WorldWideScience

Sample records for tropical soils parametros

  1. Tropical Soil Chemistry

    DEFF Research Database (Denmark)

    Borggaard, Ole K.

    and environmental protection. Tropical Soil Chemistry by Ole K. Borggaard provides an overview of the composition, occurrence, properties, processes, formation, and environmental vulnerability of various tropical soil types (using American Soil Taxonomy for classification). The processes and the external factors...... soil chemical issues are also presented to assess when, why, and how tropical soils differ from soils in other regions. This knowledge can help agricultural specialists in the tropics establish sustainable crop production. Readers are assumed to be familiar with basic chemistry, physics...

  2. Mycorrhizas and tropical soil fertility

    NARCIS (Netherlands)

    Cardoso, I.M.; Kuyper, T.W.

    2006-01-01

    Major factors that constrain tropical soil fertility and sustainable agriculture are low nutrient capital, moisture stress, erosion, high P fixation, high acidity with aluminium toxicity, and low soil biodiversity. The fragility of many tropical soils limits food production in annual cropping

  3. Lability of soil organic carbon in tropical soils with different clay minerals

    DEFF Research Database (Denmark)

    Bruun, Thilde Bech; Elberling, Bo; Christensen, Bent Tolstrup

    2010-01-01

    Soil organic carbon (SOC) storage and turnover is influenced by interactions between organic matter and the mineral soil fraction. However, the influence of clay content and type on SOC turnover rates remains unclear, particularly in tropical soils under natural vegetation. We examined the lability...... of SOC in tropical soils with contrasting clay mineralogy (kaolinite, smectite, allophane and Al-rich chlorite). Soil was sampled from A horizons at six sites in humid tropical areas of Ghana, Malaysian Borneo and the Solomon Islands and separated into fractions above and below 250 µm by wet sieving....... Basal soil respiration rates were determined from bulk soils and soil fractions. Substrate induced respiration rates were determined from soil fractions. SOC lability was significantly influenced by clay mineralogy, but not by clay content when compared across contrasting clay minerals. The lability...

  4. Predicting soil properties in the tropics

    NARCIS (Netherlands)

    Minasny, B.; Hartemink, A.E.

    2011-01-01

    It is practically impossible to measure soil properties continuously at each location across the globe. Therefore, it is necessary to have robust systems that can predict soil properties at a given location. That is needed in many tropical countries where the dearth of soil property measurements is

  5. Susceptibility of coarse-textured soils to soil erosion by water in the tropics

    International Nuclear Information System (INIS)

    Salako, F.K.

    2004-01-01

    The application of soil physics for the evaluation of factors of soil erosion in the tropics received considerable attention in the last four decades. In Nigeria, physical characteristics of rainfall such as drop size and drop-size distribution, rainfall intensity at short intervals and kinetic energy of rainfall were evaluated using different methods. Thus, compound erosivity indices were evaluated which showed a similar trend in annual rainfall erosivity with annual rainfall amounts. Attempts have also been made to use geostatistical tools and fractal theory to describe temporal variability in rainfall erosivity. High erosivity aggravates the vulnerability of coarse-textured soils to erosion. These soils, high in sand content were poorly aggregated and structurally weak. Thus, they were easily detached and transported by runoff. Long-term data are needed to describe factors of soil erosion in the tropics but quite often, equipment are not available or poorly maintained where available such that useful data are not collected. A greater cooperation of pure physicists, soil physicists and engineers in the developing nations is needed to improve or design equipment and methods for the characterization of factors of soil erosion in the tropics. (author)

  6. Anoxic conditions drive phosphorus limitation in humid tropical forest soil microorganisms

    Science.gov (United States)

    Gross, A.; Pett-Ridge, J.; Weber, P. K.; Blazewicz, S.; Silver, W. L.

    2017-12-01

    The elemental stoichiometry of carbon (C), nitrogen (N) and phosphorus (P) of soil microorganisms (C:N:P ratios) regulates transfers of energy and nutrients to higher trophic levels. In humid tropical forests that grow on P-depleted soils, the ability of microbes to concentrate P from their surroundings likely plays a critical role in P-retention and ultimately in forest productivity. Models predict that climate change will cause dramatic changes in rainfall patterns in the humid tropics and field studies have shown these changes can affect the redox state of tropical forest soils, influencing soil respiration and biogeochemical cycling. However, the responses of soil microorganisms to changing environmental conditions are not well known. Here, we incubated humid tropical soils under oxic or anoxic conditions with substrates differing in both C:P stoichiometry and lability, to assess how soil microorganisms respond to different redox regimes. We found that under oxic conditions, microbial C:P ratios were similar to the global optimal ratio (55:1), indicating most microbial cells can adapt to persistent aerated conditions in these soils. However, under anoxic conditions, the ability of soil microbes to acquire soil P declined and their C:P ratios shifted away from the optimal ratio. NanoSIMS elemental imaging of single cells extracted from soil revealed that under anoxic conditions, C:P ratios were above the microbial optimal value in 83% of the cells, in comparison to 41% under oxic conditions. These data suggest microbial growth efficiency switched from being energy limited under oxic conditions to P-limited under anoxic conditions, indicating that, microbial growth in low P humid tropical forests soils may be most constrained by P-limitation when conditions are oxygen-limited. We suggest that differential microbial responses to soil redox states could have important implications for productivity of humid tropical forests under future climate scenarios.

  7. A soil mechanics approach to study soil compaction and traffic effect on the preconsolidation pressure of tropical soils

    International Nuclear Information System (INIS)

    Dias Junior, Moacir de Souza

    2004-01-01

    Several researchers have already demonstrated the causes and the effects of soil compaction. These studies showed that the soil compaction is a limiting factor in the agricultural production. The attributes of the soil conventionally monitored has not been capable to quantify the load support capacity of the soil, not allowing to foresee the levels of pressures that can be applied to the soils at different moisture conditions without additional soil compaction (structure degradation) happens. The researches done in the soil compressive behaviour of some tropical soils indicate that the pre-compression stress may be used as an alternative measure of the load support capacity and as a quantitative indicator of the structure sustainability of the tropical soils

  8. Biodegradation of di(2-ethylhexyl)phthalate in a typical tropical soil

    Energy Technology Data Exchange (ETDEWEB)

    Castelo de Moura Carrara, Silvia Marta; Morita, Dione Mari [Polytechnic School, University of Sao Paulo (Brazil); Boscov, Maria Eugenia Gimenez, E-mail: meboscov@usp.br [Polytechnic School, University of Sao Paulo (Brazil)

    2011-12-15

    Highlights: Black-Right-Pointing-Pointer Scarce literature on contamination of tropical soils by phthalates. Black-Right-Pointing-Pointer Investigation of mobility of DEHP in a tropical soil by infiltration tests showed that DEHP is retained in the upper layer of the soil. Black-Right-Pointing-Pointer Low air and water permeability indicate that in situ bioremediation is not feasible for this soil. Black-Right-Pointing-Pointer Respirometric tests were inadequate to investigate biodegradation because tropical soils are acidic. Black-Right-Pointing-Pointer Slurry-phase reactor with cement mixer provided significant biodegradation (99% in 49 days). - Abstract: The aim of this research was to evaluate the possibility of biodegradation of di(2-ethylhexyl)phthalate (DEHP), widely used as an industrial plasticizer and considered an endocrine-disrupting chemical included in the U.S. Environmental Protection Agency priority list, in a Brazilian tropical soil, which has not been previously reported in the literature, despite the geographic importance of tropical soils. Preliminary laboratory testing comprised respirometric, air and water permeability, and pilot scale infiltration tests. Standard respirometric tests were found inadequate for studying biodegradation in tropical contaminated soils, due to the effect of the addition of significant amounts of calcium carbonate, necessary to adjust soil pH. Pilot scale infiltration tests performed for 5 months indicated that DEHP was retained in the superficial layer of the soil, barely migrating downwards, whereas air and water permeability tests discarded in situ bioremediation. However, ex situ bioremediation was possible, using a slurry-phase reactor with acclimated microorganisms, in pilot scale tests conducted to remediate a total mass of 150 kg of contaminated soil with 100 mg DEHP/kg. The removal of DEHP in the slurry-phase reactor achieved the percentage of 99% in 49 days, with biodegradation following a first

  9. Tropical forest soil microbes and climate warming: An Andean-Amazon gradient and `SWELTR'

    Science.gov (United States)

    Nottingham, A.; Turner, B. L.; Fierer, N.; Whitaker, J.; Ostle, N. J.; McNamara, N. P.; Bardgett, R.; Silman, M.; Bååth, E.; Salinas, N.; Meir, P.

    2017-12-01

    Climate warming predicted for the tropics in the coming century will result in average temperatures under which no closed canopy forest exists today. There is, therefore, great uncertainty associated with the direction and magnitude of feedbacks between tropical forests and our future climate - especially relating to the response of soil microbes and the third of global soil carbon contained in tropical forests. While warming experiments are yet to be performed in tropical forests, natural temperature gradients are powerful tools to investigate temperature effects on soil microbes. Here we draw on studies from a 3.5 km elevation gradient - and 20oC mean annual temperature gradient - in Peruvian tropical forest, to investigate how temperature affects the structure of microbial communities, microbial metabolism, enzymatic activity and soil organic matter cycling. With decreased elevation, soil microbial diversity increased and community composition shifted, from taxa associated with oligotrophic towards copiotrophic traits. A key role for temperature in shaping these patterns was demonstrated by a soil translocation experiment, where temperature-manipulation altered the relative abundance of specific taxa. Functional implications of these community composition shifts were indicated by changes in enzyme activities, the temperature sensitivity of bacterial and fungal growth rates, and the presence of temperature-adapted iso-enzymes at different elevations. Studies from a Peruvian elevation transect indicated that soil microbial communities are adapted to long-term (differences with elevation) and short-term (translocation responses) temperature changes. These findings indicate the potential for adaptation of soil microbes in tropical soils to future climate warming. However, in order to evaluate the sensitivity of these processes to climate warming in lowland forests, in situ experimentation is required. Finally, we describe SWELTR (Soil Warming Experiment in Lowland

  10. Assessing soil fertility decline in the tropics using soil chemical data

    NARCIS (Netherlands)

    Hartemink, A.E.

    2006-01-01

    Soil fertility decline is perceived to be widespread in the upland soils of the tropics, particularly in sub-Saharan Africa. Most studies have used nutrient balances to assess the degree and extent of nutrient depletion; these have created awareness but suffer methodological problems as several of

  11. Effects of phosphorus and nitrogen additions on tropical soil microbial activity in the context of experimental warming

    Science.gov (United States)

    Foley, M.; Nottingham, A.; Turner, B. L.

    2017-12-01

    Soil warming is generally predicted to increase microbial mineralization rates and accelerate soil C losses which could establish a positive feedback to climatic warming. Tropical rain forests account for a third of global soil C, yet the responseto of tropical soil C a warming climate remains poorly understood. Despite predictions of soil C losses, decomposition of soil organic matter (SOM) in tropical soils may be constrained by several factors including microbial nutrient deficiencies. We performed an incubation experiment in conjunction with an in-situ soil warming experiment in a lowland tropical forest on Barro Colorado Island, Panama, to measure microbial response to two key nutrient additions in shallow (0-10cm) and deep (50-100 cm) soils. We compared the response of lowland tropical soils to montane tropical soils, predicting that lowland soils would display the strongest response to phosphorus additions. Soils were treated with either carbon alone (C), nitrogen (CN), phosphorus (CP) or nitrogen and phosphorus combined (CNP). Carbon dioxide (CO2) production was measured by NaOH capture and titrimetric analysis for 10 days. Cumulative CO2 production in montane soils increased significantly with all additions, suggesting these soils are characterized by a general microbial nutrient deficiency. The cumulative amount of C respired in deep soils from the lowland site increased significantly with CP and CNP additions, suggesting that microbial processes in deep lowland tropical soils are phosphorus-limited. These results support the current understanding that lowland tropical forests are growing on highly weathered, phosphorus-deplete soils, and provide novel insight that deep tropical SOM may be stabilized by a lack of biologically-available phosphorus. Further, this data suggests tropical soil C losses under elevated temperature may be limited by a strong microbial phosphorus deficiency.

  12. Microorganisms in Soils of Bovine Production Systems in Tropical Lowlands and Tropical Highlands in the Department of Antioquia, Colombia

    Directory of Open Access Journals (Sweden)

    Licet Paola Molina-Guzmán

    2018-01-01

    Full Text Available Studies on the physical and chemical effects of extensive grazing on soils have been performed in Colombia, but the effects of dairy cattle rearing on the biological properties of soils are not well known. The objective of this study was to evaluate microorganisms in 48 soils from livestock farms in the highland and lowland tropics in the Northern and Magdalena Medio subregions of the Department of Antioquia (Colombia. Principal component analysis demonstrated differences in the edaphic compositions of the soils, with increased percentages of root colonization by arbuscular mycorrhizal fungi and the density of microorganisms in farms that have soils with moderate phosphorus and nitrogen contents, low potassium content, and a moderately acidic pH. Agglomerative cluster analysis showed two groups for the highland tropic soils and six groups for the lowland tropic soils based on their population densities and interactions with the studied parameters. These results represent a first attempt to describe the density of microorganisms and the effect of soil physicochemical parameters on colonization by arbuscular mycorrhizal fungi in areas with determinant agroecological conditions, microbial functional diversity, and the presence of mycorrhizal fungi in livestock farm soils in Colombia.

  13. pH dominates variation in tropical soil archaeal diversity and community structure.

    Science.gov (United States)

    Tripathi, Binu M; Kim, Mincheol; Lai-Hoe, Ang; Shukor, Nor A A; Rahim, Raha A; Go, Rusea; Adams, Jonathan M

    2013-11-01

    Little is known of the factors influencing soil archaeal community diversity and composition in the tropics. We sampled soils across a range of forest and nonforest environments in the equatorial tropics of Malaysia, covering a wide range of pH values. DNA was PCR-amplified for the V1-V3 region of the 16S rRNA gene, and 454-pyrosequenced. Soil pH was the best predictor of diversity and community composition of Archaea, being a stronger predictor than land use. Archaeal OTU richness was highest in the most acidic soils. Overall archaeal abundance in tropical soils (determined by qPCR) also decreased at higher pH. This contrasts with the opposite trend previously found in temperate soils. Thaumarcheota group 1.1b was more abundant in alkaline soils, whereas group 1.1c was only detected in acidic soils. These results parallel those found in previous studies in cooler climates, emphasizing niche conservatism among broad archaeal groups. Among the most abundant operational taxonomic units (OTUs), there was clear evidence of niche partitioning by pH. No individual OTU occurred across the entire range of pH values. Overall, the results of this study show that pH plays a major role in structuring tropical soil archaeal communities. © 2013 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  14. Tropical forest soil microbial communities couple iron and carbon biogeochemistry

    Energy Technology Data Exchange (ETDEWEB)

    Dubinsky, E.A.; Silver, W.L.; Firestone, M.K.

    2009-10-15

    We report that iron-reducing bacteria are primary mediators of anaerobic carbon oxidation in upland tropical soils spanning a rainfall gradient (3500 - 5000 mm yr-1) in northeast Puerto Rico. The abundant rainfall and high net primary productivity of these tropical forests provide optimal soil habitat for iron-reducing and iron-oxidizing bacteria. Spatially and temporally dynamic redox conditions make iron-transforming microbial communities central to the belowground carbon cycle in these wet tropical forests. The exceedingly high abundance of iron-reducing bacteria (up to 1.2 x 10{sup 9} cells per gram soil) indicated that they possess extensive metabolic capacity to catalyze the reduction of iron minerals. In soils from the higher rainfall sites, measured rates of ferric iron reduction could account for up to 44 % of organic carbon oxidation. Iron reducers appeared to compete with methanogens when labile carbon availability was limited. We found large numbers of bacteria that oxidize reduced iron at sites with high rates of iron reduction and large numbers of iron-reducers. the coexistence of large populations of ironreducing and iron-oxidizing bacteria is evidence for rapid iron cycling between its reduced and oxidized states, and suggests that mutualistic interactions among these bacteria ultimately fuel organic carbon oxidation and inhibit CH4 production in these upland tropical forests.

  15. Soil properties related to 60Co bioavailability in tropical soils

    International Nuclear Information System (INIS)

    Bartoly, Flavia; Wasserman, Maria Angelica; Rochedo, Elaine Ruas Rodriguez; Viana, Aline Gonzalez; Souza, Rodrigo Camara; Oliveira, Giselle Rodrigues; Reis, Wagner Goncalves Soares; Perez, Daniel Vidal

    2005-01-01

    This work presents the results of field experiments to obtain soil to plants Transfer factor (TF) for 60 Co in reference plants cultivated in Ferralsol, Acrisol and Nitisol. These soils represent the majority of Brazilian agricultural area. Values of TF varied from 0.001 to 0.05 for corn and from 0.001 to 0.81 for cabbage. Results of 60 Co TF were discussed in relation to the physical and chemical properties of the soils and 60 Co geochemical partition. The sequential chemical extraction showed that more than 40% of the 60 Co present in the soils are associated to manganese oxides. These results will provide regional values for parameters used in the environmental radiological modeling aiming to optimize the planning of emergency interventions or the waste management related to tropical soils. (author)

  16. Soil mineralogy and microbes determine forest life history strategy and carbon cycling in humid tropical forests

    Science.gov (United States)

    Soong, J.; Verbruggen, E.; Peñuelas, J.; Janssens, I. A.; Grau, O.

    2017-12-01

    Tropical forests account for over one third of global terrestrial gross primary productivity and cycle more C than any other ecosystem on Earth. However, we still lack a mechanistic understanding of how such high productivity is maintained on the old, highly weathered and phosphorus depleted soils in the tropics. We hypothesized that heterogeneity in soil texture, mineralogy and microbial community composition may be the major drivers of differences in soil C storage and P limitation across tropical forests. We sampled 12 forest sites across a 200 km transect in the humid neo-tropics of French Guiana that varied in soil texture, precipitation and mineralogy. We found that soil texture was a major driver of soil carbon stocks and forest life history strategy, where sandy forests have lower soil C stocks, slower turnover and decomposition and a more closed nutrient cycle while clayey forests have higher soil C stocks, faster turnover and a more leaky nutrient cycle (using natural abundance stable isotope evidence). We found that although the presence of Al and Fe oxides in the clayey soils occludes soil organic matter and P, a greater abundance of arbuscular mycorrhizal fungi help forests to access occluded P in clayey soils fueling higher turnover and faster decomposition rates. Evidence from a laboratory incubation of tropical soils with nutrient additions further demonstrates the de-coupling of microbial P demands from C:N limitations providing further evidence for the need to examine microbial stoichiometry to explain C cycling in the P-limited tropics. We argue that microbial community composition and physiological demands, constrained within the limitations of soil mineralogical reactivity, largely controls nutrient and C cycling in tropical forest soils. Together our observational field study and laboratory incubation provide a unique dataset to shed light on the mineralogical and microbial controls on C and nutrient cycling in tropical soils. By integrating

  17. Sorption of pesticides in tropical and temperate soils from Australia and the Philippines.

    Science.gov (United States)

    Oliver, Danielle P; Kookana, Rai S; Quintana, Belen

    2005-08-10

    The sorption behavior of diuron, imidacloprid, and thiacloprid was investigated using 22 soils collected in triplicate from temperate environments in Australia and tropical environments in Australia and the Philippines. Within the temperate environment in Australia, the soils were selected from a range of land uses. The average KOC values (L/kg) for imidacloprid were 326, 322, and 336; for thiacloprid, the values were 915, 743, and 842; and for diuron, the values were 579, 536, and 618 for the Ord (tropical), Mt. Lofty (temperate), and Philippines (tropical) soils, respectively. For all soils, the sorption coefficients decreased in the following order: thiacloprid > diuron > imidacloprid. There were no significant differences in sorption behavior between the tropical soils from the Philippines and the temperate soils from Australia. Sorption was also not significantly related with soil characteristics, namely, organic carbon (OC) content, clay content, and pH, for any of the three chemicals studied. When the data were sorted into separate land uses, the sorption of all three chemicals was highly correlated (P soils from the Philippines. Sorption coefficients for all three chemicals were highly correlated with OC in temperate, native soils only when one extreme value was removed. The relationships between sorption of all three chemicals and OC in temperate, pasture soils were best described by a polynomial. Sorption coefficients for imidacloprid and thiacloprid determined in the temperate pasture soils remained fairly consistent as the OC content increased from 3.3 to 5.3%, indicating that, although the total OC in the pasture soils was increasing, the component of OC involved with sorption of these two compounds may have been remaining constant. This study demonstrated that the origin of the soils (i.e., temperate vs tropical) had no significant effect on the sorption behavior, but in some cases, land use significantly affected the sorption behavior of the three

  18. Stability and instability on Maya Lowlands tropical hillslope soils

    Science.gov (United States)

    Beach, Timothy; Luzzadder-Beach, Sheryl; Cook, Duncan; Krause, Samantha; Doyle, Colin; Eshleman, Sara; Wells, Greta; Dunning, Nicholas; Brennan, Michael L.; Brokaw, Nicholas; Cortes-Rincon, Marisol; Hammond, Gail; Terry, Richard; Trein, Debora; Ward, Sheila

    2018-03-01

    Substantial lake core and other evidence shows accelerated soil erosion occurred in the Maya Lowlands of Central America over ancient Maya history from 3000 to 1000 years ago. But we have little evidence of the wider network of the sources and sinks of that eroded sediment cascade. This study begins to solve the mystery of missing soil with new research and a synthesis of existing studies of tropical forest soils along slopes in NW Belize. The research aim is to understand soil formation, long-term human impacts on slopes, and slope stability over time, and explore ecological implications. We studied soils on seven slopes in tropical forest areas that have experienced intensive ancient human impacts and those with little ancient impacts. All of our soil catenas, except for one deforested from old growth two years before, contain evidence for about 1000 years of stable, tropical forest cover since Maya abandonment. We characterized the physical, chemical, and taxonomic characteristics of soils at crest-shoulder, backslopes, footslopes, and depression locations, analyzing typical soil parameters, chemical elements, and carbon isotopes (δ13C) in dated and undated sequences. Four footslopes or depressions in areas of high ancient occupation preserved evidence of buried, clay-textured soils covered by coarser sediment dating from the Maya Classic period. Three footslopes from areas with scant evidence of ancient occupation had little discernable deposition. These findings add to a growing corpus of soil toposequences with similar facies changes in footslopes and depressions that date to the Maya period. Using major elemental concentrations across a range of catenas, we derived a measure (Ca + Mg) / (Al + Fe + Mn) of the relative contributions of autochthonous and allochthonous materials and the relative age of soil catenas. We found very low ratios in clearly older, buried soils in footslopes and depressions and on slopes that had not undergone ancient Maya erosion. We

  19. Sorption-desorption of radiocesium interception potential in tropical soils

    International Nuclear Information System (INIS)

    Roque, Mario L.; Boaretto, Rodrigo M.; Boaretto, Antonio E.; Smolders, Erik E.T.

    2000-01-01

    A study of sorption of radiocaesium in soils of tropical climate (Brazil) was carried. The values of definitive fixation of the radiocaesium were determined by analytic methodology of sorption-desorption and the availability to plants were calculated by the determination of radiocesium interception potential (RIP). The values of sorption varied from 1,2 to 74,8% and the fixation varied from 3,2% to 32,2%. The results shown that the radiocaesium did remain adsorbed mainly to the frayed edge site. The low values of interception potential and definitive fixation demonstrated high capacity of the tropical soils in disposal the radionuclide for the solution and, consequently, to plants. (author)

  20. Soil changes induced by rubber and tea plantation establishment: comparison with tropical rain forest soil in Xishuangbanna, SW China.

    Science.gov (United States)

    Li, Hongmei; Ma, Youxin; Liu, Wenjie; Liu, Wenjun

    2012-11-01

    Over the past thirty years, Xishuangbanna in Southwestern China has seen dramatic changes in land use where large areas of tropical forest and fallow land have been converted to rubber and tea plantations. In this study we evaluated the effects of land use and slope on soil properties in seven common disturbed and undisturbed land-types. Results indicated that all soils were acidic, with pH values significantly higher in the 3- and 28-year-old rubber plantations. The tropical forests had the lowest bulk densities, especially significantly lower from the top 10 cm of soil, and highest soil organic matter concentrations. Soil moisture content at topsoil was highest in the mature rubber plantation. Soils in the tropical forests and abandoned cultivated land had inorganic N (IN) concentrations approximately equal in NH(4) (+)-N and NO(3) (-)-N. However, soil IN pools were dominated by NH(4) (+)-N in the rubber and tea plantations. This trend suggests that conversion of tropical forest to rubber and tea plantations increases NH(4) (+)-N concentration and decreases NO(3) (-)-N concentration, with the most pronounced effect in plantations that are more frequently fertilized. Soil moisture content, IN, NH(4) (+)-N and NO(3) (-)-N concentrations within all sites were higher in the rainy season than in the dry season. Significant differences in the soil moisture content, and IN, NH(4) (+)-N and NO(3) (-)-N concentration was detected for both land uses and sampling season effects, as well as interactions. Higher concentrations of NH(4) (+)-N were measured at the upper slopes of all sites, but NO(3) (-)-N concentrations were highest at the lower slope in the rubber plantations and lowest at the lower slopes at all other. Thus, the conversion of tropical forests to rubber and tea plantations can have a profound effect on soil NH(4) (+)-N and NO(3) (-)-N concentrations. Options for improved soil management in plantations are discussed.

  1. Erodibility of cement-stabilized tropical soils in highway engineering in Togo

    International Nuclear Information System (INIS)

    Eklu-Natey, T.E.D.

    1992-01-01

    This work contains a methodical study on the suceptibility to weather of cement-stabilized tropical soils of Togo by simulating on the one hand the climatic conditions of the original surroundings and on the other hand the variations occuring in situ of the degree of saturation and compaction. The chosen tests ensure for the first time a simple execution and at the same time reproducible numerical values of the results achieved. From results of the slaking, erosion, adhesion, durability and swelling tests clear parameters and classification criteria were derived which help to forecast the susceptibility to weather of soils in tropical climates. A method for the determination of the reaction to water of soils is proposed consisting of a particular process of derivation and interpretation of the consistency value for a given swelling rate. Moreover a possibility is recommended with which the time-consuming and expensive mineralogical analyses which were frequently used in the past for torpical soils can be avoided. The proposed evaluation criteria provides civil engineers working in permanently moist, arid or intermittently moist tropical regions with practical and theoretical bases for the estimation of the erodibility of soils. (orig./BBR) [de

  2. Infrared heater system for warming tropical forest understory plants and soils

    Science.gov (United States)

    Bruce A. Kimball; Aura M. Alonso-Rodríguez; Molly A. Cavaleri; Sasha C. Reed; Grizelle González; Tana E. Wood

    2018-01-01

    The response of tropical forests to global warming is one of the largest uncertainties in predicting the future carbon balance of Earth. To determine the likely effects of elevated temperatures on tropical forest understory plants and soils, as well as other ecosystems, an infrared (IR) heater system was developed to provide in situ warming for the Tropical Responses...

  3. Earthworms in tropical tree plantations: effects of management and relations with soil carbon and nutrient use efficiency

    Science.gov (United States)

    X Zou; Grizelle Gonzalez

    2001-01-01

    With the vast amount of abandoned tropical land due to non- sustainable farming practices, tropical tree-plantations become an effective means in restoring soil productivity and preserving ecosystem biodiversity. Because earthworms are the dominant soil fauna in moist tropical regions and play an important role in improving soil fertility, understanding the mechanisms...

  4. Digging a Little Deeper: Microbial Communities, Molecular Composition and Soil Organic Matter Turnover along Tropical Forest Soil Depth Profiles

    Science.gov (United States)

    Pett-Ridge, J.; McFarlane, K. J.; Heckman, K. A.; Reed, S.; Green, E. A.; Nico, P. S.; Tfaily, M. M.; Wood, T. E.; Plante, A. F.

    2016-12-01

    Tropical forest soils store more carbon (C) than any other terrestrial ecosystem and exchange vast amounts of CO2, water, and energy with the atmosphere. Much of this C is leached and stored in deep soil layers where we know little about its fate or the microbial communities that drive deep soil biogeochemistry. Organic matter (OM) in tropical soils appears to be associated with mineral particles, suggesting deep soils may provide greater C stabilization. However, few studies have evaluated sub-surface soils in tropical ecosystems, including estimates of the turnover times of deep soil C, the sensitivity of this C to global environmental change, and the microorganisms involved. We quantified bulk C pools, microbial communities, molecular composition of soil organic matter, and soil radiocarbon turnover times from surface soils to 1.5m depths in multiple soil pits across the Luquillo Experimental Forest, Puerto Rico. Soil C, nitrogen, and root and microbial biomass all declined exponentially with depth; total C concentrations dropped from 5.5% at the surface to communities in surface soils (Acidobacteria and Proteobacteria) versus those below the active rooting zone (Verrucomicrobia and Thaumarchaea). High resolution mass spectrometry (FTICR-MS) analyses suggest a shift in the composition of OM with depth (especially in the water soluble fraction), an increase in oxidation, and decreasing H/C with depth (indicating higher aromaticity). Additionally, surface samples were rich in lignin-like compounds of plant origin that were absent with depth. Soil OM 14C and mean turnover times were variable across replicate horizons, ranging from 3-1500 years at the surface, to 5000-40,000 years at depth. In comparison to temperate deciduous forests, these 14C values reflect far older soil C. Particulate organic matter (free light fraction), with a relatively modern 14C was found in low but measureable concentration in even the deepest soil horizons. Our results indicate these

  5. Trace metal uptake by tropical vegetables grown on soil amended with urban sewage sludge

    Energy Technology Data Exchange (ETDEWEB)

    Nabulo, G.; Black, C.R. [School of Biosciences, University of Nottingham, University Park, Nottingham, NG7 2RD (United Kingdom); Young, S.D., E-mail: scott.young@nottingham.ac.u [School of Biosciences, University of Nottingham, University Park, Nottingham, NG7 2RD (United Kingdom)

    2011-02-15

    Trace metal uptake was measured for tropical and temperate leafy vegetables grown on soil from an urban sewage disposal farm in the UK. Twenty-four leafy vegetables from East Africa and the UK were assessed and the five vegetable types that showed the greatest Cd concentrations were grown on eight soils differing in the severity of contamination, pH and other physico-chemical properties. The range of Cd concentrations in the edible shoots was greater for tropical vegetables than for temperate types. Metal uptake was modelled as a function of (i) total soil metal concentration, (ii) CaCl{sub 2}-soluble metal, (iii) soil solution concentration and (iv) the activity of metal ions in soil pore water. Tropical vegetables were not satisfactorily modelled as a single generic 'green vegetable', suggesting that more sophisticated approaches to risk assessment may be required to assess hazard from peri-urban agriculture in developing countries. - Research highlights: Cadmium uptake by tropical green vegetables varies greatly between types. Modelling metal uptake works best for Ni, Cd and Zn but is poor for Cu, Ba and Pb. Modelling with dilute CaCl{sub 2} extraction is as good as metal ion activity in pore water. - Trace metal uptake by tropical leaf vegetables can be predicted from dilute CaCl{sub 2} extraction of soil but model parameters are genotype-specific.

  6. Trace metal uptake by tropical vegetables grown on soil amended with urban sewage sludge

    International Nuclear Information System (INIS)

    Nabulo, G.; Black, C.R.; Young, S.D.

    2011-01-01

    Trace metal uptake was measured for tropical and temperate leafy vegetables grown on soil from an urban sewage disposal farm in the UK. Twenty-four leafy vegetables from East Africa and the UK were assessed and the five vegetable types that showed the greatest Cd concentrations were grown on eight soils differing in the severity of contamination, pH and other physico-chemical properties. The range of Cd concentrations in the edible shoots was greater for tropical vegetables than for temperate types. Metal uptake was modelled as a function of (i) total soil metal concentration, (ii) CaCl 2 -soluble metal, (iii) soil solution concentration and (iv) the activity of metal ions in soil pore water. Tropical vegetables were not satisfactorily modelled as a single generic 'green vegetable', suggesting that more sophisticated approaches to risk assessment may be required to assess hazard from peri-urban agriculture in developing countries. - Research highlights: → Cadmium uptake by tropical green vegetables varies greatly between types. → Modelling metal uptake works best for Ni, Cd and Zn but is poor for Cu, Ba and Pb. → Modelling with dilute CaCl 2 extraction is as good as metal ion activity in pore water. - Trace metal uptake by tropical leaf vegetables can be predicted from dilute CaCl 2 extraction of soil but model parameters are genotype-specific.

  7. Soil-mediated filtering organizes tree assemblages in regenerating tropical forests

    NARCIS (Netherlands)

    Pinho, Bruno Ximenes; Melo, de Felipe Pimentel Lopes; Arroyo-Rodríguez, Víctor; Pierce, Simon; Lohbeck, Madelon; Tabarelli, Marcelo

    2018-01-01

    Secondary forests are increasingly dominant in human-modified tropical landscapes, but the drivers of forest recovery remain poorly understood. Soil conditions influence plant community composition, and are expected to change over a gradient of succession. However, the role of soil conditions as

  8. Ecotoxicological evaluation of swine manure disposal on tropical soils in Brazil.

    Science.gov (United States)

    Segat, Julia Corá; Alves, Paulo Roger Lopes; Baretta, Dilmar; Cardoso, Elke Jurandy Bran Nogueira

    2015-12-01

    Swine production in Brazil results in a great volume of manure that normally is disposed of as agricultural fertilizer. However, this form of soil disposal, generally on small farms, causes the accumulation of large amounts of manure and this results in contaminated soil and water tables. To evaluate the effects of increasing concentrations of swine manure on earthworms, several ecotoxicological tests were performed using Eisenia andrei as test organism in different tropical soils, classified respectively as Ultisol, Oxisol, and Entisol, as well as Tropical Artificial Soil (TAS). The survival, reproduction and behavior of the earthworms were evaluated in experiments using a completely randomized design, with five replications. In the Ultisol, Oxisol and TAS the swine manure showed no lethality, but in the Entisol it caused earthworm mortality (LOEC=45 m(3)ha(-1)). In the Entisol, the waste reduced the reproductive rate and caused avoidance behavior in E. andrei (LOEC=30 m(3)ha(-1)) even in lower concentrations. The Entisol is extremely sandy, with low cation exchange capacity (CEC), and this may be the reason for the higher toxicity on soil fauna, with the soil not being able to hold large amounts of pollutants (e.g. toxic metals), but leaving them in bioavailable forms. These results should be a warning of the necessity to consider soil parameters (e.g. texture and CEC) when evaluating soil contamination by means of ecotoxicological assays, as there still are no standards for natural soils in tropical regions. E. andrei earthworms act as indicators for a soil to support disposal of swine manure without generating harm to agriculture and ecosystems. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Effects of soil water depletion on the water relations in tropical kudzu

    Directory of Open Access Journals (Sweden)

    Adaucto Bellarmino de Pereira-Netto

    1999-07-01

    Full Text Available Tropical kudzu (Pueraria phaseoloides (Roxb. Benth., Leguminosae: Faboideae is native to the humid Southeastern Asia. Tropical kudzu has potential as a cover crop in regions subjected to dryness. The objective of this paper was to evaluate the effect of soil water depletion on leaflet relative water content (RWC, stomatal conductance (g and temperature (T L in tropical kudzu. RWC of waterstressed plants dropped from 96 to 78%, following a reduction in SWC from 0.25 to 0.17 g (H2O.g (dry soil-1.Stomatal conductance of stressed plants decreased from 221 to 98 mmol.m-2.s-1, following the reduction in soil water content (SWC. The day after re-irrigation, g of water stressed plants was 15% lower than g of unstressed plants. Differences in T L between waterstressed and unstressed plants (deltaT L rose linearly from 0.1 to 2.2ºC following progressive water deficit. RWC and T L of waterstressed plants paralled RWC and T L of unstressed plants the day after reirrigation. The strong decrease in SWC found in this study only induced moderate water stress in tropical kudzu. In addition, tropical kudzu recover rapidly from the induced water stress after the re-irrigation.

  10. Nutrient additions to a tropical rain forest drive substantial soil carbon dioxide losses to the atmosphere

    OpenAIRE

    Cleveland, Cory C.; Townsend, Alan R.

    2006-01-01

    Terrestrial biosphere–atmosphere carbon dioxide (CO2) exchange is dominated by tropical forests, where photosynthetic carbon (C) uptake is thought to be phosphorus (P)-limited. In P-poor tropical forests, P may also limit organic matter decomposition and soil C losses. We conducted a field-fertilization experiment to show that P fertilization stimulates soil respiration in a lowland tropical rain forest in Costa Rica. In the early wet season, when soluble organic matter inputs to soil are hig...

  11. Soil seed banks along elevational gradients in tropical, subtropical and subalpine forests in Yunnan Province, southwest China

    Institute of Scientific and Technical Information of China (English)

    Xiaqin Luo; Min Cao; Min Zhang; Xiaoyang Song; Jieqiong Li; Akihiro Nakamura; Roger Kitching

    2017-01-01

    Soil seed banks are a vital part of ecosystems and influence community dynamics and regeneration.Although soil seed banks in different habitats have been reported,how soil seed banks vary with elerational gradients in different climatic zones is still unknown.This paper investigates seed density,species composition and nonconstituent species of forest soil seed banks in Yunnan Province,southwest China.Similarity between the soil seed bank and standing vegetation was also examined.We collected soil samples from sites spanning 12 elevations in tropical rain forests,subtropical evergreen broadleaved forests and subalpine coniferous forests,and transported them to a glasshouse for germination trials for species identification.The soil seed banks of tropical and subtropical forests had much higher seed densities and species richness than those of subalpine forests.Seeds of woody species dominated the soil seed banks of tropical and subtropical forests,while herbs dominated those of subalpine forests.The nonconstituent species in the soil seed banks were all herbs and were most abundant in tropical forests,followed by subtropical forests but were completely absent from subalpine forests.

  12. Soil seed banks along elevational gradients in tropical, subtropical and subalpine forests in Yunnan Province, southwest China

    Directory of Open Access Journals (Sweden)

    Xiaqin Luo

    2017-10-01

    Full Text Available Soil seed banks are a vital part of ecosystems and influence community dynamics and regeneration. Although soil seed banks in different habitats have been reported, how soil seed banks vary with elevational gradients in different climatic zones is still unknown. This paper investigates seed density, species composition and nonconstituent species of forest soil seed banks in Yunnan Province, southwest China. Similarity between the soil seed bank and standing vegetation was also examined. We collected soil samples from sites spanning 12 elevations in tropical rain forests, subtropical evergreen broad-leaved forests and subalpine coniferous forests, and transported them to a glasshouse for germination trials for species identification. The soil seed banks of tropical and subtropical forests had much higher seed densities and species richness than those of subalpine forests. Seeds of woody species dominated the soil seed banks of tropical and subtropical forests, while herbs dominated those of subalpine forests. The nonconstituent species in the soil seed banks were all herbs and were most abundant in tropical forests, followed by subtropical forests but were completely absent from subalpine forests.

  13. Nutrient additions to a tropical rain forest drive substantial soil carbon dioxide losses to the atmosphere.

    Science.gov (United States)

    Cleveland, Cory C; Townsend, Alan R

    2006-07-05

    Terrestrial biosphere-atmosphere carbon dioxide (CO(2)) exchange is dominated by tropical forests, where photosynthetic carbon (C) uptake is thought to be phosphorus (P)-limited. In P-poor tropical forests, P may also limit organic matter decomposition and soil C losses. We conducted a field-fertilization experiment to show that P fertilization stimulates soil respiration in a lowland tropical rain forest in Costa Rica. In the early wet season, when soluble organic matter inputs to soil are high, P fertilization drove large increases in soil respiration. Although the P-stimulated increase in soil respiration was largely confined to the dry-to-wet season transition, the seasonal increase was sufficient to drive an 18% annual increase in CO(2) efflux from the P-fertilized plots. Nitrogen (N) fertilization caused similar responses, and the net increases in soil respiration in response to the additions of N and P approached annual soil C fluxes in mid-latitude forests. Human activities are altering natural patterns of tropical soil N and P availability by land conversion and enhanced atmospheric deposition. Although our data suggest that the mechanisms driving the observed respiratory responses to increased N and P may be different, the large CO(2) losses stimulated by N and P fertilization suggest that knowledge of such patterns and their effects on soil CO(2) efflux is critical for understanding the role of tropical forests in a rapidly changing global C cycle.

  14. N2O emissions from humid tropical agricultural soils: effects of soil moisture, texture and nitrogen availability

    Science.gov (United States)

    A.M. Weitza; E. Linderb; S. Frolkingc; P.M. Crillc; M. Keller

    2001-01-01

    We studied soil moisture dynamics and nitrous oxide (N2O) ¯uxes from agricultural soils in the humid tropics of Costa Rica. Using a splitplot design on two soils (clay, loam) we compared two crop types (annual, perennial) each unfertilized and fertilized. Both soils are of andic origin. Their properties include relatively low bulk density and high organic matter...

  15. Soil phosphorus dynamics in a humid tropical silvopastoral system

    Energy Technology Data Exchange (ETDEWEB)

    Cooperband, L.R.

    1992-01-01

    In developing countries of the humid tropics, timber exploitation and agricultural expansion frequently result in deforestation. Extensive land management, coupled with inherently low soil fertility invariably produce declines in agricultural/livestock productivity which eventually lead to land abandonment and further deforestation. Phosphorus is often the major nutrient limiting plant growth in tropical soils. Agroforestry systems have been considered as viable alternatives to current land use practices. Several hypotheses suggest that combining trees with crops or pasture, especially leguminous species will improve soil nutrient cycling, soil structure and soil organic matter. In this experiment Erythrina berteroana (an arboreous legume) was grown in native grass pastures in Costa Rica to determine the effects of tree pruning and cattle grazing on soil P availability. I measured soil P fluxes as well as changes in pasture biomass over an 18-month period. In a separate field experiment, I determined decomposition rates and P release characteristics of Erythrina leaves, pasture grass clippings and cattle dung. Erythrina leaves decomposed faster than both pasture grass and cattle dung. Erythrina and pasture residues released 4-5 times less P than dung. Phosphorus fluxes after tree pruning and grazing were highly dynamic for all treatments. Tree pruning increased labile soil P over time when coupled with grazing. Pasture biomass production was greatest in the grazed tree treatment. Pasture biomass P production and concentration was greatest in the non-grazed treatment. Trees and grazing together tended to increase nutrient (P) turnover which stimulated biomass production. In contrast, trees without grazing promoted nutrient (P) accumulation in pasture biomass.

  16. Soil phosphorus dynamics in a humid tropical silvopastoral system

    International Nuclear Information System (INIS)

    Cooperband, L.R.

    1992-01-01

    In developing countries of the humid tropics, timber exploitation and agricultural expansion frequently result in deforestation. Extensive land management, coupled with inherently low soil fertility invariably produce declines in agricultural/livestock productivity which eventually lead to land abandonment and further deforestation. Phosphorus is often the major nutrient limiting plant growth in tropical soils. Agroforestry systems have been considered as viable alternatives to current land use practices. Several hypotheses suggest that combining trees with crops or pasture, especially leguminous species will improve soil nutrient cycling, soil structure and soil organic matter. In this experiment Erythrina berteroana (an arboreous legume) was grown in native grass pastures in Costa Rica to determine the effects of tree pruning and cattle grazing on soil P availability. I measured soil P fluxes as well as changes in pasture biomass over an 18-month period. In a separate field experiment, I determined decomposition rates and P release characteristics of Erythrina leaves, pasture grass clippings and cattle dung. Erythrina leaves decomposed faster than both pasture grass and cattle dung. Erythrina and pasture residues released 4-5 times less P than dung. Phosphorus fluxes after tree pruning and grazing were highly dynamic for all treatments. Tree pruning increased labile soil P over time when coupled with grazing. Pasture biomass production was greatest in the grazed tree treatment. Pasture biomass P production and concentration was greatest in the non-grazed treatment. Trees and grazing together tended to increase nutrient (P) turnover which stimulated biomass production. In contrast, trees without grazing promoted nutrient (P) accumulation in pasture biomass

  17. Available nitrogen is the key factor influencing soil microbial functional gene diversity in tropical rainforest.

    Science.gov (United States)

    Cong, Jing; Liu, Xueduan; Lu, Hui; Xu, Han; Li, Yide; Deng, Ye; Li, Diqiang; Zhang, Yuguang

    2015-08-20

    Tropical rainforests cover over 50% of all known plant and animal species and provide a variety of key resources and ecosystem services to humans, largely mediated by metabolic activities of soil microbial communities. A deep analysis of soil microbial communities and their roles in ecological processes would improve our understanding on biogeochemical elemental cycles. However, soil microbial functional gene diversity in tropical rainforests and causative factors remain unclear. GeoChip, contained almost all of the key functional genes related to biogeochemical cycles, could be used as a specific and sensitive tool for studying microbial gene diversity and metabolic potential. In this study, soil microbial functional gene diversity in tropical rainforest was analyzed by using GeoChip technology. Gene categories detected in the tropical rainforest soils were related to different biogeochemical processes, such as carbon (C), nitrogen (N) and phosphorus (P) cycling. The relative abundance of genes related to C and P cycling detected mostly derived from the cultured bacteria. C degradation gene categories for substrates ranging from labile C to recalcitrant C were all detected, and gene abundances involved in many recalcitrant C degradation gene categories were significantly (P rainforest. Soil available N could be the key factor in shaping the soil microbial functional gene structure and metabolic potential.

  18. Soil phosphorus cycling in tropical soils: An ultisol and oxisol perspective

    Science.gov (United States)

    Reed, Sasha C.; Wood, Tana E

    2016-01-01

    Phosphorus (P) is essential for life. It is the backbone of our DNA, provides energy for biological reactions, and is an integral component of cell membranes. As such, it is no surprise that P availability plays a strong role in regulating ecosystem structure and function (Wassen et al. 2005, Elser et al. 2007, Condit et al. 2013), and in determining our capacity to grow food for a burgeoning human population (Sharpley et al. 1997, Sims and Sharpley 2005, Lal 2009). Concerns that P supplies are insufficient to meet our species’ growing demands are on the rise (Richardson and Simpson 2011) and scientific and media outlets increasingly discuss P as an element worthy of our attention and concern (e.g., Cordell et al. 2009, Lougheed 2011, Edixhoven et al. 2013, Ulrich et al. 2013). Indeed, a number of groups are calling for the explicit stewardship of our planet’s P stocks (Schipper 2014, Withers et al. 2015). Yet a focus on P as a vital and limited resource is not new in the tropics, where an abundance of soils characterized by low P has resulted in a substantial, longstanding reliance on P inputs for tropical ecosystem function in both unmanaged and agriculture settings (Table 1, Figure 2; Sanchez 1976, Swap et al. 1992, Chadwick et al. 1999, Okin et al. 2004, Lal 2009). Indeed, there is a long history of cultivation in the tropics, where for thousands of years land management practices have included methods that effectively modify P availability for plant growth (e.g., Giardina et al. 2000, Lawrence and Schlesinger 2001, Vitousek et al. 2004, Lewis et al. 2015). Nevertheless, low soil fertility in tropical systems where fertilizer is scarce has enduringly been recognized as a major source of hunger and starvation (Sanchez and Buol 1975, Sanchez 2002, Sanchez and Swaminathan 2005).

  19. Anaerobic decomposition of switchgrass by tropical soil-derived feedstock-adapted consortia.

    Science.gov (United States)

    DeAngelis, Kristen M; Fortney, Julian L; Borglin, Sharon; Silver, Whendee L; Simmons, Blake A; Hazen, Terry C

    2012-01-01

    Tropical forest soils decompose litter rapidly with frequent episodes of anoxic conditions, making it likely that bacteria using alternate terminal electron acceptors (TEAs) play a large role in decomposition. This makes these soils useful templates for improving biofuel production. To investigate how TEAs affect decomposition, we cultivated feedstock-adapted consortia (FACs) derived from two tropical forest soils collected from the ends of a rainfall gradient: organic matter-rich tropical cloud forest (CF) soils, which experience sustained low redox, and iron-rich tropical rain forest (RF) soils, which experience rapidly fluctuating redox. Communities were anaerobically passed through three transfers of 10 weeks each with switchgrass as a sole carbon (C) source; FACs were then amended with nitrate, sulfate, or iron oxide. C mineralization and cellulase activities were higher in CF-FACs than in RF-FACs. Pyrosequencing of the small-subunit rRNA revealed members of the Firmicutes, Bacteroidetes, and Alphaproteobacteria as dominant. RF- and CF-FAC communities were not different in microbial diversity or biomass. The RF-FACs, derived from fluctuating redox soils, were the most responsive to the addition of TEAs, while the CF-FACs were overall more efficient and productive, both on a per-gram switchgrass and a per-cell biomass basis. These results suggest that decomposing microbial communities in fluctuating redox environments are adapted to the presence of a diversity of TEAs and ready to take advantage of them. More importantly, these data highlight the role of local environmental conditions in shaping microbial community function that may be separate from phylogenetic structure. After multiple transfers, we established microbial consortia derived from two tropical forest soils with different native redox conditions. Communities derived from the rapidly fluctuating redox environment maintained a capacity to use added terminal electron acceptors (TEAs) after multiple

  20. How Soil Scientists Help Combat Podoconiosis, A Neglected Tropical Disease

    Directory of Open Access Journals (Sweden)

    Benjamin Jelle Visser

    2014-05-01

    Full Text Available Podoconiosis or “endemic non-filarial elephantiasis” is a tropical disease caused by prolonged exposure of bare feet to irritant alkaline clay soils of volcanic origin [1]. The name of the disease is derived from the Greek words for foot: podos, and dust: konos. Small mineral particles from irritant soils penetrate the skin and provoke an inflammatory response leading to fibrosis and blockage of lymphatic vessels, causing lymphoedema [2]. Patients suffer from disabling physical effects, but also stigma [1]. The disease can simply be prevented by avoiding contact with irritant soils (wearing shoes but this is still an unaffordable “luxury” for many people. Podoconiosis is unique because it is a completely preventable non-communicable tropical disease [1]. In the past few years, podoconiosis has received increased advocacy and is now step by step appearing on the agenda of medical researchers as well as politicians.  [...

  1. Soil phosphorus heterogeneity promotes tree species diversity and phylogenetic clustering in a tropical seasonal rainforest.

    Science.gov (United States)

    Xu, Wumei; Ci, Xiuqin; Song, Caiyun; He, Tianhua; Zhang, Wenfu; Li, Qiaoming; Li, Jie

    2016-12-01

    The niche theory predicts that environmental heterogeneity and species diversity are positively correlated in tropical forests, whereas the neutral theory suggests that stochastic processes are more important in determining species diversity. This study sought to investigate the effects of soil nutrient (nitrogen and phosphorus) heterogeneity on tree species diversity in the Xishuangbanna tropical seasonal rainforest in southwestern China. Thirty-nine plots of 400 m 2 (20 × 20 m) were randomly located in the Xishuangbanna tropical seasonal rainforest. Within each plot, soil nutrient (nitrogen and phosphorus) availability and heterogeneity, tree species diversity, and community phylogenetic structure were measured. Soil phosphorus heterogeneity and tree species diversity in each plot were positively correlated, while phosphorus availability and tree species diversity were not. The trees in plots with low soil phosphorus heterogeneity were phylogenetically overdispersed, while the phylogenetic structure of trees within the plots became clustered as heterogeneity increased. Neither nitrogen availability nor its heterogeneity was correlated to tree species diversity or the phylogenetic structure of trees within the plots. The interspecific competition in the forest plots with low soil phosphorus heterogeneity could lead to an overdispersed community. However, as heterogeneity increase, more closely related species may be able to coexist together and lead to a clustered community. Our results indicate that soil phosphorus heterogeneity significantly affects tree diversity in the Xishuangbanna tropical seasonal rainforest, suggesting that deterministic processes are dominant in this tropical forest assembly.

  2. Use of cesium 137 as a radiotracer in the quantification of tropical soil erosion

    International Nuclear Information System (INIS)

    Sibello Hernandez, Rita Y.; Cartas Aguila, Hector; Martin Perez, Jorge

    2005-01-01

    The main objective of this work was to evaluate the applicability of this technique to quantify the soil erosion in the tropical region. With this purpose the technique was applied in the tropical soils belonging to a glide parcel, in Cienfuegos province, in Cuba, in the Caribbean area. This allowed us to compare and to demonstrate the good agreement of the results of the soil loss quantification obtained using the 137 Cs technique: 37.00 + - 0.80 t.ha -1 . year -1 with the obtained using erosion plots in the Soil Experimental Station in Barajagua: 40 t.ha -1 . year -1

  3. Soil physical properties affecting soil erosion in tropical soils

    International Nuclear Information System (INIS)

    Lobo Lujan, D.

    2004-01-01

    detachment. Studies on necessary kinetic energy to detach one kilogram of sediments by raindrop impact have shown that the minimum energy is required for particles of 0.125 mm. Particles between 0.063 to 0.250 mm are the most vulnerable to detachment. This means that soils with high content of particles into vulnerable range, for example silty loam, loamy, fine sandy, and sandy loam are the most susceptible soils to detachment. Many aspects of soil behaviour in the field such as hydraulic conductivity water retention, soil crusting, soil compaction, and workability are influenced strongly by the primary particles. In tropical soils also a negative relation between structure stability and particles of silt, fine sand and very fine sand has been found, this is attributed to low cohesiveness of these particles. The ability of a structure to persist is known as its stability. There are two principal types of stability: the ability of the soil to retain its structure under the action of water, and the ability of the soil to retain its structure under the action of external mechanical stresses. (e.g. by wheels). Both types of stability are related with susceptibility to erosion

  4. Some physical properties of wetland soils with reference to the tropics

    International Nuclear Information System (INIS)

    Obi, M.E.

    1989-10-01

    Some physical properties of wetland soils are reviewed with reference to the tropical regions. The soils have a common feature periodic flooding during the year. They exhibit wide variability in mechanical composition in accordance with their genesis and location. Bulk densities range from 1.0 to 1.9 Mg m -3 for mineral soils with moderate organic matter content and from about 0.02 to 0.2 Mg m -3 for organic soils. Total porosities are generally high with dominance of micropores in organic and clayey wetland soils. Shrink-swell potential is also generally high in many of these wetland types with consequent problems of crack formation. Anaerobiosis condition is a common feature in wetland soils. Also carbon dioxide levels may be excessive for normal crop development. Water-retentivity has been found to be high to very high to in a number of tropical wetland soils of medium to fine texture. In some organic soils values of over 100% (mass basis) are not uncommon. In particular, a value of up to 3000% has been reported. Water infiltration and percolation are highly variable. The heat capacities are generally high with resultant reduced temperatures. Land use and management strategies are proferred in the light of the properties. (author). 44 refs, 9 tabs

  5. Soil water storage, rainfall and runoff relationships in a tropical dry forest catchment

    Science.gov (United States)

    Farrick, Kegan K.; Branfireun, Brian A.

    2014-12-01

    In forested catchments, the exceedance of rainfall and antecedent water storage thresholds is often required for runoff generation, yet to our knowledge these threshold relationships remain undescribed in tropical dry forest catchments. We, therefore, identified the controls of streamflow activation and the timing and magnitude of runoff in a tropical dry forest catchment near the Pacific coast of central Mexico. During a 52 day transition phase from the dry to wet season, soil water movement was dominated by vertical flow which continued until a threshold soil moisture content of 26% was reached at 100 cm below the surface. This satisfied a 162 mm storage deficit and activated streamflow, likely through lateral subsurface flow pathways. High antecedent soil water conditions were maintained during the wet phase but had a weak influence on stormflow. We identified a threshold value of 289 mm of summed rainfall and antecedent soil water needed to generate >4 mm of stormflow per event. Above this threshold, stormflow response and magnitude was almost entirely governed by rainfall event characteristics and not antecedent soil moisture conditions. Our results show that over the course of the wet season in tropical dry forests the dominant controls on runoff generation changed from antecedent soil water and storage to the depth of rainfall.

  6. Exotic grasses and nitrate enrichment alter soil carbon cycling along an urban-rural tropical forest gradient.

    Science.gov (United States)

    Cusack, Daniela F; Lee, Joseph K; McCleery, Taylor L; LeCroy, Chase S

    2015-12-01

    Urban areas are expanding rapidly in tropical regions, with potential to alter ecosystem dynamics. In particular, exotic grasses and atmospheric nitrogen (N) deposition simultaneously affect tropical urbanized landscapes, with unknown effects on properties like soil carbon (C) storage. We hypothesized that (H1) soil nitrate (NO3 (-) ) is elevated nearer to the urban core, reflecting N deposition gradients. (H2) Exotic grasslands have elevated soil NO3 (-) and decreased soil C relative to secondary forests, with higher N promoting decomposer activity. (H3) Exotic grasslands have greater seasonality in soil NO3 (-) vs. secondary forests, due to higher sensitivity of grassland soil moisture to rainfall. We predicted that NO3 (-) would be positively related to dissolved organic C (DOC) production via changes in decomposer activity. We measured six paired grassland/secondary forest sites along a tropical urban-to-rural gradient during the three dominant seasons (hurricane, dry, and early wet). We found that (1) soil NO3 (-) was generally elevated nearer to the urban core, with particularly clear spatial trends for grasslands. (2) Exotic grasslands had lower soil C than secondary forests, which was related to elevated decomposer enzyme activities and soil respiration. Unexpectedly, soil NO3 (-) was negatively related to enzyme activities, and was lower in grasslands than forests. (3) Grasslands had greater soil NO3 (-) seasonality vs. forests, but this was not strongly linked to shifts in soil moisture or DOC. Our results suggest that exotic grasses in tropical regions are likely to drastically reduce soil C storage, but that N deposition may have an opposite effect via suppression of enzyme activities. However, soil NO3 (-) accumulation here was higher in urban forests than grasslands, potentially related to of aboveground N interception. Net urban effects on C storage across tropical landscapes will likely vary depending on the mosaic of grass cover, rates of N

  7. Ecology of soil arthropod fauna in tropical forests: A review of studies from Puerto Rico

    Science.gov (United States)

    Grizelle Gonzalez; María F. Barberena

    2017-01-01

    The majority of ecological studies in the tropics deal with organisms participating in grazing food webs, while few deal with the diversity of invertebrates in the soil, leaf litter or dead wood that participate in detrital food webs. For tropical forests, the status of information on soil animal diversity is limited, especially when compared to other ecosystems such...

  8. Tropical Land Use Conversion Effects on Soil Microbial Community Structure and Function: Emerging Patterns and Knowledge Gaps

    Science.gov (United States)

    Seeley, M.; Marin-Spiotta, E.

    2016-12-01

    Modifications in vegetation due to land use conversions (LUC) between primary forests, pasture, cropping systems, tree plantations, and secondary forests drive shifts in soil microbial communities. These microbial community alterations affect carbon sequestration, nutrient cycling, aboveground biomass, and numerous other soil processes. Despite their importance, little is known about soil microbial organisms' response to LUC, especially in tropical regions where LUC rates are greatest. This project identifies current trends and uncertainties in tropical soil microbiology by comparing 56 published studies on LUC in tropical regions. This review indicates that microbial biomass and functional groups shifted in response to LUC, supporting demonstrated trends in changing soil carbon stocks due to LUC. Microbial biomass was greatest in primary forests when compared to secondary forests and in all forests when compared to both cropping systems and tree plantations. No trend existed when comparing pasture systems and forests, likely due to variations in pasture fertilizer use. Cropping system soils had greater gram positive and less gram negative bacteria than forest soils, potentially resulting in greater respiration of older carbon stocks in agricultural soils. Bacteria dominated primary forests while fungal populations were greatest in secondary forests. To characterize changes in microbial communities resulting from land use change, research must reflect the biophysical variation across the tropics. A chi-squared test revealed that the literature sites represented mean annual temperature variation across the tropics (p-value=0.66).

  9. The effect of biochar and its interaction with the earthworm Pontoscolex corethrurus on soil microbial community structure in tropical soils.

    Directory of Open Access Journals (Sweden)

    Jorge Paz-Ferreiro

    Full Text Available Biochar effects on soil microbial abundance and community structure are keys for understanding the biogeochemical cycling of nutrients and organic matter turnover, but are poorly understood, in particular in tropical areas. We conducted a greenhouse experiment in which we added biochars produced from four different feedstocks [sewage sludge (B1, deinking sewage sludge (B2, Miscanthus (B3 and pine wood (B4] at a rate of 3% (w/w to two tropical soils (an Acrisol and a Ferralsol planted with proso millet (Panicum milliaceum L.. The interactive effect of the addition of earthworms was also addressed. For this purpose we utilized soil samples from pots with or without the earthworm Pontoscolex corethrurus, which is a ubiquitous earthworm in tropical soils. Phospholipid fatty acid (PLFA measurements showed that biochar type, soil type and the presence of earthworms significantly affected soil microbial community size and structure. In general, biochar addition affected fungal but not bacterial populations. Overall, biochars rich in ash (B1 and B2 resulted in a marked increase in the fungi to bacteria ratio, while this ratio was unaltered after addition of biochars with a high fixed carbon content (B3 and B4. Our study remarked the contrasting effect that both, biochar prepared from different materials and macrofauna, can have on soil microbial community. Such changes might end up with ecosystem-level effects.

  10. Management and conservation of tropical acid soils for sustainable crop production. Proceedings of a consultants meeting

    International Nuclear Information System (INIS)

    2000-06-01

    Forests of the tropics are invaluable ecosystems of global, regional and local importance, particularly in terms of protection and conservation of biodiversity and water resources. The indiscriminate conversion of tropical forests into agricultural land as a result of intense human activities - logging and modem shifting cultivation - continues to cause soil erosion and degradation. However, the acid savannahs of the world, such as the cerrado of Brazil, the Llanos in Venezuela and Colombia, the savannahs of Africa, and the largely anthropic savannahs of tropical Asia, encompass vast areas of potentially arable land. The acid soils of the savannahs are mostly considered marginal because of low inherent fertility and susceptibility to rapid degradation. These constraints for agricultural development are exacerbated by the poverty of new settlers who try to cultivate such areas after deforestation. Low- or minimum-input systems are not sustainable on these tropical acid soils but, with sufficient investment and adequate technologies, they can be highly productive. Thus, there is a need to develop management practices for sustainable agricultural production systems on such savannah acid soils. The Soil and Water Management and Crop Nutrition Sub-programme of the Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture strongly supports an integrated approach to soil, water and nutrient management within cropping systems. In this context, nuclear and related techniques can be used to better understand the processes and factors influencing the productivity of agricultural production systems, and improve them through the use of better soil, water and nutrient management practices. A panel of experts actively engaged in field projects on acid soils of savannah agro-ecosystems in the humid and sub-humid tropics convened in March 1999 in Vienna to review and discuss recent research progress, along the following main lines of investigation: (i) utilization of

  11. Boro e Vanadio: requisiti di potabilitá e valori di parametro

    Directory of Open Access Journals (Sweden)

    M. Ferrante

    2003-05-01

    Full Text Available

    Obiettivi: i minerali, che costituiscono circa il 4% del peso corporeo e svolgono numerose ed importanti funzioni biodinamiche, si possono suddividere in due gruppi: elementi principali ed elementi essenziali. Gli elementi essenziali necessitano in quantità minime, dal millesimo di milligrammo fino a qualche decina di milligrammi e per la bassissima concentrazione nei tessuti del corpo umano vengono chiamati anche oligoelementi o minerali in traccia. I minerali in traccia sono stati molto attenzionati dalle normative per le acque potabili essendo per i suddetti motivi importanti requisiti di potabilità. Con l’evoluzione della normativa alcuni oligoelementi che prima erano citati solo per memoria adesso devono rientrare in precisi valori di parametro. Tra questi il boro e il vanadio. In questa nota riportiamo la problematica relativa alla presenza di boro e vanadio nelle acque utilizzate per il consumo umano nella zona etnea.

    Metodi: le acque utilizzate nella zona etnea, in particolare quelle della provincia di Catania, sono state analizzate con spettrofometria in emissione (Inductively Coupled Plasma e con spettrofotometria per Assorbimento Atomico (A.A.con effetto Zeeman per il dosaggio del boro e del vanadio in esse contenuti.

    Risultati: il boro e il vanadio essendo elementi naturalmente presenti nei vari comparti ambientali sono stati ritrovati nelle acque potabili della zona etnea in concentrazioni estremamente variabili che talvolta superano i valori di parametro.

    Conclusioni: alla luce dei risultati ottenuti, non essendo ancora dimostrata la reale tossicità per assunzione di tali elementi attraverso il canale alimentare ed essendo molto difficile la loro eliminazione dalle acque, si propone un riesame delle concentrazioni massime ammissibili sulla base della percentuale di assorbimento gastro-enterico e dei relativi “tollerable intake” con

  12. Persistence of Pathogenic and Non-Pathogenic Escherichia coli Strains in Various Tropical Agricultural Soils of India.

    Directory of Open Access Journals (Sweden)

    S Naganandhini

    Full Text Available The persistence of Shiga-like toxin producing E. coli (STEC strains in the agricultural soil creates serious threat to human health through fresh vegetables growing on them. However, the survival of STEC strains in Indian tropical soils is not yet understood thoroughly. Additionally how the survival of STEC strain in soil diverges with non-pathogenic and genetically modified E. coli strains is also not yet assessed. Hence in the present study, the survival pattern of STEC strain (O157-TNAU was compared with non-pathogenic (MTCC433 and genetically modified (DH5α strains on different tropical agricultural soils and on a vegetable growing medium, cocopeat under controlled condition. The survival pattern clearly discriminated DH5α from MTCC433 and O157-TNAU, which had shorter life (40 days than those compared (60 days. Similarly, among the soils assessed, the red laterite and tropical latosol supported longer survival of O157-TNAU and MTCC433 as compared to wetland and black cotton soils. In cocopeat, O157 recorded significantly longer survival than other two strains. The survival data were successfully analyzed using Double-Weibull model and the modeling parameters were correlated with soil physico-chemical and biological properties using principal component analysis (PCA. The PCA of all the three strains revealed that pH, microbial biomass carbon, dehydrogenase activity and available N and P contents of the soil decided the survival of E. coli strains in those soils and cocopeat. The present research work suggests that the survival of O157 differs in tropical Indian soils due to varied physico-chemical and biological properties and the survival is much shorter than those reported in temperate soils. As the survival pattern of non-pathogenic strain, MTCC433 is similar to O157-TNAU in tropical soils, the former can be used as safe model organism for open field studies.

  13. Tropical organic soils ecosystems in relation to regional water resources in southeast Asia

    Energy Technology Data Exchange (ETDEWEB)

    Armentano, T. V.

    1982-01-01

    Tropical organic soils have functioned as natural sinks for carbon, nitrogen, slfur and other nutrients for the past 4000 years or more. Topographic evolution in peat swamp forests towards greater oligotrophy has concentrated storage of the limited nutrient stock in surface soils and biota. Tropical peat systems thus share common ecosystem characteristics with northern peat bogs and certain tropical oligotrophic forests. Organic matter accumulation and high cation-exchange-capacity limit nutrient exports from undisturbed organic soils, although nutrient retention declines with increasing eutrophy and wetland productivity. Peat swamps are subject to irreversible degradation if severely altered because disturbance of vegetation, surface peats and detritus can disrupt nuttrient cycles and reduce forest recovery capacity. Drainage also greatly increases exports of nitrogen, phosphorus and other nutrients and leads to downstream eutrophication and water quality degradation. Regional planning for clean water supplies must recognize the benefits provided by natural peatlands in balancing water supplies and regulating water chemistry.

  14. Responses of soil fungi to logging and oil palm agriculture in Southeast Asian tropical forests.

    Science.gov (United States)

    McGuire, K L; D'Angelo, H; Brearley, F Q; Gedallovich, S M; Babar, N; Yang, N; Gillikin, C M; Gradoville, R; Bateman, C; Turner, B L; Mansor, P; Leff, J W; Fierer, N

    2015-05-01

    Human land use alters soil microbial composition and function in a variety of systems, although few comparable studies have been done in tropical forests and tropical agricultural production areas. Logging and the expansion of oil palm agriculture are two of the most significant drivers of tropical deforestation, and the latter is most prevalent in Southeast Asia. The aim of this study was to compare soil fungal communities from three sites in Malaysia that represent three of the most dominant land-use types in the Southeast Asia tropics: a primary forest, a regenerating forest that had been selectively logged 50 years previously, and a 25-year-old oil palm plantation. Soil cores were collected from three replicate plots at each site, and fungal communities were sequenced using the Illumina platform. Extracellular enzyme assays were assessed as a proxy for soil microbial function. We found that fungal communities were distinct across all sites, although fungal composition in the regenerating forest was more similar to the primary forest than either forest community was to the oil palm site. Ectomycorrhizal fungi, which are important associates of the dominant Dipterocarpaceae tree family in this region, were compositionally distinct across forests, but were nearly absent from oil palm soils. Extracellular enzyme assays indicated that the soil ecosystem in oil palm plantations experienced altered nutrient cycling dynamics, but there were few differences between regenerating and primary forest soils. Together, these results show that logging and the replacement of primary forest with oil palm plantations alter fungal community and function, although forests regenerating from logging had more similarities with primary forests in terms of fungal composition and nutrient cycling potential. Since oil palm agriculture is currently the mostly rapidly expanding equatorial crop and logging is pervasive across tropical ecosystems, these findings may have broad applicability.

  15. Soil crusting regulator characteristics of some allic humid tropical soils from Colombia

    International Nuclear Information System (INIS)

    Arias, Dora M; Madero E E; Amezquita E

    2001-01-01

    It was collected soil samples within 5 cm of the surface from Amazonia soils in Caqueta (Macagual); Orinoquia in Meta (Carimagua), Casanare (Matazul) and Vichada (La Primavera); and in Andean region in Cauca (San Isidro) and Valle (CIAT, Palmira). In each of those sites, the International Center for Tropical Agriculture (CIAT) has many experiments to know the impact of land husbandry, leguminous associations and rotations and mulches on natural system. After evaluating weighed particle size, sand particle size, soil organic matter, iron, aluminum and silicon oxides, and fertility, it could cluster in three groups according to those characteristics and their importance in governing soil hazard crusting: la Primavera and Carimagua (high organic matter, oxides and fine sand but low in clay); Matazul and Macagual (low in organic matter, oxides and clay but variable sand values); and San Isidro (the greatest in Al 2 O 3 concentrations, high in Fe 2 O 3 clay and fine sand but the poorest in soil organic matter). Soil organic matter contents were significantly associated with the kind of management

  16. Tropical Volcanic Soils From Flores Island, Indonesia

    Directory of Open Access Journals (Sweden)

    Hikmatullah

    2010-01-01

    Full Text Available Soils that are developed intropical region with volcanic parent materials have many unique properties, and high potential for agricultural use.The purpose of this study is to characterize the soils developed on volcanic materials from Flores Island, Indonesia,and to examine if the soils meet the requirements for andic soil properties. Selected five soils profiles developed fromandesitic volcanic materials from Flores Island were studied to determine their properties. They were compared intheir physical, chemical and mineralogical characteristics according to their parent material, and climatic characteristicdifferent. The soils were developed under humid tropical climate with ustic to udic soil moisture regimes withdifferent annual rainfall. The soils developed from volcanic ash parent materials in Flores Island showed differentproperties compared to the soils derived from volcanic tuff, even though they were developed from the sameintermediary volcanic materials. The silica contents, clay mineralogy and sand fractions, were shown as the differences.The different in climatic conditions developed similar properties such as deep solum, dark color, medium texture, andvery friable soil consistency. The soils have high organic materials, slightly acid to acid, low to medium cationexchange capacity (CEC. The soils in western region have higher clay content and showing more developed than ofthe eastern region. All the profiles meet the requirements for andic soil properties, and classified as Andisols order.The composition of sand mineral was dominated by hornblende, augite, and hypersthenes with high weatherablemineral reserves, while the clay fraction was dominated by disordered kaolinite, and hydrated halloysite. The soilswere classified into subgroup as Thaptic Hapludands, Typic Hapludands, and Dystric Haplustands

  17. Soil respiration in tropical seasonal rain forest in Xishuangbanna, SW China

    Institute of Scientific and Technical Information of China (English)

    SHA; Liqing; ZHENG; Zheng; TANG; Jianwei; WANG; Yinghong

    2005-01-01

    With the static opaque chamber and gas chromatography technique, from January 2003 to January 2004 soil respiration was investigated in a tropical seasonal rain forest in Xishuangbanna, SW China. In this study three treatments were applied, each with three replicates: A (bare soil), B (soil+litter), and C (soil+litter+seedling). The results showed that soil respiration varied seasonally, low from December 2003 to February 2004, and high from June to July 2004. The annual average values of CO2 efflux from soil respiration differed among the treatments at 1% level, with the rank of C (14642 mgCO2· m-2. h-1)>B (12807 mgCO2· m-2. h-1)>A (9532 mgCO2· m-2. h-1). Diurnal variation in soil respiration was not apparent due to little diurnal temperate change in Xishuangbanna. There was a parabola relationship between soil respiration and soil moisture at 1% level. Soil respiration rates were higher when soil moisture ranged from 35% to 45%. There was an exponential relationship between soil respiration and soil temperature (at a depth of 5cm in mineral soil) at 1% level. The calculated Q1o values in this study,ranging from 2.03 to 2.36, were very near to those of tropical soil reported. The CO2 efflux in 2003was 5.34 kgCO2· m-2. a-1 from soil plus litter plus seedling, of them 3.48 kgCO2· m-2. a-1 from soil (accounting for 62.5%), 1.19 kgCO2· m-2. a-1 from litter (22.3%) and 0.67 kgCO2·m-2. a-1 from seedling (12.5%).

  18. Changes in bacterial diversity associated with bioremediation of used lubricating oil in tropical soils.

    Science.gov (United States)

    Meeboon, Naruemon; Leewis, Mary-Cathrine; Kaewsuwan, Sireewan; Maneerat, Suppasil; Leigh, Mary Beth

    2017-08-01

    Used lubricating oil (ULO) is a widespread contaminant, particularly throughout tropical regions, and may be a candidate for bioremediation. However, little is known about the biodegradation potential or basic microbial ecology of ULO-contaminated soils. This study aims to determine the effects of used ULO on bacterial community structure and diversity. Using a combination of culture-based (agar plate counts) and molecular techniques (16S rRNA gene sequencing and DGGE), we investigated changes in soil bacterial communities from three different ULO-contaminated soils collected from motorcycle mechanical workshops (soil A, B, and C). We further explored the relationship between bacterial community structure, physiochemical soil parameters, and ULO composition in three ULO-contaminated soils. Results indicated that the three investigated soils had different community structures, which may be a result of the different ULO characteristics and physiochemical soil parameters of each site. Soil C had the highest ULO concentration and also the greatest diversity and richness of bacteria, which may be a result of higher nutrient retention, organic matter and cation exchange capacity, as well as freshness of oil compared to the other soils. In soils A and B, Proteobacteria (esp. Gammaproteobacteria) dominated the bacterial community, and in soil C, Actinobacteria and Firmicutes dominated. The genus Enterobacter, a member of the class Gammaproteobacteria, is known to include ULO-degraders, and this genus was the only one found in all three soils, suggesting that it could play a key role in the in situ degradation of ULO-contaminated tropical Thai soils. This study provides insights into our understanding of soil microbial richness, diversity, composition, and structure in tropical ULO-contaminated soils, and may be useful for the development of strategies to improve bioremediation.

  19. Ohcratoxin producing Aspergillus spp. Isolated from tropical soils in Sarawak, Malaysia

    Directory of Open Access Journals (Sweden)

    J.S.S. Seelan

    2010-03-01

    Full Text Available Aspergillus strains isolated from tropical soils were selected for additional characterization and for ochratoxin analysis, which was determined by ELISA method and high performance liquid chromatography (HPLC profiles. Because of its great morphological variability and mycotoxin production availability, 18 isolates of Aspergillus species were selected for this study. Only two isolates of these tropical soils, A. sulphureus and A. carbonarius, showed positive results for ohcratoxin (OA in lower concentration (0.05-0.10 µg/ml. Ochratoxin production by these species was confirmed by high performance liquid chromatography. HPLC analysis for ochratoxin producing A. sulphureus and A. carbonarius showed retention time, Rt value = 4.417 and Rt value = 4.081 respectively.

  20. The Soil-Water Characteristic Curve of Unsaturated Tropical Residual Soil

    Science.gov (United States)

    Yusof, M. F.; Setapa, A. S.; Tajudin, S. A. A.; Madun, A.; Abidin, M. H. Z.; Marto, A.

    2016-07-01

    This study was conducted to determine the SWCC of unsaturated tropical residual soil in Kuala Lumpur, Malaysia. Undisturbed soil samples at five locations of high-risk slopes area were taken at a depth of 0.5 m using block sampler. In the determination of the SWCC, the pressure plate extractor with the capacity of 1500 kN/m2 has been used. The index properties of the soil such as natural moisture content, Atterberg limits, specific gravity, and soil classification are performed according to BS 1377: Part 2: 1990. The results of index properties show that the natural moisture content of the soil is between 36% to 46%, the plasticity index is between 10% - 26%, the specific gravity is between 2.51 - 2.61 and the soils is classified as silty organic clay of low plasticity. The SWCC data from the pressure plate extractor have been fitted with the Fredlund and Xing equation. The results show that the air entry value and residual matric suction for residual soils are in the range of 17 kN/m2 to 24 kN/m2 and 145 kN/m2 to 225 kN/m2 respectively. From the fitting curve, it is found that the average value of the Fredlund and Xing parameters such as a, n and m are in the range of 0.24-0.299, 1.7-4.8 and 0.142-0.440 respectively.

  1. FATTY ACID STABLE ISOTOPE INDICATORS OF MICROBIAL CARBON SOURCE IN TROPICAL SOILS

    Science.gov (United States)

    The soil microbial community plays an important role in tropical ecosystem functioning because of its importance in the soil organic matter (SOM) cycle. We have measured the stable carbon isotopic ratio (delta13C) of individual phospholipid fatty acids (PLFAs) in a variety of tr...

  2. Retention of available P in acid soils of tropical and subtropical evergreen broad-leaved forests

    Institute of Scientific and Technical Information of China (English)

    CHEN Jianhui; ZOU Xiaoming; YANG Xiaodong

    2007-01-01

    Precipitation of mineral phosphate is often recognized as a factor of limiting the availability of P in acidic soils of tropical and subtropical forests.For this paper,we studied the extractable P pools and their transformation rates in soils of a tropical evergreen forest at Xishuangbanna and a subtropical montane wet forest at the Ailao Mountains in order to understand the biogeochemical processes regulating P availability in acidic soils.The two forests differ in forest humus layer;it is deep in the Ailao forest while little is present in the Xishuangbanna forest.The extractable P pools by resin and sodium-bicarbonate decreased when soil organic carbon content was reduced.The lowest levels of extractable P pools occurred in the surface (0-10 era) mineral soils of the Xishuangbanna forest.However,microbial P in the mineral soil of the Xishuangbauna forest was twice that in the Ailao forest.Potential rates of microbial P immobilization were greater than those of organic P mineralization in mineral soils for both forests.We suggest that microbial P immobilization plays an essential role in avoiding mineral P precipitation and retaining available P of plant in tropical acidic soils,whereas both floor mass accumulation and microbial P immobilization function benefit retaining plant available P in subtropical montane wet forests.

  3. Climate Impacts on Soil Carbon Processes along an Elevation Gradient in the Tropical Luquillo Experimental Forest

    Directory of Open Access Journals (Sweden)

    Dingfang Chen

    2017-03-01

    Full Text Available Tropical forests play an important role in regulating the global climate and the carbon cycle. With the changing temperature and moisture along the elevation gradient, the Luquillo Experimental Forest in Northeastern Puerto Rico provides a natural approach to understand tropical forest ecosystems under climate change. In this study, we conducted a soil translocation experiment along an elevation gradient with decreasing temperature but increasing moisture to study the impacts of climate change on soil organic carbon (SOC and soil respiration. As the results showed, both soil carbon and the respiration rate were impacted by microclimate changes. The soils translocated from low elevation to high elevation showed an increased respiration rate with decreased SOC content at the end of the experiment, which indicated that the increased soil moisture and altered soil microbes might affect respiration rates. The soils translocated from high elevation to low elevation also showed an increased respiration rate with reduced SOC at the end of the experiment, indicating that increased temperature at low elevation enhanced decomposition rates. Temperature and initial soil source quality impacted soil respiration significantly. With the predicted warming climate in the Caribbean, these tropical soils at high elevations are at risk of releasing sequestered carbon into the atmosphere.

  4. Soil biogeochemical and fungal patterns across a precipitation gradient in the lowland tropical rainforests of French Guiana

    Science.gov (United States)

    Soong, J.; Verbruggen, E.; Janssens, I.

