Amazonia (Precambrian northeast South America), Laurentia (Precambrian North America), and other continents into the supercontinent of Rodinia. We find that a more plausible scenario is that the MCR formed as part of the rifting of Amazonia from Laurentia and became inactive once seafloor spreading was established. A cusp in Laurentia's apparent polar wander path just before the onset of MCR volcanism likely reflects the rifting. Such cusps have been observed elsewhere when continents separate and a new ocean forms between the two fragments. New analyses also find that the MCR's failure did not result from Grenville compression. This view is consistent with the observation that many intracontinental rifts form and fail as part of plate boundary reorganizations. Present-day continental extension in the East African Rift and seafloor spreading in the Red Sea and Gulf of Aden form a classic three-arm rift geometry as Africa splits into Nubia, Somalia, and Arabia. The West Central African Rift system formed during the Mesozoic breakup of Africa and South America and became inactive once full seafloor spreading was established on the Mid-Atlantic Ridge. An important feature of the MCR is that it is has aspects both of a continental rift - a segmented linear depression filled with sedimentary and igneous rocks - and a large igneous province (LIP). We view it as a LIP deposited in crust weakened by rifting, and thus first a rift and then a LIP. The MCR exhibits many key features of volcanic passive margins: seaward dipping

  11. Performance Simulation Comparison for Parabolic Trough Solar Collectors in China

    Directory of Open Access Journals (Sweden)

    Jinping Wang


    Full Text Available Parabolic trough systems are the most used concentrated solar power technology. The operating performance and optical efficiency of the parabolic trough solar collectors (PTCs are different in different regions and different seasons. To determine the optimum design and operation of the parabolic trough solar collector throughout the year, an accurate estimation of the daily performance is needed. In this study, a mathematical model for the optical efficiency of the parabolic trough solar collector was established and three typical regions of solar thermal utilization in China were selected. The performance characteristics of cosine effect, shadowing effect, end loss effect, and optical efficiency were calculated and simulated during a whole year in these three areas by using the mathematical model. The simulation results show that the optical efficiency of PTCs changes from 0.4 to 0.8 in a whole year. The highest optical efficiency of PTCs is in June and the lowest is in December. The optical efficiency of PTCs is mainly influenced by the solar incidence angle. The model is validated by comparing the test results in parabolic trough power plant, with relative error range of 1% to about 5%.

  12. Genome analysis of Rift Valley fever virus, Mayotte. (United States)

    Cêtre-Sossah, Catherine; Zeller, Hervé; Grandadam, Marc; Caro, Valérie; Pettinelli, François; Bouloy, Michèle; Cardinale, Eric; Albina, Emmanuel


    As further confirmation of a first human case of Rift Valley fever in 2007 in Comoros, we isolated Rift Valley fever virus in suspected human cases. These viruses are genetically closely linked to the 2006-2007 isolates from Kenya.

  13. Rift architecture and evolution: The Sirt Basin, Libya: The influence of basement fabrics and oblique tectonics (United States)

    Abdunaser, K. M.; McCaffrey, K. J. W.


    The Cretaceous-Tertiary northwest-trending Sirt Basin system, Libya, is a rift/sag basin formed on Pan-African to Paleozoic-aged basement of North Africa. In this study, we investigate the rift-basin architecture and tectonic framework of the western Sirt Basin. Using remote sensed data, supported by borehole data from about 300 deep wells and surface geologic maps, we constructed geological cross sections and surface geology maps. Indication of the relative timing of structures and movement along faults has been determined where possible. Direction statistics for all the interpreted linear features acquired in the study area were calculated and given as a total distribution and then the totals are broken down by the major basin elements of the area. Hundreds of lineaments were recognized. Their lengths, range between a hundred meters up to hundreds of kilometers and the longest of the dominant trends are between N35W-N55W and between N55E-N65E which coincides with Sirt Basin structures. The produced rose diagrams reveal that the majority of the surface linear features in the region have four preferred orientations: N40-50W in the Zallah Trough, N45-55W in the Dur al Abd Trough, N35-55W in the Az Zahrah-Al Hufrah Platform, and in contrast in the Waddan Uplift a N55-65E trend. We recognize six lithostratigraphic sequences (phases) in the area's stratigraphic framework. A Pre-graben (Pre-rift) initiation stage involved the Pre-Cretaceous sediments formed before the main Sirt Basin subsidence. Then followed a Cretaceous to Eocene graben-fill stage that can divided into four structurally-active and structurally-inactive periods, and finally a terminal continental siliciclastics-rich package representing the post-rift stage of the development in post-Eocene time. In general five major fault systems dissect and divide the study area into geomorphological elevated blocks and depressions. Most of the oil fields present in the study area are associated with structural hinge

  14. The thermal effects of steady-state slab-driven mantle flow above a subducting plate: the Cascadia subduction zone and backarc (United States)

    Currie, C. A.; Wang, K.; Hyndman, Roy D.; He, Jiangheng


    At subduction zones, geophysical and geochemical observations indicate that the arc and backarc regions are hot, in spite of the cooling effects of a subducting plate. At the well-studied Cascadia subduction zone, high mantle temperatures persist for over 500 km into the backarc, with little lateral variation. These high temperatures are even more surprising due to the juxtaposition of the hot Cascadia backarc against the thick, cold North America craton lithosphere. Given that local heat sources appear to be negligible, mantle flow is required to transport heat into the wedge and backarc. We have examined the thermal effects of mantle flow induced by traction along the top of the subducting plate. Through systematic tests of the backarc model boundary, we have shown that the model thermal structure of the wedge is primarily determined by the assumed temperatures along this boundary. To get high temperatures in the wedge, it is necessary for flow to mine heat from depth, either by using a temperature-dependent rheology, or by introducing a deep cold boundary through a thick adjacent lithosphere, consistent with the presence of a craton. Regardless of the thermal conditions along the backarc boundary, flow within an isoviscous wedge is too slow to transport a significant amount of heat into the wedge corner. With a more realistic stress- and temperature-dependent wedge rheology, flow is focused into the wedge corner, resulting in rapid flow upward toward the corner and enhanced temperatures below the arc, compatible with temperatures required for arc magma generation. However, this strong flow focusing produces a nearly stagnant region further landward in the shallow backarc mantle, where model temperatures and heat flow are much lower than observed. Observations of high backarc temperatures, particularly in areas that have not undergone recent extension, provide an important constraint on wedge dynamics. None of the models of simple traction-driven flow were able

  15. Submarine thermal springs on the Galapagos Rift (United States)

    Corliss, J.B.; Dymond, J.; Gordon, L.I.; Edmond, J.M.; Von Herzen, R. P.; Ballard, Richard D.; Green, K.; Williams, D.; Bainbridge, A.; Crane, K.; Van Andel, T. H.


    The submarine hydrothermal activity on and near the Galápagos Rift has been explored with the aid of the deep submersible Alvin. Analyses of water samples from hydrothermal vents reveal that hydrothermal activity provides significant or dominant sources and sinks for several components of seawater; studies of conductive and convective heat transfer suggest that two-thirds of the heat lost from new oceanic lithosphere at the Galápagos Rift in the first million years may be vented from thermal springs, predominantly along the axial ridge within the rift valley. The vent areas are populated by animal communities. They appear to utilize chemosynthesis by sulfur-oxidizing bacteria to derive their entire energy supply from reactions between the seawater and the rocks at high temperatures, rather than photosynthesis

  16. The lakes of the Jordan Rift Valley

    International Nuclear Information System (INIS)

    Gat, J.R.


    This paper presents a summary of the proceedings of a workshop on the Lakes of the Jordan Rift Valley that was held in conjunction with the CRP on The Use of Isotope Techniques in Lake Dynamics Investigations. The paper presents a review of the geological, hydrogeological and physical limnological setting of the lakes in the Jordan Rift Valley, Lake Hula, Lake Kinneret and the Dead Sea. This is complemented by a description of the isotope hydrology of the system that includes the use of a wide range of isotopes: oxygen-18, deuterium, tritium, carbon-14, carbon-13, chlorine isotopes, boron-11 and helium-3/4. Environmental isotope aspects of the salt balances of the lakes, their palaeolimnology and biogeochemical tracers are also presented. The scope of application of isotopic tracers is very broad and provides a clear insight into many aspects of the physical, chemical and biological limnology of the Rift Valley Lakes. (author)

  17. Magma genesis by rifting of oceanic lithosphere above anomalous mantle: Terceira Rift, Azores


    Beier, C.; Haase, K. M.; Abouchami, W.; Krienitz, M-S.; Hauff, Folkmar


    [1] The Terceira Rift formed relatively recently (∼1 Ma ago) by rifting of the old oceanic lithosphere of the Azores Plateau and is currently spreading at a rate of 2–4mm/a. Together with the Mid-Atlantic Ridge, the Terceira Rift forms a triple junction that separates the Eurasian, African, and American Plates. Four volcanic systems (São Miguel, João de Castro, Terceira, Graciosa), three of which are islands, are distinguished along the axis and are separated by deep avolcanic basins similar ...

  18. Molten salt parabolic trough system with synthetic oil preheating (United States)

    Yuasa, Minoru; Hino, Koichi


    Molten salt parabolic trough system (MSPT), which can heat the heat transfer fluid (HTF) to 550 °C has a better performance than a synthetic oil parabolic trough system (SOPT), which can heat the HTF to 400 °C or less. The utilization of HTF at higher temperature in the parabolic trough system is able to realize the design of a smaller size of storage tank and higher heat to electricity conversion efficiency. However, with MSPT there is a great amount of heat loss at night so it is necessary to circulate the HTF at a high temperature of about 290 °C in order to prevent solidification. A new MSPT concept with SOPT preheating (MSSOPT) has been developed to reduce the heat loss at night. In this paper, the MSSOPT system, its performance by steady state analysis and annual performance analysis are introduced.

  19. Subsidence History of the Rukwa Rift in South West Tanzania ...

    African Journals Online (AJOL)

    The variation in subsidence rate during rift basin development is a good indication for the Geodynamic history of a sedimentary basin. The sedimentary section of Ivuna Well is herein used to explain the structural evolution of Rukwa Basin within the Western Rift of the East African Rift System. The sedimentary record of ...

  20. Federal technology alert. Parabolic-trough solar water heating

    Energy Technology Data Exchange (ETDEWEB)



    Parabolic-trough solar water heating is a well-proven renewable energy technology with considerable potential for application at Federal facilities. For the US, parabolic-trough water-heating systems are most cost effective in the Southwest where direct solar radiation is high. Jails, hospitals, barracks, and other facilities that consistently use large volumes of hot water are particularly good candidates, as are facilities with central plants for district heating. As with any renewable energy or energy efficiency technology requiring significant initial capital investment, the primary condition that will make a parabolic-trough system economically viable is if it is replacing expensive conventional water heating. In combination with absorption cooling systems, parabolic-trough collectors can also be used for air-conditioning. Industrial Solar Technology (IST) of Golden, Colorado, is the sole current manufacturer of parabolic-trough solar water heating systems. IST has an Indefinite Delivery/Indefinite Quantity (IDIQ) contract with the Federal Energy Management Program (FEMP) of the US Department of Energy (DOE) to finance and install parabolic-trough solar water heating on an Energy Savings Performance Contract (ESPC) basis for any Federal facility that requests it and for which it proves viable. For an ESPC project, the facility does not pay for design, capital equipment, or installation. Instead, it pays only for guaranteed energy savings. Preparing and implementing delivery or task orders against the IDIQ is much simpler than the standard procurement process. This Federal Technology Alert (FTA) of the New Technology Demonstration Program is one of a series of guides to renewable energy and new energy-efficient technologies.

  1. Tracking local control of a parabolic trough collector

    International Nuclear Information System (INIS)

    Ajona, J.I.; Alberdi, J.; Gamero, E.; Blanco, J.


    In the local control, the sun position related to the trough collector is measured by two photo-resistors. The provided electronic signal is then compared with reference levels in order to get a set of B logical signals which form a byte. This byte and the commands issued by a programmable controller are connected to the inputs of o P.R.O.M. memory which is programmed with the logical equations of the control system. The memory output lines give the control command of the parabolic trough collector motor. (Author)

  2. Sedimentary response to halfgraben dipslope faults evolution -Billefjorden Trough, Svalbard. (United States)

    Smyrak-Sikora, Aleksandra; Kristensen, Jakob B.; Braathen, Alvar; Johannessen, Erik P.; Olaussen, Snorre; Sandal, Geir; Stemmerik, Lars


    Fault growth and linkage into larger segments has profound effect on the sedimentary architecture of rift basins. The uplifted Billefjorden Through located in central Spitsbergen is an excellent example of half-graben basin development. Detailed sedimentological and structural investigations supported by helicopter and ground base lidar scans along with photogrammetry analysis have been used to improve our understanding of the sedimentary response to faulting and along strike variations in footwall uplift and hanging wall subsidence. The early syn-rift basin fill, the Serpukhovian to Bashkirian Hultberget Formation and the Bashkirian Ebbaelven Member consists of fluvial to deltaic sandstones with minor marine incursions. During this early stage tens to hundred- meters-scale syn-tectonic faults disrupted the dipslope, and created local hanging wall depocentres where sediments were arrested. Changes in fluvial drainage pattern, development of small lacustrine basins along the faults, and the sharp based boundaries of some facies associations are interpreted as response to activity along these, mostly antithetic faults. The basin fill of the late syn-rift stage is composed of shallow marine to tidal mixed evaporite -carbonate facies in the hanging wall i.e. the Bashkirian Trikolorfjellet Member and the Moscovian Minkenfjellet Formation. These sediments interfinger with thick alluvial fan deposits outpouring from relay ramps on the master fault i.e. drainage from the footwall. The carbonate-evaporite cycles deposited on the hanging wall responded to both the eustatic sea level variations and tectonic movements in the rift basin. Intra-basinal footwall uplift of the dipslope controlled development of an internal unconformity and resulted in dissolution of the gypsum to produce stratiform breccia. In contrast thick gypsum-rich subbasins are preserved locally in hanging wall positions where they were protected from the erosion. The syn rift basin fill is capped by post

  3. Origin of the Eastern Mediterranean: Neo-Tethys Rifting Along a Cryptic Cadomian Suture with Afro-Arabia (United States)

    Avigad, D.; Abbo, A.; Gerdes, A.


    The East Mediterranean is a land-locked basin, a remnant of Neo-Tethys. It was formed in the Permo-Triassic as a result of the drift of the Tauride block from the Afro-Arabian margin of Gondwana. Herein we show that rather than being a genuine Afro-Arabia crustal fragment, the Tauride block is underlain by a Late Neoproterozoic Cadomian basement, which differs significantly from the Neoproterozoic "Pan-African" basement of NE Africa from which it was detached. Resembling other Cadomian terranes of Western Europe, the Tauride basement is chiefly a greywacke succession deposited in a mid to late Ediacaran back-arc basin formed on the periphery of Afro-Arabia, above the southward subducting proto-Tethys. The back-arc region was deformed and metamorphosed to various degrees and intruded by latest Ediacaran-Cambrian granites and volcanics during the Cadomian orogeny. Unlike the protracted (ca .300 m.y.) Neoproterozoic crustal evolution recorded in Afro-Arabia, the Cadomian basement of the Taurides evolved briefly, over ca. 50 m.y. We show that the entire cycle of sedimentation, metamorphism and magmatism in the Tauribe basement took place in the late Ediacaran-Cambrian and lagged after Neoproterozoic Pan-African orogeny and igneous activity in Afro-Arabia. The Cadomian orogeny had accreted the Taurides, and adjoining peri-Gandwana Cadomian terranes, with an already-consolidated Afro-Arabian continent. Permo-Triassic rifting of the East Mediterranean occurred close to the transition between these two domains. Rifting has thus been inherited from, and superimposed on late Ediacaran structures formed in front of the current Afro-Arabia margin of Gondwana during Cadomian orogeny. The boundary between the Cadomian edifice and the Pan-African crust of Afro-Arabia appears to lie nowadays on the southern margin of the Mediterranean, extending from Morocco in the west to Arabia in the east. Hence, the continental margin of the East Mediterranean, including in the Levant basin

  4. Thermochronological response to rifting and subduction in the Corsica-Sardinia block (United States)

    Malusà, Marco Giovanni; Danišík, Martin; Kuhlemann, Joachim


    The linkage between deep-seated tectonic processes and surface processes provides a key to investigate the geological evolution of complex plate boundaries starting from the analysis of low-temperature geochronological systems. Here, we integrate published thermochronological data from Corsica (Danišík et al., 2007) with a new multi-thermochronological dataset (i.e., zircon and apatite fission track (ZFT and AFT), and apatite (U-Th)/He (AHe) data) from Sardinia, in order to tackle the Western Mediterranean tectonic issue and constrain the problematic transition in space and time between the opposite-dipping Alpine (European) and Apenninic (Adriatic) subductions. Mesozoic AFT ages (169-201 Ma) and AHe ages (133-204 Ma), found on mountain ridges of central Sardinia and on the eastern coast of the island, indicate that rocks now exposed at the surface have resided since Jurassic times at very shallow depth, i.e., above the partial annealing zone of the AFT system (~60-110°C) or even above the partial retention zone of the AHe system (~40-80°C). The observed age pattern and track length distributions are consistent with those predicted after rising of isothermal surfaces during rifting and subsequent thermal relaxation after continental break-up. We demonstrate that the crustal sections now exposed in central and eastern Sardinia were originally located closer to the Tethyan rift axis than crustal sections exposed in NW Sardinia and Corsica, pointing to a NNE trend for the continental crust isopachs of the northern Tethyan margin (ENE before Corsica-Sardinia rotation), with burial depth progressively increasing from SE to NW. In Alpine Corsica, the low-T geochronological evidence of Jurassic rifting was largely obliterated by Cenozoic metamorphism, but it is still recognized in high-T systems. AFT and AHe ages set after Tethyan rifting but not thermally affected by Neogene backarc extension, define a SE-NW trend of decreasing ages from southern Sardinia to northern

  5. Parabolic-trough technology roadmap: A pathway for sustained commercial development and deployment of parabolic-trough technology

    International Nuclear Information System (INIS)

    David Kearney; Hank Price


    Technology roadmapping is a needs-driven technology planning process to help identify, select, and develop technology alternatives to satisfy a set of market needs. The DOE's Office of Power Technologies' Concentrating Solar Power (CSP) Program recently sponsored a technology roadmapping workshop for parabolic trough technology. The workshop was attended by an impressive cross section of industry and research experts. The goals of the workshop were to evaluate the market potential for trough power projects, develop a better understanding of the current state of the technology, and to develop a conceptual plan for advancing the state of parabolic trough technology. This report documents and extends the roadmap that was conceptually developed during the workshop

  6. Parabolic-Trough Technology Roadmap: A Pathway for Sustained Commercial Development and Deployment of Parabolic-Trough Technology

    Energy Technology Data Exchange (ETDEWEB)

    Price, H.; Kearney, D.


    Technology roadmapping is a needs-driven technology planning process to help identify, select, and develop technology alternatives to satisfy a set of market needs. The DOE's Office of Power Technologies' Concentrating Solar Power (CSP) Program recently sponsored a technology roadmapping workshop for parabolic trough technology. The workshop was attended by an impressive cross section of industry and research experts. The goals of the workshop were to evaluate the market potential for trough power projects, develop a better understanding of the current state of the technology, and to develop a conceptual plan for advancing the state of parabolic trough technology. This report documents and extends the roadmap that was conceptually developed during the workshop.

  7. Syn-rift unconformities punctuating the lower-middle Cambrian transition in the Atlas Rift, Morocco (United States)

    Álvaro, J. Javier; Ezzouhairi, Hassan; Clausen, Sébastien; Ribeiro, M. Luisa; Solá, Rita


    The Cambrian Tamdroust and Bab n'Ali Volcanic Complexes represent two magmatic episodes developed in the latest Ediacaran-Cambrian Atlas Rift of Morocco. Their rifting pulses were accompanied by accumulation of volcanosedimentary edifices (dominated by effusive lava flows in the former and explosive acidic aprons in the latter) associated with active tilting and uplift. Sealing of their peneplaned horst-and-graben palaeotopographies led to the onset of distinct onlapping geometries and angular discordances capping eroded basements ranging from the Ediacaran Ouarzazate Supergroup to the Cambrian Asrir Formation. Previous interpretations of these discordances as pull-apart or compressive events are revised here and reinterpreted in an extensional (rifting) context associated with active volcanism. The record of erosive unconformities, stratigraphic gaps, condensed beds and onlapping patterns across the traditional "lower-middle Cambrian" (or Cambrian Series 2-3) transition of the Atlas Rift must be taken into consideration for global chronostratigraphic correlation based on their trilobite content.

  8. 3D Numerical Rift Modeling with Application to the East African Rift System (United States)

    Glerum, A.; Brune, S.; Naliboff, J.


    As key components of plate tectonics, continental rifting and the formation of passive margins have been extensively studied with both analogue models and numerical techniques. Only recently however, technical advances have enabled numerical investigations into rift evolution in three dimensions, as is actually required for including those processes that cause rift-parallel variability, such as structural inheritance and oblique extension (Brune 2016). We use the massively parallel finite element code ASPECT (Kronbichler et al. 2012; Heister et al. 2017) to investigate rift evolution. ASPECT's adaptive mesh refinement enables us to focus resolution on the regions of interest (i.e. the rift center), while leaving other areas such as the asthenospheric mantle at coarse resolution, leading to kilometer-scale local mesh resolution in 3D. Furthermore, we implemented plastic and viscous strain weakening of the nonlinear viscoplastic rheology required to develop asymmetric rift geometries (e.g. Huismans and Beaumont 2003). Additionally created plugins to ASPECT allow us to specify initial temperature and composition conditions based on geophysical data (e.g. LITHO1.0, Pasyanos et al. 2014) or to prescribe more general along-strike variation in the initial strain seeding the rift. Employing the above functionality, we construct regional models of the East African Rift System (EARS), the world's largest currently active rift. As the EARS is characterized by both orthogonal and oblique rift sections, multi-phase extension histories as well as magmatic and a-magmatic branches (e.g. Chorowicz 2005; Ebinger and Scholz 2011), it constitutes an extensive natural laboratory for our research into the 3D nature of continental rifting. References:Brune, S. (2016), in Plate boundaries and natural hazards, AGU Geophysical Monograph 219, J. C. Duarte and W. P. Schellart (Eds.). Chorowicz, J. (2005). J. Afr. Earth Sci., 43, 379-410. Ebinger, C. and Scholz, C. A. (2011), in Tectonics of

  9. Syn-rift unconformities punctuating the lower-middle Cambrian transition in the Atlas Rift, Morocco


    Álvaro, J. Javier; Ezzouhairi, Hassan; Clausen, Sébastien; Ribeiro, Maria Luísa; Solá, Ana Rita


    The Cambrian Tamdroust and Bab n’Ali Volcanic Complexes represent two magmatic episodes developed in the latest Ediacaran–Cambrian Atlas Rift of Morocco. Their rifting pulses were accompanied by accumulation of volcanosedimentary edifices (dominated by effusive lava flows in the former and explosive acidic aprons in the latter) associated with active tilting and uplift. Sealing of their peneplaned horst-and-graben palaeotopographies led to the onset of distinct onlapping geometrie...

  10. Rift Valley fever, Mayotte, 2007-2008. (United States)

    Sissoko, Daouda; Giry, Claude; Gabrie, Philippe; Tarantola, Arnaud; Pettinelli, François; Collet, Louis; D'Ortenzio, Eric; Renault, Philippe; Pierre, Vincent


    After the 2006-2007 epidemic wave of Rift Valley fever (RVF) in East Africa and its circulation in the Comoros, laboratory case-finding of RVF was conducted in Mayotte from September 2007 through May 2008. Ten recent human RVF cases were detected, which confirms the indigenous transmission of RFV virus in Mayotte.

  11. Groundwater links between Kenyan Rift Valley lakes


    Becht, Robert; Mwango, Fred; Muno, Fred Amstrong


    The series of lakes in the bottom of the Kenyan Rift valley are fed by rivers and springs. Based on the water balance, the relative positions determining the regional groundwater flow systems and the analysis of natural isotopes it can be shown that groundwater flows from lake Naivasha to lake Magadi, Elementeita, Nakuru and Bogoria.

  12. Molecular Rift: Virtual Reality for Drug Designers. (United States)

    Norrby, Magnus; Grebner, Christoph; Eriksson, Joakim; Boström, Jonas


    Recent advances in interaction design have created new ways to use computers. One example is the ability to create enhanced 3D environments that simulate physical presence in the real world--a virtual reality. This is relevant to drug discovery since molecular models are frequently used to obtain deeper understandings of, say, ligand-protein complexes. We have developed a tool (Molecular Rift), which creates a virtual reality environment steered with hand movements. Oculus Rift, a head-mounted display, is used to create the virtual settings. The program is controlled by gesture-recognition, using the gaming sensor MS Kinect v2, eliminating the need for standard input devices. The Open Babel toolkit was integrated to provide access to powerful cheminformatics functions. Molecular Rift was developed with a focus on usability, including iterative test-group evaluations. We conclude with reflections on virtual reality's future capabilities in chemistry and education. Molecular Rift is open source and can be downloaded from GitHub.

  13. Reemergence of Rift Valley fever, Mauritania, 2010. (United States)

    Faye, Ousmane; Ba, Hampathé; Ba, Yamar; Freire, Caio C M; Faye, Oumar; Ndiaye, Oumar; Elgady, Isselmou O; Zanotto, Paolo M A; Diallo, Mawlouth; Sall, Amadou A


    A Rift Valley fever (RVF) outbreak in humans and animals occurred in Mauritania in 2010. Thirty cases of RVF in humans and 3 deaths were identified. RVFV isolates were recovered from humans, camels, sheep, goats, and Culex antennatus mosquitoes. Phylogenetic analysis of isolates indicated a virus origin from western Africa.

  14. Unexpected Rift Valley fever outbreak, northern Mauritania. (United States)

    El Mamy, Ahmed B O; Baba, Mohamed Ould; Barry, Yahya; Isselmou, Katia; Dia, Mamadou L; El Kory, Mohamed O B; Diop, Mariam; Lo, Modou Moustapha; Thiongane, Yaya; Bengoumi, Mohammed; Puech, Lilian; Plee, Ludovic; Claes, Filip; de La Rocque, Stephane; Doumbia, Baba


    During September-October 2010, an unprecedented outbreak of Rift Valley fever was reported in the northern Sahelian region of Mauritania after exceptionally heavy rainfall. Camels probably played a central role in the local amplification of the virus. We describe the main clinical signs (hemorrhagic fever, icterus, and nervous symptoms) observed during the outbreak.

  15. Rift Valley fever: A neglected zoonotic disease? (United States)

    Rift Valley fever (RVF) is a serious viral disease of animals and humans in Africa and the Middle East that is transmitted by mosquitoes. First isolated in Kenya during an outbreak in 1930, subsequent outbreaks have had a significant impact on animal and human health, as well as national economies. ...

  16. Rift Valley Fever, Mayotte, 2007–2008 (United States)

    Giry, Claude; Gabrie, Philippe; Tarantola, Arnaud; Pettinelli, François; Collet, Louis; D’Ortenzio, Eric; Renault, Philippe; Pierre, Vincent


    After the 2006–2007 epidemic wave of Rift Valley fever (RVF) in East Africa and its circulation in the Comoros, laboratory case-finding of RVF was conducted in Mayotte from September 2007 through May 2008. Ten recent human RVF cases were detected, which confirms the indigenous transmission of RFV virus in Mayotte. PMID:19331733

  17. Rifte Guaritas basin compartmentation in Camaqua

    International Nuclear Information System (INIS)

    Preissler, A; Rolim, S; Philipp, R.


    The study contributes to the knowledge of the tectonic evolution of the Guaritas rift basin in Camaqua. Were used aero magnetic geophysical data for modeling the geometry and the depth of the structures and geological units. The research was supported in processing and interpretation of Aster images (EOS-Terra), which were extracted from geophysical models and digital image

  18. Root zone of a continental rift

    DEFF Research Database (Denmark)

    Kirsch, Moritz; Svenningsen, Olaf


    Mafic magmatic rocks formed between ca. 615 and 560 Ma along the Neoproterozoic margins of Baltica and Laurentia are classically attributed to continental rifting heralding the opening of the Iapetus Ocean. We report new data for the Kebnekaise Intrusive Complex (KIC) exposed in the Seve Nappes i...

  19. Overview of the Kinematics of the Salton Trough and Northern Gulf of California (United States)

    Stock, J. M.


    In the Salton Trough and Northern Gulf of California, transtensional rifting is leading to full continental plate breakup, as a major continental block is being transferred to an oceanic plate. Since at least 6 Ma this region has taken up most of the plate boundary slip between the Pacific and North America plates at this latitude. We review the structural history of plate separation, as constrained by many recent studies of present and past fault configurations, seismicity, and basin development as seen from geology and geophysics. Modern activity in the USA is dominated by NW-striking strike-slip faults (San Andreas, San Jacinto, Elsinore), and subsidiary NE-striking faults. There is an equally broad zone in Mexico (faults from the Mexicali Valley to the Colorado River Delta and bounding the Laguna Salada basin), including active low-angle detachment faults. In both areas, shifts in fault activity are indicated by buried faults and exhumed or buried earlier basin strata. Seismicity defines 3 basin segments in the N Gulf: Consag-Wagner, Upper Delfin, and Lower Delfin, but localization is incomplete. These basins occupy a broad zone of modern deformation, lacking single transform faults, although major strike-slip faults formed in the surrounding continental area. The off-boundary deformation on the western side of the plate boundary has changed with time, as seen by Holocene and Quaternary faults controlling modern basins in the Gulf Extensional Province of NE Baja California, and stranded Pliocene continental and marine basin strata in subaerial fault blocks. The eastern side of the plate boundary, in the shallow northeastern Gulf, contains major NW-striking faults that may have dominated the earlier (latest Miocene-early Pliocene) kinematics. The Sonoran coastal plain likely buries additional older faults and basin sequences; further studies here are needed to refine models of the earlier structural development of this sector. Despite > 250 km of plate

  20. Gas Turbine/Solar Parabolic Trough Hybrid Designs: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Turchi, C. S.; Ma, Z.; Erbes, M.


    A strength of parabolic trough concentrating solar power (CSP) plants is the ability to provide reliable power by incorporating either thermal energy storage or backup heat from fossil fuels. Yet these benefits have not been fully realized because thermal energy storage remains expensive at trough operating temperatures and gas usage in CSP plants is less efficient than in dedicated combined cycle plants. For example, while a modern combined cycle plant can achieve an overall efficiency in excess of 55%; auxiliary heaters in a parabolic trough plant convert gas to electricity at below 40%. Thus, one can argue the more effective use of natural gas is in a combined cycle plant, not as backup to a CSP plant. Integrated solar combined cycle (ISCC) systems avoid this pitfall by injecting solar steam into the fossil power cycle; however, these designs are limited to about 10% total solar enhancement. Without reliable, cost-effective energy storage or backup power, renewable sources will struggle to achieve a high penetration in the electric grid. This paper describes a novel gas turbine / parabolic trough hybrid design that combines solar contribution of 57% and higher with gas heat rates that rival that for combined cycle natural gas plants. The design integrates proven solar and fossil technologies, thereby offering high reliability and low financial risk while promoting deployment of solar thermal power.

  1. Parabolic troughs to increase the geothermal wells flow enthalpy

    Energy Technology Data Exchange (ETDEWEB)

    Lentz, Alvaro; Almanza, Rafael [Engineering Institute, National Autonomous University of Mexico, Building 12, Cuidad Universitaria, Mexico D.F., A.P. 70-472, C.P. 04510 (Mexico)


    This work investigates the feasibility of using parabolic trough solar field to increase the enthalpy from geothermal wells' flow in order to increase the steam tons; in addition, it is possible to prevent silica deposition in the geothermal process. The high levels of irradiance in Northwestern Mexico make it possible to integrate a solar-geothermal hybrid system that uses two energy resources to provide steam for the geothermal cycle, like the Cerro Prieto geothermal field. The plant consists of a geothermal well, a parabolic trough solar field in series, flash separator, steam turbine and condenser. Well '408' of Cerro Prieto IV has enthalpy of 1566kJ/kg and its quality must be increased by 10 points, which requires a {delta}h of 194.4kJ/kg. Under these considerations the parabolic troughs area required will be 9250m{sup 2}, with a flow of 92.4tons per hour (25.67kg/s). The solar field orientation is a N-S parabolic trough concentrator. The silica content in the Cerro Prieto geothermal brine causes problems for scaling at the power facility, so scale controls must be considered. (author)

  2. Performance Test of Parabolic Trough Solar Cooker for Indoor ...

    African Journals Online (AJOL)


    In the absence of new sustainable, cleaner, more efficient use of energy for cooking the number of people .... the solar cooker. For optimum utilization of the solar energy resource, the orientation of the parabolic trough is ..... Use of solar cooker can replace use of firewood, kerosene, LPG, and electric cooking. Depending on ...

  3. Ostracods from the yola arm, Upper Benue Trough, Nigeria ...

    African Journals Online (AJOL)

    A total of nine genera of ostracods from the Yola Arm in the north-east of Nigeria are described. The various species, though from outcrop sections, supplement the list from the Upper Benue Trough already reported from Ashaka quarry and borehole (BH 2340) of the Gongila and Pindiga Formations respectively.

  4. Parabolic Trough Solar Power for Competitive U.S. Markets

    International Nuclear Information System (INIS)

    Price, Henry W.


    Nine parabolic trough power plants located in the California Mojave Desert represent the only commercial development of large-scale solar power plants to date. Although all nine plants continue to operate today, no new solar power plants have been completed since 1990. Over the last several years, the parabolic trough industry has focused much of its efforts on international market opportunities. Although the power market in developing countries appears to offer a number of opportunities for parabolic trough technologies due to high growth and the availability of special financial incentives for renewables, these markets are also plagued with many difficulties for developers. In recent years, there has been some renewed interest in the U.S. domestic power market as a result of an emerging green market and green pricing incentives. Unfortunately, many of these market opportunities and incentives focus on smaller, more modular technologies (such as photovoltaics or wind power), and as a result they tend to exclude or are of minimum long-term benefit to large-scale concentrating solar power technologies. This paper looks at what is necessary for large-scale parabolic trough solar power plants to compete with state-of-the-art fossil power technology in a competitive U.S. power market

  5. Do leading indicators lead peaks more than troughs?

    NARCIS (Netherlands)

    R. Paap (Richard); R. Segers (René); D.J.C. van Dijk (Dick)


    textabstractWe develop a formal statistical approach to investigate the possibility that leading indicator variables have different lead times at business cycle peaks and troughs. For this purpose, we propose a novel Markov switching vector autoregressive model, where economic growth and leading

  6. Development and preliminary testing of a parabolic trough solar ...

    African Journals Online (AJOL)

    It depicts that employing a suitable design, selection of time of heating and proper focusing of the reflected rays to the focal spot region, solar radiation can efficiently be utilized for water heating in a tropical environment. This work presents a parabolic trough solar water heater as a suitable renewable energy technology for ...

  7. The relationship between trough concentration of vancomycin and ...

    African Journals Online (AJOL)

    Objectives. The incidence of methicillin-resistant Staphylococcus aureus (MRSA) infections in intensive care units in Malaysia is significant. Invasive MRSA infections are commonly treated with vancomycin. In clinical practice, the serum vancomycin trough concentration is used as a surrogate marker of vancomycin efficacy.

  8. Gravity Anomalies Over The Gongola Arm, Upper Benue Trough ...

    African Journals Online (AJOL)

    A regional gravity survey of the Gongola Arm of the Benue trough was carried out with the aim of determining structures of interest. The results of the gravity interpretation showed that the area of study is characterized by negative Bouguer anomalies that trend in the NE-SW direction and range in value from -75 to -15 mGal ...

  9. The crustal structure along the Mbere trough in South Adamawa ...

    African Journals Online (AJOL)

    The Mbere Cretaceous trough is located in the southern part of the Adamawa province. A gravity interpretation based on data obtained from three NW-SE profiles on the residual anomaly map has been carried out using a 2.5D modelling program. Spectral analysis has been used to estimate the depth of geological ...

  10. Performance simulation of parabolic trough solar collector using two ...

    African Journals Online (AJOL)

    The Parabolic trough solar collector is considered as one of the most proven, mature and commercial concentrating solar systems implemented in arid and semi-arid regions for energy production. It focuses sunlight onto a solar receiver by using mirrors and is finally converted to a useful thermal energy by means of a heat ...

  11. Modeling, Simulation and Performance Evaluation of Parabolic Trough

    African Journals Online (AJOL)


    Mekuannint Mesfin and Abebayehu Assefa. Department of Mechanical Engineering. Addis Ababa University ... off design weather conditions as well. Keywords: Parabolic Trough Collector (PTC);. Heat Transfer ... of a conventional Rankine cycle power plant with solar fields that are used to increase the temperature of heat ...

  12. Inversion tectonics of the benue trough | Mamah | Global Journal of ...

    African Journals Online (AJOL)

    The Benue Trough, an aulacogen at the entrant of the Gulf of Guinea in Nigeria, has been historically studied from the concepts of ortho-mio-eu-geosynclines at outcrops and in the subsurface. Its structural evolution reveals a tectonic scenario compatible with Plate tectonic evolution of the Atlantic Ocean. Spreading was ...

  13. Rifting Thick Lithosphere - Canning Basin, Western Australia (United States)

    Czarnota, Karol; White, Nicky


    The subsidence histories and architecture of most, but not all, rift basins are elegantly explained by extension of ~120 km thick lithosphere followed by thermal re-thickening of the lithospheric mantle to its pre-rift thickness. Although this well-established model underpins most basin analysis, it is unclear whether the model explains the subsidence of rift basins developed over substantially thick lithosphere (as imaged by seismic tomography beneath substantial portions of the continents). The Canning Basin of Western Australia is an example where a rift basin putatively overlies lithosphere ≥180 km thick, imaged using shear wave tomography. Subsidence modelling in this study shows that the entire subsidence history of the account for the observed subsidence, at standard crustal densities, the lithospheric mantle is required to be depleted in density by 50-70 kg m-3, which is in line with estimates derived from modelling rare-earth element concentrations of the ~20 Ma lamproites and global isostatic considerations. Together, these results suggest that thick lithosphere thinned to > 120 km is thermally stable and is not accompanied by post-rift thermal subsidence driven by thermal re-thickening of the lithospheric mantle. Our results show that variations in lithospheric thickness place a fundamental control on basin architecture. The discrepancy between estimates of lithospheric thickness derived from subsidence data for the western Canning Basin and those derived from shear wave tomography suggests that the latter technique currently is limited in its ability to resolve lithospheric thickness variations at horizontal half-wavelength scales of <300 km.

  14. Structural inheritance, segmentation, and rift localization in the Gulf of Aden oblique rift (United States)

    Bellahsen, Nicolas; Leroy, Sylvie; Autin, Julia; d'Acremont, Elia; Razin, Philippe; Husson, Laurent; Pik, Raphael; Watremez, Louise; Baurion, Celine; Beslier, Marie-Odile; Khanbari, Khaled; Ahmed, Abdulhakim


    The structural evolution of the Gulf of Aden passive margins was controlled by its oblique divergence kinematics, inherited structures, and the Afar hot spot. The rifting between Arabia and Somalia started at 35 Ma just before the hot spot paroxysm (at 30Ma) and lasted until 18Ma, when oceanic spreading started. Fieldwork suggests that rift parallel normal faults initiated in the (future) distal margins, after a first stage of distributed rifting, and witness the rift localization, as confirmed by 4-layer analogue models. These faults arise either from crust or lithosphere scale buoyancy forces that are strongly controlled by the mantle temperature under the influence of the Afar hot spot. This implies a transition from a distributed mode to a localized one, sharper, both in space and time, in the West (close to the hot spot) than in the East (far away from the hot spot). In this framework, first order transform F.Z. are here (re-) defined by the fact that they deform continental crust. In the Gulf of Aden, as well as in other continental margins, it appears that these F.Z. are often, if not always, located at continental transfer or "transform" fault zones. Our detailed field-study of an offshore transfer fault zone in the southeastern Gulf of Aden (Socotra Island) shows that these structures are long-lived since early rifting until post rift times. During the early rifting, they are inherited structures reactivated as oblique normal faults before accommodating strike-slip motion. During the Ocean-Continent Transition (OCT) formation ("post syn-rift" times), a significant uplift occurred in the transfer fault zone footwall as shown by stratigraphic and LT thermochronology data. Second order transform F.Z. are defined as deforming only the OCT, thus initiated at the moment of its formation. In the western Gulf of Aden, the hot spot provoked a rift localization strongly oblique to the divergence and, as a consequence, several second order transform F.Z. formed (as

  15. Effect of water trough type on the drinking behaviour of pasture-based beef heifers. (United States)

    Coimbra, P A D; Machado Filho, L C P; Nunes, P A; Hötzel, M J; de Oliveira, A G L; Cecato, U


    The objective of this study was to investigate the effects of different trough types on the water consumption and drinking behaviour of pasture-based beef heifers. Two trials were implemented with 32 beef heifers to test two different types of water troughs, namely a rectangular concrete trough (RC) and a round polyvinyl chloride water tank (PVC). In Trial 1, both troughs were simultaneously available to groups of four animals within eight paddocks. In Trial 2, the animals were distributed in pairs throughout 16 paddocks and, in a crossover design, were exposed to one type of trough at a time. In both trials, estimated water intake was per four animals. Number of drinking bouts, time spent drinking and amount of water intake from the RC and PVC trough were recorded in both trials. Data were statistically analysed by analysis of variance. In Trial 1, group and trough effect were in the model. In Trial 2, stage, pair and trough were tested. In Trial 1, where both types of troughs were available, animals had a higher number of drinking bouts (3.32 v. 0.57 ± 0.09; P PVC water tank, compared to the RC trough. In Trial 2, all groups drank more often (5.10 v. 3.28 ± 0.32; P PVC than from the RC trough. Thus, heifers not only prefer, but also drink more from a PVC water tank in comparison to a RC trough.

  16. Ambient noise tomography of Ecuador: Fore- and back-arc velocity structure and radial anisotropy (United States)

    Lynner, C.; Beck, S. L.; Porritt, R.; Meltzer, A.; Alvarado, A. P.; Gabriela, P.; Ruiz, M. C.; Hoskins, M.; Stachnik, J.; Rietbrock, A.; Leon-Rios, S.; Regnier, M. M.; Agurto-Detzel, H.; Font, Y.; Charvis, P.


    , raising the question, does the radial anisotropy signal persist as far north as the Ecuadorian Andes? Here we present Vsh, Vsv, and radial anisotropy results from Love and Rayleigh wave ambient noise tomography in Ecuador from the fore-arc to the back-arc region.

  17. Commercial helium reserves, continental rifting and volcanism (United States)

    Ballentine, C. J.; Barry, P. H.; Hillegonds, D.; Fontijn, K.; Bluett, J.; Abraham-James, T.; Danabalan, D.; Gluyas, J.; Brennwald, M. S.; Pluess, B.; Seneshens, D.; Sherwood Lollar, B.


    Helium has many industrial applications, but notably provides the unique cooling medium for superconducting magnets in medical MRI scanners and high energy beam lines. In 2013 the global supply chainfailed to meet demand causing significant concern - the `Liquid Helium Crisis' [1]. The 2017 closure of Quatar borders, a major helium supplier, is likely to further disrupt helium supply, and accentuates the urgent need to diversify supply. Helium is found in very few natural gas reservoirs that have focused 4He produced by the dispersed decay (a-particle) of U and Th in the crust. We show here, using the example of the Rukwa section of the Tanzanian East African Rift, how continental rifting and local volcanism provides the combination of processes required to generate helium reserves. The ancient continental crust provides the source of 4He. Rifting and associated magmatism provides the tectonic and thermal mechanism to mobilise deep fluid circulation, focusing flow to the near surface along major basement faults. Helium-rich springs in the Tanzanian Great Rift Valley were first identified in the 1950's[2]. The isotopic compositions and major element chemistry of the gases from springs and seeps are consistent with their release from the crystalline basement during rifting [3]. Within the Rukwa Rift Valley, helium seeps occur in the vicinity of trapping structures that have the potential to store significant reserves of helium [3]. Soil gas surveys over 6 prospective trapping structures (1m depth, n=1486) show helium anomalies in 5 out of the 6 at levels similar to those observed over a known helium-rich gas reservoir at 1200m depth (7% He - Harley Dome, Utah). Detailed macroseep gas compositions collected over two days (n=17) at one site allows us to distinguish shallow gas contributions and shows the deep gas to contain between 8-10% helium, significantly increasing resource estimates based on uncorrected values (1.8-4.2%)[2,3]. The remainder of the deep gas is

  18. How do volcanic rift zones relate to flank instability? Evidence from collapsing rifts at Etna (United States)

    Pepe, Susi; Ruch, Joel; Casu, Francesco; Acocella, Valerio; Neri, Marco; Solaro, Giuseppe; Sansosti, Eugenio


    Volcanic rift zones, characterized by repeated dike emplacements, are expected to delimit the upper portion of unstable flanks at basaltic edifices. However, the relationship between flank instability and rift zone behavior, activity, and location on longer, inter-diking timescales is poorly understood. To characterize the relationship between rift kinematics, dike emplacement and flank instability at Etna, we used long-term (1992-2010) InSAR ground deformation time series, giving unprecedented coverage of the volcano's summit. As snow coverage prevents coherence of the backscattered radar signal, long-term InSAR time series on the summit of seasonally snow-capped volcanoes, such as Mount Etna, are affected by decorrelation, which hinders detection of any summit deformation. To increase the summit coverage, we removed from our Etna dataset all the SAR images possibly affected by snow-related decorrelation phenomena. We then jointly processed ERS data between 1992 and 2010 and ENVISAT data between 2003 and 2010, acquired from both ascending and descending orbits, and computed 204 ascending and 194 descending interferograms. These were inverted by applying the Small BAseline Subset (SBAS) technique (e.g., Pepe et al., 2005) to produce combined ERS-ENVISAT velocity maps and deformation time series. Ascending and descending maps and time series were used to separate vertical and East-West components of on-going displacements. This approach greatly improved the spatial coverage of elevated areas. A spatial comparison with a similar dataset used by Solaro et al. (2010), but limited to 1994-2008, shows an increase of the summit coverage of about 14 km2 in our dataset. The results highlight a general eastward shift of the volcano summit, including the northeast and south rifts. This steady-state eastward movement (1-2 cm/yr) is interrupted or even reversed during transient dike injections. Detailed analysis of the northeast rift shows that only during phases of dike

  19. Kinematics of the South Atlantic rift (United States)

    Heine, C.; Zoethout, J.; Müller, R. D.


    The South Atlantic rift basin evolved as a branch of a large Jurassic-Cretaceous intraplate rift zone between the African and South American plates during the final break-up of western Gondwana. While the relative motions between South America and Africa for post-break-up times are well resolved, many issues pertaining to the fit reconstruction and particularly the relation between kinematics and lithosphere dynamics during pre-break-up remain unclear in currently published plate models. We have compiled and assimilated data from these intraplated rifts and constructed a revised plate kinematic model for the pre-break-up evolution of the South Atlantic. Based on structural restoration of the conjugate South Atlantic margins and intracontinental rift basins in Africa and South America, we achieve a tight-fit reconstruction which eliminates the need for previously inferred large intracontinental shear zones, in particular in Patagonian South America. By quantitatively accounting for crustal deformation in the Central and West African Rift Zones, we have been able to indirectly construct the kinematic history of the pre-break-up evolution of the conjugate west African-Brazilian margins. Our model suggests a causal link between changes in extension direction and velocity during continental extension and the generation of marginal structures such as the enigmatic pre-salt sag basin and the São Paulo High. We model an initial E-W-directed extension between South America and Africa (fixed in present-day position) at very low extensional velocities from 140 Ma until late Hauterivian times (≈126 Ma) when rift activity along in the equatorial Atlantic domain started to increase significantly. During this initial ≈14 Myr-long stretching episode the pre-salt basin width on the conjugate Brazilian and west African margins is generated. An intermediate stage between ≈126 Ma and base Aptian is characterised by strain localisation, rapid lithospheric weakening in the

  20. Slip history of the La Cruz fault: Development of a late Miocene transform in response to increased rift obliquity in the northern Gulf of California (United States)

    Bennett, Scott E. K.; Oskin, Michael E.; Iriondo, Alexander; Kunk, Michael J.


    The Gulf of California rift has accommodated oblique divergence of the Pacific and North America plates in northwestern México since Miocene time. Due to its infancy, its rifted margins preserve a rare onshore record of early continental break-up processes and an opportunity to investigate the role of rift obliquity in strain localization. We map rift-related structures and syn-tectonic basins on southern Isla Tiburón, a proximal onshore exposure of the rifted North America margin. We integrate analysis and geochronology of syn-tectonic sedimentary basins and mapping of crosscutting relationships to characterize the style and timing of fault activity. On southern Isla Tiburón, an early phase of extension initiated between 19-17 Ma and 12.2 Ma. Subsequently, these normal faults and related basins were cut by the La Cruz strike-slip fault and buried by deposits of the La Cruz basin, an elongate, fault-controlled trough coextensive with the La Cruz fault. Crosscutting relationships show that the NW-striking La Cruz fault accrued 5 ± 2 km of dextral slip 8-4 Ma. The La Cruz fault and parallel Tiburón transform were kinematically linked to detachment faulting that accommodated latest Miocene to Pliocene oblique opening of the offshore Upper Tiburón pull-apart basin. The onset of strike-slip faulting on Isla Tiburón was synchronous with the 8-6 Ma onset of transform faulting and basin formation along > 1000 km of the reconstructed Pacific-North America plate boundary. This transition coincides with the commencement of a clockwise azimuthal shift in Pacific-North America relative plate motion that increased the obliquity of the Gulf of California rift and formed the Gulf of California shear zone. The record from the proto-Gulf of California illustrates how highly oblique rift geometries, where transform faults are kinematically linked to pull-apart basins, enhance the ability of continental lithosphere to rupture and, ultimately, hasten the formation of new oceanic

  1. New Constraints on the Timing, Magnitude and Style of Deformation in the Southern Gulf of California: Oblique Rifting Since ~14-12 Ma (United States)

    Kent, G. M.; Harding, A. J.; Sutherland, F. H.; Umhoefer, P. J.; Lizarralde, D.; Driscoll, N. W.


    A multichannel seismic (MCS) profile spanning 600 km across conjugate rifted margins in the southern Gulf of California provides insight into the spatial and temporal evolution of extension of the Baja peninsula away from mainland Mexico. Stratigraphic analysis of multiple rifted basins within the Alarcon spreading corridor indicates an initial stage of extension starting near or shortly after 14-12 Ma. This initial phase of extension was characterized by the formation of several large, widely distributed basins, that show little to no syn-rift sedimentation. A second phase of extension, likely synchronous with large-scale basin opening in the central and northern Gulf of California, began at or near 6 Ma, and was characterized by the formation of smaller half-grabens along both conjugate margins, with syn- and post-rift sedimentary sequences. A key feature imaged in the MCS data is a highly reflective, ropey layer at the top of basement with a maximum thickness variation ranging between 250-500 m. Travel-time modeling of common mid-point (CMP) supergathers shows that this layer has a P-wave velocity of around 2.5 km/s, overlying a basement velocity of 4 km/s. The ropey reflectivity patterns along with its low P-wave velocity suggests a volcanic origin, which is interpreted to be either late-stage Comondu volcano-clastics ending near 11 Ma, and/or early rifting volcanics that range in age between 10-9 Ma. This layer is imaged continuously over the Tamayo bank and appears to be mantling the Tamayo trough, partially concealing the largest episode of rift-induced subsidence. Basic extrapolation of sediment thickness to time of deposition within the largest basins in this corridor (i.e., Tamayo trough) suggests that the onset of rifting began at ~14-11 Ma. These new spatial and temporal constraints, when combined with a crustal thickness tomographic profile obtained across the entire Alarcon corridor, support a model of NW-SE oblique extension within the Gulf of

  2. Absorber Alignment Measurement Tool for Solar Parabolic Trough Collectors: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Stynes, J. K.; Ihas, B.


    As we pursue efforts to lower the capital and installation costs of parabolic trough solar collectors, it is essential to maintain high optical performance. While there are many optical tools available to measure the reflector slope errors of parabolic trough solar collectors, there are few tools to measure the absorber alignment. A new method is presented here to measure the absorber alignment in two dimensions to within 0.5 cm. The absorber alignment is measured using a digital camera and four photogrammetric targets. Physical contact with the receiver absorber or glass is not necessary. The alignment of the absorber is measured along its full length so that sagging of the absorber can be quantified with this technique. The resulting absorber alignment measurement provides critical information required to accurately determine the intercept factor of a collector.

  3. Modular Trough Power Plant Cycle and Systems Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Price, H.; Hassani, V.


    This report summarizes an analysis to reduce the cost of power production from modular concentrating solar power plants through a relatively new and exciting concept that merges two mature technologies to produce distributed modular electric power in the range of 500 to 1,500 kWe. These are the organic Rankine cycle (ORC) power plant and the concentrating solar parabolic (CSP) trough technologies that have been developed independent of each other over many years.

  4. Grounding zone wedges, Kveithola Trough (NW Barents Sea) (United States)

    Rebesco, Michele; Urgeles, Roger; Özmaral, Asli; Hanebuth, Till; Caburlotto, Andrea; Hörner, Tanja; Lantzsch, Hendrik; LLopart, Juame; Lucchi, Renata; Skøtt Nicolaisen, Line; Giacomo, Osti; Sabbatini, Anna; Camerlenghi, Angelo


    Swath bathymetry within Kveithola Trough (NW Barents Sea) shows a seafloor characterized by E-W trending megascale glacial lineations (MSGLs) overprinted by transverse Grounding Zone Wedges (GZWs), which give the trough a stair profile (Rebesco et al., 2011). GZWs are formed by deposition of subglacial till at temporarily stable ice-stream fronts in between successive episodic retreats (Rüther et al., 2012; Bjarnadóttir et al., 2012). Sub-bottom data show that present-day morphology is largely inherited from palaeo-seafloor topography of GZWs, which is draped by a deglacial to early Holocene glaciomarine sediments (about 15 m thick). The ice stream that produced such subglacial morphology was flowing from East to West inside Kveithola Trough during Last Glacial Maximum. Its rapid retreat was likely associated with progressive lift-offs, and successive rapid melting of the grounded ice, induced by the eustatic sea-level rise (Lucchi et al., 2013). References: Bjarnadóttir, L.R., Rüther, D.C., Winsborrow, M.C.M., Andreassen, K., 2012. Grounding-line dynamics during the last deglaciation of Kveithola, W Barents Sea, as revealed by seabed geomorphology and shallow seismic stratigraphy. Boreas, 42, 84-107. Lucchi R.G., et al. 2013. Postglacial sedimentary processes on the Storfjorden and Kveithola TMFs: impact of extreme glacimarine sedimentation. Global and Planetary Change, 111, 309-326. Rebesco, M., et al. 2011. Deglaciation of the Barents Sea Ice Sheet - a swath bathymetric and subbottom seismic study from the Kveitehola Trough. Marine Geology, 279, 141-14. Rüther, D.C., Bjarnadóttir, L.R., Junttila, J., Husum, K., Rasmussen, T.L., Lucchi, R.G., Andreassen, K., 2012. Pattern and timing of the north-western Barents Sea Ice Sheet deglaciation and indications of episodic Holocene deposition. Boreas 41, 494-512.

  5. Mid-Oceanic Troughs and Associated Teleconnection Patterns (United States)

    Lu, Mengmeng; Deng, Kaiqiang; Yang, Song; Zhou, Guojun; Tan, Yaheng


    The mid-oceanic troughs (MOTs) are two prominent circulation systems over the North Pacific and the North Atlantic during the boreal summer, which act as the atmospheric bridges linking their adjacent continental climate. On interannual time scale, the variation of the mid-Atlantic trough (MAT) is significantly associated with the NAO variability and a southeastward propagating stationary wave that originates from the northeastern Pacific. The MAT is significantly correlated with the surface climate including the precipitation and surface temperature over the American-Atlantic-Eurasian sector. On interdecadal time scale, the variation of the MAT is strongly related to the AMO and associated with a dipole structure of anomalous precipitation over the North Atlantic and the Greenland. This study also shows that the most dominant mode of the mid-Pacific trough (MPT) is associated with the eastern Pacific La Niña-like pattern and Atlantic SST variability, while the second mode is related to the central Pacific El Niño-like pattern and Arctic sea ice variability. These two modes of the MPT are linked to the Asian-Pacific-American precipitation and surface temperature differently.

  6. Seafloor Crustal Deformation Close to the Nankai Trough, Japan (United States)

    Tadokoro, K.; Sugimoto, S.; Watanabe, T.; Okuda, T.; Muto, D.; Kimoto, A.; Ando, M.; Sayanagi, K.; Kuno, M.


