WorldWideScience

Sample records for tropical secondary forests

  1. The potential for species conservation in tropical secondary forests

    Science.gov (United States)

    Robin L. Chazdon; Carlos A. Peres; Daisy Dent; Douglas Sheil; Ariel E. Lugo; David Lamb; Nigel E. Stork; Scott E. Miller

    2009-01-01

    In the wake of widespread loss of old-growth forests throughout the tropics, secondary forests will likely play a growing role in the conservation of forest biodiversity. We considered a complex hierarchy of factors that interact in space and time to determine the conservation potential of tropical secondary forests. Beyond the characteristics of local forest patches,...

  2. Humus forms in two secondary semi-evergreen tropical forests

    OpenAIRE

    Loranger, Gladys; Ponge, Jean-François; Lavelle, Patrick

    2003-01-01

    International audience; The dynamics and function of humus forms in tropical forests are still poorly understood. Humus profiles in two secondary semi-evergreen woodlands in Guadeloupe (French West Indies) were analysed micromorphologically. The humus forms are described under the canopy of five dominant tree species at two sites: under Pisonia subcordata and Bursera simaruba in a secondary forest on a Leptosol (Rendzina), and under Swietenia macrophylla, Tabebuia heterophylla and B. simaruba...

  3. Nutrient limitation in tropical secondary forests following different management practices.

    Science.gov (United States)

    Nagy, R Chelsea; Rastetter, Edward B; Neill, Christopher; Porder, Stephen

    2017-04-01

    Secondary forests now make up more than one-half of all tropical forests, and constraints on their biomass accumulation will influence the strength of the terrestrial carbon (C) sink in the coming decades. However the variance in secondary tropical forest biomass for a given stand age and climate is high and our understanding of why is limited. We constructed a model of terrestrial C, nitrogen (N), and phosphorus (P) cycling to examine the influence of disturbance and management practices on nutrient limitation and biomass recovery in secondary tropical forests. The model predicted that N limited the rate of forest recovery in the first few decades following harvest, but that this limitation switched to P approximately 30-40 yr after abandonment, consistent with field data on N and P cycling from secondary tropical forest chronosequences. Simulated biomass recovery agreed well with field data of biomass accumulation following harvest (R 2  = 0.80). Model results showed that if all biomass remained on site following a severe disturbance such as blowdown, regrowth approached pre-disturbance biomass in 80-90 yr, and recovery was faster following smaller disturbances such as selective logging. Field data from regrowth on abandoned pastures were consistent with simulated losses of nutrients in soil organic matter, particularly P. Following any forest disturbance that involved the removal of nutrients (i.e., except blowdown), forest regrowth produced reduced biomass relative to the initial state as a result of nutrient loss through harvest, leaching and/or sequestration by secondary minerals. Differences in nutrient availability accounted for 49-94% of the variance in secondary forest biomass C at a given stand age. Management lessons from this study are the importance of strategies that help retain nutrients on site, recognizing the role of coarse woody debris in immobilization and subsequent release of nutrients, and the potential for nutrient additions to enhance

  4. Sprinting, climbing and persisting: Light interception and carbon gain in a secondary tropical forest succession

    NARCIS (Netherlands)

    Selaya Garvizú, N.G.

    2007-01-01

    In the tropics human induced forest disturbance, i.e. timber extraction or forest slash and burn for agriculture is leading to an increase of secondary forest area. Therefore, people in the tropics, especially the poor, will rely on secondary forests for good and services. Pioneer trees (short-and

  5. Tropical rain-forest matrix quality affects bat assemblage structure in secondary forest patches

    NARCIS (Netherlands)

    Vleut, I.; Levy-Tacher, I.; Galindo-Gonzalez, J.; Boer, de W.F.; Ramirez-Marcial, N.

    2012-01-01

    We studied Phyllostomidae bat assemblage structure in patches of secondary forest dominated by the pioneer tree Ochroma pyramidale, largely (.85%) or partially (,35%) surrounded by a matrix of tropical rain forest, to test 3 hypotheses: the highest bat diversity and richness is observed in the

  6. Resilience of tropical rain forests: tree community reassembly in secondary forests.

    Science.gov (United States)

    Norden, Natalia; Chazdon, Robin L; Chao, Anne; Jiang, Yi-Huei; Vílchez-Alvarado, Braulio

    2009-05-01

    Understanding the recovery dynamics of ecosystems presents a major challenge in the human-impacted tropics. We tested whether secondary forests follow equilibrium or non-equilibrium dynamics by evaluating community reassembly over time, across different successional stages, and among multiple life stages. Based on long-term and static data from six 1-ha plots in NE Costa Rica, we show that secondary forests are undergoing reassembly of canopy tree and palm species composition through the successful recruitment of seedlings, saplings, and young trees of mature forest species. Such patterns were observed over time within sites and across successional stages. Floristic reassembly in secondary forests showed a clear convergence with mature forest community composition, supporting an equilibrium model. This resilience stems from three key factors co-occurring locally: high abundance of generalist species in the regional flora, high levels of seed dispersal, and local presence of old-growth forest remnants.

  7. Modeling seasonal surface temperature variations in secondary tropical dry forests

    Science.gov (United States)

    Cao, Sen; Sanchez-Azofeifa, Arturo

    2017-10-01

    Secondary tropical dry forests (TDFs) provide important ecosystem services such as carbon sequestration, biodiversity conservation, and nutrient cycle regulation. However, their biogeophysical processes at the canopy-atmosphere interface remain unknown, limiting our understanding of how this endangered ecosystem influences, and responds to the ongoing global warming. To facilitate future development of conservation policies, this study characterized the seasonal land surface temperature (LST) behavior of three successional stages (early, intermediate, and late) of a TDF, at the Santa Rosa National Park (SRNP), Costa Rica. A total of 38 Landsat-8 Thermal Infrared Sensor (TIRS) data and the Surface Reflectance (SR) product were utilized to model LST time series from July 2013 to July 2016 using a radiative transfer equation (RTE) algorithm. We further related the LST time series to seven vegetation indices which reflect different properties of TDFs, and soil moisture data obtained from a Wireless Sensor Network (WSN). Results showed that the LST in the dry season was 15-20 K higher than in the wet season at SRNP. We found that the early successional stages were about 6-8 K warmer than the intermediate successional stages and were 9-10 K warmer than the late successional stages in the middle of the dry season; meanwhile, a minimum LST difference (0-1 K) was observed at the end of the wet season. Leaf phenology and canopy architecture explained most LST variations in both dry and wet seasons. However, our analysis revealed that it is precipitation that ultimately determines the LST variations through both biogeochemical (leaf phenology) and biogeophysical processes (evapotranspiration) of the plants. Results of this study could help physiological modeling studies in secondary TDFs.

  8. Comparing soil organic carbon dynamics in plantation and secondary forest in wet tropics in Puerto Rico

    Science.gov (United States)

    LI YIQING; MING XU; ZOU XIAOMING; PEIJUN SHI§; YAOQI ZHANG

    2005-01-01

    We compared the soil carbon dynamics between a pine plantation and a secondary forest, both of which originated from the same farmland abandoned in 1976 with the same cropping history and soil conditions, in the wet tropics in Puerto Rico from July 1996 to June 1997. We found that the secondary forest accumulated the heavy-fraction organic carbon (HF-OC) measured by...

  9. Modeling carbon stocks in a secondary tropical dry forest in the Yucatan Peninsula, Mexico

    Science.gov (United States)

    Zhaohua Dai; Richard A. Birdsey; Kristofer D. Johnson; Juan Manuel Dupuy; Jose Luis Hernandez-Stefanoni; Karen. Richardson

    2014-01-01

    The carbon balance of secondary dry tropical forests of Mexico’s Yucatan Peninsula is sensitive to human and natural disturbances and climate change. The spatially explicit process model Forest-DeNitrification-DeComposition (DNDC) was used to estimate forest carbon dynamics in this region, including the effects of disturbance on carbon stocks. Model evaluation using...

  10. The landscape ecology of secondary tropical forest in montane Costa Rica

    Science.gov (United States)

    Helmer, Eileen Hoey

    Previous difficulties mapping tropical forest successional stage with satellite imagery may be one of the reasons why little is known about what socioeconomic and biophysical factors control tropical secondary forest pattern over landscapes. Additional remote sensing challenges occur in regions with steep topography, because the spectral responses of land covers vary with sun illumination angle and type of ecological zone. Using reference data from field observations and aerial photos, I used multi-date, Landsat Thematic Mapper (TM) imagery to develop a classification scheme that identified secondary forests, agricultural lands and old-growth forests using the TM Tasseled Cap indices. The montane tropical study area was located in the Talamanca Mountain Range in southern Costa Rica. The Kappa accuracy for this classification was 83%. I also examined temporal patterns of spectral responses for various land covers and whether using digital data from multiple decades improved classification accuracy. Secondly, I characterized landscape pattern of the three main land-use/land-cover (LULC) classes of agriculture, secondary forest and old-growth forest. I also developed statistical models to identify landscape level controls on secondary forest spatial patterns. A matrix of agriculture dominated the landscape at lower elevations, while old growth dominated higher elevations. Logistic models of the relationships between LULC and biophysical and socioeconomic explanatory variables included landscape variables developed from the LULC map. Model results revealed that the probability of secondary forest occurrence, relative to agriculture, increased at higher elevation, on steeper slopes, further from roads, where population density was lower, and in forest reserve as opposed to unprotected lands. The directions of these relationships were the same as those that predicted old-growth forest relative to agriculture. All else equal, the theory of rent or utility maximization

  11. Economic Value of the Carbon Sink Services of Tropical Secondary Forests and Its Management Implications

    International Nuclear Information System (INIS)

    Ramirez, O.A.; Carpio, C.E.; Ortiz, R.; Finnegan, B.

    2002-01-01

    This paper explores the economic feasibility of secondary forest regeneration and conservation as an alternative in the campaign addressing the problem of global warming. Detailed measurements of tropical secondary forests over time, in different ecological zones of Costa Rica, are used to evaluate carbon storage models. The paper addresses key issues in the international discussion about cross- and within-country compensation for carbon storage services and illustrates a method to compute/predict their economic value over time under a variety of scenarios. The procedure is applicable to other developing countries where secondary forest growth is increasingly important

  12. Loss of functional diversity of ant assemblages in secondary tropical forests.

    Science.gov (United States)

    Bihn, Jochen H; Gebauer, Gerhard; Brandl, Roland

    2010-03-01

    Secondary forests and plantations increasingly dominate the tropical wooded landscape in place of primary forests. The expected reduction of biodiversity and its impact on ecological functions provided by these secondary forests are of major concern to society and ecologists. The potential effect of biodiversity loss on ecosystem functioning depends largely on the associated loss in the functional diversity of animal and plant assemblages, i.e., the degree of functional redundancy among species. However, the relationship between species and functional diversity is still poorly documented for most ecosystems. Here, we analyze how changes in the species diversity of ground-foraging ant assemblages translate into changes of functional diversity along a successional gradient of secondary forests in the Atlantic Forest of Brazil. Our analysis uses continuous measures of functional diversity and is based on four functional traits related to resource use of ants: body size, relative eye size, relative leg length, and trophic position. We find a strong relationship between species and functional diversity, independent of the functional traits used, with no evidence for saturation in this relationship. Recovery of species richness and diversity of ant assemblages in tropical secondary forests was accompanied by a proportional increase of functional richness and diversity of assemblages. Moreover, our results indicate that the increase in functional diversity along the successional gradient of secondary forests is primarily driven by rare species, which are functionally unique. The observed loss of both species and functional diversity in secondary forests offers no reason to believe that the ecological functions provided by secondary forests are buffered against species loss through functional redundancy.

  13. Tropical secondary forests regenerating after shifting cultivation in the Philippines uplands are important carbon sinks.

    Science.gov (United States)

    Mukul, Sharif A; Herbohn, John; Firn, Jennifer

    2016-03-08

    In the tropics, shifting cultivation has long been attributed to large scale forest degradation, and remains a major source of uncertainty in forest carbon accounting. In the Philippines, shifting cultivation, locally known as kaingin, is a major land-use in upland areas. We measured the distribution and recovery of aboveground biomass carbon along a fallow gradient in post-kaingin secondary forests in an upland area in the Philippines. We found significantly higher carbon in the aboveground total biomass and living woody biomass in old-growth forest, while coarse dead wood biomass carbon was higher in the new fallow sites. For young through to the oldest fallow secondary forests, there was a progressive recovery of biomass carbon evident. Multivariate analysis indicates patch size as an influential factor in explaining the variation in biomass carbon recovery in secondary forests after shifting cultivation. Our study indicates secondary forests after shifting cultivation are substantial carbon sinks and that this capacity to store carbon increases with abandonment age. Large trees contribute most to aboveground biomass. A better understanding of the relative contribution of different biomass sources in aboveground total forest biomass, however, is necessary to fully capture the value of such landscapes from forest management, restoration and conservation perspectives.

  14. Multi-temporal lidar test of chronosequence assumptions in secondary tropical forest

    Science.gov (United States)

    Becknell, J.; Porder, S.; Kellner, J. R.; Chazdon, R.

    2016-12-01

    Secondary forests make up more than half of all tropical forests and are a globally significant carbon sink. However, nearly everything known about secondary forest regeneration comes from chronosequence studies that substitute space for time to approximate long-term secondary succession. Here we examine the efficacy of chronosequence predictions over 11 years of forest regrowth using two lidar datasets collected over the La Selva Biological Station in 1998 and 2009, each covering 381 ha of secondary forest and 803 ha of mature forest. We use these data to ask: 1) Do lidar waveforms from different age classes predict forest structure changes from repeated measurements at the same location? 2) Do simulated chronosequences predict the landscape mean biomass change? 3) How do differences in plot size and number affect the accuracy and precision of chronosequence based biomass recovery estimates? Lidar waveforms indicate that tree height and forest structure was similar between 1998 and 2009 for any given age class. For example, an 11-20 year old forest in 1998 had similar lidar returns to an 11-20 year old forest in 2009. Simulated chronosequences predict the landscape mean biomass change, but the accuracy of predictions depends on the size and number of plots used in the chronosequence. In forest with 0-10 years in 1998, 86 to 99% of 1000 simulated chronosequences predict the landscape mean biomass change within 20 Mg/ha depending on the plot size and number. However, predictions in forests with 11-20 years in 1998 are less accurate with 60-71% of predictions within 20 Mg/ha of the landscape mean. With area kept equal, chronosequences with many small plots, rather than fewer larger plots, have a higher probability of accurately predicting the landscape mean biomass change over the 11 year period. Overall, our results suggest both deterministic and stochastic controls on biomass accumulation in these secondary forests.

  15. Tropical secondary forest management influences frugivorous bat composition, abundance and fruit consumption in Chiapas, Mexico

    NARCIS (Netherlands)

    Vleut, I.; Levy-Tacher, S.I.; Boer, de W.F.; Galindo-Gonzalez, J.

    2013-01-01

    Most studies on frugivorous bat assemblages in secondary forests have concentrated on differences among successional stages, and have disregarded the effect of forest management. Secondary forest management practices alter the vegetation structure and fruit availability, important factors associated

  16. Wet-Season Throughfall in Primary and Secondary Tropical Montane Cloud Forests, Monteverde, Costa Rica

    Science.gov (United States)

    Guswa, A. J.; Rhodes, A. L.

    2004-12-01

    From June 11 through July 23, 2004 throughfall was recorded four times per week at two sites in Monteverde, Costa Rica on the leeward side of the Cordillera de Tilaran. Each site comprised a regular grid of collectors that were not moved during the collection period and a set of roving collectors that were moved weekly. At one site, twenty-two collectors were spread over 144 m2 in a primary tropical montane cloud forest. At the second site, thirty-two collectors were spaced over 192 m2 in a secondary forest. Summed for the period of collection, open rainfall is 302 mm, mean throughfall at the primary forest site is 240 mm (80% of gross precipitation), and mean throughfall at the secondary forest site is 191 mm (63% of gross precipitation). Standard deviations of total throughfall among the regular grids of collectors are 114 mm for the primary forest (CV = 48%) and 57 mm for the secondary forest (CV = 30%). Histograms of throughfall at each site show positively skewed distributions with a few collectors receiving high volumes of water. Collectors that received high volumes of throughfall for one event, tended to receive high volumes for all events. This persistence indicates canopy and vegetation control of the spatial distribution of throughfall. Throughfall depths show weak correlation to percent canopy and understory cover, distance to nearest tree bole, and diameter of nearest tree, however. Variograms constructed for weekly throughfall totals indicate very short correlation lengths. The short correlation scale and lack of correlation between throughfall and tree location indicates that a random placement of gauges is appropriate for estimating throughfall in these environments.

  17. Biodiversity and functional regeneration during secondary succession in a tropical dry forest: from microorganisms to mammals

    Science.gov (United States)

    do Espírito Santo, M. M.; Neves, F. S.; Valério, H. M.; Leite, L. O.; Falcão, L. A.; Borges, M.; Beirão, M.; Reis, R., Jr.; Berbara, R.; Nunes, Y. R.; Silva, A.; Silva, L. F.; Siqueira, P. R.

    2015-12-01

    In this study, we aimed to determine the changes on soil traits, forest structure and species richness and composition of multiple groups of organisms along secondary succession in a tropical dry forest (TDF) in southeastern Brazil. We defined three successional stages based in forest vertical and horizontal structure and age: early (18-25 years), intermediate (50-60 years) and late (no records of clearing). Five plots of 50 x 20 m were established per stage, and the following groups were sampled using specific techniques: rhizobacteria, mycorrhiza, trees and lianas, butterflies, ants, dung beetles, mosquitoes (Culicidae), birds and bats. We also determined soil chemical and physical characteristics and forest structure (tree height, density and basal area). Soil fertility increased along the successional gradient, and the same pattern was observed for all the forest structure variables. However, species richness and composition showed mixed results depending on the organism group. Three groups usually considered as good bioindicators of habitat quality did not differ in species richness and composition between stages: butterflies, ants and dung beetles. On the other hand, rizhobacteria and mycorrhiza differed both in species richness and composition between stages and may be more sensitive to changes in environmental conditions in TDFs. The other five groups differed either in species richness or composition between one or two pairs of successional stages. Although changes in abiotic conditions and forest structure match the predictions of classical successional models, the response of each group of organism is idiosyncratic in terms of diversity and ecological function, as a consequence of specific resource requirements and life-history traits. In general, diversity increased and functional groups changed mostly from early to intermediate-late stages, strengthening the importance of secondary forests to the maintenance of ecosystem integrity of TDFs.

  18. Ecological and evolutionary variation in community nitrogen use traits during tropical dry forest secondary succession.

    Science.gov (United States)

    Bhaskar, Radika; Porder, Stephen; Balvanera, Patricia; Edwards, Erika J

    2016-05-01

    We assessed the role of ecological and evolutionary processes in driving variation in leaf and litter traits related to nitrogen (N) use among tropical dry forest trees in old-growth and secondary stands in western Mexico. Our expectation was that legumes (Fabaceae), a dominant component of the regional flora, would have consistently high leaf N and therefore structure phylogenetic variation in N-related traits. We also expected ecological selection during succession for differences in nitrogen use strategies, and corresponding shifts in legume abundance. We used phylogenetic analyses to test for trait conservatism in foliar and litter N, C:N, and N resorption. We also evaluated differences in N-related traits between old-growth and secondary forests. We found a weak phylogenetic signal for all traits, partly explained by wide variation within legumes. Across taxa we observed a positive relationship between leaf and litter N, but no shift in resorption strategies along the successional gradient. Despite species turnover, N-resorption, and N-related traits showed little change across succession, suggesting that, at least for these traits, secondary forests rapidly recover ecosystem function. Collectively, our results also suggest that legumes should not be considered a single functional group from a biogeochemical perspective.

  19. Tropical secondary forest management influences frugivorous bat composition, abundance and fruit consumption in Chiapas, Mexico.

    Science.gov (United States)

    Vleut, Ivar; Levy-Tacher, Samuel Israel; de Boer, Willem Frederik; Galindo-González, Jorge; Vazquez, Luis-Bernardo

    2013-01-01

    Most studies on frugivorous bat assemblages in secondary forests have concentrated on differences among successional stages, and have disregarded the effect of forest management. Secondary forest management practices alter the vegetation structure and fruit availability, important factors associated with differences in frugivorous bat assemblage structure, and fruit consumption and can therefore modify forest succession. Our objective was to elucidate factors (forest structural variables and fruit availability) determining bat diversity, abundance, composition and species-specific abundance of bats in (i) secondary forests managed by Lacandon farmers dominated by Ochroma pyramidale, in (ii) secondary forests without management, and in (iii) mature rain forests in Chiapas, Southern Mexico. Frugivorous bat species diversity (Shannon H') was similar between forest types. However, bat abundance was highest in rain forest and O. pyramidale forests. Bat species composition was different among forest types with more Carollia sowelli and Sturnira lilium captures in O. pyramidale forests. Overall, bat fruit consumption was dominated by early-successional shrubs, highest late-successional fruit consumption was found in rain forests and more bats consumed early-successional shrub fruits in O. pyramidale forests. Ochroma pyramidale forests presented a higher canopy openness, tree height, lower tree density and diversity of fruit than secondary forests. Tree density and canopy openness were negatively correlated with bat species diversity and bat abundance, but bat abundance increased with fruit abundance and tree height. Hence, secondary forest management alters forests' structural characteristics and resource availability, and shapes the frugivorous bat community structure, and thereby the fruit consumption by bats.

  20. Tropical Secondary Forest Management Influences Frugivorous Bat Composition, Abundance and Fruit Consumption in Chiapas, Mexico

    Science.gov (United States)

    Vleut, Ivar; Levy-Tacher, Samuel Israel; de Boer, Willem Frederik; Galindo-González, Jorge; Vazquez, Luis-Bernardo

    2013-01-01

    Most studies on frugivorous bat assemblages in secondary forests have concentrated on differences among successional stages, and have disregarded the effect of forest management. Secondary forest management practices alter the vegetation structure and fruit availability, important factors associated with differences in frugivorous bat assemblage structure, and fruit consumption and can therefore modify forest succession. Our objective was to elucidate factors (forest structural variables and fruit availability) determining bat diversity, abundance, composition and species-specific abundance of bats in (i) secondary forests managed by Lacandon farmers dominated by Ochroma pyramidale, in (ii) secondary forests without management, and in (iii) mature rain forests in Chiapas, Southern Mexico. Frugivorous bat species diversity (Shannon H’) was similar between forest types. However, bat abundance was highest in rain forest and O. pyramidale forests. Bat species composition was different among forest types with more Carollia sowelli and Sturnira lilium captures in O. pyramidale forests. Overall, bat fruit consumption was dominated by early-successional shrubs, highest late-successional fruit consumption was found in rain forests and more bats consumed early-successional shrub fruits in O. pyramidale forests. Ochroma pyramidale forests presented a higher canopy openness, tree height, lower tree density and diversity of fruit than secondary forests. Tree density and canopy openness were negatively correlated with bat species diversity and bat abundance, but bat abundance increased with fruit abundance and tree height. Hence, secondary forest management alters forests’ structural characteristics and resource availability, and shapes the frugivorous bat community structure, and thereby the fruit consumption by bats. PMID:24147029

  1. Distribution of bioluminescent fungi across old-growth and secondary tropical rain forest in Costa Rica.

    Science.gov (United States)

    Seas-Carvajal, Carolina; Avalos, Gerardo

    2013-06-01

    Most research on bioluminescent fungi is concentrated on their taxonomic relationships, while the basics of their natural history and ecological relationships are poorly understood. In this study, we compared the distribution of bioluminescent fungi between old-growth and secondary forest as related to four different soil types at the tropical rainforest of La Selva Biological Station in Costa Rica. The study was conducted during the wet season of 2009. Bioluminescent fungi were sought following eight different transects distributed evenly in old-growth and secondary forests across four different soil types, covering an area of 9 420m2. We found fungi in four different substrates: litter, fallen branches, dead trunks, and roots, for a total of 61 samples. Correspondence analysis showed that the occurrence of fungi and soil types were related (inertia = 0.21, p = 0.071). We found a significant relationship between the presence of fungi and the distribution of soil types (X2 = 18.89, df = 9, p = 0.026). We found only three samples with fruiting bodies, two of which had Mycena and the other had one fungus of the order Xylariales (possibly Hypoxylon sp., Kretzschmariella sp., Xylaria sp.). Future work will concentrate on exploring other aspects of their ecology, such as their dispersal and substrate preference. This information will facilitate field identification and will foster more research on the distribution, seasonality, reproductive phenology and ecological requirements of this group of Fungi.

  2. Distribution of bioluminescent fungi across old-growth and secondary tropical rain forest in Costa Rica

    Directory of Open Access Journals (Sweden)

    Carolina Seas-Carvajal

    2013-06-01

    Full Text Available Most research on bioluminescent fungi is concentrated on their taxonomic relationships, while the basics of their natural history and ecological relationships are poorly understood. In this study, we compared the distribution of bioluminescent fungi between old-growth and secondary forest as related to four different soil types at the tropical rainforest of La Selva Biological Station in Costa Rica. The study was conducted during the wet season of 2009. Bioluminescent fungi were sought following eight different transects distributed evenly in old-growth and secondary forests across four different soil types, covering an area of 9 420m². We found fungi in four different substrates: litter, fallen branches, dead trunks, and roots, for a total of 61 samples. Correspondence analysis showed that the occurrence of fungi and soil types were related (inertia=0.21, p=0.071. We found a significant relationship between the presence of fungi and the distribution of soil types (X²=18.89, df=9, p=0.026. We found only three samples with fruiting bodies, two of which had Mycena and the other had one fungus of the order Xylariales (possibly Hypoxylon sp., Kretzschmariella sp., Xylaria sp.. Future work will concentrate on exploring other aspects of their ecology, such as their dispersal and substrate preference. This information will facilitate field identification and will foster more research on the distribution, seasonality, reproductive phenology and ecological requirements of this group of Fungi.

  3. Key role of symbiotic dinitrogen fixation in tropical forest secondary succession

    Science.gov (United States)

    Batterman, Sarah A.; Hedin, Lars O.; van Breugel, Michiel; Ransijn, Johannes; Craven, Dylan J.; Hall, Jefferson S.

    2013-10-01

    Forests contribute a significant portion of the land carbon sink, but their ability to sequester CO2 may be constrained by nitrogen, a major plant-limiting nutrient. Many tropical forests possess tree species capable of fixing atmospheric dinitrogen (N2), but it is unclear whether this functional group can supply the nitrogen needed as forests recover from disturbance or previous land use, or expand in response to rising CO2 (refs 6, 8). Here we identify a powerful feedback mechanism in which N2 fixation can overcome ecosystem-scale deficiencies in nitrogen that emerge during periods of rapid biomass accumulation in tropical forests. Over a 300-year chronosequence in Panama, N2-fixing tree species accumulated carbon up to nine times faster per individual than their non-fixing neighbours (greatest difference in youngest forests), and showed species-specific differences in the amount and timing of fixation. As a result of fast growth and high fixation, fixers provided a large fraction of the nitrogen needed to support net forest growth (50,000kg carbon per hectare) in the first 12years. A key element of ecosystem functional diversity was ensured by the presence of different N2-fixing tree species across the entire forest age sequence. These findings show that symbiotic N2 fixation can have a central role in nitrogen cycling during tropical forest stand development, with potentially important implications for the ability of tropical forests to sequester CO2.

  4. Tropical secondary forest management influences frugivorous bat composition, abundance and fruit consumption in Chiapas, Mexico.

    Directory of Open Access Journals (Sweden)

    Ivar Vleut

    Full Text Available Most studies on frugivorous bat assemblages in secondary forests have concentrated on differences among successional stages, and have disregarded the effect of forest management. Secondary forest management practices alter the vegetation structure and fruit availability, important factors associated with differences in frugivorous bat assemblage structure, and fruit consumption and can therefore modify forest succession. Our objective was to elucidate factors (forest structural variables and fruit availability determining bat diversity, abundance, composition and species-specific abundance of bats in (i secondary forests managed by Lacandon farmers dominated by Ochroma pyramidale, in (ii secondary forests without management, and in (iii mature rain forests in Chiapas, Southern Mexico. Frugivorous bat species diversity (Shannon H' was similar between forest types. However, bat abundance was highest in rain forest and O. pyramidale forests. Bat species composition was different among forest types with more Carollia sowelli and Sturnira lilium captures in O. pyramidale forests. Overall, bat fruit consumption was dominated by early-successional shrubs, highest late-successional fruit consumption was found in rain forests and more bats consumed early-successional shrub fruits in O. pyramidale forests. Ochroma pyramidale forests presented a higher canopy openness, tree height, lower tree density and diversity of fruit than secondary forests. Tree density and canopy openness were negatively correlated with bat species diversity and bat abundance, but bat abundance increased with fruit abundance and tree height. Hence, secondary forest management alters forests' structural characteristics and resource availability, and shapes the frugivorous bat community structure, and thereby the fruit consumption by bats.

  5. Key role of symbiotic dinitrogen fixation in tropical forest secondary succession

    DEFF Research Database (Denmark)

    Batterman, Sarah A.; Hedin, Lars O.; Van Breugel, Michiel

    2013-01-01

    Forests contribute a significant portion of the land carbon sink, but their ability to sequester CO 2 may be constrained by nitrogen, a major plant-limiting nutrient. Many tropical forests possess tree species capable of fixing atmospheric dinitrogen (N 2), but it is unclear whether this function...

  6. Key role of symbiotic dinitrogen fixation in tropical forest secondary succession

    NARCIS (Netherlands)

    Batterman, S.A.; Hedin, L.O.; Breugel, van M.; Ransijn, J.; Craven, D.J.; Hall, J.S.

    2013-01-01

    Forests contribute a significant portion of the land carbon sink, but their ability to sequester CO2 may be constrained by nitrogen1, 2, 3, 4, 5, 6, a major plant-limiting nutrient. Many tropical forests possess tree species capable of fixing atmospheric dinitrogen (N2)7, but it is unclear whether

  7. Diversity and composition of tropical secondary forests recovering from large-scale clearing : results from the 1990 inventory in Puerto Rico

    Science.gov (United States)

    J. Danilo Chinea; Eileen H. Helmer

    2003-01-01

    The extensive recovery from agricultural clearing of Puerto Rican forests over the past half-century provides a good opportunity to study tropical forest recovery on a landscape scale. Using ordination and regression techniques, we analyzed forest inventory data from across Puerto Rico’s moist and wet secondary forests to evaluate their species composition and whether...

  8. Earthworm abundance and species composition in abandoned tropical croplands: comparisons of tree plantations and secondary forests.

    Science.gov (United States)

    G. Gonzalez; X. Zou; S. Borges

    1996-01-01

    We compared patterns of earthworms abundance and species composition in tree plantation and secondary forest of Puerto Rico. Tree plantations included pine (Pinus caribea Morelet) and mahogany (Swietenia macrophylla King) established in the 1930's; 1960's; and 1970's; secondary forests were naturally regenerated in areas adjacent to these plantations. We...

  9. Secondary forest succession in a tropical dry forest: patterns of development across a 50-year chronosequence in lowland Bolivia

    Science.gov (United States)

    Deborah K. Kennard

    2002-01-01

    Stand structure, species richness and population structures of tree species were characterized in 12 stands representing 50 y of succession following slash-and-burn agriculture in a tropical dry forest in lowland Bolivia. Estimates of tree species richness, canopy cover and basal area reached or surpassed 75% of mature forest levels in the 5-, 8-, and 23-y-old stands...

  10. Landscape composition influences abundance patterns and habitat use of three ungulate species in fragmented secondary deciduous tropical forests, Mexico

    Directory of Open Access Journals (Sweden)

    G. García-Marmolejo

    2015-01-01

    Full Text Available Secondary forests are extensive in the tropics. Currently, these plant communities are the available habitats for wildlife and in the future they will possibly be some of the most wide-spread ecosystems world-wide. To understand the potential role of secondary forests for wildlife conservation, three ungulate species were studied: Mazama temama, Odocoileus virginianus and Pecari tajacu. We analyzed their relative abundance and habitat use at two spatial scales: (1 Local, where three different successional stages of tropical deciduous forest were compared, and (2 Landscape, where available habitats were compared in terms of landscape composition (proportion of forests, pastures and croplands within 113 ha. To determine the most important habitat-related environmental factors influencing the Sign Encounter Rate (SER of the three ungulate species, 11 physical, anthropogenic and vegetation variables were simultaneously analyzed through model selection using Akaike’s Information Criterion. We found, that P. tajacu and O. virginianus mainly used early successional stages, while M. temama used all successional stages in similar proportions. The latter species, however, used early vegetation stages only when they were located in landscapes mainly covered by forest (97%. P. tajacu and O. virginianus also selected landscapes covered essentially by forests, although they required smaller percentages of forest (86%. All ungulate species avoided landscape fragments covered by pastures. For all three species, landscape composition and human activities were the variables that best explained SER. We concluded that landscape is the fundamental scale for ungulate management, and that secondary forests are potentially important landscape elements for ungulate conservation.

  11. Evaluation of MODIS-LAI products in the tropical dry secondary forest of Mata Seca, Minas Gerais, Brazil

    Science.gov (United States)

    Yamarte Loreto, Payri Alejandra

    Leaf Area Index (LAI) advances scientific knowledge of the role of secondary forests in forest area conservation. MODIS-LAI products provide an alternative, efficient and cost-effective method for measuring LAI in Tropical Dry Forests (TDFs). The performance of MODIS-LAI satellite products in a TDF was studied as a function of successional stages by (1) estimating seasonal LAI variations compared to in situ LAI values (2) using dry season MODIS-LAI products to estimate Woody Area Index (WAI) (3) estimating phenology changes through comparisons to in situ data. The study demonstrates (1) MODIS-LAI product showed agreement with in situ values with increasing successional stage. (2) MODIS-LAI product showed best agreement to in situ WAI values in the intermediate successional stage. (3) TIMESAT analysis indicated that MODIS-LAI products detected start-of-season 1-2 weeks before in situ values and end-of-season 20-30 days after in situ values, indicating that MODIS-LAI product captures canopy leafing, but is not suitable for detecting senescence. Keywords: Leaf Area Index, Validation, MODIS, Woody Area Index, Phenology, Tropical Secondary Forest Succession, Hemispherical Photography, LAI-2000,.

  12. Patterns of plant functional variation and specialization along secondary succession and topography in a tropical dry forest

    Science.gov (United States)

    Sanaphre-Villanueva, Lucía; Dupuy, Juan Manuel; Andrade, José Luis; Reyes-García, Casandra; Jackson, Paula C.; Paz, Horacio

    2017-05-01

    Long-term human disturbance of tropical forests may favor generalist plant species leading to biotic homogenization. We aimed to a) assess if generalist species dominate across different successional ages and topographical positions in a tropical dry forest with a long history of human disturbance, b) to characterize functional traits associated with generalist and specialist species, and c) to assess if a predominance of generalists leads to a homogeneous functional structure across the landscape. We used a multinomial model of relative abundances to classify 118 woody species according to their successional/topographic habitat. Three species were classified as secondary-forest specialists, five as mature-forest specialists, 35 as generalists, and 75 as too rare to classify. According to topography, six species were hill specialists, eight flat-site specialists, 35 generalists, and 70 too rare. Generalists dominated across the landscape. Analysis of 14 functional traits from 65 dominant species indicated that generalists varied from acquisitive strategies of light and water early in succession to conservative strategies in older forests and on hills. Long-term human disturbance may have favored generalist species, but this did not result in functional homogenization. Further analyses considering other functional traits, and temporal and fine-scale microenvironmental variation are needed to better understand community assembly.

  13. The secondary forests of tropical America, Perspectives for their sustainable handling

    International Nuclear Information System (INIS)

    De las salas, Gonzalo

    2000-01-01

    The paper treats about of the enormous benefits of the secondary forests as producer of goods and services, among these they stand out the following ones: Reservoir of organic and nutritious matter, regulation of the hydric flows, maintenance of the biodiversity; drains of carbon, genes reservoir and fruits source, nutritious and medicinal plants, wood and fuel

  14. Distribution of bioluminescent fungi across old-growth and secondary tropical rain forest in Costa Rica

    Directory of Open Access Journals (Sweden)

    Carolina Seas-Carvajal

    2013-06-01

    Full Text Available Most research on bioluminescent fungi is concentrated on their taxonomic relationships, while the basics of their natural history and ecological relationships are poorly understood. In this study, we compared the distribution of bioluminescent fungi between old-growth and secondary forest as related to four different soil types at the tropical rainforest of La Selva Biological Station in Costa Rica. The study was conducted during the wet season of 2009. Bioluminescent fungi were sought following eight different transects distributed evenly in old-growth and secondary forests across four different soil types, covering an area of 9 420m². We found fungi in four different substrates: litter, fallen branches, dead trunks, and roots, for a total of 61 samples. Correspondence analysis showed that the occurrence of fungi and soil types were related (inertia=0.21, p=0.071. We found a significant relationship between the presence of fungi and the distribution of soil types (X²=18.89, df=9, p=0.026. We found only three samples with fruiting bodies, two of which had Mycena and the other had one fungus of the order Xylariales (possibly Hypoxylon sp., Kretzschmariella sp., Xylaria sp.. Future work will concentrate on exploring other aspects of their ecology, such as their dispersal and substrate preference. This information will facilitate field identification and will foster more research on the distribution, seasonality, reproductive phenology and ecological requirements of this group of Fungi.La mayoría de las investigaciones sobre los hongos bioluminiscentes se ha centrado en relaciones taxonómicas. Los aspectos básicos de la historia natural y relaciones ecológicas de este grupo son poco conocidos. En este estudio, comparamos la distribución de hongos bioluminiscentes entre el bosque primario y el secundario en la Estación Biológica La Selva, Costa Rica en relación con cuatro tipos de suelo. El estudio se realizó durante la estación lluviosa

  15. Seed rain dynamics following disturbance exclusion in a secondary tropical dry forest in Morelos, Mexico.

    Science.gov (United States)

    Ceccon, Eliane; Hernández, Patricia

    2009-01-01

    In most of the legally protected areas in Mexico local inhabitants use natural resources, such as fire wood or cattle grazing. These frequent but low-intensity disturbances have consequences at various levels of the tropical ecosystems and strongly impact forest structure and its regeneration capacity. Despite their importance, the effects of these perturbations in many aspects of tropical forest ecology and in the forest's capacity to recover after disturbance exclusion remain poorly understood. Understanding the impact of these processes on tropical forests is necessary for rehabilitating these forests and enhancing their productivity. In this study, we evaluate the impact of twelve years of exclusion (E) of cattle grazing and fire wood extraction in the composition and dynamics of seed rain, and compare this assessment to a similar analysis in an area where these perturbations continued (without exclusion, WE). We found a strong seasonality in seed rain (96% of seeds fell in the dry season) in both areas. There were no significant differences between E and WE sites in relation to overall seed density, species richness and diversity. However, the distribution along the year of seed species density was significantly different among the E and WE sites. The Jaccard's similarity index between E and WE sites was relatively low (0.57). Barochory was the most common dispersal mode observed among the 23 species in terms of seed species density (48%), followed by anemochory (39%) and zoochory (13%). In relation to seed density, anemochory was the most frequent dispersal mode (88%). Most species in the zone were categorized as small seeds (92%), and there were no significant differences in the distribution of seed size between E and WE. The spatial pattern of dispersal of the four species with the highest relative importance value index, in both areas, was aggregated. Twelve years of disturbance exclusion were not enough to fully restore the seed rain of the area; some

  16. The future of tropical forests.

    Science.gov (United States)

    Wright, S Joseph

    2010-05-01

    Five anthropogenic drivers--land use change, wood extraction, hunting, atmospheric change, climate change--will largely determine the future of tropical forests. The geographic scope and intensity of these five drivers are in flux. Contemporary land use change includes deforestation (approximately 64,000 km(2) yr(-1) for the entire tropical forest biome) and natural forests regenerating on abandoned land (approximately 21,500 km(2) yr(-1) with just 29% of the biome evaluated). Commercial logging is shifting rapidly from Southeast Asia to Africa and South America, but local fuelwood consumption continues to constitute 71% of all wood production. Pantropical rates of net deforestation are declining even as secondary and logged forests increasingly replace old-growth forests. Hunters reduce frugivore, granivore and browser abundances in most forests. This alters seed dispersal, seed and seedling survival, and hence the species composition and spatial template of plant regeneration. Tropical governments have responded to these local threats by protecting 7% of all land for the strict conservation of nature--a commitment that is only matched poleward of 40 degrees S and 70 degrees N. Protected status often fails to stop hunters and is impotent against atmospheric and climate change. There are increasing reports of stark changes in the structure and dynamics of protected tropical forests. Four broad classes of mechanisms might contribute to these changes. Predictions are developed to distinguish among these mechanisms.

  17. Securing tropical forest carbon

    DEFF Research Database (Denmark)

    Scharlemann, Jörn P. W.; Kapos, Valerie; Campbell, Alison

    2010-01-01

    that 1.75 million ha of forest were lost from protected areas in humid tropical forests, causing the emission of 0.25-0.33 Pg C. Protected areas lost about half as much carbon as the same area of unprotected forest. We estimate that the reduction of these carbon emissions from ongoing deforestation......, although certainly not sufficient, component of an overall strategy for reducing emissions from deforestation and forest degradation (REDD)...

  18. Exploiting water versus tolerating drought: water-use strategies of trees in a secondary successional tropical dry forest.

    Science.gov (United States)

    Pineda-García, Fernando; Paz, Horacio; Meinzer, Frederick C; Angeles, Guillermo

    2016-02-01

    In seasonal plant communities where water availability changes dramatically both between and within seasons, understanding the mechanisms that enable plants to exploit water pulses and to survive drought periods is crucial. By measuring rates of physiological processes, we examined the trade-off between water exploitation and drought tolerance among seedlings of trees of a tropical dry forest, and identified biophysical traits most closely associated with plant water-use strategies. We also explored whether early and late secondary successional species occupy different portions of trade-off axes. As predicted, species that maintained carbon capture, hydraulic function and leaf area at higher plant water deficits during drought had low photosynthetic rates, xylem hydraulic conductivity and growth rate under non-limiting water supply. Drought tolerance was associated with more dense leaf, stem and root tissues, whereas rapid resource acquisition was associated with greater stem water storage, larger vessel diameter and larger leaf area per mass invested. We offer evidence that the water exploitation versus drought tolerance trade-off drives species differentiation in the ability of tropical dry forest trees to deal with alternating water-drought pulses. However, we detected no evidence of strong functional differentiation between early and late successional species along the proposed trade-off axes, suggesting that the environmental gradient of water availability across secondary successional habitats in the dry tropics does not filter out physiological strategies of water use among species, at least at the seedling stage. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  19. People & Tropical Rain Forests.

    Science.gov (United States)

    NatureScope, 1989

    1989-01-01

    Discusses ways people who live in rain forests make a living and some of the products that enrich our lives. Provides activities covering forest people, tropical treats, jungle in the pantry, treetop explorers, and three copyable pages to accompany activities. (Author/RT)

  20. Succession of Ephemeral Secondary Forests and Their Limited Role for the Conservation of Floristic Diversity in a Human-Modified Tropical Landscape

    Science.gov (United States)

    van Breugel, Michiel; Hall, Jefferson S.; Craven, Dylan; Bailon, Mario; Hernandez, Andres; Abbene, Michele; van Breugel, Paulo

    2013-01-01

    Both local- and landscape-scale processes drive succession of secondary forests in human-modified tropical landscapes. Nonetheless, until recently successional changes in composition and diversity have been predominantly studied at the patch level. Here, we used a unique dataset with 45 randomly selected sites across a mixed-use tropical landscape in central Panama to study forest succession simultaneously on local and landscape scales and across both life stages (seedling, sapling, juvenile and adult trees) and life forms (shrubs, trees, lianas, and palms). To understand the potential of these secondary forests to conserve tree species diversity, we also evaluated the diversity of species that can persist as viable metapopulations in a dynamic patchwork of short-lived successional forests, using different assumptions about the average relative size at reproductive maturity. We found a deterministic shift in the diversity and composition of the local plant communities as well as the metacommunity, driven by variation in the rate at which species recruited into and disappeared from the secondary forests across the landscape. Our results indicate that dispersal limitation and the successional niche operate simultaneously and shape successional dynamics of the metacommunity of these early secondary forests. A high diversity of plant species across the metacommunity of early secondary forests shows a potential for restoration of diverse forests through natural succession, when trees and fragments of older forests are maintained in the agricultural matrix and land is abandoned or set aside for a long period of time. On the other hand, during the first 32 years the number of species with mature-sized individuals was a relatively small and strongly biased sub-sample of the total species pool. This implies that ephemeral secondary forests have a limited role in the long-term conservation of tree species diversity in human-modified tropical landscapes. PMID:24349283

  1. Rapid Shifts in Soil and Forest Floor Microbial Communities with Changes in Vegetation during Secondary Tropical Forest Succession

    Science.gov (United States)

    Smith, A.; Marin-Spiotta, E.; Balser, T. C.

    2012-12-01

    Soil microorganisms regulate fundamental biochemical processes in plant litter decomposition and soil organic matter (SOM) transformations. In order to predict how disturbance affects belowground carbon storage, it is important to understand how the forest floor and soil microbial community respond to changes in land cover, and the consequences on SOM formation and stabilization. We are measuring microbial functional diversity and activity across a long-term successional chronosequence of secondary forests regrowing on abandoned pastures in the wet subtropical forest life zone of Puerto Rico. Here we report intra- and interannual data on soil and litter microbial community composition (via phospholipid fatty acid analysis, PLFA) and microbial activity (via extracellular enzyme activity) from active pastures, secondary forests aged 20, 30, 40, 70, and 90-years, and primary forests. Microbial community composition and extracellular enzyme activity differed significantly by season in these wet subtropical ecosystems, even though differences in mean monthly precipitation between the middle of the dry season (January) and the wet season (July) is only 30mm. Despite seasonal differences, there was a persistent strong effect of land cover type and forest successional stage, or age, on overall microbial community PLFA structure. Using principal component analysis, we found differences in microbial community structure among active pastures, early, and late successional forests. The separation of soil microbes into early and late successional communities parallels the clustering of tree composition data. While the successional patterns held across seasons, the importance of different microbial groups driving these patterns differed seasonally. Biomarkers for gram-positive and actinobacteria (i15:0 and 16:0 10Me) were associated with early (20, 30 & 40 year old) secondary forests in the dry season. These younger forest communities were identified by the biomarker for

  2. Seed rain dynamics following disturbance exclusion in a secondary tropical dry forest in Morelos, Mexico

    Directory of Open Access Journals (Sweden)

    Eliane Ceccon

    2009-06-01

    Full Text Available In most of the legally protected areas in Mexico local inhabitants use natural resources, such as fire wood or cattle grazing. These frequent but low-intensity disturbances have consequences at various levels of the tropical ecosystems and strongly impact forest structure and its regeneration capacity. Despite their importance, the effects of these perturbations in many aspects of tropical forest ecology and in the forest’s capacity to recover after disturbance exclusion remain poorly understood. Understanding the impact of these processes on tropical forests is necessary for rehabilitating these forests and enhancing their productivity. In this study, we evaluate the impact of twelve years of exclusion (E of cattle grazing and fire wood extraction in the composition and dynamics of seed rain, and compare this assessment to a similar analysis in an area where these perturbations continued (without exclusion, WE. We found a strong seasonality in seed rain (96% of seeds fell in the dry season in both areas. There were no significant differences between E and WE sites in relation to overall seed density, species richness and diversity. However, the distribution along the year of seed species density was significantly different among the E and WE sites. The Jaccard’s similarity index between E and WE sites was relatively low (0.57. Barochory was the most common dispersal mode observed among the 23 species in terms of seed species density (48%, followed by anemochory (39% and zoochory (13%. In relation to seed density, anemochory was the most frequent dispersal mode (88%. Most species in the zone were categorized as small seeds (92%, and there were no significant differences in the distribution of seed size between E and WE. The spatial pattern of dispersal of the four species with the highest relative importance value index, in both areas, was aggregated. Twelve years of disturbance exclusion were not enough to fully restore the seed rain of the

  3. Drought resistance in early and late secondary successional species from a tropical dry forest: the interplay between xylem resistance to embolism, sapwood water storage and leaf shedding

    Science.gov (United States)

    Fernando Pineda-Garcia; Horacio Paz; Frederick C. Meinzer

    2013-01-01

    The mechanisms of drought resistance that allow plants to successfully establish at different stages of secondary succession in tropical dry forests are not well understood. We characterized mechanisms of drought resistance in early and late-successional species and tested whether risk of drought differs across sites at different successional stages, and whether early...

  4. Succession of Ephemeral Secondary Forests and Their Limited Role for the Conservation of Floristic Diversity in a Human-Modified Tropical Landscape

    DEFF Research Database (Denmark)

    van Breugel, Michiel; Hall, Jefferson S.; Craven, Dylan

    2013-01-01

    Both local- and landscape-scale processes drive succession of secondary forests in human-modified tropical landscapes. Nonetheless, until recently successional changes in composition and diversity have been predominantly studied at the patch level. Here, we used a unique dataset with 45 randomly ...

  5. Evidence for a significant proportion of Secondary Organic Aerosol from isoprene above a maritime tropical forest

    Directory of Open Access Journals (Sweden)

    N. H. Robinson

    2011-02-01

    Full Text Available Isoprene is the most abundant non-methane biogenic volatile organic compound (BVOC, but the processes governing secondary organic aerosol (SOA formation from isoprene oxidation are only beginning to become understood and selective quantification of the atmospheric particulate burden remains difficult. Organic aerosol above a tropical rainforest located in Danum Valley, Borneo, Malaysia, a high isoprene emission region, was studied during Summer 2008 using Aerosol Mass Spectrometry and offline detailed characterisation using comprehensive two dimensional gas chromatography. Observations indicate that a substantial fraction (up to 15% by mass of atmospheric sub-micron organic aerosol was observed as methylfuran (MF after thermal desorption. This observation was associated with the simultaneous measurements of established gas-phase isoprene oxidation products methylvinylketone (MVK and methacrolein (MACR. Observations of MF were also made during experimental chamber oxidation of isoprene. Positive matrix factorisation of the AMS organic mass spectral time series produced a robust factor which accounts for an average of 23% (0.18 μg m−3, reaching as much as 53% (0.50 μg m−3 of the total oraganic loading, identified by (and highly correlated with a strong MF signal. Assuming that this factor is generally representative of isoprene SOA, isoprene derived aerosol plays a significant role in the region. Comparisons with measurements from other studies suggest this type of isoprene SOA plays a role in other isoprene dominated environments, albeit with varying significance.

  6. How do Light and Water Acquisition Strategies Affect Species Selection during Secondary Succession in Moist Tropical Forests?

    Directory of Open Access Journals (Sweden)

    Leonie Schönbeck

    2015-06-01

    Full Text Available Pioneer tree species have acquisitive leaf characteristics associated with high demand of light and water, and are expected to be shade and drought intolerant. Using leaf functional traits (specific leaf area, photosynthetic rate, relative water content and stomatal conductance and tree performance (mortality rate in the field, we assessed how shade and drought tolerance of leaves are related to the species’ positions along a successional gradient in moist tropical forest in Chiapas, Mexico. We quantified morphological and physiological leaf shade and drought tolerance indicators for 25 dominant species that characterize different successional stages. We found that light demand decreases with succession, confirming the importance of light availability for species filtering during early stages of succession. In addition, water transport levels in the leaves decreased with succession, but high water transport did not increase the leaf’s vulnerability to drought. In fact, late successional species showed higher mortality in dry years than early successional ones, against suggestions from leaf drought tolerance traits. It is likely that pioneer species have other drought-avoiding strategies, like deep rooting systems and water storage in roots and stems. More research on belowground plant physiology is needed to understand how plants adapt to changing environments, which is crucial to anticipate the effects of climate change on secondary forests.

  7. Rain Forests: Tropical Treasures.

    Science.gov (United States)

    Braus, Judy, Ed.

    1989-01-01

    Ranger Rick's NatureScope is a creative education series dedicated to inspiring in children an understanding and appreciation of the natural world while developing the skills they will need to make responsible decisions about the environment. The topic of this issue is "Rain Forests: Tropical Treasures." Contents are organized into the…

  8. Tropical Montane Cloud Forests

    NARCIS (Netherlands)

    Ramirez Correal, Beatriz; Teuling, Adriaan J.; Ganzeveld, Laurens; Hegger, Zita; Leemans, Rik

    2017-01-01

    Mountain areas are characterized by a large heterogeneity in hydrological and meteorological conditions. This heterogeneity is currently poorly represented by gauging networks and by the coarse scale of global and regional climate and hydrological models. Tropical Montane Cloud Forests (TMCFs)

  9. Environmental changes during secondary succession in a tropical dry forest in Mexico

    NARCIS (Netherlands)

    Lebrija Trejos, E.E.; Pérez-Garcia, E.A.; Meave, J.; Poorter, L.; Bongers, F.

    2011-01-01

    Vegetation and environment change mutually during secondary succession, yet the idiosyncrasies of the vegetation effect on the understorey environment are poorly understood. To test whether the successional understorey environment changes predictably and is shaped by the structure and seasonality of

  10. Nitrogen and phosphorus addition impact soil N2O emission in a secondary tropical forest of South China

    Science.gov (United States)

    Wang, Faming; Li, Jian; Wang, Xiaoli; Zhang, Wei; Zou, Bi; Neher, Deborah A.; Li, Zhian

    2014-01-01

    Nutrient availability greatly regulates ecosystem processes and functions of tropical forests. However, few studies have explored impacts of N addition (aN), P addition (aP) and N×P interaction on tropical forests N2O fluxes. We established an N and P addition experiment in a tropical forest to test whether: (1) N addition would increase N2O emission and nitrification, and (2) P addition would increase N2O emission and N transformations. Nitrogen and P addition had no effect on N mineralization and nitrification. Soil microbial biomass was increased following P addition in wet seasons. aN increased 39% N2O emission as compared to control (43.3 μgN2O-N m−2h−1). aP did not increase N2O emission. Overall, N2O emission was 60% greater for aNP relative to the control, but significant difference was observed only in wet seasons, when N2O emission was 78% greater for aNP relative to the control. Our results suggested that increasing N deposition will enhance soil N2O emission, and there would be N×P interaction on N2O emission in wet seasons. Given elevated N deposition in future, P addition in this tropical soil will stimulate soil microbial activities in wet seasons, which will further enhance soil N2O emission. PMID:25001013

  11. No signs of soil organic matter accumulation and of changes in nutrient (N-P) limitation during tropical secondary forest succession in the wet tropics of Southwest Costa Rica

    Science.gov (United States)

    Wanek, Wolfgang; Oberdorfer, Sarah; Oberleitner, Florian; Hietz, Peter; Dullinger, Stefan; Zehetner, Franz

    2017-04-01

    Secondary forests comprise large tracts of the tropical land area, due to ongoing changes in land-use, including selective logging and agricultural land abandonment. Recent meta-analyses demonstrated that temperature and precipitation are key drivers of forest ecosystem recovery, particularly of soil organic carbon (SOC) build-up, where losses of SOC after deforestation and cultivation (and its recovery after abandonment) were largest in the wet tropical lowlands. However, wet lowland tropical chronosequences are strongly underrepresented (4000 mm) and the large variance in this group may be explained by soil type and soil nutrients. Moreover strong effects of (and changes in) nutrient limitation, with an intermittent change from P to N limitation of plant production in young tropical secondary forests, have been identified in a few studies. For this study we established a tropical secondary forest chronosequence, identifying old pastures (>40 years), young to old secondary forests (1-55 years) and old-growth forests based on aerial photographs and satellite images dating from the 1960s to the 2010s in SW Costa Rica, a region where mean annual temperature is 27°C and mean annual precipitation between 5000 and 6000 mm. Soil samples were taken incrementally to 45 cm depth, sieved and soils and roots collected and analysed. Bulk density decreased and SOC content increased from pastures to secondary forests and old-growth forests, with the net effect on soil C stocks (between 63 and 92 Mg ha-1 (0-45 cm)) being neutral. SOC stocks were generally high, due to high fine root densities and associated high root inputs to mineral soils in pastures and forests. SOC showed relatively slow turnover times, based on root and soil delta13C values, with turnover times of 120 and 210 years in topsoils and subsoils, indicating strong stabilization of SOM due to mineral binding and high aggregate stability (>80%). At the same time we found no change in soil N and P availability, but

  12. Seven Guideposts for Tropical Rain Forest Education.

    Science.gov (United States)

    Rillero, Peter

    1999-01-01

    Identifies seven guideposts for tropical rain forest education. Aids teachers in finding structure and creating educational experiences that promote more complete understanding of tropical rain forests. (CCM)

  13. Root depth and morphology in response to soil drought: comparing ecological groups along the secondary succession in a tropical dry forest.

    Science.gov (United States)

    Paz, Horacio; Pineda-García, Fernando; Pinzón-Pérez, Luisa F

    2015-10-01

    Root growth and morphology may play a core role in species-niche partitioning in highly diverse communities, especially along gradients of drought risk, such as that created along the secondary succession of tropical dry forests. We experimentally tested whether root foraging capacity, especially at depth, decreases from early successional species to old-growth forest species. We also tested for a trade-off between two mechanisms for delaying desiccation, the capacity to forage deeper in the soil and the capacity to store water in tissues, and explored whether successional groups separate along such a trade-off. We examined the growth and morphology of roots in response to a controlled-vertical gradient of soil water, among seedlings of 23 woody species dominant along the secondary succession in a tropical dry forest of Mexico. As predicted, successional species developed deeper and longer root systems than old-growth forest species in response to soil drought. In addition, shallow root systems were associated with high plant water storage and high water content per unit of tissue in stems and roots, while deep roots exhibited the opposite traits, suggesting a trade-off between the capacities for vertical foraging and water storage. Our results suggest that an increased capacity of roots to forage deeper for water is a trait that enables successional species to establish under the warm-dry conditions of the secondary succession, while shallow roots, associated with a higher water storage capacity, are restricted to the old-growth forest. Overall, we found evidence that the root depth-water storage trade-off may constrain tree species distribution along secondary succession.

  14. Biomass resilience of Neotropical secondary forests

    NARCIS (Netherlands)

    Poorter, Lourens; Bongers, Frans; Aide, T.M.; Almeyda Zambrano, A.M.; Balvanera, Patricia; Jakovac, C.C.; Braga Junqueira, A.; Lohbeck, Madelon; Penã-Claros, Marielos; Rozendaal, D.M.A.

    2016-01-01

    Land-use change occurs nowhere more rapidly than in the tropics, where the imbalance between deforestation and forest regrowth has large consequences for the global carbon cycle. However, considerable uncertainty remains about the rate of biomass recovery in secondary forests, and how these rates

  15. Tropical forests and climate policy

    Energy Technology Data Exchange (ETDEWEB)

    Gullison, R.E. [Univ British Columbia, Biodivers Res Ctr, Vancouver, BC V6T 1Z4, (Canada); Frumhoff, P.C. [Union Concerned Sci, Cambridge, MA 02238 (United States); Canadell, J.G. [CSIRO Marine and Atmospher Res, Global Carbon Project, Canberra, ACT 2601, (Australia); Field, C.B. [Carnegie Inst, Dept Global Ecol, Stanford, CA 94305 (United States); Nepstad, D.C. [Woods Hole Res Ctr, Woods Hole, MA 02543 (United States); Hayhoe, K. [Texas Tech Univ, Dept Geosci, Lubbock, TX 79409 (United States); Avissar, R. [Duke Univ, Dept Civil and Environm Engn, Durham, NC 27708 (United States); Curran, L.M. [YAle Sch Forestry and Environm Studies, Trop Resources Inst, New Haven, CT 06511 (United States); Friedlingstein, P. [CEA, CNRS, Unite Mixte Rech 1572, Lab Sci Climate and Environm IPSL LSCE, F-91191 Gif Sur Yvette, (France); Jones, C.D. [Hadley Ctr Climate Predict and Res, Met Off, Exeter EX1 3PB, Devon, (United Kingdom); Nobre, C. [CPTEC, Cachoeira Paulista, SP, (Brazil)

    2007-07-01

    Beyond protecting the climate, reducing tropical deforestation has the potential to eliminate many negative impacts that may compromise the ability of tropical countries to develop sustainably, including reduction in rainfall, loss of biodiversity, degraded human health from biomass burning pollution, and the unintentional loss of productive forests. Providing economic incentives for the maintenance of forest cover can help tropical countries avoid these negative impacts and meet development goals, while also complementing aggressive efforts to reduce fossil fuel emissions. Industrialized and developing countries urgently need to support the RED policy process and develop effective and equitable compensation schemes to help tropical countries protect their forests, reducing the risk of dangerous climate change and protecting the many other goods and services that these forests contribute to sustainable development. (authors)

  16. Tropical forests and climate policy

    International Nuclear Information System (INIS)

    Gullison, R.E.; Frumhoff, P.C.; Canadell, J.G.; Field, C.B.; Nepstad, D.C.; Hayhoe, K.; Avissar, R.; Curran, L.M.; Friedlingstein, P.; Jones, C.D.; Nobre, C.

    2007-01-01

    Beyond protecting the climate, reducing tropical deforestation has the potential to eliminate many negative impacts that may compromise the ability of tropical countries to develop sustainably, including reduction in rainfall, loss of biodiversity, degraded human health from biomass burning pollution, and the unintentional loss of productive forests. Providing economic incentives for the maintenance of forest cover can help tropical countries avoid these negative impacts and meet development goals, while also complementing aggressive efforts to reduce fossil fuel emissions. Industrialized and developing countries urgently need to support the RED policy process and develop effective and equitable compensation schemes to help tropical countries protect their forests, reducing the risk of dangerous climate change and protecting the many other goods and services that these forests contribute to sustainable development. (authors)

  17. Development of Allometric Equations for Estimating Above-Ground Liana Biomass in Tropical Primary and Secondary Forests, Malaysia

    Directory of Open Access Journals (Sweden)

    Patrick Addo-Fordjour

    2013-01-01

    Full Text Available The study developed allometric equations for estimating liana stem and total above-ground biomass in primary and secondary forests in the Penang National Park, Penang, Malaysia. Using biomass-diameter-length data of 60 liana individuals representing 15 species, allometric equations were developed for liana stem biomass and total above-ground biomass (TAGB. Three types of allometric equations were developed: models fitted to untransformed, weighted, and log-transformed (log10 data. There was a significant linear relationship between biomass and the predictors (diameter, length, and/or their combinations. The same set of models was developed for primary and secondary forests due to absence of differences in regression line slopes of the forests (ANCOVA: . The coefficients of determination values of the models were high (stem: 0.861 to 0.990; TAGB: 0.900 to 0.992. Generally, log-transformed models showed better fit (Furnival's index, FI 0.5. A comparison of the best TAGB model in this study (based on FI with previously published equations indicated that most of the equations significantly ( overestimated TAGB of lianas. However, a previous equation from Southeast Asia estimated TAGB similar to that of the current equation (. Therefore, regional or intracontinental equations should be preferred to intercontinental equations when estimating liana biomass.

  18. Natural and near natural tropical forest values

    Science.gov (United States)

    Daniel H. Henning

    2011-01-01

    This paper identifies and describes some of the values associated with tropical rain forests in their natural and near-natural conditions. Tropical rain forests are moist forests in the humid tropics where temperature and rainfall are high and the dry season is short. These closed (non-logged) and broad-leaved forests are a global resource. Located almost entirely in...

  19. Tropical dry forest recovery : processes and causes of change

    NARCIS (Netherlands)

    Lebrija Trejos, E.E.

    2009-01-01

    Seasonally dry areas are one of the preferred zones for human inhabitance in the tropics. Large forest areas are converted to other land uses and many are covered by secondary forests that grow naturally after cessation of disturbance. Surprisingly, secondary succession in these strongly seasonal

  20. Biomass resilience of Neotropical secondary forests

    Science.gov (United States)

    Poorter, Lourens; Bongers, Frans; Aide, T. Mitchell; Almeyda Zambrano, Angélica M.; Balvanera, Patricia; Becknell, Justin M.; Boukili, Vanessa; Brancalion, Pedro H. S.; Broadbent, Eben N.; Chazdon, Robin L.; Craven, Dylan; de Almeida-Cortez, Jarcilene S.; Cabral, George A. L.; de Jong, Ben H. J.; Denslow, Julie S.; Dent, Daisy H.; Dewalt, Saara J.; Dupuy, Juan M.; Durán, Sandra M.; Espírito-Santo, Mario M.; Fandino, María C.; César, Ricardo G.; Hall, Jefferson S.; Hernandez-Stefanoni, José Luis; Jakovac, Catarina C.; Junqueira, André B.; Kennard, Deborah; Letcher, Susan G.; Licona, Juan-Carlos; Lohbeck, Madelon; Marín-Spiotta, Erika; Martínez-Ramos, Miguel; Massoca, Paulo; Meave, Jorge A.; Mesquita, Rita; Mora, Francisco; Muñoz, Rodrigo; Muscarella, Robert; Nunes, Yule R. F.; Ochoa-Gaona, Susana; de Oliveira, Alexandre A.; Orihuela-Belmonte, Edith; Peña-Claros, Marielos; Pérez-García, Eduardo A.; Piotto, Daniel; Powers, Jennifer S.; Rodríguez-Velázquez, Jorge; Romero-Pérez, I. Eunice; Ruíz, Jorge; Saldarriaga, Juan G.; Sanchez-Azofeifa, Arturo; Schwartz, Naomi B.; Steininger, Marc K.; Swenson, Nathan G.; Toledo, Marisol; Uriarte, Maria; van Breugel, Michiel; van der Wal, Hans; Veloso, Maria D. M.; Vester, Hans F. M.; Vicentini, Alberto; Vieira, Ima C. G.; Bentos, Tony Vizcarra; Williamson, G. Bruce; Rozendaal, Danaë M. A.

    2016-02-01

    Land-use change occurs nowhere more rapidly than in the tropics, where the imbalance between deforestation and forest regrowth has large consequences for the global carbon cycle. However, considerable uncertainty remains about the rate of biomass recovery in secondary forests, and how these rates are influenced by climate, landscape, and prior land use. Here we analyse aboveground biomass recovery during secondary succession in 45 forest sites and about 1,500 forest plots covering the major environmental gradients in the Neotropics. The studied secondary forests are highly productive and resilient. Aboveground biomass recovery after 20 years was on average 122 megagrams per hectare (Mg ha-1), corresponding to a net carbon uptake of 3.05 Mg C ha-1 yr-1, 11 times the uptake rate of old-growth forests. Aboveground biomass stocks took a median time of 66 years to recover to 90% of old-growth values. Aboveground biomass recovery after 20 years varied 11.3-fold (from 20 to 225 Mg ha-1) across sites, and this recovery increased with water availability (higher local rainfall and lower climatic water deficit). We present a biomass recovery map of Latin America, which illustrates geographical and climatic variation in carbon sequestration potential during forest regrowth. The map will support policies to minimize forest loss in areas where biomass resilience is naturally low (such as seasonally dry forest regions) and promote forest regeneration and restoration in humid tropical lowland areas with high biomass resilience.

  1. Biomass resilience of Neotropical secondary forests.

    Science.gov (United States)

    Poorter, Lourens; Bongers, Frans; Aide, T Mitchell; Almeyda Zambrano, Angélica M; Balvanera, Patricia; Becknell, Justin M; Boukili, Vanessa; Brancalion, Pedro H S; Broadbent, Eben N; Chazdon, Robin L; Craven, Dylan; de Almeida-Cortez, Jarcilene S; Cabral, George A L; de Jong, Ben H J; Denslow, Julie S; Dent, Daisy H; DeWalt, Saara J; Dupuy, Juan M; Durán, Sandra M; Espírito-Santo, Mario M; Fandino, María C; César, Ricardo G; Hall, Jefferson S; Hernandez-Stefanoni, José Luis; Jakovac, Catarina C; Junqueira, André B; Kennard, Deborah; Letcher, Susan G; Licona, Juan-Carlos; Lohbeck, Madelon; Marín-Spiotta, Erika; Martínez-Ramos, Miguel; Massoca, Paulo; Meave, Jorge A; Mesquita, Rita; Mora, Francisco; Muñoz, Rodrigo; Muscarella, Robert; Nunes, Yule R F; Ochoa-Gaona, Susana; de Oliveira, Alexandre A; Orihuela-Belmonte, Edith; Peña-Claros, Marielos; Pérez-García, Eduardo A; Piotto, Daniel; Powers, Jennifer S; Rodríguez-Velázquez, Jorge; Romero-Pérez, I Eunice; Ruíz, Jorge; Saldarriaga, Juan G; Sanchez-Azofeifa, Arturo; Schwartz, Naomi B; Steininger, Marc K; Swenson, Nathan G; Toledo, Marisol; Uriarte, Maria; van Breugel, Michiel; van der Wal, Hans; Veloso, Maria D M; Vester, Hans F M; Vicentini, Alberto; Vieira, Ima C G; Bentos, Tony Vizcarra; Williamson, G Bruce; Rozendaal, Danaë M A

    2016-02-11

    Land-use change occurs nowhere more rapidly than in the tropics, where the imbalance between deforestation and forest regrowth has large consequences for the global carbon cycle. However, considerable uncertainty remains about the rate of biomass recovery in secondary forests, and how these rates are influenced by climate, landscape, and prior land use. Here we analyse aboveground biomass recovery during secondary succession in 45 forest sites and about 1,500 forest plots covering the major environmental gradients in the Neotropics. The studied secondary forests are highly productive and resilient. Aboveground biomass recovery after 20 years was on average 122 megagrams per hectare (Mg ha(-1)), corresponding to a net carbon uptake of 3.05 Mg C ha(-1) yr(-1), 11 times the uptake rate of old-growth forests. Aboveground biomass stocks took a median time of 66 years to recover to 90% of old-growth values. Aboveground biomass recovery after 20 years varied 11.3-fold (from 20 to 225 Mg ha(-1)) across sites, and this recovery increased with water availability (higher local rainfall and lower climatic water deficit). We present a biomass recovery map of Latin America, which illustrates geographical and climatic variation in carbon sequestration potential during forest regrowth. The map will support policies to minimize forest loss in areas where biomass resilience is naturally low (such as seasonally dry forest regions) and promote forest regeneration and restoration in humid tropical lowland areas with high biomass resilience.