    2016-12-01

    The Guyafor network contains over 12 pristine tropical rainforest long-term research sites throughout French Guiana, with a focus on vegetation and environmental monitoring at regular intervals. However, biogeochemical and belowground insights are needed to complete the picture of ecosystem functioning in these lowland tropical rainforests, which are critical to Earth's water and energy balance. Improving our biogeochemical understanding of these ecosystems is needed to improve Earth System Models, which poorly represent tropical systems. In July 2015 we sampled soils and litter from 12 of the Guyafor permanent plots in French Guiana spanning a mean annual precipitation gradient of over 2000 mm per year. We measured soil texture, pH, C, N and available P stocks in the top 30 cm, and fungal biodiversity using ITS DNA sequencing and characterized soil organic matter (SOM) C, N and P distribution among physically defined SOM fractions. We also measured litter layer standing stocks and CNP stoichiometry. We found significant stocks of SOM in the top 30 cm of the soil varying by a factor of 4 in the top 30 cm of soil with a negative correlation of arbuscular mycorrhizal fungi and soil C and N with available P. Available P was also a strong predictor of fungal community composition. Furthermore there is evidence for precipitation and mineralogical influences on leaf litter and SOM dynamics highlighting the importance of heterogeneity in tropical soil substrates and sub-climates in better understanding the biogeochemistry of tropical ecosystems.

  5. Filamentous fungi remove weathered hydrocarbons from polluted soil of tropical Mexico

    OpenAIRE

    PÉREZ-ARMENDÁRIZ, Beatriz; MARTÍNEZ-CARRERA, Daniel; CALIXTO-MOSQUEDA, María; ALBA, Joel; RODRÍGUEZ-VÁZQUEZ, Refugio

    2010-01-01

    Weathered hydrocarbons from worldwide petrolic activities become more recalcitrant over time. The removal of petroleum hydrocarbons from a polluted soil [65,000 mg total petroleum hydrocarbons (TPH)/kg soil], which had been exposed to tropical environmental conditions for more than 20 years in southeast Mexico, was studied using filamentous fungi. Experiments were carried out in batch reactors (60 mL) containing a substrate consisting of polluted soil and sugar cane bagasse pith as bulk agent...

  6. Soil and water pollution in a banana production region in tropical Mexico

    NARCIS (Netherlands)

    Geissen, V.; Que Ramos, F.; Bastidas-Bastidas, de P.J.; Díaz-González, G.; Bello-Mendoza, R.; Huerta-Lwanga, E.; Ruiz-Suárez, L.E.

    2010-01-01

    The effects of abundant Mancozeb (Mn, Zn— bisdithiocarbamate) applications (2.5 kg ha-1week-1 for 10 years) on soil and surface-, subsurface- and groundwater pollution were monitored in a banana production region of tropical Mexico. In soils, severe manganese accumulation was observed, wheras the

  7. Endogeic earthworms shape bacterial functional communities and affect organic matter mineralization in a tropical soil

    Science.gov (United States)

    Bernard, Laetitia; Chapuis-Lardy, Lydie; Razafimbelo, Tantely; Razafindrakoto, Malalatiana; Pablo, Anne-Laure; Legname, Elvire; Poulain, Julie; Brüls, Thomas; O'Donohue, Michael; Brauman, Alain; Chotte, Jean-Luc; Blanchart, Eric

    2012-01-01

    Priming effect (PE) is defined as a stimulation of the mineralization of soil organic matter (SOM) following a supply of fresh organic matter. This process can have important consequences on the fate of SOM and on the management of residues in agricultural soils, especially in tropical regions where soil fertility is essentially based on the management of organic matter. Earthworms are ecosystem engineers known to affect the dynamics of SOM. Endogeic earthworms ingest large amounts of soil and assimilate a part of organic matter it contains. During gut transit, microorganisms are transported to new substrates and their activity is stimulated by (i) the production of readily assimilable organic matter (mucus) and (ii) the possible presence of fresh organic residues in the ingested soil. The objective of our study was to see (i) whether earthworms impact the PE intensity when a fresh residue is added to a tropical soil and (ii) whether this impact is linked to a stimulation/inhibition of bacterial taxa, and which taxa are affected. A tropical soil from Madagascar was incubated in the laboratory, with a 13C wheat straw residue, in the presence or absence of a peregrine endogeic tropical earthworm, Pontoscolex corethrurus. Emissions of 12CO2 and 13CO2 were followed during 16 days. The coupling between DNA-SIP (stable isotope probing) and pyrosequencing showed that stimulation of both the mineralization of wheat residues and the PE can be linked to the stimulation of several groups especially belonging to the Bacteroidetes phylum. PMID:21753801

  8. Soil type and texture impacts on soil organic carbon accumulation in a sub-tropical agro-ecosystem

    Energy Technology Data Exchange (ETDEWEB)

    Gonçalves, Daniel Ruiz Potma; Sa, Joao Carlos de Moraes; Mishra, Umakant; Cerri, Carlos Eduardo Pellegrino; Ferreira, Lucimara Aparecida; Furlan, Flavia Juliana Ferreira

    2016-11-02

    Soil organic carbon (C) plays a fundamental role in tropical and subtropical soil fertility, agronomic productivity, and soil health. As a tool for understand ecosystems dynamics, mathematical models such as Century have been used to assess soil's capacity to store C in different environments. However, as Century was initially developed for temperate ecosystems, several authors have hypothesized that C storage may be underestimated by Century in Oxisols. We tested the hypothesis that Century model can be parameterized for tropical soils and used to reliably estimate soil organic carbon (SOC) storage. The aim of this study was to investigate SOC storage under two soil types and three textural classes and quantify the sources and magnitude of uncertainty using the Century model. The simulation for SOC storage was efficient and the mean residue was 10 Mg C ha-1 (13%) for n = 91. However, a different simulation bias was observed for soil with <600 g kg-1 of clay was 16.3 Mg C ha-1 (18%) for n = 30, and at >600 g kg-1 of clay, was 4 Mg C ha-1 (5%) for n = 50, respectively. The results suggest a non-linear effect of clay and silt contents on C storage in Oxisols. All types of soil contain nearly 70% of Fe and Al oxides in the clay fraction and a regression analysis showed an increase in model bias with increase in oxides content. Consequently, inclusion of mineralogical control of SOC stabilization by Fe and Al (hydro) oxides may improve results of Century model simulations in soils with high oxides contents

  9. Degradation of chlorpyrifos in tropical rice soils.

    Science.gov (United States)

    Das, Subhasis; Adhya, Tapan K

    2015-04-01

    Chlorpyrifos [O,O-diethyl O-(3,5,6-trichloro-2-pyridinol) phosphorothioate] is used worldwide as an agricultural insecticide against a broad spectrum of insect pests of economically important crops including rice, and soil application to control termites. The insecticide mostly undergoes hydrolysis to diethyl thiophosphoric acid (DETP) and 3,5,6-trichloro-2-pyridinol (TCP), and negligible amounts of other intermediate products. In a laboratory-cum-greenhouse study, chlorpyrifos, applied at a rate of 10 mg kg(-1) soil to five tropical rice soils of wide physico-chemical variability, degraded with a half-life ranging from 27.07 to 3.82 days. TCP was the major metabolite under both non-flooded and flooded conditions. Chlorpyrifos degradation had significant negative relationship with electrical conductivity (EC), cation exchange capacity (CEC), clay and sand contents of the soils under non-flooded conditions. Results indicate that degradation of chlorpyrifos was accelerated with increase in its application frequency, across the representative rice soils. Management regimes including moisture content and presence or absence of rice plants also influenced the process. Biotic factors also play an important role in the degradation of chlorpyrifos as demonstrated by its convincing degradation in mineral salts medium inoculated with non-sterile soil suspension. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Impacts of Dust on Tropical Volcanic Soil Formation: Insights from Strontium and Uranium-Series Isotopes in Soils from Basse-Terre Island, French Guadeloupe

    Science.gov (United States)

    Pereyra, Y.; Ma, L.; Sak, P. B.; Gaillardet, J.; Buss, H. L.; Brantley, S. L.

    2015-12-01

    Dust inputs play an important role in soil formation, especially for thick soils developed on tropical volcanic islands. In these regions, soils are highly depleted due to intensive chemical weathering, and mineral nutrients from dusts have been known to be important in sustaining soil fertility and productivity. Tropical volcanic soils are an ideal system to study the impacts of dust inputs on the ecosystem. Sr and U-series isotopes are excellent tracers to identify sources of materials in an open system if the end-members have distinctive isotope signatures. These two isotope systems are particularly useful to trace the origin of atmospheric inputs into soils and to determine rates and timescales of soil formation. This study analyzes major elemental concentrations, Sr and U-series isotope ratios in highly depleted soils in the tropical volcanic island of Basse-Terre in French Guadeloupe to determine atmospheric input sources and identify key soil formation processes. We focus on three soil profiles (8 to 12 m thick) from the Bras-David, Moustique Petit-Bourg, and Deshaies watersheds; and on the adjacent rivers to these sites. Results have shown a significant depletion of U, Sr, and major elements in the deep profile (12 to 4 m) attributed to rapid chemical weathering. The top soil profiles (4 m to the surface) all show addition of elements such as Ca, Mg, U, and Sr due to atmospheric dust. More importantly, the topsoil profiles have distinct Sr and U-series isotope compositions from the deep soils. Sr and U-series isotope ratios of the top soils and sequential extraction fractions confirm that the sources of the dust are from the Saharan dessert, through long distance transport from Africa to the Caribbean region across the Atlantic Ocean. During the transport, some dust isotope signatures may also have been modified by local volcanic ashes and marine aerosols. Our study highlights that dusts and marine aerosols play important roles in element cycles and

  11. Phosphate fertilisers and management for sustainable crop production in tropical acid soils

    International Nuclear Information System (INIS)

    Chien, S.H.; Friesen, D.K.

    2000-01-01

    Extensive research has been conducted over the past 25 years on the management of plant nutrients, especially N and P, for crop production on acidic infertile tropical soils. Under certain conditions, the use of indigenous phosphate rock (PR) and modified PR products, such as partially acidulated PR or compacted mixtures of PR with superphosphates, are attractive alternatives, both agronomically and economically, to the use of conventional water-soluble P fertilisers for increasing crop productivity on Oxisols and Ultisols. A combination of the effects of proper P and N management including biological N 2 fixation, judicious use of lime, and the use of acid-soil tolerant and/or P-efficient cultivars in cropping systems that enhance nutrient cycling and use efficiency, can provide an effective technology to sustainably increase crop productivity and production in tropical agro-ecosystems dominated by these acid soils. (author)

  12. Bioremediation of a crude oil polluted tropical rain forest soil ...

    African Journals Online (AJOL)

    These results suggest that Biostimulation with tilling (nutrient enhanced in-situ bioremediation) and or the combination ofBiostimulation and Bioaugumentation with indigenous hydrocarbon utilizers would be effective in the remediation of crude oil polluted tropical soils. Key Words: Bioremediation, Bioaugumentation, ...

  13. Enhanced degradation of 14C-HCB in two tropical clay soils using multiple anaerobic–aerobic cycles

    International Nuclear Information System (INIS)

    Orori Kengara, Fredrick; Doerfler, Ulrike; Welzl, Gerhard; Ruth, Bernhard; Munch, Jean Charles; Schroll, Reiner

    2013-01-01

    The aim of the study was to induce and enhance the degradation of hexachlorobenzene (HCB), a highly-chlorinated persistent organic pollutant, in two ecologically different tropical soils: a paddy soil (PS) and a non-paddy soil (FS). The degradation of HCB was enhanced using two anaerobic–aerobic cycles in model laboratory experiments. There was greater degradation of HCB in the PS (half-life of 224 days) relative to the FS (half-life of 286 days). It was further shown that soils amended with compost had higher metabolite concentrations relative to the non-amended soils. In the first cycle, there was little degradation of HCB in both soils. However, in the second cycle, there was enhanced mineralization in the PS under aerobic conditions, with the compost-treated samples showing higher mineralization. There was also extensive volatilization in both soils. The metabolite pattern revealed that the increased mineralization and volatilization was due to the formation of lower chlorinated benzenes. - Highlights: ► Two anaerobic–aerobic cycles enhanced the dissipation of HCB in two tropical soils – a paddy and non-paddy soil. ► The paddy soil was more effective in degrading HCB. ► The non-paddy soil adapted and degraded HCB in the second anaerobic–aerobic cycle. ► An additional carbon source enhanced degradation and mineralisation of HCB in both soils. - Two anaerobic–aerobic cycles enhance the degradation of HCB in two ecologically different tropical clay soils.

  14. Differences in microbial community structure and nitrogen cycling in natural and drained tropical peatland soils.

    Science.gov (United States)

    Espenberg, Mikk; Truu, Marika; Mander, Ülo; Kasak, Kuno; Nõlvak, Hiie; Ligi, Teele; Oopkaup, Kristjan; Maddison, Martin; Truu, Jaak

    2018-03-16

    Tropical peatlands, which play a crucial role in the maintenance of different ecosystem services, are increasingly drained for agriculture, forestry, peat extraction and human settlement purposes. The present study investigated the differences between natural and drained sites of a tropical peatland in the community structure of soil bacteria and archaea and their potential to perform nitrogen transformation processes. The results indicate significant dissimilarities in the structure of soil bacterial and archaeal communities as well as nirK, nirS, nosZ, nifH and archaeal amoA gene-possessing microbial communities. The reduced denitrification and N 2 -fixing potential was detected in the drained tropical peatland soil. In undisturbed peatland soil, the N 2 O emission was primarily related to nirS-type denitrifiers and dissimilatory nitrate reduction to ammonium, while the conversion of N 2 O to N 2 was controlled by microbes possessing nosZ clade I genes. The denitrifying microbial community of the drained site differed significantly from the natural site community. The main reducers of N 2 O were microbes harbouring nosZ clade II genes in the drained site. Additionally, the importance of DNRA process as one of the controlling mechanisms of N 2 O fluxes in the natural peatlands of the tropics revealed from the results of the study.

  15. Microorganisms in Soils of Bovine Production Systems in Tropical Lowlands and Tropical Highlands in the Department of Antioquia, Colombia

    OpenAIRE

    Molina-Guzmán, Licet Paola; Henao-Jaramillo, Paula Andrea; Gutiérrez-Builes, Lina Andrea; Ríos-Osorio, Leonardo Alberto

    2018-01-01

    Studies on the physical and chemical effects of extensive grazing on soils have been performed in Colombia, but the effects of dairy cattle rearing on the biological properties of soils are not well known. The objective of this study was to evaluate microorganisms in 48 soils from livestock farms in the highland and lowland tropics in the Northern and Magdalena Medio subregions of the Department of Antioquia (Colombia). Principal component analysis demonstrated differences in the edaphic comp...

  16. Biotic and abiotic controls on diurnal fluctuations in labile soil phosphorus of a wet tropical forest.

    Science.gov (United States)

    Vandecar, Karen L; Lawrence, Deborah; Wood, Tana; Oberbauer, Steven F; Das, Rishiraj; Tully, Katherine; Schwendenmann, Luitgard

    2009-09-01

    The productivity of many tropical wet forests is generally limited by bioavailable phosphorus (P). Microbial activity is a key regulator of P availability in that it determines both the supply of P through organic matter decomposition and the depletion of bioavailable P through microbial uptake. Both microbial uptake and mineralization occur rapidly, and their net effect on P availability varies with soil moisture, temperature, and soil organic matter quantity and quality. Exploring the mechanisms driving P availability at fine temporal scales can provide insight into the coupling of carbon, water, and nutrient cycles, and ultimately, the response of tropical forests to climate change. Despite the recognized importance of P cycling to the dynamics of wet tropical forests and their potential sensitivity to short-term fluctuations in bioavailable P, the diurnal pattern of P remains poorly understood. This study quantifies diurnal fluctuations in labile soil P and evaluates the importance of biotic and abiotic factors in driving these patterns. To this end, measurements of labile P were made every other hour in a Costa Rican wet tropical forest oxisol. Spatial and temporal variation in Bray-extractable P were investigated in relation to ecosystem carbon flux, soil CO2 efflux, soil moisture, soil temperature, solar radiation, and sap-flow velocity. Spatially averaged bi-hourly (every two hours) labile P ranged from 0.88 to 2.48 microg/g across days. The amplitude in labile P throughout the day was 0.61-0.82 microg/g (41-54% of mean P concentrations) and was characterized by a bimodal pattern with a decrease at midday. Labile P increased with soil CO2 efflux and soil temperature and declined with increasing sap flow and solar radiation. Together, soil CO2 efflux, soil temperature, and sap flow explained 86% of variation in labile P.

  17. Design of autonomous sensor nodes for remote soil monitoring in tropical banana plantation

    Science.gov (United States)

    Tiausas, Francis Jerome G.; Co, Jerelyn; Macalinao, Marc Joseph M.; Guico, Maria Leonora; Monje, Jose Claro; Oppus, Carlos

    2017-09-01

    Determining the effect of Fusarium oxysporum f. sp. cubense Tropical Race 4 on various soil parameters is essential in modeling and predicting its occurrence in banana plantations. One way to fulfill this is through a sensor network that will continuously and automatically monitor environmental conditions at suspect locations for an extended period of time. A wireless sensor network was developed specifically for this purpose. This sensor network is capable of measuring soil acidity, moisture, temperature, and conductivity. The designed prototype made use of off-the-shelf Parrot Flower Power soil sensor, pH sensor, Bluno Beetle, battery, and 3D-printed materials, catering specifically to the conditions of tropical banana plantations with consideration for sensor node size, communication, and power. Sensor nodes were tested on both simulated tropical environments and on an actual banana plantation in San Jose, General Santos City, Philippines. Challenges were resolved through iterative design and development of prototypes. Several tests including temperature and weather resilience, and structural stress tests were done to validate the design. Findings showed that the WSN nodes developed for this purpose are resilient to high tropical temperatures for up to 12 hours of continuous exposure, are able to withstand compressive forces of up to 8880.6 N, and can reliably collect data automatically from the area 47.96% of the time at an hourly frequency under actual field conditions.

  18. Soil macrofauna and litter nutrients in three tropical tree plantations on a disturbed site in Puerto Rico.

    Science.gov (United States)

    Matthew W. Warren; Xiaoming Zou

    2002-01-01

    Tree plantations are increasingly common in tropical landscapes due to their multiple uses. Plantations vary in structure and composition, and these variations may alter soil fauna communities. Recent studies have demonstrated the important role of soil fauna in the regulation of plant litter decomposition in the tropics. However, little is known about how plantation...

  19. Biodegradação de alcoóis, ftalatos e adipatos em um solo tropical contaminado Biodegradation of alcohol, phthalates and adipates in a tropical soil

    Directory of Open Access Journals (Sweden)

    Ieda Domingues Ferreira

    2010-01-01

    Full Text Available The adipic and phthalic acid esters are plasticizers, have low water solubility, high partition octanol/water coefficients (Kow and accumulate in soil and sediments. These compounds are considered teratogenic, carcinogenic and endocrine disruptors chemicals. This study evaluated the bioremediation of tropical soil contaminated with plasticizers process wastes, in aerobic conditions, with and without introduction of acclimated bacteria. It was selected 200 kg of contaminated tropical soil for the biodegradation study. The plasticizers concentrations in soil ranged between 153 mgDOA/kg up to 15552 mgDIDP/kg and after 90 days of biodegradation, the lower removal efficiencies were 72% with a 1-2 log simultaneous bacterial growth.

  20. Stand-scale soil respiration estimates based on chamber methods in a Bornean tropical rainforest

    Science.gov (United States)

    Kume, T.; Katayama, A.; Komatsu, H.; Ohashi, M.; Nakagawa, M.; Yamashita, M.; Otsuki, K.; Suzuki, M.; Kumagai, T.

    2009-12-01

    This study was undertaken to estimate stand-scale soil respiration in an aseasonal tropical rainforest on Borneo Island. To this aim, we identified critical and practical factors explaining spatial variations in soil respiration based on the soil respiration measurements conducted at 25 points in a 40 × 40 m subplot of a 4 ha study plot for five years in relation to soil, root, and forest structural factors. Consequently, we found significant positive correlation between the soil respiration and forest structural parameters. The most important factor was the mean DBH within 6 m of the measurement points, which had a significant linear relationship with soil respiration. Using the derived linear regression and an inventory dataset, we estimated the 4 ha-scale soil respiration. The 4 ha-scale estimation (6.0 μmol m-2 s-1) was nearly identical to the subplot scale measurements (5.7 μmol m-2 s-1), which were roughly comparable to the nocturnal CO2 fluxes calculated using the eddy covariance technique. To confirm the spatial representativeness of soil respiration estimates in the subplot, we performed variogram analysis. Semivariance of DBH(6) in the 4 ha plot showed that there was autocorrelation within the separation distance of about 20 m, and that the spatial dependence was unclear at a separation distance of greater than 20 m. This ascertained that the 40 × 40 m subplot could represent the whole forest structure in the 4 ha plot. In addition, we discuss characteristics of the stand-scale soil respiration at this site by comparing with those of other forests reported in previous literature in terms of the soil C balance. Soil respiration at our site was noticeably greater, relative to the incident litterfall amount, than soil respiration in other tropical and temperate forests probably owing to the larger total belowground C allocation by emergent trees. Overall, this study suggests the arrangement of emergent trees and their bellow ground C allocation could be

  1. Long-term persistence of pioneer species in tropical forest soil seed banks

    Energy Technology Data Exchange (ETDEWEB)

    Dalling, J W; Brown, T A

    2008-10-05

    In tropical forests, pioneer species regenerate from seeds dispersed directly into canopy gaps, and from seeds that persisted in soil seed banks before gap formation. However, life-history models suggest that selection for long-term persistence of seeds in soil should be weak, as persistence incurs a fitness cost resulting from prolonged generation time. We use a carbon dating technique to provide the first direct measurements of seed persistence in undisturbed tropical forest seed banks. We show that seeds germinate successfully from surface soil microsites up to 38 years after dispersal. Decades-long persistence may be common in pioneers with relatively large mass, and appears to be unrelated to specific regeneration requirements. In Croton billbergianus, a sub-canopy tree that recruits in abundant small gaps, long-term persistence is associated with short-distance ballistic seed dispersal. In Trema micrantha, a canopy tree with widespread dispersal, persistence is associated with a requirement for large gaps that form infrequently in old-growth forest.

  2. Effect of land management models on soil erosion in wet tropical cacao plantations in Indonesia

    OpenAIRE

    Suhardi

    2017-01-01

    Indonesia is one of the world???s largest cocoa exporters and is located in a tropical wet region. In tropical regions, surface run off is a major factor behind the occurrence of erosion-driven land degradation. Both land slope and land cover influence the magnitude of surface run off and soil erosion. Cocoa plants are generally cultivated on land that has a steep slope without regard to existing land cover conditions resulting in a susceptibility to soil erosion. The purpose of this resea...

  3. How soil scientists help combat podoconiosis, a neglected tropical disease

    NARCIS (Netherlands)

    Visser, Benjamin Jelle

    2014-01-01

    Podoconiosis or "endemic non-filarial elephantiasis" is a tropical disease caused by prolonged exposure of bare feet to irritant alkaline clay soils of volcanic origin [1]. The name of the disease is derived from the Greek words for foot: podos, and dust: konos. Small mineral particles from irritant

  4. Exclusion of soil macrofauna did not affect soil quality but increases crop yields in a sub-humid tropical maize-based system

    NARCIS (Netherlands)

    Paul, B.K.; Vanlauwe, B.; Hoogmoed, M.; Hurisso, T.T.; Ndabamenye, T.; Terano, Y.; Ayuke, F.O.; Pulleman, M.M.

    2015-01-01

    Soil macrofauna such as earthworms and termites are involved in key ecosystem functions and thus considered important for sustainable intensification of crop production. However, their contribution to tropical soil and crop performance, as well as relations with agricultural management (e.g.

  5. Agriculture at the Edge: Landscape Variability of Soil C Stocks and Fluxes in the Tropical Andes

    Science.gov (United States)

    Riveros-Iregui, D. A.; Peña, C.

    2015-12-01

    Paramos, or tropical alpine grasslands occurring right above the forest tree-line (2,800 - 4,700 m), are among the most transformed landscapes in the humid tropics. In the Tropical Andes, Paramos form an archipelago-like pattern from Northern Colombia to Central Peru that effectively captures atmospheric moisture originated in the Amazon-Orinoco basins, while marking the highest altitude capable of sustaining vegetation growth (i.e., 'the edge'). This study investigates the role of land management on mediating soil carbon stocks and fluxes in Paramo ecosystems of the Eastern Cordillera of Colombia. Observations were collected at a Paramo site strongly modified by land use change, including active potato plantations, pasture, tillage, and land abandonment. Results show that undisturbed Paramos soils have high total organic carbon (TOC), high soil water content (SWC), and low soil CO2 efflux (RS) rates. However, Paramo soils that experience human intervention show lower TOC, higher and more variable RS rates, and lower SWC. This study demonstrates that changes in land use in Paramos affect differentially the accumulation and exchange of soil carbon with the atmosphere and offers implications for management and protection strategies of what has been deemed the fastest evolving biodiversity ecosystem in the world.

  6. Soil Effects on Forest Structure and Diversity in a Moist and a Dry Tropical Forest

    NARCIS (Netherlands)

    Peña-Claros, M.; Poorter, L.; Alarcon, A.; Blate, G.; Choque, U.; Fredericksen, T.S.; Justiniano, J.; Leaño, C.; Licona, J.C.; Pariona, W.; Putz, F.E.; Quevedo, L.; Toledo, M.

    2012-01-01

    Soil characteristics are important drivers of variation in wet tropical forest structure and diversity, but few studies have evaluated these relationships in drier forest types. Using tree and soil data from 48 and 32 1 ha plots, respectively, in a Bolivian moist and dry forest, we asked how soil

  7. Bacterial diversity in a tropical crude oil-polluted soil undergoing ...

    African Journals Online (AJOL)

    The bacterial diversity in a tropical soil experimentally polluted with crude oil during a 57 days bioremediation was investigated in five 1 m2 plots using total culturable hydrocarbon utilizing bacteria, heterotrophic bacteria and gas chromatographic analyses. Four out of the five experimental plots received each 4 L of Bonny ...

  8. Cropping enhances mycorrhizal benefits to maize in a tropical soil

    Czech Academy of Sciences Publication Activity Database

    Jemo, M.; Souleymanou, A.; Frossard, E.; Jansa, Jan

    2014-01-01

    Roč. 79, č. 2014 (2014), s. 117-124 ISSN 0038-0717 R&D Projects: GA MŠk(CZ) LK11224; GA ČR GAP504/12/1665 Institutional support: RVO:61388971 Keywords : tropical soil * mycorrhizal benefits * southern Cameroon Subject RIV: EE - Microbiology, Virology Impact factor: 3.932, year: 2014

  9. Hot moments of N2O transformation and emission in tropical soils from the Pantanal and the Amazon (Brazil)

    DEFF Research Database (Denmark)

    Liengaard, Lars; Figueiredo, Viviane; Markfoged, Rikke

    2014-01-01

    Tropical wetland soils emit large amounts of nitrous oxide (N2O), especially following wetting of drained soil. We investigated seasonally drained wetland soils from the Pantanal and the Amazon, both with a natural high nitrate content and low pH. Here we report the effect of wetting on the produ......Tropical wetland soils emit large amounts of nitrous oxide (N2O), especially following wetting of drained soil. We investigated seasonally drained wetland soils from the Pantanal and the Amazon, both with a natural high nitrate content and low pH. Here we report the effect of wetting...

  10. Soil organic matter dynamics during 80 years of reforestation of tropical pastures

    Science.gov (United States)

    Erika Marin-Spiotta; Whendee L. Silver; Christopher W. Swanston; Rebecca. Ostertag

    2009-01-01

    Our research takes advantage of a historical trend in natural reforestation of abandoned tropical pastures to examine changes in soil carbon (C) during 80 years of secondary forest regrowth. We combined a chronosequence...

  11. No signs of soil organic matter accumulation and of changes in nutrient (N-P) limitation during tropical secondary forest succession in the wet tropics of Southwest Costa Rica

    Science.gov (United States)

    Wanek, Wolfgang; Oberdorfer, Sarah; Oberleitner, Florian; Hietz, Peter; Dullinger, Stefan; Zehetner, Franz

    2017-04-01

    Secondary forests comprise large tracts of the tropical land area, due to ongoing changes in land-use, including selective logging and agricultural land abandonment. Recent meta-analyses demonstrated that temperature and precipitation are key drivers of forest ecosystem recovery, particularly of soil organic carbon (SOC) build-up, where losses of SOC after deforestation and cultivation (and its recovery after abandonment) were largest in the wet tropical lowlands. However, wet lowland tropical chronosequences are strongly underrepresented (4000 mm) and the large variance in this group may be explained by soil type and soil nutrients. Moreover strong effects of (and changes in) nutrient limitation, with an intermittent change from P to N limitation of plant production in young tropical secondary forests, have been identified in a few studies. For this study we established a tropical secondary forest chronosequence, identifying old pastures (>40 years), young to old secondary forests (1-55 years) and old-growth forests based on aerial photographs and satellite images dating from the 1960s to the 2010s in SW Costa Rica, a region where mean annual temperature is 27°C and mean annual precipitation between 5000 and 6000 mm. Soil samples were taken incrementally to 45 cm depth, sieved and soils and roots collected and analysed. Bulk density decreased and SOC content increased from pastures to secondary forests and old-growth forests, with the net effect on soil C stocks (between 63 and 92 Mg ha-1 (0-45 cm)) being neutral. SOC stocks were generally high, due to high fine root densities and associated high root inputs to mineral soils in pastures and forests. SOC showed relatively slow turnover times, based on root and soil delta13C values, with turnover times of 120 and 210 years in topsoils and subsoils, indicating strong stabilization of SOM due to mineral binding and high aggregate stability (>80%). At the same time we found no change in soil N and P availability, but

  12. Using Remotely Sensed Fluorescence and Soil Moisture to Better Understand the Seasonal Cycle of Tropical Grasslands

    Science.gov (United States)

    Smith, Dakota Carlysle

    Seasonal grasslands account for a large area of Earth's land cover. Annual and seasonal changes in these grasslands have profound impacts on Earth's carbon, energy, and water cycles. In tropical grasslands, growth is commonly water-limited and the landscape oscillates between highly productive and unproductive. As the monsoon begins, soils moisten providing dry grasses the water necessary to photosynthesize. However, along with the rain come clouds that obscure satellite products that are commonly used to study productivity in these areas. To navigate this issue, we used solar induced fluorescence (SIF) products from OCO-2 along with soil moisture products from the Soil Moisture Active Passive satellite (SMAP) to "see through" the clouds to monitor grassland productivity. To get a broader understanding of the vegetation dynamics, we used the Simple Biosphere Model (SiB4) to simulate the seasonal cycles of vegetation. In conjunction with SiB4, the remotely sensed SIF and soil moisture observations were utilized to paint a clearer picture of seasonal productivity in tropical grasslands. The remotely sensed data is not available for every place at one time or at every time for one place. Thus, the study was focused on a large area from 15° E to 35° W and from 8°S to 20°N in the African Sahel. Instead of studying productivity relative to time, we studied it relative to soil moisture. Through this investigation we found soil moisture thresholds for the emergence of grassland growth, near linear grassland growth, and maturity of grassland growth. We also found that SiB4 overestimates SIF by about a factor of two for nearly every value of soil moisture. On the whole, SiB4 does a surprisingly good job of predicting the response of seasonal growth in tropical grasslands to soil moisture. Future work will continue to integrate remotely sensed SIF & soil moisture with SiB4 to add to our growing knowledge of carbon, water, and energy cycling in tropical grasslands.

  13. Genotypic Diversity of Escherichia coli in the Water and Soil of Tropical Watersheds in Hawaii ▿

    Science.gov (United States)

    Goto, Dustin K.; Yan, Tao

    2011-01-01

    High levels of Escherichia coli were frequently detected in tropical soils in Hawaii, which present important environmental sources of E. coli to water bodies. This study systematically examined E. coli isolates from water and soil of several watersheds in Hawaii and observed high overall genotypic diversity (35.5% unique genotypes). In the Manoa watershed, fewer than 9.3% of the observed E. coli genotypes in water and 6.6% in soil were shared between different sampling sites, suggesting the lack of dominant fecal sources in the watershed. High temporal variability of E. coli genotypes in soil was also observed, which suggests a dynamic E. coli population corresponding with the frequently observed high concentrations in tropical soils. When E. coli genotypes detected from the same sampling events were compared, limited sharing between the soil and water samples was observed in the majority of comparisons (73.5%). However, several comparisons reported up to 33.3% overlap of E. coli genotypes between soil and water, illustrating the potential for soil-water interactions under favorable environmental conditions. In addition, genotype accumulation curves for E. coli from water and soil indicated that the sampling efforts in the Manoa watershed could not exhaust the overall genotypic diversity. Comparisons of E. coli genotypes from other watersheds on Oahu, Hawaii, identified no apparent grouping according to sampling locations. The results of the present study demonstrate the complexity of using E. coli as a fecal indicator bacterium in tropical watersheds and highlight the need to differentiate environmental sources of E. coli from fecal sources in water quality monitoring. PMID:21515724

  14. Rain-induced changes in soil CO2 flux and microbial community composition in a tropical forest of China.

    Science.gov (United States)

    Deng, Qi; Hui, Dafeng; Chu, Guowei; Han, Xi; Zhang, Quanfa

    2017-07-17

    Rain-induced soil CO 2 pulse, a rapid excitation in soil CO 2 flux after rain, is ubiquitously observed in terrestrial ecosystems, yet the underlying mechanisms in tropical forests are still not clear. We conducted a rain simulation experiment to quantify rain-induced changes in soil CO 2 flux and microbial community composition in a tropical forest. Soil CO 2 flux rapidly increased by ~83% after rains, accompanied by increases in both bacterial (~51%) and fungal (~58%) Phospholipid Fatty Acids (PLFA) biomass. However, soil CO 2 flux and microbial community in the plots without litters showed limited response to rains. Direct releases of CO 2 from litter layer only accounted for ~19% increases in soil CO 2 flux, suggesting that the leaching of dissolved organic carbon (DOC) from litter layer to the topsoil is the major cause of rain-induced soil CO 2 pulse. In addition, rain-induced changes in soil CO 2 flux and microbial PLFA biomass decreased with increasing rain sizes, but they were positively correlated with litter-leached DOC concentration rather than total DOC flux. Our findings reveal an important role of litter-leached DOC input in regulating rain-induced soil CO 2 pulses and microbial community composition, and may have significant implications for CO 2 losses from tropical forest soils under future rainfall changes.

  15. Effects of nitrogen enrichment on soil organic matter in tropical forests with different ambient nutrient status

    Science.gov (United States)

    Vaughan, E.; Cusack, D. F.; McDowell, W. H.; Marin-Spiotta, E.

    2017-12-01

    Nitrogen (N) enrichment is a widespread and increasingly important human influence on ecosystems globally, with implications for net primary production and biogeochemical processes. Previous research has shown that N enrichment can alter soil carbon (C) cycling, although the direction and magnitude of the changes are not consistent across studies, and may change with time. Inconsistent responses to N additions may be due to differences in ambient nutrient status, and/or variable responses of plant C inputs and microbial decomposition. Although plant production in the tropics is not often limited by N, soil processes may respond differently to N enrichment. Our study uses a 15-year N addition experiment at two different tropical forest sites in the Luquillo Long-Term Ecological Research project site in Puerto Rico to address long-term changes in soil C pools due to fertilization. The two forests differ in elevation and ambient nutrient status. Soil sampling three and five years post-fertilization showed increased soil C concentrations under fertilization, driven by increases in mineral-associated C (Cusack et al. 2011). However, the longer-term trends at these sites are unknown. To this end, soil samples were collected following fifteen years of fertilization. Soils were sampled from 0-10 cm and 10-20 cm. Bulk soil C and N concentrations will be measured and compared to samples collected before fertilization (2002) and three years post fertilization (2005). We are using density fractionation to isolate different soil organic matter pools into a free light, occluded light, and dense, mineral associated fraction. These pools represent different mechanisms of soil organic matter stabilization, and provide more detailed insight into changes in bulk soil C. These data will provide insight into the effects of N enrichment on tropical forest soils, and how those effects may change through time with a unique long-term data set.

  16. Methyl Mercury Production In Tropical Hydromorphic Soils: Impact Of Gold Mining.

    Science.gov (United States)

    Guedron, S.; Charlet, L.; Harris, J.; Grimaldi, M.; Cossa, D.

    2007-12-01

    Artisanal alluvial gold mining is important in many tropical developing countries and several million people are involved worldwide. The dominant use of mercury for gold amalgamation in this activity leads to mercury accumulation in soils, to sediment contamination and to methyl mercury (MMHg) bioaccumulation along the food chain. In this presentation we will present recent data on methyl mercury production in hydromorphic soils and tailing ponds from a former gold mining area located in French Guiana (South America). Comparison of specific fluxes between a pristine sub watershed and the contaminated watershed shows that former mining activities lead to a large enhancement of dissolved and particulate MMHg emissions at least by a factor of 4 and 6, respectively. MMHg production was identified in sediments from tailing ponds and in surrounding hydromorphic soils. Moreover, interstitial soil water and tailing pond water profiles sampled in an experimental tailing pond demonstrate the presence of a large MMHg production in the suboxic areas. Both tailing ponds and hydromorphic soils present geochemical conditions that are favorable to bacterial mercury methylation (high soil Hg content, high aqueous ferric iron and dissolved organic carbon concentrations). Although sulfate-reducing bacteria have been described as being the principal mercury methylating bacteria, the positive correlation between dissolved MMHg and ferrous iron concentrations argue for a significant role of iron-reducing bacteria. Identifications by sequencing fragments of 16S rRNA from total soil DNA support these interpretations. This study demonstrates that current and past artisanal gold mining in the tropics lead to methyl mercury production in contaminated areas. As artisanal activities are increasing with increasing gold prices, the bio- magnification of methyl mercury in fish presents an increasing threat to local populations whose diet relies on fish consumption.

  17. Cesium and strontium sorption by selected tropical and subtropical soils around nuclear facilities

    International Nuclear Information System (INIS)

    Chiang, P.N.; Wang, M. K.; Huang, P.M.; Wang, J.J.; Chiu, C.Y.

    2010-01-01

    The dynamics of Cs and Sr sorption by soils, especially in the subtropics and tropics, as influenced by soil components are not fully understood. The rates and capacities of Cs and Sr sorption by selected subtropical and tropical soils in Taiwan were investigated to facilitate our understanding of the transformation and dynamics of Cs and Sr in soils developed under highly weathering intensity. The Langmuir isotherms and kinetic rates of Cs and Sr sorption on the Ap1 and Bt1 horizons of the Long-Tan (Lt) and the A and Bt1 horizons of the Kuan-Shan (Kt), Mao-Lin (Tml) and Chi-Lo (Cl) soils were selected for this study. Air-dried soil ( -5 to 1.88 x 10 -3 M of CsCl (pH 4.0) or 1.14 x 10 -4 to 2.85 x 10 -3 M of SrCl 2 (pH 4.0) solutions at 25 deg. C. The sorption maximum capacity (q m ) of Cs by the Ap1 and Bt1 horizons of the Lt soil (62.24 and 70.70 mmol Cs kg -1 soil) were significantly (p -1 soil in Kt soil and 34.83 and 29.96 mmol Cs kg -1 soil in Cl soil, respectively), however, the sorption maximum capacity values of the Lt and Tml soils did not show significant differences. The amounts of pyrophosphate extractable Fe (Fe p ) were correlated significantly with the Cs and Sr sorption capacities (for Cs sorption, r 2 = 0.97, p -4 ; for Sr sorption, r 2 = 0.82, p -3 ). The partition coefficient of radiocesium sorbed on soil showed the following order: Cl soil >> Kt soil > Tml soil > Lt soil. It was due to clay minerals. The second-order kinetic model was applied to the Cs and Sr sorption data. The rate constant of Cs or Sr sorption on the four soils was substantiality increased with increasing temperature. This is attributable to the availability of more energy for bond breaking and bond formation brought about by the higher temperatures. The rate constant of Cs sorption at 308 K was 1.39-2.09 times higher than that at 278 K in the four soils. The activation energy of Cs and Sr sorbed by the four soils ranged from 7.2 to 16.7 kJ mol -1 and from 15.2 to 22.4 kJ mol

  18. Soil Erosion from Agriculture and Mining: A Threat to Tropical Stream Ecosystems

    Directory of Open Access Journals (Sweden)

    Jan H. Mol

    2013-09-01

    Full Text Available In tropical countries soil erosion is often increased due to high erodibility of geologically old and weathered soils; intensive rainfall; inappropriate soil management; removal of forest vegetation cover; and mining activities. Stream ecosystems draining agricultural or mining areas are often severely impacted by the high loads of eroded material entering the stream channel; increasing turbidity; covering instream habitat and affecting the riparian zone; and thereby modifying habitat and food web structures. The biodiversity is severely threatened by these negative effects as the aquatic and riparian fauna and flora are not adapted to cope with excessive rates of erosion and sedimentation. Eroded material may also be polluted by pesticides or heavy metals that have an aggravating effect on functions and ecosystem services. Loss of superficial material and deepening of erosion gullies impoverish the nutrient and carbon contents of the soils; and lower the water tables; causing a “lose-lose” situation for agricultural productivity and environmental integrity. Several examples show how to interrupt this vicious cycle by integrated catchment management and by combining “green” and “hard” engineering for habitat restoration. In this review; we summarize current findings on this issue from tropical countries with a focus on case studies from Suriname and Brazil.

  19. Soil CO2 flux from three ecosystems in tropical peatland of Sarawak, Malaysia

    International Nuclear Information System (INIS)

    Melling, Lulie; Hatano, Ryusuke

    2005-01-01

    Soil CO 2 flux was measured monthly over a year from tropical peatland of Sarawak, Malaysia using a closed-chamber technique. The soil CO 2 flux ranged from 100 to 533 mg C/m 2 /h for the forest ecosystem, 63 to 245 mg C/m 2 /h for the sago and 46 to 335 mg C/m 2 /h for the oil palm. Based on principal component analysis (PCA), the environmental variables over all sites could be classified into three components, namely, climate, soil moisture and soil bulk density, which accounted for 86% of the seasonal variability. A regression tree approach showed that CO 2 flux in each ecosystem was related to different underlying environmental factors. They were relative humidity for forest, soil temperature at 5 cm for sago and water-filled pore space for oil palm. On an annual basis, the soil CO 2 flux was highest in the forest ecosystem with an estimated production of 2.1 kg C/m 2 /yr followed by oil palm at 1.5 kg C/m 2 /yr and sago at 1.1 kg C/m 2 /yr. The different dominant controlling factors in CO 2 flux among the studied ecosystems suggested that land use affected the exchange of CO 2 between tropical peatland and the atmosphere

  20. Measurements of soil respiration and simple models dependent on moisture and temperature for an Amazonian southwest tropical forest

    NARCIS (Netherlands)

    Zanchi, F.B.; Rocha, Da H.R.; Freitas, De H.C.; Kruijt, B.; Waterloo, M.J.; Manzi, A.O.

    2009-01-01

    Soil respiration plays a significant role in the carbon cycle of Amazonian tropical forests, although in situ measurements have only been poorly reported and the dependence of soil moisture and soil temperature also weakly understood. This work investigates the temporal variability of soil

  1. Soil to plant transfer values of 137 Cs in soils of tropical agro-ecological systems

    International Nuclear Information System (INIS)

    Wasserman, Maria Angelica; Ferreira, Ana Cristina Melo; Conti, Claudio Carvalho; Rochedo, Elaine Rua Rodriguez; Bartoly, Flavia; Viana, Aline Gonzalez; Moura, Glaucio Pereira; Poquet, Isabel; Perez, Daniel Vidal

    2002-01-01

    Recent radioecological studies have showed that some ecosystems present more suitable conditions for soil to plant transfer of some radionuclides, while others present lower transfer when compared with average values. Due to the difficulty to generate, experimentally, soil to plant transfer factors enough to cover the totality of existing soil and vegetation types, an alternative way has been the use of soil to reference plant transfer factor determined in various ecosystems. Trough the use of conversion factors, the reference transfer factor can be converted in values of transfer factor specific for a specific type of crop. These values can be used regionally to improve dose calculation and models for radiological risk assessments. This work presents experimental data for 137 Cs for reference crops grown up in Oxisol, Ultisol and Alfisol. These results allow the assessment of sensibility of main Brazilian soils regarding a radiological contamination with 137 Cs and provide regional parameters values. The results obtained in soils of tropical climate validate the international methodology aiming to derive generic transfer factor values for 137 Cs in reference crops based on a few soil properties such as fertility, pH and organic matter content. (author)

  2. Seasonal variation in soil and plant water potentials in a Bolivian tropical moist and dry forest

    NARCIS (Netherlands)

    Markesteijn, L.; Iraipi, J.; Bongers, F.; Poorter, L.

    2010-01-01

    We determined seasonal variation in soil matric potentials (¿soil) along a topographical gradient and with soil depth in a Bolivian tropical dry (1160 mm y-1 rain) and moist forest (1580 mm y-1). In each forest we analysed the effect of drought on predawn leaf water potentials (¿pd) and drought

  3. Building solar dryer of tropical woods; Construccion de un secador solar de maderas tropicales

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez R, J; Flores M, F. E; Cuevas D, O [Universidad de Quintana Roo, Chetumal, Quintana Roo (Mexico); Tolentino E, G [LABINTHAP-SEPI-ESIME-IPN, Mexico, D.F. (Mexico)

    2000-07-01

    In Quintana Roo, Mexico, several species of wood are used for handicrafts. The most commonly method used in the communities nearby Chetumal is natural drying, with the disadvantage of low quality in their products because the moisture contains in the wood. In this project studied the design of solar dryer for tropical woods in Quintana Roo. [Spanish] En este trabajo, se parte del analisis de las condiciones climatologicas existentes en el estado de Quintana Roo, Mexico, asi como de las necesidades de madera seca de una comunidad, como parametros basicos para el diseno y construccion de un secador solar de maderas tropicales.

  4. Disentangling the long-term effects of disturbance on soil biogeochemistry in a wet tropical forest ecosystem.

    Science.gov (United States)

    Gutiérrez Del Arroyo, Omar; Silver, Whendee L

    2018-04-01

    Climate change is increasing the intensity of severe tropical storms and cyclones (also referred to as hurricanes or typhoons), with major implications for tropical forest structure and function. These changes in disturbance regime are likely to play an important role in regulating ecosystem carbon (C) and nutrient dynamics in tropical and subtropical forests. Canopy opening and debris deposition resulting from severe storms have complex and interacting effects on ecosystem biogeochemistry. Disentangling these complex effects will be critical to better understand the long-term implications of climate change on ecosystem C and nutrient dynamics. In this study, we used a well-replicated, long-term (10 years) canopy and debris manipulation experiment in a wet tropical forest to determine the separate and combined effects of canopy opening and debris deposition on soil C and nutrients throughout the soil profile (1 m). Debris deposition alone resulted in higher soil C and N concentrations, both at the surface (0-10 cm) and at depth (50-80 cm). Concentrations of NaOH-organic P also increased significantly in the debris deposition only treatment (20-90 cm depth), as did NaOH-total P (20-50 cm depth). Canopy opening, both with and without debris deposition, significantly increased NaOH-inorganic P concentrations from 70 to 90 cm depth. Soil iron concentrations were a strong predictor of both C and P patterns throughout the soil profile. Our results demonstrate that both surface- and subsoils have the potential to significantly increase C and nutrient storage a decade after the sudden deposition of disturbance-related organic debris. Our results also show that these effects may be partially offset by rapid decomposition and decreases in litterfall associated with canopy opening. The significant effects of debris deposition on soil C and nutrient concentrations at depth (>50 cm), suggest that deep soils are more dynamic than previously believed, and can serve as

  5. Effects of Successive Harvests on Soil Nutrient Stocks in Established Tropical Plantation Forests

    Science.gov (United States)

    Mendoza, L.; McMahon, D.; Jackson, R. B.

    2017-12-01

    Large-scale plantation forests in tropical regions alter biogeochemical processes, raising concerns about the long-term sustainability of this land use. Current commercial practices result in nutrient export with removed biomass that may not be balanced by fertilizer application. Consequent changes in a landscape's nutrient distributions can affect the growth of future plantations or other vegetation. Prior studies have reported changes in soil chemical and physical properties when plantation forests replace pastures or native vegetation, but few have examined the impacts of multiple harvest cycles following plantation establishment. This study analyzed macronutrient and carbon content of soil samples from the world's most productive plantation forests, in southeastern Brazil, to understand the long-term effects of plantation forests on soil nutrient stocks and soil fertility. Soil was collected from Eucalyptus plantation sites and adjacent vegetation in 2004 and again in 2016, after at least one full cycle of harvesting and replanting. We found that within surface soil (0-10 cm) Mg and N did not change significantly and C, P, K and Ca concentrations generally increased, but to varying extents within individual management units. This trend of increasing nutrient concentrations suggests that additional harvests do not result in cumulative nutrient depletion. However, large changes in Ca and K concentrations in individual plantation units indicate that added fertilizer does not consistently accumulate in the surface soil. Analysis of deeper soil layers and comparison to unfertilized vegetation will help to determine the fate of fertilizers and native soil nutrients in repeatedly harvested plantations. These results address the necessity of long-term investigation of nutrient changes to better understand and determine the impacts of different types of land use in the tropics.

  6. Soil and water pollution in a banana production region in tropical Mexico

    OpenAIRE

    Geissen, V.; Que Ramos, F.; Bastidas-Bastidas, de, P.J.; Díaz-González, G.; Bello-Mendoza, R.; Huerta-Lwanga, E.; Ruiz-Suárez, L.E.

    2010-01-01

    The effects of abundant Mancozeb (Mn, Zn— bisdithiocarbamate) applications (2.5 kg ha-1week-1 for 10 years) on soil and surface-, subsurface- and groundwater pollution were monitored in a banana production region of tropical Mexico. In soils, severe manganese accumulation was observed, wheras the main metabolite ethylenethiourea was near the detection limit. Surface and subsurface water was highly polluted with ethylenethiourea, the main metabolite of Mancozeb (22.5 and 4.3 lg L-1, respective...

  7. Tree species effects on pathogen-suppressive capacities of soil bacteria across two tropical dry forests in Costa Rica.

    Science.gov (United States)

    Becklund, Kristen; Powers, Jennifer; Kinkel, Linda

    2016-11-01

    Antibiotic-producing bacteria in the genus Streptomyces can inhibit soil-borne plant pathogens, and have the potential to mediate the impacts of disease on plant communities. Little is known about how antibiotic production varies among soil communities in tropical forests, despite a long history of interest in the role of soil-borne pathogens in these ecosystems. Our objective was to determine how tree species and soils influence variation in antibiotic-mediated pathogen suppression among Streptomyces communities in two tropical dry forest sites (Santa Rosa and Palo Verde). We targeted tree species that co-occur in both sites and used a culture-based functional assay to quantify pathogen-suppressive capacities of Streptomyces communities beneath 50 focal trees. We also measured host-associated litter and soil element concentrations as potential mechanisms by which trees may influence soil microbes. Pathogen-suppressive capacities of Streptomyces communities varied within and among tree species, and inhibitory phenotypes were significantly related to soil and litter element concentrations. Average proportions of inhibitory Streptomyces in soils from the same tree species varied between 1.6 and 3.3-fold between sites. Densities and proportions of pathogen-suppressive bacteria were always higher in Santa Rosa than Palo Verde. Our results suggest that spatial heterogeneity in the potential for antibiotic-mediated disease suppression is shaped by tree species, site, and soil characteristics, which could have significant implications for understanding plant community composition and diversity in tropical dry forests.

  8. Rice straw biochar affects water retention and air movement in a sand-textured tropical soil

    DEFF Research Database (Denmark)

    Arthur, Emmanuel; Ahmed, Fauziatu

    2017-01-01

    Despite the current global attention on biochar (BC) as a soil amendment, knowledge is limited on how BC impacts the physical properties of coarse-textured soils (sand > 95%), particularly in tropical regions. A two-season field-study was conducted to investigate the effect of rice straw BC (3% w...

  9. Soil nitrogen levels are linked to decomposition enzyme activities along an urban-remote tropical forest gradient

    Science.gov (United States)

    D. F. Cusack

    2013-01-01

    Urban areas in tropical regions are expanding rapidly, with significant potential to affect local ecosystem dynamics. In particular, nitrogen (N) availability may increase in urban-proximate forests because of atmospheric N deposition. Unlike temperate forests, many tropical forests on highly weathered soils have high background N availability, so plant growth is...

  10. Soil C dynamics under intensive oil palm plantations in poor tropical soils

    Science.gov (United States)

    Guillaume, Thomas; Ruegg, Johanna; Quezada, Juan Carlos; Buttler, Alexandre

    2017-04-01

    Oil palm cultivation mainly takes place on heavily-weathered tropical soils where nutrients are limiting factors for plant growth and microbial activity. Intensive fertilization and changes of C input by oil palms strongly affects soil C and nutrient dynamics, challenging long-term soil fertility. Oil palm plantations management offers unique opportunities to study soil C and nutrients interactions in field conditions because 1) they can be considered as long-term litter manipulation experiments since all aboveground C inputs are concentrated in frond pile areas and 2) mineral fertilizers are only applied in specific areas, i.e. weeded circle around the tree and interrows, but not in harvest paths. Here, we determined impacts of mineral fertilizer and organic matter input on soil organic carbon dynamics and microbial activity in mature oil palm plantation established on savanna grasslands. Rates of savanna-derived soil organic carbon (SOC) decomposition and oil palm-derived SOC net stabilization were determined using changes in isotopic signature of in C input following a shift from C4 (savanna) to C3 (oil palm) vegetation. Application of mineral fertilizer alone did not affect savanna-derived SOC decomposition or oil palm-derived SOC stabilization rates, but fertilization associated with higher C input lead to an increase of oil palm-derived SOC stabilization rates, with about 50% of topsoil SOC derived from oil palm after 9 years. High carbon and nutrients inputs did not increase microbial biomass but microorganisms were more active per unit of biomass and SOC. In conclusion, soil organic matter decomposition was limited by C rather than nutrients in the studied heavily-weathered soils. Fresh C and nutrient inputs did not lead to priming of old savanna-derived SOC but increased turnover and stabilization of new oil palm-derived SOC.

  11. Analyses of the influencing factors of soil microbial functional gene diversity in tropical rainforest based on GeoChip 5.0.

    Science.gov (United States)

    Cong, Jing; Liu, Xueduan; Lu, Hui; Xu, Han; Li, Yide; Deng, Ye; Li, Diqiang; Zhang, Yuguang

    2015-09-01

    To examine soil microbial functional gene diversity and causative factors in tropical rainforests, we used a microarray-based metagenomic tool named GeoChip 5.0 to profile it. We found that high microbial functional gene diversity and different soil microbial metabolic potential for biogeochemical processes were considered to exist in tropical rainforest. Soil available nitrogen was the most associated with soil microbial functional gene structure. Here, we mainly describe the experiment design, the data processing, and soil biogeochemical analyses attached to the study in details, which could be published on BMC microbiology Journal in 2015, whose raw data have been deposited in NCBI's Gene Expression Omnibus (accession number GSE69171).

  12. Pre-exposure to drought increases the resistance of tropical forest soil bacterial communities to extended drought

    Science.gov (United States)

    Nicholas J. Bouskill; Hsiao Chien Lim; Sharon Borglin; Rohit Salve; Tana Wood; Whendee L. Silver; Eoin L. Brodie

    2013-01-01

    Global climate models project a decrease in the magnitude of precipitation in tropical regions. Changes in rainfall patterns have important implications for the moisture content and redox status of tropical soils, yet little is known about how these changes may affect microbial community structure. Specifically, does exposure to prior stress confer increased resistance...

  13. Effects of Litter and Nutrient Additions on Soil Carbon Cycling in a Tropical Forest

    Science.gov (United States)

    Cusack, D. F.; Halterman, S.; Turner, B. L.; Tanner, E.; Wright, S. J.

    2014-12-01

    Soil carbon (C) dynamics present one of the largest sources of uncertainty in global C cycle models, with tropical forest soils containing some of the largest terrestrial C stocks. Drastic changes in soil C storage and loss are likely to occur if global change alters plant net primary production (NPP) and/or nutrient availability in these ecosystems. We assessed the effects of litter removal and addition, as well as fertilization with nitrogen (N), phosphorus (P), and/or potassium (K), on soil C stocks in a tropical seasonal forest in Panama after ten and sixteen years, respectively. We used a density fractionation scheme to assess manipulation effects on rapidly and slowly cycling pools of C. Soil samples were collected in the wet and dry seasons from 0-5 cm and 5-10 cm depths in 15- 45x45 m plots with litter removal, 2x litter addition, and control (n=5), and from 32- 40x40 m fertilization plots with factorial additions of N, P, and K. We hypothesized that litter addition would increase all soil C fractions, but that the magnitude of the effect on rapidly-cycling C would be dampened by a fertilization effect. Results for the dry season show that the "free light" C fraction, or rapidly cycling soil C pool, was significantly different among the three litter treatments, comprising 5.1 ± 0.9 % of total soil mass in the litter addition plots, 2.7 ± 0.3 % in control plots, and 1.0 ± 0.1 % in litter removal plots at the 0-5cm depth (means ± one standard error, p < 0.05). Bulk soil C results are similar to observed changes in the rapidly cycling C pool for the litter addition and removal. Fertilization treatments on average diminished this C pool size relative to control plots, although there was substantial variability among fertilization treatments. In particular, addition of N and P together did not significantly alter rapidly cycling C pool sizes (4.1 ± 1.2 % of total soil mass) relative to controls (3.5 ± 0.4 %), whereas addition of P alone resulted in

  14. [Species composition and diversity of soil mesofauna in the 'Holy Hills' fragmentary tropical rain forest of Xishuangbanna, China].

    Science.gov (United States)

    Yang, X; Sha, L

    2001-04-01

    The species composition and diversity of soil mesofauna were examined in fragmented dry tropical seasonal rainforest of tow 'Holy Hills' of Dai nationality, compared with the continuous moist tropical seasonal rain forest of Nature Reserve in Xishuangbanna area. 5 sample quadrats were selected along the diagonal of 20 m x 20 m sampling plot, and the samples of litterfall and 0-3 cm soil were collected from each 50 cm x 10 cm sample quadrat. Animals in soil sample were collected by using dry-funnel(Tullgren's), were identified to their groups according to the order. The H' index, D.G index and the pattern of relative abundance of species were used to compare the diversity of soil mesofauna. The results showed that the disturbance of vegetation and soil resulted by tropical rainforest fragmentation was the major factor affecting the diversity of soil mesofauna. Because the fragmented forest was intruded by some pioneer tree species and the "dry and warm" effect operated, this forest had more litterfall on the floor and more humus in the soil than the continuous moist rain forest. The soil condition with more soil organic matter, total N and P, higher pH value and lower soil bulk density became more favorable to the soil mesofauna. Therefore, the species richness, abundance and diversity of soil mesofauna in fragmented forests were higher than those in continuous forest, but the similarity of species composition in fragmented forest to the continuous forest was minimal. Soil mesofauna diversity in fragmented forests did not change with decreasing fragmented area, indicating that there was no species-area effect operation in this forest. The pattern of relative abundance of species in these forest soils was logarithmic series distribution.

  15. APPRAISAL OF THE SNAP MODEL FOR PREDICTING NITROGEN MINERALIZATION IN TROPICAL SOILS UNDER EUCALYPTUS

    Directory of Open Access Journals (Sweden)

    Philip James Smethurst

    2015-04-01

    Full Text Available The Soil Nitrogen Availability Predictor (SNAP model predicts daily and annual rates of net N mineralization (NNM based on daily weather measurements, daily predictions of soil water and soil temperature, and on temperature and moisture modifiers obtained during aerobic incubation (basal rate. The model was based on in situ measurements of NNM in Australian soils under temperate climate. The purpose of this study was to assess this model for use in tropical soils under eucalyptus plantations in São Paulo State, Brazil. Based on field incubations for one month in three, NNM rates were measured at 11 sites (0-20 cm layer for 21 months. The basal rate was determined in in situ incubations during moist and warm periods (January to March. Annual rates of 150-350 kg ha-1 yr-1 NNM predicted by the SNAP model were reasonably accurate (R2 = 0.84. In other periods, at lower moisture and temperature, NNM rates were overestimated. Therefore, if used carefully, the model can provide adequate predictions of annual NNM and may be useful in practical applications. For NNM predictions for shorter periods than a year or under suboptimal incubation conditions, the temperature and moisture modifiers need to be recalibrated for tropical conditions.

  16. [Fine root dynamics and its relationship with soil fertility in tropical rainforests of Chocó].

    Science.gov (United States)

    Quinto, Harley; Caicedo, Haylin; Thelis Perez, May; Moreno, Flavio

    2016-12-01

    The fine roots play an important role in the acquisition of water and minerals from the soil, the global carbon balance and mitigation of climate change. The dynamics (productivity and turnover) of fine roots is essential for nutrient cycling and carbon balance of forest ecosystems. The availability of soil water and nutrients has significantly determined the productivity and turnover of fine roots. It has been hypothesized that fine roots dynamics increases with the availability of soil resources in tropical forest ecosystems. To test this hypothesis in tropical rainforests of Chocó (ecosystems with the highest rainfall in the world), five one-ha permanent plots were established in the localities of Opogodó and Pacurita, where the productivity and turnover of fine roots were measured at 0-10 cm and 10-20 cm depth. The measurement of the fine root production was realized by the Ingrowth core method. The fine root turnover was measured like fine roots production divided mean annual biomass. In addition, soil fertility parameters (pH, nutrients, and texture) were measured and their association with productivity and turnover of fine roots was evaluated. It was found that the sites had nutrient-poor soils. The localities also differ in soil; Opogodó has sandy soils and flat topography, and Pacurita has clay soils, rich in aluminum and mountainous topography. In Opogodó fine root production was 6.50 ± 2.62 t/ha.yr (mean ± SD). In Pacurita, fine root production was 3.61 ± 0.88 t/ha.yr. Also in Opogodó, the fine root turnover was higher than in Pacurita (1.17 /y and 0.62 /y, respectively). Fine root turnover and production in the upper soil layers (10 cm upper soil) was considerably higher. Productivity and turnover of fine roots showed positive correlation with pH and contents of organic matter, total N, K, Mg, and sand; whereas correlations were negative with ECEC and contents of Al, silt, and clay. The percentage of sand was the parameter that best explained

  17. Transpiration efficiency of a tropical pioneer tree (Ficus insipida) in relation to soil fertility.

    Science.gov (United States)

    Cernusak, Lucas A; Winter, Klaus; Aranda, Jorge; Turner, Benjamin L; Marshall, John D

    2007-01-01

    The response of whole-plant water-use efficiency, termed transpiration efficiency (TE), to variation in soil fertility was assessed in a tropical pioneer tree, Ficus insipida Willd. Measurements of stable isotope ratios (delta(13)C, delta(18)O, delta(15)N), elemental concentrations (C, N, P), plant growth, instantaneous leaf gas exchange, and whole-plant water use were used to analyse the mechanisms controlling TE. Plants were grown individually in 19 l pots with non-limiting soil moisture. Soil fertility was altered by mixing soil with varying proportions of rice husks, and applying a slow release fertilizer. A large variation was observed in leaf photosynthetic rate, mean relative growth rate (RGR), and TE in response to experimental treatments; these traits were well correlated with variation in leaf N concentration. Variation in TE showed a strong dependence on the ratio of intercellular to ambient CO(2) mole fractions (c(i)/c(a)); both for instantaneous measurements of c(i)/c(a) (R(2)=0.69, P <0.0001, n=30), and integrated estimates based on C isotope discrimination (R(2)=0.88, P <0.0001, n=30). On the other hand, variations in the leaf-to-air humidity gradient, unproductive water loss, and respiratory C use probably played only minor roles in modulating TE in the face of variable soil fertility. The pronounced variation in TE resulted from a combination of the strong response of c(i)/c(a) to leaf N, and inherently high values of c(i)/c(a) for this tropical tree species; these two factors conspired to cause a 4-fold variation among treatments in (1-c(i)/c(a)), the term that actually modifies TE. Results suggest that variation in plant N status could have important implications for the coupling between C and water exchange in tropical forest trees.

  18. Evaporation from Pinus caribaea plantations on former grassland soils under maritime tropical conditions.

    NARCIS (Netherlands)

    Waterloo, M.J.; Bruijnzeel, L.A.; Vugts, H.F.; Rawaqa, T.T.

    1999-01-01

    Wet canopy and dry canopy evaporation from young and mature plantations of Pinus caribaea on former grassland soils under maritime tropical conditions in southwestern Viti Levu, Fiji, were determined using micrometeorological and hydrological techniques. Modeled annual evaporation totals (ET) of

  19. Evaporation from Pinus caribaea plantations on former grassland soils under maritime tropical conditions

    NARCIS (Netherlands)

    Waterloo, M.J.; Bruijnzeel, L.A.; Vugts, H.F.; Rawaqa, T.T.

    1999-01-01

    Wet canopy and dry canopy evaporation from young and mature plantations of Pinus caribaea on former grassland soils under maritime tropical conditions in southwestern Viti Levu, Fiji, were determined using micrometeorological and hydrological techniques. Modeled annual evaporation totals (ET) of

  20. Insecticide dissipation from soil and plant surfaces in tropical horticulture of southern Benin, West Africa.

    Science.gov (United States)

    Rosendahl, Ingrid; Laabs, Volker; Atcha-Ahowé, Cyrien; James, Braima; Amelung, Wulf

    2009-06-01

    In Sub-Saharan Africa, horticulture provides livelihood opportunities for millions of people, especially in urban and peri-urban areas. Although the vegetable agroecosystems are often characterized by intensive pesticide use, risks resulting therefrom are largely unknown under tropical horticultural conditions. The objective of this study therefore was to study the fate of pesticides in two representative horticultural soils (Acrisol and Arenosol) and plants (Solanum macrocarpon L.) after field application and thus to gain first insight on environmental persistence and dispersion of typical insecticides used in vegetable horticulture in Benin, West Africa. On plant surfaces, dissipation was rapid with half lives ranging from 2 to 87 h (alpha-endosulfan < beta-endosulfan < deltamethrin). Soil dissipation was considerably slower than dissipation from plant surfaces with half-lives ranging from 3 (diazinon) to 74 d (total endosulfan), but persistence of pesticides in soil was still reduced compared to temperate climates. Nevertheless, for deltamethrin and endosulfan, a tendency for mid-term accumulation in soil upon repeated applications was observed. The soil and plant surface concentrations of the metabolite endosulfan sulfate increased during the entire trial period, indicating that this compound is a potential long-term pollutant even in tropical environments.

  1. Climatic controls on the isotopic composition and availability of soil nitrogen in mountainous tropical forests

    Science.gov (United States)

    Weintraub, S. R.; Cole, R. J.; Schmitt, C. G.; All, J.

    2014-12-01

    Tropical forests in mountainous regions are often assumed to be nitrogen (N) limited, yet N dynamics across rugged terrain can be complex due to gradients in climate and topography. Elucidating patterns of N availability and loss across such gradients is necessary to predict and manage tropical forest response to environmental changes such as increasing N deposition and rising temperatures. However, such data is currently lacking, particularly in remote locations that are of high conservation value. To address this gap, a research expedition organized by the American Climber Science Program recently made a coast-to-coast journey across a remote region of Costa Rica, travelling over the Cordillera Talamanca and through La Amistad International Park. Numerous biological, chemical and hydrologic measurements were made en-route across montane to premontane wet tropical forests, spanning nearly 2,000 m in elevation and 200 km. Surface soil samples collected at regular intervals along this transect illuminate environmental drivers of N dynamics across the region. The dataset reveals strong links between soil natural abundance N isotopic composition (δ15N) and elevation and temperature parameters, and weaker links to precipitation and topography. This is in general agreement with global scale observations, but divergence from some previously published works is apparent and will be discussed. δ15N mass balance models suggest that N isotope patterns reflect differences in forms of N loss and the relative importance of fractionating and non-fractionating pathways. When combined with data on several other edaphic properties, especially C:N stoichiometry, the results points toward notable variation in soil N availability and N constraints across the transect. This study illustrates large, but predictable, variation in key N cycle traits across the premontane to montane wet tropical forest transition. These findings have management-relevant implications for tropical regions.

  2. Analyses of the influencing factors of soil microbial functional gene diversity in tropical rainforest based on GeoChip 5.0

    Directory of Open Access Journals (Sweden)

    Jing Cong

    2015-09-01

    Full Text Available To examine soil microbial functional gene diversity and causative factors in tropical rainforests, we used a microarray-based metagenomic tool named GeoChip 5.0 to profile it. We found that high microbial functional gene diversity and different soil microbial metabolic potential for biogeochemical processes were considered to exist in tropical rainforest. Soil available nitrogen was the most associated with soil microbial functional gene structure. Here, we mainly describe the experiment design, the data processing, and soil biogeochemical analyses attached to the study in details, which could be published on BMC microbiology Journal in 2015, whose raw data have been deposited in NCBI's Gene Expression Omnibus (accession number GSE69171.

  3. Effects of land use change on soil organic carbon: a pan-tropic study

    Science.gov (United States)

    van Straaten, O.; Veldkamp, E.; Wolf, K.; Corre, M. D.

    2012-04-01

    Tropical forest deforestation is recognized as one of the major contributors to anthropogenic greenhouse gas emissions. In contrast to aboveground carbon stocks, comparatively little is known on deforestation's effect on the magnitude and the factors affecting soil organic carbon (SOC). In this regional scale study, we focused on tropical sites with deeply weathered, low-activity clays soils in three countries: Indonesia, Cameroon and Peru. Using a clustered sampling design we compared soil carbon stocks in the top 3 m of soil in undisturbed forests (the reference) with converted land uses that had been deforested. The most predominant land use trajectories relevant for each region were investigated. These included (a) conversions from forest to cash-crop plantations (rubber, oil palm, cacoa), (b) conversions from forest to cattle grazing pastures and (c) conversion from forest to shifting cultivation. Preliminary results from the Indonesian case study, found that the conversion of forests to oil palm plantation caused a loss of 20.1 ± 4.4 Mg C ha-1 within 20 years from the top 3 m of soil, while deforestation followed by the establishment of rubber plantations caused a release of 7.2 ± 4.2 Mg C ha-1 for the same time period and depth. SOC losses were most pronounced in the top 30 cm, and less so below. Additionally, regional scale constraints such as soil physical and chemical characteristics (texture, CEC, pH) and climate (precipitation, temperature) effect on SOC emissions have been identified using multivariate statistical methods. The results from the Cameroon and Peru case studies are expected imminently.

  4. Effect of wood ash application on soil solution chemistry of tropical acid soils: incubation study.

    Science.gov (United States)

    Nkana, J C Voundi; Demeyer, A; Verloo, M G

    2002-12-01

    The objective of this study was to determine the effect of wood ash application on soil solution composition of three tropical acid soils. Calcium carbonate was used as a reference amendment. Amended soils and control were incubated for 60 days. To assess soluble nutrients, saturation extracts were analysed at 15 days intervals. Wood ash application affects the soil solution chemistry in two ways, as a liming agent and as a supplier of nutrients. As a liming agent, wood ash application induced increases in soil solution pH, Ca, Mg, inorganic C, SO4 and DOC. As a supplier of elements, the increase in the soil solution pH was partly due to ligand exchange between wood ash SO4 and OH- ions. Large increases in concentrations of inorganic C, SO4, Ca and Mg with wood ash relative to lime and especially increases in K reflected the supply of these elements by wood ash. Wood ash application could represent increased availability of nutrients for the plant. However, large concentrations of basic cations, SO4 and NO3 obtained with higher application rates could be a concern because of potential solute transport to surface waters and groundwater. Wood ash must be applied at reasonable rates to avoid any risk for the environment.

  5. Sorption of Atrazine in Tropical Soil by Biochar Prepared from Cassava Waste

    Directory of Open Access Journals (Sweden)

    Hui Deng

    2014-09-01

    Full Text Available Biochar (BC is a carbonaceous and porous product generated from the incomplete combustion of biomass and has been recognized as an efficient adsorbent. This study evaluated the ability of BC to sorb atrazine pesticide in tropical soil, and explored potential environmental values of BC on mitigating organic micro-pollutants. BC was produced from cassava waste via pyrolyzation under oxygen-limiting conditions at 350, 550, and 750 °C (MS350, MS550, and MS750, respectively. Three biochars were characterized and investigated as sorbents for the removal atrazine from tropical soil. BC pyrolyzed at higher temperatures more quickly reached equilibrium. The pseudo-second-order model perfectly simulated the sorption kinetics for atrazine with the coefficients R2 above 0.996, and the sorption amount at equilibrium (qe was 0.016 mg/g for MS350, 0.025 mg/g for MS550 and 0.050 mg/g for MS750. The isotherms of MS350 displayed relatively linear behavior, whereas the sorption of atrazine on MS550 and MS750 followed a nonlinear isotherm. The sorption data were well described by the Freundlich model with logKF of 0.476 for MS350, 0.771 for MS550, 1.865 for MS750. A thermodynamic study indicated that the sorption of atrazine in BC-added soil was a spontaneous and endothermic process and was primarily controlled by physisorption. In addition, lower pH was conducive to the sorption of atrazine in BC-added soil.

  6. Accumulation of heavy metals in a tropical soil type Oxisol

    International Nuclear Information System (INIS)

    Reynaldo, I.M.; Escudey, M.; Utria, E.; Garcia, D.; Cartaya, O.; Morua, A.

    2003-01-01

    In this investigation sewage sludges from Quibu plant, located in City of the Havana, with the objective of evaluating the capacity of accumulation of heavy metals in a tropical soil type Oxisol when in the wheat plants are cultivated (Triticum aestivum L.) , as well as the potential damages in this plants. Rates of 0, 60, 180 and 300 sludges tons/ soil hectare was applied and the plants were growth in recipient of 5 L of capacity. The levels of heavy metals were evaluated before the and after the crop. The extraction one carries out with the mixture HCl:HNO3 and they were determined by spectroscopy inductively coupled to plasma. Presence of Zn, Cu and Pb were detected in sludges and a tendency decrease is observed to heavy metals retention is observed in soil with the increase of the disposition rate together to a differential behavior of the different chemical species

  7. Impacts of afforestation and silviculture on the soil C balance of tropical tree plantations: belowground C allocation, soil CO2 efflux and C accretion (Invited)

    Science.gov (United States)

    Epron, D.; Koutika, L.; Mareschal, L.; Nouvellon, Y.

    2013-12-01

    Tropical forest plantations will provide a large part of the global wood supply which is anticipated to increase sharply in the next decades, becoming a valuable source of income in many countries, where they also contribute to land use changes that impact the global carbon (C) cycle. Tropical forest plantations established on previous grasslands are potential C sinks offsetting anthropogenic CO2 emissions. When they are managed on short rotations, the aboveground biomass is frequently removed and transformed into wood products with short lifetimes. The soil is thus the only compartment for durable C sequestration. The soil C budget results from the inputs of C from litterfall, root turnover and residues left at logging stage, balanced by C losses through heterotrophic respiration and leaching of organic C with water flow. Intensive researches have been conducted these last ten years in eucalypt plantations in the Congo on the effects of management options on soil fertility improvement and C sequestration. Our aim is to review important results regarding belowground C allocation, soil CO2 efflux and C accretion in relation to management options. We will specifically address (i) the soil C dynamics after afforestation of a tropical savannah, (ii) the impact of post-harvest residue management, and (iii) the beneficial effect of introducing nitrogen fixing species for C sequestration. Our results on afforestation of previous savannah showed that mechanical soil disturbance for site preparation had no effect on soil CO2 efflux and soil C balance. Soil C increased after afforestation despite a rapid disappearance of the labile savannah-derived C because a large fraction of savannah-derived C is stable and the aboveground litter layer is as the major source of CO2 contributing to soil CO2 efflux. We further demonstrated that the C stock in and on the soil slightly increased after each rotation when large amounts of residues are left at logging stage and that most of

  8. Tropical forest response to a drier future: Measurement and modeling of soil organic matter stocks and turnover

    Science.gov (United States)

    Finstad, K. M.; Campbell, A.; Pett-Ridge, J.; Zhang, N.; McFarlane, K. J.

    2017-12-01

    Tropical forests account for over 50% of the global terrestrial carbon sink and 29% of global soil carbon, but the stability of carbon in these ecosystems under a changing climate is unknown. Recent work suggests moisture may be more important than temperature in driving soil carbon storage and emissions in the tropics. However, data on belowground carbon cycling in the tropics is sparse, and the role of moisture on soil carbon dynamics is underrepresented in current land surface models limiting our ability to extrapolate from field experiments to the entire region. We measured radiocarbon (14C) and calculated turnover rates of organic matter from 37 soil profiles from the Neotropics including sites in Mexico, Brazil, Costa Rica, Puerto Rico, and Peru. Our sites represent a large range of moisture, spanning 710 to 4200 mm of mean annual precipitation, and include Andisols, Oxisols, Inceptisols, and Ultisols. We found a large range in soil 14C profiles between sites, and in some locations, we also found a large spatial variation within a site. We compared measured soil C stocks and 14C profiles to data generated from the Community Land Model (CLM) v.4.5 and have begun to generate data from the ACME Land Model (ALM) v.1. We found that the CLM consistently overestimated carbon stocks and the mean age of soil carbon at the surface (upper 50 cm), and underestimated the mean age of deep soil carbon. Additionally, the CLM did not capture the variation in 14C and C stock profiles that exists between and within the sites across the Neotropics. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. LLNL-ABS-736060.

  9. Mercury critical concentrations to Enchytraeus crypticus (Annelida: Oligochaeta) under normal and extreme conditions of moisture in tropical soils - Reproduction and survival.

    Science.gov (United States)

    Buch, Andressa Cristhy; Schmelz, Rüdiger M; Niva, Cintia Carla; Correia, Maria Elizabeth Fernandes; Silva-Filho, Emmanoel Vieira

    2017-05-01

    Soil provides many ecosystem services that are essential to maintain its quality and healthy development of the flora, fauna and human well-being. Environmental mercury levels may harm the survival and diversity of the soil fauna. In this respect, efforts have been made to establish limit values of mercury (Hg) in soils to terrestrial fauna. Soil organisms such as earthworms and enchytraeids have intimate contact with trace metals in soil by their oral and dermal routes, reflecting the potentially adverse effects of this contaminant. The main goal of this study was to obtain Hg critical concentrations under normal and extreme conditions of moisture in tropical soils to Enchytraeus crypticus to order to assess if climate change may potentiate their acute and chronic toxicity effects. Tropical soils were sampled from of two Forest Conservation Units of the Rio de Janeiro State - Brazil, which has been contaminated by Hg atmospheric depositions. Worms were exposed to three moisture conditions, at 20%, 50% and 80% of water holding capacity, respectively, and in combination with different Hg (HgCl 2 ) concentrations spiked in three types of tropical soil (two natural soils and one artificial soil). The tested concentrations ranged from 0 to 512mg Hg kg -1 dry weight. Results indicate that the Hg toxicity is higher under increased conditions of moisture, significantly affecting survival and reproduction rate. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Formation and degradation of ethylenethiourea (ETU) in soil and water under tropical conditions

    NARCIS (Netherlands)

    Ruiz-Suárez, L.E.; Geissen, V.; Jarquin Sánchez, A.; Castro Chan, R.A.; Bello-Mendoza, R.

    2013-01-01

    Mancozeb is a fungicide frequently used in tropical countries. It rapidly decomposes into ethylenethiourea (ETU), a more stable and toxic metabolite than mancozeb that is, therefore, regarded as a pollutant of concern. The objective was to study ETU formation and decay kinetics in soil and water

  11. Effects of Nonnative Ungulate Removal on Plant Communities and Soil Biogeochemistry in Tropical Forests

    Science.gov (United States)

    Cole, R. J.; Litton, C. M.; Giardina, C. P.; Sparks, J. P.

    2014-12-01

    Non-native ungulates have substantial impacts on native ecosystems globally, altering both plant communities and soil biogeochemistry. Across tropical and temperate ecosystems, land managers fence and remove non-native ungulates to conserve native biodiversity, a costly management action, yet long-term outcomes are not well quantified. Specifically, knowledge gaps include: (i) the magnitude and time frame of plant community recovery; (ii) the response of non-native invasive plants; and (iii) changes to soil biogeochemistry. In 2010, we established a series of paired ungulate presence vs. removal plots that span a 20 yr. chronosequence in tropical montane wet forests on the Island of Hawaii to quantify the impacts and temporal legacy of feral pig removal on plant communities and soil biogeochemistry. We also compared soil biogeochemistry in targeted areas of low and high feral pig impact. Our work shows that both native and non-native vegetation respond positively to release from top-down control following removal of feral pigs, but species of high conservation concern recover only if initially present at the time of non-native ungulate removal. Feral pig impacts on soil biogeochemistry appear to last for at least 20 years following ungulate removal. We observed that both soil physical and chemical properties changed with feral pig removal. Soil bulk density and volumetric water content decreased while extractable base cations and inorganic N increased in low vs. high feral pig impact areas. We hypothesize that altered soil biogeochemistry facilitates continued invasions by non-native plants, even decades after non-native ungulate removal. Future work will concentrate on comparisons between wet and dry forest ecosystems and test whether manipulation of soil nutrients can be used to favor native vs. non-native plant establishment.

