WorldWideScience

Sample records for tropical plant species

  1. Minimizing Risks of Invasive Alien Plant Species in Tropical Production Forest Management

    Directory of Open Access Journals (Sweden)

    Michael Padmanaba

    2014-08-01

    Full Text Available Timber production is the most pervasive human impact on tropical forests, but studies of logging impacts have largely focused on timber species and vertebrates. This review focuses on the risk from invasive alien plant species, which has been frequently neglected in production forest management in the tropics. Our literature search resulted in 114 publications with relevant information, including books, book chapters, reports and papers. Examples of both invasions by aliens into tropical production forests and plantation forests as sources of invasions are presented. We discuss species traits and processes affecting spread and invasion, and silvicultural practices that favor invasions. We also highlight potential impacts of invasive plant species and discuss options for managing them in production forests. We suggest that future forestry practices need to reduce the risks of plant invasions by conducting surveillance for invasive species; minimizing canopy opening during harvesting; encouraging rapid canopy closure in plantations; minimizing the width of access roads; and ensuring that vehicles and other equipment are not transporting seeds of invasive species. Potential invasive species should not be planted within dispersal range of production forests. In invasive species management, forewarned is forearmed.

  2. Where are the tropical plants? A call for better inclusion of tropical plants in studies investigating and predicting the effects of climate change

    Directory of Open Access Journals (Sweden)

    Kenneth J Feeley

    2016-01-01

    Full Text Available Tropical plant species are systematically underrepresented in large-scale analyses or synthesis looking at the potential effects of global climate change.  The reason being that we simply don’t know enough about the distributions and ecologies of most tropical plant species to predict their fate under climate change. This gaping hole in our knowledge is extremely worrisome given the high diversity of tropical plants, the crucial roles that they play in supporting global diversity and ecosystem function, and the elevated threats that climate change may pose to tropical species in general.  

  3. RAINBIO: a mega-database of tropical African vascular plants distributions

    Directory of Open Access Journals (Sweden)

    Dauby Gilles

    2016-11-01

    Full Text Available The tropical vegetation of Africa is characterized by high levels of species diversity but is undergoing important shifts in response to ongoing climate change and increasing anthropogenic pressures. Although our knowledge of plant species distribution patterns in the African tropics has been improving over the years, it remains limited. Here we present RAINBIO, a unique comprehensive mega-database of georeferenced records for vascular plants in continental tropical Africa. The geographic focus of the database is the region south of the Sahel and north of Southern Africa, and the majority of data originate from tropical forest regions. RAINBIO is a compilation of 13 datasets either publicly available or personal ones. Numerous in depth data quality checks, automatic and manual via several African flora experts, were undertaken for georeferencing, standardization of taxonomic names and identification and merging of duplicated records. The resulting RAINBIO data allows exploration and extraction of distribution data for 25,356 native tropical African vascular plant species, which represents ca. 89% of all known plant species in the area of interest. Habit information is also provided for 91% of these species.

  4. The Species Richness of Vascular Plants and Amphibia in Major Plant Communities in Temperate to Tropical Australia: Relationship with Annual Biomass Production

    International Nuclear Information System (INIS)

    Specht, R. L.; Tyler, M.J.

    2010-01-01

    Aerodynamic fluxes (frictional, thermal, evaporative) in the atmosphere as it flows over and through a plant community determine the Foliage Projective Covers and eco-morphological attributes of new leaves developed annually in overstorey and understorey strata. The number of leaves produced on vertical foliage shoots depends on available soil water and nutrients, also ambient temperature, during this short growth season. Stem density (number of stems per hectare) and species richness (number of species per hectare) in the overstorey of major Floristic Groups are correlated with annual shoot growth (ASG, t ha-1) in that stratum. Species richness in the overstorey increases in the climatic gradient from the arid to the humid zone as well as with increasing air temperatures (about 10 degree C) from temperate to tropical Australia. Species richness in the understorey is highest in plant communities in temperate Australia, decreasing in the temperature gradient towards the tropics. As with other major plant and animal groups within an ecosystem, the species richness of Amphibia is correlated with the amount of solar energy fixed (per annum) by the major plant formation in the regional photosynthetic potential determined by the foliage shoots (ASG, t ha-1) produced annually in the overstorey.

  5. The Species Richness of Vascular Plants and Amphibia in Major Plant Communities in Temperate to Tropical Australia: Relationship with Annual Biomass Production

    Directory of Open Access Journals (Sweden)

    R. L. Specht

    2010-01-01

    Full Text Available Aerodynamic fluxes (frictional, thermal, evaporative in the atmosphere as it flows over and through a plant community determine the Foliage Projective Covers and eco-morphological attributes of new leaves developed annually in overstorey and understorey strata. The number of leaves produced on vertical foliage shoots depends on available soil water and nutrients, also ambient temperature, during this short growth season. Stem density (number of stems per hectare and species richness (number of species per hectare in the overstorey of major Floristic Groups are correlated with annual shoot growth (ASG, t ha−1 in that stratum. Species richness in the overstorey increases in the climatic gradient from the arid to the humid zone as well as with increasing air temperatures (about 10oC from temperate to tropical Australia. Species richness in the understorey is highest in plant communities in temperate Australia, decreasing in the temperature gradient towards the tropics. As with other major plant and animal groups within an ecosystem, the species richness of Amphibia is correlated with the amount of solar energy fixed (per annum by the major plant formation in the region—a photosynthetic potential determined by the foliage shoots (ASG, t ha−1 produced annually in the overstorey.

  6. Rubisco activity and gene expression of tropical tree species under ...

    African Journals Online (AJOL)

    Tropical rain forests contain an ecologically and physiologically diverse range of vegetation and habitats. Sun-acclimated plants can be divided into two groups, shade-tolerant and shade-intolerant, according to the plant's physiological and genetic responses. Some tropical species have potential capacity for light damage ...

  7. Incorporation of {sup 137}Cs by tropical tree species and its correlation with plant physiology

    Energy Technology Data Exchange (ETDEWEB)

    Cid, Alberto Silva; Anjos, Roberto Meigikos dos; Macario, K.D.; Veiga, R.; Ayubi, J. Juri; Lacerda, T. [Universidade Federal Fluminense (UFF), Niteroi, RJ (Brazil). Instituto de Fisica; Zamboni, C.B.; Medeiros, I.M.A. [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN- SP), Sao Paulo, SP (Brazil); Velasco, H.; Rizzotto, M. [Universidad Nacional de San Luis (UNSL) (Argentina). Instituto de Matematica Aplicada San Luis; Audicio, P. [Facultad de Ciencias (UDELAR), Montevideo (Uruguay). Centro de Investigaciones Nucleares

    2011-07-01

    the tropical plant species, suggesting that these two elements might be assimilated in a similar way, and that they pass through the biological cycle together. Correlation between {sup 137}Cs{sup +} and Na{sup +} is strongly dependent on plant species. A simple mathematical model is also proposed to describe the temporal evolution in the incorporation of monovalent inorganic cations by the fruits of such tropical species. This model exhibits close agreement with the experimental results during the fruit development. (author)

  8. The potential sensitivity of tropical plants to increased ultraviolet-B radiation

    International Nuclear Information System (INIS)

    Ziska, L.H.

    1996-01-01

    Little is known concerning the impact of stratospheric ozone depletion and increasing ultraviolet (UV)-B radiation on the phenology and growth of tropical plants. This is because, ostensibly, tropical plants are already exposed to relatively high levels of UV-B radiation (relative to a temperate environment) and should, therefore, possess a greater degree of tolerance to increased UV-B radiation. In this brief review I hope to show that, potentially, direct and indirect effects on photosynthesis, assimilate partitioning, phenology and biomass could occur in both tropical crops (e.g. cassava, rice) and native species (e.g. Cecropia obtusifolia (Bertol. Fl)., Tetramolopium humile (Gray), Nana sandwicensis L.). However, it should be noted that differences in sensitivity to UV-B radiation can be related to experimental conditions, and care should be taken to ensure that the quantity and quality of background solar radiation remains at near ambient conditions. Nevertheless, by integrating current and past studies on the impact of UV-B radiation on tropical species, I hope to be able to demonstrate that photosynthesis, morphology and growth in tropical plants could be directly affected by UV-B radiation and that UV-B radiation may be a factor in species and community dynamics in natural plant populations in the tropics

  9. Plant-pollinator interactions in tropical monsoon forests in Southeast Asia.

    Science.gov (United States)

    Kato, Makoto; Kosaka, Yasuyuki; Kawakita, Atsushi; Okuyama, Yudai; Kobayashi, Chisato; Phimminith, Thavy; Thongphan, Daovorn

    2008-11-01

    Forests with different flora and vegetation types harbor different assemblages of flower visitors, and plant-pollinator interactions vary among forests. In monsoon-dominated East and Southeast Asia, there is a characteristic gradient in climate along latitude, creating a broad spectrum of forest types with potentially diverse pollinator communities. To detect a geographical pattern of plant-pollinator interactions, we investigated flowering phenology and pollinator assemblages in the least-studied forest type, i.e., tropical monsoon forest, in the Vientiane plain in Laos. Throughout the 5-year study, we observed 171 plant species blooming and detected flower visitors on 145 species. Flowering occurred throughout the year, although the number of flowering plant species peaked at the end of dry season. The dominant canopy trees, including Dipterocarpaceae, bloomed annually, in contrast to the supra-annual general flowering that occurs in Southeast Asian tropical rain forests. Among the 134 native plant species, 68 were pollinated by hymenopterans and others by lepidopterans, beetles, flies, or diverse insects. Among the observed bees, Xylocopa, megachilids, and honeybees mainly contributed to the pollination of canopy trees, whereas long-tongued Amegilla bees pollinated diverse perennials with long corolla tubes. This is the first community-level study of plant-pollinator interactions in an Asian tropical monsoon forest ecosystem.

  10. No evidence that boron influences tree species distributions in lowland tropical forests of Panama.

    Science.gov (United States)

    Turner, Benjamin L; Zalamea, Paul-Camilo; Condit, Richard; Winter, Klaus; Wright, S Joseph; Dalling, James W

    2017-04-01

    It was recently proposed that boron might be the most important nutrient structuring tree species distributions in tropical forests. Here we combine observational and experimental studies to test this hypothesis for lowland tropical forests of Panama. Plant-available boron is uniformly low in tropical forest soils of Panama and is not significantly associated with any of the > 500 species in a regional network of forest dynamics plots. Experimental manipulation of boron supply to seedlings of three tropical tree species revealed no evidence of boron deficiency or toxicity at concentrations likely to occur in tropical forest soils. Foliar boron did not correlate with soil boron along a local scale gradient of boron availability. Fifteen years of boron addition to a tropical forest increased plant-available boron by 70% but did not significantly change tree productivity or boron concentrations in live leaves, wood or leaf litter. The annual input of boron in rainfall accounts for a considerable proportion of the boron in annual litterfall and is similar to the pool of plant-available boron in the soil, and is therefore sufficient to preclude boron deficiency. We conclude that boron does not influence tree species distributions in Panama and presumably elsewhere in the lowland tropics. No claim to original US government works New Phytologist © 2016 New Phytologist Trust.

  11. [Regenerative morphological traits in a woody species community in Tumbesian tropical dry forest].

    Science.gov (United States)

    Romero-Saritama, José Miguel; Pérez-Rúuz, César

    2016-06-01

    The study of functional morphological traits enables us to know fundamental aspects of the dynamics of plant communities in local and global habitats. Regenerative morphological traits play an important role in defining plant history and ecological behavior. Seed and fruit characteristics determine to a large extent the patterns for dispersal, germination, establishment and seedling recruitment a given species exhibits on its natural habitat. Despite their prominent role, seed and fruit traits have been poorly studied at the community level of woody plant species in neo-tropical dry forests. In the present study we aimed at i) evaluate the functional role of morphological traits of seeds, fruits and embryo in woody plant species; ii) determine which are the morphological patterns present in seeds collected from the community of woody species that occur in neo-tropical dry forests; and iii) compare woody plant species seed mass values comparatively between neo-tropical dry and tropical forests. To do so, mature seeds were collected from 79 plant species that occur in the Tumbesian forest of Southwest Ecuador. The studied species included the 42 and 37 most representative tree and shrubbery species of the Tumbesian forest respectively. A total of 18 morphological traits (seven quantitative and 11 qualitative) were measured and evaluated in the seeds, fruits and embryos of the selected species, and we compared the seeds mass with other forest types. Our results showed a huge heterogeneity among traits values in the studied species. Seed mass, volume and number were the traits that vary the most at the community level, i.e. seed length ranged from 1.3 to 39 mm, and seed width from 0.6 to 25 mm. Only six embryo types were found among the 79 plant species. In 40 % of the cases, fully developed inverted embryos with large and thick cotyledons to store considerable amount of nutrients were recorded. We concluded that highly variable and functionally complementary

  12. 40K/137Cs discrimination ratios to the aboveground organs of tropical plants

    International Nuclear Information System (INIS)

    Sanches, N.; Anjos, R.M.; Mosquera, B.

    2008-01-01

    In the present work, the accumulation of caesium and potassium in aboveground plant parts was studied in order to improve the understanding on the behaviour of monovalent cations in several compartments of tropical plants. We present the results for activity concentrations of 137 Cs and 40 K, measured by gamma spectrometry, from five tropical plant species: guava (Psidium guajava), mango (Mangifera indica), papaya (Carica papaya), banana (Musa paradisiaca), and manioc (Manihot esculenta). Caesium and potassium have shown a high level of mobility within the plants, exhibiting the highest values of concentration in the growing parts (fruits, leaves, twigs, and barks) of the woody fruit and large herbaceous shrub (such as manioc) species. In contrast, the banana and papaya plants exhibited the lowest levels of 137 Cs and 40 K in their growing parts. However, a significant correlation between activity concentrations of 137 Cs and 40 K was observed in these tropical plants. The 40 K/ 137 Cs discrimination ratios were approximately equal to unity in different compartments of each individual plant, suggesting the possibility of using caesium to predict the behaviour of potassium in several tropical species

  13. 40K/137Cs discrimination ratios to the aboveground organs of tropical plants.

    Science.gov (United States)

    Sanches, N; Anjos, R M; Mosquera, B

    2008-07-01

    In the present work, the accumulation of caesium and potassium in aboveground plant parts was studied in order to improve the understanding on the behaviour of monovalent cations in several compartments of tropical plants. We present the results for activity concentrations of (137)Cs and (40)K, measured by gamma spectrometry, from five tropical plant species: guava (Psidium guajava), mango (Mangifera indica), papaya (Carica papaya), banana (Musa paradisíaca), and manioc (Manihot esculenta). Caesium and potassium have shown a high level of mobility within the plants, exhibiting the highest values of concentration in the growing parts (fruits, leaves, twigs, and barks) of the woody fruit and large herbaceous shrub (such as manioc) species. In contrast, the banana and papaya plants exhibited the lowest levels of (137)Cs and (40)K in their growing parts. However, a significant correlation between activity concentrations of (137)Cs and (40)K was observed in these tropical plants. The (40)K/(137)Cs discrimination ratios were approximately equal to unity in different compartments of each individual plant, suggesting the possibility of using caesium to predict the behaviour of potassium in several tropical species.

  14. In vitro propagation of tropical hardwood tree species — A review (2001-2011)

    Science.gov (United States)

    Paula M. Pijut; Rochelle R. Beasley; Shaneka S. Lawson; Kaitlin J. Palla; Micah E. Stevens; Ying. Wang

    2012-01-01

    Tropical hardwood tree species are important economically and ecologically, and play a significant role in the biodiversity of plant and animal species within an ecosystem. There are over 600 species of tropical timbers in the world, many of which are commercially valuable in the international trade of plywood, roundwood, sawnwood, and veneer. Many of these tree...

  15. Resource partitioning by evergreen and deciduous species in a tropical dry forest.

    Science.gov (United States)

    Álvarez-Yépiz, Juan C; Búrquez, Alberto; Martínez-Yrízar, Angelina; Teece, Mark; Yépez, Enrico A; Dovciak, Martin

    2017-02-01

    Niche differentiation can lead to coexistence of plant species by partitioning limiting resources. Light partitioning promotes niche differentiation in tropical humid forests, but it is unclear how niche partitioning occurs in tropical dry forests where both light and soil resources can be limiting. We studied the adult niche of four dominant evergreen (cycad, palm) and drought-deciduous (legume, oak) species co-occurring along environmental gradients. We analyzed light intensity and soil fertility effects on key functional traits related to plant carbon and water economy, how these traits determine species' functional strategies, and how these strategies relate to relative species abundance and spatial patterns. Light intensity was negatively associated with a key trait linked to plant water economy (leaf δ 13 C, a proxy for long-term water-use efficiency-WUE), while soil fertility was negatively associated with a key trait for plant carbon economy (LNC, leaf nitrogen content). Evergreens were highly sclerophyllous and displayed an efficient water economy but poor carbon economy, in agreement with a conservative resource-use strategy (i.e., high WUE but low LNC, photosynthetic rates and stature). Conversely, deciduous species, with an efficient carbon economy but poor water economy, exhibited an exploitative resource-use strategy (i.e., high LNC, photosynthetic rates and stature, but low WUE). Evergreen and deciduous species segregated spatially, particularly at fine-scales, as expected for species with different resource-use strategies. The efficient water economy of evergreens was related to their higher relative abundance, suggesting a functional advantage against drought-deciduous species in water-limited environments within seasonally dry tropical forests.

  16. Comparisons of invasive plants in southern Africa originating from southern temperate, northern temperate and tropical regions

    Directory of Open Access Journals (Sweden)

    L. Henderson

    2006-08-01

    Full Text Available A subset of invasive alien plant species in southern Africa was analysed in terms of their history of introduction, rate of spread, countries/region of origin, taxonomy, growth forms, cultivated uses, weed status and current distribution in southern Africa, and comparisons made of those originating from south of the tropic of Capricorn, north of the tropic of Cancer and from the tropics. The subset of 233 species, belonging to 58 families, includes all important declared species and some potentially important species. Almost as many species originate from temperate regions (112 as from the tropics (121. Most southern temperate species came from Australia (28/36, most tropical species from tropical America (92/121 and most northern temperate species from Europe (including the Mediterranean and Asia (58/76. Transformers account for 33% of  all species. More transformers are of tropical origin (36 than of northern temperate (24 and southern temperate origin (18. However. 50% of southern temperate species are transformers, compared to 32% of northern temperate and 29% of tropical species. Southern temperate transformer species are mainly woody trees and shrubs that were established on a grand scale as silvicultural crops, barriers (hedges, windbreaks and screens and cover/binders. Most aquatics, herbs, climbers and succulent shrubs an. trom the tropics. Ornamentals are the single largest category of plants from all three regions, the tropics having contributed twice as many species as temperate regions.

  17. An engine for global plant diversity: Highest evolutionary turnover and emigration in the American tropics

    Directory of Open Access Journals (Sweden)

    Alexandre eAntonelli

    2015-04-01

    Full Text Available Understanding the processes that have generated the latitudinal biodiversity gradient and the continental differences in tropical biodiversity remains a major goal of evolutionary biology. Here we estimate the timing and direction of range shifts of extant flowering plants (angiosperms between tropical and non-tropical zones, and into and out of the major tropical regions of the world. We then calculate rates of speciation and extinction taking into account incomplete taxonomic sampling. We use a recently published fossil calibrated phylogeny and apply novel bioinformatic tools to code species into user-defined polygons. We reconstruct biogeographic history using stochastic character mapping to compute relative numbers of range shifts in proportion to the number of available lineages through time. Our results, based on the analysis of c. 22,600 species and c. 20 million geo-referenced occurrence records, show no significant differences between the speciation and extinction of tropical and non-tropical angiosperms. This suggests that at least in plants, the tropical biodiversity gradient primarily derives from other factors than differential rates of diversification. In contrast, the outstanding species richness found today in the American tropics (the Neotropics, as compared to tropical Africa and tropical Asia, is associated with significantly higher speciation and extinction rates. This suggests an exceedingly rapid evolutionary turnover, i.e. Neotropical species being formed and replaced by one another at unparalleled rates. In addition, tropical America stands out from other continents by having ‘pumped out’ more species than it received through most of the last 66 million years. These results imply that the Neotropics have acted as an engine for global plant diversity.

  18. Pervasive phosphorus limitation of tree species but not communities in tropical forests

    Science.gov (United States)

    Turner, Benjamin L.; Brenes-Arguedas, Tania; Condit, Richard

    2018-03-01

    Phosphorus availability is widely assumed to limit primary productivity in tropical forests, but support for this paradigm is equivocal. Although biogeochemical theory predicts that phosphorus limitation should be prevalent on old, strongly weathered soils, experimental manipulations have failed to detect a consistent response to phosphorus addition in species-rich lowland tropical forests. Here we show, by quantifying the growth of 541 tropical tree species across a steep natural phosphorus gradient in Panama, that phosphorus limitation is widespread at the level of individual species and strengthens markedly below a threshold of two parts per million exchangeable soil phosphate. However, this pervasive species-specific phosphorus limitation does not translate into a community-wide response, because some species grow rapidly on infertile soils despite extremely low phosphorus availability. These results redefine our understanding of nutrient limitation in diverse plant communities and have important implications for attempts to predict the response of tropical forests to environmental change.

  19. {sup 40}K/{sup 137}Cs discrimination ratios to the aboveground organs of tropical plants

    Energy Technology Data Exchange (ETDEWEB)

    Sanches, N. [Instituto de Fisica, Universidade Federal Fluminense, Av. Gal. Milton Tavares de Souza s/n, Gragoata, Niteroi, CEP 24210-346, RJ (Brazil); Anjos, R.M. [Instituto de Fisica, Universidade Federal Fluminense, Av. Gal. Milton Tavares de Souza s/n, Gragoata, Niteroi, CEP 24210-346, RJ (Brazil)], E-mail: meigikos@if.uff.br; Mosquera, B. [Instituto de Fisica, Universidade Federal Fluminense, Av. Gal. Milton Tavares de Souza s/n, Gragoata, Niteroi, CEP 24210-346, RJ (Brazil)

    2008-07-15

    In the present work, the accumulation of caesium and potassium in aboveground plant parts was studied in order to improve the understanding on the behaviour of monovalent cations in several compartments of tropical plants. We present the results for activity concentrations of {sup 137}Cs and {sup 40}K, measured by gamma spectrometry, from five tropical plant species: guava (Psidium guajava), mango (Mangifera indica), papaya (Carica papaya), banana (Musa paradisiaca), and manioc (Manihot esculenta). Caesium and potassium have shown a high level of mobility within the plants, exhibiting the highest values of concentration in the growing parts (fruits, leaves, twigs, and barks) of the woody fruit and large herbaceous shrub (such as manioc) species. In contrast, the banana and papaya plants exhibited the lowest levels of {sup 137}Cs and {sup 40}K in their growing parts. However, a significant correlation between activity concentrations of {sup 137}Cs and {sup 40}K was observed in these tropical plants. The {sup 40}K/{sup 137}Cs discrimination ratios were approximately equal to unity in different compartments of each individual plant, suggesting the possibility of using caesium to predict the behaviour of potassium in several tropical species.

  20. Underexploited tropical plants with promising economic value

    Energy Technology Data Exchange (ETDEWEB)

    1975-01-01

    The apparent advantages of staple plants over the minor tropical plants often result only from the disproportionate research attention they have been given. A world-wide inquiry resulted in a list of 400 promising but neglected species. The 36 most important species are described in compact monographs and concern cereals (Echinochloa turnerana, grain amaranths, quinua and Zosterea mazina), roots and tubers (Arrachacha, cocoyams and taro), vegetables (chaya, hearts of palms, wax gourd, winged bean), fruits (durian, mangosteen, naranjilla, pejibaye, pummelo, soursop, uvilla), oilseeds (babassu palm, buffalo gourd, Caryocar species, Hessenia polycarpa and jojoba), forage (Acacia albida, Brosimum alicastrum Cassia sturtii, saltbushes and tamarugo) and other crops (buriti palm, Calathea lutea, candelilla, guar, guayule, Paspalum vaginatum, ramie and Spirulina).

  1. Has frugivory influenced the macroecology and diversification of a tropical keystone plant family?

    Directory of Open Access Journals (Sweden)

    W. Daniel Kissling

    2017-07-01

    Full Text Available Seed dispersal by fruit-eating animals is a pivotal ecosystem function in tropical forests, but the role that frugivores have played in the biogeography and macroevolution of species-rich tropical plant families remains largely unexplored. This project investigates how frugivory-relevant plant traits (e.g. fruit size, fruit color, fruit shape etc. are distributed within the angiosperm family of palms (Arecaceae, how this relates to diversification rates, and whether and how it coincides with the global biogeographic distribution of vertebrate frugivores (birds, bats, primates, other frugivorous mammals and their ecological traits (e.g. diet specialization, body size, flight ability, color vision etc.. Palms are particularly suitable because they are well studied, species-rich, characteristic of tropical rainforests, and dispersed by all groups of vertebrate seed dispersers. Using newly compiled data on species distributions and ecological traits in combination with phylogenies we will test (1 how fruit trait variability relates to palm phylogeny and other aspects of plant morphology (e.g. leaf size, plant height, growth form, (2 whether geographic variability in fruit traits correlates with geographic distributions of animal consumers and their traits, and (3 to what extent interaction-relevant plant traits are related to palm diversification rates. This combined macroecological and macroevolutionary approach allows novel insights into the global ecology and the evolution of a tropical keystone plant family. This is important for the conservation and sustainable management of tropical rainforests because palms are often key components of subsistence economies, ecosystem dynamics and carbon storage and therefore help to enhance nature’s goods, benefits and services to humanity.

  2. Simulated geographic variations of plant species richness, evenness and abundance using climatic constraints on plant functional diversity

    International Nuclear Information System (INIS)

    Kleidon, Axel; Pavlick, Ryan; Reu, Bjoern; Adams, Jonathan

    2009-01-01

    Among the most pronounced large-scale geographic patterns of plant biodiversity are the increase in plant species richness towards the tropics, a more even distribution of the relative abundances of plant species in the tropics, and a nearly log-normal relative abundance distribution. Here we use an individual-based plant diversity model that relates climatic constraints to feasible plant growth strategies to show that all three basic diversity patterns can be predicted merely from the climatic constraints acting upon plant ecophysiological trade-offs. Our model predicts that towards objectively 'harsher' environments, the range of feasible growth strategies resulting in reproductive plants is reduced, thus resulting in lower functional plant species richness. The reduction of evenness is attributed to a more rapid decline in productivity from the most productive to less productive plant growth strategies since the particular setup of the strategy becomes more important in maintaining high productivity in harsher environments. This approach is also able to reproduce the increase in the deviation from a log-normal distribution towards more evenly distributed communities of the tropics. Our results imply that these general biodiversity relationships can be understood primarily by considering the climatic constraints on plant ecophysiological trade-offs.

  3. Automated classification of tropical shrub species: a hybrid of leaf shape and machine learning approach.

    Science.gov (United States)

    Murat, Miraemiliana; Chang, Siow-Wee; Abu, Arpah; Yap, Hwa Jen; Yong, Kien-Thai

    2017-01-01

    Plants play a crucial role in foodstuff, medicine, industry, and environmental protection. The skill of recognising plants is very important in some applications, including conservation of endangered species and rehabilitation of lands after mining activities. However, it is a difficult task to identify plant species because it requires specialized knowledge. Developing an automated classification system for plant species is necessary and valuable since it can help specialists as well as the public in identifying plant species easily. Shape descriptors were applied on the myDAUN dataset that contains 45 tropical shrub species collected from the University of Malaya (UM), Malaysia. Based on literature review, this is the first study in the development of tropical shrub species image dataset and classification using a hybrid of leaf shape and machine learning approach. Four types of shape descriptors were used in this study namely morphological shape descriptors (MSD), Histogram of Oriented Gradients (HOG), Hu invariant moments (Hu) and Zernike moments (ZM). Single descriptor, as well as the combination of hybrid descriptors were tested and compared. The tropical shrub species are classified using six different classifiers, which are artificial neural network (ANN), random forest (RF), support vector machine (SVM), k-nearest neighbour (k-NN), linear discriminant analysis (LDA) and directed acyclic graph multiclass least squares twin support vector machine (DAG MLSTSVM). In addition, three types of feature selection methods were tested in the myDAUN dataset, Relief, Correlation-based feature selection (CFS) and Pearson's coefficient correlation (PCC). The well-known Flavia dataset and Swedish Leaf dataset were used as the validation dataset on the proposed methods. The results showed that the hybrid of all descriptors of ANN outperformed the other classifiers with an average classification accuracy of 98.23% for the myDAUN dataset, 95.25% for the Flavia dataset and 99

  4. Automated classification of tropical shrub species: a hybrid of leaf shape and machine learning approach

    Directory of Open Access Journals (Sweden)

    Miraemiliana Murat

    2017-09-01

    Full Text Available Plants play a crucial role in foodstuff, medicine, industry, and environmental protection. The skill of recognising plants is very important in some applications, including conservation of endangered species and rehabilitation of lands after mining activities. However, it is a difficult task to identify plant species because it requires specialized knowledge. Developing an automated classification system for plant species is necessary and valuable since it can help specialists as well as the public in identifying plant species easily. Shape descriptors were applied on the myDAUN dataset that contains 45 tropical shrub species collected from the University of Malaya (UM, Malaysia. Based on literature review, this is the first study in the development of tropical shrub species image dataset and classification using a hybrid of leaf shape and machine learning approach. Four types of shape descriptors were used in this study namely morphological shape descriptors (MSD, Histogram of Oriented Gradients (HOG, Hu invariant moments (Hu and Zernike moments (ZM. Single descriptor, as well as the combination of hybrid descriptors were tested and compared. The tropical shrub species are classified using six different classifiers, which are artificial neural network (ANN, random forest (RF, support vector machine (SVM, k-nearest neighbour (k-NN, linear discriminant analysis (LDA and directed acyclic graph multiclass least squares twin support vector machine (DAG MLSTSVM. In addition, three types of feature selection methods were tested in the myDAUN dataset, Relief, Correlation-based feature selection (CFS and Pearson’s coefficient correlation (PCC. The well-known Flavia dataset and Swedish Leaf dataset were used as the validation dataset on the proposed methods. The results showed that the hybrid of all descriptors of ANN outperformed the other classifiers with an average classification accuracy of 98.23% for the myDAUN dataset, 95.25% for the Flavia

  5. Landscape Variation in Plant Defense Syndromes across a Tropical Rainforest

    Science.gov (United States)

    McManus, K. M.; Asner, G. P.; Martin, R.; Field, C. B.

    2014-12-01

    Plant defenses against herbivores shape tropical rainforest biodiversity, yet community- and landscape-scale patterns of plant defense and the phylogenetic and environmental factors that may shape them are poorly known. We measured foliar defense, growth, and longevity traits for 345 canopy trees across 84 species in a tropical rainforest and examined whether patterns of trait co-variation indicated the existence of plant defense syndromes. Using a DNA-barcode phylogeny and remote sensing and land-use data, we investigated how phylogeny and topo-edaphic properties influenced the distribution of syndromes. We found evidence for three distinct defense syndromes, characterized by rapid growth, growth compensated by defense, or limited palatability/low nutrition. Phylogenetic signal was generally lower for defense traits than traits related to growth or longevity. Individual defense syndromes were organized at different taxonomic levels and responded to different spatial-environmental gradients. The results suggest that a diverse set of tropical canopy trees converge on a limited number of strategies to secure resources and mitigate fitness losses due to herbivory, with patterns of distribution mediated by evolutionary histories and local habitat associations. Plant defense syndromes are multidimensional plant strategies, and thus are a useful means of discerning ecologically-relevant variation in highly diverse tropical rainforest communities. Scaling this approach to the landscape level, if plant defense syndromes can be distinguished in remotely-sensed data, they may yield new insights into the role of plant defense in structuring diverse tropical rainforest communities.

  6. Application of digital field photographs as documents for tropical plant inventory.

    Science.gov (United States)

    LaFrankie, James V; Chua, Anna I

    2015-05-01

    We tested the credibility and significance of digital field photographs as supplements or substitutes for conventional herbarium specimens with particular relevance to exploration of the tropics. We made 113 collections in triplicate at a species-rich mountain in the Philippines while we took 1238 digital photographs of the same plants. We then identified the plants from the photographs alone, categorized the confidence of the identification and the reason for failure to identify, and compared the results to identifications based on the dried specimens. We identified 72.6% of the photographic sets with high confidence and 27.4% with low confidence or only to genus. In no case was a confident identification altered by subsequent examination of the dried specimen. The failure to identify photographic sets to species was due to the lack of a key feature in 67.8% of the cases and due to a poorly understood taxonomy in 32.2%. We conclude that digital photographs cannot replace traditional herbarium specimens as the primary elements that document tropical plant diversity. However, photographs represent a new and important artifact that aids an expedient survey of tropical plant diversity while encouraging broad public participation.

  7. Ecophysiology of two tropical species in an abandoned eucalypt plantation: effect of plant litter removal and seasonality

    Directory of Open Access Journals (Sweden)

    Frederico Lage-Pinto

    2015-05-01

    Full Text Available The effect of the removal of plant litter on photosynthetic variables (gas exchanges, chlorophyll a fluorescence, and content of photosynthetic pigments of the tropical species Xylopia sericea A. St.-Hil. and Siparuna guianensis Aubl. was evaluated in an abandoned plantation of eucalypt (Corymbia citriodora (Hook. K.D. Hill & L.A.S. Johnson (Myrtaceae. The study was conducted at the União Biological Reserve, Rio de Janeiro State, Brazil during the rainy and dry periods, after five years of litter removal. The removal of plant litter did not influence the ecophysiological responses of the species. There was however significant seasonal variation. During the dry period, intercellular CO2 concentration (Ci, transpiration (E, and stomatal conductance (gs were decreased, while intrinsic efficiency of water use (IWUE, non-photochemical quenching (NPQ, and carotenoid values increased, suggesting a protective strategy against stress. Nevertheless, the values for Fv/Fm (maximum quantum efficiency and Fm/Fo (ratio of fluorescence yields for open and closed states indicated that even during the dry period there was no reduction in photochemical activity in these species. Only S. guianensis exhibited a reduced net photosynthetic rate (A during the dry period. The data indicated that X. sericea was photosynthetically more efficient under conditions of low water availability and that a 5-year period of plant litter removal failed to produce differences in ecophysiological processes in the species analyzed.

  8. Plant biodiversity changes in Carboniferous tropical wetlands

    DEFF Research Database (Denmark)

    Cleal, C. J.; Uhl, D.; Cascales-Miñana, B.

    2012-01-01

    and Sydney coal basins. In all cases, species richness expansion followed an essentially logistic curve typical of that associated with ecologically closed habitats, with niche saturation being achieved in about three million years. The resulting steady-state (“climax”) coal swamp vegetation had a local......Using a combination of species richness, polycohort and constrained cluster analyses, the plant biodiversity of Pennsylvanian (late Carboniferous) tropical wetlands (“coal swamps”) has been investigated in five areas in Western Europe and eastern North America: South Wales, Pennines, Ruhr, Saarland...

  9. Quality maintenance Tropical Plants

    Directory of Open Access Journals (Sweden)

    Gláucia Moraes Dias

    2016-11-01

    Full Text Available The climatic characteristics of the country favor the cultivation of tropical flowers. The continued expansion of this market is due the beauty, exoticit nature and postharvest longevity of flower. However, little is known about the postharvest of tropical plants. Therefore, this paper provides information on harvest, handling and storage of cut tropical plantspostharvest, storage temperature, conditioning solution.

  10. Host plant use among closely related Anaea butterfly species (Lepidoptera, Nymphalidae, Charaxinae

    Directory of Open Access Journals (Sweden)

    QUEIROZ J. M.

    2002-01-01

    Full Text Available There is a great number of Charaxinae (Lepidoptera: Nymphalidae species in the tropics whose larvae feed on several plant families. However the genus Anaea is almost always associated with Croton species (Euphorbiaceae. This work describes patterns of host plant use by immature and adult abundance on different vertical strata of sympatric Anaea species in a forest of Southeastern Brazil. Quantitative samples of leaves were taken in April/1999 and May/2000 to collect eggs and larvae of four Anaea species on C.alchorneicarpus, C. floribundus and C. salutaris in a semideciduous forest. Sampled leaves were divided into three classes of plant phenological stage: saplings, shrubs and trees. The results showed that the butterfly species are segregating in host plant use on two scales: host plant species and plant phenological stages. C. alchorneicarpus was used by only one Anaea species, whereas C. floribundus was used by three species and C. salutaris by four Anaea species. There was one Anaea species concentrated on sapling, another on sapling/shrub and two others on shrub/tree leaves. Adults of Anaea were more frequent at canopy traps but there were no differences among species caught in traps at different vertical positions. This work supplements early studies on host plant use among Charaxinae species and it describes how a guild of closely related butterfly species may be organized in a complex tropical habitat.

  11. Accumulation and long-term behavior of radiocaesium in tropical plants

    International Nuclear Information System (INIS)

    Carvalho, C.; Mosquera, B.; Anjos, R.M.; Sanches, N.; Bastos, J.; Macario, K.; Veiga, R.

    2006-01-01

    The accumulation and distribution of 40 K and 137 Cs in tropical plant species were studied through measurements of gamma-ray spectra from mango, avocado, guava, pomegranate, chili pepper, papaya and manioc trees. Our goal was to infer their differences in the uptake and translocation of ions to the aboveground plant parts and to establish the suitability of using radiocaesium as a tracer for the plant uptake of nutrients such as K + . (author)

  12. Stable isotopic variation in tropical forest plants for applications in primatology.

    Science.gov (United States)

    Blumenthal, Scott A; Rothman, Jessica M; Chritz, Kendra L; Cerling, Thure E

    2016-10-01

    Stable isotope analysis is a promising tool for investigating primate ecology although nuanced ecological applications remain challenging, in part due to the complex nature of isotopic variability in plant-animal systems. The aim of this study is to investigate sources of carbon and nitrogen isotopic variation at the base of primate food webs that reflect aspects of primate ecology. The majority of primates inhabit tropical forest ecosystems, which are dominated by C3 vegetation. We used stable isotope ratios in plants from Kibale National Park, Uganda, a well-studied closed-canopy tropical forest, to investigate sources of isotopic variation among C3 plants related to canopy stratification, leaf age, and plant part. Unpredictably, our results demonstrate that vertical stratification within the canopy does not explain carbon or nitrogen isotopic variation in leaves. Leaf age can be a significant source of isotopic variation, although the direction and magnitude of this difference is not consistent across tree species. Some plant parts are clearly differentiated in carbon and nitrogen isotopic composition, particularly leaves compared to non-photosynthetic parts such as reproductive parts and woody stem parts. Overall, variation in the isotopic composition of floral communities, plant species, and plant parts demonstrates that stable isotope studies must include analysis of local plant species and parts consumed by the primates under study from within the study area. Am. J. Primatol. 78:1041-1054, 2016. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  13. Interactions of fire and nonnative species across an elevation/plant community gradient in Hawaii volcanoes national park

    Science.gov (United States)

    Alison Ainsworth; J. Boone Kauffman

    2010-01-01

    Invasive species interacting with fires pose a relatively unknown, but potentially serious, threat to the tropical forests of Hawaii. Fires may create conditions that facilitate species invasions, but the degree to which this occurs in different tropical plant communities has not been quantified. We documented the survival and establishment of plant species for 2 yr...

  14. Application of digital field photographs as documents for tropical plant inventory1

    Science.gov (United States)

    LaFrankie, James V.; Chua, Anna I.

    2015-01-01

    Premise of the study: We tested the credibility and significance of digital field photographs as supplements or substitutes for conventional herbarium specimens with particular relevance to exploration of the tropics. Methods: We made 113 collections in triplicate at a species-rich mountain in the Philippines while we took 1238 digital photographs of the same plants. We then identified the plants from the photographs alone, categorized the confidence of the identification and the reason for failure to identify, and compared the results to identifications based on the dried specimens. Results: We identified 72.6% of the photographic sets with high confidence and 27.4% with low confidence or only to genus. In no case was a confident identification altered by subsequent examination of the dried specimen. The failure to identify photographic sets to species was due to the lack of a key feature in 67.8% of the cases and due to a poorly understood taxonomy in 32.2%. Discussion: We conclude that digital photographs cannot replace traditional herbarium specimens as the primary elements that document tropical plant diversity. However, photographs represent a new and important artifact that aids an expedient survey of tropical plant diversity while encouraging broad public participation. PMID:25995976

  15. Accumulation and long-term behavior of radiocaesium in tropical plants

    Energy Technology Data Exchange (ETDEWEB)

    Carvalho, C.; Mosquera, B.; Anjos, R.M.; Sanches, N.; Bastos, J.; Macario, K.; Veiga, R. [Universidade Federal Fluminense, Niteroi, RJ (Brazil). Inst. de Fisica

    2006-12-15

    The accumulation and distribution of {sup 40}K and {sup 137}Cs in tropical plant species were studied through measurements of gamma-ray spectra from mango, avocado, guava, pomegranate, chili pepper, papaya and manioc trees. Our goal was to infer their differences in the uptake and translocation of ions to the aboveground plant parts and to establish the suitability of using radiocaesium as a tracer for the plant uptake of nutrients such as K{sup +}. (author)

  16. Ability of crassulacean acid metabolism plants to overcome interacting stresses in tropical environments.

    Science.gov (United States)

    Lüttge, Ulrich

    2010-01-01

    Single stressors such as scarcity of water and extreme temperatures dominate the struggle for life in severely dry desert ecosystems or cold polar regions and at high elevations. In contrast, stress in the tropics typically arises from a dynamic network of interacting stressors, such as availability of water, CO(2), light and nutrients, temperature and salinity. This requires more plastic spatio-temporal responsiveness and versatility in the acquisition and defence of ecological niches. The mode of photosynthesis of crassulacean acid metabolism (CAM) is described and its flexible expression endows plants with powerful strategies for both acclimation and adaptation. Thus, CAM plants are able to inhabit many diverse habitats in the tropics and are not, as commonly thought, successful predominantly in dry, high-insolation habitats. Typical tropical CAM habitats or ecosystems include exposed lava fields, rock outcrops of inselbergs, salinas, savannas, restingas, high-altitude páramos, dry forests and moist forests. Morphotypical and physiotypical plasticity of CAM phenotypes allow a wide ecophysiological amplitude of niche occupation in the tropics. Physiological and biochemical plasticity appear more responsive by having more readily reversible variations in performance than do morphological adaptations. This makes CAM plants particularly fit for the multi-factor stressor networks of tropical forests. Thus, while the physiognomy of semi-deserts outside the tropics is often determined by tall succulent CAM plants, tropical forests house many more CAM plants in terms of quantity (biomass) and quality (species diversity).

  17. Community patterns of tropical tree phenology derived from Unmanned Aerial Vehicle images: intra- and interspecific variation, association with species plant traits, and response to interannual climate variation

    Science.gov (United States)

    Bohlman, Stephanie; Rifai, Sami; Park, John; Dandois, Jonathan; Muller-Landau, Helene

    2017-04-01

    Phenology is a key life history trait of plant species and critical driver of ecosystem processes. There is strong evidence that phenology is shifting in temperate ecosystems in response to climate change, but tropical forest phenology remains poorly quantified and understood. A key challenge is that tropical forests contain hundreds of plant species with a wide variety of phenological patterns, which makes it difficult to collect sufficient ground-based field data to characterize individual tropical tree species phenologies. Satellite-based observations, an important source of phenology data in northern latitudes, are hindered by frequent cloud cover in the tropics. To quantify phenology over a large number of individuals and species, we collected bi-weekly images from unmanned aerial vehicles (UAVs) in the well-studied 50-ha forest inventory plot on Barro Colorado Island, Panama. The objective of this study is to quantify inter- and intra-specific responses of tropical tree leaf phenology to environmental variation over large spatial scales and identify key environmental variables and physiological mechanisms underpinning phenological variation. Between October 2014 and December 2015 and again in May 2015, we collected a total of 35 sets of UAV images, each with continuous coverage of the 50-ha plot, where every tree ≥ 1 cm DBH is mapped. UAV imagery was corrected for exposure, orthorectified, and then processed to extract spectral, texture, and image information for individual tree crowns, which was then used as inputs for a machine learning algorithm that successfully predicted the percentages of leaf, branch, and flower cover for each tree crown (r2=0.76 between observed and predicted percent branch cover for individual tree crowns). We then quantified cumulative annual deciduousness for each crown by fitting a non-parametric curve of flexible shape to its predicted percent branch time series and calculated the area under the curve. We obtained the species

  18. UV Screening in Native and Non-native Plant Species in the Tropical Alpine: Implications for Climate Change-Driven Migration of Species to Higher Elevations

    Directory of Open Access Journals (Sweden)

    Paul W. Barnes

    2017-08-01

    Full Text Available Ongoing changes in Earth’s climate are shifting the elevation ranges of many plant species with non-native species often experiencing greater expansion into higher elevations than native species. These climate change-induced shifts in distributions inevitably expose plants to novel biotic and abiotic environments, including altered solar ultraviolet (UV-B (280–315 nm radiation regimes. Do the greater migration potentials of non-native species into higher elevations imply that they have more effective UV-protective mechanisms than native species? In this study, we surveyed leaf epidermal UV-A transmittance (TUV A in a diversity of plant species representing different growth forms to test whether native and non-native species growing above 2800 m elevation on Mauna Kea, Hawaii differed in their UV screening capabilities. We further compared the degree to which TUV A varied along an elevation gradient in the native shrub Vaccinium reticulatum and the introduced forb Verbascum thapsus to evaluate whether these species differed in their abilities to adjust their levels of UV screening in response to elevation changes in UV-B. For plants growing in the Mauna Kea alpine/upper subalpine, we found that adaxial TUV A, measured with a UVA-PAM fluorometer, varied significantly among species but did not differ between native (mean = 6.0%; n = 8 and non-native (mean = 5.8%; n = 11 species. When data were pooled across native and non-native taxa, we also found no significant effect of growth form on TUV A, though woody plants (shrubs and trees were represented solely by native species whereas herbaceous growth forms (grasses and forbs were dominated by non-native species. Along an elevation gradient spanning 2600–3800 m, TUV A was variable (mean range = 6.0–11.2% and strongly correlated with elevation and relative biologically effective UV-B in the exotic V. thapsus; however, TUV A was consistently low (3% and did not vary with elevation in the native

  19. An Estimate Of The Number Of Tropical Tree Species.

    OpenAIRE

    Slik, J W Ferry; Arroyo-Rodríguez, Víctor; Aiba, Shin-Ichiro; Alvarez-Loayza, Patricia; Alves, Luciana F; Ashton, Peter; Balvanera, Patricia; Bastian, Meredith L; Bellingham, Peter J; van den Berg, Eduardo; Bernacci, Luis; da Conceição Bispo, Polyanna; Blanc, Lilian; Böhning-Gaese, Katrin; Boeckx, Pascal

    2016-01-01

    The high species richness of tropical forests has long been recognized, yet there remains substantial uncertainty regarding the actual number of tropical tree species. Using a pantropical tree inventory database from closed canopy forests, consisting of 657,630 trees belonging to 11,371 species, we use a fitted value of Fisher's alpha and an approximate pantropical stem total to estimate the minimum number of tropical forest tree species to fall between similar to 40,000 and similar to 53,000...

  20. Habitat Heterogeneity Affects Plant and Arthropod Species Diversity and Turnover in Traditional Cornfields.

    Science.gov (United States)

    Martínez, Eliana; Rös, Matthias; Bonilla, María Argenis; Dirzo, Rodolfo

    2015-01-01

    The expansion of the agricultural frontier by the clearing of remnant forests has led to human-dominated landscape mosaics. Previous studies have evaluated the effect of these landscape mosaics on arthropod diversity at local spatial scales in temperate and tropical regions, but little is known about fragmentation effects in crop systems, such as the complex tropical traditional crop systems that maintain a high diversity of weeds and arthropods in low-Andean regions. To understand the factors that influence patterns of diversity in human-dominated landscapes, we investigate the effect of land use types on plant and arthropod diversity in traditionally managed cornfields, via surveys of plants and arthropods in twelve traditional cornfields in the Colombian Andes. We estimated alpha and beta diversity to analyze changes in diversity related to land uses within a radius of 100 m to 1 km around each cornfield. We observed that forests influenced alpha diversity of plants, but not of arthropods. Agricultural lands had a positive relationship with plants and herbivores, but a negative relationship with predators. Pastures positively influenced the diversity of plants and arthropods. In addition, forest cover seemed to influence changes in plant species composition and species turnover of herbivore communities among cornfields. The dominant plant species varied among fields, resulting in high differentiation of plant communities. Predator communities also exhibited high turnover among cornfields, but differences in composition arose mainly among rare species. The crop system evaluated in this study represents a widespread situation in the tropics, therefore, our results can be of broad significance. Our findings suggest that traditional agriculture may not homogenize biological communities, but instead could maintain the regional pool of species through high beta diversity.

  1. Nectar-living yeasts of a tropical host plant community: diversity and effects on community-wide floral nectar traits

    Science.gov (United States)

    2017-01-01

    We characterize the diversity of nectar-living yeasts of a tropical host plant community at different hierarchical sampling levels, measure the associations between yeasts and nectariferous plants, and measure the effect of yeasts on nectar traits. Using a series of hierarchically nested sampling units, we extracted nectar from an assemblage of host plants that were representative of the diversity of life forms, flower shapes, and pollinator types in the tropical area of Yucatan, Mexico. Yeasts were isolated from single nectar samples; their DNA was identified, the yeast cell density was estimated, and the sugar composition and concentration of nectar were quantified using HPLC. In contrast to previous studies from temperate regions, the diversity of nectar-living yeasts in the plant community was characterized by a relatively high number of equally common species with low dominance. Analyses predict highly diverse nectar yeast communities in a relatively narrow range of tropical vegetation, suggesting that the diversity of yeasts will increase as the number of sampling units increases at the level of the species, genera, and botanical families of the hosts. Significant associations between specific yeast species and host plants were also detected; the interaction between yeasts and host plants impacted the effect of yeast cell density on nectar sugars. This study provides an overall picture of the diversity of nectar-living yeasts in tropical host plants and suggests that the key factor that affects the community-wide patterns of nectar traits is not nectar chemistry, but rather the type of yeasts interacting with host plants. PMID:28717591

  2. Nectar-living yeasts of a tropical host plant community: diversity and effects on community-wide floral nectar traits

    Directory of Open Access Journals (Sweden)

    Azucena Canto

    2017-07-01

    Full Text Available We characterize the diversity of nectar-living yeasts of a tropical host plant community at different hierarchical sampling levels, measure the associations between yeasts and nectariferous plants, and measure the effect of yeasts on nectar traits. Using a series of hierarchically nested sampling units, we extracted nectar from an assemblage of host plants that were representative of the diversity of life forms, flower shapes, and pollinator types in the tropical area of Yucatan, Mexico. Yeasts were isolated from single nectar samples; their DNA was identified, the yeast cell density was estimated, and the sugar composition and concentration of nectar were quantified using HPLC. In contrast to previous studies from temperate regions, the diversity of nectar-living yeasts in the plant community was characterized by a relatively high number of equally common species with low dominance. Analyses predict highly diverse nectar yeast communities in a relatively narrow range of tropical vegetation, suggesting that the diversity of yeasts will increase as the number of sampling units increases at the level of the species, genera, and botanical families of the hosts. Significant associations between specific yeast species and host plants were also detected; the interaction between yeasts and host plants impacted the effect of yeast cell density on nectar sugars. This study provides an overall picture of the diversity of nectar-living yeasts in tropical host plants and suggests that the key factor that affects the community-wide patterns of nectar traits is not nectar chemistry, but rather the type of yeasts interacting with host plants.