  2. Tree height and tropical forest biomass estimation

    Science.gov (United States)

    M.O. Hunter; M. Keller; D. Vitoria; D.C. Morton

    2013-01-01

    Tropical forests account for approximately half of above-ground carbon stored in global vegetation. However, uncertainties in tropical forest carbon stocks remain high because it is costly and laborious to quantify standing carbon stocks. Carbon stocks of tropical forests are determined using allometric relations between tree stem diameter and height and biomass....

  3. Carbon sequestration potential of second-growth forest regeneration in the Latin American tropics

    NARCIS (Netherlands)

    Chazdon, R.L.; Broadbent, E.N.; Rozendaal, Danae; Bongers, F.; Jakovac, A.C.; Braga Junqueira, A.; Lohbeck, M.W.M.; Pena Claros, M.; Poorter, L.

    2016-01-01

    Regrowth of tropical secondary forests following complete or nearly complete removal of forest vegetation actively stores carbon in aboveground biomass, partially counterbalancing carbon emissions from deforestation, forest degradation, burning of fossil fuels, and other anthropogenic sources. We

  4. Primary forests are irreplaceable for sustaining tropical biodiversity.

    Science.gov (United States)

    Gibson, Luke; Lee, Tien Ming; Koh, Lian Pin; Brook, Barry W; Gardner, Toby A; Barlow, Jos; Peres, Carlos A; Bradshaw, Corey J A; Laurance, William F; Lovejoy, Thomas E; Sodhi, Navjot S

    2011-09-14

    Human-driven land-use changes increasingly threaten biodiversity, particularly in tropical forests where both species diversity and human pressures on natural environments are high. The rapid conversion of tropical forests for agriculture, timber production and other uses has generated vast, human-dominated landscapes with potentially dire consequences for tropical biodiversity. Today, few truly undisturbed tropical forests exist, whereas those degraded by repeated logging and fires, as well as secondary and plantation forests, are rapidly expanding. Here we provide a global assessment of the impact of disturbance and land conversion on biodiversity in tropical forests using a meta-analysis of 138 studies. We analysed 2,220 pairwise comparisons of biodiversity values in primary forests (with little or no human disturbance) and disturbed forests. We found that biodiversity values were substantially lower in degraded forests, but that this varied considerably by geographic region, taxonomic group, ecological metric and disturbance type. Even after partly accounting for confounding colonization and succession effects due to the composition of surrounding habitats, isolation and time since disturbance, we find that most forms of forest degradation have an overwhelmingly detrimental effect on tropical biodiversity. Our results clearly indicate that when it comes to maintaining tropical biodiversity, there is no substitute for primary forests.

  5. Secondary stem anatomy and uses of four drought-deciduous species of a tropical dry forest in México

    Directory of Open Access Journals (Sweden)

    Alejandra Quintanar Isaías

    2005-06-01

    Full Text Available Wood and bark anatomy and histochemistry of Acacia bilimekii Humb. & Bonpl., Acacia cochliacantha Mcbride., Conzatia multiflora (Rob Stand. and Guazuma ulmifolia Lam.are described from stem samples collected in a tropical dry forest (Morelos,Mexico. Enzyme activities were tested in tangential, radial and transverse cuts of fresh material. Histochemistry and stem anatomy were studied on similar cuts previously softened in a solution of water-glicerol-PEG. Our results show that the anatomical patterns of bark and wood, as well as the histochemical patterns and specific gravity, are influenced by water accessibility and climate; these patterns could guarantee mechanical and anti-infection strategies to support extreme conditions. Enzyme cytochemistry reveals biochemical activities probably related to lipid utilization routes for the lignification processes and for synthesis of extractives; these results suggest that the formation and maturation of woody tissue is very active at the beginning of the rainy season. These species are widely used by the local population. Traditional uses include firewood, dead and live fences, fodder, construction, supporting stakes, handcrafts, farming tools, extraction of tanning products, and medicine. There is no relationship between use and abundance. Alternative uses are proposed according to a density index. Rev. Biol. Trop. 53 (1-2: 29-48. Epub 2005 Jun 24Se estudió la anatomía e histoquímica del tallo secundario de Acacia bilimekii, Acacia cochliacantha, Conzatia multiflora y Guazuma ulmifolia. Las muestras de tallo se colectaron en una selva baja caducifolia del estado de Morelos, México. La actividad enzimática se estudió en cortes frescos de caras tangenciales, radiales y transversales. La anatomía e histoquímica se hizo en cortes similares de muestras previamente ablandadas con una mezcla de agua-glicerol-PEG. Los resultados muestran que el patrón anatómico de la corteza y madera, así como las

  6. FLORULA URBAN FRAGMENT OF TROPICAL DRY FOREST

    Directory of Open Access Journals (Sweden)

    Willington Barranco-Pérez

    2016-01-01

    Full Text Available The aim of this study was to record the composition of plant species in an urban fragment of tropical dry forest of secondary regeneration (bs-T to generate information that can be used in the planning and management of green spaces in the city of Santa Marta. Transects of 2 x 50 m were established equivalent to 0.1 ha and all species were counted >1.0 cm DBH (Diameter at Breast Height: 1.3m. 100 species of angiosperms were recorded of which 47% have herbaceous habit. The number of species recorded in this study represents 39.6% of the species reported for the hills of Santa Marta and 3.8% for the dry forests of Colombia. It is suggested to isolate this type of secondary formations of any intervention and contemplate the reintroduction of individuals and conservation strategies.

  7. Strategies for global monitoring of tropical forests

    Science.gov (United States)

    Raymond L. Czaplewski

    1994-01-01

    The Food and Agricultural Organization (FAO) of the United Nations is conducting a global assessment of tropical forest resources, which will be accomplished by mid-1992. This assessment requires, in part, estimates of the total area of tropical forest cover in 1990 and the rate of change in forest cover between 1980 and 1990. The following are described here: (1) the...

  8. Tropical rain forest: a wider perspective

    National Research Council Canada - National Science Library

    Goldsmith, F. B

    1998-01-01

    .... Barbier -- Can non-market values save the tropical forests? / D. Pearce -- The role of policy and institutions / James Mayers and Stephen Bass -- Modelling tropical land use change and deforestation...

  9. Secondary Forests from Agricultural Abandonment in Amazonia 2000-2009

    Science.gov (United States)

    Morton, Douglas

    2010-01-01

    Ongoing negotiations to include reducing emissions from tropical deforestation and forest degradation (REDD+) in a post-Kyoto climate agreement highlight the critical role of satellite data for accurate and transparent accounting of forest cover changes. In addition to deforestation and degradation, knowledge of secondary forest dynamics is essential for full carbon accounting under REDD+. Land abandonment to secondary forests also frames one of the key tradeoffs for agricultural production in tropical forest countries-whether to incentivize secondary forest growth (for carbon sequestration and biodiversity conservation) or low-carbon expansion of agriculture or biofuels production in areas of secondary forests. We examined patterns of land abandonment to secondary forest across the arc of deforestation in Brazil and Bolivia using time series of annual Landsat and MODIS data from 2000-2009. Rates of land abandonment to secondary forest during 2002-2006 were less than 5% of deforestation rates in these years. Small areas of new secondary forest were scattered across the entire arc of deforestation, rather than concentrated in any specific region of the basin. Taken together, our analysis of the satellite data record emphasizes the difficulties of addressing the pool of new secondary forests in the context of REDD+ in Amazonia. Due to the small total area of secondary forests, land sparing through agricultural intensification will be an important element of efforts to reduce deforestation rates under REDD+ while improving agricultural productivity in Amazonia.

  10. Abiotic factors influencing tropical dry forests regeneration

    OpenAIRE

    Ceccon,Eliane; Huante,Pilar; Rincón,Emanuel

    2006-01-01

    Tropical dry forests represent nearly half the tropical forests in the world and are the ecosystems registering the greatest deterioration from the anthropogenic exploitation of the land. This paper presents a review on the dynamics of tropical dry forests regeneration and the main abiotic factors influencing this regeneration, such as seasonal nature, soil fertility and humidity, and natural and anthropic disturbances. The main purpose is to clearly understand an important part of TDF succes...

  11. Abiotic factors influencing tropical dry forests regeneration

    Directory of Open Access Journals (Sweden)

    Ceccon Eliane

    2006-01-01

    Full Text Available Tropical dry forests represent nearly half the tropical forests in the world and are the ecosystems registering the greatest deterioration from the anthropogenic exploitation of the land. This paper presents a review on the dynamics of tropical dry forests regeneration and the main abiotic factors influencing this regeneration, such as seasonal nature, soil fertility and humidity, and natural and anthropic disturbances. The main purpose is to clearly understand an important part of TDF succession dynamics.

  12. Effects of tropical montane forest disturbance on epiphytic macrolichens

    Energy Technology Data Exchange (ETDEWEB)

    Benitez, Angel [Instituto de Ecologia, Herbario HUTPL, Universidad Tecnica Particular de Loja, San Cayetano s/n, Loja (Ecuador); Prieto, Maria, E-mail: maria.prieto@urjc.es [Area de Biodiversidad y Conservacion, ESCET, Universidad Rey Juan Carlos, Mostoles, E-28933, Madrid (Spain); Gonzalez, Yadira [Instituto de Ecologia, Herbario HUTPL, Universidad Tecnica Particular de Loja, San Cayetano s/n, Loja (Ecuador); Aragon, Gregorio [Area de Biodiversidad y Conservacion, ESCET, Universidad Rey Juan Carlos, Mostoles, E-28933, Madrid (Spain)

    2012-12-15

    The high diversity of epiphytes typical of undisturbed montane tropical forests has been negatively affected by continuous deforestation and forest conversion to secondary vegetation. Macrolichens are an important component of these epiphytes. Because their physiology is strongly coupled to humidity and solar radiation, we hypothesized that microclimatic changes derived from forest clearing and logging can affect the diversity of these poikilohydric organisms. In southern Ecuador, we examined three types of forests according to a disturbance gradient (primary forests, secondary forests, and monospecific forests of Alnus acuminata) for the presence/absence and coverage of epiphytic macrolichens that we identified on 240 trees. We found that total richness tended to decrease when the range of the disturbance increased. The impoverishment was particularly drastic for 'shade-adapted lichens', while the richness of 'heliophytic lichens' increased in the drier conditions of secondary growth. Epiphytic composition also differed significantly among the three types of forests, and the similarity decreased when the range of the disturbance was greater. We concluded that a span of 40 years of recovery by secondary vegetation was not enough to regenerate the diversity of epiphytic macrolichens that was lost due to forest disturbances. -- Highlights: Black-Right-Pointing-Pointer Tropical montane forest disturbance drastically reduced macrolichen diversity. Black-Right-Pointing-Pointer Species loss was most severe for the 'shade-adapted lichens' because high radiation is harmful to them. Black-Right-Pointing-Pointer In secondary forests lichen diversity of native forests was not regenerated. Black-Right-Pointing-Pointer The protection of remnants of primary tropical forest might help to preserve a diverse community of epiphytic macrolichens.

  13. Indigenous Knowledge Informing Management of Tropical Forests: The Link between Rhythms in Plant Secondary Chemistry and Lunar Cycles.

    Science.gov (United States)

    Kristiina A. Vogt; Karen H. Beard; Shira Hammann; Jennifer O’Hara Palmiotto; Daniel J. Vogt; Frederick N. Scatena; Brooke P. Hecht

    2002-01-01

    This research used knowledge of the indigenous practice of timing nontimber forest product harvest with the full moon to demonstrate that chemicals controlling the decomposition rate of foliage fluctuate with the lunar cycle and may have developed as a result of plant-herbivore interactions. Indigenous knowledge suggests that leaves harvested during the full moon are...

  14. Phylogenetic classification of the world's tropical forests

    DEFF Research Database (Denmark)

    Slik, J. W. Ferry; Franklin, Janet; Arroyo-Rodriguez, Victor

    2018-01-01

    Knowledge about the biogeographic affinities of the world's tropical forests helps to better understand regional differences in forest structure, diversity, composition, and dynamics. Such understanding will enable anticipation of region-specific responses to global environmental change. Modern p...

  15. Phylogenetic classification of the world's tropical forests

    NARCIS (Netherlands)

    Slik, J.W.F.; Franklin, Janet; Arroyo-Rodríguez, Víctor; Field, Richard; Aguilar, Salomon; Aguirre, Nikolay; Ahumada, Jorge; Aiba, Shin Ichiro; Alves, Luciana F.; Anitha, K.; Avella, Andres; Mora, Francisco; Aymard, Gerardo A.C.; Báez, Selene; Balvanera, Patricia; Bastian, Meredith L.; Bastin, Jean François; Bellingham, Peter J.; Berg, Van Den Eduardo; Conceição Bispo, Da Polyanna; Boeckx, Pascal; Boehning-Gaese, Katrin; Bongers, Frans; Boyle, Brad; Brambach, Fabian; Brearley, Francis Q.; Brown, Sandra; Chai, Shauna Lee; Chazdon, Robin L.; Chen, Shengbin; Chhang, Phourin; Chuyong, George; Ewango, Corneille; Coronado, Indiana M.; Cristóbal-Azkarate, Jurgi; Culmsee, Heike; Damas, Kipiro; Dattaraja, H.S.; Davidar, Priya; DeWalt, Saara J.; Din, Hazimah; Drake, Donald R.; Duque, Alvaro; Durigan, Giselda; Eichhorn, Karl; Eler, Eduardo Schmidt; Enoki, Tsutomu; Ensslin, Andreas; Fandohan, Adandé Belarmain; Farwig, Nina; Feeley, Kenneth J.; Fischer, Markus; Forshed, Olle; Garcia, Queila Souza; Garkoti, Satish Chandra; Gillespie, Thomas W.; Gillet, Jean Francois; Gonmadje, Christelle; Granzow-De La Cerda, Iñigo; Griffith, Daniel M.; Grogan, James; Hakeem, Khalid Rehman; Harris, David J.; Harrison, Rhett D.; Hector, Andy; Hemp, Andreas; Homeier, Jürgen; Hussain, M.S.; Ibarra-Manríquez, Guillermo; Hanum, I.F.; Imai, Nobuo; Jansen, Patrick A.; Joly, Carlos Alfredo; Joseph, Shijo; Kartawinata, Kuswata; Kearsley, Elizabeth; Kelly, Daniel L.; Kessler, Michael; Killeen, Timothy J.; Kooyman, Robert M.; Laumonier, Yves; Laurance, Susan G.; Laurance, William F.; Lawes, Michael J.; Letcher, Susan G.; Lindsell, Jeremy; Lovett, Jon; Lozada, Jose; Lu, Xinghui; Lykke, Anne Mette; Mahmud, Bin Khairil; Mahayani, Ni Putu Diana; Mansor, Asyraf; Marshall, Andrew R.; Martin, Emanuel H.; Matos, Darley Calderado Leal; Meave, Jorge A.; Melo, Felipe P.L.; Mendoza, Zhofre Huberto Aguirre; Metali, Faizah; Medjibe, Vincent P.; Metzger, Jean Paul; Metzker, Thiago; Mohandass, D.; Munguía-Rosas, Miguel A.; Muñoz, Rodrigo; Nurtjahy, Eddy; Oliveira, De Eddie Lenza; Onrizal,; Parolin, Pia; Parren, Marc; Parthasarathy, N.; Paudel, Ekananda; Perez, Rolando; Pérez-García, Eduardo A.; Pommer, Ulf; Poorter, Lourens; Qi, Lan; Piedade, Maria Teresa F.; Pinto, José Roberto Rodrigues; Poulsen, Axel Dalberg; Poulsen, John R.; Powers, Jennifer S.; Prasad, Rama Chandra; Puyravaud, Jean Philippe; Rangel, Orlando; Reitsma, Jan; Rocha, Diogo S.B.; Rolim, Samir; Rovero, Francesco; Rozak, Andes; Ruokolainen, Kalle; Rutishauser, Ervan; Rutten, Gemma; Mohd Said, Mohd Nizam; Saiter, Felipe Z.; Saner, Philippe; Santos, Braulio; Santos, Dos João Roberto; Sarker, Swapan Kumar; Schmitt, Christine B.; Schoengart, Jochen; Schulze, Mark; Sheil, Douglas; Sist, Plinio; Souza, Alexandre F.; Spironello, Wilson Roberto; Sposito, Tereza; Steinmetz, Robert; Stevart, Tariq; Suganuma, Marcio Seiji; Sukri, Rahayu; Sultana, Aisha; Sukumar, Raman; Sunderland, Terry; Supriyadi, S.; Suresh, H.S.; Suzuki, Eizi; Tabarelli, Marcelo; Tang, Jianwei; Tanner, Ed V.J.; Targhetta, Natalia; Theilade, Ida; Thomas, Duncan; Timberlake, Jonathan; Morisson Valeriano, De Márcio; Valkenburg, Van Johan; Do, Van Tran; Sam, Van Hoang; Vandermeer, John H.; Verbeeck, Hans; Vetaas, Ole Reidar; Adekunle, Victor; Vieira, Simone A.; Webb, Campbell O.; Webb, Edward L.; Whitfeld, Timothy; Wich, Serge; Williams, John; Wiser, Susan; Wittmann, Florian; Yang, Xiaobo; Yao, C.Y.A.; Yap, Sandra L.; Zahawi, Rakan A.; Zakaria, Rahmad; Zang, Runguo

    2018-01-01

    Knowledge about the biogeographic affinities of the world's tropical forests helps to better understand regional differences in forest structure, diversity, composition, and dynamics. Such understanding will enable anticipation of region-specific responses to global environmental change. Modern

  16. SUSTAINING CARBON SINK POTENTIALS IN TROPICAL FOREST ...

    African Journals Online (AJOL)

    HP

    the role of tropical forests with respect to climate change from being sources of carbon emissions to .... Most tropical forests are already doomed but present effort can still save the remaining resources for the .... the machines, and electric power for the outside would reduce emissions and valorize these residues, which can ...

  17. Nutrient cycling in primary, secondary forests and cocoa plantation ...

    African Journals Online (AJOL)

    Less leaf litter production and high rainfall regimes in South America and southeast Asia probably contributed to the lower annual nutrient fluxes recorded than that of the dry semi-deciduous tropical forest in Ghana. The soil under cocoa plantation was higher in Ca than in the secondary and primary forests soils.

  18. Original Paper Floristic and structural changes in secondary forests ...

    African Journals Online (AJOL)

    http://ajol.info/index.php/ijbcs http://indexmedicus.afro.who.int. Floristic and structural changes ... This study aims at providing quantitative information on floristic composition and structure of the Lama secondary forests (Benin), so as to contribute to ...... Seedling recruitment in a hurricane- driven tropical forest: light limitation,.

  19. Forest structure in low diversity tropical forests: a study of Hawaiian wet and dry forests

    Science.gov (United States)

    R. Ostertag; F. Inman-Narahari; S. Cordell; C.P. Giardina; L. Sack

    2014-01-01

    The potential influence of diversity on ecosystem structure and function remains a topic of significant debate, especially for tropical forests where diversity can range widely. We used Center for Tropical Forest Science (CTFS) methodology to establish forest dynamics plots in montane wet forest and lowland dry forest on Hawai‘i Island. We compared the species...

  20. Functional ecology of tropical forest recovery

    NARCIS (Netherlands)

    Lohbeck, M.W.M.

    2014-01-01

    Electronic abstract of the thesis for the library for the acquisitions department of Wageningen UR library (published as a html file so hyperlinks may be included) In English, one or 2 pages. Functional ecology of tropical forest recovery Currently in the tropics, the area of

  1. Diversity enhances carbon storage in tropical forests

    NARCIS (Netherlands)

    Poorter, L.; Sande, van der M.T.; Thompson, J.; Arets, E.J.M.M.; Bongers, F.; Steege, ter H.; Pena Claros, M.; Hoosbeek, M.R.; Dutrieux, L.P.; Levis, C.

    2015-01-01

    Aim Tropical forests store 25% of global carbon and harbour 96% of the world's tree species, but it is not clear whether this high biodiversity matters for carbon storage. Few studies have teased apart the relative importance of forest attributes and environmental drivers for ecosystem functioning,

  2. Life in Tropical Rain Forests.

    Science.gov (United States)

    NatureScope, 1989

    1989-01-01

    Discusses the diversity of rain forest life, the adaptations of rain forest plants and animals, and ways these organisms interact. Includes activities on canopy critters with a copyable sheet, rain forest revue, design a plant, and jungle sleuths. (RT)

  3. Tropical Forest Gain and Interactions amongst Agents of Forest Change

    Directory of Open Access Journals (Sweden)

    Sean Sloan

    2016-02-01

    Full Text Available The tropical deforestation literature advocates multi-agent enquiry in recognition that key dynamics arise from inter-agent interactions. Studies of tropical forest-cover gain have lagged in this respect. This article explores the roles and key aspects of interactions shaping natural forest regeneration and active reforestation in Eastern Panama since 1990. It employs household surveys of agricultural landholders, interviews with community forest-restoration organisations, archival analysis of plantation reforestation interests, satellite image analysis of forest-cover change, and the consideration of State reforestation policies. Forest-cover gain reflected a convergence of interests and land-use trends amongst agents. Low social and economic costs of sustained interaction and organisation enabled extensive forest-cover gain, but low transaction costs did not. Corporate plantation reforestation rose to the fore of regional forest-cover gain via opportunistic land sales by ranchers and economic subsidies indicative of a State preference for autonomous, self-organising forest-cover gain. This reforestation follows a recent history of neoliberal frontier development in which State-backed loggers and ranchers similarly displaced agriculturalists. Community institutions, long neglected by the State, struggled to coordinate landholders and so effected far less forest-cover gain. National and international commitments to tropical forest restoration risk being similarly characterised as ineffective by a predominance of industrial plantation reforestation without greater State support for community forest management.

  4. Tropical forest light regimes in a human-modified landscape.

    Science.gov (United States)

    Fauset, Sophie; Gloor, Manuel U; Aidar, Marcos P M; Freitas, Helber C; Fyllas, Nikolaos M; Marabesi, Mauro A; Rochelle, André L C; Shenkin, Alexander; Vieira, Simone A; Joly, Carlos A

    2017-11-01

    Light is the key energy input for all vegetated systems. Forest light regimes are complex, with the vertical pattern of light within canopies influenced by forest structure. Human disturbances in tropical forests impact forest structure and hence may influence the light environment and thus competitiveness of different trees. In this study, we measured vertical diffuse light profiles along a gradient of anthropogenic disturbance, sampling intact, logged, secondary, and fragmented sites in the biodiversity hot spot of the Atlantic forest, southeast Brazil, using photosynthetically active radiation sensors and a novel approach with estimations of vertical light profiles from hemispherical photographs. Our results show clear differences in vertical light profiles with disturbance: Fragmented forests are characterized by rapid light extinction within their low canopies, while the profiles in logged forests show high heterogeneity and high light in the mid-canopy despite decades of recovery. The secondary forest showed similar light profiles to intact forest, but with a lower canopy height. We also show that in some cases the upper canopy layer and heavy liana infestations can severely limit light penetration. Light extinction with height above the ground and depth below the canopy top was highest in fragmented forest and negatively correlated with canopy height. The novel, inexpensive, and rapid methods described here can be applied to other sites to quantify rarely measured vertical light profiles.

  5. Tropical forests and the changing earth system.

    Science.gov (United States)

    Lewis, Simon L

    2006-01-29

    Tropical forests are global epicentres of biodiversity and important modulators of the rate of climate change. Recent research on deforestation rates and ecological changes within intact forests, both areas of recent research and debate, are reviewed, and the implications for biodiversity (species loss) and climate change (via the global carbon cycle) addressed. Recent impacts have most likely been: (i) a large source of carbon to the atmosphere, and major loss of species, from deforestation and (ii) a large carbon sink within remaining intact forest, accompanied by accelerating forest dynamism and widespread biodiversity changes. Finally, I look to the future, suggesting that the current carbon sink in intact forests is unlikely to continue, and that the tropical forest biome may even become a large net source of carbon, via one or more of four plausible routes: changing photosynthesis and respiration rates, biodiversity changes in intact forest, widespread forest collapse via drought, and widespread forest collapse via fire. Each of these scenarios risks potentially dangerous positive feedbacks with the climate system that could dramatically accelerate and intensify climate change. Given that continued land-use change alone is already thought to be causing the sixth mass extinction event in Earth's history, should such feedbacks occur, the resulting biodiversity and societal consequences would be even more severe.

  6. Phylogenetic classification of the world's tropical forests.

    Science.gov (United States)

    Slik, J W Ferry; Franklin, Janet; Arroyo-Rodríguez, Víctor; Field, Richard; Aguilar, Salomon; Aguirre, Nikolay; Ahumada, Jorge; Aiba, Shin-Ichiro; Alves, Luciana F; K, Anitha; Avella, Andres; Mora, Francisco; Aymard C, Gerardo A; Báez, Selene; Balvanera, Patricia; Bastian, Meredith L; Bastin, Jean-François; Bellingham, Peter J; van den Berg, Eduardo; da Conceição Bispo, Polyanna; Boeckx, Pascal; Boehning-Gaese, Katrin; Bongers, Frans; Boyle, Brad; Brambach, Fabian; Brearley, Francis Q; Brown, Sandra; Chai, Shauna-Lee; Chazdon, Robin L; Chen, Shengbin; Chhang, Phourin; Chuyong, George; Ewango, Corneille; Coronado, Indiana M; Cristóbal-Azkarate, Jurgi; Culmsee, Heike; Damas, Kipiro; Dattaraja, H S; Davidar, Priya; DeWalt, Saara J; Din, Hazimah; Drake, Donald R; Duque, Alvaro; Durigan, Giselda; Eichhorn, Karl; Eler, Eduardo Schmidt; Enoki, Tsutomu; Ensslin, Andreas; Fandohan, Adandé Belarmain; Farwig, Nina; Feeley, Kenneth J; Fischer, Markus; Forshed, Olle; Garcia, Queila Souza; Garkoti, Satish Chandra; Gillespie, Thomas W; Gillet, Jean-Francois; Gonmadje, Christelle; Granzow-de la Cerda, Iñigo; Griffith, Daniel M; Grogan, James; Hakeem, Khalid Rehman; Harris, David J; Harrison, Rhett D; Hector, Andy; Hemp, Andreas; Homeier, Jürgen; Hussain, M Shah; Ibarra-Manríquez, Guillermo; Hanum, I Faridah; Imai, Nobuo; Jansen, Patrick A; Joly, Carlos Alfredo; Joseph, Shijo; Kartawinata, Kuswata; Kearsley, Elizabeth; Kelly, Daniel L; Kessler, Michael; Killeen, Timothy J; Kooyman, Robert M; Laumonier, Yves; Laurance, Susan G; Laurance, William F; Lawes, Michael J; Letcher, Susan G; Lindsell, Jeremy; Lovett, Jon; Lozada, Jose; Lu, Xinghui; Lykke, Anne Mette; Mahmud, Khairil Bin; Mahayani, Ni Putu Diana; Mansor, Asyraf; Marshall, Andrew R; Martin, Emanuel H; Calderado Leal Matos, Darley; Meave, Jorge A; Melo, Felipe P L; Mendoza, Zhofre Huberto Aguirre; Metali, Faizah; Medjibe, Vincent P; Metzger, Jean Paul; Metzker, Thiago; Mohandass, D; Munguía-Rosas, Miguel A; Muñoz, Rodrigo; Nurtjahy, Eddy; de Oliveira, Eddie Lenza; Onrizal; Parolin, Pia; Parren, Marc; Parthasarathy, N; Paudel, Ekananda; Perez, Rolando; Pérez-García, Eduardo A; Pommer, Ulf; Poorter, Lourens; Qie, Lan; Piedade, Maria Teresa F; Pinto, José Roberto Rodrigues; Poulsen, Axel Dalberg; Poulsen, John R; Powers, Jennifer S; Prasad, Rama Chandra; Puyravaud, Jean-Philippe; Rangel, Orlando; Reitsma, Jan; Rocha, Diogo S B; Rolim, Samir; Rovero, Francesco; Rozak, Andes; Ruokolainen, Kalle; Rutishauser, Ervan; Rutten, Gemma; Mohd Said, Mohd Nizam; Saiter, Felipe Z; Saner, Philippe; Santos, Braulio; Dos Santos, João Roberto; Sarker, Swapan Kumar; Schmitt, Christine B; Schoengart, Jochen; Schulze, Mark; Sheil, Douglas; Sist, Plinio; Souza, Alexandre F; Spironello, Wilson Roberto; Sposito, Tereza; Steinmetz, Robert; Stevart, Tariq; Suganuma, Marcio Seiji; Sukri, Rahayu; Sultana, Aisha; Sukumar, Raman; Sunderland, Terry; Supriyadi; Suresh, H S; Suzuki, Eizi; Tabarelli, Marcelo; Tang, Jianwei; Tanner, Ed V J; Targhetta, Natalia; Theilade, Ida; Thomas, Duncan; Timberlake, Jonathan; de Morisson Valeriano, Márcio; van Valkenburg, Johan; Van Do, Tran; Van Sam, Hoang; Vandermeer, John H; Verbeeck, Hans; Vetaas, Ole Reidar; Adekunle, Victor; Vieira, Simone A; Webb, Campbell O; Webb, Edward L; Whitfeld, Timothy; Wich, Serge; Williams, John; Wiser, Susan; Wittmann, Florian; Yang, Xiaobo; Adou Yao, C Yves; Yap, Sandra L; Zahawi, Rakan A; Zakaria, Rahmad; Zang, Runguo

    2018-02-20

    Knowledge about the biogeographic affinities of the world's tropical forests helps to better understand regional differences in forest structure, diversity, composition, and dynamics. Such understanding will enable anticipation of region-specific responses to global environmental change. Modern phylogenies, in combination with broad coverage of species inventory data, now allow for global biogeographic analyses that take species evolutionary distance into account. Here we present a classification of the world's tropical forests based on their phylogenetic similarity. We identify five principal floristic regions and their floristic relationships: ( i ) Indo-Pacific, ( ii ) Subtropical, ( iii ) African, ( iv ) American, and ( v ) Dry forests. Our results do not support the traditional neo- versus paleotropical forest division but instead separate the combined American and African forests from their Indo-Pacific counterparts. We also find indications for the existence of a global dry forest region, with representatives in America, Africa, Madagascar, and India. Additionally, a northern-hemisphere Subtropical forest region was identified with representatives in Asia and America, providing support for a link between Asian and American northern-hemisphere forests. Copyright © 2018 the Author(s). Published by PNAS.

  7. Diversity and carbon storage across the tropical forest biome

    NARCIS (Netherlands)

    Sullivan, Martin J.P.; Talbot, Joey; Lewis, Simon L.; Phillips, Oliver L.; Qie, Lan; Begne, Serge K.; Chave, Jerôme; Cuni-Sanchez, Aida; Hubau, Wannes; Lopez-Gonzalez, Gabriela; Bongers, Frans; Peña-Claros, Marielos; Sheil, Douglas

    2017-01-01

    Tropical forests are global centres of biodiversity and carbon storage. Many tropical countries aspire to protect forest to fulfil biodiversity and climate mitigation policy targets, but the conservation strategies needed to achieve these two functions depend critically on the tropical forest

  8. Will concern for biodiversity spell doom to tropical forest management?

    Science.gov (United States)

    A.E. Lugo

    1999-01-01

    Arguments against active tropical management are analyzed in light of available data and new research that shows tropical forests to be more resilient after disturbances than previously thought. Tropical forest management involves a diverse array of human activity embedded in a complex social and natural environment. Within this milieu, forest structure and composition...

  9. Design considerations for tropical forest inventories

    Directory of Open Access Journals (Sweden)

    Ronald Edward McRoberts

    2013-06-01

    Full Text Available Forests contribute substantially to maintaining the global greenhouse gas balance, primarily because among the five economic sectors identified by the United Nations Framework Convention on Climate Change, only the forestry sector has the potential to remove greenhouse gas emissions from the atmosphere. In this context, development of national forest carbon accounting systems, particularly in countries with tropical forests, has emerged as an international priority. Because these systems are often developed as components of or in parallel with national forest inventories, a brief review of statistical issues related to the development of forest ground sampling designs is provided. This overview addresses not only the primary issues of plot configurations and sampling designs, but also to a lesser extent the emerging roles of remote sensing and uncertainty assessment. Basic inventory principles are illustrated for two case studies, the national forest inventory of Brazil with special emphasis on the state of Santa Catarina, and an inventory for Tanzania.

  10. Forest structure in low-diversity tropical forests: a study of Hawaiian wet and dry forests.

    Science.gov (United States)

    Ostertag, Rebecca; Inman-Narahari, Faith; Cordell, Susan; Giardina, Christian P; Sack, Lawren

    2014-01-01

    The potential influence of diversity on ecosystem structure and function remains a topic of significant debate, especially for tropical forests where diversity can range widely. We used Center for Tropical Forest Science (CTFS) methodology to establish forest dynamics plots in montane wet forest and lowland dry forest on Hawai'i Island. We compared the species diversity, tree density, basal area, biomass, and size class distributions between the two forest types. We then examined these variables across tropical forests within the CTFS network. Consistent with other island forests, the Hawai'i forests were characterized by low species richness and very high relative dominance. The two Hawai'i forests were floristically distinct, yet similar in species richness (15 vs. 21 species) and stem density (3078 vs. 3486/ha). While these forests were selected for their low invasive species cover relative to surrounding forests, both forests averaged 5->50% invasive species cover; ongoing removal will be necessary to reduce or prevent competitive impacts, especially from woody species. The montane wet forest had much larger trees, resulting in eightfold higher basal area and above-ground biomass. Across the CTFS network, the Hawaiian montane wet forest was similar to other tropical forests with respect to diameter distributions, density, and aboveground biomass, while the Hawai'i lowland dry forest was similar in density to tropical forests with much higher diversity. These findings suggest that forest structural variables can be similar across tropical forests independently of species richness. The inclusion of low-diversity Pacific Island forests in the CTFS network provides an ∼80-fold range in species richness (15-1182 species), six-fold variation in mean annual rainfall (835-5272 mm yr(-1)) and 1.8-fold variation in mean annual temperature (16.0-28.4°C). Thus, the Hawaiian forest plots expand the global forest plot network to enable testing of ecological theory for

  11. Defaunation affects carbon storage in tropical forests.

    Science.gov (United States)

    Bello, Carolina; Galetti, Mauro; Pizo, Marco A; Magnago, Luiz Fernando S; Rocha, Mariana F; Lima, Renato A F; Peres, Carlos A; Ovaskainen, Otso; Jordano, Pedro

    2015-12-01

    Carbon storage is widely acknowledged as one of the most valuable forest ecosystem services. Deforestation, logging, fragmentation, fire, and climate change have significant effects on tropical carbon stocks; however, an elusive and yet undetected decrease in carbon storage may be due to defaunation of large seed dispersers. Many large tropical trees with sizeable contributions to carbon stock rely on large vertebrates for seed dispersal and regeneration, however many of these frugivores are threatened by hunting, illegal trade, and habitat loss. We used a large data set on tree species composition and abundance, seed, fruit, and carbon-related traits, and plant-animal interactions to estimate the loss of carbon storage capacity of tropical forests in defaunated scenarios. By simulating the local extinction of trees that depend on large frugivores in 31 Atlantic Forest communities, we found that defaunation has the potential to significantly erode carbon storage even when only a small proportion of large-seeded trees are extirpated. Although intergovernmental policies to reduce carbon emissions and reforestation programs have been mostly focused on deforestation, our results demonstrate that defaunation, and the loss of key ecological interactions, also poses a serious risk for the maintenance of tropical forest carbon storage.

  12. Modelling tropical forests response to logging

    Science.gov (United States)

    Cazzolla Gatti, Roberto; Di Paola, Arianna; Valentini, Riccardo; Paparella, Francesco

    2013-04-01

    Tropical rainforests are among the most threatened ecosystems by large-scale fragmentation due to human activity such as heavy logging and agricultural clearance. Although, they provide crucial ecosystem goods and services, such as sequestering carbon from the atmosphere, protecting watersheds and conserving biodiversity. In several countries forest resource extraction has experienced a shift from clearcutting to selective logging to maintain a significant forest cover and understock of living biomass. However the knowledge on the short and long-term effects of removing selected species in tropical rainforest are scarce and need to be further investigated. One of the main effects of selective logging on forest dynamics seems to be the local disturbance which involve the invasion of open space by weed, vines and climbers at the expense of the late-successional state cenosis. We present a simple deterministic model that describes the dynamics of tropical rainforest subject to selective logging to understand how and why weeds displace native species. We argue that the selective removal of tallest tropical trees carries out gaps of light that allow weeds, vines and climbers to prevail on native species, inhibiting the possibility of recovery of the original vegetation. Our results show that different regime shifts may occur depending on the type of forest management adopted. This hypothesis is supported by a dataset of trees height and weed/vines cover that we collected from 9 plots located in Central and West Africa both in untouched and managed areas.

  13. Functional ecology of tropical forest recovery

    NARCIS (Netherlands)

    Lohbeck, M.W.M.

    2014-01-01

    Electronic abstract of the thesis for the library for the acquisitions department of Wageningen UR library (published as a html file so hyperlinks may be included)

    In English, one or 2 pages.

    Functional ecology of tropical forest recovery

    Currently in the

  14. Biodiversity and the functioning of tropical forests

    NARCIS (Netherlands)

    Sande, van der M.T.

    2016-01-01

    Tropical forests are the most diverse terrestrial ecosystems. Moreover, their capacity for removal of carbon from the atmosphere makes them important for climate change mitigation. Theories predict that species use resources in a different way, and therefore high species diversity would result in

  15. Global patterns of tropical forest fragmentation

    Science.gov (United States)

    Taubert, Franziska; Fischer, Rico; Groeneveld, Jürgen; Lehmann, Sebastian; Müller, Michael S.; Rödig, Edna; Wiegand, Thorsten; Huth, Andreas

    2018-02-01

    Remote sensing enables the quantification of tropical deforestation with high spatial resolution. This in-depth mapping has led to substantial advances in the analysis of continent-wide fragmentation of tropical forests. Here we identified approximately 130 million forest fragments in three continents that show surprisingly similar power-law size and perimeter distributions as well as fractal dimensions. Power-law distributions have been observed in many natural phenomena such as wildfires, landslides and earthquakes. The principles of percolation theory provide one explanation for the observed patterns, and suggest that forest fragmentation is close to the critical point of percolation; simulation modelling also supports this hypothesis. The observed patterns emerge not only from random deforestation, which can be described by percolation theory, but also from a wide range of deforestation and forest-recovery regimes. Our models predict that additional forest loss will result in a large increase in the total number of forest fragments—at maximum by a factor of 33 over 50 years—as well as a decrease in their size, and that these consequences could be partly mitigated by reforestation and forest protection.

  16. Cutover tropical forest productivity potential merits assessment, Puerto Rico

    Science.gov (United States)

    Frank H. Wadsworth; Brynne Bryan; Julio Figueroa-Colón

    2010-01-01

    Timber extraction continues to add to vast cutover tropical forests. They are unattractive economically because of the loss of merchantable timber and the long delay foreseen for recovery. Despite this, wood in cutover tropical forests is in line to become more marketable as demand continues and old-growth forests become less accessible. In a cutover forest in Puerto...

  17. Forest production for tropical America. Agriculture handbook

    Energy Technology Data Exchange (ETDEWEB)

    Wadsworth, F.H.

    1997-12-01

    This book is concerned primarily with wood production. Without the direct economic returns possible therefrom, the other, less tangible benefits that accrue from forests are in jeopardy in the face of developmental pressures driven by more attractive direct financial incentives. Nevertheless, multiple benefits from forests are inseparable, so the goal should be to make forest productive for all purposes. Forest production, then, as here defined refers to all the values of forests, including those primarily esthetic. The text emphasizes two vital relations. One is that forestry is ecological. Forest managers must be oriented to accept ecological information fundamental to goals and practices. A rift between the two disciplines that exists elsewhere must not intensify in tropical America. Forest production is forestry, not ecology, but intimacy between the two disciplines is mutually vital. The second relation emphasized in the book is that in productive forest management the animal component is as crucial as the plants, The value of animals to forest ecosystems goes far beyond their physical attraction.

  18. Tropical forest policies for the global climate

    International Nuclear Information System (INIS)

    De Groot, W.T.; Kamminga, E.M.

    1995-01-01

    A summary is given of the approach and findings of the NRP project 'Local Actors and Global Tree Cover Policies'. The aim of this project was to identify the most effective and efficient options for global climate policies focusing on the tropical forest. Tropical deforestation is a process with very complex and variable causes. In the project's conclusions, therefore, much care has been given to arrive at a coherent image of what really counts most in the myriad of factors, actors, policy levels and policy options. 5 refs

  19. Multiple successional pathways in human-modified tropical landscapes: new insights from forest succession, forest fragmentation and landscape ecology research.

    Science.gov (United States)

    Arroyo-Rodríguez, Víctor; Melo, Felipe P L; Martínez-Ramos, Miguel; Bongers, Frans; Chazdon, Robin L; Meave, Jorge A; Norden, Natalia; Santos, Bráulio A; Leal, Inara R; Tabarelli, Marcelo

    2017-02-01

    Old-growth tropical forests are being extensively deforested and fragmented worldwide. Yet forest recovery through succession has led to an expansion of secondary forests in human-modified tropical landscapes (HMTLs). Secondary forests thus emerge as a potential repository for tropical biodiversity, and also as a source of essential ecosystem functions and services in HMTLs. Such critical roles are controversial, however, as they depend on successional, landscape and socio-economic dynamics, which can vary widely within and across landscapes and regions. Understanding the main drivers of successional pathways of disturbed tropical forests is critically needed for improving management, conservation, and restoration strategies. Here, we combine emerging knowledge from tropical forest succession, forest fragmentation and landscape ecology research to identify the main driving forces shaping successional pathways at different spatial scales. We also explore causal connections between land-use dynamics and the level of predictability of successional pathways, and examine potential implications of such connections to determine the importance of secondary forests for biodiversity conservation in HMTLs. We show that secondary succession (SS) in tropical landscapes is a multifactorial phenomenon affected by a myriad of forces operating at multiple spatio-temporal scales. SS is relatively fast and more predictable in recently modified landscapes and where well-preserved biodiversity-rich native forests are still present in the landscape. Yet the increasing variation in landscape spatial configuration and matrix heterogeneity in landscapes with intermediate levels of disturbance increases the uncertainty of successional pathways. In landscapes that have suffered extensive and intensive human disturbances, however, succession can be slow or arrested, with impoverished assemblages and reduced potential to deliver ecosystem functions and services. We conclude that: (i

  20. Palm Harvest Impact on Tropical Forests

    DEFF Research Database (Denmark)

    Balslev, Henrik; Eiserhardt, Wolf L.

    Palms are the most useful group of plants in tropical American forests and in this project we study the effect of extraction and trade of palms on forest in the western Amazon, Andes and Pacific lowlands. We determine the size of the resource by making palm community studies in the different forest...... formations and determine the number of species and individuals of all palm species. The genetic structure of useful palm species is studied to determine how much harvesting of the species contributes to genetic erosion of its populations, and whether extraction can be made without harm. We determine how much...... palms are used for subsistence purposes by carrying out quantitative, ethnobotanical research in different forest types and we also study trade patterns for palm products from local markets to markets that involve export to other countries and continents. We study different ways in which palms...

  1. Height-diameter allometry of tropical forest trees

    Science.gov (United States)

    T.R. Feldpausch; L. Banin; O.L. Phillips; T.R. Baker; S.L. Lewis; C.A. Quesada; K. Affum-Baffoe; E.J.M.M. Arets; N.J. Berry; M. Bird; E.S. Brondizio; P de Camargo; J. Chave; G. Djagbletey; T.F. Domingues; M. Drescher; P.M. Fearnside; M.B. Franca; N.M. Fyllas; G. Lopez-Gonzalez; A. Hladik; N. Higuchi; M.O. Hunter; Y. Iida; K.A. Salim; A.R. Kassim; M. Keller; J. Kemp; D.A. King; J.C. Lovett; B.S. Marimon; B.H. Marimon-Junior; E. Lenza; A.R. Marshall; D.J. Metcalfe; E.T.A. Mitchard; E.F. Moran; B.W. Nelson; R. Nilus; E.M. Nogueira; M. Palace; S. Patiño; K.S.-H. Peh; M.T. Raventos; J.M. Reitsma; G. Saiz; F. Schrodt; B. Sonke; H.E. Taedoumg; S. Tan; L. White; H. Woll; J. Lloyd

    2011-01-01

    Tropical tree height-diameter (H:D) relationships may vary by forest type and region making large-scale estimates of above-ground biomass subject to bias if they ignore these differences in stem allometry. We have therefore developed a new global tropical forest database consisting of 39 955 concurrent H and D measurements encompassing 283 sites in 22 tropical...

  2. Soil-mediated filtering organizes tree assemblages in regenerating tropical forests

    NARCIS (Netherlands)

    Pinho, Bruno Ximenes; Melo, de Felipe Pimentel Lopes; Arroyo-Rodríguez, Víctor; Pierce, Simon; Lohbeck, Madelon; Tabarelli, Marcelo

    2018-01-01

    Secondary forests are increasingly dominant in human-modified tropical landscapes, but the drivers of forest recovery remain poorly understood. Soil conditions influence plant community composition, and are expected to change over a gradient of succession. However, the role of soil conditions as

  3. Isoprene emission from tropical forest canopy leaves

    Science.gov (United States)

    Keller, Michael; Lerdau, Manuel

    1999-03-01

    We screened 51 species of trees and vines for isoprene emission by using a tower crane to gain access to the top of the canopy in a semideciduous forest in the Republic of Panama. Of the species screened, 15 emitted isoprene at rates greater than 0.8 nmol m-2 s-1. We measured the influence of light and temperature on emissions. The species-dependent emission rates at 303 K and 1000 μmol m-2 s-1 of incident photosynthetically active radiation ranged from 9 to 43 nmol m-2 s-1 with coefficients of variation of about 20%. Isoprene emission showed a hyperbolic response to light intensity and an exponential response to temperature. We modified an existing algorithm developed for temperate plants to fit the temperature response of these tropical species. We suggest a new algorithm to fit the light response of isoprene emission. The new and modified algorithms are compared to the algorithms developed for temperate plants that are used in global models of isoprene emission. Both sets of algorithms also are compared to additional validation data collected in Panama and to published data on isoprene emission from a tropical dry forest in Puerto Rico. Our comparisons suggest that algorithms developed for temperate plants can significantly underestimate isoprene emissions from tropical forests at high-light and high-temperature levels.

  4. Statistical strategies for global monitoring of tropical forests

    Science.gov (United States)

    Raymond L. Czaplewski

    1991-01-01

    The Food and Agricultural Organization (FAO) of the United Nations is conducting a global assessment of tropical forest resources, which will be accomplished by mid-1992. This assessment requires, in part, estimates of the total area of tropical forest cover in 1990, and the rate of change in forest cover between 1980 and 1990. This paper describes: (1) the strategic...

  5. Management of tropical forests for products and energy

    Science.gov (United States)

    John I. Zerbe

    1992-01-01

    Tropical forests have always been sources for prized timbers, rubber, tannin, and other forest products for use worldwide. However, with the recent concern regarding global change, the importance of effective forest products management and utilization has increased significantly. The USDA Forest Service's Forest Products Laboratory at Madison, Wisconsin, has...

  6. Forest Structure in Low-Diversity Tropical Forests: A Study of Hawaiian Wet and Dry Forests

    Science.gov (United States)

    Ostertag, Rebecca; Inman-Narahari, Faith; Cordell, Susan; Giardina, Christian P.; Sack, Lawren

    2014-01-01

    The potential influence of diversity on ecosystem structure and function remains a topic of significant debate, especially for tropical forests where diversity can range widely. We used Center for Tropical Forest Science (CTFS) methodology to establish forest dynamics plots in montane wet forest and lowland dry forest on Hawai‘i Island. We compared the species diversity, tree density, basal area, biomass, and size class distributions between the two forest types. We then examined these variables across tropical forests within the CTFS network. Consistent with other island forests, the Hawai‘i forests were characterized by low species richness and very high relative dominance. The two Hawai‘i forests were floristically distinct, yet similar in species richness (15 vs. 21 species) and stem density (3078 vs. 3486/ha). While these forests were selected for their low invasive species cover relative to surrounding forests, both forests averaged 5–>50% invasive species cover; ongoing removal will be necessary to reduce or prevent competitive impacts, especially from woody species. The montane wet forest had much larger trees, resulting in eightfold higher basal area and above-ground biomass. Across the CTFS network, the Hawaiian montane wet forest was similar to other tropical forests with respect to diameter distributions, density, and aboveground biomass, while the Hawai‘i lowland dry forest was similar in density to tropical forests with much higher diversity. These findings suggest that forest structural variables can be similar across tropical forests independently of species richness. The inclusion of low-diversity Pacific Island forests in the CTFS network provides an ∼80-fold range in species richness (15–1182 species), six-fold variation in mean annual rainfall (835–5272 mm yr−1) and 1.8-fold variation in mean annual temperature (16.0–28.4°C). Thus, the Hawaiian forest plots expand the global forest plot network to enable testing of

  7. Forest structure in low-diversity tropical forests: a study of Hawaiian wet and dry forests.

    Directory of Open Access Journals (Sweden)

    Rebecca Ostertag

    Full Text Available The potential influence of diversity on ecosystem structure and function remains a topic of significant debate, especially for tropical forests where diversity can range widely. We used Center for Tropical Forest Science (CTFS methodology to establish forest dynamics plots in montane wet forest and lowland dry forest on Hawai'i Island. We compared the species diversity, tree density, basal area, biomass, and size class distributions between the two forest types. We then examined these variables across tropical forests within the CTFS network. Consistent with other island forests, the Hawai'i forests were characterized by low species richness and very high relative dominance. The two Hawai'i forests were floristically distinct, yet similar in species richness (15 vs. 21 species and stem density (3078 vs. 3486/ha. While these forests were selected for their low invasive species cover relative to surrounding forests, both forests averaged 5->50% invasive species cover; ongoing removal will be necessary to reduce or prevent competitive impacts, especially from woody species. The montane wet forest had much larger trees, resulting in eightfold higher basal area and above-ground biomass. Across the CTFS network, the Hawaiian montane wet forest was similar to other tropical forests with respect to diameter distributions, density, and aboveground biomass, while the Hawai'i lowland dry forest was similar in density to tropical forests with much higher diversity. These findings suggest that forest structural variables can be similar across tropical forests independently of species richness. The inclusion of low-diversity Pacific Island forests in the CTFS network provides an ∼80-fold range in species richness (15-1182 species, six-fold variation in mean annual rainfall (835-5272 mm yr(-1 and 1.8-fold variation in mean annual temperature (16.0-28.4°C. Thus, the Hawaiian forest plots expand the global forest plot network to enable testing of ecological

  8. Tropical forest transitions: structural changes in forest area, composition and landscape

    NARCIS (Netherlands)

    Wiersum, K.F.

    2014-01-01

    Most studies on tropical forest dynamics focus on the processes of deforestation and forest degradation and its associated ecological impacts; comparatively little attention is given to the emergence of forest transitions. This review gives an overview of forest transitions in the tropics as

  9. Diversity and carbon storage across the tropical forest biome

    Science.gov (United States)

    Sullivan, Martin J. P.; Talbot, Joey; Lewis, Simon L.; Phillips, Oliver L.; Qie, Lan; Begne, Serge K.; Chave, Jerôme; Cuni-Sanchez, Aida; Hubau, Wannes; Lopez-Gonzalez, Gabriela; Miles, Lera; Monteagudo-Mendoza, Abel; Sonké, Bonaventure; Sunderland, Terry; Ter Steege, Hans; White, Lee J. T.; Affum-Baffoe, Kofi; Aiba, Shin-Ichiro; de Almeida, Everton Cristo; de Oliveira, Edmar Almeida; Alvarez-Loayza, Patricia; Dávila, Esteban Álvarez; Andrade, Ana; Aragão, Luiz E. O. C.; Ashton, Peter; Aymard C., Gerardo A.; Baker, Timothy R.; Balinga, Michael; Banin, Lindsay F.; Baraloto, Christopher; Bastin, Jean-Francois; Berry, Nicholas; Bogaert, Jan; Bonal, Damien; Bongers, Frans; Brienen, Roel; Camargo, José Luís C.; Cerón, Carlos; Moscoso, Victor Chama; Chezeaux, Eric; Clark, Connie J.; Pacheco, Álvaro Cogollo; Comiskey, James A.; Valverde, Fernando Cornejo; Coronado, Eurídice N. Honorio; Dargie, Greta; Davies, Stuart J.; de Canniere, Charles; Djuikouo K., Marie Noel; Doucet, Jean-Louis; Erwin, Terry L.; Espejo, Javier Silva; Ewango, Corneille E. N.; Fauset, Sophie; Feldpausch, Ted R.; Herrera, Rafael; Gilpin, Martin; Gloor, Emanuel; Hall, Jefferson S.; Harris, David J.; Hart, Terese B.; Kartawinata, Kuswata; Kho, Lip Khoon; Kitayama, Kanehiro; Laurance, Susan G. W.; Laurance, William F.; Leal, Miguel E.; Lovejoy, Thomas; Lovett, Jon C.; Lukasu, Faustin Mpanya; Makana, Jean-Remy; Malhi, Yadvinder; Maracahipes, Leandro; Marimon, Beatriz S.; Junior, Ben Hur Marimon; Marshall, Andrew R.; Morandi, Paulo S.; Mukendi, John Tshibamba; Mukinzi, Jaques; Nilus, Reuben; Vargas, Percy Núñez; Camacho, Nadir C. Pallqui; Pardo, Guido; Peña-Claros, Marielos; Pétronelli, Pascal; Pickavance, Georgia C.; Poulsen, Axel Dalberg; Poulsen, John R.; Primack, Richard B.; Priyadi, Hari; Quesada, Carlos A.; Reitsma, Jan; Réjou-Méchain, Maxime; Restrepo, Zorayda; Rutishauser, Ervan; Salim, Kamariah Abu; Salomão, Rafael P.; Samsoedin, Ismayadi; Sheil, Douglas; Sierra, Rodrigo; Silveira, Marcos; Slik, J. W. Ferry; Steel, Lisa; Taedoumg, Hermann; Tan, Sylvester; Terborgh, John W.; Thomas, Sean C.; Toledo, Marisol; Umunay, Peter M.; Gamarra, Luis Valenzuela; Vieira, Ima Célia Guimarães; Vos, Vincent A.; Wang, Ophelia; Willcock, Simon; Zemagho, Lise

    2017-01-01

    Tropical forests are global centres of biodiversity and carbon storage. Many tropical countries aspire to protect forest to fulfil biodiversity and climate mitigation policy targets, but the conservation strategies needed to achieve these two functions depend critically on the tropical forest tree diversity-carbon storage relationship. Assessing this relationship is challenging due to the scarcity of inventories where carbon stocks in aboveground biomass and species identifications have been simultaneously and robustly quantified. Here, we compile a unique pan-tropical dataset of 360 plots located in structurally intact old-growth closed-canopy forest, surveyed using standardised methods, allowing a multi-scale evaluation of diversity-carbon relationships in tropical forests. Diversity-carbon relationships among all plots at 1 ha scale across the tropics are absent, and within continents are either weak (Asia) or absent (Amazonia, Africa). A weak positive relationship is detectable within 1 ha plots, indicating that diversity effects in tropical forests may be scale dependent. The absence of clear diversity-carbon relationships at scales relevant to conservation planning means that carbon-centred conservation strategies will inevitably miss many high diversity ecosystems. As tropical forests can have any combination of tree diversity and carbon stocks both require explicit consideration when optimising policies to manage tropical carbon and biodiversity.

  10. Degraded tropical rain forests possess valuable carbon storage opportunities in a complex, forested landscape.

    Science.gov (United States)

    Alamgir, Mohammed; Campbell, Mason J; Turton, Stephen M; Pert, Petina L; Edwards, Will; Laurance, William F

    2016-07-20

    Tropical forests are major contributors to the terrestrial global carbon pool, but this pool is being reduced via deforestation and forest degradation. Relatively few studies have assessed carbon storage in degraded tropical forests. We sampled 37,000 m(2) of intact rainforest, degraded rainforest and sclerophyll forest across the greater Wet Tropics bioregion of northeast Australia. We compared aboveground biomass and carbon storage of the three forest types, and the effects of forest structural attributes and environmental factors that influence carbon storage. Some degraded forests were found to store much less aboveground carbon than intact rainforests, whereas others sites had similar carbon storage to primary forest. Sclerophyll forests had lower carbon storage, comparable to the most heavily degraded rainforests. Our findings indicate that under certain situations, degraded forest may store as much carbon as intact rainforests. Strategic rehabilitation of degraded forests could enhance regional carbon storage and have positive benefits for tropical biodiversity.

  11. Quantitative Analysis of Complex Tropical Forest Stands: A Review ...

    African Journals Online (AJOL)

    The importance of data analysis in quantitative assessment of natural resources remains significant in the sustainable management of complex tropical forest resources. Analyses of data from complex tropical forest stands have not been easy or clear due to improper data management. It is pivotal to practical researches ...

  12. Community ecology of tropical forest snails: 30 years after Solem

    NARCIS (Netherlands)

    Schilthuizen, M.

    2011-01-01

    Since Solem’s provocative claim in the early 1980s that land snails in tropical forests are neither abundant nor diverse, at least 30 quantitative-ecological papers on tropical land snail communities have appeared. Jointly, these papers have shown that site diversity is, in fact, high in tropical

  13. Poverty and corruption compromise tropical forest reserves.

    Science.gov (United States)

    Wright, S Joseph; Sanchez-Azofeifa, G Arturo; Portillo-Quintero, Carlos; Davies, Diane

    2007-07-01

    We used the global fire detection record provided by the satellite-based Moderate Resolution Imaging Spectroradiometer (MODIS) to determine the number of fires detected inside 823 tropical and subtropical moist forest reserves and for contiguous buffer areas 5, 10, and 15 km wide. The ratio of fire detection densities (detections per square kilometer) inside reserves to their contiguous buffer areas provided an index of reserve effectiveness. Fire detection density was significantly lower inside reserves than in paired, contiguous buffer areas but varied by five orders of magnitude among reserves. The buffer: reserve detection ratio varied by up to four orders of magnitude among reserves within a single country, and median values varied by three orders of magnitude among countries. Reserves tended to be least effective at reducing fire frequency in many poorer countries and in countries beset by corruption. Countries with the most successful reserves include Costa Rica, Jamaica, Malaysia, and Taiwan and the Indonesian island of Java. Countries with the most problematic reserves include Cambodia, Guatemala, Paraguay, and Sierra Leone and the Indonesian portion of Borneo. We provide fire detection density for 3964 tropical and subtropical reserves and their buffer areas in the hope that these data will expedite further analyses that might lead to improved management of tropical reserves.

  14. Lacunarity as a texture measure for a tropical forest landscape

    Energy Technology Data Exchange (ETDEWEB)

    Su, Haiping; Krummel, J.

    1996-01-01

    Fragmentation and loss of tropical forest cover alters terrestrial plant and animal population dynamics, reduces biodiversity and carbon storage capacity, and, as a global phenomenon could affect regional and global climate patterns. Lacunarity as a texture measure can offer a simple solution to characterize the texture of tropical forest landscape and determine spatial patterns associated with ecological processes. Lacunarity quantifies the deviation from translational invariance by describing the distribution of gaps within a binary image at multiple scales. As lacunarity increases, the spatial arrangement of tropical forest gaps will also increase. In this study, we used the Spatial Modeler in Imagine as a graphic programming tool to calculate lacunarity indices for a tropical forest landscape in Southern Mexico and Northern Guatemala. Lacunarity indices were derived from classified Landsat MSS images acquired in 1974 and 1984. Random-generated binary images were also used to derive lacunarity indices and compared with the lacunarity of forest patterns derived from the classified MSS images. Tropical forest area declined about 17%, with most of the forest areas converted into pasture/grassland for grazing. During this period, lacunarity increased about 25%. Results of this study suggest that tropical forest fragmentation could be quantified with lacunarity measures. The study also demonstrated that the Spatial Modeler can be useful as a programming tool to quantify spatial patterns of tropical forest landscape by using remotely sensed data.

  15. Tropical forest heterogeneity from TanDEM-X InSAR and lidar observations in Indonesia

    Science.gov (United States)

    De Grandi, Elsa Carla; Mitchard, Edward

    2016-10-01

    Fires exacerbated during El Niño Southern Oscillation are a serious threat in Indonesia leading to the destruction and degradation of tropical forests and emissions of CO2 in the atmosphere. Forest structural changes which occurred due to the 1997-1998 El Niño Southern Oscillation in the Sungai Wain Protection Forest (East Kalimantan, Indonesia), a previously intact forest reserve have led to the development of a range of landcover from secondary forest to areas dominated by grassland. These structural differences can be appreciated over large areas by remote sensing instruments such as TanDEM-X and LiDAR that provide information that are sensitive to vegetation vertical and horizontal structure. One-point statistics of TanDEM-X coherence (mean and CV) and LiDAR CHM (mean, CV) and derived metrics such as vegetation volume and canopy cover were tested for the discrimination between 4 landcover classes. Jeffries-Matusita (JM) separability was high between forest classes (primary or secondary forest) and non-forest (grassland) while, primary and secondary forest were not separable. The study tests the potential and the importance of potential of TanDEM-X coherence and LiDAR observations to characterize structural heterogeneity based on one-point statistics in tropical forest but requires improved characterization using two-point statistical measures.

  16. A large-scale field assessment of carbon stocks in human-modified tropical forests.

    Science.gov (United States)

    Berenguer, Erika; Ferreira, Joice; Gardner, Toby Alan; Aragão, Luiz Eduardo Oliveira Cruz; De Camargo, Plínio Barbosa; Cerri, Carlos Eduardo; Durigan, Mariana; Cosme De Oliveira Junior, Raimundo; Vieira, Ima Célia Guimarães; Barlow, Jos

    2014-12-01

    Tropical rainforests store enormous amounts of carbon, the protection of which represents a vital component of efforts to mitigate global climate change. Currently, tropical forest conservation, science, policies, and climate mitigation actions focus predominantly on reducing carbon emissions from deforestation alone. However, every year vast areas of the humid tropics are disturbed by selective logging, understory fires, and habitat fragmentation. There is an urgent need to understand the effect of such disturbances on carbon stocks, and how stocks in disturbed forests compare to those found in undisturbed primary forests as well as in regenerating secondary forests. Here, we present the results of the largest field study to date on the impacts of human disturbances on above and belowground carbon stocks in tropical forests. Live vegetation, the largest carbon pool, was extremely sensitive to disturbance: forests that experienced both selective logging and understory fires stored, on average, 40% less aboveground carbon than undisturbed forests and were structurally similar to secondary forests. Edge effects also played an important role in explaining variability in aboveground carbon stocks of disturbed forests. Results indicate a potential rapid recovery of the dead wood and litter carbon pools, while soil stocks (0-30 cm) appeared to be resistant to the effects of logging and fire. Carbon loss and subsequent emissions due to human disturbances remain largely unaccounted for in greenhouse gas inventories, but by comparing our estimates of depleted carbon stocks in disturbed forests with Brazilian government assessments of the total forest area annually disturbed in the Amazon, we show that these emissions could represent up to 40% of the carbon loss from deforestation in the region. We conclude that conservation programs aiming to ensure the long-term permanence of forest carbon stocks, such as REDD+, will remain limited in their success unless they effectively

  17. Assembly Ants Tropical Dry Forest, Cali Botanical Garden

    Directory of Open Access Journals (Sweden)

    María Cristina Gallego Ropero

    2015-01-01

    Full Text Available The ant assemblages of a fragment of secondary tropical dry forest located in the Botanical Garden of Cali are presented. Two habitats were chosen: a fragment of forest and a pasture matrix. Samples were taken monthly for six months, using a linear transect of 100 m, with 10 stations spaced 10 m. At each station pitfall traps, epigeal bait and arboreal, sifting and removal of 1 m2 of litter and manual capture survey techniques were applied. Richness, abundance and diversity of ant habitats were determined. Correlation coefficients and regression between temperature, relative humidity and richness of ants were calculated. A total of 13 170 ants representing 55 species, 35 genera and six subfamilies were collected. The forest had the highest species richness with 90.9%. This wealth of diversity indicates the conservation value of the Valle del Cauca myrmecofauna. Although the forest is in the process of regeneration, strongly disturbed by constant fire and human intervention, the ant species richness shows that it remains an invaluable source of biological resources for the conservation of species.

  18. Impacts of roads and linear clearings on tropical forests.

    Science.gov (United States)

    Laurance, William F; Goosem, Miriam; Laurance, Susan G W

    2009-12-01

    Linear infrastructure such as roads, highways, power lines and gas lines are omnipresent features of human activity and are rapidly expanding in the tropics. Tropical species are especially vulnerable to such infrastructure because they include many ecological specialists that avoid even narrow (<30-m wide) clearings and forest edges, as well as other species that are susceptible to road kill, predation or hunting by humans near roads. In addition, roads have a major role in opening up forested tropical regions to destructive colonization and exploitation. Here, we synthesize existing research on the impacts of roads and other linear clearings on tropical rainforests, and assert that such impacts are often qualitatively and quantitatively different in tropical forests than in other ecosystems. We also highlight practical measures to reduce the negative impacts of roads and other linear infrastructure on tropical species.

  19. Forests to fields. Restoring tropical lands to agriculture.

    Science.gov (United States)

    Wood, D

    1993-04-01

    In discussing land use in tropical forest regions, there is an emphasis on the following topics: the need for the expansion of cropping areas, the precedent for use of the tropical forest for cropping based on past use patterns, the pressure from conservationists against cropping, debunking the mythology that forests are "natural" and refuting the claims that forest clearance is not reversible, the archeological evidence of past forest use for agricultural purposes, abandonment of tropical land to forest, and rotation of forest and field. The assumption is that the way to stop food importation is to increase crop production in the tropics. Crop production can be increased through 1) land intensification or clearing new land, 2) output per unit of land increases, or 3) reallocation to agriculture land previously cleared and overgrown with tropical forest. "Temporary" reuse of land, which reverted back to tropical forest, is recommended. This reuse would ease population pressure, and benefit bioconservation, while populations stabilize and further progress is made in international plant breeding. The land would eventually be returned to a forest state. Conservation of tropical forest areas should be accomplished, after an assessment has been made of its former uses. Primary forests need to identified and conversion to farming ceased. Research needs to be directed to understanding the process of past forest regeneration, and to devising cropping systems with longterm viability. The green revolution is unsuitable for traditional cropping systems, is contrary to demands of international funding agencies for sustainability, and is not affordable by most poor farmers. Only .48 million sq. km of closed forest loss was in tropical rainforests; 6.53 million sq. km was lost from temperate forests cleared for intensive small-scale peasant farming. The use of tropical forest land for farming has some benefits; crops in the wetter tropics are perennial, which would "reduce

  20. Forest structure and carbon dynamics in Amazonian tropical rain forests.

    Science.gov (United States)

    Vieira, Simone; de Camargo, Plinio Barbosa; Selhorst, Diogo; da Silva, Roseana; Hutyra, Lucy; Chambers, Jeffrey Q; Brown, I Foster; Higuchi, Niro; dos Santos, Joaquim; Wofsy, Steven C; Trumbore, Susan E; Martinelli, Luiz Antonio

    2004-08-01

    Living trees constitute one of the major stocks of carbon in tropical forests. A better understanding of variations in the dynamics and structure of tropical forests is necessary for predicting the potential for these ecosystems to lose or store carbon, and for understanding how they recover from disturbance. Amazonian tropical forests occur over a vast area that encompasses differences in topography, climate, and geologic substrate. We observed large differences in forest structure, biomass, and tree growth rates in permanent plots situated in the eastern (near Santarém, Pará), central (near Manaus, Amazonas) and southwestern (near Rio Branco, Acre) Amazon, which differed in dry season length, as well as other factors. Forests at the two sites experiencing longer dry seasons, near Rio Branco and Santarém, had lower stem frequencies (460 and 466 ha(-1) respectively), less biodiversity (Shannon-Wiener diversity index), and smaller aboveground C stocks (140.6 and 122.1 Mg C ha(-1)) than the Manaus site (626 trees ha(-1), 180.1 Mg C ha(-1)), which had less seasonal variation in rainfall. The forests experiencing longer dry seasons also stored a greater proportion of the total biomass in trees with >50 cm diameter (41-45 vs 30% in Manaus). Rates of annual addition of C to living trees calculated from monthly dendrometer band measurements were 1.9 (Manaus), 2.8 (Santarém), and 2.6 (Rio Branco) Mg C ha(-1) year(-1). At all sites, trees in the 10-30 cm diameter class accounted for the highest proportion of annual growth (38, 55 and 56% in Manaus, Rio Branco and Santarém, respectively). Growth showed marked seasonality, with largest stem diameter increment in the wet season and smallest in the dry season, though this may be confounded by seasonal variation in wood water content. Year-to-year variations in C allocated to stem growth ranged from nearly zero in Rio Branco, to 0.8 Mg C ha(-1) year(-1) in Manaus (40% of annual mean) and 0.9 Mg C ha(-1) year(-1) (33% of

  1. Trailblazing the Carbon Cycle of Tropical Forests from Puerto Rico

    Directory of Open Access Journals (Sweden)

    Sandra Brown

    2017-03-01

    Full Text Available We review the literature that led to clarifying the role of tropical forests in the global carbon cycle from a time when they were considered sources of atmospheric carbon to the time when they were found to be atmospheric carbon sinks. This literature originates from work conducted by US Forest Service scientists in Puerto Rico and their collaborators. It involves the classification of forests by life zones, estimation of carbon density by forest type, assessing carbon storage changes with ecological succession and land use/land cover type, describing the details of the carbon cycle of forests at stand and landscape levels, assessing global land cover by forest type and the complexity of land use change in tropical regions, and assessing the ecological fluxes and storages that contribute to net carbon accumulation in tropical forests. We also review recent work that couples field inventory data, remote sensing technology such as LIDAR, and GIS analysis in order to more accurately determine the role of tropical forests in the global carbon cycle and point out new avenues of carbon research that address the responses of tropical forests to environmental change.