  12. Physical Conditions Regulate the Fungal to Bacterial Ratios of a Tropical Suspended Soil

    Directory of Open Access Journals (Sweden)

    Julian Donald

    2017-12-01

    Full Text Available As a source of ‘suspended soils’, epiphytes contribute large amounts of organic matter to the canopy of tropical rain forests. Microbes associated with epiphytes are responsible for much of the nutrient cycling taking place in rain forest canopies. However, soils suspended far above the ground in living organisms differ from soil on the forest floor, and traditional predictors of soil microbial community composition and functioning (nutrient availability and the activity of soil organisms are likely to be less important. We conducted an experiment in the rain forest biome at the Eden Project in the U.K. to explore how biotic and abiotic conditions determine microbial community composition and functioning in a suspended soil. To simulate their natural epiphytic lifestyle, bird’s nest ferns (Asplenium nidus were placed on a custom-built canopy platform suspended 8 m above the ground. Ammonium nitrate and earthworm treatments were applied to ferns in a factorial design. Extracellular enzyme activity and Phospholipid Fatty Acid (PLFA profiles were determined at zero, three and six months. We observed no significant differences in either enzyme activity or PLFA profiles between any of the treatments. Instead, we observed decreases in β-glucosidase and N-acetyl-glucosaminidase activity, and an increase in phenol oxidase activity across all treatments and controls over time. An increase in the relative abundance of fungi during the experiment meant that the microbial communities in the Eden Project ferns after six months were comparable with ferns sampled from primary tropical rain forest in Borneo.

  13. Soil 137Cs activity in a tropical deciduous ecosystem under pasture conversion in Mexico

    International Nuclear Information System (INIS)

    Garcia-Oliva, F.; Maass, J.M.

    1995-01-01

    Soil profiles of 137 Cs were measured in a tropical deciduous ecosystem under pasture conversion on the Pacific Coast of Mexico. Soil samples were taken from unperturbed forest, and from pasture plots following forest conversion. The average total 137 Cs areal activity of non-eroded forest sites indicated a base level of 5 315 ± 427 Bq m -2 . On average, total areal activity on hill-tops was significantly higher (range 10-47%) in the forest than in the pastures. A significant correlation was found between the total 137 Cs areal activity and soil organic matter content (r 2 = 0.16). This correlation can be explained by a soil physical-protection hypothesis. The redistribution of 137 Cs in the landscape is explained by soil erosion processes. (author)

  14. Effect of the pH on the radiocesium adsorption in tropical soils

    International Nuclear Information System (INIS)

    Roque, Mario Lucio; Boaretto, Antonio E.; Moniz, Antonio C; Smolders, Erik E. T.

    2002-01-01

    The objective was to demonstrate that the pH dependent charges are specific change sites for radiocesium. Clay minerals occurrence in superficial samples of eight tropical soils was analyzed by X-Ray diffractometry. The variation of superficial charge of these soils were quantify by potentiometric titration in a range from 3 to 8 pH values. The results of radiocesium interception potential showed the presence of specific sites of adsorption of this radionuclide for all the soils. The variation of radiocesium adsorption for all soils was quantified in a pH defined range. The increase on the pH values caused increase on the radiocesium adsorption by the soils and a consequent decrease in the radiocesium activity in the equilibrium solution. The soil with predominance of the 2:1 clay minerals showed higher radiocesium adsorption than the soils with 1:1 clay minerals or iron and aluminum oxides. The increase on the negative charge in consequence of pH increase caused increase on radiocesium adsorption. The correction of soil acidity with lime by increasing the specific sites charge for radiocesium and decreasing the radionuclide activity in soil solution may cause decrease on the transference of radiocesium from soil to plant. (author)

  15. Increases in mean annual temperature do not alter soil bacterial community structure in tropical montane wet forests

    Science.gov (United States)

    Paul C. Selmants; Karen L. Adair; Creighton M. Litton; Christian P. Giardina; Egbert Schwartz

    2016-01-01

    Soil bacteria play a key role in regulating terrestrial biogeochemical cycling and greenhouse gas fluxes across the soil-atmosphere continuum. Despite their importance to ecosystem functioning, we lack a general understanding of how bacterial communities respond to climate change, especially in relatively understudied ecosystems like tropical montane wet...

  16. Use of expanded vermiculite as a soil conditioner in the tropics

    International Nuclear Information System (INIS)

    Libardi, P.L.; Salati, E.; Reichardt, K.

    1983-01-01

    Expanded vermiculite is used as a soil conditioner to improve soil-water retention and cation exchange properties of poor tropical soils (alfisols and oxisols). Results show that fresh laboratory mixtures of soil and expanded vermiculite increase the amount of water retained, the process being affected by the rate of application, origin and granule size of the vermiculite. Pot experiments show that the incorporation of vermiculite into the soil increases soil-water storage capacity without affecting evapotranspiration rates. This indicates that crops grown in soils conditioned with vermiculite lose the same quantities of water through evapotranspiration, but support plants for longer periods without water addition. Diminishing irrigation frequency raises the possibility of irrigating larger areas and/or using irrigation equipment more rationally. Field experiments have been developed to examine the potential use of vermiculite, at low application rates, in extensive agriculture. Encouraging results have been obtained regarding crop resistance to drought spells, and yield in vermiculite conditioned soils. This new management practice seems to be one solution for semi-arid agriculture and for areas of soil with poor water retention properties subjected to irregular rainfall patterns. Experiments show also that vermiculite addition improves root growth and affects soil nutrient ratios. This depends again on soil type, vermiculite origin and granule size, application rates, form of incorporation into the soil and type of crop. It affects Ca/K, Ca/Mg and Mg/K ratios in soil extracts and the availability of micronutrients. Tracers were used to study some aspects of the dynamics of N and P. (author)

  17. Phosphorus fertility recapitalization of nutrient-depleted tropical acid soils with reactive phosphate rock: An assessment using the isotopic exchange technique

    International Nuclear Information System (INIS)

    Fardeau, J.-C.; Zapata, F.

    2002-01-01

    A 'soil P fertility recapitalization' initiative utilizing large rates of phosphate rocks (PRs) was proposed to improve the soil P status and increase the sustainable food production in acid and P-deficient tropical soils. Two series of experiments were carried out using five tropical acid soils treated with heavy applications of Gafsa phosphate rock (GPR). In the first series, the soils were mixed with GPR at the following application rates: 0, 500, 1000 and 2000 mg P·kg -1 , and incubated for one month in moist conditions. In another series, 1000 mg P kg -1 applied as GPR was added to three soils and incubated for 1.5 month; thereafter 50 mg P kg -1 as triple superphosphate (TSP) were added. The 32 P isotopic exchange method was utilized to assess the contribution of GPR to the available soil P. Changes in amounts, E, of P transferred with time as phosphate ions from the soil particles to the soil solution as well as changes in pH, calcium and phosphate concentrations in soil suspensions were determined. It was found that: (i) the contribution of P from GPR to recapitalization of soil P fertility was mainly assessed by E pool size, pH, calcium and phosphate concentrations; other variables were not significant at the 0.1 level; (ii) heavy applications of GPR did not saturate all the P sorption sites, P freshly applied as water-soluble P was still sorbed; (iii) recapitalization of soil P fertility using GPR was partly obtained in some acid tropical soils; (iv) Upon dissolution, GPR provided calcium ions to crops and to soils, thus reducing Al toxicity, but its liming effect was limited. To explain these effects with heavy application rates of GPR, it was postulated that a coating of Al and Fe compounds is formed around PR particles with time, thus reducing further dissolution. (author)

  18. Variations in soil carbon sequestration and their determinants along a precipitation gradient in seasonally dry tropical forest ecosystems.

    Science.gov (United States)

    Campo, Julio; Merino, Agustín

    2016-05-01

    The effect of precipitation regime on the C cycle of tropical forests is poorly understood, despite the existence of models that suggest a drier climate may substantially alter the source-sink function of these ecosystems. Along a precipitation regime gradient containing 12 mature seasonally dry tropical forests growing under otherwise similar conditions (similar annual temperature, rainfall seasonality, and geological substrate), we analyzed the influence of variation in annual precipitation (1240 to 642 mm) and duration of seasonal drought on soil C. We investigated litterfall, decomposition in the forest floor, and C storage in the mineral soil, and analyzed the dependence of these processes and pools on precipitation. Litterfall decreased slightly - about 10% - from stands with 1240 mm yr(-1) to those with 642 mm yr(-1), while the decomposition decreased by 56%. Reduced precipitation strongly affected C storage and basal respiration in the mineral soil. Higher soil C storage at the drier sites was also related to the higher chemical recalcitrance of litter (fine roots and forest floor) and the presence of charcoal across sites, suggesting an important indirect influence of climate on C sequestration. Basal respiration was controlled by the amount of recalcitrant organic matter in the mineral soil. We conclude that in these forest ecosystems, the long-term consequences of decreased precipitation would be an increase in organic layer and mineral soil C storage, mainly due to lower decomposition and higher chemical recalcitrance of organic matter, resulting from changes in litter composition and, likely also, wildfire patterns. This could turn these seasonally dry tropical forests into significant soil C sinks under the predicted longer drought periods if primary productivity is maintained. © 2016 John Wiley & Sons Ltd.

  19. Comparing soil organic carbon dynamics in plantation and secondary forest in wet tropics in Puerto Rico

    Science.gov (United States)

    LI YIQING; MING XU; ZOU XIAOMING; PEIJUN SHI§; YAOQI ZHANG

    2005-01-01

    We compared the soil carbon dynamics between a pine plantation and a secondary forest, both of which originated from the same farmland abandoned in 1976 with the same cropping history and soil conditions, in the wet tropics in Puerto Rico from July 1996 to June 1997. We found that the secondary forest accumulated the heavy-fraction organic carbon (HF-OC) measured by...

  20. Carbon leaching from tropical peat soils and consequences for carbon balances

    Directory of Open Access Journals (Sweden)

    Tim Rixen

    2016-07-01

    Full Text Available Drainage and deforestation turned Southeast (SE Asian peat soils into a globally important CO2 source, because both processes accelerate peat decomposition. Carbon losses through soil leaching have so far not been quantified and the underlying processes have hardly been studied. In this study, we use results derived from nine expeditions to six Sumatran rivers and a mixing model to determine leaching processes in tropical peat soils, which are heavily disturbed by drainage and deforestation. Here we show that a reduced evapotranspiration and the resulting increased freshwater discharge in addition to the supply of labile leaf litter produced by re-growing secondary forests increase leaching of carbon by ~200%. Enhanced freshwater fluxes and leaching of labile leaf litter from secondary vegetation appear to contribute 38% and 62% to the total increase, respectively. Decomposition of leached labile DOC can lead to hypoxic conditions in rivers draining disturbed peatlands. Leaching of the more refractory DOC from peat is an irrecoverable loss of soil that threatens the stability of peat-fringed coasts in SE Asia.

  1. Effects of phosphorus addition on soil microbial biomass and community composition in three forest types in tropical China

    DEFF Research Database (Denmark)

    Liu, Lei; Gundersen, Per; Zhang, Tao

    2012-01-01

    Elevated nitrogen (N) deposition in humid tropical regions may aggravate phosphorus (P) deficiency in forest on old weathered soil found in these regions. From January 2007 to August 2009, we studied the responses of soil microbial biomass and community composition to P addition (in two monthly...

  2. Soil and water pollution in a banana production region in tropical Mexico.

    Science.gov (United States)

    Geissen, Violette; Ramos, Franzisco Que; de J Bastidas-Bastidas, Pedro; Díaz-González, Gilberto; Bello-Mendoza, Ricardo; Huerta-Lwanga, Esperanza; Ruiz-Suárez, Luz E

    2010-10-01

    The effects of abundant Mancozeb (Mn, Zn-bisdithiocarbamate) applications (2.5 kg ha⁻¹week⁻¹ for 10 years) on soil and surface-, subsurface- and groundwater pollution were monitored in a banana production region of tropical Mexico. In soils, severe manganese accumulation was observed, wheras the main metabolite ethylenethiourea was near the detection limit. Surface and subsurface water was highly polluted with ethylenethiourea, the main metabolite of Mancozeb (22.5 and 4.3 μg L⁻¹, respectively), but not with manganese. In deep ground water, no ethylenethiourea was detected. The level of pollution in the region presents a worrisome risk for aquatic life and for human health.

  3. Soil metagenomics and tropical soil productivity

    OpenAIRE

    Garrett, Karen A.

    2009-01-01

    This presentation summarizes research in the soil metagenomics cross cutting research activity. Soil metagenomics studies soil microbial communities as contributors to soil health.C CCRA-4 (Soil Metagenomics)

  4. Controls of Soil Spatial Variability in a Dry Tropical Forest.

    Directory of Open Access Journals (Sweden)

    Sandeep Pulla

    Full Text Available We examined the roles of lithology, topography, vegetation and fire in generating local-scale (<1 km2 soil spatial variability in a seasonally dry tropical forest (SDTF in southern India. For this, we mapped soil (available nutrients, Al, total C, pH, moisture and texture in the top 10 cm, rock outcrops, topography, all native woody plants ≥1 cm diameter at breast height (DBH, and spatial variation in fire frequency (times burnt during the 17 years preceding soil sampling in a permanent 50-ha plot. Unlike classic catenas, lower elevation soils had lesser moisture, plant-available Ca, Cu, Mn, Mg, Zn, B, clay and total C. The distribution of plant-available Ca, Cu, Mn and Mg appeared to largely be determined by the whole-rock chemical composition differences between amphibolites and hornblende-biotite gneisses. Amphibolites were associated with summit positions, while gneisses dominated lower elevations, an observation that concurs with other studies in the region which suggest that hillslope-scale topography has been shaped by differential weathering of lithologies. Neither NO3(--N nor NH4(+-N was explained by the basal area of trees belonging to Fabaceae, a family associated with N-fixing species, and no long-term effects of fire on soil parameters were detected. Local-scale lithological variation is an important first-order control over soil variability at the hillslope scale in this SDTF, by both direct influence on nutrient stocks and indirect influence via control of local relief.

  5. Carbazole degradation in the soil microcosm by tropical bacterial strains

    Directory of Open Access Journals (Sweden)

    Lateef B. Salam

    2015-01-01

    Full Text Available In a previous study, three bacterial strains isolated from tropical hydrocarbon-contaminated soils and phylogenetically identified as Achromobacter sp. strain SL1, Pseudomonassp. strain SL4 and Microbacterium esteraromaticum strain SL6 displayed angular dioxygenation and mineralization of carbazole in batch cultures. In this study, the ability of these isolates to survive and enhance carbazole degradation in soil were tested in field-moist microcosms. Strain SL4 had the highest survival rate (1.8 x 107 cfu/g after 30 days of incubation in sterilized soil, while there was a decrease in population density in native (unsterilized soil when compared with the initial population. Gas chromatographic analysis after 30 days of incubation showed that in sterilized soil amended with carbazole (100 mg/kg, 66.96, 82.15 and 68.54% were degraded by strains SL1, SL4 and SL6, respectively, with rates of degradation of 0.093, 0.114 and 0.095 mg kg−1 h−1. The combination of the three isolates as inoculum in sterilized soil degraded 87.13% carbazole at a rate of 0.121 mg kg−1 h−1. In native soil amended with carbazole (100 mg/kg, 91.64, 87.29 and 89.13% were degraded by strains SL1, SL4 and SL6 after 30 days of incubation, with rates of degradation of 0.127, 0.121 and 0.124 mg kg−1h−1, respectively. This study successfully established the survivability (> 106 cfu/g detected after 30 days and carbazole-degrading ability of these bacterial strains in soil, and highlights the potential of these isolates as seed for the bioremediation of carbazole-impacted environments.

  6. Characterization of bacterial community structure in a hydrocarbon-contaminated tropical African soil.

    Science.gov (United States)

    Salam, Lateef B; Ilori, Mathew O; Amund, Olukayode O; LiiMien, Yee; Nojiri, Hideaki

    2018-04-01

    The bacterial community structure in a hydrocarbon-contaminated Mechanical Engineering Workshop (MWO) soil was deciphered using 16S rRNA gene clone library analysis. Four hundred and thirty-seven clones cutting across 13 bacterial phyla were recovered from the soil. The representative bacterial phyla identified from MWO soil are Proteobacteria, Bacteroidetes, Chloroflexi, Acidobacteria, Firmicutes, Actinobacteria, Verrucomicrobia, Planctomycetes, Ignavibacteriae, Spirochaetes, Chlamydiae, Candidatus Saccharibacteria and Parcubacteria. Proteobacteria is preponderant in the contaminated soil (51.2%) with all classes except Epsilonproteobacteria duly represented. Rarefaction analysis indicates 42%, 52% and 77% of the clone library is covered at the species, genus and family/class delineations with Shannon diversity (H') and Chao1 richness indices of 5.59 and 1126, respectively. A sizeable number of bacterial phylotypes in the clone library shared high similarities with strains previously described to be involved in hydrocarbon biodegradation. Novel uncultured genera were identified that have not been previously reported from tropical African soil to be associated with natural attenuation of hydrocarbon pollutants. This study establishes the involvement of a wide array of physiologically diverse bacterial groups in natural attenuation of hydrocarbon pollutants in soil.

  7. Soil trace gas fluxes along orthogonal precipitation and soil fertility gradients in tropical lowland forests of Panama

    Directory of Open Access Journals (Sweden)

    A. L. Matson

    2017-07-01

    Full Text Available Tropical lowland forest soils are significant sources and sinks of trace gases. In order to model soil trace gas flux for future climate scenarios, it is necessary to be able to predict changes in soil trace gas fluxes along natural gradients of soil fertility and climatic characteristics. We quantified trace gas fluxes in lowland forest soils at five locations in Panama, which encompassed orthogonal precipitation and soil fertility gradients. Soil trace gas fluxes were measured monthly for 1 (NO or 2 (CO2, CH4, N2O years (2010–2012 using vented dynamic (for NO only or static chambers with permanent bases. Across the five sites, annual fluxes ranged from 8.0 to 10.2 Mg CO2-C, −2.0 to −0.3 kg CH4-C, 0.4 to 1.3 kg N2O-N and −0.82 to −0.03 kg NO-N ha−1 yr−1. Soil CO2 emissions did not differ across sites, but they did exhibit clear seasonal differences and a parabolic pattern with soil moisture across sites. All sites were CH4 sinks; within-site fluxes were largely controlled by soil moisture, whereas fluxes across sites were positively correlated with an integrated index of soil fertility. Soil N2O fluxes were low throughout the measurement years, but the highest emissions occurred at a mid-precipitation site with high soil N availability. Net negative NO fluxes at the soil surface occurred at all sites, with the most negative fluxes at the low-precipitation site closest to Panama City; this was likely due to high ambient NO concentrations from anthropogenic sources. Our study highlights the importance of both short-term (climatic and long-term (soil and site characteristics factors in predicting soil trace gas fluxes.

  8. Role of litter turnover in soil quality in tropical degraded lands of Colombia.

    Science.gov (United States)

    León, Juan D; Osorio, Nelson W

    2014-01-01

    Land degradation is the result of soil mismanagement that reduces soil productivity and environmental services. An alternative to improve degraded soils through reactivation of biogeochemical nutrient cycles (via litter production and decomposition) is the establishment of active restoration models using new forestry plantations, agroforestry, and silvopastoral systems. On the other hand, passive models of restoration consist of promoting natural successional processes with native plants. The objective in this review is to discuss the role of litter production and decomposition as a key strategy to reactivate biogeochemical nutrient cycles and thus improve soil quality in degraded land of the tropics. For this purpose the results of different projects of land restoration in Colombia are presented based on the dynamics of litter production, nutrient content, and decomposition. The results indicate that in only 6-13 years it is possible to detect soil properties improvements due to litter fall and decomposition. Despite that, low soil nutrient availability, particularly of N and P, seems to be major constraint to reclamation of these fragile ecosystems.

  9. Variation in pH Optima of Hydrolytic Enzyme Activities in Tropical Rain Forest Soils

    OpenAIRE

    Turner, Benjamin L.

    2010-01-01

    Extracellular enzymes synthesized by soil microbes play a central role in the biogeochemical cycling of nutrients in the environment. The pH optima of eight hydrolytic enzymes involved in the cycles of carbon, nitrogen, phosphorus, and sulfur, were assessed in a series of tropical forest soils of contrasting pH values from the Republic of Panama. Assays were conducted using 4-methylumbelliferone-linked fluorogenic substrates in modified universal buffer. Optimum pH values differed markedly am...

  10. Increases in soil aggregation following phosphorus additions in a tropical premontane forest are not driven by root and arbuscular mycorrhizal fungal abundances

    Science.gov (United States)

    Camenzind, Tessa; Papathanasiou, Helena; Foerster, Antje; Dietrich, Karla; Hertel, Dietrich; Homeier, Juergen; Oelmann, Yvonne; Olsson, Pål Axel; Suárez, Juan; Rillig, Matthias

    2015-12-01

    Tropical ecosystems have an important role in global change scenarios, in part because they serve as a large terrestrial carbon pool. Carbon protection is mediated by soil aggregation processes, whereby biotic and abiotic factors influence the formation and stability of aggregates. Nutrient additions may affect soil structure indirectly by simultaneous shifts in biotic factors, mainly roots and fungal hyphae, but also via impacts on abiotic soil properties. Here, we tested the hypothesis that soil aggregation will be affected by nutrient additions primarily via changes in arbuscular mycorrhizal fungal (AMF) hyphae and root length in a pristine tropical forest system. Therefore, the percentage of water-stable macroaggregates (> 250µm) (WSA) and the soil mean weight diameter (MWD) was analyzed, as well as nutrient contents, pH, root length and AMF abundance. Phosphorus additions significantly increased the amount of WSA, which was consistent across two different sampling times. Despite a positive effect of phosphorus additions on extraradical AMF biomass, no relationship between WSA and extra-radical AMF nor roots was revealed by regression analyses, contrary to the proposed hypothesis. These findings emphasize the importance of analyzing soil structure in understudied tropical systems, since it might be affected by increasing nutrient deposition expected in the future.

  11. Increases in soil aggregation following phosphorus additions in a tropical premontane forest are not driven by root and arbuscular mycorrhizal fungal abundances

    Directory of Open Access Journals (Sweden)

    Tessa eCamenzind

    2016-01-01

    Full Text Available Tropical ecosystems have an important role in global change scenarios, in part because they serve as a large terrestrial carbon pool. Carbon protection is mediated by soil aggregation processes, whereby biotic and abiotic factors influence the formation and stability of aggregates. Nutrient additions may affect soil structure indirectly by simultaneous shifts in biotic factors, mainly roots and fungal hyphae, but also via impacts on abiotic soil properties. Here, we tested the hypothesis that soil aggregation will be affected by nutrient additions primarily via changes in arbuscular mycorrhizal fungal (AMF hyphae and root length in a pristine tropical forest system. Therefore, the percentage of water-stable macroaggregates (> 250µm (WSA and the soil mean weight diameter (MWD was analyzed, as well as nutrient contents, pH, root length and AMF abundance. Phosphorus additions significantly increased the amount of WSA, which was consistent across two different sampling times. Despite a positive effect of phosphorus additions on extraradical AMF biomass, no relationship between WSA and extra-radical AMF nor roots was revealed by regression analyses, contrary to the proposed hypothesis. These findings emphasize the importance of analyzing soil structure in understudied tropical systems, since it might be affected by increasing nutrient deposition expected in the future.

  12. Soil properties, greenhouse gas emissions and crop yield under compost, biochar and co-composted biochar in two tropical agronomic systems

    Energy Technology Data Exchange (ETDEWEB)

    Bass, Adrian M., E-mail: adrian.bass@glasgow.ac.uk [Centre for Tropical Environmental and Sustainability Science, College of Science, Technology and Engineering, James Cook University, Cairns, Queensland 4870 (Australia); Bird, Michael I. [Centre for Tropical Environmental and Sustainability Science, College of Science, Technology and Engineering, James Cook University, Cairns, Queensland 4870 (Australia); Kay, Gavin [Terrain Natural Resource Management, 2 Stitt Street, Innisfail, Queensland 4860 (Australia); Muirhead, Brian [Northern Gulf Resource Management Group, 317 Byrnes Street, Mareeba, Queensland 4880 (Australia)

    2016-04-15

    ABSTRACT: The addition of organic amendments to agricultural soils has the potential to increase crop yields, reduce dependence on inorganic fertilizers and improve soil condition and resilience. We evaluated the effect of biochar (B), compost (C) and co-composted biochar (COMBI) on the soil properties, crop yield and greenhouse gas emissions from a banana and a papaya plantation in tropical Australia in the first harvest cycle. Biochar, compost and COMBI organic amendments improved soil properties, including significant increases in soil water content, CEC, K, Ca, NO{sub 3}, NH{sub 4} and soil carbon content. However, increases in soil nutrient content and improvements in physical properties did not translate to improved fruit yield. Counter to our expectations, banana crop yield (weight per bunch) was reduced by 18%, 12% and 24% by B, C and COMBI additions respectively, and no significant effect was observed on the papaya crop yield. Soil efflux of CO{sub 2} was elevated by addition of C and COMBI amendments, likely due to an increase in labile carbon for microbial processing. Our data indicate a reduction in N{sub 2}O flux in treatments containing biochar. The application of B, C and COMBI amendments had a generally positive effect on soil properties, but this did not translate into a crop productivity increase in this study. The benefits to soil nutrient content, soil carbon storage and N{sub 2}O emission reduction need to be carefully weighed against potentially deleterious effects on crop yield, at least in the short-term. - Highlights: • Biochar and compost amendment has potential to improve tropical agriculture. • We monitored soil health, gas fluxes and crop yield under biochar and compost. • Biochar improved soil nutrient content, water retention and reduced N{sub 2}O emissions. • Biochar significantly reduced banana yield performance and did not affect papaya yield. • Organic amendment is not an ‘always win’ scenario for tropical

  13. Soil properties, greenhouse gas emissions and crop yield under compost, biochar and co-composted biochar in two tropical agronomic systems

    International Nuclear Information System (INIS)

    Bass, Adrian M.; Bird, Michael I.; Kay, Gavin; Muirhead, Brian

    2016-01-01

    ABSTRACT: The addition of organic amendments to agricultural soils has the potential to increase crop yields, reduce dependence on inorganic fertilizers and improve soil condition and resilience. We evaluated the effect of biochar (B), compost (C) and co-composted biochar (COMBI) on the soil properties, crop yield and greenhouse gas emissions from a banana and a papaya plantation in tropical Australia in the first harvest cycle. Biochar, compost and COMBI organic amendments improved soil properties, including significant increases in soil water content, CEC, K, Ca, NO_3, NH_4 and soil carbon content. However, increases in soil nutrient content and improvements in physical properties did not translate to improved fruit yield. Counter to our expectations, banana crop yield (weight per bunch) was reduced by 18%, 12% and 24% by B, C and COMBI additions respectively, and no significant effect was observed on the papaya crop yield. Soil efflux of CO_2 was elevated by addition of C and COMBI amendments, likely due to an increase in labile carbon for microbial processing. Our data indicate a reduction in N_2O flux in treatments containing biochar. The application of B, C and COMBI amendments had a generally positive effect on soil properties, but this did not translate into a crop productivity increase in this study. The benefits to soil nutrient content, soil carbon storage and N_2O emission reduction need to be carefully weighed against potentially deleterious effects on crop yield, at least in the short-term. - Highlights: • Biochar and compost amendment has potential to improve tropical agriculture. • We monitored soil health, gas fluxes and crop yield under biochar and compost. • Biochar improved soil nutrient content, water retention and reduced N_2O emissions. • Biochar significantly reduced banana yield performance and did not affect papaya yield. • Organic amendment is not an ‘always win’ scenario for tropical agriculture.

  14. Chlordecone fate and mineralisation in a tropical soil (andosol) microcosm under aerobic conditions

    Energy Technology Data Exchange (ETDEWEB)

    Fernández-Bayo, Jesus D., E-mail: fernanje@supagro.inra.fr [IRD, UMR LISAH Bât 24, 2 Place Viala, 34060 Montpellier cedex 1 (France); INRA, UMR LISAH Bât 24, 2 Place Viala, 34060 Montpellier cedex 1 (France); Saison, Carine [IRD, UMR LISAH Bât 24, 2 Place Viala, 34060 Montpellier cedex 1 (France); Voltz, Marc [INRA, UMR LISAH Bât 24, 2 Place Viala, 34060 Montpellier cedex 1 (France); Disko, Ulrich; Hofmann, Diana; Berns, Anne E. [Forschungszentrum Jülich GmbH, IBG 3, 52425 Jülich (Germany)

    2013-10-01

    Chlordecone is a persistent organochlorine insecticide that, even decades after its ban, poses a threat to the environment and human health. Nevertheless, its environmental fate in soils has scarcely been investigated, and elementary data on its degradation and behaviour in soil are lacking. The mineralisation and sorption of chlordecone and the formation of possible metabolites were evaluated in a tropical agricultural andosol. Soil microcosms with two different soil horizons (S-A and S-B) were incubated for 215 days with {sup 14}C-chlordecone. At five different times (1, 33, 88, 150 and 215 days) the extractability of {sup 14}C-chlordecone was analysed. Mineralisation was monitored using {sup 14}CO{sub 2} traps of NaOH. The appearance of metabolites was studied using thin layer and gas chromatography techniques. At the end of the experiment, the water soluble {sup 14}C-activity was 2% of the remaining {sup 14}C-chlordecone for S-A and 8% for S-B. Only 12% of the remaining activity was non extractable and more than 80% remained extractable with organic solvents. For the first time to our knowledge, a significant mineralisation of chlordecone was measured in a microcosm under aerobic conditions (4.9% for S-A and 3.2% for S-B of the initial {sup 14}C-activity). The drastically lower emission of {sup 14}CO{sub 2} in sterilised microcosms indicated the biological origin of chlordecone mineralisation in the non-sterilised microcosms. No metabolites could be detected in the soil extracts. The mineralisation rate of chlordecone decreased by one order of magnitude throughout the incubation period. Thus, the chlordecone content in the soil remained large. This study confirms the existence of chlordecone degrading organisms in a tropical andosol. The reasons why their activity is restricted should be elucidated to allow the development of bioremediation approaches. Possible reasons are a heterogeneous distribution a chlordecone between sub-compartments with different

  15. Chlordecone fate and mineralisation in a tropical soil (andosol) microcosm under aerobic conditions

    International Nuclear Information System (INIS)

    Fernández-Bayo, Jesus D.; Saison, Carine; Voltz, Marc; Disko, Ulrich; Hofmann, Diana; Berns, Anne E.

    2013-01-01

    Chlordecone is a persistent organochlorine insecticide that, even decades after its ban, poses a threat to the environment and human health. Nevertheless, its environmental fate in soils has scarcely been investigated, and elementary data on its degradation and behaviour in soil are lacking. The mineralisation and sorption of chlordecone and the formation of possible metabolites were evaluated in a tropical agricultural andosol. Soil microcosms with two different soil horizons (S-A and S-B) were incubated for 215 days with 14 C-chlordecone. At five different times (1, 33, 88, 150 and 215 days) the extractability of 14 C-chlordecone was analysed. Mineralisation was monitored using 14 CO 2 traps of NaOH. The appearance of metabolites was studied using thin layer and gas chromatography techniques. At the end of the experiment, the water soluble 14 C-activity was 2% of the remaining 14 C-chlordecone for S-A and 8% for S-B. Only 12% of the remaining activity was non extractable and more than 80% remained extractable with organic solvents. For the first time to our knowledge, a significant mineralisation of chlordecone was measured in a microcosm under aerobic conditions (4.9% for S-A and 3.2% for S-B of the initial 14 C-activity). The drastically lower emission of 14 CO 2 in sterilised microcosms indicated the biological origin of chlordecone mineralisation in the non-sterilised microcosms. No metabolites could be detected in the soil extracts. The mineralisation rate of chlordecone decreased by one order of magnitude throughout the incubation period. Thus, the chlordecone content in the soil remained large. This study confirms the existence of chlordecone degrading organisms in a tropical andosol. The reasons why their activity is restricted should be elucidated to allow the development of bioremediation approaches. Possible reasons are a heterogeneous distribution a chlordecone between sub-compartments with different microbial activities or a degradation of

  16. Compilation of a global N{sub 2}O emission inventory for tropical rainforest soils using a detailed biogeochemical model

    Energy Technology Data Exchange (ETDEWEB)

    Werner, C.

    2007-09-15

    Nitrous oxide (N{sub 2}O) is a potent trace gas contributing to approximately 6% to the observed anthropogenic global warming. Soils have been identified to be the major source of atmospheric N{sub 2}O and tropical rainforest soils are thought to account for the largest part. Furthermore, various studies have shown that the magnitude of N{sub 2}O emissions from tropical rainforest soil is highly variable on spatial and temporal scales. Detailed, process-based models coupled to Geographic Information Systems (GIS) are considered promising tools for the calculation of N{sub 2}O emission inventories. This methodology explicitly accounts for the governing microbial processes as well as the environmental controls. Moreover, mechanistic biogeochemical models operating in daily time-steps (e.g. ForestDNDC-tropica) have been shown to capture the observed intra- and inter-annual variations of N{sub 2}O emissions. However, detailed N{sub 2}O emission datasets are required for model calibration and testing, but are currently few in numbers. In this study an automated measurement system was used to derive detailed datasets of N{sub 2}O, methane (CH{sub 4}) and carbon dioxide (CO{sub 2}) soil-atmosphere exchange and important environmental parameters from tropical rainforest soils in Kenya and Southwest China. Distinct differences were identified in the magnitude of the C and N soil-atmosphere exchange at the investigated sites and forest types. However, common features such as N{sub 2}O pulse emissions after dry season or the pronounced soil moisture dependency of N{sub 2}O emissions were observed at both sites. The derived datasets are unique for these tropical regions as so far no information about the source strength of these regions was available and, for the first time, the N{sub 2}O, CH{sub 4} and CO{sub 2} soil-atmosphere exchange was recorded in sub-daily resolution. The datasets were utilized in conjunction with available high-resolution datasets from Australian

  17. Isolation and characterization of oxalotrophic bacteria from tropical soils.

    Science.gov (United States)

    Bravo, Daniel; Braissant, Olivier; Cailleau, Guillaume; Verrecchia, Eric; Junier, Pilar

    2015-01-01

    The oxalate-carbonate pathway (OCP) is a biogeochemical set of reactions that involves the conversion of atmospheric CO2 fixed by plants into biomass and, after the biological recycling of calcium oxalate by fungi and bacteria, into calcium carbonate in terrestrial environments. Oxalotrophic bacteria are a key element of this process because of their ability to oxidize calcium oxalate. However, the diversity and alternative carbon sources of oxalotrophs participating to this pathway are unknown. Therefore, the aim of this study was to characterize oxalotrophic bacteria in tropical OCP systems from Bolivia, India, and Cameroon. Ninety-five oxalotrophic strains were isolated and identified by sequencing of the 16S rRNA gene. Four genera corresponded to newly reported oxalotrophs (Afipia, Polaromonas, Humihabitans, and Psychrobacillus). Ten strains were selected to perform a more detailed characterization. Kinetic curves and microcalorimetry analyses showed that Variovorax soli C18 has the highest oxalate consumption rate with 0.240 µM h(-1). Moreover, Streptomyces achromogenes A9 displays the highest metabolic plasticity. This study highlights the phylogenetic and physiological diversity of oxalotrophic bacteria in tropical soils under the influence of the oxalate-carbonate pathway.

  18. Stabilization of recent soil carbon in the humid tropics following land use changes: evidence from aggregate fractionation and stable isotope analyses

    OpenAIRE

    Paul, Sonja; Flessa, Heiner; Veldkamp, Edzo; López-Ulloa, Magdalena

    2008-01-01

    Keywords: Carbon sequestration - Ecuador - Mean residence time - Pasture - Secondary forest - Soil type - Texture - Water-stable aggregates Quantitative knowledge of stabilization- and decomposition processes is necessary to understand, assess and predict effects of land use changes on storage and stability of soil organic carbon (soil C) in the tropics. Although it is well documented that different soil types have different soil C stocks, it is presently unknown how different soil types a...

  19. Lime and phosphogypsum impacts on soil organic matter pools in a tropical Oxisol under long-term no-till conditions

    Science.gov (United States)

    Improving soil organic matter (SOM) quality in tropical acid soils is important for increasing the sustainability of agricultural ecosystems. This research evaluated the effect of the surface application of lime and phosphogypsum on the quality and amount of SOM in a long-term crop rotation under no...

  20. Nutrient stocks of short-term fallows on high base status soils in the humid tropics of Papua New Guinea

    NARCIS (Netherlands)

    Hartemink, A.E.

    2004-01-01

    In order to understand nutrient dynamics in tropical farming systems with fallows, it is necessary to assess changes in nutrient stocks in plants, litter and soils. Nutrient stocks (soil, above ground biomass, litter) were assessed of one-year old fallows with Piper aduncum, Gliricidia sepium and

  1. Minerals Masquerading As Enzymes: Abiotic Oxidation Of Soil Organic Matter In An Iron-Rich Humid Tropical Forest Soil

    Science.gov (United States)

    Hall, S. J.; Silver, W. L.

    2010-12-01

    Oxidative reactions play an important role in decomposing soil organic matter fractions that resist hydrolytic degradation, and fundamentally affect the cycling of recalcitrant soil carbon across ecosystems. Microbial extracellular oxidative enzymes (e.g. lignin peroxidases and laccases) have been assumed to provide a dominant role in catalyzing soil organic matter oxidation, while other potential oxidative mechanisms remain poorly explored. Here, we show that abiotic reactions mediated by the oxidation of ferrous iron (Fe(II)) could explain high potential oxidation rates in humid tropical forest soils, which often contain high concentrations of Fe(II) and experience rapid redox fluctuations between anaerobic and aerobic conditions. These abiotic reactions could provide an additional mechanism to explain high rates of decomposition in these ecosystems, despite frequent oxygen deficits. We sampled humid tropical forest soils in Puerto Rico, USA from various topographic positions, ranging from well-drained ridges to riparian valleys that experience broad fluctuations in redox potential. We measured oxidative activity by adding the model humic compound L-DOPA to soil slurries, followed by colorimetric measurements of the supernatant solution over time. Dilute hydrogen peroxide was added to a subset of slurries to measure peroxidative activity. We found that oxidative and peroxidative activity correlated positively with soil Fe(II) concentrations, counter to prevailing theory that low redox potential should suppress oxidative enzymes. Boiling or autoclaving sub-samples of soil slurries to denature any enzymes present typically increased peroxidative activity and did not eliminate oxidative activity, further suggesting the importance of an abiotic mechanism. We found substantial differences in the oxidation products of the L-DOPA substrate generated by our soil slurries in comparison with oxidation products generated by a purified enzyme (mushroom tyrosinase

  2. Iron Availability in Tropical Soils and Iron Uptake by Plants

    Directory of Open Access Journals (Sweden)

    Guilherme Furlan Mielki

    Full Text Available ABSTRACT Given the increase in crop yields and the expansion of agriculture in low fertility soils, deficiency of micronutrients, such as iron, in plants grown in tropical soils has been observed. The aim of this study was to evaluate Fe availability and Fe uptake by corn (Zea mays L. plants in 13 different soils, at two depths. Iron was extracted by Mehlich-1, Mehlich-3, and CaCl2 (Fe-CC and was fractionated in forms related to low (Feo and high (Fed crystallinity pedogenic oxyhydroxides, and organic matter (Fep using ammonium oxalate, dithionite-citrate, and sodium pyrophosphate, respectively. In order to relate Fe availability to soil properties and plant growth, an experiment was carried out in a semi-hydroponic system in which part of the roots developed in a nutrient solution (without Fe and part in the soil (the only source of Fe. Forty-five days after seeding, we quantified shoot dry matter and leaf Fe concentration and content. Fed levels were high, from 5 to 132 g kg-1, and Feo and Fe-CC levels were low, indicating the predominance of Fe as crystalline oxyhydroxides and a low content of Fe readily available to plants. The extraction solutions showed significant correlations with various soil properties, many common to both, indicating that they act similarly. The correlation between the Mehlich-1 and Mehlich-3 extraction solutions was highly significant. However, these two extraction methods were inefficient in predicting Fe availability to plants. There was a positive correlation between dry matter and Fe levels in plant shoots, even within the ranges considered adequate in the soil and in the plant. Dry matter production and leaf Fe concentration and content were positively correlated with Fep concentration, indicating that the Fe fraction related to soil organic matter most contributes to Fe availability to plants.

  3. A cost-efficient method to assess carbon stocks in tropical peat soil

    Directory of Open Access Journals (Sweden)

    M. W. Warren

    2012-11-01

    Full Text Available Estimation of belowground carbon stocks in tropical wetland forests requires funding for laboratory analyses and suitable facilities, which are often lacking in developing nations where most tropical wetlands are found. It is therefore beneficial to develop simple analytical tools to assist belowground carbon estimation where financial and technical limitations are common. Here we use published and original data to describe soil carbon density (kgC m−3; Cd as a function of bulk density (gC cm−3; Bd, which can be used to rapidly estimate belowground carbon storage using Bd measurements only. Predicted carbon densities and stocks are compared with those obtained from direct carbon analysis for ten peat swamp forest stands in three national parks of Indonesia. Analysis of soil carbon density and bulk density from the literature indicated a strong linear relationship (Cd = Bd × 495.14 + 5.41, R2 = 0.93, n = 151 for soils with organic C content > 40%. As organic C content decreases, the relationship between Cd and Bd becomes less predictable as soil texture becomes an important determinant of Cd. The equation predicted belowground C stocks to within 0.92% to 9.57% of observed values. Average bulk density of collected peat samples was 0.127 g cm−3, which is in the upper range of previous reports for Southeast Asian peatlands. When original data were included, the revised equation Cd = Bd × 468.76 + 5.82, with R2 = 0.95 and n = 712, was slightly below the lower 95% confidence interval of the original equation, and tended to decrease Cd estimates. We recommend this last equation for a rapid estimation of soil C stocks for well-developed peat soils where C content > 40%.

  4. The Role of Soil Amendment on Tropical Post Tin Mining Area in Bangka Island Indonesia for Dignified and Sustainable Environment and Life

    Science.gov (United States)

    Agus, C.; Wulandari, D.; Primananda, E.; Hendryan, A.; Harianja, V.

    2017-08-01

    Openly tropical tin mining in Bangka Island Indonesia expose heavy metal that had been buried became a part of our environment and life. This has become a major cause of land degradation and severe local-global environmental damages. This study aims to accelerate reconsolidation of degraded ecosystems on the former tin mine land, to increase land productivity and dignified environment through appropriate rehabilitation technology on marginal land that is inexpensive, environmentally friendly and sustainable. This study is a part of a roadmap research activities on the rehabilitation of degraded land in tropical ecosystem, that consist of (a) characterization of degraded tin mining lands through the determination of chemistry, physics, biology and mineral soil properties, (b) introducing multi-function pioneers plant for acceleration of peak pioneer plant in the reestablishment of degraded tin mining ecosystem (c) management of natural soil amendment (volcanic ash, organic waste materials and legume cover crop as a material for soil amelioration to increase land productivity, (d) role of biotechnology through the application of local bio-fertilizer (mycorrhizae, phosphate soluble bacteria, rhizobium). Soil from post tropical tin mining acid soil (pH 4.97) that dominated by sand particles (88%) with very low cation exchange capacity, very low nutrient contents (available and total-N, P, K, Ca, Mg) and high toxicity of Zn, Cu, B, Cd and Ti, but still have low toxicity of Al, Fe, Mn, Mo, Pb, As. Soil amendment of biogas and volcanic ash could improve soil quality by increasing of better pH, high available-P and cation exchange capacity and maintained their low toxicity. The growth (high, diameter, biomass, top-root ratio) of exotic pioneer plant of Kemiri sunan (Reutealis trisperma) increased in the better soil quality that caused by application of proper soil amendment. The grand concept and appropriate technology for rehabilitation of degraded tin-mining land

  5. Growth of four tropical tree species in petroleum-contaminated soil and effects of crude oil contamination

    NARCIS (Netherlands)

    Pérez-Hernández, I.; Ochoa-Gaona, S.; Adams, R.H.; Rivera-Cruz, M.C.; Pérez-Hernández, V.; Jarquín-Sánchez, A.; Geissen, V.; Martínez-Zurimendi, P.

    2017-01-01

    Under greenhouse conditions, we evaluated establishment of four tree species and their capacity to degrade crude oil recently incorporated into the soil; the species were as follows: Cedrela odorata (tropical cedar), Haematoxylum campechianum (tinto bush), Swietenia macrophylla (mahogany), and

  6. Biochar from sugarcane filtercake reduces soil CO2 emissions relative to raw residue and improves water retention and nutrient availability in a highly-weathered tropical soil.

    Science.gov (United States)

    Eykelbosh, Angela Joy; Johnson, Mark S; Santos de Queiroz, Edmar; Dalmagro, Higo José; Guimarães Couto, Eduardo

    2014-01-01

    In Brazil, the degradation of nutrient-poor Ferralsols limits productivity and drives agricultural expansion into pristine areas. However, returning agricultural residues to the soil in a stabilized form may offer opportunities for maintaining or improving soil quality, even under conditions that typically promote carbon loss. We examined the use of biochar made from filtercake (a byproduct of sugarcane processing) on the physicochemical properties of a cultivated tropical soil. Filtercake was pyrolyzed at 575°C for 3 h yielding a biochar with increased surface area and porosity compared to the raw filtercake. Filtercake biochar was primarily composed of aromatic carbon, with some residual cellulose and hemicellulose. In a three-week laboratory incubation, CO2 effluxes from a highly weathered Ferralsol soil amended with 5% biochar (dry weight, d.w.) were roughly four-fold higher than the soil-only control, but 23-fold lower than CO2 effluxes from soil amended with 5% (d.w.) raw filtercake. We also applied vinasse, a carbon-rich liquid waste from bioethanol production typically utilized as a fertilizer on sugarcane soils, to filtercake- and biochar-amended soils. Total CO2 efflux from the biochar-amended soil in response to vinasse application was only 5% of the efflux when vinasse was applied to soil amended with raw filtercake. Furthermore, mixtures of 5 or 10% biochar (d.w.) in this highly weathered tropical soil significantly increased water retention within the plant-available range and also improved nutrient availability. Accordingly, application of sugarcane filtercake as biochar, with or without vinasse application, may better satisfy soil management objectives than filtercake applied to soils in its raw form, and may help to build soil carbon stocks in sugarcane-cultivating regions.

  7. Biochar from Sugarcane Filtercake Reduces Soil CO2 Emissions Relative to Raw Residue and Improves Water Retention and Nutrient Availability in a Highly-Weathered Tropical Soil

    Science.gov (United States)

    Eykelbosh, Angela Joy; Johnson, Mark S.; Santos de Queiroz, Edmar; Dalmagro, Higo José; Guimarães Couto, Eduardo

    2014-01-01

    In Brazil, the degradation of nutrient-poor Ferralsols limits productivity and drives agricultural expansion into pristine areas. However, returning agricultural residues to the soil in a stabilized form may offer opportunities for maintaining or improving soil quality, even under conditions that typically promote carbon loss. We examined the use of biochar made from filtercake (a byproduct of sugarcane processing) on the physicochemical properties of a cultivated tropical soil. Filtercake was pyrolyzed at 575°C for 3 h yielding a biochar with increased surface area and porosity compared to the raw filtercake. Filtercake biochar was primarily composed of aromatic carbon, with some residual cellulose and hemicellulose. In a three-week laboratory incubation, CO2 effluxes from a highly weathered Ferralsol soil amended with 5% biochar (dry weight, d.w.) were roughly four-fold higher than the soil-only control, but 23-fold lower than CO2 effluxes from soil amended with 5% (d.w.) raw filtercake. We also applied vinasse, a carbon-rich liquid waste from bioethanol production typically utilized as a fertilizer on sugarcane soils, to filtercake- and biochar-amended soils. Total CO2 efflux from the biochar-amended soil in response to vinasse application was only 5% of the efflux when vinasse was applied to soil amended with raw filtercake. Furthermore, mixtures of 5 or 10% biochar (d.w.) in this highly weathered tropical soil significantly increased water retention within the plant-available range and also improved nutrient availability. Accordingly, application of sugarcane filtercake as biochar, with or without vinasse application, may better satisfy soil management objectives than filtercake applied to soils in its raw form, and may help to build soil carbon stocks in sugarcane-cultivating regions. PMID:24897522

  8. Biochar from sugarcane filtercake reduces soil CO2 emissions relative to raw residue and improves water retention and nutrient availability in a highly-weathered tropical soil.

    Directory of Open Access Journals (Sweden)

    Angela Joy Eykelbosh

    Full Text Available In Brazil, the degradation of nutrient-poor Ferralsols limits productivity and drives agricultural expansion into pristine areas. However, returning agricultural residues to the soil in a stabilized form may offer opportunities for maintaining or improving soil quality, even under conditions that typically promote carbon loss. We examined the use of biochar made from filtercake (a byproduct of sugarcane processing on the physicochemical properties of a cultivated tropical soil. Filtercake was pyrolyzed at 575°C for 3 h yielding a biochar with increased surface area and porosity compared to the raw filtercake. Filtercake biochar was primarily composed of aromatic carbon, with some residual cellulose and hemicellulose. In a three-week laboratory incubation, CO2 effluxes from a highly weathered Ferralsol soil amended with 5% biochar (dry weight, d.w. were roughly four-fold higher than the soil-only control, but 23-fold lower than CO2 effluxes from soil amended with 5% (d.w. raw filtercake. We also applied vinasse, a carbon-rich liquid waste from bioethanol production typically utilized as a fertilizer on sugarcane soils, to filtercake- and biochar-amended soils. Total CO2 efflux from the biochar-amended soil in response to vinasse application was only 5% of the efflux when vinasse was applied to soil amended with raw filtercake. Furthermore, mixtures of 5 or 10% biochar (d.w. in this highly weathered tropical soil significantly increased water retention within the plant-available range and also improved nutrient availability. Accordingly, application of sugarcane filtercake as biochar, with or without vinasse application, may better satisfy soil management objectives than filtercake applied to soils in its raw form, and may help to build soil carbon stocks in sugarcane-cultivating regions.

  9. Impact of Amendments on the Physical Properties of Soil under Tropical Long-Term No Till Conditions.

    Directory of Open Access Journals (Sweden)

    Antonio C A Carmeis Filho

    Full Text Available Tropical regions have been considered the world's primary agricultural frontier; however, some physico-chemical deficiencies, such as low soil organic matter content, poor soil structure, high erodibility, soil acidity, and aluminum toxicity, have affected their productive capacity. Lime and gypsum are commonly used to improve soil chemical fertility, but no information exists about the long-term effects of these products on the physical attributes and C protection mechanisms of highly weathered Oxisols. A field trial was conducted in a sandy clay loam (kaolinitic, thermic Typic Haplorthox under a no-tillage system for 12 years. The trial consisted of four treatments: a control with no soil amendment application, the application of 2.1 Mg ha-1 phosphogypsum, the application of 2.0 Mg ha-1 lime, and the application of lime + phosphogypsum (2.0 + 2.1 Mg ha-1, respectively. Since the experiment was established in 2002, the rates have been applied three times (2002, 2004, and 2010. Surface liming effectively increased water-stable aggregates > 2.0 mm at a depth of up to 0.2 m; however, the association with phosphogypsum was considered a good strategy to improve the macroaggregate stability in subsoil layers (0.20 to 0.40 m. Consequently, both soil amendments applied together increased the mean weight diameter (MWD and geometric mean diameter (GMD in all soil layers, with increases of up to 118 and 89%, respectively, according to the soil layer. The formation and stabilization of larger aggregates contributed to a higher accumulation of total organic carbon (TOC on these structures. In addition to TOC, the MWD and aggregate stability index were positively correlated with Ca2+ and Mg2+ levels and base saturation. Consequently, the increase observed in the aggregate size class resulted in a better organization of soil particles, increasing the macroporosity and reducing the soil bulk density and penetration resistance. Therefore, adequate soil chemical

  10. Impact of Amendments on the Physical Properties of Soil under Tropical Long-Term No Till Conditions.

    Science.gov (United States)

    Carmeis Filho, Antonio C A; Crusciol, Carlos A C; Guimarães, Tiara M; Calonego, Juliano C; Mooney, Sacha J

    2016-01-01

    Tropical regions have been considered the world's primary agricultural frontier; however, some physico-chemical deficiencies, such as low soil organic matter content, poor soil structure, high erodibility, soil acidity, and aluminum toxicity, have affected their productive capacity. Lime and gypsum are commonly used to improve soil chemical fertility, but no information exists about the long-term effects of these products on the physical attributes and C protection mechanisms of highly weathered Oxisols. A field trial was conducted in a sandy clay loam (kaolinitic, thermic Typic Haplorthox) under a no-tillage system for 12 years. The trial consisted of four treatments: a control with no soil amendment application, the application of 2.1 Mg ha-1 phosphogypsum, the application of 2.0 Mg ha-1 lime, and the application of lime + phosphogypsum (2.0 + 2.1 Mg ha-1, respectively). Since the experiment was established in 2002, the rates have been applied three times (2002, 2004, and 2010). Surface liming effectively increased water-stable aggregates > 2.0 mm at a depth of up to 0.2 m; however, the association with phosphogypsum was considered a good strategy to improve the macroaggregate stability in subsoil layers (0.20 to 0.40 m). Consequently, both soil amendments applied together increased the mean weight diameter (MWD) and geometric mean diameter (GMD) in all soil layers, with increases of up to 118 and 89%, respectively, according to the soil layer. The formation and stabilization of larger aggregates contributed to a higher accumulation of total organic carbon (TOC) on these structures. In addition to TOC, the MWD and aggregate stability index were positively correlated with Ca2+ and Mg2+ levels and base saturation. Consequently, the increase observed in the aggregate size class resulted in a better organization of soil particles, increasing the macroporosity and reducing the soil bulk density and penetration resistance. Therefore, adequate soil chemical management

  11. Earthworms and Plant Residues Modify Nematodes in Tropical Cropping Soils (Madagascar): A Mesocosm Experiment

    International Nuclear Information System (INIS)

    Villenave, C.; Kichenin, E.; Djigal, D.; Blanchart, E.; Rabary, B.; Djigal, D.

    2010-01-01

    Free-living nematodes present several characteristics that have led to their use as bio indicators of soil quality. Analyzing the structure of nematofauna is a pertinent way to understand soil biological processes. Earthworms play an important role in soil biological functioning and organic matter dynamics. Their effects on soil nematofauna have seldom been studied. We studied the effect of the tropical endogeic earthworm, Pontoscolex corethrurus, on nematode community structure in a 5-month field mesocosm experiment conducted in Madagascar. Ten different treatments with or without earthworms and with or without organic residues (rice, soybean) were compared. Organic residues were applied on the soil surface or mixed with the soil. The abundance of nematodes (bacterial and fungal feeders) was higher in presence of P. corethrurus than in their absence. The type of plant residues as well as their localisation had significant effects on the abundance and composition of soil nematodes. The analysis of nematode community structure showed that earthworm activity led to an overall activation of the microbial compartment without specific stimulation of the bacterial or fungal compartment.

  12. Earthworms and Plant Residues Modify Nematodes in Tropical Cropping Soils (Madagascar: A Mesocosm Experiment

    Directory of Open Access Journals (Sweden)

    Cécile Villenave

    2010-01-01

    Full Text Available Free-living nematodes present several characteristics that have led to their use as bioindicators of soil quality. Analyzing the structure of nematofauna is a pertinent way to understand soil biological processes. Earthworms play an important role in soil biological functioning and organic matter dynamics. Their effects on soil nematofauna have seldom been studied. We studied the effect of the tropical endogeic earthworm, Pontoscolex corethrurus, on nematode community structure in a 5-month field mesocosm experiment conducted in Madagascar. Ten different treatments with or without earthworms and with or without organic residues (rice, soybean were compared. Organic residues were applied on the soil surface or mixed with the soil. The abundance of nematodes (bacterial and fungal feeders was higher in presence of P. corethrurus than in their absence. The type of plant residues as well as their localisation had significant effects on the abundance and composition of soil nematodes. The analysis of nematode community structure showed that earthworm activity led to an overall activation of the microbial compartment without specific stimulation of the bacterial or fungal compartment.

  13. Methods to quantify the impacts of water erosion on productivity of tropical soils

    International Nuclear Information System (INIS)

    Obando, Franco H

    2000-01-01

    A review on methods to quantify the impacts of water erosion on soil properties and crop yield is presented. On the basis of results of soil losses through plastic shading meshes on oxisols in the eastern plains of Colombia, the experimental design to quantify erosion induced losses in soil productivity suggested by Stocking (1985) for tropical soils is modified. With the purpose of producing contrasting levels of natural erosion, simple 33% and 45% shading rates meshes, and superposed 33% and 45% meshes were used. These were stretched out on stocking 5 m x 10 m run-off plots at 40 cm height from soil surface. Annual soil losses produced under the above mentioned shading meshes treatments did not present significant differences. It was demonstrated that 33%, 45% as well as superposed 33% and 45% produce an equivalent surface cover, CVE, greater than 90% comparable to that produced by zero grazing Brachiaria decumbens pasture. Such results allowed presenting modifications to the stocking design. It is recommended to use alternated stripes of bare soil and shading meshes of different width to produce contrasting levels of equivalent soil surface cover and consequently contrasting erosion rates. Design of the modified stocking run-off plots, including collecting channels, collecting tanks and a Geib multibox divisor are presented

  14. Extreme emission of N2O from tropical wetland soil (Pantanal, South America)

    DEFF Research Database (Denmark)

    Jensen, Lars Liengård; Nielsen, Lars Peter; Revsbech, Niels Peter

    2013-01-01

    Nitrous oxide (N(2)O) is an important greenhouse gas and ozone depleter, but the global budget of N(2)O remains unbalanced. Currently, ~25% of the global N(2)O emission is ascribed to uncultivated tropical soils, but the exact locations and controlling mechanisms are not clear. Here we present...... the first study of soil N(2)O emission from the Pantanal indicating that this South American wetland may be a significant natural source of N(2)O. At three sites, we repeatedly measured in situ fluxes of N(2)O and sampled porewater nitrate [Formula: see text] during the low water season in 2008 and 2009....... In 2010, 10 sites were screened for in situ fluxes of N(2)O and soil [Formula: see text] content. The in situ fluxes of N(2)O were comparable to fluxes from heavily fertilized forests or agricultural soils. An important parameter affecting N(2)O emission rate was precipitation, inducing peak emissions...

  15. Morphological, sediment and soil chemical characteristics of dry tropical shallow reservoirs in the Southern Mexican Highlands

    Directory of Open Access Journals (Sweden)

    José Luis ARREDONDO-FIGUEROA

    2011-02-01

    Full Text Available The morphometry, sediment and soil chemical characteristics of eleven dry tropical shallow reservoirs situated in Southern Mexican Highlands were studied. The reservoirs are located at 1104 to 1183 meters above sea level in a sedimentary area. Seventeen morphometric and eight sediment and soil chemical parameters were measured. The results of the morphometric parameters showed that these reservoirs presented a soft and roughness bottom, with an ellipsoid form and a concave depression that permit the mix up of water and sediments, causing turbidity and broken thermal gradients; their slight slopes allowed the colonization of submerged macrophyte and halophyte plants and improved the incidence of sunlight on water surface increasing evaporation and primary productivity. Dry tropical shallow reservoirs have fluctuations in area, and volume according to the amount of rainfall, the effect of evaporation, temperature, lost volume for irrigation, and other causes. The sand-clay was the most important sediment texture and their values fluctuated with the flooded periods. The concentration-dilution cycle showed a direct relationship in the percentage of organic matter in the soil as well as with pH, soil nitrogen and phosphorus. El Tilzate, El Candelero and El Movil were related by the shore development and high concentrations of organic matter and nitrogen in the soil. Finally, we emphasize the importance of this study, in relation to possible future changes in morphometrical parameters as a consequence of human impact.

  16. The Effect of Soil Warming on Decomposition of Biochar, Wood, and Bulk Soil Organic Carbon in Contrasting Temperate and Tropical Soils

    Science.gov (United States)

    Torn, Margaret; Tas, Neslihan; Reichl, Ken; Castanha, Cristina; Fischer, Marc; Abiven, Samuel; Schmidt, Michael; Brodie, Eoin; Jansson, Janet

    2013-04-01

    Biochar and wood are known to decay at different rates in soil, but the longterm effect of char versus unaltered wood inputs on soil carbon dynamics may vary by soil ecosystem and by their sensitivity to warming. We conducted an incubation experiment to explore three questions: (1) How do decomposition rates of char and wood vary with soil type and depth? (2) How vulnerable to warming are these slowly decomposing inputs? And (3) Do char or wood additions increase loss of native soil organic carbon (priming)? Soils from a Mediterranean grassland (Hopland Experimental Research Station, California) and a moist tropical forest (Tabunoco Forest, Puerto Rico) were collected from two soil depths and incubated at ambient temperature (14°C, 20°C for Hopland and Tabonuco respectively) and ambient +6°C. We added 13C-labeled wood and char (made from the wood at 450oC) to the soils and quantified CO2 and 13CO2 fluxes with continuous online carbon isotope measurements using a Cavity Ringdown Spectrometer (Picarro, Inc) for one year. As expected, in all treatments the wood decomposed much (about 50 times) more quickly than did the char amendment. With few exceptions, amendments placed in the surface soil decomposed more quickly than those in deeper soil, and in forest soil faster than that placed in grassland soil, at the same temperature. The two substrates were not very temperature sensitive. Both had Q10 less than 2 and char decomposition in particular was relatively insensitive to warming. Finally, the addition of wood caused a significant increase of roughly 30% in decomposition losses of the native soil organic carbon in the grassland and slightly less in forest. Char had only a slight positive priming effect but had a significant effect on microbial community. These results show that conversion of wood inputs to char through wildfire or intentional management will alter not only the persistence of the carbon in soil but also its temperature response and effect on

  17. In-situ biochar application conserves nutrients while simultaneously mitigating runoff and erosion of an Fe-oxide-enriched tropical soil.

    Science.gov (United States)

    Lee, Chia-Hsing; Wang, Chung-Chi; Lin, Huan-Hsuan; Lee, Sang Soo; Tsang, Daniel C W; Jien, Shih-Hao; Ok, Yong Sik

    2018-04-01

    Climate change gives rise to rapid degradation of rural soils in sloping subtropical and tropical areas and might further threaten environmental sustainability. In this study, we conducted an integrated evaluation of the effects of wood biochar (WB) application mixed with a green waste dreg compost (GWC) on runoff quality, soil losses, and agricultural productivity for a highly weathered tropical soil. A conventional agriculture method, in which soils are treated with anionic polyacrylamide (PAM), was also conducted for comparison. The amounts of runoff and soil loss, and nutrient retention were evaluated a year after WB application. Soil fertility was also investigated through a year pot experiment with rape (Brassica campestris L.) cultivation. Our results showed that the WB application not only effectively increased soil pH, soil organic carbon (SOC) and exchangeable K + but also increased the production of rape plants. Significant reduction of runoff and the increases of inorganic nitrogen (IN) and total phosphorus (TP) were found in the WB-treated soil. Compared to the control, the co-application of WB and GWC, particularly for the WB at 4%, decreased runoff by 16.8%, soil loss by 25%, and IN loss (via runoff) by 41.8%. Meanwhile, compared to the control and PAM treatments, the co-application of WB and GWC improved soil acidity and the contents of SOC, IN, TP, and exchangeable K + . The co-application of WB and GWC could be an alternative agricultural strategy to obtain benefits to agricultural productivity and environmental sustainability. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Cadmium phytoextraction from loam soil in tropical southern China by Sorghum bicolor.

    Science.gov (United States)

    Wang, Xu; Chen, Can; Wang, Jianlong

    2017-06-03

    The cadmium (Cd) uptake characteristics by Sorghum bicolor cv. Nengsi 2# and Cowley from the acidic sandy loam soil (pH = 6.1) during the entire growth period (100 days) were investigated in pot outdoors in a tropical district of southern China, Hainan Island. The Cd-spiked levels in soil were set as 3 and 15 mg/kg. Correspondingly, the available Cd levels in soil extracted by Mehlich III solution were 2.71 and 9.41 mg/kg, respectively. Basically, two varieties in a full growth period (100 days) did not show a significant difference in their growth and Cd uptake. Under high Cd stress, the plant growth was inhibited and its biomass weight and height decreased by 38.7-51.5% and 27.6-28.5%, respectively. However, S. bicolor showed higher bioaccumulation capability of Cd from soil to plant [bioconcentration factor (BCF)>4], and higher transfer capability of Cd from roots to shoots [translocation factor (TF)>1] under high Cd stress; Cd contents in the roots, stems, and leaves of S. bicolor reached 43.79-46.07, 63.28-70.60, and 63.10-66.06 mg/kg, respectively. S. bicolor exhibited the potential phytoextraction capability for low or moderate Cd-contamination in acidic sandy loam soil.

  19. Biochar boosts tropical but not temperate crop yields

    Science.gov (United States)

    Jeffery, Simon; Abalos, Diego; Prodana, Marija; Catarina Bastos, Ana; van Groenigen, Jan Willem; Hungate, Bruce A.; Verheijen, Frank

    2017-05-01

    Applying biochar to soil is thought to have multiple benefits, from helping mitigate climate change [1, 2], to managing waste [3] to conserving soil [4]. Biochar is also widely assumed to boost crop yield [5, 6], but there is controversy regarding the extent and cause of any yield benefit [7]. Here we use a global-scale meta-analysis to show that biochar has, on average, no effect on crop yield in temperate latitudes, yet elicits a 25% average increase in yield in the tropics. In the tropics, biochar increased yield through liming and fertilization, consistent with the low soil pH, low fertility, and low fertilizer inputs typical of arable tropical soils. We also found that, in tropical soils, high-nutrient biochar inputs stimulated yield substantially more than low-nutrient biochar, further supporting the role of nutrient fertilization in the observed yield stimulation. In contrast, arable soils in temperate regions are moderate in pH, higher in fertility, and generally receive higher fertilizer inputs, leaving little room for additional benefits from biochar. Our findings demonstrate that the yield-stimulating effects of biochar are not universal, but may especially benefit agriculture in low-nutrient, acidic soils in the tropics. Biochar management in temperate zones should focus on potential non-yield benefits such as lime and fertilizer cost savings, greenhouse gas emissions control, and other ecosystem services.

  20. Forest structure, diversity and soil properties in a dry tropical forest in Rajasthan, Western India

    Directory of Open Access Journals (Sweden)

    J. I. Nirmal Kumar

    2011-06-01

    Full Text Available Structure, species composition, and soil properties of a dry tropical forest in Rajasthan Western India, were examined by establishment of 25 plots. The forest was characterized by a relatively low canopy and a large number of small-diameter trees. Mean canopy height for this forest was 10 m and stands contained an average of 995 stems ha-1 (= 3.0 cm DBH; 52% of those stems were smaller than 10 cm DBH. The total basal area was 46.35 m2ha-1, of which Tectona grandis L. contributed 48%. The forest showed high species diversity of trees. 50 tree species (= 3.0 cm DBH from 29 families were identified in the 25 sampling plots. T. grandis (20.81% and Butea monosperma (9% were the dominant and subdominant species in terms of importance value. The mean tree species diversity indices for the plots were 1.08 for Shannon diversity index (H´, 0.71 for equitability index (J´ and 5.57 for species richness index (S´, all of which strongly declined with the increase of importance value of the dominant, T. grandis. Measures of soil nutrients indicated low fertility, extreme heterogeneity. Regression analysis showed that stem density and the dominant tree height were significantly correlated with soil pH. There was a significant positive relationship between species diversity index and soil available P, exchangeable K+, Ca2+ (all p values < 0.001 and a negative relationship with N, C, C:N and C:P ratio. The results suggest that soil properties are major factors influencing forest composition and structure within the dry tropical forest in Rajasthan.

  1. The magnitude and persistence of soil NO, N20, CH4, and C02 fluxes from burned tropical savanna in Brazil

    Science.gov (United States)

    Mark Poth; Iris Cofman Anderson; Heloisa Sinatora Miranda; Antonia Carlos Miranda; Philip J. Riggan

    1995-01-01

    Among all global ecosystems, tropical savannas are the most severely and extensively affected by anthropogenic burning. Frequency of fire in cerrado, a type of tropical savanna covering 25% of Brazil, is 2 to 4 years. In 1992 we measured soil fluxes of NO, N20, CH4, and C02 from cerrado sites that had...

  2. Benefits of biochar, compost and biochar–compost for soil quality, maize yield and greenhouse gas emissions in a tropical agricultural soil

    International Nuclear Information System (INIS)

    Agegnehu, Getachew; Bass, Adrian M.; Nelson, Paul N.; Bird, Michael I.

    2016-01-01

    Soil quality decline represents a significant constraint on the productivity and sustainability of agriculture in the tropics. In this study, the influence of biochar, compost and mixtures of the two on soil fertility, maize yield and greenhouse gas (GHG) emissions was investigated in a tropical Ferralsol. The treatments were: 1) control with business as usual fertilizer (F); 2) 10 t ha"−"1 biochar (B) + F; 3) 25 t ha"−"1 compost (Com) + F; 4) 2.5 t ha"−"1 B + 25 t ha"−"1 Com mixed on site + F; and 5) 25 t ha"−"1 co-composted biochar–compost (COMBI) + F. Total aboveground biomass and maize yield were significantly improved relative to the control for all organic amendments, with increases in grain yield between 10 and 29%. Some plant parameters such as leaf chlorophyll were significantly increased by the organic treatments. Significant differences were observed among treatments for the δ"1"5N and δ"1"3C contents of kernels. Soil physicochemical properties including soil water content (SWC), total soil organic carbon (SOC), total nitrogen (N), available phosphorus (P), nitrate-nitrogen (NO_3"− N), ammonium-nitrogen (NH_4"+-N), exchangeable cations and cation exchange capacity (CEC) were significantly increased by the organic amendments. Maize grain yield was correlated positively with total biomass, leaf chlorophyll, foliar N and P content, SOC and SWC. Emissions of CO_2 and N_2O were higher from the organic-amended soils than from the fertilizer-only control. However, N_2O emissions generally decreased over time for all treatments and emission from the biochar was lower compared to other treatments. Our study concludes that the biochar and biochar–compost-based soil management approaches can improve SOC, soil nutrient status and SWC, and maize yield and may help mitigate greenhouse gas emissions in certain systems. - Graphical abstract: Grain yield, cation exchange capacity (CEC), soil organic carbon (SOC), soil water content (SWC) and N_2O

  3. Benefits of biochar, compost and biochar–compost for soil quality, maize yield and greenhouse gas emissions in a tropical agricultural soil

    Energy Technology Data Exchange (ETDEWEB)

    Agegnehu, Getachew [College of Science, Technology and Engineering, Centre for Tropical Environmental and Sustainability Science, James Cook University, PO Box 6811, Cairns, Queensland 4870 (Australia); Bass, Adrian M. [Hawkesbury Institute for the Environment, University of Western Sydney, Science Road, Richmond, New South Wales 2753 (Australia); Nelson, Paul N.; Bird, Michael I. [College of Science, Technology and Engineering, Centre for Tropical Environmental and Sustainability Science, James Cook University, PO Box 6811, Cairns, Queensland 4870 (Australia)

    2016-02-01

    Soil quality decline represents a significant constraint on the productivity and sustainability of agriculture in the tropics. In this study, the influence of biochar, compost and mixtures of the two on soil fertility, maize yield and greenhouse gas (GHG) emissions was investigated in a tropical Ferralsol. The treatments were: 1) control with business as usual fertilizer (F); 2) 10 t ha{sup −1} biochar (B) + F; 3) 25 t ha{sup −1} compost (Com) + F; 4) 2.5 t ha{sup −1} B + 25 t ha{sup −1} Com mixed on site + F; and 5) 25 t ha{sup −1} co-composted biochar–compost (COMBI) + F. Total aboveground biomass and maize yield were significantly improved relative to the control for all organic amendments, with increases in grain yield between 10 and 29%. Some plant parameters such as leaf chlorophyll were significantly increased by the organic treatments. Significant differences were observed among treatments for the δ{sup 15}N and δ{sup 13}C contents of kernels. Soil physicochemical properties including soil water content (SWC), total soil organic carbon (SOC), total nitrogen (N), available phosphorus (P), nitrate-nitrogen (NO{sub 3}{sup −} N), ammonium-nitrogen (NH{sub 4}{sup +}-N), exchangeable cations and cation exchange capacity (CEC) were significantly increased by the organic amendments. Maize grain yield was correlated positively with total biomass, leaf chlorophyll, foliar N and P content, SOC and SWC. Emissions of CO{sub 2} and N{sub 2}O were higher from the organic-amended soils than from the fertilizer-only control. However, N{sub 2}O emissions generally decreased over time for all treatments and emission from the biochar was lower compared to other treatments. Our study concludes that the biochar and biochar–compost-based soil management approaches can improve SOC, soil nutrient status and SWC, and maize yield and may help mitigate greenhouse gas emissions in certain systems. - Graphical abstract: Grain yield, cation exchange capacity (CEC), soil

  4. Effect of Interactions on the Nutrient Status of a Tropical Soil Treated with Green Manures and Inorganic Phosphate Fertilizers

    Directory of Open Access Journals (Sweden)

    Abdul R. Bah

    2004-01-01

    Full Text Available Integrated nutrient management systems using plant residues and inorganic P fertilizers have high potential for increasing crop production and ensuring sustainability in the tropics, but their adoption requires in-depth understanding of nutrient dynamics in such systems. This was examined in a highly weathered tropical soil treated with green manures (GMs and P fertilizers in two experiments conducted in the laboratory and glasshouse. The treatments were factorial combinations of the GMs (Calopogonium caeruleum, Gliricidia sepium, and Imperata cylindrica and P fertilizers (phosphate rocks [PRs] from North Carolina, China, and Algeria, and triple superphosphate replicated thrice. Olsen P, mineral N, pH, and exchangeable K, Ca, and Mg were monitored in a laboratory incubation study for 16 months. The change in soil P fractions and available P was also determined at the end of the study. Phosphorus available from the amendments was quantified at monthly intervals for 5 months by 33P-32P double isotopic labeling in the glasshouse using Setaria sphacelata as test crop. The GMs were labeled with 33P to determine their contribution to P taken up by Setaria, while that from the P fertilizers was indirectly measured by labeling the soil with 32P. The P fertilizers hardly changed Olsen P and exchangeable cations during 16 months of incubation. The legume GMs and legume GM+P did not change Olsen P, lowered exchangeable Ca, and increased exchangeable K about threefold (4.5 cmol[+]kg−1 soil in the first 4 months, even as large amounts of NH4-N accumulated (~1000 mg kg soil−1 and soil pH increased to more than 6.5. Afterwards, Olsen P and exchangeable Ca and Mg increased (threefold as NH4+-N and soil pH declined. The legume GMs also augmented reversibly sorbed P in Al-P and Fe-P fractions resulting in high residual effect in the soil, while fertilizer-P was irreversibly retained. The GMs increased PR-P utilization by 40 to over 80%, mobilized soil P, and

  5. pH buffering capacity of acid soils from tropical and subtropical regions of China as influenced by incorporation of crop straw biochars

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Ren-kou; Zhao, An-zhen; Yuan, Jin-hua; Jiang, Jun [Academy of Sciences, Nanjing (China). State Key Lab. of Soil and Sustainable Agriculture

    2012-04-15

    Purpose: The key factors influencing pH buffering capacity of acid soils from tropical and subtropical regions, and effects of soil evolution and incorporation of biochars on pH buffering capacity were investigated to develop suitable methods to increase pH buffering capacity of acid soils. Materials and methods: A total of 24 acid soils collected from southern China were used. The pH buffering capacity was determined using acid-base titration. The values of pH buffering capacity were obtained from the slope of titration curves of acid or alkali additions plotted against pH in the pH range 4.0-7.0. Two biochars were prepared from straws of peanut and canola using a low temperature pyrolysis method. After incubation of three acid soils, pH buffering capacity was then determined. Results and discussion: pH buffering capacity had a range of 9.1-32.1 mmol kg{sup -1} pH{sup -1} for 18 acid soils from tropical and subtropical regions of China. The pH buffering capacity was highly correlated (R{sup 2} = 0.707) with soil cation exchange capacity (CEC) measured with ammonium acetate method at pH 7.0 and decreased with soil evolution due to the decreased CEC. Incorporation of biochars at rates equivalent to 72 and 120 t ha{sup -1} increased soil pH buffering capacity due to the CEC contained in the biochars. Incorporation of peanut straw char which itself contained more CEC and alkalinity induced more increase in soil CEC, and thus greater increase in pH buffering capacity compared with canola straw char. At 5% of peanut straw char added, soil CEC increased by 80.2%, 51.3%, and 82.8% for Ultisol from Liuzhou, Oxisol from Chengmai and Ultisol from Kunlun, respectively, and by 19.8%, 19.6%, and 32.8% with 5% of canola straw char added, respectively; and correspondingly for these soils, the pH buffering capacity increased by 73.6%, 92.0%, and 123.2% with peanut straw char added; and by 31.3%, 25.6%, and 52.3% with canola straw char added, respectively. Protonation

  6. Modeling Spatial Soil Water Dynamics in a Tropical Floodplain, East Africa

    Directory of Open Access Journals (Sweden)

    Geofrey Gabiri

    2018-02-01

    Full Text Available Analyzing the spatial and temporal distribution of soil moisture is critical for ecohydrological processes and for sustainable water management studies in wetlands. The characterization of soil moisture dynamics and its influencing factors in agriculturally used wetlands pose a challenge in data-scarce regions such as East Africa. High resolution and good-quality time series soil moisture data are rarely available and gaps are frequent due to measurement constraints and device malfunctioning. Soil water models that integrate meteorological conditions and soil water storage may significantly overcome limitations due to data gaps at a point scale. The purpose of this study was to evaluate if the Hydrus-1D model would adequately simulate soil water dynamics at different hydrological zones of a tropical floodplain in Tanzania, to determine controlling factors for wet and dry periods and to assess soil water availability. The zones of the Kilombero floodplain were segmented as riparian, middle, and fringe along a defined transect. The model was satisfactorily calibrated (coefficient of determination; R2 = 0.54–0.92, root mean square error; RMSE = 0.02–0.11 on a plot scale using measured soil moisture content at soil depths of 10, 20, 30, and 40 cm. Satisfying statistical measures (R2 = 0.36–0.89, RMSE = 0.03–0.13 were obtained when calibrations for one plot were validated with measured soil moisture for another plot within the same hydrological zone. Results show the transferability of the calibrated Hydrus-1D model to predict soil moisture for other plots with similar hydrological conditions. Soil water storage increased towards the riparian zone, at 262.8 mm/a while actual evapotranspiration was highest (1043.9 mm/a at the fringe. Overbank flow, precipitation, and groundwater control soil moisture dynamics at the riparian and middle zone, while at the fringe zone, rainfall and lateral flow from mountains control soil moisture during the

  7. Characterization and phylogenetic affiliation of Actinobacteria from tropical soils with potential uses for agro-industrial processes.

    Science.gov (United States)

    Dornelas, J C M; Figueiredo, J E F; de Abreu, C S; Lana, U G P; Oliveira, C A; Marriel, I E

    2017-08-31

    Secondary metabolites produced by Actinobacteria of tropical soils represent a largely understudied source of novel molecules with relevant application in medicine, pharmaceutical and food industries, agriculture, and environmental bioremediation. The present study aimed to characterize sixty-nine Actinobacteria isolated from compost and tropical soils using morphological, biochemical, and molecular methods. All the isolates showed high variation for morphological traits considering the color of pigments of the aerial and vegetative mycelium and spore chain morphology. The enzymatic activity of amylase, cellulase, and lipase was highly variable. The amylase activity was detected in 53 (76.81%) isolates. Eighteen isolates showed enzymatic index (EI) > 4.0, and the isolates ACJ 45 (Streptomyces curacoi) and ACSL 6 (S. hygroscopicus) showed the highest EI values (6.44 and 6.42, respectively). The cellulase activity varied significantly (P ≤ 0.05) among the isolates. Twenty-nine isolates (42.02%) showed high cellulase activity, and the isolates ACJ 48 (S. chiangmaiensis) and ACJ 53 (S. cyslabdanicus) showed the highest EI values (6.56 for both isolates). The lipase activity varied statistically (P ≤ 0.05) with fourteen isolates (20.29%) considered good lipase producers (EI > 2.0). The isolate ACSL 6 (S. hygroscopicus) showed the highest EI value of 2.60. Molecular analysis of partial 16S rRNA gene sequencing revealed the existence of 49 species, being 38 species with only one representative member and 11 species represented by one or more strains. All species belonged to three genera, namely Streptomyces (82.61%), Amycolatopsis (7.25%), and Kitasatospora (10.14%). The present results showed the high biotechnological potential of different Actinobacteria from tropical soils.