    \\ \\ \\ The Nankai Trough is one of the active plate boundaries in the world. Major subduction earthquakes, Nankai and Tonankai earthquakes, repeatedly occur with intervals of 100-150 years at the Nankai Trough. The last large earthquakes occurred in 1944 and 1946. Therefore, the 50-years probabilities of next major earthquakes are 80- 90 %. It is necessary to monitor crustal deformation above the source regions for the sake of earthquake prediction and disaster prevention. The source regions of the earthquakes are located beneath the sea bottom, to the south of the Japan Islands. \\ \\ \\ One of the useful tools to monitor seafloor crustal deformation is the observation system composed of the acoustic ranging and kinematic GPS positioning techniques. We have installed seafloor benchmarks for acoustic ranging at the Nankai Trough region. We repeatedly observed at the two sites from 2004. The result of the repeated observation shows that the repeatability of the measurement is +/- 2-3 cm for the horizontal components. Also we detect crustal deformation related to plate convergence using our system. The velocity vectors derived from our repeated observation are (7.0 cm/yr, N78W) and (5.2 cm/yr, N87W), which is consistent to the on-land continuous observations. \\ \\ \\ This study is promoted by Ministry of Education, Culture, Sports, Science and Technology, Japan. We are grateful to the captains and crews of Research Vessels, "Asama"and "Hokuto."

  7. Evidence for cross rift structural controls on deformation and seismicity at a continental rift caldera (United States)

    Lloyd, Ryan; Biggs, Juliet; Wilks, Matthew; Nowacki, Andy; Kendall, J.-Michael; Ayele, Atalay; Lewi, Elias; Eysteinsson, Hjálmar


    In continental rifts structural heterogeneities, such as pre-existing faults and foliations, are thought to influence shallow crustal processes, particularly the formation of rift faults, magma reservoirs and surface volcanism. We focus on the Corbetti caldera, in the southern central Main Ethiopian Rift. We measure the surface deformation between 22nd June 2007 and 25th March 2009 using ALOS and ENVISAT SAR interferograms and observe a semi-circular pattern of deformation bounded by a sharp linear feature cross-cutting the caldera, coincident with the caldera long axis. The signal reverses in sign but is not seasonal: from June to December 2007 the region south of this structure moves upwards 3 cm relative to the north, while from December 2007 until November 2008 it subsides by 2 cm. Comparison of data taken from two different satellite look directions show that the displacement is primarily vertical. We discuss potential mechanisms and conclude that this deformation is associated with pressure changes within a shallow (Analysis of the distribution of post-caldera vents and cones inside the caldera shows their locations are statistically consistent with this fault structure, indicating that the fault has also controlled the migration of magma from a reservoir to the surface over tens of thousands of years. Spatial patterns of seismicity are consistent with a cross-rift structure that extents outside the caldera and to a depth of ∼30 km, and patterns of seismic anisotropy suggests stress partitioning occurs across the structure. We discuss the possible nature of this structure, and conclude that it is most likely associated with the Goba-Bonga lineament, which cross-cuts and pre-dates the current rift. Our observations show that pre-rift structures play an important role in magma transport and shallow hydrothermal processes, and therefore they should not be neglected when discussing these processes.

  8. Seismicity of the Earth 1900-2013 East African Rift (United States)

    Hayes, Gavin P.; Jones, Eric S.; Stadler, Timothy J.; Barnhart, William D.; McNamara, Daniel E.; Benz, Harley M.; Furlong, Kevin P.; Villaseñor, Antonio; Hayes, Gavin P.; Jones, Eric S.; Stadler, Timothy J.; Barnhart, William D.; McNamara, Daniel E.; Benz, Harley M.; Furlong, Kevin P.; Villaseñor, Antonio


    The East African Rift system (EARS) is a 3,000-km-long Cenozoic age continental rift extending from the Afar triple junction, between the horn of Africa and the Middle East, to western Mozambique. Sectors of active extension occur from the Indian Ocean, west to Botswana and the Democratic Republic of the Congo (DRC). It is the only rift system in the world that is active on a continent-wide scale, providing geologists with a view of how continental rifts develop over time into oceanic spreading centers like the Mid-Atlantic Ridge.

  9. Contrasted continental rifting via plume-craton interaction: Applications to Central East African Rift

    Directory of Open Access Journals (Sweden)

    Alexander Koptev


    Full Text Available The East African Rift system (EARS provides a unique system with the juxtaposition of two contrasting yet simultaneously formed rift branches, the eastern, magma-rich, and the western, magma-poor, on either sides of the old thick Tanzanian craton embedded in a younger lithosphere. Data on the pre-rift, syn-rift and post-rift far-field volcanic and tectonic activity show that the EARS formed in the context of the interaction between a deep mantle plume and a horizontally and vertically heterogeneous lithosphere under far-field tectonic extension. We bring quantitative insights into this evolution by implementing high-resolution 3D thermo-mechanical numerical deformation models of a lithosphere of realistic rheology. The models focus on the central part of the EARS. We explore scenarios of plume-lithosphere interaction with plumes of various size and initial position rising beneath a tectonically pre-stretched lithosphere. We test the impact of the inherited rheological discontinuities (suture zones along the craton borders, of the rheological structure, of lithosphere plate thickness variations, and of physical and mechanical contrasts between the craton and the embedding lithosphere. Our experiments indicate that the ascending plume material is deflected by the cratonic keel and preferentially channeled along one of its sides, leading to the formation of a large rift zone along the eastern side of the craton, with significant magmatic activity and substantial melt amount derived from the mantle plume material. We show that the observed asymmetry of the central EARS, with coeval amagmatic (western and magmatic (eastern branches, can be explained by the splitting of warm material rising from a broad plume head whose initial position is slightly shifted to the eastern side of the craton. In that case, neither a mechanical weakness of the contact between the craton and the embedding lithosphere nor the presence of second plume are required to

  10. Variable styles of rifting expressed in crustal structure across three rift segments of the Gulf of California (United States)

    Lizarralde, D. D.; Axen, G. J.; Brown, H. E.; Fletcher, J. M.; Fernandez, A. G.; Harding, A. J.; Holbrook, W. S.; Kent, G. M.; Paramo, P.; Sutherland, F. H.; Umhoefer, P. J.


    We present a summary of results from a crustal-scale seismic experiment conducted in the southern Gulf of California. This experiment, the PESCADOR experiment, imaged crustal structure across three rift segments, the Alarcon, Guaymas, and San José del Cabo to Puerto Vallarta (Cabo-PV) segments, using seismic refraction/wide-angle reflection data acquired with airgun sources and recorded by closely spaced (10-15 km) ocean-bottom seismometers (OBSs). The imaged crustal structure reveals a surprisingly large variation in rifting style and magmatism between these segments: the Alarcon segment is a wide rift with apparently little syn-rift magmatism; the Guaymas segment is a narrow, magmatically robust rift; and the Cabo-PV segment is a narrow, magmatically "normal" rift. Our explanation for the observed variability is non-traditional in that we do not invoke mantle temperature, the factor commonly invoked to explain end-member volcanic and non-volcanic rifted margins, as the source of the considerable, though non-end-member variability we observe. Instead, we invoke mantle depletion related to pre-rift arc volcanism to account for observed wide, magma-poor rifting and mantle fertility and possibly the influence of sediments to account for robust rift and post-rift magmatism. These factors may commonly vary over small lateral spatial scales in regions that have transitioned from convergent to extensional tectonics, as is the case for the Gulf of California and many other rifts. Our hypothesis suggests that substantial lateral variability may exist within the uppermost mantle beneath the Gulf of California today, and it is hoped that ongoing efforts to image upper mantle structure here will provide tests for this hypothesis.

  11. New constraints on the timing of flexural deformation along the northern Australian margin: Implications for arc-continent collision and the development of the Timor Trough (United States)

    Saqab, Muhammad Mudasar; Bourget, Julien; Trotter, Julie; Keep, Myra


    Numerous extensional faults offset the passive margin strata of the northern Bonaparte Basin. This extensional deformation has been attributed to lithospheric flexure of the descending Australian Plate, in an overall convergence setting. Here we use an extensive 2D and 3D seismic dataset calibrated with well biostratigraphy and strontium (Sr) isotope age data to constrain the timing of deformation along the northern Australian margin during the Neogene. Analysis of fault throw and differential thickness variations give new insights on the propagation and slip history of the faults. Along-dip throw profiles exhibit 'D' shape distributions, skewed towards the top. Positive throw gradients above the throw maxima, coinciding with intervals of growth strata, indicate multiphase fault activity. Results indicate that post-rift extensional deformation initiated during the latest Miocene (ca. 6 Ma). The development of the modern Timor Trough (as a foreland basin) and Cartier Trough also commenced during this period. A second episode of increased tectonic activity occurred around the Pliocene-Quaternary boundary (ca. 3 Ma), and the deformation continued intermittently to the present-day. These new results are in agreement with the timing of initiation of collision between the Australian Plate and the Banda Arc and uplift of the Timor Island, recently derived from stratigraphic analysis in Timor. These regional tectonic events have profoundly affected the paleogeography of the Timor Sea and may explain major changes in oceanic circulation and climate during the Neogene.

  12. Temporal and geochemical evolution of Miocene volcanism in the Andean back-arc between 36°S and 38°S and U-series analyses of young volcanic centers in the arc and back-arc, Argentina

    DEFF Research Database (Denmark)

    Dyhr, Charlotte Thorup

    . Geochemical characteristics indicate a back-arc mantle devoid of arc-like components and with a strong OIB-like signature. They erupted at a time of extension along the Andean margin. After 20 Ma, basaltic – trachyandesitic lavas with a more depleted isotopic and incompatible trace element signature...... the fluid-enriched nature of arc-related rocks (U-excess are found in most rocks) and the more OIB-like nature of the Payún Matrú complex (Th-exsess is observed in all rocks). The fluid addition to the mantle source is modeled revealing timescales of 10 – 100 ka for the fluid enrichment. For the back...

  13. Lamprophyres from the Harohalli dyke swarm in the Halaguru and Mysore areas, Southern India: Implications for backarc basin magmatism (United States)

    Lanjewar, Shubhangi; Randive, Kirtikumar


    The Bangalore and Harohalli dyke swarms occur in the eastern part of the Dharwar craton. The older Bangalore dyke swarm is made up of dolerites, trending east-west, and the younger contains alkaline dykes that trend approximately north-south. The lamprophyres of the Harohalli dyke swarm occur in the Halaguru and Mysore industrial areas where they are exposed as fresh porphyritic - panidiomorphic dykes, containing crustal xenoliths, and showing chilled contacts with the country rock charnokites. They are chiefly composed of amphiboles which form well-developed phenocrysts. Clinopyroxenes are present in some of the dykes. Compositional zoning is observed in clinopyroxenes and amphiboles; their zoning patterns indicate that the magma experienced cryptic variations and that fractional crystallization was a dominant process in the evolution of the Harohalli Lamprophyres (HRL). The HRL are calc-alkaline with shoshonitic affinity and exhibit a K2O/Na2O ratio of ∼1. They show primitive (MORB-like) trace-element characters. LILE and LREE both show marginally enriched patterns; whereas HFSE and HREE show strongly depleted patterns. In the regional geologic sense, HRL dykes are characterised by two major influences; namely, (i) primary source region characteristics, which are geochemically more primitive, roughly falling within fields of primitive - MORB and enriched- MORB and (ii) the continental lithosphere. The data points for the HRL distinctly show their proximity to N-MORB and scatter towards the continental crust. Moreover, features like xenolith assimilation might influence the trace-element characteristics of the HRL dykes. Such magmas with mixed characters can be formed in a backarc basin environment. Geochemical proxies such as Ba/Nb vs Nb/Yb, Ba/Th vs Th/Nb, and the water content of magmas; which have been effectively used for discriminating backarc basin magmas worldwide, also indicate that the HRL magmas were generated in a backarc environment with inputs from

  14. Constraints on the origin and evolution of magmas in the Payún Matrú Volcanic Field, Quaternary Andean back-arc of western Argentina

    DEFF Research Database (Denmark)

    Hernadno, I R; Aragón, E; Frei, Robert


    The Payún Matrú Volcanic Field (Pleistocene–Holocene) is located in the Andean back-arc of the Southern Volcanic Zone, western Argentina, and is contemporaneous with the Andean volcanic arc at the same latitude. It includes two polygenetic, mostly trachytic volcanoes: Payún Matrú (with a summit c...

  15. Results from shallow research drilling at Inyo Domes, Long Valley Caldera, California and Salton Sea geothermal field, Salton Trough, California

    Energy Technology Data Exchange (ETDEWEB)

    Younker, L.W.; Eichelberger, J.C.; Kasameyer, P.W.; Newmark, R.L.; Vogel, T.A.


    This report reviews the results from two shallow drilling programs recently completed as part of the United States Department of Energy Continental Scientific Drilling Program. The purpose is to provide a broad overview of the objectives and results of the projects, and to analyze these results in the context of the promise and potential of research drilling in crustal thermal regimes. The Inyo Domes drilling project has involved drilling 4 shallow research holes into the 600-year-old Inyo Domes chain, the youngest rhyolitic event in the coterminous United States and the youngest volcanic event in Long Valley Caldera, California. The purpose of the drilling at Inyo was to understand the thermal, chemical and mechanical behavior of silicic magma as it intrudes the upper crust. This behavior, which involves the response of magma to decompression and cooling, is closely related to both eruptive phenomena and the establishment of hydrothermal circulation. The Salton Sea shallow research drilling project involved drilling 19 shallow research holes into the Salton Sea geothermal field, California. The purpose of this drilling was to bound the thermal anomaly, constrain hydrothermal flow pathways, and assess the thermal budget of the field. Constraints on the thermal budget links the local hydrothermal system to the general processes of crustal rifting in the Salton Trough.

  16. Quantifying the Forcing Factors Responsible for the Tectono-Geomorphological Evolution of Neogene Rift Basins, Baja California (United States)

    El-Sobky, H. F.; Dorobek, S. L.


    The Gulf of California and its surrounding land areas provide a classic example of recently rifted continental lithosphere, where back-arc stretching of a continental volcanic arc has culminated in the ongoing seafloor spreading that characterizes the present-day axis of the gulf. The recent tectonic history of eastern Baja California, which includes most of the land area eastward of the main drainage divide that extends north-south along the length of the peninsula, has been dominated by oblique rifting that began at about 5 Ma. Thus, extensional tectonics, bedrock lithology, long-term climatic changes, and evolving surface processes have controlled the tectono-geomorphological evolution of the eastern part of the peninsula since 5 Ma. No previous studies, however, examined the effect of these combined factors on the current tectono-geomorphological characteristics of eastern Baja California. We assume that although long-term climate may have changed along the peninsula over the last several million years, precipitation amounts are likely to have changed in a similar way along the entire length of the peninsula, regardless of the long-term climatic trend. This suggests that climatic variation can be largely ruled out as an explanation for the geomorphologic variability between basins. In an attempt to quantify the factors that affected the geomorphologic development along the eastern side of Baja California, thirty-four drainage basins were extracted from a 15-m-resolution absolute digital elevation model (DEM). The stacked-vector method was applied to utilize the different terrain attributes (e.g., hillshaded relief, aspect, slope, etc.) for supervised classification of bedrock lithologies using object-oriented techniques. Stream-length gradient indices were then measured for the main stream in each of the basins. Bedrock lithologies and alluvium were plotted along the stream profiles to identify any relationship between lithology, structure, and stream gradient

  17. A Middle-Upper Miocene fluvial-lacustrine rift sequence in the Song Ba Rift, Vietnam

    DEFF Research Database (Denmark)

    Lars H., Nielsen; Henrik I., Petersen; Nguyen D., Dau


    The small Neogene Krong Pa graben is situated within the continental Song Ba Rift, which is bounded by strike-slip faults that were reactivated as extensional faults in Middle Miocene time. The 500 m thick graben-fill shows an overall depositional development reflecting the structural evolution, ...

  18. Magnetosphere-Ionosphere Coupling Processes in the Ionospheric Trough Region During Substorms (United States)

    Zou, S.; Moldwin, M.; Nicolls, M. J.; Ridley, A. J.; Coster, A. J.; Yizengaw, E.; Lyons, L. R.; Donovan, E.


    The ionospheric troughs are regions of remarkable electron density depression at the subauroral and auroral latitudes, and are categorized into the mid-latitude trough or high-latitude trough, depending on their relative location to the auroral oval. Substorms are one fundamental element of geomagnetic activity, during which structured field-aligned currents (FACs) and convection flows develop in the subauroral and auroral ionosphere. The auroral/trough region is expected to experience severe electron density variations during substorms. Accurate specification of the trough dynamics during substorms and understanding its relationship with the structured FACs and convection flows are of important practical purpose, including providing observational foundations for assessing the attendant impact on navigation and communication. In addition, troughs are important since they map to magnetospheric boundaries allowing the remote sensing of magnetosphere-ionosphere coupling processes. In this talk, we discuss the dynamics of the mid-latitude and high-latitude troughs during substorms based on multi-instrument observations. Using GPS total electron content (TEC) data, we characterize the location and width of the mid-latitude trough through the substorm lifecycle and compare them with existing trough empirical models. Using a combination of incoherent scattering radar (ISR), GPS TEC, auroral imager and a data assimilative model, we investigate the relationship between the high-latitude trough and FACs as well as convection flows. The high-latitude trough is found to be collocated with a counter-clockwise convection flow vortex east of the Harang reversal region, and downward FACs as part of the substorm current system are suggested to be responsible for the high-latitude trough formation. In addition, complex ionospheric electron temperature within the high-latitude trough is found, i.e., increase in the E region while decrease in the F region. We discuss possible

  19. Phanerozoic Rifting Phases And Mineral Deposits (United States)

    Hassaan, Mahmoud


    In North Africa occur Mediterranean and Red Sea metallogenic provinces. In each province distribute 47 iron- manganese- barite and lead-zinc deposits with tectonic-structural control. The author presents in this paper aspects of position of these deposits in the two provinces with Phanerozoic rifting . The Mediterranean Province belongs to two epochs, Hercynian and Alpine. The Hercynian Epoch manganese deposits in only Moroccoa- Algeria belong to Paleozoic tectonic zones and Proterozoic volcanics. The Alpine Epoch iron-manganese deposits are of post-orogenic exhalative-sedimentary origin. Manganese deposits in southern Morocco occur in Kabil-Rief quartz-chalcedony veins controlled by faults in andesitic sheets and in bedded pelitic tuffs, strata-form lenses and ore veins, in Precambrian schist and in Triassic and Cretaceous dolomites. Disseminated manganese with quartz and barite and effusive hydrothermal veins are hosted in Paleocene volcanics. Manganese deposits in Algeria are limited and unrecorded in Tunisia. Strata-form iron deposits in Atlas Heights are widespread in sub-rift zone among Jurassic sediments inter-bedding volcanic rocks. In Algeria, Group Beni-Saf iron deposits are localized along the Mediterranean coast in terrigenous and carbonate rocks of Jurassic, Cretaceous and Eocene age within faults and bedding planes. In Morocco strata-form hydrothermal lead-zinc deposits occur in contact zone of Tertiary andesite inter-bedding Cambrian shale, Lias dolomites and Eocene andesite. In both Algeria and Tunisia metasomatic Pb-Zn veins occur in Campanian - Maastrichtian carbonates, Triassic breccia, Jurassic limestone, Paleocene sandstones and limestone and Neogene conglomerates and sandstones. The Red Sea metallogenic province belongs to the Late Tertiary-Miocene times. In Wadi Araba hydrothermal iron-manganese deposits occur in Cretaceous sediments within 320°and 310 NW faults related to Tertiary basalt. Um-Bogma iron-manganese deposits are closely

  20. Magma genesis by rifting of oceanic lithosphere above anomalous mantle: Terceira Rift, Azores (United States)

    Beier, Christoph; Haase, Karsten M.; Abouchami, Wafa; Krienitz, Marc-S.; Hauff, Folkmar


    The Terceira Rift formed relatively recently (˜1 Ma ago) by rifting of the old oceanic lithosphere of the Azores Plateau and is currently spreading at a rate of 2-4mm/a. Together with the Mid-Atlantic Ridge, the Terceira Rift forms a triple junction that separates the Eurasian, African, and American Plates. Four volcanic systems (São Miguel, João de Castro, Terceira, Graciosa), three of which are islands, are distinguished along the axis and are separated by deep avolcanic basins similar to other ultraslow spreading centers. The major element, trace element and Sr-Nd-Pb isotope geochemistry of submarine and subaerial lavas display large along-axis variations. Major and trace element modeling suggests melting in the garnet stability field at smaller degrees of partial melting at the easternmost volcanic system (São Miguel) compared to the central and western volcanoes, which appear to be characterized by slightly higher melting degrees in the spinel/garnet transition zone. The degrees of partial melting at the Terceira Rift are slightly lower than at other ultraslow mid-ocean ridge spreading axes (Southwest Indian Ridge, Gakkel Ridge) and occur at greater depths as a result of the melting anomaly beneath the Azores. The combined interaction of a high obliquity, very slow spreading rates, and a thick preexisting lithosphere along the axis probably prevents the formation and eruption of larger amounts of melt along the Terceira Rift. However, the presence of ocean islands requires a relatively stable melting anomaly over relatively long periods of time. The trace element and Sr-Nd-Pb isotopes display individual binary mixing arrays for each volcanic system and thus provide additional evidence for focused magmatism with no (or very limited) melt or source interaction between the volcanic systems. The westernmost mantle sources beneath Graciosa and the most radiogenic lavas from the neighboring Mid-Atlantic Ridge suggest a mantle flow from Graciosa toward the Mid

  1. Small-scale convection at a continental back-arc to craton transition: Application to the southern Canadian Cordillera (United States)

    Hardebol, N. J.; Pysklywec, R. N.; Stephenson, R.


    A step in the depth of the lithosphere base, associated with lateral variations in the upper mantle temperature structure, can trigger mantle flow that is referred to as edge-driven convection. This paper aims at outlining the implications of such edge-driven flow at a lateral temperature transition from a hot and thin to a cold and thick lithosphere of a continental back-arc. This configuration finds application in the southern Canadian Cordillera, where a hot and thin back-arc is adjacent to the cold and thick North American Craton. A series of geodynamical models tested the thermodynamical behavior of the lithosphere and upper mantle induced by a step in lithosphere thickness. The mantle flow patterns, thickness and heat flow evolution of the lithosphere, and surface topography are examined. We find that the lateral temperature transition shifts cratonward due to the vigorous edge-driven mantle flow that erodes the craton edge, unless the craton has a distinct high viscosity mantle lithosphere. The mantle lithosphere viscosity structure determines the impact of edge-driven flow on crustal deformation and surface heat flow; a dry olivine rheology for the craton prevents the edge from migrating and supports a persistent surface heat flow contrast. These phenomena are well illustrated at the transition from the hot Canadian Cordillera to craton that is supported by a rheological change and that coincides with a lateral change in surface heat flow. Fast seismic wave velocities observed in the upper mantle cratonward of the step can be explained as downwellings induced by the edge-driven flow.

  2. [The Great Rift Valley. Parasitological results]. (United States)

    Nozais, J P


    East Africa is separated from the continent by the Great Rift Valley which was created at the end of the secondary era limiting then the East Africa under-continent with peculiar fauna and flora features. A several million years long isolation, during the tertiary era, seems to explain that a certain number of protozoan and helminthic diseases present peculiar clinical, epidemiological, therapeutical and parasitological features. The occurrence of those peculiar strains tends to indicate that in this region, for example, the resistance of P. falciparum to amino-4-quinolines is a regional feature which should not largely expand to the rest of the African continent.

  3. Rifts, orogens, cratons, and global tectonics: Introduction

    Directory of Open Access Journals (Sweden)

    S. V. Rasskazov


    Full Text Available A key role in developing the Earth theory is played by comparative studies of orogens, rifts, and platforms in the equatorial, middle and high latitudes of Asia and the adjacent Arctic regions. The modern shape of the planet’s triaxial asymmetrical cardioid ellipsoid results from its latest (Late Phanerozoic geodynamic evolution that began in Arctic and then commenced in Asia. At this stage, mechanisms of the lithosphere extension and compression, combined with extension, were launched in Arctic and Asia, respectively. The special issue of Geodynamics & Tectonophysics presents papers on this topic.

  4. Prevalence of Rift Valley Fever among ruminants, Mayotte. (United States)

    Cêtre-Sossah, Catherine; Pédarrieu, Aurélie; Guis, Hélène; Defernez, Cédric; Bouloy, Michèle; Favre, Jacques; Girard, Sébastien; Cardinale, Eric; Albina, Emmanuel


    Rift Valley fever threatens human and animal health. After a human case was confirmed in Comoros in 2007, 4 serosurveys among ruminants in Mayotte suggested that Rift Valley fever virus had been circulating at low levels since 2004, although no clinical cases occurred in animals. Entomologic and ecologic studies will help determine outbreak potential.

  5. Rift Valley fever potential mosquito vectors and their infection status ...

    African Journals Online (AJOL)

    Background: Rift Valley fever (RVF) is a mosquito-borne viral zoonotic disease. Rift Valley fever virus (RVFV) has been isolated from more than 40 species of mosquitoes from eight genera. This study was conducted to determine the abundance of potential mosquito vectors and their RVFV infection status in Ngorongoro ...

  6. Salt Lakes of the African Rift System: A Valuable Research ...

    African Journals Online (AJOL)

    Salt Lakes of the African Rift System: A Valuable Research Opportunity for Insight into Nature's Concenrtated Multi-Electrolyte Science. JYN Philip, DMS Mosha. Abstract. The Tanzanian rift system salt lakes present significant cultural, ecological, recreational and economical values. Beyond the wealth of minerals, resources ...

  7. Rift Valley Fever Outbreak in Livestock, Mozambique, 2014 (United States)

    Coetzee, Peter; Mubemba, Benjamin; Nhambirre, Ofélia; Neves, Luis; Coetzer, J.A.W.; Venter, Estelle H.


    In early 2014, abortions and death of ruminants were reported on farms in Maputo and Gaza Provinces, Mozambique. Serologic analysis and quantitative and conventional reverse transcription PCR confirmed the presence of Rift Valley fever virus. The viruses belonged to lineage C, which is prevalent among Rift Valley fever viruses in southern Africa. PMID:27869589

  8. The mesoproterozoic midcontinent rift system, Lake Superior region, USA (United States)

    Ojakangas, R.W.; Morey, G.B.; Green, J.C.


    Exposures in the Lake Superior region, and associated geophysical evidence, show that a 2000 km-long rift system developed within the North American craton ??? 1109-1087 Ma, the age span of the most of the volcanic rocks. This system is characterized by immense volumes of mafic igneous rocks, mostly subaerial plateau basalts, generated in two major pulses largely by a hot mantle plume. A new ocean basin was nearly formed before rifting ceased, perhaps due to the remote effect of the Grenville continental collision to the east. Broad sagging/subsidence, combined with a system of axial half-grabens separated along the length of the rift by accommodation zones, provided conditions for the accumulation of as much as 20 km of volcanic rocks and as much as 10 km of post-rift clastic sediments, both along the rift axis and in basins flanking a central, post-volcanic horst. Pre-rift mature, quartzose sandstones imply little or no uplift prior to the onset of rift volcanism. Early post-rift red-bed sediments consist almost entirely of intrabasinally derived volcanic sediment deposited in alluvial fan to fluvial settings; the exception is one gray to black carbon-bearing lacustrine(?) unit. This early sedimentation phase was followed by broad crustal sagging and deposition of progressively more mature red-bed, fluvial sediments with an extra-basinal provenance. ?? 2001 Elsevier Science B.V. All rights reserved.

  9. Esophageal cancer in north rift valley of western Kenya | Wakhisi ...

    African Journals Online (AJOL)

    Esophageal cancer in north rift valley of western Kenya. ... Our finding also contrast with an earlier reported study that indicated that Rift Valley is a low prevalence area for this type of cancer. The mean age ... This may lead to identification of molecular biomarkers to be used in future for the early detection of this neoplasm.

  10. Structural evolution of the Kilombero rift basin in central Tanzania ...

    African Journals Online (AJOL)

    Detailed geological and structural investigations at the northwestern scarp of the Cenozoic Kilombero Rift allow the drawing of its structural evolution and establishment of stress conditions that prevailed at the different deformational episodes at this rift zone. The structure, where the northwestern scarp of the Cenozoic ...

  11. On purpose simulation model for molten salt CSP parabolic trough (United States)

    Caranese, Carlo; Matino, Francesca; Maccari, Augusto


    The utilization of computer codes and simulation software is one of the fundamental aspects for the development of any kind of technology and, in particular, in CSP sector for researchers, energy institutions, EPC and others stakeholders. In that extent, several models for the simulation of CSP plant have been developed with different main objectives (dynamic simulation, productivity analysis, techno economic optimization, etc.), each of which has shown its own validity and suitability. Some of those models have been designed to study several plant configurations taking into account different CSP plant technologies (Parabolic trough, Linear Fresnel, Solar Tower or Dish) and different settings for the heat transfer fluid, the thermal storage systems and for the overall plant operating logic. Due to a lack of direct experience of Molten Salt Parabolic Trough (MSPT) commercial plant operation, most of the simulation tools do not foresee a suitable management of the thermal energy storage logic and of the solar field freeze protection system, but follow standard schemes. ASSALT, Ase Software for SALT csp plants, has been developed to improve MSPT plant's simulations, by exploiting the most correct operational strategies in order to provide more accurate technical and economical results. In particular, ASSALT applies MSPT specific control logics for the electric energy production and delivery strategy as well as the operation modes of the Solar Field in off-normal sunshine condition. With this approach, the estimated plant efficiency is increased and the electricity consumptions required for the plant operation and management is drastically reduced. Here we present a first comparative study on a real case 55 MWe Molten Salt Parabolic Trough CSP plant placed in the Tibetan highlands, using ASSALT and SAM (System Advisor Model), which is a commercially available simulation tool.

  12. Combining detrital geochronology and sedimentology to assess basin development in the Rukwa Rift of the East African Rift System (United States)

    Hilbert-Wolf, Hannah; Roberts, Eric; Mtelela, Cassy; Downie, Bob


    We have employed a multifaceted approach to sedimentary provenance analysis in order to assess the timing and magnitude of tectonic events, sedimentation, and landscape development in the Western Branch of the East African Rift System. Our approach, termed 'Sedimentary Triple Dating', integrates: (1) U-Pb dating via LA-ICPMS; (2) fission track; and (3) (U-Th)/He thermochronology of detrital zircon and apatite. We integrate geochronology, thermochronology, and provenance analysis to relate the initiation of rifting events to regional dynamic uplift, sedimentation patterns, and interpret the far-reaching climatic and evolutionary effects of fluctuating rift flank topography in the Rukwa Rift, a segment of the Western Branch. This work provides additional data to support the recent concept of synchronous development of the Western and Eastern branches of the East African Rift System ~25 Ma, and better constrains the age, location and provenance of subsequent rifting and sedimentation events in the Rukwa Rift Basin. Investigation of well cuttings and outcrop samples from the Neogene-Recent Lake Beds Succession in the Rukwa Rift Basin revealed a suite of previously unrecognized tuffaceous deposits at the base of the succession. A population of euhedral, magmatic zircons from a basal Lake Beds tuff and Miocene-Pliocene detrital zircons from well cuttings suggest that Neogene rift reactivation and volcanism began ~9-10 Ma. This timing is consistent with demonstrated rifting in Uganda and Malawi, as well as with the initiation of volcanism in the Rungwe Volcanic Province at the southern end of the Rukwa Rift, and the estimated development of Lake Tanganyika to the north. Moreover, there appear to be a suite of unconformity bounded stratigraphic units that make up the Lower Lake Beds succession, and detrital zircon maximum depositional ages from these units suggests episodic sedimentation in the rift, punctuated by long hiatuses or uplift, rather than steady subsidence and

  13. Fault Orientations at Obliquely Rifted Margins: Where? When? Why? (United States)

    Brune, Sascha


    Present-day knowledge of rifted margin formation is largely based on 2D seismic lines, 2D conceptual models, and corroborated by 2D numerical experiments. However, the 2D assumption that the extension direction is perpendicular to the rift trend is often invalid. In fact, worldwide more than 75% of all rifted margin segments have been formed under significant obliquity exceeding 20° (angle measured between extension direction and rift trend normal): During formation of the Atlantic Ocean, oblique rifting dominated at the sheared margins of South Africa and Patagonia, the Equatorial Atlantic margins, separation of Greenland and North America, and it played a major role in the protracted rift history of the North East Atlantic. Outside the Atlantic Ocean, oblique rifting occurred during the split between East and West Gondwana, the separation of India and Australia, India and Madagascar, Australia and Antarctica, as well as Arabia and Africa. It is presently observed in the Gulf of California, the Aegean and in the East African Rift. Despite its significance, the degree to which oblique lithospheric extension affects first-order rift and passive margin properties like surface stress pattern, fault azimuths, and basin geometry, is still not entirely clear. This contribution provides insight in crustal stress patterns and fault orientations by applying a 3D numerical rift model to oblique extensional settings. The presented forward experiments cover the whole spectrum of oblique extension (i.e. rift-orthogonal extension, low obliquity, high obliquity, strike-slip deformation) from initial deformation to breakup. They are conducted using an elasto-visco-plastic finite element model and involve crustal and mantle layers accounting for self-consistent necking of the lithosphere. Results are thoroughly compared to previous analogue experiments, which yields many similarities but also distinct differences for late rift stages and for high obliquity. Even though the model

  14. The F-region trough: seasonal morphology and relation to interplanetary magnetic field

    Directory of Open Access Journals (Sweden)

    M. Voiculescu


    Full Text Available We present here the results of a statistical study of the ionospheric trough observed in 2003 by means of satellite tomography. We focus on the seasonal morphology of the trough occurrence and investigate the trough latitude, width and the horizontal gradients at the edges, at different magnetic local times, as well as their relations to geomagnetic activity and the interplanetary magnetic field. A seasonal effect is noticed in the diurnal variation of the trough latitude, indicating that summer clearly differs from the other seasons. In winter the troughs seem to follow the solar terminator. The width of the trough has a diurnal variation and it depends on the season, as well. The broadest troughs are observed in winter and the narrowest ones in summer. A discontinuity in the diurnal variation of the trough latitude is observed before noon. It is suggested that this is an indication of a difference between the generation mechanisms of morningside and eveningside troughs. The density gradients at the edges have a complex dependence on the latitude of the trough and on geomagnetic activity. The photoionization and the auroral precipitation are competing in the formation of the trough walls at different magnetic local times. An important finding is that the interplanetary magnetic field plays a role in the occurrence of the trough at different levels of geomagnetic activity. This is probably associated with the topology of the polar cap convection pattern, which depends on the directions of the IMF components By and Bz.

  15. Plate boundary deformation at the latitude of the Salton Trough - northern Gulf of California (Invited) (United States)

    Stock, J. M.


    characteristics suggest that the zone of strike-slip faults related to past plate boundary deformation extends eastward into SW Arizona and beneath the Sonoran coastal plain. 3) 'New' crust and mantle lithosphere at the plate boundary, in the Salton Trough and the non-oceanic part of the northern Gulf of California, varies in seismic velocity structure and dimensions, both within and across extensional segments. Details of within-segment variations imaged by SSIP (e.g., Ma et al., and Han et al., this meeting) are attributed to active fault patterns and small scale variations in hydrothermal activity and magmatism superposed on a more uniform sedimentation. Differences between the Imperial Valley rift segment and the north Gulf of California segments may be due to more involvement of low angle normal faults in the marine basins in the south (Martin et al., 2013, Tectonics), as well as differences in lower crustal or mantle lithospheric flow from the adjacent continental regions.

  16. Groundwater fluoride enrichment in an active rift setting: Central Kenya Rift case study

    Energy Technology Data Exchange (ETDEWEB)

    Olaka, Lydia A., E-mail: [Department of Geology, University of Nairobi, P.O Box 30197, Nairobi (Kenya); Wilke, Franziska D.H. [Geoforschungs Zentrum, Telegrafenberg, 14473 Potsdam (Germany); Olago, Daniel O.; Odada, Eric O. [Department of Geology, University of Nairobi, P.O Box 30197, Nairobi (Kenya); Mulch, Andreas [Senckenberg Biodiversity and Climate Research Centre, Senckenberganlage 25, 60325 Frankfurt (Germany); Institut für Geowissenschaften, Goethe Universität Frankfurt, Altenhöferallee 1, 60438 Frankfurt (Germany); Musolff, Andreas [UFZ-Helmholtz-Centre for Environmental Research, Department of Hydrogeology, Permoserstr. 15, 04318 Leipzig (Germany)


    Groundwater is used extensively in the Central Kenya Rift for domestic and agricultural demands. In these active rift settings groundwater can exhibit high fluoride levels. In order to address water security and reduce human exposure to high fluoride in drinking water, knowledge of the source and geochemical processes of enrichment are required. A study was therefore carried out within the Naivasha catchment (Kenya) to understand the genesis, enrichment and seasonal variations of fluoride in the groundwater. Rocks, rain, surface and groundwater sources were sampled for hydrogeochemical and isotopic investigations, the data was statistically and geospatially analyzed. Water sources have variable fluoride concentrations between 0.02–75 mg/L. 73% exceed the health limit (1.5 mg/L) in both dry and wet seasons. F{sup −} concentrations in rivers are lower (0.2–9.2 mg/L) than groundwater (0.09 to 43.6 mg/L) while saline lake waters have the highest concentrations (0.27–75 mg/L). The higher values are confined to elevations below 2000 masl. Oxygen (δ{sup 18}O) and hydrogen (δD) isotopic values range from − 6.2 to + 5.8‰ and − 31.3 to + 33.3‰, respectively, they are also highly variable in the rift floor where they attain maximum values. Fluoride base levels in the precursor vitreous volcanic rocks are higher (between 3750–6000 ppm) in minerals such as cordierite and muscovite while secondary minerals like illite and kaolinite have lower remnant fluoride (< 1000 ppm). Thus, geochemical F{sup −} enrichment in regional groundwater is mainly due to a) rock alteration, i.e. through long residence times and natural discharge and/or enhanced leakages of deep seated geothermal water reservoirs, b) secondary concentration fortification of natural reservoirs through evaporation, through reduced recharge and/or enhanced abstraction and c) through additional enrichment of fluoride after volcanic emissions. The findings are useful to help improve water management

  17. A trough for improved SFG spectroscopy of lipid monolayers (United States)

    Franz, Johannes; van Zadel, Marc-Jan; Weidner, Tobias


    Lipid monolayers are indispensable model systems for biological membranes. The main advantage over bilayer model systems is that the surface pressure within the layer can be directly and reliably controlled. The sensitive interplay between surface pressure and temperature determines the molecular order within a model membrane and consequently determines the membrane phase behavior. The lipid phase is of crucial importance for a range of membrane functions such as protein interactions and membrane permeability. A very reliable method to probe the structure of lipid monolayers is sum frequency generation (SFG) vibrational spectroscopy. Not only is SFG extremely surface sensitive but it can also directly access critical parameters such as lipid order and orientation, and it can provide valuable information about protein interactions along with interfacial hydration. However, recent studies have shown that temperature gradients caused by high power laser beams perturb the lipid layers and potentially obscure the spectroscopic results. Here we demonstrate how the local heating problem can be effectively reduced by spatially distributing the laser pulses on the sample surface using a translating Langmuir trough for SFG experiments at lipid monolayers. The efficiency of the trough is illustrated by the detection of enhanced molecular order due to reduced heat load.

  18. Exergetic analysis of parabolic trough solar thermal power plants (United States)

    Petrakopoulou, F.; Ruperez, B.; San Miguel, G.


    A very important component to achieve sustainable development in the energy sector is the improvement of energy efficiency of widely applied thermodynamic processes. Evaluation and optimization methods of energy processes play a crucial role in fulfilling this goal. A suitable method for the evaluation and optimization of energy conversion systems has been proven to be the exergetic analysis. In this work, two parabolic trough solar thermal power plants are simulated in detail using commercial software, and they are further analysed and compared using an exergetic analysis. The first plant uses a thermal fluid to produce the steam required in a steam generator, while the second one produces the steam directly in the solar field. The analysis involves the evaluation of the individual components of the power plants, as well as the performance evaluation of the overall structures. The main goal is to detect thermodynamic inefficiencies of the two different configurations and propose measures to minimize those. We find that the two examined plants have similar main sources of exergy destruction: the solar field (parabolic trough solar collectors), followed by the steam generator. This reveals the importance of an optimal design of these particular components, which could reduce inefficiencies present in the system. The differences in the exergy destruction and exergetic efficiencies of individual components of the two plants are analyzed in detail based on comparable operational conditions.

  19. Thermal and optical efficiency investigation of a parabolic trough collector

    Directory of Open Access Journals (Sweden)

    C. Tzivanidis


    Full Text Available Solar energy utilization is a promising Renewable Energy source for covering a variety of energy needs of our society. This study presents the most well-known solar concentrating system, the parabolic trough collector, which is operating efficiently in high temperatures. The simulation tool of this analysis is the commercial software Solidworks which simulates complicated problems with an easy way using the finite elements method. A small parabolic trough collector model is designed and simulated for different operating conditions. The goal of this study is to predict the efficiency of this model and to analyze the heat transfer phenomena that take place. The efficiency curve is compared to a one dimensional numerical model in order to make a simple validation. Moreover, the temperature distribution in the absorber and inside the tube is presented while the heat flux distribution in the outer surface of the absorber is given. The heat convection coefficient inside the tube is calculated and compared with the theoretical one according to the literature. Also the angle efficiency modifier is calculated in order to predict the thermal and optical efficiency for different operating conditions. The final results show that the PTC model performs efficiently and all the calculations are validated.

  20. Regional magnetic anomaly constraints on continental rifting (United States)

    Vonfrese, R. R. B.; Hinze, W. J.; Olivier, R.; Bentley, C. R.


    Radially polarized MAGSAT anomalies of North and South America, Europe, Africa, India, Australia and Antarctica demonstrate remarkably detailed correlation of regional magnetic lithospheric sources across rifted margins when plotted on a reconstruction of Pangea. These major magnetic features apparently preserve their integrity until a superimposed metamorphoric event alters the magnitude and pattern of the anomalies. The longevity of continental scale magnetic anomalies contrasts markedly with that of regional gravity anomalies which tend to reflect predominantly isostatic adjustments associated with neo-tectonism. First observed as a result of NASA's magnetic satellite programs, these anomalies provide new and fundamental constraints on the geologic evolution and dynamics of the continents and oceans. Accordingly, satellite magnetic observations provide a further tool for investigating continental drift to compliment other lines of evidence in paleoclimatology, paleontology, paleomagnetism, and studies of the radiometric ages and geometric fit of the continents.

  1. Diagnostic approaches for Rift Valley fever. (United States)

    Wilson, W C; Weingartl, H M; Drolet, B S; Davé, K; Harpster, M H; Johnson, P A; Faburay, B; Ruder, M G; Richt, J A; McVey, D S


    Disease outbreaks caused by arthropod-borne animal viruses (arboviruses) resulting in significant livestock and economic losses world-wide appear to be increasing. Rift Valley fever (RVF) virus is an important arbovirus that causes lethal disease in cattle, camels, sheep and goats in Sub-Saharan Africa. There is concern that this virus could spread because of global warming, increased animal trade or through bioterrorism. This paper discusses the current and developing approaches to diagnosis of RVF. Diagnostic assays are available for RVF, but availability can be limited and there is a need for global harmonization. Continued improvement of standard serological and viral genome amplification approaches, including new embedded/syndromic testing, biosensor, emerging virus detection and characterization technologies is needed.

  2. Rift Valley Fever, Sudan, 2007 and 2010 (United States)

    Aradaib, Imadeldin E.; Erickson, Bobbie R.; Elageb, Rehab M.; Khristova, Marina L.; Carroll, Serena A.; Elkhidir, Isam M.; Karsany, Mubarak E.; Karrar, AbdelRahim E.; Elbashir, Mustafa I.


    To elucidate whether Rift Valley fever virus (RVFV) diversity in Sudan resulted from multiple introductions or from acquired changes over time from 1 introduction event, we generated complete genome sequences from RVFV strains detected during the 2007 and 2010 outbreaks. Phylogenetic analyses of small, medium, and large RNA segment sequences indicated several genetic RVFV variants were circulating in Sudan, which all grouped into Kenya-1 or Kenya-2 sublineages from the 2006–2008 eastern Africa epizootic. Bayesian analysis of sequence differences estimated that diversity among the 2007 and 2010 Sudan RVFV variants shared a most recent common ancestor circa 1996. The data suggest multiple introductions of RVFV into Sudan as part of sweeping epizootics from eastern Africa. The sequences indicate recent movement of RVFV and support the need for surveillance to recognize when and where RVFV circulates between epidemics, which can make data from prediction tools easier to interpret and preventive measures easier to direct toward high-risk areas. PMID:23347790

  3. Oblique basin inversion and strain partitioning in back-arc context: example from the Moroccan Alboran Margin (Western Mediterranean) (United States)

    Lafosse, Manfred; d'Acremont, Elia; Rabaute, Alain; Tomas Vazquez, Juan; Estrada, Ferran; Galindo-Zaldivar, Jesús; Ercilla, Gemma; Alonso, Belén; Gorini, Christian


    The Neogene and Quaternary directions of extension recorded in the Mediterranean back-arc basins are oblique to the Africa-Eurasia convergence direction (Jolivet and Faccenna, 2000). In those basins, particularly in the Alboran basin, strike-slip tectonics is favored by the obliquity of coeval extension and compressional deformations, first with a transtensive style that switches to a transpressive mode during the Quaternary. Northwards the Betic Cordillera and southward, the Rifian and the Atlas belts bound the Alboran domain. Transtensional and transpressional episodes deform the Alboran domain and create rotating micro-blocks delimited by a major left lateral NE-SW Miocene transtensional shear zone, a.k.a. the Trans Alboran Shear Zone (TASZ). We present new evidences of strain partitioning affecting the South Alboran Margin (Western Mediterranean) during the end of the Neogene and Quaternary. We use seismic data and high-resolution bathymetry (EM710 multibeam echo sounder) from the MARLBORO-1 (12-channel streamer and Air Gun source), SARAS (single channel Sparker and TOPAS systems) and MARLBORO-2 (single channel Sparker source) surveys. The pre-Messinian deformation and the geometry of the Messinian Erosional Surface (MES) and Plio-Quaternary deposits in the deep basin, developed during a regional extensional back-arc setting, evidence late Miocene to Quaternary folding and left-lateral shearing along the South Alboran Ridge. Around 2.58-1.81 My, the sedimentary shelves of volcanic edifices near the Boudinar and Nekor peripheral sub-basins highlight localized subsidence. At present-day, the NNE-SSW left-lateral Al-Idrissi shear zone delimits westwards the youngest micro-block boundary. Non-cylindrical hinge axes of Pliocene folds are interpreted as evidences of a wrench component of the deformation, which seems maximum to the northern flank of the South Alboran Ridge and decreases toward the Nekor Fault. The observed basin geometries and inversion process could

  4. Geomechanical property of gas hydrate sediment in the Nankai trough

    Energy Technology Data Exchange (ETDEWEB)

    Hato, M. [Earth Remote Sensing Data Analysis Center, Tokyo (Japan); Matsuoka, T.; Ikeda, H. [Kyoto Univ., Kyoto (Japan). Dept. of Civil and Earth Resources Engineering; Inamori, T.; Saeki, T. [Japan Oil, Gas and Metals National Corp., Chiba (Japan). Technology Research Center


    Well logging data and core samples from the Nankai trough area were used to investigate the geomechanical properties and geological history of gas hydrate-bearing sediments. The Coulomb-Mohr failure criterion was used to calculate the mechanical strength of the hydrate sediments. The dynamic Young's modulus was calculated using theoretical and experimental data. The study showed that sediments below the gas hydrate later are mechanically weaker than sediments within the gas hydrate layer. The mechanical strength of the core samples was then measured both before and after dissociation. The study showed that saturated gas hydrates are 4 times stronger than gas hydrate-dissociated cores. It was concluded that hydrate-bearing sediments are mechanically stronger than non-hydrate-bearing sediments. Results of the study will be used to develop methods of predicting risk factors for sea floor deformations and well-bore collapse during gas hydrate extraction processes in hydrate reservoirs. 6 refs., 5 figs.

  5. Air-borne shape measurement of parabolic trough collector fields (United States)

    Prahl, Christoph; Röger, Marc; Hilgert, Christoph


    The optical and thermal efficiency of parabolic trough collector solar fields is dependent on the performance and assembly accuracy of its components such as the concentrator and absorber. For the purpose of optical inspection/approval, yield analysis, localization of low performing areas, and optimization of the solar field, it is essential to create a complete view of the optical properties of the field. Existing optical measurement tools are based on ground based cameras, facing restriction concerning speed, volume and automation. QFly is an airborne qualification system which provides holistic and accurate information on geometrical, optical, and thermal properties of the entire solar field. It consists of an unmanned aerial vehicle, cameras and related software for flight path planning, data acquisition and evaluation. This article presents recent advances of the QFly measurement system and proposes a methodology on holistic qualification of the complete solar field with minimum impact on plant operation.

  6. Experimental Investigation of Flow trough a Mechanical Heart Valve (United States)

    Haji-Esmaeili, Farida; Oshkai, Peter


    Turbulent flow trough a model of a mechanical heart valve is investigated using digital particle image velocimetry. The valve leaflets are represented by flat plates mounted in a duct. The emphasis is on the effect of the valve design on the platelet activation state associated with the resulting flow field. Global quantitative images corresponding to multiple planes of data acquisition provide insight into the three-dimensional nature of the flow. Turbulent flow structures including jet-like regions and shed vortices are characterized in terms of patterns of instantaneous and time-averaged velocity, vorticity, and streamline topology. Potential of bileaflet heart valves for being thrombogenic is assessed by quantitative comparison of the associated flow fields in terms of maximum values of turbulent stresses and platelet activation states.

  7. Test results, Industrial Solar Technology parabolic trough solar collector

    Energy Technology Data Exchange (ETDEWEB)

    Dudley, V.E. [EG and G MSI, Albuquerque, NM (United States); Evans, L.R.; Matthews, C.W. [Sandia National Labs., Albuquerque, NM (United States)


    Sandia National Laboratories and Industrial Solar Technology are cost-sharing development of advanced parabolic trough technology. As part of this effort, several configurations of an IST solar collector were tested to determine the collector efficiency and thermal losses with black chrome and black nickel receiver selective coatings, combined with aluminized film and silver film reflectors, using standard Pyrex{reg_sign} and anti-reflective coated Pyrex{reg_sign} glass receiver envelopes. The development effort has been successful, producing an advanced collector with 77% optical efficiency, using silver-film reflectors, a black nickel receiver coating, and a solgel anti-reflective glass receiver envelope. For each receiver configuration, performance equations were empirically derived relating collector efficiency and thermal losses to the operating temperature. Finally, equations were derived showing collector performance as a function of input insolation value, incident angle, and operating temperature.

  8. A numerical analysis of the energy behavior of a parabolic trough ...

    African Journals Online (AJOL)

    A numerical analysis of the energy behavior of a parabolic trough concentrator. ... Abstract. The solar power is a clean and a durable energy; there are several techniques for using them. When necessary to elevated ... Keywords: Solar energy; parabolic trough concentrator; modelisation; optical efficiency, thermal efficiency ...

  9. Low lower crustal velocity across Ethiopia: Is the Main Ethiopian Rift a narrow rift in a hot craton? (United States)

    Keranen, K.M.; Klemperer, S.L.; Julia, J.; Lawrence, J. F.; Nyblade, A.A.


    [1] The Main Ethiopian Rift (MER) is a classic narrow rift that developed in hot, weak lithosphere, not in the initially cold, thick, and strong lithosphere that would be predicted by common models of rift mode formation. Our new 1-D seismic velocity profiles from Rayleigh wave/receiver function joint inversion across the MER and the Ethiopian Plateau indicate that hot lower crust and upper mantle are present throughout the broad region affected by Oligocene flood basalt volcanism, including both the present rift and the adjacent Ethiopian Plateau hundreds of kilometers from the rift valley. The region of hot lithosphere closely corresponds to the region of flood basalt volcanism, and we interpret that the volcanism and thermal perturbation were jointly caused by impingement of the Afar plume head. Across the affected region, Vs is 3.6-3.8 km/s in the lowermost crust and ???4.3 km/s in the uppermost mantle, both ??0.3 km/s lower than in the eastern and western branches of the East African Rift System to the south. We interpret the low Vs in the lower crust and upper mantle as indicative of hot lithosphere with partial melt. Our results lead to a hybrid rift mode, in which the brittle upper crust has developed as a narrow rift along the Neoproterozoic suture between East and West Gondwana, while at depth lithospheric deformation is distributed over the broad region (??400 km wide) thermally perturbed by the broad thermal upwelling associated with the Afar plume head. Development of both the East African Rift System to the south (in cold, strong lithosphere) and the MER to the north (in hot, weak lithosphere) as narrow rifts, despite their vastly different initial thermal states and depth-integrated lithospheric strength, indicates that common models of rift mode formation that focus only on temperature, thickness, and vertical strength profiles do not apply to these classic continental rifts. Instead, inherited structure and associated lithospheric weaknesses are

  10. The trochlear cleft: the ''black line'' of the trochlear trough

    International Nuclear Information System (INIS)

    Wissman, Robert D.; Nepute, Joshua; Fischer, Nathaniel von; Radhakrishnan, Rupa; Hendry, Daniel; Ingalls, Jerrell; Kenter, Keith


    The ''cartilage black line sign'' is a recently described T2 dark cartilage lesion that we have identified appearing as a cleft in the trochlear trough. The purpose of our study was to define the MR imaging characteristics of a trochlear cleft, determine its incidence, and correlate the MR findings with arthroscopy. A total of 1,300 consecutive MR examinations of the knee were retrospectively reviewed by consensus of two fellowship-trained musculoskeletal radiologists. The MR imaging characteristics and location of a trochlear cleft were determined. Imaging results were compared to arthroscopy when available. Patient age and gender were compared to 25 randomly selected control patients without trochlear clefts. A total of 25 (1.9%) individuals (11 females and 14 males; age range 19-45 years; mean age 28 years) were diagnosed with a trochlear cleft. The control group consisted of 11 females and 14 males; age range 19-83 years; mean age 46 years. Mean cleft length was 7 mm (range 6-12 mm); cleft location was consistently in the lower trochlear trough. No full-thickness cartilage defects were identified in the eight individuals in whom arthroscopic correlation was available. A grade 2 cartilage lesion was identified in a single individual; another progressed from grade 0 to a full-thickness trochlear lesion over an 8-month interval. Eight individuals were athletes. No significant difference in gender was noted between the two groups, however, the study group was significantly younger p < 0.0001. A trochlear cleft is a rare finding in young active individuals. It most likely indicates an incomplete cartilage fissure which may rarely progress to a full-thickness defect. (orig.)

  11. An experimental study of thermal characterization of parabolic trough receivers

    International Nuclear Information System (INIS)

    Lei, Dongqiang; Li, Qiang; Wang, Zhifeng; Li, Jian; Li, Jianbin


    Highlights: ► A new test stand of heat loss has been developed at IEECAS. ► A correlation between heat loss and absorber temperature is presented, 270 W/m 400 °C. ► The ratio of end loss in total heat loss increases with decreasing the temperature. ► The emittance test stand using a high vacuum system and vacuum gauge is built. ► Emittance first decreases, then rapidly increases with increasing the temperature. - Abstract: The receiver is a key component of the parabolic trough solar station. The receiver requires the most challenging technology and has a decisive influence on the thermal and economic performance of a power plant. The Institute of Electrical Engineering Chinese Academy Sciences (IEECAS) and Himin Solar Co., Ltd. (HSC) cooperated to develop solar receivers for the first 50 MW parabolic trough project in Inner Mongolia, China. This paper examines overall heat loss, end loss and thermal emittance of the coating of a newly designed receiver in order to evaluate its thermal characterization. A series of heat loss tests are conducted in a newly developed test stand following the steady state equilibrium method. The tests provide a correlation between heat loss and the absorber temperature. This paper presents a new testing method to accurately test the coating emittance. The method uses a receiver with a high vacuum system and a vacuum gauge to maintain continuous exhaust and high vacuum throughout the heat loss testing. A heat loss comparison between the receiver and other existing receivers provides a reference that enabled further optimization. Theoretical and experimental analysis examines the effects of end loss both with and without a heat insulator and a coil heater. The emittance curves of different coatings are acquired and the reasons for initial emittance decrease and then remarkable increase versus temperature are analyzed

  12. Subduction controls on Miocene back-arc lavas from Sierra de Huantraico and La Matancilla, Argentina and new 40Ar/39Ar dating from the Mendoza Region, Argentina

    DEFF Research Database (Denmark)

    Dyhr, Charlotte Thorup; Holm, Paul Martin; Llambias, Eduardo J.


    Back-arc volcanism in the western Argentinian provinces of Mendoza and Neuquén has been widespread from the Miocene to historic times. We present a detailed investigation of profiles through two of the major Miocene volcanic areas of the region, the neighboring Huantraico and LaMatancilla plateaus......, including new 40Ar/39Ar age results of major and trace elements as well as Nd, Sr and Pb isotopic data. Four million years of eruptions from 24.4 ± 0.3 Ma (2σ) of alkali olivine basalts with OIB-type incompatible trace element enrichments at La Matancilla (~36.50°S) provide evidence for the presence of back......-arc mantle devoid of subduction-related components. In contrast, the lower Huantraico lavas (~37.30°S) require an atypical back-arc mantle, almost devoid of arc-like components (e.g. low La/Ta = 15–18 and Ba/La = 12–18), but with a more depleted isotopic signature (e.g. 87Sr/86Sr, 0.7033–0.7037) than...