  2. Estimating carbon stock in secondary forests

    DEFF Research Database (Denmark)

    Breugel, Michiel van; Ransijn, Johannes; Craven, Dylan

    2011-01-01

    of trees and species for destructive biomass measurements. We assess uncertainties associated with these decisions using data from 94 secondary forest plots in central Panama and 244 harvested trees belonging to 26 locally abundant species. AGB estimates from species-specific models were used to assess......Secondary forests are a major terrestrial carbon sink and reliable estimates of their carbon stocks are pivotal for understanding the global carbon balance and initiatives to mitigate CO2 emissions through forest management and reforestation. A common method to quantify carbon stocks in forests...... is the use of allometric regression models to convert forest inventory data to estimates of aboveground biomass (AGB). The use of allometric models implies decisions on the selection of extant models or the development of a local model, the predictor variables included in the selected model, and the number...

  3. Contributions of secondary forest and nitrogen dynamics to terrestrial carbon uptake

    Directory of Open Access Journals (Sweden)

    X. Yang

    2010-10-01

    Full Text Available We use a terrestrial carbon-nitrogen cycle component of the Integrated Science Assessment Model (ISAM to investigate the impacts of nitrogen dynamics on regrowing secondary forests over the 20th century. We further examine what the impacts of nitrogen deposition and land use change history are on terrestrial carbon uptake since preindustrial time. Our results suggest that global total net land use emissions for the 1990s associated with changes in cropland, pastureland, and wood harvest are 1.22 GtC/yr. Without considering the secondary forest regrowth, the estimated net global total land use emissions are 1.58 GtC/yr or about 0.36 GtC/yr higher than if secondary forest regrowth is considered. Results also show that without considering the nitrogen dynamics and deposition, the estimated global total secondary forest sink for the 1990s is 0.90 GtC/yr or about 0.54 GtC/yr higher than estimates that include the impacts of nitrogen dynamics and deposition. Nitrogen deposition alone is responsible for about 0.13 GtC/yr of the total secondary forest sink. While nitrogen is not a limiting nutrient in the intact primary forests in tropical regions, our study suggests that nitrogen becomes a limiting nutrient for regrowing secondary forests of the tropical regions, in particular Latin America and Tropical Africa. This is because land use change activities, especially wood harvest, removes large amounts of nitrogen from the system when slash is burnt or wood is removed for harvest. However, our model results show that carbon uptake is enhanced in the tropical secondary forests of the Indian region. We argue that this may be due to enhanced nitrogen mineralization and increased nitrogen availability following land use change in the Indian tropical forest ecosystems. Results also demonstrate that there is a significant amount of carbon accumulating in the Northern Hemisphere where most land use changes and forest regrowth has occurred in recent decades

  4. Contributions of secondary forest and nitrogen dynamics to terrestrial carbon uptake

    Science.gov (United States)

    Yang, X.; Richardson, T. K.; Jain, A. K.

    2010-10-01

    We use a terrestrial carbon-nitrogen cycle component of the Integrated Science Assessment Model (ISAM) to investigate the impacts of nitrogen dynamics on regrowing secondary forests over the 20th century. We further examine what the impacts of nitrogen deposition and land use change history are on terrestrial carbon uptake since preindustrial time. Our results suggest that global total net land use emissions for the 1990s associated with changes in cropland, pastureland, and wood harvest are 1.22 GtC/yr. Without considering the secondary forest regrowth, the estimated net global total land use emissions are 1.58 GtC/yr or about 0.36 GtC/yr higher than if secondary forest regrowth is considered. Results also show that without considering the nitrogen dynamics and deposition, the estimated global total secondary forest sink for the 1990s is 0.90 GtC/yr or about 0.54 GtC/yr higher than estimates that include the impacts of nitrogen dynamics and deposition. Nitrogen deposition alone is responsible for about 0.13 GtC/yr of the total secondary forest sink. While nitrogen is not a limiting nutrient in the intact primary forests in tropical regions, our study suggests that nitrogen becomes a limiting nutrient for regrowing secondary forests of the tropical regions, in particular Latin America and Tropical Africa. This is because land use change activities, especially wood harvest, removes large amounts of nitrogen from the system when slash is burnt or wood is removed for harvest. However, our model results show that carbon uptake is enhanced in the tropical secondary forests of the Indian region. We argue that this may be due to enhanced nitrogen mineralization and increased nitrogen availability following land use change in the Indian tropical forest ecosystems. Results also demonstrate that there is a significant amount of carbon accumulating in the Northern Hemisphere where most land use changes and forest regrowth has occurred in recent decades. This study indicates

  5. NPP Multi-Biome: Grassland, Boreal Forest, and Tropical Forest Sites, 1939-1996, R1

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set contains one data file (.csv format) that provides net primary productivity (NPP) estimates for 34 grasslands, 14 tropical forests, and 5 boreal forest...

  6. NPP Tropical Forest: Chamela, Mexico, 1982-1995, R1

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set contains five data files (.txt format). Three data files provide net primary productivity (NPP) estimates for a tropical dry deciduous forest within...

  7. NPP Tropical Forest: San Eusebio, Venezuela, 1970-1971

    Data.gov (United States)

    National Aeronautics and Space Administration — ABSTRACT: Biomass, litterfall,a nd nutrient content of above- and below-ground vegetation and soil for a tropical montane forest at San Eusebio, Venezuela.

  8. NPP Tropical Forest: Consistent Worldwide Site Estimates, 1967-1999

    Data.gov (United States)

    National Aeronautics and Space Administration — ABSTRACT: Currently available data on net primary production in tropical forests are extremely limited. Even the best estimates for this biome must be thought of as...

  9. NPP Tropical Forest: Magdalena Valley, Colombia, 1970-1971

    Data.gov (United States)

    National Aeronautics and Space Administration — ABSTRACT: Biomass, litterfall, and nutrient content of above-ground vegetation and soil for a tropical seasonal evergreen forest at Magdalena Valley, Columbia,...

  10. Averting biodiversity collapse in tropical forest protected areas

    Science.gov (United States)

    W.F. Laurance; D.C. Useche; J. Rendeiro; and others NO-VALUE; Ariel Lugo

    2012-01-01

    The rapid disruption of tropical forests probably imperils global biodiversity more than any other contemporary phenomenon1–3. With deforestation advancing quickly, protected areas are increasingly becoming final refuges for threatened species and natural ecosystem processes. However, many protected areas in the tropics are themselves vulnerable to human encroachment...

  11. Andean grasslands are as productive as tropical cloud forests

    NARCIS (Netherlands)

    Oliveras Menor, I.; Girardin, C.; Doughty, C.E.; Cahuana, N.; Arenas, C.E.; Oliver, V.; Huaraca Huasco, W.; Malhi, Y.

    2014-01-01

    We aim to assess net primary productivity (NPP) and carbon cycling in Andean tropical alpine grasslands (puna) and compare it with NPP of tropical montane cloud forests. We ask the following questions: (1) how do NPP and soil respiration of grasslands vary over the seasonal cycle? (2) how do burning

  12. Urgent need for warming experiments in tropical forests.

    Science.gov (United States)

    Cavaleri, Molly A; Reed, Sasha C; Smith, W Kolby; Wood, Tana E

    2015-06-01

    Although tropical forests account for only a fraction of the planet's terrestrial surface, they exchange more carbon dioxide with the atmosphere than any other biome on Earth, and thus play a disproportionate role in the global climate. In the next 20 years, the tropics will experience unprecedented warming, yet there is exceedingly high uncertainty about their potential responses to this imminent climatic change. Here, we prioritize research approaches given both funding and logistical constraints in order to resolve major uncertainties about how tropical forests function and also to improve predictive capacity of earth system models. We investigate overall model uncertainty of tropical latitudes and explore the scientific benefits and inevitable trade-offs inherent in large-scale manipulative field experiments. With a Coupled Model Intercomparison Project Phase 5 analysis, we found that model variability in projected net ecosystem production was nearly 3 times greater in the tropics than for any other latitude. Through a review of the most current literature, we concluded that manipulative warming experiments are vital to accurately predict future tropical forest carbon balance, and we further recommend the establishment of a network of comparable studies spanning gradients of precipitation, edaphic qualities, plant types, and/or land use change. We provide arguments for long-term, single-factor warming experiments that incorporate warming of the most biogeochemically active ecosystem components (i.e. leaves, roots, soil microbes). Hypothesis testing of underlying mechanisms should be a priority, along with improving model parameterization and constraints. No single tropical forest is representative of all tropical forests; therefore logistical feasibility should be the most important consideration for locating large-scale manipulative experiments. Above all, we advocate for multi-faceted research programs, and we offer arguments for what we consider the most

  13. Urgent need for warming experiments in tropical forests

    Science.gov (United States)

    Calaveri, Molly A.; Reed, Sasha C.; Smith, W. Kolby; Wood, Tana E.

    2015-01-01

    Although tropical forests account for only a fraction of the planet's terrestrial surface, they exchange more carbon dioxide with the atmosphere than any other biome on Earth, and thus play a disproportionate role in the global climate. In the next 20 years, the tropics will experience unprecedented warming, yet there is exceedingly high uncertainty about their potential responses to this imminent climatic change. Here, we prioritize research approaches given both funding and logistical constraints in order to resolve major uncertainties about how tropical forests function and also to improve predictive capacity of earth system models. We investigate overall model uncertainty of tropical latitudes and explore the scientific benefits and inevitable trade-offs inherent in large-scale manipulative field experiments. With a Coupled Model Intercomparison Project Phase 5 analysis, we found that model variability in projected net ecosystem production was nearly 3 times greater in the tropics than for any other latitude. Through a review of the most current literature, we concluded that manipulative warming experiments are vital to accurately predict future tropical forest carbon balance, and we further recommend the establishment of a network of comparable studies spanning gradients of precipitation, edaphic qualities, plant types, and/or land use change. We provide arguments for long-term, single-factor warming experiments that incorporate warming of the most biogeochemically active ecosystem components (i.e. leaves, roots, soil microbes). Hypothesis testing of underlying mechanisms should be a priority, along with improving model parameterization and constraints. No single tropical forest is representative of all tropical forests; therefore logistical feasibility should be the most important consideration for locating large-scale manipulative experiments. Above all, we advocate for multi-faceted research programs, and we offer arguments for what we consider the most

  14. National satellite-based humid tropical forest change assessment in Peru in support of REDD+ implementation

    Science.gov (United States)

    Potapov, P. V.; Dempewolf, J.; Talero, Y.; Hansen, M. C.; Stehman, S. V.; Vargas, C.; Rojas, E. J.; Castillo, D.; Mendoza, E.; Calderón, A.; Giudice, R.; Malaga, N.; Zutta, B. R.

    2014-12-01

    Transparent, consistent, and accurate national forest monitoring is required for successful implementation of reducing emissions from deforestation and forest degradation (REDD+) programs. Collecting baseline information on forest extent and rates of forest loss is a first step for national forest monitoring in support of REDD+. Peru, with the second largest extent of Amazon basin rainforest, has made significant progress in advancing its forest monitoring capabilities. We present a national-scale humid tropical forest cover loss map derived by the Ministry of Environment REDD+ team in Peru. The map quantifies forest loss from 2000 to 2011 within the Peruvian portion of the Amazon basin using a rapid, semi-automated approach. The available archive of Landsat imagery (11 654 scenes) was processed and employed for change detection to obtain annual gross forest cover loss maps. A stratified sampling design and a combination of Landsat (30 m) and RapidEye (5 m) imagery as reference data were used to estimate the primary forest cover area, total gross forest cover loss area, proportion of primary forest clearing, and to validate the Landsat-based map. Sample-based estimates showed that 92.63% (SE = 2.16%) of the humid tropical forest biome area within the country was covered by primary forest in the year 2000. Total gross forest cover loss from 2000 to 2011 equaled 2.44% (SE = 0.16%) of the humid tropical forest biome area. Forest loss comprised 1.32% (SE = 0.37%) of primary forest area and 9.08% (SE = 4.04%) of secondary forest area. Validation confirmed a high accuracy of the Landsat-based forest cover loss map, with a producer’s accuracy of 75.4% and user’s accuracy of 92.2%. The majority of forest loss was due to clearing (92%) with the rest attributed to natural processes (flooding, fires, and windstorms). The implemented Landsat data processing and classification system may be used for operational annual forest cover loss updates at the national level for REDD

  15. National satellite-based humid tropical forest change assessment in Peru in support of REDD+ implementation

    International Nuclear Information System (INIS)

    Potapov, P V; Dempewolf, J; Talero, Y; Hansen, M C; Stehman, S V; Vargas, C; Rojas, E J; Calderón, A; Giudice, R; Malaga, N; Zutta, B R; Castillo, D; Mendoza, E

    2014-01-01

    Transparent, consistent, and accurate national forest monitoring is required for successful implementation of reducing emissions from deforestation and forest degradation (REDD+) programs. Collecting baseline information on forest extent and rates of forest loss is a first step for national forest monitoring in support of REDD+. Peru, with the second largest extent of Amazon basin rainforest, has made significant progress in advancing its forest monitoring capabilities. We present a national-scale humid tropical forest cover loss map derived by the Ministry of Environment REDD+ team in Peru. The map quantifies forest loss from 2000 to 2011 within the Peruvian portion of the Amazon basin using a rapid, semi-automated approach. The available archive of Landsat imagery (11 654 scenes) was processed and employed for change detection to obtain annual gross forest cover loss maps. A stratified sampling design and a combination of Landsat (30 m) and RapidEye (5 m) imagery as reference data were used to estimate the primary forest cover area, total gross forest cover loss area, proportion of primary forest clearing, and to validate the Landsat-based map. Sample-based estimates showed that 92.63% (SE = 2.16%) of the humid tropical forest biome area within the country was covered by primary forest in the year 2000. Total gross forest cover loss from 2000 to 2011 equaled 2.44% (SE = 0.16%) of the humid tropical forest biome area. Forest loss comprised 1.32% (SE = 0.37%) of primary forest area and 9.08% (SE = 4.04%) of secondary forest area. Validation confirmed a high accuracy of the Landsat-based forest cover loss map, with a producer’s accuracy of 75.4% and user’s accuracy of 92.2%. The majority of forest loss was due to clearing (92%) with the rest attributed to natural processes (flooding, fires, and windstorms). The implemented Landsat data processing and classification system may be used for operational annual forest cover loss updates at the national level

  16. Landsat Pathfinder tropical forest information management system

    Science.gov (United States)

    Salas, W.; Chomentowski, W.; Harville, J.; Skole, D.; Vellekamp, K.

    1994-01-01

    A Tropical Forest Information Management System_(TFIMS) has been designed to fulfill the needs of HTFIP in such a way that it tracks all aspects of the generation and analysis of the raw satellite data and the derived deforestation dataset. The system is broken down into four components: satellite image selection, processing, data management and archive management. However, as we began to think of how the TFIMS could also be used to make the data readily accessible to all user communities we realized that the initial system was too project oriented and could only be accessed locally. The new system needed development in the areas of data ingest and storage, while at the same time being implemented on a server environment with a network interface accessible via Internet. This paper summarizes the overall design of the existing prototype (version 0) information management system and then presents the design of the new system (version 1). The development of version 1 of the TFIMS is ongoing. There are no current plans for a gradual transition from version 0 to version 1 because the significant changes are in how the data within the HTFIP will be made accessible to the extended community of scientists, policy makers, educators, and students and not in the functionality of the basic system.

  17. Long-term monitoring reveals an avian species credit in secondary forest patches of Costa Rica

    Directory of Open Access Journals (Sweden)

    Steven C. Latta

    2017-06-01

    Full Text Available Degraded and secondary forests comprise approximately 50% of remaining tropical forest. Bird community characteristics and population trends in secondary forests are infrequently studied, but secondary forest may serve as a “safety net” for tropical biodiversity. Less understood is the occurrence of time-delayed, community-level dynamics such as an extinction debt of specialist species or a species credit resulting from the recolonization of forest patches by extirpated species. We sought to elucidate patterns and magnitudes of temporal change in avian communities in secondary forest patches in Southern Costa Rica biannually over a 10 year period during the late breeding season and mid-winter. We classified birds caught in mist nets or recorded in point counts by residency status, and further grouped them based on preferred habitat, sensitivity to disturbance, conservation priority, foraging guild, and foraging strata. Using hierarchical, mixed-effects models we tested for trends among species that share traits. We found that permanent-resident species increased over time relative to migrants. In both seasons, primary forest species generally increased while species typical of secondary forest, scrub, or edge declined. Species relatively sensitive to habitat disturbance increased significantly over time, whereas birds less sensitive to disturbance decreased. Similarly, generalists with higher habitat breadth scores declined. Because, we found very few changes in vegetation characteristics in secondary forest patches, shifts in the avian community toward primary forest species represent a species credit and are likely related to vegetation changes in the broader landscape. We suggest that natural regeneration and maturation of secondary forests should be recognized as a positive conservation development of potential benefit even to species typical of primary forest.

  18. Global demand for gold is another threat for tropical forests

    International Nuclear Information System (INIS)

    Alvarez-Berríos, Nora L; Mitchell Aide, T

    2015-01-01

    The current global gold rush, driven by increasing consumption in developing countries and uncertainty in financial markets, is an increasing threat for tropical ecosystems. Gold mining causes significant alteration to the environment, yet mining is often overlooked in deforestation analyses because it occupies relatively small areas. As a result, we lack a comprehensive assessment of the spatial extent of gold mining impacts on tropical forests. In this study, we provide a regional assessment of gold mining deforestation in the tropical moist forest biome of South America. Specifically, we analyzed the patterns of forest change in gold mining sites between 2001 and 2013, and evaluated the proximity of gold mining deforestation to protected areas (PAs). The forest cover maps were produced using the Land Mapper web application and images from the MODIS satellite MOD13Q1 vegetation indices 250 m product. Annual maps of forest cover were used to model the incremental change in forest in ∼1600 potential gold mining sites between 2001–2006 and 2007–2013. Approximately 1680 km 2 of tropical moist forest was lost in these mining sites between 2001 and 2013. Deforestation was significantly higher during the 2007–2013 period, and this was associated with the increase in global demand for gold after the international financial crisis. More than 90% of the deforestation occurred in four major hotspots: Guianan moist forest ecoregion (41%), Southwest Amazon moist forest ecoregion (28%), Tapajós–Xingú moist forest ecoregion (11%), and Magdalena Valley montane forest and Magdalena–Urabá moist forest ecoregions (9%). In addition, some of the more active zones of gold mining deforestation occurred inside or within 10 km of ∼32 PAs. There is an urgent need to understand the ecological and social impacts of gold mining because it is an important cause of deforestation in the most remote forests in South America, and the impacts, particularly in aquatic systems

  19. Quantitative Analysis of Complex Tropical Forest Stands: A Review ...

    African Journals Online (AJOL)

    FIRST LADY

    Disciplinary Journal, Ethiopia. Vol. 4 (3a) July, 2010. ISSN 1994-9057 (Print). ISSN 2070-0083 (Online). Quantitative Analysis of Complex Tropical Forest. Stands: A Review (Pp. 367-377). Oyebade, B. A. - Forest Biometrics & Measurement Unit, ...

  20. Tropical forest conservation versus conversion trade-offs

    NARCIS (Netherlands)

    Mutoko, M.C.; Hein, Lars; Shisanya, Chris A.

    2015-01-01

    Ecosystem services provided by tropical forests are becoming scarcer due to continued deforestation as demand for forest benefits increases with the growing population. There is need for comprehensive valuation of key ecosystem services in order to inform policy and implement better management

  1. Restoring biodiversity and forest ecosystem services in degraded tropical landscapes

    Science.gov (United States)

    John A. Parrotta

    2010-01-01

    Over the past century, an estimated 850 million ha of the world’s tropical forests have been lost or severely degraded, with serious impacts on local and regional biodiversity. A significant proportion of these lands were originally cleared of their forest cover for agricultural development or other economic uses. Today, however, they provide few if any environmental...

  2. Small mammal trapping in tropical montane forests of the Upper ...

    Indian Academy of Sciences (India)

    Capture-mark-recapture was used to study small mammal populations in tropical montane forests in southern India. Eleven plots in six montane forest patches were sampled from February–October, 1994. Six species were captured, including four rodents and two shrews. PROGRAM CAPTURE was used to derive estimates ...

  3. Trailblazing the Carbon Cycle of Tropical Forests from Puerto Rico

    Science.gov (United States)

    Sandra Brown; Ariel Lugo

    2017-01-01

    We review the literature that led to clarifying the role of tropical forests in the global carbon cycle from a time when they were considered sources of atmospheric carbon to the time when they were found to be atmospheric carbon sinks. This literature originates from work conducted by US Forest Service scientists in Puerto Rico and their collaborators. It involves the...

  4. Lianas and trees in tropical forests in south China

    NARCIS (Netherlands)

    Cai, Z.Q.

    2007-01-01

    Lianas (woody climbers) and trees are the most important life-forms in most tropical forests. In many of these forests lianas are abundant and diverse and their presence is often a key physiognomic feature. Lianas contribute substantially to the floristic, structural and functional diversity of

  5. RESPIRACIÓN MICROBIAL Y DE RAÍCES EN SUELOS DE BOSQUES TROPICALES PRIMARIOS Y SECUNDARIOS (PORCE, COLOMBIA MICROBIAL AND ROOT RESPIRATION IN SOILS OF TROPICAL PRIMARY AND SECONDARY FORESTS ( PORCE, COLOMBIA

    Directory of Open Access Journals (Sweden)

    Álvaro Andrés Ramírez Palacio

    2008-06-01

    Full Text Available Los suelos son el mayor reservorio de carbono en los ecosistemas terrestres y a su vez la mayor fuente de CO2 atmosférico, el cual es producido mediante un proceso denominado respiración del suelo. El objetivo de este trabajo fue estimar las tasas de respiración del suelo y sus componentes (respiración de raíces y de microorganismos, y evaluar el control que sobre las tasas de emisión de CO2 ejercen factores como la humedad y la temperatura del suelo, en bosques primarios (BP y secundarios (BS de la región de Porce, Colombia. Para este fin se midió la emisión de CO2 del suelo durante un año, en 10 parcelas con una cámara de respiración de suelo conectada a un analizador de gases infrarrojo. La tasa promedia anual de respiración fue 15,91 (0,71 e.e. y 14,03 (0,75 e.e. C t · ha-1 · año-1 en BP y BS, respectivamente. La respiración de las raíces representó casi la mitad de la respiración total en ambos tipos de bosque. La variación estacional de la respiración total estuvo asociada principalmente a las diferencias de humedad del suelo. Los resultados sugieren que desde el suelo de los bosques tropicales se emiten cantidades considerables de carbono hacia la atmósfera, y que factores ambientales como la humedad y la temperatura del suelo, ejercen un control importante sobre las tasas de emisión. De este modo, un incremento en la emisión de CO2 desde los suelos de estos ecosistemas, en respuesta a los cambios ambientales, puede tener grandes implicaciones en el balance global del carbono.Soils are the largest carbon pool of terrestrial ecosystems as well as the largest source of atmospheric CO2 through a process called soil respiration. The purpose of this study was to estimate the soil respiration rates and its components (root and microbial respiration, and to evaluate the control of environmental factors such as soil humidity and temperature on emission rates of CO2 in primary (PF and secondary forests (SF of the Porce

  6. Spatio-temporal analysis on land transformation in a forested tropical landscape in Jambi Province, Sumatra

    Science.gov (United States)

    Melati, Dian N.; Nengah Surati Jaya, I.; Pérez-Cruzado, César; Zuhdi, Muhammad; Fehrmann, Lutz; Magdon, Paul; Kleinn, Christoph

    2015-04-01

    Land use/land cover (LULC) in forested tropical landscapes is very dynamically developing. In particular, the pace of forest conversion in the tropics is a global concern as it directly impacts the global carbon cycle and biodiversity conservation. Expansion of agriculture is known to be among the major drivers of forest loss especially in the tropics. This is also the case in Jambi Province, Sumatra, Indonesia where it is the mainly expansion of tree crops that triggers deforestation: oil palm and rubber trees. Another transformation system in Jambi is the one from natural forest into jungle rubber, which is an agroforestry system where a certain density of forest trees accompanies the rubber tree crop, also for production of wood and non-wood forest products. The spatial distribution and the dynamics of these transformation systems and of the remaining forests are essential information for example for further research on ecosystem services and on the drivers of land transformation. In order to study land transformation, maps from the years 1990, 2000, 2011, and 2013 were utilized, derived from visual interpretation of Landsat images. From these maps, we analyze the land use/land cover change (LULCC) in the study region. It is found that secondary dryland forest (on mineral soils) and secondary swamp forest have been transformed largely into (temporary) shrub land, plantation forests, mixed dryland agriculture, bare lands and estate crops where the latter include the oil palm and rubber plantations. In addition, we present some analyses of the spatial pattern of land transformation to better understand the process of LULC fragmentation within the studied periods. Furthermore, the driving forces are analyzed.

  7. Fate of Deposited Nitrogen in Tropical Forests in Southern China

    DEFF Research Database (Denmark)

    Gurmesa, Geshere Abdisa

    Tropical forests are generally regarded as naturally nitrogen (N)-rich ecosystems where N availability is in excess of biological demands. These forests are usually characterized by increased soil N cycling rates such as mineralization and nitrification causing loss of N through leaching...... nitrogen (N) isotope 15N to uncover two aspects of N cycling in tropical forests: i) the patterns of ecosystem natural 15N abundance (δ15N) in relation to the 15N signature of deposition N, and its response to increased N deposition; ii) the fate of ambient and increased N deposition in the same forests...... and denitrification from the ecosystem. Loss of N, in turn, has many negative consequences, including soil and surface water acidification, plant nutrient imbalances and related adverse effects on biological diversities. Increased atmospheric N deposition that is anticipated for tropical regions may further aggravate...

  8. Pan-Tropical Forest Clearing, 2000-2005

    Science.gov (United States)

    Hansen, M.; Potapov, P.; Pittman, K.; Loveland, T.; Stehman, S.

    2007-12-01

    Quantifying rates of tropical forest cover clearing allows for improved biogeochemical cycle and climate change modeling, management of forestry and agricultural resources, and biodiversity monitoring. As a result, there is a critical need to monitor forest clearing over large areas in a timely manner. While the use of satellite-based observations for monitoring tropical deforestation is well established, consistent and timely monitoring of the entire humid tropics has not been implemented and limits the effective management of this important resource. This paper presents a probability sampling approach employing multi-resolution satellite data to provide timely, synoptic estimates of humid tropical forest cover loss. Biome-wide change indicator maps were created using moderate spatial resolution imagery for 2000 to 2005 from the MODerate Resolution Imaging Spectroradiometer sensor (MODIS). A sample of 183, 18.5km by 18.5km blocks of high spatial resolution image pairs from the Landsat Enhanced Thematic Mapper Plus sensor was used to determine biome-wide area of forest clearing. The sampling strategy employed the MODIS data in the design to stratify the blocks and also in the analysis via a survey sampling regression estimator of forest clearing. This statistically rigorous sampling strategy provides a biome-level clearing estimate with known uncertainty. Forest was defined as greater than 25% canopy cover and change was measured without regard to forest land use. All tree cover assemblages that met the 25% threshold, including intact forests, plantations, and forest regrowth, were defined as forests. Forest area cleared for the biome is estimated to be 1.53% with a standard error of 0.106%. This translates to an estimated area cleared of 29.4 million hectares with a standard error of 2.1 million hectares representing a 2.54% reduction in year 2000 forest cover. Rates of clearing are on a par with those from the 1990's. Regional variation is pronounced, with 48% of

  9. Can terrestrial laser scanners (TLSs) and hemispherical photographs predict tropical dry forest succession with liana abundance?

    Science.gov (United States)

    Sánchez-Azofeifa, Gerardo Arturo; Guzmán-Quesada, J. Antonio; Vega-Araya, Mauricio; Campos-Vargas, Carlos; Milena Durán, Sandra; D'Souza, Nikhil; Gianoli, Thomas; Portillo-Quintero, Carlos; Sharp, Iain

    2017-03-01

    Tropical dry forests (TDFs) are ecosystems with long drought periods, a mean temperature of 25 °C, a mean annual precipitation that ranges from 900 to 2000 mm, and that possess a high abundance of deciduous species (trees and lianas). What remains of the original extent of TDFs in the Americas remains highly fragmented and at different levels of ecological succession. It is estimated that one of the main fingerprints left by global environmental and climate change in tropical environments is an increase in liana coverage. Lianas are non-structural elements of the forest canopy that eventually kill their host trees. In this paper we evaluate the use of a terrestrial laser scanner (TLS) in combination with hemispherical photographs (HPs) to characterize changes in forest structure as a function of ecological succession and liana abundance. We deployed a TLS and HP system in 28 plots throughout secondary forests of different ages and with different levels of liana abundance. Using a canonical correlation analysis (CCA), we addressed how the VEGNET, a terrestrial laser scanner, and HPs could predict TDF structure. Likewise, using univariate analyses of correlations, we show how the liana abundance could affect the prediction of the forest structure. Our results suggest that TLSs and HPs can predict the differences in the forest structure at different successional stages but that these differences disappear as liana abundance increases. Therefore, in well known ecosystems such as the tropical dry forest of Costa Rica, these biases of prediction could be considered as structural effects of liana presence. This research contributes to the understanding of the potential effects of lianas in secondary dry forests and highlights the role of TLSs combined with HPs in monitoring structural changes in secondary TDFs.

  10. Standardized Assessment of Biodiversity Trends in Tropical Forest Protected Areas: The End Is Not in Sight.

    Directory of Open Access Journals (Sweden)

    Lydia Beaudrot

    2016-01-01

    Full Text Available Extinction rates in the Anthropocene are three orders of magnitude higher than background and disproportionately occur in the tropics, home of half the world's species. Despite global efforts to combat tropical species extinctions, lack of high-quality, objective information on tropical biodiversity has hampered quantitative evaluation of conservation strategies. In particular, the scarcity of population-level monitoring in tropical forests has stymied assessment of biodiversity outcomes, such as the status and trends of animal populations in protected areas. Here, we evaluate occupancy trends for 511 populations of terrestrial mammals and birds, representing 244 species from 15 tropical forest protected areas on three continents. For the first time to our knowledge, we use annual surveys from tropical forests worldwide that employ a standardized camera trapping protocol, and we compute data analytics that correct for imperfect detection. We found that occupancy declined in 22%, increased in 17%, and exhibited no change in 22% of populations during the last 3-8 years, while 39% of populations were detected too infrequently to assess occupancy changes. Despite extensive variability in occupancy trends, these 15 tropical protected areas have not exhibited systematic declines in biodiversity (i.e., occupancy, richness, or evenness at the community level. Our results differ from reports of widespread biodiversity declines based on aggregated secondary data and expert opinion and suggest less extreme deterioration in tropical forest protected areas. We simultaneously fill an important conservation data gap and demonstrate the value of large-scale monitoring infrastructure and powerful analytics, which can be scaled to incorporate additional sites, ecosystems, and monitoring methods. In an era of catastrophic biodiversity loss, robust indicators produced from standardized monitoring infrastructure are critical to accurately assess population outcomes

  11. Standardized Assessment of Biodiversity Trends in Tropical Forest Protected Areas: The End Is Not in Sight.

    Science.gov (United States)

    Beaudrot, Lydia; Ahumada, Jorge A; O'Brien, Timothy; Alvarez-Loayza, Patricia; Boekee, Kelly; Campos-Arceiz, Ahimsa; Eichberg, David; Espinosa, Santiago; Fegraus, Eric; Fletcher, Christine; Gajapersad, Krisna; Hallam, Chris; Hurtado, Johanna; Jansen, Patrick A; Kumar, Amit; Larney, Eileen; Lima, Marcela Guimarães Moreira; Mahony, Colin; Martin, Emanuel H; McWilliam, Alex; Mugerwa, Badru; Ndoundou-Hockemba, Mireille; Razafimahaimodison, Jean Claude; Romero-Saltos, Hugo; Rovero, Francesco; Salvador, Julia; Santos, Fernanda; Sheil, Douglas; Spironello, Wilson R; Willig, Michael R; Winarni, Nurul L; Zvoleff, Alex; Andelman, Sandy J

    2016-01-01

    Extinction rates in the Anthropocene are three orders of magnitude higher than background and disproportionately occur in the tropics, home of half the world's species. Despite global efforts to combat tropical species extinctions, lack of high-quality, objective information on tropical biodiversity has hampered quantitative evaluation of conservation strategies. In particular, the scarcity of population-level monitoring in tropical forests has stymied assessment of biodiversity outcomes, such as the status and trends of animal populations in protected areas. Here, we evaluate occupancy trends for 511 populations of terrestrial mammals and birds, representing 244 species from 15 tropical forest protected areas on three continents. For the first time to our knowledge, we use annual surveys from tropical forests worldwide that employ a standardized camera trapping protocol, and we compute data analytics that correct for imperfect detection. We found that occupancy declined in 22%, increased in 17%, and exhibited no change in 22% of populations during the last 3-8 years, while 39% of populations were detected too infrequently to assess occupancy changes. Despite extensive variability in occupancy trends, these 15 tropical protected areas have not exhibited systematic declines in biodiversity (i.e., occupancy, richness, or evenness) at the community level. Our results differ from reports of widespread biodiversity declines based on aggregated secondary data and expert opinion and suggest less extreme deterioration in tropical forest protected areas. We simultaneously fill an important conservation data gap and demonstrate the value of large-scale monitoring infrastructure and powerful analytics, which can be scaled to incorporate additional sites, ecosystems, and monitoring methods. In an era of catastrophic biodiversity loss, robust indicators produced from standardized monitoring infrastructure are critical to accurately assess population outcomes and identify

  12. Standardized Assessment of Biodiversity Trends in Tropical Forest Protected Areas: The End Is Not in Sight

    Science.gov (United States)

    O'Brien, Timothy; Alvarez-Loayza, Patricia; Boekee, Kelly; Campos-Arceiz, Ahimsa; Eichberg, David; Espinosa, Santiago; Fegraus, Eric; Fletcher, Christine; Gajapersad, Krisna; Hallam, Chris; Hurtado, Johanna; Jansen, Patrick A.; Kumar, Amit; Larney, Eileen; Lima, Marcela Guimarães Moreira; Mahony, Colin; Martin, Emanuel H.; McWilliam, Alex; Mugerwa, Badru; Ndoundou-Hockemba, Mireille; Razafimahaimodison, Jean Claude; Romero-Saltos, Hugo; Rovero, Francesco; Salvador, Julia; Santos, Fernanda; Sheil, Douglas; Spironello, Wilson R.; Willig, Michael R.; Winarni, Nurul L.; Zvoleff, Alex; Andelman, Sandy J.

    2016-01-01

    Extinction rates in the Anthropocene are three orders of magnitude higher than background and disproportionately occur in the tropics, home of half the world’s species. Despite global efforts to combat tropical species extinctions, lack of high-quality, objective information on tropical biodiversity has hampered quantitative evaluation of conservation strategies. In particular, the scarcity of population-level monitoring in tropical forests has stymied assessment of biodiversity outcomes, such as the status and trends of animal populations in protected areas. Here, we evaluate occupancy trends for 511 populations of terrestrial mammals and birds, representing 244 species from 15 tropical forest protected areas on three continents. For the first time to our knowledge, we use annual surveys from tropical forests worldwide that employ a standardized camera trapping protocol, and we compute data analytics that correct for imperfect detection. We found that occupancy declined in 22%, increased in 17%, and exhibited no change in 22% of populations during the last 3–8 years, while 39% of populations were detected too infrequently to assess occupancy changes. Despite extensive variability in occupancy trends, these 15 tropical protected areas have not exhibited systematic declines in biodiversity (i.e., occupancy, richness, or evenness) at the community level. Our results differ from reports of widespread biodiversity declines based on aggregated secondary data and expert opinion and suggest less extreme deterioration in tropical forest protected areas. We simultaneously fill an important conservation data gap and demonstrate the value of large-scale monitoring infrastructure and powerful analytics, which can be scaled to incorporate additional sites, ecosystems, and monitoring methods. In an era of catastrophic biodiversity loss, robust indicators produced from standardized monitoring infrastructure are critical to accurately assess population outcomes and identify

  13. Soil Effects on Forest Structure and Diversity in a Moist and a Dry Tropical Forest

    NARCIS (Netherlands)

    Peña-Claros, M.; Poorter, L.; Alarcon, A.; Blate, G.; Choque, U.; Fredericksen, T.S.; Justiniano, J.; Leaño, C.; Licona, J.C.; Pariona, W.; Putz, F.E.; Quevedo, L.; Toledo, M.

    2012-01-01

    Soil characteristics are important drivers of variation in wet tropical forest structure and diversity, but few studies have evaluated these relationships in drier forest types. Using tree and soil data from 48 and 32 1 ha plots, respectively, in a Bolivian moist and dry forest, we asked how soil

  14. Urgent need for warming experiments in tropical forests

    Science.gov (United States)

    Cavaleri, Molly A.; Reed, Sasha C.; Kolby Smith, W.; Wood, Tana E.

    2015-04-01

    Tropical forests represent one of the planet's most active biogeochemical engines. Although only 15 % of the planet's terrestrial surface is comprised of tropical forests, they account for over 2/3 of live terrestrial plant biomass, nearly 1/3 of all soil carbon (C), and exchange more carbon dioxide (CO2) with the atmosphere than any other biome. In the coming decades, the tropics will experience unprecedented changes in temperature, rapid increases in atmospheric CO2 concentrations, and significant alterations in the timing and amount of rainfall. Given the disproportionate role tropical forests play in the global climate, combined with the high uncertainty surrounding their responses to change, funding agencies are increasingly interested in how these ecosystems will respond to future climatic conditions. Thus, it is imperative that the scientific community identify key research priorities to resolve major uncertainties about the functioning of tropical forests and to improve predictive capacity of earth system models. With these goals in mind, we ask (1) can we quantify the uncertainty in C balance response to climate change in the tropics? (2) why should we implement large-scale manipulation experiments in tropical forests? (3) how many environmental factors should be manipulated? (4) which environmental factor(s) to manipulate? and (5) at what spatial and temporal scales should these manipulations occur? We investigate overall model uncertainty of tropical latitudes with a Coupled Model Intercomparison Project Phase 5 (CMIP5) analysis and review current literature to discuss the scientific benefits and inevitable trade-offs inherent in large-scale manipulative field experiments. We discuss how to prioritize research approaches given both funding and logistical constraints in order to optimize the knowledge gained from the limited resources available for such research.

  15. Ant-diaspore interactions during secondary succession in the Atlantic forest of Brazil

    Directory of Open Access Journals (Sweden)

    Victor P Zwiener

    2012-06-01

    Full Text Available Animal-plant interactions are important for the recovery of diversity and processes in secondary forests, which increasingly dominate the tropical landscape. We used a combination of observational and experimental approaches to study the interactions of ants with diaspores across a successional gradient of forests in Southern Brazil, from August 2007 to April 2008. In addition to diaspore removal rates, we assessed the species richness, diversity and behaviour of ants interacting with diaspores, in three replicated sites of four successional stages of forests. We recorded 22 ant species interacting with diaspores (an estimated 15% of the total species pool in the region. Species richness and diversity did not differ among successional stages but the behaviour of ants towards diaspores changed with the age of secondary forests. In old successional stages the removal of entire diaspores was more common than in young successional stages of forests. Concordantly, diaspore removal rates were lowest in the youngest successional stage of secondary forests and increased with the age of forests. These results indicate that ant-diaspore interactions in secondary forests are disturbed and lower removal rates in secondary forests are likely to constrain the recruitment of plant populations during secondary succession. Rev. Biol. Trop. 60 (2: 933-942. Epub 2012 June 01.

  16. Ant-diaspore interactions during secondary succession in the Atlantic forest of Brazil.

    Science.gov (United States)

    Zwiener, Victor P; Bihn, Jochen H; Marques, Márcia C M

    2012-06-01

    Animal-plant interactions are important for the recovery of diversity and processes in secondary forests, which increasingly dominate the tropical landscape. We used a combination of observational and experimental approaches to study the interactions of ants with diaspores across a successional gradient of forests in Southern Brazil, from August 2007 to April 2008. In addition to diaspore removal rates, we assessed the species richness, diversity and behaviour of ants interacting with diaspores, in three replicated sites of four successional stages of forests. We recorded 22 ant species interacting with diaspores (an estimated 15% of the total species pool in the region). Species richness and diversity did not differ among successional stages but the behaviour of ants towards diaspores changed with the age of secondary forests. In old successional stages the removal of entire diaspores was more common than in young successional stages of forests. Concordantly, diaspore removal rates were lowest in the youngest successional stage of secondary forests and increased with the age of forests. These results indicate that ant-diaspore interactions in secondary forests are disturbed and lower removal rates in secondary forests are likely to constrain the recruitment of plant populations during secondary succession.

  17. Controls over leaf litter decomposition in wet tropical forests.

    Science.gov (United States)

    Wieder, William R; Cleveland, Cory C; Townsend, Alan R

    2009-12-01

    Tropical forests play a substantial role in the global carbon (C) cycle and are projected to experience significant changes in climate, highlighting the importance of understanding the factors that control organic matter decomposition in this biome. In the tropics, high temperature and rainfall lead to some of the highest rates of litter decomposition on earth, and given the near-optimal abiotic conditions, litter quality likely exerts disproportionate control over litter decomposition. Yet interactions between litter quality and abiotic variables, most notably precipitation, remain poorly resolved, especially for the wetter end of the tropical forest biome. We assessed the importance of variation in litter chemistry and precipitation in a lowland tropical rain forest in southwest Costa Rica that receives >5000 mm of precipitation per year, using litter from 11 different canopy tree species in conjunction with a throughfall manipulation experiment. In general, despite the exceptionally high rainfall in this forest, simulated throughfall reductions consistently suppressed rates of litter decomposition. Overall, variation between species was greater than that induced by manipulating throughfall and was best explained by initial litter solubility and lignin:P ratios. Collectively, these results support a model of litter decomposition in which mass loss rates are positively correlated with rainfall up to very high rates of mean annual precipitation and highlight the importance of phosphorus availability in controlling microbial processes in many lowland tropical forests.

  18. Logging disturbance shifts net primary productivity and its allocation in Bornean tropical forests.

    Science.gov (United States)

    Riutta, Terhi; Malhi, Yadvinder; Kho, Lip Khoon; Marthews, Toby R; Huaraca Huasco, Walter; Khoo, MinSheng; Tan, Sylvester; Turner, Edgar; Reynolds, Glen; Both, Sabine; Burslem, David F R P; Teh, Yit Arn; Vairappan, Charles S; Majalap, Noreen; Ewers, Robert M

    2018-01-24

    Tropical forests play a major role in the carbon cycle of the terrestrial biosphere. Recent field studies have provided detailed descriptions of the carbon cycle of mature tropical forests, but logged or secondary forests have received much less attention. Here, we report the first measures of total net primary productivity (NPP) and its allocation along a disturbance gradient from old-growth forests to moderately and heavily logged forests in Malaysian Borneo. We measured the main NPP components (woody, fine root and canopy NPP) in old-growth (n = 6) and logged (n = 5) 1 ha forest plots. Overall, the total NPP did not differ between old-growth and logged forest (13.5 ± 0.5 and 15.7 ± 1.5 Mg C ha -1  year -1 respectively). However, logged forests allocated significantly higher fraction into woody NPP at the expense of the canopy NPP (42% and 48% into woody and canopy NPP, respectively, in old-growth forest vs 66% and 23% in logged forest). When controlling for local stand structure, NPP in logged forest stands was 41% higher, and woody NPP was 150% higher than in old-growth stands with similar basal area, but this was offset by structure effects (higher gap frequency and absence of large trees in logged forest). This pattern was not driven by species turnover: the average woody NPP of all species groups within logged forest (pioneers, nonpioneers, species unique to logged plots and species shared with old-growth plots) was similar. Hence, below a threshold of very heavy disturbance, logged forests can exhibit higher NPP and higher allocation to wood; such shifts in carbon cycling persist for decades after the logging event. Given that the majority of tropical forest biome has experienced some degree of logging, our results demonstrate that logging can cause substantial shifts in carbon production and allocation in tropical forests. © 2018 John Wiley & Sons Ltd.

  19. Lianas reduce carbon accumulation and storage in tropical forests.

    Science.gov (United States)

    van der Heijden, Geertje M F; Powers, Jennifer S; Schnitzer, Stefan A

    2015-10-27

    Tropical forests store vast quantities of carbon, account for one-third of the carbon fixed by photosynthesis, and are a major sink in the global carbon cycle. Recent evidence suggests that competition between lianas (woody vines) and trees may reduce forest-wide carbon uptake; however, estimates of the impact of lianas on carbon dynamics of tropical forests are crucially lacking. Here we used a large-scale liana removal experiment and found that, at 3 y after liana removal, lianas reduced net above-ground carbon uptake (growth and recruitment minus mortality) by ∼76% per year, mostly by reducing tree growth. The loss of carbon uptake due to liana-induced mortality was four times greater in the control plots in which lianas were present, but high variation among plots prevented a significant difference among the treatments. Lianas altered how aboveground carbon was stored. In forests where lianas were present, the partitioning of forest aboveground net primary production was dominated by leaves (53.2%, compared with 39.2% in liana-free forests) at the expense of woody stems (from 28.9%, compared with 43.9%), resulting in a more rapid return of fixed carbon to the atmosphere. After 3 y of experimental liana removal, our results clearly demonstrate large differences in carbon cycling between forests with and without lianas. Combined with the recently reported increases in liana abundance, these results indicate that lianas are an important and increasing agent of change in the carbon dynamics of tropical forests.

  20. The impact of logging on biodiversity and carbon sequestration in tropical forests

    Science.gov (United States)

    Cazzolla Gatti, R.

    2012-04-01

    Tropical deforestation is one of the most relevant environmental issues at planetary scale. Forest clearcutting has dramatic effect on local biodiversity, on the terrestrial carbon sink and atmospheric GHGs balance. In terms of protection of tropical forests selective logging is, instead, often regarded as a minor or even positive management practice for the ecosystem and it is supported by international certifications. However, few studies are available on changes in the structure, biodiversity and ecosystem services due to the selective logging of African forests. This paper presents the results of a survey on tropical forests of West and Central Africa, with a comparison of long-term dynamics, structure, biodiversity and ecosystem services (such as the carbon sequestration) of different types of forests, from virgin primary to selectively logged and secondary forest. Our study suggests that there is a persistent effect of selective logging on biodiversity and carbon stock losses in the long term (up to 30 years since logging) and after repeated logging. These effects, in terms of species richness and biomass, are greater than the expected losses from commercial harvesting, implying that selective logging in West and Central Africa is impairing long term (at least until 30 years) ecosystem structure and services. A longer selective logging cycle (>30 years) should be considered by logging companies although there is not yet enough information to consider this practice sustainable.

  1. Floristic and structural changes in secondary forests following ...

    African Journals Online (AJOL)

    The results showed that the forests were less diversified with few species very common in the forest stands; the most dominant were Lonchocarpus sericeus and Anogeissus leiocarpa in the secondary forests, and Dialium guineense, Diospyros mespiliformis and Afzelia africana in the old-growth forests. The secondary ...

  2. Relationships among net primary productivity, nutrients and climate in tropical rain forest: a pan-tropical analysis.

    Science.gov (United States)

    Cleveland, Cory C; Townsend, Alan R; Taylor, Philip; Alvarez-Clare, Silvia; Bustamante, Mercedes M C; Chuyong, George; Dobrowski, Solomon Z; Grierson, Pauline; Harms, Kyle E; Houlton, Benjamin Z; Marklein, Alison; Parton, William; Porder, Stephen; Reed, Sasha C; Sierra, Carlos A; Silver, Whendee L; Tanner, Edmund V J; Wieder, William R

    2011-09-01

    Tropical rain forests play a dominant role in global biosphere-atmosphere CO(2) exchange. Although climate and nutrient availability regulate net primary production (NPP) and decomposition in all terrestrial ecosystems, the nature and extent of such controls in tropical forests remain poorly resolved. We conducted a meta-analysis of carbon-nutrient-climate relationships in 113 sites across the tropical forest biome. Our analyses showed that mean annual temperature was the strongest predictor of aboveground NPP (ANPP) across all tropical forests, but this relationship was driven by distinct temperature differences between upland and lowland forests. Within lowland forests (tropical forests, but more importantly, underscores the need for a series of large-scale nutrient manipulations - especially in lowland forests - to elucidate the most important nutrient interactions and controls. © 2011 Blackwell Publishing Ltd/CNRS.

  3. Distinctive tropical forest variants have unique soil microbial communities, but not always low microbial diversity

    Directory of Open Access Journals (Sweden)

    Binu M Tripathi

    2016-04-01

    Full Text Available There has been little study of whether different variants of tropical rainforest have distinct soil microbial communities and levels of diversity. We compared bacterial and fungal community composition and diversity between primary mixed dipterocarp, secondary mixed dipterocarp, white sand heath, inland heath, and peat swamp forests in Brunei Darussalam, northwest Borneo by analyzing Illumina Miseq sequence data of 16S rRNA gene and ITS1 region. We hypothesized that white sand heath, inland heath and peat swamp forests would show lower microbial diversity and relatively distinct microbial communities (compared to MDF primary and secondary forests due to their distinctive environments. We found that soil properties together with bacterial and fungal communities varied significantly between forest types. Alpha and beta-diversity of bacteria was highest in secondary dipterocarp and white sand heath forests. Also, bacterial alpha diversity was strongly structured by pH, adding another instance of this widespread pattern in nature. The alpha diversity of fungi was equally high in all forest types except peat swamp forest, although fungal beta-diversity was highest in primary and secondary mixed dipterocarp forests. The relative abundance of ectomycorrhizal (EcM fungi varied significantly between forest types, with highest relative abundance observed in MDF primary forest. Overall, our results suggest that the soil bacterial and fungal communities in these forest types are to a certain extent predictable and structured by soil properties, but that diversity is not determined by how distinctive the conditions are. This contrasts with the diversity patterns seen in rainforest trees, where distinctive soil conditions have consistently lower tree diversity.

  4. FLORISTIC CHANGES IN A SUB-TROPICAL RAIN FOREST SUCCESSION

    Directory of Open Access Journals (Sweden)

    Rochadi Abdulhadi

    1992-02-01

    Full Text Available Floristic changes in a subtropical rain forest were assesed. Three regrowth forests aged 20 years, 50 years and 60 years and an undisturbed forest were sampled. The series of sites sho floristic changes that would be expected in a successional sequence. The regrowth forests were dominated by the secondary species but the primary species occur from the early stage. The oldest regrowth (60 year old-site was still well short of regaining its original condition.

  5. The structure of tropical forests and sphere packings.

    Science.gov (United States)

    Taubert, Franziska; Jahn, Markus Wilhelm; Dobner, Hans-Jürgen; Wiegand, Thorsten; Huth, Andreas

    2015-12-08

    The search for simple principles underlying the complex architecture of ecological communities such as forests still challenges ecological theorists. We use tree diameter distributions--fundamental for deriving other forest attributes--to describe the structure of tropical forests. Here we argue that tree diameter distributions of natural tropical forests can be explained by stochastic packing of tree crowns representing a forest crown packing system: a method usually used in physics or chemistry. We demonstrate that tree diameter distributions emerge accurately from a surprisingly simple set of principles that include site-specific tree allometries, random placement of trees, competition for space, and mortality. The simple static model also successfully predicted the canopy structure, revealing that most trees in our two studied forests grow up to 30-50 m in height and that the highest packing density of about 60% is reached between the 25- and 40-m height layer. Our approach is an important step toward identifying a minimal set of processes responsible for generating the spatial structure of tropical forests.

  6. Land crabs as key drivers in tropical coastal forest recruitment

    Science.gov (United States)

    Lindquist, E.S.; Krauss, K.W.; Green, P.T.; O'Dowd, D. J.; Sherman, P.M.; Smith, T. J.

    2009-01-01

    Plant populations are regulated by a diverse assortment of abiotic and biotic factors that influence seed dispersal and viability, and seedling establishment and growth at the microsite. Rarely does one animal guild exert as significant an influence on different plant assemblages as land crabs. We review three tropical coastal ecosystems-mangroves, island maritime forests, and mainland coastal terrestrial forests-where land crabs directly influence forest composition by limiting tree establishment and recruitment. Land crabs differentially prey on seeds, propagules and seedlings along nutrient, chemical and physical environmental gradients. In all of these ecosystems, but especially mangroves, abiotic gradients are well studied, strong and influence plant species distributions. However, we suggest that crab predation has primacy over many of these environmental factors by acting as the first limiting factor of tropical tree recruitment to drive the potential structural and compositional organisation of coastal forests. We show that the influence of crabs varies relative to tidal gradient, shoreline distance, canopy position, time, season, tree species and fruiting periodicity. Crabs also facilitate forest growth and development through such activities as excavation of burrows, creation of soil mounds, aeration of soils, removal of leaf litter into burrows and creation of carbon-rich soil microhabitats. For all three systems, land crabs influence the distribution, density and size-class structure of tree populations. Indeed, crabs are among the major drivers of tree recruitment in tropical coastal forest ecosystems, and their conservation should be included in management plans of these forests. ?? 2009 Cambridge Philosophical Society.

  7. Land crabs as key drivers in tropical coastal forest recruitment.

    Science.gov (United States)

    Lindquist, Erin Stewart; Krauss, Ken W; Green, Peter T; O'Dowd, Dennis J; Sherman, Peter M; Smith, Thomas J

    2009-05-01

    Plant populations are regulated by a diverse assortment of abiotic and biotic factors that influence seed dispersal and viability, and seedling establishment and growth at the microsite. Rarely does one animal guild exert as significant an influence on different plant assemblages as land crabs. We review three tropical coastal ecosystems-mangroves, island maritime forests, and mainland coastal terrestrial forests-where land crabs directly influence forest composition by limiting tree establishment and recruitment. Land crabs differentially prey on seeds, propagules and seedlings along nutrient, chemical and physical environmental gradients. In all of these ecosystems, but especially mangroves, abiotic gradients are well studied, strong and influence plant species distributions. However, we suggest that crab predation has primacy over many of these environmental factors by acting as the first limiting factor of tropical tree recruitment to drive the potential structural and compositional organisation of coastal forests. We show that the influence of crabs varies relative to tidal gradient, shoreline distance, canopy position, time, season, tree species and fruiting periodicity. Crabs also facilitate forest growth and development through such activities as excavation of burrows, creation of soil mounds, aeration of soils, removal of leaf litter into burrows and creation of carbon-rich soil microhabitats. For all three systems, land crabs influence the distribution, density and size-class structure of tree populations. Indeed, crabs are among the major drivers of tree recruitment in tropical coastal forest ecosystems, and their conservation should be included in management plans of these forests.

  8. [Contribution of tropical upland forests to carbon storage in Colombia].

    Science.gov (United States)

    Yepes, Adriana; Herrera, Johana; Phillips, Juan; Galindo, Gustavo; Granados, Edwin; Duque, Alvaro; Barbosa, Adriana; Olarte, Claudia; Cardona, María

    2015-03-01

    The tropical montane forests in the Colombian Andean region are located above 1500 m, and have been heavily deforested. Despite the general presumption that productivity and hence carbon stocks in these ecosystems are low, studies in this regard are scarce. This study aimed to (i) to estimate Above Ground Biomass (AGB) in forests located in the South of the Colombian Andean region, (ii) to identify the carbon storage potential of tropical montane forests dominated by the black oak Colombobalanus excelsa and to identify the relationship between AGB and altitude, and (iii) to analyze the role of tropical mountain forests in conservation mechanisms such as Payment for Environmental Services (PES) and Reducing Emissions from Deforestation and Degradation (REDD+). Twenty six 0.25 ha plots were randomly distributed in the forests and all trees with D > or =10 cm were measured. The results provided important elements for understanding the role of tropical montane forests as carbon sinks. The information produced can be used in subnational initiatives, which seek to mitigate or reduce the effects of deforestation through management or conservation of these ecosystems, like REDD+ or PES. The AGB and carbon stocks results obtained were similar to those reported for lowland tropical forests. These could be explained by the dominance and abundance of C. excelsa, which accounted for over 81% of AGB/carbon. The error associated with the estimates of AGB/carbon was 10.58%. We found a negative and significant relationship between AGB and altitude, but the higher AGB values were in middle altitudes (approximatly = 700-1800 m), where the environmental conditions could be favorable to their growth. The carbon storage potential of these forests was higher. However, if the historical rate of the deforestation in the study area continues, the gross emissions of CO2e to the atmosphere could turn these forests in to an important emissions source. Nowadays, it is clear that tropical

  9. Intact tropical forests, new evidence they uptake carbon actively

    Directory of Open Access Journals (Sweden)

    2009-03-01

    Full Text Available According to a paper recently published on Nature, tropical forests play as active carbon sink, absorbing 1.3·109 tons of carbon per year on a global scale. Functional interpretation is not clear yet, but a point is quite easy to realize: tropical forests accumulate and contain more carbon than any other vegetation cover and, if their disruption goes on at current rates, these ecosystems could revert to be a “carbon bomb”, releasing huge amount of CO2 to the atmosphere.

  10. Phylogenetic classification of the world’s tropical forests

    Science.gov (United States)

    Franklin, Janet; Arroyo-Rodríguez, Víctor; Field, Richard; Aguilar, Salomon; Aguirre, Nikolay; Ahumada, Jorge; Aiba, Shin-Ichiro; K, Anitha; Avella, Andres; Mora, Francisco; Aymard C., Gerardo A.; Báez, Selene; Balvanera, Patricia; Bastian, Meredith L.; Bastin, Jean-François; Bellingham, Peter J.; van den Berg, Eduardo; da Conceição Bispo, Polyanna; Boeckx, Pascal; Boehning-Gaese, Katrin; Bongers, Frans; Boyle, Brad; Brearley, Francis Q.; Brown, Sandra; Chai, Shauna-Lee; Chazdon, Robin L.; Chen, Shengbin; Chhang, Phourin; Chuyong, George; Ewango, Corneille; Coronado, Indiana M.; Cristóbal-Azkarate, Jurgi; Culmsee, Heike; Damas, Kipiro; Dattaraja, H. S.; Davidar, Priya; DeWalt, Saara J.; Din, Hazimah; Drake, Donald R.; Durigan, Giselda; Eichhorn, Karl; Eler, Eduardo Schmidt; Enoki, Tsutomu; Ensslin, Andreas; Fandohan, Adandé Belarmain; Farwig, Nina; Feeley, Kenneth J.; Fischer, Markus; Forshed, Olle; Garcia, Queila Souza; Garkoti, Satish Chandra; Gillespie, Thomas W.; Gillet, Jean-Francois; Gonmadje, Christelle; Granzow-de la Cerda, Iñigo; Griffith, Daniel M.; Grogan, James; Hakeem, Khalid Rehman; Harris, David J.; Harrison, Rhett D.; Hector, Andy; Hemp, Andreas; Hussain, M. Shah; Ibarra-Manríquez, Guillermo; Hanum, I. Faridah; Imai, Nobuo; Jansen, Patrick A.; Joly, Carlos Alfredo; Joseph, Shijo; Kartawinata, Kuswata; Kearsley, Elizabeth; Kelly, Daniel L.; Kessler, Michael; Killeen, Timothy J.; Kooyman, Robert M.; Laumonier, Yves; Laurance, William F.; Lawes, Michael J.; Letcher, Susan G.; Lovett, Jon; Lozada, Jose; Lu, Xinghui; Lykke, Anne Mette; Mahmud, Khairil Bin; Mahayani, Ni Putu Diana; Mansor, Asyraf; Marshall, Andrew R.; Martin, Emanuel H.; Calderado Leal Matos, Darley; Meave, Jorge A.; Melo, Felipe P. L.; Mendoza, Zhofre Huberto Aguirre; Metali, Faizah; Medjibe, Vincent P.; Metzger, Jean Paul; Metzker, Thiago; Mohandass, D.; Munguía-Rosas, Miguel A.; Muñoz, Rodrigo; Nurtjahy, Eddy; de Oliveira, Eddie Lenza; Onrizal; Parolin, Pia; Parren, Marc; Parthasarathy, N.; Paudel, Ekananda; Perez, Rolando; Pérez-García, Eduardo A.; Pommer, Ulf; Poorter, Lourens; Qie, Lan; Piedade, Maria Teresa F.; Pinto, José Roberto Rodrigues; Poulsen, Axel Dalberg; Poulsen, John R.; Powers, Jennifer S.; Prasad, Rama Chandra; Puyravaud, Jean-Philippe; Rangel, Orlando; Reitsma, Jan; Rocha, Diogo S. B.; Rolim, Samir; Rovero, Francesco; Ruokolainen, Kalle; Rutishauser, Ervan; Rutten, Gemma; Mohd. Said, Mohd. Nizam; Saiter, Felipe Z.; Saner, Philippe; Santos, Braulio; dos Santos, João Roberto; Sarker, Swapan Kumar; Schoengart, Jochen; Schulze, Mark; Sheil, Douglas; Sist, Plinio; Souza, Alexandre F.; Spironello, Wilson Roberto; Sposito, Tereza; Steinmetz, Robert; Stevart, Tariq; Suganuma, Marcio Seiji; Sukri, Rahayu; Sukumar, Raman; Sunderland, Terry; Supriyadi; Suresh, H. S.; Suzuki, Eizi; Tabarelli, Marcelo; Tang, Jianwei; Tanner, Ed V. J.; Targhetta, Natalia; Theilade, Ida; Thomas, Duncan; Timberlake, Jonathan; de Morisson Valeriano, Márcio; van Valkenburg, Johan; Van Do, Tran; Van Sam, Hoang; Vandermeer, John H.; Verbeeck, Hans; Vetaas, Ole Reidar; Adekunle, Victor; Vieira, Simone A.; Webb, Campbell O.; Webb, Edward L.; Whitfeld, Timothy; Wich, Serge; Williams, John; Wiser, Susan; Wittmann, Florian; Yang, Xiaobo; Adou Yao, C. Yves; Yap, Sandra L.; Zahawi, Rakan A.; Zakaria, Rahmad; Zang, Runguo

    2018-01-01

    Knowledge about the biogeographic affinities of the world’s tropical forests helps to better understand regional differences in forest structure, diversity, composition, and dynamics. Such understanding will enable anticipation of region-specific responses to global environmental change. Modern phylogenies, in combination with broad coverage of species inventory data, now allow for global biogeographic analyses that take species evolutionary distance into account. Here we present a classification of the world’s tropical forests based on their phylogenetic similarity. We identify five principal floristic regions and their floristic relationships: (i) Indo-Pacific, (ii) Subtropical, (iii) African, (iv) American, and (v) Dry forests. Our results do not support the traditional neo- versus paleotropical forest division but instead separate the combined American and African forests from their Indo-Pacific counterparts. We also find indications for the existence of a global dry forest region, with representatives in America, Africa, Madagascar, and India. Additionally, a northern-hemisphere Subtropical forest region was identified with representatives in Asia and America, providing support for a link between Asian and American northern-hemisphere forests. PMID:29432167

  11. NPP Multi-Biome: Grassland, Boreal Forest, and Tropical Forest Sites, 1939-1996, R1

    Data.gov (United States)

    National Aeronautics and Space Administration — ABSTRACT: This data set contains one data file (.csv format) that provides net primary productivity (NPP) estimates for 34 grasslands, 14 tropical forests, and 5...

  12. The impact of forest structure and light utilization on carbon cycling in tropical forests

    Science.gov (United States)

    Morton, D. C.; Longo, M.; Leitold, V.; Keller, M. M.

    2015-12-01

    Light competition is a fundamental organizing principle of forest ecosystems, and interactions between forest structure and light availability provide an important constraint on forest productivity. Tropical forests maintain a dense, multi-layered canopy, based in part on abundant diffuse light reaching the forest understory. Climate-driven changes in light availability, such as more direct illumination during drought conditions, therefore alter the potential productivity of forest ecosystems during such events. Here, we used multi-temporal airborne lidar data over a range of Amazon forest conditions to explore the influence of forest structure on gross primary productivity (GPP). Our analysis combined lidar-based observations of canopy illumination and turnover in the Ecosystem Demography model (ED, version 2.2). The ED model was updated to specifically account for regional differences in canopy and understory illumination using lidar-derived measures of canopy light environments. Model simulations considered the influence of forest structure on GPP over seasonal to decadal time scales, including feedbacks from differential productivity between illuminated and shaded canopy trees on mortality rates and forest composition. Finally, we constructed simple scenarios with varying diffuse and direct illumination to evaluate the potential for novel plant-climate interactions under scenarios of climate change. Collectively, the lidar observations and model simulations underscore the need to account for spatial heterogeneity in the vertical structure of tropical forests to constrain estimates of tropical forest productivity under current and future climate conditions.

  13. Field observed relationships between biodiversity and ecosystem functioning during secondary succession in a tropical lowland rainforest

    Science.gov (United States)

    Bu, Wensheng; Zang, Runguo; Ding, Yi

    2014-02-01

    The relationship between biodiversity and ecosystem functioning (BEF) is one of the most concerned topics in ecology. However, most of the studies have been conducted in controlled experiments in grasslands, few observational field studies have been carried out in forests. In this paper, we report variations of species diversity, functional diversity and aboveground biomass (AGB) for woody plants (trees and shrubs) along a chronosequence of four successional stages (18-year-old fallow, 30-year-old fallow, 60-year-old fallow, and old-growth forest) in a tropical lowland rainforest recovered after shifting cultivation on Hainan Island, China. Fifty randomly selected sample plots of 20 m × 20 m were investigated in each of the four successional stages. Four functional traits (specific leaf area, wood density, maximum species height and leaf dry matter content) were measured for each woody plants species and the relationships between species/functional diversity and AGB during secondary succession were explored. The results showed that both plant diversity and AGB recovered gradually with the secondary succession. AGB was positively correlated with both species and functional diversity in each stage of succession. Consistent with many controlled experimental results in grasslands, our observational field study confirms that ecosystem functioning is closely related to biodiversity during secondary succession in species rich tropical forests.

  14. A tale of two "forests": random forest machine learning AIDS tropical forest carbon mapping.

    Directory of Open Access Journals (Sweden)

    Joseph Mascaro

    Full Text Available Accurate and spatially-explicit maps of tropical forest carbon stocks are needed to implement carbon offset mechanisms such as REDD+ (Reduced Deforestation and Degradation Plus. The Random Forest machine learning algorithm may aid carbon mapping applications using remotely-sensed data. However, Random Forest has never been compared to traditional and potentially more reliable techniques such as regionally stratified sampling and upscaling, and it has rarely been employed with spatial data. Here, we evaluated the performance of Random Forest in upscaling airborne LiDAR (Light Detection and Ranging-based carbon estimates compared to the stratification approach over a 16-million hectare focal area of the Western Amazon. We considered two runs of Random Forest, both with and without spatial contextual modeling by including--in the latter case--x, and y position directly in the model. In each case, we set aside 8 million hectares (i.e., half of the focal area for validation; this rigorous test of Random Forest went above and beyond the internal validation normally compiled by the algorithm (i.e., called "out-of-bag", which proved insufficient for this spatial application. In this heterogeneous region of Northern Peru, the model with spatial context was the best preforming run of Random Forest, and explained 59% of LiDAR-based carbon estimates within the validation area, compared to 37% for stratification or 43% by Random Forest without spatial context. With the 60% improvement in explained variation, RMSE against validation LiDAR samples improved from 33 to 26 Mg C ha(-1 when using Random Forest with spatial context. Our results suggest that spatial context should be considered when using Random Forest, and that doing so may result in substantially improved carbon stock modeling for purposes of climate change mitigation.

  15. [Diversity, structure and regeneration of the seasonally dry tropical forest of Yucatán Peninsula, Mexico].

    Science.gov (United States)

    Hernández-Ramírez, Angélica María; García-Méndez, Socorro

    2015-09-01

    Seasonally dry tropical forests are considered as the most endangered ecosystem in lowland tropics. The aim of this study was to characterize the floristic composition, richness, diversity, structure and regeneration of a seasonally dry tropical forest landscape constituted by mature forest, secondary forest and seasonally inundated forest located in the Northeastern part of the Yucatán Peninsula, Mexico. We used the Gentry's standard inventory plot methodology (0.1 ha per forest type in 2007) for facilitating comparison with other Mesoamerican seasonally dry tropical forests. A total of 77 species belonging to 32 families were observed in the study area. Fabaceae and Euphorbiaceae were the families with the largest taxonomic richness in the three forest types. Low levels of β diversity were observed among forest types (0.19-0.40), suggesting a high turnover of species at landscape level. The non-regenerative species were dominant (50-51 %), followed by regenerative species (30- 28 %), and colonizer species (14-21 %) in the three forest types. Zoochory was the most common dispersal type in the study area. The 88 % of the observed species in the study area were distributed in Central America. Some floristic attributes of the seasonally dry tropical forest of the Yucatán Peninsula, fall into the values reported for Mesoamerican seasonally dry tropical forests. Natural disturbances contributed to explain the high number of individuals, the low number of liana species, as well as the low values of basal area observed in this study. Our results suggested that the seasonally dry tropical forest of Yucatán Peninsula seems to be resilient to natural disturbances (hurricane) in terms of the observed number of species and families, when compared with the reported values in Mesoamerican seasonally dry tropical forests. Nonetheless, the recovery and regeneration of vegetation in long-term depends on animal-dispersed species. This study highlights the importance of

  16. Fragmentation impairs the microclimate buffering effect of tropical forests.

    Science.gov (United States)

    Ewers, Robert M; Banks-Leite, Cristina

    2013-01-01

    Tropical forest species are among the most sensitive to changing climatic conditions, and the forest they inhabit helps to buffer their microclimate from the variable climatic conditions outside the forest. However, habitat fragmentation and edge effects exposes vegetation to outside microclimatic conditions, thereby reducing the ability of the forest to buffer climatic variation. In this paper, we ask what proportion of forest in a fragmented ecosystem is impacted by altered microclimate conditions driven by edge effects, and extrapolate these results to the whole Atlantic Forest biome, one of the most disturbed biodiversity hotspots. To address these questions, we collected above and below ground temperature for a full year using temperature sensors placed in forest fragments of different sizes, and at different distances from the forest edge. In the Atlantic forests of Brazil, we found that the buffering effect of forests reduced maximum outside temperatures by one third or more at ground level within a forest, with the buffering effect being stronger below-ground than one metre above-ground. The temperature buffering effect of forests was, however, reduced near forest edges with the edge effect extending up to 20 m inside the forest. The heavily fragmented nature of the Brazilian Atlantic forest means that 12% of the remaining biome experiences altered microclimate conditions. Our results add further information about the extent of edge effects in the Atlantic Forest, and we suggest that maintaining a low perimeter-to-area ratio may be a judicious method for minimizing the amount of forest area that experiences altered microclimatic conditions in this ecosystem.