  8. Belowground Response to Drought in a Tropical Forest Soil. II. Change in Microbial Function Impacts Carbon Composition

    Science.gov (United States)

    Nicholas J. Bouskill; Tana E. Wood; Richard Baran; Zhao Hao; Zaw Ye; Ben P. Bowen; Hsiao Chien Lim; Peter S. Nico; Hoi-Ying Holman; Benjamin Gilbert; Whendee L. Silver; Trent R. Northen; Eoin L. Brodie

    2016-01-01

    Climate model projections for tropical regions show clear perturbation of precipitation patterns leading to increased frequency and severity of drought in some regions. Previous work has shown declining soil moisture to be a strong driver of changes in microbial trait distribution, however...

  9. Geoecohydrological mechanisms couple soil and leaf water dynamics and facilitate species coexistence in shallow soils of a tropical semiarid mixed forest.

    Science.gov (United States)

    Rodríguez-Robles, Ulises; Arredondo, J Tulio; Huber-Sannwald, Elisabeth; Vargas, Rodrigo

    2015-07-01

    Trees growing on shallow rocky soils must have exceptional adaptations when underlying weathered bedrock has no deep fractures for water storage. Under semiarid conditions, hydrology of shallow soils is expected to decouple from plant hydrology, as soils dry out as a result of rapid evaporation and competition for water increases between coexisting tree species. Gas exchange and plant-water relations were monitored for 15 months for Pinus cembroides and Quercus potosina tree species in a tropical semiarid forest growing on c. 20-cm-deep soils over impermeable volcanic bedrock. Soil and leaf water potential maintained a relatively constant offset throughout the year in spite of high intra-annual fluctuations reaching up to 5 MPa. Thus, hydrology of shallow soils did not decouple from hydrology of trees even in the driest period. A combination of redistribution mechanisms of water stored in weathered bedrock and hypodermic flow accessible to oak provided the source of water supply to shallow soils, where most of the actively growing roots occurred. This study demonstrates a unique geoecohydrological mechanism that maintains a tightly coupled hydrology between shallow rocky soils and trees, as well as species coexistence in this mixed forest, where oak facilitates water access to pine. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  10. Field dissipation of oxyfluorfen in onion and its dynamics in soil under Indian tropical conditions.

    Science.gov (United States)

    Janaki, P; Sathya Priya, R; Chinnusamy, C

    2013-01-01

    Oxyfluorfen, a diphenyl-ether herbicide is being used to control annual and perennial broad-leaved weeds and sedges in a variety of field crops including onion. The present study was aimed to investigate the dynamics and field persistence of oxyfluorfen in onion plant, bulb and soil under Indian tropical conditions. Application of four rates of oxyfluorfen viz., 200, 250, 300 and 400 g AI ha(-1) as pre-emergence gave good weed control in field experiment with onion. The oxyfluorfen residue dissipated faster in plant than in soil respectively, with a mean half-life of 6.1 and 11.2 days. Dissipation followed first-order kinetics. In laboratory column leaching experiments, 17 percent of the applied oxyfluorfen was recovered from the soil and indicates its solubility in water and mobility in sandy clay loam soil was low. A sorption study revealed that the adsorption of oxyfluorfen to the soil was highly influenced by the soil organic carbon with the Koc value of 5450. The study concludes that the dissipation of oxyfluorfen in soil and onion was dependent on the physico-chemical properties of the soil and environmental conditions.

  11. Understanding spatial heterogeneity in soil carbon and nitrogen cycling in regenerating tropical dry forests

    Science.gov (United States)

    Waring, B. G.; Powers, J. S.; Branco, S.; Adams, R.; Schilling, E.

    2015-12-01

    Tropical dry forests (TDFs) currently store significant amounts of carbon in their biomass and soils, but these highly seasonal ecosystems may be uniquely sensitive to altered climates. The ability to quantitatively predict C cycling in TDFs under global change is constrained by tremendous spatial heterogeneity in soil parent material, land-use history, and plant community composition. To explore this variation, we examined soil carbon and nitrogen dynamics in 18 permanent plots spanning orthogonal gradients of stand age and soil fertility. Soil C and N pools, microbial biomass, and microbial extracellular enzyme activities were most variable at small (m2) spatial scales. However, the ratio of organic vs. inorganic N cycling was consistently higher in forest stands dominated by slow-growing, evergreen trees that associate with ectomycorrhizal fungi. Similarly, although bulk litter stocks and turnover rates varied greatly among plots, litter decomposition tended to be slower in ectomycorrhizae-dominated stands. Soil N cycling tended to be more conservative in older plots, although the relationship between stand age and element cycling was weak. Our results emphasize that microscale processes, particularly interactions between mycorrhizal fungi and free-living decomposers, are important controls on ecosystem-scale element cycling.

  12. Microbial oxidation of lithospheric organic carbon in rapidly eroding tropical mountain soils.

    Science.gov (United States)

    Hemingway, Jordon D; Hilton, Robert G; Hovius, Niels; Eglinton, Timothy I; Haghipour, Negar; Wacker, Lukas; Chen, Meng-Chiang; Galy, Valier V

    2018-04-13

    Lithospheric organic carbon ("petrogenic"; OC petro ) is oxidized during exhumation and subsequent erosion of mountain ranges. This process is a considerable source of carbon dioxide (CO 2 ) to the atmosphere over geologic time scales, but the mechanisms that govern oxidation rates in mountain landscapes are poorly constrained. We demonstrate that, on average, 67 ± 11% of the OC petro initially present in bedrock exhumed from the tropical, rapidly eroding Central Range of Taiwan is oxidized in soils, leading to CO 2 emissions of 6.1 to 18.6 metric tons of carbon per square kilometer per year. The molecular and isotopic evolution of bulk OC and lipid biomarkers during soil formation reveals that OC petro remineralization is microbially mediated. Rapid oxidation in mountain soils drives CO 2 emission fluxes that increase with erosion rate, thereby counteracting CO 2 drawdown by silicate weathering and biospheric OC burial. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  13. Biological effects of plant residues with constrasting chemical compositions on plant and soil under humid tropical conditions

    NARCIS (Netherlands)

    Tian, G.

    1992-01-01

    A study on plant residues with contrasting chemical compositions was conducted under laboratory, growth chamber and humid tropical field conditions to understand the function of the soil fauna in the breakdown of plant residues, the cycling of nutrients, in particular nitrogen, and the

  14. Effects of different land use on soil chemical properties, decomposition rate and earthworm communities in tropical Mexico

    NARCIS (Netherlands)

    Geissen, V.; Peña-Peña, K.; Huerta, E.

    2009-01-01

    The effects of land use on soil chemical properties were evaluated, and earthworm communities and the decomposition rate of three typical land use systems in tropical Mexico, namely banana plantations (B), agroforestry systems (AF) and a successional forest (S) were compared. The study was carried

  15. Chlorpyrifos causes decreased organic matter decomposition by suppressing earthworm and termite communities in tropical soil

    Energy Technology Data Exchange (ETDEWEB)

    De Silva, P. Mangala C.S., E-mail: msilva@falw.vu.n [Department of Animal Ecology, VU University, De Boelelaan 1085, 1081 HV Amsterdam (Netherlands); Department of Zoology, Faculty of Science, University of Ruhuna, Matara (Sri Lanka); Pathiratne, Asoka [Department of Zoology, Faculty of Science, University of Kelaniya, Kelaniya (Sri Lanka); Straalen, Nico M. van; Gestel, Cornelis A.M. van [Department of Animal Ecology, VU University, De Boelelaan 1085, 1081 HV Amsterdam (Netherlands)

    2010-10-15

    Effects of pesticides on structural and functional properties of ecosystems are rarely studied under tropical conditions. In this study litterbag and earthworm field tests were performed simultaneously at the same tropical field site sprayed with chlorpyrifos (CPF). The recommended dose of CPF (0.6 kg a.i. ha{sup -1}) and two higher doses (4.4-8.8 kg a.i. ha{sup -1}) significantly decreased litter decomposition during the first 3 months after application, which could be explained from lower earthworm and termite abundances during this period. Species-specific effects of CPF on organism abundance and biomass were observed, with termites being mostly affected followed by the earthworm Perionyx excavatus; the earthworm Megascolex sp. was least affected. Recovery was completed within 6 months. Decomposition in the controls and lowest two treatments was completed within 4 months, which suggests the need for modification of standard test guidelines to comply with faster litter degradation under tropical conditions. - Effects of chlorpyrifos on functional and structural endpoints in soil.

  16. Chlorpyrifos causes decreased organic matter decomposition by suppressing earthworm and termite communities in tropical soil

    International Nuclear Information System (INIS)

    De Silva, P. Mangala C.S.; Pathiratne, Asoka; Straalen, Nico M. van; Gestel, Cornelis A.M. van

    2010-01-01

    Effects of pesticides on structural and functional properties of ecosystems are rarely studied under tropical conditions. In this study litterbag and earthworm field tests were performed simultaneously at the same tropical field site sprayed with chlorpyrifos (CPF). The recommended dose of CPF (0.6 kg a.i. ha -1 ) and two higher doses (4.4-8.8 kg a.i. ha -1 ) significantly decreased litter decomposition during the first 3 months after application, which could be explained from lower earthworm and termite abundances during this period. Species-specific effects of CPF on organism abundance and biomass were observed, with termites being mostly affected followed by the earthworm Perionyx excavatus; the earthworm Megascolex sp. was least affected. Recovery was completed within 6 months. Decomposition in the controls and lowest two treatments was completed within 4 months, which suggests the need for modification of standard test guidelines to comply with faster litter degradation under tropical conditions. - Effects of chlorpyrifos on functional and structural endpoints in soil.

  17. Evaporation from Pinus caribaea plantations on former grassland soils under maritime tropical conditions.

    OpenAIRE

    Waterloo, M.J.; Bruijnzeel, L.A.; Vugts, H.F.; Rawaqa, T.T.

    1999-01-01

    Wet canopy and dry canopy evaporation from young and mature plantations of Pinus caribaea on former grassland soils under maritime tropical conditions in southwestern Viti Levu, Fiji, were determined using micrometeorological and hydrological techniques. Modeled annual evaporation totals (ET) of 1926 and 1717 mm were derived for the 6- and the 15-year-old stands, respectively. Transpiration made up 72% and 70% of annual ET, and modeled rainfall interception by the trees and litter layer was 2...

  18. Short-term nitrous oxide profile dynamics and emissions response to water, nitrogen and carbon additions in two tropical soils

    Science.gov (United States)

    A. D. Nobre; M. Keller; P. M. Crill; R. C. Harriss

    2001-01-01

    Tropical soils are potentially the highest and least studied nitrous oxide (N2O) production areas in the world. The effect of water, nitrate and glucose additions on profile concentrations and episodic emissions of N2O for two volcanic soils in Costa Rica was examined. Magnitudes of episodic N2O pulses, as well as overall N2O emissions, varied considerably and...

  19. Ecological Value of Soil Organic Matter at Tropical Evergreen Aglaia-Streblus Forest of Meru Betiri National Park, East Java, Indonesia

    Directory of Open Access Journals (Sweden)

    Hari Sulistiyowati

    2016-09-01

    Full Text Available As part of carbon pools, forest soil stores soil organic matter (SOM that contains many elements including organic C, N, P, and K. These elements contribute nutrients for biogeochemical cycles within the ecosystem. This study was done to determine the ecological value of forest soil organic matter at tropical evergreen Aglaia-Streblus forest of Meru Betiri National Park (MBNP, East Java, Indonesia. The data were sampled along gradient topography in Pringtali tropical forest of TMBNP. Direct measurements of soil moisture, temperature, and pH were taken in the field. The soil samples were extracted from 6 points of soil solum using soil auger, and then oven-dried to get value of dry-weight. The elements content of organic C, N, P, and K were analyzed and estimated at the laboratory. The ecoval of SOM was appraised using developed ecological valuation tool. The result showed that SOM contributed higher ecoval of organic C (66.03 Mg ha-1 than other elements. Compared to P and K elements, N had the highest stock of element content. However, comparing to other two tropical forest ecosystems of Asia the ecoval of SOM elements in TMBNP was relatively low because of its natural geomorphological features.The ecoval of SOM elements in TMBNP was relatively low because of its natural geomorphological features. The ecovals contributed about 2.440,64 - 6.955,50 USD or 31.271.923,73 - 89.120.837,23 IDR per hectare of ecological value (d to the ecosystem. This value was mainly contributed by organic C stock in the TMBNP forest SOM. It means the forest SOM had higher element content of organic C than N, P, and K elements. This d value is an indicator for TMBNP to protect the SOM elements meaning protecting their resources to sustain the biogeochemical cycles in the forest ecosystem. All the management and policy correlated to this protected area should consider this valuable information for their plan and actions.

  20. Changes in the Diversity of Soil Arbuscular Mycorrhizal Fungi after Cultivation for Biofuel Production in a Guantanamo (Cuba) Tropical System

    Science.gov (United States)

    Alguacil, Maria del Mar; Torrecillas, Emma; Hernández, Guillermina; Roldán, Antonio

    2012-01-01

    The arbuscular mycorrhizal fungi (AMF) are a key, integral component of the stability, sustainability and functioning of ecosystems. In this study, we characterised the AMF biodiversity in a native vegetation soil and in a soil cultivated with Jatropha curcas or Ricinus communis, in a tropical system in Guantanamo (Cuba), in order to verify if a change of land use to biofuel plant production had any effect on the AMF communities. We also asses whether some soil properties related with the soil fertility (total N, Organic C, microbial biomass C, aggregate stability percentage, pH and electrical conductivity) were changed with the cultivation of both crop species. The AM fungal small sub-unit (SSU) rRNA genes were subjected to PCR, cloning, sequencing and phylogenetic analyses. Twenty AM fungal sequence types were identified: 19 belong to the Glomeraceae and one to the Paraglomeraceae. Two AMF sequence types related to cultured AMF species (Glo G3 for Glomus sinuosum and Glo G6 for Glomus intraradices-G. fasciculatum-G. irregulare) did not occur in the soil cultivated with J. curcas and R. communis. The soil properties (total N, Organic C and microbial biomass C) were higher in the soil cultivated with the two plant species. The diversity of the AMF community decreased in the soil of both crops, with respect to the native vegetation soil, and varied significantly depending on the crop species planted. Thus, R. communis soil showed higher AMF diversity than J. curcas soil. In conclusion, R. communis could be more suitable for the long-term conservation and sustainable management of these tropical ecosytems. PMID:22536339

  1. Changes in the diversity of soil arbuscular mycorrhizal fungi after cultivation for biofuel production in a Guantanamo (Cuba tropical system.

    Directory of Open Access Journals (Sweden)

    Maria del Mar Alguacil

    Full Text Available The arbuscular mycorrhizal fungi (AMF are a key, integral component of the stability, sustainability and functioning of ecosystems. In this study, we characterised the AMF biodiversity in a native vegetation soil and in a soil cultivated with Jatropha curcas or Ricinus communis, in a tropical system in Guantanamo (Cuba, in order to verify if a change of land use to biofuel plant production had any effect on the AMF communities. We also asses whether some soil properties related with the soil fertility (total N, Organic C, microbial biomass C, aggregate stability percentage, pH and electrical conductivity were changed with the cultivation of both crop species. The AM fungal small sub-unit (SSU rRNA genes were subjected to PCR, cloning, sequencing and phylogenetic analyses. Twenty AM fungal sequence types were identified: 19 belong to the Glomeraceae and one to the Paraglomeraceae. Two AMF sequence types related to cultured AMF species (Glo G3 for Glomus sinuosum and Glo G6 for Glomus intraradices-G. fasciculatum-G. irregulare did not occur in the soil cultivated with J. curcas and R. communis. The soil properties (total N, Organic C and microbial biomass C were higher in the soil cultivated with the two plant species. The diversity of the AMF community decreased in the soil of both crops, with respect to the native vegetation soil, and varied significantly depending on the crop species planted. Thus, R. communis soil showed higher AMF diversity than J. curcas soil. In conclusion, R. communis could be more suitable for the long-term conservation and sustainable management of these tropical ecosytems.

  2. Adsorption properties of subtropical and tropical variable charge soils: Implications from climate change and biochar amendment

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Ren-Kou; Qafoku, Nikolla; Van Ranst, Eric; Li, Jiu-yu; Jiang, Jun

    2016-01-25

    This review paper attempts to summarize the progress made in research efforts conducted over the last years to study the surface chemical properties of the tropical and subtropical soils, usually called variable charge soils, and the way they response to different management practices. The paper is composed of an introductory section that provides a brief discussion on the surface chemical properties of these soils, and five other review sections. The focus of these sections is on the evolution of surface chemical properties during the development of the variable charge properties (second section), interactions between oppositely charged particles and the resulting effects on the soil properties and especially on soil acidity (third section), the surface effects of low molecular weight organic acids sorbed to mineral surfaces and the chemical behavior of aluminum (fourth section), and the crop straw derived biochar induced changes of the surface chemical properties of these soils (fifth section). A discussion on the effect of climate change variables on the properties of the variable charge soils is included at the end of this review paper (sixth section).

  3. Changes in microbial community characteristics and soil organic matter with nitrogen additions in two tropical forests

    Science.gov (United States)

    Daniela F. Cusack; Whendee L. Silver; Margaret S. Torn; Sarah D. Burton; Mary K. Firestone

    2011-01-01

    Microbial communities and their associated enzyme activities affect the amount and chemical quality of carbon (C) in soils. Increasing nitrogen (N) deposition, particularly in N-rich tropical forests, is likely to change the composition and behavior of microbial communities and feed back on ecosystem structure and function. This study presents a novel assessment of...

  4. Influence of organic fertilization on the sorption mechanisms of 241 Am in tropical soils

    International Nuclear Information System (INIS)

    Pereira, Tatiane Rocha

    2009-01-01

    In this work the mechanisms involved in the sorption of 241 Am were investigated depending on the physicochemical properties of some Brazilian soils and on alterations promoted by organic amendment. This experimental study was conducted in a controlled area, where pots containing different kinds of soils (histisol, ferralsol and nitisol), with different organic amendment doses (without amendment; 2 kg m -2 and 4 kg m -2 ) were artificially contaminated by radioactive solution water, which contained 241 Am. Migration studies, distribution (or partition) coefficient (KJ), bioavailability and organic matter were carried out in these soils, with ar without organic amendment. In order to evaluate the effective bioavailability of radionuclides, radish (Raphanus sativus L.) was cultivated in these pots, and later the concentration of 241 Am in radish's roots was measured. The main results show that 241 Am tends to be strongly attached to organic matter and that organic amendment in tropical soils minimizes the radionuclide studied desorption. Also, distribution (or partition) coefficient values for 241 Am were generated and these values are smaller than those ones determined for soils from temperate zones. Physical and chemical fractioning of organic matter were carried out. (author)

  5. Biodegradation of polyethylene glycol (PEG) in three tropical soils using radio labelled PEG

    Energy Technology Data Exchange (ETDEWEB)

    Abdalla, A.L. [Laboratory of Animal Nutrition, Centre for Nuclear Energy in Agriculture, University of Sao Paulo (CENA/USP), Piracicaba SP (Brazil)]. E-mail: abdalla@cena.usp.br; Regitano, J.B.; Tornisielo, V.L.; Marchese, L. [Laboratory of Ecotoxicology, Piracicaba SP (Brazil); Pecanha, M.R.S.R.; Vitti, D.M.S.S. [Laboratory of Animal Nutrition, Centre for Nuclear Energy in Agriculture, University of Sao Paulo (CENA/USP), Piracicaba SP (Brazil); Smith, T. [School of Agriculture, Policy and Development, University of Reading, Reading (United Kingdom)

    2005-08-19

    Polyethylene glycol (PEG) may be added to forage based diets rich in tannins for ruminant feeding because it binds to tannins and thus prevent the formation of potentially indigestible tannin-protein complexes. The objective of this work was to determine the in vitro biodegradation (mineralization, i.e., complete breakdown of PEG to CO{sub 2}) rate of PEG. {sup 14}C-Polyethylene glycol ({sup 14}C-PEG) was added to three different tropical soils (a sandy clay loam soil, SaCL; a sandy clay soil, SaC; and a sandy loam soil, SaL) and was incubated in Bartha flasks. Free PEG and PEG bound to tannins from a tannin rich local shrub were incubated under aerobic conditions for up to 70 days. The biodegradation assay monitored the {sup 14}CO{sub 2} evolved after degradation of the labelled PEG in the soils. After incubation, the amount of {sup 14}CO{sub 2} evolved from the {sup 14}C-PEG application was low. Higher PEG mineralization values were found for the soils with higher organic matter contents (20.1 and 18.6 g organic matter/kg for SaCL and SaC, respectively) than for the SaL soil (11.9 g organic matter/kg) (P < 0.05). The extent of mineralization of PEG after 70 days of incubation in the soil was significantly lower (P < 0.05) when it was added as bound to the browse tannin than in the free form (0.040 and 0.079, respectively). (author)

  6. Relations of microbiome characteristics to edaphic properties of tropical soils from Trinidad

    Directory of Open Access Journals (Sweden)

    Vidya eDe Gannes

    2015-09-01

    Full Text Available Understanding how community structure of Bacteria, Archaea and Fungi varies as a function of edaphic characteristics is key to elucidating associations between soil ecosystem function and the microbiome that sustains it. In this study, non-managed tropical soils were examined that represented a range of edaphic characteristics, and a comprehensive soil microbiome analysis was done by Illumina sequencing of amplicon libraries that targeted Bacteria (universal prokaryotic 16S rRNA gene primers, Archaea (primers selective for archaeal 16S rRNA genes or Fungi (internal transcribed spacer region. Microbiome diversity decreased in the order: Bacteria > Archaea > Fungi. Bacterial community composition had a strong relationship to edaphic factors while that of Archaea and Fungi was comparatively weak. All communities were significantly more similar within soils, than they were between soils (ANOSIM p < 0.001; bacterial communities were 70-80% alike, while communities of Fungi and Archaea had 40-50% similarity. Communities differed in species turnover patterns, such that two soils with relatively similar bacterial communities could not be predicted to be similar in composition of Archaea or Fungi. Bacterial and archaeal diversity had significant (negative correlations to pH, whereas fungal diversity was not correlated to pH. Edaphic characteristics that best explained variation between soils in bacterial community structure were: total carbon, sodium, magnesium and zinc. For fungi, the best variables were: sodium, magnesium, phosphorus, boron and C/N. Archaeal communities had two sets of edaphic factors of equal strength, one contained sulphur, sodium, and ammonium-N and the other was composed of clay, potassium, ammonium-N, and nitrate-N. Collectively, the data indicate that Bacteria, Archaea and Fungi did not closely parallel one another in community structure development, and thus microbiomes in each soil acquired unique identities. This divergence

  7. Soil-water distribution coefficients and plant transfer factors for {sup 134}Cs, {sup 85}Sr and {sup 65}Zn under field conditions in tropical Australia

    Energy Technology Data Exchange (ETDEWEB)

    Twining, J.R. E-mail: jrt@ansto.gov.au; Payne, T.E.; Itakura, T

    2004-07-01

    Measurements of soil-to-plant transfer of {sup 134}Cs, {sup 85}Sr and {sup 65}Zn from two tropical red earth soils ('Blain' and 'Tippera') to sorghum and mung crops have been undertaken in the north of Australia. The aim of the study was to identify factors that control bioaccumulation of these radionuclides in tropical regions, for which few previous data are available. Batch sorption experiments were conducted to determine the distribution coefficient (K{sub d}) of the selected radionuclides at pH values similar to natural pH values, which ranged from about 5.5 to 6.7. In addition, K{sub d} values were obtained at one pH unit above and below the soil-water equilibrium pH values to determine the effect of pH. The adsorption of Cs showed no pH dependence, but the K{sub d} values for the Tippera soils (2300-4100 ml/g) exceeded those for the Blain soils (800-1200 ml/g) at equilibrium pH. This was related to the greater clay content of the Tippera soil. Both Sr and Zn were more strongly adsorbed at higher pH values, but the K{sub d} values showed less dependence on the soil type. Strontium K{sub d}s were 30-60 ml/g whilst Zn ranged from 160 to 1630 ml/g for the two soils at equilibrium pH. With the possible exception of Sr, there was no evidence for downward movement of radionuclides through the soils during the course of the growing season. There was some evidence of surface movement of labelled soil particles. Soil-to-plant transfer factors varied slightly between the soils. The average results for sorghum were 0.1-0.3 g/g for Cs, 0.4-0.8 g/g for Sr and 18-26 g/g for Zn (dry weight) with the initial values relating to Blain and the following values to Tippera. Similar values were observed for the mung bean samples. The transfer factors for Cs and Sr were not substantially different from the typical values observed in temperate studies. However, Zn transfer factors for plants grown on both these tropical soils were greater than for soils in

  8. Soil water retention, air flow and pore structure characteristics after corn cob biochar application to a tropical sandy loam

    DEFF Research Database (Denmark)

    Amoakwah, Emmanuel; Frimpong, Kwame Agyei; Okae-Anti, D

    2017-01-01

    Soil structure is a key soil physical property that affects soil water balance, gas transport, plant growth and development, and ultimately plant yield. Biochar has received global recognition as a soil amendment with the potential to ameliorate the structure of degraded soils. We investigated how...... corn cob biochar contributed to changes in soil water retention, air flow by convection and diffusion, and derived soil structure indices in a tropical sandy loam. Intact soil cores were taken from a field experiment that had plots without biochar (CT), and plots each with 10 t ha− 1 (BC-10), 20 t ha...... to significant increase in soil water retention compared to the CT and BC-10 as a result of increased microporosity (pores biochar had minimal impact. No significant influence of biochar was observed for ka and Dp/D0 for the BC treatments compared to the CT despite...

  9. Organomineral Interactions and Herbicide Sorption in Brazilian Tropical and Subtropical Oxisols under No-Tillage.

    Science.gov (United States)

    Bonfleur, Eloana J; Kookana, Rai S; Tornisielo, Valdemar L; Regitano, Jussara B

    2016-05-25

    We evaluated the effects of the soil organic matter (SOM) composition, distribution between soil aggregates size, and their interactions with the mineral phase on herbicide sorption (alachlor, bentazon, and imazethapyr) in tropical and subtropical Oxisols under no-till systems (NT). Using soil physical fractionation approach, sorption experiments were performed on whole soils and their aggregates. SOM chemistry was assessed by CP/MAS (13)C NMR. The lower sorption observed in tropical soils was attributed to the greater blockage of SOM sorption sites than in subtropical soils. When these sites were exposed upon physical fractionation, sorption of the three herbicides in tropical soils increased, especially for imazethapyr. High amounts of poorly crystallized sesquioxides in these soils may have contributed to masking of sorption sites, indicating that organomineral interactions may lead to blockage of sorption sites on SOM in tropical soils.

  10. Quantitative physical and chemical variables used to assess erosion and fertility loss in tropical Dominican and Haitian soils

    Science.gov (United States)

    Pastor, J.; Alexis, S.; Vizcayno, C.; Hernández, A. J.

    2009-04-01

    The Pedernales province (Dominican Republic) has the main part of the only Biosphere Reserve in that Caribbean Island, including the Bahoruco and Jaragua National Parks. In these Parks is possible to find almost the totality of tropical forest ecosystems (evergreen rain forest, latifoliated forest, dry forest and mangrove forest on mainland), as well as the most frequent soil uses in the Dominican country. The consulted bibliography about the soils is very scarce and it does not give any information relating to this natural resource, which is basic for a sustainable development management in this territory. When Christopher Columbus reached the island, its plant cover constituted 95% of the land. This was largely because the limited, rudimentary tools used by the Indians to exploit the soil, allowed them to maintain a well-balanced ecological system. The initial type of agriculture practised by the indigenous inhabitants was scarcely destructive and based on vegetatively reproducing crops propagated through cuttings, but later forest burning was an especially significant management practice aimed at releasing nutrients into the soil, in an environment in which under natural conditions, particularly those of the rainforest, these were mostly locked within plant structures. The colonial system, on the contrary, brought with it more elaborate methods and utensils enabling them to cultivate cereals (somewhat unknown to the native Indians) and to rear livestock (cows, goats) yet contributed to the growth of deforestation. Agricultural activities were not confined to the plains; even the virgin woods of the mountains were exploited. The monocrops grown across vast expanses rapidly rid the soil of its productive capacity. Cutting down and burning forest for agricultural uses, and also industrial exploitation of bauxite and limestone produced also important alterations in the soil processes. Agricultural activities were not confined to the plains; even the virgin woods of

  11. Persistent Soil Seed Banks for Natural Rehabilitation of Dry Tropical Forests in Northern Ethiopia

    OpenAIRE

    Gebrehiwot, K.; Heyn, M.; Reubens, B.; Hermy, M.; Muys, B.

    2007-01-01

    Dry tropical forests are threatened world-wide by conversion to grazing land, secondary forest, savannah or arable land. In Ethiopia, natural dry forest cover has been decreasing at an alarming rate over the last decennia and has reached a critical level. Efforts like the rehabilitation of dry forests to curb this ecological degradation, need a stronger scientific basis than currently available. The aim of the present research was to test the hypothesis whether soil seed banks can contribute ...

  12. Variation in pH optima of hydrolytic enzyme activities in tropical rain forest soils.

    Science.gov (United States)

    Turner, Benjamin L

    2010-10-01

    Extracellular enzymes synthesized by soil microbes play a central role in the biogeochemical cycling of nutrients in the environment. The pH optima of eight hydrolytic enzymes involved in the cycles of carbon, nitrogen, phosphorus, and sulfur, were assessed in a series of tropical forest soils of contrasting pH values from the Republic of Panama. Assays were conducted using 4-methylumbelliferone-linked fluorogenic substrates in modified universal buffer. Optimum pH values differed markedly among enzymes and soils. Enzymes were grouped into three classes based on their pH optima: (i) enzymes with acidic pH optima that were consistent among soils (cellobiohydrolase, β-xylanase, and arylsulfatase), (ii) enzymes with acidic pH optima that varied systematically with soil pH, with the most acidic pH optima in the most acidic soils (α-glucosidase, β-glucosidase, and N-acetyl-β-glucosaminidase), and (iii) enzymes with an optimum pH in either the acid range or the alkaline range depending on soil pH (phosphomonoesterase and phosphodiesterase). The optimum pH values of phosphomonoesterase were consistent among soils, being 4 to 5 for acid phosphomonoesterase and 10 to 11 for alkaline phosphomonoesterase. In contrast, the optimum pH for phosphodiesterase activity varied systematically with soil pH, with the most acidic pH optima (3.0) in the most acidic soils and the most alkaline pH optima (pH 10) in near-neutral soils. Arylsulfatase activity had a very acidic optimum pH in all soils (pH ≤3.0) irrespective of soil pH. The differences in pH optima may be linked to the origins of the enzymes and/or the degree of stabilization on solid surfaces. The results have important implications for the interpretation of hydrolytic enzyme assays using fluorogenic substrates.

  13. Arbuscular mycorrhizal propagules in soils from a tropical forest and an abandoned cornfield in Quintana Roo, Mexico: visual comparison of most-probable-number estimates.

    Science.gov (United States)

    Ramos-Zapata, José A; Guadarrama, Patricia; Navarro-Alberto, Jorge; Orellana, Roger

    2011-02-01

    The present study was aimed at comparing the number of arbuscular mycorrhizal fungi (AMF) propagules found in soil from a mature tropical forest and that found in an abandoned cornfield in Noh-Bec Quintana Roo, Mexico, during three seasons. Agricultural practices can dramatically reduce the availability and viability of AMF propagules, and in this way delay the regeneration of tropical forests in abandoned agricultural areas. In addition, rainfall seasonality, which characterizes deciduous tropical forests, may strongly influence AMF propagules density. To compare AMF propagule numbers between sites and seasons (summer rainy, winter rainy and dry season), a "most probable number" (MPN) bioassay was conducted under greenhouse conditions employing Sorgum vulgare L. as host plant. Results showed an average value of 3.5 ± 0.41 propagules in 50 ml of soil for the mature forest while the abandoned cornfield had 15.4 ± 5.03 propagules in 50 ml of soil. Likelihood analysis showed no statistical differences in MPN of propagules between seasons within each site, or between sites, except for the summer rainy season for which soil from the abandoned cornfield had eight times as many propagules compared to soil from the mature forest site for this season. Propagules of arbuscular mycorrhizal fungi remained viable throughout the sampling seasons at both sites. Abandoned areas resulting from traditional slash and burn agriculture practices involving maize did not show a lower number of AMF propagules, which should allow the establishment of mycotrophic plants thus maintaining the AMF inoculum potential in these soils.

  14. Soil fertility and species traits, but not diversity, drive productivity and biomass stocks in a Guyanese tropical rainforest

    NARCIS (Netherlands)

    Sande, van der M.T.; Arets, E.J.M.M.; Pena Claros, M.; Hoosbeek, M.R.; Caceres-Siani, Yasmani; Hout, van de P.; Poorter, L.

    2018-01-01

    1.Tropical forests store and sequester large amounts of carbon in above- and below-ground plant biomass and soil organic matter (SOM), but how these are driven by abiotic and biotic factors remains poorly understood.
    2.Here, we test the effects of abiotic factors (light variation, caused by

  15. The effect of climate and soil conditions on tree species turnover in a Tropical Montane Cloud Forest in Costa Rica.

    Science.gov (United States)

    Häger, Achim

    2010-12-01

    On a global level, Tropical Montane Cloud Forests constitute important centers of vascular plant diversity. Tree species turnover along environmental gradients plays an important role in larger scale diversity patterns in tropical mountains. This study aims to estimate the magnitude of beta diversity across the Tilardn mountain range in North-Western Costa Rica, and to elucidate the impact of climate and soil conditions on tree species turnover at a local scale. Seven climate stations measuring rainfall, horizontal precipitation (clouds and wind-driven rain) and temperatures were installed along a 2.5km transect ranging from 1200 m.a.s.l. on the Atlantic to 1200 m.a.s.l. on the Pacific slope. The ridge top climate station was located at 1500 m.a.s.l. Climate data were recorded from March through December 2003. Additionally, seven 0.05 ha plots were established. On all plots soil moisture was monitored for one year, furthermore soil type and soil chemistry were assessed. Woody plants with a diameter at breast height (dbh) > or = 5 cm were identified to species. Species' distributions were explored by feeding pairwise Serensen measures between plots into a Principal Component Analysis. Relationships between floristic similarity and environmental variables were analyzed using Mantel tests. Pronounced gradients in horizontal precipitation, temperatures and soil conditions were found across the transect. In total, 483 woody plants were identified, belonging to 132 species. Environmental gradients were paralleled by tree species turnover; the plots could be divided in three distinctive floristic units which reflected different topographic positions on the transect (lower slopes, mid slopes and ridge). Most notably there was a complete species turnover between the ridge and the lower Pacific slope. Floristic similarity was negatively correlated with differences in elevation, horizontal precipitation, temperatures and soil conditions between plots. It is suggested that

  16. Effect of typhoon disturbance on soil respiration dynamic in a tropical broadleaves plantation in southern Taiwan

    Science.gov (United States)

    Chiang, Po-Neng; Yu, Jui-Chu; Lai, Yen-Jen

    2017-04-01

    Global forests contain 69% of total carbon stored in forest soil and litter. But the carbon storage ability and release rate of warming gases of forest soil also affect global climate change. Reforestation is one of the best solutions to mitigate warming gases release and to store in soil. Typhoon is one of the most hazards to disturb forest ecosystem and change carbon cycle. Typhoon disturbance is also affect soil carbon cycle such as soil respiration, carbon storage. Therefore, the objective of this study is to clarify the effect of typhoon disturbance on soil respiration dynamic in a tropical broadleaves plantation in southern Taiwan. Fourteen broadleaved tree species were planted in 2002-2005. Twelves continuous soil respiration chambers was divided two treatments (trench and non-trench) and observed since 2011 to 2014. The soil belongs to Entisol with over 60% of sandstone. The soil pH is 5.5 with low base cations because of high sand percentage. Forest biometric such as tree high, DBH, litterfall was measured in 2011-2014. Data showed that the accumulation amount of litterfall was highest in December to February and lowest in June. Soil respiration was related with season variation in research site. Soil temperature showed significantly exponential related with soil respiration in research site (p<0.001).However, soil respiration showed significantly negative relationship with total amount of litterfall (p<0.001), suggesting that the tree was still young and did not reach crown closure.

  17. Silicate fertilization of tropical soils: silicon availability and recovery index of sugarcane

    Directory of Open Access Journals (Sweden)

    Mônica Sartori de Camargo

    2013-10-01

    Full Text Available Sugarcane is considered a Si-accumulating plant, but in Brazil, where several soil types are used for cultivation, there is little information about silicon (Si fertilization. The objectives of this study were to evaluate the silicon availability, uptake and recovery index of Si from the applied silicate on tropical soils with and without silicate fertilization, in three crops. The experiments in pots (100 L were performed with specific Si rates (0, 185, 370 and 555 kg ha-1 Si, three soils (Quartzipsamment-Q, 6 % clay; Rhodic Hapludox-RH, 22 % clay; and Rhodic Acrudox-RA, 68 % clay, with four replications. The silicon source was Ca-Mg silicate. The same Ca and Mg quantities were applied to all pots, with lime and/or MgCl2, when necessary. Sugarcane was harvested in the plant cane and first- and second-ratoon crops. The silicon rates increased soil Si availability and Si uptake by sugarcane and had a strong residual effect. The contents of soluble Si were reduced by harvesting and increased with silicate application in the following decreasing order: Q>RH>RA. The silicate rates promoted an increase in soluble Si-acetic acid at harvest for all crops and in all soils, except RA. The amounts of Si-CaCl2 were not influenced by silicate in the ratoon crops. The plant Si uptake increased according to the Si rates and was highest in RA at all harvests. The recovery index of applied Si (RI of sugarcane increased over time, and was highest in RA.

  18. The effects of burning and grazing on soil carbon dynamics in managed Peruvian tropical montane grasslands

    Science.gov (United States)

    Oliver, Viktoria; Oliveras, Imma; Kala, Jose; Lever, Rebecca; Arn Teh, Yit

    2017-12-01

    Montane tropical soils are a large carbon (C) reservoir, acting as both a source and a sink of CO2. Enhanced CO2 emissions originate, in large part, from the decomposition and losses of soil organic matter (SOM) following anthropogenic disturbances. Therefore, quantitative knowledge of the stabilization and decomposition of SOM is necessary in order to understand, assess and predict the impact of land management in the tropics. In particular, labile SOM is an early and sensitive indicator of how SOM responds to changes in land use and management practices, which could have major implications for long-term carbon storage and rising atmospheric CO2 concentrations. The aim of this study was to investigate the impacts of grazing and fire history on soil C dynamics in the Peruvian montane grasslands, an understudied ecosystem, which covers approximately a quarter of the land area in Peru. A density fractionation method was used to quantify the labile and stable organic matter pools, along with soil CO2 flux and decomposition measurements. Grazing and burning together significantly increased soil CO2 fluxes and decomposition rates and reduced temperature as a driver. Although there was no significant effect of land use on total soil C stocks, the combination of burning and grazing decreased the proportion of C in the free light fraction (LF), especially at the lower depths (10-20 and 20-30 cm). In the control soils, 20 % of the material recovered was in the free LF, which contained 30 % of the soil C content. In comparison, the burnt-grazed soil had the smallest recovery of the free LF (10 %) and a significantly lower C content (14 %). The burnt soils had a much higher proportion of C in the occluded LF (12 %) compared to the not-burnt soils (7 %) and there was no significant difference among the treatments in the heavy fraction (F) ( ˜ 70 %). The synergistic effect of burning and grazing caused changes to the soil C dynamics. CO2 fluxes were increased and the dominant

  19. The effects of burning and grazing on soil carbon dynamics in managed Peruvian tropical montane grasslands

    Directory of Open Access Journals (Sweden)

    V. Oliver

    2017-12-01

    Full Text Available Montane tropical soils are a large carbon (C reservoir, acting as both a source and a sink of CO2. Enhanced CO2 emissions originate, in large part, from the decomposition and losses of soil organic matter (SOM following anthropogenic disturbances. Therefore, quantitative knowledge of the stabilization and decomposition of SOM is necessary in order to understand, assess and predict the impact of land management in the tropics. In particular, labile SOM is an early and sensitive indicator of how SOM responds to changes in land use and management practices, which could have major implications for long-term carbon storage and rising atmospheric CO2 concentrations. The aim of this study was to investigate the impacts of grazing and fire history on soil C dynamics in the Peruvian montane grasslands, an understudied ecosystem, which covers approximately a quarter of the land area in Peru. A density fractionation method was used to quantify the labile and stable organic matter pools, along with soil CO2 flux and decomposition measurements. Grazing and burning together significantly increased soil CO2 fluxes and decomposition rates and reduced temperature as a driver. Although there was no significant effect of land use on total soil C stocks, the combination of burning and grazing decreased the proportion of C in the free light fraction (LF, especially at the lower depths (10–20 and 20–30 cm. In the control soils, 20 % of the material recovered was in the free LF, which contained 30 % of the soil C content. In comparison, the burnt–grazed soil had the smallest recovery of the free LF (10 % and a significantly lower C content (14 %. The burnt soils had a much higher proportion of C in the occluded LF (12 % compared to the not-burnt soils (7 % and there was no significant difference among the treatments in the heavy fraction (F ( ∼  70 %. The synergistic effect of burning and grazing caused changes to the soil C dynamics. CO2

  20. Correlation between soil physicochemical properties and vegetation parameters in secondary tropical forest in Sabal, Sarawak, Malaysia

    Science.gov (United States)

    Karyati, K.; Ipor, I. B.; Jusoh, I.; Wasli, M. E.

    2018-04-01

    The tree growth is influenced by soil morphological and physicochemical properties in the site. The purpose of this study was to describe correlation between soil properties under various stage secondary forests and vegetation parameters, such as floristic structure parameters and floristic diversity indices. The vegetation surveys were conducted in 5, 10, and 20 years old at secondary tropical forests in Sarawak, Malaysia. Nine sub plots sized 20 m × 20 m were established within each study site. The Pearson analysis showed that soil physicochemical properties were significantly correlated to floristic structure parameters and floristic diversity indices. The result of PCA clarified the correlation among most important soil properties, floristic structure parameters, and floristic diversity indices. The PC1 represented cation retention capacity and soil texture which were little affected by the fallow age and its also were correlated by floristic structure and diversity. The PC2 was linked to the levels of soil acidity. This property reflected the remnant effects of ash addition and fallow duration, and the significant correlation were showed among pH (H2O), floristic structure and diversity. The PC3 represented the soil compactness. The soil hardness could be influenced by fallow period and it was also correlated by floristic structure.

  1. The response of heterotrophic activity and carbon cycling to nitrogen additions and warming in two tropical soils

    Science.gov (United States)

    Daniela F. Cusack; Margaret S. Torn; William H. McDowell; Whendee L. Silver

    2010-01-01

    Nitrogen (N) deposition is projected to increase significantly in tropical regions in the coming decades, where changes in climate are also expected. Additional N and warming each have the potential to alter soil carbon (C) storage via changes in microbial activity and decomposition, but little is known about the combined effects of these global change factors in...

  2. Comparative Bioremediation of Crude Oil-Amended Tropical Soil Microcosms by Natural Attenuation, Bioaugmentation, or Bioenrichment

    Directory of Open Access Journals (Sweden)

    Vanessa Marques Alvarez

    2011-01-01

    Full Text Available Bioremediation is an efficient strategy for cleaning up sites contaminated with organic pollutants. In this study, we evaluated the effectiveness of monitored natural attenuation, bioenrichment, and bioaugmentation using a consortium of three actinomycetes strains in remediating two distinct typical Brazilian soils from the Atlantic Forest and Cerrado biomes that were contaminated with crude oil, with or without the addition of NaCl. Microcosms were used to simulate bioremediation treatments over a 120-day period. During this period, we monitored total petroleum hydrocarbons (TPHs and n-alkanes degradation and changes in bacterial communities. Over time, we found the degradation rate of n-alkanes was higher than TPH in both soils, independent of the treatment used. In fact, our data show that the total bacterial community in the soils was mainly affected by the experimental period of time, while the type of bioremediation treatment used was the main factor influencing the actinomycetes populations in both soils. Based on these data, we conclude that monitored natural attenuation is the best strategy for remediation of the two tropical soils studied, with or without salt addition.

  3. Termites as a factor of spatial differentiation of CO2 fluxes from the soils of monsoon tropical forests in Southern Vietnam

    Science.gov (United States)

    Lopes de Gerenyu, Valentin; Anichkin, Alexander

    2016-04-01

    Termites play the key role in biogeochemical transformation of organic matter acting as "moderators" of fluxes of carbon and other nutrients. They destroy not only leave litter but also coarse woody debris. Termites translocate considerable masses of dead organic materials into their houses, which leads to significant accumulations of organic matter in termite mounds. We studied the impact of termite mounds on redistribution of CO2 fluxes from soils in semi-deciduous monsoon tropical forests of southern Vietnam. Field study was performed in the Cat Tien National Park (11°21'-11°48'N, 107°10'-107°34'E). The spatial and temporary dynamics of CO2 fluxes from soils (Andosols) populated by termites were studied in plain lagerstroemia (Lagerstroemia calyculata Kurz) monsoon tropical forests. The rate of CO2 emission from the soil surface was measured by closed chamber method two-three times per month from November 2010 to December 2011. Permanent cylindrical PVC chambers (9 cm in diameter and 15 cm in height) were installed beyond the areas occupied by termite mounds (5 replications). Litter was not removed from the soil surface before the measurements. To estimate the spatial heterogeneity of the CO2 emission fluxes from soils populated by termites, a special 'termite' plot (TerPl) was equipped. It was 10×10 m in size and included three termite mounds: one mound built up by Globitermes sulphureus and two mounds populated by termites of the Odontotermes genus. Overall, 52 PVC chambers were installed permanently on the 'termite' plot (ca. 1 m apart from one another). The CO2 emission rate from TerPl was also measured by chamber closed method once in the dry season (April) and twice through the wet season (July and August). The average rate of CO2 emission from termite mounds was two times higher than that from the surrounding area (SurAr). In the dry season, it comprised 91±7 mg C/m2/h from the surrounding soils and 196±16 mg C/m2/h from the termite mounds. In the

  4. Tritium behavior pattern in some soil-plant systems in a tropical environment

    International Nuclear Information System (INIS)

    Soman, S.D.; Iyengar, T.S.; Sadarangani, S.H.; Vaze, P.K.

    1975-01-01

    A study of the distribution pattern of tritium in the soil/plant environment gives valuable ecological information on the natural water balance. The results of such a study for the conditions obtaining in India are given in this paper. Field studies are carried out by injection of tritium into some soil/plant systems and following the transfer pathways. The method of extraction for tissue-free-water-tritium (TFWT) is based on the vacuum freeze-drying technique while the tissue-bound-tritium (TBT) is estimated by a modified version of the Shoniger method. The determination of residence time of tritium in aqueous and organic phase in a number of tropical trees has been carried out both for stem-injection as well as intake from the soil. From the results of this study the tree biomass and transpiration rates have been determined. The tritium profile over time, for an acute exposure in certain trees such as Morinda Tinetoria, Achras Sapota etc. shows significantly different patterns compared to the normal pattern shown by Mangifera Indica, Terminalia Catappa, Ficus Glomerata etc. The period of investigation in each case varied from 400 to 1000 h. In most of the cases, the TBT fractions were very low compared to TFWT fractions in the initial stages. The tritium behavior in the tree reflects significant characteristics of the tritium behavior in the soil system. The authors have found that the leaf sampling can be used as an indicator of total environmental tritium behavior. (author)

  5. Comparative short-term effects of sewage sludge and its biochar on soil properties, maize growth and uptake of nutrients on a tropical clay soil in Zimbabwe

    Institute of Scientific and Technical Information of China (English)

    Willis Gwenzi; Moreblessing Muzava; Farai Mapanda; Tonny P Tauro

    2016-01-01

    Soil application of biochar from sewage could potentialy enhance carbon sequestration and close urban nutrient balances. In sub-Saharan Africa, comparative studies investigating plant growth effect and nutrients uptake on tropical soils amended with sewage sludge and its biochar are very limited. A pot experiment was conducted to investigate the effects of sewage sludge and its biochar on soil chemical properties, maize nutrient and heavy metal uptake, growth and biomass partitioning on a tropical clayey soil. The study compared three organic amendments; sewage sludge (SS), sludge biochar (SB) and their combination (SS+SB) to the unamended control and inorganic fertilizers. Organic amendments were applied at a rate of 15 t ha–1 for SS and SB, and 7.5 t ha–1 each for SS and SB. Maize growth, biomass production and nutrient uptake were signiifcantly improved in biochar and sewage sludge amendments compared to the unamended control. Comparable results were observed with F, SS and SS+SB on maize growth at 49 d of sowing. Maize growth for SB, SS, SS+SB and F increased by 42, 53, 47, and 49%, respectively compared to the unamended control. Total biomass for SB, SS, SS+SB, and F increased by 270, 428, 329, and 429%, respectively compared with the unamended control. Biochar amendments reduced Pb, Cu and Zn uptakes by about 22% compared with sludge alone treatment in maize plants. However, there is need for future research based on the current pot experiment to determine whether the same results can be produced under ifeld conditions.

  6. Human Effects and Soil Surface CO2 fluxes in Tropical Urban Green Areas, Singapore

    Science.gov (United States)

    Ng, Bernard; Gandois, Laure; Kai, Fuu Ming; Chua, Amy; Cobb, Alex; Harvey, Charles; Hutyra, Lucy

    2013-04-01

    Urban green spaces are appreciated for their amenity value, with increasing interest in the ecosystem services they could provide (e.g. climate amelioration and increasingly as possible sites for carbon sequestration). In Singapore, turfgrass occupies approximately 20% of the total land area and is readily found on both planned and residual spaces. This project aims at understanding carbon fluxes in tropical urban green areas, including controls of soil environmental factors and the effect of urban management techniques. Given the large pool of potentially labile carbon, management regimes are recognised to have an influence on soil environmental factors (temperature and moisture), this would affect soil respiration and feedbacks to the greenhouse effect. A modified closed dynamic chamber method was employed to measure total soil respiration fluxes. In addition to soil respiration rates, environmental factors such as soil moisture and temperature, and ambient air temperature were monitored for the site in an attempt to evaluate their control on the observed fluxes. Measurements of soil-atmosphere CO2 exchanges are reported for four experimental plots within the Singtel-Kranji Radio Transmission Station (103o43'49E, 1o25'53N), an area dominated by Axonopus compressus. Different treatments such as the removal of turf, and application of clippings were effected as a means to determine the fluxes from the various components (respiration of soil and turf, and decomposition of clippings), and to explore the effects of human intervention on observed effluxes. The soil surface CO2 fluxes observed during the daylight hours ranges from 2.835 + 0.772 umol m-2 s-1 for the bare plot as compared to 6.654 + 1.134 umol m-2 s-1 for the turfed plot; this could be attributed to both autotrophic and heterotrophic respiration. Strong controls of both soil temperature and soil moisture are observed on measured soil fluxes. On the base soils, fluxes were positively correlated to soil

  7. Assessing risk to human health from tropical leafy vegetables grown on contaminated urban soils

    International Nuclear Information System (INIS)

    Nabulo, G.; Young, S.D.; Black, C.R.

    2010-01-01

    Fifteen tropical leafy vegetable types were sampled from farmers' gardens situated on nine contaminated sites used to grow vegetables for commercial or subsistence consumption in and around Kampala City, Uganda. Trace metal concentrations in soils were highly variable and originated from irrigation with wastewater, effluent discharge from industry and dumping of solid waste. Metal concentrations in the edible shoots of vegetables also differed greatly between, and within, sites. Gynandropsis gynandra consistently accumulated the highest Cd, Pb and Cu concentrations, while Amaranthus dubius accumulated the highest Zn concentration. Cadmium uptake from soils with contrasting sources and severity of contamination was consistently lowest in Cucurbita maxima and Vigna unguiculata, suggesting these species were most able to restrict Cd uptake from contaminated soil. Concentrations of Pb and Cr were consistently greater in unwashed, than in washed, vegetables, in marked contrast to Cd, Ni and Zn. The risk to human health, expressed as a 'hazard quotient' (HQ M ), was generally greatest for Cd, followed successively by Pb, Zn, Ni and Cu. Nevertheless, it was apparent that urban cultivation of leafy vegetables could be safely pursued on most sites, subject to site-specific assessment of soil metal burden, judicious choice of vegetable types and adoption of washing in clean water prior to cooking.

  8. Final report on a field study of soil-to-plant transfer radioactive caesium, strontium and zinc in Tropical Northern Australia

    International Nuclear Information System (INIS)

    Twining, J.; Payne, T.; Russell, R.; Wilde, K; McOrist, G.; Wong, H.; Shotton, P.; Tagami, K.; Itakura, T.

    2003-01-01

    Soil-to-plant radionuclide transfer factors for cesium ( 134 Cs), strontium ( 85 Sr) and zinc ( 65 Zn) into sorghum and mung plants grown in tropical Australia have been determined over a four-year study period. The crops were grown on two types of red earth soils. Transfer factors for Cs and Sr are not substantially different from the expected values based on previous studies, reported in the general literature and compiled in the IUR database, mainly performed within temperate climates. In contrast, the values for zinc (Zn) are more than an order of magnitude greater than anticipated. Most of the radioactivity added to the soils has been retained in the top 5 cm of both soils. There has been a general decline in soil-to-plant transfer of Cs and Zn as time has increased

  9. Comparative Bioremediation of Crude Oil-Amended Tropical Soil Microcosms by Natural Attenuation, Bio augmentation, or Bio enrichment

    International Nuclear Information System (INIS)

    Alvarez, V.M; Marques, J.M; Korenblum, E; Seldin, L

    2011-01-01

    Bioremediation is an efficient strategy for cleaning up sites contaminated with organic pollutants. In this study, we evaluated the effectiveness of monitored natural attenuation, bio enrichment, and bio augmentation using a consortium of three actinomycetes strains in remediating two distinct typical Brazilian soils from the Atlantic Forest and Cerrado biomes that were contaminated with crude oil, with or without the addition of NaCl. Microcosms were used to simulate bioremediation treatments over a 120-day period. During this period, we monitored total petroleum hydrocarbons (TPHs) and n-alkanes degradation and changes in bacterial communities. Over time, we found the degradation rate of n-alkanes was higher than TPH in both soils, independent of the treatment used. In fact, our data show that the total bacterial community in the soils was mainly affected by the experimental period of time, while the type of bioremediation treatment used was the main factor influencing the actinomycetes populations in both soils. Based on these data, we conclude that monitored natural attenuation is the best strategy for remediation of the two tropical soils studied, with or without salt addition.

  10. The effects of the insecticide lambda-Cyhalothrin on the earthworm Eisenia fetida under experimental conditions of tropical and temperate regions

    International Nuclear Information System (INIS)

    Garcia, Marcos; Scheffczyk, Adam; Garcia, Terezinha; Roembke, Joerg

    2011-01-01

    Plant Protection Products can affect soil organisms and thus might have negative impacts on soil functions. Little research has been performed on their impact on tropical soils. Therefore, the effects of the insecticide lambda-Cyhalothrin on earthworms were evaluated in acute and chronic laboratory tests modified for tropical conditions, i.e. at selected temperatures (20 and 28 o C) and with two strains (temperate and tropical) of the compost worm Eisenia fetida. The insecticide was spiked in two natural soils, in OECD artificial soil and a newly developed tropical artificial soil. The effects of lambda-Cyhalothrin did rarely vary in the same soil at tropical (LC50: 68.5-229 mg a.i./kg dry weight (DW); EC50: 54.2-60.2 mg a.i./kg DW) and temperate (LC50: 99.8-140 mg a.i./kg DW; EC50: 37.4-44.5 mg a.i./kg DW) temperatures. In tests with tropical soils and high temperature, effect values differed by up to a factor of ten. - Research highlights: → In one soil, effects of lambda-Cyhalothrin did not vary much at two temperatures. → In tropical soils at high temperature, effects differed by up to a factor of ten. → In the tropics, effects of pesticides can be higher or lower as in temperate regions. - The effects of the insecticide lambda-cyhalothrin on earthworms did not differ considerably when performed in the same soil under different temperatures, but LC/EC 50 values varied by a factor of ten between OECD and tropical artificial soil.

  11. The effects of the insecticide lambda-Cyhalothrin on the earthworm Eisenia fetida under experimental conditions of tropical and temperate regions

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, Marcos [Embrapa Amazonia Ocidental, Rod. AM-10, Km 28, 69.011-970 Manaus, AM (Brazil); Scheffczyk, Adam [ECT Oekotoxikologie, Boettgerstr. 2-14, D-65439 Floersheim (Germany); Garcia, Terezinha [Embrapa Amazonia Ocidental, Rod. AM-10, Km 28, 69.011-970 Manaus, AM (Brazil); Roembke, Joerg, E-mail: j-roembke@ect.d [ECT Oekotoxikologie, Boettgerstr. 2-14, D-65439 Floersheim (Germany)

    2011-02-15

    Plant Protection Products can affect soil organisms and thus might have negative impacts on soil functions. Little research has been performed on their impact on tropical soils. Therefore, the effects of the insecticide lambda-Cyhalothrin on earthworms were evaluated in acute and chronic laboratory tests modified for tropical conditions, i.e. at selected temperatures (20 and 28 {sup o}C) and with two strains (temperate and tropical) of the compost worm Eisenia fetida. The insecticide was spiked in two natural soils, in OECD artificial soil and a newly developed tropical artificial soil. The effects of lambda-Cyhalothrin did rarely vary in the same soil at tropical (LC50: 68.5-229 mg a.i./kg dry weight (DW); EC50: 54.2-60.2 mg a.i./kg DW) and temperate (LC50: 99.8-140 mg a.i./kg DW; EC50: 37.4-44.5 mg a.i./kg DW) temperatures. In tests with tropical soils and high temperature, effect values differed by up to a factor of ten. - Research highlights: In one soil, effects of lambda-Cyhalothrin did not vary much at two temperatures. In tropical soils at high temperature, effects differed by up to a factor of ten. In the tropics, effects of pesticides can be higher or lower as in temperate regions. - The effects of the insecticide lambda-cyhalothrin on earthworms did not differ considerably when performed in the same soil under different temperatures, but LC/EC{sub 50} values varied by a factor of ten between OECD and tropical artificial soil.

  12. Characterization of Trapped Lignin-Degrading Microbes in Tropical Forest Soil

    Energy Technology Data Exchange (ETDEWEB)

    DeAngelis, Kristen; Allgaier, Martin; Chavarria, Yaucin; Fortney, Julian; Hugenholtz, Phillip; Simmons, Blake; Sublette, Kerry; Silver, Whendee; Hazen, Terry

    2011-07-14

    Lignin is often the most difficult portion of plant biomass to degrade, with fungi generally thought to dominate during late stage decomposition. Lignin in feedstock plant material represents a barrier to more efficient plant biomass conversion and can also hinder enzymatic access to cellulose, which is critical for biofuels production. Tropical rain forest soils in Puerto Rico are characterized by frequent anoxic conditions and fluctuating redox, suggesting the presence of lignin-degrading organisms and mechanisms that are different from known fungal decomposers and oxygen-dependent enzyme activities. We explored microbial lignin-degraders by burying bio-traps containing lignin-amended and unamended biosep beads in the soil for 1, 4, 13 and 30 weeks. At each time point, phenol oxidase and peroxidase enzyme activity was found to be elevated in the lignin-amended versus the unamended beads, while cellulolytic enzyme activities were significantly depressed in lignin-amended beads. Quantitative PCR of bacterial communities showed more bacterial colonization in the lignin-amended compared to the unamended beads after one and four weeks, suggesting that the lignin supported increased bacterial abundance. The microbial community was analyzed by small subunit 16S ribosomal RNA genes using microarray (PhyloChip) and by high-throughput amplicon pyrosequencing based on universal primers targeting bacterial, archaeal, and eukaryotic communities. Community trends were significantly affected by time and the presence of lignin on the beads. Lignin-amended beads have higher relative abundances of representatives from the phyla Actinobacteria, Firmicutes, Acidobacteria and Proteobacteria compared to unamended beads. This study suggests that in low and fluctuating redox soils, bacteria could play a role in anaerobic lignin decomposition.

  13. Characterization of trapped lignin-degrading microbes in tropical forest soil

    Energy Technology Data Exchange (ETDEWEB)

    DeAngelis, K.M.; Allgaier, M.; Chavarria, Y.; Fortney, J.L.; Hugenholz, P.; Simmons, B.; Sublette, K.; Silver, W.L.; Hazen, T.C.

    2011-03-01

    Lignin is often the most difficult portion of plant biomass to degrade, with fungi generally thought to dominate during late stage decomposition. Lignin in feedstock plant material represents a barrier to more efficient plant biomass conversion and can also hinder enzymatic access to cellulose, which is critical for biofuels production. Tropical rain forest soils in Puerto Rico are characterized by frequent anoxic conditions and fluctuating redox, suggesting the presence of lignin-degrading organisms and mechanisms that are different from known fungal decomposers and oxygen-dependent enzyme activities. We explored microbial lignin-degraders by burying bio-traps containing lignin-amended and unamended biosep beads in the soil for 1, 4, 13 and 30 weeks. At each time point, phenol oxidase and peroxidase enzyme activity was found to be elevated in the lignin-amended versus the unamended beads, while cellulolytic enzyme activities were significantly depressed in lignin-amended beads. Quantitative PCR of bacterial communities showed more bacterial colonization in the lignin-amended compared to the unamended beads after one and four weeks, suggesting that the lignin supported increased bacterial abundance. The microbial community was analyzed by small subunit 16S ribosomal RNA genes using microarray (PhyloChip) and by high-throughput amplicon pyrosequencing based on universal primers targeting bacterial, archaeal, and eukaryotic communities. Community trends were significantly affected by time and the presence of lignin on the beads. Lignin-amended beads have higher relative abundances of representatives from the phyla Actinobacteria, Firmicutes, Acidobacteria and Proteobacteria compared to unamended beads. This study suggests that in low and fluctuating redox soils, bacteria could play a role in anaerobic lignin decomposition.

  14. Jatropha curcas and Ricinus communis differentially affect arbuscular mycorrhizal fungi diversity in soil when cultivated for biofuel production in a Guantanamo (Cuba) tropical system.

    Science.gov (United States)

    Alguacil, M. M.; Torrecillas, E.; Hernández, G.; Torres, P.; Roldán, A.

    2012-04-01

    The arbuscular mycorrhizal fungi (AMF) are a key, integral component of the stability, sustainability and functioning of ecosystems. In this study, we characterised the AMF biodiversity in a control soil and in a soil cultivated with Jatropha curcas or Ricinus communis, in a tropical system in Guantanamo (Cuba), in order to verify if a change of land use to biofuel plant production had any effect on the AMF communities. We also asses whether some soil properties related with the soil fertility (total N, Organic C, microbial biomass C, aggregate stability percentage, pH and electrical conductivity) were changed with the cultivation of both crop species. The AM fungal small sub-unit (SSU) rRNA genes were subjected to PCR, cloning, sequencing and phylogenetic analyses. Twenty AM fungal sequence types were identified: 19 belong to the Glomeraceae and one to the Paraglomeraceae. Two AMF sequence types related to cultured AMF species (Glo G3 for Glomus sinuosum and Glo G6 for Glomus intraradices-G. fasciculatum-G. irregulare) disappeared in the soil cultivated with J. curcas and R. communis. The soil properties (total N, Organic C and microbial biomass C) were improved by the cultivation of the two plant species. The diversity of the AMF community decreased in the soil of both crops, with respect to the control soil, and varied significantly depending on the crop species planted. Thus, R. communis soil showed higher AMF diversity than J. curcas soil. In conclusion, R. communis could be more suitable in long-term conservation and sustainable management of these tropical ecosystems.

  15. Computação evolutiva aplicada a resolução do problema da arvore geradora minima com parametros fuzzy

    OpenAIRE

    Tiago Agostinho de Almeida

    2006-01-01

    Resumo: Este trabalho propoe meta-heurýsticas baseadas em tecnicas da computaçao evolutiva, que visam encontrar um conjunto de arvores geradoras mýnimas para problemas de grafos, que possuem incertezas em relaçao as informaçoes associadas aos parametros. Resolver problemas dessa natureza e um processo NP-Completo, pois envolve um numero enorme de comparaçoes. A fim de contornar essa complexidade, este trabalho propoe um algoritmo genetico e um sistema imunologico artificial, capazes de explo...

  16. The impact of tropical forest logging and oil palm agriculture on the soil microbiome.

    Science.gov (United States)

    Tripathi, Binu M; Edwards, David P; Mendes, Lucas William; Kim, Mincheol; Dong, Ke; Kim, Hyoki; Adams, Jonathan M

    2016-05-01

    Selective logging and forest conversion to oil palm agriculture are rapidly altering tropical forests. However, functional responses of the soil microbiome to these land-use changes are poorly understood. Using 16S rRNA gene and shotgun metagenomic sequencing, we compared composition and functional attributes of soil biota between unlogged, once-logged and twice-logged rainforest, and areas converted to oil palm plantations in Sabah, Borneo. Although there was no significant effect of logging history, we found a significant difference between the taxonomic and functional composition of both primary and logged forests and oil palm. Oil palm had greater abundances of genes associated with DNA, RNA, protein metabolism and other core metabolic functions, but conversely, lower abundance of genes associated with secondary metabolism and cell-cell interactions, indicating less importance of antagonism or mutualism in the more oligotrophic oil palm environment. Overall, these results show a striking difference in taxonomic composition and functional gene diversity of soil microorganisms between oil palm and forest, but no significant difference between primary forest and forest areas with differing logging history. This reinforces the view that logged forest retains most features and functions of the original soil community. However, networks based on strong correlations between taxonomy and functions showed that network complexity is unexpectedly increased due to both logging and oil palm agriculture, which suggests a pervasive effect of both land-use changes on the interaction of soil microbes. © 2016 John Wiley & Sons Ltd.

  17. Soil carbon dioxide emissions from a rubber plantation on tropical peat.

    Science.gov (United States)

    Wakhid, Nur; Hirano, Takashi; Okimoto, Yosuke; Nurzakiah, Siti; Nursyamsi, Dedi

    2017-03-01

    Land-use change in tropical peatland potentially results in a large amount of carbon dioxide (CO 2 ) emissions owing to drainage, which lowers groundwater level (GWL) and consequently enhances oxidative peat decomposition. However, field information on carbon balance is lacking for rubber plantations, which are expanding into Indonesia's peatlands. To assess soil CO 2 emissions from an eight-year-old rubber plantation established on peat after compaction, soil CO 2 efflux was measured monthly using a closed chamber system from December 2014 to December 2015, in which a strong El Niño event occurred, and consequently GWL lowered deeply. Total soil respiration (SR) and oxidative peat decomposition (PD) were separately quantified by trenching. In addition, peat surface elevation was measured to determine annual subsidence along with GWL. With GWL, SR showed a negative logarithmic relationship (p0.05). Peat surface elevation varied seasonally in almost parallel with GWL. After correcting for GWL difference, annual total subsidence was determined at 5.64±3.20 and 5.96±0.43cmyr -1 outside and inside the trenching, respectively. Annual subsidence only through peat oxidation that was calculated from the annual PD, peat bulk density and peat carbon content was 1.50cmyr -1 . As a result, oxidative peat decomposition accounted for 25% of total subsidence (5.96cmyr -1 ) on average on an annual basis. The contribution of peat oxidation was lower than those of previous studies probably because of compaction through land preparation. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Drivers of aboveground wood production in a lowland tropical forest of West Africa: teasing apart the roles of tree density, tree diversity, soil phosphorus, and historical logging.

    Science.gov (United States)

    Jucker, Tommaso; Sanchez, Aida Cuni; Lindsell, Jeremy A; Allen, Harriet D; Amable, Gabriel S; Coomes, David A

    2016-06-01

    Tropical forests currently play a key role in regulating the terrestrial carbon cycle and abating climate change by storing carbon in wood. However, there remains considerable uncertainty as to whether tropical forests will continue to act as carbon sinks in the face of increased pressure from expanding human activities. Consequently, understanding what drives productivity in tropical forests is critical. We used permanent forest plot data from the Gola Rainforest National Park (Sierra Leone) - one of the largest tracts of intact tropical moist forest in West Africa - to explore how (1) stand basal area and tree diversity, (2) past disturbance associated with past logging, and (3) underlying soil nutrient gradients interact to determine rates of aboveground wood production (AWP). We started by statistically modeling the diameter growth of individual trees and used these models to estimate AWP for 142 permanent forest plots. We then used structural equation modeling to explore the direct and indirect pathways which shape rates of AWP. Across the plot network, stand basal area emerged as the strongest determinant of AWP, with densely packed stands exhibiting the fastest rates of AWP. In addition to stand packing density, both tree diversity and soil phosphorus content were also positively related to productivity. By contrast, historical logging activities negatively impacted AWP through the removal of large trees, which contributed disproportionately to productivity. Understanding what determines variation in wood production across tropical forest landscapes requires accounting for multiple interacting drivers - with stand structure, tree diversity, and soil nutrients all playing a key role. Importantly, our results also indicate that logging activities can have a long-lasting impact on a forest's ability to sequester and store carbon, emphasizing the importance of safeguarding old-growth tropical forests.

  19. Distinct responses of soil respiration to experimental litter manipulation in temperate woodland and tropical forest.

    Science.gov (United States)

    Bréchet, Laëtitia M; Lopez-Sangil, Luis; George, Charles; Birkett, Ali J; Baxendale, Catherine; Castro Trujillo, Biancolini; Sayer, Emma J

    2018-04-01

    Global change is affecting primary productivity in forests worldwide, and this, in turn, will alter long-term carbon (C) sequestration in wooded ecosystems. On one hand, increased primary productivity, for example, in response to elevated atmospheric carbon dioxide (CO 2 ), can result in greater inputs of organic matter to the soil, which could increase C sequestration belowground. On other hand, many of the interactions between plants and microorganisms that determine soil C dynamics are poorly characterized, and additional inputs of plant material, such as leaf litter, can result in the mineralization of soil organic matter, and the release of soil C as CO 2 during so-called "priming effects". Until now, very few studies made direct comparison of changes in soil C dynamics in response to altered plant inputs in different wooded ecosystems. We addressed this with a cross-continental study with litter removal and addition treatments in a temperate woodland (Wytham Woods) and lowland tropical forest (Gigante forest) to compare the consequences of increased litterfall on soil respiration in two distinct wooded ecosystems. Mean soil respiration was almost twice as high at Gigante (5.0 μmol CO 2  m -2  s -1 ) than at Wytham (2.7 μmol CO 2  m -2  s -1 ) but surprisingly, litter manipulation treatments had a greater and more immediate effect on soil respiration at Wytham. We measured a 30% increase in soil respiration in response to litter addition treatments at Wytham, compared to a 10% increase at Gigante. Importantly, despite higher soil respiration rates at Gigante, priming effects were stronger and more consistent at Wytham. Our results suggest that in situ priming effects in wooded ecosystems track seasonality in litterfall and soil respiration but the amount of soil C released by priming is not proportional to rates of soil respiration. Instead, priming effects may be promoted by larger inputs of organic matter combined with slower turnover rates.

  20. EFFECT OF COVER CROPS ON SOIL ATTRIBUTES, PLANT NUTRITION, AND IRRIGATED TROPICAL RICE YIELD

    Directory of Open Access Journals (Sweden)

    ANDRE FROES DE BORJA REIS

    2017-01-01

    Full Text Available In flood plains, cover crops are able to alter soil properties and significantly affect rice nutrition and yield. The aims of this study were to determine soil properties, plant nutrition, and yield of tropical rice cultivated on flood plains after cover crop cultivation with conventional tillage (CT and no-tillage system (NTS at low and high nitrogen (N fertilization levels. The experimental design was a randomized block in a split-split-plot scheme with four replications. In the main plots were cover crops sunhemp (Crotalaria juncea and C. spectabilis, velvet bean (Mucuna aterrima, jackbean (Canavalia ensiformis, pigeon pea (Cajanus cajan, Japanese radish (Raphanus sativus, cowpea (Vigna unguiculata and a fallow field. In the subplots were the tillage systems (CT or NTS. The nitrogen fertilization levels in the sub-subplots were (10 kg N ha-1 and 45 kg N ha-1. All cover crops except Japanese radish significantly increased mineral soil nitrogen and nitrate concentrations. Sunhemp, velvet bean, and cowpea significantly increased soil ammonium content. The NTS provides higher mineral nitrogen and ammonium content than that by CT. Overall, cover crops provided higher levels of nutrients to rice plants in NTS than in CT. Cover crops provide greater yield than fallow treatments. Rice yield was higher in NTS than in CT, and greater at a higher rather than lower nitrogen fertilization level.

  1. The effects of the insecticide lambda-Cyhalothrin on the earthworm Eisenia fetida under experimental conditions of tropical and temperate regions.

    Science.gov (United States)

    Garcia, Marcos; Scheffczyk, Adam; Garcia, Terezinha; Römbke, Jörg

    2011-02-01

    Plant Protection Products can affect soil organisms and thus might have negative impacts on soil functions. Little research has been performed on their impact on tropical soils. Therefore, the effects of the insecticide lambda-Cyhalothrin on earthworms were evaluated in acute and chronic laboratory tests modified for tropical conditions, i.e. at selected temperatures (20 and 28°C) and with two strains (temperate and tropical) of the compost worm Eisenia fetida. The insecticide was spiked in two natural soils, in OECD artificial soil and a newly developed tropical artificial soil. The effects of lambda-Cyhalothrin did rarely vary in the same soil at tropical (LC50: 68.5-229 mg a.i./kg dry weight (DW); EC50: 54.2-60.2 mg a.i./kg DW) and temperate (LC50: 99.8-140 mg a.i./kg DW; EC50: 37.4-44.5 mg a.i./kg DW) temperatures. In tests with tropical soils and high temperature, effect values differed by up to a factor of ten. Copyright © 2010 Elsevier Ltd. All rights reserved.

  2. Forest structure, diversity and soil properties in a dry tropical forest in Rajasthan, Western India

    OpenAIRE

    J. I. Nirmal Kumar,; Kanti Patel,; Rohit Bhoi Kumar

    2011-01-01

    Structure, species composition, and soil properties of a dry tropical forest in Rajasthan Western India, were examined by establishment of 25 plots. The forest was characterized by a relatively low canopy and a large number of small-diameter trees. Mean canopy height for this forest was 10 m and stands contained an average of 995 stems ha-1 (≥ 3.0 cm DBH); 52% of those stems were smaller than 10 cm DBH. The total basal area was 46.35 m2ha-1, of which Tectona grandis L. contributed 48%. The fo...

  3. Root-induced Changes in the Rhizosphere of Extreme High Yield Tropical Rice: 2. Soil Solution Chemical Properties

    Directory of Open Access Journals (Sweden)

    Mitsuru Osaki

    2012-09-01

    Full Text Available Our previous studies showed that the extreme high yield tropical rice (Padi Panjang produced 3-8 t ha-1 without fertilizers. We also found that the rice yield did not correlate with some soil properties. We thought that it may be due to ability of root in affecting soil properties in the root zone. Therefore, we studied the extent of rice root in affecting the chemical properties of soil solution surrounding the root zone. A homemade rhizobox (14x10x12 cm was used in this experiment. The rhizobox was vertically segmented 2 cm interval using nylon cloth that could be penetrated neither root nor mycorrhiza, but, soil solution was freely passing the cloth. Three soils of different origins (Kuin, Bunipah and Guntung Papuyu were used. The segment in the center was sown with 20 seeds of either Padi Panjang or IR64 rice varieties. After emerging, 10 seedlings were maintained for 5 weeks. At 4 weeks after sowing, some chemical properties of the soil solution were determined. These were ammonium (NH4+, nitrate (NO3-, phosphorus (P and iron (Fe2+ concentrations and pH, electric conductivity (EC and oxidation reduction potential (ORP. In general, the plant root changed solution chemical properties both in- and outside the soil rhizosphere. The patterns of changes were affected by the properties of soil origins. The release of exudates and change in ORP may have been responsible for the changes soil solution chemical properties.

  4. The use of nuclear techniques in the management of nitrogen fixation by trees to enhance fertility of fragile tropical soils. Results of a co-ordinated research project

    International Nuclear Information System (INIS)

    1998-11-01

    The Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture initiated in 1990 a Co-ordinated Research Project on The Use of Nuclear or Related Techniques in Management of Nitrogen Fixation by Trees for Enhancing Soil Fertility and Soil Conservation in Fragile Tropical Soils. This document contains nine papers referring to the results of the project. A separate abstract was prepared for each paper

  5. Effects of nitrogen additions on above- and belowground carbon dynamics in two tropical forests

    Energy Technology Data Exchange (ETDEWEB)

    Cusack, D.; Silver, W.L.; Torn, M.S.; McDowell, W.H.

    2011-04-15

    Anthropogenic nitrogen (N) deposition is increasing rapidly in tropical regions, adding N to ecosystems that often have high background N availability. Tropical forests play an important role in the global carbon (C) cycle, yet the effects of N deposition on C cycling in these ecosystems are poorly understood. We used a field N-fertilization experiment in lower and upper elevation tropical rain forests in Puerto Rico to explore the responses of above- and belowground C pools to N addition. As expected, tree stem growth and litterfall productivity did not respond to N fertilization in either of these Nrich forests, indicating a lack of N limitation to net primary productivity (NPP). In contrast, soil C concentrations increased significantly with N fertilization in both forests, leading to larger C stocks in fertilized plots. However, different soil C pools responded to N fertilization differently. Labile (low density) soil C fractions and live fine roots declined with fertilization, while mineral-associated soil C increased in both forests. Decreased soil CO2 fluxes in fertilized plots were correlated with smaller labile soil C pools in the lower elevation forest (R2 = 0.65, p\\0.05), and with lower live fine root biomass in the upper elevation forest (R2 = 0.90, p\\0.05). Our results indicate that soil C storage is sensitive to N deposition in tropical forests, even where plant productivity is not N-limited. The mineral-associated soil C pool has the potential to respond relatively quickly to N additions, and can drive increases in bulk soil C stocks in tropical forests.

  6. Controls over foliar N:P ratios in tropical rain forests.

    Science.gov (United States)

    Townsend, Alan R; Cleveland, Cory C; Asner, Gregory P; Bustamante, Mercedes M C

    2007-01-01

    Correlations between foliar nutrient concentrations and soil nutrient availability have been found in multiple ecosystems. These relationships have led to the use of foliar nutrients as an index of nutrient status and to the prediction of broadscale patterns in ecosystem processes. More recently, a growing interest in ecological stoichiometry has fueled multiple analyses of foliar nitrogen:phosphorus (N:P) ratios within and across ecosystems. These studies have observed that N:P values are generally elevated in tropical forests when compared to higher latitude ecosystems, adding weight to a common belief that tropical forests are generally N rich and P poor. However, while these broad generalizations may have merit, their simplicity masks the enormous environmental heterogeneity that exists within the tropics; such variation includes large ranges in soil fertility and climate, as well as the highest plant species diversity of any biome. Here we present original data on foliar N and P concentrations from 150 mature canopy tree species in Costa Rica and Brazil, and combine those data with a comprehensive new literature synthesis to explore the major sources of variation in foliar N:P values within the tropics. We found no relationship between N:P ratios and either latitude or mean annual precipitation within the tropics alone. There is, however, evidence of seasonal controls; in our Costa Rica sites, foliar N:P values differed by 25% between wet and dry seasons. The N:P ratios do vary with soil P availability and/or soil order, but there is substantial overlap across coarse divisions in soil type, and perhaps the most striking feature of the data set is variation at the species level. Taken as a whole, our results imply that the dominant influence on foliar N:P ratios in the tropics is species variability and that, unlike marine systems and perhaps many other terrestrial biomes, the N:P stoichiometry of tropical forests is not well constrained. Thus any use of N

  7. Analysis of physical properties controlling steady-state infiltration rates on tropical savannah soils

    International Nuclear Information System (INIS)

    Mbagwu, J.S.C.