  3. Do tropical wetland plants possess a convective gas flow mechanism?

    DEFF Research Database (Denmark)

    Jensen, Dennis Konnerup; Sorrell, Brian Keith; Brix, Hans

    2011-01-01

    Internal pressurization and convective gas flow, which can aerate wetland plants more efficiently than diffusion, are common in temperate species. Here, we present the first survey of convective flow in a range of tropical plants. The occurrence of pressurization and convective flow was determined...... in 20 common wetland plants from the Mekong Delta in Vietnam. The diel variation in pressurization in culms and the convective flow and gas composition from stubbles were examined for Eleocharis dulcis, Phragmites vallatoria and Hymenachne acutigluma, and related to light, humidity and air temperature....... Nine of the 20 species studied were able to build up a static pressure of >50Pa, and eight species had convective flow rates higher than 1mlmin-1. There was a clear diel variation, with higher pressures and flows during the day than during the night, when pressures and flows were close to zero...

  4. Resource stoichiometry and availability modulate species richness and biomass of tropical litter macro-invertebrates.

    Science.gov (United States)

    Jochum, Malte; Barnes, Andrew D; Weigelt, Patrick; Ott, David; Rembold, Katja; Farajallah, Achmad; Brose, Ulrich

    2017-09-01

    High biodiversity and biomass of soil communities are crucial for litter decomposition in terrestrial ecosystems such as tropical forests. However, the leaf litter that these communities consume is of particularly poor quality as indicated by elemental stoichiometry. The impact of resource quantity, quality and other habitat parameters on species richness and biomass of consumer communities is often studied in isolation, although much can be learned from simultaneously studying both community characteristics. Using a dataset of 780 macro-invertebrate consumer species across 32 sites in tropical lowland rain forest and agricultural systems on Sumatra, Indonesia, we investigated the effects of basal resource stoichiometry (C:X ratios of N, P, K, Ca, Mg, Na, S in local leaf litter), litter mass (basal resource quantity and habitat space), plant species richness (surrogate for litter habitat heterogeneity), and soil pH (acidity) on consumer species richness and biomass across different consumer groups (i.e. 3 feeding guilds and 10 selected taxonomic groups). In order to distinguish the most important predictors of consumer species richness and biomass, we applied a standardised model averaging approach investigating the effects of basal resource stoichiometry, litter mass, plant species richness and soil pH on both consumer community characteristics. This standardised approach enabled us to identify differences and similarities in the magnitude and importance of such effects on consumer species richness and biomass. Across consumer groups, we found litter mass to be the most important predictor of both species richness and biomass. Resource stoichiometry had a more pronounced impact on consumer species richness than on their biomass. As expected, taxonomic groups differed in which resource and habitat parameters (basal resource stoichiometry, litter mass, plant species richness and pH) were most important for modulating their community characteristics. The importance

  5. Potential link between plant and fungal distributions in a dipterocarp rainforest: community and phylogenetic structure of tropical ectomycorrhizal fungi across a plant and soil ecotone.

    Science.gov (United States)

    Peay, Kabir G; Kennedy, Peter G; Davies, Stuart J; Tan, Sylvester; Bruns, Thomas D

    2010-01-01

    *Relatively little is known about diversity or structure of tropical ectomycorrhizal communities or their roles in tropical ecosystem dynamics. In this study, we present one of the largest molecular studies to date of an ectomycorrhizal community in lowland dipterocarp rainforest. *We sampled roots from two 0.4 ha sites located across an ecotone within a 52 ha forest dynamics plot. Our plots contained > 500 tree species and > 40 species of ectomycorrhizal host plants. Fungi were identified by sequencing ribosomal RNA genes. *The community was dominated by the Russulales (30 species), Boletales (17), Agaricales (18), Thelephorales (13) and Cantharellales (12). Total species richness appeared comparable to molecular studies of temperate forests. Community structure changed across the ecotone, although it was not possible to separate the role of environmental factors vs host plant preferences. Phylogenetic analyses were consistent with a model of community assembly where habitat associations are influenced by evolutionary conservatism of functional traits within ectomycorrhizal lineages. *Because changes in the ectomycorrhizal fungal community parallel those of the tree community at this site, this study demonstrates the potential link between the distribution of tropical tree diversity and the distribution of tropical ectomycorrhizal diversity in relation to local-scale edaphic variation.

  6. An estimate of the number of tropical tree species

    DEFF Research Database (Denmark)

    Slik, J. W Ferry; Arroyo-Rodríguez, Víctor; Aiba, Shin Ichiro

    2015-01-01

    The high species richness of tropical forests has long been recognized, yet there remains substantial uncertainty regarding the actual number of tropical tree species. Using a pantropical tree inventory database from closed canopy forests, consisting of 657,630 trees belonging to 11,371 species, ...

  7. Effects of competition and facilitation on species assemblage in two types of tropical cloud forest.

    Directory of Open Access Journals (Sweden)

    Wenxing Long

    Full Text Available Competition and facilitation between tree individuals are two kinds of non-random processes influencing the structure and functioning of forest communities, but how these two plant-plant interactions change along gradient of resources or environments remains very much a matter of debate. We developed a null model to test the size-distance regression, and assessed the effects of competition and facilitation (including interspecific interactions, intraspecific interactions and overall species interactions on each adult tree species assemblage [diameter at breast height (dbh ≥5 cm] across two types of tropical cloud forest with different environmental and resource regimes. The null model test revealed that 17% to 27% tree species had positive dbh-distance correlations while 11% to 19% tree species showed negative dbh-distance correlations within these two forest types, indicating that both competition and facilitation processes existed during the community assembly. The importance of competition for heterospecific species, and the intensity of competition for both heterospecific and overall species increased from high to low resources for all the shared species spanning the two forests. The importance of facilitation for conspecific and overall species, as well as that the intensity of facilitation for both heterospecific and conspecific species increased with increasing low air temperature stress for all the shared species spanning the two forests. Our results show that both competition and facilitation processes simultaneously affect parts of species assemblage in the tropical cloud forests. Moreover, the fact that nearly 50% species assemblage is not detected with our approaches suggest that tree species in these tropical forest systems are assembled with multiple ecological processes, and that there is a need to explore the processes other than the two biotic interactions in further researches.

  8. Habitat Heterogeneity Affects Plant and Arthropod Species Diversity and Turnover in Traditional Cornfields.

    Directory of Open Access Journals (Sweden)

    Eliana Martínez

    Full Text Available The expansion of the agricultural frontier by the clearing of remnant forests has led to human-dominated landscape mosaics. Previous studies have evaluated the effect of these landscape mosaics on arthropod diversity at local spatial scales in temperate and tropical regions, but little is known about fragmentation effects in crop systems, such as the complex tropical traditional crop systems that maintain a high diversity of weeds and arthropods in low-Andean regions. To understand the factors that influence patterns of diversity in human-dominated landscapes, we investigate the effect of land use types on plant and arthropod diversity in traditionally managed cornfields, via surveys of plants and arthropods in twelve traditional cornfields in the Colombian Andes. We estimated alpha and beta diversity to analyze changes in diversity related to land uses within a radius of 100 m to 1 km around each cornfield. We observed that forests influenced alpha diversity of plants, but not of arthropods. Agricultural lands had a positive relationship with plants and herbivores, but a negative relationship with predators. Pastures positively influenced the diversity of plants and arthropods. In addition, forest cover seemed to influence changes in plant species composition and species turnover of herbivore communities among cornfields. The dominant plant species varied among fields, resulting in high differentiation of plant communities. Predator communities also exhibited high turnover among cornfields, but differences in composition arose mainly among rare species. The crop system evaluated in this study represents a widespread situation in the tropics, therefore, our results can be of broad significance. Our findings suggest that traditional agriculture may not homogenize biological communities, but instead could maintain the regional pool of species through high beta diversity.

  9. Seed-deposition and recruitment patterns of Clusia species in a disturbed tropical montane forest in Bolivia

    Science.gov (United States)

    Saavedra, Francisco; Hensen, Isabell; Apaza Quevedo, Amira; Neuschulz, Eike Lena; Schleuning, Matthias

    2017-11-01

    Spatial patterns of seed dispersal and recruitment of fleshy-fruited plants in tropical forests are supposed to be driven by the activity of animal seed dispersers, but the spatial patterns of seed dispersal, seedlings and saplings have rarely been analyzed simultaneously. We studied seed deposition and recruitment patterns of three Clusia species in a tropical montane forest of the Bolivian Andes and tested whether these patterns changed between habitat types (forest edge vs. forest interior), distance to the fruiting tree and consecutive recruitment stages of the seedlings. We recorded the number of seeds deposited in seed traps to assess the local seed-deposition pattern and the abundance and distribution of seedlings and saplings to evaluate the spatial pattern of recruitment. More seeds were removed and deposited at the forest edge than in the interior. The number of deposited seeds decreased with distance from the fruiting tree and was spatially clustered in both habitat types. The density of 1-yr-old seedlings and saplings was higher at forest edges, whereas the density of 2-yr-old seedlings was similar in both habitat types. While seedlings were almost randomly distributed, seeds and saplings were spatially clustered in both habitat types. Our findings demonstrate systematic changes in spatial patterns of recruits across the plant regeneration cycle and suggest that the differential effects of biotic and abiotic factors determine plant recruitment at the edges and in the interior of tropical montane forests. These differences in the spatial distribution of individuals across recruitment stages may have strong effects on plant community dynamics and influence plant species coexistence in disturbed tropical forests.

  10. Tree species effects on pathogen-suppressive capacities of soil bacteria across two tropical dry forests in Costa Rica.

    Science.gov (United States)

    Becklund, Kristen; Powers, Jennifer; Kinkel, Linda

    2016-11-01

    Antibiotic-producing bacteria in the genus Streptomyces can inhibit soil-borne plant pathogens, and have the potential to mediate the impacts of disease on plant communities. Little is known about how antibiotic production varies among soil communities in tropical forests, despite a long history of interest in the role of soil-borne pathogens in these ecosystems. Our objective was to determine how tree species and soils influence variation in antibiotic-mediated pathogen suppression among Streptomyces communities in two tropical dry forest sites (Santa Rosa and Palo Verde). We targeted tree species that co-occur in both sites and used a culture-based functional assay to quantify pathogen-suppressive capacities of Streptomyces communities beneath 50 focal trees. We also measured host-associated litter and soil element concentrations as potential mechanisms by which trees may influence soil microbes. Pathogen-suppressive capacities of Streptomyces communities varied within and among tree species, and inhibitory phenotypes were significantly related to soil and litter element concentrations. Average proportions of inhibitory Streptomyces in soils from the same tree species varied between 1.6 and 3.3-fold between sites. Densities and proportions of pathogen-suppressive bacteria were always higher in Santa Rosa than Palo Verde. Our results suggest that spatial heterogeneity in the potential for antibiotic-mediated disease suppression is shaped by tree species, site, and soil characteristics, which could have significant implications for understanding plant community composition and diversity in tropical dry forests.

  11. An estimate of the number of tropical tree species

    Science.gov (United States)

    Slik, J. W. Ferry; Arroyo-Rodríguez, Víctor; Aiba, Shin-Ichiro; Alvarez-Loayza, Patricia; Alves, Luciana F.; Ashton, Peter; Balvanera, Patricia; Bastian, Meredith L.; Bellingham, Peter J.; van den Berg, Eduardo; Bernacci, Luis; da Conceição Bispo, Polyanna; Blanc, Lilian; Böhning-Gaese, Katrin; Boeckx, Pascal; Bongers, Frans; Boyle, Brad; Bradford, Matt; Brearley, Francis Q.; Breuer-Ndoundou Hockemba, Mireille; Bunyavejchewin, Sarayudh; Calderado Leal Matos, Darley; Castillo-Santiago, Miguel; Catharino, Eduardo L. M.; Chai, Shauna-Lee; Chen, Yukai; Colwell, Robert K.; Chazdon, Robin L.; Clark, Connie; Clark, David B.; Clark, Deborah A.; Culmsee, Heike; Damas, Kipiro; Dattaraja, Handanakere S.; Dauby, Gilles; Davidar, Priya; DeWalt, Saara J.; Doucet, Jean-Louis; Duque, Alvaro; Durigan, Giselda; Eichhorn, Karl A. O.; Eisenlohr, Pedro V.; Eler, Eduardo; Ewango, Corneille; Farwig, Nina; Feeley, Kenneth J.; Ferreira, Leandro; Field, Richard; de Oliveira Filho, Ary T.; Fletcher, Christine; Forshed, Olle; Franco, Geraldo; Fredriksson, Gabriella; Gillespie, Thomas; Gillet, Jean-François; Amarnath, Giriraj; Griffith, Daniel M.; Grogan, James; Gunatilleke, Nimal; Harris, David; Harrison, Rhett; Hector, Andy; Homeier, Jürgen; Imai, Nobuo; Itoh, Akira; Jansen, Patrick A.; Joly, Carlos A.; de Jong, Bernardus H. J.; Kartawinata, Kuswata; Kearsley, Elizabeth; Kelly, Daniel L.; Kenfack, David; Kessler, Michael; Kitayama, Kanehiro; Kooyman, Robert; Larney, Eileen; Laumonier, Yves; Laurance, Susan; Laurance, William F.; Lawes, Michael J.; do Amaral, Ieda Leao; Letcher, Susan G.; Lindsell, Jeremy; Lu, Xinghui; Mansor, Asyraf; Marjokorpi, Antti; Martin, Emanuel H.; Meilby, Henrik; Melo, Felipe P. L.; Metcalfe, Daniel J.; Medjibe, Vincent P.; Metzger, Jean Paul; Millet, Jerome; Mohandass, D.; Montero, Juan C.; de Morisson Valeriano, Márcio; Mugerwa, Badru; Nagamasu, Hidetoshi; Nilus, Reuben; Ochoa-Gaona, Susana; Onrizal; Page, Navendu; Parolin, Pia; Parren, Marc; Parthasarathy, Narayanaswamy; Paudel, Ekananda; Permana, Andrea; Piedade, Maria T. F.; Pitman, Nigel C. A.; Poorter, Lourens; Poulsen, Axel D.; Poulsen, John; Powers, Jennifer; Prasad, Rama C.; Puyravaud, Jean-Philippe; Razafimahaimodison, Jean-Claude; Reitsma, Jan; dos Santos, João Roberto; Roberto Spironello, Wilson; Romero-Saltos, Hugo; Rovero, Francesco; Rozak, Andes Hamuraby; Ruokolainen, Kalle; Rutishauser, Ervan; Saiter, Felipe; Saner, Philippe; Santos, Braulio A.; Santos, Fernanda; Sarker, Swapan K.; Satdichanh, Manichanh; Schmitt, Christine B.; Schöngart, Jochen; Schulze, Mark; Suganuma, Marcio S.; Sheil, Douglas; da Silva Pinheiro, Eduardo; Sist, Plinio; Stevart, Tariq; Sukumar, Raman; Sun, I.-Fang; Sunderland, Terry; Suresh, H. S.; Suzuki, Eizi; Tabarelli, Marcelo; Tang, Jangwei; Targhetta, Natália; Theilade, Ida; Thomas, Duncan W.; Tchouto, Peguy; Hurtado, Johanna; Valencia, Renato; van Valkenburg, Johan L. C. H.; Van Do, Tran; Vasquez, Rodolfo; Verbeeck, Hans; Adekunle, Victor; Vieira, Simone A.; Webb, Campbell O.; Whitfeld, Timothy; Wich, Serge A.; Williams, John; Wittmann, Florian; Wöll, Hannsjoerg; Yang, Xiaobo; Adou Yao, C. Yves; Yap, Sandra L.; Yoneda, Tsuyoshi; Zahawi, Rakan A.; Zakaria, Rahmad; Zang, Runguo; de Assis, Rafael L.; Garcia Luize, Bruno; Venticinque, Eduardo M.

    2015-01-01

    The high species richness of tropical forests has long been recognized, yet there remains substantial uncertainty regarding the actual number of tropical tree species. Using a pantropical tree inventory database from closed canopy forests, consisting of 657,630 trees belonging to 11,371 species, we use a fitted value of Fisher’s alpha and an approximate pantropical stem total to estimate the minimum number of tropical forest tree species to fall between ∼40,000 and ∼53,000, i.e., at the high end of previous estimates. Contrary to common assumption, the Indo-Pacific region was found to be as species-rich as the Neotropics, with both regions having a minimum of ∼19,000–25,000 tree species. Continental Africa is relatively depauperate with a minimum of ∼4,500–6,000 tree species. Very few species are shared among the African, American, and the Indo-Pacific regions. We provide a methodological framework for estimating species richness in trees that may help refine species richness estimates of tree-dependent taxa. PMID:26034279

  12. Upscaling species richness and abundances in tropical forests.

    Science.gov (United States)

    Tovo, Anna; Suweis, Samir; Formentin, Marco; Favretti, Marco; Volkov, Igor; Banavar, Jayanth R; Azaele, Sandro; Maritan, Amos

    2017-10-01

    The quantification of tropical tree biodiversity worldwide remains an open and challenging problem. More than two-fifths of the number of worldwide trees can be found either in tropical or in subtropical forests, but only ≈0.000067% of species identities are known. We introduce an analytical framework that provides robust and accurate estimates of species richness and abundances in biodiversity-rich ecosystems, as confirmed by tests performed on both in silico-generated and real forests. Our analysis shows that the approach outperforms other methods. In particular, we find that upscaling methods based on the log-series species distribution systematically overestimate the number of species and abundances of the rare species. We finally apply our new framework on 15 empirical tropical forest plots and quantify the minimum percentage cover that should be sampled to achieve a given average confidence interval in the upscaled estimate of biodiversity. Our theoretical framework confirms that the forests studied are comprised of a large number of rare or hyper-rare species. This is a signature of critical-like behavior of species-rich ecosystems and can provide a buffer against extinction.

  13. On the reasons that natural regeneration is important for species coexistence in tropical forests

    Directory of Open Access Journals (Sweden)

    Natalia Norden

    2014-12-01

    Full Text Available Plant regeneration plays a critical role in the maintenance of species diversity in tropical rainforests. This is a multistage process, including seed production, dispersal, germination and subsequent seedling establishment. All these stages represent major bottlenecks in plant demography, as early stages in the plant cycle (seeds and seedlings are the most vulnerable to environmental hazards, and are therefore subject to high mortality risks. The outcome of these ecological filters will determine not only seedling spatial distribution, but also the potential area of tree distribution. Seed dispersal and subsequent seedling establishment therefore play a critical role in the structuring of tree communities. Here, I review the main four ecological processes driving seedling recruitment in tropical forests. First, dispersal limitation is the failure of seeds to reach suitable microsites for seedling establishment. Once this filter is overcome, environmental factors can considerably affect seedling spatial distribution. Temporal fluctuations in these processes result in an important variation in recruitment success over time, and add a stochastic component to seedling regeneration. Finally, negative-density dependence regulates species relative abundance in the seedling layer by limiting conspecific recruitment through the attack of pathogen, fungi and herbivores.

  14. Optimum Temperatures for Net Primary Productivity of Three Tropical Seagrass Species

    Directory of Open Access Journals (Sweden)

    Catherine J. Collier

    2017-08-01

    Full Text Available Rising sea water temperature will play a significant role in responses of the world's seagrass meadows to climate change. In this study, we investigated seasonal and latitudinal variation (spanning more than 1,500 km in seagrass productivity, and the optimum temperatures at which maximum photosynthesis and net productivity (for the leaf and the whole plant occurs, for three seagrass species (Cymodocea serrulata, Halodule uninervis, and Zostera muelleri. To obtain whole plant net production, photosynthesis, and respiration rates of leaves and the root/rhizome complex were measured using oxygen-sensitive optodes in closed incubation chambers at temperatures ranging from 15 to 43°C. The temperature-dependence of photosynthesis and respiration was fitted to empirical models to obtain maximum metabolic rates and thermal optima. The thermal optimum (Topt for gross photosynthesis of Z. muelleri, which is more commonly distributed in sub-tropical to temperate regions, was 31°C. The Topt for photosynthesis of the tropical species, H. uninervis and C. serrulata, was considerably higher (35°C on average. This suggests that seagrass species are adapted to water temperature within their distributional range; however, when comparing among latitudes and seasons, thermal optima within a species showed limited acclimation to ambient water temperature (Topt varied by 1°C in C. serrulata and 2°C in H. uninervis, and the variation did not follow changes in ambient water temperature. The Topt for gross photosynthesis were higher than Topt calculated from plant net productivity, which includes above- and below-ground respiration for Z. muelleri (24°C and H. uninervis (33°C, but remained unchanged at 35°C in C. serrulata. Both estimated plant net productivity and Topt are sensitive to the proportion of below-ground biomass, highlighting the need for consideration of below- to above-ground biomass ratios when applying thermal optima to other meadows. The

  15. Temporal evolution of 137Cs+, K+ and Na+ in fruits of South American tropical species

    International Nuclear Information System (INIS)

    Cid, A.S.; Anjos, R.M.; Zamboni, C.B.; Velasco, H.; Macario, K.; Rizzotto, M.

    2013-01-01

    Concentrations of 137 Cs, K and Na in fruits of lemon (Citrus limon B.) and of K and Na in fruits of coconut (Cocos nucifera L.) trees were measured by both gamma spectrometry and neutron activation analysis, with the aim to understand the behaviour of monovalent inorganic cations in tropical plants as well as the plant ability to store these elements. Similar amounts of K + were incorporated by lemon and coconut trees during the growth and ripening processes of its fruits. The K concentration decreased exponentially during the growth of lemons and coconuts, ranging from 13 to 25 g kg −1 dry weight. The incorporation of Na + differed considerably between the plant species studied. The Na concentration increased linearly during the lemon growth period (0.04 to 0.70 g kg −1 d.w.) and decreased exponentially during the coconut growth period (1.4 to 0.5 g kg −1 d.w.). Even though radiocaesium is not an essential element to plants, our results have shown that 137 Cs incorporation to vegetable tissues is positively correlated to K distribution within the studied tropical plant species, suggesting that the two elements might be assimilated in a similar way, going through the biological cycle together. A mathematical model was developed from the experimental data allowing simulating the incorporation process of monovalent inorganic cations by the fruits of such tropical species. The agreement between the theoretical approach and the experimental values is satisfactory along fruit development. - Highlights: ► Concentrations of 137 Cs, K and Na in fruits of lemon (Citrus limon B.) are presented. ► Concentrations of K and Na in fruits of coconut (Cocos nucifera L.) are also showed. ► We investigated the use of 137 Cs as a tracer for the plant absorption of macronutrients. ► A model was developed to simulate the temporal evolution of 137 Cs, K and Na by fruits. ► This model exhibited close agreement with our results along the fruit development

  16. Emissions of biogenic volatile organic compounds and subsequent photochemical production of secondary organic aerosol in mesocosm studies of temperate and tropical plant species

    Science.gov (United States)

    Wyche, K. P.; Ryan, A. C.; Hewitt, C. N.; Alfarra, M. R.; McFiggans, G.; Carr, T.; Monks, P. S.; Smallbone, K. L.; Capes, G.; Hamilton, J. F.; Pugh, T. A. M.; MacKenzie, A. R.

    2014-12-01

    Silver birch (Betula pendula) and three Southeast Asian tropical plant species (Ficus cyathistipula, Ficus benjamina and Caryota millis) from the pantropical fig and palm genera were grown in a purpose-built and environment-controlled whole-tree chamber. The volatile organic compounds emitted from these trees were characterised and fed into a linked photochemical reaction chamber where they underwent photo-oxidation under a range of controlled conditions (relative humidity or RH ~65-89%, volatile organic compound-to-NOx or VOC / NOx ~3-9 and NOx ~2 ppbV). Both the gas phase and the aerosol phase of the reaction chamber were monitored in detail using a comprehensive suite of on-line and off-line chemical and physical measurement techniques. Silver birch was found to be a high monoterpene and sesquiterpene but low isoprene emitter, and its emissions were observed to produce measurable amounts of secondary organic aerosol (SOA) via both nucleation and condensation onto pre-existing seed aerosol (YSOA 26-39%). In contrast, all three tropical species were found to be high isoprene emitters with trace emissions of monoterpenes and sesquiterpenes. In tropical plant experiments without seed aerosol there was no measurable SOA nucleation, but aerosol mass was shown to increase when seed aerosol was present. Although principally isoprene emitting, the aerosol mass produced from tropical fig was mostly consistent (i.e. in 78 out of 120 aerosol mass calculations using plausible parameter sets of various precursor specific yields) with condensation of photo-oxidation products of the minor volatile organic compounds (VOCs) co-emitted; no significant aerosol yield from condensation of isoprene oxidation products was required in the interpretations of the experimental results. This finding is in line with previous reports of organic aerosol loadings consistent with production from minor biogenic VOCs co-emitted with isoprene in principally isoprene-emitting landscapes in Southeast

  17. Building a Plant DNA Barcode Reference Library for a Diverse Tropical Flora: An Example from Queensland, Australia

    Directory of Open Access Journals (Sweden)

    Craig M. Costion

    2016-02-01

    Full Text Available A foundation for a DNA barcode reference library for the tropical plants of Australia is presented here. A total of 1572 DNA barcode sequences are compiled from 848 tropical Queensland species. The dataset represents 35% of the total flora of Queensland’s Wet Tropics Bioregion, 57% of its tree species and 28% of the shrub species. For approximately half of the sampled species, we investigated the occurrence of infraspecific molecular variation in DNA barcode loci rbcLa, matK, and the trnH-psbA intergenic spacer region across previously recognized biogeographic barriers. We found preliminary support for the notion that DNA barcode reference libraries can be used as a tool for inferring biogeographic patterns at regional scales. It is expected that this dataset will find applications in taxonomic, ecological, and applied conservation research.

  18. Do Epigeal Termite Mounds Increase the Diversity of Plant Habitats in a Tropical Rain Forest in Peninsular Malaysia?

    Science.gov (United States)

    Beaudrot, Lydia; Du, Yanjun; Rahman Kassim, Abdul; Rejmánek, Marcel; Harrison, Rhett D.

    2011-01-01

    The extent to which environmental heterogeneity can account for tree species coexistence in diverse ecosystems, such as tropical rainforests, is hotly debated, although the importance of spatial variability in contributing to species co-existence is well recognized. Termites contribute to the micro-topographical and nutrient spatial heterogeneity of tropical forests. We therefore investigated whether epigeal termite mounds could contribute to the coexistence of plant species within a 50 ha plot at Pasoh Forest Reserve, Malaysia. Overall, stem density was significantly higher on mounds than in their immediate surroundings, but tree species diversity was significantly lower. Canonical correspondence analysis showed that location on or off mounds significantly influenced species distribution when stems were characterized by basal area. Like studies of termite mounds in other ecosystems, our results suggest that epigeal termite mounds provide a specific microhabitat for the enhanced growth and survival of certain species in these species-rich tropical forests. However, the extent to which epigeal termite mounds facilitate species coexistence warrants further investigation. PMID:21625558

  19. The Germination of Some Species Tropical Legume Seeds

    Directory of Open Access Journals (Sweden)

    Eko Poetri

    2005-09-01

    Full Text Available A study to evaluate the seed germination of Leucaena pallida under climatic and soil conditions in Palu was conducted in village of Taipa, Sub district of North Palu, District of Palu. To compare with other species of legume trees however, this study involved Leucaena leucocephala cv Tarramba, Leucaena leucocephala cv Gumph and Gliricidia maculata. This experiment used completely randomized design with species of tropical tree legumes as treatment.  Each treatment was replicated five times.  Each experimental unit consisted of one tray (size 12.5 x 25 cm and planted by 20 seed.  Each tray was filled with soil while the seeds were planted one cm deep.  All seeds were immersed in warm water (600C for five minutes before planted.  The base of the trays were drilled to create some holes for water to drain out.  The trays were sprayed twice daily (07.00 am and 03.00 pm to keep the soil to be moist using a very smooth sprayer.  The variables recorded included the initiation time of germination, the range time of germination and the percentage of seed germination.  The data obtained were analyses using the Minitab 11. Least significance difference was used to test for possible differences between treatment means. The result revealed that initiation time of germination and the range of germination were not varied (P>0.05 among the seeds tested. The initiation time of germination ranged between 9 to 12 d after sowing.  Gliricidia maculata seed has the shortest period to germinate (12-16 d after sowing, meanwhile Leucaena leucocephala cv. Tarramba appear to be the longest (9-17 d after sowing. The highest seed viability was 60% in Leucaena leucocephala, cv Gump while the lowest was found in Gliricidia maculata (29%. In addition, both Leucaena pallida and Leucaena leucocephala cv Tarramba had medium seed germination (40% and 53% respectively. (Animal Production 7(3: 156-160 (2005Key Words: Seed, Germination, Tropical Leguminous

  20. Species-specific associations between overstory and understory tree species in a semideciduous tropical forest

    Directory of Open Access Journals (Sweden)

    Flaviana Maluf Souza

    2015-03-01

    Full Text Available We investigated the occurrence of associations between overstory and understory tree species in a semideciduous tropical forest. We identified and measured all trees of nine canopy species with diameter at breast height ≥4.8 cm in a 10.24 ha plot and recorded all individuals beneath their canopies ("understory individuals" within the same diameter class. The total density of understory individuals did not significantly differ under different overstory species. One overstory species (Ceiba speciosa showed higher understory species richness compared with five other species. There was a strong positive association between three overstory species (Esenbeckia leiocarpa, Savia dictyocarpa, and C. speciosa and the density of seven understory species (Balfourodendron riedelianum, Chrysophyllum gonocarpum, E. leiocarpa, Holocalyx balansae, Machaerium stipitatum, Rhaminidium elaeocarpum, and S. dictyocarpa. These results probably reflect the outcome of a complex set of interactions including facilitation and competition, and further studies are necessary to better understand the magnitude and type of the effects of individual overstory species on understory species. The occurrence of species-specific associations shown here reinforces the importance of non-random processes in structuring plant communities and suggest that the influence of overstory species on understory species in high-diversity forests may be more significant than previously thought.

  1. Response of tropical peat swamp forest tree species seedlings to macro nutrients

    Directory of Open Access Journals (Sweden)

    Tri Wira Yuwati

    2015-10-01

    Full Text Available Abstract Efforts of restoration of degraded tropical peat swamp forest were facing constraints due to the low available nutrient level of peat. The transplanted peat swamp forest species seedlings experienced low survival rate and poor growth performance. This study aimed to demonstrate the response of ten tropical peat swamp forest species seedlings whether climax and pioneer species to macro-nutrients addition in the nursery. The growth performance of climax and pioneer tropical peat swamp species seedlings was recorded following addition of macro nutrients of Nitrogen (N, Phosphorus(P, Potassium(K and Dolomitic limestone (CaMg. The result showed that Alstonia spatulata and Parartocarpus venenosus showed positive growth response following macro nutrients addition. This study concluded that tropical peat swamp pioneer species has lower necessity for macro-nutrients addition than tropical peat swamp climax species.

  2. The Scientific Development of the Physiology of Plants in the American Tropics

    Directory of Open Access Journals (Sweden)

    Marco V. Gutiérrez

    2002-06-01

    Full Text Available This paper is a research and journalistic work that summarizes and synthesizes the scientific development of the physiology of plants in the American tropics, also known as the Neotropics. It contains the contributions of numerous biologists interested in the physiology of tropical plants. The fabulous structural and functional diversity of tropical forests is still the major driver of research in this field. Classical physiological work involving tropical plants, such as the discovery of C4 photosynthesis in sugarcane, is invoked to exemplify the historical and current importance of physiological research in the tropics, and its applications in agriculture, forestry and conservation. An historical background describing the early and more recent development of a tradition on the physiological study of tropical plants is followed by a summary of the research conducted on the physiology of tropical crops. Common areas of interest and influence between the fields of crop physiology and plant ecophysiology are identified and exemplified with problems on the environmental physiology of crops like coffee and cassava. The physiology of tropical forest plants is discussed in terms of its contributions to general plant physiological knowledge in areas such as photosynthetic metabolism and plant water relations. Despite the impressive technical advances achieved during the past decade, the importance of continuous development of appropriate instrumentation to study and measure the physiology of plants in situ is stressed. Although the basic metabolic processes that underlie the mechanisms of plant responses to the environment are probably highly conserved and qualitatively similar among tropical and temperate plants, it is also apparent that tropical plants exhibit metabolic peculiarities. These include aspects of photosynthetic metabolism, phloem transport physiology, sensitivity to low temperatures, reproduction, responses to climatic seasonality, and a

  3. Linking plant hydraulics and beta diversity in tropical forests

    Energy Technology Data Exchange (ETDEWEB)

    Christoffersen, Bradley [Earth and Environmental Sciences, Los Alamos National Laboratory, Los Alamos NM 87545 USA; Meir, Patrick [School of GeoSciences, University of Edinburgh, Edinburgh EH9 3FE UK; Research School of Biology, Australian National University, Canberra ACT 2601 Australia; McDowell, Nate G. [Pacific Northwest National Laboratory, Richland WA 99352 USA

    2017-05-31

    In tropical forests, studies of xylem traits governing water transport through plants, or ‘hydraulic architecture’ (Tyree et al., 1991), and changes in species composition across environmental gradients, or ‘beta diversity’ (Gentry, 1988; Ackerly & Cornwell, 2007), have progressedmostly in parallel until recently (Hao et al., 2008; Bartlett et al., 2016). In this issue of New Phytologist, Cosme et al. (pp. 000–5 000) present a timely contribution to the intersection of plant hydraulic architecture (HA) with trait-based community ecology. Building on previous biogeographical work that demonstrated shifts in species composition (beta diversity) across a gradient from valleys to plateaus in central Amazonia (Schietti et al., 2014), Cosme et al. explore how variation in HA might underpin this sorting, sampling pairs of congeneric species restrictedmostly to either plateau or valley habitats. Valley species had significantly lower wood density and higher hydraulically-weighted vessel diameter and vessel area. By contrast, trees with some of the largest hydraulically-weighted vessel diameters existed in tall, deciduous plateau species, while the leaf: sapwood area ratio decreased with height in valley but not plateau species. These intriguing results suggest that species differentiation in water transport traits mediate edaphic filtering along the valley-toplateau gradient, in contrast to previous work where wood mechanical support mediated valley-to-plateau environmental filtering (Fortunel et al., 2014).

  4. Layout Guide for Burnt and Un-burnt Tropical Forest: The Diversity of Forest Plants and Insetcs for Sustainable Environmental

    Science.gov (United States)

    Watiniasih, N. L.; Tambunan, J.; Merdana, I. M.; Antara, I. N. G.

    2018-04-01

    Forest fire is a common phenomenon in tropical forest likes in Indonesia. Beside the effect of soaring heat and lack of rain during dry season due to the tropical climate, farming system is also reported as one reason of forest fire in Indonesia. People of surrounding areas and neighbouring countries are suffering from the effect of forest fire. Plants and animals are the most suffer from this occurrence that they cannot escape. This study aimed to investigate the effect of previously burnt and un-burnt tropical forest in Borneo Island on the plant and insect diversity of the tropical forest. The result of the study found that the plants in previously burnt forest area was dominated by one species, while higher and more stable plant diversity was found in un-burnt forest. Although the number of individual insects was higher in previously burnt tropical forest, but the insects was more diverse in un-burnt tropical forest. The alteration of environmental conditions in previously burnt and un-burnt forest indicate that the energy held in natural forest support higher number and more stable insects than previously burnt forest.

  5. Potential for biotic resistance from herbivores to tropical and subtropical plant invasions in aquatic ecosystems

    NARCIS (Netherlands)

    Petruzella, A.; Grutters, B.M.C.; Thomaz, S.M.; Bakker, E.S.

    2017-01-01

    Invasions of tropical and subtropical aquatic plants threaten biodiversity and cause ecological and economic impacts worldwide. An urgent question is whether native herbivores are able to inhibit the spread of these alien species thus providing biotic resistance. The potential for biotic resistance

  6. Predicting spatial variations of tree species richness in tropical forests from high-resolution remote sensing.

    Science.gov (United States)

    Fricker, Geoffrey A; Wolf, Jeffrey A; Saatchi, Sassan S; Gillespie, Thomas W

    2015-10-01

    There is an increasing interest in identifying theories, empirical data sets, and remote-sensing metrics that can quantify tropical forest alpha diversity at a landscape scale. Quantifying patterns of tree species richness in the field is time consuming, especially in regions with over 100 tree species/ha. We examine species richness in a 50-ha plot in Barro Colorado Island in Panama and test if biophysical measurements of canopy reflectance from high-resolution satellite imagery and detailed vertical forest structure and topography from light detection and ranging (lidar) are associated with species richness across four tree size classes (>1, 1-10, >10, and >20 cm dbh) and three spatial scales (1, 0.25, and 0.04 ha). We use the 2010 tree inventory, including 204,757 individuals belonging to 301 species of freestanding woody plants or 166 ± 1.5 species/ha (mean ± SE), to compare with remote-sensing data. All remote-sensing metrics became less correlated with species richness as spatial resolution decreased from 1.0 ha to 0.04 ha and tree size increased from 1 cm to 20 cm dbh. When all stems with dbh > 1 cm in 1-ha plots were compared to remote-sensing metrics, standard deviation in canopy reflectance explained 13% of the variance in species richness. The standard deviations of canopy height and the topographic wetness index (TWI) derived from lidar were the best metrics to explain the spatial variance in species richness (15% and 24%, respectively). Using multiple regression models, we made predictions of species richness across Barro Colorado Island (BCI) at the 1-ha spatial scale for different tree size classes. We predicted variation in tree species richness among all plants (adjusted r² = 0.35) and trees with dbh > 10 cm (adjusted r² = 0.25). However, the best model results were for understory trees and shrubs (dbh 1-10 cm) (adjusted r² = 0.52) that comprise the majority of species richness in tropical forests. Our results indicate that high

  7. Species and rotation frequency influence soil nitrogen in simplified tropical plant communities.

    Science.gov (United States)

    Ewel, John J

    2006-04-01

    Among the many factors that potentially influence the rate at which nitrogen (N) becomes available to plants in terrestrial ecosystems are the identity and diversity of species composition, frequency of disturbance or stand turnover, and time. Replicated suites of investigator-designed communities afforded an opportunity to examine the effects of those factors on net N mineralization over a 12-year period. The communities consisted of large-stature perennial plants, comprising three tree species (Hyeronima alchorneoides, Cedrela odorata, and Cordia alliodora), a palm (Euterpe oleracea), and a large, perennial herb (Heliconia imbricata). Trees were grown in monoculture and in combination with the other two life-forms; tree monocultures were subjected to rotations of one or four years, or like the three-life-form systems, left uncut. The work was conducted on fertile soil in the humid lowlands of Costa Rica, a site with few abiotic constraints to plant growth. Rates of net N mineralization and nitrification were high, typically in the range of 0.2-0.8 microg x g(1) x d(-1), with net nitrification slightly higher than net mineralization, indicating preferential uptake of ammonium (NH4+) by plants and microbes. Net rates of N mineralization were about 30% lower in stands of one of the three tree species, Hyeronima, than in stands of the other two. Contrary to expectations, short-rotation management (one or four years) resulted in higher net rates of N mineralization than in uncut stands, whether the latter were composed of a single tree species or a combination of life-forms. Neither additional species richness nor replenishment of leached N augmented mineralization rates. The net rate at which N was supplied tended to be lowest in stands where demand for N was highest. Careful choice of species, coupled with low frequency of disturbance, can lead to maintenance of N within biomass and steady rates of within-system circulation, whereas pulses, whether caused by cutting

  8. Optimum Temperatures for Net Primary Productivity of Three Tropical Seagrass Species.

    Science.gov (United States)

    Collier, Catherine J; Ow, Yan X; Langlois, Lucas; Uthicke, Sven; Johansson, Charlotte L; O'Brien, Katherine R; Hrebien, Victoria; Adams, Matthew P

    2017-01-01

    Rising sea water temperature will play a significant role in responses of the world's seagrass meadows to climate change. In this study, we investigated seasonal and latitudinal variation (spanning more than 1,500 km) in seagrass productivity, and the optimum temperatures at which maximum photosynthesis and net productivity (for the leaf and the whole plant) occurs, for three seagrass species ( Cymodocea serrulata, Halodule uninervis , and Zostera muelleri ). To obtain whole plant net production, photosynthesis, and respiration rates of leaves and the root/rhizome complex were measured using oxygen-sensitive optodes in closed incubation chambers at temperatures ranging from 15 to 43°C. The temperature-dependence of photosynthesis and respiration was fitted to empirical models to obtain maximum metabolic rates and thermal optima. The thermal optimum ( T opt ) for gross photosynthesis of Z. muelleri , which is more commonly distributed in sub-tropical to temperate regions, was 31°C. The T opt for photosynthesis of the tropical species, H. uninervis and C. serrulata , was considerably higher (35°C on average). This suggests that seagrass species are adapted to water temperature within their distributional range; however, when comparing among latitudes and seasons, thermal optima within a species showed limited acclimation to ambient water temperature ( T opt varied by 1°C in C. serrulata and 2°C in H. uninervis , and the variation did not follow changes in ambient water temperature). The T opt for gross photosynthesis were higher than T opt calculated from plant net productivity, which includes above- and below-ground respiration for Z. muelleri (24°C) and H. uninervis ( 33°C), but remained unchanged at 35°C in C. serrulata . Both estimated plant net productivity and T opt are sensitive to the proportion of below-ground biomass, highlighting the need for consideration of below- to above-ground biomass ratios when applying thermal optima to other meadows. The

  9. Stable carbon, oxygen, and nitrogen, isotope analysis of plants from a South Asian tropical forest: Implications for primatology.

    Science.gov (United States)

    Roberts, Patrick; Blumenthal, Scott A; Dittus, Wolfgang; Wedage, Oshan; Lee-Thorp, Julia A

    2017-06-01

    Stable isotope analysis of primate tissues in tropical forest contexts is an increasingly popular means of obtaining information about niche distinctions among sympatric species, including preferences in feeding height, forest canopy density, plant parts, and trophism. However, issues of equifinality mean that feeding height, canopy density, as well as the plant parts and plant species consumed, may produce similar or confounding effects. With a few exceptions, researchers have so far relied largely on general principles and/or limited plant data from the study area as references for deducing the predominant drivers of primate isotope variation. Here, we explore variation in the stable carbon (δ 13 C), nitrogen (δ 15 N), and oxygen (δ 18 O) isotope ratios of 288 plant samples identified as important to the three primate species from the Polonnaruwa Nature Sanctuary, Sri Lanka, relative to plant part, season, and canopy height. Our results show that plant part and height have the greatest effect on the δ 13 C and δ 18 O measurements of plants of immediate relevance to the primates, Macaca sinica, Semnopithecus priam thersites, and Trachypithecus vetulus, living in this monsoonal tropical forest. We find no influence of plant part, height or season on the δ 15 N of measured plants. While the plant part effect is particularly pronounced in δ 13 C between fruits and leaves, differential feeding height, and plant taxonomy influence plant δ 13 C and δ 18 O differences in addition to plant organ. Given that species composition in different regions and forest types will differ, the results urge caution in extrapolating general isotopic trends without substantial local baselines studies. © 2017 Wiley Periodicals, Inc.

  10. Intercropping with shrub species that display a 'steady-state' flowering phenology as a strategy for biodiversity conservation in tropical agroecosystems.

    Science.gov (United States)

    Peters, Valerie E

    2014-01-01

    Animal species in the Neotropics have evolved under a lower spatiotemporal patchiness of food resources compared to the other tropical regions. Although plant species with a steady-state flowering/fruiting phenology are rare, they provide predictable food resources and therefore may play a pivotal role in animal community structure and diversity. I experimentally planted a supplemental patch of a shrub species with a steady-state flowering/fruiting phenology, Hamelia patens Jacq., into coffee agroforests to evaluate the contribution of this unique phenology to the structure and diversity of the flower-visiting community. After accounting for the higher abundance of captured animals in the coffee agroforests with the supplemental floral resources, species richness was 21% higher overall in the flower-visiting community in these agroforests compared to control agroforests. Coffee agroforests with the steady-state supplemental floral patch also had 31% more butterfly species, 29% more hummingbird species, 65% more wasps and 85% more bees than control coffee agroforests. The experimental treatment, together with elevation, explained 57% of the variation in community structure of the flower-visiting community. The identification of plant species that can support a high number of animal species, including important ecosystem service providers, is becoming increasingly important for restoration and conservation applications. Throughout the Neotropics plant species with a steady-state flowering/fruiting phenology can be found in all aseasonal forests and thus could be widely tested and suitable species used throughout the tropics to manage for biodiversity and potentially ecosystem services involving beneficial arthropods.

  11. Intercropping with shrub species that display a 'steady-state' flowering phenology as a strategy for biodiversity conservation in tropical agroecosystems.

    Directory of Open Access Journals (Sweden)

    Valerie E Peters

    Full Text Available Animal species in the Neotropics have evolved under a lower spatiotemporal patchiness of food resources compared to the other tropical regions. Although plant species with a steady-state flowering/fruiting phenology are rare, they provide predictable food resources and therefore may play a pivotal role in animal community structure and diversity. I experimentally planted a supplemental patch of a shrub species with a steady-state flowering/fruiting phenology, Hamelia patens Jacq., into coffee agroforests to evaluate the contribution of this unique phenology to the structure and diversity of the flower-visiting community. After accounting for the higher abundance of captured animals in the coffee agroforests with the supplemental floral resources, species richness was 21% higher overall in the flower-visiting community in these agroforests compared to control agroforests. Coffee agroforests with the steady-state supplemental floral patch also had 31% more butterfly species, 29% more hummingbird species, 65% more wasps and 85% more bees than control coffee agroforests. The experimental treatment, together with elevation, explained 57% of the variation in community structure of the flower-visiting community. The identification of plant species that can support a high number of animal species, including important ecosystem service providers, is becoming increasingly important for restoration and conservation applications. Throughout the Neotropics plant species with a steady-state flowering/fruiting phenology can be found in all aseasonal forests and thus could be widely tested and suitable species used throughout the tropics to manage for biodiversity and potentially ecosystem services involving beneficial arthropods.

  12. L’escalfament global i l’extinció de les plantes: un exemple tropical

    OpenAIRE

    Safont, Elisabet; Rull, Valentí; Vegas-Vilarrúbia, Teresa; Nogué, Sandra

    2011-01-01

    [EN]Global warminG and plant extinction: a tropical example. – Pantepui is a phytogeographical province made up of a group of approximately 50 tabular mountain summits or tepuis in southeast Venezuela. This region lies between 1500 and 3014 m a.s.l and covers an approximate area of 6000 km2. Its pristine state of conservation is remarkable. The summits of the tepuis contain an excep- tional level of vascular plant diversity, including 2446 known species, of which 771 are endemic t...

  13. The internal transcribed spacer (ITS region and trnH-psbA [corrected] are suitable candidate loci for DNA barcoding of tropical tree species of India.

    Directory of Open Access Journals (Sweden)

    Abhinandan Mani Tripathi

    Full Text Available DNA barcoding as a tool for species identification has been successful in animals and other organisms, including certain groups of plants. The exploration of this new tool for species identification, particularly in tree species, is very scanty from biodiversity-rich countries like India. rbcL and matK are standard barcode loci while ITS, and trnH-psbA are considered as supplementary loci for plants.Plant barcode loci, namely, rbcL, matK, ITS, trnH-psbA, and the recently proposed ITS2, were tested for their efficacy as barcode loci using 300 accessions of tropical tree species. We tested these loci for PCR, sequencing success, and species discrimination ability using three methods. rbcL was the best locus as far as PCR and sequencing success rate were concerned, but not for the species discrimination ability of tropical tree species. ITS and trnH-psbA were the second best loci in PCR and sequencing success, respectively. The species discrimination ability of ITS ranged from 24.4 percent to 74.3 percent and that of trnH-psbA was 25.6 percent to 67.7 percent, depending upon the data set and the method used. matK provided the least PCR success, followed by ITS2 (59. 0%. Species resolution by ITS2 and rbcL ranged from 9.0 percent to 48.7 percent and 13.2 percent to 43.6 percent, respectively. Further, we observed that the NCBI nucleotide database is poorly represented by the sequences of barcode loci studied here for tree species.Although a conservative approach of a success rate of 60-70 percent by both ITS and trnH-psbA may not be considered as highly successful but would certainly help in large-scale biodiversity inventorization, particularly for tropical tree species, considering the standard success rate of plant DNA barcode program reported so far. The recommended matK and rbcL primers combination may not work in tropical tree species as barcode markers.

  14. An efficient DNA isolation method for tropical plants

    African Journals Online (AJOL)

    walkinnet

    2013-05-08

    May 8, 2013 ... 2Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, P. R. ... yielded high-quality DNA from 10 tropical plants including cassava, rubber tree, banana, etc. ..... Major Projects (GrantNo.

  15. Global assessment of the effects of terrestrial acidification on plant species richness

    International Nuclear Information System (INIS)

    Azevedo, Ligia B.; Zelm, Rosalie van; Hendriks, A. Jan; Bobbink, Roland; Huijbregts, Mark A.J.