  17. Hurricane Impacts to Tropical and Temperate Forest Landscapes

    OpenAIRE

    Boose, Emery Robert; Foster, David Russell; Fluet, Marcheterre

    1994-01-01

    Hurricanes represent an important natural disturbance process to tropical and temperate forests in many coastal areas of the world. The complex patterns of damage created in forests by hurricane winds result from the interaction of meteorological, physiographic, and biotic factors on a range of spatial scales. To improve our understanding of these factors and of the role of catastrophic hurricane wind as a disturbance process, we take an integrative approach. A simple meteorological model (HU...

  18. Forest dynamics in tropical rain forests of Uttara Kannada district in Western Ghats, India

    OpenAIRE

    Bhat, DM; Naik, MB; Patagar, SG; Hegde, GT; Kanade, YG; Hegde, GN; Shastri, CM; Shetti, DM; Furtado, RM

    2000-01-01

    Species richness, tree and stem density, basal area and recruitment details were monitored for ten years (1984 to 1994) in eight one-hectare forest sites in evergreen and moist deciduous forest zones of the tropical rain forests in Uttara Kannada district of the Western Chats in southern India, Changes in species richness and basal area were observed in majority of the forest sites. Loss of more number of stems and trees as well as species was observed in minor forests of the evergreen forest...

  19. Tracking disturbance-regrowth dynamics in tropical forests using structural change detection and Landsat time series

    NARCIS (Netherlands)

    DeVries, B.R.; Decuyper, M.; Verbesselt, J.; Zeileis, A.; Herold, M.; Joseph, S.

    2015-01-01

    Increasing attention on tropical deforestation and forest degradation has necessitated more detailed knowledge of forest change dynamics in the tropics. With an increasing amount of satellite data being released to the public free of charge, understanding forest change dynamics in the tropics is

  20. Recover: A Concept For Tropical Forest Assessment For REDD

    Science.gov (United States)

    Hame, Tuomas; Sirro, Laura; Caberea, Edersson; Enßle, Fabian; Haarpainter, Jorg; Hamalainen, Jarno; de Jong, Bernardus; Pellat, Fernando Paz; Pedrazzani, Donata; Reiche, Johannes

    2013-12-01

    Project ReCover, funded by the 7th Framework Program of the European Union, developed beyond state-of-the- art service capabilities to support fighting deforestation and forest degradation in the tropical region in the context of the REDD process (Reducing Emissions from Deforestation and forest Degradation). A monitoring system for forest cover mapping by combining wall-to-wall mapping and a sample of VHR imagery was introduced. Also biomass and changes of forest cover changes were estimated. ReCover provided close to one hundred products for the study sites in Mexico, Guyana, Democratic Republic of Congo, Colombia and Fiji using optical and SAR data and their combinations. The accuracy in forest and non- forest classification varied from 85 % to 97 %.

  1. Humid tropical rain forest has expanded into eucalypt forest and savanna over the last 50 years.

    Science.gov (United States)

    Tng, David Y P; Murphy, Brett P; Weber, Ellen; Sanders, Gregor; Williamson, Grant J; Kemp, Jeanette; Bowman, David M J S

    2012-01-01

    Tropical rain forest expansion and savanna woody vegetation thickening appear to be a global trend, but there remains uncertainty about whether there is a common set of global drivers. Using geographic information techniques, we analyzed aerial photography of five areas in the humid tropics of northeastern Queensland, Australia, taken in the 1950s and 2008, to determine if changes in rain forest extent match those reported for the Australian monsoon tropics using similar techniques. Mapping of the 1950s aerial photography showed that of the combined study area (64,430 ha), 63% was classified as eucalypt forests/woodland and 37% as rain forest. Our mapping revealed that although most boundaries remained stable, there was a net increase of 732 ha of the original rain forest area over the study period, and negligible conversion of rain forest to eucalypt forest/woodland. Statistical modeling, controlling for spatial autocorrelation, indicated distance from preexisting rain forest as the strongest determinant of rain forest expansion. Margin extension had a mean rate across the five sites of 0.6 m per decade. Expansion was greater in tall open forest types but also occurred in shorter, more flammable woodland vegetation types. No correlations were detected with other local variables (aspect, elevation, geology, topography, drainage). Using a geographically weighted mean rate of rain forest margin extension across the whole region, we predict that over 25% of tall open forest (a forest type of high conservation significance) would still remain after 2000 years of rain forest expansion. This slow replacement is due to the convoluted nature of the rain forest boundary and the irregular shape of the tall open forest patches. Our analyses point to the increased concentration of atmospheric CO(2) as the most likely global driver of indiscriminate rain forest expansion occurring in northeastern Australia, by increasing tree growth and thereby overriding the effects of fire

  2. Co-benefits of biodiversity and carbon from regenerating secondary forests after shifting cultivation in the upland Philippines: implications for forest landscape restoration

    Science.gov (United States)

    Mukul, S. A.; Herbohn, J.; Firn, J.; Gregorio, N.

    2017-12-01

    Shifting cultivation is a widespread practice in tropical forest agriculture frontiers that policy makers often regard as the major driver of forest loss and degradation. Secondary forests regrowing after shifting cultivation are generally not viewed as suitable option for biodiversity conservation and carbon retention. Drawing upon our research in the Philippines and other relevant case studies, we compared the biodiversity and carbon sequestration benefits in recovering secondary forests after shifting cultivation to other land uses that commonly follow shifting cultivation. Regenerating secondary forests had higher biodiversity than fast growing timber plantations and other restoration options available in the area. Some old plantations, however, provided carbon benefits comparable the old growth forest, although their biodiversity was less than that of the regenerating forests. Our study demonstrates that secondary forests regrowing after shifting cultivation have a high potential for biodiversity and carbon sequestration co-benefits, representing an effective strategy for forest management and restoration in countries where they are common and where the forest is an integral part of rural people's livelihoods. We discuss the issues and potential mechanisms through which such dynamic land use can be incorporated into development projects that are currently financing the sustainable management, conservation, and restoration of tropical forests.

  3. Liberation: Acceptable production of tropical forest timber.

    Science.gov (United States)

    Frank H. Wadsworth; Johan Zweede

    2006-01-01

    Reduced impact logging in an eastern Amazonian terra firme forest left more than half of the next crop trees growing at a rate corresponding to a rotation of more than a century to attain 60-cm dbh. Two years after the logging, in 20 ha of the logged forest, tree competitors around crop trees were eliminated. Competitors were defined as trees whose crowns overtopped...

  4. Organismal responses to habitat change: herbivore performance, climate and leaf traits in regenerating tropical dry forests.

    Science.gov (United States)

    Agosta, Salvatore J; Hulshof, Catherine M; Staats, Ethan G

    2017-05-01

    The ecological effects of large-scale climate change have received much attention, but the effects of the more acute form of climate change that results from local habitat alteration have been less explored. When forest is fragmented, cut, thinned, cleared or otherwise altered in structure, local climates and microclimates change. Such changes can affect herbivores both directly (e.g. through changes in body temperature) and indirectly (e.g. through changes in host plant traits). We advance an eco-physiological framework to understand the effects of changing forests on herbivorous insects. We hypothesize that if tropical forest caterpillars are climate and resource specialists, then they should have reduced performance outside of mature forest conditions. We tested this hypothesis with a field experiment contrasting the performance of Rothschildia lebeau (Saturniidae) caterpillars feeding on the host plant Casearia nitida (Salicaceae) in two different aged and structured tropical dry forests in Area de Conservación Guanacaste, Costa Rica. Compared to more mature closed-canopy forest, in younger secondary forest we found that: (1) ambient conditions were hotter, drier and more variable; (2) caterpillar growth and development were reduced; and (3) leaves were tougher, thicker and drier. Furthermore, caterpillar growth and survival were negatively correlated with these leaf traits, suggesting indirect host-mediated effects of climate on herbivores. Based on the available evidence, and relative to mature forest, we conclude that reduced herbivore performance in young secondary forest could have been driven by changes in climate, leaf traits (which were likely climate induced) or both. However, additional studies will be needed to provide more direct evidence of cause-and-effect and to disentangle the relative influence of these factors on herbivore performance in this system. © 2017 The Authors. Journal of Animal Ecology © 2017 British Ecological Society.

  5. Land-use systems and resilience of tropical rain forests in the Tehuantepec Isthmus, Mexico.

    Science.gov (United States)

    García-Romero, Arturo; Oropeza-Orozco, Oralia; Galicia-Sarmiento, Leopoldo

    2004-12-01

    Land-cover types were analyzed for 1970, 1990 and 2000 as the bases for determining land-use systems and their influence on the resilience of tropical rain forests in the Tehuantepec Isthmus, Mexico. Deforestation (DR) and mean annual transformation rates were calculated from land-cover change data; thus, the classification of land-use change processes was determined according to their impact on resilience: a) Modification, including land-cover conservation and intensification, and b) Conversion, including disturbance and regeneration processes. Regeneration processes, from secondary vegetation under extensive use, cultivated vegetation under intensive use, and cultivated or induced vegetation under extensive use to mature or secondary vegetation, have high resilience capacity. In contrast, cattle-raising is characterized by rapid expansion, long-lasting change, and intense damages; thus, recent disturbance processes, which include the conversion to cattle-raising, provoke the downfall of the traditional agricultural system, and nullify the capacity of resilience of tropical rain forest. The land-use cover change processes reveal a) the existence of four land-use systems (forestry, extensive agriculture, extensive cattle-raising, and intensive uses) and b) a trend towards the replacement of agricultural and forestry systems by extensive cattle-raising, which was consolidated during 1990-2000 (DR of evergreen tropical rain forest = 4.6%). Only the forestry system, which is not subject to deforestation, but is affected by factors such as selective timber, extraction, firewood collection, grazing, or human-induced fire, is considered to have high resilience (2 years), compared to agriculture (2-10 years) or cattle-raising (nonresilient). It is concluded that the analysis of land-use systems is essential for understanding the implications of land-use cover dynamics on forest recovery and land degradation in tropical rain forests.

  6. Averting biodiversity collapse in tropical forest protected areas

    Czech Academy of Sciences Publication Activity Database

    Laurence, W. F.; Novotný, Vojtěch

    2012-01-01

    Roč. 489, č. 7415 (2012), s. 290-294 ISSN 0028-0836 Grant - others:NSF grant(AU) RCN-0741956 Institutional support: RVO:60077344 Keywords : biodiversity * tropical forest * collapse Subject RIV: EH - Ecology, Behaviour Impact factor: 38.597, year: 2012 http://www.nature.com/nature/journal/vaop/ncurrent/pdf/nature11318.pdf

  7. Scenarios in tropical forest degradation: carbon stock trajectories for REDD+

    Directory of Open Access Journals (Sweden)

    Rafael B. de Andrade

    2017-03-01

    Full Text Available Abstract Background Human-caused disturbance to tropical rainforests—such as logging and fire—causes substantial losses of carbon stocks. This is a critical issue to be addressed in the context of policy discussions to implement REDD+. This work reviews current scientific knowledge about the temporal dynamics of degradation-induced carbon emissions to describe common patterns of emissions from logging and fire across tropical forest regions. Using best available information, we: (i develop short-term emissions factors (per area for logging and fire degradation scenarios in tropical forests; and (ii describe the temporal pattern of degradation emissions and recovery trajectory post logging and fire disturbance. Results Average emissions from aboveground biomass were 19.9 MgC/ha for logging and 46.0 MgC/ha for fire disturbance, with an average period of study of 3.22 and 2.15 years post-disturbance, respectively. Longer-term studies of post-logging forest recovery suggest that biomass accumulates to pre-disturbance levels within a few decades. Very few studies exist on longer-term (>10 years effects of fire disturbance in tropical rainforests, and recovery patterns over time are unknown. Conclusions This review will aid in understanding whether degradation emissions are a substantial component of country-level emissions portfolios, or whether these emissions would be offset by forest recovery and regeneration.

  8. Bioremediation of a crude oil polluted tropical rain forest soil ...

    African Journals Online (AJOL)

    A combination of options including Biostimulation with agricultural fertilizers, Bioaugumentation and physical processes were evaluated in-situ in the clean-up of crude oil polluted tropical rain forest soil for a period of nine weeks. Soil physicochemical parameters such as moisture (19% to 13%), pH (6.34 to 4.5) and organic ...

  9. Wood CO2 efflux in a primary tropical rain forest

    Science.gov (United States)

    Molly A. Cavaleri; Steven F. Oberbauer; Michael G. Ryan

    2006-01-01

    The balance between photosynthesis and plant respiration in tropical forests may substantially affect the global carbon cycle. Woody tissue CO2 efflux is a major component of total plant respiration, but estimates of ecosystem-scale rates are uncertain because of poor sampling in the upper canopy and across landscapes. To overcome these problems, we used a portable...

  10. Propagation of dry tropical forest trees in Mexico

    Science.gov (United States)

    Martha A. Cervantes Sanchez

    2002-01-01

    There is a distinct lack of technical information on the propagation of native tree species from the dry tropical forest ecosystem in Mexico. This ecosystem has come under heavy human pressures to obtain several products such as specialty woods for fuel, posts for fences and construction, forage, edible fruits, stakes for horticulture crops, and medicinal products. The...

  11. Hydrometeorology of tropical montane cloud forests: emerging patterns

    NARCIS (Netherlands)

    Bruijnzeel, L.A.; Mulligan, M.; Scatena, F.N.

    2011-01-01

    Tropical montane cloud forests (TMCF) typically experience conditions of frequent to persistent fog. On the basis of the altitudinal limits between which TMCF generally occur (800-3500 m.a.s.l. depending on mountain size and distance to coast) their current areal extent is estimated at ∼215 000 km

  12. Issues of Tropical Forest Transformation in Ashanti Region: Testing ...

    African Journals Online (AJOL)

    Studies have revealed that there was a dramatic loss of forests in West Africa during the 20th century due to pressure of population growth and poverty. However some scholars have challenged this view. This paper adopts a political ecology approach to argue that the dominant global discourse of tropical deforestation ...

  13. Autochthonous white rot fungi from the tropical forest: Potential of ...

    African Journals Online (AJOL)

    Autochthonous white rot fungi from the tropical forest: Potential of Cuban strains for dyes and textile industrial effluents decolourisation. MI Sánchez-López, SF Vanhulle, V Mertens, G Guerra, SH Figueroa, C Decock, A Corbisier, MJ Penninckx ...

  14. Increasing carbon storage in intact African tropical forests

    NARCIS (Netherlands)

    Lewis, S.L.; Lopez-Gonzalez, G.; Sonké, B.; Affum-Baffoe, K.; Ewango, C.E.N.

    2009-01-01

    The response of terrestrial vegetation to a globally changing environment is central to predictions of future levels of atmospheric carbon dioxide1, 2. The role of tropical forests is critical because they are carbon-dense and highly productive3, 4. Inventory plots across Amazonia show that

  15. Multiple successional pathways in human-modified tropical landscapes

    NARCIS (Netherlands)

    Arroyo-Rodríguez, Víctor; Melo, Felipe P.L.; Martínez-Ramos, Miguel; Bongers, Frans; Chazdon, Robin L.; Meave, Jorge A.; Norden, Natalia; Santos, Bráulio A.; Leal, Inara R.; Tabarelli, Marcelo

    2017-01-01

    Old-growth tropical forests are being extensively deforested and fragmented worldwide. Yet forest recovery through succession has led to an expansion of secondary forests in human-modified tropical landscapes (HMTLs). Secondary forests thus emerge as a potential repository for tropical

  16. Exotic grasses and nitrate enrichment alter soil carbon cycling along an urban-rural tropical forest gradient.

    Science.gov (United States)

    Cusack, Daniela F; Lee, Joseph K; McCleery, Taylor L; LeCroy, Chase S

    2015-12-01

    Urban areas are expanding rapidly in tropical regions, with potential to alter ecosystem dynamics. In particular, exotic grasses and atmospheric nitrogen (N) deposition simultaneously affect tropical urbanized landscapes, with unknown effects on properties like soil carbon (C) storage. We hypothesized that (H1) soil nitrate (NO3 (-) ) is elevated nearer to the urban core, reflecting N deposition gradients. (H2) Exotic grasslands have elevated soil NO3 (-) and decreased soil C relative to secondary forests, with higher N promoting decomposer activity. (H3) Exotic grasslands have greater seasonality in soil NO3 (-) vs. secondary forests, due to higher sensitivity of grassland soil moisture to rainfall. We predicted that NO3 (-) would be positively related to dissolved organic C (DOC) production via changes in decomposer activity. We measured six paired grassland/secondary forest sites along a tropical urban-to-rural gradient during the three dominant seasons (hurricane, dry, and early wet). We found that (1) soil NO3 (-) was generally elevated nearer to the urban core, with particularly clear spatial trends for grasslands. (2) Exotic grasslands had lower soil C than secondary forests, which was related to elevated decomposer enzyme activities and soil respiration. Unexpectedly, soil NO3 (-) was negatively related to enzyme activities, and was lower in grasslands than forests. (3) Grasslands had greater soil NO3 (-) seasonality vs. forests, but this was not strongly linked to shifts in soil moisture or DOC. Our results suggest that exotic grasses in tropical regions are likely to drastically reduce soil C storage, but that N deposition may have an opposite effect via suppression of enzyme activities. However, soil NO3 (-) accumulation here was higher in urban forests than grasslands, potentially related to of aboveground N interception. Net urban effects on C storage across tropical landscapes will likely vary depending on the mosaic of grass cover, rates of N

  17. Large trees drive forest aboveground biomass variation in moist lowland forests across the tropics

    DEFF Research Database (Denmark)

    Slik, J.W.Ferry; Paoli, Gary; McGuire, Krista

    2013-01-01

    Aim Large trees (d.b.h. ≥ 70 cm) store large amounts of biomass. Several studies suggest that large trees may be vulnerable to changing climate, potentially leading to declining forest biomass storage. Here we determine the importance of large trees for tropical forest biomass storage and explore...

  18. NPP Tropical Forest: Marafunga, Papua New Guinea, 1970-1971

    Data.gov (United States)

    National Aeronautics and Space Administration — ABSTRACT: Biomass and nutrient content of different vegetation components and soil for a lower montane secondary rain forest at Marafunga in the highlands of Papua...

  19. Humid tropical forest disturbance alerts using Landsat data

    Science.gov (United States)

    Hansen, Matthew C.; Krylov, Alexander; Tyukavina, Alexandra; Potapov, Peter V.; Turubanova, Svetlana; Zutta, Bryan; Ifo, Suspense; Margono, Belinda; Stolle, Fred; Moore, Rebecca

    2016-03-01

    A Landsat-based humid tropical forest disturbance alert was implemented for Peru, the Republic of Congo and Kalimantan, Indonesia. Alerts were mapped on a weekly basis as new terrain-corrected Landsat 7 and 8 images were made available; results are presented for all of 2014 and through September 2015. The three study areas represent different stages of the forest land use transition, with all featuring a variety of disturbance dynamics including logging, smallholder agriculture, and agroindustrial development. Results for Peru were formally validated and alerts found to have very high user’s accuracies and moderately high producer’s accuracies, indicating an appropriately conservative product suitable for supporting land management and enforcement activities. Complete pan-tropical coverage will be implemented during 2016 in support of the Global Forest Watch initiative. To date, Global Forest Watch produces annual global forest loss area estimates using a comparatively richer set of Landsat inputs. The alert product is presented as an interim update of forest disturbance events between comprehensive annual updates. Results from this study are available for viewing and download at http://glad.geog.umd.edu/forest-alerts and www.globalforestwatch.org.

  20. Edge fires drive the shape and stability of tropical forests.

    Science.gov (United States)

    Hébert-Dufresne, Laurent; Pellegrini, Adam F A; Bhat, Uttam; Redner, Sidney; Pacala, Stephen W; Berdahl, Andrew M

    2018-03-25

    In tropical regions, fires propagate readily in grasslands but typically consume only edges of forest patches. Thus, forest patches grow due to tree propagation and shrink by fires in surrounding grasslands. The interplay between these competing edge effects is unknown, but critical in determining the shape and stability of individual forest patches, as well the landscape-level spatial distribution and stability of forests. We analyze high-resolution remote-sensing data from protected Brazilian Cerrado areas and find that forest shapes obey a robust perimeter-area scaling relation across climatic zones. We explain this scaling by introducing a heterogeneous fire propagation model of tropical forest-grassland ecotones. Deviations from this perimeter-area relation determine the stability of individual forest patches. At a larger scale, our model predicts that the relative rates of tree growth due to propagative expansion and long-distance seed dispersal determine whether collapse of regional-scale tree cover is continuous or discontinuous as fire frequency changes. © 2018 The Authors. Ecology Letters published by CNRS and John Wiley & Sons Ltd.

  1. Structure on lower montane secondary forests and shrublands in northern Antioquia, Colombia

    Directory of Open Access Journals (Sweden)

    Héctor Iván Restrepo

    2012-12-01

    Full Text Available Tropical montane forests have the highest biodiversity in the world. However, they are being seriously threatened by deforestation, degradation and climate change. Their conservation is also at risk because we know little about their ecology. We established four permanent plots at two successional stages: secondary forest and cultivated areas. Distribution by diameter was analyzed using Hugershoff non-linear models. We estimated biomass of trees above and below-ground along with liana, under bush, understory and epiphyte biomass. In addition we measured necromass of standing dead trees, litter from wood and litterfall. We estimated total carbon in living and dead organic matter and in the soil. All the diametric distributions were of a J-inverted shape. The Hugershoff models successfully explained the behavior of the secondary forest and shrub structure. The biomass, necromass and total carbon were estimated at 185.7 and 29.8 t ha-1, 9.2 and 3.8 t ha-1 and 151.7 and 78.2 t ha-1 respectively for forests and cultivated areas. An interesting finding is the high biomass of trees below-ground, lianas and epiphytes in tropical montane forest. Tropical montane forests provide important environmental services and therefore we have to search for better ways to conserve them.

  2. Tolerance of frugivorous birds to habitat disturbance in a tropical cloud forest

    NARCIS (Netherlands)

    Gomes, L.G.L.; Oostra, V.; Nijman, V.; Cleef, A.M.; Kappelle, M.

    2008-01-01

    In view of the continued decline in tropical forest cover around the globe, forest restoration has become a key tool in tropical rainforest conservation. One of the main - and least expensive - restoration strategies is natural forest regeneration. By aiding forest seed influx both into disturbed

  3. Mirror image hydrocarbons from Tropical and Boreal forests

    Directory of Open Access Journals (Sweden)

    J. Williams

    2007-01-01

    Full Text Available Monoterpenes, emitted in large quantities by trees to attract pollinators and repel herbivores, can exist in mirror image forms called enantiomers. In this study such enantiomeric pairs have been measured in ambient air over extensive forest ecosystems in South America and northern Europe. For the dominant monoterpene, α-pinene, the (−-form was measured in large excess over the (+-form over the Tropical rainforest, whereas the reverse was observed over the Boreal forest. Interestingly, over the Tropical forest (−-α-pinene did not correlate with its own enantiomer, but correlated well with isoprene. The results indicate a remarkable ecosystem scale enantiomeric fingerprint and a nexus between the biosphere and atmosphere.

  4. Identifying tropical dry forests extent and succession via the use of machine learning techniques

    Science.gov (United States)

    Li, Wei; Cao, Sen; Campos-Vargas, Carlos; Sanchez-Azofeifa, Arturo

    2017-12-01

    Information on ecosystem services as a function of the successional stage for secondary tropical dry forests (TDFs) is scarce and limited. Secondary TDFs succession is defined as regrowth following a complete forest clearance for cattle growth or agriculture activities. In the context of large conservation initiatives, the identification of the extent, structure and composition of secondary TDFs can serve as key elements to estimate the effectiveness of such activities. As such, in this study we evaluate the use of a Hyperspectral MAPper (HyMap) dataset and a waveform LIDAR dataset for characterization of different levels of intra-secondary forests stages at the Santa Rosa National Park (SRNP) Environmental Monitoring Super Site located in Costa Rica. Specifically, a multi-task learning based machine learning classifier (MLC-MTL) is employed on the first shortwave infrared (SWIR1) of HyMap in order to identify the variability of aboveground biomass of secondary TDFs along a successional gradient. Our paper recognizes that the process of ecological succession is not deterministic but a combination of transitional forests types along a stochastic path that depends on ecological, edaphic, land use, and micro-meteorological conditions, and our results provide a new way to obtain the spatial distribution of three main types of TDFs successional stages.

  5. A new pan-tropical estimate of carbon loss in natural and managed forests in 2000-2012

    Science.gov (United States)

    Tyukavina, A.; Baccini, A.; Hansen, M.; Potapov, P.; Stehman, S. V.; Houghton, R. A.; Krylov, A.; Turubanova, S.; Goetz, S. J.

    2015-12-01

    Clearing of tropical forests, which includes semi-permanent conversion of forests to other land uses (deforestation) and more temporary forest disturbances, is a significant source of carbon emissions. The previous estimates of tropical forest carbon loss vary among studies due to the differences in definitions, methodologies and data inputs. The best currently available satellite-derived datasets, such as a 30-m forest cover loss map by Hansen et al. (2013), may be used to produce methodologically consistent carbon loss estimates for the entire tropical region, but forest cover loss area derived from maps is biased due to classification errors. In this study we produced an unbiased estimate of forest cover loss area from a validation sample, as suggested by good practice recommendations. Stratified random sampling was implemented with forest carbon stock strata defined based on Landsat-derived tree canopy cover, height, intactness (Potapov et al., 2008) and forest cover loss (Hansen et al., 2013). The largest difference between the sample-based and Hansen et al. (2013) forest loss area estimates occurred in humid tropical Africa. This result supports the earlier finding (Tyukavina et al., 2013) that Landsat-based forest cover loss maps may significantly underestimate loss area in regions with small-scale forest dynamics while performing well in regions with large industrial forest clearing, such as Brazil and Indonesia (where differences between sample-based and map estimates were within 10%). To produce final carbon loss estimates, sample-based forest loss area estimates for each stratum were related to GLAS-lidar derived forest biomass (Baccini et al., 2012). Our sample-based results distinguish gross losses of aboveground carbon from natural forests (0.59 PgC/yr), which include primary, mature secondary forests and natural woodlands, and from managed forests (0.43 PgC/yr), which include plantations, agroforestry systems and areas of subsistence agriculture

  6. Estimating forest carbon stocks in tropical dry forests of Zimbabwe ...

    African Journals Online (AJOL)

    Estimation and mapping of forest dendrometric characteristics such as carbon stocks using remote sensing techniques is fundamental for improved understanding of the role of forests in the carbon cycle and climate change. In this study, we tested whether and to what extent spectral transforms, i.e. vegetation indices ...

  7. Deforestation trends of tropical dry forests in central Brazil

    Science.gov (United States)

    Bianchi, Carlos A.; Haig, Susan M.

    2013-01-01

    Tropical dry forests are the most threatened forest type in the world yet a paucity of research about them stymies development of appropriate conservation actions. The Paranã River Basin has the most significant dry forest formations in the Cerrado biome of central Brazil and is threatened by intense land conversion to pastures and agriculture. We examined changes in Paranã River Basin deforestation rates and fragmentation across three time intervals that covered 31 yr using Landsat imagery. Our results indicated a 66.3 percent decrease in forest extent between 1977 and 2008, with an annual rate of forest cover change of 3.5 percent. Landscape metrics further indicated severe forest loss and fragmentation, resulting in an increase in the number of fragments and reduction in patch sizes. Forest fragments in flatlands have virtually disappeared and the only significant forest remnants are mostly found over limestone outcrops in the eastern part of the basin. If current patterns persist, we project that these forests will likely disappear within 25 yr. These patterns may be reversed with creation of protected areas and involvement of local people to preserve small fragments that can be managed for restoration.

  8. Tropical forest soil microbial communities couple iron and carbon biogeochemistry

    Energy Technology Data Exchange (ETDEWEB)

    Dubinsky, E.A.; Silver, W.L.; Firestone, M.K.

    2009-10-15

    We report that iron-reducing bacteria are primary mediators of anaerobic carbon oxidation in upland tropical soils spanning a rainfall gradient (3500 - 5000 mm yr-1) in northeast Puerto Rico. The abundant rainfall and high net primary productivity of these tropical forests provide optimal soil habitat for iron-reducing and iron-oxidizing bacteria. Spatially and temporally dynamic redox conditions make iron-transforming microbial communities central to the belowground carbon cycle in these wet tropical forests. The exceedingly high abundance of iron-reducing bacteria (up to 1.2 x 10{sup 9} cells per gram soil) indicated that they possess extensive metabolic capacity to catalyze the reduction of iron minerals. In soils from the higher rainfall sites, measured rates of ferric iron reduction could account for up to 44 % of organic carbon oxidation. Iron reducers appeared to compete with methanogens when labile carbon availability was limited. We found large numbers of bacteria that oxidize reduced iron at sites with high rates of iron reduction and large numbers of iron-reducers. the coexistence of large populations of ironreducing and iron-oxidizing bacteria is evidence for rapid iron cycling between its reduced and oxidized states, and suggests that mutualistic interactions among these bacteria ultimately fuel organic carbon oxidation and inhibit CH4 production in these upland tropical forests.

  9. Restoring degraded tropical forests for carbon and biodiversity

    International Nuclear Information System (INIS)

    Budiharta, Sugeng; Meijaard, Erik; Wilson, Kerrie A; Erskine, Peter D; Rondinini, Carlo; Pacifici, Michela

    2014-01-01

    The extensive deforestation and degradation of tropical forests is a significant contributor to the loss of biodiversity and to global warming. Restoration could potentially mitigate the impacts of deforestation, yet knowledge on how to efficiently allocate funding for restoration is still in its infancy. We systematically prioritize investments in restoration in the tropical landscape of East Kalimantan, Indonesia, and through this application demonstrate the capacity to account for a diverse suite of restoration techniques and forests of varying condition. To achieve this we develop a map of forest degradation for the region, characterized on the basis of aboveground biomass and differentiated by broad forest types. We estimate the costs of restoration as well as the benefits in terms of carbon sequestration and improving the suitability of habitat for threatened mammals through time. When the objective is solely to enhance carbon stocks, then restoration of highly degraded lowland forest is the most cost-effective activity. However, if the objective is to improve the habitat of threatened species, multiple forest types should be restored and this reduces the accumulated carbon by up to 24%. Our analysis framework provides a transparent method for prioritizing where and how restoration should occur in heterogeneous landscapes in order to maximize the benefits for carbon and biodiversity. (letter)

  10. Restoring degraded tropical forests for carbon and biodiversity

    Science.gov (United States)

    Budiharta, Sugeng; Meijaard, Erik; Erskine, Peter D.; Rondinini, Carlo; Pacifici, Michela; Wilson, Kerrie A.

    2014-11-01

    The extensive deforestation and degradation of tropical forests is a significant contributor to the loss of biodiversity and to global warming. Restoration could potentially mitigate the impacts of deforestation, yet knowledge on how to efficiently allocate funding for restoration is still in its infancy. We systematically prioritize investments in restoration in the tropical landscape of East Kalimantan, Indonesia, and through this application demonstrate the capacity to account for a diverse suite of restoration techniques and forests of varying condition. To achieve this we develop a map of forest degradation for the region, characterized on the basis of aboveground biomass and differentiated by broad forest types. We estimate the costs of restoration as well as the benefits in terms of carbon sequestration and improving the suitability of habitat for threatened mammals through time. When the objective is solely to enhance carbon stocks, then restoration of highly degraded lowland forest is the most cost-effective activity. However, if the objective is to improve the habitat of threatened species, multiple forest types should be restored and this reduces the accumulated carbon by up to 24%. Our analysis framework provides a transparent method for prioritizing where and how restoration should occur in heterogeneous landscapes in order to maximize the benefits for carbon and biodiversity.

  11. Soil fauna abundance and diversity in a secondary semi-evergreen forest in Guadeloupe (Lesser Antilles): influence of soil type and dominant tree species

    OpenAIRE

    Loranger-Merciris, Gladys; Imbert, Daniel; Bernhard-Reversat, France; Ponge, Jean-François; Lavelle, Patrick

    2007-01-01

    International audience; The importance of secondary tropical forests regarding the maintenance of soil fauna abundance and diversity is poorly known. The aims of this study were (1) to describe soil fauna abundance and diversity and (2) to assess the determinants of soil fauna abundance and diversity in two stands of a tropical semi-evergreen secondary forest. Soil macrofauna and microarthropod abundance and soil macrofauna diversity were described at two sites developed on different soils an...

  12. Soil mineralogy and microbes determine forest life history strategy and carbon cycling in humid tropical forests

    Science.gov (United States)

    Soong, J.; Verbruggen, E.; Peñuelas, J.; Janssens, I. A.; Grau, O.

    2017-12-01

    Tropical forests account for over one third of global terrestrial gross primary productivity and cycle more C than any other ecosystem on Earth. However, we still lack a mechanistic understanding of how such high productivity is maintained on the old, highly weathered and phosphorus depleted soils in the tropics. We hypothesized that heterogeneity in soil texture, mineralogy and microbial community composition may be the major drivers of differences in soil C storage and P limitation across tropical forests. We sampled 12 forest sites across a 200 km transect in the humid neo-tropics of French Guiana that varied in soil texture, precipitation and mineralogy. We found that soil texture was a major driver of soil carbon stocks and forest life history strategy, where sandy forests have lower soil C stocks, slower turnover and decomposition and a more closed nutrient cycle while clayey forests have higher soil C stocks, faster turnover and a more leaky nutrient cycle (using natural abundance stable isotope evidence). We found that although the presence of Al and Fe oxides in the clayey soils occludes soil organic matter and P, a greater abundance of arbuscular mycorrhizal fungi help forests to access occluded P in clayey soils fueling higher turnover and faster decomposition rates. Evidence from a laboratory incubation of tropical soils with nutrient additions further demonstrates the de-coupling of microbial P demands from C:N limitations providing further evidence for the need to examine microbial stoichiometry to explain C cycling in the P-limited tropics. We argue that microbial community composition and physiological demands, constrained within the limitations of soil mineralogical reactivity, largely controls nutrient and C cycling in tropical forest soils. Together our observational field study and laboratory incubation provide a unique dataset to shed light on the mineralogical and microbial controls on C and nutrient cycling in tropical soils. By integrating

  13. Effectiveness of Africa's tropical protected areas for maintaining forest cover.

    Science.gov (United States)

    Bowker, J N; De Vos, A; Ament, J M; Cumming, G S

    2017-06-01

    The effectiveness of parks for forest conservation is widely debated in Africa, where increasing human pressure, insufficient funding, and lack of management capacity frequently place significant demands on forests. Tropical forests house a substantial portion of the world's remaining biodiversity and are heavily affected by anthropogenic activity. We analyzed park effectiveness at the individual (224 parks) and national (23 countries) level across Africa by comparing the extent of forest loss (as a proxy for deforestation) inside parks to matched unprotected control sites. Although significant geographical variation existed among parks, the majority of African parks had significantly less forest loss within their boundaries (e.g., Mahale Park had 34 times less forest loss within its boundary) than control sites. Accessibility was a significant driver of forest loss. Relatively inaccessible areas had a higher probability (odds ratio >1, p < 0.001) of forest loss but only in ineffective parks, and relatively accessible areas had a higher probability of forest loss but only in effective parks. Smaller parks less effectively prevented forest loss inside park boundaries than larger parks (T = -2.32, p < 0.05), and older parks less effectively prevented forest loss inside park boundaries than younger parks (F 2,154 = -4.11, p < 0.001). Our analyses, the first individual and national assessment of park effectiveness across Africa, demonstrated the complexity of factors (such as geographical variation, accessibility, and park size and age) influencing the ability of a park to curb forest loss within its boundaries. © 2016 Society for Conservation Biology.

  14. Arthropod diversity in a tropical forest

    DEFF Research Database (Denmark)

    Basset, Yves; Cizek, Lukas; Cuénoud, Philippe

    2012-01-01

    Most eukaryotic organisms are arthropods. Yet, their diversity in rich terrestrial ecosystems is still unknown. Here we produce tangible estimates of the total species richness of arthropods in a tropical rainforest. Using a comprehensive range of structured protocols, we sampled the phylogenetic......,000 arthropod species. Notably, just 1 hectare of rainforest yields >60% of the arthropod biodiversity held in the wider landscape. Models based on plant diversity fitted the accumulated species richness of both herbivore and nonherbivore taxa exceptionally well. This lends credence to global estimates...

  15. Nitrogen fixation is not the only trait that determines the success of tropical legumes during secondary succession

    Science.gov (United States)

    Gei, Maria G.; Powers, Jennifer S.

    2017-04-01

    Legumes trees are well represented throughout the entire precipitation gradient of tropical forests. Many of these species are able to fix atmospheric dinitrogen through symbiosis and offer a mechanism to overcome nitrogen limitation typical of initial stages of secondary forest succession. While it is often assumed the success of legumes is linked to their fixation ability, the variation of other functional traits within this large group has received considerably less attention. Here we assessed legume abundance in secondary forest plots in 42 Neotropical chronosequences (the 2ndFOR network) that span a broad gradient of precipitation regimes and identified those traits that are favored in distinct successional environments. Our main finding is that in young secondary dry forests (5-20 years), legumes that have the potential to fix nitrogen and have small leaflet size become exceptionally abundant (up to 17-99% relative basal area). We suggest that in those species, reduced leaf area could help regulate leaf temperature and minimize water loss, and the cost of reduced total leaf area may be compensated by high photosynthetic rates maximized with nitrogen obtained through fixation. Overall, our study underscores great functional heterogeneity within tropical legumes, which likely translates into diverse biogeochemical cycles. In addition, these results provide a useful framework for active restoration of degraded areas, as it identifies a group of species that accumulate carbon at fast rates under warm and dry environments, conditions that are expected to become more common in the tropics.

  16. Response of African humid tropical forests to recent rainfall anomalies.

    Science.gov (United States)

    Asefi-Najafabady, Salvi; Saatchi, Sassan

    2013-01-01

    During the last decade, strong negative rainfall anomalies resulting from increased sea surface temperature in the tropical Atlantic have caused extensive droughts in rainforests of western Amazonia, exerting persistent effects on the forest canopy. In contrast, there have been no significant impacts on rainforests of West and Central Africa during the same period, despite large-scale droughts and rainfall anomalies during the same period. Using a combination of rainfall observations from meteorological stations from the Climate Research Unit (CRU; 1950-2009) and satellite observations of the Tropical Rainfall Measuring Mission (TRMM; 1998-2010), we show that West and Central Africa experienced strong negative water deficit (WD) anomalies over the last decade, particularly in 2005, 2006 and 2007. These anomalies were a continuation of an increasing drying trend in the region that started in the 1970s. We monitored the response of forests to extreme rainfall anomalies of the past decade by analysing the microwave scatterometer data from QuickSCAT (1999-2009) sensitive to variations in canopy water content and structure. Unlike in Amazonia, we found no significant impacts of extreme WD events on forests of Central Africa, suggesting potential adaptability of these forests to short-term severe droughts. Only forests near the savanna boundary in West Africa and in fragmented landscapes of the northern Congo Basin responded to extreme droughts with widespread canopy disturbance that lasted only during the period of WD. Time-series analyses of CRU and TRMM data show most regions in Central and West Africa experience seasonal or decadal extreme WDs (less than -600 mm). We hypothesize that the long-term historical extreme WDs with gradual drying trends in the 1970s have increased the adaptability of humid tropical forests in Africa to droughts.

  17. Estimating Tropical Forest Structure Using a Terrestrial Lidar

    Science.gov (United States)

    Palace, Michael; Sullivan, Franklin B; Ducey, Mark; Herrick, Christina

    2016-01-01

    Forest structure comprises numerous quantifiable biometric components and characteristics, which include tree geometry and stand architecture. These structural components are important in the understanding of the past and future trajectories of these biomes. Tropical forests are often considered the most structurally complex and yet least understood of forested ecosystems. New technologies have provided novel avenues for quantifying biometric properties of forested ecosystems, one of which is LIght Detection And Ranging (lidar). This sensor can be deployed on satellite, aircraft, unmanned aerial vehicles, and terrestrial platforms. In this study we examined the efficacy of a terrestrial lidar scanner (TLS) system in a tropical forest to estimate forest structure. Our study was conducted in January 2012 at La Selva, Costa Rica at twenty locations in a predominantly undisturbed forest. At these locations we collected field measured biometric attributes using a variable plot design. We also collected TLS data from the center of each plot. Using this data we developed relative vegetation profiles (RVPs) and calculated a series of parameters including entropy, Fast Fourier Transform (FFT), number of layers and plant area index to develop statistical relationships with field data. We developed statistical models using a series of multiple linear regressions, all of which converged on significant relationships with the strongest relationship being for mean crown depth (r2 = 0.88, p lidar metrics (r2 = 0.75, p < 0.001, RMSE = 3.76 number ha-1). Parameters selected in our models varied, thus indicating the potential relevance of multiple features in canopy profiles and geometry that are related to field-measured structure. Models for biomass estimation included structural canopy variables in addition to height metrics. Our work indicates that vegetation profiles from TLS data can provide useful information on forest structure. PMID:27124295

  18. An Ecologically Based System for Sustainable Agroforestry in Sub-Tropical and Tropical Forests

    Directory of Open Access Journals (Sweden)

    Yuan Sun

    2017-03-01

    Full Text Available Forests in tropical and sub-tropical countries face severe pressures due to a combination of poverty and environment degradation. To be effective, measures to protect these forests must therefore consider both economic and ecological dimensions synergistically. The purpose of this paper was to synthesize our long-term work (1994–2015 on a Ginkgo (Ginkgo biloba L. agroforestry system and demonstrate its potential for achieving both goals, and discuss its wider application in tropical and sub-tropical countries. The performance of various ecological, economic, and social indicators was compared among five Ginkgo agroforestry systems. Two additional indicators, Harmony Degree (HD and Development Degree (DD, were also used to show the integrated performance of these indicators. Ginkgo-Wheat-Peanut (G+W+P and Ginkgo-Rapeseed-Peanut (G+R+P are the best systems when compared to pure and mixed Ginkgo plantations, or pure agricultural crops. Results demonstrate that it is possible to achieve both economic development and environmental protection through implementation of sustainable agroforestry systems in sub-tropical regions.

  19. Monodominance of Parashorea chinensis on fertile soils in a Chinese tropical rain forest

    NARCIS (Netherlands)

    Velden, van der N.; Slik, J.W.F.; Hu, Y.H.; Lan, Q.; Lin, L.; Deng, X.B.; Poorter, L.

    2014-01-01

    Monodominance in the tropics is often seen as an unusual phenomenon due to the normally high diversity in tropical rain forests. Here we studied Parashorea chinensis H. Wang (Dipterocarpaceae) in a seasonal tropical forest in south-west China, to elucidate the mechanisms behind its monodominance.

  20. Infrared heater system for warming tropical forest understory plants and soils

    Science.gov (United States)

    Bruce A. Kimball; Aura M. Alonso-Rodríguez; Molly A. Cavaleri; Sasha C. Reed; Grizelle González; Tana E. Wood

    2018-01-01

    The response of tropical forests to global warming is one of the largest uncertainties in predicting the future carbon balance of Earth. To determine the likely effects of elevated temperatures on tropical forest understory plants and soils, as well as other ecosystems, an infrared (IR) heater system was developed to provide in situ warming for the Tropical Responses...

  1. Tropical rain forest biogeochemistry in a warmer world: initial results from a novel warming experiment in a Puerto Rico tropical forest

    Science.gov (United States)

    Reed, S.; Cavaleri, M. A.; Alonso-Rodríguez, A. M.; Kimball, B. A.; Wood, T. E.

    2016-12-01

    Tropical forests represent one of the planet's most active biogeochemical engines. They account for the dominant proportion of Earth's live terrestrial plant biomass, nearly one-third of all soil carbon, and exchange more CO2 with the atmosphere than any other biome. In the coming decades, the tropics will experience extraordinary changes in temperature, and our understanding of how this warming will affect biogeochemical cycling remains notably poor. Given the large amounts of carbon tropical forests store and cycle, it is no surprise that our limited ability to characterize tropical forest responses to climate change may represent the largest hurdle in accurately predicting Earth's future climate. Here we describe initial results from the world's first tropical forest field warming experiment, where forest understory plants and soils are being warmed 4 °C above ambient temperatures. This Tropical Responses to Altered Climate Experiment (TRACE) was established in a rain forest in Puerto Rico to investigate the effects of increased temperature on key biological processes that control tropical forest carbon cycling, and to establish the steps that need to be taken to resolve the uncertainties surrounding tropical forest responses to warming. In this talk we will describe the experimental design, as well as the wide range of measurements being conducted. We will also present results from the initial phase of warming, including data on how increased temperatures from infrared lamp warming affected soil moisture, soil respiration rates, a suite of carbon pools, soil microbial biomass, nutrient availability, and the exchange of elements between leaf litter and soil. These data represent a first look into tropical rain forest responses to an experimentally-warmed climate in the field, and provide exciting insight into the non-linear ways tropical biogeochemical cycles respond to change. Overall, we strive to improve Earth System Model parameterization of the pools and

  2. The Tropical Ecology, Assessment and Monitoring (TEAM) Network: An early warning system for tropical rain forests.

    Science.gov (United States)

    Rovero, Francesco; Ahumada, Jorge

    2017-01-01

    While there are well established early warning systems for a number of natural phenomena (e.g. earthquakes, catastrophic fires, tsunamis), we do not have an early warning system for biodiversity. Yet, we are losing species at an unprecedented rate, and this especially occurs in tropical rainforests, the biologically richest but most eroded biome on earth. Unfortunately, there is a chronic gap in standardized and pan-tropical data in tropical forests, affecting our capacity to monitor changes and anticipate future scenarios. The Tropical Ecology, Assessment and Monitoring (TEAM) Network was established to contribute addressing this issue, as it generates real time data to monitor long-term trends in tropical biodiversity and guide conservation practice. We present the Network and focus primarily on the Terrestrial Vertebrates protocol, that uses systematic camera trapping to detect forest mammals and birds, and secondarily on the Zone of Interaction protocol, that measures changes in the anthroposphere around the core monitoring area. With over 3 million images so far recorded, and managed using advanced information technology, TEAM has created the most important data set on tropical forest mammals globally. We provide examples of site-specific and global analyses that, combined with data on anthropogenic disturbance collected in the larger ecosystem where monitoring sites are, allowed us to understand the drivers of changes of target species and communities in space and time. We discuss the potential of this system as a candidate model towards setting up an early warning system that can effectively anticipate changes in coupled human-natural system, trigger management actions, and hence decrease the gap between research and management responses. In turn, TEAM produces robust biodiversity indicators that meet the requirements set by global policies such as the Aichi Biodiversity Targets. Standardization in data collection and public sharing of data in near real time

  3. Abiotic Controls on Macroscale Variations of Humid Tropical Forest Height

    Directory of Open Access Journals (Sweden)

    Yan Yang

    2016-06-01

    Full Text Available Spatial variation of tropical forest tree height is a key indicator of ecological processes associated with forest growth and carbon dynamics. Here we examine the macroscale variations of tree height of humid tropical forests across three continents and quantify the climate and edaphic controls on these variations. Forest tree heights are systematically sampled across global humid tropical forests with more than 2.5 million measurements from Geoscience Laser Altimeter System (GLAS satellite observations (2004–2008. We used top canopy height (TCH of GLAS footprints to grid the statistical mean and variance and the 90 percentile height of samples at 0.5 degrees to capture the regional variability of average and large trees globally. We used the spatial regression method (spatial eigenvector mapping-SEVM to evaluate the contributions of climate, soil and topography in explaining and predicting the regional variations of forest height. Statistical models suggest that climate, soil, topography, and spatial contextual information together can explain more than 60% of the observed forest height variation, while climate and soil jointly explain 30% of the height variations. Soil basics, including physical compositions such as clay and sand contents, chemical properties such as PH values and cation-exchange capacity, as well as biological variables such as the depth of organic matter, all present independent but statistically significant relationships to forest height across three continents. We found significant relations between the precipitation and tree height with shorter trees on the average in areas of higher annual water stress, and large trees occurring in areas with low stress and higher annual precipitation but with significant differences across the continents. Our results confirm other landscape and regional studies by showing that soil fertility, topography and climate may jointly control a significant variation of forest height and

  4. Greenhouse gas emissions from tropical forest degradation: an underestimated source.

    Science.gov (United States)

    Pearson, Timothy R H; Brown, Sandra; Murray, Lara; Sidman, Gabriel

    2017-12-01

    The degradation of forests in developing countries, particularly those within tropical and subtropical latitudes, is perceived to be an important contributor to global greenhouse gas emissions. However, the impacts of forest degradation are understudied and poorly understood, largely because international emission reduction programs have focused on deforestation, which is easier to detect and thus more readily monitored. To better understand and seize opportunities for addressing climate change it will be essential to improve knowledge of greenhouse gas emissions from forest degradation. Here we provide a consistent estimation of forest degradation emissions between 2005 and 2010 across 74 developing countries covering 2.2 billion hectares of forests. We estimated annual emissions of 2.1 billion tons of carbon dioxide, of which 53% were derived from timber harvest, 30% from woodfuel harvest and 17% from forest fire. These percentages differed by region: timber harvest was as high as 69% in South and Central America and just 31% in Africa; woodfuel harvest was 35% in Asia, and just 10% in South and Central America; and fire ranged from 33% in Africa to only 5% in Asia. Of the total emissions from deforestation and forest degradation, forest degradation accounted for 25%. In 28 of the 74 countries, emissions from forest degradation exceeded those from deforestation. The results of this study clearly demonstrate the importance of accounting greenhouse gases from forest degradation by human activities. The scale of emissions presented indicates that the exclusion of forest degradation from national and international GHG accounting is distorting. This work helps identify where emissions are likely significant, but policy developments are needed to guide when and how accounting should be undertaken. Furthermore, ongoing research is needed to create and enhance cost-effective accounting approaches.

  5. Greenhouse gas emissions from tropical forest degradation: an underestimated source

    Directory of Open Access Journals (Sweden)

    Timothy R. H. Pearson

    2017-02-01

    Full Text Available Abstract Background The degradation of forests in developing countries, particularly those within tropical and subtropical latitudes, is perceived to be an important contributor to global greenhouse gas emissions. However, the impacts of forest degradation are understudied and poorly understood, largely because international emission reduction programs have focused on deforestation, which is easier to detect and thus more readily monitored. To better understand and seize opportunities for addressing climate change it will be essential to improve knowledge of greenhouse gas emissions from forest degradation. Results Here we provide a consistent estimation of forest degradation emissions between 2005 and 2010 across 74 developing countries covering 2.2 billion hectares of forests. We estimated annual emissions of 2.1 billion tons of carbon dioxide, of which 53% were derived from timber harvest, 30% from woodfuel harvest and 17% from forest fire. These percentages differed by region: timber harvest was as high as 69% in South and Central America and just 31% in Africa; woodfuel harvest was 35% in Asia, and just 10% in South and Central America; and fire ranged from 33% in Africa to only 5% in Asia. Of the total emissions from deforestation and forest degradation, forest degradation accounted for 25%. In 28 of the 74 countries, emissions from forest degradation exceeded those from deforestation. Conclusions The results of this study clearly demonstrate the importance of accounting greenhouse gases from forest degradation by human activities. The scale of emissions presented indicates that the exclusion of forest degradation from national and international GHG accounting is distorting. This work helps identify where emissions are likely significant, but policy developments are needed to guide when and how accounting should be undertaken. Furthermore, ongoing research is needed to create and enhance cost-effective accounting approaches.

  6. Biological Nitrogen Fixation In Tropical Dry Forests Of Costa Rica

    Science.gov (United States)

    Gei, M. G.; Powers, J. S.

    2012-12-01

    Evidence suggests that tropical dry forests (TDF) are not nitrogen (N) deficient. This evidence includes: high losses of gaseous nitrogen during the rainy season, high ecosystem soil N stocks and high N concentrations in leaves and litterfall. Its been commonly hypothesized that biological nitrogen fixation is responsible for the high availability of N in tropical soils. However, the magnitude of this flux has rarely if ever been measured in tropical dry forests. Because of the high cost of fixing N and the ubiquity of N fixing legume trees in the TDF, at the individual tree level symbiotic fixation should be a strategy down-regulated by the plant. Our main goal was to determine the rates of and controls over symbiotic N fixation. We hypothesized that legume tree species employ a facultative strategy of nitrogen fixation and that this process responds to changes in light availability, soil moisture and nutrient supply. We tested this hypothesis both on naturally established trees in a forest and under controlled conditions in a shade house by estimating the quantities of N fixed annually using the 15N natural abundance method, counting nodules, and quantifying (field) or manipulating (shade house) the variation in important environmental variables (soil nutrients, soil moisture, and light). We found that in both in our shade house experiment and in the forest, nodulation varied among different legume species. For both settings, the 15N natural abundance approach successfully detected differences in nitrogen fixation among species. The legume species that we studied were able to regulate fixation depending on the environmental conditions. They showed to have different strategies of nitrogen fixation that follow a gradient of facultative to obligate fixation. Our data suggest that there exists a continuum of nitrogen fixation strategies among species. Any efforts to define tropical legume trees as a functional group need to incorporate this variation.

  7. Whole-ecosystem experimental manipulations of tropical forests

    OpenAIRE

    Fayle, Tom M; Turner, Edgar Clive; Basset, Yves; Ewers, Robert M; Reynolds, Glen; Novotny, Vojtech

    2015-01-01

    Tropical forests are highly diverse systems involving extraordinary numbers of interactions between species, with each species responding in a different way to the abiotic environment. Understanding how these systems function and predicting how they respond to anthropogenic global change is extremely challenging. We argue for the necessity of ‘whole-ecosystem’ experimental manipulations, in which the entire ecosystem is targeted, either to reveal the functioning of the...

  8. Fusion of optical and SAR remote sensing images for tropical forests monitoring

    Science.gov (United States)

    Wang, C.; Yu, M.; Gao, Q.; Wang, X.

    2016-12-01

    Although tropical deforestation prevails in South America and Southeast Asia, reforestation appeared in some tropical regions due to economic changes. After the economic shift from agriculture to industry, the tropical island of Puerto Rico has experienced rapid reforestation as well as urban expansion since the late 1940s. Continued urban growth without the guide of sustainable planning might prevent further forest regrowth. Accurate and timely mapping of LULC is of great importance for evaluating the consequences of reforestation and urban expansion on the coupled human and nature systems. However, owning to persistent cloud cover in tropics, it remains a challenge to produce reliable LULC maps in fine spatial resolution. Here, we retrieved cloud-free Landsat surface reflectance composite data by removing clouds and shades from the USGS Landsat Surface Reflectance (SR) product for each scene using the CFmask and Fmask algorithms in Google Earth Engine. We then produced high accuracy land cover classification maps using SR optical data for the year of 2000 and fused optical and ALOS SAR data for 2010 and 2015, with an overall accuracy of 92.0%, 92.5%, and 91.6%, respectively. The classification result indicated that a successive forest gain of 6.52% and 1.03% occurred between the first (2000-2010) and second (2010-2015) study periods, respectively. We also conducted a comparative spatial analysis of patterns of deforestation and reforestation based on a series of forest cover zones (50 × 50 pixels, 150 ha). The annual rates of deforestation and reforestation against forest cover presented the similar trends during two periods: decreasing with the forest cover increasing. However, the annual net forest change rate was different in the zones with forest cover less than 30%, presenting significant gain (2.2-8.4% yr-1) for the first period and significant loss (2.3-6.4% yr-1) for the second period. It indicated that both deforestation and reforestation mostly

  9. Aboveground carbon loss in natural and managed tropical forests from 2000 to 2012

    Science.gov (United States)

    Tyukavina, A.; Baccini, A.; Hansen, M. C.; Potapov, P. V.; Stehman, S. V.; Houghton, R. A.; Krylov, A. M.; Turubanova, S.; Goetz, S. J.

    2015-07-01

    Tropical forests provide global climate regulation ecosystem services and their clearing is a significant source of anthropogenic greenhouse gas (GHG) emissions and resultant radiative forcing of climate change. However, consensus on pan-tropical forest carbon dynamics is lacking. We present a new estimate that employs recommended good practices to quantify gross tropical forest aboveground carbon (AGC) loss from 2000 to 2012 through the integration of Landsat-derived tree canopy cover, height, intactness and forest cover loss and GLAS-lidar derived forest biomass. An unbiased estimate of forest loss area is produced using a stratified random sample with strata derived from a wall-to-wall 30 m forest cover loss map. Our sample-based results separate the gross loss of forest AGC into losses from natural forests (0.59 PgC yr-1) and losses from managed forests (0.43 PgC yr-1) including plantations, agroforestry systems and subsistence agriculture. Latin America accounts for 43% of gross AGC loss and 54% of natural forest AGC loss, with Brazil experiencing the highest AGC loss for both categories at national scales. We estimate gross tropical forest AGC loss and natural forest loss to account for 11% and 6% of global year 2012 CO2 emissions, respectively. Given recent trends, natural forests will likely constitute an increasingly smaller proportion of tropical forest GHG emissions and of global emissions as fossil fuel consumption increases, with implications for the valuation of co-benefits in tropical forest conservation.

  10. Light in Tropical Forest Models: What Detail Matters?

    Science.gov (United States)

    Shenkin, A.; Bentley, L. P.; Asner, G. P.; Malhi, Y.

    2014-12-01

    Representations of light in models of tropical forests are typically unconstrained by field data and rife with assumptions, and for good reason: forest light environments are highly variable, difficult and onerous to predict, and the value of improved prediction is unclear. Still, the question remains: how detailed must our models be to be accurate enough, yet simple enough to be able to scale them from plots to landscapes? Here we use field data to constrain 1-D, 2-D, and 3-D light models and integrate them with simple forest models to predict net primary production (NPP) across an Andes-to-Amazon elevation transect in Peru. Field data consist of novel vertical light profile measurements coupled with airborne LiDAR (light detection and ranging) data from the Carnegie Airborne Observatory. Preliminary results indicate that while 1-D models may be "good-enough" and highly-scalable where forest structure is relatively homogenous, more complex models become important as forest structure becomes more heterogeneous. We discuss the implications our results hold for prediction of NPP under a changing climate, and suggest paths forward for useful proxies of light availability in forests to improve and scale up forest models.

  11. Quaternary forest associations in lowland tropical West Africa

    Science.gov (United States)

    Miller, Charlotte S.; Gosling, William D.

    2014-01-01

    Terrestrial fossil pollen records are frequently used to reveal the response of vegetation to changes in both regional and global climate. Here we present a fossil pollen record from sediment cores extracted from Lake Bosumtwi (West Africa). This record covers the last c. 520 thousand years (ka) and represents the longest terrestrial pollen record from Africa published to date. The fossil pollen assemblages reveal dynamic vegetation change which can be broadly characterized as indicative of shifts between savannah and forest. Savannah formations are heavily dominated by grass (Poaceae) pollen (>55%) typically associated with Cyperaceae, Chenopodiaceae-Amaranthaceae and Caryophyllaceae. Forest formations are palynologically more diverse than the savannah, with the key taxa occurring in multiple forest zones being Moraceae, Celtis, Uapaca, Macaranga and Trema. The fossil pollen data indicate that over the last c. 520 ka the vegetation of lowland tropical West Africa has mainly been savannah; however six periods of forest expansion are evident which most likely correspond to global interglacial periods. A comparison of the forest assemblage composition within each interglacial suggests that the Holocene (11-0 ka) forest occurred under the wettest climate, while the forest which occurred at the time of Marine Isotope Stage 7 probably occurred under the driest climate.

  12. Carbon sequestration potential of second-growth forest regeneration in the Latin American tropics.

    Science.gov (United States)

    Chazdon, Robin L; Broadbent, Eben N; Rozendaal, Danaë M A; Bongers, Frans; Zambrano, Angélica María Almeyda; Aide, T Mitchell; Balvanera, Patricia; Becknell, Justin M; Boukili, Vanessa; Brancalion, Pedro H S; Craven, Dylan; Almeida-Cortez, Jarcilene S; Cabral, George A L; de Jong, Ben; Denslow, Julie S; Dent, Daisy H; DeWalt, Saara J; Dupuy, Juan M; Durán, Sandra M; Espírito-Santo, Mario M; Fandino, María C; César, Ricardo G; Hall, Jefferson S; Hernández-Stefanoni, José Luis; Jakovac, Catarina C; Junqueira, André B; Kennard, Deborah; Letcher, Susan G; Lohbeck, Madelon; Martínez-Ramos, Miguel; Massoca, Paulo; Meave, Jorge A; Mesquita, Rita; Mora, Francisco; Muñoz, Rodrigo; Muscarella, Robert; Nunes, Yule R F; Ochoa-Gaona, Susana; Orihuela-Belmonte, Edith; Peña-Claros, Marielos; Pérez-García, Eduardo A; Piotto, Daniel; Powers, Jennifer S; Rodríguez-Velazquez, Jorge; Romero-Pérez, Isabel Eunice; Ruíz, Jorge; Saldarriaga, Juan G; Sanchez-Azofeifa, Arturo; Schwartz, Naomi B; Steininger, Marc K; Swenson, Nathan G; Uriarte, Maria; van Breugel, Michiel; van der Wal, Hans; Veloso, Maria D M; Vester, Hans; Vieira, Ima Celia G; Bentos, Tony Vizcarra; Williamson, G Bruce; Poorter, Lourens

    2016-05-01

    Regrowth of tropical secondary forests following complete or nearly complete removal of forest vegetation actively stores carbon in aboveground biomass, partially counterbalancing carbon emissions from deforestation, forest degradation, burning of fossil fuels, and other anthropogenic sources. We estimate the age and spatial extent of lowland second-growth forests in the Latin American tropics and model their potential aboveground carbon accumulation over four decades. Our model shows that, in 2008, second-growth forests (1 to 60 years old) covered 2.4 million km(2) of land (28.1% of the total study area). Over 40 years, these lands can potentially accumulate a total aboveground carbon stock of 8.48 Pg C (petagrams of carbon) in aboveground biomass via low-cost natural regeneration or assisted regeneration, corresponding to a total CO2 sequestration of 31.09 Pg CO2. This total is equivalent to carbon emissions from fossil fuel use and industrial processes in all of Latin America and the Caribbean from 1993 to 2014. Ten countries account for 95% of this carbon storage potential, led by Brazil, Colombia, Mexico, and Venezuela. We model future land-use scenarios to guide national carbon mitigation policies. Permitting natural regeneration on 40% of lowland pastures potentially stores an additional 2.0 Pg C over 40 years. Our study provides information and maps to guide national-level forest-based carbon mitigation plans on the basis of estimated rates of natural regeneration and pasture abandonment. Coupled with avoided deforestation and sustainable forest management, natural regeneration of second-growth forests provides a low-cost mechanism that yields a high carbon sequestration potential with multiple benefits for biodiversity and ecosystem services.

  13. Carbon sequestration potential of second-growth forest regeneration in the Latin American tropics

    Science.gov (United States)

    Chazdon, Robin L.; Broadbent, Eben N.; Rozendaal, Danaë M. A.; Bongers, Frans; Zambrano, Angélica María Almeyda; Aide, T. Mitchell; Balvanera, Patricia; Becknell, Justin M.; Boukili, Vanessa; Brancalion, Pedro H. S.; Craven, Dylan; Almeida-Cortez, Jarcilene S.; Cabral, George A. L.; de Jong, Ben; Denslow, Julie S.; Dent, Daisy H.; DeWalt, Saara J.; Dupuy, Juan M.; Durán, Sandra M.; Espírito-Santo, Mario M.; Fandino, María C.; César, Ricardo G.; Hall, Jefferson S.; Hernández-Stefanoni, José Luis; Jakovac, Catarina C.; Junqueira, André B.; Kennard, Deborah; Letcher, Susan G.; Lohbeck, Madelon; Martínez-Ramos, Miguel; Massoca, Paulo; Meave, Jorge A.; Mesquita, Rita; Mora, Francisco; Muñoz, Rodrigo; Muscarella, Robert; Nunes, Yule R. F.; Ochoa-Gaona, Susana; Orihuela-Belmonte, Edith; Peña-Claros, Marielos; Pérez-García, Eduardo A.; Piotto, Daniel; Powers, Jennifer S.; Rodríguez-Velazquez, Jorge; Romero-Pérez, Isabel Eunice; Ruíz, Jorge; Saldarriaga, Juan G.; Sanchez-Azofeifa, Arturo; Schwartz, Naomi B.; Steininger, Marc K.; Swenson, Nathan G.; Uriarte, Maria; van Breugel, Michiel; van der Wal, Hans; Veloso, Maria D. M.; Vester, Hans; Vieira, Ima Celia G.; Bentos, Tony Vizcarra; Williamson, G. Bruce; Poorter, Lourens

    2016-01-01

    Regrowth of tropical secondary forests following complete or nearly complete removal of forest vegetation actively stores carbon in aboveground biomass, partially counterbalancing carbon emissions from deforestation, forest degradation, burning of fossil fuels, and other anthropogenic sources. We estimate the age and spatial extent of lowland second-growth forests in the Latin American tropics and model their potential aboveground carbon accumulation over four decades. Our model shows that, in 2008, second-growth forests (1 to 60 years old) covered 2.4 million km2 of land (28.1% of the total study area). Over 40 years, these lands can potentially accumulate a total aboveground carbon stock of 8.48 Pg C (petagrams of carbon) in aboveground biomass via low-cost natural regeneration or assisted regeneration, corresponding to a total CO2 sequestration of 31.09 Pg CO2. This total is equivalent to carbon emissions from fossil fuel use and industrial processes in all of Latin America and the Caribbean from 1993 to 2014. Ten countries account for 95% of this carbon storage potential, led by Brazil, Colombia, Mexico, and Venezuela. We model future land-use scenarios to guide national carbon mitigation policies. Permitting natural regeneration on 40% of lowland pastures potentially stores an additional 2.0 Pg C over 40 years. Our study provides information and maps to guide national-level forest-based carbon mitigation plans on the basis of estimated rates of natural regeneration and pasture abandonment. Coupled with avoided deforestation and sustainable forest management, natural regeneration of second-growth forests provides a low-cost mechanism that yields a high carbon sequestration potential with multiple benefits for biodiversity and ecosystem services. PMID:27386528

  14. The impact of tropical forest logging and oil palm agriculture on the soil microbiome.

    Science.gov (United States)

    Tripathi, Binu M; Edwards, David P; Mendes, Lucas William; Kim, Mincheol; Dong, Ke; Kim, Hyoki; Adams, Jonathan M

    2016-05-01

    Selective logging and forest conversion to oil palm agriculture are rapidly altering tropical forests. However, functional responses of the soil microbiome to these land-use changes are poorly understood. Using 16S rRNA gene and shotgun metagenomic sequencing, we compared composition and functional attributes of soil biota between unlogged, once-logged and twice-logged rainforest, and areas converted to oil palm plantations in Sabah, Borneo. Although there was no significant effect of logging history, we found a significant difference between the taxonomic and functional composition of both primary and logged forests and oil palm. Oil palm had greater abundances of genes associated with DNA, RNA, protein metabolism and other core metabolic functions, but conversely, lower abundance of genes associated with secondary metabolism and cell-cell interactions, indicating less importance of antagonism or mutualism in the more oligotrophic oil palm environment. Overall, these results show a striking difference in taxonomic composition and functional gene diversity of soil microorganisms between oil palm and forest, but no significant difference between primary forest and forest areas with differing logging history. This reinforces the view that logged forest retains most features and functions of the original soil community. However, networks based on strong correlations between taxonomy and functions showed that network complexity is unexpectedly increased due to both logging and oil palm agriculture, which suggests a pervasive effect of both land-use changes on the interaction of soil microbes. © 2016 John Wiley & Sons Ltd.

  15. Climate impacts on soil carbon processes along an elevation gradient in the tropical Luquillo Experimental Forest

    Science.gov (United States)

    Dingfang Chen; Mei Yu; Grizelle González; Xiaoming Zou; Qiong Gao

    2017-01-01

    Tropical forests play an important role in regulating the global climate and the carbon cycle. With the changing temperature and moisture along the elevation gradient, the Luquillo Experimental Forest in Northeastern Puerto Rico provides a natural approach to understand tropical forest ecosystems under climate change. In this study, we conducted a soil translocation...

  16. Functional trait strategies of trees in dry and wet tropical forests are similar but differ in their consequences for succession.

    Science.gov (United States)

    Lohbeck, Madelon; Lebrija-Trejos, Edwin; Martínez-Ramos, Miguel; Meave, Jorge A; Poorter, Lourens; Bongers, Frans

    2014-01-01

    Global plant trait studies have revealed fundamental trade-offs in plant resource economics. We evaluated such trait trade-offs during secondary succession in two species-rich tropical ecosystems that contrast in precipitation: dry deciduous and wet evergreen forests of Mexico. Species turnover with succession in dry forest largely relates to increasing water availability and in wet forest to decreasing light availability. We hypothesized that while functional trait trade-offs are similar in the two forest systems, the successful plant strategies in these communities will be different, as contrasting filters affect species turnover. Research was carried out in 15 dry secondary forest sites (5-63 years after abandonment) and in 17 wet secondary forest sites (dry and wet forest and compare trait trade-offs. We evaluated whether multivariate plant strategies changed during succession, by calculating a 'Community-Weighted Mean' plant strategy, based on species scores on the first two PCA-axes. Trait spectra reflected two main trade-off axes that were similar for dry and wet forest species: acquisitive versus conservative species, and drought avoiding species versus evergreen species with large animal-dispersed seeds. These trait associations were consistent when accounting for evolutionary history. Successional changes in the most successful plant strategies reflected different functional trait spectra depending on the forest type. In dry forest the community changed from having drought avoiding strategies early in succession to increased abundance of evergreen strategies with larger seeds late in succession. In wet forest the community changed from species having mainly acquisitive strategies to those with more conservative strategies during succession. These strategy changes were explained by increasing water availability during dry forest succession and increasing light scarcity during wet forest succession. Although similar trait spectra were observed among dry and

  17. Satellite observations of the role and impacts of dry season climate limitations on tropical forest fates

    Science.gov (United States)

    Huete, A. R.; Restrepo-Coupe, N.; Wu, J.; Devadas, R.; Guan, K.; Liu, Y.; Ratana, P.; Sun, Q.; Schaaf, C.; Saleska, S. R.