    1993-10-01

    A knowledge of physical properties influencing the steady-state infiltration rates (ic) of soils is needed for the hydrologic modelling of the infiltration process. In this study evidence is provided to show that effective porosity (Pe) (i.e. the proportion of macro pore spaces with equivalent radius of > 15 μm) and dry bulk density are the most important soil physical properties controlling the steady-state infiltration rates on a tropical savannah with varying land use histories. At a macro porosity value of ≤ 5.0% the steady-state infiltration rate is zero. Total porosity and the proportion of water-retaining pores explained only a small fraction of the variation in this property. Steady-state infiltration rates can also be estimated from either the saturated hydraulic conductivity (Ks) by the equation, i c = 31.1 + 1.06 (Ks), (R 2 = 0.8104, p ≤ 0.001) or the soil water transmissivity (A) by the equation, i c = 30.0 + 29.9(A), (R 2 = 0.8228, ρ ≤ 0.001). The Philip two-parameter model under predicted steady-state infiltration rates generally. Considering the ease of determination and reliability it is suggested that effective porosity be used to estimate the steady-state infiltration rates of these other soils with similar characteristics. The model is, i c 388.7(Pe) - 10.8(R 2 = 0.7265, p ≤ 0.001) where i c is in (cm/hr) and Pe in (cm 3 /cm 3 ). (author). 20 refs, 3 figs, 4 tabs

  8. Abiotic factors influencing tropical dry forests regeneration

    Directory of Open Access Journals (Sweden)

    Ceccon Eliane

    2006-01-01

    Full Text Available Tropical dry forests represent nearly half the tropical forests in the world and are the ecosystems registering the greatest deterioration from the anthropogenic exploitation of the land. This paper presents a review on the dynamics of tropical dry forests regeneration and the main abiotic factors influencing this regeneration, such as seasonal nature, soil fertility and humidity, and natural and anthropic disturbances. The main purpose is to clearly understand an important part of TDF succession dynamics.

  9. Comparative evaluation of geotechnical properties of red tropical ...

    African Journals Online (AJOL)

    Geotechnical tests were carried out on a total of six samples of red tropical soils developed over sedimentary and Basement terrains, made up of three soils and three termite hills samples. The soil samples were subjected to geotechnical analyses which included the Particle size analysis, Specific Gravity, Atterberg Limits ...

  10. Absorption of gamma-emitting fission products and activation products by rice under flooded and unflooded conditions from two tropical soils

    International Nuclear Information System (INIS)

    D'Souza, T.J.; Mistry, K.B.

    1980-01-01

    The absorption of gamma-emitting fission products 106 Ru, 125 Sb, 137 Cs and 144 Ce and activation products 59 Fe, 58 Co, 54 Mn and 65 Zn by rice plants grown on two contrasting tropical soils, namely, a blak soil (pellustert) and a laterite (oxisol), and the effects of flooding were studied under controlled conditions. Results indicated greater uptake of 106 Ru and 125 Sb from the black soil than from the laterite. In contrast, the uptake of 144 Ce and 137 Cs was greater in the laterite than in the black soil. Flooding treatment enhanced the uptake of all these fission products by rice plants in the laterite soil whereas this effect was observed only for 125 Sb and 137 Cs in the black soil. The plant uptake of activation products from the two soil types showed maximum accumulation of 65 Zn followed by 54 Mn, 59 Fe and 58 Co in both soil types. Besides, uptake of these nuclides was greater from the laterite soil than from the black soil. Flooding treatment for rice while showing a reduction of 59 Fe uptake showed an increase in plant uptake of 58 Co, 54 Mn and 65 Zn in both soil types. (orig.)

  11. Runoff and soil erosion for an undisturbed tropical woodland in the Brazilian Cerrado

    Science.gov (United States)

    Oliveira, Paulo Tarso S.; Nearing, Mark; Wendland, Edson

    2015-04-01

    The Brazilian Cerrado is a large and important economic and environmental region that is experiencing major loss of its natural landscapes due to pressures of food and energy production, which has caused large increases in soil erosion. However the magnitude of the soil erosion increases in this region is not well understood, in part because scientific studies of surface runoff and soil erosion are scarce or nonexistent in undisturbed Cerrado vegetation. In this study we measured natural rainfall-driven rates of runoff and soil erosion for an undisturbed tropical woodland classified as "cerrado sensu stricto denso" and bare soil to compute the Universal Soil Loss Equation (USLE) cover and management factor (C-factor) to help evaluate the likely effects of land use change on soil erosion rates. Replicated data on precipitation, runoff, and soil loss on plots (5 x 20 m) under bare soil and cerrado were collected for 55 erosive storms occurring in 2012 and 2013. The measured annual precipitation was 1247.4 mm and 1113.0 mm for 2012 and 2013, resulting in a rainfall erosivity index of 4337.1 MJ mm ha-1 h-1 and 3546.2 MJ mm ha-1 h-1, for each year respectively. The erosive rainfall represented 80concentrated in the wet season, which generally runs from October through March. In the plots on bare soil, the runoff coefficient for individual rainfall events (total runoff divided by total rainfall) ranged from 0.003 to 0.860 with an average value and standard deviation of 0.212 ± 0.187. Moreover, the runoff coefficient found for the bare soil plots (~20infiltration capacity. In forest areas the leaf litter and the more porous soil tend to promote the increase of infiltration and water storage, rather than rapid overland flow. Indeed, runoff coefficients ranged from 0.001 to 0.030 with an average of less than 1under undisturbed cerrado. The soil losses measured under bare soil and cerrado were 15.68 t ha-1yr-1 and 0.24 t ha-1 yr-1 in 2012, and 14.82 t ha-1 yr-1, 0.11 t ha-1

  12. Evaporation from Pinus caribaea plantations on former grassland soils under maritime tropical conditions

    Science.gov (United States)

    Waterloo, M. J.; Bruijnzeel, L. A.; Vugts, H. F.; Rawaqa, T. T.

    1999-07-01

    Wet canopy and dry canopy evaporation from young and mature plantations of Pinus caribaea on former grassland soils under maritime tropical conditions in southwestern Viti Levu, Fiji, were determined using micrometeorological and hydrological techniques. Modeled annual evaporation totals (ET) of 1926 and 1717 mm were derived for the 6- and the 15-year-old stands, respectively. Transpiration made up 72% and 70% of annual ET, and modeled rainfall interception by the trees and litter layer was 20-22% and 8-9% in the young and the mature stands respectively. Monthly ET was related to forest leaf area index and was much higher than that for the kind of tall fire-climax Pennisetum polystachyon grassland replaced by the forests. Grassland reforestation resulted in a maximum decrease in annual water yield of 1180 mm on a plot basis, although it is argued that a reduction of (at least) 500-700 mm would be more realistic at the catchment scale. The impact of reforesting grassland on the water resources in southwest Viti Levu is enhanced by its location in a maritime, seasonal climate in the outer tropics, which favors a larger difference between annual forest and grassland evaporation totals than do equatorial regions.

  13. The use of nuclear techniques in the management of nitrogen fixation by trees to enhance fertility of fragile tropical soils. Results of a co-ordinated research project

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-11-01

    The Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture initiated in 1990 a Co-ordinated Research Project on The Use of Nuclear or Related Techniques in Management of Nitrogen Fixation by Trees for Enhancing Soil Fertility and Soil Conservation in Fragile Tropical Soils. This document contains nine papers referring to the results of the project. A separate abstract was prepared for each paper Refs, figs, tabs

  14. No evidence that boron influences tree species distributions in lowland tropical forests of Panama.

    Science.gov (United States)

    Turner, Benjamin L; Zalamea, Paul-Camilo; Condit, Richard; Winter, Klaus; Wright, S Joseph; Dalling, James W

    2017-04-01

    It was recently proposed that boron might be the most important nutrient structuring tree species distributions in tropical forests. Here we combine observational and experimental studies to test this hypothesis for lowland tropical forests of Panama. Plant-available boron is uniformly low in tropical forest soils of Panama and is not significantly associated with any of the > 500 species in a regional network of forest dynamics plots. Experimental manipulation of boron supply to seedlings of three tropical tree species revealed no evidence of boron deficiency or toxicity at concentrations likely to occur in tropical forest soils. Foliar boron did not correlate with soil boron along a local scale gradient of boron availability. Fifteen years of boron addition to a tropical forest increased plant-available boron by 70% but did not significantly change tree productivity or boron concentrations in live leaves, wood or leaf litter. The annual input of boron in rainfall accounts for a considerable proportion of the boron in annual litterfall and is similar to the pool of plant-available boron in the soil, and is therefore sufficient to preclude boron deficiency. We conclude that boron does not influence tree species distributions in Panama and presumably elsewhere in the lowland tropics. No claim to original US government works New Phytologist © 2016 New Phytologist Trust.

  15. Comparative Evaluation of Geotechnical Properties of Red Tropical ...

    African Journals Online (AJOL)

    ADOWIE PERE

    2017-12-09

    Dec 9, 2017 ... Keywords: Red tropical soils, Geotechnical, termite hills, subgrade, suitability, construction. A considerable .... air-free distilled water was added so that the soil in the bottle is just ..... Iron Isotope composition of. Iron oxide as a ...

  16. Improving the Spatial Prediction of Soil Organic Carbon Stocks in a Complex Tropical Mountain Landscape by Methodological Specifications in Machine Learning Approaches.

    Science.gov (United States)

    Ließ, Mareike; Schmidt, Johannes; Glaser, Bruno

    2016-01-01

    Tropical forests are significant carbon sinks and their soils' carbon storage potential is immense. However, little is known about the soil organic carbon (SOC) stocks of tropical mountain areas whose complex soil-landscape and difficult accessibility pose a challenge to spatial analysis. The choice of methodology for spatial prediction is of high importance to improve the expected poor model results in case of low predictor-response correlations. Four aspects were considered to improve model performance in predicting SOC stocks of the organic layer of a tropical mountain forest landscape: Different spatial predictor settings, predictor selection strategies, various machine learning algorithms and model tuning. Five machine learning algorithms: random forests, artificial neural networks, multivariate adaptive regression splines, boosted regression trees and support vector machines were trained and tuned to predict SOC stocks from predictors derived from a digital elevation model and satellite image. Topographical predictors were calculated with a GIS search radius of 45 to 615 m. Finally, three predictor selection strategies were applied to the total set of 236 predictors. All machine learning algorithms-including the model tuning and predictor selection-were compared via five repetitions of a tenfold cross-validation. The boosted regression tree algorithm resulted in the overall best model. SOC stocks ranged between 0.2 to 17.7 kg m-2, displaying a huge variability with diffuse insolation and curvatures of different scale guiding the spatial pattern. Predictor selection and model tuning improved the models' predictive performance in all five machine learning algorithms. The rather low number of selected predictors favours forward compared to backward selection procedures. Choosing predictors due to their indiviual performance was vanquished by the two procedures which accounted for predictor interaction.

  17. Methane and CO2 fluxes from peat soil, palm stems and field drains in two oil palm plantations in Sarawak, Borneo, on different tropical peat soil types.

    Science.gov (United States)

    Manning, Frances; Lip Khoon, Kho; Hill, Tim; Arn Teh, Yit

    2017-04-01

    Oil palm plantations have been expanding rapidly on tropical peat soils in the last 20 years, with 50 % of SE Asian peatlands now managed as industrial or small-holder plantations, up from 11% in 1990. Tropical peat soils are an important carbon (C) store, containing an estimated 17 % of total peatland C. There are large uncertainties as to the soil C dynamics in oil palm plantations on peat due to a shortage of available data. It is therefore essential to understand the soil C cycle in order to promote effective management strategies that optimise yields, whilst maintaining the high C storage capacity of the soil. Here we present CO2 and CH4 fluxes from two oil palm plantations in Sarawak, Malaysia on peat soils. Data were collected from different surface microforms within each plantation that experienced different surface management practices. These included the area next to the palm, in bare soil harvest paths, beneath frond piles, underneath cover crops, from the surface of drains, and from palm stems. Data were collected continuously over one year and analysed with different environmental variables, including soil temperature, WTD, O2, soil moisture and weather data in order to best determine the constraints on the dataset. Total soil respiration (Rtot) varied between 0.09 and 1.59 g C m-2 hr-1. The largest fluxes (0.59 - 1.59 g C m-2 hr-1) were measured next to the palms. Larger CO2 fluxes were observed beneath the cover crops than in the bare soil. This trend was attributed to priming effects from the input of fresh plant litter and exudates. Peat soil type was shown to have significantly different fluxes. The different plantations also had different environmental drivers best explaining the variation in Rtot - with soil moisture being the most significant variable on Sabaju series soil and soil temperature being the most significant environmental variable in the plantation with the Teraja series soil. Rtot was shown to reduce significantly with increasing

  18. Biaccumulation and tolerance of heavy metals on the tropical earthworm, Allobophora sp. after exposed to contaminated soil from oil mine waste

    Science.gov (United States)

    Suhendrayatna; Darusman; Raihannah; Nurmala, D.

    2018-04-01

    In this study, the impact of contaminated soil from oil mine waste on survival, behavior, tolerance, and bioaccumulation of heavy metals by the tropical earthworm, Allobophora sp. has been quantified. Earthworm was isolated from heavy metals-contaminated soil, cultured in laboratory condition, and exposed to contaminated soil from oil mine waste for a couple of months. The behavior and response of earthworms to contaminated soil was monitored for 28 days and evaluated by the response criteria was expressed in scale index (SI) referred to Langdon method. Resistance test of the earthworm (LC50) to heavy metals also conducted with variation soil concentrations of 100%, 50%, 25%, 12.5%, and 6.25%, and 0% (Control). Results showed that contaminated soil extremely affected to the earthworm live, especially length and their body weight. The Lethal Concentration 50% (LC50) of earthworm against contaminated soil was 19.05% (w/w). When exposed to contaminated soil, earthworm accumulated chromium, barium, and manganese at the concentration of 88; 92.2; and 280 mg/kg-DW, respectively. Based on these results, earthworm Allobophora sp. has potential to reduce heavy metals from contaminated soil in the field of bioremediation process.

  19. [Soil seed bank formation during early revegetation of areas affected by mining in a tropical rain forest of Chocó, Colombia].

    Science.gov (United States)

    Valois-Cuesta, Hamleth; Martínez-Ruiz, Carolina; Urrutia-Rivas, Yorley

    2017-03-01

    Mining is one of the main economic activities in many tropical regions and is the cause of devastation of large areas of natural tropical forests. The knowledge of the regenerative potential of mining disturbed areas provides valuable information for their ecological restoration. The aim of this study was to evaluate the effect of age of abandonment of mines and their distance from the adjacent forest, on the formation of soil seed bank in abandoned mines in the San Juan, Chocó, Colombia. To do this, we determined the abundance and species composition of the soil seed bank, and the dynamics of seed rain in mines of different cessation period of mining activity (6 and 15 years), and at different distances from the adjacent forest matrix (50 and 100 m). Seed rain was composed by five species of plants with anemocorous dispersion, and was more abundant in the mine of 6 years than in the mine of 15 years. There were no significant differences in the number of seeds collected at 50 m and 100 m from the adjacent forest. The soil seed bank was represented by eight species: two with anemocorous dispersion (common among the seed rain species) and the rest with zoochorous dispersion. The abundance of seeds in the soil did not vary with the age of the mine, but was higher at close distances to the forest edge than far away. During the early revegetation, the formation of the soil seed bank in the mines seems to be related to their proximity to other disturbed areas, rather than their proximity to the adjacent forest or the cessation activity period of mines. Therefore, the establishment of artificial perches or the maintenance of isolated trees in the abandoned mines could favour the arrival of bird-dispersed seeds at mines. However, since the soil seed bank can be significantly affected by the high rainfall in the study area, more studies are needed to evaluate management actions to encourage soil seed bank formation in mines of high-rainfall environments in the Choc

  20. Bioremediation of a tropical clay soil contaminated with diesel oil.

    Science.gov (United States)

    Chagas-Spinelli, Alessandra C O; Kato, Mario T; de Lima, Edmilson S; Gavazza, Savia

    2012-12-30

    The removal of polyaromatic hydrocarbons (PAH) in tropical clay soil contaminated with diesel oil was evaluated. Three bioremediation treatments were used: landfarming (LF), biostimulation (BS) and biostimulation with bioaugmentation (BSBA). The treatment removal efficiency for the total PAHs differed from the efficiencies for the removal of individual PAH compounds. In the case of total PAHs, the removal values obtained at the end of the 129-day experimental period were 87%, 89% and 87% for LF, BS and BSBA, respectively. Thus, the efficiency was not improved by the addition of nutrients and microorganisms. Typically, two distinct phases were observed. A higher removal rate occurred in the first 17 days (P-I) and a lower rate occurred in the last 112 days (P-II). In phase P-I, the zero-order kinetic parameter (μg PAH g(-1) soil d(-1)) values were similar (about 4.6) for all the three treatments. In P-II, values were also similar but much lower (about 0.14). P-I was characterized by a sharp pH decrease to less than 5.0 for the BS and BSBA treatments, while the pH remained near 6.5 for LF. Concerning the 16 individual priority PAH compounds, the results varied depending on the bioremediation treatment used and on the PAH species of interest. In general, compounds with fewer aromatic rings were better removed by BS or BSBA, while those with 4 or more rings were most effectively removed by LF. The biphasic removal behavior was observed only for some compounds. In the case of naphthalene, pyrene, chrysene, benzo[k]fluoranthene and benzo[a]pyrene, removal occurred mostly in the P-I phase. Therefore, the best degradation process for total or individual PAHs should be selected considering the target compounds and the local conditions, such as native microbiota and soil type. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Absorption of gamma-emitting fission products and activation products by rice under flooded and unflooded conditions from two tropical soils

    Energy Technology Data Exchange (ETDEWEB)

    D' Souza, T J; Mistry, K B [Bhabha Atomic Research Centre, Bombay (India). Biology and Agriculture Div.

    1980-01-01

    The absorption of gamma-emitting fission products /sup 106/Ru, /sup 125/Sb, /sup 137/Cs and /sup 144/Ce and activation products /sup 59/Fe, /sup 58/Co, /sup 54/Mn and /sup 65/Zn by rice plants grown on two contrasting tropical soils, namely, a blak soil (pellustert) and a laterite (oxisol), and the effects of flooding were studied under controlled conditions. Results indicated greater uptake of /sup 106/Ru and /sup 125/Sb from the black soil than from the laterite. In contrast, the uptake of /sup 144/Ce and /sup 137/Cs was greater in the laterite than in the black soil. Flooding treatment enhanced the uptake of all these fission products by rice plants in the laterite soil whereas this effect was observed only for /sup 125/Sb and /sup 137/Cs in the black soil. The plant uptake of activation products from the two soil types showed maximum accumulation of /sup 65/Zn followed by /sup 54/Mn, /sup 59/Fe and /sup 58/Co in both soil types. Besides, uptake of these nuclides was greater from the laterite soil than from the black soil. Flooding treatment for rice while showing a reduction of /sup 59/Fe uptake showed an increase in plant uptake of /sup 58/Co, /sup 54/Mn and /sup 65/Zn in both soil types.

  2. Securing tropical forest carbon

    DEFF Research Database (Denmark)

    Scharlemann, Jörn P. W.; Kapos, Valerie; Campbell, Alison

    2010-01-01

    Forest loss and degradation in the tropics contribute 6-17% of all greenhouse gas emissions. Protected areas cover 217.2 million ha (19.6%) of the world's humid tropical forests and contain c. 70.3 petagrams of carbon (Pg C) in biomass and soil to 1 m depth. Between 2000 and 2005, we estimate...... that 1.75 million ha of forest were lost from protected areas in humid tropical forests, causing the emission of 0.25-0.33 Pg C. Protected areas lost about half as much carbon as the same area of unprotected forest. We estimate that the reduction of these carbon emissions from ongoing deforestation...... in protected sites in humid tropical forests could be valued at USD 6,200-7,400 million depending on the land use after clearance. This is >1.5 times the estimated spending on protected area management in these regions. Improving management of protected areas to retain forest cover better may be an important...

  3. Pervasive phosphorus limitation of tree species but not communities in tropical forests

    Science.gov (United States)

    Turner, Benjamin L.; Brenes-Arguedas, Tania; Condit, Richard

    2018-03-01

    Phosphorus availability is widely assumed to limit primary productivity in tropical forests, but support for this paradigm is equivocal. Although biogeochemical theory predicts that phosphorus limitation should be prevalent on old, strongly weathered soils, experimental manipulations have failed to detect a consistent response to phosphorus addition in species-rich lowland tropical forests. Here we show, by quantifying the growth of 541 tropical tree species across a steep natural phosphorus gradient in Panama, that phosphorus limitation is widespread at the level of individual species and strengthens markedly below a threshold of two parts per million exchangeable soil phosphate. However, this pervasive species-specific phosphorus limitation does not translate into a community-wide response, because some species grow rapidly on infertile soils despite extremely low phosphorus availability. These results redefine our understanding of nutrient limitation in diverse plant communities and have important implications for attempts to predict the response of tropical forests to environmental change.

  4. Distinctive tropical forest variants have unique soil microbial communities, but not always low microbial diversity

    Directory of Open Access Journals (Sweden)

    Binu M Tripathi

    2016-04-01

    Full Text Available There has been little study of whether different variants of tropical rainforest have distinct soil microbial communities and levels of diversity. We compared bacterial and fungal community composition and diversity between primary mixed dipterocarp, secondary mixed dipterocarp, white sand heath, inland heath, and peat swamp forests in Brunei Darussalam, northwest Borneo by analyzing Illumina Miseq sequence data of 16S rRNA gene and ITS1 region. We hypothesized that white sand heath, inland heath and peat swamp forests would show lower microbial diversity and relatively distinct microbial communities (compared to MDF primary and secondary forests due to their distinctive environments. We found that soil properties together with bacterial and fungal communities varied significantly between forest types. Alpha and beta-diversity of bacteria was highest in secondary dipterocarp and white sand heath forests. Also, bacterial alpha diversity was strongly structured by pH, adding another instance of this widespread pattern in nature. The alpha diversity of fungi was equally high in all forest types except peat swamp forest, although fungal beta-diversity was highest in primary and secondary mixed dipterocarp forests. The relative abundance of ectomycorrhizal (EcM fungi varied significantly between forest types, with highest relative abundance observed in MDF primary forest. Overall, our results suggest that the soil bacterial and fungal communities in these forest types are to a certain extent predictable and structured by soil properties, but that diversity is not determined by how distinctive the conditions are. This contrasts with the diversity patterns seen in rainforest trees, where distinctive soil conditions have consistently lower tree diversity.

  5. Soil Type Has a Stronger Role than Dipterocarp Host Species in Shaping the Ectomycorrhizal Fungal Community in a Bornean Lowland Tropical Rain Forest

    Directory of Open Access Journals (Sweden)

    Adam L. Essene

    2017-10-01

    Full Text Available The role that mycorrhizal fungal associations play in the assembly of long-lived tree communities is poorly understood, especially in tropical forests, which have the highest tree diversity of any ecosystem. The lowland tropical rain forests of Southeast Asia are characterized by high levels of species richness within the family Dipterocarpaceae, the entirety of which has been shown to form obligate ectomycorrhizal (ECM fungal associations. Differences in ECM assembly between co-occurring species of dipterocarp have been suggested, but never tested in adult trees, as a mechanism for maintaining the coexistence of closely related tree species in this family. Testing this hypothesis has proven difficult because the assembly of both dipterocarps and their ECM associates co-varies with the same edaphic variables. In this study, we used high-throughput DNA sequencing of soils and Sanger sequencing of root tips to evaluate how ECM fungi were structured within and across a clay–sand soil nutrient ecotone in a mixed-dipterocarp rain forest in Malaysian Borneo. We compared assembly patterns of ECM fungi in bulk soil to ECM root tips collected from three ecologically distinct species of dipterocarp. This design allowed us to test whether ECM fungi are more strongly structured by soil type or host specificity. As with previous studies of ECM fungi on this plot, we observed that clay vs. sand soil type strongly structured both the bulk soil and root tip ECM fungal communities. However, we also observed significantly different ECM communities associated with two of the three dipterocarp species evaluated on this plot. These results suggest that ECM fungal assembly on these species is shaped by a combination of biotic and abiotic factors, and that the soil edaphic niche occupied by different dipterocarp species may be mediated by distinct ECM fungal assemblages.

  6. Effect of natural West African phosphates on phosphorus uptake by Agrostis and on isotopically dilutable phosphorus (L-value) in five tropical soils

    International Nuclear Information System (INIS)

    Pichot, J.; Truong, B.; Beunard, P.

    1979-01-01

    Six natural West African phosphates are compared with a weak Tunisian phosphate and triple superphosphate in five types of tropical soil. The study consists of a pot experiment using Agrostis as the test plant, over several cuttings, in order to evaluate the uptake of phosphorus by plants and the isotopically dilutable phosphorus of the soil (L-value). The results show that there are very great differences between phosphates from the points of view of speed and degree of solubilization and that the L-value is a good criterion for assessing these differences. (author)

  7. Tropical wetlands: A missing link in the global carbon cycle?

    Science.gov (United States)

    Sjögersten, Sofie; Black, Colin R; Evers, Stephanie; Hoyos-Santillan, Jorge; Wright, Emma L; Turner, Benjamin L

    2014-01-01

    Tropical wetlands are not included in Earth system models, despite being an important source of methane (CH4) and contributing a large fraction of carbon dioxide (CO2) emissions from land use, land use change, and forestry in the tropics. This review identifies a remarkable lack of data on the carbon balance and gas fluxes from undisturbed tropical wetlands, which limits the ability of global change models to make accurate predictions about future climate. We show that the available data on in situ carbon gas fluxes in undisturbed forested tropical wetlands indicate marked spatial and temporal variability in CO2 and CH4 emissions, with exceptionally large fluxes in Southeast Asia and the Neotropics. By upscaling short-term measurements, we calculate that approximately 90 ± 77 Tg CH4 year−1 and 4540 ± 1480 Tg CO2 year−1 are released from tropical wetlands globally. CH4 fluxes are greater from mineral than organic soils, whereas CO2 fluxes do not differ between soil types. The high CO2 and CH4 emissions are mirrored by high rates of net primary productivity and litter decay. Net ecosystem productivity was estimated to be greater in peat-forming wetlands than on mineral soils, but the available data are insufficient to construct reliable carbon balances or estimate gas fluxes at regional scales. We conclude that there is an urgent need for systematic data on carbon dynamics in tropical wetlands to provide a robust understanding of how they differ from well-studied northern wetlands and allow incorporation of tropical wetlands into global climate change models. PMID:26074666

  8. Phosphorus dynamics in a tropical soil amended with green manures and natural inorganic phosphate fertilizers

    Energy Technology Data Exchange (ETDEWEB)

    Rahman, Zaharah Abd; R, Bah Abd [Universiti Putra Malaysia, Serdang (Malaysia). Dept of Land Management

    2002-07-01

    Alleviating P deficiency with natural inorganic phosphates and organic residues has significant economic and environmental advantages in the tropics. However, adapting this technology to various agroecosystems requires greater understanding of P dynamics in such systems. This was studied in an amended Bungor soil in laboratory incubation and glasshouse experiments. Treatments were a factorial combination of green manures GMs (Calopogonium caeruleum, Gliricidia sepium and Imperata cylindrica) and P fertilizers (phosphate rocks (PRs)) from China and Algeria, in 3 replications. The GMs were labeled with {sup 33}P in the glasshouse trial. Olsen P, mineral N, exchangeable Ca and pH were monitored in the incubation at 0,1,2,4,8,16,32 and 64 weeks after establishment (WAE). Soil P fractions were also determined at 64 WAE. Phosphorus available from the amendments at 4, 8, 15, and 20 WAE, was quantified by {sup 33}P-{sup 32}P double isotopic labeling in the glasshouse using Setaria sphacelata (Setaria grass) as test crop. Olsen P was unaffected by the sole P fertilizers, and hardly changed within 16 WAE in the legume GM and legume GM+PR treatments as NH{sub 4}{sup +}-N accumulated and soil pH increased. Afterwards Olsen P and exchangeable Ca increased as NH{sub 4}{sup +}-N and soil pH declined. The legume GMs augmented reversibly sorbed P in Al-P and Fe-P fractions resulting in high residual effect, but fertilizers was irreversibly retained. GM-P availability was very low (< 4%), but GMs enhanced PR solubility and mobilized soil P irrespective of quality, probably by the action of organic acids. Calcium content had negative effect on available P and should be considered when selecting compatible materials in integrated systems. The results are further evidence of the importance of the soil P mobilization capacity of organic components in integrated P management systems. Even low quality Imperata can augment soil P supply when combined with the reactive APR, probably by

  9. Phosphorus dynamics in a tropical soil amended with green manures and natural inorganic phosphate fertilizers

    International Nuclear Information System (INIS)

    Zaharah Abd Rahman; Bah Abd R

    2002-01-01

    Alleviating P deficiency with natural inorganic phosphates and organic residues has significant economic and environmental advantages in the tropics. However, adapting this technology to various agroecosystems requires greater understanding of P dynamics in such systems. This was studied in an amended Bungor soil in laboratory incubation and glasshouse experiments. Treatments were a factorial combination of green manures GMs (Calopogonium caeruleum, Gliricidia sepium and Imperata cylindrica) and P fertilizers (phosphate rocks (PRs) from China and Algeria, in 3 replications. The GMs were labeled with 33 P in the glasshouse trial. Olsen P, mineral N, exchangeable Ca and pH were monitored in the incubation at 0,1,2,4,8,16,32 and 64 weeks after establishment (WAE). Soil P fractions were also determined at 64 WAE. Phosphorus available from the amendments at 4, 8, 15, and 20 WAE, was quantified by 33 P- 32 P double isotopic labeling in the glasshouse using Setaria sphacelata (Setaria grass) as test crop. Olsen P was unaffected by the sole P fertilizers, and hardly changed within 16 WAE in the legume GM and legume GM+PR treatments as NH 4 + -N accumulated and soil pH increased. Afterwards Olsen P and exchangeable Ca increased as NH 4 + -N and soil pH declined. The legume GMs augmented reversibly sorbed P in Al-P and Fe-P fractions resulting in high residual effect, but fertilizers was irreversibly retained. GM-P availability was very low (< 4%), but GMs enhanced PR solubility and mobilized soil P irrespective of quality, probably by the action of organic acids. Calcium content had negative effect on available P and should be considered when selecting compatible materials in integrated systems. The results are further evidence of the importance of the soil P mobilization capacity of organic components in integrated P management systems. Even low quality Imperata can augment soil P supply when combined with the reactive APR, probably by conserving soil moisture. (Author)

  10. Effects of a deep-rooted crop and soil amended with charcoal on spatial and temporal runoff patterns in a degrading tropical highland watershed

    NARCIS (Netherlands)

    Bayabil, Haimanote K.; Tebebu, Tigist Y.; Stoof, Cathelijne R.; Steenhuis, Tammo S.

    2016-01-01

    Placement and hence performance of many soil and water conservation structures in tropical highlands has proven to be challenging due to uncertainty of the actual location of runoff-generating areas in the landscape. This is the case especially in the (sub-)humid areas of the Ethiopian highlands,

  11. Improving the Spatial Prediction of Soil Organic Carbon Stocks in a Complex Tropical Mountain Landscape by Methodological Specifications in Machine Learning Approaches.

    Directory of Open Access Journals (Sweden)

    Mareike Ließ

    Full Text Available Tropical forests are significant carbon sinks and their soils' carbon storage potential is immense. However, little is known about the soil organic carbon (SOC stocks of tropical mountain areas whose complex soil-landscape and difficult accessibility pose a challenge to spatial analysis. The choice of methodology for spatial prediction is of high importance to improve the expected poor model results in case of low predictor-response correlations. Four aspects were considered to improve model performance in predicting SOC stocks of the organic layer of a tropical mountain forest landscape: Different spatial predictor settings, predictor selection strategies, various machine learning algorithms and model tuning. Five machine learning algorithms: random forests, artificial neural networks, multivariate adaptive regression splines, boosted regression trees and support vector machines were trained and tuned to predict SOC stocks from predictors derived from a digital elevation model and satellite image. Topographical predictors were calculated with a GIS search radius of 45 to 615 m. Finally, three predictor selection strategies were applied to the total set of 236 predictors. All machine learning algorithms-including the model tuning and predictor selection-were compared via five repetitions of a tenfold cross-validation. The boosted regression tree algorithm resulted in the overall best model. SOC stocks ranged between 0.2 to 17.7 kg m-2, displaying a huge variability with diffuse insolation and curvatures of different scale guiding the spatial pattern. Predictor selection and model tuning improved the models' predictive performance in all five machine learning algorithms. The rather low number of selected predictors favours forward compared to backward selection procedures. Choosing predictors due to their indiviual performance was vanquished by the two procedures which accounted for predictor interaction.

  12. Variáveis relacionadas à estabilidade de complexos organo-minerais em solos tropicais e subtropicais brasileiros Selected soil-variables related to the stability of organo-minerals complexes in tropical and subtropical brazilian soils

    Directory of Open Access Journals (Sweden)

    Alberto Vasconcellos Inda Junior

    2007-10-01

    Full Text Available A estabilidade de complexos organo-minerais é uma característica importante quanto à química e física de solos tropicais e subtropicais. O objetivo deste estudo foi identificar variáveis relacionadas à estabilidade de complexos organo-minerais, avaliada pela energia de ultra-som necessária para a dispersão total do solo em partículas primárias, em seis solos das regiões Sul e Centro-Oeste do Brasil com textura e mineralogia distintas. A energia de ultra-som necessária para dispersão total dos solos variou de 239 a 2.389J mL-1, sendo diretamente relacionada aos teores de carbono orgânico (R²=0,799, PThe stability of organo-mineral complexes is an important characteristic related to the soil chemistry and physics of tropical and subtropical soils. This study was aimed at identifing the variables related to the stability of organo-mineral complexes, evaluated by ultrasonic energy necessary to complete soil dispersion, of six soils from South and West-Center regions of Brazil with distint texture and mineralogy. The ultrasonic energy to complete soil dispersion varied from 239 a 2389J mL-1, and was positively related to the soil organic carbon concentrations (R²=0.799, P<0.05. The clay mineralogy had an important role to the stability of organo-mineral complexes, which were related to the content of low cristalinity iron oxides (R²=0.586, P<0.10, but did not had relationship with the total pedogenic iron oxides. The qualitative analysis of the clay mineralogy, by X-ray diffraction, evidenced that gibbsite and goethite are the main clay minerals related to the stability of organo-mineral complexes, reinforcing the importance of these minerals on the physical protection and coloidal stability of the soil organic matter in the tropical and subtropical soils.

  13. Streptomyces solisilvae sp. nov., isolated from tropical forest soil.

    Science.gov (United States)

    Zhou, Shuangqing; Yang, Xiaobo; Huang, Dongyi; Huang, Xiaolong

    2017-09-01

    A novel streptomycete (strain HNM0141T) was isolated from tropical forest soil collected from Bawangling mountain of Hainan island, PR China and its taxonomic position was established in a polyphasic study. The organism had chemical and morphological properties consistent with its classification as a member of the Streptomyces violaceusnigerclade. On the basis of the results of 16S rRNA gene sequence analysis, HNM0141T showed highest similarity to Streptomyces malaysiensisCGMCC4.1900T (99.4 %), Streptomyces samsunensis DSM 42010T (98.9 %), Streptomyces yatensis NBRC 101000T (98.3 %), Streptomyces rhizosphaericus NBRC 100778T (98.0 %) and Streptomyces sporoclivatus NBRC 100767T (97.9 %). The strain formed a well-delineated subclade with S. malaysiensis CGMCC4.1900T and S. samsunensis DSM 42010T. The levels of DNA-DNA relatedness between HNM0141T and S. malaysiensis CGMCC4.1900T and S. samsunensis DSM 42010T were 62 and 44 %, respectively. On the basis of phenotypic and genotypic characteristics, HNM0141T represents a novel species in the S. violaceusnigerclade for which the name Streptomyces solisilvae sp. nov. is proposed. The type strain is HNM0141 T (=CCTCC AA 2016045T=KCTC 39905T).

  14. Impacts of Sewage Sludge in Tropical Soil: A Case Study in Brazil

    International Nuclear Information System (INIS)

    Bettiol, W.; Ghini, R.

    2011-01-01

    A long-term assay was conducted to evaluate the environmental impacts of agriculture use of sewage sludge on a tropical soil. This paper describes and discusses the results obtained by applying a interdisciplinary approach and the valuable insights gained. Experimental site was located in Jaguariuna (SP, Brazil). Multiyear comparison was developed with the application of sewage sludge obtained from wastewater treatment plants at Barueri (domestic and industrial sewage) and Franca (domestic sewage), Sao Paulo State. The treatments were control, mineral fertilization, and sewage sludge applied based on the N concentration that provides the same amount of N as in the mineral fertilization recommended for corn crop, two, four, and eight times the N recommended dosage. The results obtained indicated that the amount of sewage sludge used in agricultural areas must be calculated based on the N crop needs, and annual application must be avoided to prevent over applications.

  15. Dynamics of carbon 14 in soils: a review

    International Nuclear Information System (INIS)

    Tamponnet, C.

    2004-01-01

    In terrestrial ecosystems, soil is the main interface between atmosphere, hydrosphere, lithosphere and biosphere. Its interactions with carbon cycle are primordial. Information about carbon 14 dynamics in soils is quite dispersed and an up-to-date status is therefore presented in this paper. Carbon 14 dynamics in soils are governed by physical processes (soil structure, soil aggregation, soil erosion) chemical processes (sequestration by soil components either mineral or organic), and soil biological processes (soil microbes, soil fauna, soil biochemistry). The relative importance of such processes varied remarkably among the various biomes (tropical forest, temperate forest, boreal forest, tropical savannah, temperate pastures, deserts, tundra, marshlands, agro ecosystems) encountered in the terrestrial eco-sphere. Moreover, application for a simplified modelling of carbon 14 dynamics in soils is proposed. (author)

  16. Associations between soil variables and vegetation structure and composition of Caribbean dry forests

    Science.gov (United States)

    Elvia M. Melendez-Ackerman; Julissa Rojas-Sandoval; Danny S. Fernandez; Grizelle Gonzalez; Hana Lopez; Jose Sustache; Mariely Morales; Miguel Garcia-Bermudez; Susan Aragon

    2016-01-01

    Soil–vegetation associations have been understudied in tropical dry forests when compared to the amount of extant research on this issue in tropical wet forests. Recent studies assert that vegetation in tropical dry forests is highly heterogeneous and that soil variability may be a contributing factor. In this study, we evaluated the relationship between soil variables...

  17. Fate of Deposited Nitrogen in Tropical Forests in Southern China

    DEFF Research Database (Denmark)

    Gurmesa, Geshere Abdisa

    and denitrification from the ecosystem. Loss of N, in turn, has many negative consequences, including soil and surface water acidification, plant nutrient imbalances and related adverse effects on biological diversities. Increased atmospheric N deposition that is anticipated for tropical regions may further aggravate...... as N export in soil water in tropical forests. Total annual atmospheric deposition of N to the forest in the study period was 51 kg N ha-1yr-1. Nitrogen deposition was dominated by NH4-N due to intensive agricultural NH3 emissions in nearby areas. Nitrate dominated leaching loss from the soil...... after the last addition and by monitoring leaching of 15N in soil water on a monthly basis. The result showed that deposited N is effectively retained in plant and soil pools resembling and exceeding that observed for temperate forests. Furthermore, increased N input decreased the N retention efficiency...

  18. Test of validity of a dynamic soil carbon model using data from leaf litter decomposition in a West African tropical forest

    Science.gov (United States)

    Guendehou, G. H. S.; Liski, J.; Tuomi, M.; Moudachirou, M.; Sinsin, B.; Mäkipää, R.

    2013-05-01

    We evaluated the applicability of the dynamic soil carbon model Yasso07 in tropical conditions in West Africa by simulating the litter decomposition process using as required input into the model litter mass, litter quality, temperature and precipitation collected during a litterbag experiment. The experiment was conducted over a six-month period on leaf litter of five dominant tree species, namely Afzelia africana, Anogeissus leiocarpa, Ceiba pentandra, Dialium guineense and Diospyros mespiliformis in a semi-deciduous vertisol forest in Southern Benin. Since the predictions of Yasso07 were not consistent with the observations on mass loss and chemical composition of litter, Yasso07 was fitted to the dataset composed of global data and the new experimental data from Benin. The re-parameterized versions of Yasso07 had a good predictive ability and refined the applicability of the model in Benin to estimate soil carbon stocks, its changes and CO2 emissions from heterotrophic respiration as main outputs of the model. The findings of this research support the hypothesis that the high variation of litter quality observed in the tropics is a major driver of the decomposition and needs to be accounted in the model parameterization.

  19. Vegetational dynamics in some tropical abandoned rice fields in the ...

    African Journals Online (AJOL)

    In many areas of tropics, agroecosystems are developed by clearing the natural forests. Conversion of natural forests to agricultural systems leads to loss of several soil ecological attributes responsible to maintain the soil fertility. Therefore in such converted agroecosystems the soil fertility often declines. In order to meet the ...

  20. Bioremediation potential of a tropical soil contaminated with a mixture of crude oil and production water.

    Science.gov (United States)

    Alvarez, Vanessa Marques; Santos, Silvia Cristina Cunha Dos Santos; Casella, Renata da Costa; Vital, Ronalt Leite; Sebastin, Gina Vasquez; Seldin, Lucy

    2008-12-01

    A typical tropical soil from the northeast of Brazil, where an important terrestrial oil field is located, was accidentally contaminated with a mixture of oil and saline production water. To study the bioremediation potential in this area, molecular methods based on PCR-DGGE were used to determine the diversity of the bacterial communities in bulk and in contaminated soils. Bacterial fingerprints revealed that the bacterial communities were affected by the presence of the mixture of oil and production water, and different profiles were observed when the contaminated soils were compared with the control. Halotolerant strains capable of degrading crude oil were also isolated from enrichment cultures obtained from the contaminated soil samples. Twenty-two strains showing these features were characterized genetically by amplified ribosomal DNA restriction analysis (ARDRA) and phenotypically by their colonial morphology and tolerance to high NaCl concentrations. Fifteen ARDRA groups were formed. Selected strains were analyzed by 16S rDNA sequencing, and Actinobacteria was identified as the main group found. Strains were also tested for their growth capability in the presence of different oil derivatives (hexane, dodecane, hexadecane, diesel, gasoline, toluene, naphthalene, o-xylene, and p-xylene) and different degradation profiles were observed. PCR products were obtained from 12 of the 15 ARDRA representatives when they were screened for the presence of the alkane hydroxylase gene (alkB). Members of the genera Rhodococcus and Gordonia were identified as predominant in the soil studied. These genera are usually implicated in oil degradation processes and, as such, the potential for bioremediation in this area can be considered as feasible.

  1. After more than a decade of soil moisture deficit, tropical rainforest trees maintain photosynthetic capacity, despite increased leaf respiration.

    Science.gov (United States)

    Rowland, Lucy; Lobo-do-Vale, Raquel L; Christoffersen, Bradley O; Melém, Eliane A; Kruijt, Bart; Vasconcelos, Steel S; Domingues, Tomas; Binks, Oliver J; Oliveira, Alex A R; Metcalfe, Daniel; da Costa, Antonio C L; Mencuccini, Maurizio; Meir, Patrick

    2015-12-01

    Determining climate change feedbacks from tropical rainforests requires an understanding of how carbon gain through photosynthesis and loss through respiration will be altered. One of the key changes that tropical rainforests may experience under future climate change scenarios is reduced soil moisture availability. In this study we examine if and how both leaf photosynthesis and leaf dark respiration acclimate following more than 12 years of experimental soil moisture deficit, via a through-fall exclusion experiment (TFE) in an eastern Amazonian rainforest. We find that experimentally drought-stressed trees and taxa maintain the same maximum leaf photosynthetic capacity as trees in corresponding control forest, independent of their susceptibility to drought-induced mortality. We hypothesize that photosynthetic capacity is maintained across all treatments and taxa to take advantage of short-lived periods of high moisture availability, when stomatal conductance (gs ) and photosynthesis can increase rapidly, potentially compensating for reduced assimilate supply at other times. Average leaf dark respiration (Rd ) was elevated in the TFE-treated forest trees relative to the control by 28.2 ± 2.8% (mean ± one standard error). This mean Rd value was dominated by a 48.5 ± 3.6% increase in the Rd of drought-sensitive taxa, and likely reflects the need for additional metabolic support required for stress-related repair, and hydraulic or osmotic maintenance processes. Following soil moisture deficit that is maintained for several years, our data suggest that changes in respiration drive greater shifts in the canopy carbon balance, than changes in photosynthetic capacity. © 2015 John Wiley & Sons Ltd.

  2. Beyond the Dams: Linking Rural Smallholder Soil and Water Management Practices in Tropical Deltas to Sea Level Rise Vulnerability

    Science.gov (United States)

    Rogers, K. G.; Syvitski, J. P.; Brondizio, E. S.

    2014-12-01

    The increased vulnerability of deltaic communities to coastal flooding as a result of upstream engineering has been acknowledged for decades. What has received less attention is the sensitivity of deltas to the interactions of river basin modifications and cultivation and irrigation in their coastal regions, particularly in tropical deltas. Embanking, tilling, and crop or stock choice all affect the movement of sediment and water on deltas. Combined with reduced river and sediment discharge, soil and water management practices in coastal areas may in fact exacerbate the risk of tidal flooding, erosion of arable land, and salinization of soils and groundwater associated with sea level rise. Thus exists a cruel irony to smallholder subsistence farmers whose priorities are food, water and economic security, rather than sustainability of the regional environment. Such issues challenge disciplinary approaches and require integrated social-biophysical models able to understand and diagnose these complex relationships. The complementary Institutional Analysis and Development and SocioEcological Systems frameworks are applied to the southwestern Bengal Delta (Bangladesh). The method helps to define the relevant social and physical units operating on the common pool of environmental resources, those of climate, water and sediment. The conceptual frameworks are designed to inform development of a nested geospatial analysis and a dynamic coupled model to identify the social-biophysical feedbacks associated with smallholder soil and water management practices, coastal dynamics, and climate vulnerability in rural Bangladesh. Our presentation will discuss components of the conceptual frameworks and will introduce a bi-directional pilot study designed for obtaining and disseminating information about environmental change to farmers in southwest Bangladesh with potential application to rural farming communities in other tropical deltas.

  3. Podoconiosis, a neglected tropical disease

    NARCIS (Netherlands)

    Korevaar, D. A.; Visser, B. J.

    2012-01-01

    Podoconiosis or 'endemic non-filarial elephantiasis' is a tropical disease caused by exposure of bare feet to irritant alkaline clay soils. This causes an asymmetrical swelling of the feet and lower limbs due to lymphoedema. Podoconiosis has a curable pre-elephantiasic phase. However, once

  4. Effects of phosphorus addition on nitrogen cycle and fluxes of N2O and CH4 in tropical tree plantation soils in Thailand

    Directory of Open Access Journals (Sweden)

    Taiki Mori

    2017-04-01

    Full Text Available An incubation experiment was conducted to test the effects of phosphorus (P addition on nitrous oxide (N2O emissions and methane (CH4 uptakes, using tropical tree plantation soils in Thailand. Soil samples were taken from five forest stands—Acacia auriculiformis, Acacia mangium, Eucalyptus camaldulensis, Hopea odorata, and Xylia xylocarpa—and incubated at 80% water holding capacity. P addition stimulated N2O emissions only in Xylia xylocarpa soils. Since P addition tended to increase net ammonification rates in Xylia xylocarpa soils, the stimulated N2O emissions were suggested to be due to the stimulated nitrogen (N cycle by P addition and the higher N supply for nitrification and denitrification. In other soils, P addition had no effects on N2O emissions or soil N properties, except that P addition tended to increase the soil microbial biomass N in Acacia auriculiformis soils. No effects of P addition were observed on CH4 uptakes in any soil. It is suggested that P addition on N2O and CH4 fluxes at the study site were not significant, at least under laboratory conditions.

  5. Aggregate stability and soil degradation in the tropics

    International Nuclear Information System (INIS)

    Mbagwu, J.S.C.

    2004-01-01

    Aggregate stability is a measure of the structural stability of soils. Factors that influence aggregate stability are important in evaluating the ease with which soils erode by water and/or wind, the potential of soils to crust and/or seal, soil permeability, quasi-steady state infiltration rates and seedling emergence and in predicting the capacity of soils to sustain long-term crop production. Aggregate stability of soils can be measured by the wet-sieving or raindrop techniques. A reduction in soil aggregate stability implies an increase in soil degradation. Hence aggregate stability and soil degradation are interwoven. The measures used can either be preventive or remedial. Preventive practices minimize the chances of soil degradation occurring or the magnitude or severity of the damage when the degradation manifests. These include in Nigeria, (i) manuring and mulching, (ii) planted fallows and cover crops, (iii) sustainable farming systems, (iv) adequate rotations, (v) home gardens or compound farms, (vi) alley cropping and related agro forestry systems, and (vii) chemical fertilizers which are mainly remedial measures. Because of alterations in soil properties that affect particular land uses, soils may degrade for one crop (maize rather sorghum). As long as some land use is possible soil degradation is not always an absolute concept. Decline in agricultural productivity should be evaluated in terms of inputs such as fertilizer use, water management and tillage methods. We can alleviate some types of soil degradation by use of micronutrients, inorganic fertilizers and organic residues. Soil that responds to management practices cannot be said to be degraded. Since crop growth depends on weather, degraded soils may be more sensitive to harsh weather (e.g. drought, temperature) than undegraded soils. A soil is degraded if its productivity falls below the economic threshold even under favourable weather conditions or with judicious inputs. All human

  6. Soil properties, greenhouse gas emissions and crop yield under compost, biochar and co-composted biochar in two tropical agronomic systems.

    Science.gov (United States)

    Bass, Adrian M; Bird, Michael I; Kay, Gavin; Muirhead, Brian

    2016-04-15

    The addition of organic amendments to agricultural soils has the potential to increase crop yields, reduce dependence on inorganic fertilizers and improve soil condition and resilience. We evaluated the effect of biochar (B), compost (C) and co-composted biochar (COMBI) on the soil properties, crop yield and greenhouse gas emissions from a banana and a papaya plantation in tropical Australia in the first harvest cycle. Biochar, compost and COMBI organic amendments improved soil properties, including significant increases in soil water content, CEC, K, Ca, NO3, NH4 and soil carbon content. However, increases in soil nutrient content and improvements in physical properties did not translate to improved fruit yield. Counter to our expectations, banana crop yield (weight per bunch) was reduced by 18%, 12% and 24% by B, C and COMBI additions respectively, and no significant effect was observed on the papaya crop yield. Soil efflux of CO2 was elevated by addition of C and COMBI amendments, likely due to an increase in labile carbon for microbial processing. Our data indicate a reduction in N2O flux in treatments containing biochar. The application of B, C and COMBI amendments had a generally positive effect on soil properties, but this did not translate into a crop productivity increase in this study. The benefits to soil nutrient content, soil carbon storage and N2O emission reduction need to be carefully weighed against potentially deleterious effects on crop yield, at least in the short-term. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Toxicity of four veterinary pharmaceuticals on the survival and reproduction of Folsomia candida in tropical soils.

    Science.gov (United States)

    Zortéa, Talyta; Segat, Julia C; Maccari, Ana Paula; Sousa, José Paulo; Da Silva, Aleksandro S; Baretta, Dilmar

    2017-04-01

    This study aimed to evaluate the effect of veterinary pharmaceuticals (VPs) used to control endo- and ectoparasites in ruminants, on the survival and reproduction of the collembolan species Folsomia candida. Standard ecotoxicological tests were conducted in Tropical Artificial Soil and the treatments consisted of increasing dosages of four commercial products with different active ingredients: ivermectin, fipronil, fluazuron and closantel. Ecotoxicological effects were related to the class and mode of action of the different compounds. Fipronil and ivermectin were the most toxic compounds causing a significant reduction in the number of juveniles at the lowest doses tested (LOEC reprod values of 0.3 and 0.2 mg kg -1 of dry soil, respectively) and similar low EC 50 values (fipronil: 0.19 mg kg -1 dry soil, CL 95% 0.16-0.22; ivermectin: 0.43 mg kg -1 dry soil, CL 95% 0.09-0.77), although the effects observed in the former compound were possibly related to a low adult survival (LC 50 of 0.62 mg kg -1 dry soil; CL 95% : 0.25-1.06). For the latter compound no significant lethal effects were observed. Fluazuron caused an intermediate toxicity (EC 50 of 3.07 mg kg -1 dry soil, CL 95% : 2.26-3.87), and also here a decrease in adult survival could explain the effects observed at reproduction. Closantel, despite showing a significant reduction on the number of juveniles produced, no dose-response relationship nor effects higher than 50% were observed. Overall, all tested compounds, especially ivermectin, when present in soil even at sub-lethal concentrations, can impair the reproduction of collembolans and possibly other arthropods. However, the actual risk to arthropod communities should be further investigated performing tests under a more realistic exposure (e.g., by testing the dung itself as the contaminated matrix) and by deriving ecotoxicologically relevant exposure concentration in soil derived from the presence of cattle dung. Copyright © 2017 Elsevier

  8. Effects of nutrient additions on ecosystem carbon cycle in a Puerto Rican tropical wet forest

    Science.gov (United States)

    YIQING LI; MING XU; XIAOMING ZOU

    2006-01-01

    Wet tropical forests play a critical role in global ecosystem carbon (C) cycle, but C allocation and the response of different C pools to nutrient addition in these forests remain poorly understood. We measured soil organic carbon (SOC), litterfall, root biomass, microbial biomass and soil physical and chemical properties in a wet tropical forest from May 1996 to July...

  9. Management of organic matter in the tropics: Translating theory into practice

    NARCIS (Netherlands)

    Palm, C.A.; Giller, K.E.; Mafongoya, P.L.; Swift, M.J.

    2001-01-01

    Inputs of organic materials play a central role in the productivity of many tropical farming systems by providing nutrients through decomposition and substrate for synthesis of soil organic matter (SOM). The organic inputs in many tropical farming systems such as crop residues, manures, and natural

  10. Occurrence of culturable soil fungi in a tropical moist deciduous forest Similipal Biosphere Reserve, Odisha, India.

    Science.gov (United States)

    Jena, Santanu K; Tayung, Kumanand; Rath, Chandi C; Parida, Debraj

    2015-03-01

    Similipal Biosphere Reserve (SBR) is a tropical moist deciduous forest dominated by the species Shorea robusta . To the best of our knowledge their rich biodiversity has not been explored in term of its microbial wealth. In the present investigation, soil samples were collected from ten selected sites inside SBR and studied for their physicochemical parameters and culturable soil fungal diversity. The soil samples were found to be acidic in nature with a pH ranging from of 5.1-6.0. Highest percentage of organic carbon and moisture content were observed in the samples collected from the sites, Chahala-1 and Chahala-2. The plate count revealed that fungal population ranged from 3.6 × 10 (4) -2.1 × 10 (5) and 5.1 × 10 (4) -4.7 × 10 (5) cfu/gm of soil in summer and winter seasons respectively. The soil fungus, Aspergillus niger was found to be the most dominant species and Species Important Values Index (SIVI) was 43.4 and 28.6 in summer and winter seasons respectively. Among the sites studied, highest fungal diversity indices were observed during summer in the sites, Natto-2 and Natto-1. The Shannon-Wiener and Simpson indices in these two sites were found to be 3.12 and 3.022 and 0.9425 and 0.9373 respectively. However, the highest Fisher's alpha was observed during winter in the sites Joranda, Natto-2, Chahala-1 and Natto-1 and the values were 3.780, 3.683, 3.575 and 3.418 respectively. Our investigation revealed that, fungal population was dependent on moisture and organic carbon (%) of the soil but its diversity was found to be regulated by sporulating species like Aspergillus and Penicillium.

  11. Sorption of water vapour by the Na+-exchanged clay-sized fractions of some tropical soil samples

    International Nuclear Information System (INIS)

    Yormah, T.B.R.; Hayes, M.H.B.

    1993-09-01

    Water vapour sorption isotherms at 299K for the Na + -exchanged clay-sized (≤ 2μm e.s.d.) fraction of two sets of samples taken at three different depths from a tropical soil profile have been studied. One set of samples was treated (with H 2 O 2 ) for the removal of much of the organic matter (OM); the other set (of the same samples) was not so treated. The isotherms obtained were all of type II and analyses by the BET method yielded values for the Specific Surface Areas (SSA) and for the average energy of adsorption of the first layer of adsorbate (E a ). OM content and SSA for the untreated samples were found to decrease with depth. Whereas removal of organic matter made negligible difference to the SSA of the top/surface soil, the same treatment produced a significant increase in the SSA of the samples taken from the middle and from the lower depths in the profile; the resulting increase was more pronounced for the subsoil. It has been deduced from these results that OM in the surface soil was less involved with the inorganic soil colloids than that in the subsoil. The increase in surface area which resulted from the removal of OM from the subsoil was most probably due to disaggregation. Values of E a obtained show that for all the samples the adsorption of water vapour became more energetic after the oxidative removal of organic matter; the resulting ΔE a also increased with depth. This suggests that in the dry state, the ''cleaned'' surface of the inorganic soil colloids was more energetic than the ''organic-matter-coater surface''. These data provide strong support for the deduction that OM in the subsoil was in a more ''combined'' state than that in the surface soil. (author). 21 refs, 4 figs, 2 tabs

  12. Occurrence of culturable soil fungi in a tropical moist deciduous forest Similipal Biosphere Reserve, Odisha, India

    Science.gov (United States)

    Jena, Santanu K.; Tayung, Kumanand; Rath, Chandi C.; Parida, Debraj

    2015-01-01

    Similipal Biosphere Reserve (SBR) is a tropical moist deciduous forest dominated by the species Shorea robusta . To the best of our knowledge their rich biodiversity has not been explored in term of its microbial wealth. In the present investigation, soil samples were collected from ten selected sites inside SBR and studied for their physicochemical parameters and culturable soil fungal diversity. The soil samples were found to be acidic in nature with a pH ranging from of 5.1–6.0. Highest percentage of organic carbon and moisture content were observed in the samples collected from the sites, Chahala-1 and Chahala-2. The plate count revealed that fungal population ranged from 3.6 × 10 4 –2.1 × 10 5 and 5.1 × 10 4 –4.7 × 10 5 cfu/gm of soil in summer and winter seasons respectively. The soil fungus, Aspergillus niger was found to be the most dominant species and Species Important Values Index (SIVI) was 43.4 and 28.6 in summer and winter seasons respectively. Among the sites studied, highest fungal diversity indices were observed during summer in the sites, Natto-2 and Natto-1. The Shannon-Wiener and Simpson indices in these two sites were found to be 3.12 and 3.022 and 0.9425 and 0.9373 respectively. However, the highest Fisher’s alpha was observed during winter in the sites Joranda, Natto-2, Chahala-1 and Natto-1 and the values were 3.780, 3.683, 3.575 and 3.418 respectively. Our investigation revealed that, fungal population was dependent on moisture and organic carbon (%) of the soil but its diversity was found to be regulated by sporulating species like Aspergillus and Penicillium . PMID:26221092

  13. Occurrence of culturable soil fungi in a tropical moist deciduous forest Similipal Biosphere Reserve, Odisha, India

    Directory of Open Access Journals (Sweden)

    Santanu K. Jena

    2015-03-01

    Full Text Available Similipal Biosphere Reserve (SBR is a tropical moist deciduous forest dominated by the species Shorea robusta. To the best of our knowledge their rich biodiversity has not been explored in term of its microbial wealth. In the present investigation, soil samples were collected from ten selected sites inside SBR and studied for their physicochemical parameters and culturable soil fungal diversity. The soil samples were found to be acidic in nature with a pH ranging from of 5.1–6.0. Highest percentage of organic carbon and moisture content were observed in the samples collected from the sites, Chahala-1 and Chahala-2. The plate count revealed that fungal population ranged from 3.6 × 104–2.1 × 105 and 5.1 × 104–4.7 × 105 cfu/gm of soil in summer and winter seasons respectively. The soil fungus, Aspergillus niger was found to be the most dominant species and Species Important Values Index (SIVI was 43.4 and 28.6 in summer and winter seasons respectively. Among the sites studied, highest fungal diversity indices were observed during summer in the sites, Natto-2 and Natto-1. The Shannon-Wiener and Simpson indices in these two sites were found to be 3.12 and 3.022 and 0.9425 and 0.9373 respectively. However, the highest Fisher’s alpha was observed during winter in the sites Joranda, Natto-2, Chahala-1 and Natto-1 and the values were 3.780, 3.683, 3.575 and 3.418 respectively. Our investigation revealed that, fungal population was dependent on moisture and organic carbon (% of the soil but its diversity was found to be regulated by sporulating species like Aspergillus and Penicillium.

  14. Variability of 137Cs and 40K soil-to-fruit transfer factor in tropical lemon trees during the fruit development period

    International Nuclear Information System (INIS)

    Velasco, H.; Cid, A.S.; Anjos, R.M.; Zamboni, C.B.; Rizzotto, M.; Valladares, D.L.; Juri Ayub, J.

    2012-01-01

    In this investigation we evaluate the soil uptake of 137 Cs and 40 K by tropical plants and their consequent translocation to fruits, by calculating the soil-to-fruit transfer factors defined as F v = [concentration of radionuclide in fruit (Bq kg −1 dry mass)/concentration of radionuclide in soil (Bq kg −1 dry mass in upper 20 cm)]. In order to obtain F v values, the accumulation of these radionuclides in fruits of lemon trees (Citrus limon B.) during the fruit growth was measured. A mathematical model was calibrated from the experimental data allowing simulating the incorporation process of these radionuclides by fruits. Although the fruit incorporates a lot more potassium than cesium, both radionuclides present similar absorption patterns during the entire growth period. F v ranged from 0.54 to 1.02 for 40 K and from 0.02 to 0.06 for 137 Cs. Maximum F v values are reached at the initial time of fruit growth and decrease as the fruit develops, being lowest at the maturation period. As a result of applying the model a decreasing exponential function is derived for F v as time increases. The agreement between the theoretical approach and the experimental values is satisfactory. - Highlights: ► We assessed the transfer of 137 Cs and 40 K from soil to fruits in tropical plants. ► A mathematical model was developed to describe the dry mass growth of lemon fruits. ► The transfer factors ranged from 0.54 to 1.02 for 40 K and from 0.02 to 0.06 for 137 Cs. ► Maximum values of transfer factors were reached in the initial phase of fruit growth. ► The agreement between the theoretical and the experimental results was satisfactory.

  15. Emergence of nutrient limitation in tropical dry forests: hypotheses from simulation models

    Science.gov (United States)

    Medvigy, D.; Waring, B. G.; Xu, X.; Trierweiler, A.; Werden, L. K.; Wang, G.; Zhu, Q.; Powers, J. S.

    2017-12-01

    It is unclear to what extent tropical dry forest productivity may be limited by nutrients. Direct assessment of nutrient limitation through fertilization experiments has been rare, and paradigms pertaining to other ecosystems may not extend to tropical dry forests. For example, because dry tropical forests have a lower water supply than moist tropical forests, dry forests can have lower decomposition rates, higher soil carbon and nitrogen concentrations, and a more open nitrogen cycle than moist forests. We used a mechanistic, numerical model to generate hypotheses about nutrient limitation in tropical dry forests. The model dynamically couples ED2 (vegetation dynamics), MEND (biogeochemistry), and N-COM (plant-microbe competition for nutrients). Here, the MEND-component of the model has been extended to include nitrogen (N) and phosphorus (P) cycles. We focus on simulation of sixteen 25m x 25m plots in Costa Rica where a fertilization experiment has been underway since 2015. Baseline simulations are characterized by both nitrogen and phosphorus limitation of vegetation. Fertilization with N and P increased vegetation biomass, with N fertilization having a somewhat stronger effect. Nutrient limitation was also sensitive to climate and was more pronounced during drought periods. Overflow respiration was identified as a key process that mitigated nutrient limitation. These results suggest that, despite often having richer soils than tropical moist forests, tropical dry forests can also become nutrient-limited. If the climate becomes drier in the next century, as is expected for Central America, drier soils may decrease microbial activity and exacerbate nutrient limitation. The importance of overflow respiration underscores the need for appropriate treatment of microbial dynamics in ecosystem models. Ongoing and new nutrient fertilization experiments will present opportunities for testing whether, and how, nutrient limitation may indeed be emerging in tropical dry

  16. Predicting the impact of logging activities on soil erosion and water quality in steep, forested tropical islands

    Science.gov (United States)

    Wenger, Amelia S.; Atkinson, Scott; Santini, Talitha; Falinski, Kim; Hutley, Nicholas; Albert, Simon; Horning, Ned; Watson, James E. M.; Mumby, Peter J.; Jupiter, Stacy D.

    2018-04-01

    Increasing development in tropical regions provides new economic opportunities that can improve livelihoods, but it threatens the functional integrity and ecosystem services provided by terrestrial and aquatic ecosystems when conducted unsustainably. Given the small size of many islands, communities may have limited opportunities to replace loss and damage to the natural resources upon which they depend for ecosystem service provisioning, thus heightening the need for proactive, integrated management. This study quantifies the effectiveness of management strategies, stipulated in logging codes-of-practice, at minimizing soil erosion and sediment runoff as clearing extent increases, using Kolombangara Island, Solomon Islands as a case study. Further, we examine the ability of erosion reduction strategies to maintain sustainable soil erosion rates and reduce potential downstream impacts to drinking water and environmental water quality. We found that increasing land clearing—even with best management strategies in place—led to unsustainable levels of soil erosion and significant impacts to downstream water quality, compromising the integrity of the land for future agricultural uses, consistent access to clean drinking water, and important downstream ecosystems. Our results demonstrate that in order to facilitate sustainable development, logging codes of practice must explicitly link their soil erosion reduction strategies to soil erosion and downstream water quality thresholds, otherwise they will be ineffective at minimizing the impacts of logging activities. The approach taken here to explicitly examine soil erosion rates and downstream water quality in relation to best management practices and increasing land clearing should be applied more broadly across a range of ecosystems to inform decision-making about the socioeconomic and environmental trade-offs associated with logging, and other types of land use change.

  17. Conversion of lowland tropical forests to tree cash crop plantations loses up to one-half of stored soil organic carbon.

    Science.gov (United States)

    van Straaten, Oliver; Corre, Marife D; Wolf, Katrin; Tchienkoua, Martin; Cuellar, Eloy; Matthews, Robin B; Veldkamp, Edzo

    2015-08-11

    Tropical deforestation for the establishment of tree cash crop plantations causes significant alterations to soil organic carbon (SOC) dynamics. Despite this recognition, the current Intergovernmental Panel on Climate Change (IPCC) tier 1 method has a SOC change factor of 1 (no SOC loss) for conversion of forests to perennial tree crops, because of scarcity of SOC data. In this pantropic study, conducted in active deforestation regions of Indonesia, Cameroon, and Peru, we quantified the impact of forest conversion to oil palm (Elaeis guineensis), rubber (Hevea brasiliensis), and cacao (Theobroma cacao) agroforestry plantations on SOC stocks within 3-m depth in deeply weathered mineral soils. We also investigated the underlying biophysical controls regulating SOC stock changes. Using a space-for-time substitution approach, we compared SOC stocks from paired forests (n = 32) and adjacent plantations (n = 54). Our study showed that deforestation for tree plantations decreased SOC stocks by up to 50%. The key variable that predicted SOC changes across plantations was the amount of SOC present in the forest before conversion--the higher the initial SOC, the higher the loss. Decreases in SOC stocks were most pronounced in the topsoil, although older plantations showed considerable SOC losses below 1-m depth. Our results suggest that (i) the IPCC tier 1 method should be revised from its current SOC change factor of 1 to 0.6 ± 0.1 for oil palm and cacao agroforestry plantations and 0.8 ± 0.3 for rubber plantations in the humid tropics; and (ii) land use management policies should protect natural forests on carbon-rich mineral soils to minimize SOC losses.

  18. Conversion of lowland tropical forests to tree cash crop plantations loses up to one-half of stored soil organic carbon

    Science.gov (United States)

    van Straaten, Oliver; Corre, Marife D.; Wolf, Katrin; Tchienkoua, Martin; Cuellar, Eloy; Matthews, Robin B.; Veldkamp, Edzo

    2015-01-01

    Tropical deforestation for the establishment of tree cash crop plantations causes significant alterations to soil organic carbon (SOC) dynamics. Despite this recognition, the current Intergovernmental Panel on Climate Change (IPCC) tier 1 method has a SOC change factor of 1 (no SOC loss) for conversion of forests to perennial tree crops, because of scarcity of SOC data. In this pantropic study, conducted in active deforestation regions of Indonesia, Cameroon, and Peru, we quantified the impact of forest conversion to oil palm (Elaeis guineensis), rubber (Hevea brasiliensis), and cacao (Theobroma cacao) agroforestry plantations on SOC stocks within 3-m depth in deeply weathered mineral soils. We also investigated the underlying biophysical controls regulating SOC stock changes. Using a space-for-time substitution approach, we compared SOC stocks from paired forests (n = 32) and adjacent plantations (n = 54). Our study showed that deforestation for tree plantations decreased SOC stocks by up to 50%. The key variable that predicted SOC changes across plantations was the amount of SOC present in the forest before conversion—the higher the initial SOC, the higher the loss. Decreases in SOC stocks were most pronounced in the topsoil, although older plantations showed considerable SOC losses below 1-m depth. Our results suggest that (i) the IPCC tier 1 method should be revised from its current SOC change factor of 1 to 0.6 ± 0.1 for oil palm and cacao agroforestry plantations and 0.8 ± 0.3 for rubber plantations in the humid tropics; and (ii) land use management policies should protect natural forests on carbon-rich mineral soils to minimize SOC losses. PMID:26217000

  19. Effects of land clearing techniques and tillage systems on runoff and soil erosion in a tropical rain forest in Nigeria.

    Science.gov (United States)

    Ehigiator, O A; Anyata, B U

    2011-11-01

    This work reports runoff and soil loss from each of 14 sub-watersheds in a secondary rain forest in south-western Nigeria. The impact of methods of land clearing and post-clearing management on runoff and soil erosion under the secondary forest is evaluated. These data were acquired eighteen years after the deforestation of primary vegetation during the ' West bank' project of the International Institute for Tropical Agriculture (IITA). These data are presented separately for each season; however, statistical analyses for replicates were not conducted due to differences in their past management. Soil erosion was affected by land clearing and tillage methods. The maximum soil erosion was observed on sub-watersheds that were mechanically cleared with tree-pusher/root-rake attachments and tilled conventionally. A high rate of erosion was observed even when graded-channel terraces were constructed to minimize soil erosion. In general there was much less soil erosion on manually cleared than on mechanically cleared sub-watersheds (2.5 t ha(-1) yr(-1) versus 13.8 t ha(-1) yr(-1)) and from the application of no-tillage methods than from conventionally plowed areas (6.5 t ha(-1) yr(-1) versus 12.1 t ha(-1) yr(-1)). The data indicate that tillage methods and appropriate management of soils and crops play an important role in soil and water conservation and in decreasing the rate of decline of soil quality. Copyright © 2011 Elsevier Ltd. All rights reserved.

  20. Soils Newsletter. V. 15, no. 2

    International Nuclear Information System (INIS)

    1992-12-01

    This newsletter contains reports of the five Research Co-ordination Meetings held in 1992; the descriptions of the meetings on ''The use of nuclear and related techniques in the management of nitrogen-fixing trees for enhancing soil fertility and soil conservation'' and ''The use of isotope studies on increasing and stabilizing plant productivity in low phosphate and semi-arid and sub-humid soils of the tropics and sub-tropics'' contain excerpts from presented reports. Also included is a feature on some of the the Technical Co-operation Projects coming under the umbrella of the Regional African Project on Biological Nitrogen Fixation

  1. Arsenic content and forms in some tropical soils

    Energy Technology Data Exchange (ETDEWEB)

    Fassbender, H W

    1975-01-01

    Some Latin American soils were analyzed for total arsenic and its various forms. For the volcanic ash soils from Colombia and Costa Rica an average of 5.1 and 7.0 ppm As was found. Some oxisols and ultisols from Puerto Rico reached an average of 10.0 ppm As. The distribution of arsenic with soil depth does not show any trend; consequently unlike P, it does not undergo biogenic accumulation on soil surfaces. Two soils of Puerto Rico reached exceptional high As values (over 100 ppm); it is believed that As of sea water precipitates with carbonate in calcareous sediments. In these soils Ca-bound As predominates over Fe - and Al-arsenate. In a Costa Rican soil, where arsenic compounds are used to control coffee diseases, a great accumulation of As in the upper soils depths was registered (for 0 to 5 cm from 10.6 to 49.0 ppm As). In the soil profile represents the most important transformation form applied arsenate.

  2. Forests to fields. Restoring tropical lands to agriculture.

    Science.gov (United States)

    Wood, D

    1993-04-01

    In discussing land use in tropical forest regions, there is an emphasis on the following topics: the need for the expansion of cropping areas, the precedent for use of the tropical forest for cropping based on past use patterns, the pressure from conservationists against cropping, debunking the mythology that forests are "natural" and refuting the claims that forest clearance is not reversible, the archeological evidence of past forest use for agricultural purposes, abandonment of tropical land to forest, and rotation of forest and field. The assumption is that the way to stop food importation is to increase crop production in the tropics. Crop production can be increased through 1) land intensification or clearing new land, 2) output per unit of land increases, or 3) reallocation to agriculture land previously cleared and overgrown with tropical forest. "Temporary" reuse of land, which reverted back to tropical forest, is recommended. This reuse would ease population pressure, and benefit bioconservation, while populations stabilize and further progress is made in international plant breeding. The land would eventually be returned to a forest state. Conservation of tropical forest areas should be accomplished, after an assessment has been made of its former uses. Primary forests need to identified and conversion to farming ceased. Research needs to be directed to understanding the process of past forest regeneration, and to devising cropping systems with longterm viability. The green revolution is unsuitable for traditional cropping systems, is contrary to demands of international funding agencies for sustainability, and is not affordable by most poor farmers. Only .48 million sq. km of closed forest loss was in tropical rainforests; 6.53 million sq. km was lost from temperate forests cleared for intensive small-scale peasant farming. The use of tropical forest land for farming has some benefits; crops in the wetter tropics are perennial, which would "reduce

  3. Tropical forage legumes for environmental benefits: An overview

    Directory of Open Access Journals (Sweden)

    Rainer Schultze-Kraft

    2018-01-01

    Full Text Available Ruminant livestock production in the tropics, particularly when based on pastures, is frequently blamed for being detrimental to the environment, allegedly contributing to: (1 degradation and destruction of ecosystems, including degradation and loss of soil, water and biodiversity; and (2 climate change (global warming. In this paper we argue that, rather than being detrimental, tropical forage legumes can have a positive impact on the environment, mainly due to key attributes that characterize the Leguminosae (Fabaceae family: (1 symbiotic nitrogen fixation; (2 high nutritive value; (3 deep-reaching tap-root system; (4 wide taxonomic and genetic diversity; and (5 presence of particular secondary metabolites. Although there are also potential negative aspects, such as soil acidification and the risks of introduced legumes becoming invasive weeds, we submit that legumes have potential to contribute significantly to sustainable intensification of livestock production in the tropics, along with the provision of ecosystem services. To further assess, document and realize this potential, research for development needs in a range of areas are indicated.

  4. Identification of soil bacteria able to degrade phenanthrene bound to a hydrophobic sorbent in situ

    Energy Technology Data Exchange (ETDEWEB)

    Regonne, Raïssa Kom [CEA, DSV/iRTSV, Chimie et Biologie des Métaux, 38054, Grenoble cedex 9 (France); Univ. Grenoble Alpes and CNRS, UMR 5249, 38042, Grenoble (France); Laboratoire de Substances Actives et Pollution, ENSAI, Université de Ngaoundéré, BP 455, Ngaoundéré (Cameroon); Martin, Florence [CEA, DSV/iRTSV, Chimie et Biologie des Métaux, 38054, Grenoble cedex 9 (France); Univ. Grenoble Alpes and CNRS, UMR 5249, 38042, Grenoble (France); Mbawala, Augustin [Laboratoire de Microbiologie, ENSAI, Université de Ngaoundéré, BP 455, Ngaoundéré (Cameroon); Ngassoum, Martin Benoît [Laboratoire de Substances Actives et Pollution, ENSAI, Université de Ngaoundéré, BP 455, Ngaoundéré (Cameroon); Jouanneau, Yves [CEA, DSV/iRTSV, Chimie et Biologie des Métaux, 38054, Grenoble cedex 9 (France); Univ. Grenoble Alpes and CNRS, UMR 5249, 38042, Grenoble (France)

    2013-09-15

    Efficient bioremediation of PAH-contaminated sites is limited by the hydrophobic character and poor bioavailability of pollutants. In this study, stable isotope probing (SIP) was implemented to track bacteria that can degrade PAHs adsorbed on hydrophobic sorbents. Temperate and tropical soils were incubated with {sup 13}C-labeled phenanthrene, supplied by spiking or coated onto membranes. Phenanthrene mineralization was faster in microcosms with PAH-coated membranes than in microcosms containing spiked soil. Upon incubation with temperate soil, phenanthrene degraders found in the biofilms that formed on coated membranes were mainly identified as Sphingomonadaceae and Actinobacteria. In the tropical soil, uncultured Rhodocyclaceae dominated degraders bound to membranes. Accordingly, ring-hydroxylating dioxygenase sequences recovered from this soil matched PAH-specific dioxygenase genes recently found in Rhodocyclaceae. Hence, our SIP approach allowed the detection of novel degraders, mostly uncultured, which differ from those detected after soil spiking, but might play a key role in the bioremediation of PAH-polluted soils. -- Highlights: •Soil bacteria with the ability to degrade sorbent-bound PAHs were investigated. •In soil, membrane-bound phenanthrene was readily mineralized. •PAH degraders found in biofilms were different in temperate and tropical soils. •Uncultured Rhodocyclaceae were dominant phenanthrene degraders in the tropical soil. •PAH-specific ring-hydroxylating dioxygenase sequences were identified in soil DNA. -- Bacteria able to degrade PAHs bound to a hydrophobic sorbent were mainly identified as uncultured Rhodocyclaceae and Sphingomonadaceae in polluted soils from tropical and temperate area, respectively.

  5. Identification of soil bacteria able to degrade phenanthrene bound to a hydrophobic sorbent in situ

    International Nuclear Information System (INIS)

    Regonne, Raïssa Kom; Martin, Florence; Mbawala, Augustin; Ngassoum, Martin Benoît; Jouanneau, Yves

    2013-01-01

    Efficient bioremediation of PAH-contaminated sites is limited by the hydrophobic character and poor bioavailability of pollutants. In this study, stable isotope probing (SIP) was implemented to track bacteria that can degrade PAHs adsorbed on hydrophobic sorbents. Temperate and tropical soils were incubated with 13 C-labeled phenanthrene, supplied by spiking or coated onto membranes. Phenanthrene mineralization was faster in microcosms with PAH-coated membranes than in microcosms containing spiked soil. Upon incubation with temperate soil, phenanthrene degraders found in the biofilms that formed on coated membranes were mainly identified as Sphingomonadaceae and Actinobacteria. In the tropical soil, uncultured Rhodocyclaceae dominated degraders bound to membranes. Accordingly, ring-hydroxylating dioxygenase sequences recovered from this soil matched PAH-specific dioxygenase genes recently found in Rhodocyclaceae. Hence, our SIP approach allowed the detection of novel degraders, mostly uncultured, which differ from those detected after soil spiking, but might play a key role in the bioremediation of PAH-polluted soils. -- Highlights: •Soil bacteria with the ability to degrade sorbent-bound PAHs were investigated. •In soil, membrane-bound phenanthrene was readily mineralized. •PAH degraders found in biofilms were different in temperate and tropical soils. •Uncultured Rhodocyclaceae were dominant phenanthrene degraders in the tropical soil. •PAH-specific ring-hydroxylating dioxygenase sequences were identified in soil DNA. -- Bacteria able to degrade PAHs bound to a hydrophobic sorbent were mainly identified as uncultured Rhodocyclaceae and Sphingomonadaceae in polluted soils from tropical and temperate area, respectively

  6. Temporal and spatial variations of soil carbon dioxide, methane, and nitrous oxide fluxes in a Southeast Asian tropical rainforest

    Science.gov (United States)

    Itoh, M.; Kosugi, Y.; Takanashi, S.; Hayashi, Y.; Kanemitsu, S.; Osaka, K.; Tani, M.; Nik, A. R.