    2013-01-01

    This study estimates the potential losses of vascular plant species richness due to terrestrial acidification for different world's biomes. We used empirical occurrence data of 2409 species from 140 studies and estimated the relative species richness – pH response curves using logistic regressions. The regressions were then used to quantify the fraction of species that are potentially lost due to soil pH changes. Although we found considerable variability within biomes, out results show that the pH at which species richness was maximized was found to be the lowest in (sub)tropical forests (pH = 4.1) and the highest in deserts (pH = 7.4). We also found that (sub)tropical moist forests are highly sensitive to decreases of in soil pH below 4.1. This study can be coupled with existing atmospheric deposition models to quantify the risk of species richness loss following soil acidification. Highlights: ► We compare the sensitivity of four biomes to soil acidification. ► We develop logistic regressions using observational field data. ► Sub(tropical) moist forests are highly affected by pH decreases. ► Logistic regressions can be linked to global scale atmospheric and soil fate models. -- Relationships of potential species richness loss along a soil pH gradient are proposed

  16. Leaf structural traits of tropical woody species resistant to cement dust.

    Science.gov (United States)

    Siqueira-Silva, Advanio Inácio; Pereira, Eduardo Gusmão; Modolo, Luzia Valentina; Paiva, Elder Antonio Sousa

    2016-08-01

    Cement industries located nearby limestone outcrops in Brazil have contributed to the coating of cement dust over native plant species. However, little is known about the extent of the response of tropical woody plants to such environmental pollutant particularly during the first stages of plant development and establishment. This work focused on the investigation of possible alterations in leaf structural and ultrastructural traits of 5-month-old Guazuma ulmifolia Lam. (Malvaceae), 6-month-old Myracrodruon urundeuva Allemão (Anacardiaceae), and 9-month-old Trichilia hirta L. (Meliaceae) challenged superficially with cement dust during new leaf development. Leaf surface of plants, the soil or both (leaf plus soil), were treated (or not) for 60 days, under controlled conditions, with cement dust at 2.5 or 5.0 mg cm(-2). After exposure, no significant structural changes were observed in plant leaves. Also, no plant death was recorded by the end of the experiment. There was also some evidence of localized leaf necrosis in G. ulmifolia and T. hirta, leaf curling in M. urundeuva and T. hirta, and bulges formation on epidermal surface of T. hirta, after cement dust contact with plant shoots. All species studied exhibited stomata obliteration while T. hirta, in particular, presented early leaf abscission, changes in cellular relief, and organization and content of midrib cells. No significant ultrastructural alterations were detected under the experimental conditions studied. Indeed, mesophyll cells presented plastids with intact membrane systems. The high plant survival rates, together with mild morphoanatomic traits alterations in leaves, indicate that G. ulmifolia is more resistant to cement dust pollutant, followed by M. urundeuva and T. hirta. Thus, the three plant species are promising for being used to revegetate areas impacted by cement industries activities.

  17. Methyl halide fluxes from tropical plants under controlled radiation and temperature regimes

    Science.gov (United States)

    Blei, Emanuel; Yokouchi, Yoko; Saito, Takuya; Nozoe, Susumu

    2015-04-01

    Methyl halides (CH3Cl, CH3Br, CH3I) contribute significantly to the halogen burden of the atmosphere and have the potential to influence the stratospheric ozone layer through their catalytic effect in the Chapman cycle. As such they have been studied over the years, and many plants and biota have been examined for their potential to act as a source of these gases. One of the potentially largest terrestrial sources identified was tropical vegetation such as tropical ferns and Dipterocarp trees. Most of these studies concentrated on the identification and quantification of such fluxes rather than their characteristics and often the chambers used in these studies were either opaque or only partially transparent to the full solar spectrum. Therefore it is not certain to which degree emissions of methyl halides are innate to the plants and how much they might vary due to radiation or temperature conditions inside the enclosures. In a separate development it had been proposed that UV-radiation could cause live plant materials to be become emitters of methane even under non-anoxic conditions. As methane is chemically very similar to methyl halides and had been proposed to be produced from methyl-groups ubiquitously found in plant cell material there is a relatively good chance that such a production mechanism would also apply to methyl halides. To test whether radiation can affect elevated emissions of methyl halides from plant materials and to distinguish this from temperature effects caused by heat build-up in chambers a set of controlled laboratory chamber enclosures under various radiation and temperature regimes was conducted on four different tropical plant species (Magnolia grandiflora, Cinnamonum camphora, Cyathea lepifera, Angiopteris lygodiifolia), the latter two of which had previously been identified as strong methyl halide emitters. Abscised leaf samples of these species were subjected to radiation treatments such UV-B, UV-A and broad spectrum radiation

  18. Solar Radiation Determines Site Occupancy of Coexisting Tropical and Temperate Deer Species Introduced to New Zealand Forests.

    Directory of Open Access Journals (Sweden)

    Robert B Allen

    Full Text Available Assemblages of introduced taxa provide an opportunity to understand how abiotic and biotic factors shape habitat use by coexisting species. We tested hypotheses about habitat selection by two deer species recently introduced to New Zealand's temperate rainforests. We hypothesised that, due to different thermoregulatory abilities, rusa deer (Cervus timorensis; a tropical species would prefer warmer locations in winter than red deer (Cervus elaphus scoticus; a temperate species. Since adult male rusa deer are aggressive in winter (the rut, we also hypothesised that rusa deer and red deer would not use the same winter locations. Finally, we hypothesised that in summer both species would prefer locations with fertile soils that supported more plant species preferred as food. We used a 250 × 250 m grid of 25 remote cameras to collect images in a 100-ha montane study area over two winters and summers. Plant composition, solar radiation, and soil fertility were also determined for each camera location. Multiseason occupancy models revealed that direct solar radiation was the best predictor of occupancy and detection probabilities for rusa deer in winter. Multistate, multiseason occupancy models provided strong evidence that the detection probability of adult male rusa deer was greater in winter and when other rusa deer were present at a location. Red deer mostly vacated the study area in winter. For the one season that had sufficient camera images of both species (summer 2011 to allow two-species occupancy models to be fitted, the detection probability of rusa deer also increased with solar radiation. Detection probability also varied with plant composition for both deer species. We conclude that habitat use by coexisting tropical and temperate deer species in New Zealand likely depends on the interplay between the thermoregulatory and behavioural traits of the deer and the abiotic and biotic features of the habitat.

  19. Seed dispersal increases local species richness and reduces spatial turnover of tropical tree seedlings.

    Science.gov (United States)

    Wandrag, Elizabeth M; Dunham, Amy E; Duncan, Richard P; Rogers, Haldre S

    2017-10-03

    Dispersal is thought to be a key process underlying the high spatial diversity of tropical forests. Just how important dispersal is in structuring plant communities is nevertheless an open question because it is very difficult to isolate dispersal from other processes, and thereby measure its effect. Using a unique situation, the loss of vertebrate seed dispersers on the island of Guam and their presence on the neighboring islands of Saipan and Rota, we quantify the contribution of vertebrate seed dispersal to spatial patterns of diversity of tree seedlings in treefall gaps. The presence of vertebrate seed dispersers approximately doubled seedling species richness within canopy gaps and halved species turnover among gaps. Our study demonstrates that dispersal plays a key role in maintaining local and regional patterns of diversity, and highlights the potential for ongoing declines in vertebrate seed dispersers to profoundly alter tropical forest composition.

  20. Plant species richness and abundance in residential yards across a tropical watershed: implications for urban sustainability

    Directory of Open Access Journals (Sweden)

    Cristina P. Vila-Ruiz

    2014-09-01

    Full Text Available Green spaces within residential areas provide important contributions to the sustainability of urban systems. Therefore, studying the characteristics of these areas has become a research priority in cities worldwide. This project evaluated various aspects of the plant biodiversity of residential yards (i.e., front yards and back yards within the Río Piedras watershed in the San Juan metropolitan area of Puerto Rico. Our work included gathering information on vegetation composition and abundance of woody species (i.e., trees, shrubs, palms, ferns and large herbs (>2 m height, species origin (native vs. introduced, and species uses (ornamental, food, and medicinal plants. A total of 424 yards were surveyed within an area of 187,191 m². We found 383 woody species, with shrubs being the most abundant plant habitat. As expected, residential yards hosted a disproportionate amount of introduced species (69.5%. The most common shrub species were all non-native ornamentals, whereas the most common tree species included food trees as well as ornamental plants and two native species. Front yards hosted more ornamental species per unit area than backyards, while the latter had more food plants. The high amount of introduced species may present a challenge in terms of implementation of plant conservation initiatives if there is no clear definition of urban conservation goals. On the other hand, the high frequency of yards containing food plants may facilitate the development of residential initiatives that could provide future adaptive capacity to food shortages.

  1. Quantifying the Relative Importance of Climate and Habitat on Structuring the Species and Taxonomic Diversity of Aquatic Plants in a Biodiversity Hotspot of Tropical Asia

    International Nuclear Information System (INIS)

    Chen, Y.

    2015-01-01

    It has not been well known how climate and habitat variables will influence the distribution of plant species to some extents at mesoscale. In this report, by using the distribution of aquatic plants in Western Ghats, a biodiversity hotspot in tropical Asian region, I quantify the relative importance of climate and habitat variables on structuring spatially species richness and taxonomic diversity patterns using structural equation modeling. All the sampling qudrats in the region used for the study has a spatial resolution of 0.5 latitude x 0.5 longitude. The results showed that species richness is high in both northern and southern part of the region, while low in the middle part. In contrast, taxonomic distinctiveness is relatively homogeneous over all the sampling quadrats in the region. Structural equation modeling suggested that taxonomic distinctiveness patterns of aquatic plants in the region follow temperature (partial regression coefficient=0.31, p<0.05) and elevational (partial regression coefficient=0.31, p<0.05) gradients, while richness patterns cannot be explained by any of the currently used variables. In conclusion, environmental variables that are related to taxonomic distinctiveness would not be related to richness, given the fact that these two quantities are orthogonal more or less. Both climate and habitat are equally influential on taxonomic distinctiveness patterns for aquatic plants in Western Ghats of India. (author)

  2. High-throughput biodiversity analysis: Rapid assessment of species richness and ecological interactions of Chrysomelidae (Coleoptera) in the tropics.

    Science.gov (United States)

    Gómez-Zurita, Jesús; Cardoso, Anabela; Coronado, Indiana; De la Cadena, Gissela; Jurado-Rivera, José A; Maes, Jean-Michel; Montelongo, Tinguaro; Nguyen, Dinh Thi; Papadopoulou, Anna

    2016-01-01

    Biodiversity assessment has been the focus of intense debate and conceptual and methodological advances in recent years. The cultural, academic and aesthetic impulses to recognise and catalogue the diversity in our surroundings, in this case of living objects, is furthermore propelled by the urgency of understanding that we may be responsible for a dramatic reduction of biodiversity, comparable in magnitude to geological mass extinctions. One of the most important advances in this attempt to characterise biodiversity has been incorporating DNA-based characters and molecular taxonomy tools to achieve faster and more efficient species delimitation and identification, even in hyperdiverse tropical biomes. In this assay we advocate for a broad understanding of Biodiversity as the inventory of species in a given environment, but also the diversity of their interactions, with both aspects being attainable using molecular markers and phylogenetic approaches. We exemplify the suitability and utility of this framework for large-scale biodiversity assessment with the results of our ongoing projects trying to characterise the communities of leaf beetles and their host plants in several tropical setups. Moreover, we propose that approaches similar to ours, establishing the inventories of two ecologically inter-related and species-rich groups of organisms, such as insect herbivores and their angiosperm host-plants, can serve as the foundational stone to anchor a comprehensive assessment of diversity, also in tropical environments, by subsequent addition of trophic levels.

  3. Extinction risk escalates in the tropics.

    Directory of Open Access Journals (Sweden)

    Jana C Vamosi

    Full Text Available The latitudinal biodiversity gradient remains one of the most widely recognized yet puzzling patterns in nature. Presently, the high level of extinction of tropical species, referred to as the "tropical biodiversity crisis", has the potential to erode this pattern. While the connection between species richness, extinction, and speciation has long intrigued biologists, these interactions have experienced increased poignancy due to their relevancy to where we should concentrate our conservation efforts. Natural extinction is a phenomenon thought to have its own latitudinal gradient, with lower extinction rates in the tropics being reported in beetles, birds, mammals, and bivalves. Processes that have buffered ecosystems from high extinction rates in the past may also buffer ecosystems against disturbance of anthropogenic origin. While potential parallels between historical and present-day extinction patterns have been acknowledged, they remain only superficially explored and plant extinction patterns have been particularly neglected. Studies on the disappearances of animal species have reached conflicting conclusions, with the rate of extinction appearing either higher or lower in species richness hotspots. Our global study of extinction risk in vascular plants finds disproportionately higher extinction risk in tropical countries, even when indicators of human pressure (GDP, population density, forest cover change are taken into account. Our results are at odds with the notion that the tropics represent a museum of plant biodiversity (places of historically lowered extinction and we discuss mechanisms that may reconcile this apparent contradiction.

  4. Extinction risk escalates in the tropics.

    Science.gov (United States)

    Vamosi, Jana C; Vamosi, Steven M

    2008-01-01

    The latitudinal biodiversity gradient remains one of the most widely recognized yet puzzling patterns in nature. Presently, the high level of extinction of tropical species, referred to as the "tropical biodiversity crisis", has the potential to erode this pattern. While the connection between species richness, extinction, and speciation has long intrigued biologists, these interactions have experienced increased poignancy due to their relevancy to where we should concentrate our conservation efforts. Natural extinction is a phenomenon thought to have its own latitudinal gradient, with lower extinction rates in the tropics being reported in beetles, birds, mammals, and bivalves. Processes that have buffered ecosystems from high extinction rates in the past may also buffer ecosystems against disturbance of anthropogenic origin. While potential parallels between historical and present-day extinction patterns have been acknowledged, they remain only superficially explored and plant extinction patterns have been particularly neglected. Studies on the disappearances of animal species have reached conflicting conclusions, with the rate of extinction appearing either higher or lower in species richness hotspots. Our global study of extinction risk in vascular plants finds disproportionately higher extinction risk in tropical countries, even when indicators of human pressure (GDP, population density, forest cover change) are taken into account. Our results are at odds with the notion that the tropics represent a museum of plant biodiversity (places of historically lowered extinction) and we discuss mechanisms that may reconcile this apparent contradiction.

  5. Chemical similarity and local community assembly in the species rich tropical genus Piper.

    Science.gov (United States)

    Salazar, Diego; Jaramillo, M Alejandra; Marquis, Robert J

    2016-11-01

    Community ecologists have strived to find mechanisms that mediate the assembly of natural communities. Recent evidence suggests that natural enemies could play an important role in the assembly of hyper-diverse tropical plant systems. Classic ecological theory predicts that in order for coexistence to occur, species differences must be maximized across biologically important niche dimensions. For plant-herbivore interactions, it has been recently suggested that, within a particular community, plant species that maximize the difference in chemical defense profiles compared to neighboring taxa will have a relative competitive advantage. Here we tested the hypothesis that plant chemical diversity can affect local community composition in the hyper-diverse genus Piper at a lowland wet forest location in Costa Rica. We first characterized the chemical composition of 27 of the most locally abundant species of Piper. We then tested whether species with different chemical compositions were more likely to coexist. Finally, we assessed the degree to which Piper phylogenetic relationships are related to differences in secondary chemical composition and community assembly. We found that, on average, co-occurring species were more likely to differ in chemical composition than expected by chance. Contrary to expectations, there was no phylogenetic signal for overall secondary chemical composition. In addition we found that species in local communities were, on average, more phylogenetically closely related than expected by chance, suggesting that functional traits other than those measured here also influence local assembly. We propose that selection by herbivores for divergent chemistries between closely related species facilitates the coexistence of a high diversity of congeneric taxa via apparent competition. © 2016 by the Ecological Society of America.

  6. Temporal evolution of {sup 137}Cs{sup +}, K{sup +} and Na{sup +} in fruits of South American tropical species

    Energy Technology Data Exchange (ETDEWEB)

    Cid, A.S. [LARA — Laboratório de Radioecologia, Instituto de Física, Universidade Federal Fluminense, Av. Gal Milton Tavares de Souza, s/no, Gragoatá, 24210-340, Niterói, RJ (Brazil); Anjos, R.M., E-mail: meigikos@if.uff.br [LARA — Laboratório de Radioecologia, Instituto de Física, Universidade Federal Fluminense, Av. Gal Milton Tavares de Souza, s/no, Gragoatá, 24210-340, Niterói, RJ (Brazil); Zamboni, C.B. [Instituto de Pesquisas Energéticas e Nucleares (IPEN/CNEN), Av. Lineu Prestes 2242, Cidade Universitária, 05508-000, Paulo, SP (Brazil); Velasco, H. [GEA, Instituto de Matemática Aplicada San Luis (IMASL), Universidad Nacional de San Luis, Consejo Nacional de Investigaciones Científicas y Técnicas. Ej. de los Andes 950, D5700HHW San Luis (Argentina); Macario, K. [LARA — Laboratório de Radioecologia, Instituto de Física, Universidade Federal Fluminense, Av. Gal Milton Tavares de Souza, s/no, Gragoatá, 24210-340, Niterói, RJ (Brazil); Rizzotto, M. [GEA, Instituto de Matemática Aplicada San Luis (IMASL), Universidad Nacional de San Luis, Consejo Nacional de Investigaciones Científicas y Técnicas. Ej. de los Andes 950, D5700HHW San Luis (Argentina); and others

    2013-02-01

    Concentrations of {sup 137}Cs, K and Na in fruits of lemon (Citrus limon B.) and of K and Na in fruits of coconut (Cocos nucifera L.) trees were measured by both gamma spectrometry and neutron activation analysis, with the aim to understand the behaviour of monovalent inorganic cations in tropical plants as well as the plant ability to store these elements. Similar amounts of K{sup +} were incorporated by lemon and coconut trees during the growth and ripening processes of its fruits. The K concentration decreased exponentially during the growth of lemons and coconuts, ranging from 13 to 25 g kg{sup −1} dry weight. The incorporation of Na{sup +} differed considerably between the plant species studied. The Na concentration increased linearly during the lemon growth period (0.04 to 0.70 g kg{sup −1} d.w.) and decreased exponentially during the coconut growth period (1.4 to 0.5 g kg{sup −1} d.w.). Even though radiocaesium is not an essential element to plants, our results have shown that {sup 137}Cs incorporation to vegetable tissues is positively correlated to K distribution within the studied tropical plant species, suggesting that the two elements might be assimilated in a similar way, going through the biological cycle together. A mathematical model was developed from the experimental data allowing simulating the incorporation process of monovalent inorganic cations by the fruits of such tropical species. The agreement between the theoretical approach and the experimental values is satisfactory along fruit development. - Highlights: ► Concentrations of {sup 137}Cs, K and Na in fruits of lemon (Citrus limon B.) are presented. ► Concentrations of K and Na in fruits of coconut (Cocos nucifera L.) are also showed. ► We investigated the use of {sup 137}Cs as a tracer for the plant absorption of macronutrients. ► A model was developed to simulate the temporal evolution of {sup 137}Cs, K and Na by fruits. ► This model exhibited close agreement with our

  7. High-throughput biodiversity analysis: Rapid assessment of species richness and ecological interactions of Chrysomelidae (Coleoptera) in the tropics

    Science.gov (United States)

    Gómez-Zurita, Jesús; Cardoso, Anabela; Coronado, Indiana; De la Cadena, Gissela; Jurado-Rivera, José A.; Maes, Jean-Michel; Montelongo, Tinguaro; Nguyen, Dinh Thi; Papadopoulou, Anna

    2016-01-01

    Abstract Biodiversity assessment has been the focus of intense debate and conceptual and methodological advances in recent years. The cultural, academic and aesthetic impulses to recognise and catalogue the diversity in our surroundings, in this case of living objects, is furthermore propelled by the urgency of understanding that we may be responsible for a dramatic reduction of biodiversity, comparable in magnitude to geological mass extinctions. One of the most important advances in this attempt to characterise biodiversity has been incorporating DNA-based characters and molecular taxonomy tools to achieve faster and more efficient species delimitation and identification, even in hyperdiverse tropical biomes. In this assay we advocate for a broad understanding of Biodiversity as the inventory of species in a given environment, but also the diversity of their interactions, with both aspects being attainable using molecular markers and phylogenetic approaches. We exemplify the suitability and utility of this framework for large-scale biodiversity assessment with the results of our ongoing projects trying to characterise the communities of leaf beetles and their host plants in several tropical setups. Moreover, we propose that approaches similar to ours, establishing the inventories of two ecologically inter-related and species-rich groups of organisms, such as insect herbivores and their angiosperm host-plants, can serve as the foundational stone to anchor a comprehensive assessment of diversity, also in tropical environments, by subsequent addition of trophic levels. PMID:27408583

  8. Patterns and correlates of plant diversity differ between common and rare species in a neotropical dry forest

    NARCIS (Netherlands)

    Tetetla-Rangel, Erika; Dupuy, Juan Manuel; Hernández-Stefanoni, José Luis; Hoekstra, Paul H.

    2017-01-01

    Determining which factors affect species richness is important for conservation theory and practice. However, richness of common and rare species may be affected by different factors. We use an extensive inventory of woody plants from a tropical dry forest landscape in Yucatan, Mexico to assess the

  9. Species undersampling in tropical bat surveys: effects on emerging biodiversity patterns.

    Science.gov (United States)

    Meyer, Christoph F J; Aguiar, Ludmilla M S; Aguirre, Luis F; Baumgarten, Julio; Clarke, Frank M; Cosson, Jean-François; Estrada Villegas, Sergio; Fahr, Jakob; Faria, Deborah; Furey, Neil; Henry, Mickaël; Jenkins, Richard K B; Kunz, Thomas H; Cristina MacSwiney González, M; Moya, Isabel; Pons, Jean-Marc; Racey, Paul A; Rex, Katja; Sampaio, Erica M; Stoner, Kathryn E; Voigt, Christian C; von Staden, Dietrich; Weise, Christa D; Kalko, Elisabeth K V

    2015-01-01

    Undersampling is commonplace in biodiversity surveys of species-rich tropical assemblages in which rare taxa abound, with possible repercussions for our ability to implement surveys and monitoring programmes in a cost-effective way. We investigated the consequences of information loss due to species undersampling (missing subsets of species from the full species pool) in tropical bat surveys for the emerging patterns of species richness (SR) and compositional variation across sites. For 27 bat assemblage data sets from across the tropics, we used correlations between original data sets and subsets with different numbers of species deleted either at random, or according to their rarity in the assemblage, to assess to what extent patterns in SR and composition in data subsets are congruent with those in the initial data set. We then examined to what degree high sample representativeness (r ≥ 0·8) was influenced by biogeographic region, sampling method, sampling effort or structural assemblage characteristics. For SR, correlations between random subsets and original data sets were strong (r ≥ 0·8) with moderate (ca. 20%) species loss. Bias associated with information loss was greater for species composition; on average ca. 90% of species in random subsets had to be retained to adequately capture among-site variation. For nonrandom subsets, removing only the rarest species (on average c. 10% of the full data set) yielded strong correlations (r > 0·95) for both SR and composition. Eliminating greater proportions of rare species resulted in weaker correlations and large variation in the magnitude of observed correlations among data sets. Species subsets that comprised ca. 85% of the original set can be considered reliable surrogates, capable of adequately revealing patterns of SR and temporal or spatial turnover in many tropical bat assemblages. Our analyses thus demonstrate the potential as well as limitations for reducing survey effort and streamlining

  10. Predicting tropical plant physiology from leaf and canopy spectroscopy.

    Science.gov (United States)

    Doughty, Christopher E; Asner, Gregory P; Martin, Roberta E

    2011-02-01

    A broad regional understanding of tropical forest leaf photosynthesis has long been a goal for tropical forest ecologists, but it has remained elusive due to difficult canopy access and high species diversity. Here we develop an empirical model to predict sunlit, light-saturated, tropical leaf photosynthesis using leaf and simulated canopy spectra. To develop this model, we used partial least squares (PLS) analysis on three tropical forest datasets (159 species), two in Hawaii and one at the biosphere 2 laboratory (B2L). For each species, we measured light-saturated photosynthesis (A), light and CO(2) saturated photosynthesis (A(max)), respiration (R), leaf transmittance and reflectance spectra (400-2,500 nm), leaf nitrogen, chlorophyll a and b, carotenoids, and leaf mass per area (LMA). The model best predicted A [r(2) = 0.74, root mean square error (RMSE) = 2.9 μmol m(-2) s(-1))] followed by R (r(2) = 0.48), and A(max) (r(2) = 0.47). We combined leaf reflectance and transmittance with a canopy radiative transfer model to simulate top-of-canopy reflectance and found that canopy spectra are a better predictor of A (RMSE = 2.5 ± 0.07 μmol m(-2) s(-1)) than are leaf spectra. The results indicate the potential for this technique to be used with high-fidelity imaging spectrometers to remotely sense tropical forest canopy photosynthesis.

  11. A concise biogas plant construction suitable for Ghana and other tropical countries

    Energy Technology Data Exchange (ETDEWEB)

    Gbagbo, J.K.N.

    1997-04-01

    This report is intended to be used by people in the field of biogas for workshops, technicians, teachers to educate as well as to carry out hands on constructions in Ghana and other tropical countries. Chapter 1, discusses the biogas technology, what a biogas plant is, and how it functions. Chapter 2, describes the entire process. Chapter 3, discusses the necessary conditions for fermentation. Chapter 4, the measuring parameters for monitoring the system. Chapter 5, describes the various types of biogas plants suitable for tropical countries. Chapter 6, describes a planning guide for Ghana and other tropical countries. Chapter 7, discusses digester sizing and finally, Chapter 8, describes a concise biogas plant construction suitable for the rural areas of Ghana and other tropical countries. (au)

  12. Assessment of Plant Functional Types in Tropical Arid and Semi-Arid Ecosystems of India Using Remote Sensing Data and GIS

    Science.gov (United States)

    Sudhakar Reddy, C.; Krishna, P. Hari; Murthy, M. S. R.

    2011-09-01

    Tropical ecosystems undergo changes caused by season, climate or multiple anthropogenic impacts. Such changes may cause gradual or rapid shifts from one state to another. There has been a focus on functional classifications of plants to find tools for monitoring and assessing species status in changing environments. It has been recognised that plant biological characteristics can be related to their response to predominant environmental factors and interactions between other organisms. These findings have resulted in a search for plant functional types (PFTs) that are user-defined groups of species with similar response to environmental resources and disturbance associated to common biological traits. Now, identification of plant functional types is priority area in the climate change research. Satellite Earth observation data is an important tool in providing considerable information on extracting PFT information at global and regional levels. From the modelling perspective, some of the current needs are the refinement of processes that govern community assembly, such as natural and anthropogenic disturbances. PFTs used in large-scale models are insufficient to represent the diversity of responses in natural plant communities. The currently available MODIS PFT map was generated by re-labeling the IGBP land cover type classes. However, the error magnitudes of the MODIS PFT product and their spatial and temporal distributions have not been fully characterized. Remotely sensed derived information of the phenology, community composition and vegetation structure are the key inputs to integrate with the variability in precipitation and temperature to map the spatial distribution of Plant functional types. PFTs allows accurate representation of the land surface by separately specifying the composition and structure of PFTs within a grid cell. Very little research efforts are discernible in India that explicitly address the PFTs. In the present study five natural

  13. The Origins of Tropical Rainforest Hyperdiversity.

    Science.gov (United States)

    Pennington, R Toby; Hughes, Mark; Moonlight, Peter W

    2015-11-01

    Traditional models for tropical species richness contrast rainforests as "museums" of old species or "cradles" of recent speciation. High plant species diversity in rainforests may be more likely to reflect high episodic evolutionary turnover of species--a scenario implicating high rates of both speciation and extinction through geological time.

  14. The effect of climate and soil conditions on tree species turnover in a Tropical Montane Cloud Forest in Costa Rica.

    Science.gov (United States)

    Häger, Achim

    2010-12-01

    On a global level, Tropical Montane Cloud Forests constitute important centers of vascular plant diversity. Tree species turnover along environmental gradients plays an important role in larger scale diversity patterns in tropical mountains. This study aims to estimate the magnitude of beta diversity across the Tilardn mountain range in North-Western Costa Rica, and to elucidate the impact of climate and soil conditions on tree species turnover at a local scale. Seven climate stations measuring rainfall, horizontal precipitation (clouds and wind-driven rain) and temperatures were installed along a 2.5km transect ranging from 1200 m.a.s.l. on the Atlantic to 1200 m.a.s.l. on the Pacific slope. The ridge top climate station was located at 1500 m.a.s.l. Climate data were recorded from March through December 2003. Additionally, seven 0.05 ha plots were established. On all plots soil moisture was monitored for one year, furthermore soil type and soil chemistry were assessed. Woody plants with a diameter at breast height (dbh) > or = 5 cm were identified to species. Species' distributions were explored by feeding pairwise Serensen measures between plots into a Principal Component Analysis. Relationships between floristic similarity and environmental variables were analyzed using Mantel tests. Pronounced gradients in horizontal precipitation, temperatures and soil conditions were found across the transect. In total, 483 woody plants were identified, belonging to 132 species. Environmental gradients were paralleled by tree species turnover; the plots could be divided in three distinctive floristic units which reflected different topographic positions on the transect (lower slopes, mid slopes and ridge). Most notably there was a complete species turnover between the ridge and the lower Pacific slope. Floristic similarity was negatively correlated with differences in elevation, horizontal precipitation, temperatures and soil conditions between plots. It is suggested that

  15. Some tropical species of Ganoderma (Polyporaceae) with pale context

    NARCIS (Netherlands)

    Furtado, João Salvador

    1967-01-01

    Five species of Ganoderma Karsten are discussed, which are confined to the tropics and characterized by the presence of a light-colored context, but which are devoid of the laccate upper surface of the pileus typical of the species of the Ganoderma lucidum-group. Ganoderma neurosporum J. Furtado is

  16. The Dorstenia species (Moraceae) of north-western tropical America

    NARCIS (Netherlands)

    Berg, C.C.; Leeuwen, van R.W.J.

    1982-01-01

    Four new species of Dorstenia are described: D. panamensis C.C. Berg, D. boliviana C.C. Berg, D. peruviana C.C. Berg, and D. belizensis C.C. Berg. A list of and a key to the 21 Dorstenia species distinguished in north-western tropical America are presented, together with synonyms and distributions.

  17. Invasive rats on tropical islands: Their population biology and impacts on native species

    Directory of Open Access Journals (Sweden)

    Grant A. Harper

    2015-01-01

    Full Text Available The three most invasive rat species, black or ship rat Rattus rattus, brown or Norway rats, R. norvegicus and Pacific rat, R. exulans have been incrementally introduced to islands as humans have explored the world’s oceans. They have caused serious deleterious effects through predation and competition, and extinction of many species on tropical islands, many of which are biodiversity hotspots. All three rat species are found in virtually all habitat types, including mangrove and arid shrub land. Black rats tend to dominate the literature but despite this the population biology of invasive rats, particularly Norway rats, is poorly researched on tropical islands. Pacific rats can often exceed population densities of well over 100 rats ha−1 and black rats can attain densities of 119 rats ha−1, which is much higher than recorded on most temperate islands. High densities are possibly due to high recruitment of young although the data to support this are limited. The generally aseasonally warm climate can lead to year-round breeding but can be restricted by either density-dependent effects interacting with resource constraints often due to aridity. Apparent adverse impacts on birds have been well recorded and almost all tropical seabirds and land birds can be affected by rats. On the Pacific islands, black rats have added to declines and extinctions of land birds caused initially by Pacific rats. Rats have likely caused unrecorded extinctions of native species on tropical islands. Further research required on invasive rats on tropical islands includes the drivers of population growth and carrying capacities that result in high densities and how these differ to temperate islands, habitat use of rats in tropical vegetation types and interactions with other tropical species, particularly the reptiles and invertebrates, including crustaceans.

  18. Isolation, diversity, and antimicrobial activity of rare actinobacteria from medicinal plants of tropical rain forests in Xishuangbanna, China.

    Science.gov (United States)

    Qin, Sheng; Li, Jie; Chen, Hua-Hong; Zhao, Guo-Zhen; Zhu, Wen-Yong; Jiang, Cheng-Lin; Xu, Li-Hua; Li, Wen-Jun

    2009-10-01

    Endophytic actinobacteria are relatively unexplored as potential sources of novel species and novel natural products for medical and commercial exploitation. Xishuangbanna is recognized throughout the world for its diverse flora, especially the rain forest plants, many of which have indigenous pharmaceutical histories. However, little is known about the endophytic actinobacteria of this tropical area. In this work, we studied the diversity of actinobacteria isolated from medicinal plants collected from tropical rain forests in Xishuangbanna. By the use of different selective isolation media and methods, a total of 2,174 actinobacteria were isolated. Forty-six isolates were selected on the basis of their morphologies on different media and were further characterized by 16S rRNA gene sequencing. The results showed an unexpected level of diversity, with 32 different genera. To our knowledge, this is the first report describing the isolation of Saccharopolyspora, Dietzia, Blastococcus, Dactylosporangium, Promicromonospora, Oerskovia, Actinocorallia, and Jiangella species from endophytic environments. At least 19 isolates are considered novel taxa by our current research. In addition, all 46 isolates were tested for antimicrobial activity and were screened for the presence of genes encoding polyketide synthetases and nonribosomal peptide synthetases. The results confirm that the medicinal plants of Xishuangbanna represent an extremely rich reservoir for the isolation of a significant diversity of actinobacteria, including novel species, that are potential sources for the discovery of biologically active compounds.

  19. The biodiversity cost of carbon sequestration in tropical savanna.

    Science.gov (United States)

    Abreu, Rodolfo C R; Hoffmann, William A; Vasconcelos, Heraldo L; Pilon, Natashi A; Rossatto, Davi R; Durigan, Giselda

    2017-08-01

    Tropical savannas have been increasingly viewed as an opportunity for carbon sequestration through fire suppression and afforestation, but insufficient attention has been given to the consequences for biodiversity. To evaluate the biodiversity costs of increasing carbon sequestration, we quantified changes in ecosystem carbon stocks and the associated changes in communities of plants and ants resulting from fire suppression in savannas of the Brazilian Cerrado, a global biodiversity hotspot. Fire suppression resulted in increased carbon stocks of 1.2 Mg ha -1 year -1 since 1986 but was associated with acute species loss. In sites fully encroached by forest, plant species richness declined by 27%, and ant richness declined by 35%. Richness of savanna specialists, the species most at risk of local extinction due to forest encroachment, declined by 67% for plants and 86% for ants. This loss highlights the important role of fire in maintaining biodiversity in tropical savannas, a role that is not reflected in current policies of fire suppression throughout the Brazilian Cerrado. In tropical grasslands and savannas throughout the tropics, carbon mitigation programs that promote forest cover cannot be assumed to provide net benefits for conservation.

  20. Commercial Plant Production and Consumption Still Follow the Latitudinal Gradient in Species Diversity despite Economic Globalization

    Science.gov (United States)

    Nelson, Erik J.; Helmus, Matthew R.; Cavender-Bares, Jeannine; Polasky, Stephen; Lasky, Jesse R.; Zanne, Amy E.; Pearse, William D.; Kraft, Nathan J. B.; Miteva, Daniela A.; Fagan, William F.

    2016-01-01

    Increasing trade between countries and gains in income have given consumers around the world access to a richer and more diverse set of commercial plant products (i.e., foods and fibers produced by farmers). According to the economic theory of comparative advantage, countries open to trade will be able to consume more–in terms of volume and diversity–if they concentrate production on commodities that they can most cost-effectively produce, while importing goods that are expensive to produce, relative to other countries. Here, we perform a global analysis of traded commercial plant products and find little evidence that increasing globalization has incentivized agricultural specialization. Instead, a country’s plant production and consumption patterns are still largely determined by local evolutionary legacies of plant diversification. Because tropical countries harbor a greater diversity of lineages across the tree of life than temperate countries, tropical countries produce and consume a greater diversity of plant products than do temperate countries. In contrast, the richer and more economically advanced temperate countries have the capacity to produce and consume more plant species than the generally poorer tropical countries, yet this collection of plant species is drawn from fewer branches on the tree of life. Why have countries not increasingly specialized in plant production despite the theoretical financial incentive to do so? Potential explanations include the persistence of domestic agricultural subsidies that distort production decisions, cultural preferences for diverse local food production, and that diverse food production protects rural households in developing countries from food price shocks. Less specialized production patterns will make crop systems more resilient to zonal climatic and social perturbations, but this may come at the expense of global crop production efficiency, an important step in making the transition to a hotter and more

  1. Commercial Plant Production and Consumption Still Follow the Latitudinal Gradient in Species Diversity despite Economic Globalization.

    Science.gov (United States)

    Nelson, Erik J; Helmus, Matthew R; Cavender-Bares, Jeannine; Polasky, Stephen; Lasky, Jesse R; Zanne, Amy E; Pearse, William D; Kraft, Nathan J B; Miteva, Daniela A; Fagan, William F

    2016-01-01

    Increasing trade between countries and gains in income have given consumers around the world access to a richer and more diverse set of commercial plant products (i.e., foods and fibers produced by farmers). According to the economic theory of comparative advantage, countries open to trade will be able to consume more-in terms of volume and diversity-if they concentrate production on commodities that they can most cost-effectively produce, while importing goods that are expensive to produce, relative to other countries. Here, we perform a global analysis of traded commercial plant products and find little evidence that increasing globalization has incentivized agricultural specialization. Instead, a country's plant production and consumption patterns are still largely determined by local evolutionary legacies of plant diversification. Because tropical countries harbor a greater diversity of lineages across the tree of life than temperate countries, tropical countries produce and consume a greater diversity of plant products than do temperate countries. In contrast, the richer and more economically advanced temperate countries have the capacity to produce and consume more plant species than the generally poorer tropical countries, yet this collection of plant species is drawn from fewer branches on the tree of life. Why have countries not increasingly specialized in plant production despite the theoretical financial incentive to do so? Potential explanations include the persistence of domestic agricultural subsidies that distort production decisions, cultural preferences for diverse local food production, and that diverse food production protects rural households in developing countries from food price shocks. Less specialized production patterns will make crop systems more resilient to zonal climatic and social perturbations, but this may come at the expense of global crop production efficiency, an important step in making the transition to a hotter and more

  2. Commercial Plant Production and Consumption Still Follow the Latitudinal Gradient in Species Diversity despite Economic Globalization.

    Directory of Open Access Journals (Sweden)

    Erik J Nelson

    Full Text Available Increasing trade between countries and gains in income have given consumers around the world access to a richer and more diverse set of commercial plant products (i.e., foods and fibers produced by farmers. According to the economic theory of comparative advantage, countries open to trade will be able to consume more-in terms of volume and diversity-if they concentrate production on commodities that they can most cost-effectively produce, while importing goods that are expensive to produce, relative to other countries. Here, we perform a global analysis of traded commercial plant products and find little evidence that increasing globalization has incentivized agricultural specialization. Instead, a country's plant production and consumption patterns are still largely determined by local evolutionary legacies of plant diversification. Because tropical countries harbor a greater diversity of lineages across the tree of life than temperate countries, tropical countries produce and consume a greater diversity of plant products than do temperate countries. In contrast, the richer and more economically advanced temperate countries have the capacity to produce and consume more plant species than the generally poorer tropical countries, yet this collection of plant species is drawn from fewer branches on the tree of life. Why have countries not increasingly specialized in plant production despite the theoretical financial incentive to do so? Potential explanations include the persistence of domestic agricultural subsidies that distort production decisions, cultural preferences for diverse local food production, and that diverse food production protects rural households in developing countries from food price shocks. Less specialized production patterns will make crop systems more resilient to zonal climatic and social perturbations, but this may come at the expense of global crop production efficiency, an important step in making the transition to a

  3. Infrared heater system for warming tropical forest understory plants and soils

    Science.gov (United States)

    Bruce A. Kimball; Aura M. Alonso-Rodríguez; Molly A. Cavaleri; Sasha C. Reed; Grizelle González; Tana E. Wood

    2018-01-01

    The response of tropical forests to global warming is one of the largest uncertainties in predicting the future carbon balance of Earth. To determine the likely effects of elevated temperatures on tropical forest understory plants and soils, as well as other ecosystems, an infrared (IR) heater system was developed to provide in situ warming for the Tropical Responses...

  4. Towards restoration of Hawaiian tropical dry forests: the Kaupulehu outplanting programme

    Science.gov (United States)

    Susan Cordell; Moana McClellan; Yvonne Yarber Carter; Lisa J. Hadway

    2008-01-01

    Hawaiian tropical dry forests contain diverse assemblages of woody canopy species, including many endemic and endangered species that warrant conservation attention before completely disappearing. Today, tropical dry forests in Hawaii are not viable ecosystems. Poor land use practices, fragmentation, non-native plant invasions, and inadequate native vegetation...

  5. Conifers, angiosperm trees, and lianas: growth, whole-plant water and nitrogen use efficiency, and stable isotope composition ({delta}13C and {delta}18O) of seedlings grown in a tropical environment.

    Science.gov (United States)

    Cernusak, Lucas A; Winter, Klaus; Aranda, Jorge; Turner, Benjamin L

    2008-09-01

    Seedlings of several species of gymnosperm trees, angiosperm trees, and angiosperm lianas were grown under tropical field conditions in the Republic of Panama; physiological processes controlling plant C and water fluxes were assessed across this functionally diverse range of species. Relative growth rate, r, was primarily controlled by the ratio of leaf area to plant mass, of which specific leaf area was a key component. Instantaneous photosynthesis, when expressed on a leaf-mass basis, explained 69% of variation in r (P physiological models of tropical forest trees.

  6. Are we filling the data void? An assessment of the amount and extent of plant collection records and census data available for tropical South America.

    Directory of Open Access Journals (Sweden)

    Kenneth Feeley

    Full Text Available Large-scale studies are needed to increase our understanding of how large-scale conservation threats, such as climate change and deforestation, are impacting diverse tropical ecosystems. These types of studies rely fundamentally on access to extensive and representative datasets (i.e., "big data". In this study, I asses the availability of plant species occurrence records through the Global Biodiversity Information Facility (GBIF and the distribution of networked vegetation census plots in tropical South America. I analyze how the amount of available data has changed through time and the consequent changes in taxonomic, spatial, habitat, and climatic representativeness. I show that there are large and growing amounts of data available for tropical South America. Specifically, there are almost 2,000,000 unique geo-referenced collection records representing more than 50,000 species of plants in tropical South America and over 1,500 census plots. However, there is still a gaping "data void" such that many species and many habitats remain so poorly represented in either of the databases as to be functionally invisible for most studies. It is important that we support efforts to increase the availability of data, and the representativeness of these data, so that we can better predict and mitigate the impacts of anthropogenic disturbances.

  7. Drought tolerance of tropical tree species : functional traits, trade-offs and species distribution

    NARCIS (Netherlands)

    Markesteijn, L.

    2010-01-01

    KEY-WORDS:
    Bolivia, drought tolerance, shade tolerance, functional traits, trade-offs, ecophysiology, species distribution
    Tropical forests occur under rainfall regimes that vary greatly in the rainfall pattern and frequency and intensity of drought. Consequently water availability is

  8. Seasonal dynamics in photosynthesis of woody plants at the northern limit of Asian tropics: potential role of fog in maintaining tropical rainforests and agriculture in Southwest China.

    Science.gov (United States)

    Zhang, Yong-Jiang; Holbrook, N Michele; Cao, Kun-Fang

    2014-10-01

    The lowland tropical rainforests in Xishuangbanna, Southwest (SW) China, mark the northern limit of Asian tropics. Fog has been hypothesized to play a role in maintaining rainforests and tropical crop production in this region, but the physiological mechanism has not been studied. The goals of this study were to characterize the seasonal dynamics in photosynthesis and to assess the potential for fog to mitigate chilling-induced photodamage for tropical trees and crops in Xishuangbanna. We measured seasonal dynamics in light-saturated net photosynthetic rate (Aa), stomatal conductance (gs), intercellular CO2 concentration, quantum yield of Photosystem II (Fv/Fm) and maximum P700 changes (Pm; indicates the amount of active PSI complex), as well as chilling resistance and fog (light/shading) effects on low temperature-induced decline in Fv/Fm and Pm for native tree and introduced lower latitude tree or woody shrub species grown in a tropical botanical garden. Despite significant decreases in Aa, gs, Pm and Fv/Fm, most species maintained considerably high Aa during the cool season (2.51-14.6 μmol m(-2) s(-1)). Shaded leaves exposed to seasonal low temperatures had higher Fv/Fm than sun-exposed leaves in the cool season. All species could tolerate 1.4 °C in the dark, whereas a combined treatment of low temperature and high light caused a distinctly faster decline in Pm and Fv/Fm compared with low temperature treatment alone. Because fog persistence avoids or shortens the duration of high light condition in the morning when the temperatures are still low, our results provide support for the hypothesis that fog reduces chilling damage to tropical plants in this region and thus plays a role in maintaining tropical rainforests and agriculture in SW China. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  9. Taxonomic and phylogenetic diversity of vascular plants at Ma'anling volcano urban park in tropical Haikou, China: Reponses to soil properties.

    Science.gov (United States)

    Cheng, Xia-Lan; Yuan, Lang-Xing; Nizamani, Mir Mohammad; Zhu, Zhi-Xin; Friedman, Cynthia Ross; Wang, Hua-Feng

    2018-01-01

    Anthropogenic processes and socio-economic factors play important roles in shaping plant diversity in urban parks. To investigate how plant diversity of Ma' anling urban volcano park in Hainan Province, China respond to these factors, we carried out a field investigation on the taxonomic and phylogenetic diversity of vascular plants and soil properties in this area. We found 284 species of vascular plants belonging to 88 families and 241 genera, which included 194 native species, 23 invasive species, 31 naturalized species, 40 cultivars, and 4 rare / endangered plant species. Tree composition and richness significantly varied between different vegetation formations (plantation, secondary forest, and abandoned land). Plant species richness and community composition were significantly affected by elevation (El), soil water content (WC), total soil nitrogen (TN) and soil organic matter (SOM). There were significant diversity differences between plantations and abandoned lands, but not between the plantations and secondary forests. The flora in the study site was tropical in nature, characterized by pantropic distributions. Compared to adjacent areas, floristic composition in the study site was most similar to that of Guangdong, followed by that of Vietnam. Our study revealed the diversity patterns of volcanic plants and provided the basis for future planning of plant conservation, such as preserving plant species, maintaining plant habitats, and coordinating plant management in this region.

  10. Thermotolerance and responses to short duration heat stress in tropical and temperate species

    Science.gov (United States)

    Marias, D.; Meinzer, F. C.; Still, C. J.

    2017-12-01

    Temperature and heat waves are predicted to increase throughout the 21st century in both tropical and temperate regions. Tropical species are vulnerable to heat stress because of the higher radiation load and the narrower distribution of temperatures typically experienced compared to extratropical species. Germinant seedlings are also vulnerable to heat stress because they inhabit the boundary layer close to the soil surface where intense heating occurs. We quantified the effect of leaf age and heat stress duration (45 min, 90 min) on leaf thermotolerance and whole plant physiological responses to heat stress in Coffea arabica (COAR) saplings. We also evaluated leaf thermotolerance and whole plant responses to heat stress of seedlings in two populations each of Pinus ponderosa (PIPO) and Pseudotsuga menziesii (PSME) from contrasting climates. Thermotolerance of detached leaves/needles was evaluated using chlorophyll fluorescence (FV/FM, FO) and electrolyte leakage. After exposure of whole plants to a simulated heat wave in a growth chamber, we monitored FV/FM, photosynthesis (A), stomatal conductance (gs), non-structural carbohydrates (NSCs), and carbon isotope ratios (δ13C). In COAR, thermotolerance and rate of recovery increased with leaf age. Following heat treatment, reductions in A and gs led to reduced intrinsic water use efficiency (iWUE) and increased leaf temperatures. NSC results suggested that starch was converted to sugars for recovery from heat stress and phloem transport was inhibited. Plants failed to flower in both heat stress duration treatments. In PIPO and PSME, heat treatment induced significant reductions in FV/FM and A. NSC results suggested that starch was converted to glucose + fructose to aid recovery from heat-induced damage. Populations from drier sites had greater δ13C values than those from wetter sites, consistent with higher iWUE of populations from drier climates. Thermotolerance and heat stress responses appeared to be

  11. Ultraviolet-induced responses in two species of climax tropical marine macrophytes.

    Science.gov (United States)

    Detrés, Y; Armstrong, R A; Connelly, X M

    2001-09-01

    In tropical regions nominal reductions in stratospheric ozone could be detrimental to marine organisms that live near their upper tolerance levels of ultraviolet (UV) radiation and temperature. Well-known plant responses to UV include inhibition of photosynthesis, reductions in chlorophyll content, morphological changes and production of UV absorbing compounds such as flavonoids. An assessment of the effects and responses of two tropical marine macrophytes to full solar radiation and solar radiation depleted of UV were conducted in southwestern Puerto Rico. Changes in concentration of photosynthetic and photoprotective pigments, and in leaf optical properties of the red mangrove Rhizophora mangle and the seagrass Thalassia testudinum, were evaluated in field exclusion experiments. Rhizophora mangle exposed to full solar radiation showed lower leaf reflectance and a shift of 5 nm in the inflection point of the red edge. Thalassia testudinum samples excluded from UV had significant increases in total chlorophyll and carotenoid concentrations. These marine macrophytes showed increments in their concentration of UV-B absorbing compounds with exposure to UV radiation. Results indicate that even minor increases in UV radiation at low latitudes could have significant effects on the pigment composition of these climax species.

  12. Limited sampling hampers "big data" estimation of species richness in a tropical biodiversity hotspot.

    Science.gov (United States)

    Engemann, Kristine; Enquist, Brian J; Sandel, Brody; Boyle, Brad; Jørgensen, Peter M; Morueta-Holme, Naia; Peet, Robert K; Violle, Cyrille; Svenning, Jens-Christian

    2015-02-01

    Macro-scale species richness studies often use museum specimens as their main source of information. However, such datasets are often strongly biased due to variation in sampling effort in space and time. These biases may strongly affect diversity estimates and may, thereby, obstruct solid inference on the underlying diversity drivers, as well as mislead conservation prioritization. In recent years, this has resulted in an increased focus on developing methods to correct for sampling bias. In this study, we use sample-size-correcting methods to examine patterns of tropical plant diversity in Ecuador, one of the most species-rich and climatically heterogeneous biodiversity hotspots. Species richness estimates were calculated based on 205,735 georeferenced specimens of 15,788 species using the Margalef diversity index, the Chao estimator, the second-order Jackknife and Bootstrapping resampling methods, and Hill numbers and rarefaction. Species richness was heavily correlated with sampling effort, and only rarefaction was able to remove this effect, and we recommend this method for estimation of species richness with "big data" collections.