  13. Ice Shelf Rift Time-Lapse Photography, Antarctica, Version 1 (United States)

    National Aeronautics and Space Administration — From November 2004 to March 2005, on the Ross Ice Shelf, Antarctica, an automated "web cam" was operated on the southward facing lip of a large ice-shelf rift to...

  14. Amagmatic Lithospheric Rifting as Expressed in the Red Sea (Invited) (United States)

    Cochran, J. R.


    The Red Sea is an active analog for the rifting that produced most of the non-magmatic passive continental margins of the Atlantic and Indian Oceans. Specifically, it cuts through old (Pre-Cambrian) lithosphere well away from other plate boundaries and rifting is within 30° of orthogonal to the trend of the rift. Observations in the Red Sea therefore provide insights that can be applied to older, relict non-magmatic margins Although rifting in the Red Sea has been basically amagmatic, magmatism at two crucial times was important in defining the location of the rift and of initiating active extension and rifting. The onset of rifting was preceded by massive volcanism in Ethiopia and southern Yemen. The major volume of lava was erupted over a short period from 31-29.5 Ma. This event appears to have defined the location of the triple junction between the Red Sea, Gulf of Aden and Ethiopian rifts. Although rifting along the Gulf of Aden may have initiated at the time of the Afar volcanism, this magmatic episode was not accompanied by significant extension in the region that was to become the Red Sea and there is no sign of continuing extension in the Red Sea beginning at that time. The onset of rifting and extension in the Red Sea immediately follows a massive episode of dike intrusion that occurred over a short period of time at 24-21 Ma. Diking extended for 1700 km along the entire length of the Red Sea with no discernable temporal pattern. The diking event coincides with deposition of the first clearly syn-rift sediments at locations from the Gulf of Suez to Eritrea as well as the beginning of uplift and denudation. The diking event may have enabled rifting and extension in the Red Sea. There is no evidence of additional volcanism within the Red Sea rift from 21 Ma to the initiation of seafloor spreading. Seismic reflection and potential field data from the northern Red Sea show that large, rotated fault blocks of continental crust underlie the basin. Rifting is

  15. The geology and geophysics of the Oslo rift (United States)

    Ruder, M. E.


    The regional geology and geophysical characteristics of the Oslo graben are reviewed. The graben is part of a Permian age failed continental rift. Alkali olivine, tholefitic, and monzonitic intrusives as well as basaltic lavas outline the extent of the graben. Geophysical evidence indicates that rifting activity covered a much greater area in Skagerrak Sea as well as the Paleozoic time, possibly including the northern Skagerrak Sea as well as the Oslo graben itself. Much of the surficial geologic characteristics in the southern part of the rift have since been eroded or covered by sedimentation. Geophysical data reveal a gravity maximum along the strike of the Oslo graben, local emplacements of magnetic material throughout the Skagerrak and the graben, and a slight mantle upward beneath the rift zone. Petrologic and geophysical maps which depict regional structure are included in the text. An extensive bibliography of pertinent literature published in English between 1960 and 1980 is also provided.

  16. Sociocultural and economic dimensions of Rift Valley fever. (United States)

    Muga, Geoffrey Otieno; Onyango-Ouma, Washington; Sang, Rosemary; Affognon, Hippolyte


    Health researchers have advocated for a cross-disciplinary approach to the study and prevention of infectious zoonotic diseases, such as Rift Valley Fever. It is believed that this approach can help bring out the social determinants and effects of the zoonotic diseases for the design of appropriate interventions and public health policy. A comprehensive literature review using a systematic search strategy was undertaken to explore the sociocultural and economic factors that influence the transmission and spread of Rift Valley Fever. Although the findings reveal a paucity of social research on Rift Valley Fever, they suggest that livestock sacrificial rituals, food preparation and consumption practices, gender roles, and inadequate resource base for public institutions are the key factors that influence the transmission. It is concluded that there is need for cross-disciplinary studies to increase the understanding of Rift Valley Fever and facilitate appropriate and timely response and mitigation measures. © The American Society of Tropical Medicine and Hygiene.

  17. Lower crustal intrusions beneath the southern Baikal Rift Zone

    DEFF Research Database (Denmark)

    Nielsen, Christoffer; Thybo, Hans


    The Cenozoic Baikal Rift Zone (BRZ) is situated in south-central Siberia in the suture between the Precambrian Siberian Platform and the Amurian plate. This more than 2000-km long rift zone is composed of several individual basement depressions and half-grabens with the deep Lake Baikal at its...... centre. The BEST (Baikal Explosion Seismic Transect) project acquired a 360-km long, deep seismic, refraction/wide-angle reflection profile in 2002 across southern Lake Baikal. The data from this project is used for identification of large-scale crustal structures and modelling of the seismic velocities...... velocities around the rift structure, except for beneath the rift axis where a distinct 50-80-km wide high-velocity anomaly (7.4-7.6 ± 0.2 km/s) is observed. Reverberant or "ringing" reflections with strong amplitude and low frequency originate from this zone, whereas the lower crust is non...

  18. Community Structure of Lithotrophically-Driven Hydrothermal Microbial Mats from the Mariana Arc and Back-Arc

    Directory of Open Access Journals (Sweden)

    Kevin W. Hager


    Full Text Available The Mariana region exhibits a rich array of hydrothermal venting conditions in a complex geological setting, which provides a natural laboratory to study the influence of local environmental conditions on microbial community structure as well as large-scale patterns in microbial biogeography. We used high-throughput amplicon sequencing of the bacterial small subunit (SSU rRNA gene from 22 microbial mats collected from four hydrothermally active locations along the Mariana Arc and back-arc to explore the structure of lithotrophically-based microbial mat communities. The vent effluent was classified as iron- or sulfur-rich corresponding with two distinct community types, dominated by either Zetaproteobacteria or Epsilonproteobacteria, respectively. The Zetaproteobacterial-based communities had the highest richness and diversity, which supports the hypothesis that Zetaproteobacteria function as ecosystem engineers creating a physical habitat within a chemical environment promoting enhanced microbial diversity. Gammaproteobacteria were also high in abundance within the iron-dominated mats and some likely contribute to primary production. In addition, we also compare sampling scale, showing that bulk sampling of microbial mats yields higher diversity than micro-scale sampling. We present a comprehensive analysis and offer new insights into the community structure and diversity of lithotrophically-driven microbial mats from a hydrothermal region associated with high microbial biodiversity. Our study indicates an important functional role of for the Zetaproteobacteria altering the mat habitat and enhancing community interactions and complexity.

  19. Tectonic history along the South Gabon Basin: Anomalous early post-rift subsidence

    International Nuclear Information System (INIS)

    Dupre, Stephanie; Bertotti, Giovanni; Cloetingh, Sierd


    An integrated study of the South Gabon Margin (South Atlantic) based on reflection seismic and well data has been performed to quantify tectonic activity. A regional profile crossing the entire basin together with subsidence analysis, highlights important aspects of the post-rift history. The most striking event in the margin evolution appears to be the anomalous extra subsidence during the early post-rift period characterized by high sedimentation rates, equivalent to one third of the syn-rift subsidence. Although the presence of evaporite layers restricts knowledge of the underlying structures essentially composed of pre-rift and syn-rift sequences, the outcome of this post-rift tectonic study has strong implications for the rifting history. The early post-rift subsidence patterns can be related to a high thermal anomaly during the early rifting thermal state of the lithosphere. These findings are highly relevant for petroleum system studies and have implications for hydrocarbon generation. (author)

  20. Lithospheric drip magmatism and magma-assisted rifting: a case study in the Western Rift, East Africa (United States)

    Pitcavage, E.; Furman, T.; Nelson, W. R.


    The East African Rift System (EARS) is earth's largest continental divergent boundary and an unparalleled natural laboratory for understanding magmatism related to successful continental rifting. Classic views of continental rifting suggest that faulting and extension are facilitated by ascending magmas that weaken the lithosphere thermally and structurally within basin-bounding accommodation zones. In the EARS Western Rift (WR), many volcanic fields are not aligned along rift-bounding faults, and magma compositions lack evidence for asthenospheric inputs expected along lithosphere-penetrating fault systems. We note that compositional input from the Cenozoic Afar mantle plume is not recognized convincingly in WR mafic alkaline lavas1. Rather, magma compositions demonstrate significant input from anciently metasomatized sub-continental lithospheric mantle (SCLM). Destabilization and foundering of metasomatized SCLM has an increasingly recognized role in continental magmatism worldwide, producing volatile-rich, alkaline volcanics when drips of foundered SCLM devolatilize and melt on descent. This magmatism can lead to faulting: the lithospheric thinning that results from this process may play a role in physical aspects of rifting, contrasting with faulting facilitated by asthenospheric melts. Geochemical and geophysical evidence indicates that drip magmatism has occurred in several EARS provinces, including Turkana, Chyulu Hills, and in Afar2 where it is geographically coincident with successful rifting. We present bulk geochemical data that suggest drip melting of metasomatized SCLM is occurring in several WR volcanic fields. We focus on Bufumbira (Uganda), where mafic lavas are derived from garnet+phlogopite+amphibole+zircon-bearing pyroxenite, indicating a deep metasomatized SCLM source. Isotopic and trace element data suggest that extent of melting increased with depth of melting, a signature of lithospheric drip. We propose that drip magmatism is an important

  1. New Geodetic Results from the Hauraki Rift: Slow Continental Rifting Oblique to Subduction, North Island, New Zealand (United States)

    Pickle, R. C.; Eccles, J. D.; Hreinsdottir, S.; Palmer, N.; Rowland, J. V.


    The Hauraki Rift, an active but slow-deforming narrow intra-continental rift in northern New Zealand paradoxically strikes nearly normal to the Pacific-Australian oblique subduction boundary 300+ km to the southeast. Both the driving mechanism and quantitative details of the rift's current activity are unknown. Past GPS/GNSS geodetic surveying in the area has been coarse and erratic (e.g. single 8-hour surveys in 1995). In 2015 and again in 2016 a 37 station network of existing benchmarks around the rift was measured with the aim of gaining better insight into deformation in the region. We find that it is primarily extensional ( 0.9 mm/yr) with a small portion of right-lateral shearing ( 0.1 mm/yr) relative to a fixed Australian plate in ITRF2008. Closer to the plate boundary, the oblique westward subduction of the Pacific plate generates a strong clockwise angular strain signature in the over-riding plate; this same angular stress field is the simplest explanation for the Hauraki Rift's axis-perpendicular strain and in consistent with previous geophysical observations. Additionally, several short wavelength dislocations between our velocity solutions hint at the existence of undocumented active faults which will have implications to the seismic hazard to Auckland, New Zealand's largest city, located just 50km west of the rift.

  2. A Middle-Upper Miocene fluvial-lacustrine rift sequence in the Song Ba Rift, Vietnam

    DEFF Research Database (Denmark)

    Lars H., Nielsen; Henrik I., Petersen; Nguyen D., Dau


    The small Neogene Krong Pa graben is situated within the continental Song Ba Rift, which is bounded by strike-slip faults that were reactivated as extensional faults in Middle Miocene time. The 500 m thick graben-fill shows an overall depositional development reflecting the structural evolution...... development sedimentation rate outpaced the formation of accommodation space and fluvial activity increased again. During periods when the general sedimentation rate was in balance with the creation of accommodation space the environment changed frequently between lake deposition and intermittent vigorous...

  3. The Characteristics of Heat Flow in the Ryukyu Trench-Arc-Basin System: Constraints on Thermal Structure and Evolution of the Okinawa Trough (United States)

    Zhang, L.


    Heat flow is an important constraint to study the thermal structure and evolution in modeling experiments. Based on the surface heat flow map and recent geochemistry results, a 2D transient heat conduction-advection model is used to investigate how the effects of sedimentation rate, magmatic intrusion, extension duration and rate on the surface heat flow distribution of the Okinawa Trough. Surface heat flow distribution map is interpolated based on a data set with 664 measurements in the Ryukyu trench-arc-basin system. The map shows an obviously correspondence between heat flows and tectonic zones, characterized by belts in E-W and blocks in S-N. The heat flow is extremely high and variable in the central Okinawa Trough (COT). The lowest heat values are distributed in the northwest of West Philippine Sea near the Ryukyu Trench. This phenomenon is likely related to increasing hydrothermal circulation of cold water into the upper portion of the incoming plate because of bend-faulting and little sediment coverage. Simulation results show that (1) High sedimentation rate can reduce heat flow by 30-35 % in the southern OT. (2) The sedimentation-corrected heat flow indicates that mantle upwelling occurred in the whole OT. The isotherm of 1000°C reaches to the depth of 19 km in the axil of the COT after 10 Ma. (3) The heat flow can be improved drastically by dyke intrusion along normal faults, but subsequent decreases rapidly about 15% after 0.1 Ma, which indicates the age of dyke intrusion under the Iheya area is younger than 0.5 Ma, and the depth is shallower than 2 km. Moreover, the magma fluid upward migrated along the magma conduits is required for the extremely high heat flow and its Darcy velocity can reach to 9 cm/yr. Based on the distribution of heat flow, we suggest that there is a different evolution model between the central- northern OT and the southern. The time of rifting in the NOT-COT began at 10 Ma with the mean rate of 0.4 cm/yr, while the rifting of

  4. Modelling the main ionospheric trough using the Electron Density Assimilative Model (EDAM) with assimilated GPS TEC (United States)

    Parker, James A. D.; Eleri Pryse, S.; Jackson-Booth, Natasha; Buckland, Rachel A.


    The main ionospheric trough is a large-scale spatial depletion in the electron density distribution at the interface between the high- and mid-latitude ionosphere. In western Europe it appears in early evening, progresses equatorward during the night, and retreats rapidly poleward at dawn. It exhibits substantial day-to-day variability and under conditions of increased geomagnetic activity it moves progressively to lower latitudes. Steep gradients on the trough-walls on either side of the trough minimum, and their variability, can cause problems for radio applications. Numerous studies have sought to characterize and quantify the trough behaviour. The Electron Density Assimilative Model (EDAM) models the ionosphere on a global scale. It assimilates observations into a background ionosphere, the International Reference Ionosphere 2007 (IRI2007), to provide a full 3-D representation of the ionospheric plasma distribution at specified times and days. This current investigation studied the capability of EDAM to model the ionosphere in the region of the main trough. Total electron content (TEC) measurements from 46 GPS stations in western Europe from September to December 2002 were assimilated into EDAM to provide a model of the ionosphere in the trough region. Vertical electron content profiles through the model revealed the trough and the detail of its structure. Statistical results are presented of the latitude of the trough minimum, TEC at the minimum and of other defined parameters that characterize the trough structure. The results are compared with previous observations made with the Navy Ionospheric Monitoring System (NIMS), and reveal the potential of EDAM to model the large-scale structure of the ionosphere.

  5. Parabolic Trough Collector Cost Update for the System Advisor Model (SAM)

    Energy Technology Data Exchange (ETDEWEB)

    Kurup, Parthiv [National Renewable Energy Lab. (NREL), Golden, CO (United States); Turchi, Craig S. [National Renewable Energy Lab. (NREL), Golden, CO (United States)


    This report updates the baseline cost for parabolic trough solar fields in the United States within NREL's System Advisor Model (SAM). SAM, available at no cost at, is a performance and financial model designed to facilitate decision making for people involved in the renewable energy industry. SAM is the primary tool used by NREL and the U.S. Department of Energy (DOE) for estimating the performance and cost of concentrating solar power (CSP) technologies and projects. The study performed a bottom-up build and cost estimate for two state-of-the-art parabolic trough designs -- the SkyTrough and the Ultimate Trough. The SkyTrough analysis estimated the potential installed cost for a solar field of 1500 SCAs as $170/m2 +/- $6/m2. The investigation found that SkyTrough installed costs were sensitive to factors such as raw aluminum alloy cost and production volume. For example, in the case of the SkyTrough, the installed cost would rise to nearly $210/m2 if the aluminum alloy cost was $1.70/lb instead of $1.03/lb. Accordingly, one must be aware of fluctuations in the relevant commodities markets to track system cost over time. The estimated installed cost for the Ultimate Trough was only slightly higher at $178/m2, which includes an assembly facility of $11.6 million amortized over the required production volume. Considering the size and overall cost of a 700 SCA Ultimate Trough solar field, two parallel production lines in a fully covered assembly facility, each with the specific torque box, module and mirror jigs, would be justified for a full CSP plant.

  6. Basement control in the development of the early cretaceous West and Central African rift system (United States)

    Maurin, Jean-Christophe; Guiraud, René


    The structural framework of the Precambrian basement of the West and Central African Rift System (WCARS) is described in order to examine the role of ancient structures in the development of this Early Cretaceous rift system. Basement structures are represented in the region by large Pan-African mobile belts (built at ca. 600 Ma) surrounding the > 2 Ga West African, Congo and Sao Francisco cratons. Except for the small Gao trough (eastern Mali) located near the contact nappe of the Pan-African Iforas suture zone along the edge of the West African craton, the entire WCARS is located within the internal domains of the Pan-African mobile belts. Within these domains, two main structural features occur as the main basement control of the WCARS: (1) an extensive network of near vertical shear zones which trend north-south through the Congo, Brazil, Nigeria, Niger and Algeria, and roughly east-west through northeastern Brazil and Central Africa. The shear zones correspond to intra-continental strike-slip faults which accompanied the oblique collision between the West African, Congo, and Sao Francisco cratons during the Late Proterozoic; (2) a steep metamorphic NW-SE-trending belt which corresponds to a pre-Pan-African (ca. 730 Ma) ophiolitic suture zone along the eastern edge of the Trans-Saharian mobile belt. The post-Pan-African magmatic and tectonic evolution of the basement is also described in order to examine the state of the lithosphere prior to the break-up which occurred in the earliest Cretaceous. After the Pan-African thermo-tectonic event, the basement of the WCARS experienced a long period of intra-plate magmatic activity. This widespread magmatism in part relates to the activity of intra-plate hotspots which have controlled relative uplift, subsidence and occasionally block faulting. During the Paleozoic and the early Mesozoic, this tectonic activity was restricted to west of the Hoggar, west of Aïr and northern Cameroon. During the Late Jurassic

  7. Parabolic Trough Photovoltaic/Thermal Collectors: Design and Simulation Model

    Directory of Open Access Journals (Sweden)

    Laura Vanoli


    Full Text Available This paper presents a design procedure and a simulation model of a novel concentrating PVT collector. The layout of the PVT system under investigation was derived from a prototype recently presented in literature and commercially available. The prototype consisted in a parabolic trough concentrator and a linear triangular receiver. In that prototype, the bottom surfaces of the receiver are equipped with mono-crystalline silicon cells whereas the top surface is covered by an absorbing surface. The aperture area of the parabola was covered by a glass in order to improve the thermal efficiency of the system. In the modified version of the collector considered in this paper, two changes are implemented: the cover glass was eliminated and the mono-crystalline silicon cells were replaced by triple-junction cells. In order to analyze PVT performance, a detailed mathematical model was implemented. This model is based on zero-dimensional energy balances. The simulation model calculates the temperatures of the main components of the system and the main energy flows Results showed that the performance of the system is excellent even when the fluid temperature is very high (>100 °C. Conversely, both electrical and thermal efficiencies dramatically decrease when the incident beam radiation decreases.

  8. A Process Heat Application Using Parabolic Trough Collector (United States)

    Yılmaz, İbrahim Halil; Söylemez, Mehmet Sait; Hayta, Hakan; Yumrutaş, Recep

    A pilot study has been performed based on a heat process application that is designed, installed and tested at Gaziantep University to establish the technical and economic feasibility of high temperature solar-assisted cooking process. The system has been designed to be satisfying the process conditions integrated with parabolic trough solar collector (PTSC). It is primarily consists of the PTSC array, auxiliary heater, plate type heat exchanger, cooking system and water heating tanks. In the operation of the process heat application, the energy required to cook wheat (used as cooking material) has been supplied from solar energy which is transferred to heat transfer fluid (HTF) by heat exchanging units and finally discharged to water in order to produce bulgur. The performance parameters of the sub-systems and the process compatibility have been accomplished depending on the system operation. In addition that the system performance of the high temperature solar heat process has been presented and the recommendations on its improvement have been evaluated by performing an experimental study. As a result that the use of solar energy in process heat application has been projected and its contribution to economics view with respect to conventional cooking systems has been conducted.

  9. Orogenic structural inheritance and rifted passive margin formation (United States)

    Salazar Mora, Claudio A.; Huismans, Ritske S.


    Structural inheritance is related to mechanical weaknesses in the lithosphere due to previous tectonic events, e.g. rifting, subduction and collision. The North and South Atlantic rifted passive margins that formed during the breakup of Western Gondwana, are parallel to the older Caledonide and the Brasiliano-Pan-African orogenic belts. In the South Atlantic, 'old' mantle lithospheric fabric resulting from crystallographic preferred orientation of olivine is suggested to play a role during rifted margin formation (Tommasi and Vauchez, 2001). Magnetometric and gravimetric mapping of onshore structures in the Camamu and Almada basins suggest that extensional faults are controlled by two different directions of inherited older Brasiliano structures in the upper lithosphere (Ferreira et al., 2009). In the South Atlantic Campos Basin, 3D seismic data indicate that inherited basement structures provide a first order control on basin structure (Fetter, 2009). Here we investigate the role of structural inheritance on the formation of rifted passive margins with high-resolution 2D thermo-mechanical numerical experiments. The numerical domain is 1200 km long and 600 km deep and represents the lithosphere and the sublithospheric mantle. Model experiments were carried out by creating self-consistent orogenic inheritance where a first phase of orogen formation is followed by extension. We focus in particular on the role of varying amount of orogenic shortening, crustal rheology, contrasting styles of orogen formation on rifted margin style, and the time delay between orogeny and subsequent rifted passive formation. Model results are compared to contrasting structural styles of rifted passive margin formation as observed in the South Atlantic. Ferreira, T.S., Caixeta, J.M., Lima, F.D., 2009. Basement control in Camamu and Almada rift basins. Boletim de Geociências da Petrobrás 17, 69-88. Fetter, M., 2009. The role of basement tectonic reactivation on the structural evolution

  10. Patient-reported non-adherence and immunosuppressant trough levels are associated with rejection after renal transplantation. (United States)

    Scheel, Jennifer; Reber, Sandra; Stoessel, Lisa; Waldmann, Elisabeth; Jank, Sabine; Eckardt, Kai-Uwe; Grundmann, Franziska; Vitinius, Frank; de Zwaan, Martina; Bertram, Anna; Erim, Yesim


    Different measures of non-adherence to immunosuppressant (IS) medication have been found to be associated with rejection episodes after successful transplantation. The aim of the current study was to investigate whether graft rejection after renal transplantation is associated with patient-reported IS medication non-adherence and IS trough level variables (IS trough level variability and percentage of sub-therapeutic IS trough levels). Patient-reported non-adherence, IS trough level variability, percentage of sub-therapeutic IS trough levels, and acute biopsy-proven late allograft rejections were assessed in 267 adult renal transplant recipients who were ≥12 months post-transplantation. The rate of rejection was 13.5%. IS trough level variability, percentage of sub-therapeutic IS trough levels as well as patient-reported non-adherence were all significantly and positively associated with rejection, but not with each other. Logistic regression analyses revealed that only the percentage of sub-therapeutic IS trough levels and age at transplantation remained significantly associated with rejection. Particularly, the percentage of sub-therapeutic IS trough levels is associated with acute rejections after kidney transplantation whereas IS trough level variability and patient-reported non-adherence seem to be of subordinate importance. Patient-reported non-adherence and IS trough level variables were not correlated; thus, non-adherence should always be measured in a multi-methodological approach. Further research concerning the best combination of non-adherence measures is needed.

  11. The Age of Rift-Related Basalts in East Antarctica (United States)

    Leitchenkov, G. L.; Belyatsky, B. V.; Kaminsky, V. D.


    The Lambert Rift, which is a large intracontinental rift zone in East Antarctica, developed over a long period of geological time, beginning from the Late Paleozoic, and its evolution was accompanied by magmatic activity. The latest manifestation of magmatism is eruption of alkaline olivine-leucite basalts on the western side of the Lambert Rift; Rb-Sr dating referred its time to the Middle Eocene, although its genesis remained vague. In order to solve this problem, we found geochronometer minerals in basaltic samples and 68 apatite grains appeared to be suitable for analysis. Their ages and ages of host basalts, determined by the U-Pb local method on the SIMS SHRIMP-II, were significantly different (323 ± 31 Ma) from those assumed earlier. This age corresponds to the earliest stage of crustal extension in East Antarctica and to most of Gondwana. The new data crucially change the ideas about the evolution of Lambert Rift and demonstrate the ambiguity of K-Ar dates of the alkali effusive formed under long-term rifting.

  12. Field Studies of Geothermal Reservoirs Rio Grande Rift, New Mexico

    Energy Technology Data Exchange (ETDEWEB)

    James C Witcher


    The Rio Grande rift provides an excellent field laboratory to study the nature of geothermal systems in an extensional environment. Much of the geologic complexity that is found in the Basin and Range is absent because the rift is located on cratonic crust with a thin and well-characterized Phanerozoic stratigraphy and tectonic history. On the other hand, the Neogene thermo-tectonic history of the rift has many parallels with the Basin and Range to the west. The geology of the southern Rio Grande rift is among the best characterized of any rift system in the world. Also, most geologic maps for the region are rather unique in that detailed analyses of Quaternary stratigraphic and surficial unit are added in concert with the details of bedrock geology. Pleistocene to Holocene entrenchment of the Rio Grande and tributaries unroofs the alteration signatures and permeability attributes of paleo outflow plumes and upflow zones, associated with present-day, but hidden or ''blind,'' hydrothermal systems at Rincon and San Diego Mountain.

  13. Wind Tunnel Tests of Parabolic Trough Solar Collectors: March 2001--August 2003

    Energy Technology Data Exchange (ETDEWEB)

    Hosoya, N.; Peterka, J. A.; Gee, R. C.; Kearney, D.


    Conducted extensive wind-tunnel tests on parabolic trough solar collectors to determine practical wind loads applicable to structural design for stress and deformation, and local component design for concentrator reflectors.

  14. Report on Radiocarbon Analysis of Surface Sediments from the Fore-Arc Basin of Nankai Trough

    National Research Council Canada - National Science Library

    Pohlman, John


    .... Radiocarbon analysis of the total organic carbon (TOC) and total inorganic carbon (TIC) on 30 sediment samples from two multicores and six piston cores was performed to investigate the fate of methane carbon in sediment of the Nankal Trough...

  15. Gas Turbine/Solar Parabolic Trough Hybrid Design Using Molten Salt Heat Transfer Fluid: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Turchi, C. S.; Ma, Z.


    Parabolic trough power plants can provide reliable power by incorporating either thermal energy storage (TES) or backup heat from fossil fuels. This paper describes a gas turbine / parabolic trough hybrid design that combines a solar contribution greater than 50% with gas heat rates that rival those of natural gas combined-cycle plants. Previous work illustrated benefits of integrating gas turbines with conventional oil heat-transfer-fluid (HTF) troughs running at 390?C. This work extends that analysis to examine the integration of gas turbines with salt-HTF troughs running at 450 degrees C and including TES. Using gas turbine waste heat to supplement the TES system provides greater operating flexibility while enhancing the efficiency of gas utilization. The analysis indicates that the hybrid plant design produces solar-derived electricity and gas-derived electricity at lower cost than either system operating alone.

  16. Assessment of undiscovered continuous oil and gas resources in the Hanoi Trough, Vietnam, 2017 (United States)

    Schenk, Christopher J.; Tennyson, Marilyn E.; Mercier, Tracey J.; Woodall, Cheryl A.; Le, Phuong A.; Klett, Timothy R.; Finn, Thomas M.; Leathers-Miller, Heidi M.; Gaswirth, Stephanie B.; Marra, Kristen R.


    Using a geology-based assessment methodology, the U.S. Geological Survey estimated mean undiscovered, technically recoverable continuous resources of 52 million barrels of oil and 591 billion cubic feet of gas in the Hanoi Trough of Vietnam.

  17. Determination of Elastic Parameters of Near-Surface Layers Over Subsidence Trough Development During Longwall Exploitation (United States)

    Mendecki, Maciej J.; Jochymczyk, Krzysztof; Zuberek, Wacław M.; Tomaszewska, Radosława


    Seismic and geodetic studies were carried out before, during, and after underground exploitation of a coal bed in Katowice - Kleofas Coal Mine, located in the Upper Silesia Coal Basin, Poland. Development of a subsidence trough was completed approximately 3 months after passage of a longwall exploitation in the coal seam. This was the time required for the subsidence trough to appear on the surface, which was confirmed by levelling measurements. Sharp changes in the elastic parameters were observed on each profile during subsidence trough development. This observation can result from changing tension and compression forces caused by increase and/or decrease of the elastic parameters of the rock mass. After completion of subsidence trough development, the rock mass appeared to return to its isotropic state and the observed changes ceased. Some minor fluctuations were noted, but they probably resulted from changes in groundwater levels, which might have affected the measured parameters.

  18. Influence of pen area and trough space on feedlot performance of ...

    African Journals Online (AJOL)

    Two exoeriments were conducted to measure the influence of trough space (170 mm, 350 mm and 700 mm/animal) and pen area (5,5 m2, 11 m2 and 22 mzlanimal) on feedlot performance. There was no advantage in allowing more than 170 mm trough space or more than 5,5 m2 floor area per animal with the conditions ...

  19. Tectonics and sedimentology of post-rift anomalous vertical movements: the rifted margin of Morocco (United States)

    Bertotti, Giovanni; Charton, Remi; Luber, Tim; Arantegui, Angel; Redfern, Jonathan


    Roughly 15 years ago it was discovered that substantial parts of the Morocco passive continental margin experienced km-scale, post-rift exhumation. It was predicted that the sands resulting from the associated erosion would be present in the offshore and potentially form hydrocarbon reservoirs. At the same time, anomalous post-rift vertical movements have been documented in various localities of the world and rifted continental margins are at present exciting objects of research. Following intense research efforts the knowledge of the kinematics of vertical movements and their implications for sedimentary systems is increasing. The low-T geochronology initially limited to the classical Meseta-Massif Ancien de Marrakech transect has been expanded reaching the Reguibate Massif to the S and covering, possibly more importantly, one transect in E-W direction along the Anti Atlas. Exhumation occurred along two dominant trends. In N-S direction a several hundred-kilometers long exhuming domain developed roughly parallel to the Atlantic margin. Changes in magnitude and timing of exhumation are observed along this elevated domain associated with E-W trending undulations. The timing of main stage of upward movement of E-W trending highs seems to be Late Jurassic-Early Cretaceous in the Meseta and High Atlas and somewhat older, Early to Middle Jurassic, in the Anti-Atlas and Reguibate. The discovery of E-W trending highs and lows has major implication for sediment distribution and dispersal. At the large scale, it means that the drainage basins were smaller than initially predicted. This seems to be compatible with the paucity of sands encountered by recent exploration wells drilled offshore Morocco. At the scale of several kilometers, W-E trending anticlines and synclines developed in a generally subsiding coastal environment. These folds often had an expression at the sea floor documented by ravinement surfaces and (Jurassic) reef build-ups on top of the anticlines

  20. The Iceland Plate Boundary Zone: Propagating Rifts, Migrating Transforms, and Rift-Parallel Strike-Slip Faults (United States)

    Karson, J. A.


    Unlike most of the Mid-Atlantic Ridge, the North America/Eurasia plate boundary in Iceland lies above sea level where magmatic and tectonic processes can be directly investigated in subaerial exposures. Accordingly, geologic processes in Iceland have long been recognized as possible analogs for seafloor spreading in the submerged parts of the mid-ocean ridge system. Combining existing and new data from across Iceland provides an integrated view of this active, mostly subaerial plate boundary. The broad Iceland plate boundary zone includes segmented rift zones linked by transform fault zones. Rift propagation and transform fault migration away from the Iceland hotspot rearrange the plate boundary configuration resulting in widespread deformation of older crust and reactivation of spreading-related structures. Rift propagation results in block rotations that are accommodated by widespread, rift-parallel, strike-slip faulting. The geometry and kinematics of faulting in Iceland may have implications for spreading processes elsewhere on the mid-ocean ridge system where rift propagation and transform migration occur.

  1. Lithosphere Response to Intracratonic Rifting: Examples from Europe and Siberia

    DEFF Research Database (Denmark)

    Artemieva, I. M.; Thybo, H.; Herceg, M.


    is based on critically assessed results from various seismic studies, including reflection and refraction profiles and receiver function studies. We also use global shear-wave tomography models, gravity constraints based on GOCE data, and thermal models for the lithosphere to speculate on thermo......Several cratons have experienced a significant modification of their crustal and mantle lithosphere structure during Phanerozoic large-scale lithosphere-mantle interactions. In Eurasia, the most prominent examples include the Dniepre-Donets rift in the East European craton, the Oslo graben...... of basaltic magmas and consequently in a change in mantle density and seismic velocities. Although kimberlite magmatism is commonly not considered as a rifting events, its deep causes may be similar to the mantle-driven rifting and, as a consequence, modification of mantle density and velocity structure may...

  2. The First Prediction of a Rift Valley Fever Outbreak (United States)

    Anyamba, Assaf; Chretien, Jean-Paul; Small, Jennifer; Tucker, Compton J.; Formenty, Pierre; Richardson, Jason H.; Britch, Seth C.; Schnabel, David C.; Erickson, Ralph L.; Linthicum, Kenneth J.


    El Nino/Southern Oscillation (ENSO) related anomalies were analyzed using a combination of satellite measurements of elevated sea surface temperatures, and subsequent elevated rainfall and satellite derived normalized difference vegetation index data. A Rift Valley fever risk mapping model using these climate data predicted areas where outbreaks of Rift Valley fever in humans and animals were expected and occurred in the Horn of Africa from December 2006 to May 2007. The predictions were subsequently confirmed by entomological and epidemiological field investigations of virus activity in the areas identified as at risk. Accurate spatial and temporal predictions of disease activity, as it occurred first in southern Somalia and then through much of Kenya before affecting northern Tanzania, provided a 2 to 6 week period of warning for the Horn of Africa that facilitated disease outbreak response and mitigation activities. This is the first prospective prediction of a Rift Valley fever outbreak.

  3. Intra-continental back-arc basin inversion and Late Carboniferous magmatism in Eastern Tianshan, NW China: Constraints from the Shaquanzi magmatic suite

    Directory of Open Access Journals (Sweden)

    Hongjun Jiang


    Full Text Available The Yamansu belt, an important tectonic component of Eastern Tianshan Mountains, of the Central Asian Orogenic Belt, NW China hosts many Fe–(Cu deposit. In this study, we present new zircon U-Pb geochronology and geochemical data of the volcanic rocks of Shaquanzi Formation and diorite intrusions in the Yamansu belt. The Shaquanzi Formation comprises mainly basalt, andesite/andesitic tuff, rhyolite and sub-volcanic diabase with local diorite intrusions. The volcanic rocks and diorites contain ca. 315–305 Ma and ca. 298 Ma zircons respectively. These rocks show calc-alkaline affinity with enrichment in large-ion lithophile elements (LILEs, light rare-earth elements (LREEs, and depletion in high field strength elements (HFSEs in primitive mantle normalized multi-element diagrams, which resemble typical back-arc basin rocks. They show depleted mantle signature with εNd(t ranging from +3.1 to +5.6 for basalt; +2.1 to +4.7 for andesite; −0.2 to +1.5 for rhyolite and the εHf(t ranges from −0.1 to +13.0 for andesites; +5.8 to +10.7 for andesitic tuffs. We suggest that the Shaquanzi Formation basalt might have originated from a depleted, metasomatized lithospheric mantle source mixed with minor (3–5% subduction-derived materials, whereas the andesite and rhyolite could be fractional crystallization products of the basaltic magma. The Shaquanzi Formation volcanic rocks could have formed in an intra-continental back-arc basin setting, probably via the southward subduction of the Kangguer Ocean beneath the Middle Tianshan Massif. The Yamansu mineralization belt might have undergone a continental arc to back-arc basin transition during the Late Carboniferous and the intra-continental back-arc basin might have closed in the Early Permian, marked by the emplacement of dioritic magma in the Shaquanzi belt.

  4. 3D numerical simulations of multiphase continental rifting (United States)

    Naliboff, J.; Glerum, A.; Brune, S.


    Observations of rifted margin architecture suggest continental breakup occurs through multiple phases of extension with distinct styles of deformation. The initial rifting stages are often characterized by slow extension rates and distributed normal faulting in the upper crust decoupled from deformation in the lower crust and mantle lithosphere. Further rifting marks a transition to higher extension rates and coupling between the crust and mantle lithosphere, with deformation typically focused along large-scale detachment faults. Significantly, recent detailed reconstructions and high-resolution 2D numerical simulations suggest that rather than remaining focused on a single long-lived detachment fault, deformation in this phase may progress toward lithospheric breakup through a complex process of fault interaction and development. The numerical simulations also suggest that an initial phase of distributed normal faulting can play a key role in the development of these complex fault networks and the resulting finite deformation patterns. Motivated by these findings, we will present 3D numerical simulations of continental rifting that examine the role of temporal increases in extension velocity on rifted margin structure. The numerical simulations are developed with the massively parallel finite-element code ASPECT. While originally designed to model mantle convection using advanced solvers and adaptive mesh refinement techniques, ASPECT has been extended to model visco-plastic deformation that combines a Drucker Prager yield criterion with non-linear dislocation and diffusion creep. To promote deformation localization, the internal friction angle and cohesion weaken as a function of accumulated plastic strain. Rather than prescribing a single zone of weakness to initiate deformation, an initial random perturbation of the plastic strain field combined with rapid strain weakening produces distributed normal faulting at relatively slow rates of extension in both 2D and

  5. Imprint of salt tectonics on subsidence patterns during rift to post-rift transition: The Central High Atlas case study (United States)

    Moragas, Mar; Vergés, Jaume; Saura, Eduard; Diego Martín-Martín, Juan; Messager, Grégoire; Hunt, David William


    During Mesozoic time, the extensional basin of the Central High Atlas in Morocco underwent two consecutive rifting events: Permo-Triassic and Early-Middle Jurassic in age. However, a review of the literature reveals that the precise timing of the Early-Middle Jurassic rift and post-rift transition varies depending of the analysed area. The discrepancy about rifting ages is associated with the general lack of normal faulting cutting post-Lower Jurassic strata and the presence of significant salt diapiric activity during Early and Middle Jurassic in the central part of the basin. To evaluate the influence on subsidence patterns of the interaction between both extensional and salt tectonics, we present new subsidence data from diverse paleogeographic and tectonic settings of the Central High Atlas rift basin. From the periphery of the basin, the Djebel Bou Dahar platform-basin system corresponds to a shallow carbonate platform developed on top of a basement high, controlled and bounded by normal faults. The results of the subsidence analysis show long-term and low-rate of tectonic and total subsidence (0.06 and 0.08 mmyr-1 respectively). The roughly parallel evolution of both total and tectonic subsidence curves indicates the tectonic influence of the platform-basin system, as corroborated by the syndepositional fault activity of the outcropping Sinemurian-Pliensbachian normal faults. Contrarily, the rift axis is characterised by the presence of diapiric salt ridges and minibasins as in the Tazoult-Amezraï area and Imilchil diapiric province. Comparison between subsidence curves from the SE flank of the Tazoult salt wall and from Amezraï minibasin centre shows that, from Pliensbachian to Aalenian, the tectonic and total subsidence rates of the Amezraï minibasin (between 0.17-0.32 mmyr-1 and 0.38-0.98 mmyr-1) are two-fold their equivalent rates in the Tazoult salt wall. Amezraï minibasin values are in agreement with the values from Imilchil minibasins (tectonic and

  6. Imaging rifting at the lithospheric scale in the northern East African Rift using S-to-P receiver functions (United States)

    Lavayssiere, A.; Rychert, C.; Harmon, N.; Keir, D.; Hammond, J. O. S.; Kendall, J. M.; Leroy, S. D.; Doubre, C.


    The lithosphere is modified during rifting by a combination of mechanical stretching, heating and potentially partial melt. We image the crust and upper mantle discontinuity structure beneath the northern East African Rift System (EARS), a unique tectonically active continental rift exposing along strike the transition from continental rifting in the Main Ethiopian rift (MER) to incipient seafloor spreading in Afar and the Red Sea. S-to-P receiver functions from 182 stations across the northern EARS were generated from 3688 high quality waveforms using a multitaper technique and then migrated to depth using a regional velocity model. Waveform modelling of data stacked in large conversion point bins confirms the depth and strength of imaged discontinuities. We image the Moho at 29.6±4.7 km depth beneath the Ethiopian plateaux with a variability in depth that is possibly due to lower crustal intrusions. The crust is 27.3±3.9 km thick in the MER and thinner in northern Afar, 17.5±0.7 km. The model requires a 3±1.2% reduction in shear velocity with increasing depth at 68.5±1.5 km beneath the Ethiopian plateaux, consistent with the lithosphere-asthenosphere boundary (LAB). We do not resolve a LAB beneath Afar and the MER. This is likely associated with partial melt near the base of the lithosphere, reducing the velocity contrast between the melt-intruded lithosphere and the partially molten asthenosphere. We identify a 4.5±0.7% increase in velocity with depth at 91±3 km beneath the MER. This change in velocity is consistent with the onset of melting found by previous receiver functions and petrology studies. Our results provide independent constraints on the depth of melt production in the asthenosphere and suggest melt percolation through the base of the lithosphere beneath the northernmost East African rift.

  7. Frictional Behavior of Altered Basement Approaching the Nankai Trough (United States)

    Saffer, D. M.; Ikari, M.; Rooney, T. O.; Marone, C.


    The frictional behavior of basement rocks plays an important role in subduction zone faulting and seismicity. This includes earthquakes seaward of the trench, large megathrust earthquakes where seamounts are subducting, or where the plate interface steps down to basement. In exhumed subduction zone rocks such as the Shimanto complex in Japan, slivers of basalt are entrained in mélange which is evidence of basement involvement in the fault system. Scientific drilling during the Nankai Trough Seismogenic Zone Experiment (NanTroSEIZE) recovered basement rock from two reference sites (C0011 and C0012) located seaward of the trench offshore the Kii Peninsula during Integrated Ocean Discovery Program (IODP) Expeditions 322 and 333. The basement rocks are pillow basalts that appear to be heterogeneously altered, resulting in contrasting dense blue material and more vesicular gray material. Major element geochemistry shows differences in silica, calcium oxides and loss-on-ignition between the two types of samples. Minor element geochemistry reveals significant differences in vanadium, chromium, and barium. X-ray diffraction on a bulk sample powder representing an average composition shows a phyllosilicate content of 20%, most of which is expandable clays. We performed laboratory friction experiments in a biaxial testing apparatus as either intact sample blocks, or as gouge powders. We combine these experiments with measurements of Pennsylvania slate for comparison, including a mixed-lithology intact block experiment. Intact Nankai basement blocks exhibit a coefficient of sliding friction of 0.73; for Nankai basement powder, slate powder, slate blocks and slate-on-basement blocks the coefficient of sliding friction ranges from 0.44 to 0.57. At slip rates ranging from 3x10-8 to 3x10-4 m/s we observe predominantly velocity-strengthening frictional behavior, indicating a tendency for stable slip. At rates of < 1x10-6 m/s some velocity-weakening was observed, specifically in

  8. Masirah Graben, Oman: A hidden Cretaceous rift basin

    Energy Technology Data Exchange (ETDEWEB)

    Beauchamp, W.H. [Cornell Univ., Ithaca, NY (United States); Ries, A.C. [Ries-Coward Associates Ltd., Caversham (United Kingdom); Coward, M.P. [Imperial College, London (United Kingdom)] [and others


    Reflection seismic data, well data, geochemical data, and surface geology suggest that a Cretaceous rift basin exists beneath the thrusted allochthonous sedimentary sequence of the Masirah graben, Oman. The Masirah graben is located east of the Huqf uplift, parallel to the southern coast of Oman. The eastern side of the northeast-trending Huqf anticlinorium is bounded by an extensional fault system that is downthrown to the southeast, forming the western edge of the Masirah graben. This graben is limited to the east by a large wedge of sea floor sediments and oceanic crust, that is stacked as imbricate thrusts. These sediments/ophiolites were obducted onto the southern margin of the Arabian plate during the collision of the Indian/Afghan plates at the end of the Cretaceous. Most of the Masirah graben is covered by an allochthonous sedimentary sequence, which is complexly folded and deformed above a detachment. This complexly deformed sequence contrasts sharply with what is believed to be a rift sequence below the ophiolites. The sedimentary sequence in the Masirah graben was stable until further rifting of the Arabian Sea/Gulf of Aden in the late Tertiary, resulting in reactivation of earlier rift-associated faults. Wells drilled in the Masirah graben in the south penetrated reservoir quality rocks in the Lower Cretaceous Natih and Shuaiba carbonates. Analyses of oil extracted from Infracambrian sedimentary rocks penetrated by these wells suggest an origin from a Mesozoic source rock.

  9. Pediatric Burns at The Rift Valley Provincial General Hospital ...

    African Journals Online (AJOL)

    Aim To determine the etiology and outcome of pediatric burns (0-12 years). Design A retrospective study of burn victims hospitalized at the Rift Valley Provincial General Hospital, Nakuru, Kenya from April 2004 to March 2007. Method Charts of all children hospitalized for burn injury were reviewed for patient demographics, ...

  10. Comparison of sampling techniques for Rift Valley Fever virus ...

    African Journals Online (AJOL)

    We investigated mosquito sampling techniques with two types of traps and attractants at different time for trapping potential vectors for Rift Valley Fever virus. The study was conducted in six villages in Ngorongoro district in Tanzania from September to October 2012. A total of 1814 mosquitoes were collected, of which 738 ...

  11. Epidemiology of gastrointestinal helminthiasis of rift valley goats ...

    African Journals Online (AJOL)

    The prevalence, mean intensity, relative density of helminth species and the effects of environmental factors, sex and maturity of host on seasonal dynamics in relative density of helminthes ova in Rift Valley goats were investigated from July 1997 to June 1998. Ten nematode and three cestode species were identified.

  12. Defluoridation of Ethiopian Rift Valley Region water using reverse ...

    African Journals Online (AJOL)

    Defluoridation of Ethiopian Rift Valley Region (ERVR) raw ground water using reverse osmosis (RO) membranes was studied. Four RO membranes CA995PlE, HR98PP, LFC and ESPA delivered by DSS and Hydranautics were investigated for the retention of fluoride in fluoride water. All four membranes were observed to ...

  13. Impact of Global Climate on Rift Valley Fever Disease Outbreaks (United States)

    Rift Valley fever is a viral disease of animals and humans in Africa and the Middle East that is transmitted by mosquitoes. Since the virus was first isolated in Kenya in 1930 it has caused significant impact to animal and human health and national economies, and it is of concern to the internationa...

  14. No Moho uplift below the Baikal Rift Zone

    DEFF Research Database (Denmark)

    Nielsen, Christoffer; Thybo, Hans


    .4-7.6 ± 0.2 km/s), slightly offset to the northeast from the rift axis. We interpret this feature as resulting from mafic intrusions. Their presence may explain the flat Moho by compensation of lower crustal thinning by intrusion of mafic melts. The Pn wave velocities (8.15-8.2 km/s) are normal for the area...

  15. Probable existence of a Gondwana transcontinental rift system in ...

    Indian Academy of Sciences (India)

    S Mazumder


    Aug 31, 2017 ... Permian rifts in the East African countries of. South Africa, Kenya, Tanzania and Mozambique are mostly referred to as the Karoo System. South Africa: In the main Karoo Basin in South. Africa (figure 5), the Karoo sequence (figure 2) is subdivided into Dwyka Series (Late Carbonif- erous), Ecca Series (Early ...

  16. One health approach to Rift Valley fever vaccine development

    NARCIS (Netherlands)

    Kortekaas, J.A.


    Since its discovery in the 1930s, Rift Valley fever virus (RVFV) spread across the African continent and invaded the Arabian Peninsula and several islands off the coast of Southeast Africa. The virus causes recurrent outbreaks in these regions, and its continued spread is of global concern.

  17. Outbreak of Rift Valley fever affecting veterinarians and farmers in ...

    African Journals Online (AJOL)

    Background. During 2008, Rift Valley fever (RVF) virus re-emerged in South Africa as focal outbreaks in several provinces. Aims. To investigate an outbreak affecting cattle farmers and farm workers, and the staff and students of a veterinary school, assess the prevalence of infection during the outbreak, document the clinical ...

  18. Efficacy of three candidate Rift Valley fever vaccines in sheep

    NARCIS (Netherlands)

    Kortekaas, J.; Antonis, A.F.G.; Kant, J.; Vloet, R.P.M.; Vogel, A.; Oreshkova, N.D.; de Boer, S.M.; Bosch, B.J.; Moormann, R.J.M.


    Rift Valley fever virus (RVFV) is a mosquito-transmitted Bunyavirus that causes high morbidity and mortality among ruminants and humans. The virus is endemic to the African continent and the Arabian Peninsula and continues to spread into new areas. The explosive nature of RVF outbreaks requires that

  19. Rift Valley fever potential mosquito vectors and their infection status ...

    African Journals Online (AJOL)

    conducted to determine the abundance of potential mosquito vectors and their RVFV infection status in. Ngorongoro District ... Rift Valley fever (RVF) is an acute febrile arthropod-borne viral zoonotic disease of mainly human ..... A.S., Rollin, P.E., Swanepoel, R., Ksiazek, T.G. & Nichol, S.T. (2002) Genetic analysis of viruses.

  20. Geology of the Elephanta Island fault zone, western Indian rifted ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 126; Issue 1. Geology of the Elephanta Island fault zone, western Indian rifted margin, and its significance for understanding the Panvel flexure. Hrishikesh Samant Ashwin Pundalik Joseph D'souza Hetu Sheth Keegan Carmo Lobo Kyle D'souza Vanit Patel. Volume ...

  1. Mapping of the major structures of the African rift system (United States)

    Mohr, P. A. (Principal Investigator)


    The author has identified the following significant results. The new fault map of the main Ethiopian rift, based on aerial photo compilations, generally agrees well with the maps produced from ERTS-1 imagery. Characteristically, the ERTS-1 imagery shows some of the major faults to be more extensive than realized from ground studies, though due to the angle of sun illumination some east-facing fault scarps are not easily discernible on the imagery. The Corbetti caldera, shows up surprisingly poor on the imagery, and is shown to be an adjunct to an older, larger caldera now occupied by Lakes Awassa and Shallo. The lithological boundaries mapped by De Paola in the rift are difficult to discern on the ERTS-1 imagery. On the Somalian plateau, east of the rift, a denuded caldera has been identified as the source of much of the lavas of the Batu Mountains. Further south, ERTS-1 imagery amplifies the structural and lithological mapping of the Precambrian rocks of the Shakisso-Arero area, and of the Kenya-Ethiopia border region. For the first time with some certainty, it is now possible to say that on the evidence of the ERTS-1 imagery, the Western Rift does not continue northeast beyond the Sudan-Uganda border, and is thus not to be sought in western Ethiopia.

  2. Probable existence of a Gondwana transcontinental rift system in ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 126; Issue 6 ... The study indicates a rift system spanning from Arabian plate in the north and extending to southern part of Africa that passes through Indus basin, western part of India and Madagascar, and existed from Late Carboniferous to Early Jurassic.

  3. The Reconcavo Basin reservoirs in transition of the pre-rift and rift phases: new discussion; Os reservatorios da Bacia do Reconcavo na transicao das fases pre-rift e rift: nova discussao

    Energy Technology Data Exchange (ETDEWEB)

    Romao, Felipe [Queiroz Galvao Perfuracoes S.A., Rio de Janeiro, RJ (Brazil); Borghi, Leonardo [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil)


    The facies analysis of the stratigraphic interval represented by Sergi, Itaparica, and Agua Grande formations (Brotas and Santo Amaro groups) of Reconcavo basin was guided by cores description of the well 1-CAL-1-BA (Caldeirao 1), located in the Northwestern part of the Reconcavo Basin. Sedimentary facies (lithofacies) were described and grouped into four facies association interpreted as fluvial (upper Sergi Fm.), fluvial-lacustrine (Itaparica Fm.), and fluvial-eolian (Agua Grande Fm.) depositional systems; also, forced-regression erosive surfaces (unconformities) and transgressive ones were identified. The analysis of these results points that the upper Sergi Fm. would have subsided as consequence of the early rifting of the basin, creating space for the formation of shallow lake (Itaparica Fm.). This ancient lake undergone several forced regressions due to a continuous early tectonism (rifting), responsible by the sand input into the lake, in a coarsening up cycle topped by the expressive fluvio-eolian system of the Agua Grande Fm. Each forced regression smaller cycle is capped by lake flooding shales. Above this major CU cycle, the intensification of tectonic event subsided the basin and created a deep lake (Candeias Fm.) - the Rift Phase. So, the initial rifting would not have started during a 'Candeias time', but by earlier, in a less intense way. It must be stressed that this interpretation was based solely in only one well, but it's important to keep this new idea in mind for revision or new studies on this interval. (author)

  4. Gravity anomalies, crustal structure and rift tectonics at the Konkan ...

    Indian Academy of Sciences (India)

    trolled by the mode of extension and thinning of continental lithosphere during its formation. Stud- ies on the evolution of passive margins therefore facilitate to understand the genetic link between tectonics, geomorphology and sedimentation. The. Western Continental Margin of India (WCMI) has evolved through rifting and ...

  5. Occurrence of rift valley fever (RVF) in Dodoma region, Tanzania ...

    African Journals Online (AJOL)

    Rift Valley Fever (RVF) is a peracute or acute febrile zoonotic mosquito-borne viral disease affecting wildlife, domestic animals and occasionally humans. It occurs after heavy rains and ... While waiting for the results the patients were treated for malaria and/or meningitis based on visual/ clinical signs. However, most of the ...


    African Journals Online (AJOL)


    Philip and Mosha - Salt Lakes of the African Rift System … 2 development of newer models for a clear understanding of the governing equilibria. Chemical speciation, the new equilibria and processes such as pH, pKa's buffer capacities, the extreme aggressive chemical environment and adaptive mechanisms evolved by ...

  7. Forecast and Outbreak of Rift valley fever in Sudan, 2007 (United States)

    Background Rift Valley fever (RVF) outbreaks occur during heavy rainfall in various sub-Saharan countries including Kenya, Somalia, and Tanzania and more recently in Saudi Arabia and Yemen. Given the wide geographic and ecological range of RVF virus, it is necessary to monitor large areas for condit...

  8. Kinematics of the entire East African Rift from GPS velocities (United States)

    Floyd, M.; King, R. W.


    Through a collaborative effort of the GeoPRISMS East Africa Rift GPS Working Group, we have collected and collated all of the publicly available continuous and survey-mode data for the entire rift system between 1994 and 2017 and processed these data as part of a larger velocity solution for Africa, Arabia and western Eurasia. We present here our velocity solution encompassing the major bounding plates and intervening terranes along the East African Rift from the Red Sea to the Malawi Rift and adjacent regions for GPS sites with data spans of at least 2.4 years, and north and east velocity uncertainties less than 1.5 mm/yr. To obtain realistic uncertainties for the velocity estimates, we attempted at each stage of the analysis to account for the character of the noise: During phase processing, we used an elevation-dependent weighting based on the phase residuals for each station; we then examined each position time series, removing outliers and reweighting appropriately to account for the white noise component of the errors; and e accounted for temporal correlations by estimating an equivalent random-walk magnitude for each continuous site and applying the median value (0.5 mm/√yr) to all survey-mode sites. We rigorously estimate relative rotation rates of Nubia, by choosing subset of well-determined sites such that the effective weights of western, northeastern and southern Africa were roughly equivalent, and Somalia, for which the estimate is dominated by three sites (MALI, RCMN, SEY1) whose uncertainties are a factor of 2-3 smaller than those of the other sites. For both plates, the weighted root-mean-square of the velocity residuals is 0.5 mm/yr. Our unified velocity solution provides a geodetic framework and constraints on the continental-scale kinematics of surface motions as well as more local effects both within and outside of the rift structures. Specific focus areas with denser coverage than previous fields include the Danakil block, the Afar Rift, the

  9. The Porcupine Basin: from rifting to continental breakup (United States)

    Reston, Timothy; Gaw, Viola; Klaeschen, Dirk; McDermott, Ken


    Southwest of Ireland, the Porcupine Basin is characterized by axial stretching factors that increase southward to values greater than six and typical of rifted margins. As such, the basin can be regarded as a natural laboratory to investigate the evolution and symmetry of rifting leading towards continental separation and breakup, and in particular the processes of mantle serpentinisation, and the onset of detachment faulting. We have processed through to prestack depth migration a series of E-W profiles crossing the basin at different axial stretching factors and linked by a N-S profile running close to the rift axis. Our results constrain the structure of the basin and have implications for the evolution of rifted margins. In the north at a latitude of 52.25N, no clear detachment is imaged, although faults do appear to cut down into the mantle, so that serpentinisation may have started. Further south (51.75N), a bright reflection (here named P) cuts down to the west from the base of the sedimentary section, is overlain by small fault blocks and appears to represent a detachment fault. P may in part follow the top of partially serpentinized mantle: this interpretation is consistent with gravity modelling, with numerical models of crustal embrittlement and mantle serpentinization during extension and with wide-angle data (see posters of Prada and of Watremez). Furthermore, P closely resembles the S reflection west of Iberia, where such serpentinites are well documented. P develops where the crust was thinned to less than 3 km during rifting, again similar to S. Although overall the basin remains symmetrical, the consistent westward structural dip of the detachment implies that, at high stretching factors, extension became asymmetric. Analysis of the depth sections suggests that the detachment may have been active as a rolling hinge rooting at low-angle beneath the Porcupine Bank, consistent with the presence of a footwall of serpentinites. This requires very weak

  10. The influence of inherited structures on magmatic and amagmatic processes in the East African Rift. (United States)

    Biggs, J.; Lloyd, R.; Hodge, M.; Robertson, E.; Wilks, M.; Fagereng, A.; Kendall, J. M.; Mdala, H. S.; Lewi, E.; Ayele, A.