    2010-09-01

    To clarify the factors controlling temporal and spatial variations of soil carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) fluxes, we investigated these gas fluxes and environmental factors in a tropical rainforest in Peninsular Malaysia. Temporal variation of CO2 flux in a 2-ha plot was positively related to soil water condition and rainfall history. Spatially, CO2 flux was negatively related to soil water condition. When CO2 flux hotspots were included, no other environmental factors such as soil C or N concentrations showed any significant correlation. Although the larger area sampled in the present study complicates explanations of spatial variation of CO2 flux, our results support a previously reported bipolar relationship between the temporal and spatial patterns of CO2 flux and soil water condition observed at the study site in a smaller study plot. Flux of CH4 was usually negative with little variation, resulting in the soil at our study site functioning as a CH4 sink. Both temporal and spatial variations of CH4 flux were positively related to the soil water condition. Soil N concentration was also related to the spatial distribution of CH4 flux. Some hotspots were observed, probably due to CH4 production by termites, and these hotspots obscured the relationship between both temporal and spatial variations of CH4 flux and environmental factors. Temporal variation of N2O flux and soil N2O concentration was large and significantly related to the soil water condition, or in a strict sense, to rainfall history. Thus, the rainfall pattern controlled wet season N2O production in soil and its soil surface flux. Spatially, large N2O emissions were detected in wet periods at wetter and anaerobic locations, and were thus determined by soil physical properties. Our results showed that, even in Southeast Asian rainforests where distinct dry and wet seasons do not exist, variation in the soil water condition related to rainfall history controlled the

  7. Characterizing the Suitability of Selected Indigenous Soil Improving Legumes in a Humid Tropical Environment Using Shoot and Root Attributes

    Directory of Open Access Journals (Sweden)

    Anikwe, MAN.

    2003-01-01

    Full Text Available We studied the biomass accumulation, root length, nodulation, and chemical composition of roots and shoot of ten indigenous soil improving legumes in a humid tropical ecosystem with the view to selecting species for soil improvement programmes. Two cultivars of Vigna unguiculata, and one each of Glycine max, Arachis hypogaea, Crotararia ochroleuca, Cajanus cajan, Pueraria phaseoloides, Lablab purpureus, Mucuna pruriens and Vigna subterranea as treatments were planted in 20 kg pots containing soil from an Oxic paleustalf in Nigeria. The pots were arranged in randomized complete block layout with three replications in a greenhouse at IITA Ibadan, Nigeria. Results from the work show that M. pruriens and C. cajan produced the highest quantity of biomass. Root elongation was highest in M. pruriens whereas A. hypogaea produced the most root nodules with native rhizobia. The highest quantity of nodule dry weight was produced by A. hypogaea and P. phaseoloides whereas most of the legumes except G. max and P. phaseoloides had high and statistically comparable N content of between 2.36 and 3.34 mg.kg-1 N. The results show that the legumes have different root and shoot characteristics, which should be taken into consideration when selecting species for soil improvement programmes.

  8. Study of ferrallitisation process in soil by application of isotopic dilution kinetic technique to iron

    International Nuclear Information System (INIS)

    Thomann, Christiane

    1978-01-01

    Isotopic dilution kinetic technique applied to iron may contribute to make clear the conditions of ''potential'' mobility of iron in soils, under the action of three factors: moisture, incubation period and organic matter imputs. Comparison between surface horizons of three tropical soils: leached ferruginous tropical soil, weakly ferrallitic red soil and ferrallitic soil shows that in the ferrallitisation process, weakly ferrallitic soil would take place between the two other types of soils with a maximum mobility of iron. This mobility decreases when organic matter rate decreases leading then to ''beige'' soil (ferruginous leached tropical soil), and when hydroxide rate increases, which leads to ferrallitic soil. In podzol (A 1 horizon), for the same rate of organic matter, potential mobility of iron is higher than in ferallitic soil, because it contains ten times more free iron than the podzol [fr

  9. Aluminium tolerance of Mucuna : A tropical leguminous cover crop

    NARCIS (Netherlands)

    Hairiah, Kurniatun

    1992-01-01

    In the humid tropics leaching of N and other nutrients to the subsoil may occur throughout the growing season. Typically, soils in this zone have a low soil pH, a high Al saturation of the cation exchange complex and low levels of Ca and P in the subsoil. Efficiency of N-use under such conditions

  10. Root depth and morphology in response to soil drought: comparing ecological groups along the secondary succession in a tropical dry forest.

    Science.gov (United States)

    Paz, Horacio; Pineda-García, Fernando; Pinzón-Pérez, Luisa F

    2015-10-01

    Root growth and morphology may play a core role in species-niche partitioning in highly diverse communities, especially along gradients of drought risk, such as that created along the secondary succession of tropical dry forests. We experimentally tested whether root foraging capacity, especially at depth, decreases from early successional species to old-growth forest species. We also tested for a trade-off between two mechanisms for delaying desiccation, the capacity to forage deeper in the soil and the capacity to store water in tissues, and explored whether successional groups separate along such a trade-off. We examined the growth and morphology of roots in response to a controlled-vertical gradient of soil water, among seedlings of 23 woody species dominant along the secondary succession in a tropical dry forest of Mexico. As predicted, successional species developed deeper and longer root systems than old-growth forest species in response to soil drought. In addition, shallow root systems were associated with high plant water storage and high water content per unit of tissue in stems and roots, while deep roots exhibited the opposite traits, suggesting a trade-off between the capacities for vertical foraging and water storage. Our results suggest that an increased capacity of roots to forage deeper for water is a trait that enables successional species to establish under the warm-dry conditions of the secondary succession, while shallow roots, associated with a higher water storage capacity, are restricted to the old-growth forest. Overall, we found evidence that the root depth-water storage trade-off may constrain tree species distribution along secondary succession.

  11. Soil physical conditions in Nigerian savannas and biomass production

    International Nuclear Information System (INIS)

    Salako, F.K.

    2004-01-01

    Nigeria is located in the tropical zone, with a vast area having savanna vegetation. This is a region that is itself diverse, necessitating a classification into derived savanna, southern Guinea savanna and northern Guinea savanna. These classifications reflect environmental characteristics such as length of growing period, which for instance is 151-180 days for the northern Guinea savanna, 181-210 days for the southern Guinea savanna and 211-270 days for the derived savanna/coastal savanna. The major soils found in the various agro-ecological zones have coarse-textured surface soil, and are low in organic matter and chemical fertility. Although, yields can be improved by addition of inorganic and organic fertilizer, this can only be sustained and assured with high soil physical qualities. Soil physical qualities can be sustained at a high level with conservation tillage and soil conservation measures. Tillage is physical manipulation of the soil. Thus, the most profound effect of tillage is in relation to soil physical properties. For socio-economic and cultural reasons, manual tillage is still widely practiced in Africa as farming is largely at subsistence level. However, there are now a number of commercial farms especially for cash crop production in many parts of Africa. Many of these are located in locations which were hitherto reserved as forest and a need for sustainable production in pertinent to maintain ecological balance. Soils with coarse texture are not often sensitive to some physical parameters while some physical parameters are more relevant in a given study than others. Sustainable crop production researches in the tropics have focused on the role of planted fallows and their spatial arrangement (e.g., as in alley cropping) for many decades. Application of soil physics in the area of food production and environmental management still lags behind other sub-disciplines of soil science, particularly soil fertility in the tropics. A great challenge is

  12. Agro-Science Journal of Tropical Agriculture, Food, Environment ...

    African Journals Online (AJOL)

    PC USER

    Agro-Science Journal of Tropical Agriculture, Food, Environment and Extension. Volume 12 Number 3 ... agricultural field one could maintain a high level of soil fertility. ..... Journal of Applied Biosciences. 7: 202-206. ... International Journal of.

  13. Visual soil evaluation and soil compaction research

    DEFF Research Database (Denmark)

    M.L. Guimarães, Rachel; Keller, Thomas; Munkholm, Lars Juhl

    2017-01-01

    Following on from discussions that took place during the 19th International Conference of the International Soil Tillage Research Organization (ISTRO) in Montevideo, Uruguay, in 2012, the ISTRO working groups “Visual Soil Examination and Evaluation” (VSEE) and “Subsoil Compaction” decided...... to organize a joint workshop. The present special issue is an outcome from the workshop on “Soil structural quality of tropical soils: Visual evaluation methods and soil compaction prevention strategies” that was held 26–29 May 2014 in Maringá, Paraná, Brazil. There has been a long-lasting interest in Visual...... Soil Evaluation (VSE). An ISTRO working group was established more than 30 years ago with the objectives to exchange knowledge and experiences on field methods of visual-tactile soil assessment and to foster international cooperation on new or refined methods. The three previous meeting of the group...

  14. Microbial drivers of spatial heterogeneity of nitrous oxide pulse dynamics following drought in an experimental tropical rainforest

    Science.gov (United States)

    Young, J. C.; Sengupta, A.; U'Ren, J.; Van Haren, J. L. M.; Meredith, L. K.

    2017-12-01

    Nitrous oxide (N2O) is a long-lived, potent greenhouse gas with increasing atmospheric concentrations. Soil microbes in agricultural and natural ecosystems are the dominant source of N2O, which involves complex interactions between N-cycling microbes, metabolisms, soil properties, and plants. Tropical rainforests are the largest natural source of N2O, however the microbial and environmental drivers are poorly understood as few studies have been performed in these environments. Thus, there is an urgent need for further research to fill in knowledge gaps regarding tropical N-cycling, and the response of soil microbial communities to changes in precipitation patterns, temperature, nitrogen deposition, and land use. To address this data gap, we performed a whole-forest drought in the tropical rainforest biome in Biosphere 2 (B2) and analyzed connections between soil microbes, forest heterogeneity, and N2O emissions. The B2 rainforest is the hottest tropical rainforest on Earth, and is an important model system for studying the response of tropical forests to warming with controlled experimentation. In this study, we measured microbial community abundance and diversity profiles (16S rRNA and ITS2 amplicon sequencing) along with their association with soil properties (e.g. pH, C, N) during the drought and rewetting at five locations (3 depths), including regions that have been previously characterized with high and low N2O drought pulse dynamics (van Haren et al., 2005). In this study, we present the spatial distribution of soil microbial communities within the rainforest at Biosphere 2 and their correlations with edaphic factors. In particular, we focus on microbial, soil, and plant factors that drive high and low N2O pulse zones. As in the past, we found that N2O emissions were highest in response to rewetting in a zone hypothesized to be rich in nutrients from a nearby sugar palm. We will characterize microbial indicator species and nitrogen cycling genes to better

  15. Farm management, not soil microbial diversity, controls nutrient loss from smallholder tropical agriculture

    Directory of Open Access Journals (Sweden)

    Stephen A Wood

    2015-03-01

    Full Text Available Tropical smallholder agriculture supports the livelihoods of over 900 million of the world’s poorest people. This form of agriculture is undergoing rapid transformation in nutrient cycling pathways as international development efforts strongly promote greater use of mineral fertilizers to increase crop yields. These changes in nutrient availability may alter the composition of microbial communities with consequences for rates of biogeochemical processes that control nutrient losses to the environment. Ecological theory suggests that altered microbial diversity will strongly influence processes performed by relatively few microbial taxa, such as denitrification and hence nitrogen losses as nitrous oxide, a powerful greenhouse gas. Whether this theory helps predict nutrient losses from agriculture depends on the relative effects of microbial community change and increased nutrient availability on ecosystem processes. We find that mineral and organic nutrient addition to smallholder farms in Kenya alters the taxonomic and functional diversity of soil microbes. However, we find that the direct effects of farm management on both denitrification and carbon mineralization are greater than indirect effects through changes in the taxonomic and functional diversity of microbial communities. Changes in functional diversity are strongly coupled to changes in specific functional genes involved in denitrification, suggesting that it is the expression, rather than abundance, of key functional genes that can serve as an indicator of ecosystem process rates. Our results thus suggest that widely used broad summary statistics of microbial diversity based on DNA may be inappropriate for linking microbial communities to ecosystem processes in certain applied settings. Our results also raise doubts about the relative control of microbial composition compared to direct effects of management on nutrient losses in applied settings such as tropical agriculture.

  16. Tropical rainforest methane consumption during the El Niño of 2015-16

    Science.gov (United States)

    Aronson, E. L.; Dierick, D.; Botthoff, J.; Swanson, A. C.; Allen, M. F.

    2016-12-01

    Tropical forests sequester up to 40% of the anthropogenic and natural carbon exchanged with the atmosphere. Even though soils are the largest pool of terrestrial carbon, relatively little is known about the methane consumption capacity of tropical forest soils. Under high water, low oxygen (anaerobic) conditions, carbon decomposed is respired as methane (CH4) by methanogen microorganisms. During dry seasons, deeper rainforest soils remain wet, but dry at the surface. Since molecule for molecule the global warming potential of CH4 is two orders of magnitude greater than CO2, the relative production and sequestration of CO2 versus CH4 in tropical rainforests has a large impact on global climate trends. In 2015-16, the globe experienced an unusually strong ENSO event, which impacted the tropics. Atypical ENSO climatic events such as this include drought in tropical forests of Central America. We hypothesized that ENSO controls much of the year-to-year variability in the global CH4 cycle, primarily by turning the tropical forest from a strong annual source for CH4 during the La Niña or normal rainy season, to a year-round sink for CH4 during El Niño events. Further, we hypothesized that during a strong El Niño event, the unusually dry conditions of the tropical rainy season lead to the methanotrophs in these soils consuming large amounts of CH4. In order to investigate these predictions, CH4 flux was measured in three campaigns in March, during peak ENSO impact, as well as May and July 2016, at the La Selva Biological Station, Costa Rica. Fluxes were measured in eight paired plots, each with four collars. The collars measure 20 cm diameter by 12 cm in length, inserted into the soil, with a collar height of around 8 cm, in February 2016, a month before the first field campaign. Air samples were injected into pre-evacuated exetainers, and analyzed by gas chromatograph within 72 h. We found an average CH4 sink of -0.018 mg m-2 h-1. This flux is roughly four times lower

  17. Impact of Soil and Water Conservation Interventions on Watershed Runoff Response in a Tropical Humid Highland of Ethiopia.

    Science.gov (United States)

    Sultan, Dagnenet; Tsunekawa, Atsushi; Haregeweyn, Nigussie; Adgo, Enyew; Tsubo, Mitsuru; Meshesha, Derege Tsegaye; Masunaga, Tsugiyuki; Aklog, Dagnachew; Fenta, Ayele Almaw; Ebabu, Kindiye

    2018-05-01

    Various soil and water conservation measures (SWC) have been widely implemented to reduce surface runoff in degraded and drought-prone watersheds. But little quantitative study has been done on to what extent such measures can reduce watershed-scale runoff, particularly from typical humid tropical highlands of Ethiopia. The overall goal of this study is to analyze the impact of SWC interventions on the runoff response by integrating field measurement with a hydrological CN model which gives a quantitative analysis future thought. Firstly, a paired-watershed approach was employed to quantify the relative difference in runoff response for the Kasiry (treated) and Akusty (untreated) watersheds. Secondly, a calibrated curve number hydrological modeling was applied to investigate the effect of various SWC management scenarios for the Kasiry watershed alone. The paired-watershed approach showed a distinct runoff response between the two watersheds however the effect of SWC measures was not clearly discerned being masked by other factors. On the other hand, the model predicts that, under the current SWC coverage at Kasiry, the seasonal runoff yield is being reduced by 5.2%. However, runoff yields from Kasiry watershed could be decreased by as much as 34% if soil bunds were installed on cultivated land and trenches were installed on grazing and plantation lands. In contrast, implementation of SWC measures on bush land and natural forest would have little effect on reducing runoff. The results on the magnitude of runoff reduction under optimal combinations of SWC measures and land use will support decision-makers in selection and promotion of valid management practices that are suited to particular biophysical niches in the tropical humid highlands of Ethiopia.

  18. Soil bioengineering for risk mitigation and environmental restoration in a humid tropical area

    Science.gov (United States)

    Petrone, A.; Preti, F.

    2010-02-01

    The use of soil bio-engineering techniques in developing countries is a relevant issue for disaster mitigation, environmental restoration and poverty reduction. Research on the autochthonal plants suitable for these kinds of interventions and on the economic efficiency of the interventions is essential for the dissemination of such techniques. The present paper is focused on these two issues as related to the realization of various typologies of soil bioengineering works in the humid tropics of Nicaragua. In the area of Río Blanco, located in the Department of Matagalpa, soil bioengineering installations were built in several sites. The particular structures built were: drainages with live fascine mattress, a live palisade, a vegetated live crib wall for riverbank protection, a vegetative covering made of a metallic net and biotextile coupled with a live palisade made of bamboo. In order to evaluate the suitability of the various plants used in these works, monitoring was performed, one on the live palisade alongside an unpaved road and the other on the live crib wall along a riverbank, by collecting data on survival rate and morphological parameters. Concerning economic efficiency, we proceeded to a financial analysis of the works. Once the unit price was obtained, we converted the amount into EPP Dollars (Equal Purchasing Power) in order to compare the Nicaraguan context with the European one. Among the species used we found that Gliricidia sepium (local common name: Madero negro) and Tabebuia rosea (local common name: Roble macuelizo) are adequate for soil bioengineering measures on slopes, while Erythrina fusca (local common name: Helequeme) resulted in successful behaviour only in the crib wall for riverbank protection. In comparing costs in Nicaragua and in Italy, the unit price reduction for Nicaragua ranges from 1.5 times (for the vegetative covering) to almost 4 times (for the fascine mattress), using the EPP dollar exchange rate. Our conclusions with

  19. Microbial population changes in tropical agricultural soil ...

    African Journals Online (AJOL)

    STORAGESEVER

    2008-12-17

    Dec 17, 2008 ... Microbial degradation is known to be an efficient process in the in ..... exhibited a great impact on the ecology of the soil by causing drastic ... city of the soil (Dibble and Bartha, 1979). Hydrocarbon .... Atlas RM (1991). Microbial ...

  20. Estimation of soil moisture and its effect on soil thermal ...

    Indian Academy of Sciences (India)

    landscape developed under tropical climate with alternate wet ... nical reasons. The sensing element for soil tem- ... The sensor associated with its signal conditioning, processed ...... formance over Europe, through remote-sensing of vegeta-.

  1. Effects of nitrogen and phosphorus additions on soil microbial biomass and community structure in two reforested tropical forests.

    Science.gov (United States)

    Liu, Lei; Gundersen, Per; Zhang, Wei; Zhang, Tao; Chen, Hao; Mo, Jiangming

    2015-09-23

    Elevated nitrogen (N) deposition may aggravate phosphorus (P) deficiency in forests in the warm humid regions of China. To our knowledge, the interactive effects of long-term N deposition and P availability on soil microorganisms in tropical replanted forests remain unclear. We conducted an N and P manipulation experiment with four treatments: control, N addition (15 g N m(-2)·yr(-1)), P addition (15 g P m(-2)·yr(-1)), and N and P addition (15 + 15 g N and P m(-2)·yr(-1), respectively) in disturbed (planted pine forest with recent harvests of understory vegetation and litter) and rehabilitated (planted with pine, but mixed with broadleaf returning by natural succession) forests in southern China. Nitrogen addition did not significantly affect soil microbial biomass, but significantly decreased the abundance of gram-negative bacteria PLFAs in both forest types. Microbial biomass increased significantly after P addition in the disturbed forest but not in the rehabilitated forest. No interactions between N and P additions on soil microorganisms were observed in either forest type. Our results suggest that microbial growth in replanted forests of southern China may be limited by P rather than by N, and this P limitation may be greater in disturbed forests.

  2. Behaviour of {sup 137} Cs in oxysoils and Goiania soil

    Energy Technology Data Exchange (ETDEWEB)

    Wassermann, Maria Angelica [Instituto de Radioprotecao e Dosimetria (IRD), Rio de Janeiro, RJ (Brazil)

    1997-12-31

    {sup 137} Cs soil-to-plant transfer factor obtained in oxy soils accidentally contaminated in Goiania and artificially contaminated shows that these soils present higher transfer when compared with data obtained under temperate climates. These differences were discussed in the light of pedology and geochemical partitioning. Some tropical soil characteristics as acidity, low available nutritive elements and low content of 2:1 clay type seems determine high availability for {sup 137} Cs. Results of sequential extraction showed {sup 137} Cs weakly bound to soil components and underline the importance of Fe oxides in the control of {sup 137} Cs availability in tropical climates. (author) 25 refs., 2 figs., 2 tabs.

  3. Germination, survival and growth of three vascular plants on biological soil crusts from a Mexican tropical desert.

    Science.gov (United States)

    Godínez-Alvarez, H; Morín, C; Rivera-Aguilar, V

    2012-01-01

    Information about the effects of biological soil crusts (BSC) on germination, seedling survival and growth of vascular plants is controversial because they can have positive, neutral or negative effects. This controversy may be because most studies conducted until now have just analysed one or two recruitment stages independently. To understand the BSC effects on vascular plants, it is necessary to consider each stage of the recruitment process and synthesise all this information. The goal of this study was twofold. First, we analyse germination, seedling survival and growth of three vascular plants (Agave marmorata, Prosopis laevigata and Neobuxbaumia tetetzo) on BSC (cyanobacteria and mixed crust) from a tropical desert region of south-central México. Second, we synthesise the information to determine the total effect of BSC on plant species performance. We conducted experiments under controlled conditions to evaluate the proportion of germinated seeds, proportion of surviving seedlings and seedling dry weight in BSC and bare soil. Results showed that BSC have different effects on germination, seedling survival and growth of plant species. Plant species performance was qualitatively higher on BSC than bare soil. The highest performance of A. marmorata and P. laevigata was observed on cyanobacteria and mixed crusts, respectively. The highest performance of N. tetetzo was on both crust types. © 2011 German Botanical Society and The Royal Botanical Society of the Netherlands.

  4. Soil Taxonomy and land evaluation for forest establishment

    Science.gov (United States)

    Haruyoshi Ikawa

    1992-01-01

    Soil Taxonomy, the United States system of soil classification, can be used for land evaluation for selected purposes. One use is forest establishment in the tropics, and the soil family category is especially functional for this purpose. The soil family is a bionomial name with descriptions usually of soil texture, mineralogy, and soil temperature classes. If the...

  5. Importance of the dynamic module of soil rigidity in the analysis of the stability problems by the action of the seismic waves; Importancia del modulo dinamico de rigidez del suelo en el analisis de los problemas de estabilidad por la accion de las ondas sismicas

    Energy Technology Data Exchange (ETDEWEB)

    Zeevaert-Wiechers, L. [Universidad Nacional Autonoma de Mexico, Mexico, D.F. (Mexico)

    2000-09-01

    The object of the present paper is to motivate engineers interested in soil mechanics and in soil dynamics to use, apply and develop seismic-geodynamics principles in the professional practice of seismic engineering, as well as to study and investigate dynamic soil parameters. For this purpose the author presents two types of equipment that he has used with success during several decades. [Spanish] El objetivo de este trabajo es el de motivar a los ingenieros interesados en mecanica y dinamica de suelos, al uso, aplicacion y desarrollo de la sismo-geodinamica en la practica profesional de la ingenieria sismica, asi como al estudio e investigacion de los parametros dinamicos del suelo. Para este fin, el autor presenta dos equipos que ha usado durante varias decadas.

  6. CHANGES IN SOIL MACROFAUNA IN AGROECOSYSTEMS DERIVED FROM LOW DECIDUOUS TROPICAL FOREST ON LEPTOSOLS FROM KARSTIC ZONES

    Directory of Open Access Journals (Sweden)

    Francisco Bautista

    2009-02-01

    Full Text Available In Yucatan Mexico the method of slash and burn is used for the establishment of pastures. Pastures are developed for 15 to 20 years, no more because weed control is too expensive. The impact of these practices on soil macrofauna had not been evaluated. Because of its wide distribution, diverse habits and high sensitivity to disturbance, soil macrofauna is considered a valuable indicator of soil health, allowing monitoring of soil sustainability. We studied soil macrofauna communities in low deciduous tropical forest and four livestock agroecosystems with increasing management-derived disturbance including a silvopastoral system, Taiwan grass (Cynodon nlemfuensis and Star grass (Pennisetum purpureum pastures in order to describe community structure across systems, and evaluate disturbance sensitivity of taxonomical groups to detect taxa with potential use as biological indicators of soil health or degradation. Pitfall traps were used at each of the systems to sample soil macrofauna. We estimate their taxonomical abundance, biomass, richness (order, morphospecies, diversity, dominance and response to disturbance on agroecosystems and the forest. We found 133 macrofauna morphospecies of 15 taxa. Groups with more individuals were: Hymenoptera (64.97%, Coleoptera (22.68%, and Orthoptera (3.91%.  Agroecosystem of two-year old Taiwan-grass pasture (TP2 had the highest macrofauna abundances, biomass and richness, low diversity, and a non-homogeneous distribution of individuals among species; in contrast, silvopastoral system (SP, had low abundance and biomass, the lowest specific richness, high diversity and a homogeneous distribution of individuals among species. The discriminant analysis revealed that the agroecosystems and the forest serve to predict the macrofauna communities, since they have particular or typical soil macrofauna. The cases (sampled points with a correct assignation by agroecosystems were: Forest (70%, Sivopastoral system (70

  7. Improving yield and nitrogen fixation of grain legumes in the tropics and sub-tropics of Asia. Results of a co-ordinated research programme

    International Nuclear Information System (INIS)

    1998-07-01

    The Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture initiated a Co-ordinated Research Project on The Use of Isotopes in Studies to Improve Yield and N 2 Fixation of Grain Legumes with the Aim of Increasing Food Production and Saving N-fertilizer in the Tropics and Sub-Tropics of Asia that was operational from 1990 to 1995. This Project was underpinned by extensive experience in the use of 15 N-labelled fertilizer in quantifying N 2 fixation by food and pasture legumes; the isotope-dilution technique, recognized as the most accurate mode of quantifying fixation, was developed at the IAEA and has been used profitably for over 20 years in co-ordinated research projects that were focused on aspects relevant to the sustainability of agriculture in developing countries in which food security is most under threat. This effort to improve N 2 fixation by food legumes in Asia, and in so doing to increase productivity of cereal-based farming systems as a whole, was timely in terms of regional needs. It was complemented by an overlapping Co-ordinated Research Project entitled ''The Use of Nuclear and Related Techniques in Management of Nitrogen Fixation by trees for Enhancing Soil Fertility and Soil Conservation in Fragile Tropical Soils''. The project involved scientists from Australia, Bangladesh, China, India, Malaysia, Pakistan the Philippines, Sri Lanka, Thailand and Viet Nam

  8. Carbon Mineralization Can Be Sustained or Even Stimulated under Fluctuating Redox Conditions in Tropical and Temperate Soils

    Science.gov (United States)

    Huang, W.; Hall, S. J.

    2017-12-01

    Soil carbon (C) mineralization is widely thought to be affected by O2 availability, and anaerobiosis represents a significant global mechanism of C stabilization. However, mineral-associated organic C (e.g. Fe-bound organic C) may be vulnerable to redox fluctuations due to release following Fe reduction, which could counteract protective effects of anaerobiosis. Many soils, including temperate Mollisols and tropical Oxisols, experience fluctuating redox conditions following moisture variations that could impact C cycling and stabilization. Here we incubated two soils with C4 leaf litter at different duration and frequencies of anaerobic periods for 128 days to investigate how redox fluctuations affect soil C mineralization. The treatments included static aerobic (control), and 2-, 4-, 8- and 12- day anaerobic followed by 4-day aerobic. We measured CO2, CH4, and their C isotope ratios. Longer durations of anaerobic conditions promoted greater Fe reduction and more DOC released. Notably, in both soils despite their large differences in composition, the production of CO2 and CH4 was stimulated under aerobic conditions following anaerobic conditions (relative to the control), which compensated for the decrease under anaerobic conditions. After 128 days, cumulative C mineralization in the control was similar between the Mollisol (9.7 mg C g-1) and the Oxisol (10.1 mg C g-1). The value in the Mollisol was significantly higher in the 12-day anaerobic treatment (11.2 mg C g-1) than the aerobic control and the 2-day anaerobic treatment (9.7 mg C g-1). In the Oxisol, cumulative C mineralization was not significantly affected by any of the fluctuating redox treatments relative to the control. Our findings challenge theory by showing that redox fluctuations can counteract the suppressive effects of O2 limitation on decomposition.

  9. Effects of soil type and light on height growth, biomass partitioning, and nitrogen dynamics on 22 species of tropical dry forest tree seedlings: Comparisons between legumes and nonlegumes.

    Science.gov (United States)

    Smith-Martin, Christina M; Gei, Maria G; Bergstrom, Ellie; Becklund, Kristen K; Becknell, Justin M; Waring, Bonnie G; Werden, Leland K; Powers, Jennifer S

    2017-03-01

    The seedling stage is particularly vulnerable to resource limitation, with potential consequences for community composition. We investigated how light and soil variation affected early growth, biomass partitioning, morphology, and physiology of 22 tree species common in tropical dry forest, including eight legumes. Our hypothesis was that legume seedlings are better at taking advantage of increased resource availability, which contributes to their successful regeneration in tropical dry forests. We grew seedlings in a full-factorial design under two light levels in two soil types that differed in nutrient concentrations and soil moisture. We measured height biweekly and, at final harvest, biomass partitioning, internode segments, leaf carbon, nitrogen, δ 13 C, and δ 15 N. Legumes initially grew taller and maintained that height advantage over time under all experimental conditions. Legumes also had the highest final total biomass and water-use efficiency in the high-light and high-resource soil. For nitrogen-fixing legumes, the amount of nitrogen derived from fixation was highest in the richer soil. Although seed mass tended to be larger in legumes, seed size alone did not account for all the differences between legumes and nonlegumes. Both belowground and aboveground resources were limiting to early seedling growth and function. Legumes may have a different regeneration niche, in that they germinate rapidly and grow taller than other species immediately after germination, maximizing their performance when light and belowground resources are readily available, and potentially permitting them to take advantage of high light, nutrient, and water availability at the beginning of the wet season. © 2017 Botanical Society of America.

  10. Microbial population changes in tropical agricultural soil ...

    African Journals Online (AJOL)

    Impacts of crude petroleum pollution on the soil environment and microbial population dynamics as well as recovery rates of an abandoned farmland was monitored for seven months spanning the two major seasons in Nigeria with a ... The physico-chemistry of the control and contaminated soils differed just significantly (P ...

  11. Determination of soil-to-plant transfer factors of {sup 137}Cs and {sup 90}Sr in the tropical environment of Bangladesh

    Energy Technology Data Exchange (ETDEWEB)

    Mollah, A.S.; Begum, A. [Atomic Energy Research Establishment (AERE), Savar, Dacca (Bangladesh); Ullah, S.M. [University of Dhaka (Bangladesh). Department of Soil Science

    1998-07-01

    Soil-to-plant transfer factors (TF) of {sup 137}Cs and {sup 90}Sr have been determined for different plants/crops, such as rice, beans, peanuts, pineapple, cabbage, tomato, spinach and grass. They were obtained from radioisotope experiments on plants grown in pots under outdoor ambient tropical conditions for three growing seasons (1994-1996). In the case of {sup 137}Cs and concerning the above mentioned plants/crops, the average TFs were found to be 0.28, 0.25, 0.77, 0.19, 0.23, 0.28, 0.59 and 0.18, respectively. In the case of {sup 90}Sr, the average TFs were found to be 0.82, 0.51, 0.20, 0.82, 0.69, 0.59, 0.91 and 0.84, respectively. A minor seasonal variation was observed. This study provides a database of TFs for tropical environments to be used, e.g., for radiological safety assessment models. (orig.) With 1 fig., 3 tabs., 12 refs.

  12. Effects of tropical ecosystem engineers on soil quality and crop performance under different tillage and residue management

    Science.gov (United States)

    Pulleman, Mirjam; Paul, Birthe; Fredrick, Ayuke; Hoogmoed, Marianne; Hurisso, Tunsisa; Ndabamenye, Telesphore; Saidou, Koala; Terano, Yusuke; Six, Johan; Vanlauwe, Bernard

    2014-05-01

    Feeding a future global population of 9 billion will require a 70-100% increase in food production, resulting in unprecedented challenges for agriculture and natural resources, especially in Sub-saharan Africa (SSA). Agricultural practices that contribute to sustainable intensification build on beneficial biological interactions and ecosystem services. Termites are the dominant soil ecosystem engineers in arid to sub-humid tropical agro-ecosystems. Various studies have demonstrated the potential benefits of termites for rehabilitation of degraded and crusted soils and plant growth in semi-arid and arid natural ecosystems. However, the contribution of termites to agricultural productivity has hardly been experimentally investigated, and their role in Conservation Agriculture (CA) systems remains especially unclear. Therefore, this study aimed to quantify the effects of termites and ants on soil physical quality and crop productivity under different tillage and residue management systems in the medium term. A randomized block trial was set up in sub-humid Western Kenya in 2003. Treatments included a factorial combination of residue retention and removal (+R/-R) and conventional and reduced tillage (+T/-T) under a maize (Zea mays L.) and soybean (Glyxine max. L.) rotation. A macrofauna exclusion experiment was superimposed in 2005 as a split-plot factor (exclusion +ins; inclusion -ins) by regular applications of pesticides (Dursban and Endosulfan) in half of the plots. Macrofauna abundance and diversity, soil aggregate fractions, soil carbon contents and crop yields were measured between 2005 and 2012 at 0-15 cm and 15-30 cm soil depths. Termites were the most important macrofauna species, constituting between 48-63% of all soil biota, while ants were 13-34%, whereas earthworms were present in very low numbers. Insecticide application was effective in reducing termites (85-56% exclusion efficacy) and earthworms (87%), and less so ants (49-81%) at 0-15 cm soil depth

  13. Sorption of thiabendazole in sub-tropical Brazilian soils.

    Science.gov (United States)

    de Oliveira Neto, Odilon França; Arenas, Alejandro Yopasa; Fostier, Anne Hélène

    2017-07-01

    Thiabendazole (TBZ) is an ionizable anthelmintic agent that belongs to the class of benzimidazoles. It is widely used in veterinary medicine and as a fungicide in agriculture. Sorption and desorption are important processes influencing transport, transformation, and bioavailability of xenobiotic compounds in soils; data related to sorption capacity are therefore needed for environmental risk assessments. The aim of this work was to assess the sorption potential of TBZ in four Brazilians soils (sandy, sandy-clay, and clay soils), using batch equilibrium experiments at three pH ranges (2.3-3.0, 3.8-4.2, and 5.5-5.7). The Freundlich sorption coefficient (K F ) ranged from 9.0 to 58 μg 1-1/n  (mL) 1/n  g -1 , with higher values generally observed at the lower pH ranges (2.3-3.0 and 3.8-4.2) and for clay soils. The highest organic carbon-normalized sorption coefficients (K OC ) obtained at pH 3.8-5.7 (around the natural pH range of 4.1-5.0) for both clay soils and sandy-clay soil were 3255 and 2015 mL g -1 , respectively. The highest correlations K F vs SOM (r = 0.70) and K F vs clay content (r = 0.91) were observed at pH 3.8-4.2. Our results suggest that TBZ sorption/desorption is strongly pH dependent and that its mobility could be higher in the studied soils than previously reported in soils from temperate regions.

  14. Scale-dependent variation in nitrogen cycling and soil fungal communities along gradients of forest composition and age in regenerating tropical dry forests.

    Science.gov (United States)

    Waring, Bonnie G; Adams, Rachel; Branco, Sara; Powers, Jennifer S

    2016-01-01

    Rates of ecosystem nitrogen (N) cycling may be mediated by the presence of ectomycorrhizal fungi, which compete directly with free-living microbes for N. In the regenerating tropical dry forests of Central America, the distribution of ectomycorrhizal trees is affected by succession and soil parent material, both of which may exert independent influence over soil N fluxes. In order to quantify these interacting controls, we used a scale-explicit sampling strategy to examine soil N cycling at scales ranging from the microsite to ecosystem level. We measured fungal community composition, total and inorganic N pools, gross proteolytic rate, net N mineralization and microbial extracellular enzyme activity at multiple locations within 18 permanent plots that span dramatic gradients of soil N concentration, stand age and forest composition. The ratio of inorganic to organic N cycling was correlated with variation in fungal community structure, consistent with a strong influence of ectomycorrhiza on ecosystem-scale N cycling. However, on average, > 61% of the variation in soil biogeochemistry occurred within plots, and the effects of forest composition were mediated by this local-scale heterogeneity in total soil N concentrations. These cross-scale interactions demonstrate the importance of a spatially explicit approach towards an understanding of controls on element cycling. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  15. Towards an ecological index for tropical soil quality based on soil macrofauna Em busca de um índice ecológico para a qualidade de solo tropical com base na macrofauna edáfica

    Directory of Open Access Journals (Sweden)

    Esperanza Huerta

    2009-08-01

    Full Text Available The objective of this work was to construct a simple index based on the presence/absence of different groups of soil macrofauna to determine the ecological quality of soils. The index was tested with data from 20 sites in South and Central Tabasco, Mexico, and a positive relation between the model and the field observations was detected. The index showed that diverse agroforestry systems had the highest soil quality index (1.00, and monocrops without trees, such as pineapple, showed the lowest soil quality index (0.08. Further research is required to improve this model for natural systems that have very low earthworm biomass (O objetivo deste trabalho foi construir um índice simples com base na presença/ausência de diferentes grupos da macrofauna edáfica para auxiliar na determinação da qualidade ecológica dos solos. O índice foi testado com dados de 20 locais do sul e centro do Estado de Tabasco, México, e foi observada uma correlação positiva entre o dados gerados pelo modelo e pelas observações de campo. O índice de qualidade de solo mostrou que diversos sistemas agroflorestais tiveram a mais alta qualidade de solo (1,0 e que os monocultivos sem árvores, como o de abacaxi, apresentaram a qualidade de solo mais baixa (0,08. Este modelo precisa ser melhor desenvolvido para ser aplicado eficientemente em sistemas que apresentam naturalmente baixas densidades de minhocas (<10 g m-2 e número elevado de espécies de minhocas (5-7, como ocorre em solos de floresta tropical, cujo índice de qualidade de solo apresentou valores médios (0,5. A aplicação desse índice precisará de um guia ilustrado para os seus usuários. Mais estudos são necessários para testar o seu emprego por fazendeiros.

  16. Soil Resources Degradation and Conservation Techniques Adopted ...

    African Journals Online (AJOL)

    Soil degradation is increasingly regarded as a major constraint to food production in the tropics. This problem is primarily caused by soil erosion, which particularly damages the soil surfaces. It is therefore the objectives of this paper to study the types of erosion in Gusau area as well as its effects on selected soil properties ...

  17. Lead and stable Pb-isotope characteristics of tropical soils in north-eastern Brazil

    International Nuclear Information System (INIS)

    Schucknecht, Anne; Matschullat, Jörg; Reimann, Clemens

    2011-01-01

    Stable Pb-isotope ratios are widely used as tracers for Pb-sources in the environment. Recently, a few publications have challenged the predominating view of environmental applications of Pb-isotopes. Present applications of Pb-isotopic tracers in soils largely represent the northern hemisphere. This study focuses on tropical soils from Paraíba, north-eastern Brazil. Lead concentrations and Pb-isotopic signatures (both 7N HNO 3 ) were determined at 30 sites along a 327 km E–W-transect, from the Atlantic coast at João Pessoa to some kilometers west of Patos, to identify possible processes for the observed (and anticipated) distribution pattern. Thirty samples each of litter (ORG) and top mineral soil (TOP) were taken on pasture land at suitable distance from roads or other potential contamination sources. Lead-content was determined by inductively-coupled plasma atomic emission spectrometry (ICP-AES) and the ratios of 206 Pb/ 207 Pb, 206 Pb/ 208 Pb, and 208 Pb/ 207 Pb by ICP-sector field mass spectrometry (ICP-SFMS). Both sample materials show similarly low Pb-concentrations with a lower median in the ORG samples (ORG 3.4 mg kg −1 versus TOP 6.9 mg kg −1 ). The 206 Pb/ 207 Pb ratios revealed a large spread along the transect with median 206 Pb/ 207 Pb ratios of 1.160 (ORG) and 1.175 (TOP). The 206 Pb/ 207 Pb ratios differ noticeably between sample sites located in the Atlantic Forest biome along the coast and sample sites in the inland Caatinga biome. The “forest” sites were characterised by a significant lower median and a lower spread in the 206 Pb/ 207 Pb and 206 Pb/ 208 Pb ratios compared to the Caatinga sites. Results indicate a very restricted influence of anthropogenic activities (individual sites only). The main process influencing the spatial variability of Pb-isotope ratios is supposed to be precipitation-dependent bioproductivity and weathering.

  18. Soil fertility in the Great Konya Basin, Turkey

    NARCIS (Netherlands)

    Janssen, B.H.

    1970-01-01

    Soil fertility was studied in the Great Konya Basin, as part of the study carried out by the Department of Tropical Soil Science of the Agricultural University at Wageningen.

    The purpose was to find the agricultural value of the soils, to learn about the main factors governing soil fertility,

  19. [Seasonal variation of soil respiration and its components in tropical rain forest and rubber plantation in Xishuangbanna, Yunnan].

    Science.gov (United States)

    Lu, Hua-Zheng; Sha, Li-Qing; Wang, Jun; Hu, Wen-Yan; Wu, Bing-Xia

    2009-10-01

    By using trenching method and infrared gas analyzer, this paper studied the seasonal variation of soil respiration (SR), including root respiration (RR) and heterotrophic respiration (HR), in tropical seasonal rain forest (RF) and rubber (Hevea brasiliensis) plantation (RP) in Xishuangbanna of Yunnan, China. The results showed that the SR and HR rates were significantly higher in RF than in RP (P dry-hot season > foggy season, but the RR rate was rainy season > foggy season > dry-hot season in RF, and foggy season > rainy season > dry-hot season in RP. The contribution of RR to SR in RF (29%) was much lower than that in RP (42%, P < 0.01), while the contribution of HR to SR was 71% in RF and 58% in RP. When the soil temperature at 5 cm depth varied from 12 degrees C to 32 degrees C, the Q10 values for SR, HR, and RR rates were higher in RF than in RP. HR had the highest Q10 value, while RR had the lowest one.

  20. Soil transport parameters of potassium under a tropical saline soil condition using STANMOD

    Science.gov (United States)

    Suzanye da Silva Santos, Rafaelly; Honorio de Miranda, Jarbas; Previatello da Silva, Livia

    2015-04-01

    Environmental responsibility and concerning about the final destination of solutes in soil, so more studies allow a better understanding about the solutes behaviour in soil. Potassium is a macronutrient that is required in high concentrations, been an extremely important nutrient for all agricultural crops. It plays essential roles in physiological processes vital for plant growth, from protein synthesis to maintenance of plant water balance, and is available to plants dissolved in soil water while exchangeable K is loosely held on the exchange sites on the surface of clay particles. K will tend to be adsorbed onto the surface of negatively charged soil particles. Potassium uptake is vital for plant growth but in saline soils sodium competes with potassium for uptake across the plasma membrane of plant cells. This can result in high Na+:K+ ratios that reduce plant growth and eventually become toxic. This study aimed to obtain soil transport parameters of potassium in saline soil, such as: pore water velocity in soil (v), retardation factor (R), dispersivity (λ) and dispersion coefficient (D), in a disturbed sandy soil with different concentrations of potassium chlorate solution (KCl), which is one of the most common form of potassium fertilizer. The experiment was carried out using soil samples collected in a depth of 0 to 20 cm, applying potassium chlorate solution containing 28.6, 100, 200 and 500 mg L-1 of K. To obtain transport parameters, the data were adjusted with the software STANMOD. At low concentrations, interaction between potassium and soil occur more efficiently. It was observed that only the breakthrough curve prepared with solution of 500 mg L-1 reached the applied concentration, and the solution of 28.6 mg L-1 overestimated the parameters values. The STANMOD proved to be efficient in obtaining potassium transport parameters; KCl solution to be applied should be greater than 500 mg L-1; solutions with low concentrations tend to overestimate

  1. Long-term impact of reduced tillage and residue management on soil carbon stabilization: Implications for conservation agriculture on contrasting soil

    NARCIS (Netherlands)

    Chivenge, P.P.; Murwira, H.K.; Giller, K.E.; Mapfumo, P.; Six, J.

    2007-01-01

    Residue retention and reduced tillage are both conservation agricultural management options that may enhance soil organic carbon (SOC) stabilization in tropical soils. Therefore, we evaluated the effects of long-term tillage and residue management on SOC dynamics in a Chromic Luvisol (red clay soil)

  2. The Role of Earthworms in Tropics with Emphasis on Indian Ecosystems

    Directory of Open Access Journals (Sweden)

    Radha D. Kale

    2010-01-01

    Full Text Available The paper highlights the research carried out by different scientists in India on aspects of earthworm population dynamics and species diversity, associated with other soil fauna and microflora. It also deals with the importance of earthworm activity on physicochemical properties of soil with reference to India and other tropical countries. Stress is laid on the earthworm plant association and importance of the secretions of earthworms as plant growth stimulators. Moreover, the earthworm species reported and being utilized for vermicomposting in India are discussed, since vermicomposting is the ultimate technology which renders for the improvement of soil fertility status and plant growth. Earthworms serve as indicators of soil status such as the level of contamination of pollutants: agrochemicals, heavy metals, toxic substances, and industrial effluents; human-induced activities: land-management practices and forest degradation. In all these fields there is lacuna with respect to contributions from India when compared to the available information from other tropical countries. There is lot of scope in the field of research on earthworms to unravel the importance of these major soil macrofauna from holistic ecological studies to the molecular level.

  3. The Role of Earthworms in Tropics with Emphasis on Indian Ecosystems

    International Nuclear Information System (INIS)

    Kale, R.D.; Karmegam, N.

    2010-01-01

    The paper highlights the research carried out by different scientists in India on aspects of earthworm population dynamics and species diversity, associated with other soil fauna and microflora. It also deals with the importance of earthworm activity on physicochemical properties of soil with reference to India and other tropical countries. Stress is laid on the earthworm plant association and importance of the secretions of earthworms as plant growth stimulators. Moreover, the earthworm species reported and being utilized for vermicomposting in India are discussed, since vermicomposting is the ultimate technology which renders for the improvement of soil fertility status and plant growth. Earthworms serve as indicators of soil status such as the level of contamination of pollutants: agrochemicals, heavy metals, toxic substances, and industrial effluents; human-induced activities: land-management practices and forest degradation. In all these fields there is lacuna with respect to contributions from India when compared to the available information from other tropical countries. There is lot of scope in the field of research on earthworms to unravel the importance of these major soil macro fauna from holistic ecological studies to the molecular level.

  4. Sensitivity of mountain ecosystems to human-accelerated soil erosion. Contrasting geomorphic response between tropical and semi-arid ecosystems.

    Science.gov (United States)

    Vanacker, Veerle; Bellin, Nicolas; Schoonejans, Jerome; Molina, Armando; Kubik, Peter W.

    2014-05-01

    Human-induced land cover changes are causing important adverse effects on the ecological services rendered by mountain ecosystems, and the number of case-studies of the impact of humans on soil erosion and sediment yield has mounted rapidly. A modelling framework that is specifically adapted to mountain environments is currently lacking. Most studies make use of general river basin models that were originally parameterized and calibrated for temperate, low relief landscapes. Transposing these modelling concepts directly to steep environments with shallow and stony soils often leads to unrealistic model predictions, as model input parameters are rarely calibrated for the range of environmental conditions found in mountain regions. Here, we present a conceptual model that evaluates erosion regulation as a function of human disturbances in vegetation cover. The basic idea behind this model is that soil erosion mechanisms are independent of human impact, but that the frequency-magnitude distributions of erosion rates change as a response to human disturbances. Pre-disturbance (or natural) erosion rates are derived from in-situ produced 10Be concentrations in river sediment, while post-disturbance (or modern) erosion rates are derived from sedimentation rates in small catchments. In its simplicity, the model uses vegetation cover change as a proxy of human disturbance in a given vegetation system. The model is then calibrated with field measurements from two mountainous sites with strongly different vegetation dynamics, climatic and geological settings: the Tropical Andes, and the Spanish Betic Cordillera. Natural erosion processes are important in mountainous sites, and natural erosion benchmarks are primordial to assess human-induced changes in erosion rates. While the Spanish Betic Cordillera is commonly characterized as a degraded landscape, there is no significant change in erosion due to human disturbance for uncultivated sites. The opposite is true for the

  5. Multiscale analysis of depth-dependent soil penetration resistance in a tropical soil

    Science.gov (United States)

    Paiva De Lima, Renato; Santos, Djail; Medeiros Bezerra, Joel; Machado Siqueira, Glécio; Paz González, Antonio

    2013-04-01

    Soil penetration resistance (PR) is widely used because it is linked to basic soil properties; it is correlated to root growth and plant production and is also used as a practical tool for assessing soil compaction and to evaluate the effects of soil management. This study investigates how results from multifractal analysis can quantify key elements of depth-dependent PR profiles and how this information can be used at the field scale. We analyzed multifractality of 50 PR vertical profiles, measured from 0 to 40 cm depth and randomly located on a 6.5 ha sugar cane field in north-eastern Brazil. According to the Soil Taxonomy, the studied soil was classified as an Orthic Podsol The scaling property of each profile was typified by singularity and Rényi spectra estimated by the method of moments. The Hurst exponent was used to parameterize the autocorrelation of the vertical PR data sets. Singularity and Rènyi spectra showed the vertical PR data sets exhibited a well-defined multifractal structure. Hurst exponent values were close to one indicating strong persistence in PR variation with soil depth. Also Hurst exponent was negatively and significantly correlated to coefficient of variation (CV) and skewness of the depth-dependent PR. Multifractal analysis added valuable information to describe the spatial arrangement of depth-dependent penetrometer data sets, which was not taken into account by classical statistical indices. Multifractal parameters were mapped over the experimental field and compared with mean, maximum and minimum values of PR; these maps showed the multifractal approach also may complete information provided by descriptive statistics at the field scale.

  6. Soil physical properties on Venezuelan steeplands: Applications to soil conservation planning

    International Nuclear Information System (INIS)

    Delgado, F.

    2004-01-01

    This paper presents a framework to support decision making for soil conservation on Venezuelan steeplands. The general approach is based on the evaluation of two important land qualities: soil productivity and soil erosion risk, both closely related to soil physical properties. Soil productivity can be estimated from soil characteristics such as soil air-water relationships, soil impedances and soil fertility. On the other hand, soil erosion risk depends basically on soil hydrologic properties, rainfall aggressiveness and terrain slope. Two indexes are obtained from soil and land characteristics: soil productivity index (PI) and erosion risk index (ERI), each one evaluates the respective land quality. Subsequently, a matrix with these two qualities shows different land classes as well as soil conservation priorities, conservation requirements and proposed land uses. The paper shows also some applications of the soil productivity index as an approach to evaluate soil loss tolerance for soil conservation programs on tropical steeplands. (author)

  7. Soil Organic Matter Stability and Soil Carbon Storage with Changes in Land Use Intensity in Uganda

    Science.gov (United States)

    Tiemann, L. K.; Grandy, S.; Hartter, J.

    2014-12-01

    As the foundation of soil fertility, soil organic matter (SOM) formation and break-down is a critical factor of agroecosystem sustainability. In tropical systems where soils are quickly weathered, the link between SOM and soil fertility is particularly strong; however, the mechanisms controlling the stabilization and destabilization of SOM are not well characterized in tropical soils. In western Uganda, we collected soil samples under different levels of land use intensity including maize fields, banana plantations and inside an un-cultivated native tropical forest, Kibale National Park (KNP). To better understand the link between land use intensity and SOM stability we measured total soil C and N, and respiration rates during a 369 d soil incubation. In addition, we separated soils into particle size fractions, and mineral adsorbed SOM in the silt (2-50 μm ) and clay (fractions was dissociated, purified and chemically characterized via pyrolysis-GC/MS. Cultivated soil C and N have declined by 22 and 48%, respectively, in comparison to uncultivated KNP soils. Incubation data indicate that over the last decade, relatively accessible and labile soil organic carbon (SOC) pools have been depleted by 55-59% in cultivated soils. As a result of this depletion, the chemical composition of SOM has been altered such that clay and silt associated SOM differed significantly between agricultural fields and KNP. In particular, nitrogen containing compounds were in lower abundance in agricultural compared to KNP soils. This suggests that N depletion due to agriculture has advanced to pools of mineral associated organic N that are typically protected from break-down. In areas where land use intensity is relatively greater, increases in polysaccharides and lipids in maize fields compared to KNP indicate increases in microbial residues and decomposition by-products as microbes mine SOM for organic N. Chemical characterization of post-incubation SOM will help us better understand

  8. Pan-Tropical Analysis of Climate Effects on Seasonal Tree Growth

    Science.gov (United States)

    Wagner, Fabien; Rossi, Vivien; Aubry-Kientz, Mélaine; Bonal, Damien; Dalitz, Helmut; Gliniars, Robert; Stahl, Clément; Trabucco, Antonio; Hérault, Bruno

    2014-01-01

    Climate models predict a range of changes in tropical forest regions, including increased average temperatures, decreased total precipitation, reduced soil moisture and alterations in seasonal climate variations. These changes are directly related to the increase in anthropogenic greenhouse gas concentrations, primarily CO2. Assessing seasonal forest growth responses to climate is of utmost importance because woody tissues, produced by photosynthesis from atmospheric CO2, water and light, constitute the main component of carbon sequestration in the forest ecosystem. In this paper, we combine intra-annual tree growth measurements from published tree growth data and the corresponding monthly climate data for 25 pan-tropical forest sites. This meta-analysis is designed to find the shared climate drivers of tree growth and their relative importance across pan-tropical forests in order to improve carbon uptake models in a global change context. Tree growth reveals significant intra-annual seasonality at seasonally dry sites or in wet tropical forests. Of the overall variation in tree growth, 28.7% was explained by the site effect, i.e. the tree growth average per site. The best predictive model included four climate variables: precipitation, solar radiation (estimated with extrasolar radiation reaching the atmosphere), temperature amplitude and relative soil water content. This model explained more than 50% of the tree growth variations across tropical forests. Precipitation and solar radiation are the main seasonal drivers of tree growth, causing 19.8% and 16.3% of the tree growth variations. Both have a significant positive association with tree growth. These findings suggest that forest productivity due to tropical tree growth will be reduced in the future if climate extremes, such as droughts, become more frequent. PMID:24670981

  9. Research on soil microbial communities and enzymatic activity in tropical soils in puerto rico

    Science.gov (United States)

    Soil enzymes are important components of soil quality and its health because of their involvement in ecosystem services related to biogeochemical cycling, global C and organic matter dynamics, and soil detoxification. This talk will provide an overview of the field of soil enzymology, the location a...

  10. Mangroves among the most carbon-rich forests in the tropics

    Science.gov (United States)

    Donato, Daniel C.; Kauffman, J. Boone; Murdiyarso, Daniel; Kurnianto, Sofyan; Stidham, Melanie; Kanninen, Markku

    2011-05-01

    Mangrove forests occur along ocean coastlines throughout the tropics, and support numerous ecosystem services, including fisheries production and nutrient cycling. However, the areal extent of mangrove forests has declined by 30-50% over the past half century as a result of coastal development, aquaculture expansion and over-harvesting. Carbon emissions resulting from mangrove loss are uncertain, owing in part to a lack of broad-scale data on the amount of carbon stored in these ecosystems, particularly below ground. Here, we quantified whole-ecosystem carbon storage by measuring tree and dead wood biomass, soil carbon content, and soil depth in 25 mangrove forests across a broad area of the Indo-Pacific region--spanning 30° of latitude and 73° of longitude--where mangrove area and diversity are greatest. These data indicate that mangroves are among the most carbon-rich forests in the tropics, containing on average 1,023Mg carbon per hectare. Organic-rich soils ranged from 0.5m to more than 3m in depth and accounted for 49-98% of carbon storage in these systems. Combining our data with other published information, we estimate that mangrove deforestation generates emissions of 0.02-0.12Pg carbon per year--as much as around 10% of emissions from deforestation globally, despite accounting for just 0.7% of tropical forest area.

  11. Soil-Transmitted Helminth Infections

    Science.gov (United States)

    ... Schistosomiasis and soil-transmitted helminth infections More about neglected tropical diseases News WHO recommends large-scale deworming to improve children’s health and nutrition 29 September 2017 About us ...

  12. Soil ecological interactions: comparisons between tropical and subalpine forests

    Science.gov (United States)

    Grizelle Gonzalez; Ruth E. Ley; Steven K. Schmidt; Xiaoming Zou; Timothy R. Seastedt

    2001-01-01

    Soil fauna can influence soil processes through interactions with the microbial community. Due to the complexity of the functional roles of fauna and their effects on microbes, little consensus has been reached on the extent to which soil fauna can regulate microbial activities. We quantified soil microbial biomass and maximum growth rates in control and fauna-excluded...

  13. Soil bioengineering for risk mitigation and environmental restoration in a humid tropical area

    Directory of Open Access Journals (Sweden)

    A. Petrone

    2010-02-01

    Full Text Available The use of soil bio-engineering techniques in developing countries is a relevant issue for disaster mitigation, environmental restoration and poverty reduction. Research on the autochthonal plants suitable for these kinds of interventions and on the economic efficiency of the interventions is essential for the dissemination of such techniques. The present paper is focused on these two issues as related to the realization of various typologies of soil bioengineering works in the humid tropics of Nicaragua.

    In the area of Río Blanco, located in the Department of Matagalpa, soil bioengineering installations were built in several sites. The particular structures built were: drainages with live fascine mattress, a live palisade, a vegetated live crib wall for riverbank protection, a vegetative covering made of a metallic net and biotextile coupled with a live palisade made of bamboo. In order to evaluate the suitability of the various plants used in these works, monitoring was performed, one on the live palisade alongside an unpaved road and the other on the live crib wall along a riverbank, by collecting data on survival rate and morphological parameters. Concerning economic efficiency, we proceeded to a financial analysis of the works. Once the unit price was obtained, we converted the amount into EPP Dollars (Equal Purchasing Power in order to compare the Nicaraguan context with the European one.

    Among the species used we found that Gliricidia sepium (local common name: Madero negro and Tabebuia rosea (local common name: Roble macuelizo are adequate for soil bioengineering measures on slopes, while Erythrina fusca (local common name: Helequeme resulted in successful behaviour only in the crib wall for riverbank protection.

    In comparing costs in Nicaragua and in Italy, the unit price reduction for Nicaragua ranges from 1.5 times (for the vegetative covering to almost 4 times (for the fascine mattress

  14. Soil bio-engineering for risk mitigation and environmental restoration in a humid tropical area

    Science.gov (United States)

    Petrone, A.; Preti, F.

    2009-07-01

    The use of soil bio-engineering techniques in developing countries is a relevant issue for disaster mitigation, environmental restoration and poverty reduction. Research on authochtonal plants suitable for this kind of works and on economic efficiency is essential for the divulgation of such techniques. The present paper is focused on this two issues related to the realization of various typologies of soil bio-engineering works in the humid tropic of Nicaragua. In the area of Río Blanco, located in the Department of Matagalpa, soil bio-engineering installations were built in several sites. The particular structures built were: drainages with live fascine mattress, a live palisade, a vegetated live crib wall for riverbank protection, a vegetative covering made of a metallic net and biotextile coupled with a live palisade made of bamboo. In order to evaluate the suitability of the various plants used in the works, monitorings were performed, one in the live palisade alongside an unpaved road and the other on the live crib wall along a riverbank, collecting survival rate and morphological parameters data. Concerning the economic efficiency we proceed to a financial analysis of the works and once the unit price was obtained, we converted the amount in EPP Dollars (Equal Purchasing Power) in order to compare the Nicaraguan context with the Italian one. Among the used species we found that Madero negro (Gliricidia sepium) and Roble macuelizo (Tabebuia rosea) are adequate for soil-bioengineering measure on slopes while Helequeme (Erythrina fusca) reported a successful behaviour only in the crib wall for riverbank protection. In the comparison of the costs in Nicaragua and in Italy, the unit price reduction for the Central American country ranges between 1.5 times (for the vegetative covering) and almost 4 times (for the fascine mattress) if it's used the EPP dollar exchange rate. Conclusions are reached with regard to hydrological-risk mitigating actions performed on a

  15. Phosphate-induced cadmium adsorption in a tropical savannah soil ...

    African Journals Online (AJOL)

    The influence of phosphate (P) on cadmium (Cd) adsorption was examined in a savanna soil with long history of different fertilizer amendment. The soil was incubated with P at 0, 250 and 500 mg P kg-1 soil and left to equilibrate for 2 weeks. Cd was added to the P-incubated soil at concentrations ranging from 27, 49 and ...

  16. Spatial variability of physical properties of tropical soil

    International Nuclear Information System (INIS)

    Reichardt, K.; Libardi, P.L.; Queiroz, S.V.; Grohmann, F.

    1976-04-01

    A basic study with objectives of improving the use of soil and water resources under a particular condition and of developing means for controlling the dynamics of soil-water movement are presented. Special emphasis is given to the variability in space of geometric soil properties such as bulk density, particle density and texture in order to make it possible to define representative means which ideed will be usable to describe the movement of water and of salt in the entire field

  17. Evaluation of the results of the IAEA/FAO CRP on tropical transfer factors

    International Nuclear Information System (INIS)

    Twining, J.

    1998-01-01

    Future development of tropical countries will include nuclear power. This is particularly true following the recent attention given to the urgent need to reduce greenhouse gas emissions. From this, it is apparent that there is a need to have the ability to undertake dose assessments within tropical and sub-tropical regions. This includes knowledge of appropriate biological transfer factors for the region. However, most previous transfer factor studies were undertaken within temperate regions, predominantly in the Northern Hemisphere. Following a preliminary data survey, there was thus found to be a paucity of data for tropical and sub-tropical regions (excluding marine ecosystems). In an attempt to rectify this situation, the IAEA and FAO instigated a cooperative research program (CRP) entitled 'Transfer of radionuclides from air, soil and freshwater to the food chain of man in tropical and subtropical environments.' This paper is a synopsis of the findings of the three year CRP project. It is important to recognize that the data used in this presentation are derived from contributors and their colleagues in several countries. A list of chief investigators is given. Dr Martin Frissel, Secretary, European IUR, deserves a special mention for his collation of the CRP data. Some of his figures were used in the presentation or reproduced in this synopsis. The participants undertook regional literature and data surveys, field sampling and experimental investigations. The experimental studies were run by following, as closely as practicable, a suite of standard protocols that helped to reduce variability and errors. The experimental studies comprised two main groups: soil to plant, and: freshwater to fish. Quality assurance on analytical work was performed using intercomparison tests with standard reference materials. The reporting of data was also standardised to facilitate collation and subsequent multivariate statistical analysis. The statistical analysis of the entire

  18. Termites as ecological indicators of mine-land rehabilitation in tropical Australia

    International Nuclear Information System (INIS)

    Hinz, D.A.

    2001-01-01

    This paper presents examples from field research of termites as indicators of rehabilitation success in the wet-dry tropics at Nabalco's bauxite mine, Gove, Australia and in Sierra Leone, West Africa. Field studies indicate that soil-plant-animal interactions are crucial in determining the recovery of disturbed land and that termites play an over-riding role in the process. Termites are seen as ecological indicators for successful soil and vegetation development in humid tropical environments. In land rehabilitation, termites help to create healthy, self-regulated vegetation systems that integrate with the surrounding landscapes and build structures and functions equal to those of the pre-disturbed system. They are reliable in signaling the health and stress factors of a system and provide a predictable response

  19. Tropical rainforest response to marine sky brightening climate engineering

    Science.gov (United States)

    Muri, Helene; Niemeier, Ulrike; Kristjánsson, Jón Egill

    2015-04-01

    Tropical forests represent a major atmospheric carbon dioxide sink. Here the gross primary productivity (GPP) response of tropical rainforests to climate engineering via marine sky brightening under a future scenario is investigated in three Earth system models. The model response is diverse, and in two of the three models, the tropical GPP shows a decrease from the marine sky brightening climate engineering. Partial correlation analysis indicates precipitation to be important in one of those models, while precipitation and temperature are limiting factors in the other. One model experiences a reversal of its Amazon dieback under marine sky brightening. There, the strongest partial correlation of GPP is to temperature and incoming solar radiation at the surface. Carbon fertilization provides a higher future tropical rainforest GPP overall, both with and without climate engineering. Salt damage to plants and soils could be an important aspect of marine sky brightening.

  20. Losses of soil carbon by converting tropical forest to plantations: erosion and decomposition estimated by δ(13) C.

    Science.gov (United States)

    Guillaume, Thomas; Damris, Muhammad; Kuzyakov, Yakov

    2015-09-01

    Indonesia lost more tropical forest than all of Brazil in 2012, mainly driven by the rubber, oil palm, and timber industries. Nonetheless, the effects of converting forest to oil palm and rubber plantations on soil organic carbon (SOC) stocks remain unclear. We analyzed SOC losses after lowland rainforest conversion to oil palm, intensive rubber, and extensive rubber plantations in Jambi Province on Sumatra Island. The focus was on two processes: (1) erosion and (2) decomposition of soil organic matter. Carbon contents in the Ah horizon under oil palm and rubber plantations were strongly reduced up to 70% and 62%, respectively. The decrease was lower under extensive rubber plantations (41%). On average, converting forest to plantations led to a loss of 10 Mg C ha(-1) after about 15 years of conversion. The C content in the subsoil was similar under the forest and the plantations. We therefore assumed that a shift to higher δ(13) C values in plantation subsoil corresponds to the losses from the upper soil layer by erosion. Erosion was estimated by comparing the δ(13) C profiles in the soils under forest and under plantations. The estimated erosion was the strongest in oil palm (35 ± 8 cm) and rubber (33 ± 10 cm) plantations. The (13) C enrichment of SOC used as a proxy of its turnover indicates a decrease of SOC decomposition rate in the Ah horizon under oil palm plantations after forest conversion. Nonetheless, based on the lack of C input from litter, we expect further losses of SOC in oil palm plantations, which are a less sustainable land use compared to rubber plantations. We conclude that δ(13) C depth profiles may be a powerful tool to disentangle soil erosion and SOC mineralization after the conversion of natural ecosystems conversion to intensive plantations when soils show gradual increase of δ(13) C values with depth. © 2015 The Authors. Global Change Biology published by John Wiley & Sons Ltd.

  1. Invasion of the tropical earthworm Pontoscolex corethrurus (Rhinodrilidae, Oligochaeta in temperate grasslands

    Directory of Open Access Journals (Sweden)

    Diana Ortiz-Gamino

    2016-10-01

    Full Text Available The tropical earthworm Pontoscolex corethrurus (Rhinodrilidae, Oligochaeta presents a broad distribution (e.g., 56 countries from four continents. It is generally assumed that temperature appears to limit the success of tropical exotic species in temperate climates. However, the distribution range of this species could advance towards higher elevations (with lower temperatures where no tropical species currently occur. The aim of this study was to evaluate the soil and climatic variables that could be closely associated with the distribution of P. corethrurus in four sites along an altitudinal gradient in central Veracruz, Mexico. We predicted that the distribution of P. corethrurus would be more related to climate variables than edaphic parameters. Five sampling points (in the grassland were established at each of four sites along an altitudinal gradient: Laguna Verde (LV, La Concepción (LC, Naolinco (NA and Acatlán (AC at 11–55, 992–1,025, 1,550–1,619 y 1,772–1,800 masl, respectively. The climate ranged from tropical to temperate along the altitudinal gradient. Ten earthworm species (5 Neotropical, 4 Palearctic and 1 Nearctic were found along the gradient, belonging to three families (Rhinodrilidae, Megascolecide and Lumbricidae. Soil properties showed a significant association (positive for Ngrass, pH, permanent wilting point, organic matter and P; and negative for Total N, K and water-holding capacity with the abundance of the earthworm community. Also there seems to be a relationship between climate and earthworm distribution along the altitudinal gradient. P. corethrurus was recorded at tropical (LV and LC and temperate sites (NA along the altitudinal gradient. Our results reveal that soil fertility determines the abundance of earthworms and site (climate can act as a barrier to their migration. Further research is needed to determine the genetic structure and lineages of P. corethrurus along altitudinal gradients.

  2. CO2 efflux from subterranean nests of ant communities in a seasonal tropical forest, Thailand.

    Science.gov (United States)

    Hasin, Sasitorn; Ohashi, Mizue; Yamada, Akinori; Hashimoto, Yoshiaki; Tasen, Wattanachai; Kume, Tomonori; Yamane, Seiki

    2014-10-01

    Many ant species construct subterranean nests. The presence of their nests may explain soil respiration "hot spots", an important factor in the high CO2 efflux from tropical forests. However, no studies have directly measured CO2 efflux from ant nests. We established 61 experimental plots containing 13 subterranean ant species to evaluate the CO2 efflux from subterranean ant nests in a tropical seasonal forest, Thailand. We examined differences in nest CO2 efflux among ant species. We determined the effects of environmental factors on nest CO2 efflux and calculated an index of nest structure. The mean CO2 efflux from nests was significantly higher than those from the surrounding soil in the wet and dry seasons. The CO2 efflux was species-specific, showing significant differences among the 13 ant species. The soil moisture content significantly affected nest CO2 efflux, but there was no clear relationship between nest CO2 efflux and nest soil temperature. The diameter of the nest entrance hole affected CO2 efflux. However, there was no significant difference in CO2 efflux rates between single-hole and multiple-hole nests. Our results suggest that in a tropical forest ecosystem the increase in CO2 efflux from subterranean ant nests is caused by species-specific activity of ants, the nest soil environment, and nest structure.

  3. Soil compaction during harvest operations in five tropical soils with different textures under eucalyptus forests

    Directory of Open Access Journals (Sweden)

    Paula Cristina Caruana Martins

    Full Text Available ABSTRACT Traffic of farm machinery during harvest and logging operations has been identified as the main source of soil structure degradation in forestry activity. Soil susceptibility to compaction and the amount of compaction caused by each forest harvest operation differs according to a number of factors (such as soil strength, soil texture, kind of equipment, traffic intensity, among many others, what requires the adequate assessment of soil compaction under different traffic conditions. The objectives of this study were to determine the susceptibility to compaction of five soil classes with different textures under eucalyptus forests based on their load bearing capacity models; and to determine, from these models and the precompression stresses obtained after harvest operations, the effect of traffic intensity with different equipment in the occurrence of soil compaction. Undisturbed soil samples were collected before and after harvest operations, being then subjected to uniaxial compression tests to determine their precompression stress. The coarse-textured soils were less resistant and endured greater soil compaction. In the clayey LVd2, traffic intensity below four Forwarder passes limited compaction to a third of the samples, whereas in the sandy loam PVd all samples from the 0-3 cm layer were compacted regardless of traffic intensity. The Feller Buncher and the Clambunk presented a high potential to cause soil compaction even with only one or two passes. The use of soil load bearing capacity models and precompression stress determined after harvest and logging operations allowed insight into the soil compaction process in forestry soils.

  4. Proxies of Tropical Cyclone Isotope Spikes in Precipitation: Landfall Site Selection

    Science.gov (United States)

    Lawrence, J. R.; Maddocks, R.

    2011-12-01

    The human experience of climate change is not one of gradual changes in seasonal or yearly changes in temperature or rainfall. Despite that most paleoclimatic reconstructions attempt to provide just such information. Humans experience climate change on much shorter time scales. We remember hurricanes, weeks of drought or overwhelming rainy periods. Tropical cyclones produce very low isotope ratios in both rainfall and in atmospheric water vapor. Thus, climate proxies that potentially record these low isotope ratios offer the most concrete record of climate change to which humans can relate. The oxygen isotopic composition of tropical cyclone rainfall has the potential to be recorded in fresh water carbonate fossil material, cave deposits and corals. The hydrogen isotopic composition of tropical cyclone rainfall has the potential to be recorded in tree ring cellulose and organic matter in fresh water bodies. The Class of carbonate organisms known as Ostracoda form their carapaces very rapidly. Thus fresh water ephemeral ponds in the subtropics are ideal locations for isotopic studies because they commonly are totally dry when tropical cyclones make landfall. The other proxies suffer primarily from a dilution effect. The water from tropical cyclones is mixed with pre-existing water. In cave deposits tropical cyclone rains mix with soil and ground waters. In the near shore coral environment the rain mixes with seawater. For tree rings there are three sources of water: soil water, atmospheric water vapor that exchanges with leaf water and tropical cyclone rain. In lakes because of their large size rainfall runoff mixes with ground water and preexisting water in the lake. A region that shows considerable promise is Texas / Northeast Mexico. In a study of surface waters that developed from the passage of Tropical Storm Allison (2001) in SE Texas both the pond water and Ostracoda that bloomed recorded the low oxygen isotope signal of that storm (Lawrence et al, 2008). In

  5. Forest composition modifies litter dynamics and decomposition in regenerating tropical dry forest.

    Science.gov (United States)

    Schilling, Erik M; Waring, Bonnie G; Schilling, Jonathan S; Powers, Jennifer S

    2016-09-01

    We investigated how forest composition, litter quality, and rainfall interact to affect leaf litter decomposition across three successional tropical dry forests in Costa Rica. We monitored litter stocks and bulk litter turnover in 18 plots that exhibit substantial variation in soil characteristics, tree community structure, fungal communities (including forests dominated by ecto- or arbuscular mycorrhizal host trees), and forest age. Simultaneously, we decomposed three standard litter substrates over a 6-month period spanning an unusually intense drought. Decay rates of standard substrates depended on the interaction between litter identity and forest type. Decomposition rates were correlated with tree and soil fungal community composition as well as soil fertility, but these relationships differed among litter types. In low fertility soils dominated by ectomycorrhizal oak trees, bulk litter turnover rates were low, regardless of soil moisture. By contrast, in higher fertility soils that supported mostly arbuscular mycorrhizal trees, bulk litter decay rates were strongly dependent on seasonal water availability. Both measures of decomposition increased with forest age, as did the frequency of termite-mediated wood decay. Taken together, our results demonstrate that soils and forest age exert strong control over decomposition dynamics in these tropical dry forests, either directly through effects on microclimate and nutrients, or indirectly by affecting tree and microbial community composition and traits, such as litter quality.

  6. Effect of rainfall infiltration into unsaturated soil using soil column

    Science.gov (United States)

    Ibrahim, A.; Mukhlisin, M.; Jaafar, O.

    2018-02-01

    Rainfall especially in tropical region caused infiltration to the soil slope. The infiltration may change pore water pressure or matric suction of the soil. The event of rainfall infiltration into soil is a complex mechanism. Therefore, the main objectives of this research paper is to study the influence of rainfall intensity and duration that changed pore water pressure to soil. There are two types of soils used in this study; forest soil and kaolin. Soil column apparatus is used for experiments. Rainfall were applied to the soil and result for 3, 6, 12, 24, 72, 120 and 168 hours were retrieved. Result shows that for the both types of soil, the negative pore water pressures were increased during wetting process and gradually decreased towards drying process. The results also show that pore water pressure at top part was increased greatly as the wetting process started compared to the middle and bottom part of the column.

  7. Electrical Conductivity and Chemical Composition of Soil Solution: Comparison of Solution Samplers in Tropical Soils

    Directory of Open Access Journals (Sweden)

    Davi Lopes do Carmo

    2016-01-01

    Full Text Available ABSTRACT Soil solution samplers may have the same working principle, but they differ in relation to chemical and physical characteristics, cost and handling, and these aspects exert influence on the chemical composition of the soil solution obtained. This study was carried out to evaluate, over time, the chemical composition of solutions extracted by Suolo Acqua, with the hydrophilic membrane (HM as a standard, using soils with contrasting characteristics, and to determine the relationship between electrical conductivity (EC and concentration of ions and pH of soil solution samples. This study was carried out under laboratory conditions, using three soils samples with different clay and organic matter (OM contents. Soil solution contents of F−, Cl−, NO−3, Br−, SO42−, Na+, NH4+, K+, Mg2+, Ca2+, were analyzed, as well as inorganic, organic, and total C contents, pH, and EC, in four successive sampling times. Soil solution chemical composition extracted by the Suolo Acqua sampler is similar to that collected by the HM, but the Suolo Acqua extracted more Na+ and soluble organic C than the HM solution. Solution EC, cation and anion concentrations, and soluble C levels are higher in the soil with greater clay and OM contents (Latossolo and Cambissolo in this case. Soil solution composition varied over time, with considerable changes in pH, EC, and nutrient concentrations, especially associated with soil OM. Thus, single and isolated sampling of the soil solution must be avoided, otherwise composition of the soil solution may not be correctly evaluated. Soil solution EC was regulated by pH, as well as the sum of cation and anion concentrations, and the C contents determined in the soil liquid phase.

  8. (Tropical) soil organic matter modelling: problems and prospects

    NARCIS (Netherlands)

    Keulen, van H.

    2001-01-01

    Soil organic matter plays an important role in many physical, chemical and biological processes. However, the quantitative relations between the mineral and organic components of the soil and the relations with the vegetation are poorly understood. In such situations, the use of models is an

  9. Soil heavy metals

    Energy Technology Data Exchange (ETDEWEB)

    Sherameti, Irena [Jena Univ. (Germany). Inst. fuer Allgemeine Botanik und Pflanzenphysiologie; Varma, Ajit (eds.) [Amity Univ., Uttar Pradesh (India). Amity Inst. of Microbial Technology; Amity Science, Technology and Innovation Foundation, Noida, UP (India)

    2010-07-01

    Human activities have dramatically changed the composition and organisation of soils. Industrial and urban wastes, agricultural application and also mining activities resulted in an increased concentration of heavy metals in soils. How plants and soil microorganisms cope with this situation and the sophisticated techniques developed for survival in contaminated soils is discussed in this volume. The topics presented include: the general role of heavy metals in biological soil systems; the relation of inorganic and organic pollutions; heavy metal, salt tolerance and combined effects with salinity; effects on abuscular mycorrhizal and on saprophytic soil fungi; heavy metal resistance by streptomycetes; trace element determination of environmental samples; the use of microbiological communities as indicators; phytostabilization of lead polluted sites by native plants; effects of soil earthworms on removal of heavy metals and the remediation of heavy metal contaminated tropical land. (orig.)

  10. Large trees drive forest aboveground biomass variation in moist lowland forests across the tropics

    DEFF Research Database (Denmark)

    Slik, J.W.Ferry; Paoli, Gary; McGuire, Krista

    2013-01-01

    .3 ± 109.3 Mg ha−1). Pan-tropical variation in density of large trees and AGB was associated with soil coarseness (negative), soil fertility (positive), community wood density (positive) and dominance of wind dispersed species (positive), temperature in the coldest month (negative), temperature...

  11. Taxonomic and phylogenetic diversity of vascular plants at Ma'anling volcano urban park in tropical Haikou, China: Reponses to soil properties.

    Science.gov (United States)

    Cheng, Xia-Lan; Yuan, Lang-Xing; Nizamani, Mir Mohammad; Zhu, Zhi-Xin; Friedman, Cynthia Ross; Wang, Hua-Feng

    2018-01-01

    Anthropogenic processes and socio-economic factors play important roles in shaping plant diversity in urban parks. To investigate how plant diversity of Ma' anling urban volcano park in Hainan Province, China respond to these factors, we carried out a field investigation on the taxonomic and phylogenetic diversity of vascular plants and soil properties in this area. We found 284 species of vascular plants belonging to 88 families and 241 genera, which included 194 native species, 23 invasive species, 31 naturalized species, 40 cultivars, and 4 rare / endangered plant species. Tree composition and richness significantly varied between different vegetation formations (plantation, secondary forest, and abandoned land). Plant species richness and community composition were significantly affected by elevation (El), soil water content (WC), total soil nitrogen (TN) and soil organic matter (SOM). There were significant diversity differences between plantations and abandoned lands, but not between the plantations and secondary forests. The flora in the study site was tropical in nature, characterized by pantropic distributions. Compared to adjacent areas, floristic composition in the study site was most similar to that of Guangdong, followed by that of Vietnam. Our study revealed the diversity patterns of volcanic plants and provided the basis for future planning of plant conservation, such as preserving plant species, maintaining plant habitats, and coordinating plant management in this region.

  12. Connecting tropical river DOM and POM to the landscape with lignin

    Science.gov (United States)

    Hernes, Peter J.; Dyda, Rachael Y.; McDowell, William H.