  13. Vegetation and floristics of a lowland tropical rainforest in northeast Australia.

    Science.gov (United States)

    Tng, David Y P; Apgaua, Deborah M G; Campbell, Mason J; Cox, Casey J; Crayn, Darren M; Ishida, Françoise Y; Laidlaw, Melinda J; Liddell, Michael J; Seager, Michael; Laurance, Susan G W

    2016-01-01

    Full floristic data, tree demography, and biomass estimates incorporating non-tree lifeforms are seldom collected and reported for forest plots in the tropics. Established research stations serve as important repositories of such biodiversity and ecological data. With a canopy crane setup within a tropical lowland rainforest estate, the 42-ha Daintree Rainforest Observatory (DRO) in Cape Tribulation, northern Australia is a research facility of international significance. We obtained an estimate of the vascular plant species richness for the site, by surveying all vascular plant species from various mature-phase, remnant and open vegetation patches within the site. We also integrate and report the demography and basal areas of trees ≥ 10 cm diameter at breast height (dbh) in a new 1-ha core plot, an extension to the pre-existing forest 1-ha plot under the canopy crane. In addition, we report for the canopy crane plot new demography and basal areas for smaller-size shrubs and treelets subsampled from nine 20 m(2) quadrats, and liana basal area and abundance from the whole plot. The DRO site has an estimated total vascular plant species richness of 441 species, of which 172 species (39%) are endemic to Australia, and 4 species are endemics to the Daintree region. The 2 x 1-ha plots contains a total of 262 vascular plant species of which 116 (1531 individuals) are tree species ≥ 10 cm dbh. We estimate a stem basal area of 34.9 m(2) ha(-1), of which small stems (tree saplings and shrubs analysis shows that DRO forests has a comparatively high stem density and moderate species diversity, due to the influence of cyclones. These data will provide an important foundation for ecological and conservation studies in lowland tropical forest. We present a floristic checklist, a lifeform breakdown, and demography data from two 1-ha rainforest plots from a lowland tropical rainforest study site. We also present a meta-analysis of stem densities and species diversity from

  14. What makes a successful species? Traits facilitating survival in altered tropical forests.

    Science.gov (United States)

    Hirschfeld, Mareike; Rödel, Mark-Oliver

    2017-06-28

    Ongoing conversion, disturbance and fragmentation of tropical forests stress this ecosystem and cause the decline or disappearance of many species. Particular traits have been identified which indicate an increasing extinction risk of a species, but traits facilitating survival in altered habitats have mostly been neglected. Here we search for traits that make a species tolerant to disturbances, thus independent of pristine forests. We identify the fauna that have an increasing effect on the ecosystem and its functioning in our human-dominated landscapes. We use a unique set of published data on the occurrences of 243 frog species in pristine and altered forests throughout the tropics. We established a forest dependency index with four levels, based on these occurrence data and applied Random Forest classification and binomial Generalized Linear Models to test whether species life history traits, ecological traits or range size influence the likelihood of a species to persist in disturbed habitats. Our results revealed that indirect developing species exhibiting a large range size and wide elevational distribution, being independent of streams, and inhabiting the leaf litter, cope best with modifications of their natural habitats. The traits identified in our study will likely persist in altered tropical forest systems and are comparable to those generally recognized for a low species extinction risk. Hence our findings will help to predict future frog communities in our human-dominated world.

  15. Congruent biogeographical disjunctions at a continent-wide scale: Quantifying and clarifying the role of biogeographic barriers in the Australian tropics

    Science.gov (United States)

    Crisp, Michael D.; Cook, Dianne H.; Cook, Lyn G.

    2017-01-01

    Aim To test whether novel and previously hypothesized biogeogaphic barriers in the Australian Tropics represent significant disjunction points or hard barriers, or both, to the distribution of plants. Location Australian tropics: Australian Monsoon Tropics and Australian Wet Tropics. Methods The presence or absence of 6,861 plant species was scored across 13 putative biogeographic barriers in the Australian Tropics, including two that have not previously been recognised. Randomizations of these data were used to test whether more species showed disjunctions (gaps in distribution) or likely barriers (range limits) at these points than expected by chance. Results Two novel disjunctions in the Australian Tropics flora are identified in addition to eleven putative barriers previously recognized for animals. Of these, eleven disjunction points (all within the Australian Monsoon Tropics) were found to correspond to range-ending barriers to a significant number of species, while neither of the two disjunctions found within the Australian Wet Tropics limited a significant number of species’ ranges. Main conclusions Biogeographic barriers present significant distributional limits to native plant species in the Australian Monsoon Tropics but not in the Australian Wet Tropics. PMID:28376094

  16. [Native plant resources to optimize the performances of forest rehabilitation in Mediterranean and tropical environment: some examples of nursing plant species that improve the soil mycorrhizal potential].

    Science.gov (United States)

    Duponnois, Robin; Ramanankierana, Heriniaina; Hafidi, Mohamed; Baohanta, Rondro; Baudoin, Ezékiel; Thioulouse, Jean; Sanguin, Hervé; Bâ, Amadou; Galiana, Antoine; Bally, René; Lebrun, Michel; Prin, Yves

    2013-01-01

    The overexploitation of natural resources, resulting in an increased need for arable lands by local populations, causes a serious dysfunction in the soil's biological functioning (mineral deficiency, salt stress, etc.). This dysfunction, worsened by the climatic conditions (drought), requires the implementation of ecological engineering strategies allowing the rehabilitation of degraded areas through the restoration of essential ecological services. The first symptoms of weathering processes of soil quality in tropical and Mediterranean environments result in an alteration of the plant cover structure with, in particular, the pauperization of plant species diversity and abundance. This degradation is accompanied by a weakening of soils and an increase of the impact of erosion on the surface layer resulting in reduced fertility of soils in terms of their physicochemical characteristics as well as their biological ones (e.g., soil microbes). Among the microbial components particularly sensitive to erosion, symbiotic microorganisms (rhizobia, Frankia, mycorrhizal fungi) are known to be key components in the main terrestrial biogeochemical cycles (C, N and P). Many studies have shown the importance of the management of these symbiotic microorganisms in rehabilitation and revegetation strategies of degraded environments, but also in improving the productivity of agrosystems. In particular, the selection of symbionts and their inoculation into the soil were strongly encouraged in recent decades. These inoculants were selected not only for their impact on the plant, but also for their ability to persist in the soil at the expense of the residual native microflora. The performance of this technique was thus evaluated on the plant cover, but its impact on soil microbial characteristics was totally ignored. The role of microbial diversity on productivity and stability (resistance, resilience, etc.) of eco- and agrosystems has been identified relatively recently and has led

  17. Study Of Plant Regeneration Potential In Tropical Moist Deciduous Forest In Northern India

    Directory of Open Access Journals (Sweden)

    Ashish K Mishra

    2013-12-01

    Full Text Available Regeneration patterns of species population can address climate change by adaptive evolution or by migrating association to survive in their favorable climate and finally decided to particular forest future. In this paper we examined the status of regeneration potential of tree species in tropical moist deciduous forest at Katerniaghat Wildlife Sanctuary, Northern India. To investigate tree, sapling and seedling population distribution, we examine regeneration status in 145 random plots in study area. Total 74 plant species of 60 genera belonging to 32 families out of which 71 species of trees, 56 of seedlings and 60 of saplings were found in the forest. On the basis of importance value index Mallotus philippensis, Tectona grandis, Shorea robusta, Syzygium cumini and Bombax ceiba have been found as dominant species in the study area. As far as the regeneration status is concerned, the maximum tree species (64% have been found in good regeneration category. Significant variations in species richness and population density, between three life form (i. e. tree, sapling and seedling have been found. In which only three new tree species Prosopis juliflora, Psidium guajava and Morus alba were added in sapling and seedling stage. It is major ecological concern that about 19 % economically important plant species like Madhuca longifolia, Terminalia elliptica, Buchanania cochinchinensis, some Ficus species etc. have been found in poor regeneration phage, whereas about 7% species found in no regeneration categories. International Journal of Environment, Volume-2, Issue-1, Sep-Nov 2013, Pages 153-163 DOI: http://dx.doi.org/10.3126/ije.v2i1.9218

  18. Diversity and host range of foliar fungal endophytes: are tropical leaves biodiversity hotspots?

    Science.gov (United States)

    Arnold, A Elizabeth; Lutzoni, F

    2007-03-01

    Fungal endophytes are found in asymptomatic photosynthetic tissues of all major lineages of land plants. The ubiquity of these cryptic symbionts is clear, but the scale of their diversity, host range, and geographic distributions are unknown. To explore the putative hyperdiversity of tropical leaf endophytes, we compared endophyte communities along a broad latitudinal gradient from the Canadian arctic to the lowland tropical forest of central Panama. Here, we use molecular sequence data from 1403 endophyte strains to show that endophytes increase in incidence, diversity, and host breadth from arctic to tropical sites. Endophyte communities from higher latitudes are characterized by relatively few species from many different classes of Ascomycota, whereas tropical endophyte assemblages are dominated by a small number of classes with a very large number of endophytic species. The most easily cultivated endophytes from tropical plants have wide host ranges, but communities are dominated by a large number of rare species whose host range is unclear. Even when only the most easily cultured species are considered, leaves of tropical trees represent hotspots of fungal species diversity, containing numerous species not yet recovered from other biomes. The challenge remains to recover and identify those elusive and rarely cultured taxa with narrower host ranges, and to elucidate the ecological roles of these little-known symbionts in tropical forests.

  19. Soil phosphorus heterogeneity promotes tree species diversity and phylogenetic clustering in a tropical seasonal rainforest.

    Science.gov (United States)

    Xu, Wumei; Ci, Xiuqin; Song, Caiyun; He, Tianhua; Zhang, Wenfu; Li, Qiaoming; Li, Jie

    2016-12-01

    The niche theory predicts that environmental heterogeneity and species diversity are positively correlated in tropical forests, whereas the neutral theory suggests that stochastic processes are more important in determining species diversity. This study sought to investigate the effects of soil nutrient (nitrogen and phosphorus) heterogeneity on tree species diversity in the Xishuangbanna tropical seasonal rainforest in southwestern China. Thirty-nine plots of 400 m 2 (20 × 20 m) were randomly located in the Xishuangbanna tropical seasonal rainforest. Within each plot, soil nutrient (nitrogen and phosphorus) availability and heterogeneity, tree species diversity, and community phylogenetic structure were measured. Soil phosphorus heterogeneity and tree species diversity in each plot were positively correlated, while phosphorus availability and tree species diversity were not. The trees in plots with low soil phosphorus heterogeneity were phylogenetically overdispersed, while the phylogenetic structure of trees within the plots became clustered as heterogeneity increased. Neither nitrogen availability nor its heterogeneity was correlated to tree species diversity or the phylogenetic structure of trees within the plots. The interspecific competition in the forest plots with low soil phosphorus heterogeneity could lead to an overdispersed community. However, as heterogeneity increase, more closely related species may be able to coexist together and lead to a clustered community. Our results indicate that soil phosphorus heterogeneity significantly affects tree diversity in the Xishuangbanna tropical seasonal rainforest, suggesting that deterministic processes are dominant in this tropical forest assembly.

  20. Biological Invasion Influences the Outcome of Plant-Soil Feedback in the Invasive Plant Species from the Brazilian Semi-arid.

    Science.gov (United States)

    de Souza, Tancredo Augusto Feitosa; de Andrade, Leonaldo Alves; Freitas, Helena; da Silva Sandim, Aline

    2017-05-30

    Plant-soil feedback is recognized as the mutual interaction between plants and soil microorganisms, but its role on the biological invasion of the Brazilian tropical seasonal dry forest by invasive plants still remains unclear. Here, we analyzed and compared the arbuscular mycorrhizal fungi (AMF) communities and soil characteristics from the root zone of invasive and native plants, and tested how these AMF communities affect the development of four invasive plant species (Cryptostegia madagascariensis, Parkinsonia aculeata, Prosopis juliflora, and Sesbania virgata). Our field sampling revealed that AMF diversity and frequency of the Order Diversisporales were positively correlated with the root zone of the native plants, whereas AMF dominance and frequency of the Order Glomerales were positively correlated with the root zone of invasive plants. We grew the invasive plants in soil inoculated with AMF species from the root zone of invasive (I changed ) and native (I unaltered ) plant species. We also performed a third treatment with sterilized soil inoculum (control). We examined the effects of these three AMF inoculums on plant dry biomass, root colonization, plant phosphorous concentration, and plant responsiveness to mycorrhizas. We found that I unaltered and I changed promoted the growth of all invasive plants and led to a higher plant dry biomass, mycorrhizal colonization, and P uptake than control, but I changed showed better results on these variables than I unaltered . For plant responsiveness to mycorrhizas and fungal inoculum effect on plant P concentration, we found positive feedback between changed-AMF community (I changed ) and three of the studied invasive plants: C. madagascariensis, P. aculeata, and S. virgata.

  1. Spatial distribution and interspecific associations of tree species in a tropical seasonal rain forest of China.

    Directory of Open Access Journals (Sweden)

    Guoyu Lan

    Full Text Available Studying the spatial pattern and interspecific associations of plant species may provide valuable insights into processes and mechanisms that maintain species coexistence. Point pattern analysis was used to analyze the spatial distribution patterns of twenty dominant tree species, their interspecific spatial associations and changes across life stages in a 20-ha permanent plot of seasonal tropical rainforest in Xishuangbanna, China, to test mechanisms maintaining species coexistence. Torus-translation tests were used to quantify positive or negative associations of the species to topographic habitats. The results showed: (1 fourteen of the twenty tree species were negatively (or positively associated with one or two of the topographic variables, which evidences that the niche contributes to the spatial pattern of these species. (2 Most saplings of the study species showed a significantly clumped distribution at small scales (0-10 m which was lost at larger scales (10-30 m. (3 The degree of spatial clumping deceases from saplings, to poles, to adults indicates that density-dependent mortality of the offspring is ubiquitous in species. (4 It is notable that a high number of positive small-scale interactions were found among the twenty species. For saplings, 42.6% of all combinations of species pairs showed positive associations at neighborhood scales up to five meters, but only 38.4% were negative. For poles and adults, positive associations at these distances still made up 45.5% and 29.5%, respectively. In conclusion, there is considerable evidence for the presence of positive interactions among the tree species, which suggests that species herd protection may occur in our plot. In addition, niche assembly and limited dispersal (likely contribute to the spatial patterns of tree species in the tropical seasonal rain forest in Xishuangbanna, China.

  2. Seedling transplants reveal species-specific responses of high-elevation tropical treeline trees to climate change.

    Science.gov (United States)

    Rehm, Evan M; Feeley, Kenneth J

    2016-08-01

    The elevations at which tropical treelines occur are believed to represent the point where low mean temperatures limit the growth of upright woody trees. Consequently, tropical treelines are predicted to shift to higher elevations with global warming. However, treelines throughout the tropics have remained stationary despite increasing global mean temperatures. The goal of the study reported here was to build a more comprehensive understanding of the effects of mean temperature, low-temperature extremes, shading, and their interactions on seedling survival at tropical treelines. We conducted a seedling transplant study using three dominant canopy-forming treeline species in the southern tropical Andes. We found species-specific differences and contrasting responses in seedling survival to changes in mean temperature. The most abundant naturally occurring species at the seedling stage outside the treeline, Weinmannia fagaroides, showed a negative relationship between the survival of transplanted seedlings and mean temperature, the opposite of a priori expectations. Conversely, Clethra cuneata showed increased survival at higher mean temperatures, but survival also increased with higher absolute low temperatures and the presence of shade. Finally, the survival of Gynoxys nitida seedlings was insensitive to temperature but increased under shade. These findings show that multiple factors can determine the upper distributional limit of species forming the current tropical treeline. As such, predictions of future local and regional tropical treeline shifts may need to consider several factors beyond changes in mean temperature. If the treeline remains stationary and cloud forests are unable to expand into higher elevations, there may be severe species loss in this biodiversity hotspot.

  3. Dominance of legume trees alters nutrient relations in mixed species forest restoration plantings within seven years

    Science.gov (United States)

    Ilyas Siddique; Vera Lex Engel; David Lamb; Gabriela B. Nardoto; Jean P.H.B. Ometto; Luiz A. Martinelli; Susanne. Schmidt

    2008-01-01

    Failures in reforestation are often attributed to nutrient limitation for tree growth. We compared tree performance and nitrogen and phosphorus relations in adjacent mixed-species plantings of contrasting composition, established for forest restoration on Ultisol soil, originally covered by tropical semi-deciduous Atlantic Forest in Southeast Brazil. Nutrient relations...

  4. Reasons for an outstanding plant diversity in the tropical Andes of Southern Ecuador

    Directory of Open Access Journals (Sweden)

    Michael Richter

    2009-06-01

    Full Text Available Long-term field studies in the scope of a multidisciplinary project in southern Ecuador revealed extraordinary high species numbers of many organismic groups. This article discusses reasons for the outstanding vascular plant diversity using a hierarchical scale-oriented top-down approach (Grüninger 2005, from the global scale to the local microscale. The global scale explains general (paleo- ecological factors valid for most parts of the humid tropics, addressing various hypotheses and theories, such as the “greater effective evolutionary time”, constant input of “accidentals”, the “seasonal variability hypothesis”, the “intermediate disturbance hypothesis”, and the impact of soil fertility. The macroscale focuses on the Andes in northwestern South America. The tropical Andes are characterised by many taxa of restricted range which is particularly true for the Amotape-Huancabamba region, i.e. the so called Andean Depression, which is effective as discrete phytogeographic transition as well as barrier zone. Interdigitation of northern and southern flora elements, habitat fragmentation, geological and landscape history, and a high speciation rate due to rapid genetic radiation of some taxa contribute to a high degree of diversification. The mesoscale deals with the special environmental features of the eastern mountain range, the Cordillera Real and surrounding areas in southern Ecuador. Various climatic characteristics, the orographic heterogeneity, the geologic and edaphic conditions as well as human impact are the most prominent factors augmenting plant species diversity. On microscale, prevailing regimes of disturbance and environmental stresses, the orographic basement, as well as the general role on the various mountain chains are considered. Here, micro-habitats e.g. niches for epiphytes, effects of micro-relief patterns, and successions after small-sized disturbance events are screened. Direct effects of human impact are

  5. Plant DNA barcodes can accurately estimate species richness in poorly known floras.

    Science.gov (United States)

    Costion, Craig; Ford, Andrew; Cross, Hugh; Crayn, Darren; Harrington, Mark; Lowe, Andrew

    2011-01-01

    Widespread uptake of DNA barcoding technology for vascular plants has been slow due to the relatively poor resolution of species discrimination (∼70%) and low sequencing and amplification success of one of the two official barcoding loci, matK. Studies to date have mostly focused on finding a solution to these intrinsic limitations of the markers, rather than posing questions that can maximize the utility of DNA barcodes for plants with the current technology. Here we test the ability of plant DNA barcodes using the two official barcoding loci, rbcLa and matK, plus an alternative barcoding locus, trnH-psbA, to estimate the species diversity of trees in a tropical rainforest plot. Species discrimination accuracy was similar to findings from previous studies but species richness estimation accuracy proved higher, up to 89%. All combinations which included the trnH-psbA locus performed better at both species discrimination and richness estimation than matK, which showed little enhanced species discriminatory power when concatenated with rbcLa. The utility of the trnH-psbA locus is limited however, by the occurrence of intraspecific variation observed in some angiosperm families to occur as an inversion that obscures the monophyly of species. We demonstrate for the first time, using a case study, the potential of plant DNA barcodes for the rapid estimation of species richness in taxonomically poorly known areas or cryptic populations revealing a powerful new tool for rapid biodiversity assessment. The combination of the rbcLa and trnH-psbA loci performed better for this purpose than any two-locus combination that included matK. We show that although DNA barcodes fail to discriminate all species of plants, new perspectives and methods on biodiversity value and quantification may overshadow some of these shortcomings by applying barcode data in new ways.

  6. Ethnomedicinal and ecological status of plants in Garhwal Himalaya, India

    Science.gov (United States)

    2011-01-01

    Background The northern part of India harbours a great diversity of medicinal plants due to its distinct geography and ecological marginal conditions. The traditional medical systems of northern India are part of a time tested culture and honored still by people today. These traditional systems have been curing complex disease for more than 3,000 years. With rapidly growing demand for these medicinal plants, most of the plant populations have been depleted, indicating a lack of ecological knowledge among communities using the plants. Thus, an attempt was made in this study to focus on the ecological status of ethnomedicinal plants, to determine their availability in the growing sites, and to inform the communities about the sustainable exploitation of medicinal plants in the wild. Methods The ecological information regarding ethnomedicinal plants was collected in three different climatic regions (tropical, sub-tropical and temperate) for species composition in different forest layers. The ecological information was assessed using the quadrate sampling method. A total of 25 quadrats, 10 × 10 m were laid out at random in order to sample trees and shrubs, and 40 quadrats of 1 × 1 m for herbaceous plants. In each climatic region, three vegetation sites were selected for ecological information; the mean values of density, basal cover, and the importance value index from all sites of each region were used to interpret the final data. Ethnomedicinal uses were collected from informants of adjacent villages. About 10% of inhabitants (older, experienced men and women) were interviewed about their use of medicinal plants. A consensus analysis of medicinal plant use between the different populations was conducted. Results Across the different climatic regions a total of 57 species of plants were reported: 14 tree species, 10 shrub species, and 33 herb species. In the tropical and sub-tropical regions, Acacia catechu was the dominant tree while Ougeinia oojeinensis in the

  7. Ethnomedicinal and ecological status of plants in Garhwal Himalaya, India

    Directory of Open Access Journals (Sweden)

    Sheikh Mehraj A

    2011-10-01

    Full Text Available Abstract Background The northern part of India harbours a great diversity of medicinal plants due to its distinct geography and ecological marginal conditions. The traditional medical systems of northern India are part of a time tested culture and honored still by people today. These traditional systems have been curing complex disease for more than 3,000 years. With rapidly growing demand for these medicinal plants, most of the plant populations have been depleted, indicating a lack of ecological knowledge among communities using the plants. Thus, an attempt was made in this study to focus on the ecological status of ethnomedicinal plants, to determine their availability in the growing sites, and to inform the communities about the sustainable exploitation of medicinal plants in the wild. Methods The ecological information regarding ethnomedicinal plants was collected in three different climatic regions (tropical, sub-tropical and temperate for species composition in different forest layers. The ecological information was assessed using the quadrate sampling method. A total of 25 quadrats, 10 × 10 m were laid out at random in order to sample trees and shrubs, and 40 quadrats of 1 × 1 m for herbaceous plants. In each climatic region, three vegetation sites were selected for ecological information; the mean values of density, basal cover, and the importance value index from all sites of each region were used to interpret the final data. Ethnomedicinal uses were collected from informants of adjacent villages. About 10% of inhabitants (older, experienced men and women were interviewed about their use of medicinal plants. A consensus analysis of medicinal plant use between the different populations was conducted. Results Across the different climatic regions a total of 57 species of plants were reported: 14 tree species, 10 shrub species, and 33 herb species. In the tropical and sub-tropical regions, Acacia catechu was the dominant tree while

  8. The Multiple Impacts of Tropical Forest Fragmentation on Arthropod Biodiversity and on their Patterns of Interactions with Host Plants.

    Science.gov (United States)

    Benítez-Malvido, Julieta; Dáttilo, Wesley; Martínez-Falcón, Ana Paola; Durán-Barrón, César; Valenzuela, Jorge; López, Sara; Lombera, Rafael

    2016-01-01

    Tropical rain forest fragmentation affects biotic interactions in distinct ways. Little is known, however, about how fragmentation affects animal trophic guilds and their patterns of interactions with host plants. In this study, we analyzed changes in biotic interactions in forest fragments by using a multitrophic approach. For this, we classified arthropods associated with Heliconia aurantiaca herbs into broad trophic guilds (omnivores, herbivores and predators) and assessed the topological structure of intrapopulation plant-arthropod networks in fragments and continuous forests. Habitat type influenced arthropod species abundance, diversity and composition with greater abundance in fragments but greater diversity in continuous forest. According to trophic guilds, coleopteran herbivores were more abundant in continuous forest and overall omnivores in fragments. Continuous forest showed a greater diversity of interactions than fragments. Only in fragments, however, did the arthropod community associated with H aurantiaca show a nested structure, suggesting novel and/or opportunistic host-arthropod associations. Plants, omnivores and predators contributed more to nestedness than herbivores. Therefore, Heliconia-arthropod network properties do not appear to be maintained in fragments mainly caused by the decrease of herbivores. Our study contributes to the understanding of the impact of fragmentation on the structure and dynamics of multitrophic arthropod communities associated with a particular plant species of the highly biodiverse tropical forests. Nevertheless, further replication of study sites is needed to strengthen the conclusion that forest fragmentation negatively affects arthropod assemblages.

  9. Why abundant tropical tree species are phylogenetically old.

    Science.gov (United States)

    Wang, Shaopeng; Chen, Anping; Fang, Jingyun; Pacala, Stephen W

    2013-10-01

    Neutral models of species diversity predict patterns of abundance for communities in which all individuals are ecologically equivalent. These models were originally developed for Panamanian trees and successfully reproduce observed distributions of abundance. Neutral models also make macroevolutionary predictions that have rarely been evaluated or tested. Here we show that neutral models predict a humped or flat relationship between species age and population size. In contrast, ages and abundances of tree species in the Panamanian Canal watershed are found to be positively correlated, which falsifies the models. Speciation rates vary among phylogenetic lineages and are partially heritable from mother to daughter species. Variable speciation rates in an otherwise neutral model lead to a demographic advantage for species with low speciation rate. This demographic advantage results in a positive correlation between species age and abundance, as found in the Panamanian tropical forest community.

  10. Experimental defoliation affects male but not female reproductive performance of the tropical monoecious plant Croton suberosus (Euphorbiaceae).

    Science.gov (United States)

    Narbona, Eduardo; Dirzo, Rodolfo

    2010-08-01

    Monoecious plants have the capacity to allocate resources separately to male and female functions more easily than hermaphrodites. This can be advantageous against environmental stresses such as leaf herbivory. However, studies showing effects of herbivory on male and female functions and on the interaction with the plant's pollinators are limited, particularly in tropical plants. Here, the effects of experimental defoliation were examined in the monoecious shrub Croton suberosus (Euphorbiaceae), a wasp-pollinated species from a Mexican tropical dry forest. Three defoliation treatments were applied: 0 % (control), 25 % (low) or 75 % (high) of plant leaf area removed. Vegetative (production of new leaves) and reproductive (pistillate and staminate flower production, pollen viability, nectar production, fruit set, and seed set) performance variables, and the abundance and activity of floral visitors were examined. Defoliated plants overcompensated for tissue loss by producing more new leaves than control plants. Production of staminate flowers gradually decreased with increasing defoliation and the floral sex ratio (staminate : pistillate flowers) was drastically reduced in high-defoliation plants. In contrast, female reproductive performance (pistillate flower production, fruit set and seed set) and pollinator visitation and abundance were not impacted by defoliation. The asymmetrical effects of defoliation on male and female traits of C. suberosus may be due to the temporal and spatial flexibility in the allocation of resources deployed by monoecious plants. We posit that this helps to maintain the plant's pollination success in the face of leaf herbivory stress.

  11. Temperate and Tropical Plant Collections

    DEFF Research Database (Denmark)

    Friis, Ib

    2015-01-01

    The first botanical gardens and collections of preserved plants in the 16th century served didactic purposes and should ensure correct identification of medicinal, ornamental and other useful plants. Collections of preserved plants were nearly all book-herbaria, emulating illustrated books...... and owned by individual botanists. Curiosity cabinets of nobles and prominent scholars were larger collections, in which all kinds of objects of natural history from remote regions could be incorporated. The Linnaean revolution favoured loose-leaf herbaria over the old book-herbaria: herbaria with loose...... sheets could be reorganised in agreement with new knowledge or theories and newly accessed specimens could be placed next to earlier ones of the same species. However, the Linnaean collections reflected the essentialist species concept, according to which all species consisted of individuals with similar...

  12. Plant delta 15N correlates with the transpiration efficiency of nitrogen acquisition in tropical trees.

    Science.gov (United States)

    Cernusak, Lucas A; Winter, Klaus; Turner, Benjamin L

    2009-11-01

    Based upon considerations of a theoretical model of (15)N/(14)N fractionation during steady-state nitrate uptake from soil, we hypothesized that, for plants grown in a common soil environment, whole-plant delta(15)N (deltaP) should vary as a function of the transpiration efficiency of nitrogen acquisition (F(N)/v) and the difference between deltaP and root delta(15)N (deltaP - deltaR). We tested these hypotheses with measurements of several tropical tree and liana species. Consistent with theoretical expectations, both F(N)/v and deltaP - deltaR were significant sources of variation in deltaP, and the relationship between deltaP and F(N)/v differed between non-N(2)-fixing and N(2)-fixing species. We interpret the correlation between deltaP and F(N)/v as resulting from variation in mineral nitrogen efflux-to-influx ratios across plasma membranes of root cells. These results provide a simple explanation of variation in delta(15)N of terrestrial plants and have implications for understanding nitrogen cycling in ecosystems.

  13. Vegetation and floristics of a lowland tropical rainforest in northeast Australia

    Science.gov (United States)

    Apgaua, Deborah M. G.; Campbell, Mason J; Cox, Casey J; Crayn, Darren M; Ishida, Françoise Y; Laidlaw, Melinda J; Liddell, Michael J; Seager, Michael; Laurance, Susan G. W.

    2016-01-01

    Abstract Background Full floristic data, tree demography, and biomass estimates incorporating non-tree lifeforms are seldom collected and reported for forest plots in the tropics. Established research stations serve as important repositories of such biodiversity and ecological data. With a canopy crane setup within a tropical lowland rainforest estate, the 42-ha Daintree Rainforest Observatory (DRO) in Cape Tribulation, northern Australia is a research facility of international significance. We obtained an estimate of the vascular plant species richness for the site, by surveying all vascular plant species from various mature-phase, remnant and open vegetation patches within the site. We also integrate and report the demography and basal areas of trees ≥ 10 cm diameter at breast height (dbh) in a new 1-ha core plot, an extension to the pre-existing forest 1-ha plot under the canopy crane. In addition, we report for the canopy crane plot new demography and basal areas for smaller-size shrubs and treelets subsampled from nine 20 m2 quadrats, and liana basal area and abundance from the whole plot. The DRO site has an estimated total vascular plant species richness of 441 species, of which 172 species (39%) are endemic to Australia, and 4 species are endemics to the Daintree region. The 2 x 1-ha plots contains a total of 262 vascular plant species of which 116 (1531 individuals) are tree species ≥ 10 cm dbh. We estimate a stem basal area of 34.9 m2 ha-1, of which small stems (tree saplings and shrubs rainforests globally, our meta-analysis shows that DRO forests has a comparatively high stem density and moderate species diversity, due to the influence of cyclones. These data will provide an important foundation for ecological and conservation studies in lowland tropical forest. New information We present a floristic checklist, a lifeform breakdown, and demography data from two 1-ha rainforest plots from a lowland tropical rainforest study site. We also present a

  14. Bird Pollinator Visitation is Equivalent in Island and Plantation Planting Designs in Tropical Forest Restoration Sites

    Directory of Open Access Journals (Sweden)

    Ginger M. Thurston

    2013-03-01

    Full Text Available Active restoration is one strategy to reverse tropical forest loss. Given the dynamic nature of climates, human populations, and other ecosystem components, the past practice of using historical reference sites as restoration targets is unlikely to result in self-sustaining ecosystems. Restoring sustainable ecological processes like pollination is a more feasible goal. We investigated how flower cover, planting design, and landscape forest cover influenced bird pollinator visits to Inga edulis trees in young restoration sites in Costa Rica. I. edulis trees were located in island plantings, where seedlings had been planted in patches, or in plantation plantings, where seedlings were planted to cover the restoration area. Sites were located in landscapes with scant (10–21% or moderate (35–76% forest cover. Trees with greater flower cover received more visits from pollinating birds; neither planting design nor landscape forest cover influenced the number of pollinator visits. Resident hummingbirds and a migratory bird species were the most frequent bird pollinators. Pollination in the early years following planting may not be as affected by details of restoration design as other ecological processes like seed dispersal. Future work to assess the quality of various pollinator species will be important in assessing this idea.

  15. Thermal tolerance, net CO2 exchange and growth of a tropical tree species, Ficus insipida, cultivated at elevated daytime and nighttime temperatures.

    Science.gov (United States)

    Krause, G Heinrich; Cheesman, Alexander W; Winter, Klaus; Krause, Barbara; Virgo, Aurelio

    2013-06-15

    Global warming and associated increases in the frequency and amplitude of extreme weather events, such as heat waves, may adversely affect tropical rainforest plants via significantly increased tissue temperatures. In this study, the response to two temperature regimes was assessed in seedlings of the neotropical pioneer tree species, Ficus insipida. Plants were cultivated in growth chambers at strongly elevated daytime temperature (39°C), combined with either close to natural (22°C) or elevated (32°C) nighttime temperatures. Under both growth regimes, the critical temperature for irreversible leaf damage, determined by changes in chlorophyll a fluorescence, was approximately 51°C. This is comparable to values found in F. insipida growing under natural ambient conditions and indicates a limited potential for heat tolerance acclimation of this tropical forest tree species. Yet, under high nighttime temperature, growth was strongly enhanced, accompanied by increased rates of net photosynthetic CO2 uptake and diminished temperature dependence of leaf-level dark respiration, consistent with thermal acclimation of these key physiological parameters. Copyright © 2013 Elsevier GmbH. All rights reserved.

  16. STUDIES ON FUNCTIONAL BACTERIA OF INDONESIAN TROPICAL FOREST PLANTS FOR BIOREHABILITATION OF DEGRADED LANDS

    Directory of Open Access Journals (Sweden)

    Irnayuli R. Sitepu

    2008-06-01

    Full Text Available Forest  degradations  have left vast amount  of damaged  and abandoned  lands in Indonesia.   In this paper, we present our approaches  in rehabilitation of adverse soils using functional  bacteria isolated from plant species of Indonesian tropical  rain forests. For these purposes,  we collected  bacteria  from various  bio-geo-climatically different forests and conducted bioassays to test these bacterial abilities in improving plant growth. Repeated seedling-based studies on Shorea spp., Alstonia scholaris, Acacia crassicarpa, and Agathis lorantifolia have revealed that many bacteria were able to promote plant growth at early stage in the nursery.  Various  plant responses towards  inoculations suggested that although  forest soils maintain  highly diverse and potent  bacteria,  it is necessary to select appropriate approaches to obtain optimum  benefits from these plant-bacteria interactions.  Our  ideas and futures  studies  for further  management  of these plant- bacteria interactions for biorehabilitation are also discussed.

  17. Determining light stress responses for a tropical multi-species seagrass assemblage.

    Science.gov (United States)

    Statton, John; McMahon, Kathryn; Lavery, Paul; Kendrick, Gary A

    2018-03-01

    Existing mitigations to address deterioration in water clarity associated with human activities are based on responses from single seagrass species but may not be appropriate for diverse seagrass assemblages common to tropical waters. We present findings from a light experiment designed to determine the effects of magnitude and duration of low light on a mixed tropical seagrass assemblage. Mixed assemblages of three commonly co-occurring Indo-West Pacific seagrasses, Cymodocea serrulata, Halodule uninervis and Halophila ovalis were grown in climate-controlled tanks, where replicate pots were subjected to a gradient in light availability (0.9-21.6 mols PAR m -2 day -1 ) for 12 weeks. Increased shading resulted in declines in growth and changes in cellular and photosynthesis responses for all species, although time-scale and magnitude of response were species-specific. Applying management criteria (e.g. thresholds) relevant to one species may under- or over-estimate potential for impact on other species and the meadow as a whole. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. Social organization influences the exchange and species richness of medicinal plants in Amazonian homegardens.

    Science.gov (United States)

    2016-03-01

    Medicinal plants provide indigenous and peasant communities worldwide with means to meet their healthcare needs. Homegardens often act as medicine cabinets, providing easily accessible medicinal plants for household needs. Social structure and social exchanges have been proposed as factors influencing the species diversity that people maintain in their homegardens. Here, we assess the association between the exchange of medicinal knowledge and plant material and medicinal plant richness in homegardens. Using Tsimane' Amazonian homegardens as a case study, we explore whether social organization shapes exchanges of medicinal plant knowledge and medicinal plant material. We also use network centrality measures to evaluate people's location and performance in medicinal plant knowledge and plant material exchange networks. Our results suggest that social organization, specifically kinship and gender relations, influences medicinal plant exchange patterns significantly. Homegardens total and medicinal plant species richness are related to gardeners' centrality in the networks, whereby people with greater centrality maintain greater plant richness. Thus, together with agroecological conditions, social relations among gardeners and the culturally specific social structure seem to be important determinants of plant richness in homegardens. Understanding which factors pattern general species diversity in tropical homegardens, and medicinal plant diversity in particular, can help policy makers, health providers, and local communities to understand better how to promote and preserve medicinal plants in situ. Biocultural approaches that are also gender sensitive offer a culturally appropriate means to reduce the global and local loss of both biological and cultural diversity.

  19. Micro-organisms behind the pollination scenes: microbial imprint on floral nectar sugar variation in a tropical plant community.

    Science.gov (United States)

    Canto, A; Herrera, C M

    2012-11-01

    Variation in the composition of floral nectar reflects intrinsic plant characteristics as well as the action of extrinsic factors. Micro-organisms, particularly yeasts, represent one extrinsic factor that inhabit the nectar of animal-pollinated flowers worldwide. In this study a 'microbial imprint hypothesis' is formulated and tested, in which it is proposed that natural community-wide variation in nectar sugar composition will partly depend on the presence of yeasts in flowers. Occurrence and density of yeasts were studied microscopically in single-flower nectar samples of 22 animal-pollinated species from coastal xeric and sub-humid tropical habitats of the Yucatán Peninsula, Mexico. Nectar sugar concentration and composition were concurrently determined on the same samples using high-performance liquid chromatography (HPLC) methods. Microscopical examination of nectar samples revealed the presence of yeasts in nearly all plant species (21 out of 22 species) and in about half of the samples examined (51·8 % of total, all species combined). Plant species and individuals differed significantly in nectar sugar concentration and composition, and also in the incidence of nectar yeasts. After statistically controlling for differences between plant species and individuals, nectar yeasts still accounted for a significant fraction of community-wide variance in all nectar sugar parameters considered. Significant yeast × species interactions on sugar parameters revealed that plant species differed in the nectar sugar correlates of variation in yeast incidence. The results support the hypothesis that nectar yeasts impose a detectable imprint on community-wide variation in nectar sugar composition and concentration. Since nectar sugar features influence pollinator attraction and plant reproduction, future nectar studies should control for yeast presence and examine the extent to which microbial signatures on nectar characteristics ultimately have some influence on

  20. Radiocesium contamination behavior and its effect on potassium absorption in tropical or subtropical plants

    Energy Technology Data Exchange (ETDEWEB)

    Carvalho, C. [Instituto de Fisica, Universidade Federal Fluminense, Av. Litoranea s/n, Gragoata, Niteroi, Rio de Janeiro, Cep 24210-340 (Brazil); Anjos, R.M. [Instituto de Fisica, Universidade Federal Fluminense, Av. Litoranea s/n, Gragoata, Niteroi, Rio de Janeiro, Cep 24210-340 (Brazil)]. E-mail: meigikos@if.uff.br; Mosquera, B. [Instituto de Fisica, Universidade Federal Fluminense, Av. Litoranea s/n, Gragoata, Niteroi, Rio de Janeiro, Cep 24210-340 (Brazil); Macario, K. [Instituto de Fisica, Universidade Federal Fluminense, Av. Litoranea s/n, Gragoata, Niteroi, Rio de Janeiro, Cep 24210-340 (Brazil); Veiga, R. [Instituto de Fisica, Universidade Federal Fluminense, Av. Litoranea s/n, Gragoata, Niteroi, Rio de Janeiro, Cep 24210-340 (Brazil)

    2006-07-01

    The accumulation and long-term decline of radiocesium contamination in tropical plant species was studied through measurements of gamma-ray spectra from pomegranate (Punica granatum) and chili pepper (Capsicum fructescens) trees. The plants were originally grown at a {sup 137}Cs contaminated site (where a radiological accident occurred in the city of Goiania, Brazil, in 1987), and transplanted to uncontaminated soil, so that the main source of contamination of the new leaves and fruits would be the fraction of the available radiocesium in the body of the plants. Measurements of {sup 137}Cs and {sup 4}K concentrations along the roots, main trunk, twigs, leaves and fruits before and after the transplant process of both plant species indicated a direct competition between Cs and K ions, suggesting that these elements could have a common accumulation mechanism. Cesium transfer factors from soil to pomegranate, green and red chili pepper fruits were evaluated as 0.4 {+-} 0.1, 0.06 {+-} 0.01 and 0.05 {+-} 0.01, respectively. Biological half-life values due to {sup 137}Cs translocation from the tree reservoir (BHL{sub T}) were calculated as 0.30 years for pomegranate, 0.12 years and 0.07 years for red and green peppers, respectively.

  1. Radiocesium contamination behavior and its effect on potassium absorption in tropical or subtropical plants

    International Nuclear Information System (INIS)

    Carvalho, C.; Anjos, R.M.; Mosquera, B.; Macario, K.; Veiga, R.

    2006-01-01

    The accumulation and long-term decline of radiocesium contamination in tropical plant species was studied through measurements of gamma-ray spectra from pomegranate (Punica granatum) and chili pepper (Capsicum fructescens) trees. The plants were originally grown at a 137 Cs contaminated site (where a radiological accident occurred in the city of Goiania, Brazil, in 1987), and transplanted to uncontaminated soil, so that the main source of contamination of the new leaves and fruits would be the fraction of the available radiocesium in the body of the plants. Measurements of 137 Cs and 4 K concentrations along the roots, main trunk, twigs, leaves and fruits before and after the transplant process of both plant species indicated a direct competition between Cs and K ions, suggesting that these elements could have a common accumulation mechanism. Cesium transfer factors from soil to pomegranate, green and red chili pepper fruits were evaluated as 0.4 ± 0.1, 0.06 ± 0.01 and 0.05 ± 0.01, respectively. Biological half-life values due to 137 Cs translocation from the tree reservoir (BHL T ) were calculated as 0.30 years for pomegranate, 0.12 years and 0.07 years for red and green peppers, respectively

  2. Tropical Plant Collections

    DEFF Research Database (Denmark)

    Friis, Ib; Balslev, Henrik

    that involved Germany, Britain and France, until independence, which was brightened by exemplary collaboration. Muasya focussed on South Africa, which is the most developed country in sub-Saharan Africa with a well-functioning network of herbaria that covers widely different biota. Sanjappa outlined the history...... crisis. Friis gave a broad overview of the history of herbaria and botanical gardens and the changing conceptual frameworks behind their existence. Baldini talked about early Italian botanical collectors and the fate of their collections. Baas accounted for the Golden Age of Dutch botany during pre......-colonial and early colonial periods. With the presentation by Cribb on the botany of the British Empire we were fully into the colonial period, focussing on the Royal Botanic Gardens at Kew. The situation in North America was treated by Funk, who illustrated the development of collections of tropical plants...

  3. Strong spatial genetic structure in five tropical Piper species: should the Baker–Fedorov hypothesis be revived for tropical shrubs?

    Science.gov (United States)

    Lasso, E; Dalling, J W; Bermingham, E

    2011-01-01

    Fifty years ago, Baker and Fedorov proposed that the high species diversity of tropical forests could arise from the combined effects of inbreeding and genetic drift leading to population differentiation and eventually to sympatric speciation. Decades of research, however have failed to support the Baker–Fedorov hypothesis (BFH), and it has now been discarded in favor of a paradigm where most trees are self-incompatible or strongly outcrossing, and where long-distance pollen dispersal prevents population drift. Here, we propose that several hyper-diverse genera of tropical herbs and shrubs, including Piper (>1,000 species), may provide an exception. Species in this genus often have aggregated, high-density populations with self-compatible breeding systems; characteristics which the BFH would predict lead to high local genetic differentiation. We test this prediction for five Piper species on Barro Colorado Island, Panama, using Amplified Fragment Length Polymorphism (AFLP) markers. All species showed strong genetic structure at both fine- and large-spatial scales. Over short distances (200–750 m) populations showed significant genetic differentiation (Fst 0.11–0.46, P < 0.05), with values of spatial genetic structure that exceed those reported for other tropical tree species (Sp = 0.03–0.136). This genetic structure probably results from the combined effects of limited seed and pollen dispersal, clonal spread, and selfing. These processes are likely to have facilitated the diversification of populations in response to local natural selection or genetic drift and may explain the remarkable diversity of this rich genus. PMID:22393518

  4. Global analysis of threat status reveals higher extinction risk in tropical than in temperate bird sister species

    Directory of Open Access Journals (Sweden)

    Reif Jiří

    2016-06-01

    Full Text Available Given increasing pressures upon biodiversity, identification of species’ traits related to elevated extinction risk is useful for more efficient allocation of limited resources for nature conservation. Despite its need, such a global analysis was lacking in the case of birds. Therefore, we performed this exercise for avian sister species using information about their global extinction risk from IUCN Red List. We focused on 113 pairs of sister species, each containing a threatened and an unthreatened species to factor out the effects of common evolutionary history on the revealed relationship. We collected data on five traits with expected relationships to species’ extinction risk based on previous studies performed at regional or national levels: breeding habitat (recognizing forest, grassland, wetland and oceanic species, latitudinal range position (temperate and tropics species, migration strategy (migratory and resident species, diet (carnivorous, insectivorous, herbivorous and omnivorous species and body mass. We related the extinction risk using IUCN threat level categories to species’ traits using generalised linear mixed effects models expecting lower risk for forest, temperate, omnivorous and smaller-bodied species. Our expectation was confirmed only in the case of latitudinal range position, as we revealed higher threat level for tropical than for temperate species. This relationship was robust to different methods of threat level expression and cannot be explained by a simple association of high bird species richness with the tropical zone. Instead, it seems that tropical species are more threatened because of their intrinsic characteristics such as slow life histories, adaptations to stable environments and small geographic ranges. These characteristics are obviously disadvantageous in conditions of current human-induced environmental perturbations. Moreover, given the absence of habitat effects, our study indicates that such

  5. Current status of tropical fruit breeding and genetics for three tropical fruit species cultivated in Japan: pineapple, mango, and papaya

    Science.gov (United States)

    Ogata, Tatsushi; Yamanaka, Shinsuke; Shoda, Moriyuki; Urasaki, Naoya; Yamamoto, Toshiya

    2016-01-01

    Tropical fruit crops are predominantly produced in tropical and subtropical developing countries, but some are now grown in southern Japan. Pineapple (Ananas comosus), mango (Mangifera indica) and papaya (Carica papaya) are major tropical fruits cultivated in Japan. Modern, well-organized breeding systems have not yet been developed for most tropical fruit species. Most parts of Japan are in the temperate climate zone, but some southern areas such as the Ryukyu Islands, which stretch from Kyushu to Taiwan, are at the northern limits for tropical fruit production without artificial heating. In this review, we describe the current status of tropical fruit breeding, genetics, genomics, and biotechnology of three main tropical fruits (pineapple, mango, and papaya) that are cultivated and consumed in Japan. More than ten new elite cultivars of pineapple have been released with improved fruit quality and suitability for consumption as fresh fruit. New challenges and perspectives for obtaining high fruit quality are discussed in the context of breeding programs for pineapple. PMID:27069392

  6. Germination, survival and growth of three vascular plants on biological soil crusts from a Mexican tropical desert.

    Science.gov (United States)

    Godínez-Alvarez, H; Morín, C; Rivera-Aguilar, V

    2012-01-01

    Information about the effects of biological soil crusts (BSC) on germination, seedling survival and growth of vascular plants is controversial because they can have positive, neutral or negative effects. This controversy may be because most studies conducted until now have just analysed one or two recruitment stages independently. To understand the BSC effects on vascular plants, it is necessary to consider each stage of the recruitment process and synthesise all this information. The goal of this study was twofold. First, we analyse germination, seedling survival and growth of three vascular plants (Agave marmorata, Prosopis laevigata and Neobuxbaumia tetetzo) on BSC (cyanobacteria and mixed crust) from a tropical desert region of south-central México. Second, we synthesise the information to determine the total effect of BSC on plant species performance. We conducted experiments under controlled conditions to evaluate the proportion of germinated seeds, proportion of surviving seedlings and seedling dry weight in BSC and bare soil. Results showed that BSC have different effects on germination, seedling survival and growth of plant species. Plant species performance was qualitatively higher on BSC than bare soil. The highest performance of A. marmorata and P. laevigata was observed on cyanobacteria and mixed crusts, respectively. The highest performance of N. tetetzo was on both crust types. © 2011 German Botanical Society and The Royal Botanical Society of the Netherlands.

  7. Rapid upslope shifts in New Guinean birds illustrate strong distributional responses of tropical montane species to global warming

    Science.gov (United States)

    Freeman, Benjamin G.; Class Freeman, Alexandra M.

    2014-01-01

    Temperate-zone species have responded to warming temperatures by shifting their distributions poleward and upslope. Thermal tolerance data suggests that tropical species may respond to warming temperatures even more strongly than temperate-zone species, but this prediction has yet to be tested. We addressed this data gap by conducting resurveys to measure distributional responses to temperature increases in the elevational limits of the avifaunas of two geographically and faunally independent New Guinean mountains, Mt. Karimui and Karkar Island, 47 and 44 y after they were originally surveyed. Although species richness is roughly five times greater on mainland Mt. Karimui than oceanic Karkar Island, distributional shifts at both sites were similar: upslope shifts averaged 113 m (Mt. Karimui) and 152 m (Karkar Island) for upper limits and 95 m (Mt. Karimui) and 123 m (Karkar Island) for lower limits. We incorporated these results into a metaanalysis to compare distributional responses of tropical species with those of temperate-zone species, finding that average upslope shifts in tropical montane species match local temperature increases significantly more closely than in temperate-zone montane species. That tropical species appear to be strong responders has global conservation implications and provides empirical support to hitherto untested models that predict widespread extinctions in upper-elevation tropical endemics with small ranges. PMID:24550460

  8. tropiTree: An NGS-Based EST-SSR Resource for 24 Tropical Tree Species

    Science.gov (United States)

    Russell, Joanne R.; Hedley, Peter E.; Cardle, Linda; Dancey, Siobhan; Morris, Jenny; Booth, Allan; Odee, David; Mwaura, Lucy; Omondi, William; Angaine, Peter; Machua, Joseph; Muchugi, Alice; Milne, Iain; Kindt, Roeland; Jamnadass, Ramni; Dawson, Ian K.