    2015-12-01

    Climate change scenarios projected for the 21st century predict drying of the Amazon, greening of monsoon tropical Asia and no change in the tropics of Australia. Dry season variability is increasing with complex associated forest responses and feedbacks as they become exposed to longer and/or more intense dry seasons. The functional response of tropical forests to dry seasonal periods is thus crucial to forest resilience, as forests may respond with either enhanced photosynthesis (due to more sunlight) or may dry down with greater susceptibility to fires and release of greenhouse gases and severe public health haze alerts. In this study, we use multiple satellite remote sensing datasets representing forest canopy states, environmental drivers (light and water status), and disturbance (fires), along with in situ flux tower measures of photosynthesis to assess whole ecosystem patterns and test mechanisms of forest- dry season climate interactions. We compare photosynthesis patterns and dry season responses of Asia-Oceania tropical forests with neotropical forests to better understand forest resilience to climate change and human impacts. In contrast to the neotropics, human activities in monsoon tropical Asia have resulted in intensive transformations of tropical forests. We find forest disturbance exerts a strong influence on tropical forest functioning and a partial loss or degradation of tropical forests can reverse dry seasonal responses with substantial impacts on carbon fluxes. Neotropical forests displayed large variations in dry season forest responses due to spatially variable dry season lengths and magnitude, whereas most of monsoon Asia tropical forests lacked well-defined dry seasons, yet were highly sensitive to shorter term, intense drought events that impacted severely upon the disturbed forests. Our results highlight the interactions among rainfall, radiation and forest health with the relative importance of each factor varying with the

  18. Height-diameter allometry of tropical forest trees

    Directory of Open Access Journals (Sweden)

    T. R. Feldpausch

    2011-05-01

    Full Text Available Tropical tree height-diameter (H:D relationships may vary by forest type and region making large-scale estimates of above-ground biomass subject to bias if they ignore these differences in stem allometry. We have therefore developed a new global tropical forest database consisting of 39 955 concurrent H and D measurements encompassing 283 sites in 22 tropical countries. Utilising this database, our objectives were:

    1. to determine if H:D relationships differ by geographic region and forest type (wet to dry forests, including zones of tension where forest and savanna overlap.

    2. to ascertain if the H:D relationship is modulated by climate and/or forest structural characteristics (e.g. stand-level basal area, A.

    3. to develop H:D allometric equations and evaluate biases to reduce error in future local-to-global estimates of tropical forest biomass.

    Annual precipitation coefficient of variation (PV, dry season length (SD, and mean annual air temperature (TA emerged as key drivers of variation in H:D relationships at the pantropical and region scales. Vegetation structure also played a role with trees in forests of a high A being, on average, taller at any given D. After the effects of environment and forest structure are taken into account, two main regional groups can be identified. Forests in Asia, Africa and the Guyana Shield all have, on average, similar H:D relationships, but with trees in the forests of much of the Amazon Basin and tropical Australia typically being shorter at any given D than their counterparts elsewhere. The region-environment-structure model with the lowest Akaike's information criterion and lowest deviation estimated stand-level H across all plots to within amedian −2.7 to 0.9% of the true value. Some of the plot-to-plot variability in

  19. Assessing change in national forest monitoring capacities of 99 tropical countries

    NARCIS (Netherlands)

    Romijn, J.E.; Lantican, C.B.; Herold, M.; Lindquist, E.; Ochieng, R.M.; Wijaya, A.; Murdiyarso, D.; Verchot, L.

    2015-01-01

    Monitoring of forest cover and forest functions provides information necessary to support policies and decisions to conserve, protect and sustainably manage forests. Especially in the tropics where forests are declining at a rapid rate, national forest monitoring systems capable of reliably

  20. Low beta diversity of herbivorous insects in tropical forests.

    Science.gov (United States)

    Novotny, Vojtech; Miller, Scott E; Hulcr, Jiri; Drew, Richard A I; Basset, Yves; Janda, Milan; Setliff, Gregory P; Darrow, Karolyn; Stewart, Alan J A; Auga, John; Isua, Brus; Molem, Kenneth; Manumbor, Markus; Tamtiai, Elvis; Mogia, Martin; Weiblen, George D

    2007-08-09

    Recent advances in understanding insect communities in tropical forests have contributed little to our knowledge of large-scale patterns of insect diversity, because incomplete taxonomic knowledge of many tropical species hinders the mapping of their distribution records. This impedes an understanding of global biodiversity patterns and explains why tropical insects are under-represented in conservation biology. Our study of approximately 500 species from three herbivorous guilds feeding on foliage (caterpillars, Lepidoptera), wood (ambrosia beetles, Coleoptera) and fruit (fruitflies, Diptera) found a low rate of change in species composition (beta diversity) across 75,000 square kilometres of contiguous lowland rainforest in Papua New Guinea, as most species were widely distributed. For caterpillars feeding on large plant genera, most species fed on multiple host species, so that even locally restricted plant species did not support endemic herbivores. Large plant genera represented a continuously distributed resource easily colonized by moths and butterflies over hundreds of kilometres. Low beta diversity was also documented in groups with differing host specificity (fruitflies and ambrosia beetles), suggesting that dispersal limitation does not have a substantial role in shaping the distribution of insect species in New Guinea lowland rainforests. Similar patterns of low beta diversity can be expected in other tropical lowland rainforests, as they are typically situated in the extensive low basins of major tropical rivers similar to the Sepik-Ramu region of New Guinea studied here.

  1. Heterogeneous movement of insectivorous Amazonian birds through primary and secondary forest: A case study using multistate models with radiotelemetry data

    Science.gov (United States)

    Hines, James; Powell, Luke L.; Wolfe, Jared D.; Johnson, Erik l.; Nichols, James D.; Stouffer, Phillip C.

    2015-01-01

    Given rates of deforestation, disturbance, and secondary forest accumulation in tropical rainforests, there is a great need to quantify habitat use and movement among different habitats. This need is particularly pronounced for animals most sensitive to disturbance, such as insectivorous understory birds. Here we use multistate capture–recapture models with radiotelemetry data to determine the successional stage at which within-day movement probabilities of Amazonian birds in secondary forest are similar to those in primary forest. We radio-tracked three common understory insectivore species in primary and secondary forest at the Biological Dynamics of Forest Fragments project near Manaus, Brazil: two woodcreepers, Glyphorynchus spirurus (n = 19) andXiphorhynchus pardalotus (n = 18), and the terrestrial antthrush Formicarius colma(n = 19). Forest age was a strong predictor of fidelity to a given habitat. All three species showed greater fidelity to primary forest than to 8–14-year-old secondary forest, indicating the latter’s relatively poor quality. The two woodcreeper species used 12–18-year-old secondary forest in a manner comparable to continuous forest, but F. colmaavoided moving even to 27–31-year-old secondary forest—the oldest at our site. Our results suggest that managers concerned with less sensitive species can assume that forest reserves connected by 12–18-year-old secondary forest corridors are effectively connected. On the other hand, >30 years are required after land abandonment before secondary forest serves as a primary forest-like conduit for movement by F. colma; more sensitive terrestrial insectivores may take longer still.

  2. Ecotoxicology of mercury in tropical forest soils: Impact on earthworms.

    Science.gov (United States)

    Buch, Andressa Cristhy; Brown, George Gardner; Correia, Maria Elizabeth Fernandes; Lourençato, Lúcio Fábio; Silva-Filho, Emmanoel Vieira

    2017-07-01

    Mercury (Hg) is one of the most toxic nonessential trace metals in the environment, with high persistence and bioaccumulation potential, and hence of serious concern to environmental quality and public health. Emitted to the atmosphere, this element can travel long distances, far from emission sources. Hg speciation can lead to Hg contamination of different ecosystem components, as well as biomagnification in trophic food webs. To evaluate the effects of atmospheric Hg deposition in tropical forests, we investigated Hg concentrations in earthworm tissues and soils of two Forest Conservation Units in State of Rio de Janeiro, Brazil. Next, we performed a laboratory study of the biological responses (cast analysis and behavioral, acute, chronic and bioaccumulation ecotoxicological tests) of two earthworms species (Pontoscolex corethrurus and Eisenia andrei) to Hg contamination in tropical artificial soil (TAS) and two natural forest soils (NS) spiked with increasing concentration of HgCl 2 . Field results showed Hg concentrations up to 13 times higher in earthworm tissues than in forest soils, while in the laboratory Hg accumulation after 91-days of exposure was 25 times greater in spiked-soils with 128mgHgkg -1 (dry wt) than in control (unspiked) soils. In all the toxicity tests P. corethrurus showed a higher adaptability or resistance to mercury than E. andrei. The role of earthworms as environmental bioremediators was confirmed in this study, showing their ability to greatly bioaccumulate trace metals while reducing Hg availability in feces. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Nutrient Cycling in Primary, Secondary Forests and Cocoa ...

    African Journals Online (AJOL)

    USER

    Abstract. Primary forest (reserved area), secondary forest and cocoa plantation land uses characterize uplands of Dwinyama watershed in Ghana within the dry semi-deciduous forest zone. The nutrients recycled in the land uses were studied through leaf litter fall, nutrient release, nutrient fluxes estimation and topsoil ...

  4. Improving predictions of tropical forest response to climate change through integration of field studies and ecosystem modeling

    Science.gov (United States)

    Xiaohui Feng; María Uriarte; Grizelle González; Sasha Reed; Jill Thompson; Jess K. Zimmerman; Lora Murphy

    2018-01-01

    Tropical forests play a critical role in carbon and water cycles at a global scale. Rapid climate change is anticipated in tropical regions over the coming decades and, under a warmer and drier climate, tropical forests are likely to be net sources of carbon rather than sinks. However, our understanding of tropical forest response and feedback to climate change is very...

  5. The importance of Ficus (Moraceae) trees for tropical forest restoration

    DEFF Research Database (Denmark)

    Cottee-Jones, H. Eden W.; Bajpai, Omesh; Chaudhary, Lal B.

    2016-01-01

    Forest restoration is an increasingly important tool to offset and indeed reverse global deforestation rates. One low cost strategy to accelerate forest recovery is conserving scattered native trees that persist across disturbed landscapes and which may act as seedling recruitment foci. Ficus trees......, which are considered to be critically important components of tropical ecosystems, may be particularly attractive to seed dispersers in that they produce large and nutritionally rewarding fruit crops. Here, we evaluate the effectiveness of remnant Ficus trees in inducing forest recovery compared...... to other common trees. We studied the sapling communities growing under 207 scattered trees, and collected data on seed rain for 55 trees in a modified landscape in Assam, India. We found that Ficus trees have more sapling species around them (species richness = 140.1 ± 9.9) than non-Ficus trees (79.5 ± 12...

  6. Forest composition modifies litter dynamics and decomposition in regenerating tropical dry forest.

    Science.gov (United States)

    Schilling, Erik M; Waring, Bonnie G; Schilling, Jonathan S; Powers, Jennifer S

    2016-09-01

    We investigated how forest composition, litter quality, and rainfall interact to affect leaf litter decomposition across three successional tropical dry forests in Costa Rica. We monitored litter stocks and bulk litter turnover in 18 plots that exhibit substantial variation in soil characteristics, tree community structure, fungal communities (including forests dominated by ecto- or arbuscular mycorrhizal host trees), and forest age. Simultaneously, we decomposed three standard litter substrates over a 6-month period spanning an unusually intense drought. Decay rates of standard substrates depended on the interaction between litter identity and forest type. Decomposition rates were correlated with tree and soil fungal community composition as well as soil fertility, but these relationships differed among litter types. In low fertility soils dominated by ectomycorrhizal oak trees, bulk litter turnover rates were low, regardless of soil moisture. By contrast, in higher fertility soils that supported mostly arbuscular mycorrhizal trees, bulk litter decay rates were strongly dependent on seasonal water availability. Both measures of decomposition increased with forest age, as did the frequency of termite-mediated wood decay. Taken together, our results demonstrate that soils and forest age exert strong control over decomposition dynamics in these tropical dry forests, either directly through effects on microclimate and nutrients, or indirectly by affecting tree and microbial community composition and traits, such as litter quality.

  7. Developing Cost-Effective Field Assessments of Carbon Stocks in Human-Modified Tropical Forests

    Science.gov (United States)

    Berenguer, Erika; Gardner, Toby A.; Ferreira, Joice; Aragão, Luiz E. O. C.; Camargo, Plínio B.; Cerri, Carlos E.; Durigan, Mariana; Oliveira Junior, Raimundo C.; Vieira, Ima C. G.; Barlow, Jos

    2015-01-01

    Across the tropics, there is a growing financial investment in activities that aim to reduce emissions from deforestation and forest degradation, such as REDD+. However, most tropical countries lack on-the-ground capacity to conduct reliable and replicable assessments of forest carbon stocks, undermining their ability to secure long-term carbon finance for forest conservation programs. Clear guidance on how to reduce the monetary and time costs of field assessments of forest carbon can help tropical countries to overcome this capacity gap. Here we provide such guidance for cost-effective one-off field assessments of forest carbon stocks. We sampled a total of eight components from four different carbon pools (i.e. aboveground, dead wood, litter and soil) in 224 study plots distributed across two regions of eastern Amazon. For each component we estimated survey costs, contribution to total forest carbon stocks and sensitivity to disturbance. Sampling costs varied thirty-one-fold between the most expensive component, soil, and the least, leaf litter. Large live stems (≥10 cm DBH), which represented only 15% of the overall sampling costs, was by far the most important component to be assessed, as it stores the largest amount of carbon and is highly sensitive to disturbance. If large stems are not taxonomically identified, costs can be reduced by a further 51%, while incurring an error in aboveground carbon estimates of only 5% in primary forests, but 31% in secondary forests. For rapid assessments, necessary to help prioritize locations for carbon- conservation activities, sampling of stems ≥20cm DBH without taxonomic identification can predict with confidence (R2 = 0.85) whether an area is relatively carbon-rich or carbon-poor—an approach that is 74% cheaper than sampling and identifying all the stems ≥10cm DBH. We use these results to evaluate the reliability of forest carbon stock estimates provided by the IPCC and FAO when applied to human-modified forests

  8. Developing Cost-Effective Field Assessments of Carbon Stocks in Human-Modified Tropical Forests.

    Science.gov (United States)

    Berenguer, Erika; Gardner, Toby A; Ferreira, Joice; Aragão, Luiz E O C; Camargo, Plínio B; Cerri, Carlos E; Durigan, Mariana; Oliveira Junior, Raimundo C; Vieira, Ima C G; Barlow, Jos

    2015-01-01

    Across the tropics, there is a growing financial investment in activities that aim to reduce emissions from deforestation and forest degradation, such as REDD+. However, most tropical countries lack on-the-ground capacity to conduct reliable and replicable assessments of forest carbon stocks, undermining their ability to secure long-term carbon finance for forest conservation programs. Clear guidance on how to reduce the monetary and time costs of field assessments of forest carbon can help tropical countries to overcome this capacity gap. Here we provide such guidance for cost-effective one-off field assessments of forest carbon stocks. We sampled a total of eight components from four different carbon pools (i.e. aboveground, dead wood, litter and soil) in 224 study plots distributed across two regions of eastern Amazon. For each component we estimated survey costs, contribution to total forest carbon stocks and sensitivity to disturbance. Sampling costs varied thirty-one-fold between the most expensive component, soil, and the least, leaf litter. Large live stems (≥10 cm DBH), which represented only 15% of the overall sampling costs, was by far the most important component to be assessed, as it stores the largest amount of carbon and is highly sensitive to disturbance. If large stems are not taxonomically identified, costs can be reduced by a further 51%, while incurring an error in aboveground carbon estimates of only 5% in primary forests, but 31% in secondary forests. For rapid assessments, necessary to help prioritize locations for carbon- conservation activities, sampling of stems ≥20cm DBH without taxonomic identification can predict with confidence (R2 = 0.85) whether an area is relatively carbon-rich or carbon-poor-an approach that is 74% cheaper than sampling and identifying all the stems ≥10cm DBH. We use these results to evaluate the reliability of forest carbon stock estimates provided by the IPCC and FAO when applied to human-modified forests

  9. Developing Cost-Effective Field Assessments of Carbon Stocks in Human-Modified Tropical Forests.

    Directory of Open Access Journals (Sweden)

    Erika Berenguer

    Full Text Available Across the tropics, there is a growing financial investment in activities that aim to reduce emissions from deforestation and forest degradation, such as REDD+. However, most tropical countries lack on-the-ground capacity to conduct reliable and replicable assessments of forest carbon stocks, undermining their ability to secure long-term carbon finance for forest conservation programs. Clear guidance on how to reduce the monetary and time costs of field assessments of forest carbon can help tropical countries to overcome this capacity gap. Here we provide such guidance for cost-effective one-off field assessments of forest carbon stocks. We sampled a total of eight components from four different carbon pools (i.e. aboveground, dead wood, litter and soil in 224 study plots distributed across two regions of eastern Amazon. For each component we estimated survey costs, contribution to total forest carbon stocks and sensitivity to disturbance. Sampling costs varied thirty-one-fold between the most expensive component, soil, and the least, leaf litter. Large live stems (≥10 cm DBH, which represented only 15% of the overall sampling costs, was by far the most important component to be assessed, as it stores the largest amount of carbon and is highly sensitive to disturbance. If large stems are not taxonomically identified, costs can be reduced by a further 51%, while incurring an error in aboveground carbon estimates of only 5% in primary forests, but 31% in secondary forests. For rapid assessments, necessary to help prioritize locations for carbon- conservation activities, sampling of stems ≥20cm DBH without taxonomic identification can predict with confidence (R2 = 0.85 whether an area is relatively carbon-rich or carbon-poor-an approach that is 74% cheaper than sampling and identifying all the stems ≥10cm DBH. We use these results to evaluate the reliability of forest carbon stock estimates provided by the IPCC and FAO when applied to human

  10. Pan tropical biomass equations for Mexico's dry forests

    Directory of Open Access Journals (Sweden)

    José Návar

    2014-12-01

    Full Text Available This study reports a set of robust regional M-tree allometric equations for Mexico's tropical dry forests and their application to a forest inventory dataset for the States of Durango and Sinaloa, Mexico. Calculated M data from 15 reported equations were fitted, applied and validated for regional and global models. Proposed theoretical models, empirically derived equations, as well as global and local reported equations were fitted and applied to calculated M-tree data using wood specific gravity, diameter at breast height, and top height as exogenous variables. Empirically-derived, computer-based equations assessed the M-tree evaluations slightly better than the theoretical, the global and the local models. However, the theoretical models projected compatible M-tree values and deserve further attention once wood specific gravity data are collected in the field. Using the best fit equation, mean M plot density values of 30, 41 and 35 Mg ha-1 were estimated from 57 plots (1,600 m² each, 217 plots (1,000 m² each and 166 plots (1,000 m² each in the tropical dry forests of the States of Durango, Tiniaquis and Vado Hondo (Sinaloa, respectively. The large sample size, the richness of the tested allometric models, the economic and ecological importance of this data-source, and the spatial coverage of these equations made this dataset uniquely useful for biomass, charcoal, and other bio-energy estimations, as well as for understanding the inherent heterogeneity of the stand-structure in dynamic tropical forest environments.

  11. Compatibility of timber and non-timber forest product management in natural tropical forests: perspectives, challenges, and opportunities

    NARCIS (Netherlands)

    Guariguata, M.R.; García-Fernández, C.; Shiel, D.; Nasi, R.; Herrero-Jáuregui, C.; Cronkleton, P.; Ingram, V.

    2010-01-01

    Tropical forests could satisfy multiple demands for goods and services both for present and future generations. Yet integrated approaches to natural forest management remain elusive across the tropics. In this paper we examine one combination of uses: selective harvesting of timber and non-timber

  12. Why do forest products become less available? A pan-tropical comparison of drivers of forest-resource degradation

    NARCIS (Netherlands)

    Hermans, Kathleen; Gerstner, Katharina; Geijzendorffer, Ilse R.; Herold, Martin; Seppelt, Ralf; Wunder, Sven

    2016-01-01

    Forest products provide an important source of income and wellbeing for rural smallholder communities across the tropics. Although tropical forest products frequently become over-exploited, only few studies explicitly address the dynamics of degradation in response to socio-economic drivers. Our

  13. Indigenous exploitation and management of tropical forest resources: an evolutionary continuum in forest-people interactions.

    NARCIS (Netherlands)

    Wiersum, K.F.

    1997-01-01

    Since the early 1980s several new approaches towards forest management, which include active participation of local communities, have been tried out in many tropical regions. As a result of these efforts recognition has increased about the various ways in which many local communities are already

  14. Sustainable forest management of tropical forests can reduce carbon emissions and stabilize timber production

    Science.gov (United States)

    N. Sasaki; G.P. Asner; Yude Pan; W. Knorr; P.B. Durst; H.O. Ma; I. Abe; A.J. Lowe; L.P. Koh

    2016-01-01

    The REDD+ scheme of the United Nations Framework Conventionon Climate Change has provided opportunities to manage tropical forests for timber production and carbon emission reductions. To determine the appropriate loggingtechniques, we analyzed potential timber production and carbon emission reductions under two logging techniques over a 40-year period of selective...

  15. Spatial patterns of degraded tropical forest and biodiversity restoration over 70-years of succession

    Directory of Open Access Journals (Sweden)

    Janet E. Nichol

    2017-07-01

    Full Text Available Landscape metrics have often been used to analyse the spatial dynamics of habitat fragmentation accompanying forest loss. However, there are few studies of the spatial dynamics of natural forest succession, especially over periods longer than the operational period of imaging satellites. This study applies spatial metrics to understand the spatial processes of a 70-year tropical secondary forest succession in Hong Kong, since World War 2. The highest rate of forest regeneration at 11% a year from 1989 to 2001 occurred when the landscape achieved greatest habitat diversity and juxtapositioning of habitat patches. This rapid regeneration occurred by infilling from remnant forest in adjacent valleys rather than by an advance along a broad forest front, and led to simplification of the landscape and declining habitat diversity. It was also accompanied by declines in species richness and abundance in regenerated forest patches. Thus both habitat and woody plant species diversity show a humped trend over the successional period as disconnected forest patches amalgamate, and shade-intolerant pioneers are shaded out by taller pioneers. From this point onwards, the birds of mixed habitats including bulbuls and hwamei known to disperse seed in the study area, may become less effective as forest patches consolidate, and only a few forest mammals remain. The observed improved connectivity within forest patches and reduced edge disturbances accompanying landscape simplification provide better conditions for dispersion within forest of light-intolerant climax species from the oldest, species-rich valley sites to the newly regenerated areas. However, in addition to the loss of forest dispersal agents, other natural dispersal agents such as gravity, flash floods and slope wash involving downward processes may be ineffective, as forest has regenerated upwards to higher elevations. Progression to a mature, biodiverse and stable forest ecosystem may depend on

  16. Geospatial Assessment of Forest Fragmentation and its Implications for Ecological Processes in Tropical Forests

    Directory of Open Access Journals (Sweden)

    Adepoju Kayode Adewale

    2017-11-01

    Full Text Available The study assessed the patterns of spatio-temporal configuration imposed on a forest landscape in Southwestern Nigeria due to fragmentation for the period 1986 – 2010 in order to understand the relationship between landscape patterns and the ecological processes influencing the distribution of species in tropical forest environment. Time-series Landsat TM and ETM satellite images and forest inventory data were pre-processed and classified into four landuse/landcover categories using maximum likelihood classification algorithm. Fragstats software was used for the computation of seven landscape and six class level metrics to provide indicators of fragmentation and landscape connectivity from the classified images.

  17. Toward trait-based mortality models for tropical forests.

    Directory of Open Access Journals (Sweden)

    Mélaine Aubry-Kientz

    Full Text Available Tree mortality in tropical forests is a complex ecological process for which modelling approaches need to be improved to better understand, and then predict, the evolution of tree mortality in response to global change. The mortality model introduced here computes an individual probability of dying for each tree in a community. The mortality model uses the ontogenetic stage of the tree because youngest and oldest trees are more likely to die. Functional traits are integrated as proxies of the ecological strategies of the trees to permit generalization among all species in the community. Data used to parametrize the model were collected at Paracou study site, a tropical rain forest in French Guiana, where 20,408 trees have been censused for 18 years. A Bayesian framework was used to select useful covariates and to estimate the model parameters. This framework was developed to deal with sources of uncertainty, including the complexity of the mortality process itself and the field data, especially historical data for which taxonomic determinations were uncertain. Uncertainty about the functional traits was also considered, to maximize the information they contain. Four functional traits were strong predictors of tree mortality: wood density, maximum height, laminar toughness and stem and branch orientation, which together distinguished the light-demanding, fast-growing trees from slow-growing trees with lower mortality rates. Our modelling approach formalizes a complex ecological problem and offers a relevant mathematical framework for tropical ecologists to process similar uncertain data at the community level.

  18. Toward trait-based mortality models for tropical forests.

    Science.gov (United States)

    Aubry-Kientz, Mélaine; Hérault, Bruno; Ayotte-Trépanier, Charles; Baraloto, Christopher; Rossi, Vivien

    2013-01-01

    Tree mortality in tropical forests is a complex ecological process for which modelling approaches need to be improved to better understand, and then predict, the evolution of tree mortality in response to global change. The mortality model introduced here computes an individual probability of dying for each tree in a community. The mortality model uses the ontogenetic stage of the tree because youngest and oldest trees are more likely to die. Functional traits are integrated as proxies of the ecological strategies of the trees to permit generalization among all species in the community. Data used to parametrize the model were collected at Paracou study site, a tropical rain forest in French Guiana, where 20,408 trees have been censused for 18 years. A Bayesian framework was used to select useful covariates and to estimate the model parameters. This framework was developed to deal with sources of uncertainty, including the complexity of the mortality process itself and the field data, especially historical data for which taxonomic determinations were uncertain. Uncertainty about the functional traits was also considered, to maximize the information they contain. Four functional traits were strong predictors of tree mortality: wood density, maximum height, laminar toughness and stem and branch orientation, which together distinguished the light-demanding, fast-growing trees from slow-growing trees with lower mortality rates. Our modelling approach formalizes a complex ecological problem and offers a relevant mathematical framework for tropical ecologists to process similar uncertain data at the community level.

  19. Quantification and identification of lightning damage in tropical forests.

    Science.gov (United States)

    Yanoviak, Stephen P; Gora, Evan M; Burchfield, Jeffrey M; Bitzer, Phillip M; Detto, Matteo

    2017-07-01

    Accurate estimates of tree mortality are essential for the development of mechanistic forest dynamics models, and for estimating carbon storage and cycling. However, identifying agents of tree mortality is difficult and imprecise. Although lightning kills thousands of trees each year and is an important agent of mortality in some forests, the frequency and distribution of lightning-caused tree death remain unknown for most forests. Moreover, because all evidence regarding the effects of lightning on trees is necessarily anecdotal and post hoc, rigorous tests of hypotheses regarding the ecological effects of lightning are impossible. We developed a combined electronic sensor/camera-based system for the location and characterization of lightning strikes to the forest canopy in near real time and tested the system in the forest of Barro Colorado Island, Panama. Cameras mounted on towers provided continuous video recordings of the forest canopy that were analyzed to determine the locations of lightning strikes. We used a preliminary version of this system to record and locate 18 lightning strikes to the forest over a 3-year period. Data from field surveys of known lightning strike locations (obtained from the camera system) enabled us to develop a protocol for reliable, ground-based identification of suspected lightning damage to tropical trees. In all cases, lightning damage was relatively inconspicuous; it would have been overlooked by ground-based observers having no knowledge of the event. We identified three types of evidence that can be used to consistently identify lightning strike damage in tropical forests: (1) localized and directionally biased branch mortality associated with flashover among tree and sapling crowns, (2) mortality of lianas or saplings near lianas, and (3) scorched or wilting epiphytic and hemiepiphytic plants. The longitudinal trunk scars that are typical of lightning-damaged temperate trees were never observed in this study. Given the

  20. Multiple pathways of commodity crop expansion in tropical forest landscapes

    Science.gov (United States)

    Meyfroidt, Patrick; Carlson, Kimberly M.; Fagan, Matthew E.; Gutiérrez-Vélez, Victor H.; Macedo, Marcia N.; Curran, Lisa M.; DeFries, Ruth S.; Dyer, George A.; Gibbs, Holly K.; Lambin, Eric F.; Morton, Douglas C.; Robiglio, Valentina

    2014-07-01

    Commodity crop expansion, for both global and domestic urban markets, follows multiple land change pathways entailing direct and indirect deforestation, and results in various social and environmental impacts. Here we compare six published case studies of rapid commodity crop expansion within forested tropical regions. Across cases, between 1.7% and 89.5% of new commodity cropland was sourced from forestlands. Four main factors controlled pathways of commodity crop expansion: (i) the availability of suitable forestland, which is determined by forest area, agroecological or accessibility constraints, and land use policies, (ii) economic and technical characteristics of agricultural systems, (iii) differences in constraints and strategies between small-scale and large-scale actors, and (iv) variable costs and benefits of forest clearing. When remaining forests were unsuitable for agriculture and/or policies restricted forest encroachment, a larger share of commodity crop expansion occurred by conversion of existing agricultural lands, and land use displacement was smaller. Expansion strategies of large-scale actors emerge from context-specific balances between the search for suitable lands; transaction costs or conflicts associated with expanding into forests or other state-owned lands versus smallholder lands; net benefits of forest clearing; and greater access to infrastructure in already-cleared lands. We propose five hypotheses to be tested in further studies: (i) land availability mediates expansion pathways and the likelihood that land use is displaced to distant, rather than to local places; (ii) use of already-cleared lands is favored when commodity crops require access to infrastructure; (iii) in proportion to total agricultural expansion, large-scale actors generate more clearing of mature forests than smallholders; (iv) property rights and land tenure security influence the actors participating in commodity crop expansion, the form of land use displacement

  1. Vulnerability of tropical forest ecosystems and forest dependent communities to droughts.

    Science.gov (United States)

    Vogt, D J; Vogt, K A; Gmur, S J; Scullion, J J; Suntana, A S; Daryanto, S; Sigurðardóttir, R

    2016-01-01

    Energy captured by and flowing through a forest ecosystem can be indexed by its total Net Primary Productivity (NPP). This forest NPP can also be a reflection of its sensitivity to, and its ability to adapt to, any climate change while also being harvested by humans. However detecting and identifying the vulnerability of forest and human ecosystems to climate change requires information on whether these coupled social and ecological systems are able to maintain functionality while responding to environmental variability. To better understand what parameters might be representative of environmental variability, we compiled a metadata analysis of 96 tropical forest sites. We found that three soil textural classes (i.e., sand, sandy loam and clay) had significant but different relationships between NPP and precipitation levels. Therefore, assessing the vulnerability of forests and forest dependent communities to drought was carried out using data from those sites that had one of those three soil textural classes. For example, forests growing on soil textures of sand and clay had NPP levels decreasing as precipitation levels increased, in contrast to those forest sites that had sandy loam soils where NPP levels increased. Also, forests growing on sandy loam soil textures appeared better adapted to grow at lower precipitation levels compared to the sand and clay textured soils. In fact in our tropical database the lowest precipitation level found for the sandy loam soils was 821 mm yr(-1) compared to sand at 1739 mm yr(-1) and clay at 1771 mm yr(-1). Soil texture also determined the level of NPP reached by a forest, i.e., forest growing on sandy loam and clay reached low-medium NPP levels while higher NPP levels (i.e., medium, high) were found on sand-textured soils. Intermediate precipitation levels (>1800-3000 mm yr(-1)) were needed to grow forests at the medium and high NPP levels. Low thresholds of NPP were identified at both low (∼750 mm) and high precipitation

  2. Vegetation and pollen rain relationship from the tropical Atlantic rain forest in Southern Brazil

    Directory of Open Access Journals (Sweden)

    Hermann Behling

    2006-07-01

    Full Text Available The relationship between the southern Brazilian tropical Atlantic lowland rain forest and modern pollen rain was studied by pollen traps. The study was carried out on a one hectare plot undisturbed rain forest of the reserve Volta Velha and two secondary forests, ± 50 and 7 years old. About 248 identified tree, shrub and herb species (excluding epiphytes of 50 families were represented by 126 different pollen and spore types (including non-local taxa. The calculated average influx of pollen rain from the native Atlantic rain forest was 12465 pollen grains per cm² and year. The influx from the ± 50 years old and from the 7 years old secondary forest was relatively low (4112 and 3667 grains per cm² and year, respectively compared to the undisturbed rain forest. The occurrence of pollen grains of herbs and fern spores were significantly higher in the secondary forests than in the undisturbed rain forest.Estudou-se a relação entre a Floresta Tropical Atlântica sul brasileira e a chuva polínica atual através de coletores de pólen. O estudo foi realizado em uma parcela de um hectare de floresta não perturbada localizada na Reserva Volta Velha (26º 04' S, 48º 38' W, 9 m s.n.m. e duas outras parcelas de floresta secundária (± 50 e 7 anos de idade. Cerca de 248 espécies arbóreas, arbustivas e herbáceas (excluindo epifitas, englobadas em 50 familias estavam representadas por 126 diferentes tipos de pólen e esporos (incluindo taxa não locais. Na área não perturbada, a média do fluxo de entrada da chuva polínica foi de 12465 grãos de pólen por cm²/ano. Nas áreas de ± 50 anos e 7 anos correspondentes a estádios florestais secundários o fluxo de entrada foi relativamente baixo (4112 e 3667 grãos por cm²/ano, respectivamente comparativamente à área não perturbada. A ocorrência de grãos de pólen de herbáceas e esporos de pteridófitas foi significativamente maior nas áreas secundárias do que na área não perturbada.

  3. Leaf litter arthropod responses to tropical forest restoration.

    Science.gov (United States)

    Cole, Rebecca J; Holl, Karen D; Zahawi, Rakan A; Wickey, Philipp; Townsend, Alan R

    2016-08-01

    Soil and litter arthropods represent a large proportion of tropical biodiversity and perform important ecosystem functions, but little is known about the efficacy of different tropical forest restoration strategies in facilitating their recovery in degraded habitats. We sampled arthropods in four 7- to 8-year-old restoration treatments and in nearby reference forests. Sampling was conducted during the wet and dry seasons using extractions from litter and pitfall samples. Restoration treatments were replicated in 50 × 50-m plots in four former pasture sites in southern Costa Rica: plantation - trees planted throughout the plot; applied nucleation/islands - trees planted in patches of different sizes; and natural regeneration - no tree planting. Arthropod abundance, measures of richness and diversity, and a number of functional groups were greater in the island treatment than in natural regeneration or plantation treatments and, in many cases, were similar to reference forest. Litter and pitfall morphospecies and functional group composition in all three restoration treatments were significantly different than reference sites, but island and plantation treatments showed more recovery than natural regeneration. Abundance and functional group diversity showed a much greater degree of recovery than community composition. Synthesis and applications: The less resource-intensive restoration strategy of planting tree islands was more effective than tree plantations in restoring arthropod abundance, richness, and functional diversity. None of the restoration strategies, however, resulted in similar community composition as reference forest after 8 years of recovery, highlighting the slow rate of recovery of arthropod communities after disturbance, and underscoring the importance of conservation of remnant forests in fragmented landscapes.

  4. Monitoring temporal Vegetation changes in Lao tropical forests

    International Nuclear Information System (INIS)

    Phompila, Chittana; Lewis, Megan; Clarke, Kenneth; Ostendorf, Bertram

    2014-01-01

    Studies on changes in vegetation are essential for understanding the interaction between humans and the environment. These studies provide key information for land use assessment, terrestrial ecosystem monitoring, carbon flux modelling and impacts of global climate change. The primary purpose of this study was to detect temporal vegetation changes in tropical forests in the southern part of Lao PDR from 2001-2012. The study investigated the annual vegetation phenological response of dominant land cover types across the study area and relationships to seasonal precipitation and temperature. Improved understanding of intra-annual patterns of vegetation variation was useful to detect longer term changes in vegetation. The breaks for additive season and trend (BFAST) approach was implemented to detect changes in these land cover types throughout the 2001-2012 period. We used the enhanced vegetation index (EVI) data from the Moderate Resolution Imaging Spectroradiometer (MODIS) (MOD13Q1 products) and monthly rainfall and temperature data obtained from the Meteorology and Hydrology Department, Ministry of Agriculture-Forestry, published by Lao National Statistical Centre in this research. EVI well documented the annual seasonal growth of vegetation and clearly distinguished the characteristic phenology of four different land use types; native forest, plantation, agriculture and mixed wooded/cleared area. Native forests maintained high EVI throughout the year, while plantations, wooded/cleared areas and agriculture showed greater inter-annual variation, with minimum EVI at the end of the dry season in April and maximum EVI in September-October, around two months after the wet season peak in rainfall. The BFAST analysis detected abrupt temporal changes in vegetation in the tropical forests, especially in a large conversion of mixed wooded/cleared area into plantation. Within the study area from 2001-2012 there has been an overall decreasing trend of vegetation cover for

  5. Light Diffusion in the Tropical Dry Forest of Costa Rica

    Science.gov (United States)

    Calvo-Rodriguez, S.; Sanchez-Azofeifa, G. A.

    2016-06-01

    Leaf Area Index (LAI) has been defined as the total leaf area (one-sided) in relation to the ground. LAI has an impact on tree growth and recruitment through the interception of light, which in turn affects primary productivity. Even though many instruments exist for estimating LAI from ground, they are often laborious and costly to run continuously. Measurements of LAI from the field using traditional sensors (e.g., LAI-2000) require multiple visits to the field under very specific sky conditions, making them unsuitable to operate in inaccessible areas and forests with dense vegetation, as well as areas where persistent sunny conditions are the norm like tropical dry forests. With this context, we proposed a methodology to characterize light diffusion based on NDVI and LAI measurements taken from the field in two successional stages in the tropical dry forest of Santa Rosa National Park in Costa Rica. We estimate a "K" coefficient to characterize light diffusion by the canopy, based on field NDVI measurements derived from optical phenology instruments and MODIS NDVI. From the coefficients determined, we estimated LAI values and compared them with ground measurements of LAI. In both successional stages ground measurements of LAI had no significant difference to the tower-derived LAI and the estimated LAI from MODIS NDVI.

  6. LIGHT DIFFUSION IN THE TROPICAL DRY FOREST OF COSTA RICA

    Directory of Open Access Journals (Sweden)

    S. Calvo-Rodriguez

    2016-06-01

    Full Text Available Leaf Area Index (LAI has been defined as the total leaf area (one-sided in relation to the ground. LAI has an impact on tree growth and recruitment through the interception of light, which in turn affects primary productivity. Even though many instruments exist for estimating LAI from ground, they are often laborious and costly to run continuously. Measurements of LAI from the field using traditional sensors (e.g., LAI-2000 require multiple visits to the field under very specific sky conditions, making them unsuitable to operate in inaccessible areas and forests with dense vegetation, as well as areas where persistent sunny conditions are the norm like tropical dry forests. With this context, we proposed a methodology to characterize light diffusion based on NDVI and LAI measurements taken from the field in two successional stages in the tropical dry forest of Santa Rosa National Park in Costa Rica. We estimate a "K" coefficient to characterize light diffusion by the canopy, based on field NDVI measurements derived from optical phenology instruments and MODIS NDVI. From the coefficients determined, we estimated LAI values and compared them with ground measurements of LAI. In both successional stages ground measurements of LAI had no significant difference to the tower-derived LAI and the estimated LAI from MODIS NDVI.

  7. Linking Above- and Belowground Dynamics in Tropical Urban Forests

    Science.gov (United States)

    Atkinson, E. E.; Marin-Spiotta, E.

    2013-12-01

    Secondary forests that emerge after a long history of agriculture can have altered plant community composition and relative abundances of different species. These forests can look and behave differently compared to pre-agricultural forests due changes in primary productivity, resource allocation, and phenology, which can significantly affect processes such as carbon accumulation and nutrient availability. Our research explores how alternative successional trajectories following intensive agricultural use affect linkages among the establishment of novel plant communities, soil nutrient availability and turnover, and soil microbial community composition and function. We hypothesize that different plant species composition due to differing land use legacies and successional trajectories would drive changes in soil microbial community structure and function, affecting soil C and N chemistry and turnover. We conducted this research in the subtropical dry forest life zone of St. Croix, U.S. Virgin Islands where island-wide abandonment of sugarcane resulted in a mosaic of sites in different stages of forest succession. We identified replicate sites with the following post-sugarcane trajectories: 1) natural forest regeneration, 2) low intensity pasture use, followed by reforestation with timber plantation, which are no longer being managed, 3) high intensity pasture use and recent natural forest regeneration, and 4) high intensity pasture use and current active grazing. During 2011-2013, we sampled soils seasonally (0-10 cm) and measured tree species composition. The successional trajectories showed distinct tree species composition. The first two trajectories yielded 40-year old mixed-species secondary forest, dominated by the dry forest tree species Melicoccus bijugatas, Guapira fragrans, Maniklara zapota, and Sideroxylon foetidissimum. The tree species Melicoccus bijugatas primarily drove differences between the first two trajectories (natural forest regeneration vs

  8. Relationships among net primary productivity, nutrients and climate in tropical rain forest: A pan-tropical analysis

    Science.gov (United States)

    Cleveland, Cory C.; Townsend, Alan R.; Taylor, Philip; Alvarez-Clare, Silvia; Bustamante, Mercedes M.C.; Chuyong, George; Dobrowski, Solomon Z.; Grierson, Pauline; Harms, Kyle E.; Houlton, Benjamin Z.; Marklein, Alison; Parton, William; Porder, Stephen; Reed, Sasha C.; Sierra, Carlos A.; Silver, Whendee L.; Tanner, Edmund V.J.; Wieder, William R.

    2011-01-01

    Tropical rain forests play a dominant role in global biosphere-atmosphere CO2 exchange. Although climate and nutrient availability regulate net primary production (NPP) and decomposition in all terrestrial ecosystems, the nature and extent of such controls in tropical forests remain poorly resolved. We conducted a meta-analysis of carbon-nutrient-climate relationships in 113 sites across the tropical forest biome. Our analyses showed that mean annual temperature was the strongest predictor of aboveground NPP (ANPP) across all tropical forests, but this relationship was driven by distinct temperature differences between upland and lowland forests. Within lowland forests (nitrogen (N), litter decomposition rate (k), soil N and soil respiration were all directly related with total surface (0–10 cm) soil P concentrations. Our analysis provides some evidence that P availability regulates NPP and other ecosystem processes in lowland tropical forests, but more importantly, underscores the need for a series of large-scale nutrient manipulations – especially in lowland forests – to elucidate the most important nutrient interactions and controls.

  9. Heterogeneous movement of insectivorous Amazonian birds through primary and secondary forest: A case study using multistate models with radiotelemetry data

    Science.gov (United States)

    Luke L. Powell; Jared D. Wolfe; Erik I. Johnson; James E. Hines; James D. Nichols; Philip C Stouffer

    2015-01-01

    Given rates of deforestation, disturbance, and secondary forest accumulation in tropical rainforests, there is a great need to quantify habitat use and movement among different habitats. This need is particularly pronounced for animals most sensitive to disturbance, such as insectivorous understory birds. Here we use multistate capture–recapture models with...

  10. Soil carbon stocks decrease following conversion of secondary forests to rubber (Hevea brasiliensis) plantations.

    Science.gov (United States)

    de Blécourt, Marleen; Brumme, Rainer; Xu, Jianchu; Corre, Marife D; Veldkamp, Edzo

    2013-01-01

    Forest-to-rubber plantation conversion is an important land-use change in the tropical region, for which the impacts on soil carbon stocks have hardly been studied. In montane mainland southeast Asia, monoculture rubber plantations cover 1.5 million ha and the conversion from secondary forests to rubber plantations is predicted to cause a fourfold expansion by 2050. Our study, conducted in southern Yunnan province, China, aimed to quantify the changes in soil carbon stocks following the conversion from secondary forests to rubber plantations. We sampled 11 rubber plantations ranging in age from 5 to 46 years and seven secondary forest plots using a space-for-time substitution approach. We found that forest-to-rubber plantation conversion resulted in losses of soil carbon stocks by an average of 37.4±4.7 (SE) Mg C ha(-1) in the entire 1.2-m depth over a time period of 46 years, which was equal to 19.3±2.7% of the initial soil carbon stocks in the secondary forests. This decline in soil carbon stocks was much larger than differences between published aboveground carbon stocks of rubber plantations and secondary forests, which range from a loss of 18 Mg C ha(-1) to an increase of 8 Mg C ha(-1). In the topsoil, carbon stocks declined exponentially with years since deforestation and reached a steady state at around 20 years. Although the IPCC tier 1 method assumes that soil carbon changes from forest-to-rubber plantation conversions are zero, our findings show that they need to be included to avoid errors in estimating overall ecosystem carbon fluxes.

  11. Floristic structure and biomass distribution of a tropical seasonal rain forest in Xishuangbanna, southwest China

    Energy Technology Data Exchange (ETDEWEB)

    Shanmughavel, P.; Zheng Zheng; Sha Liqing; Cao Min [Chinese Academy of Sciences, Kunming (China). Dept. of Forest Ecology

    2001-07-01

    The aim of this research was to study the forest community structure, tree species diversity and biomass production of a tropical seasonal rain forest in Xishuangbanna, southwest China. The community structure showed a diversified species composition and supported many species of economic significance. This tropical rain forest in closely related to Malaysian forests. The biomass and its distribution were studied using standard regression analysis and the clear-cut method for shrubs and herbs. The total biomass was 360.9 t/ha and its allocation in different layers was: tree layer 352.5 t/ha, shrub layer 4.7 t/ha, liana 3.1 t/ha and herb layer 0.5 t/ha. Most of the biomass was concentrated in the trees: stem 241.2 t/ha, root 69.6 t/ha, branch 37.2 t/ha and leaves 4.3 t/ha. The DBH class allocation of the tree biomass was concentrated in the middle DBH class. The biomass of six DBH classes from 20 to 80 cm was 255.4 t/ha. There are twenty-six species with biomass over 0.5% of the total biomass of the tree layer, and three species with biomass over 5%, i.e., Pometia tomentosa, Barringtonia macrostachya (5.4%) and Terminalia myriocarpa (5.2%). Data on stem, branch, leaves and root of the individual tree species were used to develop regression models. D{sup 2}H was found to be the best estimator of the biomass in this tropical rain forest. However, higher biomass figures have been reported from tropical forests elsewhere e.g., 415-520 t/ha in the tropical forests of Cambodia, the tropical moist mixed dipterocarp forests, and the tropical moist logged moist evergreen-high, medium, and low yield forests of Sri Lanka. In some forests, lower accumulation of biomass was reported, e.g., 10-295 t/ha in the tropical moist forests of Bangladesh, the tropical moist dense forest of Cambodia, the tropical dry forests of India, the tropical moist forests of Peninsular-Malaysia, the tropical moist mixed dipterocarp forests of Sarawak-Malaysia, the tropical evergreen forests of

  12. Estimating Tropical Forest Structure Using a Terrestrial Lidar.

    Directory of Open Access Journals (Sweden)

    Michael Palace

    Full Text Available Forest structure comprises numerous quantifiable biometric components and characteristics, which include tree geometry and stand architecture. These structural components are important in the understanding of the past and future trajectories of these biomes. Tropical forests are often considered the most structurally complex and yet least understood of forested ecosystems. New technologies have provided novel avenues for quantifying biometric properties of forested ecosystems, one of which is LIght Detection And Ranging (lidar. This sensor can be deployed on satellite, aircraft, unmanned aerial vehicles, and terrestrial platforms. In this study we examined the efficacy of a terrestrial lidar scanner (TLS system in a tropical forest to estimate forest structure. Our study was conducted in January 2012 at La Selva, Costa Rica at twenty locations in a predominantly undisturbed forest. At these locations we collected field measured biometric attributes using a variable plot design. We also collected TLS data from the center of each plot. Using this data we developed relative vegetation profiles (RVPs and calculated a series of parameters including entropy, Fast Fourier Transform (FFT, number of layers and plant area index to develop statistical relationships with field data. We developed statistical models using a series of multiple linear regressions, all of which converged on significant relationships with the strongest relationship being for mean crown depth (r2 = 0.88, p < 0.001, RMSE = 1.04 m. Tree density was found to have the poorest significant relationship (r2 = 0.50, p < 0.01, RMSE = 153.28 n ha-1. We found a significant relationship between basal area and lidar metrics (r2 = 0.75, p < 0.001, RMSE = 3.76 number ha-1. Parameters selected in our models varied, thus indicating the potential relevance of multiple features in canopy profiles and geometry that are related to field-measured structure. Models for biomass estimation included

  13. Estimating Tropical Forest Structure Using a Terrestrial Lidar.

    Science.gov (United States)

    Palace, Michael; Sullivan, Franklin B; Ducey, Mark; Herrick, Christina

    2016-01-01

    Forest structure comprises numerous quantifiable biometric components and characteristics, which include tree geometry and stand architecture. These structural components are important in the understanding of the past and future trajectories of these biomes. Tropical forests are often considered the most structurally complex and yet least understood of forested ecosystems. New technologies have provided novel avenues for quantifying biometric properties of forested ecosystems, one of which is LIght Detection And Ranging (lidar). This sensor can be deployed on satellite, aircraft, unmanned aerial vehicles, and terrestrial platforms. In this study we examined the efficacy of a terrestrial lidar scanner (TLS) system in a tropical forest to estimate forest structure. Our study was conducted in January 2012 at La Selva, Costa Rica at twenty locations in a predominantly undisturbed forest. At these locations we collected field measured biometric attributes using a variable plot design. We also collected TLS data from the center of each plot. Using this data we developed relative vegetation profiles (RVPs) and calculated a series of parameters including entropy, Fast Fourier Transform (FFT), number of layers and plant area index to develop statistical relationships with field data. We developed statistical models using a series of multiple linear regressions, all of which converged on significant relationships with the strongest relationship being for mean crown depth (r2 = 0.88, p < 0.001, RMSE = 1.04 m). Tree density was found to have the poorest significant relationship (r2 = 0.50, p < 0.01, RMSE = 153.28 n ha-1). We found a significant relationship between basal area and lidar metrics (r2 = 0.75, p < 0.001, RMSE = 3.76 number ha-1). Parameters selected in our models varied, thus indicating the potential relevance of multiple features in canopy profiles and geometry that are related to field-measured structure. Models for biomass estimation included structural canopy

  14. Human or Natural Disturbance: Landscape-Scale Dynamics of the Tropical Forests of Puerto Rico

    OpenAIRE

    Foster, David Russell; Fluet, M.; Boose, E. R.

    1999-01-01

    Increasingly, ecologists are recognizing that human disturbance has played an important role in tropical forest history and that many assumptions concerning the relative importance of natural processes warrant re-examination. To assess the historical role of broad-scale human vs. natural disturbance on an intensively studied tropical forest we undertook a landscape-level analysis of forest dynamics in the Luquillo Experimental Forest (LEF; 10 871 ha) in eastern Puerto Rico. Using aerial photo...

  15. Biodiversity can help prevent malaria outbreaks in tropical forests.

    Directory of Open Access Journals (Sweden)

    Gabriel Zorello Laporta

    Full Text Available BACKGROUND: Plasmodium vivax is a widely distributed, neglected parasite that can cause malaria and death in tropical areas. It is associated with an estimated 80-300 million cases of malaria worldwide. Brazilian tropical rain forests encompass host- and vector-rich communities, in which two hypothetical mechanisms could play a role in the dynamics of malaria transmission. The first mechanism is the dilution effect caused by presence of wild warm-blooded animals, which can act as dead-end hosts to Plasmodium parasites. The second is diffuse mosquito vector competition, in which vector and non-vector mosquito species compete for blood feeding upon a defensive host. Considering that the World Health Organization Malaria Eradication Research Agenda calls for novel strategies to eliminate malaria transmission locally, we used mathematical modeling to assess those two mechanisms in a pristine tropical rain forest, where the primary vector is present but malaria is absent. METHODOLOGY/PRINCIPAL FINDINGS: The Ross-Macdonald model and a biodiversity-oriented model were parameterized using newly collected data and data from the literature. The basic reproduction number ([Formula: see text] estimated employing Ross-Macdonald model indicated that malaria cases occur in the study location. However, no malaria cases have been reported since 1980. In contrast, the biodiversity-oriented model corroborated the absence of malaria transmission. In addition, the diffuse competition mechanism was negatively correlated with the risk of malaria transmission, which suggests a protective effect provided by the forest ecosystem. There is a non-linear, unimodal correlation between the mechanism of dead-end transmission of parasites and the risk of malaria transmission, suggesting a protective effect only under certain circumstances (e.g., a high abundance of wild warm-blooded animals. CONCLUSIONS/SIGNIFICANCE: To achieve biological conservation and to eliminate

  16. Landscape context mediates avian habitat choice in tropical forest restoration.

    Directory of Open Access Journals (Sweden)

    J Leighton Reid

    Full Text Available Birds both promote and prosper from forest restoration. The ecosystem functions birds perform can increase the pace of forest regeneration and, correspondingly, increase the available habitat for birds and other forest-dependent species. The aim of this study was to learn how tropical forest restoration treatments interact with landscape tree cover to affect the structure and composition of a diverse bird assemblage. We sampled bird communities over two years in 13 restoration sites and two old-growth forests in southern Costa Rica. Restoration sites were established on degraded farmlands in a variety of landscape contexts, and each included a 0.25-ha plantation, island treatment (trees planted in patches, and unplanted control. We analyzed four attributes of bird communities including frugivore abundance, nectarivore abundance, migrant insectivore richness, and compositional similarity of bird communities in restoration plots to bird communities in old-growth forests. All four bird community variables were greater in plantations and/or islands than in control treatments. Frugivore and nectarivore abundance decreased with increasing tree cover in the landscape surrounding restoration plots, whereas compositional similarity to old-growth forests was greatest in plantations embedded in landscapes with high tree cover. Migrant insectivore richness was unaffected by landscape tree cover. Our results agree with previous studies showing that increasing levels of investment in active restoration are positively related to bird richness and abundance, but differences in the effects of landscape tree cover on foraging guilds and community composition suggest that trade-offs between biodiversity conservation and bird-mediated ecosystem functioning may be important for prioritizing restoration sites.

  17. Whole-ecosystem experimental manipulations of tropical forests

    Czech Academy of Sciences Publication Activity Database

    Fayle, Tom Maurice; Turner, E. C.; Basset, Yves; Ewers, R. M.; Reynolds, G.; Novotný, Vojtěch

    2015-01-01

    Roč. 30, č. 6 (2015), s. 334-346 ISSN 0169-5347 R&D Projects: GA ČR GA14-32302S; GA ČR(CZ) GA14-04258S; GA ČR GB14-36098G Grant - others:Euroepan Social Fund(CZ) CZ.1.07/2.3.00/20.0064 Institutional support: RVO:60077344 Keywords : tropical forests Subject RIV: EH - Ecology, Behaviour Impact factor: 16.735, year: 2015 http://www.cell.com/trends/ecology-evolution/pdf/S0169-5347(15)00069-5.pdf

  18. Medicinal plants popularly used in the Brazilian Tropical Atlantic Forest.

    Science.gov (United States)

    Di Stasi, L C; Oliveira, G P; Carvalhaes, M A; Queiroz, M; Tien, O S; Kakinami, S H; Reis, M S

    2002-02-01

    A survey of medicinal plants used by rural and urban inhabitants of the three cities of the Tropical Atlantic Forest, Region of Vale do Ribeira, State of São Paulo, Brazil was performed by means of 200 interviews with medicinal plant users and extractors and, traditional healers. One hundred fourteen herbal remedies were recorded and the following information reported: Latin, vernacular and English names, plant part used, forms of preparation and application of the herbal remedies, medicinal or food uses, areas of plant collection, economic importance (when available) and other data.

  19. LBA-ECO ND-04 Secondary Forest Recovery, Structure, and LAI, Central Amazonia, Brazil

    Data.gov (United States)

    National Aeronautics and Space Administration — ABSTRACT: This data set reports measurements of the canopy and structure of secondary forests regenerating from abandoned pastures. These secondary forests are...

  20. Geographic, environmental and biotic sources of variation in the nutrient relations of tropical montane forests

    Science.gov (United States)

    James W. Dalling; Katherine Heineman; Grizelle Gonzalez; Rebecca Ostertag

    2016-01-01

    Tropicalmontane forests (TMF) are associated with a widely observed suite of characteristics encompassing forest structure, plant traits and biogeochemistry.With respect to nutrient relations, montane forests are characterized by slow decomposition of organic matter, high investment in below-ground biomass and poor litter quality, relative to tropical lowland forests....

  1. Road-networks, a practical indicator of human impacts on biodiversity in Tropical forests

    International Nuclear Information System (INIS)

    Hosaka, T; Yamada, T; Okuda, T

    2014-01-01

    Tropical forests sustain the most diverse plants and animals in the world, but are also being lost most rapidly. Rapid assessment and monitoring using remote sensing on biodiversity of tropical forests is needed to predict and evaluate biodiversity loss by human activities. Identification of reliable indicators of forest biodiversity and/or its loss is an urgent issue. In the present paper, we propose the density of road networks in tropical forests can be a good and practical indicator of human impacts on biodiversity in tropical forests through reviewing papers and introducing our preliminary survey in peninsular Malaysia. Many previous studies suggest a strong negative impact of forest roads on biodiversity in tropical rainforests since they changes microclimate, soil properties, drainage patterns, canopy openness and forest accessibility. Moreover, our preliminary survey also showed that even a narrow logging road (6 m wide) significantly lowered abundance of dung beetles (well-known bio-indicator in biodiversity survey in tropical forests) near the road. Since these road networks are readily to be detected with remote sensing approach such as aerial photographs and Lider, regulation and monitoring of the road networks using remote sensing techniques is a key to slow down the rate of biodiversity loss due to forest degradation in tropical forests

  2. Mature oil palm plantations are thirstier than tropical forests

    Science.gov (United States)

    Manoli, G.; Meijide, A.; Huth, N.; Knohl, A.; Kosugi, Y.; Burlando, P.; Ghazoul, J.; Fatichi, S.

    2017-12-01

    Oil Palm (OP) is the highest yielding cash-crop in the world but, being the driver of significant tropical forest losses, it is also considered the "world's most hated crop". Despite substantial research on the impact of OP on ecosystem degradation, biodiversity losses, and carbon emissions, little is known on the ecohydrological impacts of forest conversion to OP. Here we employ numerical simulations constrained by field observations to quantify changes in ecosystem evapotranspiration (ET), infiltration/runoff, gross primary productivity (GPP) and surface temperature (Ts) due to OP establishment. Compared to pristine forests, young OP plantations decrease ET, causing an increase in Ts, but the changes become less pronounced as plantations grow. Mature plantations have a very high GPP to sustain the oil palm yield and, given relatively similar water use efficiency, they transpire more water that the forests they have replaced. Hence, the high fruit productivity of OP comes at the expense of water consumption. Our mechanistic modeling results corroborate anecdotal evidence of water scarcity issues in OP-dominated landscapes.

  3. Slowed decomposition is biotically mediated in an ectomycorrhizal, tropical rain forest.

    Science.gov (United States)

    McGuire, Krista L; Zak, Donald R; Edwards, Ivan P; Blackwood, Christopher B; Upchurch, Rima

    2010-11-01

    Bacteria and fungi drive the cycling of plant litter in forests, but little is known about their role in tropical rain forest nutrient cycling, despite the high rates of litter decay observed in these ecosystems. However, litter decay rates are not uniform across tropical rain forests. For example, decomposition can differ dramatically over small spatial scales between low-diversity, monodominant rain forests, and species-rich, mixed forests. Because the climatic patterns and soil parent material are identical in co-occurring mixed and monodominant forests, differences in forest floor accumulation, litter production, and decomposition between these forests may be biotically mediated. To test this hypothesis, we conducted field and laboratory studies in a monodominant rain forest in which the ectomycorrhizal tree Dicymbe corymbosa forms >80% of the canopy, and a diverse, mixed forest dominated by arbuscular mycorrhizal trees. After 2 years, decomposition was significantly slower in the monodominant forest (P forest (P forest (P = 0.02), and the composition of fungal communities was distinct between the two rain forest types (P = 0.001). Sequencing of fungal rDNA revealed a significantly lower richness of saprotrophic fungi in the monodominant forest (19 species) relative to the species-rich forest (84 species); moreover, only 4% percent of fungal sequences occurred in both forests. These results show that nutrient cycling patterns in tropical forests can vary dramatically over small spatial scales, and that changes in microbial community structure likely drive the observed differences in decomposition.

  4. Biomass is the main driver of changes in ecosystem process rates during tropical forest succession.

    Science.gov (United States)

    Lohbeck, Madelon; Poorter, Lourens; Martínez-Ramos, Miguel; Bongers, Frans

    2015-05-01

    Over half of the world's forests are disturbed, and the rate at which ecosystem processes recover after disturbance is important for the services these forests can provide. We analyze the drivers' underlying changes in rates of key ecosystem processes (biomass productivity, litter productivity, actual litter decomposition, and potential litter decomposition) during secondary succession after shifting cultivation in wet tropical forest of Mexico. We test the importance of three alternative drivers of ecosystem processes: vegetation biomass (vegetation quantity hypothesis), community-weighted trait mean (mass ratio hypothesis), and functional diversity (niche complementarity hypothesis) using structural equation modeling. This allows us to infer the relative importance of different mechanisms underlying ecosystem process recovery. Ecosystem process rates changed during succession, and the strongest driver was aboveground biomass for each of the processes. Productivity of aboveground stem biomass and leaf litter as well as actual litter decomposition increased with initial standing vegetation biomass, whereas potential litter decomposition decreased with standing biomass. Additionally, biomass productivity was positively affected by community-weighted mean of specific leaf area, and potential decomposition was positively affected by functional divergence, and negatively by community-weighted mean of leaf dry matter content. Our empirical results show that functional diversity and community-weighted means are of secondary importance for explaining changes in ecosystem process rates during tropical forest succession. Instead, simply, the amount of vegetation in a site is the major driver of changes, perhaps because there is a steep biomass buildup during succession that overrides more subtle effects of community functional properties on ecosystem processes. We recommend future studies in the field of biodiversity and ecosystem functioning to separate the effects of

  5. Controls on fallen leaf chemistry and forest floor element masses in native and novel forests across a tropical island

    Science.gov (United States)

    H.E. Erickson; E.H. Helmer; T.J. Brandeis; A.E. Lugo

    2014-01-01

    Litter chemistry varies across landscapes according to factors rarely examined simultaneously. We analyzed 11 elements in forest floor (fallen) leaves and additional litter components from 143 forest inventory plots systematically located across Puerto Rico, a tropical island recovering from large-scale forest clearing. We assessed whether three existing, independently...

  6. Disentangling above- and below-ground competition between lianas and trees in a tropical forest

    NARCIS (Netherlands)

    Schnitzer, S.A.; Kuzee, M.E.; Bongers, F.J.J.M.

    2005-01-01

    1 Light is thought to be the most limiting resource in tropical forests, and thus aboveground competition is commonly accepted as the mechanism that structures these communities. In many tropical forests, trees compete not only with other trees, but also with lianas, which compete aggressively for

  7. Monitoring tropical forest dynamics using Landsat time series and community-based data

    NARCIS (Netherlands)

    DeVries, B.R.

    2015-01-01

    Tropical forests cover a significant portion of the earth's surface and provide a range of

    ecosystem services, but are under increasing threat due to human activities. Deforestation

    and forest degradation in the tropics are responsible for a large share of global CO2

  8. Foliar and ecosystem respiration in an old-growth tropical rain forest

    Science.gov (United States)

    Molly A. Cavaleri; Steven F. Oberbauer; Michael G. Ryan

    2008-01-01

    Foliar respiration is a major component of ecosystem respiration, yet extrapolations are often uncertain in tropical forests because of indirect estimates of leaf area index (LAI).A portable tower was used to directly measure LAI and night-time foliar respiration from 52 vertical transects throughout an old-growth tropical rain forest in Costa Rica. In this study, we (...

  9. Climate seasonality limits leaf carbon assimilation and wood productivity in tropical forests

    Science.gov (United States)

    Fabien H. Wagner; Bruno Herault; Damien Bonal; Clement Stahl; Liana O. Anderson; Timothy R. Baker; Gabriel Sebastian Becker; Hans Beeckman; Danilo Boanerges Souza; Paulo Cesar Botosso; David M. J. S. Bowman; Achim Brauning; Benjamin Brede; Foster Irving Brown; Jesus Julio Camarero; Plinio Barbosa Camargo; Fernanda C. G. Cardoso; Fabricio Alvim Carvalho; Wendeson Castro; Rubens Koloski Chagas; Jerome Chave; Emmanuel N. Chidumayo; Deborah A. Clark; Flavia Regina Capellotto Costa; Camille Couralet; Paulo Henrique da Silva Mauricio; Helmut Dalitz; Vinicius Resende de Castro; Jacanan Eloisa de Freitas Milani; Edilson Consuelo de Oliveira; Luciano de Souza Arruda; Jean-Louis Devineau; David M. Drew; Oliver Dunisch; Giselda Durigan; Elisha Elifuraha; Marcio Fedele; Ligia Ferreira Fedele; Afonso Figueiredo Filho; Cesar Augusto Guimaraes Finger; Augusto Cesar Franco; Joao Lima Freitas Junior; Franklin Galvao; Aster Gebrekirstos; Robert Gliniars; Paulo Mauricio Lima de Alencastro Graca; Anthony D. Griffiths; James Grogan; Kaiyu Guan; Jurgen Homeier; Maria Raquel Kanieski; Lip Khoon Kho; Jennifer Koenig; Sintia Valerio Kohler; Julia Krepkowski; Jose Pires Lemos-Filho; Diana Lieberman; Milton Eugene Lieberman; Claudio Sergio Lisi; Tomaz Longhi Santos; Jose Luis Lopez Ayala; Eduardo Eijji Maeda; Yadvinder Malhi; Vivian R. B. Maria; Marcia C. M. Marques; Renato Marques; Hector Maza Chamba; Lawrence Mbwambo; Karina Liana Lisboa Melgaco; Hooz Angela Mendivelso; Brett P. Murphy; Joseph O' Brien; Steven F. Oberbauer; Naoki Okada; Raphael Pelissier; Lynda D. Prior; Fidel Alejandro Roig; Michael Ross; Davi Rodrigo Rossatto; Vivien Rossi; Lucy Rowland; Ervan Rutishauser; Hellen Santana; Mark Schulze; Diogo Selhorst; Williamar Rodrigues Silva; Marcos Silveira; Susanne Spannl; Michael D. Swaine; Jose Julio Toledo; Marcos Miranda Toledo; Marisol Toledo; Takeshi Toma; Mario Tomazello Filho; Juan Ignacio Valdez Hernandez; Jan Verbesselt; Simone Aparecida Vieira; Gregoire Vincent; Carolina Volkmer de Castilho; Franziska Volland; Martin Worbes; Magda Lea Bolzan Zanon; Luiz E. O. C. Aragao

    2016-01-01

    The seasonal climate drivers of the carbon cycle in tropical forests remain poorly known, although these forests account for more carbon assimilation and storage than any other terrestrial ecosystem. Based on a unique combination of seasonal pan-tropical data sets from 89 experimental sites (68 include aboveground wood productivity measurements and 35 litter...

  10. Leaf litter decomposition rates increase with rising mean annual temperature in Hawaiian tropical montane wet forests

    Science.gov (United States)

    Lori D. Bothwell; Paul C. Selmants; Christian P. Giardina; Creighton M. Litton

    2014-01-01

    Decomposing litter in forest ecosystems supplies nutrients to plants, carbon to heterotrophic soil microorganisms and is a large source of CO2 to the atmosphere. Despite its essential role in carbon and nutrient cycling, the temperature sensitivityof leaf litter decay in tropical forest ecosystems remains poorly resolved, especially in tropical...

  11. Damage-controlled logging in managed tropical rain forest in Suriname

    NARCIS (Netherlands)

    Hendrison, J.

    1990-01-01

    Concern about worldwide deforestation and exploitation of the tropical rain forests has led to friction between national governments, wood industries and timber trade on the one hand, and scientists and environmental organizations on the other. One way to safeguard the tropical rain forests

  12. Towards restoration of Hawaiian tropical dry forests: the Kaupulehu outplanting programme

    Science.gov (United States)

    Susan Cordell; Moana McClellan; Yvonne Yarber Carter; Lisa J. Hadway

    2008-01-01

    Hawaiian tropical dry forests contain diverse assemblages of woody canopy species, including many endemic and endangered species that warrant conservation attention before completely disappearing. Today, tropical dry forests in Hawaii are not viable ecosystems. Poor land use practices, fragmentation, non-native plant invasions, and inadequate native vegetation...