    2017-12-01

    Tropical rivers account for two thirds of global fluxes of terrigenous organic matter to the oceans, yet because of their remote locations relative to most industrialized countries, they are poorly studied compared to temperate and even Arctic rivers. Further, most tropical river research has focused on large rivers like the Amazon or Congo, yet more than half of organic matter fluxes from tropical rivers comes from much smaller rivers. This study focuses on two such rivers in the Luquillo Experimental Forest of Puerto Rico, namely the Rio Mameyes and Rio Icacos, and uses time-series measurements of lignin biomarkers to put them in context with much bigger tropical rivers in the literature. Although lignin concentrations and carbon-normalized yields offer some distinction between mountainous vs. floodplain tropical river reaches, compositional differences appear to offer greater potential, including S:V vs. C:V plots that may capture the poorly-studied influence of palm trees, and (Ad:Al)s vs. (Ad:Al)v plots that may reflect differences in underlying mineralogy and degradation in soils. Even though dissolved and particulate lignin ultimately come from the same vegetation sources, comparison of dissolved and particulate lignin parameters within the two Puerto Rican rivers indicate that the pathways by which they end up in the same parcel of river water are largely decoupled. Across several particulate lignin studies in tropical rivers, mineral composition and concentration appears to exert a strong control on particulate lignin compositions and concentrations. Finally, the time-series nature of this study allows for new ways of analyzing dissolved lignin endmember compositions and degradation within the catchment. Plots of dissolved lignin parameters vs. lignin concentration reveal both the composition of "fresh" DOM that is likely mobilized from organic-rich soil surface layers along with the extent and trajectory of degradation of that signature that is possible

  13. Influence of Soil Properties on Soldierless Termite Distribution

    Czech Academy of Sciences Publication Activity Database

    Bourguignon, T.; Drouet, T.; Šobotník, J.; Hanus, Robert; Roisin, Y.

    2015-01-01

    Roč. 10, č. 8 (2015), e0135341/1-e0135341/11 E-ISSN 1932-6203 Institutional support: RVO:61388963 Keywords : tropical termites * soil -feeding termites * soil properties * soil preference Subject RIV: EH - Ecology, Behaviour Impact factor: 3.057, year: 2015 http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0135341

  14. Radioecological studies of tritium movement in a tropical rain forest

    Energy Technology Data Exchange (ETDEWEB)

    Martin, J R; Jordan, C F; Koranda, J J; Kline, J R [Bio-Medical Division, Lawrence Radiation Laboratory, University of California, Livermore, CA (United States)

    1970-05-01

    Several experiments on the movement of tritium in a tropical ecosystem have been conducted in the montane rainforest of Eastern Puerto Rico by the Bio-Medical Division of the Lawrence Radiation Laboratory, Livermore, in cooperation with the Puerto Rico Nuclear Center. Tritiated whaler was used as a tracer for water movement in: a) mature evergreen trees of the climax rainforest; b) soil and substory vegetation and c) rapidly growling successional species. A feasibility study on the Atlantic Pacific Interoceanic Canal is currently being conducted. If thermonuclear explosives were used in constructing the canal, tritium would be deposited as tritiated water and distributed among the several biological compartments of the tropical ecosystem in that area. The main hydrogen compartments are water in the soil and in leaves, limbs and wood of forest trees. Organic tissue hydrogen comprises another compartment. In the tree experiment, tritiated water was injected directly into several species of mature, broad leaved evergreen tropical trees. Transpiration and residence time for tritium was determined from analyses of leaves sampled during a several month period. Transpiration ranged from 4 ml/day/gm dry leaf for an understory Dacryodes excelsa to 10.0 and 13.8 ml/day/gm dry leaf for a mature Sloanea berteriana and D. excelsa, respectively. Mean residence time for the S. berteriana was 3.9 {+-} 0.2 days and the understory and mature D. excelsa values were 9.5 {+-} 0.4 and 11.0 {+-} 0. 6 days, respectively. In another experiment, tritiated water was sprinkled over a 3.68 m{sup 2} plot and its movement down into the soil and up into the vegetation growing on the plot was traced. The pattern of water movement in the soil was clearly demonstrated. The mean residence time for tritium in the soil and in trees was found to be 42 {+-} 2 days and 67 {+-} 9 days, respectively. The residence time for tritium in the trees in this experiment was considerably longer than for the single

  15. Radioecological studies of tritium movement in a tropical rain forest

    International Nuclear Information System (INIS)

    Martin, J.R.; Jordan, C.F.; Koranda, J.J.; Kline, J.R.

    1970-01-01

    Several experiments on the movement of tritium in a tropical ecosystem have been conducted in the montane rainforest of Eastern Puerto Rico by the Bio-Medical Division of the Lawrence Radiation Laboratory, Livermore, in cooperation with the Puerto Rico Nuclear Center. Tritiated whaler was used as a tracer for water movement in: a) mature evergreen trees of the climax rainforest; b) soil and substory vegetation and c) rapidly growling successional species. A feasibility study on the Atlantic Pacific Interoceanic Canal is currently being conducted. If thermonuclear explosives were used in constructing the canal, tritium would be deposited as tritiated water and distributed among the several biological compartments of the tropical ecosystem in that area. The main hydrogen compartments are water in the soil and in leaves, limbs and wood of forest trees. Organic tissue hydrogen comprises another compartment. In the tree experiment, tritiated water was injected directly into several species of mature, broad leaved evergreen tropical trees. Transpiration and residence time for tritium was determined from analyses of leaves sampled during a several month period. Transpiration ranged from 4 ml/day/gm dry leaf for an understory Dacryodes excelsa to 10.0 and 13.8 ml/day/gm dry leaf for a mature Sloanea berteriana and D. excelsa, respectively. Mean residence time for the S. berteriana was 3.9 ± 0.2 days and the understory and mature D. excelsa values were 9.5 ± 0.4 and 11.0 ± 0. 6 days, respectively. In another experiment, tritiated water was sprinkled over a 3.68 m 2 plot and its movement down into the soil and up into the vegetation growing on the plot was traced. The pattern of water movement in the soil was clearly demonstrated. The mean residence time for tritium in the soil and in trees was found to be 42 ± 2 days and 67 ± 9 days, respectively. The residence time for tritium in the trees in this experiment was considerably longer than for the single injected input

  16. Soil workability as a basis for advice on tillage activities

    OpenAIRE

    Cadena Zapata, M.

    1999-01-01

    In the tropical area of Mexico, when and how to carry out tillage is a qualitative decision. There is no quantified information about the interaction between a chosen process of cultivation, soil type and weather, which dictate the tool and power requirements. Waste of energy and soil degradation by erosion and compaction, and lack of timeliness are recognized problems caused by inadequate tillage management in the tropical area of Mexico.

    In this thesis, the workab...

  17. Timber tree regeneration along abandoned logging roads in a tropical Bolivian forest

    DEFF Research Database (Denmark)

    Nabe-Nielsen, J.; Severiche, W.; Fredericksen, T.

    2007-01-01

    Sustainable management of selectively logged tropical forests requires that felled trees are replaced through increased recruitment and growth. This study compares road track and roadside regeneration with regeneration in unlogged and selectively logged humid tropical forest in north-eastern Boli......Sustainable management of selectively logged tropical forests requires that felled trees are replaced through increased recruitment and growth. This study compares road track and roadside regeneration with regeneration in unlogged and selectively logged humid tropical forest in north......-eastern Bolivia. Some species benefited from increased light intensities on abandoned logging roads. Others benefited from low densities of competing vegetation on roads with compacted soils. This was the case for the small-seeded species Ficus boliviana C.C. Berg and Terminalia oblonga (Ruiz & Pav.) Steud. Some...

  18. Organomineral Complexation at the Nanoscale: Iron Speciation and Soil Carbon Stabilization

    Science.gov (United States)

    Coward, E.; Thompson, A.; Plante, A. F.

    2016-12-01

    Much of the uncertainty in the biogeochemical behavior of soil carbon (C) in tropical ecosystems derives from an incomplete understanding of soil C stabilization processes. The 2:1 phyllosilicate clays often associated with temperate organomineral complexation are largely absent in tropical soils due to extensive weathering. In contrast, these soils contain an abundance of Fe- and Al-containing short-range-order (SRO) mineral phases capable of C stabilization through sorption or co-precipitation, largely enabled by high specific surface area (SSA). SRO-mediated organomineral associations may thus prove a critical, yet matrix-selective, driver of the long-term C stabilization capacity observed in tropical soils. Characterizing the interactions between inherently heterogeneous organic matter and amorphous mineralogy presses the limits of current analytical techniques. This work pairs inorganic selective dissolution with high-resolution assessment of Fe speciation to determine the contribution of extracted mineral phases to the mineral matrix, and to C stabilization capacity. Surface (0-20 cm) samples were taken from 20 quantitative soil pits within the Luquillo Critical Zone Observatory in northeast Puerto Rico stratified across granodioritic and volcaniclastic parent materials. 57Fe-Mössbauer spectroscopy (MBS) and x-ray diffraction (XRD) before and after Fe-SOM extraction were used to assess changes in the mineralogical matrix associated with SOM dissolution, while N2-BET sorption was used to determine the contributions of the extractable phases to SSA. Results indicate (1) selective extraction of soil C produces significant shifts in Fe phase distribution, (2) SRO minerals contribute substantially to SSA, and (3) SRO minerals appear protected by more crystalline phases via physical mechanisms, rather than dissolution-dependent chemical bonds. This nanoscale characterization of Fe-C complexes thus provides evidence for both anticipated mineral-organic and

  19. Pesticide-Biota Interactions in Tropical Soils

    International Nuclear Information System (INIS)

    Sethunathan, N.; Wahid, P.A.; Rao, T.R.; Adhya, T.K.; Ramakrishna, C.; Ray, R.C.; Pal, S.S.; Chendrayan, K.; Sudhakar-Barik; Venkateswarlu, K.; Nayak, D.N.; Charyulu, P.B.B.N.; Rao, V.R.

    1981-01-01

    Studies using radiotracer techniques and gas-liquid chromatography showed that instantaneous degradation of parathion, methyl parathion and fenitrothion occurred upon their equilibration with soils pre-reduced by flooding with water; amino analogues of the respective insecticides were formed as major degradation products

  20. Pesticide-Biota Interactions in Tropical Soils

    Energy Technology Data Exchange (ETDEWEB)

    Sethunathan, N.; Wahid, P. A.; Rao, T. R.; Adhya, T. K.; Ramakrishna, C.; Ray, R. C.; Pal, S. S.; Chendrayan, K.; Sudhakar-Barik,; Venkateswarlu, K.; Nayak, D. N.; Charyulu, P. B.B.N.; Rao, V. R. [Laboratory of Soil Microbiology, Division of Soil Science and Microbiology, Central Rice Research Institute, Cuttack-753006 (India)

    1981-05-15

    Studies using radiotracer techniques and gas-liquid chromatography showed that instantaneous degradation of parathion, methyl parathion and fenitrothion occurred upon their equilibration with soils pre-reduced by flooding with water; amino analogues of the respective insecticides were formed as major degradation products.

  1. Positions of human dwellings affect few tropical diseases near ...

    African Journals Online (AJOL)

    user

    Some factors that possibly affect tropical disease distribution was investigated in about 500 randomize human dwellings. The studied factors include wild animals, domestic animals, wild plants, cultivated plants, nature of soil, nature of water, positions of human dwellings, nature of building material and position of animal ...

  2. Temporal and Spatial Variation of Soil Bacteria Richness, Composition, and Function in a Neotropical Rainforest.

    Science.gov (United States)

    Kivlin, Stephanie N; Hawkes, Christine V

    2016-01-01

    The high diversity of tree species has traditionally been considered an important controller of belowground processes in tropical rainforests. However, soil water availability and resources are also primary regulators of soil bacteria in many ecosystems. Separating the effects of these biotic and abiotic factors in the tropics is challenging because of their high spatial and temporal heterogeneity. To determine the drivers of tropical soil bacteria, we examined tree species effects using experimental tree monocultures and secondary forests at La Selva Biological Station in Costa Rica. A randomized block design captured spatial variation and we sampled at four dates across two years to assess temporal variation. We measured bacteria richness, phylogenetic diversity, community composition, biomass, and functional potential. All bacteria parameters varied significantly across dates. In addition, bacteria richness and phylogenetic diversity were affected by the interaction of vegetation type and date, whereas bacteria community composition was affected by the interaction of vegetation type and block. Shifts in bacteria community richness and composition were unrelated to shifts in enzyme function, suggesting physiological overlap among taxa. Based on the observed temporal and spatial heterogeneity, our understanding of tropical soil bacteria will benefit from additional work to determine the optimal temporal and spatial scales for sampling. Understanding spatial and temporal variation will facilitate prediction of how tropical soil microbes will respond to future environmental change.

  3. A novel Bacillus pumilus-related strain from tropical landfarm soil is capable of rapid dibenzothiophene degradation and biodesulfurization.

    Science.gov (United States)

    Buzanello, Elizandra Bruschi; Rezende, Rachel Passos; Sousa, Fernanda Maria Oliveira; Marques, Eric de Lima Silva; Loguercio, Leandro Lopes

    2014-10-08

    The presence of organic sulfur-containing compounds in the environment is harmful to animals and human health. The combustion of these compounds in fossil fuels tends to release sulfur dioxide in the atmosphere, which leads to acid rain, corrosion, damage to crops, and an array of other problems. The process of biodesulfurization rationally exploits the ability of certain microorganisms in the removal of sulfur prior to fuel burning, without loss of calorific value. In this sense, we hypothesized that bacterial isolates from tropical landfarm soils can demonstrate the ability to degrade dibenzothiophene (DBT), the major sulfur-containing compound present in fuels. Nine bacterial isolates previously obtained from a tropical landfarm soil were tested for their ability to degrade dibenzothiophene (DBT). An isolate labeled as RR-3 has shown the best performance and was further characterized in the present study. Based on physiological aspects and 16 s rDNA sequencing, this isolate was found to be very closely related to the Bacillus pumillus species. During its growth, high levels of DBT were removed in the first 24 hours, and a rapid DBT degradation within the first hour of incubation was observed when resting cells were used. Detection of 2-hydroxybiphenyl (HBP), a marker for the 4S pathway, suggests this strain has metabolical capability for DBT desulfurization. The presence of MgSO4 in growth medium as an additional sulfur source has interfered with DBT degradation. To our knowledge, this is the first study showing that a Bacillus strain can metabolize DBT via the 4S pathway. However, further evidences suggest RR-3 can also use DBT (and/or its derivative metabolites) as carbon/sulfur source through another type of metabolism. Compared to other reported DBT-degrading strains, the RR-3 isolate showed the highest capacity for DBT degradation ever described in quantitative terms. The potential application of this isolate for the biodesulfurization of this sulfur

  4. Leaf litter decomposition rates increase with rising mean annual temperature in Hawaiian tropical montane wet forests

    Science.gov (United States)

    Lori D. Bothwell; Paul C. Selmants; Christian P. Giardina; Creighton M. Litton

    2014-01-01

    Decomposing litter in forest ecosystems supplies nutrients to plants, carbon to heterotrophic soil microorganisms and is a large source of CO2 to the atmosphere. Despite its essential role in carbon and nutrient cycling, the temperature sensitivityof leaf litter decay in tropical forest ecosystems remains poorly resolved, especially in tropical...

  5. The behavior of P in tropical soils

    International Nuclear Information System (INIS)

    Bittencourt, V.C.; Zambello Junior, E.

    1975-06-01

    The experimental data showed that the whole P retention process depends on the levels and the reactivities of the iron oxides in the soils. It was established that the retention mechanism occurs in 2 or 3 stages and it is related to both the maximum adsorption and the absorbent capacity of the several soils as determined by the Langmuir and the Freundlich equations respectively. The final step of the P interaction which shows small rate constants is due to a diffusion of the phosphate ions from the oxide surface to the internal layers producing more stable iron-phosphate compounds

  6. Human impacts on soil carbon dynamics of deep-rooted Amazonian forests and effect of land use change on the carbon cycle in Amazon soils

    Science.gov (United States)

    Nepstad, Daniel; Stone, Thomas; Davidson, Eric; Trumbore, Susan E.

    1992-01-01

    The main objective of these NASA-funded projects is to improve our understanding of land-use impacts on soil carbon dynamics in the Amazon Basin. Soil contains approximately one half of tropical forest carbon stocks, yet the fate of this carbon following forest impoverishment is poorly studied. Our mechanistics approach draws on numerous techniques for measuring soil carbon outputs, inputs, and turnover time in the soils of adjacent forest and pasture ecosystems at our research site in Paragominas, state of Para, Brazil. We are scaling up from this site-specific work by analyzing Basin-wide patterns in rooting depth and rainfall seasonality, the two factors that we believe should explain much of the variation in tropical soil carbons dynamics. In this report, we summarize ongoing measurements at our Paragominas study site, progress in employing new field data to understand soil C dynamics, and some surprising results from our regional, scale-up work.

  7. Water flow and energy balance for a tropical dry semideciduous forest

    Science.gov (United States)

    Andrade, J. L.; Garruña-Hernandez, R.; Leon-Palomo, M.; Us-Santamaria, R.; Sima, J. L.

    2013-05-01

    Tropical forests cool down locally because increase water evaporation from the soil to the atmosphere, reduce albedo and help forming clouds that reflect solar radiation back to the atmosphere; this, aligned to the carbon catchment, increase forests value. We will present an estimation of the sap flow and energy balance for the tropical dry semideciduous forest at Kiuic, Yucatan, Mexico during a year. We use a meteorological tower equipped with a rain gauge, temperature and relative humidity, heat flow plates, thermocouples and volumetric soil water content. We recorded net radiation and soil heat flux and estimated sensible heat and latent heat. Besides, we estimated latent heat by measuring sap flow directly in tres using disispation constant heat probes during the rainy season. Results show the influence of the seasonality on net radiation, air temperatura and vapor pressure deficit, because during the dry season his variables were higher and with more duation than during the rainy and early dry season. Sap flow was different for trees belonging to the family Fabaceae compared to trees from other families.

  8. Phytoremediation in the tropics - influence of heavy crude oil on root morphological characteristics of graminoids

    International Nuclear Information System (INIS)

    Merkl, Nicole; Schultze-Kraft, Rainer; Infante, Carmen

    2005-01-01

    When studying species for phytoremediation of petroleum-contaminated soils, one of the main traits is the root zone where enhanced petroleum degradation takes place. Root morphological characteristics of three tropical graminoids were studied. Specific root length (SRL), surface area, volume and average root diameter (ARD) of plants grown in crude oil-contaminated and uncontaminated soil were compared. Brachiaria brizantha and Cyperus aggregatus showed coarser roots in polluted soil compared to the control as expressed in an increased ARD. B. brizantha had a significantly larger specific root surface area in contaminated soil. Additionally, a shift of SRL and surface area per diameter class towards higher diameters was found. Oil contamination also caused a significantly smaller SRL and surface area in the finest diameter class of C. aggregatus. The root structure of Eleusine indica was not significantly affected by crude oil. Higher specific root surface area was related to higher degradation of petroleum hydrocarbons found in previous studies. - Describing the effect of crude oil on root morphology of tropical graminoids the work assists in the selection of plant species for phytoremediation of oil-contaminated soils

  9. Phytoremediation in the tropics - influence of heavy crude oil on root morphological characteristics of graminoids

    Energy Technology Data Exchange (ETDEWEB)

    Merkl, Nicole [Institute of Plant Production and Agroecology in the Tropics and Subtropics, Department of Biodiversity and Land Rehabilitation, University of Hohenheim, D-70593 Stuttgart (Germany) and PDVSA - Intevep, Centro de Investigacion y Apoyo Tecnologico de Petroleos de Venezuela S.A., Departamento de Ecologia y Ambiente, P.O. Box 76343, Caracas 1070-A (Venezuela)]. E-mail: nmerkl@uni-hohenheim.de; Schultze-Kraft, Rainer [Institute of Plant Production and Agroecology in the Tropics and Subtropics, Department of Biodiversity and Land Rehabilitation, University of Hohenheim, D-70593 Stuttgart (Germany)]. E-mail: rsk@uni-hohenheim.de; Infante, Carmen [PDVSA - Intevep, Centro de Investigacion y Apoyo Tecnologico de Petroleos de Venezuela S.A., Departamento de Ecologia y Ambiente, P.O. Box 76343, Caracas 1070-A (Venezuela) and Universidad Simon Bolivar (USB), FUNINDES, Unidad de Gestion Ambiental, Caracas (Venezuela)]. E-mail: luchoben@cantv.net

    2005-11-15

    When studying species for phytoremediation of petroleum-contaminated soils, one of the main traits is the root zone where enhanced petroleum degradation takes place. Root morphological characteristics of three tropical graminoids were studied. Specific root length (SRL), surface area, volume and average root diameter (ARD) of plants grown in crude oil-contaminated and uncontaminated soil were compared. Brachiaria brizantha and Cyperus aggregatus showed coarser roots in polluted soil compared to the control as expressed in an increased ARD. B. brizantha had a significantly larger specific root surface area in contaminated soil. Additionally, a shift of SRL and surface area per diameter class towards higher diameters was found. Oil contamination also caused a significantly smaller SRL and surface area in the finest diameter class of C. aggregatus. The root structure of Eleusine indica was not significantly affected by crude oil. Higher specific root surface area was related to higher degradation of petroleum hydrocarbons found in previous studies. - Describing the effect of crude oil on root morphology of tropical graminoids the work assists in the selection of plant species for phytoremediation of oil-contaminated soils.

  10. Soil Science and Global Issues

    Science.gov (United States)

    Lal, Rattan

    2015-04-01

    Sustainable management of soil is integral to any rational approach to addressing global issues of the 21st century. A high quality soil is essential to: i) advancing food and nutritional security, ii) mitigating and adapting to climate change, iii) improving quality and renewability of water, iv) enriching biodiversity, v) producing biofuel feedstocks for reducing dependence on fossil fuel, and vi) providing cultural, aesthetical and recreational opportunities. Being the essence of all terrestrial life, soil functions and ecosystem services are essential to wellbeing of all species of plants and animals. Yet, soil resources are finite, unequally distributed geographically, and vulnerable to degradation by natural and anthropogenic perturbations. Nonetheless, soil has inherent resilience, and its ecosystem functions and services can be restored over time. However, soil resilience depends on several key soil properties including soil organic carbon (SOC) concentration and pool, plant-available water capacity (PWAC), nutrient reserves, effective rooting depth, texture and clay mineralogy, pH, cation exchange capacity (CEC) etc. There is a close inter-dependence among these properties. For example, SOC concentration strongly affects, PWAC, nutrient reserve, activity and species diversity of soil flora and fauna, CEC etc. Thus, judicious management of SOC concentration to maintain it above the threshold level (~1.5-2%) in the root zone is critical to sustaining essential functions and ecosystem services. Yet, soils of some agroecosystems (e.g., those managed by resources-poor farmers and small landholders in the tropics and sub-tropics) are severely depleted of their SOC reserves. Consequently. Agronomic productivity and wellbeing of people dependent on degraded soils is jeopardized. The ecosystem C pool of the terrestrial biosphere has been mined by extractive practices, the nature demands recarbonization of its biosphere for maintenance of its functions and

  11. Urgent need for warming experiments in tropical forests

    Science.gov (United States)

    Calaveri, Molly A.; Reed, Sasha C.; Smith, W. Kolby; Wood, Tana E.

    2015-01-01

    Although tropical forests account for only a fraction of the planet's terrestrial surface, they exchange more carbon dioxide with the atmosphere than any other biome on Earth, and thus play a disproportionate role in the global climate. In the next 20 years, the tropics will experience unprecedented warming, yet there is exceedingly high uncertainty about their potential responses to this imminent climatic change. Here, we prioritize research approaches given both funding and logistical constraints in order to resolve major uncertainties about how tropical forests function and also to improve predictive capacity of earth system models. We investigate overall model uncertainty of tropical latitudes and explore the scientific benefits and inevitable trade-offs inherent in large-scale manipulative field experiments. With a Coupled Model Intercomparison Project Phase 5 analysis, we found that model variability in projected net ecosystem production was nearly 3 times greater in the tropics than for any other latitude. Through a review of the most current literature, we concluded that manipulative warming experiments are vital to accurately predict future tropical forest carbon balance, and we further recommend the establishment of a network of comparable studies spanning gradients of precipitation, edaphic qualities, plant types, and/or land use change. We provide arguments for long-term, single-factor warming experiments that incorporate warming of the most biogeochemically active ecosystem components (i.e. leaves, roots, soil microbes). Hypothesis testing of underlying mechanisms should be a priority, along with improving model parameterization and constraints. No single tropical forest is representative of all tropical forests; therefore logistical feasibility should be the most important consideration for locating large-scale manipulative experiments. Above all, we advocate for multi-faceted research programs, and we offer arguments for what we consider the most

  12. Soil N2O and NO emissions from land use and land-use change in the tropics and subtropics: a meta-analysis

    Science.gov (United States)

    van Lent, J.; Hergoualc'h, K.; Verchot, L. V.

    2015-08-01

    Deforestation and forest degradation in the tropics may substantially alter soil N-oxide emissions. It is particularly relevant to accurately quantify those changes to properly account for them in a REDD+ climate change mitigation scheme that provides financial incentives to reduce the emissions. With this study we provide updated land use (LU)-based emission rates (103 studies, 387 N2O and 111 NO case studies), determine the trend and magnitude of flux changes with land-use change (LUC) using a meta-analysis approach (43 studies, 132 N2O and 37 NO cases) and evaluate biophysical drivers of N2O and NO emissions and emission changes for the tropics. The average N2O and NO emissions in intact upland tropical forest amounted to 2.0 ± 0.2 (n = 88) and 1.7 ± 0.5 (n = 36) kg N ha-1 yr-1, respectively. In agricultural soils annual N2O emissions were exponentially related to N fertilization rates and average water-filled pore space (WFPS) whereas in non-agricultural sites a Gaussian response to WFPS fit better the observed NO and N2O emissions. The sum of soil N2O and NO fluxes and the ratio of N2O to NO increased exponentially and significantly with increasing nitrogen availability (expressed as NO3-/[NO3-+NH4+]) and WFPS, respectively; following the conceptual Hole-In-the-Pipe model. Nitrous and nitric oxide fluxes did not overall increase significantly as a result of LUC (Hedges's d of 0.11 ± 0.11 and 0.16 ± 0.19, respectively), however individual LUC trajectories or practices did. Nitrous oxide fluxes increased significantly after intact upland forest conversion to croplands (Hedges's d = 0.78 ± 0.24) and NO increased significantly following the conversion of low forest cover (secondary forest younger than 30 years, woodlands, shrublands) (Hedges's d of 0.44 ± 0.13). Forest conversion to fertilized systems significantly and highly raised both N2O and NO emission rates (Hedges's d of 1.03 ± 0.23 and 0.52 ± 0.09, respectively). Changes in nitrogen availability

  13. Climate change mitigation: potential benefits and pitfalls of enhanced rock weathering in tropical agriculture.

    Science.gov (United States)

    Edwards, David P; Lim, Felix; James, Rachael H; Pearce, Christopher R; Scholes, Julie; Freckleton, Robert P; Beerling, David J

    2017-04-01

    Restricting future global temperature increase to 2°C or less requires the adoption of negative emissions technologies for carbon capture and storage. We review the potential for deployment of enhanced weathering (EW), via the application of crushed reactive silicate rocks (such as basalt), on over 680 million hectares of tropical agricultural and tree plantations to offset fossil fuel CO 2 emissions. Warm tropical climates and productive crops will substantially enhance weathering rates, with potential co-benefits including decreased soil acidification and increased phosphorus supply promoting higher crop yields sparing forest for conservation, and reduced cultural eutrophication. Potential pitfalls include the impacts of mining operations on deforestation, producing the energy to crush and transport silicates and the erosion of silicates into rivers and coral reefs that increases inorganic turbidity, sedimentation and pH, with unknown impacts for biodiversity. We identify nine priority research areas for untapping the potential of EW in the tropics, including effectiveness of tropical agriculture at EW for major crops in relation to particle sizes and soil types, impacts on human health, and effects on farmland, adjacent forest and stream-water biodiversity. © 2017 The Author(s).

  14. The behavior of P in tropical soils

    International Nuclear Information System (INIS)

    Bittencourt, V.C.; Zambello Junior, E.

    1975-06-01

    The 32 P isotopic exchange between the equilibrium solution and the soil can be described by 2 or 3 first order reactions, which are mainly determined by the iron oxide content of the samples. The first reaction in Terra Roxa Estruturada and in Latosol Roxo soils was found to be independent of the ionic strength of the solution and this may be atributed to a chemical adsorption of the phosphate in the solid phase surface, with an ulterior occlusion of the ion in the internal layers. Since the constant rates of the second and third reactions was found to depend on the ionic strength of the solution and after these interactions a considerable amount of isotopic exchangeable P was observed, it is suggested that 2 phosphate diffusion processes occur: One from the hydratation shell to the solid surface and the other the equilibrium solution to the hydratation shell. The reactions in the Latosol Vermelho Escuro-fase arenosa and in the Podzolizados de Lins e Marilia, variacao Lins, soils were more intense in the liquid phase, and therefore less amounts of phosphate was subject to chemical adsorption

  15. Promoting Reduced-Impact Logging in Tropical Developing Countries: A Success Story of Technology Transfer

    Science.gov (United States)

    Dennis P. Dykstra

    2007-01-01

    Industrial timber harvesting operations commonly employ heavy machinery and thus have the potential to inflict significant damage on soils, streams, and residual vegetation. Impacts associated with such operations have been especially troubling in many tropical countries, where mature trees often have large crowns capable of destroying other trees when they fall; soils...

  16. Aluminium release from acidic forest soil following deforestation and ...

    African Journals Online (AJOL)

    Acidic tropical soils often have high Al3+ concentrations in soil solutions, which can be toxic to plants and, thereby, reduce agricultural yields. This study focuses on the impact of deforestation and cultivation on the short and long-term Al geochemistry of acidic soils in Ghana, West Africa. Site-specific investigations were ...

  17. Land crabs as key drivers in tropical coastal forest recruitment

    Science.gov (United States)

    Lindquist, E.S.; Krauss, K.W.; Green, P.T.; O'Dowd, D. J.; Sherman, P.M.; Smith, T. J.

    2009-01-01

    Plant populations are regulated by a diverse assortment of abiotic and biotic factors that influence seed dispersal and viability, and seedling establishment and growth at the microsite. Rarely does one animal guild exert as significant an influence on different plant assemblages as land crabs. We review three tropical coastal ecosystems-mangroves, island maritime forests, and mainland coastal terrestrial forests-where land crabs directly influence forest composition by limiting tree establishment and recruitment. Land crabs differentially prey on seeds, propagules and seedlings along nutrient, chemical and physical environmental gradients. In all of these ecosystems, but especially mangroves, abiotic gradients are well studied, strong and influence plant species distributions. However, we suggest that crab predation has primacy over many of these environmental factors by acting as the first limiting factor of tropical tree recruitment to drive the potential structural and compositional organisation of coastal forests. We show that the influence of crabs varies relative to tidal gradient, shoreline distance, canopy position, time, season, tree species and fruiting periodicity. Crabs also facilitate forest growth and development through such activities as excavation of burrows, creation of soil mounds, aeration of soils, removal of leaf litter into burrows and creation of carbon-rich soil microhabitats. For all three systems, land crabs influence the distribution, density and size-class structure of tree populations. Indeed, crabs are among the major drivers of tree recruitment in tropical coastal forest ecosystems, and their conservation should be included in management plans of these forests. ?? 2009 Cambridge Philosophical Society.

  18. Impact of Restoration of Soil in a Humid Tropical Region on Storage of Organic Carbon in a Recalcitrant Pool

    Science.gov (United States)

    Jyoti Nath, Arun; Brahma, Biplab; Lal, Rattan; Das, Ashesh Kumar

    2017-04-01

    Quantifying soil organic carbon (SOC) changes through restoration of degraded lands is important to assessing the changes in soil properties. However, SOC measures all C fractions and its assessment is not adequate to distinguish between the more dynamic or active C (AC) fractions and the recalcitrant or passive C (PC) form. SOC fractions comprising of the recalcitrant pools have been suggested as a driver for long term soil C sink management. Therefore, the present study was undertaken at a site within the North Eastern India (NEI) region with an objective to explore whether or not SOC fractions change with restoration of degraded lands under humid tropical climate. An age-chronosequence study was established comprising of four different aged rubber plantations (6, 15, 27 and 34 yr. old) planted on Imperata grasslands. The site was selected to study changes in the different fractions of SOC and total SOC stock, and the data were compared with that of a native forest. The data indicated that the SOC stock increased from 106 Mg ha-1 under 6 yr. to 130 Mg ha-1 under 34 yr. old plantations. The SOC stock after 34 yr. of plantation was 20% higher than that under Imperata grassland, but was 34% lower than that under the native forest soil. With respect to lability of C fractions, proportion of AC pool decreased linearly with increase in plantation age from 59 % under 6 yr to 33 % under 34 yr. old plantations. In contrast, proportion of PC pool increased from 41 % of SOC stock under 6 yr. to 67 % of SOC under 34 yr. old plantations, suggesting the significant role of old aged plantation in C sink management.

  19. Standard characterization of soils employed in the FAO/IAEA phosphate project

    International Nuclear Information System (INIS)

    Montange, D.; Zapata, F.

    2002-01-01

    In the frame of the FAO/IAEA networked research project, the agronomic effectiveness of natural and modified phosphate rock (PR) products was evaluated using nuclear and related techniques under a variety of soil, climate and management conditions. In addition to the local soil analyses, it was decided to make a standard characterization of the soils employed in the project to gather direct and comparable information on the relevant soil properties affecting the suitability of PRs for direct application and to better interpret the results from the agronomic evaluation, including the creation of a database for phosphate modelling. This paper describes the standard characterization of soils, that was mainly made at CIRAD, Montpellier, France. A total of 51 soil samples were analyzed from 15 countries including Belarus (1), Brazil (2), Chile (3), China (20), Cuba (2) Ghana (6), Hungary (2), Indonesia (3), Kenya (1), Malaysia (1), Poland (1), Romania (2), Russia (1), Thailand (3) and Venezuela (3). Methods of analyses used for the soil characterization included textural class, pH, chemical analysis for total N and P, and exchangeable elements (CEC, saturation). Available P was measured using 4 methods including Olsen, Bray II, Pi paper and Resin. Available P measurements using resin method were made at CENA, Piracicaba, Brazil. The soil P dynamics was described using the 32 P isotope exchange kinetic method at CEN Cadarache, France with the same soil samples. As a result of the worldwide distribution of the soils employed in the project, the results showed a very large diversity in each of the measured soil characteristics. The analysis of the data focused on the most representative tropical acid soils, i.e. Ultisols and Oxisols. Inceptisols have also been included because most of them were acid and located in the tropics and subtropics. Results are synthesized and analyzed with particular emphasis on: i) identification of the most relevant soil characteristics

  20. LBA-ECO TG-07 Soil Trace Gas Flux and Root Mortality, Tapajos National Forest

    Science.gov (United States)

    R.K. Varner; M.M. Keller

    2009-01-01

    This data set reports the results of an experiment that tested the short-term effects of root mortality on the soil-atmosphere fluxes of nitrous oxide, nitric oxide, methane, and carbon dioxide in a tropical evergreen forest. Weekly trace gas fluxes are provided for treatment and control plots on sand and clay tropical forest soils in two comma separated ASCII files....

  1. Effects of precipitation regime and soil nitrogen on leaf traits in seasonally dry tropical forests of the Yucatan Peninsula, Mexico.

    Science.gov (United States)

    Roa-Fuentes, Lilia L; Templer, Pamela H; Campo, Julio

    2015-10-01

    Leaf traits are closely associated with nutrient use by plants and can be utilized as a proxy for nutrient cycling processes. However, open questions remain, in particular regarding the variability of leaf traits within and across seasonally dry tropical forests. To address this, we considered six leaf traits (specific area, thickness, dry matter content, N content, P content and natural abundance (15)N) of four co-occurring tree species (two that are not associated with N2-fixing bacteria and two that are associated with N2-fixing bacteria) and net N mineralization rates and inorganic N concentrations along a precipitation gradient (537-1036 mm per year) in the Yucatan Peninsula, Mexico. Specifically we sought to test the hypothesis that leaf traits of dominant plant species shift along a precipitation gradient, but are affected by soil N cycling. Although variation among different species within each site explains some leaf trait variation, there is also a high level of variability across sites, suggesting that factors other than precipitation regime more strongly influence leaf traits. Principal component analyses indicated that across sites and tree species, covariation in leaf traits is an indicator of soil N availability. Patterns of natural abundance (15)N in foliage and foliage minus soil suggest that variation in precipitation regime drives a shift in plant N acquisition and the openness of the N cycle. Overall, our study shows that both plant species and site are important determinants of leaf traits, and that the leaf trait spectrum is correlated with soil N cycling.

  2. Isolation of a novel strain of Planomicrobium chinense from diesel contaminated soil of tropical environment.

    Science.gov (United States)

    Das, Reena; Tiwary, Bhupendra N

    2013-09-01

    A novel bacterial strain (B6) degrading high concentration of diesel oil [up to 2.5% (v/v)] was isolated from a site contaminated with petroleum hydrocarbons in the state of Chhattisgarh, India. The strain demonstrated efficient degradation for diesel oil range alkanes (C14 to C36 i.e., mostly linear chain alkanes). It was identified to be 99% similar to Planomicrobium chinense on the basis of partial 16S rRNA gene sequencing and biochemical characteristics. The efficiency of degradation was optimized at pH 7.2 and temperature at 32 °C. GC analysis demonstrated complete mineralization of higher chain alkanes into lower chain alkanes within 96 h. The organism also displayed surface tension reduction by producing stable emulsification on the onset of stationary phase. A multidimensional characteristics of the strain to grow at a high temperature range, resistance to various heavy metals as well as tolerance to moderate concentration of NaCl makes it suitable for bioremediation of soil contaminated with diesel oil in tropical environment. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Do Reductions in Dry Season Transpiration Allow Shallow Soil Water Uptake to Persist in a Tropical Lower Montane Cloud Forest?

    Science.gov (United States)

    Munoz Villers, L. E.; Holwerda, F.; Alvarado-Barrientos, M. S.; Goldsmith, G. R.; Geissert Kientz, D. R.; González Martínez, T. M.; Dawson, T. E.

    2016-12-01

    Tropical montane cloud forests (TMCF) are ecosystems particularly sensitive to climate change; however, the effects of warmer and drier conditions on TMCF water cycling remain poorly understood. To investigate the plant functional response to reduced water availability, we conducted a study during the mid to late dry season (2014) in the lower limit (1,325 m asl) of the TMCF belt (1200-2500 m asl) in central Veracruz, Mexico. The temporal variation of transpiration rates of dominant upper canopy and mid-story tree species, depth of water uptake, as well as tree water sources were examined using micrometeorological, sapflow and soil moisture measurements, in combination with data on stable isotope (δ18O and δ2H) composition of rain, tree xylem, soil (bulk and low suction-lysimeter) and stream water. The sapflow data suggest that crown conductances decreased as temperature and vapor pressure deficit increased, and soil moisture decreased from the mid to late dry season. Across all samplings (January 21, April 12 and 26), upper canopy species (Quercus spp.) showed more depleted (negative) isotope values compared to mid-story trees (Carpinus tropicalis). Overall, we found that the evaporated soil water pool was the main source for the trees. Furthermore, our MixSIAR Bayesian mixing model results showed that the depth of tree water uptake changed over the course of the dry season. Unexpectedly, a shift in water uptake from deeper (60-120 cm depth) to shallower soil water (0-30 cm) sources was observed, coinciding with the decreases in transpiration rates towards the end of the dry season. A larger reduction in deep soil water contributions was observed for upper canopy trees (from 70±14 to 22±15%) than for mid-story species (from 10±13 to 7±10%). The use of shallow soil water by trees during the dry season seems consistent with the greater root biomass and higher macronutrient concentrations found in the first 10 cm of the soil profiles. These findings are an

  4. [Native plant resources to optimize the performances of forest rehabilitation in Mediterranean and tropical environment: some examples of nursing plant species that improve the soil mycorrhizal potential].

    Science.gov (United States)

    Duponnois, Robin; Ramanankierana, Heriniaina; Hafidi, Mohamed; Baohanta, Rondro; Baudoin, Ezékiel; Thioulouse, Jean; Sanguin, Hervé; Bâ, Amadou; Galiana, Antoine; Bally, René; Lebrun, Michel; Prin, Yves

    2013-01-01

    The overexploitation of natural resources, resulting in an increased need for arable lands by local populations, causes a serious dysfunction in the soil's biological functioning (mineral deficiency, salt stress, etc.). This dysfunction, worsened by the climatic conditions (drought), requires the implementation of ecological engineering strategies allowing the rehabilitation of degraded areas through the restoration of essential ecological services. The first symptoms of weathering processes of soil quality in tropical and Mediterranean environments result in an alteration of the plant cover structure with, in particular, the pauperization of plant species diversity and abundance. This degradation is accompanied by a weakening of soils and an increase of the impact of erosion on the surface layer resulting in reduced fertility of soils in terms of their physicochemical characteristics as well as their biological ones (e.g., soil microbes). Among the microbial components particularly sensitive to erosion, symbiotic microorganisms (rhizobia, Frankia, mycorrhizal fungi) are known to be key components in the main terrestrial biogeochemical cycles (C, N and P). Many studies have shown the importance of the management of these symbiotic microorganisms in rehabilitation and revegetation strategies of degraded environments, but also in improving the productivity of agrosystems. In particular, the selection of symbionts and their inoculation into the soil were strongly encouraged in recent decades. These inoculants were selected not only for their impact on the plant, but also for their ability to persist in the soil at the expense of the residual native microflora. The performance of this technique was thus evaluated on the plant cover, but its impact on soil microbial characteristics was totally ignored. The role of microbial diversity on productivity and stability (resistance, resilience, etc.) of eco- and agrosystems has been identified relatively recently and has led

  5. Using soil organic matter fractions as indicators of soil physical quality

    DEFF Research Database (Denmark)

    Pulido Moncada, Mansonia A.; Lozano, Z; Delgado, M

    2018-01-01

    The objective of this study was to evaluate the use of chemical and physical fractions of soil organic matter (SOM), rather than SOM per se, as indicators of soil physical quality (SPQ) based on their effect on aggregate stability (AS). Chemically extracted humic and fulvic acids (HA and FA) were...... used as chemical fractions, and heavy and light fractions (HF and LF) obtained by density separation as physical fractions. The analyses were conducted on medium-textured soils from tropical and temperate regions under cropland and pasture. Results show that soil organic carbon (SOC), SOM fractions...... and AS appear to be affected by land use regardless of the origin of the soils. A general separation of structurally stable and unstable soils between samples of large and small SOC content, respectively, was observed. SOM fractions did not show a better relationship with AS than SOC per se. In both...

  6. Loss of soil (macro)fauna due to the expansion of Brazilian sugarcane acreage.

    Science.gov (United States)

    Franco, André L C; Bartz, Marie L C; Cherubin, Maurício R; Baretta, Dilmar; Cerri, Carlos E P; Feigl, Brigitte J; Wall, Diana H; Davies, Christian A; Cerri, Carlos C

    2016-09-01

    Land use changes (LUC) from pasture to sugarcane (Saccharum spp.) crop are expected to add 6.4Mha of new sugarcane land by 2021 in the Brazilian Cerrado and Atlantic Forest biomes. We assessed the effects of these LUC on the abundance and community structure of animals that inhabit soils belowground through a field survey using chronosequences of land uses comprising native vegetation, pasture, and sugarcane along a 1000-km-long transect across these two major tropical biomes in Brazil. Macrofauna community composition differed among land uses. While most groups were associated with samples taken in native vegetation, high abundance of termites and earthworms appeared associated with pasture soils. Linear mixed effects analysis showed that LUC affected total abundance (X(2)(1)=6.79, p=0.03) and taxa richness (X(2)(1)=6.08, p=0.04) of soil macrofauna. Abundance increased from 411±70individualsm(-2) in native vegetation to 1111±202individualsm(-2) in pasture, but decreased sharply to 106±24individualsm(-2) in sugarcane soils. Diversity decreased 24% from native vegetation to pasture, and 39% from pasture to sugarcane. Thus, a reduction of ~90% in soil macrofauna abundance, besides a loss of ~40% in the diversity of macrofauna groups, can be expected when sugarcane crops replace pasture in Brazilian tropical soils. In general, higher abundances of major macrofauna groups (ants, coleopterans, earthworms, and termites) were associated with higher acidity and low contents of macronutrients and organic matter in soil. This study draws attention for a significant biodiversity loss belowground due to tropical LUC in sugarcane expansion areas. Given that many groups of soil macrofauna are recognized as key mediators of ecosystem processes such as soil aggregation, nutrients cycling and soil carbon storage, our results warrant further efforts to understand the impacts of altering belowground biodiversity and composition on soil functioning and agriculture performance

  7. Long-term impact of reduced tillage and residue management on soil carbon stabilization: Implications for conservation agriculture on contrasting soils

    OpenAIRE

    Chivenge, P.P.; Murwira, H.K.; Giller, K.E.; Mapfumo, P.; Six, J.

    2007-01-01

    Metadata only record The long-term effects of tillage system and residue management on soil organic carbon stabilization are studied in two tropical soils in Zimbabwe, a red clay and a sandy soil. The four tillage systems evaluated were conventional tillage (CT), mulch ripping (MR), clean ripping (CR) and tied ridging (TR). Soil organic carbon (SOC) content was measured for each size fraction as well as total SOC. Based on the findings, the authors conclude that residue management - mainta...

  8. Vulnerability of tropical forest ecosystems and forest dependent communities to droughts.

    Science.gov (United States)

    Vogt, D J; Vogt, K A; Gmur, S J; Scullion, J J; Suntana, A S; Daryanto, S; Sigurðardóttir, R

    2016-01-01

    Energy captured by and flowing through a forest ecosystem can be indexed by its total Net Primary Productivity (NPP). This forest NPP can also be a reflection of its sensitivity to, and its ability to adapt to, any climate change while also being harvested by humans. However detecting and identifying the vulnerability of forest and human ecosystems to climate change requires information on whether these coupled social and ecological systems are able to maintain functionality while responding to environmental variability. To better understand what parameters might be representative of environmental variability, we compiled a metadata analysis of 96 tropical forest sites. We found that three soil textural classes (i.e., sand, sandy loam and clay) had significant but different relationships between NPP and precipitation levels. Therefore, assessing the vulnerability of forests and forest dependent communities to drought was carried out using data from those sites that had one of those three soil textural classes. For example, forests growing on soil textures of sand and clay had NPP levels decreasing as precipitation levels increased, in contrast to those forest sites that had sandy loam soils where NPP levels increased. Also, forests growing on sandy loam soil textures appeared better adapted to grow at lower precipitation levels compared to the sand and clay textured soils. In fact in our tropical database the lowest precipitation level found for the sandy loam soils was 821 mm yr(-1) compared to sand at 1739 mm yr(-1) and clay at 1771 mm yr(-1). Soil texture also determined the level of NPP reached by a forest, i.e., forest growing on sandy loam and clay reached low-medium NPP levels while higher NPP levels (i.e., medium, high) were found on sand-textured soils. Intermediate precipitation levels (>1800-3000 mm yr(-1)) were needed to grow forests at the medium and high NPP levels. Low thresholds of NPP were identified at both low (∼750 mm) and high precipitation

  9. Tropical storm Irene flood of August 2011 in northwestern Massachusetts

    Science.gov (United States)

    Bent, Gardner C.; Olson, Scott A.; Massey, Andrew J.

    2016-09-02

    A Presidential disaster was declared in northwestern Massachusetts, following flooding from tropical storm Irene on August 28, 2011. During the storm, 3 to 10 inches of rain fell on soils that were susceptible to flash flooding because of wet antecedent conditions. The gage height at one U.S. Geological Survey streamgage rose nearly 20 feet in less than 4 hours because of the combination of saturated soils and intense rainfall. On August 28, 2011, in the Deerfield and Hoosic River Basins in northwestern Massachusetts, new peaks of record were set at six of eight U.S. Geological Survey long-term streamgages with 46 to 100 years of record. Additionally, high-water marks were surveyed and indirect measurements of peak discharge were calculated at two discontinued streamgages in the Deerfield and Hoosic River Basins with 24 and 61 years of record, respectively. This data resulted in new historic peaks of record at the two discontinued streamgages from tropical storm Irene.

  10. Effects of land use change and seasonality of precipitation on soil nitrogen in a dry tropical forest area in the Western Llanos of Venezuela.

    Science.gov (United States)

    González-Pedraza, Ana Francisca; Dezzeo, Nelda

    2014-01-01

    We evaluated changes of different soil nitrogen forms (total N, available ammonium and nitrate, total N in microbial biomass, and soil N mineralization) after conversion of semideciduous dry tropical forest in 5- and 18-year-old pastures (YP and OP, resp.) in the western Llanos of Venezuela. This evaluation was made at early rainy season, at end rainy season, and during dry season. With few exceptions, no significant differences were detected in the total N in the three study sites. Compared to forest soils, YP showed ammonium losses from 4.2 to 62.9% and nitrate losses from 20.0 to 77.8%, depending on the season of the year. In OP, the ammonium content increased from 50.0 to 69.0% at the end of the rainy season and decreased during the dry season between 25.0 and 55.5%, whereas the nitrate content increased significantly at early rainy season. The net mineralization and the potentially mineralizable N were significantly higher (P forest and YP, which would indicate a better quality of the substrate in OP for mineralization. The mineralization rate constant was higher in YP than in forest and OP. This could be associated with a reduced capacity of these soils to preserve the available nitrogen.

  11. Aboveground vs. Belowground Carbon Stocks in African Tropical Lowland Rainforest: Drivers and Implications.

    Directory of Open Access Journals (Sweden)

    Sebastian Doetterl

    Full Text Available African tropical rainforests are one of the most important hotspots to look for changes in the upcoming decades when it comes to C storage and release. The focus of studying C dynamics in these systems lies traditionally on living aboveground biomass. Belowground soil organic carbon stocks have received little attention and estimates of the size, controls and distribution of soil organic carbon stocks are highly uncertain. In our study on lowland rainforest in the central Congo basin, we combine both an assessment of the aboveground C stock with an assessment of the belowground C stock and analyze the latter in terms of functional pools and controlling factors.Our study shows that despite similar vegetation, soil and climatic conditions, soil organic carbon stocks in an area with greater tree height (= larger aboveground carbon stock were only half compared to an area with lower tree height (= smaller aboveground carbon stock. This suggests that substantial variability in the aboveground vs. belowground C allocation strategy and/or C turnover in two similar tropical forest systems can lead to significant differences in total soil organic C content and C fractions with important consequences for the assessment of the total C stock of the system.We suggest nutrient limitation, especially potassium, as the driver for aboveground versus belowground C allocation. However, other drivers such as C turnover, tree functional traits or demographic considerations cannot be excluded. We argue that large and unaccounted variability in C stocks is to be expected in African tropical rain-forests. Currently, these differences in aboveground and belowground C stocks are not adequately verified and implemented mechanistically into Earth System Models. This will, hence, introduce additional uncertainty to models and predictions of the response of C storage of the Congo basin forest to climate change and its contribution to the terrestrial C budget.

  12. Aboveground vs. Belowground Carbon Stocks in African Tropical Lowland Rainforest: Drivers and Implications.

    Science.gov (United States)

    Doetterl, Sebastian; Kearsley, Elizabeth; Bauters, Marijn; Hufkens, Koen; Lisingo, Janvier; Baert, Geert; Verbeeck, Hans; Boeckx, Pascal

    2015-01-01

    African tropical rainforests are one of the most important hotspots to look for changes in the upcoming decades when it comes to C storage and release. The focus of studying C dynamics in these systems lies traditionally on living aboveground biomass. Belowground soil organic carbon stocks have received little attention and estimates of the size, controls and distribution of soil organic carbon stocks are highly uncertain. In our study on lowland rainforest in the central Congo basin, we combine both an assessment of the aboveground C stock with an assessment of the belowground C stock and analyze the latter in terms of functional pools and controlling factors. Our study shows that despite similar vegetation, soil and climatic conditions, soil organic carbon stocks in an area with greater tree height (= larger aboveground carbon stock) were only half compared to an area with lower tree height (= smaller aboveground carbon stock). This suggests that substantial variability in the aboveground vs. belowground C allocation strategy and/or C turnover in two similar tropical forest systems can lead to significant differences in total soil organic C content and C fractions with important consequences for the assessment of the total C stock of the system. We suggest nutrient limitation, especially potassium, as the driver for aboveground versus belowground C allocation. However, other drivers such as C turnover, tree functional traits or demographic considerations cannot be excluded. We argue that large and unaccounted variability in C stocks is to be expected in African tropical rain-forests. Currently, these differences in aboveground and belowground C stocks are not adequately verified and implemented mechanistically into Earth System Models. This will, hence, introduce additional uncertainty to models and predictions of the response of C storage of the Congo basin forest to climate change and its contribution to the terrestrial C budget.

  13. Water uptake and transport in lianas and co-occurring trees of a seasonally dry tropical forest.

    Science.gov (United States)

    José Luis Andrade; Frederick C. Meinzer; Guillermo Goldstein; Stefan A. Schnitzer

    2005-01-01

    Water uptake and transport were studied in eight liana species in a seasonally dry tropical forest on Barro Colorado Island, Panama. Stable hydrogen isotope composition (δD) of xylem and soil water, soil volumetric water content (θv), and basal sap flow were measured during the 1997 and...

  14. A comparison using the caesium-137 technique of the relative importance of cultivation and overland flow on soil erosion in a steep semi-tropical sub-catchment

    International Nuclear Information System (INIS)

    Wiranatha, A.S.; Rose, C.W.; Salama, M.S.

    2001-01-01

    The spatial pattern of net soil loss on 6 downslope transects in a small semi-tropical sub-catchment was measured in 1990-91 using the resident caesium-137 deficit technique. The sub-catchment consisted of 2 opposing hillslopes which shed water to an intermittent stream in the valley bottom of the sub-catchment. There were 3 transects on each of the opposing hillslopes, and measurement indicated net soil loss from all 6 transects. Furthermore, the spatial pattern of caesium- 37 deficit did not indicate the accumulation of soil expected due to the slope decrease toward the bottom of the valley. Possible explanations of this finding could be the effect of periodic flooding of the intermittent valley stream, or seepage-accelerated erosion. Pineapple cultivation in the sub-catchment since 1950 included intensive cultivation at 4-year intervals by downslope-moving rotary hoe. The paper develops a theoretical prediction of the spatial pattern of net soil loss expected due to such cultivation, as well as the expected pattern of soil loss due to overland flow on the hillslopes. The spatial patterns of soil loss due to these 2 different soil erosion mechanisms were then compared with the pattern of net soil loss indicated by caesium- 137 depletion to provide an assessment of their likely relative importance in contributing to soil loss. In the upper part of each hillslope, this comparison of spatial trends did not allow the dominant cause of soil erosion to be distinguished. Both the model of erosion due to cultivation and that due to hillside overland flow predicted soil accumulation in the lower valley sides where slope decreased. Neither model represented the net loss of such accumulated soil indicated by caesium- 137 deficit, and this loss possibly occurred during periodically observed flooding of the valley floor, or due to surface burial with caesium-137 depleted subsoil. Copyright (2001) CSIRO Publishing

  15. Tropical wetlands and REDD+: Three unique scientific challenges for policy

    Directory of Open Access Journals (Sweden)

    Daniel A Friess

    2013-07-01

    Full Text Available The carbon sequestration and storage value of terrestrial habitats is now increasingly appreciated, and is the basis for Payment for Ecosystem Service (PES policies such as REDD+. Tropical wetlands may be suitable for inclusion in such schemes because of the disproportionately large volume of carbon they are able to store. However, tropical wetlands offer a number of unique challenges for carbon management and policy compared to terrestrial forest systems: 1 Tropical wetlands are dynamic and subject to a wide range of physical and ecological processes that affect their long-term carbon storage potential – thus, such systems can quickly become a carbon source instead of a sink; 2 Carbon dynamics in tropical wetlands often operate over longer time-scales than are currently covered by REDD+ payments; and 3 Much of the carbon in a tropical wetland is stored in the soil, so monitoring, reporting and verification (MRV needs to adequately encapsulate the entire ecosystem and not just the vegetative component. This paper discusses these physical and biological concepts, and highlights key legal, management and policy questions that must be considered when constructing a policy framework to conserve these crucial ecosystems.

  16. Carbon budget of Nyungwe Tropical Montane Rain Forest in Central Africa

    Science.gov (United States)

    Nyirambangutse, B.; Zibera, E.; Uwizeye, F. K.; Hansson, L.; Nsabimana, D.; Pleijel, H.; Uddling, J.; Wallin, G.

    2015-12-01

    African tropical rainforests host rich biodiversity and play many roles at different scales such as local, regional and global, in the functioning of the earth system. Despite that the African tropical forests are the world's second largest, it has been neglected in terms of understanding the storage and fluxes of carbon and other nutrients. The question of whether this biome is a net sink or source of atmospheric CO2 is still not answered, and little is known concerning the climate change response. Tropical montane forests are even more poorly sampled compared with their importance. Deeper understanding of these ecosystems is required to provide insights on how they might react under global change. To answer questions related to these issues for African tropical montane forests, 15 permanent 0.5 ha plots were established in 2011 in Nyungwe tropical montane rainforest gazetted as a National Park to protect its extensive floral and faunal diversity. The plots are arranged along an east-westerly transect and includes both primary and secondary forest communities. The study is connected to the global ecosystem monitoring network (GEM, http://gem.tropicalforests.ox.ac.uk/). The aim is to characterize spatial and temporal heterogeneity of carbon and nutrient dynamics processes. The role of microclimate, topography, human disturbances, and plant species to the variability of these pools and processes will be explored. We compare stocks and fluxes of carbon and nutrients of the secondary and primary forest communities. The carbon stock are determined by an inventory of height and diameter at breast height (dbh) of all trees with a dbh above 5 cm, wood density, biomass of understory vegetation, leaf area index, standing and fallen dead wood, fine root biomass and organic content of various soil layers (litter, organic and mineral soil down to 45 cm depth). The carbon fluxes are determined by measurements of photosynthesis and respiration of leaves, above and below ground

  17. Nitrogen Oxide Fluxes and Nitrogen Cycling during Postagricultural Succession and Forest Fertilization in the Humid Tropics.

    Science.gov (United States)

    Heather Erickson; Michael Keller; Eric Davidson

    2001-01-01

    The effects of changes in tropical land use on soil emissions of nitrous oxide (N2O) and nitric oxide (NO) are not well understood. We examined emissions of N2O and NO and their relationships to land use and forest composition, litterfall, soil nitrogen (N) pools and turnover, soil moisture, and patterns of carbon (C) cycling in a lower montane, subtropical wet region...

  18. Simulation of maize growth under conservation farming in tropical environments.

    NARCIS (Netherlands)

    Stroosnijder, L.; Kiepe, P.

    1998-01-01

    This book is written for students and researchers with a keen interest in the quantification of the field soil water balance in tropical environments and the effect of conservation farming on crop production. Part 1 deals with the potential production, i.e. crop growth under ample supply of water

  19. Analysis of Soil Parameters in Almadenejos. Behavior of Mercury in Soil-Plant System; Analisis de Parametros Edaficos en Almadenejos. Comportamiento del Mercurio en el Sistema Suelo-Planta

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez, R; Sierra, M J; Villadoniga, M; Millan, R

    2010-03-03

    This scientific-technical report is the result of the stay of Rocio Fernandez Flores practices in the Research Unit soil degradation of the Department of Environment CIEMAT. The aim of this study is to determine the behaviour of mercury in soil of Almadenejos (Almaden, Ciudad Real, Espana) by using a six-step sequential extraction procedure and evaluate the transfer of this pollutant to Marrubium vulgare L., predominant in the area and studied for years due to its ability to accumulate large amounts of mercury without visual symptoms of toxicity. Furthermore, the results will be useful in order to determine if this plant specie could be used as phyto extractor in the recovery mercury contaminated soils. The results show that total mercury concentrations in soil ranged from 709 mg kg-1 to 22,616 mg kg-1. Regarding mercury distribution among different soil fractions, this heavy metal is mainly found in the fraction assigned in the fi nal insoluble residues, the oxidizable fraction and in the crystalline Fe-Mn oxydroxides, on the other hand, barely 1% or lower is readily available to plants However, Marrubium vulgare is able to accumulate high amount of mercury (3.5 - 373.5 mg kg-1). Regarding the mercury distribution inside the plant, mercury concentration in the root was higher than in the aerial part. Within the aerial part the maximum mercury concentration was generally found in leaves. According to the obtained results, Marrubium vulgare L. could be considered as a (hyper)accumulator plant. (Author) 57 refs.

  20. Electrochemical attributes and availability of nutrients, toxic elements, and heavy metals in tropical soils Atributos eletroquímicos e disponibilidade de nutrientes, elementos tóxicos e metais pesados em solos tropicais

    Directory of Open Access Journals (Sweden)

    Mauricio Paulo Ferreira Fontes

    2006-12-01

    Full Text Available Electrochemical properties of soils are very important for the understanding of the physico-chemical phenomena which affect soil fertility and the availability of nutrients for plants. This review highlights the electrochemical properties of tropical soils, the behavior and the availability of nutrients, toxic elements and heavy metals in the soil, especially for soils with predominant variable charge minerals. Availability of the elements is related to ionic exchange, solution speciation, and electrostatic and specific adsorptive soil properties. Empirical and surface complexation models are briefly described, and some results of their application in tropical soils are presented. A better understanding of the role of the double diffuse layer of charges and CEC on nutrient cation availability for highly weathered soils is required, as well as a solid comprehension of surface complexation models, in order to improve the knowledge regarding the behavior of anions in soils. More studies have to be conducted to generate results that enable the use of chemical speciation concepts and calculation of several constants used in surface complexation models, especially for highly weathered soils from the humid tropics. There has to be a continuing development and use of computer softwares that have already incorporated the concepts of chemical speciation and adsorption models in the study of nutrients, toxic elements and heavy metal availability in the soil-plant system.As propriedades eletroquímicas dos solos tropicais são muito importantes para entendimento dos fenômenos físico-químicos que afetam a fertilidade do solo e a disponibilidade dos nutrientes das plantas. Essa revisão destaca os atributos eletroquímicos de solos e o comportamento e a disponibilidade de nutrientes, elementos tóxicos e metais pesados no solo, especialmente aqueles com predominância de minerais com cargas variáveis. A disponibilidade dos elementos é relacionada com a

  1. Impact of raw pig slurry and pig farming practices on physicochemical parameters and on atmospheric N2O and CH 4 emissions of tropical soils, Uvéa Island (South Pacific).

    Science.gov (United States)

    Roth, E; Gunkel-Grillon, P; Joly, L; Thomas, X; Decarpenterie, T; Mappe-Fogaing, I; Laporte-Magoni, C; Dumelié, N; Durry, G

    2014-09-01

    Emissions of CH4 and N2O related to private pig farming under a tropical climate in Uvéa Island were studied in this paper. Physicochemical soil parameters such as nitrate, nitrite, ammonium, Kjeldahl nitrogen, total organic carbon, pH and moisture were measured. Gaseous soil emissions as well as physicochemical parameters were compared in two private pig farming strategies encountered on this island on two different soils (calcareous and ferralitic) in order to determine the best pig farming management: in small concrete pens or in large land pens. Ammonium levels were higher in control areas while nitrate and nitrite levels were higher in soils with pig slurry inputs, indicating that nitrification was the predominant process related to N2O emissions. Nitrate contents in soils near concrete pens were important (≥ 55 μg N/g) and can thus be a threat for the groundwater. For both pig farming strategies, N2O and CH4 fluxes can reach high levels up to 1 mg N/m(2)/h and 1 mg C/m(2)/h, respectively. CH4 emissions near concrete pens were very high (≥ 10.4 mg C/m(2)/h). Former land pens converted into agricultural land recover low N2O emission rates (≤ 0.03 mg N/m(2)/h), and methane uptake dominates. N2O emissions were related to nitrate content whereas CH4 emissions were found to be moisture dependent. As a result relating to the physicochemical parameters as well as to the gaseous emissions, we demonstrate that pig farming in large land pens is the best strategy for sustainable family pig breeding in Uvéa Islands and therefore in similar small tropical islands.

  2. Modelling nutrient management in tropical cropping systems

    OpenAIRE

    Delve, R. (ed.); Probert, M. (ed.)

    2004-01-01

    Metadata only record In tropical regions, organic materials are often more important than fertilizers in maintaining soil fertility, yet fertilizer recommendations and most crop models are unable to take account of the level and quality of organic inputs that farmers use. Computer simulation models, such as the Agricultural Production Systems Simulator (APSIM) developed by CSIRO and the Queensland Department of Primary Industries, have proven their value in many cropping environments. Thes...

  3. Transfer and internalisation of Escherichia coli O157:H7 and Salmonella enterica serovar Typhimurium in cabbage cultivated on contaminated manure-amended soil under tropical field conditions in Sub-Saharan Africa.

    Science.gov (United States)

    Ongeng, D; Vasquez, G A; Muyanja, C; Ryckeboer, J; Geeraerd, A H; Springael, D

    2011-01-31

    Surface contamination and internalisation of Escherichia coli O157:H7 and Salmonella Typhimurium in cabbage leaf tissues at harvest (120 days post-transplantation) following amendment of contaminated bovine manure to soil at different times during crop cultivation were investigated under tropical field conditions in the Central Agro-Ecological Zone of Uganda. Fresh bovine manure inoculated with rifampicin-resistant derivatives of non-virulent strains of E. coli O157:H7 and S. Typhimurium was incorporated into the soil to achieve inoculum concentrations of 4 and 7 log CFU/g at the point of transplantation, 56 or 105 days post-transplantation of cabbage seedlings. Frequent sampling of the soil enabled the accurate identification of the survival kinetics in soil, which could be described by the Double Weibull model in all but one of the cases. The persistence of 4 log CFU/g E. coli O157:H7 and S. Typhimurium in the soil was limited, i.e. only inocula applied 105 days post-transplantation were still present at harvest. Moreover, no internalisation in cabbage leaf tissues was observed. In contrast, at the 7 log CFU/g inoculum level, E. coli O157:H7 and S. Typhimurium survived in the soil throughout the cultivation period. All plants (18/18) examined for leaf contamination were positive for E. coli O157:H7 at harvest irrespective of the time of manure application. A similar incidence of leaf contamination was found for S. Typhimurium. On the other hand, only plants (18/18) cultivated on soil amended with contaminated manure at the point of transplantation showed internalised E. coli O157:H7 and S. Typhimurium at harvest. These results demonstrate that under tropical field conditions, the risk of surface contamination and internalisation of E. coli O157:H7 and S. Typhimurium in cabbage leaf tissues at harvest depend on the inoculum concentration and the time of manure application. Moreover, the internalisation of E. coli O157:H7 and S. Typhimurium in cabbage leaf tissues

  4. Prospects for the control of neglected tropical diseases by mass drug administration

    NARCIS (Netherlands)

    Smits, Henk L.

    2009-01-01

    The prospects for the control of neglected tropical diseases, including soil-transmitted helminthiasis, shistosomiasis, lymphatic filariasis, onchocerciasis and trachoma, through mass drug administration, are exemplified by the elimination of the trachoma as a public-health problem in Morocco. In

  5. Water-use advantage for lianas over trees in tropical seasonal forests

    NARCIS (Netherlands)

    Chen, Y.J.; Cao, K.F.; Schnitzer, S.A.; Fan, Z.X.; Zhang, J.L.; Bongers, F.

    2015-01-01

    •Lianas exhibit peak abundance in tropical forests with strong seasonal droughts, the eco-physiological mechanisms associated with lianas coping with water deficits are poorly understood. •We examined soil water partitioning, sap flow, and canopy eco-physiological properties for 99 individuals of 15

  6. Methane uptake by a selection of soils in Ghana with different land use

    DEFF Research Database (Denmark)

    Priemé, Anders; Christensen, Søren

    1999-01-01

    , the methane oxidation rates in the tropical forest and savanna soils were low (range from 9 to 26 µg CH4 m-2 h-1) compared to, for example temperate forest soils. In the savanna soil, annual fire had decreased soil methane oxidation rates to 5 µg CH4 m-2 h-1 compared to 9 µg CH4 m-2 h-1 at a site...... not subjected to fire for 6 years. In paired sites of moist forest and arable soils, methane oxidation rates were lower by >60% in the arable soils. Methane oxidation rates in three arable soils in the savanna zone soils ranged from 7 to 11 µg CH4 m-2 h-1 before the first rain but increased to 23-28 µg CH4 m-2......We measured the oxidation of atmospheric methane in tropical soils in Ghana covering a moisture gradient from the moist forest zone to the savanna zone at the onset of the rainy season. Land use at the sites covered undisturbed (forest and savanna) and cultivated soil, including burning. Generally...

  7. Tropical rainforests dominate multi-decadal variability of the global carbon cycle

    Science.gov (United States)

    Zhang, X.; Wang, Y. P.; Peng, S.; Rayner, P. J.; Silver, J.; Ciais, P.; Piao, S.; Zhu, Z.; Lu, X.; Zheng, X.

    2017-12-01

    Recent studies find that inter-annual variability of global atmosphere-to-land CO2 uptake (NBP) is dominated by semi-arid ecosystems. However, the NBP variations at decadal to multi-decadal timescales are still not known. By developing a basic theory for the role of net primary production (NPP) and heterotrophic respiration (Rh) on NBP and applying it to 100-year simulations of terrestrial ecosystem models forced by observational climate, we find that tropical rainforests dominate the multi-decadal variability of global NBP (48%) rather than the semi-arid lands (35%). The NBP variation at inter-annual timescales is almost 90% contributed by NPP, but across longer timescales is progressively controlled by Rh that constitutes the response from the NPP-derived soil carbon input (40%) and the response of soil carbon turnover rates to climate variability (60%). The NBP variations of tropical rainforests is modulated by the ENSO and the PDO through their significant influences on temperature and precipitation at timescales of 2.5-7 and 25-50 years, respectively. This study highlights the importance of tropical rainforests on the multi-decadal variability of global carbon cycle, suggesting that we need to carefully differentiate the effect of NBP long-term fluctuations associated with ocean-related climate modes on the long-term trend in land sink.

  8. Tillage for soil and water conservation in the semi-arid Tropics

    NARCIS (Netherlands)

    Hoogmoed, W.

    1999-01-01

    Soil tillage is the manipulation of soil which is generally considered as necessary to obtain optimum growth conditions for a crop. In the same time the resulting modification of soil structure has serious implications for the behaviour of the soil to erosive forces by water and wind. In

  9. Former land-use and tree species affect nitrogen oxide emissions from a tropical dry forest.

    Science.gov (United States)

    Heather Erickson; Eric A. Davidson; Michael Keller

    2002-01-01

    Species composition in successional dry forests in the tropics varies widely, but the effect of this variation on biogeochemical processes is not well known. We examined fluxes of N oxides (nitrous and nitric oxide), soil N cycling, and litter chemistry (C/N ratio) in four successional dry forests on similar soils in western Puerto Rico with differing species...

  10. Soil erosion determination using the Cs-137 concentration in the soil profile, in a rain fall seasonal ecosystem of Mexico

    International Nuclear Information System (INIS)

    Martinez, L.R.; Garcia, O.F.; Mass, J.M.

    1992-01-01

    The soils erosion is one of the main processes of environmental degradation. Latin America presents high levels of erosion however the works that quantificate this problem are few. The application of methods agreed to the tropical countries conditions represents an important limitation in the developing of these works. A methodological option that has arisen in the last years is the application of the distribution analysis of Cs-137 concentration in the soil profile, for estimating the soil motion in a seasonal tropical ecosystem in Chamela, Jalisco, Mexico. The low concentrations of Cs-137 were determined with a gamma spectroscopy system of high resolution and low noise. It is confirmed that the redistribution of Cs-137 in the landscape depends on erosive processes. The conclusion is that in the interpretation of Cs-137 levels it is necessary to incorporate morphology analysis of declivity since this is a low scale measurement. (Author)

  11. Influence of soil pathogens on early regeneration success of tropical trees varies between forest edge and interior.

    Science.gov (United States)

    Krishnadas, Meghna; Comita, Liza S

    2018-01-01

    Soil fungi are key mediators of negative density-dependent mortality in seeds and seedlings, and the ability to withstand pathogens in the shaded understory of closed-canopy forests could reinforce light gradient partitioning by tree species. For four species of tropical rainforest trees-two shade-tolerant and two shade-intolerant-we conducted a field experiment to examine the interactive effects of fungal pathogens, light, and seed density on germination and early seedling establishment. In a fully factorial design, seeds were sown into 1 m 2 plots containing soil collected from underneath conspecific adult trees, with plots assigned to forest edge (high light) or shaded understory, high or low density, and fungicide or no fungicide application. We monitored total seed germination and final seedling survival over 15 weeks. Shade-intolerant species were strongly constrained by light; their seedlings survived only at the edge. Fungicide application significantly improved seedling emergence and/or survival for three of the four focal species. There were no significant interactions between fungicide and seed density, suggesting that pathogen spread with increased aggregation of seeds and seedlings did not contribute to pathogen-mediated mortality. Two species experienced significant edge-fungicide interactions, but fungicide effects in edge vs. interior forest varied with species and recruitment stage. Our results suggest that changes to plant-pathogen interactions could affect plant recruitment in human-impacted forests subject to fragmentation and edge-effects.

  12. Effects of surface soil loss in South Eastern Nigeria: I. crop ...

    African Journals Online (AJOL)

    The widespread incidence of soil erosion in the tropics has been identified, though few studies have dealt with specific problems of decline in crop productivity associated with soil loss. An understanding of the influence of surface soil loss on crop yield is necessary in order to find out their effects on performance of crops.

  13. The hookworm Ancylostoma ceylanicum: An emerging public health risk in Australian tropical rainforests and Indigenous communities.

    Science.gov (United States)

    Smout, Felicity A; Skerratt, Lee F; Butler, James R A; Johnson, Christopher N; Congdon, Bradley C; Thompson, R C Andrew

    2017-06-01

    Ancylostoma ceylanicum is the common hookworm of domestic dogs and cats throughout Asia, and is an emerging but little understood public health risk in tropical northern Australia. We investigated the prevalence of A. ceylanicum in soil and free-ranging domestic dogs at six rainforest locations in Far North Queensland that are Indigenous Australian communities and popular tourist attractions within the Wet Tropics World Heritage Area. By combining PCR-based techniques with traditional methods of hookworm species identification, we found the prevalence of hookworm in Indigenous community dogs was high (96.3% and 91.9% from necropsy and faecal samples, respectively). The majority of these infections were A. caninum. We also observed, for the first time, the presence of A. ceylanicum infection in domestic dogs (21.7%) and soil (55.6%) in an Indigenous community. A. ceylanicum was present in soil samples from two out of the three popular tourist locations sampled. Our results contribute to the understanding of dogs as a public health risk to Indigenous communities and tourists in the Wet Tropics. Dog health needs to be more fully addressed as part of the Australian Government's commitments to "closing the gap" in chronic disease between Indigenous and other Australians, and encouraging tourism in similar locations.

  14. The hookworm Ancylostoma ceylanicum: An emerging public health risk in Australian tropical rainforests and Indigenous communities

    Directory of Open Access Journals (Sweden)

    Felicity A. Smout

    2017-06-01

    Full Text Available Ancylostoma ceylanicum is the common hookworm of domestic dogs and cats throughout Asia, and is an emerging but little understood public health risk in tropical northern Australia. We investigated the prevalence of A. ceylanicum in soil and free-ranging domestic dogs at six rainforest locations in Far North Queensland that are Indigenous Australian communities and popular tourist attractions within the Wet Tropics World Heritage Area. By combining PCR-based techniques with traditional methods of hookworm species identification, we found the prevalence of hookworm in Indigenous community dogs was high (96.3% and 91.9% from necropsy and faecal samples, respectively. The majority of these infections were A. caninum. We also observed, for the first time, the presence of A. ceylanicum infection in domestic dogs (21.7% and soil (55.6% in an Indigenous community. A. ceylanicum was present in soil samples from two out of the three popular tourist locations sampled. Our results contribute to the understanding of dogs as a public health risk to Indigenous communities and tourists in the Wet Tropics. Dog health needs to be more fully addressed as part of the Australian Government's commitments to “closing the gap” in chronic disease between Indigenous and other Australians, and encouraging tourism in similar locations.

  15. Resource partitioning by evergreen and deciduous species in a tropical dry forest.

    Science.gov (United States)

    Álvarez-Yépiz, Juan C; Búrquez, Alberto; Martínez-Yrízar, Angelina; Teece, Mark; Yépez, Enrico A; Dovciak, Martin

    2017-02-01

    Niche differentiation can lead to coexistence of plant species by partitioning limiting resources. Light partitioning promotes niche differentiation in tropical humid forests, but it is unclear how niche partitioning occurs in tropical dry forests where both light and soil resources can be limiting. We studied the adult niche of four dominant evergreen (cycad, palm) and drought-deciduous (legume, oak) species co-occurring along environmental gradients. We analyzed light intensity and soil fertility effects on key functional traits related to plant carbon and water economy, how these traits determine species' functional strategies, and how these strategies relate to relative species abundance and spatial patterns. Light intensity was negatively associated with a key trait linked to plant water economy (leaf δ 13 C, a proxy for long-term water-use efficiency-WUE), while soil fertility was negatively associated with a key trait for plant carbon economy (LNC, leaf nitrogen content). Evergreens were highly sclerophyllous and displayed an efficient water economy but poor carbon economy, in agreement with a conservative resource-use strategy (i.e., high WUE but low LNC, photosynthetic rates and stature). Conversely, deciduous species, with an efficient carbon economy but poor water economy, exhibited an exploitative resource-use strategy (i.e., high LNC, photosynthetic rates and stature, but low WUE). Evergreen and deciduous species segregated spatially, particularly at fine-scales, as expected for species with different resource-use strategies. The efficient water economy of evergreens was related to their higher relative abundance, suggesting a functional advantage against drought-deciduous species in water-limited environments within seasonally dry tropical forests.

  16. Differences in nitrogen cycling and soil mineralisation between a ...

    African Journals Online (AJOL)

    Differences in nitrogen cycling and soil mineralisation between a eucalypt plantation and a mixed eucalypt and Acacia mangium plantation on a sandy tropical soil. ... An ecological intensification of eucalypt plantations was tested with the replacement of half of the Eucalyptus urophylla × E. grandis by Acacia mangium in the ...

  17. Soilborne fungi have host affinity and host-specific effects on seed germination and survival in a lowland tropical forest.

    Science.gov (United States)

    Sarmiento, Carolina; Zalamea, Paul-Camilo; Dalling, James W; Davis, Adam S; Stump, Simon M; U'Ren, Jana M; Arnold, A Elizabeth

    2017-10-24

    The Janzen-Connell (JC) hypothesis provides a conceptual framework for explaining the maintenance of tree diversity in tropical forests. Its central tenet-that recruits experience high mortality near conspecifics and at high densities-assumes a degree of host specialization in interactions between plants and natural enemies. Studies confirming JC effects have focused primarily on spatial distributions of seedlings and saplings, leaving major knowledge gaps regarding the fate of seeds in soil and the specificity of the soilborne fungi that are their most important antagonists. Here we use a common garden experiment in a lowland tropical forest in Panama to show that communities of seed-infecting fungi are structured predominantly by plant species, with only minor influences of factors such as local soil type, forest characteristics, or time in soil (1-12 months). Inoculation experiments confirmed that fungi affected seed viability and germination in a host-specific manner and that effects on seed viability preceded seedling emergence. Seeds are critical components of reproduction for tropical trees, and the factors influencing their persistence, survival, and germination shape the populations of seedlings and saplings on which current perspectives regarding forest dynamics are based. Together these findings bring seed dynamics to light in the context of the JC hypothesis, implicating them directly in the processes that have emerged as critical for diversity maintenance in species-rich tropical forests.

  18. Halogenated organic species over the tropical South American rainforest

    Directory of Open Access Journals (Sweden)

    S. Gebhardt

    2008-06-01

    Full Text Available Airborne measurements of the halogenated trace gases methyl chloride, methyl bromide and chloroform were conducted over the Atlantic Ocean and about 1000 km of pristine tropical rainforest in Suriname and French Guyana (3–6° N, 51–59° W in October 2005. In the boundary layer (0–1.4 km, maritime air masses, advected over the forest by southeasterly trade winds, were measured at various distances from the coast. Since the organohalogens presented here have relatively long atmospheric lifetimes (0.4–1.0 years in comparison to the advection times from the coast (1–2 days, emissions will accumulate in air traversing the rainforest. The distributions of methyl chloride, methyl bromide and chloroform were analyzed as a function of time the air spent over land and the respective relationship used to determine net fluxes from the rainforest for one week within the long dry season.

    Net fluxes from the rainforest ecosystem have been calculated for methyl chloride and chloroform as 9.5 (±3.8 2σ and 0.35 (±0.15 2σμg m-2 h−1, respectively. No significant flux was observed for methyl bromide within the limits of these measurements.