    The idea that crustal heterogeneities, particularly inherited structures, influence the initiation and evolution of continental rifts is not new, but now modern techniques allow us to explore these controls from a fresh perspective, over a range of lengthscales, timescales and depths. In amagmatic rifts, I will demonstrate that deep fault structure is controlled by the stress orientation during the earliest phase of rifting, while the surface expression exploits near-surface weaknesses. I will show that pre-existing structures control the storage and orientation of deeper magma reservoirs in magmatic rifts, while the tectonic stress regime controls intra-rift faulting and shallow magmatism and stresses related to surface loading and cycles of inflation and deflation dominate at volcanic edifices. Finally, I will show how cross-rift structures influence short-term processes such as deformation and seismicity. I will illustrate the talk throughout using examples from along the East African Rift, including Malawi, Tanzania, Kenya and Ethiopia.

  11. Active Magmatic Underplating in Western Eger Rift, Central Europe (United States)

    Hrubcová, Pavla; Geissler, Wolfram H.; Bräuer, Karin; Vavryčuk, Václav; Tomek, Čestmír.; Kämpf, Horst


    The Eger Rift is an active element of the European Cenozoic Rift System associated with intense Cenozoic intraplate alkaline volcanism and system of sedimentary basins. The intracontinental Cheb Basin at its western part displays geodynamic activity with fluid emanations, persistent seismicity, Cenozoic volcanism, and neotectonic crustal movements at the intersections of major intraplate faults. In this paper, we study detailed geometry of the crust/mantle boundary and its possible origin in the western Eger Rift. We review existing seismic and seismological studies, provide new interpretation of the reflection profile 9HR, and supplement it by new results from local seismicity. We identify significant lateral variations of the high-velocity lower crust and relate them to the distribution and chemical status of mantle-derived fluids and to xenolith studies from corresponding depths. New interpretation based on combined seismic and isotope study points to a local-scale magmatic emplacement at the base of the continental crust within a new rift environment. This concept of magmatic underplating is supported by detecting two types of the lower crust: a high-velocity lower crust with pronounced reflectivity and a high-velocity reflection-free lower crust. The character of the underplated material enables to differentiate timing and tectonic setting of two episodes with different times of origin of underplating events. The lower crust with high reflectivity evidences magmatic underplating west of the Eger Rift of the Late Variscan age. The reflection-free lower crust together with a strong reflector at its top at depths of 28-30 km forms a magma body indicating magmatic underplating of the late Cenozoic (middle and upper Miocene) to recent. Spatial and temporal relations to recent geodynamic processes suggest active magmatic underplating in the intracontinental setting.

  12. High Fluoride and Geothermal Activities In Continental Rift Zones, Ethiopia (United States)

    Weldesenbet, S. F.; Wohnlich, S.


    The Central Main Ethiopian Rift basin is a continental rift system characterized by volcano-tectonic depression endowed with huge geothermal resource and associated natural geochemical changes on groundwater quality. Chemical composition of groundwater in the study area showed a well defined trend along flow from the highland and escarpment to the rift floor aquifer. The low TDS ( 1000 mg/l) Na-HCO3-Cl type in volcano-lacustrine aquifers of the rift floor. High concentrations of fluoride (up to 97.2 mg/l) and arsenic (up to 98μg/l) are recognized feature of groundwaters which occur mostly in the vicinity of the geothermal fields and the rift lakes in the basin. Fluoride and arsenic content of dry volcaniclastic sediments close to these areas are in the range 666-2586mg/kg and 10-13mg/kg respectively. The relationship between fluoride and calcium concentrations in groundwaters showed negative correlation. Near-equilibrium state attained between the mineral fluorite (CaF2) and the majority of fluoride-rich (>30mg/l) thermal groundwater and shallow cold groundwater. This indicated that the equilibrium condition control the high concentration of fluoride in the groundwaters. Whereas undersaturation state of fluorite in some relatively low-fluoride (surface system is simulated with sediment-packed column leached by flowing water and applying temporary interruption of flow during the experiment. The result indicated that a sharp increase of fluoride concentration (up to 58mg/kg) observed in leachates before one pore-volume of water eluted from the column. The concentration of leached fluoride consequently declined with the increased flowing pore-volume of water and finally the lowest concentrations of leached fluoride occurred in the end of the experiment. Flow interruption during column leaching experiment causes a noticeable fluoride concentration perturbation due to the heterogeneity of the sediment.

  13. Fluoride and Geothermal Activities In Continental Rift Zones, Ethiopia (United States)

    Weldesenbet, S. F.


    The Central Main Ethiopian Rift basin is a continental rift system characterized by volcano-tectonic depression endowed with huge geothermal resource and associated natural geochemical changes on groundwater quality. Chemical composition of groundwater in the study area showed a well defined trend along flow from the highland and escarpment to the rift floor aquifer. The low TDS ( 1000 mg/l) Na-HCO3-Cl type in volcano-lacustrine aquifers of the rift floor. High concentrations of fluoride (up to 97.2 mg/l) and arsenic (up to 98μg/l) are recognized feature of groundwaters which occur mostly in the vicinity of the geothermal fields and the rift lakes in the basin. Fluoride and arsenic content of dry volcaniclastic sediments close to these areas are in the range 666-2586mg/kg and 10-13mg/kg respectively. The relationship between fluoride and calcium concentrations in groundwaters showed negative correlation. Near-equilibrium state attained between the mineral fluorite (CaF2) and the majority of fluoride-rich (>30mg/l) thermal groundwater and shallow cold groundwater. This indicated that the equilibrium condition control the high concentration of fluoride in the groundwaters. Whereas undersaturation state of fluorite in some relatively low-fluoride (surface system is simulated with sediment-packed column leached by flowing water and applying temporary interruption of flow during the experiment. The result indicated that a sharp increase of fluoride concentration (up to 58mg/kg) observed in leachates before one pore-volume of water eluted from the column. The concentration of leached fluoride consequently declined with the increased flowing pore-volume of water and finally the lowest concentrations of leached fluoride occurred in the end of the experiment. Flow interruption during column leaching experiment causes a noticeable fluoride concentration perturbation due to the heterogeneity of the sediment.

  14. Analysis of a photovoltaic-electrolyser direct-coupling system with a V-trough concentrator

    International Nuclear Information System (INIS)

    Su, Ziyun; Ding, Shuiting; Gan, Zhiwen; Yang, Xiaoyi


    Highlights: • A V-trough concentrator is applied in PVE system. • An analysis model for the CPVE system is established and verified experimentally. • The result shows that the V-trough concentrator increases the system efficiency. • The hydrogen production of the PVE system is doubled in this investigation. - Abstract: Hydrogen is a clean energy carrier for energy storage which is essential to solar system for continuous energy output. A promising method to store solar energy as hydrogen energy is by using photovoltaic-electrolyser (PVE) system. In this investigation, the operation of a PVE system with V-trough concentrator was studied experimentally and numerically. The V-trough concentrator was optimized and the daily average concentration ratio reaches about 1.9. A mathematical model including the sub models for irradiation flux pattern, PV array and electrolyser was established to analyze the characteristics of the system and it was verified experimentally. The results show that the utilization of V-trough concentrator makes PVE system work more efficiently with the same PV array. In this study, the conversion efficiency of solar energy to hydrogen energy was increased from 5.62% to 6.18% and the hydrogen production was doubled.

  15. The equatorward wall of the subauroral trough in the afternoon/evening sector

    Directory of Open Access Journals (Sweden)

    G. W. Prölss


    Full Text Available Although ionospheric troughs are a very important feature of the subauroral ionosphere, many of their properties remain incompletely documented and understood. Here Dynamics Explorer-2 satellite data are used to investigate one specific part of this complex phenomenon, namely its equatorward wall. We find that in the afternoon/evening sector of the Northern Hemisphere the location of this density drop depends primarily on the level of geomagnetic activity and magnetic local time. Longitudinal variations are only of secondary importance. A formula is derived which summarizes these variations. The magnitude of the density drop in the trough wall depends primarily on altitude and longitude, and to a lesser degree on local time and geomagnetic activity. These variations are also described quantitatively. Using a superposed epoch type of averaging procedure, a mean latitudinal profile of the trough wall is derived. No anomalous increase in the density at the equatorward edge of the trough is observed. There is, however, a significant increase in the electron temperature at the location of the density drop. Our results are important for the empirical description and numerical simulation of ionospheric troughs. They also may be used to define the boundary between middle and subauroral latitudes.

  16. Morphological features and lithostratigraphic assemblages of igneous rocks associated with modern subseafloor massive sulfide ore deposits: a case study from the Okinawa Trough, Japan (United States)

    Yamasaki, T.


    The Okinawa Trough (OT) is located in a young, actively spreading back-arc basin that extends for 1200 km behind the Ryukyu arc-trench system. Many active hydrothermal fields have been recognized in this area, and sub-seafloor volcanogenic massive sulfide (SMS) deposits occur at some of them. Here I show two types of magmatisms related to the SMS deposit formation based on synthesis of recent drilling results of SIP D/V Chikyu Cruises (Exp. 907-909; 2010-2016) in the middle OT. In the OT, some of the deposits have been discovered in association with calderas form by the explosive eruption of silicic volcanoes. However, rhyolite normally contains only small amounts of metallic elements, whereas basalts contain significant amounts of metals. Thus, the origin of the metallic elements remains unclear. According to on-land research, many larger calderas dominantly involve piston collapse of a coherent floor, which is bounded by steeply dipping ring faults and these calderas are inferred to reflect voluminous eruptions from large, shallow magma chambers. In the subsidence-calderas, the intracaldera fill consists mainly of ash-flow tuffs accumulated to thickness of many kilometers. Whereas the porous nature of the tuffs is advantageous because of their high ability for hydrothermal fluid-rock interaction in the submarine environment, the tuffs probably prevent well-developed fault systems for focused fluid discharge. Thus, major discharge zone is rather restricted to the periphery of the caldera floor near the caldera wall. Dacitic composition is required to explain the origin of the metallic elements of the SMS deposits because the intracaldera fill is only the possible source of materials of water-rock interaction. Such dacites can form by mixing of rhyolitic magma with basaltic magma prior to caldera-forming eruptions. In the OT, high-temperature hydrothermal vents and associated mineralization are also found in areas without subsidence-caldera morphology. Small

  17. Colorado Basin Structure and Rifting, Argentine passive margin (United States)

    Autin, Julia; Scheck-Wenderoth, Magdalena; Loegering, Markus; Anka, Zahie; Vallejo, Eduardo; Rodriguez, Jorge; Marchal, Denis; Reichert, Christian; di Primio, Rolando


    The Argentine margin presents a strong segmentation with considerable strike-slip movements along the fracture zones. We focus on the volcanic segment (between the Salado and Colorado transfer zones), which is characterized by seaward dipping reflectors (SDR) all along the ocean-continent transition [e.g. Franke et al., 2006; Gladczenko et al., 1997; Hinz et al., 1999]. The segment is structured by E-W trending basins, which differs from the South African margin basins and cannot be explained by classical models of rifting. Thus the study of the relationship between the basins and the Argentine margin itself will allow the understanding of their contemporary development. Moreover the comparison of the conjugate margins suggests a particular evolution of rifting and break-up. We firstly focus on the Colorado Basin, which is thought to be the conjugate of the well studied Orange Basin [Hirsch et al., 2009] at the South African margin [e.g. Franke et al., 2006]. This work presents results of a combined approach using seismic interpretation and structural, isostatic and thermal modelling highlighting the structure of the crust. The seismic interpretation shows two rift-related discordances: one intra syn-rift and the break-up unconformity. The overlying sediments of the sag phase are less deformed (no sedimentary wedges) and accumulated before the generation of oceanic crust. The axis of the Colorado Basin trends E-W in the western part, where the deepest pre-rift series are preserved. In contrast, the basin axis turns to a NW-SE direction in its eastern part, where mainly post-rift sediments accumulated. The most distal part reaches the margin slope and opens into the oceanic basin. The general basin direction is almost orthogonal to the present-day margin trend. The most frequent hypothesis explaining this geometry is that the Colorado Basin is an aborted rift resulting from a previous RRR triple junction [e.g. Franke et al., 2002]. The structural interpretation

  18. Outlet glacier trough size-drainage area relationships, Fiordland, New Zealand (United States)

    Augustinus, Paul C.


    This paper examines relationships between the area supplying ice to fiord troughs and various measures of fiord size such as depth. width and length in Fiordland, New Zealand. The size of the outlet troughs was found to be adjusted to the discharge of ice, following a similar relationship to that encountered with fiords developed under essentially cold-based ice sheets in British Columbia. However, the Fiordland outlet troughs were substantially shorter and shallower than their counterparts in British Columbia. This difference may reflect contrast in mode of erosion in each case, although the major dimensions of the fiords undoubtedly reflect the controlling influence of the pre-glacial lanscape upon which ice-caps were superimposed with their rediating outlet glaciers.

  19. A vacuum tube vee-trough collector for solar heating and air conditioning applications (United States)

    Selcuk, M. K.


    An analysis is conducted of the performance of a vee-trough vacuum tube collector proposed for use in solar heating and cooling applications. The vee-trough reflector is a triangular sectioned, flat surfaced reflector, whose axis is laid in the East-West direction. A vacuum tube receiver placed at the bottom of the vee-trough collects solar heat most efficiently since convection is completely eliminated. Radiation losses are reduced by use of selective coatings on the absorber. Owing to its high temperature capabilities (300-400 F), the proposed scheme could also be used for power generation applications in combination with an organic Rankine conversion system. It is especially recommended for unattended pumping stations since the reflectors only require reversal once every six months.

  20. Class II Eplet Mismatch Modulates Tacrolimus Trough Levels Required to Prevent Donor-Specific Antibody Development. (United States)

    Wiebe, Chris; Rush, David N; Nevins, Thomas E; Birk, Patricia E; Blydt-Hansen, Tom; Gibson, Ian W; Goldberg, Aviva; Ho, Julie; Karpinski, Martin; Pochinco, Denise; Sharma, Atul; Storsley, Leroy; Matas, Arthur J; Nickerson, Peter W


    Despite more than two decades of use, the optimal maintenance dose of tacrolimus for kidney transplant recipients is unknown. We hypothesized that HLA class II de novo donor-specific antibody ( dn DSA) development correlates with tacrolimus trough levels and the recipient's individualized alloimmune risk determined by HLA-DR/DQ epitope mismatch. A cohort of 596 renal transplant recipients with 50,011 serial tacrolimus trough levels had HLA-DR/DQ eplet mismatch determined using HLAMatchmaker software. We analyzed the frequency of tacrolimus trough levels below a series of thresholds mismatch. HLA-DR/DQ eplet mismatch was a significant multivariate predictor of dn DSA development. Recipients treated with a cyclosporin regimen had a 2.7-fold higher incidence of dn DSA development than recipients on a tacrolimus regimen. Recipients treated with tacrolimus who developed HLA-DR/DQ dn DSA had a higher proportion of tacrolimus trough levels mismatch. Mean tacrolimus trough levels in the 6 months before dn DSA development were significantly lower than the levels >6 months before dn DSA development in the same patients. Recipients with a high-risk HLA eplet mismatch score were less likely to tolerate low tacrolimus levels without developing dn DSA. We conclude that HLA-DR/DQ eplet mismatch and tacrolimus trough levels are independent predictors of dn DSA development. Recipients with high HLA alloimmune risk should not target tacrolimus levels <5 ng/ml unless essential, and monitoring for dn DSA may be advisable in this setting. Copyright © 2017 by the American Society of Nephrology.

  1. Improving the concentration ratio of parabolic troughs using a second-stage flat mirror

    International Nuclear Information System (INIS)

    Rodriguez-Sanchez, David; Rosengarten, Gary


    Highlights: • A secondary flat reflector is added to commercial parabolic troughs. • Theoretical derivations and ray tracing used to size and position the absorber. • Concentration ratio increases up to 80% can be achieved for current collectors. • New flux distributions around the absorber are calculated. • The use of flat secondary reflector will increase the plant efficiency. - Abstract: Increasing the concentration ratio of parabolic troughs is one of the challenges to make this technology economically competitive against fossil fuels. Parabolic troughs with large concentration ratios face several problems such as difficulty capturing all the solar direct radiation and structural issues associated with thermal expansions and wind resistance amongst others. For larger mirrors it may be necessary to use a bigger absorber in order to capture all the radiation, thus increasing the thermal losses. A second stage reflector helps to increase the concentration ratio without increasing the primary mirror size. In this work, a theoretical analysis of a parabolic trough with a secondary flat reflector is developed and ray tracing is conducted in order to validate the equations obtained. A flat reflector will have a minimal economic impact in the cost of a parabolic trough and it allows larger concentration ratios for identical primary mirror areas compared to a standard parabolic trough. Increases of concentration ratio up to 80% are observed when a secondary flat reflector is inserted in a commercial system, while the shadow area introduced in the primary mirror is usually less than 15% of the primary mirror area. The increase in pumping power is offset by the increase in system efficiency.

  2. Thermomechanical Controls on the Success and Failure of Continental Rift Systems (United States)

    Brune, S.


    Studies of long-term continental rift evolution are often biased towards rifts that succeed in breaking the continent like the North Atlantic, South China Sea, or South Atlantic rifts. However there are many prominent rift systems on Earth where activity stopped before the formation of a new ocean basin such as the North Sea, the West and Central African Rifts, or the West Antarctic Rift System. The factors controlling the success and failure of rifts can be divided in two groups: (1) Intrinsic processes - for instance frictional weakening, lithospheric thinning, shear heating or the strain-dependent growth of rift strength by replacing weak crust with strong mantle. (2) External processes - such as a change of plate divergence rate, the waning of a far-field driving force, or the arrival of a mantle plume. Here I use numerical and analytical modeling to investigate the role of these processes for the success and failure of rift systems. These models show that a change of plate divergence rate under constant force extension is controlled by the non-linearity of lithospheric materials. For successful rifts, a strong increase in divergence velocity can be expected to take place within few million years, a prediction that agrees with independent plate tectonic reconstructions of major Mesozoic and Cenozoic ocean-forming rift systems. Another model prediction is that oblique rifting is mechanically favored over orthogonal rifting, which means that simultaneous deformation within neighboring rift systems of different obliquity and otherwise identical properties will lead to success and failure of the more and less oblique rift, respectively. This can be exemplified by the Cretaceous activity within the Equatorial Atlantic and the West African Rifts that lead to the formation of a highly oblique oceanic spreading center and the failure of the West African Rift System. While in nature the circumstances of rift success or failure may be manifold, simplified numerical and

  3. Evolution of the mantle source in an evolving arc-backarc system (Torres del Paine, Patagonia): Evidence from Hf isotopes in zircon (United States)

    Ewing, T. A.; Muntener, O.; Leuthold, J.; Baumgartner, L. P.; Putlitz, B.; d'Abzac, F. X.; Chiaradia, M.


    The Miocene Torres del Paine intrusive complex (TPIC) in Patagonia is a transitional alkaline backarc intrusion1 emplaced on short timescales of 162 ± 11 ka2. It is subdivided into two units with distinct ages of ~12.6 Ma and ~12.45 Ma1. Smaller intrusive bodies in the area record a change in chemistry from calc-alkaline at ~16 Ma, to transitional alkaline at ~12.5 Ma. Zircons from ~16 Ma intrusives and the 12.6 Ma part of the TPIC have remarkably consistent, slightly enriched Hf isotope compositions with ɛHf(i) of -1 to +2. An abrupt shift towards more juvenile Hf isotope compositions is observed in the ~12.45 Ma part of the TPIC, with ɛHf(i) of +3 to +6. Bulk rock Nd and Sr isotopes for the TPIC show the same shift towards more juvenile compositions at this time1. The long-term consistency of ɛHf(i) from 16 to 12.6 Ma is surprising, given that in the same period the bulk rock chemistry changes from calc-alkaline to transitional alkaline. Conversely, the major shift in ɛHf(i) is not correlated with any change in bulk rock chemistry, which remains transitional alkaline from 12.6 to 12.45 Ma. The decoupling of major element chemical evolution and Hf isotope signatures suggests that the subsequent rapid influx of juvenile material recorded by our Hf isotope data must have occurred by renewed mantle melting. Subduction of the Chile ridge at ~12.5 Ma in this area caused arc magmatism to move westwards and back-arc extension to initiate. We propose that the first TPIC magmas (12.6 Ma) came from a mantle wedge with a residual subduction signature. Subsequent melting of more juvenile mantle, less contaminated by a subduction component, generated the 12.45 Ma TPIC magmas. These results demonstrate that magmatic complexes such as the TPIC may tap distinct mantle sources even on very short timescales, fingerprinting arc-backarc transition processes. 1Leuthold et al., 2013, JPET, 54: 273-303 2Leuthold et al., 2012, EPSL, 325: 85-92

  4. Tracking local control of a parabolic trough collector; Control local de seguimiento cilindro parabolico ACE20

    Energy Technology Data Exchange (ETDEWEB)

    Ajona, J.I.; Alberdi, J.; Gamero, E.; Blanco, J.


    In the local control, the sun position related to the trough collector is measured by two photo-resistors. The provided electronic signal is then compared with reference levels in order to get a set of B logical signals which form a byte. This byte and the commands issued by a programmable controller are connected to the inputs of o P.R.O.M. memory which is programmed with the logical equations of the control system. The memory output lines give the control command of the parabolic trough collector motor. (Author)

  5. Tridimensional analysis of gravitational and magnetic fields of Terek-Caspian trough (United States)

    Kerimov, I. A.; Abubakarova, E. A.; Badaev, S. V.


    The results of the tridimensional analysis of the gravitational and magnetic fields of the Terek-Caspian trough are presented in this article. Various transformations of the region’s gravitational and magnetic fields (separation into components, calculation of higher derivatives, measurement of statistical characteristics, tracing of the anomaly axes, etc.) were performed. The morphology of the gravitational and magnetic fields was investigated, the characteristics of the anomalous geophysical fields were outlined and the relationship between various field characteristics and the features of the fault-block tectonics of the trough was analyzed.

  6. Analytical Approach Treating Three-Dimensional Geometrical Effects of Parabolic Trough Collectors: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Binotti, M.; Zhu, G.; Gray, A.; Manzollini, G.


    An analytical approach, as an extension of one newly developed method -- First-principle OPTical Intercept Calculation (FirstOPTIC) -- is proposed to treat the geometrical impact of three-dimensional (3-D) effects on parabolic trough optical performance. The mathematical steps of this analytical approach are presented and implemented numerically as part of the suite of FirstOPTIC code. In addition, the new code has been carefully validated against ray-tracing simulation results and available numerical solutions. This new analytical approach to treating 3-D effects will facilitate further understanding and analysis of the optical performance of trough collectors as a function of incidence angle.

  7. Many play concepts seen over wide area in Erris, Slyne troughs off Ireland

    International Nuclear Information System (INIS)

    Murphy, N.J.; Croker, P.F.


    This paper reports that the Erris and Slyne troughs are underexplored Mesozoic sedimentary basins off Ireland's northwest coast. The Irish Minister for Energy announced on Apr. 19, 1991, a frontier acreage licensing round of 128 blocks covering 29,000 sq km in these basins and the adjacent Rockall trough. Closing date for the round is June 30, 1993, set to allow two seasons for the acquisition of new geophysical and geological data over the area. Ireland has recently announced a new petroleum taxation regime. Revised licensing terms, which will acknowledge the specific circumstances of frontier acreage, will be announced

  8. Rift-drift transition in the Dangerous Grounds, South China Sea (United States)

    Peng, Xi; Shen, Chuanbo; Mei, Lianfu; Zhao, Zhigang; Xie, Xiaojun


    The South China Sea (SCS) has a long record of rifting before and after subsequent seafloor spreading, affecting the wide continent of the Dangerous Grounds, and its scissor-shape opening manner results in the rifting structures that vary along this margin. Some 2000 km of regional multichannel seismic data combined with borehole and dredge data are interpreted to analyze the multistage rifting process, structural architecture and dynamic evolution across the entire Dangerous Grounds. Key sequence boundaries above the Cenozoic basement are identified and classified into the breakup unconformity and the rift end unconformity, which consist of the rift-related unconformities. Reflector T70 in the east of the Dangerous Grounds represents the breakup unconformity, which is likely corresponding to the spreading of the East Subbasin. T60 formed on the top of carbonate platform is time equivalent to the spreading of the Southwest Subbasin, marking the breakup unconformity of the central Dangerous Grounds. The termination of the spreading of the SCS is manifested by the rift end unconformity of T50 in the southwest and the final rift occurring in the northwest of the Dangerous Grounds is postponed to the rift end unconformity of T40. On the basis of the stratigraphic and structural analysis, distinct segments in the structural architecture of the syn-rift units and the ages of rift-drift transition show obvious change from the proximal zone to the distal zone. Three domains, which are the Reed Bank-Palawan Rift domain, the Dangerous Grounds Central Detachment domain and Nam Con Son Exhumation domain, reflect the propagation of the margin rifting developed initially by grabens formed by high angle faults, then large half-grabens controlled by listric faults and detachments and finally rotated fault blocks in the hyper-extended upper crust associated with missing lower crust or exhumed mantle revealing a migration and stepwise rifting process in the south margin of the SCS.

  9. The role of pre-existing Precambrian lithospheric structures in the development of Rukwa Rift basin in the Western Branch of East African Rift System, SW Tanzania (United States)

    Lemna, Obeid; Stephenson, Randell; Cornwell, David


    Continental rifts are inter-connected groups of half-grabens bordered by steep escarpments formed by border fault displacement. They often follow the pre-existing zones of weakness and/or tectonic boundaries diverging around the craton. In some areas it has been observed that border fault segmentation and rift basin asymmetry shows little or no correlation with basement structures, raising the possibility that continental rift development may in some cases at least be linked to deeper-seated lithospheric structures. The influence of pre-existing/inherited lithospheric structure remains a question for study in unravelling the evolution of continental rifts. The Rukwa Rift Basin is a northwest trending half-graben developed along the trend of the Paleoproterozoic Ubendian belt in southwest Tanzania. This belt is a linear, NW-SE trending orogenic belt in western Tanzania. It is part of a larger Paleoproterozoic orogenic belt, developed around the west and south-western margin of the Archaean Tanzanian craton. This belt is characterised by a consistent NW-trending fabric and by the presence of large shear zones that persist along the whole of the belt. As such, it offers the opportunity to examine the role of pre-existing Precambrian structures on the development of the Rukwa Rift. Digital Elevation Models (DEMs) extracted from Shuttle Radar Topography Mission (SRTM) and aeromagnetic data are used in this study. The results suggest that the orientation and geometry of Rukwa Rift basin has been influenced by the structural grains of the Paleoproterozoic Ubendian belt. Pre-existing structures within the Paleoproterozoic terrains facilitated the strain localisation within border faults that exploited the existence of inherited lithospheric heterogeneity. The southern border fault of the rift has been influenced by the NW-trending Mugese shear zone (MSZ). This shear zone has prominent NW-trending pre-existing structures in the form of transcurrent shear fabric and zones of

  10. Dykes and structures of the NE rift of Tenerife, Canary Islands: a record of stabilisation and destabilisation of ocean island rift zones (United States)

    Delcamp, A.; Troll, V. R.; van Wyk de Vries, B.; Carracedo, J. C.; Petronis, M. S.; Pérez-Torrado, F. J.; Deegan, F. M.


    Many oceanic island rift zones are associated with lateral sector collapses, and several models have been proposed to explain this link. The North-East Rift Zone (NERZ) of Tenerife Island, Spain offers an opportunity to explore this relationship, as three successive collapses are located on both sides of the rift. We have carried out a systematic and detailed mapping campaign on the rift zone, including analysis of about 400 dykes. We recorded dyke morphology, thickness, composition, internal textural features and orientation to provide a catalogue of the characteristics of rift zone dykes. Dykes were intruded along the rift, but also radiate from several nodes along the rift and form en échelon sets along the walls of collapse scars. A striking characteristic of the dykes along the collapse scars is that they dip away from rift or embayment axes and are oblique to the collapse walls. This dyke pattern is consistent with the lateral spreading of the sectors long before the collapse events. The slump sides would create the necessary strike-slip movement to promote en échelon dyke patterns. The spreading flank would probably involve a basal decollement. Lateral flank spreading could have been generated by the intense intrusive activity along the rift but sectorial spreading in turn focused intrusive activity and allowed the development of deep intra-volcanic intrusive complexes. With continued magma supply, spreading caused temporary stabilisation of the rift by reducing slopes and relaxing stress. However, as magmatic intrusion persisted, a critical point was reached, beyond which further intrusion led to large-scale flank failure and sector collapse. During the early stages of growth, the rift could have been influenced by regional stress/strain fields and by pre-existing oceanic structures, but its later and mature development probably depended largely on the local volcanic and magmatic stress/strain fields that are effectively controlled by the rift zone growth

  11. Seismic hazard of the Kivu rift (western branch, East African Rift system): new neotectonic map and seismotectonic zonation model (United States)

    Delvaux, Damien; Mulumba, Jean-Luc; Sebagenzi Mwene Ntabwoba, Stanislas; Fiama Bondo, Silvanos; Kervyn, François; Havenith, Hans-Balder


    The first detailed probabilistic seismic hazard assessment has been performed for the Kivu and northern Tanganyika rift region in Central Africa. This region, which forms the central part of the Western Rift Branch, is one of the most seismically active part of the East African rift system. It was already integrated in large scale seismic hazard assessments, but here we defined a finer zonation model with 7 different zones representing the lateral variation of the geological and geophysical setting across the region. In order to build the new zonation model, we compiled homogeneous cross-border geological, neotectonic and sismotectonic maps over the central part of East D.R. Congo, SW Uganda, Rwanda, Burundi and NW Tanzania and defined a new neotectonic sheme. The seismic risk assessment is based on a new earthquake catalogue, compiled on the basis of various local and global earthquake catalogues. The use of macroseismic epicenters determined from felt earthquakes allowed to extend the time-range back to the beginning of the 20th century, spanning 126 years, with 1068 events. The magnitudes have been homogenized to Mw and aftershocks removed. From this initial catalogue, a catalogue of 359 events from 1956 to 2015 and with M > 4.4 has been extracted for the seismic hazard assessment. The seismotectonic zonation includes 7 seismic source areas that have been defined on the basis of the regional geological structure, neotectonic fault systems, basin architecture and distribution of thermal springs and earthquake epicenters. The Gutenberg-Richter seismic hazard parameters were determined using both the least square linear fit and the maximum likelihood method (Kijko & Smit aue program). Seismic hazard maps have been computed with the Crisis 2012 software using 3 different attenuation laws. We obtained higher PGA values (475 years return period) for the Kivu rift region than the previous estimates (Delvaux et al., 2016). They vary laterally in function of the tectonic

  12. New age constraints on the palaeoenvironmental evolution of the late Paleozoic back-arc basin along the western Gondwana margin of southern Peru (United States)

    Boekhout, F.; Reitsma, M. J.; Spikings, R.; Rodriguez, R.; Ulianov, A.; Gerdes, A.; Schaltegger, U.


    The tectonic evolution of the western Gondwana margin during Pangaea amalgation is recorded in variations in the Permo-Carboniferous back-arc basin sedimentation of Peru. This study provides the first radiometric age constraints on the volcanic and sedimentary sequences of south-central eastern Peru up to the western-most tip of Bolivia, and now permits the correlation of lateral facies variations to the late Paleozoic pre-Andean orogenic cycle. The two phases of Gondwanide magmatism and metamorphism at c. 315 Ma and c. 260 Ma are reflected in two major changes in this sedimentary environment. Our detrital U-Pb zircon ages demonstrate that the timing of Ambo Formation deposition corroborates the Late Mississipian age estimates. The transition from the Ambo to the Tarma Formation around the Middle Pennsylvanian Early Gondwanide Orogeny (c. 315 Ma) represents a relative deepening of the basin. Throughout the shallow marine deposits of the Tarma Formation evidence for contemporaneous volcanism becomes gradually more pronounced and culminates around 312 - 309 Ma. Continuous basin subsidence resulted in a buildup of platform carbonates of the Copacabana Formation. Our data highlights the presence of a previously unrecognized phase of deposition of mainly fluvial sandstones and localized volcanism (281-270 Ma), which we named ´Oqoruro Formation'. This sedimentary succession was previously miss-assigned to the so-called Mitu Group, which has recently been dated to start deposition in the Middle Triassic (∼245-240 Ma). The emersion of this marine basin coincides with the onset of a major plutonic pulse related to the Late Gondwanide Orogeny (c. 260). Exhumation lead to the consequent retreat of the epeiric sea to the present-day sub-Andean region, and the coeval accumulation of the fluvial Oqoruro Formation in south eastern Peru. These late Paleozoic palaeoenvironmental changes in the back-arc basins along the western Gondwana margin of southern reflect changes in

  13. Re-Emergence of Rift Valley Fever in Madagascar

    Centers for Disease Control (CDC) Podcasts


    This podcast describes the re-emergence of Rift Valley Fever in Madagascar during two rainy seasons in 2008 and 2009. CDC epidemiologist Dr. Pierre Rollin discusses what researchers learned about the outbreak and about infections in the larger population in Madagascar.  Created: 5/27/2010 by National Center for Emerging and Zoonotic Infectious Diseases (NCEZID).   Date Released: 5/27/2010.

  14. Eradicating tsetse from the Southern Rift Valley of Ethiopia

    International Nuclear Information System (INIS)


    Farming activities in Ethiopia, as in much of sub-Saharan Africa, are restricted by the presence of tsetse flies (Glossina spp.). These carry the livestock and human disease, trypanosomosis, which severely affects agricultural production and human well-being. In collaboration with the Ethiopian authorities, the International Atomic Energy Agency is sponsoring a Sterile Insect Technique (SIT) programme to eradicate tsetse from the Southern Rift Valley of Ethiopia. (IAEA)

  15. Hydrocarbon potential of Early Cretaceous lacustrine sediments from Bima Formation, Yola Sub-basin, Northern Benue Trough, NE Nigeria: Insight from organic geochemistry and petrology (United States)

    Sarki Yandoka, Babangida M.; Abdullah, Wan Hasiah; Abubakar, M. B.; Adegoke, Adebanji Kayode; Maigari, A. S.; Haruna, A. I.; Yaro, Usman Y.


    The Early Cretaceous lacustrine sediments from Bima Formation in the Yola Sub-basin, Northern Benue Trough, northeastern Nigeria were studied based on organic geochemistry and petrology. This is in other to provide information on hydrocarbon generation potential; organic matter type (quality), richness (quantity), origin/source inputs, redox conditions (preservation) and thermal maturation in relation to thermal effect of Tertiary volcanics. The total organic carbon (TOC) contents ranges from 0.38 to 0.86 wt % with extractable organic matter (EOM) below 1000 ppm and pyrolysis S2 yield values from 0.16 to 0.68 mg/g, suggesting poor to fair source rock richness. Based on kerogen pyrolysis and microscopy coupled with biomarker parameters, the organic matters contain Type I (lacustrine algae), Type III (terrestrially derived land-plants) and Type IV kerogens deposited in a mixed lacustrine-terrestrial environment under suboxic to relatively anoxic conditions. This suggest potential occurrence of Early Cretaceous lacustrine sediments (perhaps Lower Cretaceous petroleum system) in Yola Sub-basin of the Northern Benue Trough as present in the neighbouring basins of Chad, Niger and Sudan Republics that have both oil and gas generation potential within the same rift trend (WCARS). Vitrinite reflectance (%Ro) and Tmax values of the lacustrine shales ranges from 1.12 to 2.32 VRo% and 448-501 °C, respectively, indicating peak-late to post-maturity stage. This is supported by the presence of dark brown palynomorphs, amorphous organic matter and phytoclasts as well as inertinite macerals. Consequently, the organic matters in the lacustrine shales of Bima Formation in the Yola Sub-basin appeared as a source of oil (most likely even waxy) and gas prone at a relatively deeper part of the basin. However, the high thermal maturity enhanced the organic matters and most of the hydrocarbons that formed in the course of thermal maturation were likely expelled to the reservoir rock units

  16. Dike intrusions during rifting episodes obey scaling relationships similar to earthquakes (United States)

    L., Passarelli; E., Rivalta; A., Shuler


    As continental rifts evolve towards mid-ocean ridges, strain is accommodated by repeated episodes of faulting and magmatism. Discrete rifting episodes have been observed along two subaerial divergent plate boundaries, the Krafla segment of the Northern Volcanic Rift Zone in Iceland and the Manda-Hararo segment of the Red Sea Rift in Ethiopia. In both cases, the initial and largest dike intrusion was followed by a series of smaller intrusions. By performing a statistical analysis of these rifting episodes, we demonstrate that dike intrusions obey scaling relationships similar to earthquakes. We find that the dimensions of dike intrusions obey a power law analogous to the Gutenberg-Richter relation, and the long-term release of geodetic moment is governed by a relationship consistent with the Omori law. Due to the effects of magma supply, the timing of secondary dike intrusions differs from that of the aftershocks. This work provides evidence of self-similarity in the rifting process. PMID:24469260

  17. Upstream sediment input effects on experimental dune trough scour in sediment mixtures

    NARCIS (Netherlands)

    Kleinhans, M.G.


    Understanding causes of dune irregularity, especially dune trough scour, is important for the modeling of vertical sorting of sediment mixtures in morphological models of rivers with sediment mixtures. Sediment in dunes is generally sorted in a fining-upward manner, which affects the sediment

  18. A Study Investigating the Association of Dermatological and Infusion Reactions to Infliximab and Infliximab Trough Levels

    Directory of Open Access Journals (Sweden)

    Vivian Wai-Mei Huang


    Full Text Available BACKGROUND: Although infliximab is an effective therapy for inflammatory bowel disease (IBD, it is associated with dermatological events and infusion reactions. It is not known whether a relationship between these adverse events (AEs and infliximab trough levels (ITLs exists.

  19. Basinal Structure Of Yola Arm Of The Upper Benue Trough Nigeria ...

    African Journals Online (AJOL)

    Aeromagnetic data interpretation of the Yola arm of the Upper Benue Trough has previously been carried out. However, no detail modeling of the Crustal Structures has been undertaken. Two composite reduced Aeromagnetic maps on a scale of 1:250,000 were digitized and processed using computer techniques.

  20. Molecular Cytogenetics in Trough Shells (Mactridae, Bivalvia: Divergent GC-Rich Heterochromatin Content

    Directory of Open Access Journals (Sweden)

    Daniel García-Souto


    Full Text Available The family Mactridae is composed of a diverse group of marine organisms, commonly known as trough shells or surf clams, which illustrate a global distribution. Although this family includes some of the most fished and cultured bivalve species, their chromosomes are poorly studied. In this work, we analyzed the chromosomes of Spisula solida, Spisula subtruncata and Mactra stultorum by means of fluorochrome staining, C-banding and fluorescent in situ hybridization using 28S ribosomal DNA (rDNA, 5S rDNA, H3 histone gene and telomeric probes. All three trough shells presented 2n = 38 chromosomes but different karyotype compositions. As happens in most bivalves, GC-rich regions were limited to the nucleolus organizing regions in Spisula solida. In contrast, many GC-rich heterochromatic bands were detected in both Spisula subtruncata and Mactra stultorum. Although the three trough shells presented single 5S rDNA and H3 histone gene clusters, their chromosomal locations differed. Regarding major rDNA clusters, while Spisula subtruncata presented a single cluster, both Spisula solida and Mactra stultorum showed two. No evidence of intercalary telomeric signals was detected in these species. The molecular cytogenetic characterization of these taxa will contribute to understanding the role played by chromosome changes in the evolution of trough shells.

  1. Altitude variation of the plasmapause signature in the main ionospheric trough

    Czech Academy of Sciences Publication Activity Database

    Grebowsky, J. M.; Benson, R. F.; Webb, P. A.; Truhlík, Vladimír; Bilitza, D.


    Roč. 71, č. 16 (2009), s. 1669-1676 ISSN 1364-6826 R&D Projects: GA AV ČR IAA300420603 Institutional research plan: CEZ:AV0Z30420517 Keywords : Plasmapause * Ionosphere * Midlatitude Trough Subject RIV: DG - Athmosphere Sciences, Meteorology Impact factor: 1.643, year: 2009

  2. Investigation on the dynamic behaviour of a parabolic trough power plant during strongly cloudy days

    International Nuclear Information System (INIS)

    Al-Maliki, Wisam Abed Kattea; Alobaid, Falah; Starkloff, Ralf; Kez, Vitali; Epple, Bernd


    Highlights: • A detailed dynamic model of a parabolic trough solar thermal power plant is done. • Simulated results are compared to the experimental data from the real power plant. • Discrepancy between model result and real data is caused by operation strategy. • The model strategy increased the operating hours of power plant by around 2.5–3 h. - Abstract: The objective of this study is the development of a full scale dynamic model of a parabolic trough power plant with a thermal storage system, operated by the Actividades de Construcción y Servicios Group in Spain. The model includes solar field, thermal storage system and the power block and describes the heat transfer fluid and steam/water paths in detail. The parabolic trough power plant is modelled using Advanced Process Simulation Software (APROS). To validate the model, the numerical results are compared to the measured data, obtained from “Andasol II” during strongly cloudy periods in the summer days. The comparisons show a qualitative agreement between the dynamic simulation model and the measurements. The results confirm that the thermal storage enables the parabolic trough power plant to provide a constant power rate when the storage energy discharge is available, despite significant oscillations in the solar radiation.

  3. Numerical simulation of tropical-temperate troughs over Southern Africa using the CSU RAMS model

    CSIR Research Space (South Africa)

    Van den Heever, SC


    Full Text Available ) and the wet (1981) late summer case studies has been examined. Model simulations reveal that the tropical-temperate troughs form when an upper westerly wave coincides with an easterly, wave or depression in lower levels. These systems occur preferentially over...

  4. Evolution of the East African Rift System With Special Emphasis on the Central Rift of Kenya: A new Model

    International Nuclear Information System (INIS)

    Nyambok, I.O.


    The East African rift system has been of immense interest to geoscientist since its first account was given by Gregory (1896). Several recent views have followed, showing continuing interest in its evolution Baker et al. 19971; Baker et al. 1972; Baker and Wohlenberg 1971; McConnell 1972; Nyabok 1983; Williams and Truckle 1980; Williams, MacDonald and Leat 1983). This interest is being refueled by modern views which are emerging from our better understanding of plate tectonic processes. The major tectonic events took place during the Miocene and late Pliocene with the attendant volcanism which continued into the late Pleistocene. The late Pleistocene volcanism provided the heat source for the long on-going geothermal activity in the rift zone

  5. Seismic Investigations of an Accommodation zone in the Northern Rio Grande Rift, New Mexico, USA (United States)

    Baldridge, W. S.; Valdes, J.; Nedorub, O.; Phrampus, B.; Braile, L. W.; Ferguson, J. F.; Benage, M. C.; Litherland, M.


    Seismic reflection and refraction data acquired in the Rio Grande rift near Santa Fe, New Mexico, in 2009 and 2010 by the SAGE (Summer of Applied Geophysical Experience) program imaged the La Bajada fault (LBF) and strata offset across the associated, perpendicular Budagher fault (BF). The LBF is a major basin-bounding normal fault, offset down to the west; the smaller BF is an extensional fault that breaks the hanging wall ramp of the LBF. We chose this area because it is in a structurally complex region of the rift, comprising a small sub-basin and plunging relay ramps, where north-trending, en echelon basin-bounding faults (including the LBF) transfer crustal extension laterally between the larger Española (to north) and Albuquerque rift basins. Our data help determine the precise location and geometry of the poorly exposed LBF, which, near the survey location, offsets the rift margin vertically about 3,000 m. When integrated with industry reflection data and other SAGE seismic, gravity, and magnetotelluric surveys, we are able to map differences in offset and extension laterally (especially southward) along the fault. We interpret only about 200 m of normal offset across the BF. Our continuing work helps define multiple structural elements, partly buried by syn-rift basin-filling sedimentary rocks, of a complex intra-rift accommodation zone. We are also able to discriminate pre-Eocene (Laramide) from post-Miocene (rift) structures. Our data help determine the amount of vertical offset of pre-rift strata across structural elements of the accommodation zone, and depth and geometry of basin fill. A goal is to infer the kinematic development of this margin of the rift, linkages among faults, growth history, and possible pre-rift structural controls. This information will be potentially useful for evaluation of resources, including oil and/or gas in pre-rift strata and ground water in Late Miocene to Holocene rift-filling units.

  6. A Fusion-Inhibiting Peptide against Rift Valley Fever Virus Inhibits Multiple, Diverse Viruses (United States)


    This entry is mediated by a viral fusion protein. Here, we synthesized peptides based on the Rift Valley fever virus (RVFV) fusion protein stem...attenuation of Rift Valley fever virus as a method for vaccine development. J Gen Virol 66 (Pt 10): 2271–2277. 28. Spik K, Shurtleff A, McElroy AK, Guttieri MC...Hooper JW, et al. (2006) Immunogenicity of combination DNA vaccines for Rift Valley fever virus, tick- borne encephalitis virus, Hantaan virus, and

  7. Understanding the Compositional Variability of the Major Components of Hydrothermal Plumes in the Okinawa Trough

    Directory of Open Access Journals (Sweden)

    Zhigang Zeng


    Full Text Available Studies of the major components of hydrothermal plumes in seafloor hydrothermal fields are critical for an improved understanding of biogeochemical cycles and the large-scale distribution of elements in the submarine environment. The composition of major components in hydrothermal plume water column samples from 25 stations has been investigated in the middle and southern Okinawa Trough. The physical and chemical properties of hydrothermal plume water in the Okinawa Trough have been affected by input of the Kuroshio current, and its influence on hydrothermal plume water from the southern Okinawa Trough to the middle Okinawa Trough is reduced. The anomalous layers of seawater in the hydrothermal plume water columns have higher K+, Ca2+, Mn2+, B3+, Ca2+/SO42-, and Mn2+/Mg2+ ratios and higher optical anomalies than other layers. The Mg2+, SO42-, Mg2+/Ca2+, and SO42-/Mn2+ ratios of the anomalous layers are lower than other layers in the hydrothermal plume water columns and are consistent with concentrations in hydrothermal vent fluids in the Okinawa Trough. This suggests that the chemical variations of hydrothermal plumes in the Tangyin hydrothermal field, like other hydrothermal fields, result in the discharge of high K+, Ca2+, and B3+ and low Mg2+ and SO42- fluid. Furthermore, element ratios (e.g., Sr2+/Ca2+, Ca2+/Cl− in hydrothermal plume water columns were found to be similar to those in average seawater, indicating that Sr2+/Ca2+ and Ca2+/Cl− ratios of hydrothermal plumes might be useful proxies for chemical properties of seawater. The hydrothermal K+, Ca2+, Mn2+, and B3+ flux to seawater in the Okinawa Trough is about 2.62–873, 1.04–326, 1.30–76.4, and 0.293–34.7 × 106 kg per year, respectively. The heat flux is about 0.159–1,973 × 105 W, which means that roughly 0.0006% of ocean heat is supplied by seafloor hydrothermal plumes in the Okinawa Trough.

  8. Radiometric evidence of Middle Devonian inversion of the Hill End Trough, northeast Lachlan Fold Belt

    International Nuclear Information System (INIS)

    Pakham, G.H.


    The publication of a new geological time-scale by the Australian Geological Survey Organisation and radiometric dates from the Hill End goldfield have prompted the re-examination of the timing of deformation of the Hill End Trough to determine whether it occurred in Middle Devonian or Early Carboniferous time. Palaeontological evidence from the western trough margin and the Capertee High dates the end of deposition in the trough as late Emsian or early Eifelian (385-382 Ma). After a mid-Devonian hiatus of at least 15 million years, paralic sedimentation commenced on the Molong and Capertee Highs in late Frasnian or early Famennian time (367-363 Ma). No Upper Devonian sedimentary formations occur in the Hill End Trough. Structural relationships indicate that the oldest mineral veins at Hill End preceded cleavage formation in the deformed trough sedimentary rocks. Early vein muscovites have Middle Devonian 40 Ar/ 39 Ar dates of 380-370 Ma. Regional metamorphic biotites from Hill End have well constrained 40 Ar/ 39 Ar closing ages of 360-358 Ma (mid-Famennian). The metamorphic (thermal) maximum which outlasted penetrative deformation. is estimated here by modelling to have been about 370 Ma (latest Givetian). This clearly places the earlier main deformation in the Middle Devonian. Deformation probably began by terminating trough deposition in latest Emsian to early Eifelian time and ended in early Givetian time at about 375 Ma ago. Published pressure and temperature data from the Hill End goldfield suggest that deformation thickened the 6 km sediment column to around 11 km. The thermal model suggests there was post-deformation erosion of about 4km and little if any further erosion occurred during Late Devonian to Early Carboniferous time. The shortening accompanying the inversion of the northern Hill End Trough may have been taken up in the region to the south, both east and west of the Copperhannia Thrust, and east of the southern termination of the Capertee High

  9. The role of magmatic loads and rift jumps in generating seaward dipping reflectors on volcanic rifted margins (United States)

    Buck, W. Roger


    The largest volcanic constructs on Earth are the seismically imaged seaward dipping reflector (SDR) units found offshore of many rifted continental margins, including most that border the Atlantic Ocean. Whether their formation requires large magnitude (i.e. 10 s of km) of normal fault slip or results from the deflection of the lithosphere by the weight of volcanic flows is controversial. Though there is evidence for faulting associated with some SDRs, this paper considers the range of structures that can be produced by magmatic and volcanic loading alone. To do this an idealized mechanical model for the construction of rift-related volcanic flow structures is developed. Dikes open as plates move away from the center of a model rift and volcanic flows fill the depression produced by the load caused by dike solidification. The thin elastic plate flexure approximation allows a closed form description of the shape of both the contacts between flows and between the flows and underlying dikes. The model depends on two independent parameters: the flexure parameter, α, and the maximum isostatically supported extrusive layer thickness, w0. For reasonable values of these parameters the model reproduces the observed down-dip thickening of flows and the range of reflector dip angles. A numerical scheme using the analytic results allows simulation of the effect of temporal changes in the locus of magmatic spreading as well as changes in the amount of volcanic infill. Either jumps in the location of the center of diking or periods with no volcanism result in separate units or "packages" of model SDRs, in which the flow-dike contact dips landward, consistent with observations previously attributed only to listric normal fault offset. When jumps in the spreading center are small (i.e. less than α) they result in thicker, narrower volcanic units on one side of a rift compared to those on the other side. This is similar to the asymmetric distributions of volcanic packages seen

  10. The regional structure of the Red Sea Rift revised (United States)

    Augustin, Nico; van der Zwan, Froukje M.; Devey, Colin W.; Brandsdóttir, Bryndís


    The Red Sea Rift has, for decades, been considered a text book example of how young ocean basins form and mature. Nevertheless, most studies of submarine processes in the Red Sea were previously based on sparse data (mostly obtained between the late 1960's and 1980's) collected at very low resolution. This low resolution, combined with large gaps between individual datasets, required large interpolations when developing geological models. Thus, these models generally considered the Red Sea Rift a special case of young ocean basement formation, dividing it from North to South into three zones: a continental thinning zone, a "transition zone" and a fully developed spreading zone. All these zones are imagined, in most of the models, to be separated by large transform faults, potentially starting and ending on the African and Arabian continental shields. However, no consensus between models e.g. about the locations (or even the existence) of major faults, the nature of the transition zone or the extent of oceanic crust in the Red Sea Rift has been reached. Recently, high resolution bathymetry revealed detailed seafloor morphology as never seen before from the Red Sea, very comparable to other (ultra)slow spreading mid-ocean ridges such as the Gakkel Ridge, the Mid-Atlantic Ridge and SW-Indian Ridge, changing the overall picture of the Red Sea significantly. New discoveries about the extent, movement and physical properties of submarine salt deposits led to the Red Sea Rift being linked to the young Aptian-age South Atlantic. Extensive crosscutting transform faults are not evident in the modern bathymetry data, neither in teleseismic nor vertical gravity gradient data and comparisons to Gakkel Ridge and the SW-Indian Ridge suggest that the Red Sea is much simpler in terms of structural geology than was previously thought. Complicated tectonic models do not appear necessary and there appears to be large areas of oceanic crust under the Red Sea salt blankets. Based on

  11. Polyphase Rifting and Breakup of the Central Mozambique Margin (United States)

    Senkans, Andrew; Leroy, Sylvie; d'Acremont, Elia; Castilla, Raymi


    The breakup of the Gondwana supercontinent resulted in the formation of the Central Mozambique passive margin as Africa and Antarctica were separated during the mid-Jurassic period. The identification of magnetic anomalies in the Mozambique Basin and Riiser Larsen Sea means that post-oceanisation plate kinematics are well-constrained. Unresolved questions remain, however, regarding the initial fit, continental breakup process, and the first relative movements of Africa and Antarctica. This study uses high quality multi-channel seismic reflection profiles in an effort to identify the major crustal domains in the Angoche and Beira regions of the Central Mozambique margin. This work is part of the integrated pluri-disciplinary PAMELA project*. Our results show that the Central Mozambique passive margin is characterised by intense but localised magmatic activity, evidenced by the existence of seaward dipping reflectors (SDR) in the Angoche region, as well as magmatic sills and volcanoclastic material which mark the Beira High. The Angoche region is defined by a faulted upper-continental crust, with the possible exhumation of lower crustal material forming an extended ocean-continent transition (OCT). The profiles studied across the Beira high reveal an offshore continental fragment, which is overlain by a pre-rift sedimentary unit likely to belong to the Karoo Group. Faulting of the crust and overlying sedimentary unit reveals that the Beira High has recorded several phases of deformation. The combination of our seismic interpretation with existing geophysical and geological results have allowed us to propose a breakup model which supports the idea that the Central Mozambique margin was affected by polyphase rifting. The analysis of both along-dip and along-strike profiles shows that the Beira High initially experienced extension in a direction approximately parallel to the Mozambique coastline onshore of the Beira High. Our results suggest that the Beira High results

  12. Late Paleogene rifting along the Malay Peninsula thickened crust (United States)

    Sautter, Benjamin; Pubellier, Manuel; Jousselin, Pierre; Dattilo, Paolo; Kerdraon, Yannick; Choong, Chee Meng; Menier, David


    Sedimentary basins often develop above internal zones of former orogenic belts. We hereafter consider the Malay Peninsula (Western Sunda) as a crustal high separating two regions of stretched continental crust; the Andaman/Malacca basins in the western side and the Thai/Malay basins in the east. Several stages of rifting have been documented thanks to extensive geophysical exploration. However, little is known on the correlation between offshore rifted basins and the onshore continental core. In this paper, we explore through mapping and seismic data, how these structures reactivate pre-existing Mesozoic basement heterogeneities. The continental core appears to be relatively undeformed after the Triassic Indosinian orogeny. The thick crustal mega-horst is bounded by complex shear zones (Ranong, Klong Marui and Main Range Batholith Fault Zones) initiated during the Late Cretaceous/Early Paleogene during a thick-skin transpressional deformation and later reactivated in the Late Paleogene. The extension is localized on the sides of this crustal backbone along a strip where earlier Late Cretaceous deformation is well expressed. To the west, the continental shelf is underlain by three major crustal steps which correspond to wide crustal-scale tilted blocks bounded by deep rooted counter regional normal faults (Mergui Basin). To the east, some pronounced rift systems are also present, with large tilted blocks (Western Thai, Songkhla and Chumphon basins) which may reflect large crustal boudins. In the central domain, the extension is limited to isolated narrow N-S half grabens developed on a thick continental crust, controlled by shallow rooted normal faults, which develop often at the contact between granitoids and the host-rocks. The outer limits of the areas affected by the crustal boudinage mark the boundary towards the large and deeper Andaman basin in the west and the Malay and Pattani basins in the east. At a regional scale, the rifted basins resemble N-S en

  13. From continental to oceanic rifting in the Gulf of California (United States)

    Ferrari, Luca; Bonini, Marco; Martín, Arturo


    The continental margin of northwestern Mexico is the youngest example of the transition from a convergent plate boundary to an oblique divergent margin that formed the Gulf of California rift. Subduction of the Farallon oceanic plate during the Cenozoic progressively brought the East Pacific Rise (EPR) toward the North America trench. In this process increasingly younger and buoyant oceanic lithosphere entered the subduction zone until subduction ended just before most of the EPR could collide with the North America continental lithosphere. The EPR segments bounding the unsubducted parts of the Farallón plate remnants (Guadalupe and Magdalena microplates) also ceased spreading (Lonsdale, 1991) and a belt of the North American plate (California and Baja California Peninsula) became coupled with the Pacific Plate and started moving northwestward forming the modern Gulf of California oblique rift (Nicholson et al., 1994; Bohannon and Parsons, 1995). The timing of the change from plate convergence to oblique divergence off western Mexico has been constrained at the middle Miocene (15-12.5 Ma) by ocean floor morphology and magnetic anomalies as well as plate tectonic reconstructions (Atwater and Severinghaus, 1989; Stock and Hodges, 1989; Lonsdale, 1991), although the onset of transtensional deformation and the amount of right lateral displacement within the Gulf region are still being studied (Oskin et al., 2001; Fletcher et al., 2007; Bennett and Oskin, 2014). Other aspects of the formation of the Gulf of California remain not well understood. At present the Gulf of California straddles the transition from continental transtension in the north to oceanic spreading in the south. Seismic reflection-refraction data indicate asymmetric continent-ocean transition across conjugate margins of rift segments (González-Fernández et al., 2005; Lizarralde et al., 2007; Miller and Lizarralde, 2013; Martín-Barajas et al., 2013). The asymmetry may be related to crustal

  14. Motion in the north Iceland volcanic rift zone accommodated by bookshelf faulting (United States)

    Green, Robert G.; White, Robert S.; Greenfield, Tim


    Along mid-ocean ridges the extending crust is segmented on length scales of 10-1,000km. Where rift segments are offset from one another, motion between segments is accommodated by transform faults that are oriented orthogonally to the main rift axis. Where segments overlap, non-transform offsets with a variety of geometries accommodate shear motions. Here we use micro-seismic data to analyse the geometries of faults at two overlapping rift segments exposed on land in north Iceland. Between the rift segments, we identify a series of faults that are aligned sub-parallel to the orientation of the main rift. These faults slip through left-lateral strike-slip motion. Yet, movement between the overlapping rift segments is through right-lateral motion. Together, these motions induce a clockwise rotation of the faults and intervening crustal blocks in a motion that is consistent with a bookshelf-faulting mechanism, named after its resemblance to a tilting row of books on a shelf. The faults probably reactivated existing crustal weaknesses, such as dyke intrusions, that were originally oriented parallel to the main rift and have since rotated about 15° clockwise. Reactivation of pre-existing, rift-parallel weaknesses contrasts with typical mid-ocean ridge transform faults and is an important illustration of a non-transform offset accommodating shear motion between overlapping rift segments.