  13. Climate seasonality limits leaf carbon assimilation and wood productivity in tropical forests

    NARCIS (Netherlands)

    Wagner, Fabien H.; Hérault, Bruno; Bonal, Damien; Stahl, Clément; Anderson, Liana O.; Baker, Timothy R.; Becker, Gabriel Sebastian; Beeckman, Hans; Boanerges Souza, Danilo; Botosso, Paulo Cesar; Bowman, David M.J.S.; Bräuning, Achim; Brede, Benjamin; Brown, Foster Irving; Camarero, Jesus Julio; Camargo, Plínio Barbosa; Cardoso, Fernanda C.G.; Carvalho, Fabrício Alvim; Castro, Wendeson; Chagas, Rubens Koloski; Chave, Jérome; Chidumayo, Emmanuel N.; Clark, Deborah A.; Costa, Flavia Regina Capellotto; Couralet, Camille; Silva Mauricio, Da Paulo Henrique; Dalitz, Helmut; Castro, De Vinicius Resende; Freitas Milani, De Jaçanan Eloisa; Oliveira, De Edilson Consuelo; Souza Arruda, De Luciano; Devineau, Jean-Louis; Drew, David M.; Dünisch, Oliver; Durigan, Giselda; Elifuraha, Elisha; Fedele, Marcio; Ferreira Fedele, Ligia; Figueiredo Filho, Afonso; Finger, César Augusto Guimarães; Franco, Augusto César; Freitas Júnior, João Lima; Galvão, Franklin; Gebrekirstos, Aster; Gliniars, Robert; Lima De Alencastro Graça, Paulo Maurício; Griffiths, Anthony D.; Grogan, James; Guan, Kaiyu; Homeier, Jürgen; Kanieski, Maria Raquel; Kho, Lip Khoon; Koenig, Jennifer; Kohler, Sintia Valerio; Krepkowski, Julia; Lemos-filho, José Pires; Lieberman, Diana; Lieberman, Milton Eugene; Lisi, Claudio Sergio; Longhi Santos, Tomaz; López Ayala, José Luis; Maeda, Eduardo Eijji; Malhi, Yadvinder; Maria, Vivian R.B.; Marques, Marcia C.M.; Marques, Renato; Maza Chamba, Hector; Mbwambo, Lawrence; Melgaço, Karina Liana Lisboa; Mendivelso, Hooz Angela; Murphy, Brett P.; O'Brien, Joseph J.; Oberbauer, Steven F.; Okada, Naoki; Pélissier, Raphaël; Prior, Lynda D.; Roig, Fidel Alejandro; Ross, Michael; Rossatto, Davi Rodrigo; Rossi, Vivien; Rowland, Lucy; Rutishauser, Ervan; Santana, Hellen; Schulze, Mark; Selhorst, Diogo; Silva, Williamar Rodrigues; Silveira, Marcos; Spannl, Susanne; Swaine, Michael D.; Toledo, José Julio; Toledo, Marcos Miranda; Toledo, Marisol; Toma, Takeshi; Tomazello Filho, Mario; Valdez Hernández, Juan Ignacio; Verbesselt, Jan; Vieira, Simone Aparecida; Vincent, Grégoire; Volkmer De Castilho, Carolina; Volland, Franziska; Worbes, Martin; Zanon, Magda Lea Bolzan; Aragão, Luiz E.O.C.

    2016-01-01

    The seasonal climate drivers of the carbon cycle in tropical forests remain poorly known, although these forests account for more carbon assimilation and storage than any other terrestrial ecosystem. Based on a unique combination of seasonal pan-tropical data sets from 89 experimental sites (68

  14. Knowledge and knowledge gaps in climate-induced tropical forest mortality

    Science.gov (United States)

    McDowell, N. G.

    2016-12-01

    Increasing tropical forest mortality is a significant risk and could have enormous consequences on the global carbon cycle, however, our understanding of mortality patterns, drivers, and mechanisms is currently insufficient to allow rigorous hypothesis testing or predictive simulation. Here we review the state of knowledge regarding tropical forest mortality and identify critical next steps to enable improved fundamental understanding and reduced model uncertainty. Limited observations in the tropics suggest many patterns, drivers, and mechanisms of tropical forest mortality are consistent with those found in temperate forests, with significant exceptions associated the high species diversity and unique climate of tropical forests. Accelerating mortality rates have been observed in the neo-tropics, and threshold mortality responses to drought and heat have been observed. However, the large species diversity may buffer tropical forests against drought and heat events relative to analogous responses in temperate forests. The importance of various drivers of tropical forest mortality are undocumented, but wind-induced mortality may play a larger role, drought and heat an equivalent role, and insects and pathogens a more minor role in mortality than in temperate zones. The relative importance of stress- versus productivity- (and CO2fertilization) accelerated mortality is a major science question, as is the threat of die-off (regional scale mortality event) thresholds. We conclude there is significant evidence to justify concern regarding the long-term carbon sink potential of tropical forests, but the state of predictive uncertainty is large relative to other forests globally. We outline a theoretical, empirical, and simulation based framework to surmount the challenge of understanding and predicting pan-tropical forest mortality rates under climate change.

  15. Tropical rain forest conservation and the twin challenges of diversity and rarity.

    Science.gov (United States)

    Hubbell, Stephen P

    2013-09-01

    Data from a global network of large, permanent plots in lowland tropical forests demonstrate (1) that the phenomenon of tropical tree rarity is real and (2) that almost all the species diversity in such forests is due to rare species. Theoretical and empirically based reasoning suggests that many of these rare species are not as geographically widespread as previously thought. These findings suggest that successful strategies for conserving global tree diversity in lowland tropical forests must pay much more attention to the biogeography of rarity, as well as to the impact of climate change on the distribution and abundance of rare species. Because the biogeography of many tropical tree species is poorly known, a high priority should be given to documenting the distribution and abundance of rare tropical tree species, particularly in Amazonia, the largest remaining tropical forested region in the world.

  16. Habitat filtering across tree life stages in tropical forest communities

    Science.gov (United States)

    Baldeck, C. A.; Harms, K. E.; Yavitt, J. B.; John, R.; Turner, B. L.; Valencia, R.; Navarrete, H.; Bunyavejchewin, S.; Kiratiprayoon, S.; Yaacob, A.; Supardi, M. N. N.; Davies, S. J.; Hubbell, S. P.; Chuyong, G. B.; Kenfack, D.; Thomas, D. W.; Dalling, J. W.

    2013-01-01

    Tropical tree communities are shaped by local-scale habitat heterogeneity in the form of topographic and edaphic variation, but the life-history stage at which habitat associations develop remains poorly understood. This is due, in part, to the fact that previous studies have not accounted for the widely disparate sample sizes (number of stems) that result when trees are divided into size classes. We demonstrate that the observed habitat structuring of a community is directly related to the number of individuals in the community. We then compare the relative importance of habitat heterogeneity to tree community structure for saplings, juveniles and adult trees within seven large (24–50 ha) tropical forest dynamics plots while controlling for sample size. Changes in habitat structuring through tree life stages were small and inconsistent among life stages and study sites. Where found, these differences were an order of magnitude smaller than the findings of previous studies that did not control for sample size. Moreover, community structure and composition were very similar among tree sub-communities of different life stages. We conclude that the structure of these tropical tree communities is established by the time trees are large enough to be included in the census (1 cm diameter at breast height), which indicates that habitat filtering occurs during earlier life stages. PMID:23843384

  17. Redefining Secondary Forests in the Mexican Forest Code: Implications for Management, Restoration, and Conservation

    Directory of Open Access Journals (Sweden)

    Francisco J. Román-Dañobeytia

    2014-05-01

    Full Text Available The Mexican Forest Code establishes structural reference values to differentiate between secondary and old-growth forests and requires a management plan when secondary forests become old-growth and potentially harvestable forests. The implications of this regulation for forest management, restoration, and conservation were assessed in the context of the Calakmul Biosphere Reserve, which is located in the Yucatan Peninsula. The basal area and stem density thresholds currently used by the legislation to differentiate old-growth from secondary forests are 4 m2/ha and 15 trees/ha (trees with a diameter at breast height of >25 cm; however, our research indicates that these values should be increased to 20 m2/ha and 100 trees/ha, respectively. Given that a management plan is required when secondary forests become old-growth forests, many landowners avoid forest-stand development by engaging slash-and-burn agriculture or cattle grazing. We present evidence that deforestation and land degradation may prevent the natural regeneration of late-successional tree species of high ecological and economic importance. Moreover, we discuss the results of this study in the light of an ongoing debate in the Yucatan Peninsula between policy makers, non-governmental organizations (NGOs, landowners and researchers, regarding the modification of this regulation to redefine the concept of acahual (secondary forest and to facilitate forest management and restoration with valuable timber tree species.

  18. Carbon emissions from tropical forest degradation caused by logging

    International Nuclear Information System (INIS)

    Pearson, Timothy R H; Brown, Sandra; Casarim, Felipe M

    2014-01-01

    The focus of land-use related efforts in developing countries to reduce carbon emissions has been on slowing deforestation, yet international agreements are to reduce emissions from both deforestation and forest degradation (REDD). The second ‘D’ is poorly understood and accounted for a number of technical and policy reasons. Here we introduce a complete accounting method for estimating emission factors from selective timber harvesting, a substantial form of forest degradation in many tropical developing countries. The method accounts separately for emissions from the extracted log, from incidental damage to the surrounding forest, and from logging infrastructure, and emissions are expressed as units of carbon per cubic meter of timber extracted to allow for simple application to timber harvesting statistics. We applied the method in six tropical countries (Belize, Bolivia, Brazil, Guyana, Indonesia, and Republic of Congo), resulting in total emission factors of 0.99−2.33 Mg C m −3 . In all cases, emissions were dominated by damage to surrounding vegetation and the infrastructure rather than the logs themselves, and total emissions represented about 3–15% of the biomass carbon stocks of the associated unlogged forests. We then combined the emission factors with country level logging statistics for nine key timber producing countries represented by our study areas to gain an understanding of the order of magnitude of emissions from degradation compared to those recently reported for deforestation in the same countries. For the nine countries included, emissions from logging were on average equivalent to about 12% of those from deforestation. For those nine countries with relatively low emissions from deforestation, emissions from logging were equivalent to half or more of those from deforestation, whereas for those countries with the highest emissions from deforestation, emissions from logging were equivalent to <10% of those from deforestation

  19. Aboveground Biomass and Litterfall Dynamics in Secondary Forest ...

    African Journals Online (AJOL)

    The differences in aboveground biomass, litterfall patterns and the seasonality of litterfall in three secondary forest fields aged 1, 5 and 10 years of age regenerating from degraded abandoned rubber plantation and a mature forest were studied in southern Nigeria. This is with a view to understanding the possibility of ...

  20. Canopy Surface Reconstruction and Tropical Forest Parameters Prediction from Airborne Laser Scanner for Large Forest Area

    Science.gov (United States)

    Chen, Z.; Yang, Z.; Chen, Y.; Wang, C.; Qian, J.; Yang, Q.; Chen, X.; Lei, J.

    2017-10-01

    Canopy height model(CHM) and tree mean height are critical forestry parameters that many other parameters such as growth, carbon sequestration, standing timber volume, and biomass can be derived from. LiDAR is a new method used to rapidly estimate these parameters over large areas. The estimation of these parameters has been derived successfully from CHM. However, a number of challenges limit the accurate retrieval of tree height and crowns, especially in tropical forest area. In this study, an improved canopy estimation model is proposed based on dynamic moving window that applied on LiDAR point cloud data. DEM, DSM and CHM of large tropical forest area can be derived from LiDAR data effectively and efficiently.

  1. Nearest Neighborhood Characteristics of a Tropical Mixed Broadleaved Forest Stand

    Directory of Open Access Journals (Sweden)

    Hong Hai Nguyen

    2018-01-01

    Full Text Available Structural complexity and local biodiversity of species-rich tropical forests can be characterized by their spatial patterns, which contribute to species intra- and interspecific interactions. Aiming to describe spatial patterns of species at fine spatial scales, we applied the quantitative analyses based on the relationships of nearest neighbors of conspecific and heterospecific trees. In a two-hectare plot of a tropical broadleaved forest stand in central Vietnam with minimal human influence, all tree individuals with diameter at breast height ≥ 2.5 cm were mapped and their characteristics were recorded. We applied two different types of analyses: (1 Intraspecific structural characteristics using nearest neighbor statistics; (2 overall interspecific associations through a classification scheme based on bivariate nearest neighbor distribution function D12(r and Ripley’s K function K12(r. The findings showed that: (1 Most of studied species in the forest were highly mixed with other species, while conspecifics were regular to aggregated distribution at small spatial scales. Tree individuals with different diameter values were surrounded by heterospecific trees; (2 The majority of 306 species-species pairs showed spatial independence (66.7%, whereas 29.8% of all species showed an overall positive association and negative association consisted only a small percentage (3.5% up to spatial scales of 50 m. We found significant evidences of the main ecological theories such as dispersal limitation, Neutral theory, Janzen-Connell hypothesis, and other effects like the stochastic dilution. We suggest using both the bivariate distribution of the structural parameters and the spatial point pattern analysis based on nearest neighbor distance as advantageous approaches for further understanding of population structure, as well as discovering and protecting biodiversity in the future.

  2. Seed dispersal limitations shift over time in tropical forest restoration.

    Science.gov (United States)

    Reid, J Leighton; Holl, Karen D; Zahawi, Rakan A

    2015-06-01

    Past studies have shown that tropical forest regeneration on degraded farmlands is initially limited by lack of seed dispersal, but few studies have tracked changes in abundance and composition of seed rain past the first few years after land abandonment. We measured seed rain for 12 months in 10 6-9-year-old restoration sites and five mature, reference forests in southern Costa Rica in order to learn (1) if seed rain limitation persists past the first few years of regeneration; (2) how restoration treatments influence seed community structure and composition; and (3) whether seed rain limitation is contingent on landscape context. Each restoration site contained three 0.25-ha treatment plots: (1) a naturally regenerating control, (2) tree islands, and (3) a mixed-species tree plantation. Sites spanned a deforestation gradient with 9-89% forest area within 500 m around the treatment plots. Contrary to previous studies, we found that tree seeds were abundant and ubiquitous across all treatment plots (585.1 ± 142.0 seeds · m(-2) · yr(-1) [mean ± SE]), indicating that lack of seed rain ceased to limit forest regeneration within the first decade of recovery. Pioneer trees and shrubs comprised the vast majority of seeds, but compositional differences between restoration sites and reference forests were driven by rarer, large-seeded species. Large, animal-dispersed tree seeds were more abundant in tree islands (4.6 ± 2.9 seeds · m(-2) · yr(-1)) and plantations (5.8 ± 3.0 seeds · m(-2) · yr(-1)) than control plots (0.2 ± 0.1 seeds · m(-2) · yr(-1)), contributing to greater tree species richness in actively restored plots. Planted tree species accounted for forest cover effects on seed rain, consistent with previous studies. We conclude that seed rain limitation shifted from an initial, complete lack of tree seeds to a specific limitation on large-seeded, mature forest species over the first decade. Although total seed abundance was equal among restoration

  3. Eco-Hydrology of a Tropical Montane Cloud Forest: A New REU Site Hosted by Texas A&M University

    Science.gov (United States)

    Houser, C.; Cahill, A. T.; Brooks, S.; Frauenfeld, O. W.; Lemmons, K.; McInnes, K. J.; Miller, G.; Moore, G. W.; Quiring, S.; Rapp, A. D.; Roark, E.; Schade, G. W.; Schumacher, C.; Tjoelker, M.; Washington-Allen, R. A.

    2011-12-01

    This National Science Foundation REU site hosted by Texas A&M University allows undergraduate students to conduct original research on various aspects of the ecohydrology of a tropical pre-montane forest at the Texas A&M Soltis Center for Research and Education in Central Costa Rica. Tropical pre-montane forests are biologically diverse ecosystems that depend on a combination of cloud and mist immersion (horizontal precipitation) in addition to orographic precipitation and the capture of this moisture by vegetation. There is a paucity of field studies to quantify the ecohydrology of tropical pre-montane forests at the (local) watershed scale, and a particular lack of studies to examine the ecohydrology of transitional and secondary forests at lower elevations. Working as part of interdisciplinary research clusters the students spent 6 weeks at the research station completing original research on spatial and temporal patterns of evapotranspiration, vegetation structure and biomass estimates, atmospheric boundary layer structure, soil trace gas flux, local and regional climate change, and aerosol effects on fog and rain formation. Preliminary results reveal a strong diurnal cycle in evapotranspiration, gas flux and boundary layer development superimposed across an elevation gradient and change in forest structure. This poster describes the logistical challenges of running an REU program abroad, and identifies how development activities, focus on research clusters and the opportunity to live and interact with a foreign culture greatly improved the research experience.

  4. Land-use poverty traps identified in shifting cultivation systems shape long-term tropical forest cover

    Science.gov (United States)

    Coomes, Oliver T.; Takasaki, Yoshito; Rhemtulla, Jeanine M.

    2011-01-01

    In this article we illustrate how fine-grained longitudinal analyses of land holding and land use among forest peasant households in an Amazonian village can enrich our understanding of the poverty/land cover nexus. We examine the dynamic links in shifting cultivation systems among asset poverty, land use, and land cover in a community where poverty is persistent and primary forests have been replaced over time—with community enclosure—by secondary forests (i.e., fallows), orchards, and crop land. Land cover change is assessed using aerial photographs/satellite imagery from 1965 to 2007. Household and plot level data are used to track land holding, portfolios, and use as well as land cover over the past 30 y, with particular attention to forest status (type and age). Our analyses find evidence for two important types of “land-use” poverty traps—a “subsistence crop” trap and a “short fallow” trap—and indicate that the initial conditions of land holding by forest peasants have long-term effects on future forest cover and household welfare. These findings suggest a new mechanism driving poverty traps: insufficient initial land holdings induce land use patterns that trap households in low agricultural productivity. Path dependency in the evolution of household land portfolios and land use strategies strongly influences not only the wellbeing of forest people but also the dynamics of tropical deforestation and secondary forest regrowth. PMID:21873179

  5. Estimating tropical forest structure using discrete return lidar data and a locally trained synthetic forest algorithm

    Science.gov (United States)

    Palace, M. W.; Sullivan, F. B.; Ducey, M.; Czarnecki, C.; Zanin Shimbo, J.; Mota e Silva, J.

    2012-12-01

    Forests are complex ecosystems with diverse species assemblages, crown structures, size class distributions, and historical disturbances. This complexity makes monitoring, understanding and forecasting carbon dynamics difficult. Still, this complexity is also central in carbon cycling of terrestrial vegetation. Lidar data often is used solely to associate plot level biomass measurements with canopy height models. There is much more that may be gleaned from examining the full profile from lidar data. Using discrete return airborne light detection and ranging (lidar) data collected in 2009 by the Tropical Ecology Assessment and Monitoring Network (TEAM), we compared synthetic vegetation profiles to lidar-derived relative vegetation profiles (RVPs) in La Selva, Costa Rica. To accomplish this, we developed RVPs to describe the vertical distribution of plant material on 20 plots at La Selva by transforming cumulative lidar observations to account for obscured plant material. Hundreds of synthetic profiles were developed for forests containing approximately 200,000 trees with random diameter at breast height (DBH), assuming a Weibull distribution with a shape of 1.0, and mean DBH ranging from 0cm to 500cm. For each tree in the synthetic forests, crown shape (width, depth) and total height were estimated using previously developed allometric equations for tropical forests. Profiles for each synthetic forest were generated and compared to TEAM lidar data to determine the best fitting synthetic profile to lidar profiles for each of 20 field plots at La Selva. After determining the best fit synthetic profile using the minimum sum of squared differences, we are able to estimate forest structure (diameter distribution, height, and biomass) and to compare our estimates to field data for each of the twenty field plots. Our preliminary results show promise for estimating forest structure and biomass using lidar data and computer modeling.

  6. Ecological Criteria and Indicators for Tropical Forest Landscapes: Challenges in the Search for Progress

    OpenAIRE

    Douglas Sheil; Robert Nasi; Brook Johnson

    2004-01-01

    In the quest for global standards, "Criteria and Indicators" (C&I) are among the foremost mechanisms for defining and promoting sustainable tropical forest management. Here we examine some challenges posed by this approach, focusing on examples that reflect the ecological aspects of tropical forests at a management-unit level and assessments such as those required in timber certification. C&I can foster better forest management. However, there are confusions and tensions to reconcile between...

  7. Quantifying tropical dry forest type and succession: substantial improvement with LiDAR

    Science.gov (United States)

    Sebastian Martinuzzi; William A. Gould; Lee A. Vierling; Andrew T. Hudak; Ross F. Nelson; Jeffrey S. Evans

    2012-01-01

    Improved technologies are needed to advance our knowledge of the biophysical and human factors influencing tropical dry forests, one of the world’s most threatened ecosystems. We evaluated the use of light detection and ranging (LiDAR) data to address two major needs in remote sensing of tropical dry forests, i.e., classification of forest types and delineation of...

  8. SRTM-DEM and Landsat ETM+ data for mapping tropical dry forest cover and biodiversity assessment in Nicaragua

    Science.gov (United States)

    S.E. Sesnie; S.E. Hagell; S.M. Otterstrom; C.L. Chambers; B.G. Dickson

    2008-01-01

    Tropical dry and deciduous forest comprises as much as 42% of the world’s tropical forests, but has received far less attention than forest in wet tropical areas. Land use change threatens to greatly reduce the extent of dry forest that is known to contain high levels of plant and animal diversity. Forest fragmentation may further endanger arboreal mammals that play...

  9. Multidimensional tree niches in a tropical dry forest.

    Science.gov (United States)

    Pulla, Sandeep; Suresh, Hebbalalu S; Dattaraja, Handanakere S; Sukumar, Raman

    2017-05-01

    The extent to which interspecific niche differences structure plant communities is highly debated, with extreme viewpoints ranging from fine-scaled niche partitioning, where every species in the community is specialized to a distinct niche, to neutrality, where species have no niche or fitness differences. However, there exists a default position wherein niches of species in a community are determined by their evolutionary and biogeographic histories, irrespective of other species within the community. According to this viewpoint, a broad range of pair-wise niche overlaps-from completely overlapping to completely distinct-are expected in any community without the need to invoke interspecific interactions. We develop a method that can test for both habitat associations and niche differences along an arbitrary number of spatial and temporal niche dimensions and apply it to a 24-yr data set of the eight dominant woody-plant species (representing 84% and 76% of total community abundance and basal area, respectively) from a 50-ha permanent plot in a southern Indian tropical dry forest, using edaphic, topographic, and precipitation variables as niche axes. Species separated into two broad groups in niche space-one consisting of three canopy species and the other of a canopy species and four understory species-along axes that corresponded mainly to variation in soil P, Al and a topographic index of wetness. Species within groups tended to have significantly greater niche overlap than expected by chance. Community-wide niche overlap in spatial and temporal niche axes was never smaller than expected by chance. Species-habitat associations were neither necessary nor sufficient preconditions for niche differences to be present. Our results suggest that this tropical dry-forest community consists of several tree species with broadly overlapping niches, and where significant niche differences do exist, they are not readily interpretable as evidence for niche differentiation. We

  10. Effect of Extreme Drought on Tropical Dry Forests

    Science.gov (United States)

    Castro, Saulo; Sanchez-Azofeifa, Arturo; Sato, Hiromitsu; Cowling, Sharon; Vega-Araya, Mauricio

    2017-04-01

    Tropical dry forests (TDFs) hold a strong economic and cultural connection to human development in the Neotropics. Historically, TDFs not only represent a source of agricultural and urban land but also an important source of goods and ecosystem services for the communities that live around them. Such is the close connection of TDFs to human activity that they are considered the most heavily utilized and disturbed ecosystem in the world. However, TDF have been largely understudied and represent only a fraction of research devoted to globally tropical ecosystems. Thus we lack the framework to properly project how predicted increases in drought events due to climate change will impact TDFs and human society which depend on its services. Our study aims to show the effect of extreme drought on water, food security, and tropical dry forest productivity in the Guanacaste province of Costa Rica. Two pre-ENSO years (2013-2014) and an ENSO year (2015) were compared. The 2013 and 2014 pre-ENSO years were classified as a normal precipitation (1470 mm) and drought year (1027mm), respectively. The 2015 ENSO year was classified as a severe drought (654mm), with amplified effects resulting by the drought experienced during the previous (2014) growing cycle. Effects of the ENSO drought on agriculture and livestock sectors in the province included losses of US13million and US6.5million, respectively. Crop land losses equaled 2,118 hectares and 11,718 hectares were affected. Hydroelectricity generation decreased by 10% and potable water shortages were observed. The Agriculture and Livestock Ministry (MAG) and the National Emergency Commission (CNE) distributed animal feed and supplies to 4,000 farmers affected by the extreme droughts. Eddy covariance flux measurements were used to identify productivity changes during the extreme drought. Changes in phenologic stages and the transitions between CO2 sink to source during mid-growing cycle were observed. Drought significantly delayed

  11. High density of tree-cavities and snags in tropical dry forest of western Mexico raises questions for a latitudinal gradient.

    Directory of Open Access Journals (Sweden)

    Leopoldo Vázquez

    Full Text Available It has been suggested that a latitudinal gradient exists of a low density of snags and high density of naturally-formed tree-cavities in tropical vs. temperate forests, though few cavities may have characteristics suitable for nesting by birds. We determined snag and cavity density, characteristics, and suitability for birds in a tropical dry forest biome of western Mexico, and evaluated whether our data fits the trend of snag and cavity density typically found in tropical moist and wet forests. We established five 0.25-ha transects to survey and measure tree-cavities and snags in each of three vegetation types of deciduous, semi-deciduous, and mono-dominant Piranhea mexicana forest, comprising a total of 3.75 ha. We found a high density of 77 cavities/ha, with 37 cavities suitable for birds/ha, where density, and characteristics of cavities varied significantly among vegetation types. Lowest abundance of cavities occurred in deciduous forest, and these were in smaller trees, at a lower height, and with a narrower entrance diameter. Only 8.6% of cavities were excavated by woodpeckers, and only 11% of cavities were occupied, mainly by arthropods, though 52% of all cavities were unsuitable for birds. We also found a high density of 56 snags/ha, with greatest density in deciduous forest (70 snags/ha, though these were of significantly smaller diameter, and snags of larger diameter were more likely to contain cavities. The Chamela-Cuixmala tropical dry forest had the highest density of snags recorded for any tropical or temperate forest, and while snag density was significantly correlated with mean snag dbh, neither latitude nor mean dbh predicted snag density in ten forest sites. The high spatial aggregation of snag and cavity resources in tropical dry forest may limit their availability, particularly for large-bodied cavity adopters, and highlights the importance of habitat heterogeneity in providing resources for primary and secondary cavity-nesters.

  12. High density of tree-cavities and snags in tropical dry forest of western Mexico raises questions for a latitudinal gradient.

    Science.gov (United States)

    Vázquez, Leopoldo; Renton, Katherine

    2015-01-01

    It has been suggested that a latitudinal gradient exists of a low density of snags and high density of naturally-formed tree-cavities in tropical vs. temperate forests, though few cavities may have characteristics suitable for nesting by birds. We determined snag and cavity density, characteristics, and suitability for birds in a tropical dry forest biome of western Mexico, and evaluated whether our data fits the trend of snag and cavity density typically found in tropical moist and wet forests. We established five 0.25-ha transects to survey and measure tree-cavities and snags in each of three vegetation types of deciduous, semi-deciduous, and mono-dominant Piranhea mexicana forest, comprising a total of 3.75 ha. We found a high density of 77 cavities/ha, with 37 cavities suitable for birds/ha, where density, and characteristics of cavities varied significantly among vegetation types. Lowest abundance of cavities occurred in deciduous forest, and these were in smaller trees, at a lower height, and with a narrower entrance diameter. Only 8.6% of cavities were excavated by woodpeckers, and only 11% of cavities were occupied, mainly by arthropods, though 52% of all cavities were unsuitable for birds. We also found a high density of 56 snags/ha, with greatest density in deciduous forest (70 snags/ha), though these were of significantly smaller diameter, and snags of larger diameter were more likely to contain cavities. The Chamela-Cuixmala tropical dry forest had the highest density of snags recorded for any tropical or temperate forest, and while snag density was significantly correlated with mean snag dbh, neither latitude nor mean dbh predicted snag density in ten forest sites. The high spatial aggregation of snag and cavity resources in tropical dry forest may limit their availability, particularly for large-bodied cavity adopters, and highlights the importance of habitat heterogeneity in providing resources for primary and secondary cavity-nesters.

  13. Chronosequence predictions are robust in a Neotropical secondary forest, but plots miss the mark.

    Science.gov (United States)

    Becknell, Justin M; Porder, Stephen; Hancock, Steven; Chazdon, Robin L; Hofton, Michelle A; Blair, James B; Kellner, James R

    2018-03-01

    Tropical secondary forests (TSF) are a global carbon sink of 1.6 Pg C/year. However, TSF carbon uptake is estimated using chronosequence studies that assume differently aged forests can be used to predict change in aboveground biomass density (AGBD) over time. We tested this assumption using two airborne lidar datasets separated by 11.5 years over a Neotropical landscape. Using data from 1998, we predicted canopy height and AGBD within 1.1 and 10.3% of observations in 2009, with higher accuracy for forest height than AGBD and for older TSFs in comparison to younger ones. This result indicates that the space-for-time assumption is robust at the landscape-scale. However, since lidar measurements of secondary tropical forest are rare, we used the 1998 lidar dataset to test how well plot-based studies quantify the mean TSF height and biomass in a landscape. We found that the sample area required to produce estimates of height or AGBD close to the landscape mean is larger than the typical area sampled in secondary forest chronosequence studies. For example, estimating AGBD within 10% of the landscape mean requires more than thirty 0.1 ha plots per age class, and more total area for larger plots. We conclude that under-sampling in ground-based studies may introduce error into estimations of the TSF carbon sink, and that this error can be reduced by more extensive use of lidar measurements. © 2017 John Wiley & Sons Ltd.

  14. Mapping dynamics of deforestation and forest degradation in tropical forests using radar satellite data

    DEFF Research Database (Denmark)

    Joshi, Neha; Mitchard, Edward TA; Woo, Natalia

    2015-01-01

    Mapping anthropogenic forest disturbances has largely been focused on distinct delineations of events of deforestation using optical satellite images. In the tropics, frequent cloud cover and the challenge of quantifying forest degradation remain problematic. In this study, we detect processes...... of deforestation, forest degradation and successional dynamics, using long-wavelength radar (L-band from ALOS PALSAR) backscatter. We present a detection algorithm that allows for repeated disturbances on the same land, and identifies areas with slow- and fast-recovering changes in backscatter in close spatial...... along the tri-national Interoceanic Highway, as well as in mining areas and areas under no land use allocation. A continuous spatial gradient of disturbance was observed, highlighting artefacts arising from imposing discrete boundaries on deforestation events. The magnitude of initial radar backscatter...

  15. Root layering in a tropical forest after logging (Central Vietnam

    Directory of Open Access Journals (Sweden)

    Zdeněk Čermák

    2012-01-01

    Full Text Available Indigenous stands of tropical rain forests in the region of Kon Ha Nung are one of the most preserved forests in the whole Vietnam. Despite the logging activities mainly in the 1970’s, it was possible to preserve intact forests free from any primary harvesting. In the past, other stands were influenced by the logging to various extent. Some of those stands are managed presently; others were left to natural development. This paper deals with the influence of harvesting activities on the root system in forest stands. In primary stands and in stands with known harvest intensity, samples of root systems were collected. The total weight of dry basis and mainly their layering within the soil profile were assessed. The collected roots were divided into three classes: class I – ≤ 1.0 mm, class II 1.1–5.0 mm, class III – over 5.0 mm in the diameter. In the monitored plots, the total weight of dry basis of fine roots to 1.0 mm ranged from 2.34–3.24 t∙ha−1. The weight of dry basis of roots from 1.0–5.0 mm ranged from 6.57–9.69 t∙ha−1. The majority of roots of class I is presented in the top 10.0 cm of the soil and their share drops with the increasing depth. The roots of class II are distributed more equally. It was impossible to prove the influence of the logging on the root system.

  16. Temperate and Tropical Forest Canopies are Already Functioning beyond Their Thermal Thresholds for Photosynthesis

    Directory of Open Access Journals (Sweden)

    Alida C. Mau

    2018-01-01

    Full Text Available Tropical tree species have evolved under very narrow temperature ranges compared to temperate forest species. Studies suggest that tropical trees may be more vulnerable to continued warming compared to temperate species, as tropical trees have shown declines in growth and photosynthesis at elevated temperatures. However, regional and global vegetation models lack the data needed to accurately represent such physiological responses to increased temperatures, especially for tropical forests. To address this need, we compared instantaneous photosynthetic temperature responses of mature canopy foliage, leaf temperatures, and air temperatures across vertical canopy gradients in three forest types: tropical wet, tropical moist, and temperate deciduous. Temperatures at which maximum photosynthesis occurred were greater in the tropical forests canopies than the temperate canopy (30 ± 0.3 °C vs. 27 ± 0.4 °C. However, contrary to expectations that tropical species would be functioning closer to threshold temperatures, photosynthetic temperature optima was exceeded by maximum daily leaf temperatures, resulting in sub-optimal rates of carbon assimilation for much of the day, especially in upper canopy foliage (>10 m. If trees are unable to thermally acclimate to projected elevated temperatures, these forests may shift from net carbon sinks to sources, with potentially dire implications to climate feedbacks and forest community composition.

  17. Why do forest products become less available?A pan-tropical comparison of drivers of forest-resource degradation

    Science.gov (United States)

    Hermans-Neumann, Kathleen; Gerstner, Katharina; Geijzendorffer, Ilse R.; Herold, Martin; Seppelt, Ralf; Wunder, Sven

    2016-12-01

    Forest products provide an important source of income and wellbeing for rural smallholder communities across the tropics. Although tropical forest products frequently become over-exploited, only few studies explicitly address the dynamics of degradation in response to socio-economic drivers. Our study addresses this gap by analyzing the factors driving changes in tropical forest products in the perception of rural smallholder communities. Using the poverty and environment network global dataset, we studied recently perceived trends of forest product availability considering firewood, charcoal, timber, food, medicine, forage and other forest products. We looked at a pan-tropical sample of 233 villages with forest access. Our results show that 90% of the villages experienced declining availability of forest resources over the last five years according to the informants. Timber and fuelwood together with forest foods were featured as the most strongly affected, though with marked differences across continents. In contrast, availability of at least one main forest product was perceived to increase in only 39% of the villages. Furthermore, the growing local use of forest resources is seen as the main culprit for the decline. In villages with both growing forest resource use and immigration—vividly illustrating demographic pressures—the strongest forest resources degradation was observed. Conversely, villages with little or no population growth and a decreased use of forest resources were most likely to see significant forest-resource increases. Further, villages are less likely to perceive resource declines when local communities own a significant share of forest area. Our results thus suggest that perceived resource declines have only exceptionally triggered adaptations in local resource-use and management patterns that would effectively deal with scarcity. Hence, at the margin this supports neo-Malthusian over neo-Boserupian explanations of local resource

  18. Bioindicators in the tropical forest of Kaiga environment

    Energy Technology Data Exchange (ETDEWEB)

    Somashekarappa, H.M.; Narayana, Y.; Radhakrishna, A.P.; Karunakara, N.; Balakrishna, K.M.; Siddappa, K. [Mangalore Univ. (India). Dept. of Physics

    1996-07-01

    Investigations on the natural and artificial fallout radionuclides {sup 210}Po and {sup 137}Cs and the primordial radionuclide {sup 40}K in the prominent tree species of Western Ghat tropical forests near Kaiga have been carried out as a part of baseline background radiation studies in the environment of Kaiga where nuclear power reactors are being installed. The prominent tree species of the region Tectona grandis L.f. and Terminalia paniculata Roth., and the commonly available epiphytic plant species Pterobryopsis tumida (Hook.) Dix. and Cymbidium aliofolium (Lo) Swartz. were chosen and concentrations of {sup 40}K, {sup 210}Po and {sup 137}Cs were measured employing well-established nuclear techniques. The different parts of Cumbidium aloifolium (Lo) Swartz. such as leaves, stem, etc. were analysed to understand the absorption mechanism of fallout radionuclides. From a careful analysis of the results, the epiphytic plant species are identified as bioindicators to monitor fallout radionuclides. (Author).

  19. Bioindicators in the tropical forest of Kaiga environment

    International Nuclear Information System (INIS)

    Somashekarappa, H.M.; Narayana, Y.; Radhakrishna, A.P.; Karunakara, N.; Balakrishna, K.M.; Siddappa, K.

    1996-01-01

    Investigations on the natural and artificial fallout radionuclides 210 Po and 137 Cs and the primordial radionuclide 40 K in the prominent tree species of Western Ghat tropical forests near Kaiga have been carried out as a part of baseline background radiation studies in the environment of Kaiga where nuclear power reactors are being installed. The prominent tree species of the region Tectona grandis L.f. and Terminalia paniculata Roth., and the commonly available epiphytic plant species Pterobryopsis tumida (Hook.) Dix. and Cymbidium aliofolium (Lo) Swartz. were chosen and concentrations of 40 K, 210 Po and 137 Cs were measured employing well-established nuclear techniques. The different parts of Cumbidium aloifolium (Lo) Swartz. such as leaves, stem, etc. were analysed to understand the absorption mechanism of fallout radionuclides. From a careful analysis of the results, the epiphytic plant species are identified as bioindicators to monitor fallout radionuclides. (Author)

  20. Forest structure, diversity and soil properties in a dry tropical forest in Rajasthan, Western India

    Directory of Open Access Journals (Sweden)

    J. I. Nirmal Kumar

    2011-06-01

    Full Text Available Structure, species composition, and soil properties of a dry tropical forest in Rajasthan Western India, were examined by establishment of 25 plots. The forest was characterized by a relatively low canopy and a large number of small-diameter trees. Mean canopy height for this forest was 10 m and stands contained an average of 995 stems ha-1 (= 3.0 cm DBH; 52% of those stems were smaller than 10 cm DBH. The total basal area was 46.35 m2ha-1, of which Tectona grandis L. contributed 48%. The forest showed high species diversity of trees. 50 tree species (= 3.0 cm DBH from 29 families were identified in the 25 sampling plots. T. grandis (20.81% and Butea monosperma (9% were the dominant and subdominant species in terms of importance value. The mean tree species diversity indices for the plots were 1.08 for Shannon diversity index (H´, 0.71 for equitability index (J´ and 5.57 for species richness index (S´, all of which strongly declined with the increase of importance value of the dominant, T. grandis. Measures of soil nutrients indicated low fertility, extreme heterogeneity. Regression analysis showed that stem density and the dominant tree height were significantly correlated with soil pH. There was a significant positive relationship between species diversity index and soil available P, exchangeable K+, Ca2+ (all p values < 0.001 and a negative relationship with N, C, C:N and C:P ratio. The results suggest that soil properties are major factors influencing forest composition and structure within the dry tropical forest in Rajasthan.

  1. Natural forest regeneration and ecological restoration in human-modified tropical landscapes

    NARCIS (Netherlands)

    Martínez-Ramos, Miguel; Pingarroni, Aline; Rodríguez-Velázquez, Jorge; Toledo-Chelala, Lilibeth; Zermeño-Hernández, Isela; Bongers, Frans

    2016-01-01

    In human-modified tropical landscapes (HMLs) the conservation of biodiversity, functions and services of forest ecosystems depends on persistence of old growth forest remnants, forest regeneration in abandoned agricultural fields, and restoration of degraded lands. Understanding the impacts of

  2. Nutrient addition effects on tropical dry forests: a mini-review from microbial to ecosystem scales

    Directory of Open Access Journals (Sweden)

    Jennifer S. Powers

    2015-06-01

    Full Text Available Humans have more than doubled inputs of reactive nitrogen globally and greatly accelerated the biogeochemical cycles of phosphorus and metals. However, the impacts of increased element mobility on tropical ecosystems remain poorly quantified, particularly for the vast tropical dry forest biome. Tropical dry forests are characterized by marked seasonality, relatively little precipitation, and high heterogeneity in plant functional diversity and soil chemistry. For these reasons, increased nutrient deposition may affect tropical dry forests differently than wet tropical or temperate forests. Here we review studies that investigated how nutrient availability affects ecosystem and community processes from the microsite to ecosystem scales in tropical dry forests. The effects of N and P addition on ecosystem carbon cycling and plant and microbial dynamics depend on forest successional stage, soil parent material and rainfall regime. Responses may depend on whether overall productivity is N- versus P-limited, although data to test this hypothesis are limited. These results highlight the many important gaps in our understanding of tropical dry forest responses to global change. Large-scale experiments are required to resolve these uncertainties.

  3. Nutrient addition effects on tropical dry forests: a mini-review from microbial to ecosystem scales

    Science.gov (United States)

    Powers, Jennifer; Becklund, Kristen; Gei, Maria; Iyengar, Siddarth; Meyer, Rebecca; O'Connell, Christine; Schilling, Erik; Smith, Christina; Waring, Bonnie; Werden, Leland

    2015-06-01

    Humans have more than doubled inputs of reactive nitrogen globally and greatly accelerated the biogeochemical cycles of phosphorus and metals. However, the impacts of increased element mobility on tropical ecosystems remain poorly quantified, particularly for the vast tropical dry forest biome. Tropical dry forests are characterized by marked seasonality, relatively little precipitation, and high heterogeneity in plant functional diversity and soil chemistry. For these reasons, increased nutrient deposition may affect tropical dry forests differently than wet tropical or temperate forests. Here we review studies that investigated how nutrient availability affects ecosystem and community processes from the microsite to ecosystem scales in tropical dry forests. The effects of N and P addition on ecosystem carbon cycling and plant and microbial dynamics depend on forest successional stage, soil parent material and rainfall regime. Responses may depend on whether overall productivity is N- versus P-limited, although data to test this hypothesis are limited. These results highlight the many important gaps in our understanding of tropical dry forest responses to global change. Large-scale experiments are required to resolve these uncertainties.

  4. The deep human prehistory of global tropical forests and its relevance for modern conservation.

    Science.gov (United States)

    Roberts, Patrick; Hunt, Chris; Arroyo-Kalin, Manuel; Evans, Damian; Boivin, Nicole

    2017-08-03

    Significant human impacts on tropical forests have been considered the preserve of recent societies, linked to large-scale deforestation, extensive and intensive agriculture, resource mining, livestock grazing and urban settlement. Cumulative archaeological evidence now demonstrates, however, that Homo sapiens has actively manipulated tropical forest ecologies for at least 45,000 years. It is clear that these millennia of impacts need to be taken into account when studying and conserving tropical forest ecosystems today. Nevertheless, archaeology has so far provided only limited practical insight into contemporary human-tropical forest interactions. Here, we review significant archaeological evidence for the impacts of past hunter-gatherers, agriculturalists and urban settlements on global tropical forests. We compare the challenges faced, as well as the solutions adopted, by these groups with those confronting present-day societies, which also rely on tropical forests for a variety of ecosystem services. We emphasize archaeology's importance not only in promoting natural and cultural heritage in tropical forests, but also in taking an active role to inform modern conservation and policy-making.

  5. Organic and inorganic nitrogen uptake by 21 dominant tree species in temperate and tropical forests.

    Science.gov (United States)

    Liu, Min; Li, Changcheng; Xu, Xingliang; Wanek, Wolfgang; Jiang, Ning; Wang, Huimin; Yang, Xiaodong

    2017-11-01

    Evidence shows that many tree species can take up organic nitrogen (N) in the form of free amino acids from soils, but few studies have been conducted to compare organic and inorganic N uptake patterns in temperate and tropical tree species in relation to mycorrhizal status and successional state. We labeled intact tree roots by brief 15N exposures using field hydroponic experiments in a temperate forest and a tropical forest in China. A total of 21 dominant tree species were investigated, 8 in the temperate forest and 13 in the tropical forest. All investigated tree species showed highest uptake rates for NH4+ (ammonium), followed by glycine and NO3- (nitrate). Uptake of NH4+ by temperate trees averaged 12.8 μg N g-1 dry weight (d.w.) root h-1, while those by tropical trees averaged 6.8 μg N g-1 d.w. root h-1. Glycine uptake rates averaged 3.1 μg N g-1 d.w. root h-1 for temperate trees and 2.4 μg N g-1 d.w. root h-1 for tropical trees. NO3- uptake was the lowest (averaging 0.8 μg N g-1 d.w. root h-1 for temperate trees and 1.2 μg N g-1 d.w. root h-1 for tropical trees). Uptake of NH4+ accounted for 76% of the total uptake of all three N forms in the temperate forest and 64% in the tropical forest. Temperate tree species had similar glycine uptake rates as tropical trees, with the contribution being slightly lower (20% in the temperate forest and 23% in the tropical forest). All tree species investigated in the temperate forest were ectomycorrhizal and all species but one in the tropical forest were arbuscular mycorrhizal (AM). Ectomycorrhizal trees showed significantly higher NH4+ and lower NO3- uptake rates than AM trees. Mycorrhizal colonization rates significantly affected uptake rates and contributions of NO3- or NH4+, but depended on forest types. We conclude that tree species in both temperate and tropical forests preferred to take up NH4+, with organic N as the second most important N source. These findings suggest that temperate and tropical forests

  6. Phylogenetic Structure of Foliar Spectral Traits in Tropical Forest Canopies

    Directory of Open Access Journals (Sweden)

    Kelly M. McManus

    2016-02-01

    Full Text Available The Spectranomics approach to tropical forest remote sensing has established a link between foliar reflectance spectra and the phylogenetic composition of tropical canopy tree communities vis-à-vis the taxonomic organization of biochemical trait variation. However, a direct relationship between phylogenetic affiliation and foliar reflectance spectra of species has not been established. We sought to develop this relationship by quantifying the extent to which underlying patterns of phylogenetic structure drive interspecific variation among foliar reflectance spectra within three Neotropical canopy tree communities with varying levels of soil fertility. We interpreted the resulting spectral patterns of phylogenetic signal in the context of foliar biochemical traits that may contribute to the spectral-phylogenetic link. We utilized a multi-model ensemble to elucidate trait-spectral relationships, and quantified phylogenetic signal for spectral wavelengths and traits using Pagel’s lambda statistic. Foliar reflectance spectra showed evidence of phylogenetic influence primarily within the visible and shortwave infrared spectral regions. These regions were also selected by the multi-model ensemble as those most important to the quantitative prediction of several foliar biochemical traits. Patterns of phylogenetic organization of spectra and traits varied across sites and with soil fertility, indicative of the complex interactions between the environmental and phylogenetic controls underlying patterns of biodiversity.

  7. Mixed-Forest Species Establishment in a Monodominant Forest in Central Africa: Implications for Tropical Forest Invasibility

    Science.gov (United States)

    Peh, Kelvin S.-H.; Sonké, Bonaventure; Séné, Olivier; Djuikouo, Marie-Noël K.; Nguembou, Charlemagne K.; Taedoumg, Hermann; Begne, Serge K.; Lewis, Simon L.

    2014-01-01

    Background Traits of non-dominant mixed-forest tree species and their synergies for successful co-occurrence in monodominant Gilbertiodendron dewevrei forest have not yet been investigated. Here we compared the tree species diversity of the monodominant forest with its adjacent mixed forest and then determined which fitness proxies and life history traits of the mixed-forest tree species were most associated with successful co-existence in the monodominant forest. Methodology/Principal Findings We sampled all trees (diameter in breast height [dbh]≥10 cm) within 6×1 ha topographically homogenous areas of intact central African forest in SE Cameroon, three independent patches of G. dewevrei-dominated forest and three adjacent areas (450–800 m apart). Monodominant G. dewevrei forest had lower sample-controlled species richness, species density and population density than its adjacent mixed forest in terms of stems with dbh≥10 cm. Analysis of a suite of population-level characteristics, such as relative abundance and geographical distribution, and traits such as wood density, height, diameter at breast height, fruit/seed dispersal mechanism and light requirement–revealed after controlling for phylogeny, species that co-occur with G. dewevrei tend to have higher abundance in adjacent mixed forest, higher wood density and a lower light requirement. Conclusions/Significance Our results suggest that certain traits (wood density and light requirement) and population-level characteristics (relative abundance) may increase the invasibility of a tree species into a tropical closed-canopy system. Such knowledge may assist in the pre-emptive identification of invasive tree species. PMID:24844914

  8. Mixed-forest species establishment in a monodominant forest in central Africa: implications for tropical forest invasibility.

    Directory of Open Access Journals (Sweden)

    Kelvin S-H Peh

    Full Text Available BACKGROUND: Traits of non-dominant mixed-forest tree species and their synergies for successful co-occurrence in monodominant Gilbertiodendron dewevrei forest have not yet been investigated. Here we compared the tree species diversity of the monodominant forest with its adjacent mixed forest and then determined which fitness proxies and life history traits of the mixed-forest tree species were most associated with successful co-existence in the monodominant forest. METHODOLOGY/PRINCIPAL FINDINGS: We sampled all trees (diameter in breast height [dbh]≥10 cm within 6×1 ha topographically homogenous areas of intact central African forest in SE Cameroon, three independent patches of G. dewevrei-dominated forest and three adjacent areas (450-800 m apart. Monodominant G. dewevrei forest had lower sample-controlled species richness, species density and population density than its adjacent mixed forest in terms of stems with dbh≥10 cm. Analysis of a suite of population-level characteristics, such as relative abundance and geographical distribution, and traits such as wood density, height, diameter at breast height, fruit/seed dispersal mechanism and light requirement-revealed after controlling for phylogeny, species that co-occur with G. dewevrei tend to have higher abundance in adjacent mixed forest, higher wood density and a lower light requirement. CONCLUSIONS/SIGNIFICANCE: Our results suggest that certain traits (wood density and light requirement and population-level characteristics (relative abundance may increase the invasibility of a tree species into a tropical closed-canopy system. Such knowledge may assist in the pre-emptive identification of invasive tree species.

  9. Tracking Seed Fates of Tropical Tree Species: Evidence for Seed Caching in a Tropical Forest in North-East India

    Science.gov (United States)

    Sidhu, Swati; Datta, Aparajita

    2015-01-01

    Rodents affect the post-dispersal fate of seeds by acting either as on-site seed predators or as secondary dispersers when they scatter-hoard seeds. The tropical forests of north-east India harbour a high diversity of little-studied terrestrial murid and hystricid rodents. We examined the role played by these rodents in determining the seed fates of tropical evergreen tree species in a forest site in north-east India. We selected ten tree species (3 mammal-dispersed and 7 bird-dispersed) that varied in seed size and followed the fates of 10,777 tagged seeds. We used camera traps to determine the identity of rodent visitors, visitation rates and their seed-handling behavior. Seeds of all tree species were handled by at least one rodent taxon. Overall rates of seed removal (44.5%) were much higher than direct on-site seed predation (9.9%), but seed-handling behavior differed between the terrestrial rodent groups: two species of murid rodents removed and cached seeds, and two species of porcupines were on-site seed predators. In addition, a true cricket, Brachytrupes sp., cached seeds of three species underground. We found 309 caches formed by the rodents and the cricket; most were single-seeded (79%) and seeds were moved up to 19 m. Over 40% of seeds were re-cached from primary cache locations, while about 12% germinated in the primary caches. Seed removal rates varied widely amongst tree species, from 3% in Beilschmiedia assamica to 97% in Actinodaphne obovata. Seed predation was observed in nine species. Chisocheton cumingianus (57%) and Prunus ceylanica (25%) had moderate levels of seed predation while the remaining species had less than 10% seed predation. We hypothesized that seed traits that provide information on resource quantity would influence rodent choice of a seed, while traits that determine resource accessibility would influence whether seeds are removed or eaten. Removal rates significantly decreased (p seed size. Removal rates were significantly

  10. Tropical Deforestation, Community Forests, and Protected Areas in the Maya Forest

    Directory of Open Access Journals (Sweden)

    David Barton. Bray

    2008-12-01

    Full Text Available Community forests and protected areas have each been proposed as strategies to stop deforestation. These management strategies should be regarded as hypotheses to be evaluated for their effectiveness in particular places. We evaluated the community-forestry hypothesis and the protected-area hypothesis in community forests with commercial timber production and strict protected areas in the Maya Forest of Guatemala and Mexico. From land-use and land cover change (LUCC maps derived from satellite images, we compared deforestation in 19 community forests and 11 protected areas in both countries in varying periods from 1988 to 2005. Deforestation rates were higher in protected areas than in community forests, but the differences were not significant. An analysis of human presence showed similar deforestation rates in inhabited protected areas and recently inhabited community forests, but the differences were not significant. There was also no significant difference in deforestation between uninhabited protected areas, uninhabited community forests, and long-inhabited community forests. A logistic regression analysis indicated that the factors correlated with deforestation varied by country. Distance to human settlements, seasonal wetlands, and degree and length of human residence were significant in Guatemala, and distance to previous deforestation and tropical semideciduous forest were significant in Mexico. Varying contexts and especially colonization histories are highlighted as likely factors that influence different outcomes. Poorly governed protected areas perform no better as a conservation strategy than poorly governed community forests with recent colonists in active colonization fronts. Long-inhabited extractive communities perform as well as uninhabited strict protected areas under low colonization pressure. A review of costs and benefits suggests that community forests may generate more local income with lower costs. Small sample sizes

  11. Influences of deforestation on radiation and heat balances in tropical peat swamp forest in Thailand

    International Nuclear Information System (INIS)

    Suzuki, S.; Ishida, T.; Nagano, T.; Matsukawa, S.

    1997-01-01

    The difference of radiation and heat balances between a natural peat swamp forest and a deforested secondary forest has been investigated in Narathiwat Province, Thailand. Micrometeorological measurements were conducted continuously on observation towers 38 m and 4 m in heights in the primary forest and the secondary forest respectively. Results show that the deforestation of peat swamp forest leads to an increase in the sensible heat flux in the secondary forest. The yearly average ratio of the sensible heat flux to the net radiation was 20.9% in the peat swamp forest, and 33.2% in the secondary forest from Aug. 1995 to Jul. 1996. A ratio more than 40% was observed only in the dry season in the secondary forest. The change in sensible heat flux seemed to be influenced by the change in ground water levels. (author)

  12. Effects of different land-uses on soil organic carbon pools in the Peruvian tropical forests

    Science.gov (United States)

    Oliver, V.; Kala, J.; Lever, R.; Teh, Y.

    2013-12-01

    Tropical soils are a large carbon reservoir, acting as both a source and a sink of CO2. Changes to these soil environments have major implications for long term carbon storage and rising atmospheric CO2 concentrations. Enhanced CO2 emissions originate, in large part, from the decomposition and loss of soil organic matter (SOM) following anthropogenic disturbances such as deforestation or agricultural conversion. Therefore, quantitative knowledge of the stabilisation and decomposition of SOM is necessary in order to understand, assess and predict the impact of land use change in the tropics. In particular, labile SOM is an early and sensitive indicator of how SOM responds to changes in land use and management practices. The main focus of this study is to explore the relationship between soil respiration, decomposition and soil C pools in order to estimate the turnover times of soil C on a suite of different land uses in the Peruvian tropical forests. Three major C pools (light fractions, occluded light fractions and heavy fractions) were separated using sodium polytungstate in a density fraction technique, soil CO2 flux was measured bimonthly over a year using a closed-chamber technique and decomposition rates were estimated using buried birch wood sticks acting as a common substrate across the sites. Our results showed that CO2 flux ranged from 0.237-7.676 μmol m-2s-1 for the banana plantation, 2.773-11.1 μmol m-2s-1 for the mature forest, 1.718-17.005 μmol m-2s-1 for pasture and 2.931-5.216 μmol m-2s-1 for the secondary forest. On an annual basis, the soil CO2 flux was highest in the pasture ecosystem with an estimated production of 2.3 kg C m-2yr-1 followed by the banana plantation with 1.3 kg C m-2yr-1 and the mature forest site with 1.0 kg C m-2yr-1. Land use affected soil temperature and bulk density, which also showed positive correlations with CO2 flux. The stick decomposition rate was significantly faster on the pasture site in comparison to the forest

  13. Using soundscapes to detect variable degrees of human influence on tropical forests in Papua New Guinea.

    Science.gov (United States)

    Burivalova, Zuzana; Towsey, Michael; Boucher, Tim; Truskinger, Anthony; Apelis, Cosmas; Roe, Paul; Game, Edward T

    2018-02-01

    There is global concern about tropical forest degradation, in part, because of the associated loss of biodiversity. Communities and indigenous people play a fundamental role in tropical forest management and are often efficient at preventing forest degradation. However, monitoring changes in biodiversity due to degradation, especially at a scale appropriate to local tropical forest management, is plagued by difficulties, including the need for expert training, inconsistencies across observers, and lack of baseline or reference data. We used a new biodiversity remote-sensing technology, the recording of soundscapes, to test whether the acoustic saturation of a tropical forest in Papua New Guinea decreases as land-use intensity by the communities that manage the forest increases. We sampled soundscapes continuously for 24 hours at 34 sites in different land-use zones of 3 communities. Land-use zones where forest cover was fully retained had significantly higher soundscape saturation during peak acoustic activity times (i.e., dawn and dusk chorus) compared with land-use types with fragmented forest cover. We conclude that, in Papua New Guinea, the relatively simple measure of soundscape saturation may provide a cheap, objective, reproducible, and effective tool for monitoring tropical forest deviation from an intact state, particularly if it is used to detect the presence of intact dawn and dusk choruses. © 2017 The Authors. Conservation Biology published by Wiley Periodicals, Inc. on behalf of Society for Conservation Biology.

  14. Functional trait strategies of trees in dry and wet tropical forests are similar but differ in their consequences for succession.

    Directory of Open Access Journals (Sweden)

    Madelon Lohbeck

    Full Text Available Global plant trait studies have revealed fundamental trade-offs in plant resource economics. We evaluated such trait trade-offs during secondary succession in two species-rich tropical ecosystems that contrast in precipitation: dry deciduous and wet evergreen forests of Mexico. Species turnover with succession in dry forest largely relates to increasing water availability and in wet forest to decreasing light availability. We hypothesized that while functional trait trade-offs are similar in the two forest systems, the successful plant strategies in these communities will be different, as contrasting filters affect species turnover. Research was carried out in 15 dry secondary forest sites (5-63 years after abandonment and in 17 wet secondary forest sites (<1-25 years after abandonment. We used 11 functional traits measured on 132 species to make species-trait PCA biplots for dry and wet forest and compare trait trade-offs. We evaluated whether multivariate plant strategies changed during succession, by calculating a 'Community-Weighted Mean' plant strategy, based on species scores on the first two PCA-axes. Trait spectra reflected two main trade-off axes that were similar for dry and wet forest species: acquisitive versus conservative species, and drought avoiding species versus evergreen species with large animal-dispersed seeds. These trait associations were consistent when accounting for evolutionary history. Successional changes in the most successful plant strategies reflected different functional trait spectra depending on the forest type. In dry forest the community changed from having drought avoiding strategies early in succession to increased abundance of evergreen strategies with larger seeds late in succession. In wet forest the community changed from species having mainly acquisitive strategies to those with more conservative strategies during succession. These strategy changes were explained by increasing water availability during

  15. Reviews and syntheses: Field data to benchmark the carbon cycle models for tropical forests

    Science.gov (United States)

    Clark, Deborah A.; Asao, Shinichi; Fisher, Rosie; Reed, Sasha; Reich, Peter B.; Ryan, Michael G.; Wood, Tana E.; Yang, Xiaojuan

    2017-10-01

    For more accurate projections of both the global carbon (C) cycle and the changing climate, a critical current need is to improve the representation of tropical forests in Earth system models. Tropical forests exchange more C, energy, and water with the atmosphere than any other class of land ecosystems. Further, tropical-forest C cycling is likely responding to the rapid global warming, intensifying water stress, and increasing atmospheric CO2 levels. Projections of the future C balance of the tropics vary widely among global models. A current effort of the modeling community, the ILAMB (International Land Model Benchmarking) project, is to compile robust observations that can be used to improve the accuracy and realism of the land models for all major biomes. Our goal with this paper is to identify field observations of tropical-forest ecosystem C stocks and fluxes, and of their long-term trends and climatic and CO2 sensitivities, that can serve this effort. We propose criteria for reference-level field data from this biome and present a set of documented examples from old-growth lowland tropical forests. We offer these as a starting point towards the goal of a regularly updated consensus set of benchmark field observations of C cycling in tropical forests.

  16. Reviews and syntheses: Field data to benchmark the carbon cycle models for tropical forests

    Science.gov (United States)

    Clark, Deborah A.; Asao, Shinichi; Fisher, Rosie A.; Reed, Sasha C.; Reich, Peter B.; Ryan, Michael G.; Wood, Tana E.; Yang, Xiaojuan

    2017-01-01

    For more accurate projections of both the global carbon (C) cycle and the changing climate, a critical current need is to improve the representation of tropical forests in Earth system models. Tropical forests exchange more C, energy, and water with the atmosphere than any other class of land ecosystems. Further, tropical-forest C cycling is likely responding to the rapid global warming, intensifying water stress, and increasing atmospheric CO2 levels. Projections of the future C balance of the tropics vary widely among global models. A current effort of the modeling community, the ILAMB (International Land Model Benchmarking) project, is to compile robust observations that can be used to improve the accuracy and realism of the land models for all major biomes. Our goal with this paper is to identify field observations of tropical-forest ecosystem C stocks and fluxes, and of their long-term trends and climatic and CO2 sensitivities, that can serve this effort. We propose criteria for reference-level field data from this biome and present a set of documented examples from old-growth lowland tropical forests. We offer these as a starting point towards the goal of a regularly updated consensus set of benchmark field observations of C cycling in tropical forests.

  17. No evidence that boron influences tree species distributions in lowland tropical forests of Panama.

    Science.gov (United States)

    Turner, Benjamin L; Zalamea, Paul-Camilo; Condit, Richard; Winter, Klaus; Wright, S Joseph; Dalling, James W

    2017-04-01

    It was recently proposed that boron might be the most important nutrient structuring tree species distributions in tropical forests. Here we combine observational and experimental studies to test this hypothesis for lowland tropical forests of Panama. Plant-available boron is uniformly low in tropical forest soils of Panama and is not significantly associated with any of the > 500 species in a regional network of forest dynamics plots. Experimental manipulation of boron supply to seedlings of three tropical tree species revealed no evidence of boron deficiency or toxicity at concentrations likely to occur in tropical forest soils. Foliar boron did not correlate with soil boron along a local scale gradient of boron availability. Fifteen years of boron addition to a tropical forest increased plant-available boron by 70% but did not significantly change tree productivity or boron concentrations in live leaves, wood or leaf litter. The annual input of boron in rainfall accounts for a considerable proportion of the boron in annual litterfall and is similar to the pool of plant-available boron in the soil, and is therefore sufficient to preclude boron deficiency. We conclude that boron does not influence tree species distributions in Panama and presumably elsewhere in the lowland tropics. No claim to original US government works New Phytologist © 2016 New Phytologist Trust.

  18. Reviews and syntheses: Field data to benchmark the carbon cycle models for tropical forests

    Directory of Open Access Journals (Sweden)

    D. A. Clark

    2017-10-01

    Full Text Available For more accurate projections of both the global carbon (C cycle and the changing climate, a critical current need is to improve the representation of tropical forests in Earth system models. Tropical forests exchange more C, energy, and water with the atmosphere than any other class of land ecosystems. Further, tropical-forest C cycling is likely responding to the rapid global warming, intensifying water stress, and increasing atmospheric CO2 levels. Projections of the future C balance of the tropics vary widely among global models. A current effort of the modeling community, the ILAMB (International Land Model Benchmarking project, is to compile robust observations that can be used to improve the accuracy and realism of the land models for all major biomes. Our goal with this paper is to identify field observations of tropical-forest ecosystem C stocks and fluxes, and of their long-term trends and climatic and CO2 sensitivities, that can serve this effort. We propose criteria for reference-level field data from this biome and present a set of documented examples from old-growth lowland tropical forests. We offer these as a starting point towards the goal of a regularly updated consensus set of benchmark field observations of C cycling in tropical forests.

  19. Changes in forest structure and composition after fire in tropical montane cloud forests near the Andean treeline

    NARCIS (Netherlands)

    Oliveras Menor, I.; Malhi, Y.; Salinas, N.; Huaman, V.; Urquiaga-Flores, E.; Kala-Mamani, J.; Quintano-Loaiza, J.A.; Cuba-Torres, I.; Lizarraga-Morales, N.; Roman-Cuesta, R.M.

    2014-01-01

    Background: In tropical montane cloud forests (TMCFs) fires can be a frequent source of disturbance near the treeline. Aims: To identify how forest structure and tree species composition change in response to fire and to identify fire-tolerant species, and determine which traits or characteristics

  20. Uncertainty in the spatial distribution of tropical forest biomass: a comparison of pan-tropical maps.

    Science.gov (United States)

    Mitchard, Edward Ta; Saatchi, Sassan S; Baccini, Alessandro; Asner, Gregory P; Goetz, Scott J; Harris, Nancy L; Brown, Sandra

    2013-10-26

    Mapping the aboveground biomass of tropical forests is essential both for implementing conservation policy and reducing uncertainties in the global carbon cycle. Two medium resolution (500 m - 1000 m) pantropical maps of vegetation biomass have been recently published, and have been widely used by sub-national and national-level activities in relation to Reducing Emissions from Deforestation and forest Degradation (REDD+). Both maps use similar input data layers, and are driven by the same spaceborne LiDAR dataset providing systematic forest height and canopy structure estimates, but use different ground datasets for calibration and different spatial modelling methodologies. Here, we compare these two maps to each other, to the FAO's Forest Resource Assessment (FRA) 2010 country-level data, and to a high resolution (100 m) biomass map generated for a portion of the Colombian Amazon. We find substantial differences between the two maps, in particular in central Amazonia, the Congo basin, the south of Papua New Guinea, the Miombo woodlands of Africa, and the dry forests and savannas of South America. There is little consistency in the direction of the difference. However, when the maps are aggregated to the country or biome scale there is greater agreement, with differences cancelling out to a certain extent. When comparing country level biomass stocks, the two maps agree with each other to a much greater extent than to the FRA 2010 estimates. In the Colombian Amazon, both pantropical maps estimate higher biomass than the independent high resolution map, but show a similar spatial distribution of this biomass. Biomass mapping has progressed enormously over the past decade, to the stage where we can produce globally consistent maps of aboveground biomass. We show that there are still large uncertainties in these maps, in particular in areas with little field data. However, when used at a regional scale, different maps appear to converge, suggesting we can provide

  1. Testing a short nuclear marker for inferring staphylinid beetle diversity in an African tropical rain forest.

    Directory of Open Access Journals (Sweden)

    Birthe Thormann

    2011-03-01

    Full Text Available The use of DNA based methods for assessing biodiversity has become increasingly common during the last years. Especially in speciose biomes as tropical rain forests and/or in hyperdiverse or understudied taxa they may efficiently complement morphological approaches. The most successful molecular approach in this field is DNA barcoding based on cytochrome c oxidase I (COI marker, but other markers are used as well. Whereas most studies aim at identifying or describing species, there are only few attempts to use DNA markers for inventorying all animal species found in environmental samples to describe variations of biodiversity patterns.In this study, an analysis of the nuclear D3 region of the 28S rRNA gene to delimit species-like units is compared to results based on distinction of morphospecies. Data derived from both approaches are used to assess diversity and composition of staphylinid beetle communities of a Guineo-Congolian rain forest in Kenya. Beetles were collected with a standardized sampling design across six transects in primary and secondary forests using pitfall traps. Sequences could be obtained of 99% of all individuals. In total, 76 molecular operational taxonomic units (MOTUs were found in contrast to 70 discernible morphospecies. Despite this difference both approaches revealed highly similar biodiversity patterns, with species richness being equal in primary and secondary forests, but with divergent species communities in different habitats. The D3-MOTU approach proved to be an efficient tool for biodiversity analyses.Our data illustrate that the use of MOTUs as a proxy for species can provide an alternative to morphospecies identification for the analysis of changes in community structure of hyperdiverse insect taxa. The efficient amplification of the D3-marker and the ability of the D3-MOTUs to reveal similar biodiversity patterns as analyses of morphospecies recommend its use in future molecular studies on biodiversity.

  2. Gross changes in forest area shape the future carbon balance of tropical forests

    Directory of Open Access Journals (Sweden)

    W. Li

    2018-01-01

    Full Text Available Bookkeeping models are used to estimate land-use and land-cover change (LULCC carbon fluxes (ELULCC. The uncertainty of bookkeeping models partly arises from data used to define response curves (usually from local data and their representativeness for application to large regions. Here, we compare biomass recovery curves derived from a recent synthesis of secondary forest plots in Latin America by Poorter et al. (2016 with the curves used previously in bookkeeping models from Houghton (1999 and Hansis et al. (2015. We find that the two latter models overestimate the long-term (100 years vegetation carbon density of secondary forest by about 25 %. We also use idealized LULCC scenarios combined with these three different response curves to demonstrate the importance of considering gross forest area changes instead of net forest area changes for estimating regional ELULCC. In the illustrative case of a net gain in forest area composed of a large gross loss and a large gross gain occurring during a single year, the initial gross loss has an important legacy effect on ELULCC so that the system can be a net source of CO2 to the atmosphere long after the initial forest area change. We show the existence of critical values of the ratio of gross area change over net area change (γAnetAgross, above which cumulative ELULCC is a net CO2 source rather than a sink for a given time horizon after the initial perturbation. These theoretical critical ratio values derived from simulations of a bookkeeping model are compared with observations from the 30 m resolution Landsat Thematic Mapper data of gross and net forest area change in the Amazon. This allows us to diagnose areas in which current forest gains with a large land turnover will still result in LULCC carbon emissions in 20, 50 and 100 years.

  3. Gross changes in forest area shape the future carbon balance of tropical forests

    Science.gov (United States)

    Li, Wei; Ciais, Philippe; Yue, Chao; Gasser, Thomas; Peng, Shushi; Bastos, Ana

    2018-01-01

    Bookkeeping models are used to estimate land-use and land-cover change (LULCC) carbon fluxes (ELULCC). The uncertainty of bookkeeping models partly arises from data used to define response curves (usually from local data) and their representativeness for application to large regions. Here, we compare biomass recovery curves derived from a recent synthesis of secondary forest plots in Latin America by Poorter et al. (2016) with the curves used previously in bookkeeping models from Houghton (1999) and Hansis et al. (2015). We find that the two latter models overestimate the long-term (100 years) vegetation carbon density of secondary forest by about 25 %. We also use idealized LULCC scenarios combined with these three different response curves to demonstrate the importance of considering gross forest area changes instead of net forest area changes for estimating regional ELULCC. In the illustrative case of a net gain in forest area composed of a large gross loss and a large gross gain occurring during a single year, the initial gross loss has an important legacy effect on ELULCC so that the system can be a net source of CO2 to the atmosphere long after the initial forest area change. We show the existence of critical values of the ratio of gross area change over net area change (γAnetAgross), above which cumulative ELULCC is a net CO2 source rather than a sink for a given time horizon after the initial perturbation. These theoretical critical ratio values derived from simulations of a bookkeeping model are compared with observations from the 30 m resolution Landsat Thematic Mapper data of gross and net forest area change in the Amazon. This allows us to diagnose areas in which current forest gains with a large land turnover will still result in LULCC carbon emissions in 20, 50 and 100 years.