    2014-01-01

    The development of genetic tools for non-model organisms has been hampered by cost, but advances in next-generation sequencing (NGS) have created new opportunities. In ecological research, this raises the prospect for developing molecular markers to simultaneously study important genetic processes such as gene flow in multiple non-model plant species within complex natural and anthropogenic landscapes. Here, we report the use of bar-coded multiplexed paired-end Illumina NGS for the de novo development of expressed sequence tag-derived simple sequence repeat (EST-SSR) markers at low cost for a range of 24 tree species. Each chosen tree species is important in complex tropical agroforestry systems where little is currently known about many genetic processes. An average of more than 5,000 EST-SSRs was identified for each of the 24 sequenced species, whereas prior to analysis 20 of the species had fewer than 100 nucleotide sequence citations. To make results available to potential users in a suitable format, we have developed an open-access, interactive online database, tropiTree (http://bioinf.hutton.ac.uk/tropiTree), which has a range of visualisation and search facilities, and which is a model for the efficient presentation and application of NGS data. PMID:25025376

  9. The Multiple Impacts of Tropical Forest Fragmentation on Arthropod Biodiversity and on their Patterns of Interactions with Host Plants

    Science.gov (United States)

    Benítez-Malvido, Julieta; Dáttilo, Wesley; Martínez-Falcón, Ana Paola; Durán-Barrón, César; Valenzuela, Jorge; López, Sara; Lombera, Rafael

    2016-01-01

    Tropical rain forest fragmentation affects biotic interactions in distinct ways. Little is known, however, about how fragmentation affects animal trophic guilds and their patterns of interactions with host plants. In this study, we analyzed changes in biotic interactions in forest fragments by using a multitrophic approach. For this, we classified arthropods associated with Heliconia aurantiaca herbs into broad trophic guilds (omnivores, herbivores and predators) and assessed the topological structure of intrapopulation plant-arthropod networks in fragments and continuous forests. Habitat type influenced arthropod species abundance, diversity and composition with greater abundance in fragments but greater diversity in continuous forest. According to trophic guilds, coleopteran herbivores were more abundant in continuous forest and overall omnivores in fragments. Continuous forest showed a greater diversity of interactions than fragments. Only in fragments, however, did the arthropod community associated with H aurantiaca show a nested structure, suggesting novel and/or opportunistic host-arthropod associations. Plants, omnivores and predators contributed more to nestedness than herbivores. Therefore, Heliconia-arthropod network properties do not appear to be maintained in fragments mainly caused by the decrease of herbivores. Our study contributes to the understanding of the impact of fragmentation on the structure and dynamics of multitrophic arthropod communities associated with a particular plant species of the highly biodiverse tropical forests. Nevertheless, further replication of study sites is needed to strengthen the conclusion that forest fragmentation negatively affects arthropod assemblages. PMID:26731271

  10. Priming effects on seed germination in Tecoma stans (Bignoniaceae) and Cordia megalantha (Boraginaceae), two tropical deciduous tree species

    Science.gov (United States)

    Alvarado-López, Sandra; Soriano, Diana; Velázquez, Noé; Orozco-Segovia, Alma; Gamboa-deBuen, Alicia

    2014-11-01

    Successful revegetation necessarily requires the establishment of a vegetation cover and one of the challenges for this is the scarce knowledge about germination and seedling establishment of wild tree species. Priming treatments (seed hydration during a specific time followed by seed dehydration) could be an alternative germination pre-treatment to improve plant establishment. Natural priming (via seed burial) promotes rapid and synchronous germination as well as the mobilisation of storage reserves; consequently, it increases seedling vigour. These metabolic and physiological responses are similar to those occurring as a result of the laboratory seed priming treatments (osmopriming and matrix priming) applied successfully to agricultural species. In order to know if natural priming had a positive effect on germination of tropical species we tested the effects of natural priming on imbibition kinetics, germination parameters (mean germination time, lag time and germination rate and percentage) and reserve mobilisation in the seeds of two tree species from a tropical deciduous forest in south-eastern México: Tecoma stans (L Juss. Ex Kunth) and Cordia megalantha (S.F Blake). The wood of both trees are useful for furniture and T. stans is a pioneer tree that promotes soil retention in disturbed areas. We also compared the effect of natural priming with that of laboratory matrix priming (both in soil). Matrix priming improved germination of both studied species. Natural priming promoted the mobilisation of proteins and increased the amount of free amino acids and of lipid degradation in T. stans but not in C. megalantha. Our results suggest that the application of priming via the burial of seeds is an easy and inexpensive technique that can improve seed germination and seedling establishment of tropical trees with potential use in reforestation and restoration practices.

  11. Loss in species caused by tropical deforestation and their recovery through management

    Science.gov (United States)

    Ariel E. Lugo; John A. Parrotta; Sandra Brown

    1993-01-01

    The loss of species as a result of deforestation and degradation of tropical forest lands is widely discussed. Models based on island biogeography theory are used to evaluate the relationship between extinctions of species and deforestation. The analysis shows that natural resiliency causes the models to overestimate the rates of species extinctions for given...

  12. Chronic human disturbance affects plant trait distribution in a seasonally dry tropical forest

    Science.gov (United States)

    Sfair, Julia C.; de Bello, Francesco; de França, Thaysa Q.; Baldauf, Cristina; Tabarelli, Marcelo

    2018-02-01

    The effects of human disturbance on biodiversity can be mediated by environmental conditions, such as water availability, climate and nutrients. In general, disturbed, dry or nutrient-depleted soils areas tend to have lower taxonomic diversity. However, little is known about how these environmental conditions affect functional composition and intraspecific variability in tropical dry forests. We studied a seasonally dry tropical forest (SDTF) under chronic anthropogenic disturbance (CAD) along rainfall and soil nutrient gradients to understand how these factors influence the taxonomic and functional composition. Specifically we evaluated two aspects of CAD, wood extraction and livestock pressure (goat and cattle grazing), along soil fertility and rainfall gradients on shrub and tree traits, considering species turnover and intraspecific variability. In addition, we also tested how the traits of eight populations of the most frequent species are affected by wood extraction, livestock pressure, rainfall and soil fertility. In general, although CAD and environmental gradients affected each trait of the most widespread species differently, the most abundant species also had a greater variation of traits. Considering species turnover, wood extraction is associated with species with a smaller leaf area and lower investment in leaf mass, probably due to the indirect effects of this disturbance type on the vegetation, i.e. the removal of branches and woody debris clears the vegetation, favouring species that minimize water loss. Livestock pressure, on the other hand, affected intraspecific variation: the herbivory caused by goats and cattle promoted individuals which invest more in wood density and leaf mass. In this case, the change of functional composition observed is a direct effect of the disturbance, such as the decrease of palatable plant abundance by goat and cattle herbivory. In synthesis, CAD, rainfall and soil fertility can affect trait distribution at community

  13. Isoprene emission from tropical tree species

    International Nuclear Information System (INIS)

    Padhy, P.K.; Varshney, C.K.

    2005-01-01

    Foliar emission of isoprene was measured in nine commonly growing tree species of Delhi, India. Dynamic flow enclosure technique was used and gas samples were collected onto Tenax-GC/Carboseive cartridges, which were then attached to the sample injection system in the gas chromatograph (GC). Eluting compounds were analysed using a flame ionisation detector (FID). Out of the nine tree species, isoprene emission was found in six species (Eucalyptus sp., Ficus benghalensis, Ficus religiosa, Mangifera indica, Melia azedarach, and Syzygium jambolanum), whereas, in the remaining three tree species (Alstonia scholaris, Azadirachta indica, and Cassia fistula) no isoprene emission was detected or the levels of emission were negligible or below the detection limit (BDL). Among six tree species, the highest hourly emission (10.2±6.8 μg g -1 leaf dry weight, average of five seasons) was observed in Ficus religiosa, while minimum emission was from Melia azedarach (2.2±4.9 μg g -1 leaf dry weight, average of five seasons). Isoprene emission (average of six species), over five seasons, was found to vary between 3.9 and 8.5 μg g -1 leaf dry weight during the rainy season. In addition, significant diurnal variation in isoprene emission was observed in each species. The preliminary estimate made in this study on the annual biogenic VOC emission from India may probably be the first of its kind from this part of the world. - Isoprene flux (diurnal and seasonal) from some tropical tree species was estimated and a regional comparison was made

  14. Isoprene emission from tropical tree species

    Energy Technology Data Exchange (ETDEWEB)

    Padhy, P.K. [School of Environmental Sciences, Jawaharlal Nehru University, New Delhi 110 067 (India)]. E-mail: padhypk2003@yahoo.com; Varshney, C.K. [School of Environmental Sciences, Jawaharlal Nehru University, New Delhi 110 067 (India)

    2005-05-01

    Foliar emission of isoprene was measured in nine commonly growing tree species of Delhi, India. Dynamic flow enclosure technique was used and gas samples were collected onto Tenax-GC/Carboseive cartridges, which were then attached to the sample injection system in the gas chromatograph (GC). Eluting compounds were analysed using a flame ionisation detector (FID). Out of the nine tree species, isoprene emission was found in six species (Eucalyptus sp., Ficus benghalensis, Ficus religiosa, Mangifera indica, Melia azedarach, and Syzygium jambolanum), whereas, in the remaining three tree species (Alstonia scholaris, Azadirachta indica, and Cassia fistula) no isoprene emission was detected or the levels of emission were negligible or below the detection limit (BDL). Among six tree species, the highest hourly emission (10.2{+-}6.8 {mu}g g{sup -1} leaf dry weight, average of five seasons) was observed in Ficus religiosa, while minimum emission was from Melia azedarach (2.2{+-}4.9 {mu}g g{sup -1} leaf dry weight, average of five seasons). Isoprene emission (average of six species), over five seasons, was found to vary between 3.9 and 8.5 {mu}g g{sup -1} leaf dry weight during the rainy season. In addition, significant diurnal variation in isoprene emission was observed in each species. The preliminary estimate made in this study on the annual biogenic VOC emission from India may probably be the first of its kind from this part of the world. - Isoprene flux (diurnal and seasonal) from some tropical tree species was estimated and a regional comparison was made.

  15. Plant DNA barcodes can accurately estimate species richness in poorly known floras.

    Directory of Open Access Journals (Sweden)

    Craig Costion

    Full Text Available BACKGROUND: Widespread uptake of DNA barcoding technology for vascular plants has been slow due to the relatively poor resolution of species discrimination (∼70% and low sequencing and amplification success of one of the two official barcoding loci, matK. Studies to date have mostly focused on finding a solution to these intrinsic limitations of the markers, rather than posing questions that can maximize the utility of DNA barcodes for plants with the current technology. METHODOLOGY/PRINCIPAL FINDINGS: Here we test the ability of plant DNA barcodes using the two official barcoding loci, rbcLa and matK, plus an alternative barcoding locus, trnH-psbA, to estimate the species diversity of trees in a tropical rainforest plot. Species discrimination accuracy was similar to findings from previous studies but species richness estimation accuracy proved higher, up to 89%. All combinations which included the trnH-psbA locus performed better at both species discrimination and richness estimation than matK, which showed little enhanced species discriminatory power when concatenated with rbcLa. The utility of the trnH-psbA locus is limited however, by the occurrence of intraspecific variation observed in some angiosperm families to occur as an inversion that obscures the monophyly of species. CONCLUSIONS/SIGNIFICANCE: We demonstrate for the first time, using a case study, the potential of plant DNA barcodes for the rapid estimation of species richness in taxonomically poorly known areas or cryptic populations revealing a powerful new tool for rapid biodiversity assessment. The combination of the rbcLa and trnH-psbA loci performed better for this purpose than any two-locus combination that included matK. We show that although DNA barcodes fail to discriminate all species of plants, new perspectives and methods on biodiversity value and quantification may overshadow some of these shortcomings by applying barcode data in new ways.

  16. Tropical Forest Fragmentation Limits Movements, but Not Occurrence of a Generalist Pollinator Species.

    Directory of Open Access Journals (Sweden)

    Noelia L Volpe

    Full Text Available Habitat loss and fragmentation influence species distributions and therefore ecological processes that depend upon them. Pollination may be particularly susceptible to fragmentation, as it depends on frequent pollinator movement. Unfortunately, most pollinators are too small to track efficiently which has precluded testing the hypothesis that habitat fragmentation reduces or eliminates pollen flow by disrupting pollinator movement. We used radio-telemetry to examine space use of the green hermit hummingbird (Phaethornis guy, an important 'hub' pollinator of understory flowering plants across substantial portions of the neotropics and the primary pollinator of a keystone plant which shows reduced pollination success in fragmented landscapes. We found that green hermits strongly avoided crossing large stretches of non-forested matrix and preferred to move along stream corridors. Forest gaps as small as 50 m diminished the odds of movement by 50%. Green hermits occurred almost exclusively inside the forest, with the odds of occurrence being 8 times higher at points with >95% canopy cover compared with points having <5% canopy cover. Nevertheless, surprisingly. the species occurred in fragmented landscapes with low amounts of forest (~30% within a 2 km radius. Our results indicate that although green hermits are present even in landscapes with low amounts of tropical forest, movement within these landscapes ends up strongly constrained by forest gaps. Restricted movement of pollinators may be an underappreciated mechanism for widespread declines in pollination and plant fitness in fragmented landscapes, even when in the presence of appropriate pollinators.

  17. Infection of non-host model plant species with the narrow-host-range Cacao swollen shoot virus.

    Science.gov (United States)

    Friscina, Arianna; Chiappetta, Laura; Jacquemond, Mireille; Tepfer, Mark

    2017-02-01

    Cacao swollen shoot virus (CSSV) is a major pathogen of cacao (Theobroma cacao) in Africa, and long-standing efforts to limit its spread by the culling of infected trees have had very limited success. CSSV is a particularly difficult virus to study, as it has a very narrow host range, limited to several tropical tree species. Furthermore, the virus is not mechanically transmissible, and its insect vector can only be used with difficulty. Thus, the only efficient means to infect cacao plants that have been experimentally described so far are by particle bombardment or the agroinoculation of cacao plants with an infectious clone. We have genetically transformed three non-host species with an infectious form of the CSSV genome: two experimental hosts widely used in plant virology (Nicotiana tabacum and N. benthamiana) and the model species Arabidopsis thaliana. In transformed plants of all three species, the CSSV genome was able to replicate, and, in tobacco, CSSV particles could be observed by immunosorbent electron microscopy, demonstrating that the complete virus cycle could be completed in a non-host plant. These results will greatly facilitate the preliminary testing of CSSV control strategies using plants that are easy to raise and to transform genetically. © 2016 BSPP AND JOHN WILEY & SONS LTD.

  18. Tolerance of Four Tropical Tree Species to Heavy Petroleum Contamination

    NARCIS (Netherlands)

    Perez-Hernandez, I.; Ochoa-Gaona, S.; Schroeder, R.H.A.; Rivera-Cruz, M.C.; Geissen, V.

    2013-01-01

    Four species of trees were selected to evaluate the tolerance to heavy crude oil contamination by means of a tolerance index integrating germination, height, biomass and survival as variables. Fresh seeds to Cedrela odorata (tropical cedar), Haematoxylum campechianum (tinto bush), Swietenia

  19. Effects of Nonnative Ungulate Removal on Plant Communities and Soil Biogeochemistry in Tropical Forests

    Science.gov (United States)

    Cole, R. J.; Litton, C. M.; Giardina, C. P.; Sparks, J. P.

    2014-12-01

    Non-native ungulates have substantial impacts on native ecosystems globally, altering both plant communities and soil biogeochemistry. Across tropical and temperate ecosystems, land managers fence and remove non-native ungulates to conserve native biodiversity, a costly management action, yet long-term outcomes are not well quantified. Specifically, knowledge gaps include: (i) the magnitude and time frame of plant community recovery; (ii) the response of non-native invasive plants; and (iii) changes to soil biogeochemistry. In 2010, we established a series of paired ungulate presence vs. removal plots that span a 20 yr. chronosequence in tropical montane wet forests on the Island of Hawaii to quantify the impacts and temporal legacy of feral pig removal on plant communities and soil biogeochemistry. We also compared soil biogeochemistry in targeted areas of low and high feral pig impact. Our work shows that both native and non-native vegetation respond positively to release from top-down control following removal of feral pigs, but species of high conservation concern recover only if initially present at the time of non-native ungulate removal. Feral pig impacts on soil biogeochemistry appear to last for at least 20 years following ungulate removal. We observed that both soil physical and chemical properties changed with feral pig removal. Soil bulk density and volumetric water content decreased while extractable base cations and inorganic N increased in low vs. high feral pig impact areas. We hypothesize that altered soil biogeochemistry facilitates continued invasions by non-native plants, even decades after non-native ungulate removal. Future work will concentrate on comparisons between wet and dry forest ecosystems and test whether manipulation of soil nutrients can be used to favor native vs. non-native plant establishment.

  20. Key role of symbiotic dinitrogen fixation in tropical forest secondary succession

    DEFF Research Database (Denmark)

    Batterman, Sarah A.; Hedin, Lars O.; Van Breugel, Michiel

    2013-01-01

    Forests contribute a significant portion of the land carbon sink, but their ability to sequester CO 2 may be constrained by nitrogen, a major plant-limiting nutrient. Many tropical forests possess tree species capable of fixing atmospheric dinitrogen (N 2), but it is unclear whether this function...... tree species across the entire forest age sequence. These findings show that symbiotic N 2 fixation can have a central role in nitrogen cycling during tropical forest stand development, with potentially important implications for the ability of tropical forests to sequester CO 2....

  1. Integrated dataset of anatomical, morphological, and architectural traits for plant species in Madagascar

    Directory of Open Access Journals (Sweden)

    Amira Azizan

    2017-12-01

    Full Text Available In this work, we present a dataset, which provides information on the structural diversity of some endemic tropical species in Madagascar. The data were from CIRAD xylotheque (since 1937, and were also collected during various fieldworks (since 1964. The field notes and photographs were provided by French botanists; particularly by Francis Hallé. The dataset covers 250 plant species with anatomical, morphological, and architectural traits indexed from digitized wood slides and fieldwork documents. The digitized wood slides were constituted by the transverse, tangential, and radial sections with three optical magnifications. The main specific anatomical traits can be found within the digitized area. Information on morphological and architectural traits were indexed from digitized field drawings including notes and photographs. The data are hosted in the website ArchiWood (http://archiwood.cirad.fr. Keywords: Morpho-architectural traits, Plant architecture, Wood anatomy, Madagascar

  2. Tree species diversity and distribution patterns in tropical forests of Garo Hills.

    Science.gov (United States)

    A. Kumar; B.G. Marcot; A. Saxena

    2006-01-01

    We analyzed phytosociological characteristics and diversity patterns of tree species of tropical forests of Garo Hills, western Meghalaya, northeast India. The main vegetation of the region included primary forests, secondary forests, and sal (Shorea robusta) plantations, with 162, 132, and 87 tree species, respectively. The Shannon-Wiener...

  3. Rethinking plant functional types in Earth System Models: pan-tropical analysis of tree survival across environmental gradients

    Science.gov (United States)

    Johnson, D. J.; Needham, J.; Xu, C.; Davies, S. J.; Bunyavejchewin, S.; Giardina, C. P.; Condit, R.; Cordell, S.; Litton, C. M.; Hubbell, S.; Kassim, A. R. B.; Shawn, L. K. Y.; Nasardin, M. B.; Ong, P.; Ostertag, R.; Sack, L.; Tan, S. K. S.; Yap, S.; McDowell, N. G.; McMahon, S.

    2016-12-01

    Terrestrial carbon cycling is a function of the growth and survival of trees. Current model representations of tree growth and survival at a global scale rely on coarse plant functional traits that are parameterized very generally. In view of the large biodiversity in the tropical forests, it is important that we account for the functional diversity in order to better predict tropical forest responses to future climate changes. Several next generation Earth System Models are moving towards a size-structured, trait-based approach to modelling vegetation globally, but the challenge of which and how many traits are necessary to capture forest complexity remains. Additionally, the challenge of collecting sufficient trait data to describe the vast species richness of tropical forests is enormous. We propose a more fundamental approach to these problems by characterizing forests by their patterns of survival. We expect our approach to distill real-world tree survival into a reasonable number of functional types. Using 10 large-area tropical forest plots that span geographic, edaphic and climatic gradients, we model tree survival as a function of tree size for hundreds of species. We found surprisingly few categories of size-survival functions emerge. This indicates some fundamental strategies at play across diverse forests to constrain the range of possible size-survival functions. Initial cluster analysis indicates that four to eight functional forms are necessary to describe variation in size-survival relations. Temporal variation in size-survival functions can be related to local environmental variation, allowing us to parameterize how demographically similar groups of species respond to perturbations in the ecosystem. We believe this methodology will yield a synthetic approach to classifying forest systems that will greatly reduce uncertainty and complexity in global vegetation models.

  4. Oligarchic forests of economic plants in amazonia: utilization and conservation of an important tropical resource.

    Science.gov (United States)

    Peters, C M; Balick, M J; Kahn, F; Anderson, A B

    1989-12-01

    Tropical forests dominated by only one or two tree species occupy tens of millions of hectares in Ammonia In many cases, the dominant species produce fruits, seeds, or oils of economic importance. Oligarchic (Gr. oligo = few, archic = dominated or ruled by) forests of six economic species, i. e., Euterpe oleracea, Grias peruviana, Jessenia bataua, Mauritia flexuosa, Myrciaria dubia, and Orbignya phalerata, were studied in Brazil and Peru Natural populations of these species contain from 100 to 3,000 conspecific adult trees/ha and produce up to 11.1 metric tons of fruit/hd/yr. These plant populations are utilized and occasionally managed, by rural inhabitants in the region. Periodic fruit harvests, if properly controlled have only a minimal impact on forest structure and function, yet can generate substantial economic returns Market-oriented extraction of the fruits produced by oligarchic forests appears to represent a promising alternative for reconciling the development and conservation of Amazonian forests.

  5. Thermal pollution and settlement of new tropical alien species: The case of Grateloupia yinggehaiensis (Rhodophyta) in the Venice Lagoon

    Science.gov (United States)

    Wolf, M. A.; Sfriso, A.; Moro, I.

    2014-06-01

    The Venice Lagoon has become increasingly affected by the introduction of allochthonous macroalgae mainly coming from the Indo-Pacific area. In consequence to the recent climate changes and temperature increase, such species could simply find numerous habitats suitable for their growth. One local process that contributes to water temperature changes is thermal pollution. In this study we used the DNA barcoding method to identify a new alien macroalgal species, Grateloupia yinggehaiensis Wang et Luan (Rhodophyta), found near the industrial area of Porto Marghera (Venice, Italy) hosting the Fusina thermoelectric power plant. The microclimate of this area has enabled the spread of this species native of the tropical area of the Hainan Province (China) and probably introduced in the Mediterranean Sea via shellfish transfers.

  6. Evolutionary responses of native plant species to invasive plants : a review

    OpenAIRE

    Oduor, Ayub M. O.

    2013-01-01

    Strong competition from invasive plant species often leads to declines in abundances and may,in certain cases, cause localized extinctions of native plant species. Nevertheless, studies have shown that certain populations of native plant species can co-exist with invasive plant species, suggesting the possibility of adaptive evolutionary responses of those populations to the invasive plants. Empirical inference of evolutionary responses of the native plant species to invasive plants has invol...

  7. Species biogeography predicts drought responses in a seasonally dry tropical forest

    Science.gov (United States)

    Schwartz, N.; Powers, J. S.; Vargas, G.; Xu, X.; Smith, C. M.; Brodribb, T.; Werden, L. K.; Becknell, J.; Medvigy, D.

    2017-12-01

    The timing, distribution, and amount of rainfall in the seasonal tropics have shifted in recent years, with consequences for seasonally dry tropical forests (SDTF). SDTF are sensitive to changing rainfall regimes and drought conditions, but sensitivity to drought varies substantially across species. One potential explanation of species differences is that species that experience dry conditions more frequently throughout their range will be better able to cope with drought than species from wetter climates, because species from drier climates will be better adapted to drought. An El-Niño induced drought in 2015 presented an opportunity to assess species-level differences in mortality in SDTF, and to ask whether the ranges of rainfall conditions species experience and the average rainfall regimes in species' ranges predict differences in mortality rates in Costa Rican SDTF. We used field plot data from northwest Costa Rica to determine species' level mortality rates. Mortality rates ranged substantially across species, with some species having no dead individuals to as high as 50% mortality. To quantify rainfall conditions across species' ranges, we used species occurrence data from the Global Biodiversity Information Facility, and rainfall data from the Chelsa climate dataset. We found that while the average and range of mean annual rainfall across species ranges did not predict drought-induced mortality in the field plots, across-range averages of the seasonality index, a measure of rainfall seasonality, was strongly correlated with species-level drought mortality (r = -0.62, p < 0.05), with species from more strongly seasonal climates experiencing less severe drought mortality. Furthermore, we found that the seasonality index was a stronger predictor of mortality than any individual functional trait we considered. This result shows that species' biogeography may be an important factor for how species will respond to future drought, and may be a more integrative

  8. Flowering phenology, growth forms, and pollination syndromes in tropical dry forest species: Influence of phylogeny and abiotic factors.

    Science.gov (United States)

    Cortés-Flores, Jorge; Hernández-Esquivel, Karen Beatriz; González-Rodríguez, Antonio; Ibarra-Manríquez, Guillermo

    2017-01-01

    Analyses of the influence of temporal variation in abiotic factors on flowering phenology of tropical dry forest species have not considered the possible response of species with different growth forms and pollination syndromes, while controlling for phylogenetic relationships among species. Here, we investigated the relationship between flowering phenology, abiotic factors, and plant functional attributes, while controlling for phylogenetic relationship among species, in a dry forest community in Mexico. We characterized flowering phenology (time and duration) and pollination syndromes of 55 tree species, 49 herbs, 24 shrubs, 15 lianas, and 11 vines. We tested the influence of pollination syndrome, growth form, and abiotic factors on flowering phenology using phylogenetic generalized least squares. We found a relationship between flowering duration and time. Growth form was related to flowering time, and the pollination syndrome had a more significant relationship with flowering duration. Flowering time variation in the community was explained mainly by abiotic variables, without an important phylogenetic effect. Flowering time in lianas and trees was negatively and positively correlated with daylength, respectively. Functional attributes, environmental cues, and phylogeny interact with each other to shape the diversity of flowering patterns. Phenological differentiation among species groups revealed multiples strategies associated with growth form and pollination syndromes that can be important for understanding species coexistence in this highly diverse plant community. © 2017 Botanical Society of America.

  9. Evolutionary responses of native plant species to invasive plants: a review.

    Science.gov (United States)

    Oduor, Ayub M O

    2013-12-01

    Strong competition from invasive plant species often leads to declines in abundances and may, in certain cases, cause localized extinctions of native plant species. Nevertheless, studies have shown that certain populations of native plant species can co-exist with invasive plant species,suggesting the possibility of adaptive evolutionary responses of those populations to the invasive plants. Empirical inference of evolutionary responses of the native plant species to invasive plants has involved experiments comparing two conspecific groups of native plants for differences in expression of growth/reproductive traits: populations that have experienced competition from the invasive plant species (i.e. experienced natives) versus populations with no known history of interactions with the invasive plant species (i.e. naıve natives). Here, I employ a meta-analysis to obtain a general pattern of inferred evolutionary responses of native plant species from 53 such studies. In general, the experienced natives had significantly higher growth/reproductive performances than naıve natives, when grown with or without competition from invasive plants.While the current results indicate that certain populations of native plant species could potentially adapt evolutionarily to invasive plant species, the ecological and evolutionary mechanisms that probably underlie such evolutionary responses remain unexplored and should be the focus of future studies.

  10. Light-dependent leaf trait variation in 43 tropical dry forest tree species

    NARCIS (Netherlands)

    Markesteijn, L.; Poorter, L.; Bongers, F.J.J.M.

    2007-01-01

    Our understanding of leaf acclimation in relation to irradiance of fully grown or juvenile trees is mainly based on research involving tropical wet forest species. We studied sun¿shade plasticity of 24 leaf traits of 43 tree species in a Bolivian dry deciduous forest. Sampling was confined to small

  11. Water Use Patterns of Four Tropical Bamboo Species Assessed with Sap Flux Measurements.

    Science.gov (United States)

    Mei, Tingting; Fang, Dongming; Röll, Alexander; Niu, Furong; Hendrayanto; Hölscher, Dirk

    2015-01-01

    Bamboos are grasses (Poaceae) that are widespread in tropical and subtropical regions. We aimed at exploring water use patterns of four tropical bamboo species (Bambusa vulgaris, Dendrocalamus asper, Gigantochloa atroviolacea, and G. apus) with sap flux measurement techniques. Our approach included three experimental steps: (1) a pot experiment with a comparison of thermal dissipation probes (TDPs), the stem heat balance (SHB) method and gravimetric readings using potted B. vulgaris culms, (2) an in situ calibration of TDPs with the SHB method for the four bamboo species, and (3) field monitoring of sap flux of the four bamboo species along with three tropical tree species (Gmelina arborea, Shorea leprosula, and Hevea brasiliensis) during a dry and a wet period. In the pot experiment, it was confirmed that the SHB method is well suited for bamboos but that TDPs need to be calibrated. In situ, species-specific parameters for such calibration formulas were derived. During field monitoring we found that some bamboo species reached high maximum sap flux densities. Across bamboo species, maximal sap flux density increased with decreasing culm diameter. In the diurnal course, sap flux densities in bamboos peaked much earlier than radiation and vapor pressure deficit (VPD), and also much earlier than sap flux densities in trees. There was a pronounced hysteresis between sap flux density and VPD in bamboos, which was less pronounced in trees. Three of the four bamboo species showed reduced sap flux densities at high VPD values during the dry period, which was associated with a decrease in soil moisture content. Possible roles of internal water storage, root pressure and stomatal sensitivity are discussed.

  12. Biological effects of plant residues with constrasting chemical compositions on plant and soil under humid tropical conditions

    NARCIS (Netherlands)

    Tian, G.

    1992-01-01

    A study on plant residues with contrasting chemical compositions was conducted under laboratory, growth chamber and humid tropical field conditions to understand the function of the soil fauna in the breakdown of plant residues, the cycling of nutrients, in particular nitrogen, and the

  13. Does the edge effect influence plant community structure in a tropical dry forest?

    Directory of Open Access Journals (Sweden)

    Diogo Gallo Oliveira

    2013-04-01

    Full Text Available Edge effects are considered a key factor in regulating the structure of plant communities in different ecosystems. However, regardless to few studies, edge influence does not seem to be decisive in semiarid regions such as the Brazilian tropical dry forest known as Caatinga but this issue remains inconclusive. The present study tests the null hypothesis that the plant community of shrubs and trees does not change in its structure due to edge effects. Twenty-four plots (20 x 20 m were set up in a fragment of Caatinga, in which 12 plots were in the forest edges and 12 plots were inside the fragment. Tree richness, abundance and species composition did not differ between edge and interior plots. The results of this study are in agreement with the pattern previously found for semiarid environments and contrasts with previous results obtained in different environments such as Rainforests, Savanna and Forest of Araucaria, which indicate abrupt differences between the border and interior of the plant communities in these ecosystems, and suggest that the community of woody plants of the Caatinga is not ecologically affected by the presence of edges.

  14. Using species sensitivity distribution approach to assess the risks of commonly detected agricultural pesticides to Australia's tropical freshwater ecosystems.

    Science.gov (United States)

    Pathiratne, Asoka; Kroon, Frederieke J

    2016-02-01

    To assess the potential impacts of agricultural pesticides on tropical freshwater ecosystems, the present study developed temperature-specific, freshwater species protection concentrations (i.e., ecotoxicity threshold values) for 8 pesticides commonly detected in Australia's tropical freshwaters. Because relevant toxicity data for native tropical freshwater species to assess the ecological risks were mostly absent, scientifically robust toxicity data obtained at ≥20 °C were used for ecologically relevant taxonomic groups representing primary producers and consumers. Species sensitivity distribution (SSD) curves were subsequently generated for predicted chronic exposure using Burrlioz 2.0 software with mixed chronic and converted acute data relevant to exposure conditions at ≥20 °C. Ecotoxicity threshold values for tropical freshwater ecosystem protection were generated for ametryn, atrazine, diuron, metolachlor, and imidacloprid (all moderate reliability), as well as simazine, hexazinone, and tebuthiuron (all low reliability). Using these SSD curves, the retrospective risk assessments for recently reported pesticide concentrations highlight that the herbicides ametryn, atrazine, and diuron are of major concern for ecological health in Australia's tropical freshwater ecosystems. The insecticide imidacloprid also appears to pose an emerging threat to the most sensitive species in tropical freshwater ecosystems. The exposed temperature-specific approach may be applied to develop water quality guideline values for other environmental contaminants detected in tropical freshwater ecosystems until reliable and relevant toxicity data are generated using representative native species. © 2015 SETAC.

  15. Bioquality Hotspots in the Tropical African Flora.

    Science.gov (United States)

    Marshall, Cicely A M; Wieringa, Jan J; Hawthorne, William D

    2016-12-05

    Identifying areas of high biodiversity is an established way to prioritize areas for conservation [1-3], but global approaches have been criticized for failing to render global biodiversity value at a scale suitable for local management [4-6]. We assembled 3.1 million species distribution records for 40,401 vascular plant species of tropical Africa from sources including plot data, herbarium databases, checklists, and the Global Biodiversity Information Facility (GBIF) and cleaned the records for geographic accuracy and taxonomic consistency. We summarized the global ranges of tropical African plant species into four weighted categories of global rarity called Stars. We applied the Star weights to summaries of species distribution data at fine resolutions to map the bioquality (range-restricted global endemism) of areas [7]. We generated confidence intervals around bioquality scores to account for the remaining uncertainty in the species inventory. We confirm the broad significance of the Horn of Africa, Guinean forests, coastal forests of East Africa, and Afromontane regions for plant biodiversity but also reveal the variation in bioquality within these broad regions and others, particularly at local scales. Our framework offers practitioners a quantitative, scalable, and replicable approach for measuring the irreplaceability of particular local areas for global biodiversity conservation and comparing those areas within their global and regional context. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Plant litter dynamics in the forest-stream interface: precipitation is a major control across tropical biomes

    OpenAIRE

    Tonin, Alan M.; Gon?alves, Jos? F.; Bambi, Paulino; Couceiro, Sheyla R. M.; Feitoza, Lorrane A. M.; Fontana, Lucas E.; Hamada, Neusa; Hepp, Luiz U.; Lezan-Kowalczuk, V?nia G.; Leite, Gustavo F. M.; Lemes-Silva, Aurea L.; Lisboa, Leonardo K.; Loureiro, Rafael C.; Martins, Renato T.; Medeiros, Adriana O.

    2017-01-01

    Riparian plant litter is a major energy source for forested streams across the world and its decomposition has repercussions on nutrient cycling, food webs and ecosystem functioning. However, we know little about plant litter dynamics in tropical streams, even?though the tropics occupy 40% of the Earth?s land surface. Here we investigated spatial and temporal (along a year cycle) patterns of litter inputs and storage in multiple streams of three tropical biomes in Brazil (Atlantic forest, Ama...

  17. Exotic plant species attack revegetation plants in post-coal mining areas

    Science.gov (United States)

    Yusuf, Muhammad; Arisoesilaningsih, Endang

    2017-11-01

    This study aimed to explore some invasive exotic plant species that have the potential to disrupt the growth of revegetation plants in post-coal mining areas. This research was conducted in a revegetation area of PT, Amanah Anugerah Adi Mulia (A3M) Kintap site, South Borneo. Direct observation was carried out on some revegetation areas by observing the growth of revegetation plants disturbed by exotic plant species and the spread of exotic plant species. Based on observation, several invasive exotic plant species were identified including Mikania cordata, Centrosema pubescence, Calopogonium mucunoides, Mimosa pudica, Ageratum conyzoides, and Chromolaena odorata. These five plant species grew wild in the revegetation area and showed ability to disrupt the growth of other plants. In some tree species, such as Acacia mangium, Paraserianthes falcataria, M. cordata could inhibit the growth and even kill the trees through covering the tree canopy. So, the trees could not receive optimum sun light for photosynthesis processes. M. cordata was also observed to have the most widespread distribution. Several exotic plant species such as C. mucunoides, M. pudica, and A. conyzoides were observed to have deep root systems compared with plant species used for revegetation. This growth characteristic allowed exotic plant species to win the competition for nutrient absorption with other plant species.

  18. The nature of plant species.

    Science.gov (United States)

    Rieseberg, Loren H; Wood, Troy E; Baack, Eric J

    2006-03-23

    Many botanists doubt the existence of plant species, viewing them as arbitrary constructs of the human mind, as opposed to discrete, objective entities that represent reproductively independent lineages or 'units of evolution'. However, the discreteness of plant species and their correspondence with reproductive communities have not been tested quantitatively, allowing zoologists to argue that botanists have been overly influenced by a few 'botanical horror stories', such as dandelions, blackberries and oaks. Here we analyse phenetic and/or crossing relationships in over 400 genera of plants and animals. We show that although discrete phenotypic clusters exist in most genera (> 80%), the correspondence of taxonomic species to these clusters is poor (< 60%) and no different between plants and animals. Lack of congruence is caused by polyploidy, asexual reproduction and over-differentiation by taxonomists, but not by contemporary hybridization. Nonetheless, crossability data indicate that 70% of taxonomic species and 75% of phenotypic clusters in plants correspond to reproductively independent lineages (as measured by postmating isolation), and thus represent biologically real entities. Contrary to conventional wisdom, plant species are more likely than animal species to represent reproductively independent lineages.

  19. Comparison of tropical and temperate freshwater animal species' acute sensitivities to chemicals: implications for deriving safe extrapolation factors

    NARCIS (Netherlands)

    Kwok, K.W.H.; Leung, K.M.Y.; Lui, G.S.G.; Chu, V.K.H.; Lam, P.K.S.; Morritt, D.; Maltby, L.; Brock, T.C.M.; Brink, van den P.J.; Warne, M.S.J.; Crane, M.

    2007-01-01

    Toxicity data for tropical species are often lacking for ecological risk assessment. Consequently, tropical and subtropical countries use water quality criteria (WQC) derived from temperate species (e.g., United States, Canada, or Europe) to assess ecological risks in their aquatic systems, leaving

  20. PLYWOOD MANUFACTURE FROM FIVE SPECIES OF TROPICAL PINE

    Directory of Open Access Journals (Sweden)

    Setsuo Iwakiri

    2010-08-01

    Full Text Available This research was developed aiming at evaluating the feasibility of the use of 5 species of tropical pine to plywood manufacture. The following species were studied: Pinus caribaea, Pinus chiapensis, Pinus maximinoi, Pinus oocarpa, Pinus tecunumannii and Pinus taeda, being the last used as the referential species. Plywood were manufactured with 5 plies, bonded with urea-formaldheyde and fenol-formaldheyde resin. The results of thickness sweeling and recovering were the same for all species studied, with exception to thickness sweeling for the boards glued with fenol-formaldheyde resin. The boards made from Pinus maximinoi and Pinus oocarpa, showed the higher values in modulus of elasticity. The boards  of Pinus maximinoi, Pinus oocarpa and Pinus taeda, glued with fenol-formaldheyde resin, resulted in higher values of the modulus of rupture, in comparison to other species. For the glue line strength, the boards of Pinus maximinoi, Pinus taeda and Pinus chiapensis, showed the better results. Based on the general results of this research it, could be said that the Pinus maximinoi and Pinus oocarpa present the high potentiality to plywood manufacture.

  1. Photosynthetic capacity of tropical montane tree species in relation to leaf nutrients, successional strategy and growth temperature.

    Science.gov (United States)

    Dusenge, Mirindi Eric; Wallin, Göran; Gårdesten, Johanna; Niyonzima, Felix; Adolfsson, Lisa; Nsabimana, Donat; Uddling, Johan

    2015-04-01

    Photosynthetic capacity of tree leaves is typically positively related to nutrient content and little affected by changes in growth temperature. These relationships are, however, often poorly supported for tropical trees, for which interspecific differences may be more strongly controlled by within-leaf nutrient allocation than by absolute leaf nutrient content, and little is known regarding photosynthetic acclimation to temperature. To explore the influence of leaf nutrient status, successional strategy and growth temperature on the photosynthetic capacity of tropical trees, we collected data on photosynthetic, chemical and morphological leaf traits of ten tree species in Rwanda. Seven species were studied in a forest plantation at mid-altitude (~1,700 m), whereas six species were studied in a cooler montane rainforest at higher altitude (~2,500 m). Three species were common to both sites, and, in the montane rainforest, three pioneer species and three climax species were investigated. Across species, interspecific variation in photosynthetic capacity was not related to leaf nutrient content. Instead, this variation was related to differences in within-leaf nitrogen allocation, with a tradeoff between investments into compounds related to photosynthetic capacity (higher in pioneer species) versus light-harvesting compounds (higher in climax species). Photosynthetic capacity was significantly lower at the warmer site at 1,700 m altitude. We conclude that (1) within-leaf nutrient allocation is more important than leaf nutrient content per se in controlling interspecific variation in photosynthetic capacity among tree species in tropical Rwanda, and that (2) tropical montane rainforest species exhibit decreased photosynthetic capacity when grown in a warmer environment.

  2. Mutualism, hybrid inviability and speciation in a tropical ant-plant.

    Science.gov (United States)

    Léotard, G; Saltmarsh, A; Kjellberg, F; McKey, D

    2008-07-01

    Although biotic interactions are particularly intricate in the tropics, few studies have examined whether divergent adaptations to biotic interactions lead to speciation in tropical organisms. Ant-plant mutualisms are widespread in the tropics. Within Leonardoxa africana, two subspecies present contrasting defences against herbivores. Young leaves of subsp. africana are defended by mutualistic ants, whereas subsp. gracilicaulis satiates herbivores by synchronized leaf production. Subsp. africana possesses hollow internodes and many large foliar nectaries, housing and feeding ants. We detected no genetic introgression between the two subspecies in the contact zone between them. F1 hybrids were present. They were intermediate in phenotype, expressing reduced, nonfunctional but costly myrmecophilic traits. However, they suffered more herbivory than their parents. Hybrids remained small, failing to reach reproductive size, probably due to their maladapted defence phenotype. Hence, there could be a direct link between adaptation to mutualism and reproductive isolation: biotic interactions could be a driver of tropical diversity.

  3. Tropical anurans mature early and die young: Evidence from eight Afromontane Hyperolius species and a meta-analysis.

    Directory of Open Access Journals (Sweden)

    Ulrich Sinsch

    Full Text Available Age- and size-related life-history traits of anuran amphibians are thought to vary systematically with latitude and altitude. Because the available data base is strongly biased towards temperate-zone species, we provide new estimates on eight afrotropical Reed Frog species. A meta-analysis of the demographic traits in 44 tropical anuran species aims to test for the predicted clinal variation and to contrast results with variation detected in temperate-zone species. The small-sized reed frogs reach sexual maturity during the first or second year of life, but longevity does not exceed three to four years. Latitudinal effects on demographic life-history traits are not detectable in tropical anurans, and altitudinal effects are limited to a slight size reduction at higher elevations. Common features of anuran life-history in the tropics are early sexual maturation at small size and low longevity resulting in low lifetime fecundity. This pattern contrasts with that found in temperate-zone anurans which mature later at larger size and grow considerably older yielding greater lifetime fecundity than in the tropics. Latitudinal and altitudinal contraction of the yearly activity period shape the evolution of life-history traits in the temperate region, while trait variation in the tropics seems to be driven by distinct, not yet identified selective forces.

  4. Growth strategies of tropical tree species: disentangling light and size effects.

    Directory of Open Access Journals (Sweden)

    Nadja Rüger

    Full Text Available An understanding of the drivers of tree growth at the species level is required to predict likely changes of carbon stocks and biodiversity when environmental conditions change. Especially in species-rich tropical forests, it is largely unknown how species differ in their response of growth to resource availability and individual size. We use a hierarchical bayesian approach to quantify the impact of light availability and tree diameter on growth of 274 woody species in a 50-ha long-term forest census plot in Barro Colorado Island, Panama. Light reaching each individual tree was estimated from yearly vertical censuses of canopy density. The hierarchical bayesian approach allowed accounting for different sources of error, such as negative growth observations, and including rare species correctly weighted by their abundance. All species grew faster at higher light. Exponents of a power function relating growth to light were mostly between 0 and 1. This indicates that nearly all species exhibit a decelerating increase of growth with light. In contrast, estimated growth rates at standardized conditions (5 cm dbh, 5% light varied over a 9-fold range and reflect strong growth-strategy differentiation between the species. As a consequence, growth rankings of the species at low (2% and high light (20% were highly correlated. Rare species tended to grow faster and showed a greater sensitivity to light than abundant species. Overall, tree size was less important for growth than light and about half the species were predicted to grow faster in diameter when bigger or smaller, respectively. Together light availability and tree diameter only explained on average 12% of the variation in growth rates. Thus, other factors such as soil characteristics, herbivory, or pathogens may contribute considerably to shaping tree growth in the tropics.

  5. Plant Traits Demonstrate That Temperate and Tropical Giant Eucalypt Forests Are Ecologically Convergent with Rainforest Not Savanna

    Science.gov (United States)

    Tng, David Y. P.; Jordan, Greg J.; Bowman, David M. J. S.

    2013-01-01

    Ecological theory differentiates rainforest and open vegetation in many regions as functionally divergent alternative stable states with transitional (ecotonal) vegetation between the two forming transient unstable states. This transitional vegetation is of considerable significance, not only as a test case for theories of vegetation dynamics, but also because this type of vegetation is of major economic importance, and is home to a suite of species of conservation significance, including the world’s tallest flowering plants. We therefore created predictions of patterns in plant functional traits that would test the alternative stable states model of these systems. We measured functional traits of 128 trees and shrubs across tropical and temperate rainforest – open vegetation transitions in Australia, with giant eucalypt forests situated between these vegetation types. We analysed a set of functional traits: leaf carbon isotopes, leaf area, leaf mass per area, leaf slenderness, wood density, maximum height and bark thickness, using univariate and multivariate methods. For most traits, giant eucalypt forest was similar to rainforest, while rainforest, particularly tropical rainforest, was significantly different from the open vegetation. In multivariate analyses, tropical and temperate rainforest diverged functionally, and both segregated from open vegetation. Furthermore, the giant eucalypt forests overlapped in function with their respective rainforests. The two types of giant eucalypt forests also exhibited greater overall functional similarity to each other than to any of the open vegetation types. We conclude that tropical and temperate giant eucalypt forests are ecologically and functionally convergent. The lack of clear functional differentiation from rainforest suggests that giant eucalypt forests are unstable states within the basin of attraction of rainforest. Our results have important implications for giant eucalypt forest management. PMID:24358359

  6. Climate change effects on the geographic distribution of specialist tree species of the Brazilian tropical dry forests.

    Science.gov (United States)

    Rodrigues, P M S; Silva, J O; Eisenlohr, P V; Schaefer, C E G R

    2015-08-01

    The aim of this study was to evaluate the ecological niche models (ENMs) for three specialist trees (Anadenanthera colubrina, Aspidosperma pyrifolium and Myracrodruon urundeuva) in seasonally dry tropical forests (SDTFs) in Brazil, considering present and future pessimist scenarios (2080) of climate change. These three species exhibit typical deciduousness and are widely distributed by SDTF in South America, being important in studies of the historical and evolutionary processes experienced by this ecosystem. The modeling of the potential geographic distribution of species was done by the method of maximum entropy (Maxent).We verified a general expansion of suitable areas for occurrence of the three species in future (c.a., 18%), although there was reduction of areas with high environmental suitability in Caatinga region. Precipitation of wettest quarter and temperature seasonality were the predictor variables that most contributed to our models. Climatic changes can provide more severe and longer dry season with increasing temperature and tree mortality in tropics. On this scenario, areas currently occupied by rainforest and savannas could become more suitable for occurrence of the SDTF specialist trees, whereas regions occupied by Caatinga could not support the future level of unsustainable (e.g., aridity). Long-term multidisciplinary studies are necessary to make reliable predictions of the plant's adaptation strategies and responses to climate changes in dry forest at community level. Based on the high deforestation rate, endemism and threat, public policies to minimize the effects of climate change on the biodiversity found within SDTFs must be undertaken rapidly.

  7. Plant Species Rather Than Climate Greatly Alters the Temporal Pattern of Litter Chemical Composition During Long-Term Decomposition

    Science.gov (United States)

    Li, Yongfu; Chen, Na; Harmon, Mark E.; Li, Yuan; Cao, Xiaoyan; Chappell, Mark A.; Mao, Jingdong

    2015-10-01

    A feedback between decomposition and litter chemical composition occurs with decomposition altering composition that in turn influences the decomposition rate. Elucidating the temporal pattern of chemical composition is vital to understand this feedback, but the effects of plant species and climate on chemical changes remain poorly understood, especially over multiple years. In a 10-year decomposition experiment with litter of four species (Acer saccharum, Drypetes glauca, Pinus resinosa, and Thuja plicata) from four sites that range from the arctic to tropics, we determined the abundance of 11 litter chemical constituents that were grouped into waxes, carbohydrates, lignin/tannins, and proteins/peptides using advanced 13C solid-state NMR techniques. Decomposition generally led to an enrichment of waxes and a depletion of carbohydrates, whereas the changes of other chemical constituents were inconsistent. Inconsistent convergence in chemical compositions during decomposition was observed among different litter species across a range of site conditions, whereas one litter species converged under different climate conditions. Our data clearly demonstrate that plant species rather than climate greatly alters the temporal pattern of litter chemical composition, suggesting the decomposition-chemistry feedback varies among different plant species.

  8. Drought resistance in early and late secondary successional species from a tropical dry forest: the interplay between xylem resistance to embolism, sapwood water storage and leaf shedding

    Science.gov (United States)

    Fernando Pineda-Garcia; Horacio Paz; Frederick C. Meinzer

    2013-01-01

    The mechanisms of drought resistance that allow plants to successfully establish at different stages of secondary succession in tropical dry forests are not well understood. We characterized mechanisms of drought resistance in early and late-successional species and tested whether risk of drought differs across sites at different successional stages, and whether early...

  9. Description of three new species of Labena Cresson from Mexico (Hymenoptera, Ichneumonidae, Labeninae), with notes on tropical species richness.

    Science.gov (United States)

    González-Moreno, Alejandra; Bordera, Santiago; Sääksjärvi, Ilari Eerikki

    2015-04-22

    Three new species of Labena Cresson (Ichneumonidae, Labeninae); L. littoralis sp. nov., L. tekalina sp. nov. and L. madoricola sp. nov. are described and illustrated. Material was collected with Malaise traps in 2008 and 2009 in the Biosphere Reserve Ria Lagartos (Mexico). Diagnostic characters to distinguish them from all other New World species of the genus are provided. In addition, the tropical species richness of the genus is shortly discussed.

  10. Accumulation and long term behavior of radiocesium in tropical plants

    Energy Technology Data Exchange (ETDEWEB)

    Anjos, R.M.; Carvalho, C.; Mosquera, B.; Macario, K.; Veiga, R.; Sanches, N.; Bastos, J.; Saavedra, R.; Iguatemy, M. [Universidade Federal Fluminense, Niteroi (Brazil)

    2006-07-01

    Full text of publication follows: In recent years, there has been a growing interest in the evaluation of nutrient fluxes and radioactive contaminants in forest and agricultural ecosystems. Several studies on forest ecosystems have been carried out, mostly in Europe, after the Chernobyl accident. Japanese forest sites and native plant species of the Marshall Islands have also been extensively investigated. These studies have been used for various purposes, including the development of models for predicting plant concentrations from soil concentration measurements or the long term of dietary contamination by radiocesium following a fallout nuclear. Cesium is an alkali metal just like potassium and its behavior in nature, as well as in the human body, is similar to that of potassium. Uptake of 137 Cs from contaminated soil represents a significant pathway of human radiation exposure, either due to the direct consumption of cereals, fruits and vegetables or, indirectly, following consumption of milk and meat from animals fed on contaminated vegetable matter. The decline of 137 Cs levels as function of time of fruit trees is of interest given its long life in the field. Therefore, the cesium behavior is important in the design of management strategies to mitigate any negative health effects of radioactivity on the environment. It is also important to apply the current knowledge of the transport and distribution of salts derived from forest ecosystems in agricultural ecosystems, especially for tropical fruit trees. So far, in the South hemisphere there have been only a few studies on this subject, without conclusive results. With this aim, the Laboratory of Radioecology (L.A.R.A.) of the Universidade Federal Fluminense has been performing analyzes of 137 Cs and 40 K concentrations in several tropical plants (guava, mango, avocado, pomegranate, papaya, manioc and chili pepper trees) in order to determine the accumulation of these radionuclides throughout these trees and

  11. Accumulation and long term behavior of radiocesium in tropical plants

    International Nuclear Information System (INIS)

    Anjos, R.M.; Carvalho, C.; Mosquera, B.; Macario, K.; Veiga, R.; Sanches, N.; Bastos, J.; Saavedra, R.; Iguatemy, M.