  15. Abrupt plate acceleration through oblique rifting: Geodynamic aspects of Gulf of California evolution (United States)

    Brune, S.


    The Gulf of California formed by oblique divergence across the Pacific-North America plate boundary. This presentation combines numerical forward modeling and plate tectonic reconstructions in order to address 2 important aspects of rift dynamics: (1) Plate motions during continental rifting are decisively controlled by the non-linear decay of rift strength. This conclusion is based on a recent plate-kinematic analysis of post-Pangea rift systems (Central Atlantic, South Atlantic, Iberia/Newfoundland, Australia/Antarctica, North Atlantic, South China Sea). In all cases, continental rifting starts with a slow phase followed by an abrupt acceleration within a few My introducing a fast rift phase. Numerical forward modeling with force boundary conditions shows that the two-phase velocity behavior and the rapid speed-up during rifting are intrinsic features of continental rupture that can be robustly inferred for different crust and mantle rheologies. (2) Rift strength depends on the obliquity of the rift system: the force required to maintain a given rift velocity can be computed from simple analytical and more realistic numerical models alike, and both modeling approaches demonstrate that less force is required to perpetuate oblique extension. The reason is that plastic yielding requires a smaller plate boundary force when extension is oblique to the rift trend. Comparing strike slip and pure extension end-member scenarios, it can be shown that about 50% less force is required to deform the lithosphere under strike-slip. This result implies that rift systems involving significant obliquity are mechanically preferred. These two aspects shed new light on the underlying geodynamic causes of Gulf of California rift history. Continental extension is thought to have started in Late Eocene/Oligocene times as part of the southern Basin and Range Province and evolved in a protracted history at low extension rate (≤15 mm/yr). However, with a direction change in Baja

  16. Analysis of the pre-rift/rifte transition interval (Serraria and Barra de Itiuba formations) from the Sergipe-Alagoas basin; Analise da secao de transicao pre-rifte/rifte (formacoes Serraria e Barra de Itiuba) da Bacia Sergipe-Alagoas

    Energy Technology Data Exchange (ETDEWEB)

    Barreiro, C.B.; Mizusaki, A.M.P. [Rio Grande do Sul Univ., Porto Alegre, RS (Brazil)]. E-mail:;; Garcia, A.J.V. [Universidade do Vale do Rio dos Sinos (UNISINOS), Sao Leopoldo, RS (Brazil)]. E-mail:


    The pre-rift/rift transition is represented by the Serraria and Barra de Itiuba formations. This interval was analyzed through qualitative and quantitative descriptions of cores, electric log analysis and studies of outcropping sections. The integration of surface and subsurface data allowed the stratigraphic characterization of sandstone bodies in the pre-rift/rift. These sandstones bodies were deposited by fluvial braided, lacustrine and deltaic systems (delta plain, delta front and pro delta). The sedimentary deposits characterized in the Serraria Formation are of channel, flooding of the fluvial system and eolic. The upper interval of this formation is characterized by to coarse medium-grained sandstones identified as the Caioba Sandstone. The Barra de Itiuba Formation contains lake, pro delta, frontal bar, distributary mouth, crevasse and distributary channel deposits. The sandstone units were specifically characterized in terms of their potential reservoir quality, and they were characterized the reservoirs R1 (good to medium quality) and Caioba (good quality) from the pre-rift phase, and reservoirs R2 (medium quality) and R3 (medium to good quality) from the rift phase. The reservoirs from pre-rift phase phase show the better reservoirs quality potential of the pre-rift/rift transition in the Sergipe-Alagoas Basin. (author)

  17. Tectonics and stratigraphy of the East Brazil Rift system: an overview (United States)

    Hung Kiang Chang; Kowsmann, Renato Oscar; Figueiredo, Antonio Manuel Ferreira; Bender, AndréAdriano


    The East Brazilian Rift system (Ebris) constitutes the northern segment of the South Atlantic rift system which developed during the Mesozoic breakup of South America and Africa. Following crustal separation in the Late Aptian, it evolved into a passive continental margin. Along the continental margin six basins are recognized, while three onshore basins form part of an aborted rift. Three continental syn-rift stratigraphic sequences are recognized, spanning Jurassic to Barremian times. The Jurassic (Syn-rift I) and Neocomian (Syn-rift II) phases were most active in the interior rift basins. During the Barremian (Syn-rift III), rift subsidence rates were twice as large as during the Neocomian (Syn-rift II), both in the interior rift and in the marginal rift segments, indicating that rift axis did not migrate from the interior to the marginal setting. Rift magmatism was centered on the southern EBRIS and peaked between 130 and 120 Ma during syn-rift phase II. Rift phase III was followed by a transitional marine, evaporitic megasequence of Aptian age, which directly overlies the rift unconformity and a marine drift megasequence which spans Albian to Recent times. During the Late Cretaceous, sedimentation rates responded to first-order eustatic sea-level fluctuations. Tertiary accelerated sedimentation rates can be related to local clastic supply which filled in spaces inherited from previous starved conditions. Between 60 and 40 Ma, post-rift magmatism, centered on the Abrolhos and Royal Charlotte banks, is probably related to development of a hot spot associated with the Vitória-Trindade Seamount Chain. Although crossing three distinct Precambrian tectono-thermal provinces, ranging from Archean through Late Proterozoic, rift structures follow a general NE trend, subparallel to the principal basement fabric. A NW-SE oriented stress field appears to be compatible with both Neocomian and Barremian phases of crustal extension. Profiles transverse to the rift axis

  18. Geologic evolution of the Kastel trough and its implications on the Adiyaman oil fields, SE Turkey

    Energy Technology Data Exchange (ETDEWEB)

    Coskun, Bu. (Univ. of Ankara (Turkey))


    Oil field developments of the Adiyaman area one of the main oil producing zones in southeast Turkey, have been highly influenced by geologic evolution of the Kastel trough which is situated in front of the suture zone between the Arabian and Anatolian plates. The Upper Cretaceous movements created many paleostructural trends in the Kastel trough where important dolomitic and porous reservoirs exist. The most important tectonic event, which appeared during the Upper Cretaceous movements, is the accumulation of the Kocali-Karadut ophiolitic complex, advancing from the north to the south in the Kastel trough, where heavy materials caused formation of a structural model favoring generation and migration and entrapment of oil in the reservoir rocks. Due to the presence of the Kocali-Karadut complex in the Kastel trough the following zones have been distinguished. (1) North Uplift Area. Situated under the allochthonous units, many thrust and reverse faults characterize this zone. The presence of paleohighs, where primary dolomites develop, allows the appearance of some oil fields in the region. This is the main future exploration zone in southeast Turkey. (2) Accumulation Area. Advancing from the north to the south, the allochthonous Kocali-Karadut complex filled the Kastel trough creating a deep graben whose flanks present generally normal faults. (3) Structural Belt. Important paleohighs constitute an exploration trend in this zone where dolomitic and porous carbonates contain actual oil fields. (4) South Accumulation Area. Distant from the Arabian-Anatolian suture zone, regional tectonics and sedimentology show this zone remained deeply buried during geologic time; good source rocks were deposited during the Cretaceous. (5) South Uplift Area. This area corresponds to the northern flank of the huge regional Mardin high in southeast Turkey where new oil fields have been discovered.

  19. Optical analysis of a photovoltaic V-trough system installed in western India. (United States)

    Maiti, Subarna; Sarmah, Nabin; Bapat, Pratap; Mallick, Tapas K


    The low concentrating photovoltaic (PV) system such as a 2× V-trough system can be a promising choice for enhancing the power output from conventional PV panels with the inclusion of thermal management. This system is more attractive when the reflectors are retrofitted to the stationary PV panels installed in a high aspect ratio in the north-south direction and are tracked 12 times a year manually according to preset angles, thus eliminating the need of diurnal expensive tracking. In the present analysis, a V-trough system facing exactly the south direction is considered, where the tilt angle of the PV panels' row is kept constant at 18.34°. The system is installed on the terrace of CSIR-Central Salt and Marine Chemicals Research Institute in Bhavnagar, Gujarat, India (21.47 N, 71.15 E). The dimension of the entire PV system is 9.64 m×0.55 m. The V-troughs made of anodized aluminum reflectors (70% specular reflectivity) had the same dimensions. An in-house developed; experimentally validated Monte Carlo ray-trace model was used to study the effect of the angular variation of the reflectors throughout a year for the present assembly. Results of the ray trace for the optimized angles showed the maximum simulated optical efficiency to be 85.9%. The spatial distribution of solar intensity over the 0.55 m dimension of the PV panel due to the V-trough reflectors was also studied for the optimized days in periods that included solstices and equinoxes. The measured solar intensity profiles with and without the V-trough system were used to calculate the actual optical efficiencies for several sunny days in the year, and results were validated with the simulated efficiencies within an average error limit of 10%.

  20. How sedimentation affects rift segment interaction during oblique extension: a 4D analogue modelling study (United States)

    Zwaan, Frank; Schreurs, Guido; Adam, Jürgen


    During the early stages of rifting, rift segments may form along non-continuous and/or offset pre-existing weaknesses. It is important to understand how these initial rift segments interact and connect to form a continuous rift system. Previous modelling of rift interaction structures has shown the dominant influence of oblique extension, promoting rift segment linkage (e.g. Zwaan et al., 2016) and eventual continent break-up (Brune et al., 2012). However, these studies did not incorporate sedimentation, which can have important implications for rift evolution (e.g. Bialas and Buck, 2009). Here we present a series of analogue model experiments investigating the influence of sedimentation on rift interaction structures under oblique extension conditions. Our set-up involves a base of compressed foam and plexiglass that forces distributed extension in the overlying analogue materials when the model sidewalls move apart. A sand layer simulates the brittle upper crust and a viscous sand/silicone mixture the ductile lower crust. One of the underlying base plates can move laterally allowing oblique extension. Right-stepping offset and disconnected lines of silicone (seeds) on top of the basal viscous serve as inherited structures since the strong sand cover is locally thinner. We apply syn-rift sediments by filling in the developing rift and transfer zone basins with sand at fixed time steps. Models are run either with sedimentation or without to allow comparison. The first results suggest that the gross structures are similar with or without sedimentation. As seen by Zwaan et al. (2016), dextral oblique extension promotes rift linkage because rift propagation aligns itself perpendicular to the extension direction. This causes the rift segments to grow towards each other and to establish a continuous rift structure. However, the structures within the rift segments show quite different behaviour when sedimentation is applied. The extra sediment loading in the rift basin

  1. Fault kinematics and tectonic stress in the seismically active Manyara Dodoma Rift segment in Central Tanzania Implications for the East African Rift (United States)

    Macheyeki, Athanas S.; Delvaux, Damien; De Batist, Marc; Mruma, Abdulkarim


    The Eastern Branch of the East African Rift System is well known in Ethiopia (Main Ethiopian Rift) and Kenya (Kenya or Gregory Rift) and is usually considered to fade away southwards in the North Tanzanian Divergence, where it splits into the Eyasi, Manyara and Pangani segments. Further towards the south, rift structures are more weakly expressed and this area has not attracted much attention since the mapping and exploratory works of the 1950s. In November 4, 2002, an earthquake of magnitude Mb = 5.5 struck Dodoma, the capital city of Tanzania. Analysis of modern digital relief, seismological and geological data reveals that ongoing tectonic deformation is presently affecting a broad N-S trending belt, extending southward from the North Tanzanian Divergence to the region of Dodoma, forming the proposed "Manyara-Dodoma Rift segment". North of Arusha-Ngorongoro line, the rift is confined to a narrow belt (Natron graben in Tanzania) and south of it, it broadens into a wide deformation zone which includes both the Eyasi and Manyara grabens. The two-stage rifting model proposed for Kenya and North Tanzania also applies to the Manyara-Dodoma Rift segment. In a first stage, large, well-expressed topographic and volcanogenic structures were initiated in the Natron, Eyasi and Manyara grabens during the Late Miocene to Pliocene. From the Middle Pleistocene onwards, deformations related to the second rifting stage propagated southwards to the Dodoma region. These young structures have still limited morphological expressions compared to the structures formed during the first stage. However, they appear to be tectonically active as shown by the high concentration of moderate earthquakes into earthquake swarms, the distribution of He-bearing thermal springs, the morphological freshness of the fault scarps, and the presence of open surface fractures. Fault kinematic and paleostress analysis of geological fault data in basement rocks along the active fault lines show that recent

  2. GPS/acoustic Seafloor Geodetic Observations Near the Nankai Trough Axis (United States)

    Tadokoro, K.; Yasuda, K.; Fujii, C.; Watanabe, T.; Nagai, S.


    The GPS/acoustic seafloor geodetic observation system, which uses precise acoustic ranging and kinematic GPS positioning techniques, has been developed as a useful tool for observing seafloor crustal deformations associated with plate convergence and with earthquakes that occurred in ocean area including the 2011 Tohoku-oki Earthquake of Mw 9.0. Our research group installed eight seafloor benchmarks for this observation system in source areas of anticipated major interplate earthquakes along the Nankai Trough, off southwestern Japan. We have performed campaign measurement for 4-8 years until the end of 2012. The error of displacement rate is almost 5 mm/y through the monitoring for more than four years. At the northern-most potion of the Nankai (Suruga) Trough, the observed steady horizontal displacement rate is 45 mm/y toward west. Also no significant velocity difference is observed across the trough, indicating strong interplate locking up to the shallowest segments. On the other hand, site velocities are 40 mm/y in the direction of N75W at the central region of the Nankai trough, 70-90 km landward from the trough axis. Although this result is the strong evidence for interplate locking, with coupling ratios of 60-80% on the basis of the back-slip model, it has no resolution for the interplate locking at the most-shallowest segments whose depths are 0-10 km. In other words, seaward up-dip limit of locked zone is never resolved from the present seafloor benchmark network [Tadokoro et al., 2012] . Large co-seismic slips larger than 40-50 m on the shallowest interplate segment [Ito et al., 2011; Fujii et al., 2011; Iinuma et al., 2012] are the cause of the unexpected high tsunami that has attacked the pacific coasts of the Tohoku region during the Tohoku-oki Earthquake; it is, therefore, essential to understand slip deficit or strain accumulation condition near the trench axis, also for the anticipated mega-thrust earthquake at the Nankai Trough. For this reason, we

  3. Influence of rifting episodes on seismic and volcanic activity in the southern Red Sea region (United States)

    Viltres, Renier; Ruch, Joël; Doubre, Cécile; Reilinger, Rob; Ogubazghi, Ghebrebrhan; Jónsson, Sigurjón


    Rifting episodes cause large changes to the state of stress in the surrounding crust, both instantaneously (elastic stress transfer) and in the years following the episodes (viscoelastic stress transfer), and can significantly influence occurrence of future earthquakes and volcanic eruptions. Here we report on a new project that aims at studying the stress impact of rifting episodes and focuses on the southern Red Sea, Afar and Gulf of Aden region, which has seen a significant increase in rifting activity during the past decade. The Afar rift system experienced a major rifting episode (Dabbahu segment) in 2005-2010 and the southern Red Sea also appears to have had one, indicated by three volcanic eruptions in 2007, 2011-12, and 2013 (the first in the area in over a century), accompanied by several seismic swarms. In addition, Gulf of Aden had an exceptionally strong seismic swarm activity starting in late 2010 that was associated with intrusion of magma in a separate rifting episode. To explore the influence of these recent rifting episodes in the region we will use new geodetic observations, seismicity analysis and modeling. We have analyzed new GPS data collected in Eritrea, in Afar, and in southern Saudi Arabia. Comparisons with older surveys has not only resulted in better GPS velocities for the observed sites, but also revealed changes to velocities at some sites influenced by the rifting activity. We use the results along with seismic data to better constrain the timing, magnitude and duration of the rifting activity in the region. We will then apply elastic and visco-elastic stress transfer modeling to assess the associated stress changes, in particular at locations where volcanic eruptions or intrusions have occurred or where significant seismicity has been detected. The project should provide new information about the impact rifting events and episodes can have on regional volcanic and earthquake activity and how rifting episodes may influence one another.

  4. A retrospective analysis to estimate target trough concentration of vancomycin for febrile neutropenia in patients with hematological malignancy. (United States)

    Suzuki, Yosuke; Tokimatsu, Issei; Morinaga, Yuko; Sato, Yuhki; Takano, Kuniko; Kohno, Kazuhiro; Ogata, Masao; Hiramatsu, Kazufumi; Itoh, Hiroki; Kadota, Jun-ichi


    The target trough concentration of vancomycin in patients with febrile neutropenia has not been reported. The aim of this study was to estimate the target trough concentration for febrile neutropenia in patients with hematological malignancy. In this retrospective, single-center, observational cohort study, 63 hospitalized patients with hematological malignancy who were treated with vancomycin for febrile neutropenia due to bacteriologically documented or presumptive Gram-positive infections were analyzed. A significant difference in the first trough concentration of vancomycin was observed between the response and non-response groups, and between the nephrotoxicity and non-nephrotoxicity groups. Multiple logistic regression analyses identified the first trough concentration as the only independent variable associated with clinical efficacy and nephrotoxicity of vancomycin. The areas under the ROC curves were 0.72 and 0.83 for clinical efficacy and nephrotoxicity, respectively. The cut-off values of the first trough concentration were 11.1 μg/ml for clinical efficacy (sensitivity 60%, specificity 87%) and 11.9 μg/ml for nephrotoxicity (sensitivity 77%, specificity 82%). These results suggest a relationship of trough vancomycin concentration with clinical efficacy and incidence of nephrotoxicity. We propose a target trough vancomycin concentration of around 11.5 μg/ml for febrile neutropenia in patients with hematological malignancy. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Along-axis transition between narrow and wide rifts: Insights from 3D numerical experiments (United States)

    Koptev, Alexander; Calais, Eric; Burov, Evgueni; Leroy, Sylvie; Gerya, Taras


    Based on performed high-resolution rheologically consistent three-dimensional thermo-mechanical numerical models, we show that there is a significant difference in the influence of the rheological profile on rifting style in the case of dominant active (plume-activated) rifting compared to dominant passive (far-field tectonic stresses) rifting. Narrow rifting, conventionally attributed to cold strong lithosphere in passive rifting mode, may develop in weak hot ultra-stretched lithosphere during active rifting, after plume impingement on a tectonically pre-stressed lithosphere. In that case, initially ultra-wide small-amplitude rift patterns focus, in a few Myr, in large-scale faults that form a narrow rift. Also, wide rifting may develop during ultra-slow spreading of strong lithosphere, and "switch" to the narrow rifting upon plume impingement. For further understanding the mechanisms behind the interactions between the mantle plume and far-field stresses in case of realistic horizontally heterogeneous lithosphere, we have tested our models on the case of the central East African Rift system (EARS). The EARS south of the Ethiopian Rift Valley bifurcates in two branches (eastern, magma-rich and western, magma-poor) surrounding the strong Tanzanian craton. Broad zones of low seismic velocity observed throughout the upper mantle beneath the central part of the EARS are consistent with the spreading of a deep mantle plume. The extensional features and topographic expression of the Eastern rift varies significantly north-southward: in northern Kenya the area of deformation is very wide (some 150-250 km in E-W direction), to the south the rift narrows to 60-70 km, yet further to the south this localized deformation widens again. Here we investigate this transition between localized and wide rifting using thermo-mechanical numerical modeling that couples, in a dynamic sense, the rise of the upper mantle material with the deformation of the African lithosphere below the

  6. Stress perturbation associated with the Amazonas and other ancient continental rifts (United States)

    Zoback, M.L.; Richardson, R.M.


    The state of stress in the vicinity of old continental rifts is examined to investigate the possibility that crustal structure associated with ancient rifts (specifically a dense rift pillow in the lower crust) may modify substantially the regional stress field. Both shallow (2.0-2.6 km depth) breakout data and deep (20-45 km depth) crustal earthquake focal mechanisms indicate a N to NNE maximum horizontal compression in the vicinity of the Paleozoic Amazonas rift in central Brazil. This compressive stress direction is nearly perpendicular to the rift structure and represents a ???75?? rotation relative to a regional E-W compressive stress direction in the South American plate. Elastic two-dimensional finite element models of the density structure associated with the Amazonas rift (as inferred from independent gravity modeling) indicate that elastic support of this dense feature would generate horizontal rift-normal compressional stresses between 60 and 120 MPa, with values of 80-100 MPa probably most representative of the overall structure. The observed ???75?? stress rotation constrains the ratio of the regional horizontal stress difference to the rift-normal compressive stress to be between 0.25 and 1.0, suggesting that this rift-normal stress may be from 1 to 4 times larger than the regional horizontal stress difference. A general expression for the modification of the normalized local horizontal shear stress (relative to the regional horizontal shear stress) shows that the same ratio of the rift-normal compression relative to the regional horizontal stress difference, which controls the amount of stress rotation, also determines whether the superposed stress increases or decreases the local maximum horizontal shear stress. The potential for fault reactivation of ancient continental rifts in general is analyzed considering both the local stress rotation and modification of horizontal shear stress for both thrust and strike-slip stress regimes. In the Amazonas

  7. Extending the Rift Zone: evidence from central Botswana (United States)

    van der Meijde, M.; Fadel, I.; Paulssen, H.; Kwadiba, T.


    The 3D crustal and upper mantle structure of Botswana is a major gap in our knowledge about the tectonic evolution of Africa. We will present a new model for crust and upper mantle structure and velocity in which we indicate very strong indications for active rifting in north and central Botswana. Our model is based on data from the NARS Botswana and AfricaArray networks, broadband temporary networks in southern Africa (Botswana, Namibia, South Africa and Zambia). The NARS-Botswana seismic network was established to provide broadband recordings in Botswana, covering one of the least studied regions in the world. It is an area that is for a large part covered by the Kalahari sands but also covers the southwestern most branch of the African Rift under the Okavango delta. The goal is to understand how the rifting process and cratonic provinces influence crustal thickness and couple to the underlying mantle. Crust and upper mantle structure, down to the bottom of the mantle transition zone, will be based on receiver function analysis and surface wave tomography. In the receiver functions, we observe crustal thicknesses between 35 and 46 km, strongly linked to basins and cratons in the region. The central Kalahari part, which has been previously unstudied, showed some anomalous structure, possibly suggesting melt in the lower crust. This lower crustal anomaly is also visible in surface wave tomography models and coincides with the present Botswana earthquake which also suggest an extensional stress regime in central Botswana. Going deeper we see that the mantle transition zone varies in thickness, and sharpness of the bounding discontinuities, suggesting active dynamical processes underneath Botswana.

  8. Normal-Faulting in Madagascar: Another Round of Continental Rifting? (United States)

    Wysession, M. E.; Pratt, M. J.; Tsiriandrimanana, R.; Andriampenomanana Ny Ony, F. S. T.; Nyblade, A.; Durrheim, R. J.; Tilmann, F. J.; Rumpker, G.; Rambolamanana, G.; Aleqabi, G. I.; Shore, P.


    Analyses of seismicity and seismic structure within Madagascar suggest the current occurrence of crustal extension, which may be related to continental rifting associated with a diffuse boundary between the Somalia and Lwandle tectonic plates. Madagascar has participated in two major rifting events as part of the break-up of Gondwana: the break-away of Greater India (Madagascar, India, the Seychelles) away from mainland Africa during the Jurassic and the break-away of India from Madagascar during the Cretaceous. Seismic activity and the structures obtained from it, using data from the 2-year (2011-2013) MACOMO project, suggest that this break-up may not be finished, and that continental rifts may be developing again. There are fairly high levels of intraplate seismicity within Madagascar: over 800 events located during the 22 months of the deployment. For comparison, a 2-year deployment of seismometers within the upper Midwest of the U.S. yielded just 12 intraplate earthquakes. While the Madagascar seismicity occurs across the island, it is strongly concentrated in the central region, where Cenozoic volcanism has occurred through the Holocene, and earthquakes align along N-S-trending lineations associated with N-S-trending pull-apart graben structures. The thickness of the crust is still >40 km in this region, but it is underlain by a large low-velocity structure within the lithosphere and asthenosphere that is observed in our studies of surface-wave, body-wave, and Pn-phase tomography. Normal faulting is not observed everywhere on the island, however; seismicity in the north is largely strike-slip, and seismicity in the south appears to be largely reverse faulting. Several studies have suggested that the diffuse boundary between the Somalia and Lwandle plates runs roughly E-W across Madagascar. Extensional faulting seems to predominate only within central Madagascar, likely associated with the current volcanic activity, which also appears to be associated with the

  9. Restriction of Rift Valley Fever Virus Virulence in Mosquito Cells

    Directory of Open Access Journals (Sweden)

    Sonja R. Gerrard


    Full Text Available Arboviruses are maintained in a natural cycle that requires blood-sucking arthropod and vertebrate hosts. Arboviruses are believed to persistently infect their arthropod host without overt pathology and cause acute infection with viremia in their vertebrate host. We have focused on elucidating how a specific arbovirus, Rift Valley fever (RVF virus, causes cytopathic effect in cells derived from vertebrates and non-cytopathic infection in cells derived from arthropods. We demonstrate that the vertebrate virulence factor, NSs, is functional in arthropod cells but is expressed at significantly lower levels in infected arthropod versus infected vertebrate cells.

  10. A Surface Wave's View of the Mid-Continent Rift (United States)

    Foster, A. E.; Darbyshire, F. A.; Schaeffer, A. J.


    The presence of the Mid-Continent Rift (MCR), a 1.1Ga failed rift in central North America, raises many questions. We address the following: what lasting effects has it had on the continental lithosphere? Though many studies have looked at the area with a variety of data types, the combination of USArray Transportable Array stations to the south, permanent and temporary Canadian stations to the north, and SPREE stations in strategic locations crossing the rift provide a new opportunity for a regional surface-wave study. We select 80 stations with roughly 200 km spacing, resulting in dense path coverage of a broad area centered on the MCR. We use teleseismic data for all earthquakes from January 2005-August 2016 with a magnitude greater than 6.0, amounting to over 1200 events, and we make Rayleigh wave two-station dispersion measurements for all station pairs with suitable event-station geometry. We invert these measurements for anisotropic phase-velocity maps at periods of 20-200 s, yielding information not only on the wave speed but also the current fabric of the lithosphere, a complicated record of strain from formation, through modification from orogeny, attempted rifting, and hotspot interaction, to present day plate motion. We observe a clear signature of the MCR at short (20-25 s) periods, with the slowest phase-velocity anomaly in the region aligning with the strongest gravity anomaly. At increasing periods, and thus greater depths, this slowest anomaly shifts to beneath the center of Lake Superior (30-40 s). Eventually, it appears to merge with a slow anomaly to the north associated with the Nipigon Embayment, and contrasts sharply with an adjacent fast anomaly in the western Superior Province. In our preliminary anisotropy results, we observe weak anisotropy at the latitude of the MCR and to the south, whereas to the north of the MCR we find strong anisotropy. This is similar to the spatial variations in magnitude of delay times from shear-wave splitting

  11. An eco-health approach to Rift Valley Fever control among ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Rift Valley Fever is a severe mosquito-transmitted disease that infects humans, livestock, and wildlife. In addition, humans may contract the disease through contact with infected animals. Rift Valley Fever has spread across Africa and beyond, and outbreaks are increasing in frequency and scale, seemingly connected to ...

  12. Mouse model for the Rift Valley fever virus MP12 strain infection (United States)

    Rift Valley fever virus (RVFV), a Category A pathogen and select agent, is the causative agent of Rift Valley fever. To date, no fully licensed vaccine is available in the U.S. for human or animal use and effective antiviral drugs have not been identified. The RVFV MP12 strain is conditionally licen...

  13. Crustal structure and rift tectonics across the Cauvery–Palar basin ...

    Indian Academy of Sciences (India)

    The Cauvery–Palar basin is a major peri-cratonic rift basin located along the Eastern Continental Margin of India (ECMI) that had formed during the rift-drift events associated with the breakup of eastern Gondwanaland (mainly India–Sri Lanka–East Antarctica). In the present study, we carry out an integrated analysis of the ...

  14. An eco-health approach to Rift Valley Fever control among ...

    International Development Research Centre (IDRC) Digital Library (Canada)


    Aug 17, 2016 ... Rift Valley Fever is a severe mosquito-transmitted disease that infects humans, livestock, and wildlife. In addition, humans may contract the disease through contact with infected animals. Rift Valley Fever has spread across Africa and beyond, and outbreaks are increasing in frequency and scale, seemingly ...

  15. Groundwater origin and flow along selected transects in Ethiopian rift volcanic aquifers (United States)

    Kebede, Seifu; Travi, Yves; Asrat, Asfawossen; Alemayehu, Tamiru; Ayenew, Tenalem; Tessema, Zenaw


    The disruption of lithologies by cross-cutting faults and the variability in volcanic structures make the hydrogeology of the rifted volcanic terrain in Ethiopia very complex. Along two transects, selected due to their hydrogeologic characteristics, groundwater flow, depth of circulation and geochemical evolution have been conceptualized. The groundwater flow continuity between the high rainfall plateau bounding the rift and the rift valley aquifers depends principally on the nature of the bounding faults. Up to 50% of recharge to the rift aquifers comes from the plateau as groundwater inflow where the rift is cross cut by transverse fault zones. Recharge from the mountains is found to be insignificant where the rift is bounded by marginal grabens; channel loss and local precipitation are the principal sources of recharge to the rift aquifers in such cases. At a regional scale, there is a clear zonation in the geochemical compositions of groundwaters, the result of aquifer matrix composition differences. The environmental isotope results show that the majority of the aquifers contain modern groundwaters. In a few localities, particularly in thermal groundwaters representing deeper circulation, palaeo-groundwaters have been identified. Deeper groundwaters in the rift floor have a uniform 14C age ranging between 2,300 and 3,000 years.

  16. The life cycle of continental rifting as a focus for U.S.-African scientific collaboration (United States)

    Abdelsalam, Mohamed G.; Atekwana, Estella A.; Keller, G. Randy; Klemperer, Simon L.


    The East African Rift System (EARS) provides the unique opportunity found nowhere else on Earth, to investigate extensional processes from incipient rifting in the Okavango Delta, Botswana, to continental breakup and creation of proto-oceanic basins 3000 km to the north in the Afar Depression in Ethiopia, Eritrea, and Djibouti.The study of continental rifts is of great interest because they represent the initial stages of continental breakup and passive margin development, they are sites for large-scale sediment accumulation, and their geomorphology may have controlled human evolution in the past and localizes geologic hazards in the present. But there is little research that provides insights into the linkage between broad geodynamic processes and the life cycle of continental rifts: We do not know why some rifts evolve into mid-ocean ridges whereas others abort their evolution to become aulacogens. Numerous studies of the EARS and other continental rifts have significantly increased our understanding of rifting processes, but we particularly lack studies of the embryonic stages of rift creation and the last stages of extension when continental breakup occurs.

  17. Seismic imaging of the geodynamic activity at the western Eger rift in central Europe

    Czech Academy of Sciences Publication Activity Database

    Mullick, N.; Buske, S.; Hrubcová, Pavla; Růžek, Bohuslav; Shapiro, S.; Wigger, P.; Fischer, T.

    647-648, 19 April (2015), s. 105-111 ISSN 0040-1951 R&D Projects: GA ČR GA13-08971S Institutional support: RVO:67985530 Keywords : European Cenozoic Rift System * Eger Rift * West Bohemian Massif Subject RIV: DC - Siesmology, Volcanology, Earth Structure Impact factor: 2.650, year: 2015

  18. Towards standardization of in-site parabolic trough collector testing in solar thermal power plants (United States)

    Sallaberry, Fabienne; Valenzuela, Loreto; de Jalón, Alberto García; Leon, Javier; Bernad, Ignacio David


    This paper presents a summary of the testing procedure and a validation of the methodology of parabolic trough collector in solar thermal power plants. The applied testing methodology is the one proposed within the Spanish standardization sub-committee AEN/CTN 206/SC117 working group WG2 related to the components for solar thermal power plants. This methodology is also proposed within the international committee IEC TC 117 (Standard draft IEC 62862-3-2 Ed. 1.0). This study is done at Plataforma Solar de Almería (PSA) in Almeria within the European project STAGE-STE. This paper presents the results of the optical and thermal efficiency of a large-size parabolic trough collector. The obtained values are similar to the previous analysis on this collector by PSA. The results of the tracking system have a good accuracy compared to the acceptance angle of the concentrator.


    Directory of Open Access Journals (Sweden)

    O. A. Lasode


    Full Text Available Solar energy is a high-temperature, high-energy radiant energy source, with tremendous advantages over other alternative energy sources. It is a reliable, robust renewable resource which is largely undeveloped. The design and fabrication of parabolic trough solar water heater for water heating was executed. The procedure employed includes the design, construction and testing stages. The equipment which is made up of the reflector surface (curved mirror, reflector support, absorber pipe and a stand was fabricated using locally sourced materials. The results obtained. compared favourably with other research works in the literature. It depicts that employing a suitable design, selection of time of heating and proper focusing of the reflected rays to the focal spot region, solar radiation can efficiently be utilized for water heating in a tropical environment. This work presents a parabolic trough solar water heater as a suitable renewable energy technology for reducing water-heating costs.

  20. Study on a Mid-Temperature Trough Solar Collector with Multisurface Concentration

    Directory of Open Access Journals (Sweden)

    Zhengliang Li


    Full Text Available A new trough solar concentrator which is composed of multiple reflection surfaces is developed in this paper. The concentrator was analyzed firstly by using optical software. The variation curves of the collecting efficiency affected by tracking error and the deviation angle were given out. It is found that the deviation tolerance for the collector tracking system is about 8 degrees when the receiver is a 90 mm flat. The trough solar concentrators were tested under real weather conditions. The experiment results indicate that, the new solar concentrator was validated to have relative good collecting efficiency, which can be more than 45 percent when it operated in more 145°C. It also has the characteristics of rdust, wind, and snow resistance and low tracking precision requirements.

  1. A biomarker record of temperature and phytoplankton community in Okinawa Trough since the last glacial maximum (United States)

    Ruan, Jiaping


    A variety of biomarkers were examined from Ocean Drilling Program (ODP) core 1202B to reconstruct temperature and phytoplankton community structures in the southern Okinawa Trough for the past ca. 20000 years. Two molecular temperature proxies (Uk37 and TEX86) show 5-6 ℃ warming during the glacial/interglacial transition. Prior to the Holocene, the Uk37-derived temperature was generally 1-4 ℃ higher than TEX86-derived temperature. This difference, however, was reduced to Okinawa Trough, controlled by the sea level and the intensity of Kuroshio Current. The phytoplankton community change may have profound implications on atmospheric CO2 fluctuations during glacial/interglacial cycles since diatoms and dinoflagellates have a higher efficiency of biological pump than coccolithophorids.

  2. Oblique rift opening revealed by reoccurring magma injection in central Iceland

    KAUST Repository

    Ruch, Joel


    Extension deficit builds up over centuries at divergent plate boundaries and is recurrently removed during rifting events, accompanied by magma intrusions and transient metre-scale deformation. However, information on transient near-field deformation has rarely been captured, hindering progress in understanding rifting mechanisms and evolution. Here we show new evidence of oblique rift opening during a rifting event influenced by pre-existing fractures and two centuries of extension deficit accumulation. This event originated from the Bárðarbunga caldera and led to the largest basaltic eruption in Iceland in >200 years. The results show that the opening was initially accompanied by left-lateral shear that ceased with increasing opening. Our results imply that pre-existing fractures play a key role in controlling oblique rift opening at divergent plate boundaries.

  3. Evidence for Paleocene-Eocene evolution of the foot of the Eurasian margin (Kermanshah ophiolite, SW Iran) from back-arc to arc: Implications for regional geodynamics and obduction (United States)

    Whitechurch, H.; Omrani, J.; Agard, P.; Humbert, F.; Montigny, R.; Jolivet, L.


    The nature and significance of the Kermanshah ophiolite (Zagros Mountains, Iran), traditionally identified as one of the remnants of the Peri-Arabic ophiolite system obducted onto Arabia in the Late Cretaceous, is reinvestigated in this study. We assess the geochemistry of magmatic rocks from two distinct areas: the Kamyaran Paleocene-Eocene arc and the so-called Harsin-Sahneh ophiolite complex. Volcanic rocks associated with Triassic to Liassic sediments display a clear alkali signature, whereas the Paleocene volcanic rocks show a geochemical signature similar to that of tholeiitic back-arc basin basalts. The presumed ophiolitic gabbros of the Harsin-Sahneh complex and some of the associated dykes that intrude harzburgites or gabbros also have a back-arc basin signature. Eocene volcanics, gabbros and dykes intruding the harzburgites display clear low to medium-K calc-alkaline signatures with variable negative Nb, Ta, and Ti and positive Sr, Ba, Th, and U anomalies. Field relationships and geochemical evidence indicate that the Eocene magmatic rocks were intruded into a mantle substratum close to the ocean-continent transition. The geochemistry of magmatic rocks from Paleocene to Eocene suggests that an Eocene arc was constructed in a Paleocene back-arc basin along the Eurasian continental margin. In the Kermanshah region this magmatic activity, which extended further to the northwest into Turkey, coincided with a marked slowing down of the convergence of Arabia with Eurasia. Furthermore, it occurred after the Mesozoic Sanandaj-Sirjan magmatism had ceased but before the development of the Tertiary Urumieh-Dokhtar magmatic arc. We tentatively relate this transient magmatic activity to a slab retreat and a back-arc extension at the Eurasian continental margin.

  4. Heat Transfer Analysis and Modeling of a Parabolic Trough Solar Receiver Implemented in Engineering Equation Solver

    Energy Technology Data Exchange (ETDEWEB)

    Forristall, R.


    This report describes the development, validation, and use of a heat transfer model implemented in Engineering Equation Solver. The model determines the performance of a parabolic trough solar collector's linear receiver, also called a heat collector element. All heat transfer and thermodynamic equations, optical properties, and parameters used in the model are discussed. The modeling assumptions and limitations are also discussed, along with recommendations for model improvement.

  5. Monitoring of Seafloor Crustal Deformation Along the Suruga-Nankai Trough, Japan (United States)

    Tadokoro, K.; Watanabe, T.; Nagai, S.; Okuda, T.; Ikuta, R.; Eto, S.; Yasuda, K.; Sakata, T.; Sayanagi, K.


    \\ \\ \\ The Suruga-Nankai Trough is one of the active plate boundaries in the world. The Philippine Sea plate subducts beneath the Amurian (Eurasian) plate along the Suruga-Nankai Trough, causing major subduction earthquakes. The subduction earthquakes, Nankai and Tonankai earthquakes, have repeatedly occurred with intervals of about 100-150 years. Headquarters for Earthquake Research Promotion, Japanese Government [2011] estimates the 30-years probabilities of the next major earthquakes at 60-70 %. It is necessary to monitor crustal deformation above the source regions of the major earthquakes. The source regions are located beneath the seafloor, and we developed a system for monitoring seafloor crustal deformation [Tadokoro et al., 2006, GRL; Ikuta et al., 2008, JGR]. The system is composed of the precise acoustic ranging with ultrasonic waves and kinematic GPS positioning techniques. \\ \\ \\ We monitor seafloor crustal deformation at five sites altogether along the Suruga-Nankai Trough, three in the Kumano region and two in the Suruga region, with the use of this system. We have repeatedly measured the coordinate of seafloor benchmark installed beforehand every about 2-3 months on the average. The monitoring results, the horizontal site velocities with relative to the Amurian Plate, as of 2010 are approximately 3-4 cm/yr in the direction of N70W at the three sites in the Kumano region, and approximately 2-4 cm/yr in the direction of N85-100W at the two sites in the Suruga region. The observed horizontal seafloor crustal deformations are consistent to the plate convergence along the Suruga-Nankai Trough, showing strain accumulation before the next major subduction earthquakes. Acknowledgments: We are grateful to the captain and crews of R/Vs "Hokuto," Tokai University and "Asama," Mie Prefecture Fisheries Research Institute, Japan. This study has been promoted by Ministry of Education, Culture, Sports, Science and Technology, Japanese Government.

  6. Modeling of a Parabolic Trough Solar Field for Acceptance Testing: A Case Study

    Energy Technology Data Exchange (ETDEWEB)

    Wagner, M. J.; Mehos, M. S.; Kearney, D. W.; McMahan, A. C.


    As deployment of parabolic trough concentrating solar power (CSP) systems ramps up, the need for reliable and robust performance acceptance test guidelines for the solar field is also amplified. Project owners and/or EPC contractors often require extensive solar field performance testing as part of the plant commissioning process in order to ensure that actual solar field performance satisfies both technical specifications and performance guaranties between the involved parties. Performance test code work is currently underway at the National Renewable Energy Laboratory (NREL) in collaboration with the SolarPACES Task-I activity, and within the ASME PTC-52 committee. One important aspect of acceptance testing is the selection of a robust technology performance model. NREL1 has developed a detailed parabolic trough performance model within the SAM software tool. This model is capable of predicting solar field, sub-system, and component performance. It has further been modified for this work to support calculation at subhourly time steps. This paper presents the methodology and results of a case study comparing actual performance data for a parabolic trough solar field to the predicted results using the modified SAM trough model. Due to data limitations, the methodology is applied to a single collector loop, though it applies to larger subfields and entire solar fields. Special consideration is provided for the model formulation, improvements to the model formulation based on comparison with the collected data, and uncertainty associated with the measured data. Additionally, this paper identifies modeling considerations that are of particular importance in the solar field acceptance testing process and uses the model to provide preliminary recommendations regarding acceptable steady-state testing conditions at the single-loop level.

  7. Factor Xa inhibition by rivaroxaban in the trough steady state can significantly reduce thrombin generation. (United States)

    Horinaka, Shigeo; Sugawara, Rie; Yonezawa, Yutaka; Ishimitsu, Toshihiko


    The aim of the present study was to demonstrate evidence of reduced thrombin generation at the trough plasma rivaroxaban concentration. A single-centre, prospective, nonrandomized, drug-intervention, self-controlled study was conducted in 51 anticoagulation therapy-naïve patients with nonvalvular atrial fibrillation. Plasma rivaroxaban concentration was measured by liquid chromatography tandem mass spectrometry (LC-MS/MS) and the anti-factor Xa chromogenic assay. Partial thrombin time (PT), protein C activity, and protein S antigen, prothrombin fragment 1 + 2 (F1 + 2), D-dimer, thrombomodulin (TM), thrombin-antithrombin complex (TAT), plasminogen activator inhibitor-1 (PAI-1) and tissue factor pathway inhibitor (TFPI) levels were also measured at the trough steady state after 4 weeks of rivaroxaban treatment and compared with baseline. Plasma concentrations obtained by the LC-MS/MS and anti-Xa assays were correlated (r = 0.841, P steady state was 23.6 ng ml -1 , at which F1 + 2, TAT and D-dimer had decreased from the baseline values (P steady state in the first to third quartile groups (+0.79 pg ml -1 , P = 0.048). By contrast, PAI-1, protein C activity, protein S antigen and TM remained within the normal range at the trough steady state. Residual plasma rivaroxaban at the trough steady state may explain the antithrombin effect of rivaroxaban in patients with nonvalvular atrial fibrillation. © 2017 The Authors. British Journal of Clinical Pharmacology published by John Wiley & Sons Ltd on behalf of British Pharmacological Society.

  8. Evaluation of the shape of a parabolic trough solar collector with flat null-screens (United States)

    Campos-García, Manuel; Peña-Conzuelo, Andrés.; Díaz-Uribe, José Rufino


    We present a method for testing the shape quality of the reflecting surface of a parabolic trough solar collector (PTSC) with flat null-screens. We develop a custom algorithm to reconstruct the surface taking into account the differences between the normal vector of the true surface and the reference one. Also, we perform a numerical simulation to analyze the accuracy of the method by introducing controlled systematic errors such as misalignments of the null-screen or the CCD plane.

  9. Sensitive Analysis for the Efficiency of a Parabolic Trough Solar Collector Based on Orthogonal Experiment


    Xiaoyan Liu; Jing Huang; Qianjun Mao


    A multitude of the researches focus on the factors of the thermal efficiency of a parabolic trough solar collector, that is, the optical-thermal efficiency. However, it is limited to a single or double factors for available system. The aim of this paper is to investigate the multifactors effect on the system’s efficiency in cold climate region. Taking climatic performance into account, an average outlet temperature of LS-2 collector has been simulated successfully by coupling SolTrace softwar...

  10. Infliximab Dosing Strategies and Predicted Trough Exposure in Children with Crohn’s Disease (United States)

    Frymoyer, Adam; Piester, Travis L; Park, KT


    Objectives Standard infliximab maintenance dosing of 5 mg/kg every 8 weeks may be inadequate to consistently achieve sufficient drug exposure to minimize loss of response or treatment failure in pediatric Crohn’s disease (CD). We aimed to determine the predicted infliximab trough concentrations in children with CD during maintenance therapy and the percentage of patients achieving target trough concentration >3 μg/ml. Methods A Monte Carlo simulation analysis was constructed using a published population pharmacokinetic model based on data from 112 children in the REACH trial. We assessed maintenance dosing strategies of 5, 7.5, and 10 mg/kg at dosing intervals of every 4, 6, and 8 weeks for children that differed by age, weight, albumin level, and concomitant immunomodulator therapy. Results Based on the index case of a 10 year old with CD receiving standard infliximab dosing with concomitant immunomodulator therapy, the median (IQR) simulated infliximab trough concentration at week 14 was 1.3 (0.5–2.7) μg/ml, and 2.4 (1.0–4.8) μg/ml for albumin levels of 3 and 4 g/dl, respectively. Among 1000 simulated children in the model, trough concentration >3 μg/ml at week 14 was achieved 21% and 41% of the time for albumin levels of 3 and 4 g/dl, respectively. Conclusions Standard infliximab maintenance dosing in children with CD is predicted to frequently result in inadequate exposure, especially when albumin levels are low. Optimized dosing strategies for individual patients are needed to achieve sufficient drug exposure during infliximab maintenance therapy. PMID:26890885

  11. Cascade system using both trough system and dish system for power generation

    International Nuclear Information System (INIS)

    Zhang, Cheng; Zhang, Yanping; Arauzo, Inmaculada; Gao, Wei; Zou, Chongzhe


    Highlights: • A novel solar cascade system using both trough and dish collectors is proposed. • Heat rejected by the Stirling engines is collected by the condensed water. • The directions to increase the efficiency improvement has been pointed out • Influence of flow type of heating/cooling fluids of Stirling engines is considered. - Abstract: This paper represents a novel solar thermal cascade system using both trough and dish systems for power generation. An effective structure using the condensed fluid of Rankine cycle to cool the Stirling engines to use the heat released by Stirling engines was proposed. The cascade system model with different fluid circuits was developed. The models of some important components of the system, such as dish collector, trough collector and Stirling engine array, are presented with detail explanation in this paper. Corresponding stand-alone systems were also developed for comparison. Simulations were conducted with the models to find out efficiency difference between cascade system and corresponding stand-alone systems. The directions to increase the efficiency difference were also considered. Results show that the cascade system can achieve a higher efficiency with a high solar irradiance (>550 W/m 2 ). The flow type of fluids between heating and cooling Stirling engine array is also required to concern on designing a cascade system with Stirling engine array.

  12. Use of deep seismic shooting to study graben-like troughs. [Urals

    Energy Technology Data Exchange (ETDEWEB)

    Makalovskiy, V.V.; Silayev, V.A.


    In the Southeast Perm Oblast, in the zone of articulation of the Russian platform and the Cisural trough, in order to study the structure of the graben-like troughs together with deep drilling, well seismic exploration is used by the method of deep seismic shooting (DSS). The DSS method developed by the Kamskiy department of the VNIGNI consists of blasting in the well shaft and recording of the elastic fluctuations on the Earth's surface. The use of the DSS made it possible to pinpoint structural details of the graben-like trough, and to clarify that this is in essence a zone of fracturing, where the lowered blocks alternated with elevated, and to establish the location and amplitude of the tectonic disorders. High geological information content, low labor intensity and rapidity of obtaining the results make it possible to recommend the DSS together with prospecting and exploratory drilling to study complexly constructed objects in order to reduce the number of unproductive wells.

  13. Optical Tests on a Curve Fresnel Lens as Secondary Optics for Solar Troughs

    Directory of Open Access Journals (Sweden)

    D. Fontani


    Full Text Available A curve Fresnel lens is developed as secondary concentrator for solar parabolic troughs to reduce the number of photovoltaic cells. Specific measurements and optical tests are used to evaluate the optical features of manufactured samples. The cylindrical Fresnel lens transforms the focal line, produced by the primary mirror, into a series of focal points. The execution of special laboratory tests on some secondary concentrator samples is discussed in detail, illustrating the methodologies tailored to the specific case. Focusing tests are performed, illuminating different areas of the lens with solar divergence light and acquiring images on the plane of the photocell using a CMOS camera. Concentration measurements are carried out to select the best performing samples of curve Fresnel lens. The insertion of the secondary optics within the concentrating photovoltaic (CPV trough doubles the solar concentration of the system. The mean concentration ratio is 1.73, 2.13, and 2.09 for the three tested lenses. The concentration ratio of the solar trough is 140 and approaches 300 after the introduction of the secondary lens.

  14. Detailed Physical Trough Model for NREL's Solar Advisor Model: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Wagner, M. J.; Blair, N.; Dobos, A.


    Solar Advisor Model (SAM) is a free software package made available by the National Renewable Energy Laboratory (NREL), Sandia National Laboratory, and the US Department of Energy. SAM contains hourly system performance and economic models for concentrating solar power (CSP) systems, photovoltaic, solar hot-water, and generic fuel-use technologies. Versions of SAM prior to 2010 included only the parabolic trough model based on Excelergy. This model uses top-level empirical performance curves to characterize plant behavior, and thus is limited in predictive capability for new technologies or component configurations. To address this and other functionality challenges, a new trough model; derived from physical first principles was commissioned to supplement the Excelergy-based empirical model. This new 'physical model' approaches the task of characterizing the performance of the whole parabolic trough plant by replacing empirical curve-fit relationships with more detailed calculations where practical. The resulting model matches the annual performance of the SAM empirical model (which has been previously verified with plant data) while maintaining run-times compatible with parametric analysis, adding additional flexibility in modeled system configurations, and providing more detailed performance calculations in the solar field, power block, piping, and storage subsystems.

  15. Parabolic trough solar concentrators: a technology which can contribute towards pakistan's energy future

    International Nuclear Information System (INIS)

    Masood, R.


    The utilization of solar thermal energy has got prime importance in Pakistan due to the current energy scarcity and escalating cost scenario in the country. Parabolic Trough Solar Concentrator is one of the most reliable technologies for utilization of solar thermal energy. In solar thermal power generation, Parabolic Trough Solar Concentrators are most successful as almost 96 percent of total solar thermal power is generated across the world by utilizing this technology. Its high reliability, operational compatibility, comparative low cost and high efficiency adds to its high value among other resources. Fortunately, Pakistan lies in the high Solar Insolation Zone; thus, a huge potential exists to benefit from this technology. This technology may cater to the Pakistan's seasonal increased electricity demand. Apart from electric power generation, this technology may also have cost-effective solutions for Pakistan's other industries, like steam generation, preheating of boiler make-up water, air-conditioning, and hot water production for food, textile, dairy and leather industries. However, economic justification of such projects would be possible only on accomplishing an indigenous technology base. Globally, this is a proven technology, but in Pakistan there is hardly any development in this field. In this study, an effort has been made by designing and fabricating an experimental Parabolic Trough Solar Water Heater by utilizing locally available materials and manufacturing capabilities. On achieving encouraging results, a solar boiler (steam generator) is proposed to be manufactured locally. (author)

  16. V-trough concentrator on a photovoltaic full tracking system in a hot desert climate

    Energy Technology Data Exchange (ETDEWEB)

    Shaltout, M.A.M.; Ghettas, A.; Sabry, M. [National Research Inst., of Astronomy and Geophysics, Cairo (Egypt)


    A V-trough concentrator with a two-axis tracker system to increase the performance of photovoltaics was designed by the authors and installed on the roof-top of the building of the National Research Institute of Astronomy and Geophysics at Helwan in South Cairo. The V-trough concentrator system comprises two flat mirrors with dimensions 50 cm x 18 cm. They are fixed with the reflecting surfaces facing each other with a separation of about 11 cm, on a wooden table of 50 cm axis length. A sample of polycrystalline amorphous silicon cells were fixed into the system, and similar solar cells of each type were fixed separate to the system, to estimate the electrical gain. The measurements were performed daily at different air masses for one complete year. The temperature of the solar cells in and out of the system were measured for comparison. Also, measurements for beam and global solar radiation and other meteorological conditions were recorded. The optical losses of the system were analyzed and details of collectable energy calculations are presented. The energy gain from the isolated contribution of the V-trough concentrators is also evaluated. (Author)

  17. A common origin for ridge-and-trough terrain on icy satellites by sluggish lid convection (United States)

    Barr, Amy C.; Hammond, Noah P.


    Ridge-and-trough terrain is a common landform on outer Solar System icy satellites. Examples include Ganymede's grooved terrain, Europa's gray bands, Miranda's coronae, and several terrains on Enceladus. The conditions associated with the formation of each of these terrains are similar: heat flows of order tens to a hundred milliwatts per meter squared, and deformation rates of order 10-16-10-12 s-1. Our prior work shows that the conditions associated with the formation of these terrains on Ganymede and the south pole of Enceladus are consistent with vigorous solid-state ice convection in a shell with a weak surface. We show that sluggish lid convection, an intermediate regime between the isoviscous and stagnant lid regimes, can create the heat flow and deformation rates appropriate for ridge and trough formation on a number of satellites, regardless of the ice shell thickness. For convection to deform their surfaces, the ice shells must have yield stresses similar in magnitude to the daily tidal stresses. Tidal and convective stresses deform the surface, and the spatial pattern of tidal cracking controls the locations of ridge-and-trough terrain.