  4. Riparian forest buffers mitigate the effects of deforestation on fish assemblages in tropical headwater streams.

    Science.gov (United States)

    Lorion, Christopher M; Kennedy, Brian P

    2009-03-01

    Riparian forest buffers may play a critical role in moderating the impacts of deforestation on tropical stream ecosystems, but very few studies have examined the ecological effects of riparian buffers in the tropics. To test the hypothesis that riparian forest buffers can reduce the impacts of deforestation on tropical stream biota, we sampled fish assemblages in lowland headwater streams in southeastern Costa Rica representing three different treatments: (1) forested reference stream reaches, (2) stream reaches adjacent to pasture with a riparian forest buffer averaging at least 15 m in width on each bank, and (3) stream reaches adjacent to pasture without a riparian forest buffer. Land cover upstream from the study reaches was dominated by forest at all of the sites, allowing us to isolate the reach-scale effects of the three study treatments. Fish density was significantly higher in pasture reaches than in forest and forest buffer reaches, mostly due to an increase in herbivore-detritivores, but fish biomass did not differ among reach types. Fish species richness was also higher in pasture reaches than in forested reference reaches, while forest buffer reaches were intermediate. Overall, the taxonomic and trophic structure of fish assemblages in forest and forest buffer reaches was very similar, while assemblages in pasture reaches were quite distinct. These patterns were persistent across three sampling periods during our 15-month study. Differences in stream ecosystem conditions between pasture reaches and forested sites, including higher stream temperatures, reduced fruit and seed inputs, and a trend toward increased periphyton abundance, appeared to favor fish species normally found in larger streams and facilitate a native invasion process. Forest buffer reaches, in contrast, had stream temperatures and allochthonous inputs more similar to forested streams. Our results illustrate the importance of riparian areas to stream ecosystem integrity in the tropics

  5. NPP Tropical Forest: San Carlos de Rio Negro, Venezuela, 1975-1984

    Data.gov (United States)

    National Aeronautics and Space Administration — ABSTRACT: Productivity of tropical forest for a number of vegetation-soil associations at the San Carlos de Rio Negro study site under the auspices of an...

  6. NPP Tropical Forest: Barro Colorado, Panama, 1969-1990, R1

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set contains three ASCII files (.txt format). One file provides net primary productivity (NPP) data for the moist lowland tropical forest on Barro Colorado...

  7. NPP Tropical Forest: Consistent Worldwide Site Estimates, 1967-1999, R1

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set contains documented field measurements of NPP components for 39 old-growth tropical forests distributed worldwide between latitudes 23.58 N and 23.58...

  8. Forest Restoration Carbon Analysis of Baseline Carbon Emissions and Removal in Tropical Rainforest at La Selva Central, Peru

    Energy Technology Data Exchange (ETDEWEB)

    Patrick Gonzalez; Benjamin Kroll; Carlos R. Vargas

    2006-01-10

    Conversion of tropical forest to agricultural land and pasture has reduced forest extent and the provision of ecosystem services, including watershed protection, biodiversity conservation, and carbon sequestration. Forest conservation and reforestation can restore those ecosystem services. We have assessed forest species patterns, quantified deforestation and reforestation rates, and projected future baseline carbon emissions and removal in Amazon tropical rainforest at La Selva Central, Peru. The research area is a 4800 km{sup 2} buffer zone around the Parque Nacional Yanachaga-Chemillen, Bosque de Proteccion San Matias-San Carlos, and the Reserva Comunal Yanesha. A planned project for the period 2006-2035 would conserve 4000 ha of forest in a proposed 7000 ha Area de Conservacion Municipale de Chontabamba and establish 5600 ha of natural regeneration and 1400 ha of native species plantations, laid out in fajas de enriquecimiento (contour plantings), to reforest 7000 ha of agricultural land. Forest inventories of seven sites covering 22.6 ha in primary forest and 17 sites covering 16.5 ha in secondary forest measured 17,073 trees of diameter {ge} 10 cm. The 24 sites host trees of 512 species, 267 genera, and 69 families. We could not identify the family of 7% of the trees or the scientific species of 21% of the trees. Species richness is 346 in primary forest and 257 in the secondary forest. In primary forest, 90% of aboveground biomass resides in old-growth species. Conversely, in secondary forest, 66% of aboveground biomass rests in successional species. The density of trees of diameter {ge} 10 cm is 366 trees ha{sup -1} in primary forest and 533 trees ha{sup -1} in secondary forest, although the average diameter is 24 {+-} 15 cm in primary forest and 17 {+-} 8 cm in secondary forest. Using Amazon forest biomass equations and wood densities for 117 species, aboveground biomass is 240 {+-} 30 t ha{sup -1} in the primary sites and 90 {+-} 10 t ha{sup -1} in the

  9. Conservation Benefits of Tropical Multifunctional Land-Uses in and Around a Forest Protected Area of Bangladesh

    Directory of Open Access Journals (Sweden)

    Sharif A. Mukul

    2017-01-01

    Full Text Available Competing interests in land for agriculture and commodity production in tropical human-dominated landscapes make forests and biodiversity conservation particularly challenging. Establishment of protected areas in this regard is not functioning as expected due to exclusive ecological focus and poor recognition of local people’s traditional forest use and dependence. In recent years, multifunctional land-use systems such as agroforestry have widely been promoted as an efficient land-use in such circumstances, although their conservation effectiveness remains poorly investigated. We undertake a rapid biodiversity survey to understand the conservation value of four contrasting forms of local land-use, namely: betel leaf (Piper betle agroforestry; lemon (Citrus limon agroforestry; pineapple (Ananas comosus agroforestry; and, shifting cultivation–fallow managed largely by the indigenous communities in and around a highly diverse forest protected area of Bangladesh. We measure the alpha and beta diversity of plants, birds, and mammals in these multifunctional land-uses, as well as in the old-growth secondary forest in the area. Our study finds local land-use critical in conserving biodiversity in the area, with comparable biodiversity benefits as those of the old-growth secondary forest. In Bangladesh, where population pressure and rural people’s dependence on forests are common, multifunctional land-uses in areas of high conservation priority could potentially be used to bridge the gap between conservation and commodity production, ensuring that the ecological integrity of such landscapes will be altered as little as possible.

  10. Functional nonredundancy of elephants in a disturbed tropical forest.

    Science.gov (United States)

    Sekar, Nitin; Lee, Chia-Lo; Sukumar, Raman

    2017-10-01

    Conservation efforts are often motivated by the threat of global extinction. Yet if conservationists had more information suggesting that extirpation of individual species could lead to undesirable ecological effects, they might more frequently attempt to protect or restore such species across their ranges even if they were not globally endangered. Scientists have seldom measured or quantitatively predicted the functional consequences of species loss, even for large, extinction-prone species that theory suggests should be functionally unique. We measured the contribution of Asian elephants (Elephas maximus) to the dispersal of 3 large-fruited species in a disturbed tropical moist forest and predicted the extent to which alternative dispersers could compensate for elephants in their absence. We created an empirical probability model with data on frugivory and seed dispersal from Buxa Tiger Reserve, India. These data were used to estimate the proportion of seeds consumed by elephants and other frugivores that survive handling and density-dependent processes (Janzen-Connell effects and conspecific intradung competition) and germinate. Without compensation, the number of seeds dispersed and surviving density-dependent effects decreased 26% (Artocarpus chaplasha), 42% (Careya arborea), and 72% (Dillenia indica) when elephants were absent from the ecosystem. Compensatory fruit removal by other animals substantially ameliorated these losses. For instance, reductions in successful dispersal of D. indica were as low as 23% when gaur (Bos gaurus) persisted, but median dispersal distance still declined from 30% (C. arborea) to 90% (A. chaplasha) without elephants. Our results support the theory that the largest animal species in an ecosystem have nonredundant ecological functionality and that their extirpation is likely to lead to the deterioration of ecosystem processes such as seed dispersal. This effect is likely accentuated by the overall defaunation of many tropical

  11. Emissions Of Forest Fires In The Amazon: Impact On The Tropical Mountain Forest In Ecuador

    Science.gov (United States)

    Fabian, P.; Rollenbeck, R.; Thiemens, M. H.; Brothers, L.

    2006-12-01

    Biomass burning is a source of carbon, sulphur, and nitrogen compounds which, along with their photochemically generated reaction products, can be transported over very large distances, even traversing oceans. Four years of regular rain and fog-water measurements in the tropical mountain forest at the eastern slopes of the Ecuadorian Andes, along an altitude profile between 1800 m and 3185 m, have been carried out. The ion composition of rain and fog-water samples shows frequent episodes of significantly enhanced nitrogen and sulphur, resulting in annual deposition rates of about 5 kg N/ha and 10 kg S/ha into this ecosystem, which are comparable to those of polluted central Europe. By relating back trajectories calculated by means of the FLEXTRA model to the distributions of satellite derived forest fire pixels, it can be shown that most episodes of enhanced ion concentration, with pH values as low as 4.0, can be attributed to biomass burning in the Amazon. First analyses of oxygen isotopes 16O, 17O, and 18O of nitrate in fogwater samples show mass independent fractionation values ranging between 15 and 20 per mille, clearly indicating that nitrate in the samples is a product of atmospheric conversion of precursors, while the isotope data of river samples taken downstream of the research area are grouped in the region of microbial nitrate. This strongly supports the aforementioned trajectory results and shows that the tropical mountain forest in Ecuador, with local pollution sources missing,is "fertilized" by long-range transport of substances originating from forest fires in Colombia, Venezuela, Brazil, and Peru, far upwind of the research site.

  12. CO2 efflux from subterranean nests of ant communities in a seasonal tropical forest, Thailand

    OpenAIRE

    Hasin, Sasitorn; Ohashi, Mizue; Yamada, Akinori; Hashimoto, Yoshiaki; Tasen, Wattanachai; Kume, Tomonori; Yamane, Seiki

    2014-01-01

    Many ant species construct subterranean nests. The presence of their nests may explain soil respiration “hot spots”, an important factor in the high CO2 efflux from tropical forests. However, no studies have directly measured CO2 efflux from ant nests. We established 61 experimental plots containing 13 subterranean ant species to evaluate the CO2 efflux from subterranean ant nests in a tropical seasonal forest, Thailand. We examined differences in nest CO2 efflux among ant species. We determi...

  13. Hydrological Networks and Associated Topographic Variation as Templates for the Spatial Organization of Tropical Forest Vegetation

    OpenAIRE

    Detto, Matteo; Muller-Landau, Helene C.; Mascaro, Joseph; Asner, Gregory P.

    2013-01-01

    An understanding of the spatial variability in tropical forest structure and biomass, and the mechanisms that underpin this variability, is critical for designing, interpreting, and upscaling field studies for regional carbon inventories. We investigated the spatial structure of tropical forest vegetation and its relationship to the hydrological network and associated topographic structure across spatial scales of 10-1000 m using high-resolution maps of LiDAR-derived mean canopy profile heigh...

  14. A new technique for inventory of permanent plots in tropical forests: a case study from lowland dipterocarp forest in Kuala Belalong, Brunei Darussalam

    Czech Academy of Sciences Publication Activity Database

    Hédl, Radim; Svátek, M.; Dančák, M.; Rodzay, A. W.; Salleh, A. B.; Kamariah, A. S.

    2009-01-01

    Roč. 54, 1-3 (2009), s. 124-130 ISSN 0006-5196 Institutional research plan: CEZ:AV0Z60050516 Keywords : forest inventory * structure of tropical forest * diversity of tropical forest Subject RIV: EF - Botanics Impact factor: 0.243, year: 2009

  15. Selective logging and fire as drivers of alien grass invasion in a Bolivian tropical dry forest

    NARCIS (Netherlands)

    Veldman, J.W.; Mostacedo, B.; Peña-Claros, M.; Putz, F.E.

    2009-01-01

    Logging is an integral component of most conceptual models that relate human land-use and climate change to tropical deforestation via positive-feedbacks involving fire. Given that grass invasions can substantially alter fire regimes, we studied grass distributions in a tropical dry forest 1-5 yr

  16. The role of animal seed dispersal in accelerating native forest regeneration on degraded tropical lands.

    Science.gov (United States)

    J.M. Wunderle Jr.

    1997-01-01

    this paper reviews the characteristicas of animal seed dispersal. relevant to tropical forest restoration efforts and discusses their managment implication. In many tropical regions seed dispersal by animals is the predominant form of dissemination of propagules and has a potential to facilitate recolonization of native vegetation on degraded sites.

  17. Effects of nitrogen additions on above- and belowground carbon dynamics in two tropical forests

    Science.gov (United States)

    Daniela F. Cusack; Whendee L. Silver; Margaret S. Torn; William H. McDowell

    2011-01-01

    Anthropogenic nitrogen (N) deposition is increasing rapidly in tropical regions, adding N to ecosystems that often have high background N availability. Tropical forests play an important role in the global carbon (C) cycle, yet the effects of N deposition on C cycling in these ecosystems are poorly understood. We used a field N-fertilization experiment in lower and...

  18. Restoring tropical forests on bauxite mined lands: lessons from the Brazilian Amazon

    Science.gov (United States)

    John A. Parrotta; Oliver H. Knowles

    2001-01-01

    Restoring self-sustaining tropical forest ecosystems on surface mined sites is a formidable challenge that requires the integration of proven reclamation techniques and reforestation strategies appropriate to specific site conditions, including landscape biodiversity patterns. Restorationists working in most tropical settings are usually hampered by lack of basic...

  19. Relationships between Tropical, Temperate and Boreal Forest Variables and PALSAR Data

    Science.gov (United States)

    Tansey, Kevin; Balzter, Heiko; Hoscilo, Agata; Luckman, Adrian; Page, Susan E.

    2008-11-01

    The overall aim of our ALOS project is to evaluate the information content of polarimetric radar data sets, being acquired by the PALSAR instrument, to estimate forest variables (specifically those related to biomass and biomass change) of forested regions in the UK (temperate forest), central Siberia (boreal forest) and Indonesia (tropical forest in Sumatra and Borneo). By utilising the FBD and PLR operating modes of PALSAR, as well as interferometric products derived from 46-day repeat-pass data, we explore the relationships between measured bio-physical forest variables (from field data) with values of backscatter coefficient, coherence and other data derived values. The paper will show our initial observations and interpretations.

  20. Radioecological studies of tritium movement in a tropical rain forest

    International Nuclear Information System (INIS)

    Martin, J.R.; Jordan, C.F.; Koranda, J.J.; Kline, J.R.

    1970-01-01

    Several experiments on the movement of tritium in a tropical ecosystem have been conducted in the montane rainforest of Eastern Puerto Rico by the Bio-Medical Division of the Lawrence Radiation Laboratory, Livermore, in cooperation with the Puerto Rico Nuclear Center. Tritiated whaler was used as a tracer for water movement in: a) mature evergreen trees of the climax rainforest; b) soil and substory vegetation and c) rapidly growling successional species. A feasibility study on the Atlantic Pacific Interoceanic Canal is currently being conducted. If thermonuclear explosives were used in constructing the canal, tritium would be deposited as tritiated water and distributed among the several biological compartments of the tropical ecosystem in that area. The main hydrogen compartments are water in the soil and in leaves, limbs and wood of forest trees. Organic tissue hydrogen comprises another compartment. In the tree experiment, tritiated water was injected directly into several species of mature, broad leaved evergreen tropical trees. Transpiration and residence time for tritium was determined from analyses of leaves sampled during a several month period. Transpiration ranged from 4 ml/day/gm dry leaf for an understory Dacryodes excelsa to 10.0 and 13.8 ml/day/gm dry leaf for a mature Sloanea berteriana and D. excelsa, respectively. Mean residence time for the S. berteriana was 3.9 ± 0.2 days and the understory and mature D. excelsa values were 9.5 ± 0.4 and 11.0 ± 0. 6 days, respectively. In another experiment, tritiated water was sprinkled over a 3.68 m 2 plot and its movement down into the soil and up into the vegetation growing on the plot was traced. The pattern of water movement in the soil was clearly demonstrated. The mean residence time for tritium in the soil and in trees was found to be 42 ± 2 days and 67 ± 9 days, respectively. The residence time for tritium in the trees in this experiment was considerably longer than for the single injected input

  1. Tropical Soil Carbon Stocks do not Reflect Aboveground Forest Biomass Across Geological and Rainfall Gradients

    Science.gov (United States)

    Cusack, D. F.; Markesteijn, L.; Turner, B. L.

    2016-12-01

    Soil organic carbon (C) dynamics present a large source of uncertainty in global C cycle models, and inhibit our ability to predict effects of climate change. Tropical wet and seasonal forests exert a disproportionate influence on the global C cycle relative to their land area because they are the most C-rich ecosystems on Earth, containing 25-40% of global terrestrial C stocks. While significant advances have been made to map aboveground C stocks in tropical forests, determining soil C stocks using remote sensing technology is still not possible for closed-canopy forests. It is unclear to what extent aboveground C stocks can be used to predict soil C stocks across tropical forests. Here we present 1-m-deep soil organic C stocks for 42 tropical forest sites across rainfall and geological gradients in Panama. We show that soil C stocks do not correspond to aboveground plant biomass or to litterfall productivity in these humid tropical forests. Rather, soil C stocks were strongly and positively predicted by fine root biomass, soil clay content, and rainfall (R2 = 0.47, p chemical characteristics form an important basis for improving model estimates of soil C stocks and predictions of climate change effects on tropical C storage.

  2. Tropical Forest Monitoring in Southeast Asia Using Remotely Sensed Optical Time Series

    DEFF Research Database (Denmark)

    Grogan, Kenneth Joseph

    Despite the importance of tropical forest ecosystems, they continue to be transformed at an alarming rate. In Southeast Asia, the historical deforestation narrative of a growing population gradually encroaching upon forest land is being replaced by the dominating influence of large-scale plantati......Despite the importance of tropical forest ecosystems, they continue to be transformed at an alarming rate. In Southeast Asia, the historical deforestation narrative of a growing population gradually encroaching upon forest land is being replaced by the dominating influence of large......-scale plantations. In particular, the global demand for natural rubber (Hevea brasiliensis) has been reported as the cause of widespread forest conversion. A critical component of forest conservation strategies, such as Reduced Emission from Deforestation and forest Degradation (REDD+), relies upon the monitoring...

  3. Polychlorinated biphenyls and polybrominated diphenylethers in soils from planted forests and adjacent natural forests on a tropical island.

    Science.gov (United States)

    Liu, Xin; Wang, Shuai; Jiang, Yishan; Sun, Yingtao; Li, Jun; Zhang, Gan

    2017-08-01

    Transformation from natural forests to planted forests in tropical regions is an expanding global phenomenon causing major modifications of land cover and soil properties, e.g. soil organic carbon (SOC). This study investigated accumulations of POPs in soils under eucalyptus and rubber forests as compared with adjacent natural forests on Hainan Island, China. Results showed that due to the greater forest filter effect and the higher SOC, the natural forest have accumulated larger amounts of POPs in the top 20 cm soil. Based on correlation and air-soil equilibrium analysis, we highlighted the importance of SOC in the distribution of POPs. It is assumed that the elevated mobility of POPs in the planted forests was caused by greater loss of SOC and extensive leaching in the soil profile. This suggests that a better understanding of global POPs fate should take into consideration the role of planted forests. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Impacts of hunting on tropical forests in Southeast Asia.

    Science.gov (United States)

    Harrison, Rhett D; Sreekar, Rachakonda; Brodie, Jedediah F; Brook, Sarah; Luskin, Matthew; O'Kelly, Hannah; Rao, Madhu; Scheffers, Brett; Velho, Nandini

    2016-10-01

    Although deforestation and forest degradation have long been considered the most significant threats to tropical biodiversity, across Southeast Asia (Northeast India, Indochina, Sundaland, Philippines) substantial areas of natural habitat have few wild animals (>1 kg), bar a few hunting-tolerant species. To document hunting impacts on vertebrate populations regionally, we conducted an extensive literature review, including papers in local journals and reports of governmental and nongovernmental agencies. Evidence from multiple sites indicated animal populations declined precipitously across the region since approximately 1980, and many species are now extirpated from substantial portions of their former ranges. Hunting is by far the greatest immediate threat to the survival of most of the region's endangered vertebrates. Causes of recent overhunting include improved access to forests and markets, improved hunting technology, and escalating demand for wild meat, wildlife-derived medicinal products, and wild animals as pets. Although hunters often take common species, such as pigs or rats, for their own consumption, they take rarer species opportunistically and sell surplus meat and commercially valuable products. There is also widespread targeted hunting of high-value species. Consequently, as currently practiced, hunting cannot be considered sustainable anywhere in the region, and in most places enforcement of protected-area and protected-species legislation is weak. The international community's focus on cross-border trade fails to address overexploitation of wildlife because hunting and the sale of wild meat is largely a local issue and most of the harvest is consumed in villages, rural towns, and nearby cities. In addition to improved enforcement, efforts to engage hunters and manage wildlife populations through sustainable hunting practices are urgently needed. Unless there is a step change in efforts to reduce wildlife exploitation to sustainable levels, the

  5. Ecological Structure of a Tropical Urban Forest in the Bang Kachao Peninsula, Bangkok

    Directory of Open Access Journals (Sweden)

    Montathip Sommeechai

    2018-01-01

    Full Text Available Rapid urbanization has changed the structure and function of natural ecosystems, especially floodplain ecosystems in SE Asia. The ecological structure of vegetation stands and the usefulness of satellite images was investigated to characterize a disturbed tropical urban forest located in the Chao Phraya River lower floodplain, Thailand. Nine sample plots were established on the Bang Kachao Peninsula (BKP within 4 tropical forest types in an urban area: rehabilitation forest, home-garden agroforestry, mangrove and park. The tree habitats were beach forest, swamp forest, moist evergreen forest, dry evergreen forest, mangrove forest and abandoned orchard or home-garden. Normalized difference vegetation index (NDVI values obtained from Landsat 7 satellite images were correlated with plant structure from field surveys. NDVI had the highest relationship with stand factors for number of families, number of species, Shannon-Weiner index and total basal area. Linear regression predicted well the correlation between NDVI and stand factors for families and basal area. NDVI trends reflected urban tropical forest typing and biodiversity, being high in rehabilitation and mangrove forests, moderate in home-gardens and low in parks. We suggest that the application of NDVI for assessments can be useful for future planning, monitoring and management of the BKP and hence may contribute for increasing biodiversity and complexity of these urban forests.

  6. Aboveground Biomass Modeling from Field and LiDAR Data in Brazilian Amazon Tropical Rain Forest

    Science.gov (United States)

    Silva, C. A.; Hudak, A. T.; Vierling, L. A.; Keller, M. M.; Klauberg Silva, C. K.

    2015-12-01

    Tropical forests are an important component of global carbon stocks, but tropical forest responses to climate change are not sufficiently studied or understood. Among remote sensing technologies, airborne LiDAR (Light Detection and Ranging) may be best suited for quantifying tropical forest carbon stocks. Our objective was to estimate aboveground biomass (AGB) using airborne LiDAR and field plot data in Brazilian tropical rain forest. Forest attributes such as tree density, diameter at breast height, and heights were measured at a combination of square plots and linear transects (n=82) distributed across six different geographic zones in the Amazon. Using previously published allometric equations, tree AGB was computed and then summed to calculate total AGB at each sample plot. LiDAR-derived canopy structure metrics were also computed at each sample plot, and random forest regression modelling was applied to predict AGB from selected LiDAR metrics. The LiDAR-derived AGB model was assessed using the random forest explained variation, adjusted coefficient of determination (Adj. R²), root mean square error (RMSE, both absolute and relative) and BIAS (both absolute and relative). Our findings showed that the 99th percentile of height and height skewness were the best LiDAR metrics for AGB prediction. The AGB model using these two best predictors explained 59.59% of AGB variation, with an Adj. R² of 0.92, RMSE of 33.37 Mg/ha (20.28%), and bias of -0.69 (-0.42%). This study showed that LiDAR canopy structure metrics can be used to predict AGC stocks in Tropical Forest with acceptable precision and accuracy. Therefore, we conclude that there is good potential to monitor carbon sequestration in Brazilian Tropical Rain Forest using airborne LiDAR data, large field plots, and the random forest algorithm.

  7. Tropical forest hydrology and the role of the UNESCO International Hydrological Programme

    Directory of Open Access Journals (Sweden)

    M. Bonell

    1999-01-01

    Full Text Available The paper outlines a perspective on tropical forest hydrology within the context of an international hydrological programme. Experience in tropical forest hydrology research in North East Australia is a focal point for comparison with international activities elsewhere. The impacts of climate variability and change are considered briefly, as well as those of reforestation of degraded land on the land use hydrology, which requires a longer term vision and support of long term experimental catchments. Sadly, too few long term experimental catchments have been maintained in the humid tropics and there have been some significant closures even of these sites in recent years. Yet the case for long-term experiments is strengthened by the problematic issue of separating anthropogenic influences (such as land use change on the hydrology of landscapes from the effects of climate variability at a time of escalation in population and related socio-economic pressures in the humid tropics. Particular emphasis is made of the need for greater consideration for the social and cultural dimensions of forest management within forest hydrology. Furthermore, scientists must be committed to incorporating ‘societal needs' in their planning of research projects, as well as in publicizing the applications of their results, within the framework of forest-land-water policy. Alarm is expressed at the extensive disregard for the application of existing forest hydrology ‘know how' in forest-land management manipulations associated with the humid tropics.

  8. Soil nitrogen levels are linked to decomposition enzyme activities along an urban-remote tropical forest gradient

    Science.gov (United States)

    D. F. Cusack

    2013-01-01

    Urban areas in tropical regions are expanding rapidly, with significant potential to affect local ecosystem dynamics. In particular, nitrogen (N) availability may increase in urban-proximate forests because of atmospheric N deposition. Unlike temperate forests, many tropical forests on highly weathered soils have high background N availability, so plant growth is...

  9. Tropical forest soil microbes and climate warming: An Andean-Amazon gradient and `SWELTR'

    Science.gov (United States)

    Nottingham, A.; Turner, B. L.; Fierer, N.; Whitaker, J.; Ostle, N. J.; McNamara, N. P.; Bardgett, R.; Silman, M.; Bååth, E.; Salinas, N.; Meir, P.

    2017-12-01

    Climate warming predicted for the tropics in the coming century will result in average temperatures under which no closed canopy forest exists today. There is, therefore, great uncertainty associated with the direction and magnitude of feedbacks between tropical forests and our future climate - especially relating to the response of soil microbes and the third of global soil carbon contained in tropical forests. While warming experiments are yet to be performed in tropical forests, natural temperature gradients are powerful tools to investigate temperature effects on soil microbes. Here we draw on studies from a 3.5 km elevation gradient - and 20oC mean annual temperature gradient - in Peruvian tropical forest, to investigate how temperature affects the structure of microbial communities, microbial metabolism, enzymatic activity and soil organic matter cycling. With decreased elevation, soil microbial diversity increased and community composition shifted, from taxa associated with oligotrophic towards copiotrophic traits. A key role for temperature in shaping these patterns was demonstrated by a soil translocation experiment, where temperature-manipulation altered the relative abundance of specific taxa. Functional implications of these community composition shifts were indicated by changes in enzyme activities, the temperature sensitivity of bacterial and fungal growth rates, and the presence of temperature-adapted iso-enzymes at different elevations. Studies from a Peruvian elevation transect indicated that soil microbial communities are adapted to long-term (differences with elevation) and short-term (translocation responses) temperature changes. These findings indicate the potential for adaptation of soil microbes in tropical soils to future climate warming. However, in order to evaluate the sensitivity of these processes to climate warming in lowland forests, in situ experimentation is required. Finally, we describe SWELTR (Soil Warming Experiment in Lowland

  10. Linking plant hydraulics and beta diversity in tropical forests

    Energy Technology Data Exchange (ETDEWEB)

    Christoffersen, Bradley [Earth and Environmental Sciences, Los Alamos National Laboratory, Los Alamos NM 87545 USA; Meir, Patrick [School of GeoSciences, University of Edinburgh, Edinburgh EH9 3FE UK; Research School of Biology, Australian National University, Canberra ACT 2601 Australia; McDowell, Nate G. [Pacific Northwest National Laboratory, Richland WA 99352 USA

    2017-05-31

    In tropical forests, studies of xylem traits governing water transport through plants, or ‘hydraulic architecture’ (Tyree et al., 1991), and changes in species composition across environmental gradients, or ‘beta diversity’ (Gentry, 1988; Ackerly & Cornwell, 2007), have progressedmostly in parallel until recently (Hao et al., 2008; Bartlett et al., 2016). In this issue of New Phytologist, Cosme et al. (pp. 000–5 000) present a timely contribution to the intersection of plant hydraulic architecture (HA) with trait-based community ecology. Building on previous biogeographical work that demonstrated shifts in species composition (beta diversity) across a gradient from valleys to plateaus in central Amazonia (Schietti et al., 2014), Cosme et al. explore how variation in HA might underpin this sorting, sampling pairs of congeneric species restrictedmostly to either plateau or valley habitats. Valley species had significantly lower wood density and higher hydraulically-weighted vessel diameter and vessel area. By contrast, trees with some of the largest hydraulically-weighted vessel diameters existed in tall, deciduous plateau species, while the leaf: sapwood area ratio decreased with height in valley but not plateau species. These intriguing results suggest that species differentiation in water transport traits mediate edaphic filtering along the valley-toplateau gradient, in contrast to previous work where wood mechanical support mediated valley-to-plateau environmental filtering (Fortunel et al., 2014).

  11. Controls of Soil Spatial Variability in a Dry Tropical Forest.

    Science.gov (United States)

    Pulla, Sandeep; Riotte, Jean; Suresh, H S; Dattaraja, H S; Sukumar, Raman

    2016-01-01

    We examined the roles of lithology, topography, vegetation and fire in generating local-scale (dry tropical forest (SDTF) in southern India. For this, we mapped soil (available nutrients, Al, total C, pH, moisture and texture in the top 10 cm), rock outcrops, topography, all native woody plants ≥1 cm diameter at breast height (DBH), and spatial variation in fire frequency (times burnt during the 17 years preceding soil sampling) in a permanent 50-ha plot. Unlike classic catenas, lower elevation soils had lesser moisture, plant-available Ca, Cu, Mn, Mg, Zn, B, clay and total C. The distribution of plant-available Ca, Cu, Mn and Mg appeared to largely be determined by the whole-rock chemical composition differences between amphibolites and hornblende-biotite gneisses. Amphibolites were associated with summit positions, while gneisses dominated lower elevations, an observation that concurs with other studies in the region which suggest that hillslope-scale topography has been shaped by differential weathering of lithologies. Neither NO3(-)-N nor NH4(+)-N was explained by the basal area of trees belonging to Fabaceae, a family associated with N-fixing species, and no long-term effects of fire on soil parameters were detected. Local-scale lithological variation is an important first-order control over soil variability at the hillslope scale in this SDTF, by both direct influence on nutrient stocks and indirect influence via control of local relief.

  12. A phosphorus threshold for mycoheterotrophic plants in tropical forests.

    Science.gov (United States)

    Sheldrake, Merlin; Rosenstock, Nicholas P; Revillini, Daniel; Olsson, Pål Axel; Wright, S Joseph; Turner, Benjamin L

    2017-02-08

    The majority of terrestrial plants associate with arbuscular mycorrhizal (AM) fungi, which typically facilitate the uptake of limiting mineral nutrients by plants in exchange for plant carbon. However, hundreds of non-photosynthetic plant species-mycoheterotrophs-depend entirely on AM fungi for carbon as well as mineral nutrition. Mycoheterotrophs can provide insight into the operation and regulation of AM fungal relationships, but little is known about the factors, fungal or otherwise, that affect mycoheterotroph abundance and distribution. In a lowland tropical forest in Panama, we conducted the first systematic investigation into the influence of abiotic factors on the abundance and distribution of mycoheterotrophs, to ask whether the availability of nitrogen and phosphorus altered the occurrence of mycoheterotrophs and their AM fungal partners. Across a natural fertility gradient spanning the isthmus of Panama, and also in a long-term nutrient-addition experiment, mycoheterotrophs were entirely absent when soil exchangeable phosphate concentrations exceeded 2 mg P kg -1 Experimental phosphorus addition reduced the abundance of AM fungi, and also reduced the abundance of the specific AM fungal taxa required by the mycoheterotrophs, suggesting that the phosphorus sensitivity of mycoheterotrophs is underpinned by the phosphorus sensitivity of their AM fungal hosts. The soil phosphorus concentration of 2 mg P kg -1 also corresponds to a marked shift in tree community composition and soil phosphatase activity across the fertility gradient, suggesting that our findings have broad ecological significance. © 2017 The Author(s).

  13. Coleoptera Associated with Decaying Wood in a Tropical Deciduous Forest.

    Science.gov (United States)

    Muñoz-López, N Z; Andrés-Hernández, A R; Carrillo-Ruiz, H; Rivas-Arancibia, S P

    2016-08-01

    Coleoptera is the largest and diverse group of organisms, but few studies are dedicated to determine the diversity and feeding guilds of saproxylic Coleoptera. We demonstrate the diversity, abundance, feeding guilds, and succession process of Coleoptera associated with decaying wood in a tropical deciduous forest in the Mixteca Poblana, Mexico. Decaying wood was sampled and classified into four stages of decay, and the associated Coleoptera. The wood was identified according to their anatomy. Diversity was estimated using the Simpson index, while abundance was estimated using a Kruskal-Wallis test; the association of Coleoptera with wood species and decay was assessed using canonical correspondence analysis. Decay wood stage I is the most abundant (51%), followed by stage III (21%). We collected 93 Coleoptera belonging to 14 families, 41 genera, and 44 species. The family Cerambycidae was the most abundant, with 29% of individuals, followed by Tenebrionidae with 27% and Carabidae with 13%. We recognized six feeding guilds. The greatest diversity of Coleoptera was recorded in decaying Acacia farnesiana and Bursera linanoe. Kruskal-Wallis analysis indicated that the abundance of Coleoptera varied according to the species and stage of decay of the wood. The canonical analysis showed that the species and stage of decay of wood determined the composition and community structure of Coleoptera.

  14. Annual Proxy Records from Tropical Cloud Forest Trees in the Monteverde Cloud Forest, Costa Rica

    Science.gov (United States)

    Anchukaitis, K. J.; Evans, M. N.; Wheelwright, N. T.; Schrag, D. P.

    2005-12-01

    The extinction of the Golden Toad (Bufo periglenes) from Costa Rica's Monteverde Cloud Forest prompted research into the causes of ecological change in the montane forests of Costa Rica. Subsequent analysis of meteorological data has suggested that warmer global surface and tropical Pacific sea surface temperatures contribute to an observed decrease in cloud cover at Monteverde. However, while recent studies may have concluded that climate change is already having an effect on cloud forest environments in Costa Rica, without the context provided by long-term climate records, it is difficult to confidently conclude that the observed ecological changes are the result of anthropogenic climate forcing, land clearance in the lowland rainforest, or natural variability in tropical climate. To address this, we develop high-resolution proxy paleoclimate records from trees without annual rings in the Monteverde Cloud Forest in Costa Rica. Calibration of an age model in these trees is a fundamental prerequisite for proxy paleoclimate reconstructions. Our approach exploits the isotopic seasonality in the δ18O of water sources (fog versus rainfall) used by trees over the course of a single year. Ocotea tenera individuals of known age and measured annual growth increments were sampled in long-term monitored plantation sites in order to test this proposed age model. High-resolution (200μm increments) stable isotope measurements on cellulose reveal distinct, coherent δ18O cycles of 6 to 10‰. The calculated growth rates derived from the isotope timeseries match those observed from basal growth increment measurements. Spatial fidelity in the age model and climate signal is examined by using multiple cores from multiple trees and multiple sites. These data support our hypothesis that annual isotope cycles in these trees can be used to provide chronological control in the absence of rings. The ability of trees to record interannual climate variability in local hydrometeorology

  15. Divergent responses of soil buffering capacity to long-term N deposition in three typical tropical forests with different land-use history.

    Science.gov (United States)

    Lu, Xiankai; Mao, Qinggong; Mo, Jiangming; Gilliam, Frank S; Zhou, Guoyi; Luo, Yiqi; Zhang, Wei; Huang, Juan

    2015-04-07

    Elevated anthropogenic nitrogen (N) deposition has become an important driver of soil acidification at both regional and global scales. It remains unclear, however, how long-term N deposition affects soil buffering capacity in tropical forest ecosystems and in ecosystems of contrasting land-use history. Here, we expand on a long-term N deposition experiment in three tropical forests that vary in land-use history (primary, secondary, and planted forests) in Southern China, with N addition as NH4NO3 of 0, 50, 100, and 150 kg N ha(-1) yr(-1), respectively. Results showed that all three forests were acid-sensitive ecosystems with poor soil buffering capacity, while the primary forest had higher base saturation and cation exchange capacity than others. However, long-term N addition significantly accelerated soil acidification and decreased soil buffering capacity in the primary forest, but not in the degraded secondary and planted forests. We suggest that ecosystem N status, influenced by different land-use history, is primarily responsible for these divergent responses. N-rich primary forests may be more sensitive to external N inputs than others with low N status, and should be given more attention under global changes in the future, because lack of nutrient cations is irreversible.

  16. Evaporation and transpiration differences among successional stages of Tropical Dry Forest, Santa Rosa National Park, Costa Rica

    Science.gov (United States)

    Jiménez-Rodríguez, César D.; Calvo-Alvarado, Julio

    2016-04-01

    Seasonal environments in the tropics show strong responses to changes in precipitation regimes. The monthly water availability is the main trigger for ecological responses as flowering, fructification, leaf sprouting and senescence. Among these environments, the tropical dry forests (TDF) depends directly on the soil water availability, defining the forest growing season despite the forest characteristics. However, within the same ecosystem is possible to find differences in the water fluxes due to forest age. The TDF located in Santa Rosa National Park (SRNP) in Costa Rica; shows a particular matrix of secondary forest patches varying in age, structure, and species composition allowing us to evaluate the water fluxes differences among successional stages of TDF. Three permanent plots of 1000.0 m2 were selected from the Tropi-Dry project. Each plot characterized a specific successional stage of this ecosystem varying in forest structure and age. Every location was equipped to measure the hourly soil water content and forest growth, while the meteorological conditions were collected by the meteorological station of the national park. The data was collected from December 2005 to June 2009 however, due to data gaps and quality control the data analysis includes only the hydrological years between 2006 and 2009. The soil water content was measured at three depths in each plot (10, 30 and 40 cm) to determine the real evapotranspiration from the forest. The precipitation along these three years shows strong variations registering 326.5 mm-1yr-1 in the first year up to 3004.0 mm-1yr-1 during the last year, these strong changes are influenced by the ENOS phenomena in the region. Regardless the precipitation amounts the evapotranspiration do not differ strongly on a yearly basis, were 726.7 mm-1yr-1, 675.1 mm-1yr-1 and 751.6 mm-1yr-1 were exported to the atmosphere by the early, intermediate and late stages of TDF secondary forest. The yearly strong differences in

  17. Responses of soil fungi to logging and oil palm agriculture in Southeast Asian tropical forests.

    Science.gov (United States)

    McGuire, K L; D'Angelo, H; Brearley, F Q; Gedallovich, S M; Babar, N; Yang, N; Gillikin, C M; Gradoville, R; Bateman, C; Turner, B L; Mansor, P; Leff, J W; Fierer, N

    2015-05-01

    Human land use alters soil microbial composition and function in a variety of systems, although few comparable studies have been done in tropical forests and tropical agricultural production areas. Logging and the expansion of oil palm agriculture are two of the most significant drivers of tropical deforestation, and the latter is most prevalent in Southeast Asia. The aim of this study was to compare soil fungal communities from three sites in Malaysia that represent three of the most dominant land-use types in the Southeast Asia tropics: a primary forest, a regenerating forest that had been selectively logged 50 years previously, and a 25-year-old oil palm plantation. Soil cores were collected from three replicate plots at each site, and fungal communities were sequenced using the Illumina platform. Extracellular enzyme assays were assessed as a proxy for soil microbial function. We found that fungal communities were distinct across all sites, although fungal composition in the regenerating forest was more similar to the primary forest than either forest community was to the oil palm site. Ectomycorrhizal fungi, which are important associates of the dominant Dipterocarpaceae tree family in this region, were compositionally distinct across forests, but were nearly absent from oil palm soils. Extracellular enzyme assays indicated that the soil ecosystem in oil palm plantations experienced altered nutrient cycling dynamics, but there were few differences between regenerating and primary forest soils. Together, these results show that logging and the replacement of primary forest with oil palm plantations alter fungal community and function, although forests regenerating from logging had more similarities with primary forests in terms of fungal composition and nutrient cycling potential. Since oil palm agriculture is currently the mostly rapidly expanding equatorial crop and logging is pervasive across tropical ecosystems, these findings may have broad applicability.

  18. Mapping dynamics of deforestation and forest degradation in tropical forests using radar satellite data

    Science.gov (United States)

    Joshi, Neha; Mitchard, Edward TA; Woo, Natalia; Torres, Jorge; Moll-Rocek, Julian; Ehammer, Andrea; Collins, Murray; Jepsen, Martin R.; Fensholt, Rasmus

    2015-03-01

    Mapping anthropogenic forest disturbances has largely been focused on distinct delineations of events of deforestation using optical satellite images. In the tropics, frequent cloud cover and the challenge of quantifying forest degradation remain problematic. In this study, we detect processes of deforestation, forest degradation and successional dynamics, using long-wavelength radar (L-band from ALOS PALSAR) backscatter. We present a detection algorithm that allows for repeated disturbances on the same land, and identifies areas with slow- and fast-recovering changes in backscatter in close spatial and temporal proximity. In the study area in Madre de Dios, Peru, 2.3% of land was found to be disturbed over three years, with a false positive rate of 0.3% of area. A low, but significant, detection rate of degradation from sparse and small-scale selective logging was achieved. Disturbances were most common along the tri-national Interoceanic Highway, as well as in mining areas and areas under no land use allocation. A continuous spatial gradient of disturbance was observed, highlighting artefacts arising from imposing discrete boundaries on deforestation events. The magnitude of initial radar backscatter, and backscatter decrease, suggested that large-scale deforestation was likely in areas with initially low biomass, either naturally or since already under anthropogenic use. Further, backscatter increases following disturbance suggested that radar can be used to characterize successional disturbance dynamics, such as biomass accumulation in lands post-abandonment. The presented radar-based detection algorithm is spatially and temporally scalable, and can support monitoring degradation and deforestation in tropical rainforests with the use of products from ALOS-2 and the future SAOCOM and BIOMASS missions.

  19. Trade-offs between ecosystem services and alternative pathways toward sustainability in a tropical dry forest region

    Directory of Open Access Journals (Sweden)

    Francisco Mora

    2016-12-01

    Full Text Available The design of strategies aimed at sustainable resource management requires an understanding of the trade-offs between the ecosystem services at stake, to determine appropriate ways in which to navigate them. We assess trade-offs between forage production for cattle ranching and the maintenance of carbon stocks or tree diversity in a Mexican tropical dry forest. Trade-offs between pairs of services were assessed by identifying their efficiency frontiers at both site and landscape scales. We also estimated service outcomes under current and hypothetical land-management conditions. We found stark trade-offs between fodder and carbon stocks and between fodder and tree species richness at the site scale. At the landscape scale, the efficiency frontier was concave, with a much less pronounced trade-off in the fodder-species richness case. Our estimates of current service supply levels showed a reduction of 18-21% for C stock and 41-43% for fodder biomass, relative to the maximum feasible values along the efficiency frontier. Choice of the optimum management strategy to reduce such inefficiency depended on deforestation level: secondary forest regeneration was most suitable when deforestation is low, whereas increased fodder productivity in the pastures is best when deforestation is high. Pasture enrichment with forage trees and secondary forest growth are potential management alternatives for achieving sustainability given the range of enabling ecological factors and to balance ecological and social sustainability given the requirements and preferences of local stakeholders. Given that analogous trade-offs are found across the tropics, this work contributes to reconciling tropical forest maintenance and its use for sustainable rural livelihoods.

  20. Estimation of tropical forest height and biomass dynamics using lidar remote sensing at La Selva, Costa Rica

    Science.gov (United States)

    Dubayah, R. O.; Sheldon, S. L.; Clark, D. B.; Hofton, M. A.; Blair, J. B.; Hurtt, G. C.; Chazdon, R. L.

    2010-06-01

    In this paper we present the results of an experiment to measure forest structure and biomass dynamics over the tropical forests of La Selva Biological Station in Costa Rica using a medium resolution lidar. Our main objective was to observe changes in forest canopy height, related height metrics, and biomass, and from these map sources and sinks of carbon across the landscape. The Laser Vegetation Imaging Sensor (LVIS) measured canopy structure over La Selva in 1998 and again in 2005. Changes in waveform metrics were related to field-derived changes in estimated aboveground biomass from a series of old growth and secondary forest plots. Pairwise comparisons of nearly coincident lidar footprints between years showed canopy top height changes that coincided with expected changes based on land cover types. Old growth forests had a net loss in height of -0.33 m, while secondary forests had net gain of 2.08 m. Multiple linear regression was used to relate lidar metrics with biomass changes for combined old growth and secondary forest plots, giving an r2 of 0.65 and an RSE of 10.5 Mg/ha, but both parametric and bootstrapped confidence intervals were wide, suggesting weaker model performance. The plot level relationships were then used to map biomass changes across La Selva using LVIS at a 1 ha scale. The spatial patterns of biomass changes matched expected patterns given the distribution of land cover types at La Selva, with secondary forests showing a gain of 25 Mg/ha and old growth forests showing little change (2 Mg/ha). Prediction intervals were calculated to assess uncertainty for each 1 ha cell to ascertain whether the data and methods used could confidently estimate the sign (source or sink) of the biomass changes. The resulting map showed most of the old growth areas as neutral (no net biomass change), with widely scattered and isolated sources and sinks. Secondary forests in contrast were mostly sinks or neutral, but were never sources. By quantifying both the

  1. Former land-use and tree species affect nitrogen oxide emissions from a tropical dry forest.

    Science.gov (United States)

    Heather Erickson; Eric A. Davidson; Michael Keller

    2002-01-01

    Species composition in successional dry forests in the tropics varies widely, but the effect of this variation on biogeochemical processes is not well known. We examined fluxes of N oxides (nitrous and nitric oxide), soil N cycling, and litter chemistry (C/N ratio) in four successional dry forests on similar soils in western Puerto Rico with differing species...

  2. Seasonal variation in soil and plant water potentials in a Bolivian tropical moist and dry forest

    NARCIS (Netherlands)

    Markesteijn, L.; Iraipi, J.; Bongers, F.; Poorter, L.

    2010-01-01

    We determined seasonal variation in soil matric potentials (¿soil) along a topographical gradient and with soil depth in a Bolivian tropical dry (1160 mm y-1 rain) and moist forest (1580 mm y-1). In each forest we analysed the effect of drought on predawn leaf water potentials (¿pd) and drought

  3. Wildlife conservation in fragmented tropical forests: A case of South Garo Hills, Meghalaya, North East India

    Science.gov (United States)

    Ashish. Kumar; Bruce G. Marcot; Rohitkumar. Patel

    2017-01-01

    This volume presents findings on, and implications for, wildlife conservation in the tropical forests in Garo Hills of Meghalaya state in the North East India. A companion volume presented the findings on forest fragmentation due to practice of slash and burn agriculture in the region. Both of the volumes summarize work completed over more than a decade on...

  4. Does functional trait diversity predict aboveground biomass and productivity of tropical forests? Testing three alternative hypotheses

    NARCIS (Netherlands)

    Finegan, B.; Pena Claros, M.; Silva de Oliveira, A.; Ascarrunz, N.; Bret-Harte, M.S.; Carreño Rocabado, I.G.; Casanoves, F.; Diaz, S.; Eguiguren Velepucha, P.; Fernandez, F.; Licona, J.C.; Lorenzo, L.; Salgado Negret, B.; Vaz, M.; Poorter, L.

    2014-01-01

    1. Tropical forests are globally important, but it is not clear whether biodiversity enhances carbon storage and sequestration in them. We tested this relationship focusing on components of functional trait biodiversity as predictors. 2. Data are presented for three rain forests in Bolivia, Brazil

  5. Data from: Conservative species drive biomass productivity in tropical dry forests

    NARCIS (Netherlands)

    Prado-Junior, Jamir A.; Schiavini, Ivan; Vale, Vagner S.; Sande, van der M.T.; Lohbeck, M.W.M.; Poorter, L.

    2016-01-01

    Data of above-ground biomass dynamics over a five-year period in eight seasonal tropical dry forests in Minas Gerais state, Southeastern Brazil. In each forest, 25 permanent sample plots (20 × 20 m) were established totaling one ha per site. Biomass dynamics, structural, floristic, functional and

  6. Upland soil charcoal in the wet tropical forests of central Guyana

    NARCIS (Netherlands)

    Hammond, D.S.; ter Steege, H.; van der Borg, K.

    2007-01-01

    A soil charcoal survey was undertaken across 60,000 ha of closed-canopy tropical forest in central Guyana to determine the occurrence, ubiquity, and age of past forest fires across a range of terra firme soil types. Samples were clustered around six centers consisting of spatially nested sample

  7. A multi-criterion index for the evaluation of local tropical forest conditions in Mexico

    NARCIS (Netherlands)

    Ochoa-Gaona, S.; Kampichler, C.; de Jong, B.H.J.; Hernández, S.; Geissen, V.; Huerta, E.

    2010-01-01

    Despite the ecological and economical importance of tropical forests they are currently affected by human activities, mainly through deforestation and selective extraction. With the aim of making an opportune diagnosis of the condition of forests, we developed an ecological index based on

  8. Estimating the opportunity costs of activities that cause degradation in tropical dry forest: Implications for REDD +

    NARCIS (Netherlands)

    Borrego, Armonia; Skutsch, Margaret

    2014-01-01

    The viability of national REDD + programs will depend in part on whether funds generated from sales of carbon credits are sufficient to cover the opportunity costs (OC) of forgone uses of the forest. We present the results of a study in which OC were estimated in dry tropical forest, in western

  9. Light-dependent leaf trait variation in 43 tropical dry forest tree species

    NARCIS (Netherlands)

    Markesteijn, L.; Poorter, L.; Bongers, F.J.J.M.

    2007-01-01

    Our understanding of leaf acclimation in relation to irradiance of fully grown or juvenile trees is mainly based on research involving tropical wet forest species. We studied sun¿shade plasticity of 24 leaf traits of 43 tree species in a Bolivian dry deciduous forest. Sampling was confined to small

  10. Effects of fertilization on phosphorus pools in the volcanic soil of a managed tropical forest

    Science.gov (United States)

    Dean F. Meason; Travis W. Idol; J.B. Friday; Paul G. Scowcroft

    2009-01-01

    Acacia koa forests benefit from phosphorus fertilisation, but it is unknown if fertilisation is a short or long term effect on P availability. Past research suggests that P cycling in soils with high P sorption capacity, such as Andisols, was through organic pathways. We studied leaf P and soil P fractions in a tropical forest Andisol for 3 years...

  11. The impact of tropical forest logging and oil palm agriculture on the soil microbiome

    NARCIS (Netherlands)

    Tripathi, B. M.; Edwards, D. P.; Mendes, L. W.; Kim, M.; Dong, K.; Kim, H.; Adams, J. M.

    2016-01-01

    Selective logging and forest conversion to oil palm agriculture are rapidly altering tropical forests. However, functional responses of the soil microbiome to these land-use changes are poorly understood. Using 16S rRNA gene and shotgun metagenomic sequencing, we compared composition and functional

  12. Multidimensional remote sensing based mapping of tropical forests and their dynamics

    NARCIS (Netherlands)

    Dutrieux, L.P.

    2016-01-01

    Tropical forests concentrate a large part of the terrestrial biodiversity, provide important resources, and deliver many ecosystem services such as climate regulation, carbon sequestration, and hence climate change mitigation. While in the current context of anthropogenic pressure these forests

  13. A soil burn severity index for understanding soil-fire relations in tropical forests [Chinese version

    Science.gov (United States)

    Theresa B. Jain; William A. Gould; Russell T. Graham; David S. Pilliod; Leigh B. Lentile; Grizelle Gonzalez

    2008-01-01

    Methods for evaluating the impact of fires within tropical forests are needed as fires become more frequent and human populations and demands on forests increase. Short- and long-term fire effects on soils are determined by the prefire, fire, and postfire environments. We placed these components within a fire-disturbance continuum to guide our literature synthesis and...

  14. Comparison of the abundance and composition of litter fauna in tropical and subalpine forests

    Science.gov (United States)

    G. Gonzalez; T.R. Seastedt

    2000-01-01

    In this study, we quantify the abundance and composition of the litter fauna in dry and wet tropical forests and north- and south-facing subalpine forests. We used the same litter species contained in litterbags across study sites to standardize for substrate conditions, and a single method of fauna extraction from the litter (Tullgren method). Fauna densities were...

  15. Does functional trait diversity predict aboveground biomass and productivity of tropical forests? Testing three alternative hypotheses

    NARCIS (Netherlands)

    Finegan, B.; Peña Claros, M.; Oliviera, de A.; Alarcón, A.; Ascarrunz, N.; Bret-Harte, M.S.; Carreño-Rocabado, G.; Casanoves, F.; Díaz, S.; Eguiguren Velepucha, P.; Fernandez, F.; Licona, J.C.; Lorenzo, L.; Salgado Negret, B.; Vaz, M.; Poorter, L.

    2015-01-01

    Tropical forests are globally important, but it is not clear whether biodiversity enhances carbon storage and sequestration in them. We tested this relationship focusing on components of functional trait biodiversity as predictors. Data are presented for three rain forests in Bolivia, Brazil and

  16. Phosphate addition enhanced soil inorganic nutrients to a large extent in three tropical forests.

    Science.gov (United States)

    Zhu, Feifei; Lu, Xiankai; Liu, Lei; Mo, Jiangming

    2015-01-21

    Elevated nitrogen (N) deposition may constrain soil phosphorus (P) and base cation availability in tropical forests, for which limited evidence have yet been available. In this study, we reported responses of soil inorganic nutrients to full factorial N and P treatments in three tropical forests different in initial soil N status (N-saturated old-growth forest and two less-N-rich younger forests). Responses of microbial biomass, annual litterfall production and nutrient input were also monitored. Results showed that N treatments decreased soil inorganic nutrients (except N) in all three forests, but the underlying mechanisms varied depending on forests: through inhibition on litter decomposition in the old-growth forest and through Al(3+) replacement of Ca(2+) in the two younger forests. In contrast, besides great elevation in soil available P, P treatments induced 60%, 50%, 26% increases in sum of exchangeable (K(+)+Ca(2+)+Mg(2+)) in the old-growth and the two younger forests, respectively. These positive effects of P were closely related to P-stimulated microbial biomass and litter nutrient input, implying possible stimulation of nutrient return. Our results suggest that N deposition may result in decreases in soil inorganic nutrients (except N) and that P addition can enhance soil inorganic nutrients to support ecosystem processes in these tropical forests.

  17. Tropical countries may be willing to pay more to protect their forests.

    Science.gov (United States)

    Vincent, Jeffrey R; Carson, Richard T; DeShazo, J R; Schwabe, Kurt A; Ahmad, Ismariah; Chong, Siew Kook; Chang, Yii Tan; Potts, Matthew D

    2014-07-15

    Inadequate funding from developed countries has hampered international efforts to conserve biodiversity in tropical forests. We present two complementary research approaches that reveal a significant increase in public demand for conservation within tropical developing countries as those countries reach upper-middle-income (UMI) status. We highlight UMI tropical countries because they contain nearly four-fifths of tropical primary forests, which are rich in biodiversity and stored carbon. The first approach is a set of statistical analyses of various cross-country conservation indicators, which suggests that protective government policies have lagged behind the increase in public demand in these countries. The second approach is a case study from Malaysia, which reveals in a more integrated fashion the linkages from rising household income to increased household willingness to pay for conservation, nongovernmental organization activity, and delayed government action. Our findings suggest that domestic funding in UMI tropical countries can play a larger role in (i) closing the funding gap for tropical forest conservation, and (ii) paying for supplementary conservation actions linked to international payments for reduced greenhouse gas emissions from deforestation and forest degradation in tropical countries.

  18. LBA-ECO ND-04 Secondary Forest Recovery, Structure, and LAI, Central Amazonia, Brazil

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set reports measurements of the canopy and structure of secondary forests regenerating from abandoned pastures. These secondary forests are located in the...

  19. Land cover change and remote sensing: Examples of quantifying spatiotemporal dynamics in tropical forests

    Energy Technology Data Exchange (ETDEWEB)

    Krummel, J.R.; Su, Haiping [Argonne National Lab., IL (United States); Fox, J. [East-West Center, Honolulu, HI (United States); Yarnasan, S.; Ekasingh, M. [Chiang Mai Univ. (Thailand)

    1995-06-01

    Research on human impacts or natural processes that operate over broad geographic areas must explicitly address issues of scale and spatial heterogeneity. While the tropical forests of Southeast Asia and Mexico have been occupied and used to meet human needs for thousands of years, traditional forest management systems are currently being transformed by rapid and far-reaching demographic, political, economic, and environmental changes. The dynamics of population growth, migration into the remaining frontiers, and responses to national and international market forces result in a demand for land to produce food and fiber. These results illustrate some of the mechanisms that drive current land use changes, especially in the tropical forest frontiers. By linking the outcome of individual land use decisions and measures of landscape fragmentation and change, the aggregated results shows the hierarchy of temporal and spatial events that in summation result in global changes to the most complex and sensitive biome -- tropical forests. By quantifying the spatial and temporal patterns of tropical forest change, researchers can assist policy makers by showing how landscape systems in these tropical forests are controlled by physical, biological, social, and economic parameters.

  20. Temperature and rainfall interact to control carbon cycling in tropical forests.

    Science.gov (United States)

    Taylor, Philip G; Cleveland, Cory C; Wieder, William R; Sullivan, Benjamin W; Doughty, Christopher E; Dobrowski, Solomon Z; Townsend, Alan R

    2017-06-01

    Tropical forests dominate global terrestrial carbon (C) exchange, and recent droughts in the Amazon Basin have contributed to short-term declines in terrestrial carbon dioxide uptake and storage. However, the effects of longer-term climate variability on tropical forest carbon dynamics are still not well understood. We synthesised field data from more than 150 tropical forest sites to explore how climate regulates tropical forest aboveground net primary productivity (ANPP) and organic matter decomposition, and combined those data with two existing databases to explore climate - C relationships globally. While previous analyses have focused on the effects of either temperature or rainfall on ANPP, our results highlight the importance of interactions between temperature and rainfall on the C cycle. In cool forests (cycling, but in warm tropical forests (> 20 °C) it consistently enhanced both ANPP and decomposition. At the global scale, our analysis showed an increase in ANPP with rainfall in relatively warm sites, inconsistent with declines in ANPP with rainfall reported previously. Overall, our results alter our understanding of climate - C cycle relationships, with high precipitation accelerating rates of C exchange with the atmosphere in the most productive biome on earth. © 2017 John Wiley & Sons Ltd/CNRS.

  1. Sensitivity of tropical forest aboveground productivity to climate anomalies in SW Costa Rica

    Science.gov (United States)

    Hofhansl, Florian; Kobler, Johannes; Ofner, Joachim; Drage, Sigrid; Pölz, Eva-Maria; Wanek, Wolfgang

    2014-12-01

    The productivity of tropical forests is driven by climate (precipitation, temperature, and light) and soil fertility (geology and topography). While large-scale drivers of tropical productivity are well established, knowledge on the sensitivity of tropical lowland net primary production to climate anomalies remains scarce. We here analyze seven consecutive years of monthly recorded tropical forest aboveground net primary production (ANPP) in response to a recent El Niño-Southern Oscillation (ENSO) anomaly. The ENSO transition period resulted in increased temperatures and decreased precipitation during the El Niño dry period, causing a decrease in ANPP. However, the subsequent La Niña wet period caused strong increases in ANPP such that drought-induced reductions were overcompensated. Most strikingly, the climatic controls differed between canopy production (CP) and wood production (WP). Whereas CP showed strong seasonal variation but was not affected by ENSO, WP decreased significantly in response to a 3°C increase in annual maximum temperatures during the El Niño period but subsequently recovered to above predrought levels during the La Niña period. Moreover, the climate sensitivity of tropical forest ANPP components was affected by local topography (water availability) and disturbance history (species composition). Our results suggest that projected increases in temperature and dry season length could impact tropical carbon sequestration by shifting ANPP partitioning toward decreased WP, thus decreasing the carbon storage of highly productive lowland forests. We conclude that the impact of climate anomalies on tropical forest productivity is strongly related to local site characteristics and will therefore likely prevent uniform responses of tropical lowland forests to projected global changes.

  2. Ant-diaspore interactions during secondary succession in the Atlantic forest of Brazil

    Directory of Open Access Journals (Sweden)

    Victor P Zwiener

    2012-06-01

    Full Text Available Animal-plant interactions are important for the recovery of diversity and processes in secondary forests, which increasingly dominate the tropical landscape. We used a combination of observational and experimental approaches to study the interactions of ants with diaspores across a successional gradient of forests in Southern Brazil, from August 2007 to April 2008. In addition to diaspore removal rates, we assessed the species richness, diversity and behaviour of ants interacting with diaspores, in three replicated sites of four successional stages of forests. We recorded 22 ant species interacting with diaspores (an estimated 15% of the total species pool in the region. Species richness and diversity did not differ among successional stages but the behaviour of ants towards diaspores changed with the age of secondary forests. In old successional stages the removal of entire diaspores was more common than in young successional stages of forests. Concordantly, diaspore removal rates were lowest in the youngest successional stage of secondary forests and increased with the age of forests. These results indicate that ant-diaspore interactions in secondary forests are disturbed and lower removal rates in secondary forests are likely to constrain the recruitment of plant populations during secondary succession. Rev. Biol. Trop. 60 (2: 933-942. Epub 2012 June 01.Las interacciones entre animales y plantas son importantes para la recuperación de la diversidad y los procesos en los bosques secundarios, los cuales cada vez más tienden a dominar el paisaje tropical. Nosotros utilizamos una combinación de métodos experimentales y observaciones para estudiar las interacciones entre hormigas y diásporas a través de un gradiente de sucesión en los bosques del sur de Brasil, entre agosto 2007 y abril 2008. Además de las tasas de eliminación de diásporas, evaluamos la riqueza de especies, la diversidad y el comportamiento de las hormigas que interact

  3. Using avian functional traits to assess the impact of land-cover change on ecosystem processes linked to resilience in tropical forests

    Science.gov (United States)

    Bregman, Tom P.; Lees, Alexander C.; MacGregor, Hannah E. A.; Darski, Bianca; de Moura, Nárgila G.; Aleixo, Alexandre; Barlow, Jos

    2016-01-01

    Vertebrates perform key roles in ecosystem processes via trophic interactions with plants and insects, but the response of these interactions to environmental change is difficult to quantify in complex systems, such as tropical forests. Here, we use the functional trait structure of Amazonian forest bird assemblages to explore the impacts of land-cover change on two ecosystem processes: seed dispersal and insect predation. We show that trait structure in assemblages of frugivorous and insectivorous birds remained stable after primary forests were subjected to logging and fire events, but that further intensification of human land use substantially reduced the functional diversity and dispersion of traits, and resulted in communities that occupied a different region of trait space. These effects were only partially reversed in regenerating secondary forests. Our findings suggest that local extinctions caused by the loss and degradation of tropical forest are non-random with respect to functional traits, thus disrupting the network of trophic interactions regulating seed dispersal by forest birds and herbivory by insects, with important implications for the structure and resilience of human-modified tropical forests. Furthermore, our results illustrate how quantitative functional traits for specific guilds can provide a range of metrics for estimating the contribution of biodiversity to ecosystem processes, and the response of such processes to land-cover change. PMID:27928045

  4. Using avian functional traits to assess the impact of land-cover change on ecosystem processes linked to resilience in tropical forests.

    Science.gov (United States)

    Bregman, Tom P; Lees, Alexander C; MacGregor, Hannah E A; Darski, Bianca; de Moura, Nárgila G; Aleixo, Alexandre; Barlow, Jos; Tobias, Joseph A

    2016-12-14

    Vertebrates perform key roles in ecosystem processes via trophic interactions with plants and insects, but the response of these interactions to environmental change is difficult to quantify in complex systems, such as tropical forests. Here, we use the functional trait structure of Amazonian forest bird assemblages to explore the impacts of land-cover change on two ecosystem processes: seed dispersal and insect predation. We show that trait structure in assemblages of frugivorous and insectivorous birds remained stable after primary forests were subjected to logging and fire events, but that further intensification of human land use substantially reduced the functional diversity and dispersion of traits, and resulted in communities that occupied a different region of trait space. These effects were only partially reversed in regenerating secondary forests. Our findings suggest that local extinctions caused by the loss and degradation of tropical forest are non-random with respect to functional traits, thus disrupting the network of trophic interactions regulating seed dispersal by forest birds and herbivory by insects, with important implications for the structure and resilience of human-modified tropical forests. Furthermore, our results illustrate how quantitative functional traits for specific guilds can provide a range of metrics for estimating the contribution of biodiversity to ecosystem processes, and the response of such processes to land-cover change. © 2016 The Author(s).

  5. Phenology-Based Method for Mapping Tropical Evergreen Forests by Integrating of MODIS and Landsat Imagery

    Directory of Open Access Journals (Sweden)

    Weili Kou

    2017-01-01

    Full Text Available Updated extent, area, and spatial distribution of tropical evergreen forests from inventory data provides valuable knowledge for research of the carbon cycle, biodiversity, and ecosystem services in tropical regions. However, acquiring these data in mountainous regions requires labor-intensive, often cost-prohibitive field protocols. Here, we report about validated methods to rapidly identify the spatial distribution of tropical forests, and obtain accurate extent estimates using phenology-based procedures that integrate the Moderate Resolution Imaging Spectroradiometer (MODIS and Landsat imagery. Firstly, an analysis of temporal profiles of annual time-series MODIS Normalized Difference Vegetation Index (NDVI, Enhanced Vegetation Index (EVI, and Land Surface Water Index (LSWI was developed to identify the key phenology phase for extraction of tropical evergreen forests in five typical lands cover types. Secondly, identification signatures of tropical evergreen forests were selected and their related thresholds were calculated based on Landsat NDVI, EVI, and LSWI extracted from ground true samples of different land cover types during the key phenology phase. Finally, a map of tropical evergreen forests was created by a pixel-based thresholding. The developed methods were tested in Xishuangbanna, China, and the results show: (1 Integration of Landsat and MODIS images performs well in extracting evergreen forests in tropical complex mountainous regions. The overall accuracy of the resulting map of the case study was 92%; (2 Annual time series of high-temporal-resolution remote sensing images (MODIS can effectively be used for identification of the key phenology phase (between Julian Date 20 and 120 to extract tropical evergreen forested areas through analysis of NDVI, EVI, and LSWI of different land cover types; (3 NDVI and LSWI are two effective metrics (NDVI ≥ 0.670 and 0.447 ≥ LSWI ≥ 0.222 to depict evergreen forests from other land cover

  6. Diversity and aboveground biomass of lianas in the tropical seasonal rain forests of Xishuangbanna, SW China.

    Science.gov (United States)

    Lü, Xiao-Tao; Tang, Jian-Wei; Feng, Zhi-Li; Li, Mai-He

    2009-01-01

    Lianas are important components of tropical forests and have significant impacts on the diversity, structure and dynamics of tropical forests. The present study documented the liana flora in a Chinese tropical region. Species richness, abundance, size-class distribution and spatial patterns of lianas were investigated in three 1-ha plots in tropical seasonal rain forests in Xishuangbanna, SW China. All lianas with > or = 2 cm diameter at breast height (dbh) were measured, tagged and identified. A total of 458 liana stems belonging to 95 species (ranging from 38 to 50 species/ha), 59 genera and 32 families were recorded in the three plots. The most well-represented families were Loganiaceae, Annonceae, Papilionaceae, Apocynaceae and Rhamnaceae. Papilionaceae (14 species recorded) was the most important family in the study forests. The population density, basal area and importance value index (IVI) varied greatly across the three plots. Strychnos cathayensis, Byttneria grandifolia and Bousigonia mekongensis were the dominant species in terms of IVI across the three plots. The mean aboveground biomass of lianas (3 396 kg/ha) accounted for 1.4% of the total community above-ground biomass. The abundance, diversity and biomass of lianas in Xishuangbanna tropical seasonal rain forests are lower than those in tropical moist and wet forests, but higher than those in tropical dry forests. This study provides new data on lianas from a geographical region that has been little-studied. Our findings emphasize that other factors beyond the amount and seasonality of precipitation should be included when considering the liana abundance patterns across scales.

  7. Fruiting and flushing phenology in Asian tropical and temperate forests: implications for primate ecology.

    Science.gov (United States)

    Hanya, Goro; Tsuji, Yamato; Grueter, Cyril C

    2013-04-01

    In order to understand the ecological adaptations of primates to survive in temperate forests, we need to know the general patterns of plant phenology in temperate and tropical forests. Comparative analyses have been employed to investigate general trends in the seasonality and abundance of fruit and young leaves in tropical and temperate forests. Previous studies have shown that (1) fruit fall biomass in temperate forest is lower than in tropical forest, (2) non-fleshy species, in particular acorns, comprise the majority of the fruit biomass in temperate forest, (3) the duration of the fruiting season is shorter in temperate forest, and (4) the fruiting peak occurs in autumn in most temperate forests. Through our comparative analyses of the fruiting and flushing phenology between Asian temperate and tropical forests, we revealed that (1) fruiting is more annually periodic (the pattern in one year is similar to that seen in the next year) in temperate forest in terms of the number of fruiting species or trees, (2) there is no consistent difference in interannual variations in fruiting between temperate and tropical forests, although some oak-dominated temperate forests exhibit extremely large interannual variations in fruiting, (3) the timing of the flushing peak is predictable (in spring and early summer), and (4) the duration of the flushing season is shorter. The flushing season in temperate forests (17-28 % of that in tropical forests) was quite limited, even compared to the fruiting season (68 %). These results imply that temperate primates need to survive a long period of scarcity of young leaves and fruits, but the timing is predictable. Therefore, a dependence on low-quality foods, such as mature leaves, buds, bark, and lichens, would be indispensable for temperate primates. Due to the high predictability of the timing of fruiting and flushing in temperate forests, fat accumulation during the fruit-abundant period and fat metabolization during the

  8. ALLOMETRIC EQUATIONS FOR ESTIMATING ABOVEGROUND BIOMASS IN PAPUA TROPICAL FOREST

    Directory of Open Access Journals (Sweden)

    Sandhi Imam Maulana

    2014-10-01

    Full Text Available Allometric equations can be used to estimate biomass and carbon stock of  the forest. However, so far the allometric equations for commercial species in Papua tropical forests have not been appropriately developed. In this research, allometric equations are presented based on the genera of  commercial species. Few equations have been developed for the commercial species of  Intsia, Pometia, Palaquium and Vatica genera and an equation of  a mix of  these genera. The number of  trees sampled in this research was 49, with diameters (1.30 m above-ground or above buttresses ranging from 5 to 40 cm. Destructive sampling was used to collect the samples where Diameter at Breast Height (DBH and Wood Density (WD were used as predictors for dry weight of  Total Above-Ground Biomass (TAGB. Model comparison and selection were based on the values of  F-statistics, R-sq, R-sq (adj, and average deviation. Based on these statistical indicators, the most suitable model for Intsia, Pometia, Palaquium and Vatica genera respectively are Log(TAGB = -0.76 + 2.51Log(DBH, Log(TAGB = -0.84 + 2.57Log(DBH, Log(TAGB = -1.52 + 2.96Log(DBH, and Log(TAGB = -0.09 + 2.08Log(DBH. Additional explanatory variables such as Commercial Bole Height (CBH do not really increase the indicators’ goodness of  fit for the equation. An alternative model to incorporate wood density should  be considered for estimating the above-ground biomass for mixed genera. Comparing the presented mixed-genera equation; Log(TAGB = 0.205 + 2.08Log(DBH + 1.75Log(WD, R-sq: 97.0%, R-sq (adj: 96.9%, F statistics 750.67, average deviation: 3.5%; to previously published datashows that this local species specific equation differs substantially from previously published equations and this site-specific equation is  considered to give a better estimation of  biomass.