    2006-01-01

    Full text of publication follows: In recent years, there has been a growing interest in the evaluation of nutrient fluxes and radioactive contaminants in forest and agricultural ecosystems. Several studies on forest ecosystems have been carried out, mostly in Europe, after the Chernobyl accident. Japanese forest sites and native plant species of the Marshall Islands have also been extensively investigated. These studies have been used for various purposes, including the development of models for predicting plant concentrations from soil concentration measurements or the long term of dietary contamination by radiocesium following a fallout nuclear. Cesium is an alkali metal just like potassium and its behavior in nature, as well as in the human body, is similar to that of potassium. Uptake of 137 Cs from contaminated soil represents a significant pathway of human radiation exposure, either due to the direct consumption of cereals, fruits and vegetables or, indirectly, following consumption of milk and meat from animals fed on contaminated vegetable matter. The decline of 137 Cs levels as function of time of fruit trees is of interest given its long life in the field. Therefore, the cesium behavior is important in the design of management strategies to mitigate any negative health effects of radioactivity on the environment. It is also important to apply the current knowledge of the transport and distribution of salts derived from forest ecosystems in agricultural ecosystems, especially for tropical fruit trees. So far, in the South hemisphere there have been only a few studies on this subject, without conclusive results. With this aim, the Laboratory of Radioecology (L.A.R.A.) of the 'Universidade Federal Fluminense' has been performing analyzes of 137 Cs and 40 K concentrations in several tropical plants (guava, mango, avocado, pomegranate, papaya, manioc and chili pepper trees) in order to determine the accumulation of these radionuclides throughout these trees

  12. Slow recovery of tropical old-field rainforest regrowth and the value and limitations of active restoration.

    Science.gov (United States)

    Shoo, Luke P; Freebody, Kylie; Kanowski, John; Catterall, Carla P

    2016-02-01

    There is current debate about the potential for secondary regrowth to rescue tropical forests from an otherwise inevitable cascade of biodiversity loss due to land clearing and scant evidence to test how well active restoration may accelerate recovery. We used site chronosequences to compare developmental trajectories of vegetation between self-organized (i.e., spontaneous) forest regrowth and biodiversity plantings (established for ecological restoration, with many locally native tree species at high density) in the Australian wet tropics uplands. Across 28 regrowth sites aged 1-59 years, some structural attributes reached reference rainforest levels within 40 years, whereas wood volume and most tested components of native plant species richness (classified by species' origins, family, and ecological functions) reached less than 50% of reference rainforest values. Development of native tree and shrub richness was particularly slow among species that were wind dispersed or animal dispersed with large (>10 mm) seeds. Many species with animal-dispersed seeds were from near-basal evolutionary lineages that contribute to recognized World Heritage values of the study region. Faster recovery was recorded in 25 biodiversity plantings of 1-25 years in which wood volume developed more rapidly; native woody plant species richness reached values similar to reference rainforest and was better represented across all dispersal modes; and species from near-basal plant families were better (although incompletely) represented. Plantings and regrowth showed slow recovery in species richness of vines and epiphytes and in overall resemblance to forest in species composition. Our results can inform decision making about when and where to invest in active restoration and provide strong evidence that protecting old-growth forest is crucially important for sustaining tropical biodiversity. © 2015 Society for Conservation Biology.

  13. High midday temperature stress has stronger effects on biomass than on photosynthesis: A mesocosm experiment on four tropical seagrass species.

    Science.gov (United States)

    George, Rushingisha; Gullström, Martin; Mangora, Mwita M; Mtolera, Matern S P; Björk, Mats

    2018-05-01

    The effect of repeated midday temperature stress on the photosynthetic performance and biomass production of seagrass was studied in a mesocosm setup with four common tropical species, including Thalassia hemprichii , Cymodocea serrulata , Enhalus acoroides , and Thalassodendron ciliatum . To mimic natural conditions during low tides, the plants were exposed to temperature spikes of different maximal temperatures, that is, ambient (29-33°C), 34, 36, 40, and 45°C, during three midday hours for seven consecutive days. At temperatures of up to 36°C, all species could maintain full photosynthetic rates (measured as the electron transport rate, ETR) throughout the experiment without displaying any obvious photosynthetic stress responses (measured as declining maximal quantum yield, Fv/Fm). All species except T. ciliatum could also withstand 40°C, and only at 45°C did all species display significantly lower photosynthetic rates and declining Fv/Fm. Biomass estimation, however, revealed a different pattern, where significant losses of both above- and belowground seagrass biomass occurred in all species at both 40 and 45°C (except for C. serrulata in the 40°C treatment). Biomass losses were clearly higher in the shoots than in the belowground root-rhizome complex. The findings indicate that, although tropical seagrasses presently can cope with high midday temperature stress, a few degrees increase in maximum daily temperature could cause significant losses in seagrass biomass and productivity.

  14. Diameter distribution in a Brazilian tropical dry forest domain: predictions for the stand and species.

    Science.gov (United States)

    Lima, Robson B DE; Bufalino, Lina; Alves, Francisco T; Silva, José A A DA; Ferreira, Rinaldo L C

    2017-01-01

    Currently, there is a lack of studies on the correct utilization of continuous distributions for dry tropical forests. Therefore, this work aims to investigate the diameter structure of a brazilian tropical dry forest and to select suitable continuous distributions by means of statistic tools for the stand and the main species. Two subsets were randomly selected from 40 plots. Diameter at base height was obtained. The following functions were tested: log-normal; gamma; Weibull 2P and Burr. The best fits were selected by Akaike's information validation criterion. Overall, the diameter distribution of the dry tropical forest was better described by negative exponential curves and positive skewness. The forest studied showed diameter distributions with decreasing probability for larger trees. This behavior was observed for both the main species and the stand. The generalization of the function fitted for the main species show that the development of individual models is needed. The Burr function showed good flexibility to describe the diameter structure of the stand and the behavior of Mimosa ophthalmocentra and Bauhinia cheilantha species. For Poincianella bracteosa, Aspidosperma pyrifolium and Myracrodum urundeuva better fitting was obtained with the log-normal function.

  15. Plant invasions in protected areas of tropical pacific islands, with special reference to Hawaii

    Science.gov (United States)

    Hughes, R. Flint; Meyer, Jean-Yves; Loope, Lloyd L.

    2013-01-01

    Isolated tropical islands are notoriously vulnerable to plant invasions. Serious management for protection of native biodiversity in Hawaii began in the 1970s, arguably at Hawaii Volcanoes National Park. Concerted alien plant management began there in the 1980s and has in a sense become a model for protected areas throughout Hawaii and Pacific Island countries and territories. We review the relative successes of their strategies and touch upon how their experience has been applied elsewhere. Protected areas in Hawaii are fortunate in having relatively good resources for addressing plant invasions, but many invasions remain intractable, and invasions from outside the boundaries continue from a highly globalised society with a penchant for horticultural novelty. There are likely few efforts in most Pacific Islands to combat alien plant invasions in protected areas, but such areas may often have fewer plant invasions as a result of their relative remoteness and/or socio-economic development status. The greatest current needs for protected areas in this region may be for establishment of yet more protected areas, for better resources to combat invasions in Pacific Island countries and territories, for more effective control methods including biological control programme to contain intractable species, and for meaningful efforts to address prevention and early detection of potential new invaders.

  16. Arthropod diversity in a tropical forest.

    Science.gov (United States)

    Basset, Yves; Cizek, Lukas; Cuénoud, Philippe; Didham, Raphael K; Guilhaumon, François; Missa, Olivier; Novotny, Vojtech; Ødegaard, Frode; Roslin, Tomas; Schmidl, Jürgen; Tishechkin, Alexey K; Winchester, Neville N; Roubik, David W; Aberlenc, Henri-Pierre; Bail, Johannes; Barrios, Héctor; Bridle, Jon R; Castaño-Meneses, Gabriela; Corbara, Bruno; Curletti, Gianfranco; Duarte da Rocha, Wesley; De Bakker, Domir; Delabie, Jacques H C; Dejean, Alain; Fagan, Laura L; Floren, Andreas; Kitching, Roger L; Medianero, Enrique; Miller, Scott E; Gama de Oliveira, Evandro; Orivel, Jérôme; Pollet, Marc; Rapp, Mathieu; Ribeiro, Sérvio P; Roisin, Yves; Schmidt, Jesper B; Sørensen, Line; Leponce, Maurice

    2012-12-14

    Most eukaryotic organisms are arthropods. Yet, their diversity in rich terrestrial ecosystems is still unknown. Here we produce tangible estimates of the total species richness of arthropods in a tropical rainforest. Using a comprehensive range of structured protocols, we sampled the phylogenetic breadth of arthropod taxa from the soil to the forest canopy in the San Lorenzo forest, Panama. We collected 6144 arthropod species from 0.48 hectare and extrapolated total species richness to larger areas on the basis of competing models. The whole 6000-hectare forest reserve most likely sustains 25,000 arthropod species. Notably, just 1 hectare of rainforest yields >60% of the arthropod biodiversity held in the wider landscape. Models based on plant diversity fitted the accumulated species richness of both herbivore and nonherbivore taxa exceptionally well. This lends credence to global estimates of arthropod biodiversity developed from plant models.

  17. Landscape composition influences abundance patterns and habitat use of three ungulate species in fragmented secondary deciduous tropical forests, Mexico

    Directory of Open Access Journals (Sweden)

    G. García-Marmolejo

    2015-01-01

    Full Text Available Secondary forests are extensive in the tropics. Currently, these plant communities are the available habitats for wildlife and in the future they will possibly be some of the most wide-spread ecosystems world-wide. To understand the potential role of secondary forests for wildlife conservation, three ungulate species were studied: Mazama temama, Odocoileus virginianus and Pecari tajacu. We analyzed their relative abundance and habitat use at two spatial scales: (1 Local, where three different successional stages of tropical deciduous forest were compared, and (2 Landscape, where available habitats were compared in terms of landscape composition (proportion of forests, pastures and croplands within 113 ha. To determine the most important habitat-related environmental factors influencing the Sign Encounter Rate (SER of the three ungulate species, 11 physical, anthropogenic and vegetation variables were simultaneously analyzed through model selection using Akaike’s Information Criterion. We found, that P. tajacu and O. virginianus mainly used early successional stages, while M. temama used all successional stages in similar proportions. The latter species, however, used early vegetation stages only when they were located in landscapes mainly covered by forest (97%. P. tajacu and O. virginianus also selected landscapes covered essentially by forests, although they required smaller percentages of forest (86%. All ungulate species avoided landscape fragments covered by pastures. For all three species, landscape composition and human activities were the variables that best explained SER. We concluded that landscape is the fundamental scale for ungulate management, and that secondary forests are potentially important landscape elements for ungulate conservation.

  18. Assessment of Air Pollution Tolerance Index of some plants to develop vertical gardens near street canyons of a polluted tropical city.

    Science.gov (United States)

    Pandey, Ashutosh Kumar; Pandey, Mayank; Tripathi, B D

    2016-12-01

    The aim of the present study was to examine Air Pollution Tolerance Index (APTI) of some climber plant species to develop vertical gardens in Varanasi city which has characteristics of tall building and narrow roads. This condition results in street canyon like structure and hinders the vertical dispersal of air pollutants. We have selected 24 climber plant species which are commonly found in of Varanasi city. Chosen plants can be easily grown either in planter boxes or directly in the ground, with a vertical support they can climb on walls to form green walls or vertical garden. Air Pollution Tolerance Index (APTI) of the selected plant species was calculated and plants with higher APTI are recommended for the development of Vertical garden. Highest APTI was noted for Ipomoea palmata (25.39) followed by Aristolochia elegans (23.28), Thunbergia grandiflora (23.14), Quisqualis indica (22.42), and Clerodendrum splendens (22.36). However, lowest APTI value (8.75) was recorded for the species Hemidesmus indicus. Moreover, the linear regression analysis has revealed a high positive correlation between APTI and ascorbic acid content (R 2 =0.8837) and positive correlation between APTI and Chlorophyll content (R 2 =0.6687). On the basis of higher APTI values (greater than 17), nine species of climber plants viz. I. palmata, T. grandiflora, C. splendens, A. elegans, Q. indica, Petria volubilis, Antigonon leptopus, Cryptolepis buchuanni and Tinospora cordifolia have been recommended to develop vertical greenery systems in a compact tropical city. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. β-Diversity of functional groups of woody plants in a tropical dry forest in Yucatan.

    Directory of Open Access Journals (Sweden)

    Jorge Omar López-Martínez

    Full Text Available Two main theories have attempted to explain variation in plant species composition (β-diversity. Niche theory proposes that most of the variation is related to environment (environmental filtering, whereas neutral theory posits that dispersal limitation is the main driver of β-diversity. In this study, we first explored how α- and β-diversity of plant functional groups defined by growth form (trees, shrubs and lianas, which represent different strategies of resource partitioning, and dispersal syndrome (autochory, anemochory and zoochory, which represent differences in dispersal limitation vary with successional age and topographic position in a tropical dry forest. Second, we examined the effects of environmental, spatial, and spatially-structured environmental factors on β-diversity of functional groups; we used the spatial structure of sampling sites as a proxy for dispersal limitation, and elevation, soil properties and forest stand age as indicators of environmental filtering. We recorded 200 species and 22,245 individuals in 276 plots; 120 species were trees, 41 shrubs and 39 lianas. We found that β-diversity was highest for shrubs, intermediate for lianas and lowest for trees, and was slightly higher for zoochorous than for autochorous and anemochorous species. All three dispersal syndromes, trees and shrubs varied in composition among vegetation classes (successional age and topographic position, whilst lianas did not. β-diversity was influenced mostly by proxies of environmental filtering, except for shrubs, for which the influence of dispersal limitation was more important. Stand age and topography significantly influenced α-diversity across functional groups, but showed a low influence on β-diversity -possibly due to the counterbalancing effect of resprouting on plant distribution and composition. Our results show that considering different plant functional groups reveals important differences in both α- and

  20. Different hydraulic traits of woody plants from tropical forests with contrasting soil water availability.

    Science.gov (United States)

    Zhu, Shi-Dan; Chen, Ya-Jun; Fu, Pei-Li; Cao, Kun-Fang

    2017-11-01

    In southwestern China, tropical karst forests (KF) and non-karst rain forests (NKF) have different species composition and forest structure owing to contrasting soil water availability, but with a few species that occur in both forests. Plant hydraulic traits are important for understanding the species' distribution patterns in these two forest types, but related studies are rare. In this study, we investigated hydraulic conductivity, vulnerability to drought-induced cavitation and wood anatomy of 23 abundant and typical woody species from a KF and a neighboring NKF, as well as two Bauhinia liana species common to both forests. We found that the KF species tended to have higher sapwood density, smaller vessel diameter, lower specific hydraulic conductivity (ks) and leaf to sapwood area ratio, and were more resistant to cavitation than NKF species. Across the 23 species distinctly occurring in either KF or NKF, there was a significant tradeoff between hydraulic efficiency and safety, which might be an underlying mechanism for distributions of these species across the two forests. Interestingly, by possessing rather large and long vessels, the two Bauhinia liana species had extremely high ks but were also high resistance to cavitation (escaping hydraulic tradeoff). This might be partially due to their distinctly dimorphic vessels, but contribute to their wide occurrence in both forests. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  1. Functional strategies of tropical dry forest plants in relation to growth form and isotopic composition

    Science.gov (United States)

    Santiago, L. S.; Silvera, K.; Andrade, J. L.; Dawson, T. E.

    2017-11-01

    Tropical dry forests (TDFs) undergo a substantial dry season in which plant species must endure several months of drought. Although TDFs support a diverse array of plant growth forms, it is not clear how they vary in mechanisms for coping with seasonal drought. We measured organic tissue stable isotopic composition of carbon (δ13C) and nitrogen (δ15N) across six plant growth forms including epiphytes, terrestrial succulents, trees, shrubs, herbs, and vines, and oxygen (δ18O) of four growth forms, to distinguish among patterns of resource acquisition and evaluate mechanisms for surviving annual drought in a lowland tropical dry forest in Yucatan, Mexico. Terrestrial succulent and epiphyte δ13C was around -14‰, indicating photosynthesis through the Crassulacean acid metabolism pathway, and along with one C4 herb were distinct from mean values of all other growth forms, which were between -26 and -29‰ indicating C3 photosynthesis. Mean tissue δ15N across epiphytes was -4.95‰ and was significantly lower than all other growth forms, which had values around +3‰. Tissue N concentration varied significantly among growth forms with epiphytes and terrestrial succulents having significantly lower values of about 1% compared to trees, shrubs, herbs and vines, which were around 3%. Tissue C concentration was highest in trees, shrubs and vines, intermediate in herbs and epiphytes and lowest in terrestrial succulents. δ18O did not vary among growth forms. Overall, our results suggest several water-saving aspects of resource acquisition, including the absolute occurrence of CAM photosynthesis in terrestrial succulents and epiphytes, high concentrations of leaf N in some species, which may facilitate CO2 drawdown by photosynthetic enzymes for a given stomatal conductance, and potentially diverse N sources ranging from atmospheric N in epiphytes with extremely depleted δ15N values, and a large range of δ15N values among trees, many of which are legumes and dry season

  2. On the Use of Shortwave Infrared for Tree Species Discrimination in Tropical Semideciduous Forest

    Science.gov (United States)

    Ferreira, M. P.; Zortea, M.; Zanotta, D. C.; Féret, J. B.; Shimabukuro, Y. E.; Souza Filho, C. R.

    2015-08-01

    Tree species mapping in tropical forests provides valuable insights for forest managers. Keystone species can be located for collection of seeds for forest restoration, reducing fieldwork costs. However, mapping of tree species in tropical forests using remote sensing data is a challenge due to high floristic and spectral diversity. Little is known about the use of different spectral regions as most of studies performed so far used visible/near-infrared (390-1000 nm) features. In this paper we show the contribution of shortwave infrared (SWIR, 1045-2395 nm) for tree species discrimination in a tropical semideciduous forest. Using high-resolution hyperspectral data we also simulated WorldView-3 (WV-3) multispectral bands for classification purposes. Three machine learning methods were tested to discriminate species at the pixel-level: Linear Discriminant Analysis (LDA), Support Vector Machines with Linear (L-SVM) and Radial Basis Function (RBF-SVM) kernels, and Random Forest (RF). Experiments were performed using all and selected features from the VNIR individually and combined with SWIR. Feature selection was applied to evaluate the effects of dimensionality reduction and identify potential wavelengths that may optimize species discrimination. Using VNIR hyperspectral bands, RBF-SVM achieved the highest average accuracy (77.4%). Inclusion of the SWIR increased accuracy to 85% with LDA. The same pattern was also observed when WV-3 simulated channels were used to classify the species. The VNIR bands provided and accuracy of 64.2% for LDA, which was increased to 79.8 % using the new SWIR bands that are operationally available in this platform. Results show that incorporating SWIR bands increased significantly average accuracy for both the hyperspectral data and WorldView-3 simulated bands.

  3. Shell use and partitioning of two sympatric species of hermit crabs on a tropical mudflat

    Science.gov (United States)

    Teoh, Hong Wooi; Chong, Ving Ching

    2014-02-01

    Shell use and partitioning of two sympatric hermit crab species (Diogenes moosai and Diogenes lopochir), as determined by shell shape, size and availability, were examined from August 2009 to March 2011 in a tropical mudflat (Malaysia). Shells of 14 gastropod species were used but > 85% comprised shells of Cerithidea cingulata, Nassarius cf. olivaceus, Nassarius jacksonianus, and Thais malayensis. Shell partitioning between hermit crab species, sexes, and developmental stages was evident from occupied shells of different species, shapes, and sizes. Extreme bias in shell use pattern by male and female of both species of hermit crabs suggests that shell shape, which depends on shell species, is the major determinant of shell use. The hermit crab must however fit well into the shell so that compatibility between crab size and shell size becomes crucial. Although shell availability possibly influenced shell use and hermit crab distribution, this is not critical in a tropical setting of high gastropod diversity and abundance.

  4. Phytoremediation potential and ecological and phenological changes of native pioneer plants from weathered oil spill-impacted sites at tropical wetlands.

    Science.gov (United States)

    Palma-Cruz, Felipe de J; Pérez-Vargas, Josefina; Rivera Casado, Noemí Araceli; Gómez Guzmán, Octavio; Calva-Calva, Graciano

    2016-08-01

    Pioneer native plant species from weathered oil spill-affected sites were selected to study their potential for phytoremediation on the basis of their ecological and phenological changes during the phytoremediation process. Experiments were conducted in field and in greenhouse. In field, native plants from aged oil spill-impacted sites with up 400 g of weathered petroleum hydrocarbons per kilogram soil were selected. In the impacted sites, the principal dominant plant species with potential for hydrocarbons removal were Cyperus laxus, Cyperus esculentus, and Ludwigia peploides. In greenhouse, the phenology of the selected plant species was drastically affected by the hydrocarbons level above 325 g total petroleum hydrocarbons (TPH) per kilogram soil after 2 years of phytoremediation of soils from the aged oil spill-impacted sites. From the phytoremediation treatments, a mix-culture of C. laxus, C. esculentus, and L. peploides in soil containing 325 g TPH/kg soil, from which 20.3 % were polyaromatic hydrocarbons (PAH) and 34.2 % were asphaltenes (ASF), was able to remove up 93 % of the TPH, while in unvegetated soil the TPH removal was 12.6 %. Furthermore, evaluation of the biodiversity and life forms of plant species in the impacted sites showed that phytoremediation with C. esculentus, alone or in a mix-culture with C. laxus and L. peploides, reduces the TPH to such extent that the native plant community was progressively reestablished by replacing the cultivated species resulting in the ecological recovery of the affected soil. These results demonstrate that native Cyperus species from weathered oil spill-affected sites, specifically C. esculentus and C. laxus, alone or in a mix-culture, have particular potential for phytoremediation of soils from tropical wetlands contaminated with weathered oil hydrocarbons.

  5. The roots of diversity: below ground species richness and rooting distributions in a tropical forest revealed by DNA barcodes and inverse modeling.

    Directory of Open Access Journals (Sweden)

    F Andrew Jones

    Full Text Available Plants interact with each other, nutrients, and microbial communities in soils through extensive root networks. Understanding these below ground interactions has been difficult in natural systems, particularly those with high plant species diversity where morphological identification of fine roots is difficult. We combine DNA-based root identification with a DNA barcode database and above ground stem locations in a floristically diverse lowland tropical wet forest on Barro Colorado Island, Panama, where all trees and lianas >1 cm diameter have been mapped to investigate richness patterns below ground and model rooting distributions.DNA barcode loci, particularly the cpDNA locus trnH-psba, can be used to identify fine and small coarse roots to species. We recovered 33 species of roots from 117 fragments sequenced from 12 soil cores. Despite limited sampling, we recovered a high proportion of the known species in the focal hectare, representing approximately 14% of the measured woody plant richness. This high value is emphasized by the fact that we would need to sample on average 13 m(2 at the seedling layer and 45 m(2 for woody plants >1 cm diameter to obtain the same number of species above ground. Results from inverse models parameterized with the locations and sizes of adults and the species identifications of roots and sampling locations indicates a high potential for distal underground interactions among plants.DNA barcoding techniques coupled with modeling approaches should be broadly applicable to studying root distributions in any mapped vegetation plot. We discuss the implications of our results and outline how second-generation sequencing technology and environmental sampling can be combined to increase our understanding of how root distributions influence the potential for plant interactions in natural ecosystems.

  6. Species turnover in tropical montane forest avifauna links to climatic correlates

    Directory of Open Access Journals (Sweden)

    Chi-Feng Tsai

    2015-01-01

    Full Text Available We examined avifauna richness and composition in Taiwan’s tropical montane forests, and compared to historical records dated 22 years ago. A richness attrition of 44 species caused a discrepancy of 30.2%, and an estimated yearly turnover of 2.2%. More resident species that were narrower or lower in elevation distribution, insectivores/omnivores, small to medium-sized, forest/open-field dwelling, and canopy/ground foragers, vanished; whereas piscivores, carnivores, riparian- and shrub-dwellers, ground and mid-layer foragers, and migrants suffered by higher proportions. Occurrence frequencies of persistent species remained constant but varied among ecological groups, indicating an increased homogeneity for smaller-sized insectivores/omnivores dwelling in the forest canopy, shrub, or understory. While the overall annual temperature slightly increased, a relatively stable mean temperature was replaced by an ascending trend from the mid-1990s until 2002, followed by a cooling down. Mean maximum temperatures increased but minimums decreased gradually over years, resulting in increasing temperature differences up to over 16 °C. This accompanied an increase of extreme typhoons affecting Taiwan or directly striking these montane forests during the last decade. These results, given no direct human disturbances were noted, suggest a link between the species turnover and recent climate change, and convey warning signs of conservation concerns for tropical montane assemblages.

  7. Do plant species influence soil CO2 and N2O fluxes in a diverse tropical forest?

    Science.gov (United States)

    J.L.M. van Haren; R.C. de Oliveira; N. Restrepo-Coupe; L. Hutyra; P. B. de Camargo; Michael Keller; S.R. Saleska

    2010-01-01

    [1] To test whether plant species influence greenhouse gas production in diverse ecosystems, we measured wet season soil CO2 and N2O fluxes close to 300 large (>35 cm in diameter at breast height (DBH)) trees of 15 species at three clay‐rich forest sites in central Amazonia. We found that soil CO2 fluxes were 38% higher near large trees than at control sites >10...

  8. Leaf quality and insect herbivory in model tropical plant communities after long-term exposure to elevated atmospheric CO2.

    Science.gov (United States)

    Arnone, J A; Zaller, J G; Körner, Ch; Ziegler, C; Zandt, H

    1995-09-01

    Results from laboratory feeding experiments have shown that elevated atmospheric carbon dioxide can affect interactions between plants and insect herbivores, primarily through changes in leaf nutritional quality occurring at elevated CO 2 . Very few data are available on insect herbivory in plant communities where insects can choose among species and positions in the canopy in which to feed. Our objectives were to determine the extent to which CO 2 -induced changes in plant communities and leaf nutritional quality may affect herbivory at the level of the entire canopy. We introduced equivalent populations of fourth instar Spodoptera eridania, a lepidopteran generalist, to complex model ecosystems containing seven species of moist tropical plants maintained under low mineral nutrient supply. Larvae were allowed to feed freely for 14 days, by which time they had reached the seventh instar. Prior to larval introductions, plant communities had been continuously exposed to either 340 μl CO 2 l -1 or to 610 μl CO 2 l -1 for 1.5 years. No major shifts in leaf nutritional quality [concentrations of N, total non-structural carbohydrates (TNC), sugar, and starch; ratios of: C/N, TNC/N, sugar/N, starch/N; leaf toughness] were observed between CO 2 treatments for any of the species. Furthermore, no correlations were observed between these measures of leaf quality and leaf biomass consumption. Total leaf area and biomass of all plant communities were similar when caterpillars were introduced. However, leaf biomass of some species was slightly greater-and for other species slightly less (e.g. Cecropia peltata)-in communities exposed to elevated CO 2 . Larvae showed the strongest preference for C. peltata leaves, the plant species that was least abundant in all communites, and fed relatively little on plants species which were more abundant. Thus, our results indicate that leaf tissue quality, as described by these parameters, is not necessarily affected by elevated CO 2 under

  9. Is thermoregulation really unimportant for tropical reptiles? Comparative study of four sympatric snake species from Africa

    Science.gov (United States)

    Luiselli, Luca; Akani, Godfrey C.

    2002-05-01

    Most of the studies concerning the thermal and reproductive relationships of snakes have been conducted in temperate regions, whereas very few data are available for African tropical species. In the present study, aspects of the comparative thermal and reproductive ecology of four sympatric freshwater snakes from tropical Africa (the colubrids Natriciteres fuliginoides, N. variegata, Afronatrix anoscopus, and Grayia smythii) are studied with emphasis on exploring whether their thermal ecology relations with reproduction biology may indicate a substantial influence of thermoregulation on their life-history traits (as shown in several studies from temperate-zone reptiles), or whether thermoregulatory biology is less important in tropical reptiles (as suggested in some recent experimental studies). The present study showed that, with minor species-specific differences, thermoregulation certainly has some relevance for the activity and life-history attributes of the studied species, as (i) the females tended to show body temperatures inversely related to their size (snout-vent length), and (ii) gravid specimens tended to maintain higher body temperatures than non-gravid specimens. However, other sets of our data (e.g., the high and constant Tb exhibited during night-time) strongly indicate that these four species of tropical water snakes can maintain high and stable Tb with little overt thermoregulatory behaviour. As is the rule in most of the other snake species studied to date, the maternal size of the females strongly influenced the number of eggs produced, and testifies that reproductive biology models linking reproductive performance to thermal ecology, highlighted in other snakes from temperate and cool regions, may well apply at least to some extent also to these Afrotropical species.

  10. INTAKE OF TROPICAL TANNINIFEROUS PLANTS BY GOATS AND SHEEP WHEN OFFERED AS A SOLE FEED

    Directory of Open Access Journals (Sweden)

    Miguel A. Alonso-Díaz

    2009-06-01

    Full Text Available The intake of tropical tanniniferous plants (TTP (Lysiloma latisiliquum, Piscidia piscipula and Acacia pennatula when offered as a single feed to small ruminants could help to design a supplementation strategy looking for an anthelmintic effect. The objectives of the current study were: i to determine the chemical composition of TTP offered to goats and sheep, ii to determine and compare the total intake of TTP when offered as a single feed to goats and sheep. Adult sheep and goats, with experience in the intake of TTP, were allocated to individual pens. Three consecutive experimental period (15 d separated by seven days were used. Each period consisted of 10 d adaptation and 5 days of experiment. During adaptation animals received 40 g of leaves of each TTP plant, fresh grass and concentrate feed on a daily basis. During the experimental period animals were fed ad libitum only with the fodder of a sole TTP. Between each period, animals were fed with fresh grass (ad libitum and concentrate (200 g-1 day. Crude protein (CP, neutral detergent fiber (NDF, acid detergent fiber (ADF and lignin (L were determined from each TTP. Total polyphenols (TP, total tannins (TT and condensed tannins (CT were also determined. During each experimental period, refused fodder and intake were measured every 24 h. A multivariate analysis was used in order to determine the effect of factors (animal species, plant species and individual animal within specie on the dry matter intake. Factors with statistical effect (P

  11. Plant phylogeny as a window on the evolution of hyperdiversity in the tropical rainforest biome.

    Science.gov (United States)

    Eiserhardt, Wolf L; Couvreur, Thomas L P; Baker, William J

    2017-06-01

    I. II. III. IV. V. VI. VII. VIII. IX. References SUMMARY: Tropical rainforest (TRF) is the most species-rich terrestrial biome on Earth, harbouring just under half of the world's plant species in c. 7% of the land surface. Phylogenetic trees provide important insights into mechanisms underpinning TRF hyperdiversity that are complementary to those obtained from the fossil record. Phylogenetic studies of TRF plant diversity have mainly focused on whether this biome is an evolutionary 'cradle' or 'museum', emphasizing speciation and extinction rates. However, other explanations, such as biome age, immigration and ecological limits, must also be considered. We present a conceptual framework for addressing the drivers of TRF diversity, and review plant studies that have tested them with phylogenetic data. Although surprisingly few in number, these studies point to old age of TRF, low extinction and high speciation rates as credible drivers of TRF hyperdiversity. There is less evidence for immigration and ecological limits, but these cannot be dismissed owing to the limited number of studies. Rapid methodological developments in DNA sequencing, macroevolutionary analysis and the integration of phylogenetics with other disciplines may improve our grasp of TRF hyperdiversity in the future. However, such advances are critically dependent on fundamental systematic research, yielding numerous, additional, well-sampled phylogenies of TRF lineages. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  12. Screening of native plant species for phytoremediation potential at a Hg-contaminated mining site.

    Science.gov (United States)

    Marrugo-Negrete, José; Marrugo-Madrid, Siday; Pinedo-Hernández, José; Durango-Hernández, José; Díez, Sergi

    2016-01-15

    Artisanal and small-scale gold mining (ASGM) is the largest sector of demand for mercury (Hg), and therefore, one of the major sources of Hg pollution in the environment. This study was conducted in the Alacrán gold-mining site, one of the most important ASGM sites in Colombia, to identify native plant species growing in Hg-contaminated soils used for agricultural purposes, and to assess their potential as phytoremediation systems. Twenty-four native plant species were identified and analysed for total Hg (THg) in different tissues (roots, stems, and leaves) and in underlying soils. Accumulation factors (AF) in the shoots, translocation (TF) from roots to shoots, and bioconcentration (BCF) from soil-to-roots were determined. Different tissues from all plant species were classified in the order of decreasing accumulation of Hg as follows: roots > leaves > stems. THg concentrations in soil ranged from 230 to 6320 ng g(-1). TF values varied from 0.33 to 1.73, with high values in the lower Hg-contaminated soils. No correlation was found between soils with low concentrations of Hg and plant leaves, indicating that TF is not a very accurate indicator, since most of the Hg input to leaves at ASGM sites comes from the atmosphere. On the other hand, the BCF ranged from 0.28 to 0.99, with Jatropha curcas showing the highest value. Despite their low biomass production, several herbs and sub-shrubs are suitable for phytoremediation application in the field, due to their fast growth and high AF values in large and easily harvestable plant parts. Among these species, herbs such as Piper marginathum and Stecherus bifidus, and the sub-shrubs J. curcas and Capsicum annuum are promising native plants with the potential to be used in the phytoremediation of soils in tropical areas that are impacted by mining.

  13. Effect of feeding some evergreen tropical browse plant leaves on ...

    African Journals Online (AJOL)

    A feeding trial was conducted with thirty (30) weaner rabbits to investigate the nutritive potentials of some evergreen tropical browse plant leaves (Ficcus thoningii, Vitex doniana, Daniela oliveri, Sarcocephalus latifolia). Mixed breed rabbits were used and randomly assigned to five (5) treatments (T1 - T5). The rabbits in ...

  14. Considering native and exotic terrestrial reptiles in island invasive species eradication programmes in the Tropical Pacific

    Science.gov (United States)

    Fisher, Richard N.; Veitch, C.R.; Clout, Mike N.; Towns, D. R.

    2010-01-01

    Most island restoration projects with reptiles, either as direct beneficiaries of conservation or as indicators of recovery responses, have been on temperate or xeric islands. There have been decades of research, particularly on temperate islands in New Zealand, on the responses of native reptiles to mammal eradications but very few studies in tropical insular systems. Recent increases in restoration projects involving feral mammal eradications in the tropical Pacific have led to several specific challenges related to native and invasive reptiles. This paper reviews these challenges and discusses some potential solutions to them. The first challenge is that the tropical Pacific herpetofauna is still being discovered, described and understood. There is thus incomplete knowledge of how eradication activities may affect these faunas and the potential risks facing critical populations of these species from these eradication actions. The long term benefit of the removal of invasives is beneficial, but the possible short term impacts to small populations on small islands might be significant. The second challenge is that protocols for monitoring the responses of these species are not well documented but are often different from those used in temperate or xeric habitats. Lizard monitoring techniques used in the tropical Pacific are discussed. The third challenge involves invasive reptiles already in the tropical Pacific, some of which could easily spread accidentally through eradication and monitoring operations. The species posing the greatest threats in this respect are reviewed, and recommendations for biosecurity concerning these taxa are made.

  15. Herbaceous land plants as a renewable energy source for Puerto Rico

    Energy Technology Data Exchange (ETDEWEB)

    Alexander, A.G.

    1980-01-01

    Herbaceous tropical plants are a renewable energy source of major importance to many tropical nations. They convert the radiant energy of sunlight to chemical energy, which is stored in plant tissues (cellulose, hemicellulose, lignin) and fermentable solids (sugars, starches). Because all tropical plants do this - even those commonly regarded as weeds - they constitute an inexpensive, renewable, and domestic alternative to foreign fossil energy. The vast majority of herbaceous tropical plants have never been cultivated for food, fiber, or energy. A major screening program would be needed to identify superior species and the most effective roles they can play in a domestic energy industry. Other herbaceous plants, such as sugarcane and tropical forage grasses, have been cultivated for centuries as agricultural commodities. As energy crops, important revisions in management will be needed to maximize their energy yield. Two broad groups of herbaceous plants are seen to have an immediate potential for reducing Puerto Rico's reliance on imported fossil fuels: the tropical grasses (of which sugarcane is the dominant member) and the tropical legumes. Managed for its maximum growth potential, sugarcane is an excellent source of boiler fuel, fermentation substrates, cellulosic feedstocks, and the sweetener sucrose. Other tropical grasses store relatively little extractable sugar while equaling or moderately surpassing sugarcane in yield of cellulosic dry matter. The latter might soon become an economical source of fermentation substrates. Certain legume species are also very effective producers of biomass. Herbaceous tropical legumes are perceived as a potential source of biological nitrogen for energy crops unable to utilize nitrogen from the atmosphere.

  16. Herbaceous land plants as a renewable energy source for Puerto Rico

    Energy Technology Data Exchange (ETDEWEB)

    Alexander, A G

    1980-01-01

    Herbaceous tropical plants are a renewable energy source of major importance to many tropical nations. They convert the radiant energy of sunlight to chemical energy, which is stored in plant tissues (cellulose, hemicellulose, lignin) and fermentable solids (sugars, starches). Because all tropical plants do this - even those commonly regarded as weeds - they constitute an inexpensive, renewable, and domestic alternative to foreign fossil energy. The vast majority of herbaceous tropical plants have never been cultivated for food, fiber, or energy. A major screening program would be needed to identify superior species and the most effective roles they can play in a domestic energy industry. Other herbaceous plants, such as sugarcane and tropical forage grasses, have been cultivated for centuries as agricultural commodities. As energy crops, important revisions in management will be needed to maximize their energy yield. Two broad groups of herbaceous plants are seen to have an immediate potential for reducing Puerto Rico's reliance on imported fossil fuels: the tropical grasses (of which sugarcane is the dominant member) and the tropical legumes. Managed for its maximum growth potential, sugarcane is an excellent source of boiler fuel, fermentation substrates, cellulosic feedstocks, and the sweetener sucrose. Other tropical grasses store relatively little extractable sugar while equaling or moderately surpassing sugarcane in yield of cellulosic dry matter. The latter might soon become an economical source of fermentation substrates. Certain legume species are also very effective producers of biomass. Herbaceous tropical legumes are perceived as a potential source of biological nitrogen for energy crops unable to utilize nitrogen from the atmosphere.

  17. Annickia affinis and A. chlorantha (Enantia chlorantha)--A review of two closely related medicinal plants from tropical Africa.

    Science.gov (United States)

    Olivier, D K; Van Vuuren, S F; Moteetee, A N

    2015-12-24

    Annickia affinis (Exell) Versteegh & Sosef, closely related to A. chlorantha Setten & P.J.Maas (both species also referred to as Enantia chlorantha Oliv.), from the Annonaceae family, are multi-purpose medicinal plants used widely across tropical Africa. The two Annickia species are morphologically distinct from each other and have different distribution patterns, but are frequently confused. Furthermore, the name Enantia chlorantha is an illegitimate name, but is still used today. A review of the literature was undertaken and an in-depth analysis of previous research and future prospectives are considered. While a myriad of publications cite the species "Enantia chlorantha", this is not the case for A. affinis and A. chlorantha, and no reviews are available for any of the species to date. Consequently, a summary of their ethnobotany, phytochemistry and biological properties is presented here (for the period 1933 - November 2014) in order to substantiate their traditional importance as medicines for rural people in Africa. To this effect, these species seem to be the preferred traditional treatments for malaria in tropical Africa, an area suffering heavily under the malaria pandemic. Their chemical composition is dominated particularly by various isoquinoline alkaloids, as well as by acetogenins and sesquiterpenes, which have been isolated from the bark and leaves. All three of these classes of compounds have been reported to exhibit noteworthy biological activity. Due to their widespread use, especially of the bark, these species have already been categorized as threatened with extinction. Consequently this study further aims to identify areas where more research needs to be conducted involving these important species, and also to suggest possible means of increasing the biological activities of their extracts as a way to conserve the species. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  18. Invasive rats on tropical islands: Their population biology and impacts on native species

    OpenAIRE

    Harper, Grant A.; Bunbury, Nancy

    2015-01-01

    The three most invasive rat species, black or ship rat Rattus rattus, brown or Norway rats, R. norvegicus and Pacific rat, R. exulans have been incrementally introduced to islands as humans have explored the world’s oceans. They have caused serious deleterious effects through predation and competition, and extinction of many species on tropical islands, many of which are biodiversity hotspots. All three rat species are found in virtually all habitat types, including mangrove and arid shrub la...

  19. Silica in invasive wetland plant species of lagoons, Côte d'Ivoire: Spatio-temporal patterns

    Science.gov (United States)

    José-mathieu Koné, Yéfanlan; Schoelynck, Jonas

    2017-04-01

    Tropical wetlands are known to accumulate a large quantity of Biogenic Silica (BSi) produced by wetland plant species (Struyf et al., 2015), and approximately 70-80% of the total supply of Dissolved Si (DSi) to the coastal zone occurs in (sub) tropical river systems (Jennerjahn et al. 2006). However, the data at these latitudes are limited. Here, we present the BSi concentration from eleven invasive macrophyte species randomly collected in three small ( 800ha) lagoons of Côte d'Ivoire during 12 months. Our data showed a large spatio-temporal variability of BSi in the three lagoons with no consistent trends. In general, the BSi concentrations obtained were high and values ranged from 0 to 54 mg g-1 through the entire sampling period, with the highest values found in Acroceras zizaniodes (emergent species of Poaceae). In general, free floating species had significantly less BSi than emergent species (Pspecies of fern, Salviniaceae) at the young stage were similar to those found in the emergent species. Based on yearly averages, highest BSi values were observed in Kodjoboué lagoon, and the lowest in the Ono lagoon that is 80% covered by macrophytes. Moreover, the dissolved silica (DSi) concentrations were systematically higher in Ono Lagoon than in Kodjoboué Lagoon. We conclude that in an eutrophic system Si accumulating in aquatic macrophytes is not related to Si availability but to other environmental factors. Jennerjahn, T.C., Knoppers, B.A., de Souze, W.F.L., Brunskill, G.J., Silva, E.I.L., Adi, S. et al., 2006. Factors controlling dissolved silica in tropical rivers. In: Ittekot, V. (ed) The silicon cycle. Island Press, Washington, D. C, pp 29-51 Schoelynck J and Struyf E, 2016. Silicon in aquatic vegetation. Functional Ecology. 30: 1323-1330. Struyf, E., Mosimane, K., Van Pelt, D., Murray-Hudson, M., Meire, P., Frings, P., Wolski, P., Schaller, J., Gondwe, M.J., Schoelynck, J. and Conley, D.J., 2015. The role of vegetation in the Okavango Delta silica sink

  20. Variation in leaf litter production and resorption of nutrients in abundant tree species in Nyungwe tropical montane rainforest in Rwanda

    Science.gov (United States)

    Nyirambangutse, Brigitte; Mirindi Dusenge, Eric; Nsabimana, Donat; Bizuru, Elias; Pleijel, Håkan; Uddling, Johan; Wallin, Göran

    2014-05-01

    African tropical rainforests play many roles from local to global scale as providers of resources and ecosystem services. Although covering 30% of the global rainforest, only few studies aiming to better understand the storage and fluxes of carbon and nutrients in these forests have been conducted. To answer questions related to these issues, we have established 15 permanent 0.5 ha plots where we compare carbon and nutrient fluxes of primary and secondary forest tree communities in a tropical montane forest in central Africa. The studies are conducted in Nyungwe montane tropical rain forest gazetted as a National Park to protect its extensive floral and faunal diversity covering an area of 970 km2. Nyungwe is located in Southwest Rwanda (2o17'-2o50'S, 29o07'-29o26A'E). The forest is ranging between 1600-2950 m.a.s.l. and is one of the most biologically important rainforest in Albertine Rift region in terms of Biodiversity. Nyungwe consists of a mixture of primary and secondary forest communities supporting a richness of plant and animal life. More than 260 species of trees and shrubs have been found in Nyungwe, including species endemic to the Albertine Rift. The forest has a climate with a mean annual temperature of 15.5oC and annual rainfall of ca 1850 mm yr-1, with July and August being the only months when rainfall drops. A part of this study is focusing on the dynamics of nutrients through leaf turnover. This turnover of leaves is regulated to maximize the carbon gain through canopy photosynthesis and resource-use efficiency of the plant. It is known that about half of leaf nitrogen is invested in photosynthetic apparatus and that there normally is a strong correlation between the photosynthetic capacity and leaf nitrogen per unit area. Hence leaf nitrogen is an important factor for canopy photosynthesis. However, leaves are produced, senesce and fall. Some nitrogen in the leaf is lost when leaves senesce but other is resorbed. The resorption of nitrogen

  1. Drifting propagules and receding swamps: genetic footprints of mangrove recolonization and dispersal along tropical coasts.

    Science.gov (United States)

    Nettel, Alejandro; Dodd, Richard S

    2007-04-01

    Two issues that have captured the attention of tropical plant evolutionary biologists in recent years are the relative role of long distance dispersal (LDD) over vicariance in determining plant distributions and debate about the extent that Quaternary climatic changes affected tropical species. Propagules of some mangrove species are assumed to be capable of LDD due to their ability to float and survive for long periods of time in salt water. Mangrove species responded to glaciations with a contraction of their range. Thus, widespread mangrove species are an ideal system to study LDD and recolonization in the tropics. We present phylogenetic and phylogeographic analyses based on internal transcribed spacers region (ITS) sequences, chloroplast DNA (cpDNA), and amplified fragment length polymorphisms (AFLPs) of genomic DNA that demonstrate recent LDD across the Atlantic, rejecting the hypothesis of vicariance for the widespread distribution of the black mangrove (Avicennia germinans). Northern latitude populations likely became extinct during the late Quaternary due to frosts and aridification; these locations were recolonized afterward from southern populations. In some low latitude regions populations went extinct or were drastically reduced during the Quaternary because of lack of suitable habitat as sea levels changed. Our analyses show that low latitude Pacific populations of A. germinans harbor more diversity and reveal deeper divergence than Atlantic populations. Implications for our understanding of phylogeography of tropical species are discussed.

  2. Tree Species Abundance Predictions in a Tropical Agricultural Landscape with a Supervised Classification Model and Imbalanced Data

    Directory of Open Access Journals (Sweden)

    Sarah J. Graves

    2016-02-01

    Full Text Available Mapping species through classification of imaging spectroscopy data is facilitating research to understand tree species distributions at increasingly greater spatial scales. Classification requires a dataset of field observations matched to the image, which will often reflect natural species distributions, resulting in an imbalanced dataset with many samples for common species and few samples for less common species. Despite the high prevalence of imbalanced datasets in multiclass species predictions, the effect on species prediction accuracy and landscape species abundance has not yet been quantified. First, we trained and assessed the accuracy of a support vector machine (SVM model with a highly imbalanced dataset of 20 tropical species and one mixed-species class of 24 species identified in a hyperspectral image mosaic (350–2500 nm of Panamanian farmland and secondary forest fragments. The model, with an overall accuracy of 62% ± 2.3% and F-score of 59% ± 2.7%, was applied to the full image mosaic (23,000 ha at a 2-m resolution to produce a species prediction map, which suggested that this tropical agricultural landscape is more diverse than what has been presented in field-based studies. Second, we quantified the effect of class imbalance on model accuracy. Model assessment showed a trend where species with more samples were consistently over predicted while species with fewer samples were under predicted. Standardizing sample size reduced model accuracy, but also reduced the level of species over- and under-prediction. This study advances operational species mapping of diverse tropical landscapes by detailing the effect of imbalanced data on classification accuracy and providing estimates of tree species abundance in an agricultural landscape. Species maps using data and methods presented here can be used in landscape analyses of species distributions to understand human or environmental effects, in addition to focusing conservation

  3. Estimating Janka hardness from specific gravity for tropical and temperate species

    Science.gov (United States)

    Michael C. Wiemann; David W. Green

    2007-01-01

    Using mean values for basic (green) specific gravity and Janka side hardness for individual species obtained from the world literature, regression equations were developed to predict side hardness from specific gravity. Statistical and graphical methods showed that the hardness–specific gravity relationship is the same for tropical and temperate hardwoods, but that the...

  4. Tropical vegetation evidence for rapid sea level changes associated with Heinrich Events

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez, Catalina; Dupont, Lydie M, E-mail: catalina@uni-bremen.d, E-mail: dupont@uni-bremen.d [MARUM - Centre for Marine Environmental Sciences, University of Bremen, Leobener Strasse, D-28359 Germany (Germany)

    2010-03-15

    A Cariaco Basin pollen record shows the development of tropical salt marshes during marine isotope stage 3. Rapid and abrupt expansions of salt marsh vegetation in tropical South America are associated with north Atlantic Heinrich Events stadials (HE-stadials). Intervals of salt marsh expansion have an internal structure, which consists of a recurrent alternation of species that starts with pollen increments of Chenopodiaceae, that are followed by increments of grasses, and subsequently by increments of Cyperaceae. This pattern suggests a successional process that is determined by the close relationship between sea-level and plant community dynamics. The salt tolerant Chenopodiaceae, indicate hypersaline intertidal environments, which were most likely promoted by extremely dry atmospheric conditions. Rapid sea-level rise characterizes the onset of HE-stadials, causing the continued recruitment of pioneer species, which are the only ones tolerating rapid rates of disturbance. Once sea-level rise decelerates, marsh plants are able to trap and stabilize sediments, favouring the establishment of more competitive species. These results add to the scarce knowledge on the dynamics of tropical salt marsh ecosystems, and provide independent paleoclimatic evidence on sea-level changes following Antarctic climate variability.

  5. Leaf life span plasticity in tropical seedlings grown under contrasting light regimes

    OpenAIRE

    Vincent, Grégoire

    2006-01-01

    Background and Aims The phenotypic plasticity of leaf life span in response to low resource conditions has a potentially large impact on the plant carbon budget, notably in evergreen species not subject to seasonal leaf shedding, but has rarely been well documented. This study evaluates the plasticity of leaf longevity, in terms of its quantitative importance to the plant carbon balance under limiting light. Methods Seedlings of four tropical tree species with contrasting light requirements (...

  6. Halogenated organic species over the tropical South American rainforest

    Directory of Open Access Journals (Sweden)

    S. Gebhardt

    2008-06-01

    Full Text Available Airborne measurements of the halogenated trace gases methyl chloride, methyl bromide and chloroform were conducted over the Atlantic Ocean and about 1000 km of pristine tropical rainforest in Suriname and French Guyana (3–6° N, 51–59° W in October 2005. In the boundary layer (0–1.4 km, maritime air masses, advected over the forest by southeasterly trade winds, were measured at various distances from the coast. Since the organohalogens presented here have relatively long atmospheric lifetimes (0.4–1.0 years in comparison to the advection times from the coast (1–2 days, emissions will accumulate in air traversing the rainforest. The distributions of methyl chloride, methyl bromide and chloroform were analyzed as a function of time the air spent over land and the respective relationship used to determine net fluxes from the rainforest for one week within the long dry season.