  18. MONTI as continent catheterized stoma using serosal-lined trough "Ghoneim Abolenin" technique in ileocystoplasty

    Directory of Open Access Journals (Sweden)

    Mohammed T Sammour


    Full Text Available It is a great challenge to select and perform continent mechanism in a stoma for urinary reservoir. A new technique by combining MONTI ileal conduit with the serosal lined trough in order to achieve continent catheterizable stoma to the umbilicus as a part of augmentation ileocystoplasty. We applied serosal-lined trough as a continent mechanism with MONTI ileal tube in 12 years smart girl underwent ileocystoplasty for neuropathic bladder due to meylomeningocele in whom continence failed to be achieved by using Mitrofanoff with submucosal tunnel of the bladder as continent mechanism before, also the previous operation included left to right transuretero-ureterostomy, ureterocystoplasty and reimplantation of the right ureter. The patient became completely continent; she was able to do self-catheterization easily through the umbilical stoma using 16-French catheter and was able to wash the mucous easily. The capacity of the augmented bladder was 300ccs. She became independent from her mother and stopped using diapers, anticholinergic and antibiotics. Combining MONTI conduit with serosal-lined extramural valve trough (The Ghoneim technique is an effective continent technique and gives wider channel for catheterization and washing out the mucous.

  19. Next-generation Geotectonic Data Analysis: Using pyGPlates to quantify Rift Obliquity during Supercontinent Dispersal (United States)

    Butterworth, Nathaniel; Brune, Sascha; Williams, Simon; Müller, Dietmar


    Fragmentation of a supercontinent by rifting is an integral part of plate tectonics, yet the dynamics that govern the success or failure of individual rift systems are still unclear. Recently, analytical and thermo-mechanical modelling has suggested that obliquely activated rifts are mechanically favoured over orthogonal rift systems. Hence, where two rift zones compete, the more oblique rift proceeds to break-up while the less oblique one stalls and becomes an aulacogen. This implies that the orientation and shape of individual rift systems affects the relative motion of Earth's continents during supercontinent break-up. We test this hypothesis using the latest global plate tectonic reconstructions for the past 200 million years. The analysis is performed using pyGPlates, a recently developed Python library that allows script-based access to the plate reconstruction software GPlates. We quantify rift obliquity, extension velocity and their temporal evolution for all small-scale rift segments that constituted a major rift system during the last 200 million years. Boundaries between continental and oceanic crust (COBs) mark the end of rifting and the beginning of sea floor spreading, which is why we use a global set of updated COBs in order to pinpoint continental break-up and as a proxy for the local trend of former rift systems. Analysing the entire length of all rift systems during the last 200 My, we find a mean obliquity of ~40° (measured as the angle between extension direction and local rift trend normal), with a standard deviation of 25°. More than 75% of all rift segments exceeded an obliquity of 20° highlighting the fact that oblique rifting is the rule, not the exception. More specifically, East and West Gondwana split along the East African coast with a mean obliquity of 45°. While rifting of the central and southern South Atlantic segment involved a low obliquity of 10°, the Equatorial Atlantic opened under a high angle of 60°. The separation of

  20. ALVIN investigation of an active propagating rift system, Galapagos 95.5° W (United States)

    Hey, R.N.; Sinton, J.M.; Kleinrock, M.C.; Yonover, R.N.; MacDonald, K.C.; Miller, S.P.; Searle, R.C.; Christie, D.M.; Atwater, T.M.; Sleep, Norman H.; Johnson, H. Paul; Neal, C.A.


    ALVIN investigations have defined the fine-scale structural and volcanic patterns produced by active rift and spreading center propagation and failure near 95.5° W on the Galapagos spreading center. Behind the initial lithospheric rifting, which is propagating nearly due west at about 50 km m.y.−1, a triangular block of preexisting lithosphere is being stretched and fractured, with some recent volcanism along curving fissures. A well-organized seafloor spreading center, an extensively faulted and fissured volcanic ridge, develops ~ 10 km (~ 200,000 years) behind the tectonic rift tip. Regional variations in the chemical compositions of the youngest lavas collected during this program contrast with those encompassing the entire 3 m.y. of propagation history for this region. A maximum in degree of magmatic differentiation occurs about 9 km behind the propagating rift tip, in a region of diffuse rifting. The propagating spreading center shows a gentle gradient in magmatic differentiation culminating at the SW-curving spreading center tip. Except for the doomed rift, which is in a constructional phase, tectonic activity also dominates over volcanic activity along the failing spreading system. In contrast to the propagating rift, failing rift lavas show a highly restricted range of compositions consistent with derivation from a declining upwelling zone accompanying rift failure. The lithosphere transferred from the Cocos to the Nazca plate by this propagator is extensively faulted and characterized by ubiquitous talus in one of the most tectonically disrupted areas of seafloor known. The pseudofault scarps, where the preexisting lithosphere was rifted apart, appear to include both normal and propagator lavas and are thus more lithologically complex than previously thought. Biological communities, probably vestimentiferan tubeworms, occur near the top of the outer pseudofault scarp, although no hydrothermal venting was observed.

  1. Tectonic Evolution of the Rift Basins in the Northeastern Brazilian Region (United States)

    Mohriak, Webster U.; Bassetto, Marcelo; Vieira, Ines S.

    The transition from onshore failed rifts to offshore sedimentary basins along divergent continental margins is discussed on the basis of a regional, multidisciplinary integration of deep seismic reflection profiling, potential fied methods, geological data, and tectonic analysis. The following themes are addressed: a) the geologic evolution of the onshore and offshore rift systems of the Brazilian northeastern margin; b) the potential field methods response to the deep crustal structures; c) the seismic expression of major structural features in the rifts and within the continental and oceanic crusts; d) a possible geodynamic model for the evolution of the rift system; and e) analogies with a number of failed rifts and passive margin systems in the North Atlantic. The sedimentary basins in northeastern Brazil include a series of asymmetric grabens, such as the onshore Recôncavo-Tucano-Jatobá rift system (RTJ) and the offshore Jacuípe-Sergipe-Alagoas basins (JSA). Pre-rift sediments include Paleozoic to Jurassic/Early Cretaceous sediments deposited above a basement that includes Archean rocks to Late Proterozoic metasediments. The main rift phase (Neocomian to Barremian) terminated in the onshore rifts with fluvial deposits above a major regional unconformity. No further sedimentation is observed in the Recôncavo and Tucano basins, in a marked contrast to the geodynamic evolution of the Sergipe Basin, which is characterized by renewed phases of basement-involved faulting from Aptian to Early Albian, followed by a thermal phase of subsidence. The overall picture of two branches of a rift system, with different geodynamic evolution following the inception of oceanic crust, may be associated with a regional lithospheric extension during the Neocomian, first distributed over a wide region, and subsequently, focussing along a deeper mantle weak zone, local of a later plate rupture.

  2. An Epidemiological Model of Rift Valley Fever with Spatial Dynamics

    Directory of Open Access Journals (Sweden)

    Tianchan Niu


    Full Text Available As a category A agent in the Center for Disease Control bioterrorism list, Rift Valley fever (RVF is considered a major threat to the United States (USA. Should the pathogen be intentionally or unintentionally introduced to the continental USA, there is tremendous potential for economic damages due to loss of livestock, trade restrictions, and subsequent food supply chain disruptions. We have incorporated the effects of space into a mathematical model of RVF in order to study the dynamics of the pathogen spread as affected by the movement of humans, livestock, and mosquitoes. The model accounts for the horizontal transmission of Rift Valley fever virus (RVFV between two mosquito and one livestock species, and mother-to-offspring transmission of virus in one of the mosquito species. Space effects are introduced by dividing geographic space into smaller patches and considering the patch-to-patch movement of species. For each patch, a system of ordinary differential equations models fractions of populations susceptible to, incubating, infectious with, or immune to RVFV. The main contribution of this work is a methodology for analyzing the likelihood of pathogen establishment should an introduction occur into an area devoid of RVF. Examples are provided for general and specific cases to illustrate the methodology.

  3. Current Status of Rift Valley Fever Vaccine Development (United States)

    Faburay, Bonto; LaBeaud, Angelle Desiree; McVey, D. Scott; Wilson, William C.; Richt, Juergen A.


    Rift Valley Fever (RVF) is a mosquito-borne zoonotic disease that presents a substantial threat to human and public health. It is caused by Rift Valley fever phlebovirus (RVFV), which belongs to the genus Phlebovirus and the family Phenuiviridae within the order Bunyavirales. The wide distribution of competent vectors in non-endemic areas coupled with global climate change poses a significant threat of the transboundary spread of RVFV. In the last decade, an improved understanding of the molecular biology of RVFV has facilitated significant progress in the development of novel vaccines, including DIVA (differentiating infected from vaccinated animals) vaccines. Despite these advances, there is no fully licensed vaccine for veterinary or human use available in non-endemic countries, whereas in endemic countries, there is no clear policy or practice of routine/strategic livestock vaccinations as a preventive or mitigating strategy against potential RVF disease outbreaks. The purpose of this review was to provide an update on the status of RVF vaccine development and provide perspectives on the best strategies for disease control. Herein, we argue that the routine or strategic vaccination of livestock could be the best control approach for preventing the outbreak and spread of future disease. PMID:28925970

  4. Current Status of Rift Valley Fever Vaccine Development

    Directory of Open Access Journals (Sweden)

    Bonto Faburay


    Full Text Available Rift Valley Fever (RVF is a mosquito-borne zoonotic disease that presents a substantial threat to human and public health. It is caused by Rift Valley fever phlebovirus (RVFV, which belongs to the genus Phlebovirus and the family Phenuiviridae within the order Bunyavirales. The wide distribution of competent vectors in non-endemic areas coupled with global climate change poses a significant threat of the transboundary spread of RVFV. In the last decade, an improved understanding of the molecular biology of RVFV has facilitated significant progress in the development of novel vaccines, including DIVA (differentiating infected from vaccinated animals vaccines. Despite these advances, there is no fully licensed vaccine for veterinary or human use available in non-endemic countries, whereas in endemic countries, there is no clear policy or practice of routine/strategic livestock vaccinations as a preventive or mitigating strategy against potential RVF disease outbreaks. The purpose of this review was to provide an update on the status of RVF vaccine development and provide perspectives on the best strategies for disease control. Herein, we argue that the routine or strategic vaccination of livestock could be the best control approach for preventing the outbreak and spread of future disease.

  5. Images of the East Africa Rift System from the Joint Inversion of Body Waves, Surface Waves, and Gravity: Investigating the Role of Magma in Early-Stage Continental Rifting (United States)

    Roecker, S. W.; Ebinger, C. J.; Tiberi, C.; Mulibo, G. D.; Ferdinand-Wambura, R.; Muzuka, A.; Khalfan, M.; Kianji, G.; Gautier, S.; Albaric, J.; Peyrat, S.


    With several rift segments at different stages of the rifting cycle, and the last orogenic episode more than 500 Mya, the young (Ngorongoro caldera appears to be physically cut off from the magma beneath the main part of the rift zone by a relatively thin (< 10 km) wide zone of higher shear wave speeds that lies along the western edge of the fault-bounded rift. The narrow ridge of higher velocity lower crustal material may be a consequence of flexural uplift of the rift flank in response to stretching of strong, cratonic lithosphere.

  6. Generation of Continental Rifts, Basins and Swells by Lithosphere Instabilities (United States)

    Milelli, L.; Fourel, L.; Jaupart, C. P.


    Domal uplifts, volcanism, basin formation and rifting have often struck the same continent in different areas at the same time. Their characteristics and orientations are difficult to reconcile with mantle convection or tectonic forces and suggest a driving mechanism that is intrinsic to the continent. The rifts seem to develop preferentially at high angles to the edge of the continent whereas swells and basins seem confined to the interior. Another intriguing geometrical feature is that the rifts often branch out in complicated patterns at their landward end. In Western Africa, for example, magmatic activity currently occurs in a number of uplifted areas including the peculiar Cameroon Volcanic Line that stretches away from the continental margin over about 1000 km. Magmatic and volcanic activity has been sustained along this line for 70 My with no age progression. The mantle upwelling that feeds the volcanoes is not affected by absolute plate motions and hence is attached to the continent. The Cameroon Volcanic Line extends to the Biu swell to the North and the Jos plateau to the West defining a striking Y-shaped pattern. This structure segues into several volcanic domes including the Air, the Hoggar, the Darfur, the Tibesti and the Haruj domes towards the Mediterranean coast. Another example is provided by North America, where the late Proterozoic-early Ordovician saw the formation of four major basins, the Michigan, Illinois, Williston and Hudson Bay, as well as of major rifts in southern Oklahoma and the Mississipi Valley within a short time interval. At the same time, a series of uplifts developed, such as the Ozark and Nashville domes. Motivated by these observations, we have sought an explanation in the continental lithosphere itself. We describe a new type of convective instability at the base of the lithosphere that leads to a remarkable spatial pattern at the scale of an entire continent. We carried out fluid mechanics laboratory experiments on buoyant

  7. Rifting kinematics along the Arabian Margin, Red Sea (United States)

    Pierantoni, Pietro Paolo; Schettino, Antonio; Zanoni, Davide; Rasul, Najeeb


    The Red Sea represents a young basin floored by oceanic, transitional, or thinned continental crust that formed between Nubia and Arabia. According to most authors, rifting between Nubia and Arabia started in the late Oligocene ( 27 Ma) and it is still in progress in the northern part of the Red Sea at latitudes greater than 24°N. Conversely, the area south of 20.3°N displays a linear spreading ridge extending as south as 14.8°N, which formed in the early Pliocene (the first pulse of sea floor spreading occurred during chron C3n.2n, 4.62 Ma). A transition zone (between 24°N and 20.3°N, present-day coordinates) exists between the northern and the southern sectors, characterized by a segmented spreading center that started forming at 2.58 Ma (chron 2A, late Pliocene) in the southernmost area and propagated northwards. Some authors suggest that the present-day NE-SW spreading directions can be extended back to the early Miocene. However, we are going to show, on the basis of geological evidence from the Arabian margin, that at least two phases of rifting, characterized by distinct extension directions, are necessary to explain the observed structural pattern of deformation in a wide area extending from 28°N to 20°N. At present, there is no magnetic evidence for the existence of a linear spreading center in the northern Red Sea at latitudes higher than 24°N. In this area, the syn-rift pattern of deformation along the Arabian margin is only partly coherent with the present day NE-SW sea floor spreading directions and with the observed trend of fracture zones in the Red Sea. In fact, an older set of rift structures was found during 3 field trips performed along the northern and central Red Sea Arabian margin (2015-2016), suggesting the existence of an earlier rifting stage characterized by N-S trending strike-slip faults and E-W normal faults. The objective of the field trips was to investigate the hypothesis that an early phase of N-S extension and formation of

  8. Plasma tenofovir trough concentrations are associated with renal dysfunction in Japanese patients with HIV infection: a retrospective cohort study


    Kunimoto, Yusuke; Ikeda, Hiroshi; Fujii, Satoshi; Kitagawa, Manabu; Yamazaki, Kieko; Nakata, Hiromasa; Noda, Norimasa; Ishida, Tadao; Miyamoto, Atsushi


    Background Plasma tenofovir (TFV) trough concentrations may be relevant for tenofovir disoproxil fumarate (TDF)-induced renal dysfunction. The purpose of this study was to determine the association between plasma TFV trough concentrations and TDF-induced renal dysfunction in Japanese patients with human immunodeficiency virus (HIV) infection. Methods A 48-week, retrospective cohort study was performed with Japanese patients with HIV infection who started a TDF-containing combination antiretro...

  9. Considerable variation of trough β-lactam concentrations in older adults hospitalized with infection—a prospective observational study


    Hatti, Malini; Solomonidi, Nikolitsa; Odenholt, Inga; Tham, Johan; Resman, Fredrik


    In older adults, few studies confirm that adequate concentrations of antibiotics are achieved using current dosage regimens of intravenous β-lactam antibiotics. Our objective was to investigate trough concentrations of cefotaxime, meropenem, and piperacillin in older adults hospitalized with infection. We included 102 patients above 70 years of age. Total trough antibiotic concentrations were measured and related to suggested target intervals. Information on antibiotic dose, patient character...

  10. On the CFD&HT of the flow around a parabolic trough solar collector under real working conditions


    Amine Hachicha, Ahmed; Rodríguez Pérez, Ivette María; Lehmkuhl Barba, Oriol; Oliva Llena, Asensio


    Parabolic trough solar collector is currently one of the most mature and prominent solar applications for production of electricity. These systems are usually located in open terrain where strong winds may occur and affect their stability and optical performance, as well as, the heat exchange between the solar receiver and the ambient air. In this context, a wind flow analysis around a parabolic trough solar collector under real working conditions is performed. A numerical aerodynamic and ...

  11. Middle Triassic back-arc basalts from the blocks in the Mersin Mélange, southern Turkey: Implications for the geodynamic evolution of the Northern Neotethys (United States)

    Sayit, Kaan; Bedi, Yavuz; Tekin, U. Kagan; Göncüoglu, M. Cemal; Okuyucu, Cengiz


    The Mersin Mélange is a tectonostratigraphic unit within the allochthonous Mersin Ophiolitic Complex in the Taurides, southern Turkey. This chaotic structure consists of blocks and tectonic slices of diverse origins and ages set in a clastic matrix of Upper Cretaceous age. In this study, we examine two blocks at two different sections characterized by basaltic lava flows alternating with radiolarian-bearing pelagic sediments. The radiolarian assemblage extracted from the mudstone-chert alternation overlying the lavas yields an upper Anisian age (Middle Triassic). The immobile element geochemistry suggests that the lava flows are predominantly characterized by sub-alkaline basalts. All lavas display pronounced negative Nb anomalies largely coupled with normal mid-ocean basalt (N-MORB)-like high field strength element (HFSE) patterns. On the basis of geochemical modelling, the basalts appear to have dominantly derived from spinel-peridotite and pre-depleted spinel-peridotite sources, while some enriched compositions can be explained by contribution of garnet-facies melts from enriched domains. The overall geochemical characteristics suggest generation of these Middle Triassic lavas at an intra-oceanic back-arc basin within the northern branch of Neotethys. This finding is of significant importance, since these rocks may represent the presence of the oldest subduction zone found thus far from the Neotethyan branches. This, in turn, suggests that the rupturing of the Gondwanan lithosphere responsible for the opening of the northern branch of Neotethys should have occurred during the Lower Triassic or earlier.

  12. Real-time dynamic analysis for complete loop of direct steam generation solar trough collector

    International Nuclear Information System (INIS)

    Guo, Su; Liu, Deyou; Chu, Yinghao; Chen, Xingying; Shen, Bingbing; Xu, Chang; Zhou, Ling; Wang, Pei


    Highlights: • A nonlinear distribution parameter dynamic model has been developed. • Real-time local heat transfer coefficient and friction coefficient are adopted. • The dynamic behavior of the solar trough collector loop are simulated. • High-frequency chattering of outlet fluid flow are analyzed and modeled. • Irradiance disturbance at subcooled water region generates larger influence. - Abstract: Direct steam generation is a potential approach to further reduce the levelized electricity cost of solar trough. Dynamic modeling of the collector loop is essential for operation and control of direct steam generation solar trough. However, the dynamic behavior of fluid based on direct steam generation is complex because of the two-phase flow in the pipeline. In this work, a nonlinear distribution parameter model has been developed to model the dynamic behaviors of direct steam generation parabolic trough collector loops under either full or partial solar irradiance disturbance. Compared with available dynamic model, the proposed model possesses two advantages: (1) real-time local values of heat transfer coefficient and friction resistance coefficient, and (2) considering of the complete loop of collectors, including subcooled water region, two-phase flow region and superheated steam region. The proposed model has shown superior performance, particularly in case of sensitivity study of fluid parameters when the pipe is partially shaded. The proposed model has been validated using experimental data from Solar Thermal Energy Laboratory of University of New South Wales, with an outlet fluid temperature relative error of only 1.91%. The validation results show that: (1) The proposed model successfully outperforms two reference models in predicting the behavior of direct steam generation solar trough. (2) The model theoretically predicts that, during solar irradiance disturbance, the discontinuities of fluid physical property parameters and the moving back and

  13. Variability of the Antarctic Circumpolar Current transport through the Fawn Trough, Kerguelen Plateau (United States)

    Vivier, Frédéric; Park, Young-Hyang; Sekma, Hela; Le Sommer, Julien


    The Kerguelen Plateau is a major topographic obstacle to the eastward flowing Antarctic Circumpolar Current (ACC). While approximately two-third of the ACC transport is diverted to the North, most of the remaining flow engulfs in the Fawn Trough, the only deep passage across the plateau. As part of the TRACK (TRansport ACross the Kerguelen plateau) project, three mooring lines of current meters were deployed in the Fawn Trough for one year in February 2009, underneath ground-track 94 of the Jason-2 satellite altimeter. Full depth CTD-LADCP casts carried out during the deployment cruise were previously analyzed to provide a comprehensive description of the regional circulation, featuring in particular a volume transport of ~43 Sv across the Fawn Trough (Park et al., 2009). Here we present a time series of the transport in the Fawn Trough estimated from current meter observations, featuring a mean eastward transport of 34 Sv (possibly biased low by at most 5 Sv) and a root mean squared variability of 6 Sv, consistent with LADCP estimates (43 Sv in February 2009 and 38 Sv in January 2010). In addition, we analyze to what extent the transport can be directly monitored from along-track satellite altimeter data, which would enable study of the variability of the Fawn Trough Current from a now 20-year long archive. The ability to reconstruct the flow from a limited set of moored instruments as well as from altimeter-derived surface geostrophic velocity is further assessed from synthetic data extracted from a high-resolution peri-Antarctic simulation. While a canonical method to derive transport from altimetry, previously applied to the Malvinas Current, gives here unsatisfactory comparisons with in situ estimates, an ad hoc approach using only the two northernmost mooring lines yields an estimate well correlated (~0.8) with in situ transport at subseasonal time scales during the one year period of observations. At interannual time scales, however, both methods provide

  14. Modelling the Evolution of a Passive Margin: Application to the Rockall Trough (United States)

    Smithells, R. A.; Egan, S.; Clarke, S.; Kimbell, G.; Johnson, H.


    The Rockall Trough is one of the largest, relatively unexplored basins forming the North-East Atlantic passive margin and many aspects regarding the evolution of this basin remain unresolved. In part, this is due to the Paleocene lavas associated with the opening of the North Atlantic Margin and the Icelandic Hotspot which inhibit high resolution imaging of the underlying sediments and basement structure. The aim of this study is to apply numerical, lithosphere-scale models to the Rockall Trough in order to gain insights into the complex evolution of this passive margin basin. Model cross-sections of the basin have been produced in order to determine the interplay of geological, rheological and geodynamic processes that have controlled the evolution of the Rockall Basin. These models are used to test different hypotheses regarding the timing and nature of extensional and compressional events as well as the influence of thermal anomalies, and spatial and temporal variations in lithospheric rheology. Initial results demonstrate the importance of accurate controls on palaeobathymetry and the need to realistically account for varying basin fill sequences during different stages of the Rockall Trough's evolution. An analysis of available subsurface data has been undertaken to quantify the amount of stretching that has occurred during the evolution of the Rockall Trough. Additionally, analyses of composite well data have been used to generate subsidence curves for the basin, which highlight key episodes of anomalous subsidence. The main event highlighted by the subsidence curves is a major deepening event which occurred during the Eocene Epoch. These curves are compared to modelled subsidence curves in order to test the validity of the structural and geodynamic scenarios that have been modelled. Further validation of the model results has been carried out by comparing regional gravitational anomaly data with theoretical gravity anomalies calculated from the model

  15. Quantifying the Temporal and Spatial Response of Channel Steepness to Changes in Rift Basin Architecture (United States)

    Robinson, Scott M.

    Quantifying the temporal and spatial evolution of active continental rifts contributes to our understanding of fault system evolution and seismic hazards. Rift systems also preserve robust paleoenvironmental records and are often characterized by strong climatic gradients that can be used to examine feedbacks between climate and tectonics. In this thesis, I quantify the spatial and temporal history of rift flank uplift by analyzing bedrock river channel profiles along footwall escarpments in the Malawi segment of the East Africa Rift. This work addresses questions that are widely applicable to continental rift settings: (1) Is rift-flank uplift sufficiently described by theoretical elliptical along-fault displacement patterns? (2) Do orographic climate patterns induced by rift topography affect rift-flank uplift or morphology? (3) How do uplift patterns along rift flanks vary over geologic timescales? In Malawi, 100-km-long border faults of alternating polarity bound half-graben sedimentary basins containing up to 4km of basin fill and water depths up to 700m. Orographically driven precipitation produces climatic gradients along footwall escarpments resulting in mean annual rainfall that varies spatially from 800 to 2500 mm. Temporal oscillations in climate have also resulted in lake lowstands 500 m below the modern shoreline. I examine bedrock river profiles crossing the Livingstone and Usisya Border Faults in northern Malawi using the channel steepness index (Ksn) to assess importance of these conditions on rift flank evolution. River profiles reveal a consistent transient pattern that likely preserves a temporal record of slip and erosion along the entire border fault system. These profiles and other topographic observations, along with known modern and paleoenvironmental conditions, can be used to interpret a complete history of rift flank development from the onset of rifting to present. I interpret the morphology of the upland landscape to preserve the onset

  16. Mantle Flow Across the Baikal Rift Constrained With Integrated Seismic Measurements (United States)

    Lebedev, S.; Meier, T.; van der Hilst, R. D.


    The Baikal Rift is located at the boundary of the stable Siberian Craton and deforming central Mongolia. The origin of the late Cenozoic rifting and volcanism are debated, as is the mantle flow beneath the rift zone. Here we combine new evidence from azimuthally-anisotropic upper-mantle tomography and from a radially-anisotropic inversion of interstation surface-wave dispersion curves with previously published shear-wave-splitting measurements of azimuthal anisotropy across the rift (Gao et al. 1994). While our tomographic model maps isotropic and anisotropic shear-velocity heterogeneity globally, the inversion of interstation phase-velocity measurements produces a single, radially-anisotropic, shear-velocity profile that averages from the rift to 500 km SE of it. The precision and the broad band (8-340 s) of the Rayleigh and Love wave curves ensures high accuracy of the profile. Tomography and shear-wave splitting both give a NW-SE fast direction (perpendicular to the rift) in the vicinity of the rift, changing towards W-E a few hundred kilometers from it. Previously, this has been interpreted as evidence for mantle flow similar to that beneath mid-ocean ridges, with deeper vertical flow directly beneath the rift also proposed. Our radially anisotropic profile, however, shows that while strong anisotropy with SH waves faster than SV waves is present in the thin lithosphere and upper asthenosphere beneath and SE of the rift, no anisotropy is required below 110 km. The tomographic model shows thick cratonic lithosphere north of the rift. These observations suggest that instead of a flow diverging from the rift axis in NW and SE directions, the most likely pattern is the asthenospheric flow in SE direction from beneath the Siberian lithosphere and across the rift. Possible driving forces of the flow are large-scale lithospheric deformation in East Asia and the draining of asthenosphere at W-Pacific subduction zones; a plume beneath the Siberian craton also cannot be

  17. ALVIN-SeaBeam studies of the Sumisu Rift, Izu-Bonin arc (United States)

    Taylor, B.; Brown, G.; Fryer, P.; Gill, J. B.; Hochstaedter, A. G.; Hotta, H.; Langmuir, C. H.; Leinen, M.; Nishimura, A.; Urabe, T.


    Bimodal volcanism, normal faulting, rapid sedimentation, and hydrothermal circulation characterize the rifting of the Izu-Bonin arc at 31°N. Analysis of the zigzag pattern, in plan view, of the normal faults that bound Sumisu Rift indicates that the extension direction (080° ± 10°) is orthogonal to the regional trend of the volcanic front. Normal faults divide the rift into an inner rift on the arc side, which is the locus for maximum subsidence and sedimentation, and an outer rift further west. Transfer zones that link opposing master faults and/or rift flank uplifts further subdivide the rift into three segments along strike. Volcanism is concentrated along the ENE-trending transfer zone which separates the northern and central rift segments. The differential motion across the zone is accommodated by interdigitating north-trending normal faults rather than by ENE-trending oblique-slip faults. Volcanism in the outer rift has built 50-700 m high edifices without summit craters whereas in the inner rift it has formed two multi-vent en echelon ridges (the largest is 600 m high and 16 km long). The volcanism is dominantly basaltic, with compositions reflecting mantle sources little influenced by arc components. An elongate rhyolite dome and low-temperature hydrothermal deposits occur at the en echelon step in the larger ridge, which is located at the intersection of the transfer zone with the inner rift. The chimneys, veins, and crusts are composed of silica, barite and iron oxide, and are of similar composition to the ferruginous chert that mantles the Kuroko deposits. A 1.2-km transect of seven ALVIN heat flow measurements at 30°48.5'N showed that the inner-rift-bounding faults may serve as water recharge zones, but that they are not necessarily areas of focussed hydrothermal outflow, which instead occurs through the thick basin sediments. The rift basin and arc margin sediments are probably dominated by permeable rhyolitic pumice and ash erupted from submarine

  18. Study On Seismic Identification And Distribution Characters Of Marine Gas Hydrate In Okinawa Trough (United States)

    Fang, Y.; Jin, X.; Li, M.; Tang, Y.


    The paper studies the formation processes and distribution of marine gas hydrate, through systematically and thoroughly analyzing the geological setting, gas sources and distribution features of the most marine gas hydrate deposits around the world. Based on study of the geologic features in Okinawa Trough and adjacent area, it is showed that there exist favorable geological conditions for the formation of gas hydrate, and the seismic indicator -BSR has also been identified from multi-channel digit seismic data by re-processing and analyzing. This shows that Okinawa Trough and adjacent sea area may distribute a mass of gas hydrate sedimentary deposit. Then the paper discusses the prospect of the gas hydrate resource in Okinawa Trough and adjacent sea area, based on the calculating of the hydrate stability zone thickness. Main conclusions of the paper can be summed up as follows: Based on the systematically comparative analysis of the marine gas hydrate deposits in different marine gas hydrate accumulate belts, the paper summarizes the different geologic formation processes and characters of the gas hydrate. And the importance of the continuous supplementation of the gas source, the transporting and accumulating of the gaseous fluid during the formation processes of the gas hydrate, and the preservation conditions of the gas hydrate deposit are discussed. It is thought that the Okinawa Trough (especially the west slope of the Trough) has the favorable conditions for gas hydrate through the analysis of its geologic features. The geologic features of Okinawa Trough, such as water depth, low temperature of bottom water, very thick sediments with high organic matter content, a large amount of gas from deep parts induced by the upward of the high temperature mantle flow under the Trough, very developed fracture system, and lots of pore space in the under-compacted sediment induced by the rapid sedimentation-are beneficial to form gas hydrate. This provided the advantaged

  19. Marine Subsurface Microbial Communities Across a Hydrothermal Gradient in Okinawa Trough Sediments (United States)

    Brandt, L. D.; Hser Wah Saw, J.; Ettema, T.; House, C. H.


    IODP Expedition 331 to the Okinawa backarc basin provided an opportunity to study the microbial stratigraphy within the sediments surrounding a hydrothermal vent. The Okinawa backarc basin is a sedimented region of the seafloor located on a continental margin, and also hosts a hydrothermal network within the subsurface. Site C0014 within the Iheya North hydrothermal field is located 450 m east of the active vent and has a surface temperature of 5°C with no evidence of hydrothermal alteration within the top 10 meters below sea floor (mbsf). Temperature increases with depth at an estimated rate of 3°C/m and transitions from non-hydrothermal margin sediments to a hydrothermally altered regime below 10 mbsf. In this study, we utilized deep 16S rRNA sequencing of DNA from IODP Expedition 331 Site C0014 sediment horizons in order to assess diversity throughout the sediment column as well as determine the potential limits of the biosphere. Analysis of the amplicon data shows a shift over 15 mbsf from a heterogeneous community of cosmopolitan marine subsurface taxa toward an archaeal-dominated community in the deepest horizons of the predicted biosphere. Notably, the phylum Chloroflexi represents a substantial taxon through most horizons, where it appears to be replaced below 10 mbsf by punctuations of thermophilic and methanotrophic Archaea and Miscellaneous Crenarchaeotic Group abundances. DNA from the aforementioned transition horizons was further analyzed using metagenomic sequencing. Preliminary taxonomic analysis of the metagenomic data agrees well with amplicon data in capturing the shift in relative abundance of Archaea increasing with depth. Additionally, reverse gyrase, a gene found exclusively in hyperthermophilic microorganisms, was recovered only in the metagenome of the deepest horizon. A BLAST search of this protein sequence against the GenBank non-redudnant protein database produced top hits with reverse gyrase from Thermococcus and Pyrococcus, which are

  20. Potential links between continental rifting, CO2 degassing and climate change through time (United States)

    Brune, Sascha; Williams, Simon E.; Müller, R. Dietmar


    The concentration of CO2 in the atmosphere is a key influence on Earth's climate. Today, significant quantities of CO2 are emitted at continental rifts, suggesting that the spatial and temporal extent of rift systems may have influenced deep carbon fluxes and thus climate change throughout geological time. Here we test this hypothesis by conducting a worldwide census of continental rift lengths over the last 200 million years. We estimate tectonic CO2 release rates through time and show that along the extensive Mesozoic and Cenozoic rift systems, rift-related CO2 degassing rates reached more than 300% of present-day values. Using a numerical carbon cycle model, we find that two prominent periods of enhanced rifting 160 to 100 million years ago and after 55 million years ago coincided with greenhouse climate episodes, during which atmospheric CO2 concentrations were more than three times higher than today. We therefore propose that continental fragmentation and long-term climate change could plausibly be linked via massive CO2 degassing in rift systems.

  1. Spatially Variable CO2 Degassing in the Main Ethiopian Rift: Implications for Magma Storage, Volatile Transport, and Rift-Related Emissions (United States)

    Hunt, Jonathan A.; Zafu, Amdemichael; Mather, Tamsin A.; Pyle, David M.; Barry, Peter H.


    Deep carbon emissions from historically inactive volcanoes, hydrothermal, and tectonic structures are among the greatest unknowns in the long-term (˜Myr) carbon cycle. Recent estimates of diffuse CO2 flux from the Eastern Rift of the East African Rift System (EARS) suggest this could equal emissions from the entire mid-ocean ridge system. We report new CO2 surveys from the Main Ethiopian Rift (MER, northernmost EARS), and reassess the rift-related CO2 flux. Since degassing in the MER is concentrated in discrete areas of volcanic and off-edifice activity, characterization of such areas is important for extrapolation to a rift-scale budget. Locations of hot springs and fumaroles along the rift show numerous geothermal areas away from volcanic edifices. With these new data, we estimate total CO2 emissions from the central and northern MER as 0.52-4.36 Mt yr-1. Our extrapolated flux from the Eastern Rift is 3.9-32.7 Mt yr-1 CO2, overlapping with lower end of the range presented in recent estimates. By scaling, we suggest that 6-18 Mt yr-1 CO2 flux can be accounted for by magmatic extension, which implies an important role for volatile-enriched lithosphere, crustal assimilation, and/or additional magmatic intrusion to account for the upper range of flux estimates. Our results also have implications for the nature of volcanism in the MER. Many geothermal areas are found >10 km from the nearest volcanic center, suggesting ongoing hazards associated with regional volcanism.

  2. Tectono-stratigraphy of the Lower Cretaceous Syn-rift Succession in Bongor Basin, Chad: Insights into Structural Controls on Sedimentary Infill of a Continental Rift (United States)

    Chen, C.; Ji, Y.; Wei, X.; An, F.; Li, D.; Zhu, R.


    In a rift basin, the dispersal and deposition of sediments is significantly influenced by the paleo-topography, which is highly controlled by the evolution and interaction of normal faults in different scales. To figure out the impact of faults evolution and topographic elements towards sedimentary fillings, we investigated the Lower Cretaceous syn-rift package in Bongor Basin, south of Chad Republic. Constrained with 2D and 3D seismic data, core data and logging information, a sequence stratigraphy architecture and a variety of depositional systems are recognized, including fan delta, braided delta, sub-lacustrine fan and lacustrine system. We also studied the spatial distribution and temporal evolution of clastic depositional systems of the syn-rift complex, and valuable insights into structural controls of sequence architectures and depositional systems are provided. During the evolution of rift basin, marginal structures such as relay ramps and strike-slipping boundary transfer fault are major elements that influence the main sediments influx points. Release faults in the hanging-wall could form a differential evolution pattern for accommodation, and effect the deposition systems in the early stage of rift evolution. Oblique crossing-faults, minor faults that develop on the erosional uplift in the interior foot-wall, would cut the uplifts and provide faulted-through paths for the over-filled sediments in the accommodation space, making it possible to develop sedimentary systems towards the center of basin during the early stage of rift evolution, although the origins of such minor faults still need further discussion. The results of this research indicate that different types of fault interactions have a fundamental control on patterns of sediment dispersal during early stage of rift basins.

  3. Esophageal cancer in north rift valley of Western Kenya. (United States)

    Wakhisi, Johnston; Patel, Kritika; Buziba, Nathan; Rotich, Joseph


    Cancer of esophagus is the 9 th It is aggressive with poor prognosis especially in its late stage. Cancer of esophagus is geographically unevenly distributed with high incidence found within sharply demarcated geographic confines. Earlier reports from this country indicated relatively high proportion of cases in residents of Western and Central provinces with low incidence in the residents of the Rift Valley Province. This does not seem to be in agreement with our findings. Several aetiological factors have been associated with this type of cancer although their definitive mechanistic role is not clear. The main aim of this study was to describe the incidence, clinical epidemiology and histology of esophageal cancer in the North Rift region of Western Kenya, which forms the patients catchment area of Moi Teaching and Referral Hospital, Eldoret. This study involved a review of all available pathology reports beginning from January 1994 up to May 2001 from Moi Teaching and Referral Hospital. All reports of esophageal cancer were abstracted and analyzed according to gender, age and ethnical background. All cases were based on histological diagnosis. Statistical analysis was performed using the SPSS software package. Esophageal cancer in this area is the most common cancer in men, yet it is the third common cancer in women. A male to female ratio of 1.5 to 1 was observed. Our finding also contrast with an earlier reported study that indicated that Rift Valley is a low prevalence area for this type of cancer. The mean age of the patients with this cancer was 58.7 years. The ethnic group most afflicted were Nandis and Luhyas. They are the majority tribes in this area. Squamous cell carcinoma accounted for 90% of the cases. Cancer of the esophagus is the most common malignancy in males and the third common malignancy in females in the catchment area of Moi Teaching and Referral Hospital, Eldoret. There is need to carry out further work to establish the aetiologic factors

  4. Distribution of contemporary crustal deformation and mechanisms for extension in the Woodlark Rift: insights from GPS (United States)

    Wallace, L. M.; Ellis, S. M.; Tregoning, P.; Little, T. A.; Palmer, N.


    The Woodlark Rift, southeastern Papua New Guinea, is a classic example of a rift transitioning from continental rifting to seafloor spreading, and is also the site of exhumation of the world's youngest Ultra-High Pressure (UHP) terranes. Prior to now, very little GPS data existed to constrain the kinematics of contemporary rifting, and the relationship of modern-day rifting to exhumation of the young UHP terranes. We present results from GPS campaign measurements at ~45 sites throughout the southeastern Papua New Guinea region, from GPS campaigns conducted in 2009, 2010, and 2012. Our results suggest that most of the modern-day extensional deformation has shifted southward towards the north coast of the PNG mainland, away from the locus of UHP exhumation in the D'Entrecasteaux Islands, although a few mm/yr of active extension remains in the region of UHP rock exhumation. This is consistent with modelling studies that predict a shift in the locus of extension away from the locus of UHP exhumation during the final, waning stages of UHP exhumation. Rates of total extension in the Woodlark Rift increase from west to east from several mm/yr (in the far western Woodlark Rift) to >20 mm/yr further east, due to clockwise rotation of microplates in the region about nearby poles of rotation. We will discuss the implications that our kinematic modelling of the GPS data, earthquake slip vector data, and geological data have for the large-scale driving mechanisms behind rifting in southeast PNG. Our results favour a model where rapid microplate rotation (at 2-3 degrees/Myr) and rifting in the Woodlark Basin is a consequence of strong slab pull forces from extremely rapid subduction (6-13 cm/yr) at the New Britain and San Cristobal trenches further to the north.

  5. Activation of preexisting transverse structures in an evolving magmatic rift in East Africa (United States)

    Muirhead, J. D.; Kattenhorn, S. A.


    Inherited crustal weaknesses have long been recognized as important factors in strain localization and basin development in the East African Rift System (EARS). However, the timing and kinematics (e.g., sense of slip) of transverse (rift-oblique) faults that exploit these weaknesses are debated, and thus the roles of inherited weaknesses at different stages of rift basin evolution are often overlooked. The mechanics of transverse faulting were addressed through an analysis of the Kordjya fault of the Magadi basin (Kenya Rift). Fault kinematics were investigated from field and remote-sensing data collected on fault and joint systems. Our analysis indicates that the Kordjya fault consists of a complex system of predominantly NNE-striking, rift-parallel fault segments that collectively form a NNW-trending array of en echelon faults. The transverse Kordjya fault therefore reactivated existing rift-parallel faults in ∼1 Ma lavas as oblique-normal faults with a component of sinistral shear. In all, these fault motions accommodate dip-slip on an underlying transverse structure that exploits the Aswa basement shear zone. This study shows that transverse faults may be activated through a complex interplay among magma-assisted strain localization, preexisting structures, and local stress rotations. Rather than forming during rift initiation, transverse structures can develop after the establishment of pervasive rift-parallel fault systems, and may exhibit dip-slip kinematics when activated from local stress rotations. The Kordjya fault is shown here to form a kinematic linkage that transfers strain to a newly developing center of concentrated magmatism and normal faulting. It is concluded that recently activated transverse faults not only reveal the effects of inherited basement weaknesses on fault development, but also provide important clues regarding developing magmatic and tectonic systems as young continental rift basins evolve.

  6. Consequences of Rift Propagation for Spreading in Thick Oceanic Crust in Iceland (United States)

    Karson, J. A.


    Iceland has long been considered a natural laboratory for processes related to seafloor spreading, including propagating rifts, migrating transforms and rotating microplates. The thick, hot, weak crust and subaerial processes of Iceland result in variations on the themes developed along more typical parts of the global MOR system. Compared to most other parts of the MOR, Icelandic rift zones and transform faults are wider and more complex. Rift zones are defined by overlapping arrays of volcanic/tectonic spreading segments as much as 50 km wide. The most active rift zones propagate N and S away from the Iceland hot spot causing migration of transform faults. A trail of crust deformed by bookshelf faulting forms in their wakes. Dead or dying transform strands are truncated along pseudofaults that define propagation rates close to the full spreading rate of ~20 mm/yr. Pseudofaults are blurred by spreading across wide rift zones and laterally extensive subaerial lava flows. Propagation, with decreasing spreading toward the propagator tips causes rotation of crustal blocks on both sides of the active rift zones. The blocks deform internally by the widespread reactivation of spreading-related faults and zones of weakness along dike margins. The sense of slip on these rift-parallel strike-slip faults is inconsistent with transform-fault deformation. These various deformation features as well as subaxial subsidence that accommodate the thickening of the volcanic upper crustal units are probably confined to the brittle, seismogenic, upper 10 km of the crust. At least beneath the active rift zones, the upper crust is probably decoupled from hot, mechanically weak middle and lower gabbroic crust resulting in a broad plate boundary zone between the diverging lithosphere plates. Similar processes may occur at other types of propagating spreading centers and magmatic rifts.

  7. Exploring virtual reality technology and the Oculus Rift for the examination of digital pathology slides. (United States)

    Farahani, Navid; Post, Robert; Duboy, Jon; Ahmed, Ishtiaque; Kolowitz, Brian J; Krinchai, Teppituk; Monaco, Sara E; Fine, Jeffrey L; Hartman, Douglas J; Pantanowitz, Liron


    Digital slides obtained from whole slide imaging (WSI) platforms are typically viewed in two dimensions using desktop personal computer monitors or more recently on mobile devices. To the best of our knowledge, we are not aware of any studies viewing digital pathology slides in a virtual reality (VR) environment. VR technology enables users to be artificially immersed in and interact with a computer-simulated world. Oculus Rift is among the world's first consumer-targeted VR headsets, intended primarily for enhanced gaming. Our aim was to explore the use of the Oculus Rift for examining digital pathology slides in a VR environment. An Oculus Rift Development Kit 2 (DK2) was connected to a 64-bit computer running Virtual Desktop software. Glass slides from twenty randomly selected lymph node cases (ten with benign and ten malignant diagnoses) were digitized using a WSI scanner. Three pathologists reviewed these digital slides on a 27-inch 5K display and with the Oculus Rift after a 2-week washout period. Recorded endpoints included concordance of final diagnoses and time required to examine slides. The pathologists also rated their ease of navigation, image quality, and diagnostic confidence for both modalities. There was 90% diagnostic concordance when reviewing WSI using a 5K display and Oculus Rift. The time required to examine digital pathology slides on the 5K display averaged 39 s (range 10-120 s), compared to 62 s with the Oculus Rift (range 15-270 s). All pathologists confirmed that digital pathology slides were easily viewable in a VR environment. The ratings for image quality and diagnostic confidence were higher when using the 5K display. Using the Oculus Rift DK2 to view and navigate pathology whole slide images in a virtual environment is feasible for diagnostic purposes. However, image resolution using the Oculus Rift device was limited. Interactive VR technologies such as the Oculus Rift are novel tools that may be of use in digital pathology.

  8. Are Vancomycin Trough Concentrations of 15 to 20 mg/L Associated With Increased Attainment of an AUC/MIC ≥ 400 in Patients With Presumed MRSA Infection? (United States)

    Hale, Cory M; Seabury, Robert W; Steele, Jeffrey M; Darko, William; Miller, Christopher D


    To determine whether there is an association between higher vancomycin trough concentrations and attainment of a calculated area under the concentration-time curve (AUC)/minimum inhibitory concentration (MIC) ≥400. A retrospective analysis was conducted among vancomycin-treated adult patients with a positive methicillin-resistant Staphylococcus aureus (MRSA) culture. Attainment of a calculated AUC/MIC ≥400 was compared between patients with troughs in the reference range of 15 to 20 mg/L and those with troughs in the following ranges: 20 mg/L. Nephrotoxicity was assessed as a secondary outcome based on corrected average vancomycin troughs over 10 days of treatment. Overall, 226 patients were reviewed and 100 included. Relative to troughs ≥10, patients with vancomycin troughs 20 mg/L when compared to patients with troughs of 15 to 20 mg/L. The mean corrected average vancomycin trough was higher in patients developing nephrotoxicity compared to those who did not (19.5 vs 14.5 mg/L, P vancomycin serum trough concentrations of 15 to 20 mg/L did not result in an increased attainment of the AUC/MIC target relative to troughs of 10 to 14.9 mg/L but may increase nephrotoxicity risk.

  9. Rift Valley Fever Outbreaks in Mauritania and Related Environmental Conditions

    Directory of Open Access Journals (Sweden)

    Cyril Caminade


    Full Text Available Four large outbreaks of Rift Valley Fever (RVF occurred in Mauritania in 1998, 2003, 2010 and 2012 which caused lots of animal and several human deaths. We investigated rainfall and vegetation conditions that might have impacted on RVF transmission over the affected regions. Our results corroborate that RVF transmission generally occurs during the months of September and October in Mauritania, similarly to Senegal. The four outbreaks were preceded by a rainless period lasting at least a week followed by heavy precipitation that took place during the second half of the rainy season. First human infections were generally reported three to five weeks later. By bridging the gap between meteorological forecasting centers and veterinary services, an early warning system might be developed in Senegal and Mauritania to warn decision makers and health services about the upcoming RVF risk.

  10. Rift Valley Fever outbreaks in Mauritania and related environmental conditions. (United States)

    Caminade, Cyril; Ndione, Jacques A; Diallo, Mawlouth; MacLeod, Dave A; Faye, Ousmane; Ba, Yamar; Dia, Ibrahima; Morse, Andrew P


    Four large outbreaks of Rift Valley Fever (RVF) occurred in Mauritania in 1998, 2003, 2010 and 2012 which caused lots of animal and several human deaths. We investigated rainfall and vegetation conditions that might have impacted on RVF transmission over the affected regions. Our results corroborate that RVF transmission generally occurs during the months of September and October in Mauritania, similarly to Senegal. The four outbreaks were preceded by a rainless period lasting at least a week followed by heavy precipitation that took place during the second half of the rainy season. First human infections were generally reported three to five weeks later. By bridging the gap between meteorological forecasting centers and veterinary services, an early warning system might be developed in Senegal and Mauritania to warn decision makers and health services about the upcoming RVF risk.

  11. [Severe hemorrhagic form of Rift Valley Fever in Mauritania]. (United States)

    Boushab, M B; Savadogo, M; Sow, M S; Fall-Malick, F Z; Seydi, M


    We report three severe cases of hemorrhagic form of Rift Valley Fever which have been observed in the Hospital of Aïoun (two cases) and in the regional hospital of Tidjikdja (one case). The disease manifested itself by an infectious syndrome, an early infectious syndrome (on the second day) with onset of hemorrhagic complications and disorder of consciousness ranging from an agitation to deep coma. The biological examinations showed a severe anemia. Multiple organ failures were also observed. Of the three patients treated one died. Therefore, the management of both suspected and confirmed cases must be initiated as soon as possible in order to control organ damages and prevent fatality. There is no specific treatment. The importance of the epidemiological survey must be emphasized to avoid outbreaks and control any epidemic due to this virus.

  12. Rift Valley fever vaccines: current and future needs. (United States)

    Dungu, Baptiste; Lubisi, Baratang A; Ikegami, Tetsuro


    Rift Valley fever (RVF) is a zoonotic mosquito-borne bunyaviral disease associated with high abortion rates, neonatal deaths, and fetal malformations in ruminants, and mild to severe disease in humans. Outbreaks of RVF cause huge economic losses and public health impacts in endemic countries in Africa and the Arabian Peninsula. A proper vaccination strategy is important for preventing or minimizing outbreaks. Vaccination against RVF is not practiced in many countries, however, due to absence or irregular occurrences of outbreaks, despite serological evidence of RVF viral activity. Nonetheless, effective vaccination strategies, and functional national and international multi-disciplinary networks, remain crucial for ensuring availability of vaccines and supporting execution of vaccination in high risk areas for efficient response to RVF alerts and outbreaks. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Combining hydrologic and groundwater modelling to characterize a regional aquifer system within a rift setting (Gidabo River Basin, Main Ethiopian Rift) (United States)

    Birk, Steffen; Mechal, Abraham; Wagner, Thomas; Dietzel, Martin; Leis, Albrecht; Winkler, Gerfried; Mogessie, Aberra


    The development of groundwater resources within the Ethiopian Rift is complicated by the strong physiographic contrasts between the rift floor and the highland and by the manifold hydrogeological setting composed of volcanic rocks of different type and age that are intersected by numerous faults. Hydrogeochemical and isotope data from various regions within the Ethiopian Rift suggest that the aquifers within the semi-arid rift floor receive a significant contribution of groundwater flow from the humid highland. For example, the major ion composition of groundwater samples from Gidabo River Basin (3302 km²) in the southern part of the Main Ethiopian Rift reveals a mixing trend from the highland toward the rift floor; moreover, the stable isotopes of water, deuterium and O-18, of the rift-floor samples indicate a component recharged in the highland. This work aims to assess if the hydrological and hydrogeological data available for Gidabo River Basin is consistent with these findings and to characterize the regional aquifer system within the rift setting. For this purpose, a two-step approach is employed: First, the semi-distributed hydrological model SWAT is used to obtain an estimate of the spatial and temporal distribution of groundwater recharge within the watershed; second, the numerical groundwater flow model MODFLOW is employed to infer aquifer properties and groundwater flow components. The hydrological model was calibrated and validated using discharge data from three stream gauging stations within the watershed (Mechal et al., Journal of Hydrology: Regional Studies, 2015, doi:10.1016/j.ejrh.2015.09.001). The resulting recharge distribution exhibits a strong decrease from the highland, where the mean annual recharge amounts to several hundred millimetres, to the rift floor, where annual recharge largely is around 100 mm and below. Using this recharge distribution as input, a two-dimensional steady-state groundwater flow model was calibrated to hydraulic

  14. From hyper-extended rifts to orogens: the example of the Mauléon rift basin in the Western Pyrenees (SW France) (United States)

    Masini, E.; Manatschal, G.; Tugend, J.


    An integral part of plate tectonic theory is that the fate of rifted margins is to be accreted into mountain belts. Thus, rift-related inheritance is an essential parameter controlling the evolution and architecture of collisional orogens. Although this link is well accepted, rift inheritance is often ignored. The Pyrenees, located along the Iberian and European plate boundary, can be considered as one of the best places to study the reactivation of former rift structures. In this orogen the Late Cretaceous and Tertiary convergence overprints a Late Jurassic to Lower Cretaceous complex intracontinental rift system related to the opening of the North Atlantic. During the rifting, several strongly subsiding basins developed in the axis of the Pyrenees showing evidence of extreme crustal extension and even locale mantle exhumation to the seafloor. Although the exact age and kinematics of rifting is still debated, these structures have an important impact in the subsequent orogenic overprint. In our presentation we discuss the example of the Mauléon basin, which escaped from the most pervasive deformations because of its specific location at the interface between the western termination of the chain and the Bay of Biscay oceanic realm. Detailed mapping combined with seismic reflection, gravity data and industry wells enabled to determine the 3D rift architecture of the Mauléon basin. Two major diachronous detachment systems can be mapped and followed through space. The Southern Mauléon Detachment (SMD) develops first, starts to thin the crust and floors the Southern Mauléon sub-Basin (SMB). The second, the Northern Mauléon Detachment (SMD) is younger and controls the final crustal thinning and mantle exhumation to the north. Both constitute the whole Mauléon basin. Like at the scale of the overall Pyrenees, the reactivation of the Mauléon Basin increases progressively from west to east, which enables to document the progressive reactivation of an aborted hyper

  15. Generation of continental rifts, basins, and swells by lithosphere instabilities (United States)

    Fourel, Loïc.; Milelli, Laura; Jaupart, Claude; Limare, Angela


    Continents may be affected simultaneously by rifting, uplift, volcanic activity, and basin formation in several different locations, suggesting a common driving mechanism that is intrinsic to continents. We describe a new type of convective instability at the base of the lithosphere that leads to a remarkable spatial pattern at the scale of an entire continent. We carried out fluid mechanics laboratory experiments on buoyant blocks of finite size that became unstable due to cooling from above. Dynamical behavior depends on three dimensionless numbers, a Rayleigh number for the unstable block, a buoyancy number that scales the intrinsic density contrast to the thermal one, and the aspect ratio of the block. Within the block, instability develops in two different ways in an outer annulus and in an interior region. In the outer annulus, upwellings and downwellings take the form of periodically spaced radial spokes. The interior region hosts the more familiar convective pattern of polygonal cells. In geological conditions, such instabilities should manifest themselves as linear rifts striking at a right angle to the continent-ocean boundary and an array of domal uplifts, volcanic swells, and basins in the continental interior. Simple scaling laws for the dimensions and spacings of the convective structures are derived. For the subcontinental lithospheric mantle, these dimensions take values in the 500-1000 km range, close to geological examples. The large intrinsic buoyancy of Archean lithospheric roots prevents this type of instability, which explains why the widespread volcanic activity that currently affects Western Africa is confined to post-Archean domains.

  16. Marine Subsurface Microbial Community Shifts Across a Hydrothermal Gradient in Okinawa Trough Sediments. (United States)

    Brandt, Leah D; House, Christopher H


    Sediments within the Okinawa back-arc basin overlay a subsurface hydrothermal network, creating intense temperature gradients with sediment depth and potential limits for microbial diversity. We investigated taxonomic changes across 45 m of recovered core with a temperature gradient of 3°C/m from the dynamic Iheya North Hydrothermal System. The interval transitions sharply from low-temperature marine mud to hydrothermally altered clay at 10 meters below seafloor (mbsf). Here, we present taxonomic results from an analysis of the 16S rRNA gene that support a conceptual model in which common marine subsurface taxa persist into the subsurface, while high temperature adapted archaeal taxa show localized peaks in abundances in the hydrothermal clay horizons. Specifically, the bacterial phylum Chloroflexi accounts for a major proportion of the total microbial community within the upper 10 mbsf, whereas high temperature archaea (Terrestrial Hot Spring Crenarchaeotic Group and methanotrophic archaea) appear in varying local abundances in deeper, hydrothermal clay horizons with higher in situ temperatures (up to 55°C, 15 mbsf). In addition, geochemical evidence suggests that methanotrophy may be occurring in various horizons. There is also relict DNA (i.e., DNA preserved after cell death) that persists in horizons where the conditions suitable for microbial communities have ceased.