  9. Leaf litter decomposition rates increase with rising mean annual temperature in Hawaiian tropical montane wet forests

    Directory of Open Access Journals (Sweden)

    Lori D. Bothwell

    2014-12-01

    Full Text Available Decomposing litter in forest ecosystems supplies nutrients to plants, carbon to heterotrophic soil microorganisms and is a large source of CO2 to the atmosphere. Despite its essential role in carbon and nutrient cycling, the temperature sensitivity of leaf litter decay in tropical forest ecosystems remains poorly resolved, especially in tropical montane wet forests where the warming trend may be amplified compared to tropical wet forests at lower elevations. We quantified leaf litter decomposition rates along a highly constrained 5.2 °C mean annual temperature (MAT gradient in tropical montane wet forests on the Island of Hawaii. Dominant vegetation, substrate type and age, soil moisture, and disturbance history are all nearly constant across this gradient, allowing us to isolate the effect of rising MAT on leaf litter decomposition and nutrient release. Leaf litter decomposition rates were a positive linear function of MAT, causing the residence time of leaf litter on the forest floor to decline by ∼31 days for each 1 °C increase in MAT. Our estimate of the Q10 temperature coefficient for leaf litter decomposition was 2.17, within the commonly reported range for heterotrophic organic matter decomposition (1.5–2.5 across a broad range of ecosystems. The percentage of leaf litter nitrogen (N remaining after six months declined linearly with increasing MAT from ∼88% of initial N at the coolest site to ∼74% at the warmest site. The lack of net N immobilization during all three litter collection periods at all MAT plots indicates that N was not limiting to leaf litter decomposition, regardless of temperature. These results suggest that leaf litter decay in tropical montane wet forests may be more sensitive to rising MAT than in tropical lowland wet forests, and that increased rates of N release from decomposing litter could delay or prevent progressive N limitation to net primary productivity with climate warming.

  10. Explosive radiation of Malpighiales supports a mid-cretaceous origin of modern tropical rain forests.

    Science.gov (United States)

    Davis, Charles C; Webb, Campbell O; Wurdack, Kenneth J; Jaramillo, Carlos A; Donoghue, Michael J

    2005-03-01

    Fossil data have been interpreted as indicating that Late Cretaceous tropical forests were open and dry adapted and that modern closed-canopy rain forest did not originate until after the Cretaceous-Tertiary (K/T) boundary. However, some mid-Cretaceous leaf floras have been interpreted as rain forest. Molecular divergence-time estimates within the clade Malpighiales, which constitute a large percentage of species in the shaded, shrub, and small tree layer in tropical rain forests worldwide, provide new tests of these hypotheses. We estimate that all 28 major lineages (i.e., traditionally recognized families) within this clade originated in tropical rain forest well before the Tertiary, mostly during the Albian and Cenomanian (112-94 Ma). Their rapid rise in the mid-Cretaceous may have resulted from the origin of adaptations to survive and reproduce under a closed forest canopy. This pattern may also be paralleled by other similarly diverse lineages and supports fossil indications that closed-canopy tropical rain forests existed well before the K/T boundary. This case illustrates that dated phylogenies can provide an important new source of evidence bearing on the timing of major environmental changes, which may be especially useful when fossil evidence is limited or controversial.

  11. Precipitation signal in pollen rain from tropical forests, South India.

    Science.gov (United States)

    Barboni, D; Bonnefille, R

    2001-04-01

    We have analyzed the pollen content of 51 surface soil samples collected in tropical evergreen and deciduous forests from the Western Ghats of South India sampled along a west to east gradient of decreasing rainfall (between 11 degrees 30-13 degrees 20'N and 75 degrees 30-76 degrees 30'E). Values of mean annual precipitation (Pann, mm/yr) have been calculated at each of the 51 sampling sites from a great number of meteorological stations in South India, using a method of data interpolation based on artificial neural network. Interpolated values at the pollen sites of Pann range from 1200 to 5555mm/yr, while mean temperature of the coldest month (MTCO) remains >15 degrees C and humidity factor (AET/PET, the actual evapotranspiration to potential evapotranspiration ratio) remains also included between 65 and 72%.Results are presented in the form of percentage pollen diagrams where samples are arranged according to increasing values of annual precipitation. They indicate that the climatic signal of rainfall is clearly evidenced by distinct pollen associations. Numerical analyses show that annual precipitation is an important parameter explaining the modern distribution of pollen taxa in this region. Pollen taxa markers of high rainfall (Pann >2500mm/yr) are Mallotus type, Elaeocarpus, Syzygium type, Olea dioica, Gnetum ula, and Hopea type, associated with Ixora type and Caryota. Pollen taxa markers of low rainfall (Pann <2500mm/yr) are Melastomataceae/Combretaceae, Maytenus type, Lagerstroemia and Grewia. The proportions of evergreen taxa and of arboreal taxa vary according to rainfall values. Indeed, when rainfall is <2500mm/yr, percentage of arboreal pollen (AP) is <50% and proportion of evergreen taxa is <20%. When rainfall exceeds 2500mm/yr, AP values average 70%, and proportion of evergreen taxa increases from 60 to 90%. Moreover, a good correlation between precipitation and proportion of evergreen taxa (0.85) presumes that precipitation can be estimated from

  12. Ant Foraging As an Indicator of Tropical Dry Forest Restoration.

    Science.gov (United States)

    Hernández-Flores, J; Osorio-Beristain, M; Martínez-Garza, C

    2016-08-01

    Variation in foraging behavior may indicate differences in food availability and allow assessment of restoration actions. Ants are prominent bioindicators used in assessing ecological responses to disturbance. However, behavioral data have been poorly incorporated as an index. The foraging performance of red harvester ants was quantified in order to evaluate the success of a restoration ecology experiment in the tropical dry forest of Sierra de Huautla, Morelos, in central Mexico. Foraging performance by granivorous, Pogonomyrmex barbatus, ants was diminished after 6 and 8 years of cattle grazing and wood harvest were excluded as part of a restoration experiment in a highly degraded biome. Despite investing more time in foraging, ant colonies in exclusion plots showed lower foraging success and acquired less seed biomass than colonies in control plots. In line with the predictions of optimal foraging theory, in restored plots where ant foraging performance was poor, ants harvested a higher diversity of seeds. Reduced foraging success and increased harvest of non-preferred foods in exclusion plots were likely due to the growth of herbaceous vegetation, which impedes travel by foragers. Moreover, by 8 years of exclusion, 37% of nests in exclusion plots had disappeared compared to 0% of nests in control plots. Ants' foraging success and behavior were sensitive to changes in habitat quality due to the plant successional process triggered by a restoration intervention. This study spotlights on the utility of animal foraging behavior in the evaluation of habitat restoration programs. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  13. Controls of Soil Spatial Variability in a Dry Tropical Forest.

    Directory of Open Access Journals (Sweden)

    Sandeep Pulla

    Full Text Available We examined the roles of lithology, topography, vegetation and fire in generating local-scale (<1 km2 soil spatial variability in a seasonally dry tropical forest (SDTF in southern India. For this, we mapped soil (available nutrients, Al, total C, pH, moisture and texture in the top 10 cm, rock outcrops, topography, all native woody plants ≥1 cm diameter at breast height (DBH, and spatial variation in fire frequency (times burnt during the 17 years preceding soil sampling in a permanent 50-ha plot. Unlike classic catenas, lower elevation soils had lesser moisture, plant-available Ca, Cu, Mn, Mg, Zn, B, clay and total C. The distribution of plant-available Ca, Cu, Mn and Mg appeared to largely be determined by the whole-rock chemical composition differences between amphibolites and hornblende-biotite gneisses. Amphibolites were associated with summit positions, while gneisses dominated lower elevations, an observation that concurs with other studies in the region which suggest that hillslope-scale topography has been shaped by differential weathering of lithologies. Neither NO3(--N nor NH4(+-N was explained by the basal area of trees belonging to Fabaceae, a family associated with N-fixing species, and no long-term effects of fire on soil parameters were detected. Local-scale lithological variation is an important first-order control over soil variability at the hillslope scale in this SDTF, by both direct influence on nutrient stocks and indirect influence via control of local relief.

  14. Effects of nitrogen additions on above- and belowground carbon dynamics in two tropical forests

    Energy Technology Data Exchange (ETDEWEB)

    Cusack, D.; Silver, W.L.; Torn, M.S.; McDowell, W.H.

    2011-04-15

    Anthropogenic nitrogen (N) deposition is increasing rapidly in tropical regions, adding N to ecosystems that often have high background N availability. Tropical forests play an important role in the global carbon (C) cycle, yet the effects of N deposition on C cycling in these ecosystems are poorly understood. We used a field N-fertilization experiment in lower and upper elevation tropical rain forests in Puerto Rico to explore the responses of above- and belowground C pools to N addition. As expected, tree stem growth and litterfall productivity did not respond to N fertilization in either of these Nrich forests, indicating a lack of N limitation to net primary productivity (NPP). In contrast, soil C concentrations increased significantly with N fertilization in both forests, leading to larger C stocks in fertilized plots. However, different soil C pools responded to N fertilization differently. Labile (low density) soil C fractions and live fine roots declined with fertilization, while mineral-associated soil C increased in both forests. Decreased soil CO2 fluxes in fertilized plots were correlated with smaller labile soil C pools in the lower elevation forest (R2 = 0.65, p\\0.05), and with lower live fine root biomass in the upper elevation forest (R2 = 0.90, p\\0.05). Our results indicate that soil C storage is sensitive to N deposition in tropical forests, even where plant productivity is not N-limited. The mineral-associated soil C pool has the potential to respond relatively quickly to N additions, and can drive increases in bulk soil C stocks in tropical forests.

  15. Traffic noise affects forest bird species in a protected tropical forest

    Directory of Open Access Journals (Sweden)

    J. Edgardo Arévalo

    2011-06-01

    Full Text Available The construction of roads near protected forest areas alters ecosystem function by creating habitat fragmentation and through several direct and indirect negative effects such as increased pollution, animal mortality through collisions, disturbance caused by excessive noise and wind turbulence. Noise in particular may have strong negative effects on animal groups such as frogs and birds, that rely on sound for communication as it can negatively interfere with vocalizations used for territorial defense or courtship. Thus, birds are expected to be less abundant close to the road where noise levels are high. In this study, we examined the effects of road traffic noise levels on forest bird species in a protected tropical forest in Costa Rica. Data collection was conducted in a forest segment of the Carara National Park adjacent to the Coastal Highway. We carried out 120 ten minute bird surveys and measured road noise levels 192 times from the 19th to the 23rd of April and from the 21st to the 28th of November, 2008. To maximize bird detection for the species richness estimates we operated six 12m standard mist nets simultaneously with the surveys. The overall mist-netting effort was 240net/h. In addition, we estimated traffic volumes by tallying the number of vehicles passing by the edge of the park using 24 one hour counts throughout the study. We found that the relative abundance of birds and bird species richness decreased significantly with the increasing traffic noise in the dry and wet season. Noise decreased significantly and in a logarithmic way with distance from the road in both seasons. However, noise levels at any given distance were significantly higher in the dry compared to the wet season. Our results suggest that noise might be an important factor influencing road bird avoidance as measured by species richness and relative abundance. Since the protected forest in question is located in a national park subjected to tourist visitation

  16. Richness and Abundance of Ichneumonidae in a Fragmented Tropical Rain Forest.

    Science.gov (United States)

    Ruiz-Guerra, B; Hanson, P; Guevara, R; Dirzo, R

    2013-10-01

    Because of the magnitude of land use currently occurring in tropical regions, the local loss of animal species due to habitat fragmentation has been widely studied, particularly in the case of vertebrates. Many invertebrate groups and the ichneumonid wasps in particular, however, have been poorly studied in this context, despite the fact that they are one of the most species-rich groups and play an important role as regulators of other insect populations. Here, we recorded the taxonomic composition of ichneumonid parasitoids and assessed their species richness, abundance, similarity, and dominance in the Los Tuxtlas tropical rain forest, Mexico. We compared two forest types: a continuous forest (640 ha) and a forest fragment (19 ha). We sampled ichneumonids using four malaise traps in both forest types during the dry (September-October) and rainy (March-April) seasons. A total of 104 individuals of Ichneumonidae belonging to 11 subfamilies, 18 genera, and 42 species were collected in the continuous forest and 11 subfamilies, 15 genera, and 24 species were collected in the forest fragment. Species richness, abundance, and diversity of ichneumonids were greater in the continuous forest than in the forest fragment. We did not detect differences between seasons. Species rank/abundance curves showed that the ichneumonid community between the forest types was different. Species similarity between forest types was low. The most dominant species in continuous forest was Neotheronia sp., whereas in the forest fragment, it was Orthocentrus sp. Changes in the ichneumonid wasp community may compromise important tropical ecosystem processes.

  17. Spaceborne SAR Data for Aboveground-Biomass Retrieval of Indian Tropical Forests

    Science.gov (United States)

    Khati, U.; Singh, G.; Musthafa, M.

    2017-12-01

    Forests are important and indispensable part of the terrestrial ecosystems, and have a direct impact on the global carbon cycle. Forest biophysical parameters such as forest stand height and forest above-ground biomass (AGB) are forest health indicators. Measuring the forest biomass using traditional ground survey techniques are man-power consuming and have very low spatial coverage. Satellite based remote sensing techniques provide synoptic view of the earth with continuous measurements over large, inaccessible forest regions. Satellite Synthetic Aperture Radar (SAR) data has been shown to be sensitive to these forest bio-physical parameters and have been extensively utilized over boreal and tropical forests. However, there are limited studies over Indian tropical forests due to lack of auxiliary airborne data and difficulties in manual in situ data collection. In this research work we utilize spaceborne data from TerraSAR-X/TanDEM-X and ALOS-2/PALSAR-2 and implement both Polarimetric SAR and PolInSAR techniques for retrieval of AGB of a managed tropical forest in India. The TerraSAR-X/TanDEM-X provide a single-baseline PolInSAR data robust to temporal decorrelation. This would be used to accurately estimate the forest stand height. The retrieved height would be an input parameter for modelling AGB using the L-band ALOS-2/PALSAR-2 data. The IWCM model is extensively utilized to estimate AGB from SAR observations. In this research we utilize the six component scattering power decomposition (6SD) parameters and modify the IWCM based technique for a better retrieval of forest AGB. PolInSAR data shows a high estimation accuracy with r2 of 0.8 and a RMSE of 2 m. With this accurate height provided as input to the modified model along with 6SD parameters shows promising results. The results are validated with extensive field based measurements, and are further analysed in detail.

  18. Ecology of Nitrogen Fixing, Nitrifying, and Denitrifying Microorganisms in Tropical Forest Soils

    Science.gov (United States)

    Pajares, Silvia; Bohannan, Brendan J. M.

    2016-01-01

    Soil microorganisms play important roles in nitrogen cycling within forest ecosystems. Current research has revealed that a wider variety of microorganisms, with unexpected diversity in their functions and phylogenies, are involved in the nitrogen cycle than previously thought, including nitrogen-fixing bacteria, ammonia-oxidizing bacteria and archaea, heterotrophic nitrifying microorganisms, and anammox bacteria, as well as denitrifying bacteria, archaea, and fungi. However, the vast majority of this research has been focused in temperate regions, and relatively little is known regarding the ecology of nitrogen-cycling microorganisms within tropical and subtropical ecosystems. Tropical forests are characterized by relatively high precipitation, low annual temperature fluctuation, high heterogeneity in plant diversity, large amounts of plant litter, and unique soil chemistry. For these reasons, regulation of the nitrogen cycle in tropical forests may be very different from that of temperate ecosystems. This is of great importance because of growing concerns regarding the effect of land use change and chronic-elevated nitrogen deposition on nitrogen-cycling processes in tropical forests. In the context of global change, it is crucial to understand how environmental factors and land use changes in tropical ecosystems influence the composition, abundance and activity of key players in the nitrogen cycle. In this review, we synthesize the limited currently available information regarding the microbial communities involved in nitrogen fixation, nitrification and denitrification, to provide deeper insight into the mechanisms regulating nitrogen cycling in tropical forest ecosystems. We also highlight the large gaps in our understanding of microbially mediated nitrogen processes in tropical forest soils and identify important areas for future research. PMID:27468277

  19. Tropical forest responses to increasing [CO2]: current knowledge and opportunities for future research

    Energy Technology Data Exchange (ETDEWEB)

    Cernusak, Lucas [Australian National University, Canberra, Australia; Winter, Klaus [Smithsonian Tropical Research Institute; Dalling, James [University of Illinois, Urbana-Champaign; Holtum, Joseph [James Cook University; Jaramillo, Carlos [Smithsonian Tropical Research Institute; Korner, Christian [University of Basel; Leakey, Andrew D.B. [University of Illinois; Norby, Richard J [ORNL; Poulter, Benjamin [Laboratoire des Sciences du Climat et de l' Environement, France; Turner, Benjamin [Smithsonian Tropical Research Institute; Wright, S. Joseph [Smithsonian Tropical Research Institute

    2013-01-01

    Elevated atmospheric [CO2] (ca) will undoubtedly affect the metabolism of tropical forests worldwide; however, critical aspects of how tropical forests will respond remain largely unknown. Here we review the current state of knowledge about physiological and ecological responses, with the aim of providing a framework that can help to guide future experimental research. Modelling studies have indicated that elevated ca can potentially stimulate photosynthesis more in the tropics than at higher latitudes, because suppression of photorespiration by elevated ca increases with temperature. However, canopy leaves in tropical forests could also potentially reach a high temperature threshold under elevated ca that will moderate the rise in photosynthesis. Belowground responses, including fine root production, nutrient foraging, and soil organic matter processing, will be especially important to the integrated ecosystem response to elevated CO2. Water-use efficiency will increase as ca rises, potentially impacting upon soil moisture status and nutrient availability. Recruitment may be differentially altered for some functional groups, potentially decreasing ecosystem carbon storage. Whole-forest CO2 enrichment experiments are urgently needed to test predictions of tropical forest functioning under elevated ca. Smaller scale experiments in the understory and in gaps would also be informative, and could provide stepping stones toward stand-scale manipulations.

  20. Foliar temperature tolerance of temperate and tropical evergreen rain forest trees of Australia.

    Science.gov (United States)

    Cunningham, S C; Read, J

    2006-11-01

    Australian rain forests extend from tropical climates in the north to temperate climates in the south, providing an opportunity to investigate physiological responses to temperature of both temperate and tropical species within the same forest type. Eight, rain forest canopy tree species were selected to cover the 33 degrees latitudinal range of rain forests in eastern Australia. Temperature tolerance was measured in 6-year-old plants grown in a common environment, by exposing leaves to a series of high temperatures during late summer and a series of freezing temperatures during midwinter. Damage was evaluated based on chlorophyll fluorescence measurements made 2 h after exposure and by visual assessment of leaf damage made a week after exposure. Leaves of the tropical species were more heat tolerant and less frost tolerant than leaves of the temperate species, which is consistent with their climate distributions. In contrast, the temperature tolerance of the photosynthetic apparatus was unrelated to climate in a species' native habitat. However, the tropical species underwent significant photoinhibition during winter. All species maintained the integrity of the photosynthetic apparatus and avoided tissue damage over a similar span of temperatures (about 60 degrees C), reflecting the similar annual temperature ranges in Australia's temperate and tropical rain forests. Chlorophyll fluorescence measurements and visual assessment of leaf damage provided different estimates of the absolute and relative temperature tolerances of the species, thus emphasizing the importance of a direct assessment of tissue damage for determining a species' temperature tolerance.

  1. Corridors restore animal-mediated pollination in fragmented tropical forest landscapes.

    Science.gov (United States)

    Kormann, Urs; Scherber, Christoph; Tscharntke, Teja; Klein, Nadja; Larbig, Manuel; Valente, Jonathon J; Hadley, Adam S; Betts, Matthew G

    2016-01-27

    Tropical biodiversity and associated ecosystem functions have become heavily eroded through habitat loss. Animal-mediated pollination is required in more than 94% of higher tropical plant species and 75% of the world's leading food crops, but it remains unclear if corridors avert deforestation-driven pollination breakdown in fragmented tropical landscapes. Here, we used manipulative resource experiments and field observations to show that corridors functionally connect neotropical forest fragments for forest-associated hummingbirds and increase pollen transfer. Further, corridors boosted forest-associated pollinator availability in fragments by 14.3 times compared with unconnected equivalents, increasing overall pollination success. Plants in patches without corridors showed pollination rates equal to bagged control flowers, indicating pollination failure in isolated fragments. This indicates, for the first time, that corridors benefit tropical forest ecosystems beyond boosting local species richness, by functionally connecting mutualistic network partners. We conclude that small-scale adjustments to landscape configuration safeguard native pollinators and associated pollination services in tropical forest landscapes. © 2016 The Author(s).

  2. Predicting pan-tropical climate change induced forest stock gains and losses—implications for REDD

    Science.gov (United States)

    Gumpenberger, Marlies; Vohland, Katrin; Heyder, Ursula; Poulter, Benjamin; Macey, Kirsten; Rammig, Anja; Popp, Alexander; Cramer, Wolfgang

    2010-01-01

    Deforestation is a major threat to tropical forests worldwide, contributing up to one-fifth of global carbon emissions into the atmosphere. Despite protection efforts, deforestation of tropical forests has continued in recent years. Providing incentives to reducing deforestation has been proposed in the United Nations Framework Convention on Climate Change (UNFCCC) Bali negotiations in 2007 to decelerate emissions from deforestation (REDD—reduced emissions from deforestation and forest degradation). A number of methodological issues such as ensuring permanence, establishing reference emissions levels that do not reward business-as-usual and having a measuring, reporting and verification system in place are essential elements in implementing successful REDD schemes. To assess the combined impacts of climate and land-use change on tropical forest carbon stocks in the 21st century, we use a dynamic global vegetation model (LPJ DGVM) driven by five different climate change projections under a given greenhouse gas emission scenario (SRES A2) and two contrasting land-use change scenarios. We find that even under a complete stop of deforestation after the period of the Kyoto Protocol (post-2012) some countries may continue to lose carbon stocks due to climate change. Especially at risk is tropical Latin America, although the presence and magnitude of the risk depends on the climate change scenario. By contrast, strong protection of forests could increase carbon uptake in many tropical countries, due to CO2 fertilization effects, even under altered climate regimes.

  3. Predicting pan-tropical climate change induced forest stock gains and losses-implications for REDD

    International Nuclear Information System (INIS)

    Gumpenberger, Marlies; Vohland, Katrin; Heyder, Ursula; Poulter, Benjamin; Rammig, Anja; Popp, Alexander; Cramer, Wolfgang; Macey, Kirsten

    2010-01-01

    Deforestation is a major threat to tropical forests worldwide, contributing up to one-fifth of global carbon emissions into the atmosphere. Despite protection efforts, deforestation of tropical forests has continued in recent years. Providing incentives to reducing deforestation has been proposed in the United Nations Framework Convention on Climate Change (UNFCCC) Bali negotiations in 2007 to decelerate emissions from deforestation (REDD-reduced emissions from deforestation and forest degradation). A number of methodological issues such as ensuring permanence, establishing reference emissions levels that do not reward business-as-usual and having a measuring, reporting and verification system in place are essential elements in implementing successful REDD schemes. To assess the combined impacts of climate and land-use change on tropical forest carbon stocks in the 21st century, we use a dynamic global vegetation model (LPJ DGVM) driven by five different climate change projections under a given greenhouse gas emission scenario (SRES A2) and two contrasting land-use change scenarios. We find that even under a complete stop of deforestation after the period of the Kyoto Protocol (post-2012) some countries may continue to lose carbon stocks due to climate change. Especially at risk is tropical Latin America, although the presence and magnitude of the risk depends on the climate change scenario. By contrast, strong protection of forests could increase carbon uptake in many tropical countries, due to CO 2 fertilization effects, even under altered climate regimes.

  4. Tropical forest restoration: tree islands as recruitment foci in degraded lands of Honduras.

    Science.gov (United States)

    Zahawi, R A; Augspurger, C K

    2006-04-01

    Tropical forest recovery in pastures is slowed by a number of biotic and abiotic factors, including a lack of adequate seed dispersal and harsh microclimatic extremes. Accordingly, methods to accelerate forest recovery must address multiple impediments. Here, we evaluated the ability of "tree islands" to serve as "recruitment foci" in a two-year study at three sites in northern Honduras. Islands of three sizes (64, 16, and 4 m2) and at two distances to secondary forest (20 and 50 m) were created by planting 2 m tall vegetative stakes of two native species: Gliricidia sepium (Fabaceae) and Bursera simaruba (Burseraceae), each in monoculture. Open-pasture "islands" of equal sizes served as controls. Tree islands reduced temperature and light (PAR) extremes as compared to open pasture, creating a microenvironment more favorable to seedling establishment. Seed-dispersing birds (quantified at one site only) showed an overwhelming preference for islands; 160 visits were recorded to islands compared with one visit to open pasture. Additionally, frugivores visited large islands more often, and for longer time periods, than small islands, thereby increasing the likelihood of a dispersal event there. In total, 144 140 seeds belonging to 186 species were collected in islands; more than 80% were grasses. Tree islands increased zoochorous tree seed rain; seed density and species richness were greater in tree islands than in open pasture, and large islands had greater seed density than smaller islands (Gliricidia only), suggesting that they are more effective for restoration. Distance to forest did not affect seed rain. A total of 543 seedlings and 41 species established in islands; > 85% were zoochorous. Seedling density did not differ among treatments (mean 0.2 seedlings/m2 for islands vs. 0.1 seedlings/m2 for pasture), although an increasing trend in tree islands over the course of two years suggests that seedling recruitment is accelerated there. Lastly, similar seedling

  5. Effects of Interannual Climate Variability in Secondary Forests and Crops Under Traditional and Alternative Shifting Cultivation

    Science.gov (United States)

    Sa, T. D.; Guild, L. S.; Carvalho, C. J.; Potter, C. S.; Wickel, A. J.; Brienza, S.; Kato, M. A.; Kato, O.

    2002-12-01

    Regenerating forests play an important role in long-term carbon sequestration and sustainable landuse as they act as potentially important carbon and nutrient sinks during the shifting agriculture fallow period. The long-term functioning of secondary forests (capoeira) is increasingly threatened by a shortening fallow period during shifting cultivation due to demographic pressures and associated increased vulnerability to severe climatic events. Declining productivity and functioning of fallow forests of shifting cultivation combined with progressive loss of nutrients by successive burning and cropping activities has resulted in declining agricultural productivity. In addition to the effects of intense land use practices, droughts associated with El Ni¤o events are becoming more frequent and severe in moist tropical forests and negative effects on capoeira productivity could be considerable. In Igarape-Acu (near Belem, Para), we hypothesize that experimental alternative landuse/clearing practices (mulching and fallow vegetation improvement by planting with fast-growing leguminous tree species) may make capoeira and crops more resilient to the effects of agricultural pressures and drought through 1) increased biomass, soil organic matter and associated increase in soil water storage, and nutrient retention and 2) greater rooting depth of trees planted for fallow improvement. This experimental practice (mechanized chop-and-mulch with fallow improvement) has resulted in increased soil moisture during the cropping phase, reduced loss of nutrients and organic matter, and higher rates of secondary-forest biomass accumulation. We present preliminary data on water relations during the dry season of 2001 in capoeira and crops for both traditional slash-and-burn and alternative chop-and-mulch practices. These data will be used to test IKONOS data for the detection of moisture status differences. The principal goal of the research is to determine the extent to which capoeira

  6. Changes in microbial community characteristics and soil organic matter with nitrogen additions in two tropical forests.

    Science.gov (United States)

    Cusack, Daniela F; Silver, Whendee L; Torn, Margaret S; Burton, Sarah D; Firestone, Mary K

    2011-03-01

    Microbial communities and their associated enzyme activities affect the amount and chemical quality of carbon (C) in soils. Increasing nitrogen (N) deposition, particularly in N-rich tropical forests, is likely to change the composition and behavior of microbial communities and feed back on ecosystem structure and function. This study presents a novel assessment of mechanistic links between microbial responses to N deposition and shifts in soil organic matter (SOM) quality and quantity. We used phospholipid fatty acid (PLFA) analysis and microbial enzyme assays in soils to assess microbial community responses to long-term N additions in two distinct tropical rain forests. We used soil density fractionation and 13C nuclear magnetic resonance (NMR) spectroscopy to measure related changes in SOM pool sizes and chemical quality. Microbial biomass increased in response to N fertilization in both tropical forests and corresponded to declines in pools of low-density SOM. The chemical quality of this soil C pool reflected ecosystem-specific changes in microbial community composition. In the lower-elevation forest, there was an increase in gram-negative bacteria PLFA biomass, and there were significant losses of labile C chemical groups (O-alkyls). In contrast, the upper-elevation tropical forest had an increase in fungal PLFAs with N additions and declines in C groups associated with increased soil C storage (alkyls). The dynamics of microbial enzymatic activities with N addition provided a functional link between changes in microbial community structure and SOM chemistry. Ecosystem-specific changes in microbial community composition are likely to have far-reaching effects on soil carbon storage and cycling. This study indicates that microbial communities in N-rich tropical forests can be sensitive to added N, but we can expect significant variability in how ecosystem structure and function respond to N deposition among tropical forest types.

  7. Above-ground biomass and structure of 260 African tropical forests

    Science.gov (United States)

    Lewis, Simon L.; Sonké, Bonaventure; Sunderland, Terry; Begne, Serge K.; Lopez-Gonzalez, Gabriela; van der Heijden, Geertje M. F.; Phillips, Oliver L.; Affum-Baffoe, Kofi; Baker, Timothy R.; Banin, Lindsay; Bastin, Jean-François; Beeckman, Hans; Boeckx, Pascal; Bogaert, Jan; De Cannière, Charles; Chezeaux, Eric; Clark, Connie J.; Collins, Murray; Djagbletey, Gloria; Djuikouo, Marie Noël K.; Droissart, Vincent; Doucet, Jean-Louis; Ewango, Cornielle E. N.; Fauset, Sophie; Feldpausch, Ted R.; Foli, Ernest G.; Gillet, Jean-François; Hamilton, Alan C.; Harris, David J.; Hart, Terese B.; de Haulleville, Thales; Hladik, Annette; Hufkens, Koen; Huygens, Dries; Jeanmart, Philippe; Jeffery, Kathryn J.; Kearsley, Elizabeth; Leal, Miguel E.; Lloyd, Jon; Lovett, Jon C.; Makana, Jean-Remy; Malhi, Yadvinder; Marshall, Andrew R.; Ojo, Lucas; Peh, Kelvin S.-H.; Pickavance, Georgia; Poulsen, John R.; Reitsma, Jan M.; Sheil, Douglas; Simo, Murielle; Steppe, Kathy; Taedoumg, Hermann E.; Talbot, Joey; Taplin, James R. D.; Taylor, David; Thomas, Sean C.; Toirambe, Benjamin; Verbeeck, Hans; Vleminckx, Jason; White, Lee J. T.; Willcock, Simon; Woell, Hannsjorg; Zemagho, Lise

    2013-01-01

    We report above-ground biomass (AGB), basal area, stem density and wood mass density estimates from 260 sample plots (mean size: 1.2 ha) in intact closed-canopy tropical forests across 12 African countries. Mean AGB is 395.7 Mg dry mass ha−1 (95% CI: 14.3), substantially higher than Amazonian values, with the Congo Basin and contiguous forest region attaining AGB values (429 Mg ha−1) similar to those of Bornean forests, and significantly greater than East or West African forests. AGB therefore appears generally higher in palaeo- compared with neotropical forests. However, mean stem density is low (426 ± 11 stems ha−1 greater than or equal to 100 mm diameter) compared with both Amazonian and Bornean forests (cf. approx. 600) and is the signature structural feature of African tropical forests. While spatial autocorrelation complicates analyses, AGB shows a positive relationship with rainfall in the driest nine months of the year, and an opposite association with the wettest three months of the year; a negative relationship with temperature; positive relationship with clay-rich soils; and negative relationships with C : N ratio (suggesting a positive soil phosphorus–AGB relationship), and soil fertility computed as the sum of base cations. The results indicate that AGB is mediated by both climate and soils, and suggest that the AGB of African closed-canopy tropical forests may be particularly sensitive to future precipitation and temperature changes. PMID:23878327

  8. Tropical forest carbon sink depends on tree functional diversity and competition

    Science.gov (United States)

    Levy, J.; Medvigy, D.; Hedin, L.; Batterman, S. A.; Xu, X.

    2013-12-01

    Tropical forests serve an essential role in climate change mitigation by removing CO2 from the atmosphere, but the size of the tropical carbon sink may depend on the composition of tree functional types within the forest and the nutrient environment in which they grow. A key uncertainty in forest carbon cycling research is how tree functional diversity and competition for nutrients, water, and light interact to constrain the forest carbon sink following disturbance events. In this study, we present a newly developed C-N cycle for the Ecosystem Demography model version 2 (ED2). This model is capable of resolving C and nutrient dynamics at the scale of individual trees and communities while giving fundamental insights into the ability of tropical forests to serve as carbon sinks. We evaluate the role of nitrogen fixing plant functional types in forest carbon recovery following a stand replacing disturbance. We compare model results with field observations of forest regrowth and nitrogen fixation in young recovering Panamanian forests and find that the model is capable of creating the successional pattern in plant functional types and the pattern of fixation that we observe in Panama.

  9. Weak Environmental Controls of Tropical Forest Canopy Height in the Guiana Shield

    Directory of Open Access Journals (Sweden)

    Youven Goulamoussène

    2016-09-01

    Full Text Available Canopy height is a key variable in tropical forest functioning and for regional carbon inventories. We investigate the spatial structure of the canopy height of a tropical forest, its relationship with environmental physical covariates, and the implication for tropical forest height variation mapping. Making use of high-resolution maps of LiDAR-derived Digital Canopy Model (DCM and environmental covariates from a Digital Elevation Model (DEM acquired over 30,000 ha of tropical forest in French Guiana, we first show that forest canopy height is spatially correlated up to 2500 m. Forest canopy height is significantly associated with environmental variables, but the degree of correlation varies strongly with pixel resolution. On the whole, bottomland forests generally have lower canopy heights than hillslope or hilltop forests. However, this global picture is very noisy at local scale likely because of the endogenous gap-phase forest dynamic processes. Forest canopy height has been predictively mapped across a pixel resolution going from 6 m to 384 m mimicking a low resolution case of 3 points·km − 2 . Results of canopy height mapping indicated that the error for spatial model with environment effects decrease from 8.7 m to 0.91 m, depending of the pixel resolution. Results suggest that, outside the calibration plots, the contribution of environment in shaping the global canopy height distribution is quite limited. This prevents accurate canopy height mapping based only on environmental information, and suggests that precise canopy height maps, for local management purposes, can only be obtained with direct LiDAR monitoring.

  10. Precipitation controls on nutrient budgets in subtropical and tropical forests and the implications under changing climate

    Science.gov (United States)

    Chang, Chung-Te; Wang, Lih-Jih; Huang, Chuan, Jr.; Liu, Chiung-Pin; Wang, Chiao-Ping; Lin, Neng-Huei; Wang, Lixin; Lin, Teng-Chiu

    2017-05-01

    Biological, geological and hydrological drivers collectively control forest biogeochemical cycling. However, based on a close examination of recent literature, we argue that the role of hydrological control particularly precipitation on nutrient budgets is significantly underestimated in subtropical and tropical forests, hindering our predictions of future forest nutrient status under a changing climate in these systems. To test this hypothesis, we analyzed two decades of monthly nutrient input and output data in precipitation and streamwater from a subtropical forested watershed in Taiwan, one of the few sites that has long-term nutrient input-output data in the tropics and subtropics. The results showed that monthly input and output of all ions and budgets (output - input) of most ions were positively correlated with precipitation quantity and there was a surprisingly greater net ion export during the wet growing season, indicating strong precipitation control on the nutrient budget. The strong precipitation control is also supported by the divergence of acidic precipitation and near neutral acidity of streamwater, with the former being independent from precipitation quantity but the latter being positively related to precipitation quantity. An additional synthesis of annual precipitation quantity and nutrient budgets of 32 forests across the globe showed a strong correlation between precipitation quantity and nutrient output-input budget, indicating that strong precipitation control is ubiquitous at the global scale and is particularly important in the humid tropical and subtropical forests. Our results imply that climate change could directly affect ecosystem nutrient cycling in the tropics through changes in precipitation pattern and amount.

  11. Coupled nutrient cycling determines tropical forest trajectory under elevated CO2.

    Science.gov (United States)

    Bouskill, N.; Zhu, Q.; Riley, W. J.

    2017-12-01

    Tropical forests have a disproportionate capacity to affect Earth's climate relative to their areal extent. Despite covering just 12 % of land surface, tropical forests account for 35 % of global net primary productivity and are among the most significant of terrestrial carbon stores. As atmospheric CO2 concentrations increase over the next century, the capacity of tropical forests to assimilate and sequester anthropogenic CO2 depends on limitation by multiple factors, including the availability of soil nutrients. Phosphorus availability has been considered to be the primary factor limiting metabolic processes within tropical forests. However, recent evidence points towards strong spatial and temporal co-limitation of tropical forests by both nitrogen and phosphorus. Here, we use the Accelerated Climate Modeling for Energy (ACME) Land Model (ALMv1-ECA-CNP) to examine how nutrient cycles interact and affect the trajectory of the tropical forest carbon sink under, (i) external nutrient input, (ii) climate (iii) elevated CO2, and (iv) a combination of 1-3. ALMv1 includes recent theoretical advances in representing belowground competition between roots, microbes and minerals for N and P uptake, explicit interactions between the nitrogen and phosphorus cycles (e.g., phosphatase production and nitrogen fixation), the dynamic internal allocation of plant N and P resources, and the integration of global datasets of plant physiological traits. We report nutrient fertilization (N, P, N+P) predictions for four sites in the tropics (El Verde, Puerto Rico, Barro Colorado Island, Panama, Manaus, Brazil and the Osa Peninsula, Coast Rica) to short-term nutrient fertilization (N, P, N+P), and benchmarking of the model against a meta-analysis of forest fertilization experiments. Subsequent simulations focus on the interaction of the carbon, nitrogen, and phosphorus cycles across the tropics with a focus on the implications of coupled nutrient cycling and the fate of the tropical

  12. Land use policies and deforestation in Brazilian tropical dry forests between 2000 and 2015

    Science.gov (United States)

    Dupin, Mariana G. V.; Espírito-Santo, Mário M.; Leite, Marcos E.; Silva, Jhonathan O.; Rocha, André M.; Barbosa, Rômulo S.; Anaya, Felisa C.

    2018-03-01

    Tropical Dry Forests (TDFs) have been broadly converted into pastures and crops, with direct consequences to biodiversity, ecosystem services, and social welfare. Such land use and cover changes (LUCC) usually are strongly influenced by government environmental and development policies. The present study aimed at analyzing LUCC in Brazilian TDFs between 2000 and 2015, using the north of Minas Gerais state (128 000 km2) as a case study. We evaluated the potential biophysical and social-economic drivers of TDF loss, natural regeneration and net area change at the county level. Further, we determined the effects of these LUCC variables on socioeconomic indicators. We identified a considerable change in TDF cover, expressed as 9825 km2 of deforestation and 6523 km2 of regeneration, which resulted in a net loss of 3302 km2. The annual rate of TDF cover change was -1.2%, which is extremely high for a vegetation type that is protected as part of the Atlantic Rain Forest biome since 1993. TDF deforestation was directly affected by county area and by the increase in cattle density, and inversely affected by terrain declivity, indicating that land conversion is mostly driven by cattle ranching in flat regions. TDF regeneration was directly affected by county area and inversely affected by the increase in population density and terrain declivity. LUCC variables did not affect welfare indicators, undermining claims from rural sectors that TDF protection would cause a socioeconomic burden for northern Minas Gerais. Our results highlight the importance of naturally regenerating secondary forests to the maintenance of ecosystem integrity and its services, which are frequently neglected in conservation strategies. Hegemonic macroeconomic policies affecting TDFs have been deeply rooted in deforestation for commodities production, and need urgent review because they cause long-term environmental impacts without evidence of welfare gains.

  13. Forest Structure, Composition and Above Ground Biomass of Tree Community in Tropical Dry Forests of Eastern Ghats, India

    Directory of Open Access Journals (Sweden)

    Sudam Charan SAHU

    2016-03-01

    Full Text Available The study of biomass, structure and composition of tropical forests implies also the investigation of forest productivity, protection of biodiversity and removal of CO2 from the atmosphere via C-stocks. The hereby study aimed at understanding the forest structure, composition and above ground biomass (AGB of tropical dry deciduous forests of Eastern Ghats, India, where as a total of 128 sample plots (20 x 20 meters were laid. The study showed the presence of 71 tree species belonging to 57 genera and 30 families. Dominant tree species was Shorea robusta with an importance value index (IVI of 40.72, while Combretaceae had the highest family importance value (FIV of 39.01. Mean stand density was 479 trees ha-1 and a basal area of 15.20 m2 ha-1. Shannon’s diversity index was 2.01 ± 0.22 and Simpson’s index was 0.85 ± 0.03. About 54% individuals were in the size between 10 and 20 cm DBH, indicating growing forests. Mean above ground biomass value was 98.87 ± 68.8 Mg ha-1. Some of the dominant species that contributed to above ground biomass were Shorea robusta (17.2%, Madhuca indica (7.9%, Mangifera indica (6.9%, Terminalia alata (6.9% and Diospyros melanoxylon (4.4%, warranting extra efforts for their conservation. The results suggested that C-stocks of tropical dry forests can be enhanced by in-situ conserving the high C-density species and also by selecting these species for afforestation and stand improvement programs. Correlations were computed to understand the relationship between above ground biomass, diversity indices, density and basal area, which may be helpful for implementation of REDD+ (reduce emissions from deforestation and forest degradation, and foster conservation, sustainable management of forests and enhancement of forest carbon stocks scheme.

  14. Patterns of loss and regeneration of tropical dry forest in Madagascar: the social institutional context.

    Science.gov (United States)

    Elmqvist, Thomas; Pyykönen, Markku; Tengö, Maria; Rakotondrasoa, Fanambinantsoa; Rabakonandrianina, Elisabeth; Radimilahy, Chantal

    2007-05-02

    Loss of tropical forests and changes in land-use/land-cover are of growing concern worldwide. Although knowledge exists about the institutional context in which tropical forest loss is embedded, little is known about the role of social institutions in influencing regeneration of tropical forests. In the present study we used Landsat images from southern Madagascar from three different years (1984, 1993 and 2000) and covering 5500 km(2), and made a time-series analysis of three distinct large-scale patterns: 1) loss of forest cover, 2) increased forest cover, and 3) stable forest cover. Institutional characteristics underlying these three patterns were analyzed, testing the hypothesis that forest cover change is a function of strength and enforcement of local social institutions. The results showed a minor decrease of 7% total forest cover in the study area during the whole period 1984-2000, but an overall net increase of 4% during the period 1993-2000. The highest loss of forest cover occurred in a low human population density area with long distances to markets, while a stable forest cover occurred in the area with highest population density and good market access. Analyses of institutions revealed that loss of forest cover occurred mainly in areas characterized by insecure property rights, while areas with well-defined property rights showed either regenerating or stable forest cover. The results thus corroborate our hypothesis. The large-scale spontaneous regeneration dominated by native endemic species appears to be a result of a combination of changes in precipitation, migration and decreased human population and livestock grazing pressure, but under conditions of maintained and well-defined property rights. Our study emphasizes the large capacity of a semi-arid system to spontaneously regenerate, triggered by decreased pressures, but where existing social institutions mitigate other drivers of deforestation and alternative land-use.

  15. Patterns of loss and regeneration of tropical dry forest in Madagascar: the social institutional context.

    Directory of Open Access Journals (Sweden)

    Thomas Elmqvist

    Full Text Available Loss of tropical forests and changes in land-use/land-cover are of growing concern worldwide. Although knowledge exists about the institutional context in which tropical forest loss is embedded, little is known about the role of social institutions in influencing regeneration of tropical forests. In the present study we used Landsat images from southern Madagascar from three different years (1984, 1993 and 2000 and covering 5500 km(2, and made a time-series analysis of three distinct large-scale patterns: 1 loss of forest cover, 2 increased forest cover, and 3 stable forest cover. Institutional characteristics underlying these three patterns were analyzed, testing the hypothesis that forest cover change is a function of strength and enforcement of local social institutions. The results showed a minor decrease of 7% total forest cover in the study area during the whole period 1984-2000, but an overall net increase of 4% during the period 1993-2000. The highest loss of forest cover occurred in a low human population density area with long distances to markets, while a stable forest cover occurred in the area with highest population density and good market access. Analyses of institutions revealed that loss of forest cover occurred mainly in areas characterized by insecure property rights, while areas with well-defined property rights showed either regenerating or stable forest cover. The results thus corroborate our hypothesis. The large-scale spontaneous regeneration dominated by native endemic species appears to be a result of a combination of changes in precipitation, migration and decreased human population and livestock grazing pressure, but under conditions of maintained and well-defined property rights. Our study emphasizes the large capacity of a semi-arid system to spontaneously regenerate, triggered by decreased pressures, but where existing social institutions mitigate other drivers of deforestation and alternative land-use.

  16. Influence of persistent monodominance on functional diversity and functional community assembly in African tropical forests.

    Science.gov (United States)

    Kearsley, Elizabeth; Verbeeck, Hans; Hufkens, Koen; Beeckman, Hans; Steppe, Kathy; Boeckx, Pascal; Huygens, Dries

    2015-04-01

    Lowland tropical rainforest are taxonomically diverse and complex systems, although not all tropical communities are equally diverse. Naturally occuring monodominant patches of Gilbertiodendron dewevrei are commonly found across Central Africa alongside higher diversity forests. Nevertheless, a low taxonomical diversity does not necessarily indicate an equivalently low functional diverse system. We investigate the functional diversity and functional community assembly of mixed and monodominant tropical forests in a central region of the Congo Basin in D. R. Congo using 15 leaf and wood traits covering 95% of all species within each community. This unique dataset allows us to investigate differences in functional diversity and ecosystem functioning between mixed and monodominant forest types. Functional richness, functional divergence and functional evenness are three functional diversity measures providing different aspects of functional diversity. The largest difference between the two forest types was found for functional richness, with a lower functional richness in the monodominant forest indicating a higher amount of niche space filled in the mixed forest. The mixed forest also had a higher species richness and Simpson diversity index, indicating that the higher species richness increases the functional niche space. Subsequently, we identified whole community trait shifts within the monodominant forest compared to the mixed forest. The dominance of Gilbertiodendron dewevrei, for which a distinct niche is found for most traits, presented a significant influence on the entire (trait) community expressing fundamental differences in ecosystem functioning. More detailed investigation of species unique within the monodominant forest and species occurring in both forest types provide more insight into the influence of Gilbertiodendron dewevrei. Both the unique and the shared species showed significant shifts in leaf nutrients, specific leaf area and water use

  17. Fire Patterns and Drivers of Fires in the West African Tropical Forest

    Science.gov (United States)

    Dwomoh, F. K.; Wimberly, M. C.

    2015-12-01

    The West African tropical forest (referred to as the Upper Guinean forest, UGF), is a global biodiversity hotspot providing vital ecosystem services for the region's socio-economic and environmental wellbeing. It is also one of the most fragmented and human-modified tropical forest ecosystems, with the only remaining large patches of original forests contained in protected areas. However, these remnant forests are susceptible to continued fire-mediated degradation and forest loss due to intense climatic, demographic and land use pressures. We analyzed human and climatic drivers of fire activity in the sub-region to better understand the spatial and temporal patterns of these risks. We utilized MODIS active fire and burned area products to identify fire activity within the sub-region. We measured climatic variability using TRMM rainfall data and derived indicators of human land use from a variety of geospatial datasets. We used a boosted regression trees model to determine the influences of predictor variables on fire activity. Our analyses indicated that the spatial and temporal variability of precipitation is a key driving factor of fire activity in the UGF. Anthropogenic effects on fire activity in the area were evident through the influences of agriculture and low-density populations. These human footprints in the landscape make forests more susceptible to fires through forest fragmentation, degradation, and fire spread from agricultural areas. Forested protected areas within the forest savanna mosaic experienced frequent fires, whereas the more humid forest areas located in the south and south-western portions of the study area had fewer fires as these rainforests tend to offer some buffering against fire encroachment. These results improve characterization of UGF fire regime and expand our understanding of the spatio-temporal dynamics of tropical forest fires in response to human and climatic pressures.

  18. Neotropical dry forests of the Caribbean: Secondary forest dynamics and restoration in St. Croix, US Virgin Islands

    Science.gov (United States)

    Daley, Brian F.

    Neotropical dry forests exist today mainly as secondary forests heavily influenced by exotic plants. This project analyzes land-cover change and secondary dry forest dynamics in three distinct phases (land cover change, secondary forest succession and forest rehabilitation), using St. Croix, US Virgin Islands as an example. Using Landsat satellite images and other data layers, I created classified land cover maps of St. Croix for 1992 and 2002. Forest was the dominant (56%) cover type on both dates, followed by development, grassland/pastures and water. A land cover change analysis comparing the two images revealed that 15% of the study area experienced a change either to (8%) or from (7%) forest. Grassland was the cover most likely to change and decreased from 16% to 11%, converted primarily to development. The overall result is a landscape trending toward younger forests, and increased forest fragmentation and development. In a second study, vegetation data from a chronosequence of secondary forests was analyzed for changes to forest structure, species composition and presence of exotic species. The leguminous exotic tree Leucaena leucocephala was by far the most frequently observed tree and dominated all stands, except those over 50 years old. Species diversity was significantly ( pland-use remained low in species diversity and dominated by exotics >50 years after abandonment. In a third experiment, a 'gap planting' method for establishing four rare native tree species was tested on a site experiencing arrested succession. All four species successfully established at >69% survival in 3m diameter gaps artificially created in exotic tree stands. A mulch treatment significantly (pland cover type and secondary forests are predominant forest type. The species composition of these forests is dynamic, but they tend to be dominated by exotic tree species and over 50 years of natural succession is insufficient time for secondary forest stands to advance beyond the

  19. Mapping Clearances in Tropical Dry Forests Using Breakpoints, Trend, and Seasonal Components from MODIS Time Series: Does Forest Type Matter?

    NARCIS (Netherlands)

    Grogan, Kenneth; Pflugmacher, Dirk; Hostert, Patrick; Verbesselt, Jan; Fensholt, Rasmus

    2016-01-01

    Tropical environments present a unique challenge for optical time series analysis, primarily owing to fragmented data availability, persistent cloud cover and atmospheric aerosols. Additionally, little is known of whether the performance of time series change detection is affected by diverse forest

  20. Culvert flow in small drainages in montane tropical forests: observations from the Luquillo Experimental Forest of Puerto Rico.

    Science.gov (United States)

    F. N. Scatena

    1990-01-01

    This paper describe the hydraulics of unsubmerged flow for 5 culverts in the Luiquillo Esperimental Forest of Puerto Rico. A General equation based on empirical data is presented to estimate culvert discharge during unsubmerged conditions. Large culverts are needed in humid tropical montane areas than in humid temperatute watersheds and are usually appropriate only...

  1. Traffic noise affects forest bird species in a protected tropical forest

    Directory of Open Access Journals (Sweden)

    J. Edgardo Arévalo

    2011-06-01

    Full Text Available The construction of roads near protected forest areas alters ecosystem function by creating habitat fragmentation and through several direct and indirect negative effects such as increased pollution, animal mortality through collisions, disturbance caused by excessive noise and wind turbulence. Noise in particular may have strong negative effects on animal groups such as frogs and birds, that rely on sound for communication as it can negatively interfere with vocalizations used for territorial defense or courtship. Thus, birds are expected to be less abundant close to the road where noise levels are high. In this study, we examined the effects of road traffic noise levels on forest bird species in a protected tropical forest in Costa Rica. Data collection was conducted in a forest segment of the Carara National Park adjacent to the Coastal Highway. We carried out 120 ten minute bird surveys and measured road noise levels 192 times from the 19th to the 23rd of April and from the 21st to the 28th of November, 2008. To maximize bird detection for the species richness estimates we operated six 12m standard mist nets simultaneously with the surveys. The overall mist-netting effort was 240net/h. In addition, we estimated traffic volumes by tallying the number of vehicles passing by the edge of the park using 24 one hour counts throughout the study. We found that the relative abundance of birds and bird species richness decreased significantly with the increasing traffic noise in the dry and wet season. Noise decreased significantly and in a logarithmic way with distance from the road in both seasons. However, noise levels at any given distance were significantly higher in the dry compared to the wet season. Our results suggest that noise might be an important factor influencing road bird avoidance as measured by species richness and relative abundance. Since the protected forest in question is located in a national park subjected to tourist visitation

  2. A global model of the response of tropical and sub-tropical forest biodiversity to anthropogenic pressures

    Science.gov (United States)

    Newbold, Tim; Hudson, Lawrence N.; Phillips, Helen R. P.; Hill, Samantha L. L.; Contu, Sara; Lysenko, Igor; Blandon, Abigayil; Butchart, Stuart H. M.; Booth, Hollie L.; Day, Julie; De Palma, Adriana; Harrison, Michelle L. K.; Kirkpatrick, Lucinda; Pynegar, Edwin; Robinson, Alexandra; Simpson, Jake; Mace, Georgina M.; Scharlemann, Jörn P. W.; Purvis, Andy

    2014-01-01

    Habitat loss and degradation, driven largely by agricultural expansion and intensification, present the greatest immediate threat to biodiversity. Tropical forests harbour among the highest levels of terrestrial species diversity and are likely to experience rapid land-use change in the coming decades. Synthetic analyses of observed responses of species are useful for quantifying how land use affects biodiversity and for predicting outcomes under land-use scenarios. Previous applications of this approach have typically focused on individual taxonomic groups, analysing the average response of the whole community to changes in land use. Here, we incorporate quantitative remotely sensed data about habitats in, to our knowledge, the first worldwide synthetic analysis of how individual species in four major taxonomic groups—invertebrates, ‘herptiles’ (reptiles and amphibians), mammals and birds—respond to multiple human pressures in tropical and sub-tropical forests. We show significant independent impacts of land use, human vegetation offtake, forest cover and human population density on both occurrence and abundance of species, highlighting the value of analysing multiple explanatory variables simultaneously. Responses differ among the four groups considered, and—within birds and mammals—between habitat specialists and habitat generalists and between narrow-ranged and wide-ranged species. PMID:25143038

  3. Interactive community-based tropical forest monitoring using emerging technologies

    NARCIS (Netherlands)

    Pratihast, A.K.

    2015-01-01

    Forests cover approximately 30% of the Earth’s land surface and have played an indispensable role in the human development and preserving natural resources. At the moment, more than 300 million people are directly dependent on these forests and their resources. Forests also provide habitats for a

  4. Interactive community-based tropical forest monitoring using emerging technologies

    NARCIS (Netherlands)

    Pratihast, A.K.

    2015-01-01

    Forests cover approximately 30% of the Earth’s land surface and have played an indispensable role in the human development and preserving natural resources. At the moment, more than 300 million people are directly dependent on these forests and their resources. Forests also provide habitats

  5. Water Vapor Exchange in a Costa Rican Lower Montane Tropical Forest

    Science.gov (United States)

    Andrews, R.; Miller, G. R.; Cahill, A. T.; Moore, G. W.; Aparecido, L. M. T.

    2015-12-01

    Because of high canopy interception in tropical forests, evaporation from wet canopy surfaces makes up a sizeable portion of the total water vapor flux. The modeling complexities presented by changing canopy wetness, along with a scarcity of land-atmosphere flux exchange data from tropical forests, means evapotranspiration (ET) processes have been poorly represented in the tropics in land-surface modeling schemes. To better understand tropical forest ET, we will evaluate the influence of canopy wetness and various micrometeorological data on ET partitioning and total ET flux. We have collected flux data from a lower montane forest in Costa Rica at a newly established AmeriFlux site, which notably has the highest mean annual precipitation of any site in the network. The site features a 39-m canopy tower, equipped with two eddy covariance systems (LI-7200, LI-COR), a CO2/H2O atmospheric profile system (AP200, Campbell Scientific), leaf wetness sensors (LWS, Decagon Devices), sap flow sensors, and a soil respiration chamber (LI-8100A, LI-COR) as well as an array of other micrometeorological sensors. At the site, total ET is driven primarily by available energy, and to a lesser extent, by vapor pressure deficit. Average daily latent energy fluxes peak at values of 160, 75, and 35 W m-2 for dry, partially wet, and wet canopy conditions respectively. Correlations between latent energy flux and all other variables are strongest for drier canopy conditions. Complex relationships between canopy wetness and tropical forest ET cause the environmental controls on these fluxes to be significantly different from those in other biomes. As a result, a new modeling paradigm is needed to more accurately model ET differences between tropical forests and other vegetation types.

  6. Impacts of Land Cover Change on the Carbon Dynamics in Indonesian Tropical Forested Wetlands- Mangroves and Peat Swamp Forests

    Science.gov (United States)

    Kauffman, J. B.; Arifanti, V. B.; Basuki, I.; Kurnianto, S.; Novita, N.; Murdiyarso, D.

    2014-12-01

    Tropical wetland forests including mangroves and lowland peat swamp forests contain among the highest carbon stocks of any ecosystem on the planet. This is largely due to the accumulation of deep organic rich soils which have been sequestering carbon for millennia. Depth of organic layers (peats) can exceed 3 m in mangrove and 10 m in the peat swamp forests. The ecosystem carbon stocks may exceed 2000 Mg/ha in mangroves and 5000 Mg/ha in peat swamp forests. Ironically, rates of deforestation of these tropical forests are among the highest in the tropics. With land cover change comes dramatic shifts in carbon stocks, net ecosystem productivity, and greenhouse gas emissions. Land cover change results in carbon losses of practically all aboveground pools as well as losses arising from soil pools. Based upon studies where we have compared stock changes due to land use the carbon emissions arising from land cover change to shrimp ponds and oil palm have ranged from 800-3000 Mg CO2e/ha. The lowered carbon sequestration rates coupled with increased or similar emissions from decomposition results in an ecosystem shift from a carbon sink to a carbon source. Clearly the large carbon stocks, high rates of deforestation, and large emissions resulting from their degradation suggest that these ecosystems should receive great consideration in climate change mitigation and adaptation strategies.

  7. The responses of tropical forest species to global climate change: acclimate, adapt, migrate, or go extinct?

    Directory of Open Access Journals (Sweden)

    Brian Machovina

    2012-06-01

    Full Text Available In the face of ongoing and future climate change, species must acclimate, adapt or shift their geographic distributions (i.e., "migrate" in order to avoid habitat loss and eventual extinction. Perhaps nowhere are the challenges posed by climate change more poignant and daunting than in tropical forests, which harbor the majority of Earth’s species and are facing especially rapid rates of climate change relative to current spatial or temporal variability. Due to the rapid changes in climate predicted for the tropics, coupled with the apparently low capacities of tropical tree species to either acclimate or adapt to sustained changes in environmental conditions, it is believed that the greatest hope for avoiding the loss of biodiversity in tropical forest is species migrations. This is supported by the fact that topical forests responded to historic changes in climate (e.g., post glacial warming through distributional shifts. However, a great deal of uncertainty remains as to if tropical plant and tree species can migrate, and if so, if they can migrate at the rates required to keep pace with accelerating changes in multiple climatic factors in conjunction with ongoing deforestation and other anthropogenic disturbances. In order to resolve this uncertainty, as will be required to predict, and eventually mitigate, the impacts of global climate change on tropical and global biodiversity, more basic data is required on the distributions and ecologies of tens of thousands of plants species in combination with more directed studies and large-scale experimental manipulations.

  8. A simple algorithm for large-scale mapping of evergreen forests in tropical America, Africa and Asia

    Science.gov (United States)

    Xiangming Xiao; Chandrashekhar M. Biradar; Christina Czarnecki; Tunrayo Alabi; Michael Keller

    2009-01-01

    The areal extent and spatial distribution of evergreen forests in the tropical zones are important for the study of climate, carbon cycle and biodiversity. However, frequent cloud cover in the tropical regions makes mapping evergreen forests a challenging task. In this study we developed a simple and novel mapping algorithm that is based on the temporal profile...

  9. Tropical forest carbon balance in a warmer world: a critical review spanning microbial- to ecosystem-scale processes

    Science.gov (United States)

    Tana Wood; Molly A. Cavaleri; Sasha C. Reed

    2012-01-01

    Tropical forests play a major role in regulating global carbon (C) fluxes and stocks, and even small changes to C cycling in this productive biome could dramatically affect atmospheric carbon dioxide (CO2) concentrations. Temperature is expected to increase over all land surfaces in the future, yet we have a surprisingly poor understanding of how tropical forests will...

  10. Sustainable landscapes in a world of change: tropical forests, land use and implementation of REDD+: Part I

    Science.gov (United States)

    Richard Birdsey; Yude Pan; Richard Houghton

    2013-01-01

    Tropical forests play a critical role in the Earth system; however, tropical landscapes have changed greatly in recent decades because of increasing demand for land to support agriculture and timber production, fuel wood, and other pressures of population and human economics. The observable results are a legacy of persistent deforestation, forest degradation, increased...

  11. The impact of environmental inertial stability on the secondary circulation of axisymmetric tropical cyclones

    Science.gov (United States)

    O'Neill, M. E.; Chavas, D. R.

    2017-12-01

    In f-plane numerical simulations and analytical theory, tropical cyclones completely recycle their exhausted outflow air back into the boundary layer. This low-angular momentum air must experience cyclonic torque at the sea surface for cyclone to reach equilibrium. On Earth, however, it is not clear that tropical cyclones recycle all of the outflow air in a closed secondary circulation, and strong asymmetric outflow-jet interactions suggest that much of the air may be permanently evacuated from the storm over its lifetime. The fraction of outflow air that is returned to the near-storm boundary layer is in part a function of the environmental inertial stability, which controls the size and strength of the upper anticyclone. We run a suite of idealized axisymmetric tropical cyclone simulations at constant latitude while varying the outer domain's inertial stability profile. Fixing the latitude allows the gradient wind balance of the storm core to remain constant except for changes due to the far environment. By varying both the outer inertial stability and its location with respect to the Rossby radius of deformation, we show how the tropical cyclone's area-of-influence is controlled by the nature and strength of the upper anticyclone. Parcel tracking additionally demonstrates the likelihood of outflow air parcels to be quickly re-consumed by the secondary circulation as a function of inertial stability. These experiments demonstrate the sensitivity of the tropical cyclone's secondary circulation, typically assumed to be closed, to the dynamics of the far environment.

  12. Overwinter survival of neotropical migratory birds in early successional and mature tropical forests

    Science.gov (United States)

    Conway, C.J.; Powell, G.V.N.; Nichols, J.D.

    1995-01-01

    Many Neotropical migratory species inhabit both mature and early successional forest on their wintering grounds, yet comparisons of survival rates between habitats are lacking. Consequently, the factors affecting habitat suitability for Neotropical migrants and the potential effects of tropical deforestation on migrants are not well understood. We estimated over-winter survival and capture probabilities of Wood Thrush (Hylocichla mustelina), Ovenbird (Seiurus aurocapillus), Hooded Warbler (Wilsonia citrina), and Kentucky Warbler (Oporomis formosus) inhabiting two common tropical habitat types, mature and early-successional forest. Our results suggest that large differences (for example, ratio of survival rates (gamma) effects of winter habitat use on survival during migration and between-winter survival.

  13. Timber tree regeneration along abandoned logging roads in a tropical Bolivian forest

    DEFF Research Database (Denmark)

    Nabe-Nielsen, J.; Severiche, W.; Fredericksen, T.

    2007-01-01

    Sustainable management of selectively logged tropical forests requires that felled trees are replaced through increased recruitment and growth. This study compares road track and roadside regeneration with regeneration in unlogged and selectively logged humid tropical forest in north......-eastern Bolivia. Some species benefited from increased light intensities on abandoned logging roads. Others benefited from low densities of competing vegetation on roads with compacted soils. This was the case for the small-seeded species Ficus boliviana C.C. Berg and Terminalia oblonga (Ruiz & Pav.) Steud. Some...

  14. A ranking of net national contributions to climate change mitigation through tropical forest conservation.

    Science.gov (United States)

    Carrasco, L R; Papworth, S K

    2014-12-15

    Deforestation in tropical regions causes 15% of global anthropogenic carbon emissions and reduces the mitigation potential of carbon sequestration services. A global market failure occurs as the value of many ecosystem services provided by forests is not recognised by the markets. Identifying the contribution of individual countries to tropical carbon stocks and sequestration might help identify responsibilities and facilitate debate towards the correction of the market failure through international payments for ecosystem services. We compare and rank tropical countries' contributions by estimating carbon sequestration services vs. emissions disservices. The annual value of tropical carbon sequestration services in 2010 from 88 tropical countries was estimated to range from $2.8 to $30.7 billion, using market and social prices of carbon respectively. Democratic Republic of Congo, India and Sudan contribute the highest net carbon sequestration, whereas Brazil, Nigeria and Indonesia are the highest net emitters. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Saving Tropical Rain Forests through Teacher-Student Activism.

    Science.gov (United States)

    Calhoun, Bruce

    1990-01-01

    Described are the formation, goals, and activities of a network of teachers and students designed to help raise consciousness about conservation topics. A two-week minicourse on tropical diversity, ecology, and society is outlined. (CW)

  16. NPP Tropical Forest: Manaus, Brazil, 1963-1990 , R1

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set includes six ASCII files (.txt format). Five files contain productivity values for several types of tropical Amazon rainforest near Manaus, Brazil...

  17. Tropical Montane Cloud Forests: Hydrometeorological variability in three neighbouring catchments with different forest cover

    Science.gov (United States)

    Ramírez, Beatriz H.; Teuling, Adriaan J.; Ganzeveld, Laurens; Hegger, Zita; Leemans, Rik

    2017-09-01

    Mountain areas are characterized by a large heterogeneity in hydrological and meteorological conditions. This heterogeneity is currently poorly represented by gauging networks and by the coarse scale of global and regional climate and hydrological models. Tropical Montane Cloud Forests (TMCFs) are found in a narrow elevation range and are characterized by persistent fog. Their water balance depends on local and upwind temperatures and moisture, therefore, changes in these parameters will alter TMCF hydrology. Until recently the hydrological functioning of TMCFs was mainly studied in coastal regions, while continental TMCFs were largely ignored. This study contributes to fill this gap by focusing on a TMCF which is located on the northern eastern Andes at an elevation of 1550-2300 m asl, in the Orinoco river basin highlands. In this study, we describe the spatial and seasonal meteorological variability, analyse the corresponding catchment hydrological response to different land cover, and perform a sensitivity analysis on uncertainties related to rainfall interpolation, catchment area estimation and streamflow measurements. Hydro-meteorological measurements, including hourly solar radiation, temperature, relative humidity, wind speed, precipitation, soil moisture and streamflow, were collected from June 2013 to May 2014 at three gauged neighbouring catchments with contrasting TMCF/grassland cover and less than 250 m elevation difference. We found wetter and less seasonally contrasting conditions at higher elevations, indicating a positive relation between elevation and fog or rainfall persistence. This pattern is similar to that of other eastern Andean TMCFs, however, the study site had higher wet season rainfall and lower dry season rainfall suggesting that upwind contrasts in land cover and moisture can influence the meteorological conditions at eastern Andean TMCFs. Contrasting streamflow dynamics between the studied catchments reflect the overall system response

  18. Retrieval of Vertical LAI Profiles Over Tropical Rain Forests using Waveform Lidar at La Selva, Costa Rica

    Science.gov (United States)

    Tang, Hao; Dubayah, Ralph; Swatantra, Anu; Hofton, Michelle; Sheldon, Sage; Clark, David B.; Blair, Bryan

    2012-01-01

    This study explores the potential of waveform lidar in mapping the vertical and spatial distributions of leaf area index (LAI) over the tropical rain forest of La Selva Biological Station in Costa Rica. Vertical profiles of LAI were derived at 0.3 m height intervals from the Laser Vegetation Imaging Sensor (LVIS) data using the Geometric Optical and Radiative Transfer (GORT) model. Cumulative LAI profiles obtained from LVIS were validated with data from 55 ground to canopy vertical transects using a modular field tower to destructively sample all vegetation. Our results showed moderate agreement between lidar and field derived LAI (r2=0.42, RMSE=1.91, bias=-0.32), which further improved when differences between lidar and tower footprint scales (r2=0.50, RMSE=1.79, bias=0.27) and distance of field tower from lidar footprint center (r2=0.63, RMSE=1.36, bias=0.0) were accounted for. Next, we mapped the spatial distribution of total LAI across the landsc