    Net fluxes from the rainforest ecosystem have been calculated for methyl chloride and chloroform as 9.5 (±3.8 2σ and 0.35 (±0.15 2σμg m-2 h−1, respectively. No significant flux was observed for methyl bromide within the limits of these measurements.

    The global budget of methyl chloride contains large uncertainties, in particular with regard to a possible source from tropical vegetation. Our measurements are used in a large-scale approach to determine the net flux from a tropical ecosystem to the planetary boundary layer. The obtained global net flux of 1.5 (±0.6 2σ Tg yr-1 for methyl chloride is at the lower end of current estimates for tropical vegetation sources, which helps to constrain the range of tropical sources and sinks (0.82 to 8.2 Tg yr-1 from tropical plants, 0.03 to 2.5 Tg yr-1 from senescent/dead leaves and a sink of 0.1 to 1.6 Tg yr-1 by soil uptake. Nevertheless, these results show that the contribution of the rainforest ecosystem is the major source in the

  7. Strong thermal acclimation of photosynthesis in tropical and temperate wet-forest tree species: the importance of altered Rubisco content.

    Science.gov (United States)

    Scafaro, Andrew P; Xiang, Shuang; Long, Benedict M; Bahar, Nur H A; Weerasinghe, Lasantha K; Creek, Danielle; Evans, John R; Reich, Peter B; Atkin, Owen K

    2017-07-01

    Understanding of the extent of acclimation of light-saturated net photosynthesis (A n ) to temperature (T), and associated underlying mechanisms, remains limited. This is a key knowledge gap given the importance of thermal acclimation for plant functioning, both under current and future higher temperatures, limiting the accuracy and realism of Earth system model (ESM) predictions. Given this, we analysed and modelled T-dependent changes in photosynthetic capacity in 10 wet-forest tree species: six from temperate forests and four from tropical forests. Temperate and tropical species were each acclimated to three daytime growth temperatures (T growth ): temperate - 15, 20 and 25 °C; tropical - 25, 30 and 35 °C. CO 2 response curves of A n were used to model maximal rates of RuBP (ribulose-1,5-bisphosphate) carboxylation (V cmax ) and electron transport (J max ) at each treatment's respective T growth and at a common measurement T (25 °C). SDS-PAGE gels were used to determine abundance of the CO 2 -fixing enzyme, Rubisco. Leaf chlorophyll, nitrogen (N) and mass per unit leaf area (LMA) were also determined. For all species and T growth , A n at current atmospheric CO 2 partial pressure was Rubisco-limited. Across all species, LMA decreased with increasing T growth . Similarly, area-based rates of V cmax at a measurement T of 25 °C (V cmax 25 ) linearly declined with increasing T growth , linked to a concomitant decline in total leaf protein per unit leaf area and Rubisco as a percentage of leaf N. The decline in Rubisco constrained V cmax and A n for leaves developed at higher T growth and resulted in poor predictions of photosynthesis by currently widely used models that do not account for T growth -mediated changes in Rubisco abundance that underpin the thermal acclimation response of photosynthesis in wet-forest tree species. A new model is proposed that accounts for the effect of T growth -mediated declines in V cmax 25 on A n , complementing current

  8. Leaf development and photosynthetic properties of three tropical tree species with delayed greening

    NARCIS (Netherlands)

    Cai, Z.Q.; Slot, M.; Fan, Z.X.

    2005-01-01

    Leaf developmental patterns were characterized for three tropical tree species with delayed greening. Changes in the pigment contents, photosynthetic capacity, stomata development, photosystem 2 efficiency, rate of energy dissipation, and the activity of partial protective enzymes were followed in

  9. Important biological factors for utilizing native plant species

    Science.gov (United States)

    Loren E. Wiesner

    1999-01-01

    Native plant species are valuable resources for revegetation of disturbed ecosystems. The success of these plantings is dependent on the native species selected, quality of seed used, condition of the soil, environmental conditions before and after planting, planting equipment used, time of planting, and other factors. Most native species contain dormant seed. Dormancy...

  10. Changes in photosynthesis and leaf characteristics with tree height in five dipterocarp species in a tropical rain forest.

    Science.gov (United States)

    Kenzo, Tanaka; Ichie, Tomoaki; Watanabe, Yoko; Yoneda, Reiji; Ninomiya, Ikuo; Koike, Takayoshi

    2006-07-01

    Variations in leaf photosynthetic, morphological and biochemical properties with increasing plant height from seedlings to emergent trees were investigated in five dipterocarp species in a Malaysian tropical rain forest. Canopy openness increased significantly with tree height. Photosynthetic properties, such as photosynthetic capacity at light saturation, light compensation point, maximum rate of carboxylation and maximum rate of photosynthetic electron transport, all increased significantly with tree height. Leaf morphological and biochemical traits, such as leaf mass per area, palisade layer thickness, nitrogen concentration per unit area, chlorophyll concentration per unit dry mass and chlorophyll to nitrogen ratio, also changed significantly with tree height. Leaf properties had simple and significant relationships with tree height, with few intra- and interspecies differences. Our results therefore suggest that the photosynthetic capacity of dipterocarp trees depends on tree height, and that the trees adapt to the light environment by adjusting their leaf morphological and biochemical properties. These results should aid in developing models that can accurately estimate carbon dioxide flux and biomass production in tropical rain forests.

  11. Changing drivers of species dominance during tropical forest succession

    NARCIS (Netherlands)

    Lohbeck, M.W.M.; Poorter, L.; Martinez-Ramos, M.; Rodriguez-Valázquez, J.; Breugel, van M.; Bongers, F.

    2014-01-01

    1. Deterministic theories predict that local communities assemble from a regional species pool based on niche differences, thus by plant functional adaptations. We tested whether functional traits can also explain patterns in species dominance among the suite of co-occurring species. 2. We predicted

  12. Nitrate fertilisation does not enhance CO2 responses in two tropical seagrass species.

    Science.gov (United States)

    Ow, Y X; Vogel, N; Collier, C J; Holtum, J A M; Flores, F; Uthicke, S

    2016-03-15

    Seagrasses are often considered "winners" of ocean acidification (OA); however, seagrass productivity responses to OA could be limited by nitrogen availability, since nitrogen-derived metabolites are required for carbon assimilation. We tested nitrogen uptake and assimilation, photosynthesis, growth, and carbon allocation responses of the tropical seagrasses Halodule uninervis and Thalassia hemprichii to OA scenarios (428, 734 and 1213 μatm pCO2) under two nutrients levels (0.3 and 1.9 μM NO3(-)). Net primary production (measured as oxygen production) and growth in H. uninervis increased with pCO2 enrichment, but were not affected by nitrate enrichment. However, nitrate enrichment reduced whole plant respiration in H. uninervis. Net primary production and growth did not show significant changes with pCO2 or nitrate by the end of the experiment (24 d) in T. hemprichii. However, nitrate incorporation in T. hemprichii was higher with nitrate enrichment. There was no evidence that nitrogen demand increased with pCO2 enrichment in either species. Contrary to our initial hypothesis, nutrient increases to levels approximating present day flood plumes only had small effects on metabolism. This study highlights that the paradigm of increased productivity of seagrasses under ocean acidification may not be valid for all species under all environmental conditions.

  13. Nitrate fertilisation does not enhance CO2 responses in two tropical seagrass species

    Science.gov (United States)

    Ow, Y. X.; Vogel, N.; Collier, C. J.; Holtum, J. A. M.; Flores, F.; Uthicke, S.

    2016-03-01

    Seagrasses are often considered “winners” of ocean acidification (OA); however, seagrass productivity responses to OA could be limited by nitrogen availability, since nitrogen-derived metabolites are required for carbon assimilation. We tested nitrogen uptake and assimilation, photosynthesis, growth, and carbon allocation responses of the tropical seagrasses Halodule uninervis and Thalassia hemprichii to OA scenarios (428, 734 and 1213 μatm pCO2) under two nutrients levels (0.3 and 1.9 μM NO3-). Net primary production (measured as oxygen production) and growth in H. uninervis increased with pCO2 enrichment, but were not affected by nitrate enrichment. However, nitrate enrichment reduced whole plant respiration in H. uninervis. Net primary production and growth did not show significant changes with pCO2 or nitrate by the end of the experiment (24 d) in T. hemprichii. However, nitrate incorporation in T. hemprichii was higher with nitrate enrichment. There was no evidence that nitrogen demand increased with pCO2 enrichment in either species. Contrary to our initial hypothesis, nutrient increases to levels approximating present day flood plumes only had small effects on metabolism. This study highlights that the paradigm of increased productivity of seagrasses under ocean acidification may not be valid for all species under all environmental conditions.

  14. Growth of four tropical tree species in petroleum-contaminated soil and effects of crude oil contamination

    NARCIS (Netherlands)

    Pérez-Hernández, I.; Ochoa-Gaona, S.; Adams, R.H.; Rivera-Cruz, M.C.; Pérez-Hernández, V.; Jarquín-Sánchez, A.; Geissen, V.; Martínez-Zurimendi, P.

    2017-01-01

    Under greenhouse conditions, we evaluated establishment of four tree species and their capacity to degrade crude oil recently incorporated into the soil; the species were as follows: Cedrela odorata (tropical cedar), Haematoxylum campechianum (tinto bush), Swietenia macrophylla (mahogany), and

  15. Why some plant species are rare.

    Science.gov (United States)

    Wieger Wamelink, G W; Wamelink, G W Weiger; Goedhart, Paul W; Frissel, Joep; Frissel, Josep Y

    2014-01-01

    Biodiversity, including plant species diversity, is threatened worldwide as a result of anthropogenic pressures such as an increase of pollutants and climate change. Rare species in particular are on the verge of becoming extinct. It is still unclear as to why some plant species are rare and others are not. Are they rare due to: intrinsic reasons, dispersal capacity, the effects of management or abiotic circumstances? Habitat preference of rare plant species may play an important role in determining why some species are rare. Based on an extensive data set of soil parameters we investigated if rarity is due to a narrow habitat preference for abiotic soil parameters. For 23 different abiotic soil parameters, of which the most influential were groundwater-table, soil-pH and nutrient-contents, we estimated species responses for common and rare species. Based on the responses per species we calculated the range of occurrence, the range between the 5 and 95 percentile of the response curve giving the habitat preference. Subsequently, we calculated the average response range for common and rare species. In addition, we designed a new graphic in order to provide a better means for presentation of the results. The habitat preferences of rare species for abiotic soil conditions are significantly narrower than for common species. Twenty of the twenty-three abiotic parameters showed on average significantly narrower habitat preferences for rare species than for common species; none of the abiotic parameters showed on average a narrower habitat preference for common species. The results have major implications for the conservation of rare plant species; accordingly management and nature development should be focussed on the maintenance and creation of a broad range of environmental conditions, so that the requirements of rare species are met. The conservation of (abiotic) gradients within ecosystems is particularly important for preserving rare species.

  16. Staying cool: preadaptation to temperate climates required for colonising tropical alpine-like environments

    Directory of Open Access Journals (Sweden)

    Berit Gehrke

    2018-04-01

    Full Text Available Plant species tend to retain their ancestral ecology, responding to temporal, geographic and climatic changes by tracking suitable habitats rather than adapting to novel conditions. Nevertheless, transitions into different environments or biomes still seem to be common. Especially intriguing are the tropical alpine-like areas found on only the highest mountainous regions surrounded by tropical environments. Tropical mountains are hotspots of biodiversity, often with striking degrees of endemism at higher elevations. On these mountains, steep environmental gradients and high habitat heterogeneity within small spaces coincide with astounding species diversity of great conservation value. The analysis presented here shows that the importance of in situ speciation in tropical alpine-like areas has been underestimated. Additionally and contrary to widely held opinion, the impact of dispersal from other regions with alpine-like environments is relatively minor compared to that of immigration from other biomes with a temperate (but not alpine-like climate. This suggests that establishment in tropical alpine-like regions is favoured by preadaptation to a temperate, especially aseasonal, freezing regime such as the cool temperate climate regions in the Tropics. Furthermore, emigration out of an alpine-like environment is generally rare, suggesting that alpine-like environments – at least tropical ones – are species sinks.

  17. Exotic plant species receive adequate pollinator service despite variable integration into plant-pollinator networks.

    Science.gov (United States)

    Thompson, Amibeth H; Knight, Tiffany M

    2018-05-01

    Both exotic and native plant species rely on insect pollinators for reproductive success, and yet few studies have evaluated whether and how exotic plant species receive services from native pollinators for successful reproduction in their introduced range. Plant species are expected to successfully reproduce in their exotic range if they have low reliance on animal pollinators or if they successfully integrate themselves into resident plant-pollinator networks. Here, we quantify the breeding system, network integration, and pollen limitation for ten focal exotic plant species in North America. Most exotic plant species relied on animal pollinators for reproduction, and these species varied in their network integration. However, plant reproduction was limited by pollen receipt for only one plant species. Our results demonstrate that even poorly integrated exotic plant species can still have high pollination service and high reproductive success. The comprehensive framework considered here provides a method to consider the contribution of plant breeding systems and the pollinator community to pollen limitation, and can be applied to future studies to provide a more synthetic understanding of the factors that determine reproductive success of exotic plant species.

  18. Plant diversity increases with the strength of negative density dependence at the global scale

    Science.gov (United States)

    LaManna, Joseph A.; Mangan, Scott A.; Alonso, Alfonso; Bourg, Norman; Brockelman, Warren Y.; Bunyavejchewin, Sarayudh; Chang, Li-Wan; Chiang, Jyh-Min; Chuyong, George B.; Clay, Keith; Condit, Richard; Cordell, Susan; Davies, Stuart J.; Furniss, Tucker J.; Giardina, Christian P.; Gunatilleke, I.A.U. Nimal; Gunatilleke, C.V. Savitri; He, Fangliang; Howe, Robert W.; Hubbell, Stephen P.; Hsieh, Chang-Fu; Inman-Narahari, Faith M.; Janik, David; Johnson, Daniel J.; Kenfack, David; Korte, Lisa; Kral, Kamil; Larson, Andrew J.; Lutz, James A.; McMahon, Sean M.; McShea, William J.; Memiaghe, Herve R.; Nathalang, Anuttara; Novotny, Vojtech; Ong, Perry S.; Orwig, David A.; Ostertag, Rebecca; Parker, Geoffrey G.; Phillips, Richard P.; Sack, Lawren; Sun, I-Fang; Tello, J. Sebastian; Thomas, Duncan W.; Turner, Benjamin L.; Vela Diaz, Dilys M.; Vrska, Tomas; Weiblen, George D.; Wolf, Amy; Yap, Sandra; Myers, Jonathan A.

    2017-01-01

    Theory predicts that higher biodiversity in the tropics is maintained by specialized interactions among plants and their natural enemies that result in conspecific negative density dependence (CNDD). By using more than 3000 species and nearly 2.4 million trees across 24 forest plots worldwide, we show that global patterns in tree species diversity reflect not only stronger CNDD at tropical versus temperate latitudes but also a latitudinal shift in the relationship between CNDD and species abundance. CNDD was stronger for rare species at tropical versus temperate latitudes, potentially causing the persistence of greater numbers of rare species in the tropics. Our study reveals fundamental differences in the nature of local-scale biotic interactions that contribute to the maintenance of species diversity across temperate and tropical communities.

  19. Applying Climatically Associated Species Pools to modelling compositional change in tropical montane forests

    NARCIS (Netherlands)

    Golicher, J.D.; Cayuela, L.; Alkemade, J.R.M.; González-Espinosa, M.; Ramírez-Marcial, N.

    2008-01-01

    Aim Predictive species distribution modelling is a useful tool for extracting the maximum amount of information from biological collections and floristic inventories. However, in many tropical regions records are only available from a small number of sites. This can limit the application of

  20. Understanding recruitment failure in tropical tree species: Insights from a tree ring study

    NARCIS (Netherlands)

    Vlam, M.; Baker, P.J.; Bunyavejchewin, S.; Mohren, G.M.J.; Zuidema, P.A.

    2014-01-01

    Many tropical tree species have population structures that exhibit strong recruitment failure. While the presence of adult trees indicates that appropriate regeneration conditions occurred in the past, it is often unclear why small individuals are absent. Knowing how, when and where these tree

  1. Thermal adaptation and diversity in tropical ecosystems: evidence from cicadas (Hemiptera, Cicadidae.

    Directory of Open Access Journals (Sweden)

    Allen F Sanborn

    Full Text Available The latitudinal gradient in species diversity is a central problem in ecology. Expeditions covering approximately 16°54' of longitude and 21°4' of latitude and eight Argentine phytogeographic regions provided thermal adaptation data for 64 species of cicadas. We test whether species diversity relates to the diversity of thermal environments within a habitat. There are general patterns of the thermal response values decreasing in cooler floristic provinces and decreasing maximum potential temperature within a habitat except in tropical forest ecosystems. Vertical stratification of the plant communities leads to stratification in species using specific layers of the habitat. There is a decrease in thermal tolerances in species from the understory communities in comparison to middle level or canopy fauna. The understory Herrera umbraphila Sanborn & Heath is the first diurnally active cicada identified as a thermoconforming species. The body temperature for activity in H. umbraphila is less than and significantly different from active body temperatures of all other studied species regardless of habitat affiliation. These data suggest that variability in thermal niches within the heterogeneous plant community of the tropical forest environments permits species diversification as species adapt their physiology to function more efficiently at temperatures different from their potential competitors.

  2. Thermal adaptation and diversity in tropical ecosystems: evidence from cicadas (Hemiptera, Cicadidae).

    Science.gov (United States)

    Sanborn, Allen F; Heath, James E; Phillips, Polly K; Heath, Maxine S; Noriega, Fernando G

    2011-01-01

    The latitudinal gradient in species diversity is a central problem in ecology. Expeditions covering approximately 16°54' of longitude and 21°4' of latitude and eight Argentine phytogeographic regions provided thermal adaptation data for 64 species of cicadas. We test whether species diversity relates to the diversity of thermal environments within a habitat. There are general patterns of the thermal response values decreasing in cooler floristic provinces and decreasing maximum potential temperature within a habitat except in tropical forest ecosystems. Vertical stratification of the plant communities leads to stratification in species using specific layers of the habitat. There is a decrease in thermal tolerances in species from the understory communities in comparison to middle level or canopy fauna. The understory Herrera umbraphila Sanborn & Heath is the first diurnally active cicada identified as a thermoconforming species. The body temperature for activity in H. umbraphila is less than and significantly different from active body temperatures of all other studied species regardless of habitat affiliation. These data suggest that variability in thermal niches within the heterogeneous plant community of the tropical forest environments permits species diversification as species adapt their physiology to function more efficiently at temperatures different from their potential competitors.

  3. Antioxidant content in two CAM bromeliad species as a response to seasonal light changes in a tropical dry deciduous forest.

    Science.gov (United States)

    González-Salvatierra, Claudia; Luis Andrade, José; Escalante-Erosa, Fabiola; García-Sosa, Karlina; Manuel Peña-Rodríguez, Luis

    2010-07-01

    Plants have evolved photoprotective mechanisms to limit photodamage; one of these mechanisms involves the biosynthesis of antioxidant metabolites to neutralize reactive oxygen species generated when plants are exposed to excess light. However, it is known that exposure of plants to conditions of extreme water stress and high light intensity results in their enhanced susceptibility to over-excitation of photosystem II and to photooxidative stress. In this investigation we used the 2,2-diphenyl-1-picrylhydrazyl reduction assay to conduct a broad survey of the effect of water availability and light exposure conditions on the antioxidant activity of the leaf extracts of two bromeliad species showing crassulacean acid metabolism. One of these was an epiphyte, Tillandsia brachycaulos, and the other a terrestrial species, Bromelia karatas. Both species were found growing wild in the tropical dry deciduous forest of Dzibilchaltún National Park, México. The microenvironment of T. brachycaulos and B. karatas experiences significant diurnal and seasonal light variations as well as changes in temperature and water availability. The results obtained showed that, for both bromeliads, increases in antioxidant activity occurred during the dry season, as a consequence of water stress and higher light conditions. Additionally, in T. brachycaulos there was a clear correlation between high light intensity conditions and the content of anthocyanins which accumulated below the leaf epidermis. This result suggests that the role of these pigments is as photoprotective screens in the leaves. The red coloration below the leaf epidermis of B. karatas was not due to anthocyanins but to other unidentified pigments. 2010 Elsevier GmbH. All rights reserved.

  4. Comparative hydraulic architecture of tropical tree species representing a range of successional stages and wood density.

    Science.gov (United States)

    McCulloh, Katherine A; Meinzer, Frederick C; Sperry, John S; Lachenbruch, Barbara; Voelker, Steven L; Woodruff, David R; Domec, Jean-Christophe

    2011-09-01

    Plant hydraulic architecture (PHA) has been linked to water transport sufficiency, photosynthetic rates, growth form and attendant carbon allocation. Despite its influence on traits central to conferring an overall competitive advantage in a given environment, few studies have examined whether key aspects of PHA are indicative of successional stage, especially within mature individuals. While it is well established that wood density (WD) tends to be lower in early versus late successional tree species, and that WD can influence other aspects of PHA, the interaction of WD, successional stage and the consequent implications for PHA have not been sufficiently explored. Here, we studied differences in PHA at the scales of wood anatomy to whole-tree hydraulic conductance in species in early versus late successional Panamanian tropical forests. Although the trunk WD was indistinguishable between the successional groups, the branch WD was lower in the early successional species. Across all species, WD correlated negatively with vessel diameter and positively with vessel packing density. The ratio of branch:trunk vessel diameter, branch sap flux and whole-tree leaf-specific conductance scaled negatively with branch WD across species. Pioneer species showed greater sap flux in branches than in trunks and a greater leaf-specific hydraulic conductance, suggesting that pioneer species can move greater quantities of water at a given tension gradient. In combination with the greater water storage capacitance associated with lower WD, these results suggest these pioneer species can save on the carbon expenditure needed to build safer xylem and instead allow more carbon to be allocated to rapid growth.

  5. No universal scale-dependent impacts of invasive species on native plant species richness.

    Science.gov (United States)

    Stohlgren, Thomas J; Rejmánek, Marcel

    2014-01-01

    A growing number of studies seeking generalizations about the impact of plant invasions compare heavily invaded sites to uninvaded sites. But does this approach warrant any generalizations? Using two large datasets from forests, grasslands and desert ecosystems across the conterminous United States, we show that (i) a continuum of invasion impacts exists in many biomes and (ii) many possible species-area relationships may emerge reflecting a wide range of patterns of co-occurrence of native and alien plant species. Our results contradict a smaller recent study by Powell et al. 2013 (Science 339, 316-318. (doi:10.1126/science.1226817)), who compared heavily invaded and uninvaded sites in three biomes and concluded that plant communities invaded by non-native plant species generally have lower local richness (intercepts of log species richness-log area regression lines) but steeper species accumulation with increasing area (slopes of the regression lines) than do uninvaded communities. We conclude that the impacts of plant invasions on plant species richness are not universal.

  6. A phylogenetic perspective on the individual species-area relationship in temperate and tropical tree communities.

    Science.gov (United States)

    Yang, Jie; Swenson, Nathan G; Cao, Min; Chuyong, George B; Ewango, Corneille E N; Howe, Robert; Kenfack, David; Thomas, Duncan; Wolf, Amy; Lin, Luxiang

    2013-01-01

    Ecologists have historically used species-area relationships (SARs) as a tool to understand the spatial distribution of species. Recent work has extended SARs to focus on individual-level distributions to generate individual species area relationships (ISARs). The ISAR approach quantifies whether individuals of a species tend have more or less species richness surrounding them than expected by chance. By identifying richness 'accumulators' and 'repellers', respectively, the ISAR approach has been used to infer the relative importance of abiotic and biotic interactions and neutrality. A clear limitation of the SAR and ISAR approaches is that all species are treated as evolutionarily independent and that a large amount of work has now shown that local tree neighborhoods exhibit non-random phylogenetic structure given the species richness. Here, we use nine tropical and temperate forest dynamics plots to ask: (i) do ISARs change predictably across latitude?; (ii) is the phylogenetic diversity in the neighborhood of species accumulators and repellers higher or lower than that expected given the observed species richness?; and (iii) do species accumulators, repellers distributed non-randomly on the community phylogenetic tree? The results indicate no clear trend in ISARs from the temperate zone to the tropics and that the phylogenetic diversity surrounding the individuals of species is generally only non-random on very local scales. Interestingly the distribution of species accumulators and repellers was non-random on the community phylogenies suggesting the presence of phylogenetic signal in the ISAR across latitude.

  7. Floristic composition of the dry tropical forest in biological reserve (sanctuary "Los Besotes" and phenology of the dominant arboreal species (Valledupar, Cesar, Colombia

    Directory of Open Access Journals (Sweden)

    Mary Lee Berdugo Lattke

    2015-01-01

    Full Text Available Based on the floristic composition and structural aspects, the formation tropical dry forest of the reserve "Los Besotes" (Valledupar, Cesar; 248 y 1046m of altitude was characterized. In 35 individuals from nine dominant tree species in two forest types, the phenological characteristics were assessed. Seven monitoring were performed along one year according to the scheme of distribution of rainfall. The leaf fall in the forests of Myrcianthes aff. fragrans and Brosimum alicastrum did not exceed 20% regardless of the climatic period (drought or rainy seasons. In others dominant understory species the leaf fall was less than 40%, thus species of the canopy are classified as evergreen while those of the understory as semideciduous. Blooming peaked during the dry season while fruit production peaked during the two rainy seasons. In the forest ofBursera simaruba and Pterocarpus acapulcensis the leaf fall exceeded 60% in the dry season, while in the rainy season was only 30%. The leaf fall increased to 60% in others dominant understory species. Both canopy as well as understory species are deciduous. Blooming was observed during the dry season (December to March, and July, but it is also likely to occur in October; fruit production was observed at the end of the rainy season. In the tropical dry forest formation evergreen plant communities with low values of leaf fall (40% and deciduous communities with values greater than 60% are recognized.

  8. CpDNA-based species identification and phylogeography: application to African tropical tree species.

    Science.gov (United States)

    Duminil, J; Heuertz, M; Doucet, J-L; Bourland, N; Cruaud, C; Gavory, F; Doumenge, C; Navascués, M; Hardy, O J

    2010-12-01

    Despite the importance of the African tropical rainforests as a hotspot of biodiversity, their history and the processes that have structured their biodiversity are understood poorly. With respect to past demographic processes, new insights can be gained through characterizing the distribution of genetic diversity. However, few studies of this type have been conducted in Central Africa, where the identification of species in the field can be difficult. We examine here the distribution of chloroplast DNA (cpDNA) diversity in Lower Guinea in two tree species that are difficult to distinguish, Erythrophleum ivorense and Erythrophleum suaveolens (Fabaceae). By using a blind-sampling approach and comparing molecular and morphological markers, we first identified retrospectively all sampled individuals and determined the limits of the distribution of each species. We then performed a phylogeographic study using the same genetic data set. The two species displayed essentially parapatric distributions that were correlated well with the rainfall gradient, which indicated different ecological requirements. In addition, a phylogeographic structure was found for E. suaveolens and, for both species, substantially higher levels of diversity and allelic endemism were observed in the south (Gabon) than in the north (Cameroon) of the Lower Guinea region. This finding indicated different histories of population demographics for the two species, which might reflect different responses to Quaternary climate changes. We suggest that a recent period of forest perturbation, which might have been caused by humans, favoured the spread of these two species and that their poor recruitment at present results from natural succession in their forest formations. © 2010 Blackwell Publishing Ltd.

  9. Phytoprotective effect of arbuscular mycorrhizal fungi species against arsenic toxicity in tropical leguminous species.

    Science.gov (United States)

    de Melo, Rangel Wesley; Schneider, Jerusa; de Souza, Costa Enio Tarso; Sousa, Soares Cláudio Roberto Fonsêca; Guimarães, Guilherme Luiz Roberto; de Souza, Moreira Fatima Maria

    2014-01-01

    Arbuscular mycorrhizal fungi (AMF) improve the tolerance of hosting plants to arsenic (As) in contaminated soils. This work assessed the phytoprotective effect of Glomus etunicatum, Acaulospora morrowiae, Gigaspora gigantea, and Acaulospora sp. on four leguminous species (Acacia mangium, Crotalaria juncea, Enterolobium contortisiliquum, and Stizolobium aterrimum) in an As-contaminated soil from a gold mining area. AMF root colonization, biomass production, As and P accumulation, as well as arsenic translocation index (TI) from roots to shoots were measured. The AMF phytoprotective effect was assessed by the P/As ratio and the activity of plant antioxidant enzymes. The AMF colonization ranged from 24 to 28%. In general, all leguminous species had low As TI when inoculated with AMF species. Inoculation of C. juncea with Acaulospora sp. improved significantly As accumulation in roots, and decreased the activity of ascorbate peroxidase (APX) and superoxide dismutase (SOD), highlighting its phytoprotective effect and the potential use of this symbiosis for phytoremediation of As-contaminated soils. However, S. aterrimum has also shown a potential for phytoremediation irrespectively of AMF inoculation. APX was a good indicator of the phytoprotective effect against As contamination in C. juncea and A. mangium. In general P/As ratio in shoots was the best indicator of the phytoprotective effect of all AMF species in all plant species.

  10. Ecological impacts of tropical forest fragmentation: how consistent are patterns in species richness and nestedness?

    Science.gov (United States)

    Hill, Jane K; Gray, Michael A; Khen, Chey Vun; Benedick, Suzan; Tawatao, Noel; Hamer, Keith C

    2011-11-27

    Large areas of tropical forest now exist as remnants scattered across agricultural landscapes, and so understanding the impacts of forest fragmentation is important for biodiversity conservation. We examined species richness and nestedness among tropical forest remnants in birds (meta-analysis of published studies) and insects (field data for fruit-feeding Lepidoptera (butterflies and moths) and ants). Species-area relationships were evident in all four taxa, and avian and insect assemblages in remnants typically were nested subsets of those in larger areas. Avian carnivores and nectarivores and predatory ants were more nested than other guilds, implying that the sequential loss of species was more predictable in these groups, and that fragmentation alters the trophic organization of communities. For butterflies, the ordering of fragments to achieve maximum nestedness was by fragment area, suggesting that differences among fragments were driven mainly by extinction. In contrast for moths, maximum nestedness was achieved by ordering species by wing length; species with longer wings (implying better dispersal) were more likely to occur at all sites, including low diversity sites, suggesting that differences among fragments were driven more strongly by colonization. Although all four taxa exhibited high levels of nestedness, patterns of species turnover were also idiosyncratic, and thus even species-poor sites contributed to landscape-scale biodiversity, particularly for insects.

  11. Meaningful traits for grouping plant species across arid ecosystems.

    Science.gov (United States)

    Bär Lamas, Marlene Ivonne; Carrera, A L; Bertiller, M B

    2016-05-01

    Grouping species may provide some degree of simplification to understand the ecological function of plants on key ecosystem processes. We asked whether groups of plant species based on morpho-chemical traits associated with plant persistence and stress/disturbance resistance reflect dominant plant growth forms in arid ecosystems. We selected twelve sites across an aridity gradient in northern Patagonia. At each site, we identified modal size plants of each dominant species and assessed specific leaf area (SLA), plant height, seed mass, N and soluble phenol concentration in green and senesced leaves at each plant. Plant species were grouped according with plant growth forms (perennial grasses, evergreen shrubs and deciduous shrubs) and plant morphological and/or chemical traits using cluster analysis. We calculated mean values of each plant trait for each species group and plant growth form. Plant growth forms significantly differed among them in most of the morpho-chemical traits. Evergreen shrubs were tall plants with the highest seed mass and soluble phenols in leaves, deciduous shrubs were also tall plants with high SLA and the highest N in leaves, and perennial grasses were short plants with high SLA and low concentration of N and soluble phenols in leaves. Grouping species by the combination of morpho-chemical traits yielded 4 groups in which species from one growth form prevailed. These species groups differed in soluble phenol concentration in senesced leaves and plant height. These traits were highly correlated. We concluded that (1) plant height is a relevant synthetic variable, (2) growth forms adequately summarize ecological strategies of species in arid ecosystems, and (3) the inclusion of plant morphological and chemical traits related to defenses against environmental stresses and herbivory enhanced the potential of species grouping, particularly within shrubby growth forms.

  12. Nitrogen, phosphorus, and cation use efficiency in stands of regenerating tropical dry forest.

    Science.gov (United States)

    Waring, Bonnie G; Becknell, Justin M; Powers, Jennifer S

    2015-07-01

    Plants on infertile soils exhibit physiological and morphological traits that support conservative internal nutrient cycling. However, potential trade-offs among use efficiencies for N, P, and cations are not well explored in species-rich habitats where multiple elements may limit plant production. We examined uptake efficiency and use efficiency of N, P, K, Ca, Mg, Al, and Na in plots of regenerating tropical dry forests spanning a gradient of soil fertility. Our aim was to determine whether plant responses to multiple elements are correlated, or whether there are trade-offs among exploitation strategies across stands varying in community composition, soil quality, and successional stage. For all elements, both uptake efficiency and use efficiency decreased as availability of the corresponding element increased. Plant responses to N, Na, and Al were uncoupled from uptake and use efficiencies for P and essential base cations, which were tightly correlated. N and P use efficiencies were associated with shifts in plant species composition along the soil fertility gradient, and there was also a trend towards increasing N use efficiency with stand age. N uptake efficiency was positively correlated with the abundance of tree species that associate with ectomycorrhizal fungi. Taken together, our results suggest that successional processes and local species composition interact to regulate plant responses to availability of multiple resources. Successional tropical dry forests appear to employ different strategies to maximize response to N vs. P and K.

  13. INVENTORY OF THE INVASIVE ALIE N PLANT SPECIES IN INDONESIA

    Directory of Open Access Journals (Sweden)

    SRI S UDARMIYATI T JITROSOEDIRDJO

    2005-01-01

    Full Text Available An inventory of the alien plant species in Indone sia based on the existing references and herbarium specimens concluded that 1936 alien plant species ar e found in Indonesia which belong to 187 families. Field studies should be done to get the complete figur es of alien plant species in Indonesia. Based on the existing figures of the plant species, the invasive alien plant species can be iden tified, followed by studies on the assessment of losses, biology, management and their possible utilizations. Alien plant species are imported to Indonesia for cultivation, collection of the botanical garden, as experimental plants or other curiosities. Aside from plants purposely imported, there are also introduced plant propagules conta-minating imported agricultural products. These alien plant species can be beneficial or have a potential of being invasive. The alien cultivated species consisted of 67% of the total number. More than half of the cultivated plants are ornamental plants. Some of th e species are naturalized or escaped from cultivation and become wild and invasive. Some other natura lized species, adapted well without any problems of invasion. There are 339 species or 17% of the species r ecorded as weeds. The highest record of weeds is found in the family of Poaceae (57 species, follo wed by Asteraceae (53 species and Cyperaceae (35 species. There are 6 families having more than 10 species of weeds: Amaranthaceae, Asteraceae, Cyperaceae, Euphorbiaceae, Poaceae, and Rubiaceae. Three families have more than 100 species: Asteraceae 162 species, Poaceae 120 species, and Papillionaceae 103 species. Five species of aquatic and 20 species of terrestrial plants considered as important alien plant species in Indonesia were identified and some of their distributions noted

  14. Tropical rainforest biome of Biosphere 2. Structure, composition and results of the first 2 years of operation

    Energy Technology Data Exchange (ETDEWEB)

    Leigh, Linda S. [Systems Ecology and Energy Analysis Program, Department of Environmental Engineering Sciences, University of Florida, Gainesville, FL (United States); Burgess, Tony; Marino, Bruno D.V.; Wei, Yong Dan [Biosphere 2 Center, Inc. P.O. Box 689, Oracle, AZ (United States)

    1999-06-01

    The tropical rainforest biome in the Biosphere 2 mesocosm was managed with rainfall and temperature conditions to simulate a natural rainforest typical of the new world tropics. The establishment of the biome was based on the introduction of excessive numbers of species allowing self-organization of an ecologically unique rainforest. Over 282 species of plants from rainforest areas were planted within the topographically diverse rainforest biome (area of 1900 m{sup 2}, volume of 35,000 m{sup 3}), just before the Biosphere 2 closure in 1991. Approximately 61% of these species survived when counted in 1993, representing a plant species richness reduction to 172 species in 0.19 hectare. Rank order graphs show that a high diversity community resulted not unlike insular rainforests. The plants of the rainforest mesocosm, however, grew under anomalous conditions of soil (amended desert grassland soil), atmospheric composition (CO{sub 2} up to 4500 ppm by volume (ppmv)) and rainwater composition (high salinity and nutrients). Stem growth rates of a dominant canopy tree, Cecropia, were up to four times higher but had reduced diameter at breast height compared to natural counterparts. Human intervention in plant succession was also an important factor in shaping the ecology of the rainforest biome of Biosphere 2

  15. Specific and generic stem biomass and volume models of tree species in a West African tropical semi-deciduous forest

    DEFF Research Database (Denmark)

    Goussanou, Cédric A.; Guendehou, Sabin; Assogbadjo, Achille E.

    2016-01-01

    The quantification of the contribution of tropical forests to global carbon stocks and climate change mitigation requires availability of data and tools such as allometric equations. This study made available volume and biomass models for eighteen tree species in a semi-deciduous tropical forest...... in West Africa. Generic models were also developed for the forest ecosystem, and basic wood density determined for the tree species. Non-destructive sampling approach was carried out on five hundred and one sample trees to analyse stem volume and biomass. From the modelling of volume and biomass...... enabled to conclude that the non-destructive sampling was a good approach to determining reliable basic wood density. The comparative analysis of species-specific models in this study with selected generic models for tropical forests indicated low probability to identify effective generic models with good...

  16. Inventory of the Invasive Alien Plant Species in Indonesia

    OpenAIRE

    TJITROSOEDIRDJO, SRI SUDARMIYATI

    2005-01-01

    An inventory of the alien plant species in Indonesia based on the existing references and herbarium specimens concluded that 1936 alien plant species are found in Indonesia which belong to 187 families. Field studies should be done to get the complete figures of alien plant species in Indonesia. Based on the existing figures of the plant species, the invasive alien plant species can be identified, followed by studies on the assessment of losses, biology, management and their possible utilizat...

  17. Transpiration efficiency over an annual cycle, leaf gas exchange and wood carbon isotope ratio of three tropical tree species.

    Science.gov (United States)

    Cernusak, Lucas A; Winter, Klaus; Aranda, Jorge; Virgo, Aurelio; Garcia, Milton

    2009-09-01

    Variation in transpiration efficiency (TE) and its relationship with the stable carbon isotope ratio of wood was investigated in the saplings of three tropical tree species. Five individuals each of Platymiscium pinnatum (Jacq.) Dugand, Swietenia macrophylla King and Tectona grandis Linn. f. were grown individually in large (760 l) pots over 16 months in the Republic of Panama. Cumulative transpiration was determined by repeatedly weighing the pots with a pallet truck scale. Dry matter production was determined by destructive harvest. The TE, expressed as experiment-long dry matter production divided by cumulative water use, averaged 4.1, 4.3 and 2.9 g dry matter kg(-1) water for P. pinnatum, S. macrophylla and T. grandis, respectively. The TE of T. grandis was significantly lower than that of the other two species. Instantaneous measurements of the ratio of intercellular to ambient CO(2) partial pressures (c(i)/c(a)), taken near the end of the experiment, explained 66% of variation in TE. Stomatal conductance was lower in S. macrophylla than in T. grandis, whereas P. pinnatum had similar stomatal conductance to T. grandis, but with a higher photosynthetic rate. Thus, c(i)/c(a) and TE appeared to vary in response to both stomatal conductance and photosynthetic capacity. Stem-wood delta(13)C varied over a relatively narrow range of just 2.2 per thousand, but still explained 28% of variation in TE. The results suggest that leaf-level processes largely determined variation among the three tropical tree species in whole-plant water-use efficiency integrated over a full annual cycle.

  18. Screening Study of Leaf Terpene Concentration of 75 Borneo Rainforest Plant Species: Relationships with Leaf Elemental Concentrations and Morphology

    Directory of Open Access Journals (Sweden)

    Jordi Sardans

    2015-01-01

    Full Text Available Terpenes confer advantage in plant protection against abiotic stresses such as heat and drought and biotic stresses such as herbivore and pathogen attack. We conducted a screening of leaf mono- and sesquiterpene concentrations in 75 common woody plant species in the rainforest of Danum Valley (Borneo. Terpene compounds were found in 73 out of the 75 analysed species. Similar or lower proportions have been reported in other parts of the world. To our knowledge, this study reports for the first time the foliar concentration of mono- and/or sesquiterpene for 71 species and 39 genera not previously analyzed. Altogether 80 terpene compounds were determined across the species, and out of these only linalool oxide and (E- g -bisabolene had phylogenetic signal. A significant negative relationship between leaf monoterpene concentration and leaf length was observed, but leaf mono- and sesquitepene concentration were not related to any other leaf morphological trait nor to leaf elemental composition. Functions such as temperature protection, radiation protection or signaling and communication could underlie the high frequency of terpene-containing species of this tropical ecosystem which has multiple and very diverse interactions among multiple species.

  19. Do invasive plant species alter soil health?

    Science.gov (United States)

    Invasive species may alter soil characteristics or interact with the soil microbial community to yield a competitive advantage. Our objectives were to determine: if invasive plant species alter soil properties important to soil health; and the long-term effects of invasive plant species on soil pro...

  20. New species of Cylindrocladiella from plantation soils in South-East Asia

    NARCIS (Netherlands)

    Pham, Nam Q.; Barnes, Irene; Chen, ShuaiFei; Pham, Thu Q.; Lombard, Lorenzo; Crous, Pedro W.; Wingfield, Michael J.

    2018-01-01

    Cylindrocladiella spp. are widely distributed especially in tropical and sub-tropical regions, where they are mainly known as saprobes although some species are plant pathogens. Very little is known about these fungi in South-East Asia. The aim of this study was to identify a collection of

  1. Oceanographic mechanisms that possibly explain dominance of neritic-tropical zooplankton species assemblages around the Islas Marías Archipelago, Mexico

    Directory of Open Access Journals (Sweden)

    Jaime Gómez-Gutiérrez

    2014-11-01

    Full Text Available The nearshore zooplankton species assemblage, identified per taxonomic groups (20 and per species for 12 selected groups, was analyzed from samples collected during November 2010 at four volcanic islands of the Islas Marías Archipelago (IMA, located 90-120 km offshore Nayarit, Mexico. From chlorophyll-a concentration and zooplankton biovolume perspective mesotrophic conditions prevailed in comparison with the Gulf of California during November. Crustaceans numerically dominated the zooplankton assemblage (92.3% [Copepoda (79.2%, Decapoda larvae (4.7%, Cladocera (3.7%, Mysidacea (2.7%, and Euphausiacea (2.0%]. The other 15 taxonomic groups (7.7% combined accounted each one less than 1.5% of the relative abundance. Species richness of selected taxa (~56%> included 259 taxa (121 identified to species, 117 to genus, and 21 not identified. Tropical species from neritic affinity clearly dominated zooplankton assemblage around IMA. Five tropical Copepoda species [Calanopia minor (Dana, Clausocalanus jobei Frost & Fleminger, Acrocalanus gibber Giesbrecht, Canthocalanus pauper (Giesbrecht, and Centropages furcatus (Dana], a cladoceran Pseudevadne tergestina (Claus, and a Mysidacea species (Mysidium reckettsi Harrison & Bowman dominated the zooplankton assemblage (accounting about 55% of total abundance of the identified species. Except C. furcatus, all these species are not abundant at oceanic regions of the central and northern Gulf of California. The similarity of multiple neritic and tropical species in the zooplankton assemblage from IMA and Cape Corrientes suggests strong coastal-insular plankton connectivity. Episodic current plumes associated with anomalous intense rivers discharge during rainy years, eddies generated by coastal upwelling event that move offshore, and northward regional oceanic circulation are the most likely mesoscale oceanographic processes that cause costal tropical zooplankton drift enhancing coastal-Archipelago species

  2. Exploiting water versus tolerating drought: water-use strategies of trees in a secondary successional tropical dry forest.

    Science.gov (United States)

    Pineda-García, Fernando; Paz, Horacio; Meinzer, Frederick C; Angeles, Guillermo

    2016-02-01

    In seasonal plant communities where water availability changes dramatically both between and within seasons, understanding the mechanisms that enable plants to exploit water pulses and to survive drought periods is crucial. By measuring rates of physiological processes, we examined the trade-off between water exploitation and drought tolerance among seedlings of trees of a tropical dry forest, and identified biophysical traits most closely associated with plant water-use strategies. We also explored whether early and late secondary successional species occupy different portions of trade-off axes. As predicted, species that maintained carbon capture, hydraulic function and leaf area at higher plant water deficits during drought had low photosynthetic rates, xylem hydraulic conductivity and growth rate under non-limiting water supply. Drought tolerance was associated with more dense leaf, stem and root tissues, whereas rapid resource acquisition was associated with greater stem water storage, larger vessel diameter and larger leaf area per mass invested. We offer evidence that the water exploitation versus drought tolerance trade-off drives species differentiation in the ability of tropical dry forest trees to deal with alternating water-drought pulses. However, we detected no evidence of strong functional differentiation between early and late successional species along the proposed trade-off axes, suggesting that the environmental gradient of water availability across secondary successional habitats in the dry tropics does not filter out physiological strategies of water use among species, at least at the seedling stage. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  3. Former land-use and tree species affect nitrogen oxide emissions from a tropical dry forest.

    Science.gov (United States)

    Heather Erickson; Eric A. Davidson; Michael Keller

    2002-01-01

    Species composition in successional dry forests in the tropics varies widely, but the effect of this variation on biogeochemical processes is not well known. We examined fluxes of N oxides (nitrous and nitric oxide), soil N cycling, and litter chemistry (C/N ratio) in four successional dry forests on similar soils in western Puerto Rico with differing species...

  4. Spatial patterns of primary productivity derived from the Dynamic Habitat Indices predict patterns of species richness and distributions in the tropics

    Science.gov (United States)

    Suttidate, Naparat

    Humans are changing the Earth's ecosystems, which has profound consequences for biodiversity. To understand how species respond to these changes, biodiversity science requires accurate assessments of biodiversity. However, biodiversity assessments are still limited in tropical regions. The Dynamic Habitat Indices (DHIs), derived from satellite data, summarize dynamic patterns of annual primary productivity: (a) cumulative annual productivity, (b) minimum annual productivity, and (c) seasonal variation in productivity. The DHIs have been successfully used in temperate regions, but not yet in the tropics. My goal was to evaluate the importance of primary productivity measured via the DHIs for assessing patterns of species richness and distributions in Thailand. First, I assessed the relationships between the DHIs and tropical bird species richness. I also evaluated the complementarity of the DHIs and topography, climate, latitudinal gradients, habitat heterogeneity, and habitat area in explaining bird species richness. I found that among three DHIs, cumulative annual productivity was the most important factor in explaining bird species richness and that the DHIs outperformed other environmental variables. Second, I developed texture measures derive from DHI cumulative annual productivity, and compared them to habitat composition and fragmentation as predictors of tropical forest bird distributions. I found that adding texture measures to habitat composition and fragmentation models improved the prediction of tropical bird distributions, especially area- and edge-sensitive tropical forest bird species. Third, I predicted the effects of trophic interactions between primary productivity, prey, and predators in relation to habitat connectivity for Indochinese tigers (Panthera tigris). I found that including trophic interactions improved habitat suitability models for tigers. However, tiger habitat is highly fragmented with few dispersal corridors. I also identified

  5. Species interactions and plant polyploidy.

    Science.gov (United States)

    Segraves, Kari A; Anneberg, Thomas J

    2016-07-01

    Polyploidy is a common mode of speciation that can have far-reaching consequences for plant ecology and evolution. Because polyploidy can induce an array of phenotypic changes, there can be cascading effects on interactions with other species. These interactions, in turn, can have reciprocal effects on polyploid plants, potentially impacting their establishment and persistence. Although there is a wealth of information on the genetic and phenotypic effects of polyploidy, the study of species interactions in polyploid plants remains a comparatively young field. Here we reviewed the available evidence for how polyploidy may impact many types of species interactions that range from mutualism to antagonism. Specifically, we focused on three main questions: (1) Does polyploidy directly cause the formation of novel interactions not experienced by diploids, or does it create an opportunity for natural selection to then form novel interactions? (2) Does polyploidy cause consistent, predictable changes in species interactions vs. the evolution of idiosyncratic differences? (3) Does polyploidy lead to greater evolvability in species interactions? From the scarce evidence available, we found that novel interactions are rare but that polyploidy can induce changes in pollinator, herbivore, and pathogen interactions. Although further tests are needed, it is likely that selection following whole-genome duplication is important in all types of species interaction and that there are circumstances in which polyploidy can enhance the evolvability of interactions with other species. © 2016 Botanical Society of America.

  6. Vascular flora of Kenya, based on the Flora of Tropical East Africa

    Directory of Open Access Journals (Sweden)

    Yadong Zhou

    2017-11-01

    Full Text Available Kenya, an African country with major higher plant diversity, has a corresponding diversity of plant associations, because of the wide geographic distribution, diverse climatic conditions and soil types. In this article, all vascular plants of Kenya were counted based on the completed "Flora of Tropical East Africa (FTEA", and all families and genera were revised using recent molecular systematics research, forming a "Synoptic List of Families and Genera of Kenyan Vascular Plants (SLFGKVP". In total, there are 225 families, 1538 genera and 6293 indigenous species and and 62 families, 302 genera and 588 exotic species in Kenya. The Fabaceae with 98 genera and 576 Species is the largest family. Two of the seven plant distribution regions of Kenya, K4 and K7 are the most species-richest areas with regard to both total and endemic species, with 3375 and 3191 total species and 174 and 185 endemic species in K4 and K7 respectively. While, K3 and K5 have the highest density of both total and endemic species. K1 has the lowest density of total species, and K2 has the lowest density of endemic species.

  7. [Psychoactive plant species--actual list of plants prohibited in Poland].

    Science.gov (United States)

    Simonienko, Katarzyna; Waszkiewicz, Napoleon; Szulc, Agata

    2013-01-01

    According to the Act on Counteracting Drug Addiction (20-th of March, 2009, Dz. U. Nr 63 poz. 520.) the list of federally prohibited plants in Poland was expanded to include 16 new species. Until that time the only illegal plant materials were cannabis, papaver, coca and most of their products. The actual list of herbal narcotics includes species which significantly influence on the central nervous system work but which are rarely described in the national literature. The plants usually come from distant places, where--among primeval cultures--are used for ritual purposes. In our civilization the plants are usually used experimentally, recreationally or to gain particular narcotic effects. The results of the consumption vary: they can be specific or less typical, imitate other substances intake, mental disorders or different pathological states. The plant active substances can interact with other medicaments, be toxic to internal organs, cause serious threat to health or even death. This article describes the sixteen plant species, which are now prohibited in Poland, their biochemical ingredients and their influence on the human organism.