  17. Littoral sedimentation of rift lakes: an illustrated overview from the modern to Pliocene Lake Turkana (East African Rift System, Kenya) (United States)

    Schuster, Mathieu; Nutz, Alexis


    Existing depositional models for rift lakes can be summarized as clastics transported by axial and lateral rivers, then distributed by fan-deltas and/or deltas into a standing water body which is dominated by settling of fine particles, and experiencing occasional coarser underflows. Even if known from paleolakes and modern lakes, reworking of clastics by alongshore drift, waves and storms are rarely considered in depositional models. However, if we consider the lake Turkana Basin (East African Rift System, Kenya) it is obvious that this vision is incomplete. Three representative time slices are considered here: the modern Lake Turkana, the Megalake Turkana which developed thanks to the African Humid Period (Holocene), and the Plio-Pleistocene highstand episodes of paleolake Turkana (Nachukui, Shungura and Koobi Fora Formations, Omo Group). First, remarkable clastic morphosedimentary structures such as beach ridges, spits, washover fans, lagoons, or wave-dominated deltas are very well developed along the shoreline of modern lake Turkana, suggesting strong hydrodynamics responsible for a major reworking of the fluvial-derived clastics all along the littoral zone (longshore and cross-shore transport) of the lake. Similarly, past hydrodynamics are recorded from prominent raised beach ridges and spits, well-preserved all around the lake, above its present water-level (~360 m asl) and up to ~455 m. These large-scale clastic morphosedimentary structures also record the maximum extent of Megalake Turkana during the African Humid Period, as well as its subsequent regression forced by the end of the Holocene climatic optimum. Several hundreds of meters of fluvial-deltaic-lacustrine deposits spanning the Pliocene-Pleistocene are exposed in the Turkana basin thanks to tectonic faulting. These deposits are world famous for their paleontological and archeological content that documents the very early story of Mankind. They also preserve several paleolake highstand episodes with

  18. Trough concentration of voriconazole and its relationship with efficacy and safety: a systematic review and meta-analysis. (United States)

    Jin, Haiying; Wang, Tiansheng; Falcione, Bonnie A; Olsen, Keith M; Chen, Ken; Tang, Huilin; Hui, John; Zhai, Suodi


    The optimum trough concentration of voriconazole for clinical response and safety is controversial. The objective of this review was to determine the optimum trough concentration of voriconazole and evaluate its relationship with efficacy and safety. MEDLINE, EMBASE,, the Cochrane Library and three Chinese literature databases were searched. Observational studies that compared clinical outcomes below and above the trough concentration cut-off value were included. We set the trough concentration cut-off value for efficacy as 0.5, 1.0, 1.5, 2.0 and 3.0 mg/L and for safety as 3.0, 4.0, 5.0, 5.5 and 6.0 mg/L. The efficacy outcomes were invasive fungal infection-related mortality, all-cause mortality, rate of successful treatment and rate of prophylaxis failure. The safety outcomes included incidents of hepatotoxicity, neurotoxicity and visual disorders. A total of 21 studies involving 1158 patients were included. Compared with voriconazole trough concentrations of >0.5 mg/L, levels of 3.0, >4.0, >5.5 and >6.0 mg/L. The incidence of neurotoxicity was significantly increased with trough concentrations >4.0 and >5.5 mg/L. A voriconazole level of 0.5 mg/L should be considered the lower threshold associated with efficacy. A trough concentration >3.0 mg/L is associated with increased hepatotoxicity, particularly for the Asian population, and >4.0 mg/L is associated with increased neurotoxicity. © The Author 2016. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy.

  19. Serum cystatin C predicts vancomycin trough levels better than serum creatinine in hospitalized patients: a cohort study. (United States)

    Frazee, Erin N; Rule, Andrew D; Herrmann, Sandra M; Kashani, Kianoush B; Leung, Nelson; Virk, Abinash; Voskoboev, Nikolay; Lieske, John C


    Serum cystatin C can improve glomerular filtration rate (GFR) estimation over creatinine alone, but whether this translates into clinically relevant improvements in drug dosing is unclear. This prospective cohort study enrolled adults receiving scheduled intravenous vancomycin while hospitalized at the Mayo Clinic in 2012. Vancomycin dosing was based on weight, serum creatinine with the Cockcroft-Gault equation, and clinical judgment. Cystatin C was later assayed from the stored serum used for the creatinine-based dosing. Vancomycin trough prediction models were developed by using factors available at therapy initiation. Residuals from each model were used to predict the proportion of patients who would have achieved the target trough with the model compared with that observed with usual care. Of 173 patients enrolled, only 35 (20%) had a trough vancomycin level within their target range (10 to 15 mg/L or 15 to 20 mg/L). Cystatin C-inclusive models better predicted vancomycin troughs than models based upon serum creatinine alone, although both were an improvement over usual care. The optimal model used estimated GFR by the Chronic Kidney Disease Epidemiology Collaborative (CKD-EPI) creatinine-cystatin C equation (R(2) = 0.580). This model is expected to yield 54% (95% confidence interval 45% to 61%) target trough attainment (P creatinine clearance yielded poor trough achievement. The developed dosing model with estimated GFR from CKD-EPIcreatinine-cystatin C could yield a 2.5-fold increase in target trough achievement compared with current clinical practice. Although this study is promising, prospective validation of this or similar cystatin C-inclusive dosing models is warranted.

  20. Interaction of Kuroshio Current with Global Oceanic and Atmospheric Circulations: Evidences of Grain Size from Okinawa Trough (United States)

    Wang, J.; Li, A.; Xu, K.; Huang, J.


    Okinawa Trough is an ideal place for the study of paleoceanography and paleoenvironment changes. However, the provenances of the sediments and paleoenvironment evolution of the Okinawa Trough have still not been settled yet. Based on grain size, clay minerals and AMS 14C data of the Core OKI03, the provenances and paleoenvironemnt evolution in the middle Okinawa Trough during the last 8 ka were studied. The results indicate that terrigenous sediments deposited in the middle Okinawa Trough were mainly from Yangtze River and Taiwanese rivers since 8 ka. Kuroshio Current (KC), a Western Pacific Ocean boundary current, flows into Okinawa Trough by eastern Taiwan Island, and influences the sediments delivery and distribution within the trough, and also impact the regional and local marine environment in adjacent seas. Statistics study of high resolution grain size in the trough recognizes a millennial-scale oscillation (center around 1800 yr) and a centennial-scale oscillation (center around 512 yr) for KC evolution since last 8 ka. The millennial-scale oscillation is probably related to the North Atlantic Deep Water production with 1400-yr time lag, via the mixing upwelling and impacts on the sea surface temperature (SST) in equatorial Pacific. Meanwhile, the centennial-scale variation possibly corresponds to the solar irradiation with a 240-yr time uncertainty, through the SST change. KC possible influences the climate and North Atlantic Deep Water formation by transferring heat to the atmosphere in high latitude of Pacific Ocean, and also interacts with the thermohaline circulation by transferring heat to Indian Ocean through North Pacific Intermediate Water.

  1. LCOE reduction potential of parabolic trough and solar tower CSP technology until 2025 (United States)

    Dieckmann, Simon; Dersch, Jürgen; Giuliano, Stefano; Puppe, Michael; Lüpfert, Eckhard; Hennecke, Klaus; Pitz-Paal, Robert; Taylor, Michael; Ralon, Pablo


    Concentrating Solar Power (CSP), with an installed capacity of 4.9 GW by 2015, is a young technology compared to other renewable power generation technologies. A limited number of plants and installed capacity in a small challenging market environment make reliable and transparent cost data for CSP difficult to obtain. The International Renewable Energy Agency (IRENA) and the DLR German Aerospace Center gathered and evaluated available cost data from various sources for this publication in order to yield transparent, reliable and up-to-date cost data for a set of reference parabolic trough and solar tower plants in the year 2015 [1]. Each component of the power plant is analyzed for future technical innovations and cost reduction potential based on current R&D activities, ongoing commercial developments and growth in market scale. The derived levelized cost of electricity (LCOE) for 2015 and 2025 are finally contrasted with published power purchase agreements (PPA) of the NOOR II+III power plants in Morocco. At 7.5% weighted average cost of capital (WACC) and 25 years economic life time, the levelized costs of electricity for plants with 7.5 (trough) respectively 9 (tower) full-load hours thermal storage capacity decrease from 14-15 -ct/kWh today to 9-10 -ct/kWh by 2025 for both technologies at direct normal irradiation of 2500 kWh/(m².a). The capacity factor increases from 41.1% to 44.6% for troughs and from 45.5% to 49.0% for towers. Financing conditions are a major cost driver and offer potential for further cost reduction with the maturity of the technology and low interest rates (6-7 - ct/kWh for 2% WACC at 2500 kWh/(m2.a) in 2025).

  2. Multi-Scale Peak and Trough Detection Optimised for Periodic and Quasi-Periodic Neuroscience Data. (United States)

    Bishop, Steven M; Ercole, Ari


    The reliable detection of peaks and troughs in physiological signals is essential to many investigative techniques in medicine and computational biology. Analysis of the intracranial pressure (ICP) waveform is a particular challenge due to multi-scale features, a changing morphology over time and signal-to-noise limitations. Here we present an efficient peak and trough detection algorithm that extends the scalogram approach of Scholkmann et al., and results in greatly improved algorithm runtime performance. Our improved algorithm (modified Scholkmann) was developed and analysed in MATLAB R2015b. Synthesised waveforms (periodic, quasi-periodic and chirp sinusoids) were degraded with white Gaussian noise to achieve signal-to-noise ratios down to 5 dB and were used to compare the performance of the original Scholkmann and modified Scholkmann algorithms. The modified Scholkmann algorithm has false-positive (0%) and false-negative (0%) detection rates identical to the original Scholkmann when applied to our test suite. Actual compute time for a 200-run Monte Carlo simulation over a multicomponent noisy test signal was 40.96 ± 0.020 s (mean ± 95%CI) for the original Scholkmann and 1.81 ± 0.003 s (mean ± 95%CI) for the modified Scholkmann, demonstrating the expected improvement in runtime complexity from [Formula: see text] to [Formula: see text]. The accurate interpretation of waveform data to identify peaks and troughs is crucial in signal parameterisation, feature extraction and waveform identification tasks. Modification of a standard scalogram technique has produced a robust algorithm with linear computational complexity that is particularly suited to the challenges presented by large, noisy physiological datasets. The algorithm is optimised through a single parameter and can identify sub-waveform features with minimal additional overhead, and is easily adapted to run in real time on commodity hardware.

  3. Towards to Resilience Science -Research on the Nankai trough seismogenic zone- (United States)

    Kaneda, Yoshiyuki; Shiraki, Wataru; Fujisawa, Kazuhito; Tokozakura, Eiji


    For the last few decades, many destructive earthquakes and tsunamis occurred in the world. Based on lessons learnt from 2004 Sumatra Earthquake/Tsunamis, 2010 Chilean Earthquake/Tsunami and 2011 East Japan Earthquake/Tsunami, we recognized the importance of real time monitoring on Earthquakes and Tsunamis for disaster mitigation. Recently, Kumamoto Earthquake occurred in 2006. This destructive Earthquake indicated that multi strong motions including pre shock and main shock generated severe earthquake damages buildings. Furthermore, we recognize recovers/ revivals are very important and difficult. In Tohoku area damaged by large tsunamis, recovers/revivals have been under progressing after over 5 years passed after the 2011 Tohoku Earthquake. Therefore, we have to prepare the pre plan before next destructive disasters such as the Nankai trough mega thrust earthquake. As one of disaster countermeasures, we would like to propose that Disaster Mitigation Science. This disaster mitigation science is including engineering, science, medicine and social science such as sociology, informatics, law, literature, art, psychology etc. For Urgent evacuations, there are some kinds of real time monitoring system such as Dart buoy and ocean floor network. Especially, the real time monitoring system using multi kinds of sensors such as the accelerometer, broadband seismometer, pressure gauge, difference pressure gauge, hydrophone and thermometer is indispensable for Earthquakes/ Tsunamis monitoring. Furthermore, using multi kind of sensors, we can analyze and estimate broadband crustal activities around mega thrust earthquake seismogenic zones. Therefore, we deployed DONET1 and DONET2 which are dense ocean floor networks around the Nankai trough Southwestern Japan. We will explain about Resilience Science and real time monitoring systems around the Nankai trough seismogenic zone.

  4. The metamorphic basement of the southern Sierra de Aconquija, Eastern Sierras Pampeanas: Provenance and tectonic setting of a Neoproterozoic back-arc basin (United States)

    Cisterna, Clara Eugenia; Altenberger, Uwe; Mon, Ricardo; Günter, Christina; Gutiérrez, Antonio


    The Eastern Sierras Pampeanas are mainly composed of Neoproterozoic-early Palaeozoic metamorphic complexes whose protoliths were sedimentary sequences deposited along the western margin of Gondwana. South of the Sierra de Aconquija, Eastern Sierras Pampeanas, a voluminous metamorphic complex crops out. It is mainly composed of schists, gneisses, marbles, calk-silicate schists, thin layers of amphibolites intercalated with the marbles and granitic veins. The new data correlate the Sierra de Aconquija with others metamorphic units that crop out to the south, at the middle portion of the Sierra de Ancasti. Bulk rock composition reflects originally shales, iron rich shales, wackes, minor litharenites and impure limestones as its protoliths. Moreover, comparisons with the northern Sierra de Aconquija and from La Majada (Sierra de Ancasti) show similar composition. Amphibolites have a basaltic precursor, like those from the La Majada (Sierra de Ancasti) ones. The analyzed metamorphic sequence reflects low to moderate weathering conditions in the sediments source environment and their chemical composition would be mainly controlled by the tectonic setting of the sedimentary basin rather than by the secondary sorting and reworking of older deposits. The sediments composition reveal relatively low maturity, nevertheless the Fe - shale and the litharenite show a tendency of minor maturity among them. The source is related to an acid one for the litharenite protolith and a more basic to intermediate for the other rocks, suggesting a main derivation from intermediate to felsic orogen. The source of the Fe-shales may be related to and admixture of the sediments with basic components. Overall the composition point to an upper continental crust as the dominant sediment source for most of the metasedimentary rocks. The protolith of the amphibolites have basic precursors, related to an evolving back-arc basin. The chemical data in combination with the specific sediment association

  5. Strongly foliated garnetiferous amphibolite clasts in ophiolitic melanges, Yarlung Zangbo Suture Zone, Tibet; Early Cretaceous disruption of a back-arc basin? (United States)

    Guilmette, C.; Hebert, R.; Wang, C.; Indares, A. D.; Ullrich, T. D.; Dostal, J.; Bedard, E.


    Metre to decameter-size clasts of amphibolite are found embedded in ophiolitic melanges underlying the Yarlung Zangbo Suture Zone Ophiolites, South Tibet, China. These ophiolites and melanges occur at the limit between Indian and Tibetan-derived rocks and represent remnants of an Early Cretaceous intraoceanic supra-subduction zone domain, the Neo-Tethys. In the Saga-Dazuka segment (500 km along-strike), we discovered new occurrences of strongly foliated amphibolites found as clasts in the ophiolitic melange. In garnet-free samples, hornblende is green-blue magnesio-hornblende and cpx is low-Al diopside. In garnet- bearing samples, garnet is almandine with a strong pyrope component (up to 30 mol%) whereas coexisting hornblende is brown Ti-rich tschermakite and clinopyroxene is Al-diopside. Plagioclase composition was ubiquitously shifted to albite during a late metasomatic event. Geochemistry of these rocks indicates that their igneous protoliths crystallized from a slightly differentiated tholeiitic basaltic liquid that did not undergo major fractionation. Trace element patterns reveal geochemical characteristics identical to those of the overlying ophiolitic crust. These are 1) trace element abundances similar to that of N-MORBs or BABBs, 2) a slight depletion of LREE and 3) a moderate to strong Ta-Nb negative anomaly and a slight Ti anomaly. Such characteristics suggest genesis over a spreading center close to a subduction zone, possibly a back-arc basin. Step-heating Ar/Ar plateau ages were obtained from hornblende separates. All ages fall in the range of 123-128 Ma, overlapping the crystallization ages from the overlying ophiolite (126-131 Ma). Pseudosections were built with the THERMOCALC software in the system NCFMASH. Results indicate that the observed assemblage Hb+Pl+Gt+Cpx is stable over a wide range of P-T conditions, between 10-18 kbars and at more than 800°C. Measured mineral modes and solid solution compositions were successfully modeled, indicating

  6. Object-oriented simulation model of a parabolic trough solar collector: Static and dynamic validation (United States)

    Ubieta, Eduardo; Hoyo, Itzal del; Valenzuela, Loreto; Lopez-Martín, Rafael; Peña, Víctor de la; López, Susana


    A simulation model of a parabolic-trough solar collector developed in Modelica® language is calibrated and validated. The calibration is performed in order to approximate the behavior of the solar collector model to a real one due to the uncertainty in some of the system parameters, i.e. measured data is used during the calibration process. Afterwards, the validation of this calibrated model is done. During the validation, the results obtained from the model are compared to the ones obtained during real operation in a collector from the Plataforma Solar de Almeria (PSA).

  7. Prospecting for a Blind Geothermal System Utilizing Geologic and Geophysical Data, Seven Troughs Range, Northwestern Nevada (United States)

    Forson, Corina

    To aid in the discovery and evaluation of blind resources, it is important to utilize geologic, geophysical, and geochemical techniques to find the required elements (e.g., heat source, fluid to transport the heat, and permeability in a reservoir) for geothermal energy production. Based on a regional low resistivity anomaly discovered through a reconnaissance magnetotelluric (MT) survey, detailed geologic mapping, structural analysis, and a 2 m temperature survey were conducted to delineate the most likely areas for blind geothermal activity in the Seven Troughs Range, Nevada. The Seven Troughs Range resides in the northwestern Basin and Range province 190 km northeast of Reno and 50 km northwest of Lovelock in western Nevada. There is no known geothermal system in the area. Mesozoic metasedimentary strata and intrusions dominate the northern and southern parts of the range but are nonconformably overlain by a thick sequence (~ 1.5 km) of Oligocene to Miocene volcanic and volcaniclastic rocks and Quaternary sediments in the central part of the range. The southern part of the range consists of a basement horst block bounded by two major range-front faults, with Holocene fault scarps marking the more prominent fault on the east side of the range. In contrast, several gently to moderately west-tilted fault blocks, with good exposures of the Tertiary volcanic strata and bounded by a series of steeply east-dipping normal faults, characterize the central part of the range. Kinematic analysis of faults in the range and regional relations indicate a west-northwest-trending extension direction. Accordingly, slip and dilation tendency analyses suggest that north-northeast striking faults are the most favorably oriented for reactivation and fluid flow under the current stress field. Two areas in the Seven Troughs Range have a favorable structural setting for generating permeability and channeling geothermal fluids to the near surface: 1) A major right step in the range

  8. Morphotectonics of the central Muertos thrust belt and Muertos Trough (northeastern Caribbean) (United States)

    Granja, Bruna J.L.; ten Brink, Uri S.; Carbó-Gorosabel, Andrés; Muñoz-Martín, A.; Gomez, Ballesteros M.


    Multibeam bathymetry data acquired during the 2005 Spanish R/V Hesp??rides cruise and reprocessed multichannel seismic profiles provide the basis for the analysis of the morphology and deformation in the central Muertos Trough and Muertos thrust belt. The Muertos Trough is an elongated basin developed where the Venezuelan Basin crust is thrusted under the Muertos fold-and-thrust belt. Structural variations along the Muertos Trough are suggested to be a consequence of the overburden of the asymmetrical thrust belt and by the variable nature of the Venezuelan Basin crust along the margin. The insular slope can be divided into three east-west trending slope provinces with high lateral variability which correspond to different accretion stages: 1) The lower slope is composed of an active sequence of imbricate thrust slices and closed fold axes, which form short and narrow accretionary ridges and elongated slope basins; 2) The middle slope shows a less active imbricate structure resulting in lower superficial deformation and bigger slope basins; 3) The upper slope comprises the talus region and extended terraces burying an island arc basement and an inactive imbricate structure. The talus region is characterized by a dense drainage network that transports turbidite flows from the islands and their surrounding carbonate platform areas to the slope basins and sometimes to the trough. In the survey area the accommodation of the ongoing east-west differential motion between the Hispaniola and the Puerto Rico-Virgin Islands blocks takes place by means of diffuse deformation. The asymmetrical development of the thrust belt is not related to the geological conditions in the foreland, but rather may be caused by variations in the geometry and movement of the backstop. The map-view curves of the thrust belt and the symmetry of the recesses suggest a main north-south convergence along the Muertos margin. The western end of the Investigator Fault Zone comprises a broad band of

  9. Manic-Like Psychosis Associated with Elevated Trough Tacrolimus Blood Concentrations 17 Years after Kidney Transplant

    Directory of Open Access Journals (Sweden)

    Giuseppe Bersani


    Full Text Available Several neurological side effects induced by tacrolimus are described in the scientific literature, ranging from mild neurological symptoms to delirium and psychosis. We report the case of a 46-year-old man with no prior psychiatric history who suddenly manifested manic-like psychosis associated with elevated trough tacrolimus blood concentrations 17 years after kidney transplant. The use of antipsychotics may improve the severity of symptoms; but in order to obtain a complete remission, the reduction in the dose of tacrolimus, or its replacement with alternative immunosuppressant therapies, is recommended.

  10. Fingerprints of the Paleotethyan back-arc basin in Central Hainan, South China: geochronological and geochemical constraints on the Carboniferous metabasites (United States)

    He, Huiying; Wang, Yuejun; Zhang, Yanhua; Qian, Xin; Zhang, Yuzhi


    Hainan of Southeast Asia has been regarded as a key area for understanding the Late Paleozoic tectonic regime and amalgamation process of the Indochina with South China Blocks that are not well constrained. This paper presents a set of new geochronological, elemental, and Sr-Nd isotopic data for the Paleozoic Bangxi and Chenxing metabasites in Central Hainan. The geochronological data show that the representative samples yield the 40Ar/39Ar plateau age of 328.1 ± 2.6 Ma and zircon U-Pb age of 330.7 ± 4.4 Ma, respectively. They are SiO2- and TiO2-poor, Al2O3-rich mafic rocks. The Chenxing samples are characterized by left-sloping chondrite-normalized REE and N-MORB-like multi-elemental patterns. The Bangxi samples have the E-MORB-like geochemical affinity. All samples show high ɛ Nd(t) values ranging from +5.61 to +9.85. Such signatures suggest their origination of a MORB-like source with the input of subduction-derived components. Our investigation has verified the presence of the Carboniferous metabasites with both MORB- and arc- like geochemical affinities at the Bangxi-Chenxing area in Central Hainan. In combination with the available data from the Jinshajiang, Ailaoshan, and Song Ma suture zones, it is proposed for the development of a Carboniferous back-arc basin along the Ailaoshan-Song Ma and Central Hainan suture zones in response to the subduction of the Paleotethyan main Ocean.

  11. Magmatism on rift flanks: Insights from ambient noise phase velocity in Afar region (United States)

    Korostelev, Félicie; Weemstra, Cornelis; Leroy, Sylvie; Boschi, Lapo; Keir, Derek; Ren, Yong; Molinari, Irene; Ahmed, Abdulhakim; Stuart, Graham W.; Rolandone, Frédérique; Khanbari, Khaled; Hammond, James O. S.; Kendall, J. M.; Doubre, Cécile; Ganad, Ismail Al; Goitom, Berhe; Ayele, Atalay


    During the breakup of continents in magmatic settings, the extension of the rift valley is commonly assumed to initially occur by border faulting and progressively migrate in space and time toward the spreading axis. Magmatic processes near the rift flanks are commonly ignored. We present phase velocity maps of the crust and uppermost mantle of the conjugate margins of the southern Red Sea (Afar and Yemen) using ambient noise tomography to constrain crustal modification during breakup. Our images show that the low seismic velocities characterize not only the upper crust beneath the axial volcanic systems but also both upper and lower crust beneath the rift flanks where ongoing volcanism and hydrothermal activity occur at the surface. Magmatic modification of the crust beneath rift flanks likely occurs for a protracted period of time during the breakup process and may persist through to early seafloor spreading.

  12. Arshan palaeoseismic feature of the Tunka fault (Baikal rift zone, Russia) (United States)

    Smekalin, Oleg P.; Shchetnikov, Alexander A.; White, Dustin


    The traditional concept of the rift development of flank depressions in the Baikal rift zone is now doubted in view of some indicators for compression deformations identified by the seismogeological and geodetic methods. Besides, the paleoseismological investigations revealed seismogenic strike-slips and reverse faults in the Tunka fault zone that is a major structure-controlling element of the Tunka rift depression. However, a detailed study of the upslope-facing scarp in the Arshan paleoseismogenic structure zone has shown that its formation might be due to rift mechanism of basin formation. Age estimation has been made for the previously unknown pre-historic earthquake whose epicentral area coincides with the western flank of the Arshan paleoseismogenic structure. Judging from previously determined ages of paleoearthquakes, the mean recurrence period for faulting events on the central Tunka fault is 2780-3440 years.

  13. Inflation rates, rifts, and bands in a pāhoehoe sheet flow (United States)

    Hoblitt, Richard P.; Orr, Tim R.; Heliker, Christina; Denlinger, Roger P.; Hon, Ken; Cervelli, Peter F.


    The margins of sheet flows—pāhoehoe lavas emplaced on surfaces sloping Inflation and rift-band formation is probably cyclic, because the pattern we observed suggests episodic or crude cyclic behavior. Furthermore, some inflation rifts contain numerous bands whose spacing and general appearances are remarkably similar. We propose a conceptual model wherein the inferred cyclicity is due to the competition between the fluid pressure in the flow's liquid core and the tensile strength of the viscoelastic layer where it is weakest—in inflation rifts. The viscoelastic layer consists of lava that has cooled to temperatures between 800 and 1070 °C. This layer is the key parameter in our model because, in its absence, rift banding and stepwise changes in the flow height would not occur.

  14. Simultaneous Sea-Level Oscillations in Japanese Bays Induced by the Tsunami of Nankai-Trough Earthquake (United States)

    Oishi, Y.; Furumura, T.; Imamura, F.; Yamashita, K.; Sugawara, D.


    In this study, we investigate the response of bays to the tsunami of Nankai-trough earthquake based on tsunami simulations and demonstrate the possibility that sea-level oscillation of each bay, which is induced by an incident tsunami, interacts with those of other bays. Several major cities in Japan, including the capital, are located in the bays near the Nankai trough and it is assumed that these cities will be largely affected by the tsunamis caused by recurring large earthquakes at the trough. Therefore, it is very important for these populated cities to understand the mechanism and properties of the tsunami-induced oscillations that continue for a long time in bays to draw up evacuation plans. To investigate the response of bays for various tsunamis that may occur in the Nankai trough area, we distributed the tsunami sources that have the form of a 2-D Gaussian function around the Nankai trough. From simulations with these sources, it was found that strong oscillations of bay water occur when the source is located in the bay itself or when strong oscillations occur in other bays. For example, when the Tosa bay oscillates, the Tokyo bay that is 600 km away from the Tosa bay also oscillates. Among the bays around the Nankai trough, the Suruga bay, the deepest bay in Japan with a 2500-km depth, oscillates more strongly than other bays for most cases. To check the influence of the strong oscillations in the Suruga bay on other bays, we conducted tsunami simulations using a modified topography model in which the Suruga bay is artificially landfilled. As a consequence, the strength of oscillations in the adjacent bays are reduced by 20-30%, suggesting the large influence of the distinguished oscillation of the Suruga bay on these bays. We finally conducted tsunami simulations using the eleven Nankai-trough earthquake scenarios of the Central Disaster Prevention Council (CDPC) of Japan as tsunami sources, and the mutual relation regarding the strengths of

  15. Origin of three-armed rifts in volcanic islands: the case of El Hierro (Canary Islands) (United States)

    Galindo Jiménez, Inés; Becerril Carretero, Laura; Martí Molist, Joan; Gudmundsson, Agust


    Rifts zones in volcanic oceanic islands are common structures that have been explained through several theories/models. However, despite all these models it is as yet unclear whether it is the intense intrusive activity or the sector collapses that actually control the structural evolution and geometry of oceanic-island rift zones. Here we provide a new hypothesis to explain the origin and characteristics of the feeding system of oceanic-island rift zones based on the analysis of more than 1700 surface, subsurface (water galleries), and submarine structural data from El Hierro (Canary Islands). El Hierro's geological structure is primarily controlled by a three-armed rift-zone, the arms striking NE, WSW and S. Between the rift axes there are three valleys formed during huge landslides: El Golfo, El Julan, and Las Playas. Our results show: (1) a predominant NE-SW strike of structural elements, which coincides with the main regional trend of the Canary Archipelago as a whole; (2) a clear radial strike distribution of structural elements for the whole volcanic edifice (including submarine flanks) with respect to the centre of the island; (3) that the rift zones are mainly subaerial structures and do not propagate through the submarine edifice; (4) that it is only in the NE rift that structures have a general strike similar to that of the rift as a whole, and; (5) that in the W and S rifts there is not clear main direction, showing the structural elements in the W rift a fan distribution coinciding with the general radial pattern in the island as a whole. Based on these data, we suggest that the radial-striking structures reflect comparatively uniform stress fields that operated during the constructive episodes, mainly conditioned by the combination of overburden pressure, gravitational spreading, and magma-induced stresses. By contrast, in the shallower parts of the edifice, that is, the NE-SW, N-S and WNW-ESE-striking structures, reflect local stress fields related

  16. Geodynamic modelling of the rift-drift transition: Application to the Red Sea (United States)

    Fierro, E.; Schettino, A.; Capitanio, F. A.; Ranalli, G.


    The onset of oceanic accretion after a rifting phase is generally accompanied by an initial fast pulse of spreading in the case of volcanic margins, such that the effective spreading rate exceeds the relative far-field velocity between the two plates for a short time interval. This pulse has been attributed to edge-driven convention (EDC), although our numerical modelling shows that the shear stress at the base of the lithosphere cannot exceed 1 MPa. In general, we have developed a 2D numerical model of the mantle instabilities during the rifting phase, in order to determine the geodynamic conditions at the rift-drift transition. The model was tested using Underworld II software, variable rheological parameters, and temperature and stress-dependent viscosity. Our results show an increase of strain rates at the top of the lithosphere with the lithosphere thickness as well as with the initial width of the margin up to 300 km. Beyond this value, the influence of the initial rift width can be neglected. An interesting outcome of the numerical model is the existence of an axial zone characterized by higher strain rates, which is flanked by two low-strain stripes. As a consequence, the model suggests the existence of an area of syn-rift compression within the rift valley. Regarding the post-rift phase, we propose that at the onset of a seafloor spreading, a phase of transient creep allows the release of the strain energy accumulated in the mantle lithosphere during the rifting phase, through anelastic relaxation. Then, the conjugated margins would be subject to post-rift contraction and eventually to tectonic inversion of the rift structures. To explore the tenability of this model, we introduce an anelastic component in the lithosphere rheology, assuming both the classical linear Kelvin-Voigt rheology and a non-linear Kelvin model. The non-linear model predicts viable relaxation times ( 1-2Myrs) to explain the post-rift tectonic inversion observed along the Arabian

  17. Rift systems in the southern North Atlantic: why did some fail and others not? (United States)

    Nirrengarten, M.; Manatschal, G.; Tugend, J.; Kusznir, N. J.; Sauter, D.


    Orphan, Rockall, Porcupine, Parentis and Pyrenean Basins are failed rift systems surrounding the southern North Atlantic Ocean. The failure or succeessing of a rift system is intimately linked to the question of what controls lithospheric breakup and what keeps oceanic spreading alive. Extension rates and the thermal structure are usually the main parameters invoked. However, between the rifts that succeeded and those that failed, the relative control and relative importance of these parameters is not clear. Cessation of driving forces, strain hardening or competition between concurrent rifts are hypotheses often used to explain rift failure. In this work, we aim to analyze the influence of far field forces on the abandon of rift systems in the southern North Atlantic domain using plate kinematic modeling. A new reconstruction approach that integrates the spatio-temporal evolution of rifted basins has been developed. The plate modeling is based on the definition, mapping and restoration of rift domains using 3D gravity inversions methods that provide crustal thickness maps. The kinematic description of each rift system enables us to discuss the local rift evolution relative to the far field kinematic framework. The resulting model shows a strong segmentation of the different rift systems during extreme crustal thinning that are crosscut by V-shape propagators linked to the exhumation of mantle and emplacement of first oceanic crust. The northward propagating lithospheric breakup of the southern North Atlantic may be partly triggered and channeled by extreme lithospheric thinning. However, at Aptian-Albian time, the northward propagating lithospheric breakup diverts and is partitioned along a transtensional system resulting in the abandon of the Orphan and Rockall basins. The change in the propagation direction may be related to a local strain weakening along existing/inherited transfer zones and/or, alternatively, to a more global plate reorganization. The

  18. A Combined Optical, Thermal and Electrical Performance Study of a V-Trough PV System—Experimental and Analytical Investigations

    Directory of Open Access Journals (Sweden)

    Haitham M. Bahaidarah


    Full Text Available The objective of this study was to achieve higher efficiency of a PV system while reducing of the cost of energy generation. Concentration photovoltaics was employed in the present case as it uses low cost reflectors to enhance the efficiency of the PV system and simultaneously reduces the cost of electricity generation. For this purpose a V-trough integrated with the PV system was employed for low concentration photovoltaic (LCPV. Since the electrical output of the concentrating PV system is significantly affected by the temperature of the PV cells, the motivation of the research also included studying the ability to actively cool PV cells to achieve the maximum benefit. The optical, thermal and electrical performance of the V-trough PV system was theoretically modeled and validated with experimental results. Optical modeling of V-trough was carried out to estimate the amount of enhanced absorbed radiation. Due to increase in the absorbed radiation the module temperature was also increased which was predicted by thermal model. Active cooling techniques were studied and the effect of cooling was analyzed on the performance of V-trough PV system. With absorbed radiation and module temperature as input parameters, electrical modeling was carried out and the maximum power was estimated. For the V-trough PV system, experiments were performed for validating the numerical models and very good agreement was found between the two.

  19. Initial dose of vancomycin based on body weight and creatinine clearance to minimize inadequate trough levels in Japanese adults. (United States)

    Maki, N; Ohkuchi, A; Tashiro, Y; Kim, M R; Le, M; Sakamoto, T; Matsubara, S; Hakamata, Y


    Our aims were to elucidate the factors that affected vancomycin (VCM) serum trough levels and to find the optimal initial dose based on creatinine clearance (CrCl) and body weight (BW) to minimize inadequate trough levels in a retrospective observational study among Japanese adults. One hundred and six inpatients, in whom VCM trough levels were measured after completing the third dosing, were consecutively recruited into our study in a tertiary hospital. We considered the frequency of initial VCM total daily dose, CrCl, and BW were independent risk factors of VCM trough levels. In patients with CrCl ≥30 and level of ≥20 mcg/mL, regardless of BW. In patients with CrCl ≥50 mL/min, 2 g/day yielded low frequencies of a trough level of initial total daily dose may be 1 g/day in patients with CrCl ≥30 and <50 mL/min regardless of BW and 2 g/day in patients weighing <55 kg with CrCl ≥50 mL/min among Japanese adults.

  20. Influence of climate on deep-water clastic sedimentation: application of a modern model, Peru-Chile Trough, to an ancient system, Ouachita Trough (United States)

    Edgar, N. Terence; Cecil, C. Blaine


    Traditionally, an abrupt and massive influx of siliciclastic sediments into an area of deposition has been attributed to tectonic uplift without consideration of the influence of climate or climatic change on rates of weathering, erosion, transportation, and deposition. With few exceptions, fluvial sediment transport is minimal in both extremely arid climates and in perhumid (everwet) climates. Maximum sediment transport occurs in climates characterized by strongly seasonal rainfall, where the effect of vegetation on erosion is minimal. The Peru–Chile trench and Andes Mountain system (P–CT/AMS) of the eastern Pacific Ocean clearly illustrates the effects of climate on rates of weathering, erosion, transport, and deep-sea sedimentation. Terrigenous sediment is virtually absent in the arid belt north of lat. 30° S in the P–CT, but in the belt of seasonal rainfall south of lat. 30° S terrigenous sediment is abundant. Spatial variations in the amount and seasonality of annual precipitation are now generally accepted as the cause for this difference. The spatial variation in sediment supply to the P–CT appears to be an excellent modern analogue for the temporal variation in sediment supply to certain ancient systems, such as the Ouachita Trough in the southern United States. By comparison, during the Ordovician through the early Mississippian, sediment was deposited at very slow rates as the Ouachita Trough moved northward through the southern hemisphere dry belt (lat. 10° S to lat. 30° S). The deposystem approached the tropical humid zone during the Mississippian, coincident with increased coarse clastic sedimentation. By the Middle Pennsylvanian (Atokan), the provenance area and the deposystem moved well into the tropical humid zone, and as much as 8,500 m of mineralogically mature (but texturally immature) quartz sand was introduced and deposited. This increase in clastic sediment deposition traditionally has been attributed solely to tectonic activity

  1. Potential for Stable Flies and House Flies (Diptera: Muscidae) to Transmit Rift Valley Fever Virus (United States)


    Trials of traps and attractants for Stomoxys spp. ( Diptera : Muscidae). J Med Entomol 32:283–289. Rosen L, Gubler D. 1974. The use of mosquitoes to detect... Diptera : Muscidae) to Transmit Rift Valley Fever Virus Author(s): Michael J. Turell, David J. Dohm, Christopher J. Geden, Jerome A. Hogsette, and...2010 to 00-00-2010 4. TITLE AND SUBTITLE Potential for Stable Flies and House Flies ( Diptera : Muscidae) to Transmit Rift Valley Fever Virus 5a

  2. Electron microscopic identification of Zinga virus as a strain of Rift Valley fever virus. (United States)

    Olaleye, O D; Baigent, C L; Mueller, G; Tomori, O; Schmitz, H


    Electron microscopic examination of a negatively stained suspension of Zinga virus showed particles 90-100 nm in diameter, enveloped with spikes 12-20 nm in length and 5 nm in diameter. Further identification of the virus by immune electron microscopy showed the reactivity of human Rift Valley fever virus-positive serum with Zinga virus. Results of this study are in agreement with earlier reports that Zinga virus is a strain of Rift Valley fever virus.

  3. Phylogeography of Rift Valley Fever Virus in Africa and the Arabian Peninsula


    Samy, Abdallah M.; Peterson, A. Townsend; Hall, Matthew


    Rift Valley Fever is an acute zoonotic viral disease caused by Rift Valley Fever virus (RVFV) that affects ruminants and humans in Sub-Saharan Africa and the Arabian Peninsula. We used phylogenetic analyses to understand the demographic history of RVFV populations, using sequence data from the three minigenomic segments of the virus. We used phylogeographic approaches to infer RVFV historical movement patterns across its geographic range, and to reconstruct transitions among host species. Res...

  4. Seismic hazard assessment of the Kivu rift segment based on a new seismotectonic zonation model (western branch, East African Rift system) (United States)

    Delvaux, Damien; Mulumba, Jean-Luc; Sebagenzi, Mwene Ntabwoba Stanislas; Bondo, Silvanos Fiama; Kervyn, François; Havenith, Hans-Balder


    In the frame of the Belgian GeoRisCA multi-risk assessment project focusing on the Kivu and northern Tanganyika rift region in Central Africa, a new probabilistic seismic hazard assessment has been performed for the Kivu rift segment in the central part of the western branch of the East African rift system. As the geological and tectonic setting of this region is incompletely known, especially the part lying in the Democratic Republic of the Congo, we compiled homogeneous cross-border tectonic and neotectonic maps. The seismic risk assessment is based on a new earthquake catalogue based on the ISC reviewed earthquake catalogue and supplemented by other local catalogues and new macroseismic epicenter data spanning 126 years, with 1068 events. The magnitudes have been homogenized to Mw and aftershocks removed. The final catalogue used for the seismic hazard assessment spans 60 years, from 1955 to 2015, with 359 events and a magnitude of completeness of 4.4. The seismotectonic zonation into 7 seismic source areas was done on the basis of the regional geological structure, neotectonic fault systems, basin architecture and distribution of thermal springs and earthquake epicenters. The Gutenberg-Richter seismic hazard parameters were determined by the least square linear fit and the maximum likelihood method. Seismic hazard maps have been computed using existing attenuation laws with the Crisis 2012 software. We obtained higher PGA values (475 years return period) for the Kivu rift region than the previous estimates. They also vary laterally in function of the tectonic setting, with the lowest value in the volcanically active Virunga - Rutshuru zone, highest in the currently non-volcanic parts of Lake Kivu, Rusizi valley and North Tanganyika rift zone, and intermediate in the regions flanking the axial rift zone.

  5. Off-axis volcano-tectonic activity during continental rifting: Insights from the transversal Goba-Bonga lineament, Main Ethiopian Rift (East Africa) (United States)

    Corti, Giacomo; Sani, Federico; Agostini, Samuele; Philippon, Melody; Sokoutis, Dimitrios; Willingshofer, Ernst


    The Main Ethiopian Rift, East Africa, is characterized by the presence of major, enigmatic structures which strike approximately orthogonal to the trend of the rift valley. These structures are marked by important deformation and magmatic activity in an off-axis position in the plateaus surrounding the rift. In this study, we present new structural data based on a remote and field analysis, complemented with analogue modelling experiments, and new geochemical analysis of volcanic rocks sampled in different portions of one of these transversal structures: the Goba-Bonga volcano-tectonic lineament (GBVL). This integrated analysis shows that the GBVL is associated with roughly E-W-trending prominent volcano-tectonic activity affecting the western plateau. Within the rift floor, the approximately E-W alignment of Awasa and Corbetti calderas likely represent expressions of the GBVL. Conversely, no tectonic or volcanic features of similar (E-W) orientation have been recognized on the eastern plateau. Analogue modelling suggests that the volcano-tectonic features of the GBVL have probably been controlled by the presence of a roughly E-W striking pre-existing discontinuity beneath the western plateau, which did not extend beneath the eastern plateau. Geochemical analysis supports this interpretation and indicates that, although magmas have the same sub-lithospheric mantle source, limited differences in magma evolution displayed by products found along the GBVL may be ascribed to the different tectonic framework to the west, to the east, and in the axial zone of the rift. These results support the importance of the heterogeneous nature of the lithosphere and the spatial variations of its structure in controlling the architecture of continental rifts and the distribution of the related volcano-tectonic activity.

  6. Methane hydrate reservoir model around the eastern Nankai trough area offshore Japan

    Energy Technology Data Exchange (ETDEWEB)

    Inamori, T.; Hayashi, M.; Kobayashi, T.; Shimoda, N.; Takano, O.; Takayama, T.; Fujii, T.; Saeki, T. [Japan Oil, Gas and Metals National Corp., Chiba (Japan). Dept. of Technology Research and Development


    This paper described a modelling study conducted to characterize gas hydrates in the eastern Nankai trough region near the coast of Japan. Two drilling campaigns were conducted in the region, and a total of 39 boreholes were drilled to obtain logging data. Data from exploratory wells drilled in the region were also presented. Methane hydrate-concentrated zones were delineated using seismic sequence analysis and 3-D seismic surveys. Methane hydrate-bearing sediments corresponded with turbidite sands using logging and coring data. A rock physics model was developed using data obtained from the analyses. The study showed that methane hydrate bearing-sediments near the eastern Nankai trough area are heterogenous and both vertically and horizontally complex, as the sediments were composed of turbidite sands with channel-levee and lobe systems. Sandy intervals had higher levels of methane hydrates than silty or muddy intervals. The reservoirs were divided into 3 distinct types: (1) low-saturation; (2) discontinuous high-saturation; and (3) continuous high-saturation. The reservoirs were delineated by selecting the bottom simulating reflector (BSM) as the top of the hydrate-bearing sediments for the turbidite channel-levee or lobe systems. The hydrate rock physics model was used to develop the matrix support model from the relationship between P and S wave velocities and methane hydrate saturation. 9 refs., 11 figs.

  7. 2D multi-component survey over methane hydrate deposits in the Nankai Trough

    Energy Technology Data Exchange (ETDEWEB)

    Ward, P.; Asakawa, E.; Allawati, H. [JGI Inc., Bunkyo-ku, Tokyo (Japan); Saeki, T.; Inamori, T.; Shimoda, N. [Japan Oil, Gas and Metals National Corp., Mihama-ku, Chiba (Japan). Technology Research Center


    A 2D real-time seismic cable system (RSCS) survey was conducted near the edge of the Nankai Trough offshore Japan in December 2006. The objectives were to obtain high quality P-wave seismic sections and S-wave characteristics of a methane hydrate deposit in the Nankai Trough. C-waves (PS converted waves) with multicomponent sensors were used to delineate the elastic properties. The 3 component data was acquired on the sea bed over 2 well locations and part of a conventional streamer 3D survey. Of the 3 receiver lines, the first intersected the 4 well locations with 4 deployments of RSCS, while the second and third lines crossed the first line at each well location with 1 and 2 deployments. A sea-surface airgun system was used as a source with a spacing of 25 m. P-wave OBS pre-stack migration was used to image the vertical component data. C-Wave OBS pre-stack migration was used to image the in-line horizontal component data. Amplitude anomalies at the BSR level were detected in the C-wave sections, which indicates S-wave anomaly. The authors suggested that this information may be useful in estimating the rock physics model of the methane hydrates in this area. 5 refs., 11 figs.

  8. Shifting sources and transport paths for the late Quaternary Escanaba Trough sediment fill (northeast Pacific) (United States)

    Zuffa, G.G.; De Rosa, R.; Normark, W.R.


    Escanaba Trough, which forms the southernmost part of the axial valley of the actively spreading Gorda Ridge, is filled with several hundred meters of sediment of presumed late Quaternary age. Surficial sediment samples from gravity cores, deeper samples (as much as 390 m) from Site 35 of the Deep Sea Drilling Program (Leg 5), and the acoustic character of the sediment fill observed on seismic-reflection profiles indicate that much of the sediment fill is of turbidite origin. Gross composition and heavy- mineral analyses of sand samples show that two distinct petrofacies comprise the sediment fill. The lower part of the fill was derived primarily from the Klamath River source of northern California while the younger fill, including the surficial sand beds, are from the Columbia River drainage much farther north. The Escanaba Trough sediment provides an opportunity to evaluate concepts for paleogeographic and paleotectonic reconstructions that are based on facies analysis and compositional and textural data for the volcanic components because both intrabasinal and extrabasinal sources are present as well as coeval (neovolcanic) and non coeval (paleovolcanic) sourcre This study of a modern basin shows, that although the sediment sources could be identified, it was useful to have some knowledge of the sediment pathway(s), the effects of diagenesis, and the possible effects of sediment sorting as a result of long transport distances from the source area for some components. Application of these same techniques to ancient deposits without benefit of the additional parameters will face limitations.

  9. Harmonization of standards for parabolic trough collector testing in solar thermal power plants (United States)

    Sallaberry, Fabienne; Valenzuela, Loreto; Palacin, Luis G.; Leon, Javier; Fischer, Stephan; Bohren, Andreas


    The technology of parabolic trough collectors (PTC) is used widely in concentrating Solar Power (CSP) plants worldwide. However this type of large-size collectors cannot be officially tested by an accredited laboratory and certified by an accredited certification body so far, as there is no standard adapted to its particularity, and the current published standard for solar thermal collectors are not completely applicable to them. Recently some standardization committees have been working on this technology. This paper aims to give a summary of the standardized testing methodology of large-size PTC for CSP plants, giving the physical model chosen for modeling the thermal performance of the collector in the new revision of standard ISO 9806 and the points still to be improved in the standard draft IEC 62862-3-2. In this paper, a summary of the testing validation performed on one parabolic trough collector installed in one of the test facilities at the Plataforma Solar de Almería (PSA) with this new model is also presented.

  10. A model of the perceptual asymmetry between peaks and troughs of frequency modulation. (United States)

    de Cheveigné, A


    Pitch discrimination at peaks of frequency modulation is better than at troughs [L. Demany and K. I. McAnally, J. Acoust. Soc. Am. 96, 706-715 (1989)]. A similar asymmetry emerges within a time-domain pitch perception model based on autocorrelation. The model requires the following assumptions: (a) The neural discharge patterns must be temporally sharpened to a single narrow pulse per period (possibly by neural convergence within the cochlear nucleus). (b) Autocorrelation must be implemented as a cross correlation between the neural pulse train and a delayed pulse train convolved with a short kernel function. This kernel function must be asymmetric in time. (c) Pitch discrimination must rely on higher-order modes of the autocorrelation function. This particular implementation of the autocorrelation model produces modes that are sharper for peaks than for troughs, and thus accounts for the pitch discrimination asymmetry observed experimentally. As a by-product it can account for "hyperacute" discrimination observed at peaks of triangular modulation.

  11. Performance Evaluation of a Nanofluid-Based Direct Absorption Solar Collector with Parabolic Trough Concentrator

    Directory of Open Access Journals (Sweden)

    Guoying Xu


    Full Text Available Application of solar collectors for hot water supply, space heating, and cooling plays a significant role in reducing building energy consumption. For conventional solar collectors, solar radiation is absorbed by spectral selective coating on the collectors’ tube/plate wall. The poor durability of the coating can lead to an increased manufacturing cost and unreliability for a solar collector operated at a higher temperature. Therefore, a novel nanofluid-based direct absorption solar collector (NDASC employing uncoated collector tubes has been proposed, and its operating characteristics for medium-temperature solar collection were theoretically and experimentally studied in this paper. CuO/oil nanofluid was prepared and used as working fluid of the NDASC. The heat-transfer mechanism of the NDASC with parabolic trough concentrator was theoretically evaluated and compared with a conventional indirect absorption solar collector (IASC. The theoretical analysis results suggested that the fluid’s temperature distribution in the NDASC was much more uniform than that in the IASC, and an enhanced collection efficiency could be achieved for the NDASC operated within a preferred working temperature range. To demonstrate the feasibility of the proposed NDASC, experimental performances of an NDASC and an IASC with the same parabolic trough concentrator were furthermore evaluated and comparatively discussed.

  12. NanTroSEIZE: The IODP Nankai Trough Seismogenic Zone Experiment

    Directory of Open Access Journals (Sweden)

    Harold J. Tobin


    Full Text Available The IODP Nankai Trough Seismogenic Zone Experiment (NanTroSEIZE will, for the fi rst time ever, attempt to drill into, sample, and instrument the seismogenic portion of a plate-boundary fault or megathrust within a subduction zone. Access to the interior of active faults where in situ processes can be monitored and fresh fault zone materials can be sampled is of fundamental importance to the understanding of earthquake mechanics. As the December 2004 Sumatraearthquake and Indian Ocean tsunami so tragically demonstrated,large subduction earthquakes represent one of the greatest natural hazards on the planet. Accordingly, drilling into and instrumenting an active interplate seismogenic zone is a very high priority in the IODP Initial Science Plan (2001. Through a decade-long series of national and international workshops, a consensus emerged that the Nankai Trough is an ideal place to attempt drilling and monitoring of the seismogenic plate interface. The fi rst phase of NanTroSEIZE drilling operations has now been scheduled for the late summer of 2007. It involves parallel deployment of both the new U.S. Scientifi c Ocean Drilling Vessel (SODV, this volume and the riser drilling vessel Chikyu.

  13. Measurement of Hydrogen Purge Rates in Parabolic Trough Receiver Tubes: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Glatzmaier, G. C.


    The purpose of this research is to investigate and develop methods to remove hydrogen centrally from commercial parabolic trough power plants. A mathematical model was developed that tracks the generation and transport of hydrogen within an operating plant. Modeling results predicted the steady-state partial pressure of hydrogen within the receiver annuli to be ~1 torr. This result agrees with measured values for the hydrogen partial pressure. The model also predicted the rate at which hydrogen must be actively removed from the expansion tank to reduce the partial pressure of hydrogen within the receiver annuli to less than 0.001 torr. Based on these results, mitigation strategies implemented at operating parabolic trough power plants can reduce hydrogen partial pressure to acceptable levels. Transient modeling predicted the time required to reduce the hydrogen partial pressures within receiver annuli to acceptable levels. The times were estimated as a function of bellows temperature, getter quantity, and getter temperature. This work also includes an experimental effort that will determine the time required to purge hydrogen from a receiver annulus with no getter.

  14. Sensitive Analysis for the Efficiency of a Parabolic Trough Solar Collector Based on Orthogonal Experiment

    Directory of Open Access Journals (Sweden)

    Xiaoyan Liu


    Full Text Available A multitude of the researches focus on the factors of the thermal efficiency of a parabolic trough solar collector, that is, the optical-thermal efficiency. However, it is limited to a single or double factors for available system. The aim of this paper is to investigate the multifactors effect on the system’s efficiency in cold climate region. Taking climatic performance into account, an average outlet temperature of LS-2 collector has been simulated successfully by coupling SolTrace software with CFD software. Effects of different factors on instantaneous efficiency have been determined by orthogonal experiment and single factor experiment. After that, the influence degree of different factors on the collector instantaneous efficiency is obtained clearly. The results show that the order of effect extent for average maximal deviation of each factor is inlet temperature, solar radiation intensity, diameter, flow rate, condensation area, pipe length, and ambient temperature. The encouraging results will provide a reference for the exploitation and utilization of parabolic trough solar collector in cold climate region.

  15. A Novel Parabolic Trough Concentrating Solar Heating for Cut Tobacco Drying System

    Directory of Open Access Journals (Sweden)

    Jiang Tao Liu


    Full Text Available A novel parabolic trough concentrating solar heating for cut tobacco drying system was established. The opening width effect of V type metal cavity absorber was investigated. A cut tobacco drying mathematical model calculated by fourth-order Runge-Kutta numerical solution method was used to simulate the cut tobacco drying process. And finally the orthogonal test method was used to optimize the parameters of cut tobacco drying process. The result shows that the heating rate, acquisition factor, and collector system efficiency increase with increasing the opening width of the absorber. The simulation results are in good agreement with experimental data for cut tobacco drying process. The relative errors between simulated and experimental values are less than 8%, indicating that this mathematical model is accurate for the cut tobacco airflow drying process. The optimum preparation conditions are an inlet airflow velocity of 15 m/s, an initial cut tobacco moisture content of 26%, and an inlet airflow temperature of 200°C. The thermal efficiency of the dryer and the final cut tobacco moisture content are 66.32% and 14.15%, respectively. The result shows that this parabolic trough concentrating solar heating will be one of the heat recourse candidates for cut tobacco drying system.

  16. Water Use in Parabolic Trough Power Plants: Summary Results from WorleyParsons' Analyses

    Energy Technology Data Exchange (ETDEWEB)

    Turchi, C. S.; Wagner, M. J.; Kutscher, C. F.


    The National Renewable Energy Laboratory (NREL) contracted with WorleyParsons Group, Inc. to examine the effect of switching from evaporative cooling to alternative cooling systems on a nominal 100-MW parabolic trough concentrating solar power (CSP) plant. WorleyParsons analyzed 13 different cases spanning three different geographic locations (Daggett, California; Las Vegas, Nevada; and Alamosa, Colorado) to assess the performance, cost, and water use impacts of switching from wet to dry or hybrid cooling systems. NREL developed matching cases in its Solar Advisor Model (SAM) for each scenario to allow for hourly modeling and provide a comparison to the WorleyParsons results.Our findings indicate that switching from 100% wet to 100% dry cooling will result in levelized cost of electricity (LCOE) increases of approximately 3% to 8% for parabolic trough plants throughout most of the southwestern United States. In cooler, high-altitude areas like Colorado's San Luis Valley, WorleyParsons estimated the increase at only 2.5%, while SAM predicted a 4.4% difference. In all cases, the transition to dry cooling will reduce water consumption by over 90%. Utility time-of-delivery (TOD) schedules had similar impacts for wet- and dry-cooled plants, suggesting that TOD schedules have a relatively minor effect on the dry-cooling penalty.

  17. Focused seismicity triggered by flank instability on Kīlauea's Southwest Rift Zone (United States)

    Judson, Josiah; Thelen, Weston A.; Greenfield, Tim; White, Robert S.


    Swarms of earthquakes at the head of the Southwest Rift Zone on Kīlauea Volcano, Hawai´i, reveal an interaction of normal and strike-slip faulting associated with movement of Kīlauea's south flank. A relocated subset of earthquakes between January 2012 and August 2014 are highly focused in space and time at depths that are coincident with the south caldera magma reservoir beneath the southern margin of Kīlauea Caldera. Newly calculated focal mechanisms are dominantly dextral shear with a north-south preferred fault orientation. Two earthquakes within this focused area of seismicity have normal faulting mechanisms, indicating two mechanisms of failure in very close proximity (10's of meters to 100 m). We suggest a model where opening along the Southwest Rift Zone caused by seaward motion of the south flank permits injection of magma and subsequent freezing of a plug, which then fails in a right-lateral strike-slip sense, consistent with the direction of movement of the south flank. The seismicity is concentrated in an area where a constriction occurs between a normal fault and the deeper magma transport system into the Southwest Rift Zone. Although in many ways the Southwest Rift Zone appears analogous to the more active East Rift Zone, the localization of the largest seismicity (>M2.5) within the swarms to a small volume necessitates a different model than has been proposed to explain the lineament outlined by earthquakes along the East Rift Zone.

  18. Using the virtual reality device Oculus Rift for neuropsychological assessment of visual processing capabilities. (United States)

    Foerster, Rebecca M; Poth, Christian H; Behler, Christian; Botsch, Mario; Schneider, Werner X


    Neuropsychological assessment of human visual processing capabilities strongly depends on visual testing conditions including room lighting, stimuli, and viewing-distance. This limits standardization, threatens reliability, and prevents the assessment of core visual functions such as visual processing speed. Increasingly available virtual reality devices allow to address these problems. One such device is the portable, light-weight, and easy-to-use Oculus Rift. It is head-mounted and covers the entire visual field, thereby shielding and standardizing the visual stimulation. A fundamental prerequisite to use Oculus Rift for neuropsychological assessment is sufficient test-retest reliability. Here, we compare the test-retest reliabilities of Bundesen's visual processing components (visual processing speed, threshold of conscious perception, capacity of visual working memory) as measured with Oculus Rift and a standard CRT computer screen. Our results show that Oculus Rift allows to measure the processing components as reliably as the standard CRT. This means that Oculus Rift is applicable for standardized and reliable assessment and diagnosis of elementary cognitive functions in laboratory and clinical settings. Oculus Rift thus provides the opportunity to compare visual processing components between individuals and institutions and to establish statistical norm distributions.