    The global budget of methyl chloride contains large uncertainties, in particular with regard to a possible source from tropical vegetation. Our measurements are used in a large-scale approach to determine the net flux from a tropical ecosystem to the planetary boundary layer. The obtained global net flux of 1.5 (±0.6 2σ Tg yr-1 for methyl chloride is at the lower end of current estimates for tropical vegetation sources, which helps to constrain the range of tropical sources and sinks (0.82 to 8.2 Tg yr-1 from tropical plants, 0.03 to 2.5 Tg yr-1 from senescent/dead leaves and a sink of 0.1 to 1.6 Tg yr-1 by soil uptake. Nevertheless, these results show that the contribution of the rainforest ecosystem is the major source in the

  19. Heavy metal concentrations in redeveloping soil of mine spoil under plantations of certain native woody species in dry tropical environment, India

    Energy Technology Data Exchange (ETDEWEB)

    Singh, A.N.; Zeng, D.H.; Chen, F.S. [Chinese Academy of Science, Shenyang (China). Inst. of Applied Ecology

    2005-07-01

    Total concentration of heavy metals (Cd, Cr, Cu, Fe, Pb, Ni, Mn and Zn) was estimated in the redeveloping soil of mine spoil under 5-yr old plantations of four woody species namely: Albizia lebbeck, Albizia procera, Tectona grandis and Dendrocalamus strictus. The data recorded in the present study were compared with other unplanted coal mine spoil colliery, which was around to the study site and adjoining area of dry tropical forest. Among all the heavy metals, the maximum concentration was found for Fe and minimum for Cd. However, among all four species, total concentrations of these heavy metals were recorded maximally in the plantation plots of T. grandis except for Fe, while minimally in A. lebbeck except for Zn, whereas, the maximum concentration of Fe and Zn was in the plantation plots of D. strictus and A. procera. Statistical analysis revealed significant differences due to species for all the heavy metals except Cu. Among four species, A. lebbeck, A. procera and D. strictus showed more efficient for reducing heavy metal concentrations whereas T. grandis was not more effective to reduce heavy metal concentrations in redeveloping soil of mine spoil.

  20. Heavy metal concentrations in redeveloping soil of mine spoil under plantations of certain native woody species in dry tropical environment, India.

    Science.gov (United States)

    Singh, Anand N; Zeng, De-hui; Chen, Fu-sheng

    2005-01-01

    Total concentration of heavy metals (Cd, Cr, Cu, Fe, Pb, Ni, Mn and Zn) was estimated in the redeveloping soil of mine spoil under 5-yr old plantations of four woody species namely: Albizia lebbeck, Albizia procera, Tectona grandis and Dendrocalamus strictus. The data recorded in the present study were compared with other unplanted coal mine spoil colliery, which was around to the study site and adjoining area of dry tropical forest. Among all the heavy metals, the maximum concentration was found for Fe and minimum for Cd. However, among all four species, total concentrations of these heavy metals were recorded maximally in the plantation plots of T. grandis except for Fe, while minimally in A. lebbeck except for Zn, whereas, the maximum concentration of Fe and Zn was in the plantation plots of D. strictus and A. procera. Statistical analysis revealed significant differences due to species for all the heavy metals except Cu. Among four species, A. lebbeck, A. procera and D. strictus showed more efficient for reducing heavy metal concentrations whereas T. grandis was not more effective to reduce heavy metal concentrations in redeveloping soil of mine spoil.

  1. Disturbance Hydrology in the Tropics: The Galápagos Islands as a Case Study

    Science.gov (United States)

    Riveros-Iregui, D. A.; Schmitt, S.; Percy, M.; Hu, J.; Singha, K.; Mirus, B. B.

    2015-12-01

    Tropical Latin America has shown the largest acceleration in land use change in recent decades. It is well established that changes in vegetation cover can lead to changes in water demand, evapotranspiration, and eventually soil textural characteristics. Given the projected changes in the intensity and distribution of rainfall in tropical regions in the coming decades, it is critical to characterize how changes in land use change across different climatic zones may fundamentally reshape water availability and storage, soil composition and associated hydraulic properties, and overall watershed hydrologic behavior. This study evaluates the role of anthropogenic disturbance on hydrological processes across different climatic zones in the tropics. We focus specifically on San Cristobal Island, the second most populated island of the iconic Galapagos archipelago, which is currently undergoing severe anthropogenic transformation. The island contains a spectrum of climates, ranging from very humid to arid, and has seen a dramatic increase in tourism and an increase in the permanent population of greater than 1000% in the last 40 years. Over 70% of the landscape of San Cristobal has been altered by land use change and invasive species. Our study identifies the complex interactions among hydrological, geological, economic, and social variables that tropical island systems will face in the years ahead, and the role and effects of a dynamic hydrologic cycle across multiple scales.

  2. Radiocarbon dating of magnetic and non magnetic soil fractions as a method to estimate the heterotrophic component of soil respiration in a primary forest of Ghana.

    Science.gov (United States)

    Chiti, T.; Certini, G.; Marzaioli, F.; Valentini, R.

    2012-04-01

    We estimated the heterotrophic component (Rh) of soil respiration in a primary forest of Ghana by radiocarbon dating, a method we already successfully applied in temperate and Mediterranean forests. In this case, given the advanced stage of alteration of tropical soils, which are thus rich in oxides, we implemented the method on soil fractions obtained by High Gradient Magnetic Separation (HGMS), hence based on different degrees of magnetic susceptibility. In particular, we separated an organic pool associated with magnetic minerals (e.g iron oxides) from an organic pool engaged with non-magnetic minerals. This non destructive method of fractionation, often applied to the finest fraction of soil (clay), is here attempted on the bulk fine earth (sieved at 2 mm and further at 0.5 mm ,so as to have two size fractions: 2 to 0.5 mm and aggregates. Surprisingly, the non magnetic fraction is not influenced at all by the bomb C (negative delta 14) already at a depth of 5-15 cm and, even, at 15-30 cm all the four fractions have pre-bomb C, which means relatively high radiocarbon age. The finest fractions are the main contributors to the Rh flux, particularly the magnetic fraction (analysis of the bulk soil alone, and only by means of a SOC fractionation the Rh flux can be estimated quite accurately. This alternative approach for estimating the Rh component of CO2 from soils of tropical areas is currently being applied in 10 tropical forest sites in western and central Africa in the context of the ERC Africa GHG project, and together with measurements of the C inputs annually entering the soil will allow determining the sink-source capacity of primary forest soils.

  3. Use of Sr isotopes as a tool to decipher the soil weathering processes in a tropical river catchment, southwestern India

    International Nuclear Information System (INIS)

    Gurumurthy, G.P.; Balakrishna, K.; Tripti, M.; Riotte, Jean; Audry, Stéphane; Braun, Jean-Jacques; Udaya Shankar, H.N.

    2015-01-01

    River water composition (major ion and "8"7Sr/"8"6Sr ratio) was monitored on a monthly basis over a period of three years from a mountainous river (Nethravati River) of southwestern India. The total dissolved solid (TDS) concentration is relatively low (46 mg L"−"1) with silica being the dominant contributor. The basin is characterised by lower dissolved Sr concentration (avg. 150 nmol L"−"1), with radiogenic "8"7Sr/"8"6Sr isotopic ratios (avg. 0.72041 at outlet). The composition of Sr and "8"7Sr/"8"6Sr and their correlation with silicate derived cations in the river basin reveal that their dominant source is from the radiogenic silicate rock minerals. Their composition in the stream is controlled by a combination of physical and chemical weathering occurring in the basin. The molar ratio of SiO_2/Ca and "8"7Sr/"8"6Sr isotopic ratio show strong seasonal variation in the river water, i.e., low SiO_2/Ca ratio with radiogenic isotopes during non-monsoon and higher SiO_2/Ca with less radiogenic isotopes during monsoon season. Whereas, the seasonal variation of Rb/Sr ratio in the stream water is not significant suggesting that change in the mineral phase being involved in the weathering reaction could be unlikely for the observed molar SiO_2/Ca and "8"7Sr/"8"6Sr isotope variation in river water. Therefore, the shift in the stream water chemical composition could be attributed to contribution of ground water which is in contact with the bedrock (weathering front) during non-monsoon and weathering of secondary soil minerals in the regolith layer during monsoon. The secondary soil mineral weathering leads to limited silicate cation and enhanced silica fluxes in the Nethravati river basin. - Highlights: • Systematic monthly geochemical monitoring of a mountainous tropical river. • Soil weathering has dominant control on the surface water chemistry in the basin. • Soil redox process plays a dominant role in leaching of soil minerals. • Soil mineral weathering in

  4. Geotechnical behavior of a tropical residual soil contaminated with gasoline

    Directory of Open Access Journals (Sweden)

    Óscar Echeverri-Ramírez

    2015-01-01

    Full Text Available La infraestructura para transporte de hidrocarburos ha crecido de manera importante debido a la necesidad de abastecer la mayo r cantidad de poblaciones; sin embargo por pro blemas en las redes de sumin istro, se presentan derrames accidentales que contaminan los su elos bajo los cuales se apoyan estas estructuras. Los suelos contaminados , en este caso particular con gasolina, son la motivación del p resente artículo, el cual pretende analizar los cambios que ocurren en un suelo d e origen residual tropical al ser contaminado con éste; mediant e pruebas de laboratorio específicos para caracterizar este tipo de suelos (Clasificación Miniatura Compactado Tropical, Succión, Pinhole Test, Índice de Colapso, Difracción de rayos “X”, Microscopía Electrónica de Barrido, determinación de pH y de ensayos tradicionales (hume dad natural, gravedad específica, granulometría, límites de Atterbe rg, corte directo, etc, tanto con muestras en estado natural c omo contaminadas que permitan percibir las posibles variaciones en las características mecánicas del material.

  5. Contribution of Topography and Incident Solar Radiation to Variation of Soil and Plant Litter at an Area with Heterogeneous Terrain

    OpenAIRE

    Felipe Cito Nettesheim; Tiago de Conto; Marcos Gervasio Pereira; Deivid Lopes Machado

    2015-01-01

    Natural processes that determine soil and plant litter properties are controlled by multiple factors. However, little attention has been given to distinguishing the effects of environmental factors from the effects of spatial structure of the area on the distribution of soil and litter properties in tropical ecosystems covering heterogeneous topographies. The aim of this study was to assess patterns of soil and litter variation in a tropical area that intercepts different levels of solar radi...

  6. Road-networks, a practical indicator of human impacts on biodiversity in Tropical forests

    International Nuclear Information System (INIS)

    Hosaka, T; Yamada, T; Okuda, T

    2014-01-01

    Tropical forests sustain the most diverse plants and animals in the world, but are also being lost most rapidly. Rapid assessment and monitoring using remote sensing on biodiversity of tropical forests is needed to predict and evaluate biodiversity loss by human activities. Identification of reliable indicators of forest biodiversity and/or its loss is an urgent issue. In the present paper, we propose the density of road networks in tropical forests can be a good and practical indicator of human impacts on biodiversity in tropical forests through reviewing papers and introducing our preliminary survey in peninsular Malaysia. Many previous studies suggest a strong negative impact of forest roads on biodiversity in tropical rainforests since they changes microclimate, soil properties, drainage patterns, canopy openness and forest accessibility. Moreover, our preliminary survey also showed that even a narrow logging road (6 m wide) significantly lowered abundance of dung beetles (well-known bio-indicator in biodiversity survey in tropical forests) near the road. Since these road networks are readily to be detected with remote sensing approach such as aerial photographs and Lider, regulation and monitoring of the road networks using remote sensing techniques is a key to slow down the rate of biodiversity loss due to forest degradation in tropical forests

  7. Road-networks, a practical indicator of human impacts on biodiversity in Tropical forests

    Science.gov (United States)

    Hosaka, T.; Yamada, T.; Okuda, T.

    2014-02-01

    Tropical forests sustain the most diverse plants and animals in the world, but are also being lost most rapidly. Rapid assessment and monitoring using remote sensing on biodiversity of tropical forests is needed to predict and evaluate biodiversity loss by human activities. Identification of reliable indicators of forest biodiversity and/or its loss is an urgent issue. In the present paper, we propose the density of road networks in tropical forests can be a good and practical indicator of human impacts on biodiversity in tropical forests through reviewing papers and introducing our preliminary survey in peninsular Malaysia. Many previous studies suggest a strong negative impact of forest roads on biodiversity in tropical rainforests since they changes microclimate, soil properties, drainage patterns, canopy openness and forest accessibility. Moreover, our preliminary survey also showed that even a narrow logging road (6 m wide) significantly lowered abundance of dung beetles (well-known bio-indicator in biodiversity survey in tropical forests) near the road. Since these road networks are readily to be detected with remote sensing approach such as aerial photographs and Lider, regulation and monitoring of the road networks using remote sensing techniques is a key to slow down the rate of biodiversity loss due to forest degradation in tropical forests.

  8. Cadmium contamination of agricultural soils and crops resulting from sphalerite weathering

    International Nuclear Information System (INIS)

    Robson, T.C.; Braungardt, C.B.; Rieuwerts, J.; Worsfold, P.

    2014-01-01

    The biogeochemistry and bioavailability of cadmium, released during sphalerite weathering in soils, were investigated under contrasting agricultural scenarios to assess health risks associated with sphalerite dust transport to productive soils from mining. Laboratory experiments (365 d) on temperate and sub-tropical soils amended with sphalerite ( −1 ). Wheat grown in spiked temperate soil accumulated ≈38% (29 μmol kg −1 ) of the liberated Cd, exceeding food safety limits. In contrast, rice grown in flooded sub-tropical soil accumulated far less Cd (0.60 μmol kg −1 ) due to neutral soil pH and Cd bioavailability was possibly also controlled by secondary sulfide formation. The results demonstrate long-term release of Cd to soil porewaters during sphalerite weathering. Under oxic conditions, Cd may be sufficiently bioavailable to contaminate crops destined for human consumption; however flooded rice production limits the impact of sphalerite contamination. -- Highlights: • Sphalerite containing cadmium presents a hazard when present in agricultural soils. • Sphalerite dissolution was slow (0.6–1.2% y −1 ) but constant in contrasting soils. • Cadmium was released during dissolution and was bioavailable to wheat and rice. • Wheat grains accumulated potentially harmful cadmium concentrations. • Flooded paddy (reducing) soils reduced cadmium bioavailability to rice. -- Sphalerite dissolves steadily in oxic agricultural soils and can release highly bioavailable Cd, which may contaminate food crops destined for human consumption

  9. Soil does not explain monodominance in a Central African tropical forest.

    Directory of Open Access Journals (Sweden)

    Kelvin S-H Peh

    2011-02-01

    Full Text Available Soil characteristics have been hypothesised as one of the possible mechanisms leading to monodominance of Gilbertiodendron dewerei in some areas of Central Africa where higher-diversity forest would be expected. However, the differences in soil characteristics between the G. dewevrei-dominated forest and its adjacent mixed forest are still poorly understood. Here we present the soil characteristics of the G. dewevrei forest and quantify whether soil physical and chemical properties in this monodominant forest are significantly different from the adjacent mixed forest.We sampled top soil (0-5, 5-10, 10-20, 20-30 cm and subsoil (150-200 cm using an augur in 6 × 1 ha areas of intact central Africa forest in SE Cameroon, three independent patches of G. dewevrei-dominated forest and three adjacent areas (450-800 m apart, all chosen to be topographically homogeneous. Analysis--subjected to Bonferroni correction procedure--revealed no significant differences between the monodominant and mixed forests in terms of soil texture, median particle size, bulk density, pH, carbon (C content, nitrogen (N content, C:N ratio, C:total NaOH-extractable P ratio and concentrations of labile phosphorous (P, inorganic NaOH-extractable P, total NaOH-extractable P, aluminium, barium, calcium, copper, iron, magnesium, manganese, molybdenum, nickel, potassium, selenium, silicon, sodium and zinc. Prior to Bonferroni correction procedure, there was a significant lower level of silicon concentration found in the monodominant than mixed forest deep soil; and a significant lower level of nickel concentration in the monodominant than mixed forest top soil. Nevertheless, these were likely to be the results of multiple tests of significance.Our results do not provide clear evidence of soil mediation for the location of monodominant forests in relation to adjacent mixed forests. It is also likely that G. dewevrei does not influence soil chemistry in the monodominant forests.

  10. Soil does not explain monodominance in a Central African tropical forest.

    Science.gov (United States)

    Peh, Kelvin S-H; Sonké, Bonaventure; Lloyd, Jon; Quesada, Carlos A; Lewis, Simon L

    2011-02-10

    Soil characteristics have been hypothesised as one of the possible mechanisms leading to monodominance of Gilbertiodendron dewerei in some areas of Central Africa where higher-diversity forest would be expected. However, the differences in soil characteristics between the G. dewevrei-dominated forest and its adjacent mixed forest are still poorly understood. Here we present the soil characteristics of the G. dewevrei forest and quantify whether soil physical and chemical properties in this monodominant forest are significantly different from the adjacent mixed forest. We sampled top soil (0-5, 5-10, 10-20, 20-30 cm) and subsoil (150-200 cm) using an augur in 6 × 1 ha areas of intact central Africa forest in SE Cameroon, three independent patches of G. dewevrei-dominated forest and three adjacent areas (450-800 m apart), all chosen to be topographically homogeneous. Analysis--subjected to Bonferroni correction procedure--revealed no significant differences between the monodominant and mixed forests in terms of soil texture, median particle size, bulk density, pH, carbon (C) content, nitrogen (N) content, C:N ratio, C:total NaOH-extractable P ratio and concentrations of labile phosphorous (P), inorganic NaOH-extractable P, total NaOH-extractable P, aluminium, barium, calcium, copper, iron, magnesium, manganese, molybdenum, nickel, potassium, selenium, silicon, sodium and zinc. Prior to Bonferroni correction procedure, there was a significant lower level of silicon concentration found in the monodominant than mixed forest deep soil; and a significant lower level of nickel concentration in the monodominant than mixed forest top soil. Nevertheless, these were likely to be the results of multiple tests of significance. Our results do not provide clear evidence of soil mediation for the location of monodominant forests in relation to adjacent mixed forests. It is also likely that G. dewevrei does not influence soil chemistry in the monodominant forests.

  11. Wild pigs (Sus scrofa) mediate large-scale edge effects in a lowland tropical rainforest in Peninsular Malaysia.

    Science.gov (United States)

    Fujinuma, Junichi; Harrison, Rhett D

    2012-01-01

    Edge-effects greatly extend the area of tropical forests degraded through human activities. At Pasoh, Peninsular Malaysia, it has been suggested that soil disturbance by highly abundant wild pigs (Sus scrofa), which feed in adjacent Oil Palm plantations, may have mediated the invasion of Clidemia hirta (Melastomataceae) into the diverse tropical lowland rain forest. To investigate this hypothesis, we established three 1 km transects from the forest/Oil Palm plantation boundary into the forest interior. We recorded the distribution of soil disturbance by wild pigs, C. hirta abundance, and environmental variables. These data were analyzed using a hierarchical Bayesian model that incorporated spatial auto-correlation in the environmental variables. As predicted, soil disturbance by wild pigs declined with distance from forest edge and C. hirta abundance was correlated with the level of soil disturbance. Importantly there was no effect of distance on C. hirta abundance, after controlling for the effect of soil disturbance. Clidemia hirta abundance was also correlated with the presence of canopy openings, but there was no significant association between the occurrence of canopy openings and distance from the edge. Increased levels of soil disturbance and C. hirta abundance were still detectable approximately 1 km from the edge, demonstrating the potential for exceptionally large-scale animal mediated edge effects.

  12. Soil workability as a basis for advice on tillage activities

    NARCIS (Netherlands)

    Cadena Zapata, M.

    1999-01-01

    In the tropical area of Mexico, when and how to carry out tillage is a qualitative decision. There is no quantified information about the interaction between a chosen process of cultivation, soil type and weather, which dictate the tool and power requirements. Waste of energy and soil

  13. Soil salinity and alkalinity in the Great Konya Basin, Turkey

    NARCIS (Netherlands)

    Driessen, P.M.

    1970-01-01

    In the summers of 1964 to 1968 a study was made of soil salinity and alkalinity in the Great Konya Basin, under the auspices of the Konya Project, a research and training programme of the Department of Tropical Soil Science of the Agricultural University, Wageningen.

    The Great

  14. Biotic and abiotic controls on the distribution of tropical forest aboveground biomass

    Science.gov (United States)

    Saatchi, S. S.; Schimel, D.; Keller, M. M.; Chambers, J. Q.; Dubayah, R.; Duffy, P.; Yu, Y.; Robinson, C. M.; Chowdhury, D.; Yang, Y.

    2013-12-01

    AUTHOR: Sassan Saatchi1,2, Yan Yang2, Diya Chowdhury2, Yifan Yu2, Chelsea Robinson2, David Schimel1, Paul Duffy3, Michael Keller4, Ralph Dubayah5, Jeffery Chambers6 1. Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA USA 2. Institute of Environment and Sustainability, University of California, Los Angeles, CA, USA 3. Neptune and Company, Inc. Denver, CO, USA 4. International Institute of Tropical Forestry & International Programs, USDA Forest Service, Campinas, Brazil 5. Department of Geography, University of Maryland, College Park, MD, USA 6. Department of Geography, University of California, Berkeley, CA, USA ABSTRACT BODY: In recent years, climate change policies and scientific research created a widespread interest in quantify the carbon stock and changes of global tropical forests extending from forest patches to national and regional scales. Using a combination of inventory data from field plots and forest structure from spaceborne Lidar data, we examine the main controls on the distribution of tropical forest biomass. Here, we concentrate on environmental and landscape variables (precipitation, temperature, topography, and soil), and biotic variables such as functional traits (density of large trees, and wood specific gravity). The analysis is performed using global bioclimatic variables for precipitation and temperature, SRTM data for topographical variables (elevation and ruggedness), and global harmonized soil data for soil type and texture. For biotic variables, we use the GLAS Lidar data to quantify the distribution of large trees, a combined field and remote sensing data for distribution of tree wood specific gravity. The results show that climate variables such as precipitation of dry season can explain the heterogeneity of forest biomass over the landscape but cannot predict the biomass variability significantly and particularly for high biomass forests. Topography such as elevation and ruggedness along with temperature can

  15. Reviews and syntheses: Soil N2O and NO emissions from land use and land-use change in the tropics and subtropics: a meta-analysis

    Science.gov (United States)

    van Lent, J.; Hergoualc'h, K.; Verchot, L. V.

    2015-12-01

    Deforestation and forest degradation in the tropics may substantially alter soil N-oxide emissions. It is particularly relevant to accurately quantify those changes to properly account for them in a REDD+ climate change mitigation scheme that provides financial incentives to reduce the emissions. With this study we provide updated land use (LU)-based emission rates (104 studies, 392 N2O and 111 NO case studies), we determine the trend and magnitude of flux changes with land-use change (LUC) using a meta-analysis approach (44 studies, 135 N2O and 37 NO cases) and evaluate biophysical drivers of N2O and NO emissions and emission changes for the tropics. The average N2O and NO emissions in intact upland tropical forest amounted to 2.0 ± 0.2 (n = 90) and 1.7 ± 0.5 (n = 36) kg N ha-1 yr-1, respectively. In agricultural soils annual N2O emissions were exponentially related to N fertilization rates and average water-filled pore space (WFPS) whereas in non-agricultural sites a Gaussian response to WFPS fit better with the observed NO and N2O emissions. The sum of soil N2O and NO fluxes and the ratio of N2O to NO increased exponentially and significantly with increasing nitrogen availability (expressed as NO3- / [NO3-+NH4+]) and WFPS, respectively; following the conceptual Hole-In-the-Pipe model. Nitrous and nitric oxide fluxes did not increase significantly overall as a result of LUC (Hedges's d of 0.11 ± 0.11 and 0.16 ± 0.19, respectively), however individual LUC trajectories or practices did. Nitrous oxide fluxes increased significantly after intact upland forest conversion to croplands (Hedges's d = 0.78 ± 0.24) and NO increased significantly following the conversion of low forest cover (secondary forest younger than 30 years, woodlands, shrublands) (Hedges's d of 0.44 ± 0.13). Forest conversion to fertilized systems significantly and highly raised both N2O and NO emission rates (Hedges's d of 1.03 ± 0.23 and 0.52 ± 0.09, respectively). Changes in nitrogen

  16. Tropical Glaciers

    Science.gov (United States)

    Fountain, Andrew

    The term "tropical glacier" calls to mind balmy nights and palm trees on one hand and cold, blue ice on the other. Certainly author Gabriel Garcia Marqez exploited this contrast in One Hundred Years of Solitude. We know that tropical fish live in warm, Sun-kissed waters and tropical plants provide lush, dense foliage populated by colorful tropical birds. So how do tropical glaciers fit into this scene? Like glaciers everywhere, tropical glaciers form where mass accumulation—usually winter snow—exceeds mass loss, which is generally summer melt. Thus, tropical glaciers exist at high elevations where precipitation can occur as snowfall exceeds melt and sublimation losses, such as the Rwenzori Mountains in east Africa and the Maoke Range of Irian Jaya.

  17. Oxygen Isotope Composition of Phytoliths From Australian Tropical Forests: Towards a New Paleoclimate Tool for the Tropical Pacific area

    Science.gov (United States)

    Alexandre, A.; Crespin, J.; Sonzogni, C.; Sylvestre, F.; Hilbert, D.

    2008-12-01

    Obtaining new continental δ18Ophytolith records from the tropical pacific area would help to further investigate 1) synchronicity between vegetation and climate changes, and 2) climate interactions between ocean and continent through comparison with oceanic reference δ18O records. In this aim, we produce a calibration of the thermo-dependant relationship between δ18Ophytolith and δ18Orainfall for present phytolith assemblages from Queensland rainforests (Australia). Phytoliths were extracted from soil humic horizons sampled along several elevation, temperature and rainfall gradients. Phytolith samples of 1.6mg were analyzed using a newly calibrated IR-laser fluorination technique, performed after a controlled isotopic exchanged procedure. The long term reproducibility on δ18O measurements is sap should equal to δ18Osoil water. Moreover, because relative humidity is close to 100%, soil evaporation is weak and δ18Osoil water is assumed to be similar to δ18Orainfall. The obtained thermo-dependant relationship between δ18Ophytolith and δ18O mean monthly rainfall of the wet season (r=0.68) is close to the equilibrium fractionation equations obtained for quartz and diatoms. Effects of forest fires on phytoliths dehydration and δ18Ophytolith are tested through heating experiments. Provided that phytolith assemblages present a morphological tropical forest pattern, δ18Ophytolith records from sediments can now be interpreted in term of δ18Osoil water, or δ18Orainfall (provided that no soil evaporation is assumed), and temperature changes. This is a first step in further investigating synchronicity between vegetation changes, global climate changes and ENSO activity in the West-Pacific area.

  18. Toxicity of chlorpyrifos, carbofuran, mancozeb and their formulations to the tropical earthworm Perionyx excavatus.

    NARCIS (Netherlands)

    De Silva, P.M.C.S.; Pathiratne, A.; van Gestel, C.A.M.

    2010-01-01

    Effects of chlorpyrifos, carbofuran, mancozeb and their formulated products on survival, growth and reproduction of the tropical earthworm Perionyx excavatus were investigated in standard artificial soil. The toxicity of the three chemicals decreased in the order carbofuran > chlorpyrifos >

  19. Effect of elevated CO2 on chlorpyriphos degradation and soil microbial activities in tropical rice soil.

    Science.gov (United States)

    Adak, Totan; Munda, Sushmita; Kumar, Upendra; Berliner, J; Pokhare, Somnath S; Jambhulkar, N N; Jena, M

    2016-02-01

    Impact of elevated CO2 on chlorpyriphos degradation, microbial biomass carbon, and enzymatic activities in rice soil was investigated. Rice (variety Naveen, Indica type) was grown under four conditions, namely, chambered control, elevated CO2 (550 ppm), elevated CO2 (700 ppm) in open-top chambers and open field. Chlorpyriphos was sprayed at 500 g a.i. ha(-1) at maximum tillering stage. Chlorpyriphos degraded rapidly from rice soils, and 88.4% of initially applied chlorpyriphos was lost from the rice soil maintained under elevated CO2 (700 ppm) by day 5 of spray, whereas the loss was 80.7% from open field rice soil. Half-life values of chlorpyriphos under different conditions ranged from 2.4 to 1.7 days with minimum half-life recorded with two elevated CO2 treatments. Increased CO2 concentration led to increase in temperature (1.2 to 1.8 °C) that played a critical role in chlorpyriphos persistence. Microbial biomass carbon and soil enzymatic activities specifically, dehydrogenase, fluorescien diacetate hydrolase, urease, acid phosphatase, and alkaline phosphatase responded positively to elevated CO2 concentrations. Generally, the enzyme activities were highly correlated with each other. Irrespective of the level of CO2, short-term negative influence of chlorpyriphos was observed on soil enzymes till day 7 of spray. Knowledge obtained from this study highlights that the elevated CO2 may negatively influence persistence of pesticide but will have positive effects on soil enzyme activities.

  20. Assessing the role of organic soil amendments in management of ...

    African Journals Online (AJOL)

    ... was higher in organically amended soils than the control, with the highest figures being recorded on chicken manure. This is a clear demonstration of the potential of organic amendments in triggering the natural mechanisms that regulate plant nematodes in the soil. Journal of Tropical Microbiology Vol.3 2004: 14-23 ...

  1. Rising Mean Annual Temperature Increases Carbon Flux and Alters Partitioning, but Does Not Change Ecosystem Carbon Storage in Hawaiian Tropical Montane Wet Forest

    Science.gov (United States)

    Litton, C. M.; Giardina, C. P.; Selmants, P.

    2014-12-01

    Terrestrial ecosystem carbon (C) storage exceeds that in the atmosphere by a factor of four, and represents a dynamic balance among C input, allocation, and loss. This balance is likely being altered by climate change, but the response of terrestrial C cycling to warming remains poorly quantified, particularly in tropical forests which play a disproportionately large role in the global C cycle. Over the past five years, we have quantified above- and belowground C pools and fluxes in nine permanent plots spanning a 5.2°C mean annual temperature (MAT) gradient (13-18.2°C) in Hawaiian tropical montane wet forest. This elevation gradient is unique in that substrate type and age, soil type, soil water balance, canopy vegetation, and disturbance history are constant, allowing us to isolate the impact of long-term, whole ecosystem warming on C input, allocation, loss and storage. Across the gradient, soil respiration, litterfall, litter decomposition, total belowground C flux, aboveground net primary productivity, and estimates of gross primary production (GPP) all increase linearly and positively with MAT. Carbon partitioning is dynamic, shifting from below- to aboveground with warming, likely in response to a warming-induced increase in the cycling and availability of soil nutrients. In contrast to observed patterns in C flux, live biomass C, soil C, and total ecosystem C pools remained remarkably constant with MAT. There was also no difference in soil bacterial taxon richness, phylogenetic diversity, or community composition with MAT. Taken together these results indicate that in tropical montane wet forests, increased temperatures in the absence of water limitation or disturbance will accelerate C cycling, will not alter ecosystem C storage, and will shift the products of photosynthesis from below- to aboveground. These results agree with an increasing number of studies, and collectively provide a unique insight into anticipated warming-induced changes in tropical

  2. Fitting maize into sustainable cropping systems on acid soils of the tropics

    International Nuclear Information System (INIS)

    Horst, W.J.

    2000-01-01

    One of the key elements of sustainable cropping systems is the integration of crops and/or crop cultivars with high tolerance of soil acidity and which make most efficient use of the nutrients supplied by soil and fertilizer. This paper is based mainly on on-going work within an EU-funded project combining basic research on plant adaptation mechanisms by plant physiologists, and field experimentation on acid soils in Brazil, Cameroon, Colombia and Guadeloupe by breeders, soil scientists and a agronomists. The results suggest that large genetic variability exists in adaptation of plants to acid soils. A range of morphological and physiological plant characteristics contribute to tolerance of acid soils, elucidation of which has contributed to the development of rapid techniques for screening for tolerance. Incorporation of acid-soil-tolerant species and cultivars into cropping systems contributes to improved nutrient efficiency overall, and thus reduces fertilizer needs. This may help to minimize maintenance applications of fertiliser through various pathways: (i) deeper root growth resulting in more-efficient uptake of nutrients from the sub-soil and less leaching, (ii) more biomass production resulting in less seepage and less leaching, with more intensive nutrient cycling, maintenance of higher soil organic-matter content, and, consequently, less erosion owing to better soil protection by vegetation and mulch. (author)

  3. Tree species, spatial heterogeneity, and seasonality drive soil fungal abundance, richness, and composition in Neotropical rainforests.

    Science.gov (United States)

    Kivlin, Stephanie N; Hawkes, Christine V

    2016-12-01

    Tropical ecosystems remain poorly understood and this is particularly true for belowground soil fungi. Soil fungi may respond to plant identity when, for example, plants differentially allocate resources belowground. However, spatial and temporal heterogeneity in factors such as plant inputs, moisture, or nutrients can also affect fungal communities and obscure our ability to detect plant effects in single time point studies or within diverse forests. To address this, we sampled replicated monocultures of four tree species and secondary forest controls sampled in the drier and wetter seasons over 2 years. Fungal community composition was primarily related to vegetation type and spatial heterogeneity in the effects of vegetation type, with increasing divergence partly reflecting greater differences in soil pH and soil moisture. Across wetter versus drier dates, fungi were 7% less diverse, but up to four-fold more abundant. The combined effects of tree species and seasonality suggest that predicted losses of tropical tree diversity and intensification of drought have the potential to cascade belowground to affect both diversity and abundance of tropical soil fungi. © 2016 Society for Applied Microbiology and John Wiley & Sons Ltd.

  4. Remediation trials of crude oil contaminated soil using different ...

    African Journals Online (AJOL)

    A 3 month remediation trial of the use of detergent and sawdust in different combination forms in the restoration of a crude oil contaminated tropical soil was investigated. 8 remediation treatments labeled A – H in addition to the control (I) were used in 10 kg soil artificially polluted with 300 ml crude oil each. Remediation ...

  5. The effect of climate and soil conditions on tree species turnover in a Tropical Montane Cloud Forest in Costa Rica

    Directory of Open Access Journals (Sweden)

    Achim Häger

    2010-12-01

    Full Text Available On a global level, Tropical Montane Cloud Forests constitute important centers of vascular plant diversity. Tree species turnover along environmental gradients plays an important role in larger scale diversity patterns in tropical mountains. This study aims to estimate the magnitude of beta diversity across the Tilarán mountain range in North-Western Costa Rica, and to elucidate the impact of climate and soil conditions on tree species turnover at a local scale. Seven climate stations measuring rainfall, horizontal precipitation (clouds and wind-driven rain and temperatures were installed along a 2.5km transect ranging from 1 200m.a.s.l. on the Atlantic to 1 200m.a.s.l. on the Pacific slope. The ridge top climate station was located at 1 500m.a.s.l. Climate data were recorded from March through December 2003. Additionally, seven 0.05ha plots were established. On all plots soil moisture was monitored for one year, furthermore soil type and soil chemistry were assessed. Woody plants with a diameter at breast height (dbh ≥5cm were identified to species. Species’ distributions were explored by feeding pairwise Sørensen measures between plots into a Principal Component Analysis. Relationships between floristic similarity and environmental variables were analyzed using Mantel tests. Pronounced gradients in horizontal precipitation, temperatures and soil conditions were found across the transect. In total, 483 woody plants were identified, belonging to 132 species. Environmental gradients were paralleled by tree species turnover; the plots could be divided in three distinctive floristic units which reflected different topographic positions on the transect (lower slopes, mid slopes and ridge. Most notably there was a complete species turnover between the ridge and the lower Pacific slope. Floristic similarity was negatively correlated with differences in elevation, horizontal precipitation, temperatures and soil conditions between plots. It is

  6. Land use history, environment, and tree composition in a tropical forest

    Science.gov (United States)

    Jill Thompson; Nicholas Brokaw; Jess K. Zimmerman; Robert B. Waide; Edwin M. III Everham; D. Jean Lodge; Charlotte M. Taylor; Diana Garcia-Montiel; Marcheterre Fluet

    2002-01-01

    The effects of historical land use on tropical forest must be examined to understand present forest characteristics and to plan conservation strategies. We compared the effects of past land use, topography, soil type, and other environmental variables on tree species composition in a subtropical wet forest in the Luquillo Mountains, Puerto Rico. The study involved...

  7. Effect of Soil Water Content on the Distribution of Diuron into Organomineral Aggregates of Highly Weathered Tropical Soils.

    Science.gov (United States)

    Regitano, Jussara B; Rocha, Wadson S D; Bonfleur, Eloana J; Milori, Debora; Alleoni, Luís R F

    2016-05-25

    We evaluated the effects of soil water content on the retention of diuron and its residual distribution into organomineral aggregates in four Brazilian oxisols. (14)C-Diuron was incubated for days at 25, 50, and 75% of maximum water-holding capacity for each soil. After 42 days, the physical fractionation method was used to obtain >150, 53-150, 20-53, 2-20, and retention increased with increasing soil water content for all soils. At lower soil water content, diuron's retention was higher in the sandier soil. It was mostly retained in the fine (retention was higher in the coarse aggregates (>53 μm). The sorption coefficients (Kd and Koc) generated by batch studies should be carefully used because they do not provide information about aggregation and diffusion effects on pesticides soil sorption.

  8. Biological Activity Assessment in Mexican Tropical Soils with Different Hydrocarbon Contamination Histories.

    Science.gov (United States)

    Riveroll-Larios, Jessica; Escalante-Espinosa, Erika; Fócil-Monterrubio, Reyna L; Díaz-Ramírez, Ildefonso J

    The use of soil health indicators linked to microbial activities, such as key enzymes and respirometric profiles, helps assess the natural attenuation potential of soils contaminated with hydrocarbons. In this study, the intrinsic physicochemical characteristics, biological activity and biodegradation potential were recorded for two soils with different contamination histories (>5 years and soil samples. Soil suspensions were tested as microbial inocula in biodegradation potential assays using contaminated perlite as an inert support. The basal respiratory rate of the recently contaminated soil was 15-38 mg C-CO 2  kg -1 h -1 , while the weathered soil presented a greater basal mineralisation capacity of 55-70 mg C-CO 2 kg -1 h -1 . The basal levels of lipase and dehydrogenase were significantly greater than those recorded in non-contaminated soils (551 ± 21 μg pNP g -1 ). Regarding the biodegradation potential assessment, the lipase (1000-3000 μg pNP g -1 of perlite) and dehydrogenase (~3000 μg INF g -1 of perlite) activities in the inoculum of the recently contaminated soil were greater than those recorded in the inoculum of the weathered soil. This was correlated with a high mineralisation rate (~30 mg C-CO 2 kg -1 h -1 ) in the recently contaminated soil and a reduction in hydrocarbon concentration (~30 %). The combination of an inert support and enzymatic and respirometric analyses made it possible to detect the different biodegradation capacities of the studied inocula and the natural attenuation potential of a recently contaminated soil at high hydrocarbon concentrations.

  9. Responses to elevated carbon dioxide in artificial tropical ecosystems

    International Nuclear Information System (INIS)

    Koerner, C.; Arnone, J.A. III

    1992-01-01

    Carbon, nutrient, and water balance as well as key plant and soil processes were simultaneously monitored for humid tropical plant communities treated with CO 2 -enriched atmospheres. Despite vigorous growth, no significant differences in stand biomass, leaf area index, nitrogen or water consumption, or leaf stomatal behavior were detected between ambient and elevated CO 2 treatments. Major responses under elevated CO 2 included massive starch accumulation in the tops of canopies, increased fine-root production, and a doubling of CO 2 evolution from the soil. Stimulated rhizosphere activity was accompanied by increased loss of soil carbon and increased mineral nutrient leaching. This study points at the inadequacy of scaling-up from physiological baseline to ecosystems without accounting for interactions among components, and it emphasizes the urgent need for whole-system experimental approaches in global-change research

  10. CO2 efflux from subterranean nests of ant communities in a seasonal tropical forest, Thailand

    OpenAIRE

    Hasin, Sasitorn; Ohashi, Mizue; Yamada, Akinori; Hashimoto, Yoshiaki; Tasen, Wattanachai; Kume, Tomonori; Yamane, Seiki

    2014-01-01

    Many ant species construct subterranean nests. The presence of their nests may explain soil respiration “hot spots”, an important factor in the high CO2 efflux from tropical forests. However, no studies have directly measured CO2 efflux from ant nests. We established 61 experimental plots containing 13 subterranean ant species to evaluate the CO2 efflux from subterranean ant nests in a tropical seasonal forest, Thailand. We examined differences in nest CO2 efflux among ant species. We determi...

  11. Soils newsletter. V.17, no.2

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-01

    This newsletter contains brief presentations of 8 co-ordinated research programmes and 4 training courses organized by the Soil Fertility, Irrigation and Crop Production Section of the Joint FAO/IAEA division and highlights on the activities on the Technical Co-operation Projects for which the Section is currently responsible in the Middle East and Europe. The following meetings are presented with excerpts from the reports submitted: The third FAO/IAEA Research Coordination Meeting FAO/IAEA CRP on Enhancing Soil Fertility and Crop production by Better Management of Rhizobium held at the University of Geneva between 15-19 August 1994 (24 excerpts), The First FAO/IAEA Research Co-ordination Meeting on ``The Use of Nuclear Techniques for Optimizing Fertilizer Applications Under Irrigated Wheat to Increase the Efficient Use of Nitrogen Fertilizers and Consequently Reduce Environmental Pollution`` held in Vienna between 3-6 October 1994 (12 excerpts) and Final Research Co-ordination Meeting of the FAO/IAEA/SIDA Co-ordinated Research Programme on The Use of Isotope Studies on Increasing and Stabilizing Plant Productivity in Low Phosphate and Semi-arid and Sub-humid Soils of the Tropics and Sub-tropics held in Vienna between 10-14 October 1994 (11 excerpts).

  12. Soils newsletter. V.17, no.2

    International Nuclear Information System (INIS)

    1994-12-01

    This newsletter contains brief presentations of 8 co-ordinated research programmes and 4 training courses organized by the Soil Fertility, Irrigation and Crop Production Section of the Joint FAO/IAEA division and highlights on the activities on the Technical Co-operation Projects for which the Section is currently responsible in the Middle East and Europe. The following meetings are presented with excerpts from the reports submitted: The third FAO/IAEA Research Coordination Meeting FAO/IAEA CRP on Enhancing Soil Fertility and Crop production by Better Management of Rhizobium held at the University of Geneva between 15-19 August 1994 (24 excerpts), The First FAO/IAEA Research Co-ordination Meeting on ''The Use of Nuclear Techniques for Optimizing Fertilizer Applications Under Irrigated Wheat to Increase the Efficient Use of Nitrogen Fertilizers and Consequently Reduce Environmental Pollution'' held in Vienna between 3-6 October 1994 (12 excerpts) and Final Research Co-ordination Meeting of the FAO/IAEA/SIDA Co-ordinated Research Programme on The Use of Isotope Studies on Increasing and Stabilizing Plant Productivity in Low Phosphate and Semi-arid and Sub-humid Soils of the Tropics and Sub-tropics held in Vienna between 10-14 October 1994 (11 excerpts)

  13. Detecting Trends in Wetland Extent from MODIS Derived Soil Moisture Estimates

    Directory of Open Access Journals (Sweden)

    Thomas Gumbricht

    2018-04-01

    Full Text Available A soil wetness index for optical satellite images, the Transformed Wetness Index (TWI is defined and evaluated against ground sampled soil moisture. Conceptually, TWI is formulated as a non-linear normalized difference index from orthogonalized vectors representing soil and water conditions, with the vegetation signal removed. Compared to 745 ground sites with in situ measured soil moisture, TWI has a globally estimated Random Mean Square Error of 14.0 (v/v expressed as percentage, which reduces to 8.5 for unbiased data. The temporal variation in soil moisture is significantly captured at 4 out of 10 stations, but also fails for 2 to 3 out of 10 stations. TWI is biased by different soil mineral compositions, dense vegetation and shadows, with the latter two most likely also causing the failure of TWI to capture soil moisture dynamics. Compared to soil moisture products from microwave brightness temperature data, TWI performs slightly worse, but has the advantages of not requiring ancillary data, higher spatial resolution and a relatively simple application. TWI has been used for wetland and peatland mapping in previously published studies but is presented in detail in this article, and then applied for detecting changes in soil moisture for selected tropical regions between 2001 and 2016. Sites with significant changes are compared to a published map of global tropical wetlands and peatlands.

  14. The Maya Tropical Forest: Cascading Human impacts from Hillslopes to Floodplains

    Science.gov (United States)

    Beach, Timothy; Luzzadder-Beach, Sheryl; Doyle, Colin; Krause, Samantha; Brokaw, Nicholas; Yaeger, Jason

    2016-04-01

    We review the long-term human impact on fluvial systems in the Maya tropical forest region. Although most of this karstic region is drained by groundwater, the southern and coastal margins have several river systems that drain volcanic and metamorphic as well as sedimentary terrains. Some positive environmental impacts of Maya Civilization were the long-term impacts of both landesque capital, like wetland field systems, and other land uses that have enriched many soils. Some negative impacts included stripped soils and eutrophic rivers, both playing out again today with recent deforestation and intensive agriculture. We review trends in the region's fluvial systems, present new evidence on beneficial and detrimental impacts of Maya civilization, and present a new study using LiDAR mapping of fluvial geomorphology of the Belize River. Our new field research comes from the transboundary Rio Bravo watershed of Belize and Guatemala near the border with Mexico. This watershed today is mainly a well preserved tropical forest but from 3,000 to 1000 years ago was partly deforested by Maya cities, farms, roads, fires, and fields. We present studies of soils and sediment movement along slopes, floodplains, and water quality impacts of high dissolved loads of sulfate and calcium. We use AMS dates and soil stratigraphy to date slope and floodplain flux, and we use multiple proxies like pollen and carbon isotopes to reconstruct ancient land use. Aggradation in the floodplain and colluvial deposits began by at least 3,000 years ago and continued until 1100 years ago in several study sites. Some Classic period sites with peak human population and land use intensity experienced less soil erosion, perhaps due to soil conservation, post urban construction, and source reduction. Additional evidence suggests that ancient terraced sites and colluvial slopes that gained upslope sediment and soil nutrients from ancient Maya erosion had greater biodiversity. Lastly, we map fluvial

  15. Influence of organic fertilization on the sorption mechanisms of {sup 241} Am in tropical soils; A influencia da adubacao organica nos mecanismos de sorcao do {sup 241} Am em solos tropicais

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, Tatiane Rocha

    2009-07-01

    In this work the mechanisms involved in the sorption of {sup 241}Am were investigated depending on the physicochemical properties of some Brazilian soils and on alterations promoted by organic amendment. This experimental study was conducted in a controlled area, where pots containing different kinds of soils (histisol, ferralsol and nitisol), with different organic amendment doses (without amendment; 2 kg m{sup -2} and 4 kg m{sup -2}) were artificially contaminated by radioactive solution water, which contained {sup 241}Am. Migration studies, distribution (or partition) coefficient (KJ), bioavailability and organic matter were carried out in these soils, with ar without organic amendment. In order to evaluate the effective bioavailability of radionuclides, radish (Raphanus sativus L.) was cultivated in these pots, and later the concentration of {sup 241}Am in radish's roots was measured. The main results show that {sup 241}Am tends to be strongly attached to organic matter and that organic amendment in tropical soils minimizes the radionuclide studied desorption. Also, distribution (or partition) coefficient values for {sup 241}Am were generated and these values are smaller than those ones determined for soils from temperate zones. Physical and chemical fractioning of organic matter were carried out. (author)

  16. Tropical radioecology

    CERN Document Server

    Baxter, M

    2012-01-01

    Tropical Radioecology is a guide to the wide range of scientific practices and principles of this multidisciplinary field. It brings together past and present studies in the tropical and sub-tropical areas of the planet, highlighting the unique aspects of tropical systems. Until recently, radioecological models for tropical environments have depended upon data derived from temperate environments, despite the differences of these regions in terms of biota and abiotic conditions. Since radioactivity can be used to trace environmental processes in humans and other biota, this book offers examples of studies in which radiotracers have been used to assess biokinetics in tropical biota. Features chapters, co-authored by world experts, that explain the origins, inputs, distribution, behaviour, and consequences of radioactivity in tropical and subtropical systems. Provides comprehensive lists of relevant data and identifies current knowledge gaps to allow for targeted radioecological research in the future. Integrate...

  17. Linking River Basin Modifications and Rural Soil and Water Management Practices in Tropical Deltas to Sea Level Rise Vulnerability

    Science.gov (United States)

    Rogers, K. G.; Brondizio, E.; Roy, K.; Syvitski, J. P.

    2015-12-01

    The increased vulnerability of deltaic communities to coastal flooding as a result of upstream engineering has been acknowledged for decades. What has received less attention is the sensitivity of deltas to the interactions between river basin modifications and local scale cultivation and irrigation. Combined with reduced river and sediment discharge, soil and water management practices in coastal areas may exacerbate the risk of tidal flooding, erosion of arable land, and salinization of soils and groundwater associated with sea level rise. This represents a cruel irony to smallholder subsistence farmers whose priorities are food, water and economic security, rather than sustainability of the environment. Such issues challenge disciplinary approaches and require integrated social-biophysical models able to understand and diagnose these complex relationships. This study applies a new conceptual framework to define the relevant social and physical units operating on the common pool resources of climate, water and sediment in the Bengal Delta (Bangladesh). The new framework will inform development of a nested geospatial analysis and a coupled model to identify multi-scale social-biophysical feedbacks associated with smallholder soil and water management practices, coastal dynamics, basin modification, and climate vulnerability in tropical deltas. The framework was used to create household surveys for collecting data on climate perceptions, land and water management, and governance. Test surveys were administered to rural farmers in 14 villages during a reconnaissance visit to coastal Bangladesh. Initial results demonstrate complexity and heterogeneity at the local scale in both biophysical conditions and decision-making. More importantly, the results illuminate how national and geopolitical-level policies scale down to impact local-level environmental and social stability in communities already vulnerable to coastal flooding. Here, we will discuss components of the

  18. Sustainable Ecosystem Services Framework for Tropical Catchment Management: A Review

    Directory of Open Access Journals (Sweden)

    N. Zafirah

    2017-04-01

    Full Text Available The monsoon season is a natural phenomenon that occurs over the Asian continent, bringing extra precipitation which causes significant impact on most tropical watersheds. The tropical region’s countries are rich with natural rainforests and the economies of the countries situated within the region are mainly driven by the agricultural industry. In order to fulfill the agricultural demand, land clearing has worsened the situation by degrading the land surface areas. Rampant land use activities have led to land degradation and soil erosion, resulting in implications on water quality and sedimentation of the river networks. This affects the ecosystem services, especially the hydrological cycles. Intensification of the sedimentation process has resulted in shallower river systems, thus increasing their vulnerability to natural hazards (i.e., climate change, floods. Tropical forests which are essential in servicing their benefits have been depleted due to the increase in human exploitation. This paper provides an overview of the impact of land erosion caused by land use activities within tropical rainforest catchments, which lead to massive sedimentation in tropical rivers, as well as the effects of monsoon on fragile watersheds which can result in catastrophic floods. Forest ecosystems are very important in giving services to regional biogeochemical processes. Balanced ecosystems therefore, play a significant role in servicing humanity and ultimately, may create a new way of environmental management in a cost-effective manner. Essentially, such an understanding will help stakeholders to come up with better strategies in restoring the ecosystem services of tropical watersheds.

  19. correlation studies of mineral nutrients' concentrations in soils

    African Journals Online (AJOL)

    PROF. BARTH EKWEME

    Samples were labeled and processed for soil and plant laboratory analyses. The parameters analyzed .... crushed with pestle, and mortar into finer particles before subjected to the ..... Economic Botany in the Tropics. Macmillan India. p. 203.

  20. Wild Pigs (Sus scrofa) Mediate Large-Scale Edge Effects in a Lowland Tropical Rainforest in Peninsular Malaysia

    OpenAIRE

    Fujinuma, Junichi; Harrison, Rhett D.

    2012-01-01

    Edge-effects greatly extend the area of tropical forests degraded through human activities. At Pasoh, Peninsular Malaysia, it has been suggested that soil disturbance by highly abundant wild pigs (Sus scrofa), which feed in adjacent Oil Palm plantations, may have mediated the invasion of Clidemia hirta (Melastomataceae) into the diverse tropical lowland rain forest. To investigate this hypothesis, we established three 1 km transects from the forest/Oil Palm plantation boundary into the forest...

  1. Modelling soil erosion potential in the transboundary (Kenya & Tanzania) catchment of river Umba using remotely sensed data

    NARCIS (Netherlands)

    Koedam, N.; Mutisya, B.; Kairo, J.; Resink-Ndungu, Jane Njeri; Kervyn, M.

    2017-01-01

    Soil erosion is one of the leading forms of soil degradation. Estimating soil erosion from field measurements is expensive hence the extent of soil erosion in many tropical watersheds is unknown. Erosion is a complex process; some of the eroded materials are deposited within the watershed while the

  2. Evaluation of Biological and Enzymatic Activity of Soil in a Tropical Dry Forest: Desierto de la Tatacoa (Colombia) with Potential in Mars Terraforming and Other Similar Planets

    Science.gov (United States)

    Moreno Moreno, A. N.

    2009-12-01

    Desierto de la Tatacoa has been determined to be a tropical dry forest bioma, which is located at 3° 13" N 75° 13" W. It has a hot thermal floor with 440 msnm of altitude; it has a daily average of 28° C, and a maximum of 40° C, Its annual rainfall total can be upwards of 1250 mm. Its solar sheen has a daily average of 5.8 hours and its relative humidity is between 60% and 65%. Therefore, the life forms presents are very scant, and in certain places, almost void. It was realized a completely random sampling of soil from its surface down to 6 inches deep, of zones without vegetation and with soils highly loaded by oxides of iron in order to determine the number of microorganisms per gram and its subsequent identification. It was measured the soil basal respiration. Besides, it was determined enzymatic activity (catalase, dehydrogenase, phosphatase and urease). Starting with the obtained results, it is developes an alternative towards the study of soil genesis in Mars in particular, and recommendations for same process in other planets. Although the information found in the experiments already realized in Martian soil they demonstrate that doesnt exist any enzymatic activity, the knowledge of the same topic in the soil is proposed as an alternative to problems like carbonic fixing of the dense Martian atmosphere of CO2, the degradation of inorganic compounds amongst other in order to prepare the substratum for later colonization by some life form.

  3. Arthropod Distribution in a Tropical Rainforest: Tackling a Four Dimensional Puzzle.

    Science.gov (United States)

    Basset, Yves; Cizek, Lukas; Cuénoud, Philippe; Didham, Raphael K; Novotny, Vojtech; Ødegaard, Frode; Roslin, Tomas; Tishechkin, Alexey K; Schmidl, Jürgen; Winchester, Neville N; Roubik, David W; Aberlenc, Henri-Pierre; Bail, Johannes; Barrios, Héctor; Bridle, Jonathan R; Castaño-Meneses, Gabriela; Corbara, Bruno; Curletti, Gianfranco; Duarte da Rocha, Wesley; De Bakker, Domir; Delabie, Jacques H C; Dejean, Alain; Fagan, Laura L; Floren, Andreas; Kitching, Roger L; Medianero, Enrique; Gama de Oliveira, Evandro; Orivel, Jérôme; Pollet, Marc; Rapp, Mathieu; Ribeiro, Sérvio P; Roisin, Yves; Schmidt, Jesper B; Sørensen, Line; Lewinsohn, Thomas M; Leponce, Maurice

    2015-01-01

    Quantifying the spatio-temporal distribution of arthropods in tropical rainforests represents a first step towards scrutinizing the global distribution of biodiversity on Earth. To date most studies have focused on narrow taxonomic groups or lack a design that allows partitioning of the components of diversity. Here, we consider an exceptionally large dataset (113,952 individuals representing 5,858 species), obtained from the San Lorenzo forest in Panama, where the phylogenetic breadth of arthropod taxa was surveyed using 14 protocols targeting the soil, litter, understory, lower and upper canopy habitats, replicated across seasons in 2003 and 2004. This dataset is used to explore the relative influence of horizontal, vertical and seasonal drivers of arthropod distribution in this forest. We considered arthropod abundance, observed and estimated species richness, additive decomposition of species richness, multiplicative partitioning of species diversity, variation in species composition, species turnover and guild structure as components of diversity. At the scale of our study (2 km of distance, 40 m in height and 400 days), the effects related to the vertical and seasonal dimensions were most important. Most adult arthropods were collected from the soil/litter or the upper canopy and species richness was highest in the canopy. We compared the distribution of arthropods and trees within our study system. Effects related to the seasonal dimension were stronger for arthropods than for trees. We conclude that: (1) models of beta diversity developed for tropical trees are unlikely to be applicable to tropical arthropods; (2) it is imperative that estimates of global biodiversity derived from mass collecting of arthropods in tropical rainforests embrace the strong vertical and seasonal partitioning observed here; and (3) given the high species turnover observed between seasons, global climate change may have severe consequences for rainforest arthropods.

  4. Theoretical evaluation of thermal and energy performance of tropical green roofs

    International Nuclear Information System (INIS)

    Tsang, S.W.; Jim, C.Y.

    2011-01-01

    The thermal and energy efficiency of tropical green roofs is assessed by a theoretical model to clarify the contribution of underlying factors. The suitability of 1400 high-rise public housing blocks in Hong Kong for rooftop greening was assessed by remote sensing images. Weather and microclimatic-soil monitoring data of an experimental green roof provided the basis for computations. Roof greening prevented a huge amount of solar energy at 43.9 TJ in one summer from penetrating the buildings to bring significant energy saving. Thermal performance of humid-tropical green roofs, with greater latent heat dissipation, is twice more effective than the temperate ones. The energy balance model shows that solar energy absorption by bare and green roofs depends on shortwave rather than longwave radiation. Heat flux into a building indicates a one-day time lag after a sunshine day. With restricted evapotranspiration, bare roofs have more sensible heat and heat storage than green roofs. The bare roof albedo of 0.15, comparing with 0.30 of green roof, renders 75% higher heat storage. Small increase in convection coefficient from 12 to 16 could amplify 24% and 45% of latent heat dissipation respectively for bare and green roofs. Doubling the soil water availability could halve the heat storage of green roofs. -- Highlights: → We developed a theoretical model to calculate the thermal performance of tropical green roofs. → Bare roofs have more sensible heat and heat storage than green roofs. → Latent heat dissipation of tropical green roofs is twice that of temperate counterparts. → Heat flux through the roof into a building demonstrates a one-day time lag after a long sunshine day. → Green roofs can block 43.9 TJ of solar energy penetration into public housing buildings in one summer.

  5. Arthropod Distribution in a Tropical Rainforest: Tackling a Four Dimensional Puzzle

    Science.gov (United States)

    Basset, Yves; Cizek, Lukas; Cuénoud, Philippe; Didham, Raphael K.; Novotny, Vojtech; Ødegaard, Frode; Roslin, Tomas; Tishechkin, Alexey K.; Schmidl, Jürgen; Winchester, Neville N.; Roubik, David W.; Aberlenc, Henri-Pierre; Bail, Johannes; Barrios, Héctor; Bridle, Jonathan R.; Castaño-Meneses, Gabriela; Corbara, Bruno; Curletti, Gianfranco; Duarte da Rocha, Wesley; De Bakker, Domir; Delabie, Jacques H. C.; Dejean, Alain; Fagan, Laura L.; Floren, Andreas; Kitching, Roger L.; Medianero, Enrique; Gama de Oliveira, Evandro; Orivel, Jérôme; Pollet, Marc; Rapp, Mathieu; Ribeiro, Sérvio P.; Roisin, Yves; Schmidt, Jesper B.; Sørensen, Line; Lewinsohn, Thomas M.; Leponce, Maurice

    2015-01-01

    Quantifying the spatio-temporal distribution of arthropods in tropical rainforests represents a first step towards scrutinizing the global distribution of biodiversity on Earth. To date most studies have focused on narrow taxonomic groups or lack a design that allows partitioning of the components of diversity. Here, we consider an exceptionally large dataset (113,952 individuals representing 5,858 species), obtained from the San Lorenzo forest in Panama, where the phylogenetic breadth of arthropod taxa was surveyed using 14 protocols targeting the soil, litter, understory, lower and upper canopy habitats, replicated across seasons in 2003 and 2004. This dataset is used to explore the relative influence of horizontal, vertical and seasonal drivers of arthropod distribution in this forest. We considered arthropod abundance, observed and estimated species richness, additive decomposition of species richness, multiplicative partitioning of species diversity, variation in species composition, species turnover and guild structure as components of diversity. At the scale of our study (2km of distance, 40m in height and 400 days), the effects related to the vertical and seasonal dimensions were most important. Most adult arthropods were collected from the soil/litter or the upper canopy and species richness was highest in the canopy. We compared the distribution of arthropods and trees within our study system. Effects related to the seasonal dimension were stronger for arthropods than for trees. We conclude that: (1) models of beta diversity developed for tropical trees are unlikely to be applicable to tropical arthropods; (2) it is imperative that estimates of global biodiversity derived from mass collecting of arthropods in tropical rainforests embrace the strong vertical and seasonal partitioning observed here; and (3) given the high species turnover observed between seasons, global climate change may have severe consequences for rainforest arthropods. PMID:26633187

  6. Soil gas radon response to environmental and soil physics variables

    International Nuclear Information System (INIS)

    Thomas, D.M.; Chen, C.; Holford, D.

    1991-01-01

    During the last three years a field study of soil gas radon activities conducted at Poamoho, Oahu, has shown that the primary environmental variables that control radon transport in shallow tropical soils are synoptic and diurnal barometric pressure changes and soil moisture levels. Barometric pressure changes drive advective transport and mixing of soil gas with atmospheric air; soil moisture appears to control soil porosity and permeability to enhance or inhibit advective and diffusive radon transport. An advective barrier test/control experiment has shown that advective exchange of soil gas and air may account for a substantial proportion of the radon loss from shallow soils but does not significantly affect radon activities at depths greater than 2.3 m. An irrigation test/control experiment also suggests that, at soil moisture levels approaching field capacity, saturation of soil macroporosity can halt all advective transport of radon and limit diffusive mobility to that occurring in the liquid phase. The results of the authors field study have been used to further refine and extend a numerical model, RN3D, that has been developed by Pacific Northwest Laboratories to simulate subsurface transport of radon. The field data have allowed them to accurately simulate the steady state soil gas radon profile at their field site and to track transient radon activities under the influence of barometric pressure changes and in response to changes in soil permeability that result from variations in soil moisture levels. Further work is continuing on the model to enable it to properly account for the relative effects of advective transport of soil gas through cracks and diffusive mobility in the bulk soils

  7. Nematode spatial and ecological patterns from tropical and temperate rainforests.

    Directory of Open Access Journals (Sweden)

    Dorota L Porazinska

    Full Text Available Large scale diversity patterns are well established for terrestrial macrobiota (e.g. plants and vertebrates, but not for microscopic organisms (e.g. nematodes. Due to small size, high abundance, and extensive dispersal, microbiota are assumed to exhibit cosmopolitan distributions with no biogeographical patterns. This assumption has been extrapolated from local spatial scale studies of a few taxonomic groups utilizing morphological approaches. Recent molecularly-based studies, however, suggest something quite opposite. Nematodes are the most abundant metazoans on earth, but their diversity patterns are largely unknown. We conducted a survey of nematode diversity within three vertical strata (soil, litter, and canopy of rainforests at two contrasting latitudes in the North American meridian (temperate: the Olympic National Forest, WA, U.S.A and tropical: La Selva Biological Station, Costa Rica using standardized sampling designs and sample processing protocols. To describe nematode diversity, we applied an ecometagenetic approach using 454 pyrosequencing. We observed that: 1 nematode communities were unique without even a single common species between the two rainforests, 2 nematode communities were unique among habitats in both rainforests, 3 total species richness was 300% more in the tropical than in the temperate rainforest, 4 80% of the species in the temperate rainforest resided in the soil, whereas only 20% in the tropics, 5 more than 90% of identified species were novel. Overall, our data provided no support for cosmopolitanism at both local (habitats and large (rainforests spatial scales. In addition, our data indicated that biogeographical patterns typical of macrobiota also exist for microbiota.

  8. Nematode Spatial and Ecological Patterns from Tropical and Temperate Rainforests

    Science.gov (United States)

    Porazinska, Dorota L.; Giblin-Davis, Robin M.; Powers, Thomas O.; Thomas, W. Kelley

    2012-01-01

    Large scale diversity patterns are well established for terrestrial macrobiota (e.g. plants and vertebrates), but not for microscopic organisms (e.g. nematodes). Due to small size, high abundance, and extensive dispersal, microbiota are assumed to exhibit cosmopolitan distributions with no biogeographical patterns. This assumption has been extrapolated from local spatial scale studies of a few taxonomic groups utilizing morphological approaches. Recent molecularly-based studies, however, suggest something quite opposite. Nematodes are the most abundant metazoans on earth, but their diversity patterns are largely unknown. We conducted a survey of nematode diversity within three vertical strata (soil, litter, and canopy) of rainforests at two contrasting latitudes in the North American meridian (temperate: the Olympic National Forest, WA, U.S.A and tropical: La Selva Biological Station, Costa Rica) using standardized sampling designs and sample processing protocols. To describe nematode diversity, we applied an ecometagenetic approach using 454 pyrosequencing. We observed that: 1) nematode communities were unique without even a single common species between the two rainforests, 2) nematode communities were unique among habitats in both rainforests, 3) total species richness was 300% more in the tropical than in the temperate rainforest, 4) 80% of the species in the temperate rainforest resided in the soil, whereas only 20% in the tropics, 5) more than 90% of identified species were novel. Overall, our data provided no support for cosmopolitanism at both local (habitats) and large (rainforests) spatial scales. In addition, our data indicated that biogeographical patterns typical of macrobiota also exist for microbiota. PMID:22984536

  9. Soils Newsletter. V. 12, no. 2

    International Nuclear Information System (INIS)

    1989-12-01

    This Newsletter includes reports of four research co-ordination meetings: on isotopic studies on nitrogen fixation and nitrogen cycling by blue-green algae and Azolla (final meeting, September 1989, IAEA, Vienna); on isotopic studies on increasing and stabilizing plant productivity in low phosphate and semi-arid and sub-humid soils of the tropics and sub-tropics (first meeting, October 1989, IAEA, Vienna); on the evaluation and calibration of nuclear techniques compared with traditional methods in soil water studies (July 1989, IAEA, Vienna); and on the use of isotopes in studies to improve the yield and nitrogen fixation of the common bean in Latin America (April 1989, Irapuato, Mexico). A new co-ordinated research programme on the use of nuclear and related techniques in the assessment of irrigation schedules of field crops to increase the effective use of water in irrigation projects is announced, and some of the technical co-operation programmes in the Latin America Region are briefly described. 2 tabs

  10. Forty years experience in developing and using rainfall simulators under tropical and Mediterranean conditions

    Science.gov (United States)

    Pla-Sentís, Ildefonso; Nacci, Silvana

    2010-05-01

    Rainfall simulation has been used as a practical tool for evaluating the interaction of falling water drops on the soil surface, to measure both stability of soil aggregates to drop impact and water infiltration rates. In both cases it is tried to simulate the effects of natural rainfall, which usually occurs at very different, variable and erratic rates and intensities. One of the main arguments against the use of rainfall simulators is the difficulty to reproduce the size, final velocity and kinetic energy of the drops in natural rainfall. Since the early 70´s we have been developing and using different kinds of rainfall simulators, both at laboratory and field levels, and under tropical and Mediterranean soil and climate conditions, in flat and sloping lands. They have been mainly used to evaluate the relative effects of different land use and management, including different cropping systems, tillage practices, surface soil conditioning, surface covers, etc. on soil water infiltration, on runoff and on erosion. Our experience is that in any case it is impossible to reproduce the variable size distribution and terminal velocity of raindrops, and the variable changes in intensity of natural storms, under a particular climate condition. In spite of this, with the use of rainfall simulators it is possible to obtain very good information, which if it is properly interpreted in relation to each particular condition (land and crop management, rainfall characteristics, measurement conditions, etc.) may be used as one of the parameters for deducing and modelling soil water balance and soil moisture regime under different land use and management and variable climate conditions. Due to the possibility for a better control of the intensity of simulated rainfall and of the size of water drops, and the possibility to make more repeated measurements under very variable soil and land conditions, both in the laboratory and specially in the field, the better results have been

  11. N2-fixing tropical legume evolution: a contributor to enhanced weathering through the Cenozoic?

    Science.gov (United States)

    Epihov, Dimitar Z; Batterman, Sarah A; Hedin, Lars O; Leake, Jonathan R; Smith, Lisa M; Beerling, David J

    2017-08-16

    Fossil and phylogenetic evidence indicates legume-rich modern tropical forests replaced Late Cretaceous palm-dominated tropical forests across four continents during the early Cenozoic (58-42 Ma). Tropical legume trees can transform ecosystems via their ability to fix dinitrogen (N 2 ) and higher leaf N compared with non-legumes (35-65%), but it is unclear how their evolutionary rise contributed to silicate weathering, the long-term sink for atmospheric carbon dioxide (CO 2 ). Here we hypothesize that the increasing abundance of N 2 -fixing legumes in tropical forests amplified silicate weathering rates by increased input of fixed nitrogen (N) to terrestrial ecosystems via interrelated mechanisms including increasing microbial respiration and soil acidification, and stimulating forest net primary productivity. We suggest the high CO 2 early Cenozoic atmosphere further amplified legume weathering. Evolution of legumes with high weathering rates was probably driven by their high demand for phosphorus and micronutrients required for N 2 -fixation and nodule formation. © 2017 The Author(s).

  12. Feedback of global warming to soil carbon cycling in forest ecosystems

    International Nuclear Information System (INIS)

    Nakane, Kaneyuki

    1993-01-01

    Thus in this study the simulation of soil carbon cycling and dynamics of its storage in several types of mature forests developed from the cool-temperate to the tropics was carried out for quantitatively assessing carbon loss from the soil under several scenarios of global warming, based on the model of soil carbon cycling in forest ecosystems (Nakane et al. 1984, 1987 and Nakane 1992). (J.P.N.)

  13. Clastic sediment flux to tropical Andean lakes: records of glaciation and soil erosion

    Science.gov (United States)

    Rodbell, Donald T.; Seltzer, Geoffrey O.; Mark, Bryan G.; Smith, Jacqueline A.; Abbott, Mark B.

    2008-08-01

    . The interval between 20 and 18 ka was marked by near-Holocene levels of clastic sediment flux, and appears to have been an interval of much reduced ice extent. An abrupt increase in clastic sediment flux 18 ka heralded the onset of an interval of expanded ice cover that lasted until ˜14 ka. Clastic sediment flux declined thereafter to reach the lowest levels of the entire length of record during the early-middle Holocene. A middle Holocene climatic transition is apparent in nearly all records and likely reflects the onset of Neoglaciation and/or enhanced soil erosion in the tropical Andes.

  14. HYSOGs250m, global gridded hydrologic soil groups for curve-number-based runoff modeling.

    Science.gov (United States)

    Ross, C Wade; Prihodko, Lara; Anchang, Julius; Kumar, Sanath; Ji, Wenjie; Hanan, Niall P

    2018-05-15

    Hydrologic soil groups (HSGs) are a fundamental component of the USDA curve-number (CN) method for estimation of rainfall runoff; yet these data are not readily available in a format or spatial-resolution suitable for regional- and global-scale modeling applications. We developed a globally consistent, gridded dataset defining HSGs from soil texture, bedrock depth, and groundwater. The resulting data product-HYSOGs250m-represents runoff potential at 250 m spatial resolution. Our analysis indicates that the global distribution of soil is dominated by moderately high runoff potential, followed by moderately low, high, and low runoff potential. Low runoff potential, sandy soils are found primarily in parts of the Sahara and Arabian Deserts. High runoff potential soils occur predominantly within tropical and sub-tropical regions. No clear pattern could be discerned for moderately low runoff potential soils, as they occur in arid and humid environments and at both high and low elevations. Potential applications of this data include CN-based runoff modeling, flood risk assessment, and as a covariate for biogeographical analysis of vegetation distributions.

  15. Understanding cassava yield response to soil and fertilizer nutrient supply in West Africa

    NARCIS (Netherlands)

    Ezui, K.S.; Franke, A.C.; Ahiabor, B.D.K.; Tetteh, F.M.; Sogbedji, J.; Janssen, B.H.; Mando, A.; Giller, K.E.

    2017-01-01

    Background and aims: Enhanced understanding of plant and nutrient interactions is key to improving yields. We adapted the model for QUantitative Evaluation of the Fertility of Tropical Soils (QUEFTS) to assess cassava yield response to soil and fertilizer nutrients in West Africa. Methods: Data

  16. Gaseous Nitrogen Losses from Tropical Savanna Soils of Northern Australia: Dynamics, Controls and Magnitude of N2O, NO, and N2 emissions

    Science.gov (United States)

    Werner, C.; Hickler, T.; Hutley, L. B.; Butterbach-Bahl, K.

    2014-12-01

    Tropical savanna covers a large fraction of the global land area and thus may have a substantial effect on the global soil-atmosphere exchange of nitrogen. The pronounced seasonality of hygric conditions in this ecosystem affects strongly microbial process rates in the soil. As these microbial processes control the uptake, production, and release of nitrogen compounds, it is thought that this seasonality finally leads to strong temporal dynamics and varying magnitudes of gaseous losses to the atmosphere. However, given their areal extent and in contrast to other ecosystems, still few in-situ or laboratory studies exist that assess the soil-atmosphere exchange of nitrogen. We present laboratory incubation results from intact soil cores obtained from a natural savanna site in Northern Australia, where N2O, NO, and N2 emissions under controlled environmental conditions were investigated. Furthermore, in-situ measurements of high temporal resolution at this site recorded with automated static and dynamic chamber systems are discussed (N2O, NO). This data is then used to assess the performance of a process-based biogeochemical model (LandscapeDNDC), and the potential magnitude and dynamics of components of the site-scale nitrogen cycle where no measurements exist (biological nitrogen fixation and nitrate leaching). Our incubation results show that severe nutrient limitation of the soil only allows for very low N2O emissions (0.12 kg N ha-1 yr-1) and even a periodic N2O uptake. Annual NO emissions were estimated at 0.68 kg N ha-1 yr-1, while the release of inert nitrogen (N2) was estimated at 6.75 kg N ha-1 yr-1 (data excl. contribution by pulse emissions). We observed only minor N2O pulse emissions after watering the soil cores and initial rain events of the dry to wet season transition in-situ, but short-lived NO pulse emissions were substantial. Interestingly, some cores exhibited a very different N2O emission potential, indicating a substantial spatial variability of

  17. Different hydraulic traits of woody plants from tropical forests with contrasting soil water availability.

    Science.gov (United States)

    Zhu, Shi-Dan; Chen, Ya-Jun; Fu, Pei-Li; Cao, Kun-Fang

    2017-11-01

    In southwestern China, tropical karst forests (KF) and non-karst rain forests (NKF) have different species composition and forest structure owing to contrasting soil water availability, but with a few species that occur in both forests. Plant hydraulic traits are important for understanding the species' distribution patterns in these two forest types, but related studies are rare. In this study, we investigated hydraulic conductivity, vulnerability to drought-induced cavitation and wood anatomy of 23 abundant and typical woody species from a KF and a neighboring NKF, as well as two Bauhinia liana species common to both forests. We found that the KF species tended to have higher sapwood density, smaller vessel diameter, lower specific hydraulic conductivity (ks) and leaf to sapwood area ratio, and were more resistant to cavitation than NKF species. Across the 23 species distinctly occurring in either KF or NKF, there was a significant tradeoff between hydraulic efficiency and safety, which might be an underlying mechanism for distributions of these species across the two forests. Interestingly, by possessing rather large and long vessels, the two Bauhinia liana species had extremely high ks but were also high resistance to cavitation (escaping hydraulic tradeoff). This might be partially due to their distinctly dimorphic vessels, but contribute to their wide occurrence in both forests. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  18. Nitrogen, phosphorus, and cation use efficiency in stands of regenerating tropical dry forest.

    Science.gov (United States)

    Waring, Bonnie G; Becknell, Justin M; Powers, Jennifer S

    2015-07-01

    Plants on infertile soils exhibit physiological and morphological traits that support conservative internal nutrient cycling. However, potential trade-offs among use efficiencies for N, P, and cations are not well explored in species-rich habitats where multiple elements may limit plant production. We examined uptake efficiency and use efficiency of N, P, K, Ca, Mg, Al, and Na in plots of regenerating tropical dry forests spanning a gradient of soil fertility. Our aim was to determine whether plant responses to multiple elements are correlated, or whether there are trade-offs among exploitation strategies across stands varying in community composition, soil quality, and successional stage. For all elements, both uptake efficiency and use efficiency decreased as availability of the corresponding element increased. Plant responses to N, Na, and Al were uncoupled from uptake and use efficiencies for P and essential base cations, which were tightly correlated. N and P use efficiencies were associated with shifts in plant species composition along the soil fertility gradient, and there was also a trend towards increasing N use efficiency with stand age. N uptake efficiency was positively correlated with the abundance of tree species that associate with ectomycorrhizal fungi. Taken together, our results suggest that successional processes and local species composition interact to regulate plant responses to availability of multiple resources. Successional tropical dry forests appear to employ different strategies to maximize response to N vs. P and K.

  19. Dependence of Soil Respiration on Soil Temperature and Soil Moisture in Successional Forests in Southern China

    Institute of Scientific and Technical Information of China (English)

    Xu-Li Tang; Guo-Yi Zhou; Shu-Guang Liu; De-Qiang Zhang; Shi-Zhong Liu; Jiong Li; Cun-Yu Zhou

    2006-01-01

    The spatial and temporal variations in soil respiration and its relationship with biophysical factors in forests near the Tropic of Cancer remain highly uncertain. To contribute towards an improvement of actual estimates, soil respiration rates, soil temperature, and soil moisture were measured in three successional subtropical forests at the Dinghushan Nature Reserve (DNR) in southern China from March 2003 to February 2005. The overall objective of the present study was to analyze the temporal variations of soil respiration and its biophysical dependence in these forests. The relationships between biophysical factors and soil respiration rates were compared in successional forests to test the hypothesis that these forests responded similarly to biophysical factors. The seasonality of soil respiration coincided with the seasonal climate pattern, with high respiration rates in the hot humid season (April-September) and with low rates in the cool dry season (October-March). Soil respiration measured at these forests showed a clear increasing trend with the progressive succession. Annual mean (± SD) soil respiration rate in the DNR forests was (9.0±4.6) Mg CO2-C/hm2 per year, ranging from (6.1±3.2) Mg CO2-C/hm2 per year in early successional forests to (10.7±4.9) Mg CO2-C/hm2 per year in advanced successional forests. Soil respiration was correlated with both soil temperature and moisture. The T/M model, where the two biophysical variables are driving factors, accounted for 74%-82% of soil respiration variation in DNR forests. Temperature sensitivity decreased along progressive succession stages, suggesting that advanced-successional forests have a good ability to adjust to temperature. In contrast, moisture increased with progressive succession processes. This increase is caused, in part, by abundant respirators in advanced-successional forest, where more soil moisture is needed to maintain their activities.

  20. Dependence of soil respiration on soil temperature and soil moisture in successional forests in Southern China

    Science.gov (United States)

    Tang, X.-L.; Zhou, G.-Y.; Liu, S.-G.; Zhang, D.-Q.; Liu, S.-Z.; Li, Ji; Zhou, C.-Y.

    2006-01-01

    The spatial and temporal variations in soil respiration and its relationship with biophysical factors in forests near the Tropic of Cancer remain highly uncertain. To contribute towards an improvement of actual estimates, soil respiration rates, soil temperature, and soil moisture were measured in three successional subtropical forests at the Dinghushan Nature Reserve (DNR) in southern China from March 2003 to February 2005. The overall objective of the present study was to analyze the temporal variations of soil respiration and its biophysical dependence in these forests. The relationships between biophysical factors and soil respiration rates were compared in successional forests to test the hypothesis that these forests responded similarly to biophysical factors. The seasonality of soil respiration coincided with the seasonal climate pattern, with high respiration rates in the hot humid season (April-September) and with low rates in the cool dry season (October-March). Soil respiration measured at these forests showed a clear increasing trend with the progressive succession. Annual mean (±SD) soil respiration rate in the DNR forests was (9.0 ± 4.6) Mg CO2-C/hm2per year, ranging from (6.1 ± 3.2) Mg CO2-C/hm2per year in early successional forests to (10.7 ± 4.9) Mg CO2-C/hm2 per year in advanced successional forests. Soil respiration was correlated with both soil temperature and moisture. The T/M model, where the two biophysical variables are driving factors, accounted for 74%-82% of soil respiration variation in DNR forests. Temperature sensitivity decreased along progressive succession stages, suggesting that advanced-successional forests have a good ability to adjust to temperature. In contrast, moisture increased with progressive succession processes. This increase is caused, in part, by abundant respirators in advanced-successional forest, where more soil moisture is needed to maintain their activities.