  19. Some aspects of the role of rift inheritance on Alpine-type orogens (United States)

    Tugend, Julie; Manatschal, Gianreto; Mohn, Geoffroy; Chevrot, Sébastien


    Processes commonly recognized as fundamental for the formation of collisional orogens include oceanic subduction, arc-continent and continent-continent collision. As collisional belts result from the closure of oceanic basins and subsequent inversion of former rifted margins, their formation and evolution may also in theory be closely interlinked with the initial architecture of the former rifted margins. This assumption is indeed more likely to be applicable in the case of Alpine-type orogens, mainly controlled by mechanical processes and mostly devoid of arc-related magmatism. More and more studies from present-day magma-poor rifted margins illustrate the complex evolution of hyperextended domains (i.e. severely thinned continental crust (images across the Pyrenees (PYROPE) and the Alps (CIFALPS) reveal a surprisingly comparable present-day overall crustal and lithospheric structure. Based on the comparison between the two orogens we discuss: (1) the nature and depth of decoupling levels inherited from hyperextension; (2) the implications for restorations and interpretations of orogenic roots (former hyperextended domains vs. lower crust only); and (3) the nature and major role of buttresses in controlling the final stage of collisional processes. Eventually, we discuss the variability of the role of rift-inheritance in building Alpine-type orogens. The Pyrenees seem to represent one extreme, where rift-inheritance is important at different stages of collisional processes. In contrast, in the Alps the role of rift-inheritance is subtler, likely because of its more complex and polyphase compressional deformation history.

  20. Microplate rotation in northeast Brazil during South Atlantic rifting: Analogies with the Sinai microplate (United States)

    Szatmari, Peter; Milani, Edison J.


    The Early Cretaceous northeast Brazilian Sergipe microplate, formed at the northern end of the South Atlantic rift between South America and Africa, closely resembles the modern Sinai microplate at the northern end of the Red Sea in size, shape, and relative motion. Both formed where east-northeast trending transverse shear zones arrested northward rift propagation, causing the Tucano-Recôncavo and Gulf of Suez rifts to fail and be replaced by northeast-trending leaky transforms (Sergipe-Alagoas and Dead Sea transforms) as the new paths of continental breakup. Bordered by the failed rift, the leaky transform, and the transverse shear zone, both microplates were rotated counterclockwise by drag along their eastern transform margins. Rotation thrust the edge of the Sergipe microplate over part of its northern border, creating the Arcoverde thrust wedge. The northwest-trending Vaza-Barris fault sheared the microplate, transferring the rift and evaporite sequence from the Sergipe-Alagoas to the Gabon continental margin. In Albian time, heating of the lithosphere in the Cabo igneous province near Recife permitted the South Atlantic rift to propagate across the Arcoverde thrust wedge, completing continental breakup.

  1. The evolution of the western rift area of the Fimbul Ice Shelf, Antarctica

    Directory of Open Access Journals (Sweden)

    A. Humbert


    Full Text Available This paper studies the evolution of a zone in the Fimbul Ice Shelf that is characterised by large crevasses and rifts west of Jutulstraumen, an outlet glacier flowing into Fimbulisen. High-resolution radar imagery and radio echo sounding data were used to study the surface and internal structure of this rift area and to define zones of similar characteristics. The western rift area is dominated by two factors: a small ice rumple that leads to basal crevasses and disturbs the homogeneity of the ice, and a zone with fibre-like blocks. Downstream of the rumple we found down-welling of internal layers and local thinning, which we explain as a result of basal crevasses due to the basal drag at the ice rumple. North of Ahlmannryggen the ice loses its lateral constraint and forms individual blocks, which are deformed like fibres under shear, where the ice stream merges with slower moving ice masses of the western side. There, the ice loses its integrity, which initiates the western rift system. The velocity difference between the slow moving western part and the fast moving extension of Jutulstraumen produces shear stress that causes the rifts to form tails and expand them to the major rifts of up to 30 km length.

  2. Cabo rift structural analysis, Pernambuco State south coast land, Brazil; Analise estrutural do rifte do Cabo, litoral sul do estado de Pernambuco, Brasil

    Energy Technology Data Exchange (ETDEWEB)

    Polonia, Jorge Alexandre L. [Companhia de Pesquisas de Recursos Minerais (CPRM), Recife, PE (Brazil)


    The Cabo Rift, located at Pernambuco State South coast land and inserted in the Brazilian coastal basin set, was generated at Eocretaceous during the tectonic processes responsible by the South-American and African continents separation. In this study, the structural analysis of the Cabo Rift was based mainly in the Oliveira (1993) gravimetric surveys, in radar image analysis and in some works (Polonia, 1997) that distinguished the structures characterization and determination that originated the Cabo Basin. In this last stage, some data about kinematic indicators in faults plans, like secondary fractures, striations, etc., were collected and treated statistically with specific softwares 6 refs., 4 figs.

  3. Spatial and temporal distribution of pore gas concentrations during mainstream large-scale trough composting in China. (United States)

    Zeng, Jianfei; Shen, Xiuli; Sun, Xiaoxi; Liu, Ning; Han, Lujia; Huang, Guangqun


    With the advantages of high treatment capacity and low operational cost, large-scale trough composting has become one of the mainstream composting patterns in composting plants in China. This study measured concentrations of O 2 , CO 2 , CH 4 and NH 3 on-site to investigate the spatial and temporal distribution of pore gas concentrations during mainstream large-scale trough composting in China. The results showed that the temperature in the center of the pile was obviously higher than that in the side of the pile. Pore O 2 concentration rapidly decreased and maintained distribution and promote the composting process during large-scale trough composting when the pile was naturally aerated, which will contribute to improving the current undesirable atmosphere environment in China. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. Proterozoic orogenic belts and rifting of Indian cratons: Geophysical constraints

    Directory of Open Access Journals (Sweden)

    D.C. Mishra


    Full Text Available The Aravalli–Delhi and Satpura Mobile Belts (ADMB and SMB and the Eastern Ghat Mobile Belt (EGMB in India form major Proterozoic mobile belts with adjoining cratons and contemporary basins. The most convincing features of the ADMB and the SMB have been the crustal layers dipping from both sides in opposite directions, crustal thickening (∼45 km and high density and high conductivity rocks in upper/lower crust associated with faults/thrusts. These observations indicate convergence while domal type reflectors in the lower crust suggest an extensional rifting phase. In case of the SMB, even the remnant of the subducting slab characterized by high conductive and low density slab in lithospheric mantle up to ∼120 km across the Purna–Godavari river faults has been traced which may be caused by fluids due to metamorphism. Subduction related intrusives of the SMB south of it and the ADMB west of it suggest N–S and E–W directed convergence and subduction during Meso–Neoproterozoic convergence. The simultaneous E–W convergence between the Bundelkhand craton and Marwar craton (Western Rajasthan across the ADMB and the N–S convergence between the Bundelkhand craton and the Bhandara and Dharwar cratons across the SMB suggest that the forces of convergence might have been in a NE–SW direction with E–W and N–S components in the two cases, respectively. This explains the arcuate shaped collision zone of the ADMB and the SMB which are connected in their western part. The Eastern Ghat Mobile Belt (EGMB also shows signatures of E–W directed Meso–Neoproterozoic convergence with East Antarctica similar to ADMB in north India. Foreland basins such as Vindhyan (ADMB–SMB, and Kurnool (EGMB Supergroups of rocks were formed during this convergence. Older rocks such as Aravalli (ADMB, Mahakoshal–Bijawar (SMB, and Cuddapah (EGMB Supergroups of rocks with several basic/ultrabasic intrusives along these mobile belts, plausibly formed during

  5. Prevalence of middle mesial canals in mandibular molars after guided troughing under high magnification: an in vivo investigation. (United States)

    Azim, Adham A; Deutsch, Allan S; Solomon, Charles S


    A limited number of in vivo studies have discussed the prevalence of middle mesial canals in root canal systems of mandibular molars. The reported results have varied between 1% and 25%, with no detailed description of the depth and direction of troughing needed to identify such small canal orifices. The objective of the present study was to determine (1) the prevalence of a middle mesial canal before and after troughing by using a standardized troughing technique, (2) the pathway of the middle mesial canal in relation to the mesiobuccal (MB) and mesiolingual (ML) canals, and (3) its correlation with the patient's age. Ninety-one mandibular molars from 87 patients were included in this study. The patient's age and tooth number were recorded. After access cavity preparation, a standardized troughing technique was performed between MB and ML canals to search for a middle mesial canal by using a dental operating microscope. If a middle mesial canal was located, it was recorded as separate or as joining the MB or the ML canals. Results were statistically analyzed by using Z test and logistic regression. A middle mesial canal was found in 42 of 91 mandibular molars (46.2%). Six middle mesial canals were located after conventional access preparation (6.6%). The other 36 were located after standardized troughing (39.6%). The results were statistically significant (P magnification, troughing, and patient's age appeared to be determining factors in accessing the middle mesial canal. Copyright © 2015 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  6. Evaluation of the variability and safety of serum trough concentrations of vancomycin in patients admitted to the intensive care unit. (United States)

    Qian, Xiaodan; Du, Guantao; Weng, Chunmei; Zhou, Haijun; Zhou, Xianju


    To examine the variability and safety of serum trough concentrations of vancomycin in patients admitted to the intensive care unit (ICU) and to analyze the factors influencing the trough concentration. Data were collected retrospectively from ICU patients receiving vancomycin treatment at a fixed dose of 2g/day due to unobtainable weight data, at Changzhou No. 2 People's Hospital, between 2012 and 2015. Vancomycin trough concentrations were compared between groups stratified by sex, age, and estimated glomerular filtration rate (eGFR). The vancomycin trough concentration varied significantly among ICU patients on a fixed dose of 2g/day. Only 16.9% of ICU patients met the concentration target of 15-20mg/l, while 25% of patients showed supratherapeutic concentrations. A higher proportion of female patients than male patients showed supratherapeutic concentrations (40.4% vs. 15.5%). The trough concentration was positively correlated with age (y=0.279x-2.085; R 2 =0.186) and negatively correlated with eGFR (y=-0.2x+33.776; R 2 =0.366). Vancomycin-related nephrotoxicity occurred at an incidence of 5.9%. These results suggest that the fixed-dose regimen is not appropriate for ICU patients in view of the low incidence of target trough concentrations and the high incidence of supratherapeutic concentrations. The dose should be individualized based on weight, age, and renal function to improve outcomes and patient safety. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  7. Morphometric and magmatic evolution at the Boset-Bericha Volcanic Complex in the Main Ethiopian Rift (United States)

    Siegburg, Melanie; Gernon, Thomas; Bull, Jonathan; Keir, Derek; Taylor, Rex; Nixon, Casey; Abebe, Bekele; Ayele, Atalay


    Tectono-magmatic interactions are an intrinsic feature of continental rifting and break up in the Main Ethiopian Rift (MER). The Boset-Bericha volcanic complex (BBVC) is one of the largest stratovolcanoes in the MER (with a total area of ˜870 km2), with volcanism largely occurring over the last ˜2 Myr. Despite the fact that 4 million people live within 100 km of the volcano, little is known about its eruptive history and how the volcanic system interacts with rift valley tectonics. Here, we present a detailed relative eruption chronology combined with morphometric analyses of different elements of the volcanic complex and petrological analyses to constrain morphometric and magmatic evolution at the BBVC. Additionally, tectonic activity has been characterised around the BBVC, all based on field observations and mapping using high-resolution digital elevation data. The BBVC consists of the Gudda Volcano and the younger Bericha Volcano, two silicic eruption centres located along the NNE-SSW trending rift axis. The fault population predominantly comprises distributed extensional faults parallel to the rift axis, as well as localised discrete faults with displacements of up to 50 m in the rift centre, and up to 200 m in the NE-SW trending border fault system. Multiple cones, craters and fissure systems are also oriented parallel to the rift axis, i.e. perpendicular to the minimum compressive stress. The eruption history of BBVC can be differentiated into 5 main eruption stages, subdivided into at least 12 eruptive phases with a total of 128 mappable lava flows. Crosscutting relationships of lava flows provide a relative chronology of the eruptive history of the BBVC, starting with pre-BBVC rift floor basalts, pre-caldera and caldera activity, three post-caldera phases at the Gudda Volcano and two phases forming the Bericha Volcano. At least four fissure eruption phases occurred along the rift axis temporally in between the main eruptive phases. Morphometric analyses

  8. Chemical composition of hydrothermal ores from Mid-Okinawa trough and Suiyo Seamount determined by neutron activation analysis

    International Nuclear Information System (INIS)

    Noguchi, Takuroh; Taira, Naoto; Oomori, Tamotsu; Taira, Hatsuo; Tanahara, Akira; Takada, Jitsuya


    Neutron activation analysis of 13 hydrothermal ore samples (70 subsamples) collected from the Mid-Okinawa Trough and Suiyo Seamount revealed higher contents of precious metal such as Au and Ag, and those of As, Sb, Ga, and Hg than those from mid-ocean ridge hydrothermal systems. In addition, the Mid-Okinawa Trough samples were richer in Ag and Sb than those from the Suiyo Seamount. The geochemical differences among these hydrothermal ore deposits are regarded as reflecting both differences in the chemical composition of the hosted magma of hydrothermal system and the abundance of sediments that is reacted with hydrothermal fluids. (author)

  9. Initiation and development of the Kivu rift segment in Central Africa by reactivating un-favorably oriented structural weaknesses (United States)

    Delvaux, Damien; Smets, Benoît


    The Kivu rift region forms the central segment of the western branch of the East African rift system, between the northern termination of the Tanganyika rift and the southern extension of the Edward-George rift. Its structure and geological evolution has been revised in the light of a compilation of existing data on earthquake epicenters, focal depth, focal mechanisms, thermal springs and neotectonic faults. It has long been shown that the link between the Kivu rift basin and the Northern termination of the Tanganyika rift basin forms an accommodation zone in which the Rusizi tectonic depression occupies a central place (Ebinger, 1989). In addition, our compilation suggests that the NNE-trending Kivu rift basin and the N-S northern half of the Tanganyika rift basin initiated as separated, partly overlapping and differently oriented basins. The orientation and development of the Kivu rift basin was controlled by an inferred Mid-Proterozoic crustal shear zone and a Pan-African reverse fault front. It was not optimally oriented with the general (first-order) stress field characterized by roughly E-W extension. In a later stage, the more optimally N-S oriented North Tanganyika basin progressed towards the North and connected to Kivu rift in its middle in a region now occupied by the town of Bukavu. This accommodation zone is marked by Quaternary volcanism, warm thermal springs, frequent and relatively shallow seismicity. The southwestern part of the Kivu rift became progressively abandoned but it is still seismically active and hosts a number of warm thermal springs. This particular architecture influences the present-day stress field. This work is a contribution to the Belgian GeoRisCA project. Ebinger, C.J. 1989. Geometric and kinematic development of border faults and accommodation zones, Kivu-Rusizi Rift, Africa. Tectonics, 8, 117-133

  10. Hydrosweep Measurements During the Expedition ARK XX-2 to Lena Trough and Western Gakkel Ridge (United States)

    Gauger, S.; Kohls, T.; Roeber, S.; Snow, J.


    The region of Lena Trough and Western Gakkel Ridge in the Arctic Ocean was the object of an expedition in the summer of 2004. This region is of particular geoscientific interest because of its extremely slow spreading rates and the variety of morphologic forms that are produced in this tectonic environment. Therefore, the multibeam measurement system was of particular importance to the scientific goals of the cruise. The main characteristic of the Hydrosweep DS-2 deep-water sounding system aboard RV Polarstern is the 90° or 120° coverage angle in which the seafloor is depicted with 59 specific values for water depths perpendicular to the ship's long axis. The accuracy of the measurement is approx. 1% of water depth, the frequency of the acoustic signal is 15.5 kHz. The refraction of the sonar beams was corrected by automatic crossfan calibration. By regular transmission and measurement of a sweep profile in the ship's longitudinal direction and comparison of the slant beams with the vertical beam, the mean sound velocity over the vertical water column is determined and is used for the depth computation. The data collected include depth, sidescan (2048 values per scan), and backscatter information on each of the 59 beams. During this cruise, the Lena Trough was surveyed systematically for the first time by a multibeam sonar system. The recorded area has an expanse of approx. 100000 km2 and connects previously mapped areas of the Eurasian - North-American plate boundary between Fram Strait and Gakkel Ridge. The region of Western Gakkel Ridge, mapped in 2001 (AMOR-Expedition) by RV Polarstern and USCGC Healy (USA), was extended by two more profiles (each 220 km long) along the ridge. In order to produce working maps for the expedition, the multibeam sonar data were gridded with a spacing of 50 m, producing plots with various contour line intervals. For further morphological interpretation of Lena Trough and Gakkel Ridge slope magnitude maps, slope direction maps and

  11. Sedimentary response to tectonism in the extensional Chihuahua trough, Cretaceous of Southern North America (United States)

    Budhathoki, P.; Langford, R. P.; Pavlis, T. L.


    During the Jurassic and Cretaceous, the Chihuahua Trough formed an extensional basin, extending from the Gulf of Mexico to Southern Arizona, along the Present Border of the United States and Mexico. West of the Big Bend of Texas, Jurassic and Cretaceous sediments are less than 150 m thick, and in many areas are absent. The sedimentary package thickens to over 3km within the trough. The Albian Cox Sandstone is one of the most areally extensive formations and consists of interbedded fluvial coastal and shallow marine sandstones and shales. In this study area, shales (10-70 m) are thicker more than sandstone beds (2-10 m). This unit is overlain by Finlay formation, a fine crystalline gray limestone and underlain by Bluff Mesa formation, a fossiliferous shallow marine limestone. Cross-bedded, brown, fine to medium grained sandstone, interbedded with siltstone, shale and limestone are characteristic lithology of the Cox. The Indio Mountains of Trans-Pecos Texas offer an ideal location to study how this package accommodates the deformation associated with the subsiding Chihuahua trough. A continuous outcrop extends over 30 km oblique to the basin margin and thickens from approximately 375 m on the northern side to 437 m on the southern side of the 10 km section studied so far. One important mechanism is rotation of the strata into the basin, followed by truncation along sequence boundaries. The lower two sequence in the southern Indio mountains are rotated down to the basin relative to Finlay. The lowest sequences thicken from an erosional pinch out towards the South. Shale beds thicken within the rotated strata and accommodate some of the tilting. For example, Thickness of the shale bed varies from 18 m to 70 m within a 2 km distance. However, erosional truncation of the tilted strata accounts for most of the increases in thickness within sequences. The base of the formation has been rotated about 6 degrees south relative to the top of the formation. Another observed

  12. Three-dimensional distribution of random velocity inhomogeneities at the Nankai trough seismogenic zone (United States)

    Takahashi, T.; Obana, K.; Yamamoto, Y.; Nakanishi, A.; Kaiho, Y.; Kodaira, S.; Kaneda, Y.


    The Nankai trough in southwestern Japan is a convergent margin where the Philippine sea plate is subducted beneath the Eurasian plate. There are major faults segments of huge earthquakes that are called Tokai, Tonankai and Nankai earthquakes. According to the earthquake occurrence history over the past hundreds years, we must expect various rupture patters such as simultaneous or nearly continuous ruptures of plural fault segments. Japan Agency for Marine-Earth Science and Technology (JAMSTEC) conducted seismic surveys at Nankai trough in order to clarify mutual relations between seismic structures and fault segments, as a part of "Research concerning Interaction Between the Tokai, Tonankai and Nankai Earthquakes" funded by Ministry of Education, Culture, Sports, Science and Technology, Japan. This study evaluated the spatial distribution of random velocity inhomogeneities from Hyuga-nada to Kii-channel by using velocity seismograms of small and moderate sized earthquakes. Random velocity inhomogeneities are estimated by the peak delay time analysis of S-wave envelopes (e.g., Takahashi et al. 2009). Peak delay time is defined as the time lag from the S-wave onset to its maximal amplitude arrival. This quantity mainly reflects the accumulated multiple forward scattering effect due to random inhomogeneities, and is quite insensitive to the inelastic attenuation. Peak delay times are measured from the rms envelopes of horizontal components at 4-8Hz, 8-16Hz and 16-32Hz. This study used the velocity seismograms that are recorded by 495 ocean bottom seismographs and 378 onshore seismic stations. Onshore stations are composed of the F-net and Hi-net stations that are maintained by National Research Institute for Earth Science and Disaster Prevention (NIED) of Japan. It is assumed that the random inhomogeneities are represented by the von Karman type PSDF. Preliminary result of inversion analysis shows that spectral gradient of PSDF (i.e., scale dependence of

  13. Andean stratigraphic record of the transition from backarc extension to orogenic shortening: A case study from the northern Neuquén Basin, Argentina (United States)

    Horton, Brian K.; Fuentes, Facundo; Boll, Andrés; Starck, Daniel; Ramirez, Sebastian G.; Stockli, Daniel F.


    The temporal transition from backarc extension to retroarc shortening is a fundamental process in the evolution of many Andean-type convergent margins. This switch in tectonic regime is preserved in the 5-7 km thick Mesozoic-Cenozoic stratigraphic record of west-central Argentina at 34-36°S, where the northern Neuquén Basin and succeeding Cenozoic foreland succession chronicle a long history of fluctuating depositional systems and diverse sediment source regions during Andean orogenesis. New findings from sediment provenance and facies analyses are integrated with detrital zircon U-Pb geochronological results from 16 samples of Jurassic through Miocene clastic deposits to delineate the progressive exhumation of the evolving Andean magmatic arc, retroarc fold-thrust belt, and foreland province. Abrupt changes in provenance and depositional conditions can be reconciled with a complex Mesozoic-Cenozoic history of extension, postextensional thermal subsidence, punctuated tectonic inversion, thick- and thin-skinned shortening, overlapping igneous activity, and alternating phases of basin accumulation, sediment bypass, and erosion. U-Pb age distributions constrain the depositional ages of Cenozoic units and reveal a prolonged late middle Eocene to earliest Miocene (roughly 40-20 Ma) hiatus in the retroarc foreland basin. This stratigraphic gap is expressed as a regional disconformity that marks a pronounced shift in depositional conditions and sediment sources, from (i) slow Paleocene-middle Eocene accumulation of distal fluviolacustrine sediments (Pircala and Coihueco Formations) contributed from far western magmatic arc sources (Cretaceous-Paleogene volcanic rocks) and subordinate eastern basement rocks (Permian-Triassic Choiyoi igneous complex) to (ii) rapid Miocene-Quaternary accumulation of proximal fluvial to megafan sediments (Agua de la Piedra, Loma Fiera, and Tristeza Formations) recycled from emerging western thrust-belt sources of Mesozoic basin fill

  14. A global census of continental rift activity since 250 Ma reveals a missing element of the deep carbon cycle (United States)

    Brune, Sascha; Williams, Simon; Müller, Dietmar


    The deep carbon cycle connects CO2 concentrations within the atmosphere to the vast carbon reservoir in Earth's mantle: subducted lithosphere carries carbon into the mantle, while extensional plate boundaries and arc volcanoes release it back to Earth's surface. The length of plate boundaries thereby exerts first-order control on global CO2 fluxes on geological time scales. Here we provide a global census of rift length from the Triassic to present day, combining a new plate reconstruction analysis technique with data from the geological rift record. We find that the most extensive rift phase during the fragmentation of Pangea occurred in the Jurassic/Early Cretaceous with extension along the South Atlantic (9700 km) and North Atlantic rifts (9100 km), within East Gondwana (8500 km), the failed African rift systems (4900 km), and between Australia and Antarctica (3700 km). The combined extent of these and other rift systems amounts to more than 50.000 km of simultaneously active continental rifts. During the Late Cretaceous, in the aftermath of this massive rift episode, the global rift length dropped by 60% to 20.000 km. We further show that a second pronounced rift episode starts in the Eocene with global rift lengths of up to 30.000 km. It is well-accepted that volcanoes at plate boundaries release large amounts of CO2 from the Earth's interior. Recent work, however, highlights the importance of deep-cutting faults and diffuse degassing on CO2 emissions in the East African Rift, which appear to be comparable to CO2 release rates at mid-ocean ridges worldwide. Upscaling measured CO2 fluxes from East Africa to all concurrently active global rift zones with due caution, we compute the first-order history of cumulative rift-related CO2 degassing rates for the last 250 Myr. We demonstrate that rift-related CO2 release in the Early Cretaceous may have reached 400% of present-day rates. In first-order agreement with paleo-atmospheric CO2 concentrations from proxy

  15. Monitoring of the Syrian rift valley using radon technique

    International Nuclear Information System (INIS)

    Al-Hilal, M.; Al-Ali, A.; Jubeli, Y.


    Groundwater radon data were recorded once every two months from six monitoring sites of the Syrian rift valley during the year 1996. Radon samples were measured from deep artesian wells and from continuously-flowing springs that are distributed along this most active seismic zone in Syria. The available data were integrated with previously measured groundwater radon data from the same stations in order to estimate the range of normal radon fluctuations in the region. The estimation of such range may enable the separation between usual groundwater radon variations from other outliers which may indicate possible tectonic activities or earthquake hazards in the study area. Periodical radon measurements based on two months intervals and long distance between sampling stations does not enable us to trust with high level of confidence the connection between radon values and any possible earth dynamics. Therefore, shorter measuring time with closer monitoring sites are highly recommended to achieve the optimum advantage of such application. (Author). 8 Figs., 2 Tabs., 10 Refs

  16. A dynamic, climate-driven model of Rift Valley fever

    Directory of Open Access Journals (Sweden)

    Joseph Leedale


    Full Text Available Outbreaks of Rift Valley fever (RVF in eastern Africa have previously occurred following specific rainfall dynamics and flooding events that appear to support the emergence of large numbers of mosquito vectors. As such, transmission of the virus is considered to be sensitive to environmental conditions and therefore changes in climate can impact the spatiotemporal dynamics of epizootic vulnerability. Epidemiological information describing the methods and parameters of RVF transmission and its dependence on climatic factors are used to develop a new spatio-temporal mathematical model that simulates these dynamics and can predict the impact of changes in climate. The Liverpool RVF (LRVF model is a new dynamic, process-based model driven by climate data that provides a predictive output of geographical changes in RVF outbreak susceptibility as a result of the climate and local livestock immunity. This description of the multi-disciplinary process of model development is accessible to mathematicians, epidemiological modellers and climate scientists, uniting dynamic mathematical modelling, empirical parameterisation and state-of-the-art climate information.

  17. Butterfly Species Richness in Selected West Albertine Rift Forests

    Directory of Open Access Journals (Sweden)

    Patrice Kasangaki


    Full Text Available The butterfly species richness of 17 forests located in the western arm of the Albertine Rift in Uganda was compared using cluster analysis and principal components analysis (PCA to assess similarities among the forests. The objective was to compare the butterfly species richness of the forests. A total of 630 butterfly species were collected in 5 main families. The different species fell into 7 ecological groupings with the closed forest group having the most species and the swamp/wetland group with the fewest number of species. Three clusters were obtained. The first cluster had forests characterized by relatively high altitude and low species richness despite the big area in the case of Rwenzori and being close to the supposed Pleistocene refugium. The second cluster had forests far away from the supposed refugium except Kisangi and moderate species richness with small areas, whereas the third cluster had those forests that were more disturbed, high species richness, and low altitudinal levels with big areas.

  18. A statistical model of Rift Valley fever activity in Egypt. (United States)

    Drake, John M; Hassan, Ali N; Beier, John C


    Rift Valley fever (RVF) is a viral disease of animals and humans and a global public health concern due to its ecological plasticity, adaptivity, and potential for spread to countries with a temperate climate. In many places, outbreaks are episodic and linked to climatic, hydrologic, and socioeconomic factors. Although outbreaks of RVF have occurred in Egypt since 1977, attempts to identify risk factors have been limited. Using a statistical learning approach (lasso-regularized generalized linear model), we tested the hypotheses that outbreaks in Egypt are linked to (1) River Nile conditions that create a mosquito vector habitat, (2) entomologic conditions favorable to transmission, (3) socio-economic factors (Islamic festival of Greater Bairam), and (4) recent history of transmission activity. Evidence was found for effects of rainfall and river discharge and recent history of transmission activity. There was no evidence for an effect of Greater Bairam. The model predicted RVF activity correctly in 351 of 358 months (98.0%). This is the first study to statistically identify risk factors for RVF outbreaks in a region of unstable transmission. © 2013 The Society for Vector Ecology.

  19. Observations on rift valley fever virus and vaccines in Egypt (United States)


    Rift Valley Fever virus (RVFV, genus: Phlebovirus, family: Bunyaviridae), is an arbovirus which causes significant morbidity and mortality in animals and humans. RVFV was introduced for the first time in Egypt in 1977. In endemic areas, the insect vector control and vaccination is considering appropriate measures if applied properly and the used vaccine is completely safe and the vaccination programs cover all the susceptible animals. Egypt is importing livestock and camels from the African Horn & the Sudan for human consumption. The imported livestock and camels were usually not vaccinated against RVFV. But in rare occasions, the imported livestock were vaccinated but with unknown date of vaccination and the unvaccinated control contacts were unavailable for laboratory investigations. Also, large number of the imported livestock and camels are often escaped slaughtering for breeding which led to the spread of new strains of FMD and the introduction of RVFV from the enzootic African countries. This article provide general picture about the present situation of RVFV in Egypt to help in controlling this important disease. PMID:22152149

  20. [Rift Valley Fever: veterinary aspects and impact for human health]. (United States)

    Cêtre-Sossah, C; Albina, E


    Rift Valley fever (RVF) is an arboviral zoonosis affecting a wide range of animal species as well as humans. Clinical incidence in domestic ruminants is high with infection causing abortions in pregnant animals and high mortality rates in newborns. In humans, clinical disease appears in about 50% of infected individuals. Human illness is characterized by dengue-like symptoms with severe complications including encephalitis, retinitis, hemorrhagic fever and death occurring in 1 to 3% of cases. During epidemic outbreaks, transmission between animals or from animals to humans is mainly by direct contact with infected biological material. Under these conditions, mosquito transmission probably plays a greater role in maintaining the enzootic cycle and initiating epizootic and epidemic outbreaks during the periods of heavy rainfall. The last epidemic outbreak of RVF in Kenya, Somalia, Tanzania and Sudan in 2006-2007 killed more than 4,000 ruminants and 600 humans. After confirmed diagnosis of one human case in 2007 in Comoros, an epidemiological survey was carried out in ruminant livestock in Mayotte. Results indicated that the RVF virus has been circulating on the island since 2005. In addition, serum samples collected from patients presenting dengue-like symptoms confirmed approximately 10 cases of human infection in 2007-2008. These results suggest low-level circulation of the RVF virus in Mayotte with weak impact on human and animal health. An assessment of future risk for the island is presented.

  1. Middle Stone Age starch acquisition in the Niassa Rift, Mozambique (United States)

    Mercader, Julio; Bennett, Tim; Raja, Mussa


    The quest for direct lines of evidence for Paleolithic plant consumption during the African Middle Stone Age has led scientists to study residues and use-wear on flaked stone tools. Past work has established lithic function through multiple lines of evidence and the spatial breakdown of use-wear and microscopic traces on tool surfaces. This paper focuses on the quantitative analysis of starch assemblages and the botanical identification of grains from flake and core tools to learn about human ecology of carbohydrate use around the Niassa woodlands, in the Mozambican Rift. The processing of starchy plant parts is deduced from the occurrence of starch assemblages that presumably got attached to stone tool surfaces by actions associated with extractive or culinary activities. Specifically, we investigate starch grains from stone tools recently excavated in northern Mozambique at the site of Mikuyu; which presumably spans the middle to late Pleistocene and represents similar sites found along the Malawi/Niassa corridor that links East, Southern, and Central Africa. Starch was extracted and processed with a diverse tool kit consisting of scrapers, cores, points, flakes, and other kinds of tools. The microbotanical data suggests consumption of seeds, legumes, caryopses, piths, underground storage organs, nuts, and mesocarps from more than a dozen families. Our data suggest a great antiquity for starch use in Africa as well as an expanded diet and intensification.

  2. The North Galactic Pole Rift and the Local Hot Bubble (United States)

    Snowden, S. L.; Koutroumpa, D.; Kuntz, K. D.; Lallement, R.; Puspitarini, L.


    The North Galactic Pole Rift (NGPR) is one of the few distinct neutral hydrogen clouds at high Galactic latitudes that have well-defined distances. It is located at the edge of the Local Cavity (LC) and provides an important test case for understanding the Local Hot Bubble (LHB), the presumed location for the hot diffuse plasma responsible for much of the observed 1/4 keV emission originating in the solar neighborhood. Using data from the ROSAT All- Sky Survey and the Planck reddening map, we find the path length within the LC (LHB plus Complex of Local Interstellar Clouds) to be 98 plus or minus 27 pc, in excellent agreement with the distance to the NGPR of 98 +/- 6 pc. In addition, we examine another 14 directions that are distributed over the sky where the LC wall is apparently optically thick at 1/4 keV. We find that the data in these directions are also consistent with the LHB model and a uniform emissivity plasma filling most of the LC.

  3. Persistence of Rift Valley fever virus in East Africa (United States)

    Gachohi, J.; Hansen, F.; Bett, B.; Kitala, P.


    Rift Valley fever virus (RVFv) is a mosquito-borne pathogen of livestock, wildlife and humans that causes severe outbreaks in intervals of several years. One of the open questions is how the virus persists between outbreaks. We developed a spatially-explicit, individual-based simulation model of the RVFv transmission dynamics to investigate this question. The model, is based on livestock and mosquito population dynamics. Spatial aspects are explicitly represented by a set of grid cells that represent mosquito breeding sites. A grid cell measures 500 by 500m and the model considers a grid of 100 by 100 grid cells; the model thus operates on the regional scale of 2500km2. Livestock herds move between grid cells, and provide connectivity between the cells. The model is used to explore the spatio-temporal dynamics of RVFv persistence in absence of a wildlife reservoir in an east African semi-arid context. Specifically, the model assesses the importance of local virus persistence in mosquito breeding sites relative to global virus persistence mitigated by movement of hosts. Local persistence is determined by the length of time the virus remains in a mosquito breeding site once introduced. In the model, this is a function of the number of mosquitoes that emerge infected and their lifespan. Global persistence is determined by the level of connectivity between isolated grid cells. Our work gives insights into the ecological and epidemiological conditions under which RVFv persists. The implication for disease surveillance and management are discussed.

  4. ENAM: A community seismic experiment targeting rifting processes and post-rift evolution of the Mid Atlantic US margin (United States)

    Van Avendonk, H. J.; Magnani, M. B.; Shillington, D. J.; Gaherty, J. B.; Hornbach, M. J.; Dugan, B.; Long, M. D.; Lizarralde, D.; Becel, A.; Benoit, M. H.; Harder, S. H.; Wagner, L. S.; Christeson, G. L.


    The continental margins of the eastern United States formed in the Early Jurassic after the breakup of supercontinent Pangea. The relationship between the timing of this rift episode and the occurrence of offshore magmatism, which is expressed in the East Coast Magnetic Anomaly, is still unknown. The possible influence of magmatism and existing lithospheric structure on the rifting processes along margin of the eastern U.S. was one of the motivations to conduct a large-scale community seismic experiment in the Eastern North America (ENAM) GeoPRISMS focus site. In addition, there is also a clear need for better high-resolution seismic data with shallow penetration on this margin to better understand the geological setting of submarine landslides. The ENAM community seismic experiment is a project in which a team of scientists will gather both active-source and earthquake seismic data in the vicinity of Cape Hatteras on a 500 km wide section of the margin offshore North Carolina and Virginia. The timing of data acquisition in 2014 and 2015 facilitates leveraging of other geophysical data acquisition programs such as Earthscope's Transportable Array and the USGS marine seismic investigation of the continental shelf. In April of 2014, 30 broadband ocean-bottom seismometers were deployed on the shelf, slope and abyssal plain of the study site. These instruments will record earthquakes for one year, which will help future seismic imaging of the deeper lithosphere beneath the margin. In September and October of 2014, regional marine seismic reflection and refraction data will be gathered with the seismic vessel R/V Marcus Langseth, and airgun shots will also be recorded on land to provide data coverage across the shoreline. Last, in the summer of 2015, a land explosion seismic refraction study will provide constraints on the crustal structure in the adjacent coastal plain of North Carolina and Virginia. All seismic data will be distributed to the community through IRIS

  5. Asymmetric lithosphere as the cause of rifting and magmatism in the Permo-Carboniferous Oslo Graben, in Permo-Carboniferous Rifting and Magmatism in Europe.

    NARCIS (Netherlands)

    Pascal Candas, C.; Cloetingh, S.A.P.L.; Davies, G.R.


    Compared to other Permo-Carboniferous rift basins of NW Europe, the Oslo Graben has two distinct characteristics. First, it initiated inside cold and stable Precambrian lithosphere, whereas most Permo-Carboniferous basins developed in weaker Phanerozoic lithosphere, and second, it is characterized

  6. Re-orientation of the extension direction and pure extensional faulting at oblique rift margins: Comparison between the Main Ethiopian Rift and laboratory experiments

    NARCIS (Netherlands)

    Corti, G.; Philippon, M.|info:eu-repo/dai/nl/370818636; Sani, F.; Keir, D.; Kidane, T.


    In this study, we draw on a unique combination of well-resolved fault-slip data and earthquake focal mechanisms to constrain spatial variations in style of faulting in the obliquely extending Main Ethiopian Rift, East Africa. These data show that both boundary and internal faults - oblique and

  7. Lower Crustal Seismicity, Volatiles, and Evolving Strain Fields During the Initial Stages of Cratonic Rifting (United States)

    Lambert, C.; Muirhead, J.; Ebinger, C. J.; Tiberi, C.; Roecker, S. W.; Ferdinand-Wambura, R.; Kianji, G.; Mulibo, G. D.


    The volcanically active East African rift system in southern Kenya and northern Tanzania transects thick cratonic lithosphere, and comprises several basins characterized by deep crustal seismicity. The US-French-Tanzania-Kenya CRAFTI project aims to understand the role of magma and volatile movement during the initiation and evolution of rifting in cratonic lithosphere. Our 38-station broadband network spans all or parts of fault-bounded rift segments, enabling comparison of lithospheric structure, fault kinematics, and seismogenic layer thickness with age and proximity to the deeply rooted Archaen craton. Seismicity levels are high in all basins, but we find profound differences in seismogenic layer thickness along the length of the rift. Seismicity in the Manyara basin occurs almost exclusively within the lower crust, and in spatial clusters that have been active since 1990. In contrast, seismicity in the ~ 5 My older Magadi basin is localized in the upper crust, and the long border fault bounding the west side of the basin is seismically inactive. Between these two basins lies the Natron rift segment, which shows seismicity between ~ 20 and ~2 km depth, and high concentrations at Oldoinyo Lengai and Gelai volcanoes. Older volcanoes on the uplifted western flank (e.g., Ngorongoro) experience swarms of activity, suggesting that active magmatism and degassing are widespread. Focal mechanisms of the frequent earthquakes recorded across the array are spatially variable, and indicate a stress field strongly influenced by (1) Holocene volcanoes, (2) mechanical interactions between adjacent rift basins, and (3) a far-field ESE-WNW extensional stress regime. We explore the spatial correlation between zones of intense degassing along fault systems and seismicity, and examine the influence of high gas pressures on lower and upper crustal seismicity in this youthful cratonic rift zone.

  8. Permo-Triassic anatexis, continental rifting and the disassembly of western Pangaea (United States)

    Cochrane, Ryan; Spikings, Richard; Gerdes, Axel; Ulianov, Alexey; Mora, Andres; Villagómez, Diego; Putlitz, Benita; Chiaradia, Massimo


    Crustal anatectites are frequently observed along ocean-continent active margins, although their origins are disputed with interpretations varying between rift-related and collisional. We report geochemical, isotopic and geochronological data that define an ~ 1500 km long belt of S-type meta-granites along the Andes of Colombia and Ecuador, which formed during 275-223 Ma. These are accompanied by amphibolitized tholeiitic basaltic dykes that yield concordant zircon U-Pb dates ranging between 240 and 223 Ma. A model is presented which places these rocks within a compressive Permian arc setting that existed during the amalgamation of westernmost Pangaea. Anatexis and mafic intrusion during 240-223 Ma are interpreted to have occurred during continental rifting, which culminated in the formation of oceanic crust and initiated the break-up of western Pangaea. Compression during 275-240 Ma generated small volumes of crustal melting. Rifting during 240-225 Ma was characterized by basaltic underplating, the intrusion of tholeiitic basalts and a peak in crustal melting. Tholeiitic intrusions during 225-216 Ma isotopically resemble depleted mantle and yield no evidence for contamination by continental crust, and we assign this period to the onset of continental drift. Dissected ophiolitic sequences in northern Colombia yield zircon U-Pb dates of 216 Ma. The Permo-Triassic margin of Ecuador and Colombia exhibits close temporal, faunal and geochemical similarities with various crustal blocks that form the basement to parts of Mexico, and thus these may represent the relict conjugate margin to NW Gondwana. The magmatic record of the early disassembly of Pangaea spans ~ 20 Ma (240-216 Ma), and the duration of rifting and rift-drift transition is similar to that documented in Cretaceous-Tertiary rift settings such as the West Iberia-Newfoundland conjugate margins, and the Taupo-Lau-Havre System, where rifting and continental disassembly also occurred over periods lasting ~ 20 Ma.

  9. Interaction between transform faults and rift systems: a combined field and experimental approach

    Directory of Open Access Journals (Sweden)

    Alessandro eTibaldi


    Full Text Available We present a detailed field structural survey of the area of interaction between the active NW-striking transform Husavik-Flatey Fault (HFF and the N-S Theystareykir Fissure Swarm (TFS, in North Iceland, integrated by analogue scaled models. Field data contribute to a better understanding of how transform faults work, at a much higher detail than classical marine geophysical studies. Analogue experiments are conducted to analyse the fracture patterns resulting from different possible cases where transform faulting accompanies or postpones the rift motions; different tectonic block configurations are also considered. West of the intersection between the transform fault (HFF and the rift zone (TFS, the former splays with a gradual bending giving rise to a leading extensional imbricate fan. The westernmost structure of the rift, the N-S Gudfinnugja Fault (GF, is divided into two segments: the southern segment makes a junction with the HFF and is part of the imbricate fan; north of the junction instead, the northern GF appears right-laterally offset by about 20 m. Southeast of the junction, along the possible prolongation of the HFF across the TFS, the strike of the rift faults rotates in an anticlockwise direction, attaining a NNW-SSE orientation. Moreover, the TFS faults north of the HFF prolongation are fewer and have smaller offsets than those located to the south. Through the comparison between the structural data collected in the field at the HFF-TFS connection zone and a set of scaled experiments, we confirm a prolongation of the HFF through the rift, although here the transform fault has a much lower slip-rate than west of the junction. Our data suggest that transform fault terminations may be more complex than previously known, and propagate across a rift through a modification of the rift pattern.

  10. Magma-poor vs. magma-rich continental rifting and breakup in the Labrador Sea (United States)

    Gouiza, M.; Paton, D.


    Magma-poor and magma-rich rifted margins show distinct structural and stratigraphic geometries during the rift to breakup period. In magma-poor margins, crustal stretching is accommodated mainly by brittle faulting and the formation of wide rift basins shaped by numerous graben and half-graben structures. Continental breakup and oceanic crust accretion are often preceded by a localised phase of (hyper-) extension where the upper mantle is embrittled, serpentinized, and exhumed to the surface. In magma-rich margins, the rift basin is narrow and extension is accompanied by a large magmatic supply. Continental breakup and oceanic crust accretion is preceded by the emplacement of a thick volcanic crust juxtaposing and underplating a moderately thinned continental crust. Both magma-poor and magma-rich rifting occur in response to lithospheric extension but the driving forces and processes are believed to be different. In the former extension is assumed to be driven by plate boundary forces, while in the latter extension is supposed to be controlled by sublithospheric mantle dynamics. However, this view fails in explaining observations from many Atlantic conjugate margins where magma-poor and magma-rich segments alternate in a relatively abrupt fashion. This is the case of the Labrador margin where the northern segment shows major magmatic supply during most of the syn-rift phase which culminate in the emplacement of a thick volcanic crust in the transitional domain along with high density bodies underplating the thinned continental crust; while the southern segment is characterized mainly by brittle extension, mantle seprentinization and exhumation prior to continental breakup. In this work, we use seismic and potential field data to describe the crustal and structural architectures of the Labrador margin, and investigate the tectonic and mechanical processes of rifting that may have controlled the magmatic supply in the different segments of the margin.

  11. Influence of the monsoon trough on air-sea interaction in the head of the Bay of Bengal during the southwest monsoon of 1990 (monsoon trough boundary layer experiment - 90)

    Digital Repository Service at National Institute of Oceanography (India)

    Sarma, Y.V.B.; Seetaramayya, P.; Murty, V.S.N.; Rao, D.P.

    (-1) respectively. During the depression period the heat loss across the air-sea interface matched well with the heat loss in the upper (approx equal to 100 m) ocean. With the northward movement of the monsoon trough, the momentum and surface heat...

  12. Modeling the tectonic development of the Tucano and Sergipe-Alagoas rift basins, Brazil (United States)

    Karner, Garry D.; Egan, Stuart S.; Weissel, Jeffrey K.


    The Tucano and Sergipe-Alagoas basins of northeast Brazil form part of a regional extensional basin system that was operative during the Mesozoic breakup of South America and Africa with both basins developing on Precambrian crust. The synchronous development of the rift basins suggest that they are genetically linked in space and time. Whereas the offshore Sergipe-Alagoas basin is characterized by a substantial thickness of post-rift sediment, the Tucano basin either failed to develop or at least preserve a significant thickness of post-rift sediment. Observed primary porosities within both pre- and syn-rift Tucano basin sediment imply that significant post-rift sedimentation never occurred. Failure to develop significant post-rift subsidence has important thermal and mechanical implications for the reaction of the lithosphère to rifting and can be explained in terms of: (1) depth-dependent lithospheric extension in which intracrustal detachments allow the extension of the crust to be decoupled from the thinning of the lithospheric mantle, (2) small rates of extension that allow the lithosphere to cool during rifting, and/or (3) lithospheric rifting during which the flexural strength of the lithosphere remains high. With respect to points (2) and (3), forward modeling demonstrates that finite rifting rates over a 20-25 m.y. period are insufficient to cool the lithosphere to the point where post-rift subsidence fails to develop. An interesting complication arises when the flexural strength of the lithosphere remains large during rifting: it tends to suppress the vertical motions of the lithosphere, such as those engendered by the cooling of the lithosphere following rifting, thereby reducing significantly the amplitude of the post-rift subsidence. Thus, the lack of post-rift sedimentation within a basin does not necessarily imply that extension has been limited to the crust. From our kinematic modeling of the Tucano basin, the observed negative free-air and

  13. Recent Observational Results of Seafloor Crustal Deformation Along the Suruga-Nankai Trough, Japan (United States)

    Tadokoro, K.; Sugimoto, S.; Watanabe, T.; Muto, D.; Kimoto, A.; Okuda, T.; Ikuta, R.; Sayanagi, K.; Kuno, M.


    The Suruga-Nankai Trough is one of the active plate boundaries in the world. The Philippine Sea plate is subducting beneath the Amurian (Eurasian) plate along the tough, and major subduction earthquakes, Nankai and Tonankai earthquakes, have repeatedly occurred with intervals of about 100-150 years. The 1944 Tonankai and 1946 Nankai earthquakes are the most recent significant earthquakes along the trough. Therefore, the 50-years probabilities of the next major earthquakes are estimated at 80-90% by Headquarters for Earthquake Research Promotion, Japanese Government. It is, therefore, necessary to start monitoring crustal deformation above the source regions of the major earthquakes where in the ocean area. We developed a new system composed of the precise acoustic ranging and kinematic GPS positioning techniques for monitoring of seafloor crustal deformation [Tadokoro et al., 2006, GRL; Ikuta et al., 2008, JGR]. We had installed seven seafloor benchmarks for acoustic ranging at the Suruga-Nankai Trough region between 2002 and 2004. The water depths at the benchmarks are about 800 to 2000 m. We installed a new seafloor benchmark at the eastern margin of the Kumano Basin on June 23, 2008. Three seafloor benchmarks had been aligned perpendicular to the trough axis. In contrast, the new benchmark was installed eastward relative to the pre-installed benchmarks, and we can monitor lateral variations in crustal deformation at the region. We started the repeated measurements at four benchmarkes (two at the Kumano Basin named KMN and KMS, and the other two at the Suruga Bay named SNW and SNE) in 2005. The number of times we have measured are seven, eleven, three and nine times at KMN, KMS, SNW and SNE, respectively. Recent results of the repeated measurements show the following horizontal velocities with relative to the Amurian Plate: 6.4 cm/yr, N86W at KMN; 5.3 cm/yr, N71W at KMS; 3.3 cm/yr, N57W at SNE. The errors of the horizontal velocities are 1-3 cm/yr. Unfortunately

  14. Study of a new solar adsorption refrigerator powered by a parabolic trough collector

    Energy Technology Data Exchange (ETDEWEB)

    El Fadar, A. [Energetic Laboratory, Sciences Faculty, BP 2121, 93000 Tetouan, Abdelmalek Essaadi University (Morocco); Mimet, A. [Energetic Laboratory, Sciences Faculty, BP 2121, 93000 Tetouan, Abdelmalek Essaadi University (Morocco)], E-mail:; Azzabakh, A. [Energetic Laboratory, Sciences Faculty, BP 2121, 93000 Tetouan, Abdelmalek Essaadi University (Morocco); Perez-Garcia, M. [Dpto. de Fisica Aplicada - Universidad de Almeria (Spain); Castaing, J. [Laboratoire Thermique, Energetique et Procedes (LaTEP), Avenue de l' Universite, BP 1155, 64013 Pau Cedex (France)


    This paper presents the study of solar adsorption cooling machine, where the reactor is heated by a parabolic trough collector (PTC) and is coupled with a heat pipe (HP). This reactor contains a porous medium constituted of activated carbon, reacting by adsorption with ammonia. We have developed a model, based on the equilibrium equations of the refrigerant, adsorption isotherms, heat and mass transfer within the adsorbent bed and energy balance in the hybrid system components. From real climatic data, the model computes the performances of the machine. In comparison with other systems powered by flat plate or evacuated tube collectors, the predicted results, have illustrated the ability of the proposed system to achieve a high performance due to high efficiency of PTC, and high flux density of heat pipe.

  15. Design and modeling of solar parabolic trough power plant with MATLAB

    Directory of Open Access Journals (Sweden)

    Mohammad Sanan T.


    Full Text Available With the fact that Malaysia is one of the fast- growing countries, demand of energy increment is rapid. Malaysia is able to obtain ample amount of annual solar radiation due to its location at equator. If this is utilized proficiently and effectively, then, it can suffice the domestic needs as well as the industrial needs in terms of energy consumption. This article proposes a parabolic Trough Power Plant which is designed with 1.2 kW net electric output. Consequently, the results of theoretical calculations are detailed in the article, while, ensuring the analysing of design proposed through the MATLAB software. The results showed that by making use of aperture having an area of approximately 80 m2, maximum useful heat gain of 20701W at 13:00 pm was attained in March. The maximum net power is 11.84 kWh/day in February.

  16. Methane hydrate morphology of natural hydrate-bearing sediment from Nankai trough, Japan (United States)

    Konno, Y.; Jin, Y.; Yoneda, J.; Kida, M.; Nagao, J.


    As a part of MH21, the Research Consortium for Methane Hydrate Resources in Japan, who initiated Japan's Methane Hydrate R&D Program (managed by the Ministry of Economy, Trade, and Industry (METI)), we developed newly pressured hydrate sediment analyzing apparatus (Pressured Non-destructive Analysis Tools, here after PNATs) including an X-ray computed-tomography (CT) system, gamma-ray density measurement system, an instrumented pressure testing chamber (IPTC). The Japanese IPTC was developed with strong cooperation from Georgia Tech and the U.S. Geological Survey. In this study, we investigated the hydrate morphology in natural gas hydrate-bearing (GH) sediment recovered from eastern Nankai trough area under hydro-pressurized condition using PNATs. In addition to P-wave measurement via the IPTC, we assessed hydrate saturation Sh in sediment sample by using our newly ATR-IR probe for the IPTC. Our analysis reveals that the pressurized sample shows load-bearing GH sediment.

  17. Parabolic Trough Reference Plant for Cost Modeling with the Solar Advisor Model (SAM)

    Energy Technology Data Exchange (ETDEWEB)

    Turchi, C.


    This report describes a component-based cost model developed for parabolic trough solar power plants. The cost model was developed by the National Renewable Energy Laboratory (NREL), assisted by WorleyParsons Group Inc., for use with NREL's Solar Advisor Model (SAM). This report includes an overview and explanation of the model, two summary contract reports from WorleyParsons, and an Excel spreadsheet for use with SAM. The cost study uses a reference plant with a 100-MWe capacity and six hours of thermal energy storage. Wet-cooling and dry-cooling configurations are considered. The spreadsheet includes capital and operating cost by component to allow users to estimate the impact of changes in component costs.

  18. Design and Implementation of PLC-Based Automatic Sun tracking System for Parabolic Trough Solar Concentrator

    Directory of Open Access Journals (Sweden)

    Wang Jinping


    Full Text Available A sun-tracking system for parabolic trough solar concentrators (PTCs is a control system used to orient the concentrator toward the sun always, so that the maximum energy can be collected. The work presented here is a design and development of PLC based sun tracking control system for PTC. Sun tracking control system consists of a Programmable Logic Controller (PLC and a single axis hydraulic drives tracking control system. Hydraulic drives and the necessary tracking angle algorithm have been designed and developed to perform the technical tasks. A PLC unit was employed to control and monitor the mechanical movement of the PTC and to collect and store data related to the tracking angle of PTC. It is found that the tracking error of the system is less than 0.6°. Field experience shows that tracking algorithm act stable and reliable and suit for PTCs.

  19. Potential for using parabolic trough collectors to supplement power cycle boilers (United States)

    Schimmel, W. P., Jr.; Lukens, L. L.


    The advantage of such a system is that solar energy is used to heat the water in a steam Rankine cycle device up to the superheat regime, thus displacing the fossil fuel usually required. The temperature associated with this portion of the power cycle is typically on the order of 320 C or less, which makes it compatible with current parabolic trough collector systems. A system model which lends itself to optimization studies was constructed and exercised over a range of the multiparameter space involved. The collector field, storage, supplementary fossil boiler and superheater, and turbine/generator traded off to obtain a series of economically optimal systems for various years and solar fractions.

  20. Strain Accumulation Estimated from Seafloor Crustal Deformation at the Nankai Trough, Japan (United States)

    Tadokoro, K.; Watanabe, T.; Nagai, S.; Ikuta, R.; Okuda, T.; Kenji, Y.; Sakata, T.


    Our research has developed an observation system for seafloor crustal deformation composed of the kinematic GPS and acoustic ranging techniques [Tadokoro et al., 2006; Ikuta et al., 2008]. We monitored crustal deformation at the Nankai Trough, Japan, where the Philippine Sea Plate subducts beneath the Amurian Plate. The convergence rate is predicted at 60 mm/y in the N59W direction by the Euler vector of REVEL [Sella et al., 2002]. We installed three monitoring sites (named KMN, KMS, and KME) on the seafloor at depths of about 1920-2030 m. The sites KMN and KMS are installed perpendicular to the trough axis with a spacing of 20 km; the site KME is 50 km from KMN and KMS in the direction parallel to the trough axis. The monitoring was started in 2004, 2005, and 2008 at KMS, KMN, and KME, respectively. The numbers of measurements are 16, 20, and 5 times at KMN, KMS, and KME, respectively. We obtained 3-7 years averaged horizontal site velocities within ITRF2000 adopting a robust estimation method with Tukey's biweight function to the time series of site position measured until the end of 2011. Substituting the synthetic rigid block motions of the Amurian Plate from the velocities within ITRF2000, we obtained the following site velocities with respect to the Amurian Plate [Tadokoro et al., 2012]: KMN 41±4 mm/y, N77±7W KMS 43±5 mm/y, N80±6W KME 42±5 mm/y, N80±7W In contrast, the on-land GPS horizontal velocities along the coast is 23-33 mm/y toward N74-80W. The present observational results show: (1) the velocity vectors are all the same length and direction, which indicates no internal deformation in this region; (2) the back-slip model predicts that the plate interface beneath the region is uniformly locked with coupling ratios of 60-80 %, indicating strain accumulation that will be released during the anticipated mega-thrust Tonankai earthquake; and (3) the directions of site velocities differ from that of convergence vector by 20 degrees, which is affected by