  8. Genomics approaches to unlock the high yield potential of cassava, a tropical model plant

    Directory of Open Access Journals (Sweden)

    Shengkui ZHANG,Ping'an MA,Haiyan WANG,Cheng LU,Xin CHEN,Zhiqiang XIA,Meiling ZOU,Xinchen ZHOU,Wenquan WANG

    2014-12-01

    Full Text Available Cassava, a tropical food, feed and biofuel crop, has great capacity for biomass accumulation and an extraordinary efficiency in water use and mineral nutrition, which makes it highly suitable as a model plant for tropical crops. However, the understanding of the metabolism and genomics of this important crop is limited. The recent breakthroughs in the genomics of cassava, including whole-genome sequencing and transcriptome analysis, as well as advances in the biology of photosynthesis, starch biosynthesis, adaptation to drought and high temperature, and resistance to virus and bacterial diseases, are reviewed here. Many of the new developments have come from comparative analyses between a wild ancestor and existing cultivars. Finally, the current challenges and future potential of cassava as a model plant are discussed.

  9. Spatial distribution of seeds and seedlings of two tropical tree species: Is there correspondence between patterns?

    International Nuclear Information System (INIS)

    Parrado Rosselli, Angela

    2007-01-01

    The spatial patterns of seed and seedling distribution relative to parent trees (seed and seedling shadow, respectively) were studied for Dacryodes chimantensis (Burseraceae) and Brosimum utile (Moraceae), two common tree species of terra firme forests of Colombian Amazonia. The general objective was to assess whether the patterns imposed by seed dispersal change or persist in subsequent life stages occurring during the transition from seeds/saplings to adult stages. Seed and seedling shadows on the ground were characterized for each tree species along four 50-m radial transects from the base of the parent tree. Causes of seed and seedling predation as a function of distance to the parent tree were determined, as well as the spatial consistency between life stages. Results showed that seed density of both Dacryodes and Brosimum declined leptokurtically with distance, and it was skewed towards the parent tree. However, seed density was more skewed and leptokurtic in Dacryodes than in Brosimum. The overall trend was maintained in the seedling stage of both species and was positively correlated with the distribution patterns of seeds. Seed and seedling predation were positively correlated with density and negatively correlated with the distance from the parent tree. Factors that could be generating the high consistency between the spatial patterns of seed and seedling distribution are discussed, as well as its implications in the population structure of both species and the debate on the factors that influence the spatial distribution of plant species in tropical rain forests.

  10. The Invasive Plant Species Education Guide

    Science.gov (United States)

    Mason, Kevin; James, Krista; Carlson, Kitrina; D'Angelo, Jean

    2010-01-01

    To help high school students gain a solid understanding of invasive plant species, university faculty and students from the University of Wisconsin-Stout (UW-Stout) and a local high school teacher worked together to develop the Invasive Plant Species (IPS) Education Guide. The IPS Education Guide includes nine lessons that give students an…

  11. A biogeographical study on tropical flora of southern China.

    Science.gov (United States)

    Zhu, Hua

    2017-12-01

    The tropical climate in China exists in southeastern Xizang (Tibet), southwestern to southeastern Yunnan, southwestern Guangxi, southern Guangdon, southern Taiwan, and Hainan, and these southern Chinese areas contain tropical floras. I checked and synonymized native seed plants from these tropical areas in China and recognized 12,844 species of seed plants included in 2,181 genera and 227 families. In the tropical flora of southern China, the families are mainly distributed in tropical areas and extend into temperate zones and contribute to the majority of the taxa present. The genera with tropical distributions also make up the most of the total flora. In terms of geographical elements, the genera with tropical Asian distribution constitute the highest proportion, which implies tropical Asian or Indo-Malaysia affinity. Floristic composition and geographical elements are conspicuous from region to region due to different geological history and ecological environments, although floristic similarities from these regions are more than 90% and 64% at the family and generic levels, respectively, but lower than 50% at specific level. These differences in the regional floras could be influenced by historical events associated with the uplift of the Himalayas, such as the southeastward extrusion of the Indochina geoblock, clockwise rotation and southeastward movement of Lanping-Simao geoblock, and southeastward movement of Hainan Island. The similarity coefficients between the flora of southern China and those of Indochina countries are more than 96% and 80% at family and generic levels, indicating their close floristic affinity and inclusion in the same biogeographically floristic unit.

  12. Estimating the global conservation status of more than 15,000 Amazonian tree species

    Science.gov (United States)

    ter Steege, Hans; Pitman, Nigel C. A.; Killeen, Timothy J.; Laurance, William F.; Peres, Carlos A.; Guevara, Juan Ernesto; Salomão, Rafael P.; Castilho, Carolina V.; Amaral, Iêda Leão; de Almeida Matos, Francisca Dionízia; de Souza Coelho, Luiz; Magnusson, William E.; Phillips, Oliver L.; de Andrade Lima Filho, Diogenes; de Jesus Veiga Carim, Marcelo; Irume, Mariana Victória; Martins, Maria Pires; Molino, Jean-François; Sabatier, Daniel; Wittmann, Florian; López, Dairon Cárdenas; da Silva Guimarães, José Renan; Mendoza, Abel Monteagudo; Vargas, Percy Núñez; Manzatto, Angelo Gilberto; Reis, Neidiane Farias Costa; Terborgh, John; Casula, Katia Regina; Montero, Juan Carlos; Feldpausch, Ted R.; Honorio Coronado, Euridice N.; Montoya, Alvaro Javier Duque; Zartman, Charles Eugene; Mostacedo, Bonifacio; Vasquez, Rodolfo; Assis, Rafael L.; Medeiros, Marcelo Brilhante; Simon, Marcelo Fragomeni; Andrade, Ana; Camargo, José Luís; Laurance, Susan G. W.; Nascimento, Henrique Eduardo Mendonça; Marimon, Beatriz S.; Marimon, Ben-Hur; Costa, Flávia; Targhetta, Natalia; Vieira, Ima Célia Guimarães; Brienen, Roel; Castellanos, Hernán; Duivenvoorden, Joost F.; Mogollón, Hugo F.; Piedade, Maria Teresa Fernandez; Aymard C., Gerardo A.; Comiskey, James A.; Damasco, Gabriel; Dávila, Nállarett; García-Villacorta, Roosevelt; Diaz, Pablo Roberto Stevenson; Vincentini, Alberto; Emilio, Thaise; Levis, Carolina; Schietti, Juliana; Souza, Priscila; Alonso, Alfonso; Dallmeier, Francisco; Ferreira, Leandro Valle; Neill, David; Araujo-Murakami, Alejandro; Arroyo, Luzmila; Carvalho, Fernanda Antunes; Souza, Fernanda Coelho; do Amaral, Dário Dantas; Gribel, Rogerio; Luize, Bruno Garcia; Pansonato, Marcelo Petrati; Venticinque, Eduardo; Fine, Paul; Toledo, Marisol; Baraloto, Chris; Cerón, Carlos; Engel, Julien; Henkel, Terry W.; Jimenez, Eliana M.; Maas, Paul; Mora, Maria Cristina Peñuela; Petronelli, Pascal; Revilla, Juan David Cardenas; Silveira, Marcos; Stropp, Juliana; Thomas-Caesar, Raquel; Baker, Tim R.; Daly, Doug; Paredes, Marcos Ríos; da Silva, Naara Ferreira; Fuentes, Alfredo; Jørgensen, Peter Møller; Schöngart, Jochen; Silman, Miles R.; Arboleda, Nicolás Castaño; Cintra, Bruno Barçante Ladvocat; Valverde, Fernando Cornejo; Di Fiore, Anthony; Phillips, Juan Fernando; van Andel, Tinde R.; von Hildebrand, Patricio; Barbosa, Edelcilio Marques; de Matos Bonates, Luiz Carlos; de Castro, Deborah; de Sousa Farias, Emanuelle; Gonzales, Therany; Guillaumet, Jean-Louis; Hoffman, Bruce; Malhi, Yadvinder; de Andrade Miranda, Ires Paula; Prieto, Adriana; Rudas, Agustín; Ruschell, Ademir R.; Silva, Natalino; Vela, César I. A.; Vos, Vincent A.; Zent, Eglée L.; Zent, Stanford; Cano, Angela; Nascimento, Marcelo Trindade; Oliveira, Alexandre A.; Ramirez-Angulo, Hirma; Ramos, José Ferreira; Sierra, Rodrigo; Tirado, Milton; Medina, Maria Natalia Umaña; van der Heijden, Geertje; Torre, Emilio Vilanova; Vriesendorp, Corine; Wang, Ophelia; Young, Kenneth R.; Baider, Claudia; Balslev, Henrik; de Castro, Natalia; Farfan-Rios, William; Ferreira, Cid; Mendoza, Casimiro; Mesones, Italo; Torres-Lezama, Armando; Giraldo, Ligia Estela Urrego; Villarroel, Daniel; Zagt, Roderick; Alexiades, Miguel N.; Garcia-Cabrera, Karina; Hernandez, Lionel; Huamantupa-Chuquimaco, Isau; Milliken, William; Cuenca, Walter Palacios; Pansini, Susamar; Pauletto, Daniela; Arevalo, Freddy Ramirez; Sampaio, Adeilza Felipe; Valderrama Sandoval, Elvis H.; Gamarra, Luis Valenzuela

    2015-01-01

    Estimates of extinction risk for Amazonian plant and animal species are rare and not often incorporated into land-use policy and conservation planning. We overlay spatial distribution models with historical and projected deforestation to show that at least 36% and up to 57% of all Amazonian tree species are likely to qualify as globally threatened under International Union for Conservation of Nature (IUCN) Red List criteria. If confirmed, these results would increase the number of threatened plant species on Earth by 22%. We show that the trends observed in Amazonia apply to trees throughout the tropics, and we predict that most of the world’s >40,000 tropical tree species now qualify as globally threatened. A gap analysis suggests that existing Amazonian protected areas and indigenous territories will protect viable populations of most threatened species if these areas suffer no further degradation, highlighting the key roles that protected areas, indigenous peoples, and improved governance can play in preventing large-scale extinctions in the tropics in this century. PMID:26702442

  13. Do seedling functional groups reflect ecological strategies of woody plant species in Caatinga?

    Directory of Open Access Journals (Sweden)

    Tatiane Gomes Calaça Menezes

    2017-11-01

    Full Text Available ABSTRACT It is assumed that morphological traits of seedlings reflect different strategies in response to environmental conditions. The ecological significance of this has been widely documented in rainforests, where habitat structure and species interactions play an important role in community assembly. However, in seasonally dry ecosystems, where environmental filtering is expected to strongly influence community structure, this relationship is poorly understood. We investigated this relationship between functional groups of seedlings and life history traits and tested whether functional group predicts the ecological strategies employed by woody species to deal with the stressful conditions in seasonally dry ecosystems. Seedling functional groups, life history traits and traits that reflect ecological strategies for occupying seasonally dry environments were described for twenty-six plant species. Seedlings of species from the Caatinga vegetation exhibited a functional profile different from that observed in rainforests ecosystems. Phanerocotylar-epigeal seedlings were the most frequently observed groups, and had the largest range of ecological strategies related to dealing with seasonally dry environments, while phanerocotylar-hypogeal-reserve seedlings exhibited an increase in frequency with seasonality. We discuss these results in relation to those observed in other tropical forests and their ecological significance in seasonally dry environments.

  14. Strategies of two tropical woody species to tolerate salt stress

    Directory of Open Access Journals (Sweden)

    Bruno Melo Lustosa

    2017-03-01

    Full Text Available This study aimed to evaluate the leaf primary metabolism in two woody species, Sterculia foetida and Bombacopsis glabra. Both species have seeds rich in oil and they are largely found in regions with irregularities in water availability. Seedlings were grown in a greenhouse from seeds. At 140 days after emergence, 50% of the plants were subjected to salt stress for 23 days, daily receiving 100 mM of NaCl solution. In both species, leaf stomata conductance and water potential decreased quickly under salt stress. The two species showed different strategies in photosynthetic pigment concentration and components of nitrogen metabolism. S. foetida kept the pigment concentration unchanged after 23 days of stress, while B. glabra increased concentration of chlorophyll a and carotenoids. S. foetida showed a high leaf concentration of K+ in stressed plants and a Na+/K+ ratio without differences when compared to control. Thus, S. foetida presented a better ionic balance, while B. glabra invested in photoprotection. Therefore, both species present potential to be planted in Brazilian Northeast, where water deficit and salt stress are challenging for annual crops.

  15. Invasive plant species in hardwood tree plantations

    Science.gov (United States)

    Rochelle R. Beasley; Paula M. Pijut

    2010-01-01

    Invasive plants are species that can grow and spread aggressively, mature quickly, and invade an ecosystem causing economic and environmental damage. Invasive plants usually invade disturbed areas, but can also colonize small areas quickly, and may spread and dominate large areas in a few short years. Invasive plant species displace native or desirable forest...

  16. Germination and early plant development of ten plant species ...

    Science.gov (United States)

    Ten agronomic plant species were exposed to different concentrations of nano titanium dioxide (nTiO2) or nano cerium oxide (nCeO2) (0, 250, 500 and 1000 mg/L) to examine potential effects on germination and early seedling development. We modified a standard test protocol developed for soluble chemicals (OPPTS 850.4200) to determine if such an approach might be useful for screening engineered nanomaterials (ENMs) and whether there were differences in response across a range of commercially important plant species to two common metal oxide ENMs. Eight of 10 species responded to nTiO2, and 5 species responded to nCeO2. Overall, it appeared that early root growth may be a more sensitive indicator of potential effects from ENM exposure than germination. The observed effects did not always relate to the exposure concentration, indicating that mass-based concentration may not fully explain developmental effects of these two ENMs. The results suggest that nTiO2 and nCeO2 have different effects on early plant growth of agronomic species, which may alter the timing of specific developmental events during their life cycle. In addition, standard germination tests, which are commonly used for toxicity screening of new materials, may not detect the subtle but potentially more important changes associated with early growth and development in terrestrial plants. Engineered nanoparticles (ENMs) have been recognized as valuable components of new technologies and are current

  17. Pinus tropical com potencial para uso em plantios comerciais no Brasil. Tropical pine for commercial planting in Brazil.

    Directory of Open Access Journals (Sweden)

    Marcos Silveira WREGE

    2014-06-01

    Full Text Available Entre os pinus tropicais, Pinus caribaea var. hondurensis é uma variedade natural, oriunda de região com clima tropical na América Central. A espécie se aclimatou bem em várias partes do mundo, em regiões com alta pluviosidade e temperaturas elevadas. Embora não tolere geadas severas, pode ser plantada em partes da região Sul do Brasil onde o clima é mais quente e a frequência de geadas é menor e é indicado para plantio em boa parte do Brasil, em mais de 3,5 milhões de km2 . Essa é uma variedade que apresenta alto rendimento em madeira de boa qualidade, além de possibilitar a exploração da resina. Neste trabalho, são apresentadas as regiões no Brasil que apresentam potencial para cultivo dessa variedade em regime de silvicultura intensiva, tomando como base sua região de origem no mundo. São indicadas para plantio comercial as zonas com os menores riscos de geada nos estados da região Sul, no Estado de São Paulo e nas demais regiões que oferecem condições climáticas favoráveis, principalmente de disponibilidade hídrica para o desenvolvimento dessa variedade de pinus. – Among tropical pines, Pinus caribaea var. hondurensis is a natural variation from the tropical regions of Central America. The species has adapted well in various parts of the world, in regions with high rainfall and high temperatures. Although intolerance to severe frosts, it can be grown in parts of southern Brazil, where the climate is hot, with infrequent frosts and even can be used for commercial planting in over 3.5 million square kilometers.This variety presents high yield in quality wood as well as resin. This work shows regions in Brazil where environmental conditions are favorable for commercial plantations with this variety, by making comparisons with the conditions in its origin. Climatic zones within the Southern Region, as well as in the state of São Paulo and elsewhere with the lowest risks of frost and plenty of water for the

  18. No evidence for consistent long-term growth stimulation of 13 tropical tree species: results from tree-ring analysis.

    Science.gov (United States)

    Groenendijk, Peter; van der Sleen, Peter; Vlam, Mart; Bunyavejchewin, Sarayudh; Bongers, Frans; Zuidema, Pieter A

    2015-10-01

    The important role of tropical forests in the global carbon cycle makes it imperative to assess changes in their carbon dynamics for accurate projections of future climate-vegetation feedbacks. Forest monitoring studies conducted over the past decades have found evidence for both increasing and decreasing growth rates of tropical forest trees. The limited duration of these studies restrained analyses to decadal scales, and it is still unclear whether growth changes occurred over longer time scales, as would be expected if CO2 -fertilization stimulated tree growth. Furthermore, studies have so far dealt with changes in biomass gain at forest-stand level, but insights into species-specific growth changes - that ultimately determine community-level responses - are lacking. Here, we analyse species-specific growth changes on a centennial scale, using growth data from tree-ring analysis for 13 tree species (~1300 trees), from three sites distributed across the tropics. We used an established (regional curve standardization) and a new (size-class isolation) growth-trend detection method and explicitly assessed the influence of biases on the trend detection. In addition, we assessed whether aggregated trends were present within and across study sites. We found evidence for decreasing growth rates over time for 8-10 species, whereas increases were noted for two species and one showed no trend. Additionally, we found evidence for weak aggregated growth decreases at the site in Thailand and when analysing all sites simultaneously. The observed growth reductions suggest deteriorating growth conditions, perhaps due to warming. However, other causes cannot be excluded, such as recovery from large-scale disturbances or changing forest dynamics. Our findings contrast growth patterns that would be expected if elevated CO2 would stimulate tree growth. These results suggest that commonly assumed growth increases of tropical forests may not occur, which could lead to erroneous

  19. Geoecohydrological mechanisms couple soil and leaf water dynamics and facilitate species coexistence in shallow soils of a tropical semiarid mixed forest.

    Science.gov (United States)

    Rodríguez-Robles, Ulises; Arredondo, J Tulio; Huber-Sannwald, Elisabeth; Vargas, Rodrigo

    2015-07-01

    Trees growing on shallow rocky soils must have exceptional adaptations when underlying weathered bedrock has no deep fractures for water storage. Under semiarid conditions, hydrology of shallow soils is expected to decouple from plant hydrology, as soils dry out as a result of rapid evaporation and competition for water increases between coexisting tree species. Gas exchange and plant-water relations were monitored for 15 months for Pinus cembroides and Quercus potosina tree species in a tropical semiarid forest growing on c. 20-cm-deep soils over impermeable volcanic bedrock. Soil and leaf water potential maintained a relatively constant offset throughout the year in spite of high intra-annual fluctuations reaching up to 5 MPa. Thus, hydrology of shallow soils did not decouple from hydrology of trees even in the driest period. A combination of redistribution mechanisms of water stored in weathered bedrock and hypodermic flow accessible to oak provided the source of water supply to shallow soils, where most of the actively growing roots occurred. This study demonstrates a unique geoecohydrological mechanism that maintains a tightly coupled hydrology between shallow rocky soils and trees, as well as species coexistence in this mixed forest, where oak facilitates water access to pine. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  20. Weather and plant age affect the levels of steroidal saponin and Pithomyces chartarum spores in Brachiaria grass

    Science.gov (United States)

    Brachiaria species are cultivated worldwide in tropical and subtropical climates as the main forage source for ruminants. Numerous tropical and warm-season grasses cause hepatogenous photosensitization, among them several species of Brachiaria. Steroidal saponins present in these plants may be respo...

  1. Relationship of host recurrence in fungi to rates of tropical leaf decomposition

    Science.gov (United States)

    Mirna E. Santanaa; JeanD. Lodgeb; Patricia Lebowc

    2004-01-01

    Here we explore the significance of fungal diversity on ecosystem processes by testing whether microfungal ‘preferences’ for (i.e., host recurrence) different tropical leaf species increases the rate of decomposition. We used pairwise combinations of girradiated litter of five tree species with cultures of two dominant microfungi derived from each plant in a microcosm...

  2. W Photoprotection in Tropical Marine Organisms

    Science.gov (United States)

    Armstrong, Roy A.

    1997-01-01

    Increasing levels of ultraviolet (UV) radiation reaching the earth's surface which results from stratospheric ozone depletions could have serious implications for terrestrial plants and for aquatic organisms within the euphotic zone. A documented 9% decline in ozone at mid-latitudes is considered to produce a 12% increase in harmful UV radiation. The biologically damaging effects of higher UV levels, particularly W-B (280-320 rim), could manifest earlier in the tropics because of the relative thinness of the earth's equatorial ozone layer. Tropical marine organisms are also living close to their upper tolerance levels of water temperature, However, despite the large potential effects on plants and animals, little is known about UV effects on tropical ecosystems. Long-term ecological studies are needed to quantify the effects of increased UV radiation on terrestrial and marine ecosystems and to produce reliable data for prediction. Plants have developed several mechanisms to protect themselves from harmful UV radiation, one of which is the production of secondary leaf pigments that absorb W-B radiation (screening pigments). A higher concentration of screening pigments (e.g. flavonoids) in leaves may be interpreted as a natural response to increased W radiation. If higher concentrations of flavonoids filter out the excessive W radiation, no damage will occur, as suggested by Caldwell et al. (1989) and Tevini (1993). Failure to screen all W-B may result in deleterious effects on photosynthesis, plant genetic material, and plant and leaf morphology and growth. Eventually this will have an impact on ecosystem processes, structure, species composition, and productivity. This paper describes an ongoing project that is assessing the responses of mangroves, seagrasses and corals to W radiation by studying pigment concentrations, biophysical parameters, and variations in spectral reflectance in the field and in W-reduction experiments. Preliminary results on the distribution

  3. Microhabitat partitioning between leiuperidae and bufonidae species (amphibia: anura) in tropical dry forest areas in Colombian Caribbean

    International Nuclear Information System (INIS)

    Blanco Torres, Argelina; Bonilla Gomez, Maria Argenis

    2010-01-01

    We analyzed partitioning of microhabitats by five species of frogs in the families, Bufonidae (Rhinella marina, r. granulosa), and Leiuperidae (Engystomops pustulosus, Pleurodema brachyops and Pseudopaludicola pusilla) in six different localities of the Colombian Caribbean with tropical dry forest fragments and different land uses. We identified 29 types of microhabitats; permanent ponds in pastures with trees (CPPA) and flooded pastures without trees (PISA) were the most important environmental used. Engystomops pustulosus used the must microhabitats, and none are used by specialist species. Thus, differences in the use of resource on regional and local scales appeared. Dynamics of microhabitat uses was influenced by the climatic variations of the tropical dry forest. Microhabitats distribution as a mechanism of coexistence in these species is implemented for dry season but in rainfall season this mechanism not exists.

  4. Anthelmintic efficacy of five tropical native Australian plants against Haemonchus contortus and Trichostrongylus colubriformis in experimentally infected goats (Capra hircus).

    Science.gov (United States)

    Moreno, F C; Gordon, I J; Knox, M R; Summer, P M; Skerrat, L F; Benvenutti, M A; Saumell, C A

    2012-06-08

    The study of the anthelmintic properties of plants rich in plant secondary metabolites can provide ecologically sound methods for the treatment of parasites on grazing animals. The purpose of the present study was to evaluate the anthelmintic effect of five tropical native Australian plant species rich in plant secondary metabolites on adult Haemonchus contortus and Trichostrongylus colubriformis in experimentally infected goats. Thirty young, nematode-free goats were infected with 2500 H. contortus and 5000 T. colubriformis infective larvae thrice weekly for a week (day 1-7 of the experiment). On day 27 after first infection, the goats were allocated into six groups of five animals per group. From day 28 to day 35, fresh leaves from Acacia salicina, Acacia nilotica, Eucalyptus corymbia, Casuarina cunninghamiana and Eucalyptus drepanophylla were included in the goats diet. Five groups were offered leaves from one of these plant species and one group, the untreated control, received only the basal diet formulated with 20% Medicago sativa and 80% Avena sativa. Following plant material administration, the goats were monitored daily until day 40 and then slaughtered on day 41. Total faecal worm egg output, total production of larvae recovered from faecal cultures, total post-mortem worm burdens and the per capita fecundity of female worms were estimated. The toxicity of the plant species for the goats was measured by histopathological analyses of liver and kidney samples. Results showed that goats feeding on the plant material rich in plant secondary metabolites had significantly lower egg output compared to the control goats (P0.05), the per capita fecundity was significantly reduced by E. corymbia, A. nilotica and A. salicina (Pgoats can benefit from the short-term ingestion of plant secondary metabolites, which reduce the total faecal egg output and thus decrease the potential for re-infection from the pasture. Crown Copyright © 2012. Published by Elsevier B.V. All

  5. Tropical Glaciers

    Science.gov (United States)

    Fountain, Andrew

    The term "tropical glacier" calls to mind balmy nights and palm trees on one hand and cold, blue ice on the other. Certainly author Gabriel Garcia Marqez exploited this contrast in One Hundred Years of Solitude. We know that tropical fish live in warm, Sun-kissed waters and tropical plants provide lush, dense foliage populated by colorful tropical birds. So how do tropical glaciers fit into this scene? Like glaciers everywhere, tropical glaciers form where mass accumulation—usually winter snow—exceeds mass loss, which is generally summer melt. Thus, tropical glaciers exist at high elevations where precipitation can occur as snowfall exceeds melt and sublimation losses, such as the Rwenzori Mountains in east Africa and the Maoke Range of Irian Jaya.

  6. In situ temperature relationships of biochemical and stomatal controls of photosynthesis in four lowland tropical tree species.

    Science.gov (United States)

    Slot, Martijn; Winter, Klaus

    2017-12-01

    Net photosynthetic carbon uptake of Panamanian lowland tropical forest species is typically optimal at 30-32 °C. The processes responsible for the decrease in photosynthesis at higher temperatures are not fully understood for tropical trees. We determined temperature responses of maximum rates of RuBP-carboxylation (V CMax ) and RuBP-regeneration (J Max ), stomatal conductance (G s ), and respiration in the light (R Light ) in situ for 4 lowland tropical tree species in Panama. G s had the lowest temperature optimum (T Opt ), similar to that of net photosynthesis, and photosynthesis became increasingly limited by stomatal conductance as temperature increased. J Max peaked at 34-37 °C and V CMax ~2 °C above that, except in the late-successional species Calophyllum longifolium, in which both peaked at ~33 °C. R Light significantly increased with increasing temperature, but simulations with a photosynthesis model indicated that this had only a small effect on net photosynthesis. We found no evidence for Rubisco-activase limitation of photosynthesis. T Opt of V CMax and J Max fell within the observed in situ leaf temperature range, but our study nonetheless suggests that net photosynthesis of tropical trees is more strongly influenced by the indirect effects of high temperature-for example, through elevated vapour pressure deficit and resulting decreases in stomatal conductance-than by direct temperature effects on photosynthetic biochemistry and respiration. © 2017 John Wiley & Sons Ltd.

  7. Nature and Age of Neighbours Matter: Interspecific Associations among Tree Species Exist and Vary across Life Stages in Tropical Forests.

    Directory of Open Access Journals (Sweden)

    Alicia Ledo

    Full Text Available Detailed information about interspecific spatial associations among tropical tree species is scarce, and hence the ecological importance of those associations may have been underestimated. However, they can play a role in community assembly and species diversity maintenance. This study investigated the spatial dependence between pairs of species. First, the spatial associations (spatial attraction and spatial repulsion that arose between species were examined. Second, different sizes of trees were considered in order to evaluate whether the spatial relationships between species are constant or vary during the lifetime of individuals. Third, the consistency of those spatial associations with the species-habitat associations found in previous studies was assessed. Two different tropical ecosystems were investigated: a montane cloud forest and a lowland moist forest. The results showed that spatial associations among species exist, and these vary among life stages and species. The rarity of negative spatial interactions suggested that exclusive competition was not common in the studied forests. On the other hand, positive interactions were common, and the results of this study strongly suggested that habitat associations were not the only cause of spatial attraction among species. If this is true, habitat associations and density dependence are not the only mechanisms that explain species distribution and diversity; other ecological interactions, such as facilitation among species, may also play a role. These spatial associations could be important in the assembly of tropical tree communities and forest succession, and should be taken into account in future studies.

  8. Interspecific comparison of radiocesium trophic transfer in two tropical fish species.

    Science.gov (United States)

    Pouil, Simon; Teyssié, Jean-Louis; Fowler, Scott W; Metian, Marc; Warnau, Michel

    2018-09-01

    The trophic transfer of radiocesium ( 134 Cs) was investigated in two tropical fish, the silver moony Monodactylus argenteus and the spotted scat Scatophagus argus. Juveniles of both species were exposed to dietary 134 Cs using the pulse-chase feeding methodology. The food was brine shrimp (Artemia salina) previously exposed to the dissolved radiotracer. Depuration kinetics of 134 Cs were followed for 45 d. Results showed that Cs was similarly efficiently assimilated by both species (AE > 50%). The estimated trophic transfer factors in the two species ranked from 1 to 2, suggesting that 134 Cs could be biomagnified in both omnivorous species. In complement, dissections of 7 body compartments were carried out at three different times in order to highlight 134 Cs organotropism. 134 Cs organotropism was similar in both species: more than 50% of 134 Cs was quickly distributed in the muscles and skeleton (after 3 days of depuration), which is likely related to the analogous behavior between Cs and K, an essential element for muscle contractions and bone formation. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Photosynthesis, photoprotection, and growth of shade-tolerant tropical tree seedlings under full sunlight.

    Science.gov (United States)

    Krause, G Heinrich; Winter, Klaus; Matsubara, Shizue; Krause, Barbara; Jahns, Peter; Virgo, Aurelio; Aranda, Jorge; García, Milton

    2012-09-01

    High solar radiation in the tropics is known to cause transient reduction in photosystem II (PSII) efficiency and CO(2) assimilation in sun-exposed leaves, but little is known how these responses affect the actual growth performance of tropical plants. The present study addresses this question. Seedlings of five woody neotropical forest species were cultivated under full sunlight and shaded conditions. In full sunlight, strong photoinhibition of PSII at midday was documented for the late-successional tree species Ormosia macrocalyx and Tetragastris panamensis and the understory/forest gap species, Piper reticulatum. In leaves of O. macrocalyx, PSII inhibition was accompanied by substantial midday depression of net CO(2) assimilation. Leaves of all species had increased pools of violaxanthin-cycle pigments. Other features of photoacclimation, such as increased Chl a/b ratio and contents of lutein, β-carotene and tocopherol varied. High light caused strong increase of tocopherol in leaves of T. panamensis and another late-successional species, Virola surinamensis. O. macrocalyx had low contents of tocopherol and UV-absorbing substances. Under full sunlight, biomass accumulation was not reduced in seedlings of T. panamensis, P. reticulatum, and V. surinamensis, but O. macrocalyx exhibited substantial growth inhibition. In the highly shade-tolerant understory species Psychotria marginata, full sunlight caused strongly reduced growth of most individuals. However, some plants showed relatively high growth rates under full sun approaching those of seedlings at 40 % ambient irradiance. It is concluded that shade-tolerant tropical tree seedlings can achieve efficient photoacclimation and high growth rates in full sunlight.

  10. Plants on the move: plant-soil interactions in poleward shifting plant species

    NARCIS (Netherlands)

    Grunsven, van R.H.A.

    2008-01-01

    As a result of recent global climate change, areas that have previously been climatically unsuitable for species have now become suitable new habitats. Many plant-species are expanding their range polewards, colonizing these newly available areas. If these species are able to expand their range

  11. Tropical savannas and dry forests.

    Science.gov (United States)

    Pennington, R Toby; Lehmann, Caroline E R; Rowland, Lucy M

    2018-05-07

    In the tropics, research, conservation and public attention focus on rain forests, but this neglects that half of the global tropics have a seasonally dry climate. These regions are home to dry forests and savannas (Figures 1 and 2), and are the focus of this Primer. The attention given to rain forests is understandable. Their high species diversity, sheer stature and luxuriance thrill biologists today as much as they did the first explorers in the Age of Discovery. Although dry forest and savanna may make less of a first impression, they support a fascinating diversity of plant strategies to cope with stress and disturbance including fire, drought and herbivory. Savannas played a fundamental role in human evolution, and across Africa and India they support iconic megafauna. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Contrasting patterns of leaf trait variation among and within species during tropical dry forest succession in Costa Rica.

    Science.gov (United States)

    Derroire, Géraldine; Powers, Jennifer S; Hulshof, Catherine M; Cárdenas Varela, Luis E; Healey, John R

    2018-01-10

    A coordinated response to environmental drivers amongst individual functional traits is central to the plant strategy concept. However, whether the trait co-ordination observed at the global scale occurs at other ecological scales (especially within species) remains an open question. Here, for sapling communities of two tropical dry forest types in Costa Rica, we show large differences amongst traits in the relative contribution of species turnover and intraspecific variation to their directional changes in response to environmental changes along a successional gradient. We studied the response of functional traits associated with the leaf economics spectrum and drought tolerance using intensive sampling to analyse inter- and intra-specific responses to environmental changes and ontogeny. Although the overall functional composition of the sapling communities changed during succession more through species turnover than through intraspecific trait variation, their relative contributions differed greatly amongst traits. For instance, community mean specific leaf area changed mostly due to intraspecific variation. Traits of the leaf economics spectrum showed decoupled responses to environmental drivers and ontogeny. These findings emphasise how divergent ecological mechanisms combine to cause great differences in changes of individual functional traits over environmental gradients and ecological scales.

  13. Tree planting by small producers in the tropics: A comparative study of Brazil and Panama.

    Science.gov (United States)

    Cynthia S. Simmons; Robert T. Walker; Charles H. Wood

    2002-01-01

    Forest regrowth is a notable phenomenon across the tropical forest latitudes. Such reforestation takes place in the wake of land abandonment, occurs cyclically in a rotational agricultural system, and may result from the deliberate planting of trees by farmers. Although less extensive than successional forest regeneration, tree planting by small farmers can have...

  14. Bioindicators in the tropical forest of Kaiga environment

    International Nuclear Information System (INIS)

    Somashekarappa, H.M.; Narayana, Y.; Radhakrishna, A.P.; Karunakara, N.; Balakrishna, K.M.; Siddappa, K.

    1996-01-01

    Investigations on the natural and artificial fallout radionuclides 210 Po and 137 Cs and the primordial radionuclide 40 K in the prominent tree species of Western Ghat tropical forests near Kaiga have been carried out as a part of baseline background radiation studies in the environment of Kaiga where nuclear power reactors are being installed. The prominent tree species of the region Tectona grandis L.f. and Terminalia paniculata Roth., and the commonly available epiphytic plant species Pterobryopsis tumida (Hook.) Dix. and Cymbidium aliofolium (Lo) Swartz. were chosen and concentrations of 40 K, 210 Po and 137 Cs were measured employing well-established nuclear techniques. The different parts of Cumbidium aloifolium (Lo) Swartz. such as leaves, stem, etc. were analysed to understand the absorption mechanism of fallout radionuclides. From a careful analysis of the results, the epiphytic plant species are identified as bioindicators to monitor fallout radionuclides. (Author)

  15. Hyperspectral signature analysis of three plant species to long-term hydrocarbon and heavy metal exposure

    Science.gov (United States)

    Lassalle, Guillaume; Credoz, Anthony; Fabre, Sophie; Hédacq, Rémy; Dubucq, Dominique; Elger, Arnaud

    2017-10-01

    Recent studies aim to exploit vegetation hyperspectral signature as an indicator of pipeline leakages and natural oil seepages by detecting changes in reflectance induced by oil exposure. In order to assess the feasibility of the method at larger spatial scale, a study has been carried out in a greenhouse on two tropical (Cenchrus alopecuroides and Panicum virgatum) and a temperate (Rubus fruticosus) species. Plants were grown on contaminated soil during 130 days, with concentrations up to 4.5 and 36 g.kg-1 for heavy metals and C10-C40 hydrocarbons respectively. Reflectance data (350-2500 nm) were acquired under artificial light from 1 to 60 days. All species showed an increase of reflectance in the visible (VIS, 400-750 nm) and short-wave infrared (SWIR, 1300-2500 nm) under experimental contaminants exposure. However, the responses were contrasted in the near-infrared (NIR, 750-1300 nm). 47 normalized vegetation indices were compared between treatments, and the most sensitive to contamination were retained. Same indices showed significant differences between treatments at leaf and plant scales. Indices related to plant pigments, plant water content and red-edge reflectance were particularly sensitive to soil contamination. In order to validate the selection of indices, hyperspectral measurements were performed outdoor at plant scale at the end of the experiment (130 days). Leaf samples were also collected for pigment analysis. Index selected at day 60 were still sensitive to soil contamination after 130 days. Significant changes in plant pigment composition were also observed. This study demonstrates the interest of hyperspectral data for oil exploration and environmental diagnosis.

  16. Palaeo-precipitation is a major determinant of palm species richness patterns across Madagascar: a tropical biodiversity hotspot

    Science.gov (United States)

    Rakotoarinivo, Mijoro; Blach-Overgaard, Anne; Baker, William J.; Dransfield, John; Moat, Justin; Svenning, Jens-Christian

    2013-01-01

    The distribution of rainforest in many regions across the Earth was strongly affected by Pleistocene ice ages. However, the extent to which these dynamics are still important for modern-day biodiversity patterns within tropical biodiversity hotspots has not been assessed. We employ a comprehensive dataset of Madagascan palms (Arecaceae) and climate reconstructions from the last glacial maximum (LGM; 21 000 years ago) to assess the relative role of modern environment and LGM climate in explaining geographical species richness patterns in this major tropical biodiversity hotspot. We found that palaeoclimate exerted a strong influence on palm species richness patterns, with richness peaking in areas with higher LGM precipitation relative to present-day even after controlling for modern environment, in particular in northeastern Madagascar, consistent with the persistence of tropical rainforest during the LGM primarily in this region. Our results provide evidence that diversity patterns in the World's most biodiverse regions may be shaped by long-term climate history as well as contemporary environment. PMID:23427173

  17. Genetic diversity within a dominant plant outweighs plant species diversity in structuring an arthropod community.

    Science.gov (United States)

    Crawford, Kerri M; Rudgers, Jennifer A

    2013-05-01

    Plant biodiversity is being lost at a rapid rate. This has spurred much interest in elucidating the consequences of this loss for higher trophic levels. Experimental tests have shown that both plant species diversity and genetic diversity within a plant species can influence arthropod community structure. However, the majority of these studies have been conducted in separate systems, so their relative importance is currently unresolved. Furthermore, potential interactions between the two levels of diversity, which likely occur in natural systems, have not been investigated. To clarify these issues, we conducted three experiments in a freshwater sand dune ecosystem. We (1) independently manipulated plant species diversity, (2) independently manipulated genetic diversity within the dominant plant species, Ammophila breviligulata, and (3) jointly manipulated genetic diversity within the dominant plant and species diversity. We found that genetic diversity within the dominant plant species, Ammophila breviligulata, more strongly influenced arthropod communities than plant species diversity, but this effect was dependent on the presence of other species. In species mixtures, A. breviligulata genetic diversity altered overall arthropod community composition, and arthropod richness and abundance peaked at the highest level of genetic diversity. Positive nonadditive effects of diversity were detected, suggesting that arthropods respond to emergent properties of diverse plant communities. However, in the independent manipulations where A. breviligulata was alone, effects of genetic diversity were weaker, with only arthropod richness responding. In contrast, plant species diversity only influenced arthropods when A. breviligulata was absent, and then only influenced herbivore abundance. In addition to showing that genetic diversity within a dominant plant species can have large effects on arthropod community composition, these results suggest that understanding how species

  18. Cooling performance assessment of horizontal earth tube system and effect on planting in tropical greenhouse

    International Nuclear Information System (INIS)

    Mongkon, S.; Thepa, S.; Namprakai, P.; Pratinthong, N.

    2014-01-01

    Graphical abstract: - Highlights: • The cooling ability of HETS is studied for planting in tropical greenhouse. • The effective of system was moderate with COP more than 2.0. • Increasing diameter and air velocity increase COP more than other parameters. • The plant growth with HETS was significantly better than no-HETS plant. - Abstract: The benefit of geothermal energy is used by the horizontal earth tube system (HETS); which is not prevalent in tropical climate. This study evaluated geothermal cooling ability and parameters studied in Thailand by mathematical model. The measurement of the effect on plant cultivation was carried out in two identical greenhouses with 30 m 2 of greenhouse volume. The HETS supplied cooled air to the model greenhouse (MGH), and the plant growth results were compared to the growth results of a conventional greenhouse (CGH). The prediction demonstrated that the coefficient of performance (COP) in clear sky day would be more than 2.0 while in the experiment it was found to be moderately lower. The parameters study could be useful for implementation of a system for maximum performance. Two plants Dahlias and head lettuce were grown satisfactory. The qualities of the plants with the HETS were better than the non-cooled plants. In addition, the quality of production was affected by variations of microclimate in the greenhouses and solar intensity throughout the cultivation period

  19. Psidium guajava 'Paluma' (the guava plant) as a new bio-indicator of ozone in the tropics

    International Nuclear Information System (INIS)

    Furlan, C.M.; Moraes, R.M.; Bulbovas, P.; Domingos, M.; Salatino, A.; Sanz, M.J.

    2007-01-01

    Psidium guajava 'Paluma' saplings were exposed to carbon filtered air (CF), ambient non-filtered air (NF), and ambient non-filtered air + 40 ppb ozone (NF + O 3 ) 8 h per day during two months. The AOT40 values at the end of the experiment were 48, 910 and 12 895 ppb h -1 , respectively for the three treatments. After 5 days of exposure (AOT40 = 1497 ppb h -1 ), interveinal red stippling appeared in plants in the NF + O 3 chamber. In the NF chamber, symptoms were observed only after 40 days of exposure (AOT40 = 880 ppb h -1 ). After 60 days, injured leaves per plant corresponded to 86% in NF + O 3 and 25% in the NF treatment, and the average leaf area injured was 45% in NF + O 3 and 5% in the NF treatment. The extent of leaf area injured (leaf injury index) was explained mainly by the accumulated exposure of ozone (r 2 = 0.91; p < 0.05). - Psidium guajava 'Paluma', a tropical species widely used in Brazilian food industry, is a potential sensitive bio-indicator of ozone

  20. [Species diversity of ex-situ cultivated Chinese medicinal plants].

    Science.gov (United States)

    Que, Ling; Chi, Xiu-Lian; Zang, Chun-Xin; Zhang, Yu; Chen, Min; Yang, Guang; Jin, An-Qi

    2018-03-01

    Ex-situ conservation is an important means to protect biological genetic resources. Resource protection has received more and more attention with the continuous improvement of the comprehensive utilization of traditional Chinese medicine resources. In this paper, the research and compilation of the species list of ex-situ cultivated medicinal plants in 12 Chinese Academy of Sciences botanic gardens and 19 specialized medicinal botanic gardens in China were carried out. Based on the Species 2000(2017) and other classification databases, species diversity of medicinal plants ex-situ cultivated in these botanical gardens were analyzed. The study found that there were 16 351 higher plant species in our country, belonging to 276 families and 1 936 genera. Of these, 6 949 specieswere medicinal plants, accounting for 50.4% of the total medicinal plants. There were 1 280 medicinal plants were in threatened status, accounting for 19.6% of all threatened species in the Chinese Biodiversity Red List, with ex-situ cultivated proportion of 59.5%. And 3 988 medicinal plants were Chinese endemic species, accounting for 22.5% of all Chinese endemic species, with ex-situ cultivated proportion of 53.3%. This article has reference significance for the management and protection of medicinal plant resources. Copyright© by the Chinese Pharmaceutical Association.

  1. An exceptional role for flowering plant physiology in the expansion of tropical rainforests and biodiversity.

    Science.gov (United States)

    Boyce, C Kevin; Lee, Jung-Eun

    2010-11-22

    Movement of water from soil to atmosphere by plant transpiration can feed precipitation, but is limited by the hydraulic capacities of plants, which have not been uniform through time. The flowering plants that dominate modern vegetation possess transpiration capacities that are dramatically higher than any other plants, living or extinct. Transpiration operates at the level of the leaf, however, and how the impact of this physiological revolution scales up to the landscape and larger environment remains unclear. Here, climate modelling demonstrates that angiosperms help ensure aseasonally high levels of precipitation in the modern tropics. Most strikingly, replacement of angiosperm with non-angiosperm vegetation would result in a hotter, drier and more seasonal Amazon basin, decreasing the overall area of ever-wet rainforest by 80 per cent. Thus, flowering plant ecological dominance has strongly altered climate and the global hydrological cycle. Because tropical biodiversity is closely tied to precipitation and rainforest area, angiosperm climate modification may have promoted diversification of the angiosperms themselves, as well as radiations of diverse vertebrate and invertebrate animal lineages and of epiphytic plants. Their exceptional potential for environmental modification may have contributed to divergent responses to similar climates and global perturbations, like mass extinctions, before and after angiosperm evolution.

  2. A Newly Naturalized Species in Taiwan: Rauvolfia tetraphylla L. (Apocynaceae)

    OpenAIRE

    Yung-Nan Ko; Fu-Shan Chou; Chun-Kuei Liao

    2011-01-01

    A newly naturalized plant, Rauvolfia tetraphylla L., a native species of the Apocynaceae distributed in the tropical Americas, has recently been found in southern Taiwan. It is a new record for this species to the flora of this island. A detailed description, line-drawings, photographs and geographic distribution are provided for identification of this species.

  3. An overview of tropical pest species of bactrocera fruit flies (Diptera:Tephritidae) and the integration of biopesticides with other biological approaches for their management

    Science.gov (United States)

    Fruit flies (Diptera:Tephritidae) are among the most economically important pest species in the world, attacking a wide range of fruits and fleshy vegetables throughout tropical and sub-tropical areas of the world. These species are such devastating crop pests that major control and eradication prog...

  4. Utilizing next generation sequencing to characterize microsatellite loci in a tropical aquatic plant species Cryptocoryne cordata var. cordata (Araceae)

    DEFF Research Database (Denmark)

    Rosazlina, Rusly; Jacobsen, Niels; Ørgaard, Marian

    2015-01-01

    Abstract Cryptocoryne cordata var. cordata (2n = 34) is an aquatic plant species distributed from the southern part of Peninsular Thailand through the Malay Peninsula. It propagates both sexually and asexually via stolons. The current study is aimed at developing nuclear microsatellite markers...

  5. The Role of Earthworms in Tropics with Emphasis on Indian Ecosystems

    Directory of Open Access Journals (Sweden)

    Radha D. Kale

    2010-01-01

    Full Text Available The paper highlights the research carried out by different scientists in India on aspects of earthworm population dynamics and species diversity, associated with other soil fauna and microflora. It also deals with the importance of earthworm activity on physicochemical properties of soil with reference to India and other tropical countries. Stress is laid on the earthworm plant association and importance of the secretions of earthworms as plant growth stimulators. Moreover, the earthworm species reported and being utilized for vermicomposting in India are discussed, since vermicomposting is the ultimate technology which renders for the improvement of soil fertility status and plant growth. Earthworms serve as indicators of soil status such as the level of contamination of pollutants: agrochemicals, heavy metals, toxic substances, and industrial effluents; human-induced activities: land-management practices and forest degradation. In all these fields there is lacuna with respect to contributions from India when compared to the available information from other tropical countries. There is lot of scope in the field of research on earthworms to unravel the importance of these major soil macrofauna from holistic ecological studies to the molecular level.

  6. The Role of Earthworms in Tropics with Emphasis on Indian Ecosystems

    International Nuclear Information System (INIS)

    Kale, R.D.; Karmegam, N.

    2010-01-01

    The paper highlights the research carried out by different scientists in India on aspects of earthworm population dynamics and species diversity, associated with other soil fauna and microflora. It also deals with the importance of earthworm activity on physicochemical properties of soil with reference to India and other tropical countries. Stress is laid on the earthworm plant association and importance of the secretions of earthworms as plant growth stimulators. Moreover, the earthworm species reported and being utilized for vermicomposting in India are discussed, since vermicomposting is the ultimate technology which renders for the improvement of soil fertility status and plant growth. Earthworms serve as indicators of soil status such as the level of contamination of pollutants: agrochemicals, heavy metals, toxic substances, and industrial effluents; human-induced activities: land-management practices and forest degradation. In all these fields there is lacuna with respect to contributions from India when compared to the available information from other tropical countries. There is lot of scope in the field of research on earthworms to unravel the importance of these major soil macro fauna from holistic ecological studies to the molecular level.

  7. Plant diversity and energy potency of community forest in East Kalimantan, Indonesia: Searching for fast growing wood species for energy production

    Directory of Open Access Journals (Sweden)

    RUDIANTO AMIRTA

    2016-05-01

    Full Text Available Abstract. Amirta R, Yuliansyah, Angi EM, Ananto BR, Setiyono B, Haqiqi MT, Septiana HA, Lodong M, Oktavianto RN. 2016. Plant diversity and energy potency of community forest in East Kalimantan, Indonesia: Searching for fast growing wood species for energy production. Nusantara Bioscience 8: 22-30. Nowadays, there is an increasing interest in intensifying the production and use of biomass to replace fossil fuels for the production of heat and electricity, especially for a remote area that generally abundance with the wood biomass resources including in East Kalimantan, Indonesia. In this work, diversity of plant species that commonly growth in community forest area of East Kutai District, East Kalimantan, Indonesia had been studied to point out their energy potency to be used as biomass feedstock for the electricity generated. Diversity of plant species in the community forest was evaluated by making 13 sampling plots with 20mx20m size approximately. Concurently, the energy properties of plant biomass such as proximate and ultimate compositions were also analyzed using ASTM methods. Results showed that more than 30 species of tropical trees and wood shrubs were grown in the community forest. The presence of them was classified into two different growth of origins: natural and artificial plantation, and also three different categories of plant resources: tree species from logged over forest, commercial fast growing plant tree species for the fiber production and woody shrubs. The highest dominancy and productivity was found in Paraserianthes falcataria (L. Nielsen since the wood biomass was artificially planted for the commercial purposes. Among the 31 plant species analyzed we found the highest energy potency was obtained from Cratoxylum cochinchinense (Lour. Blume that produced 3.17 MWh/ton, and the lowest was from Trema orientalis (L. Blume 0.97 MWh/ton. The woody shrubs species such as Vernonia amigdalina Delile., Piper aduncum L., Gliricidia

  8. Response of eight tropical plants to enhanced ammonia deposition under field, conditions prevalent with SO{sub 2} and NH{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Rao, M.V.; Khijneri, S.; Dubey, P.S.; Kumawat, D.M. [Vikram University, Ujjain (India). School of Studies in Botany

    1993-12-01

    The impact of SO{sub 2} on the deposition of ammonia and the response of eight tropical tree species to excess deposition of ammonia was investigated. This was achieved by studying physiological aspects like total sugars, protein, nitrate reductace (NR) activity, organic/inorganic nitrogen ratio, specific leaf area and foliar injury in plants growing under field conditions prevalent with SO{sub 2} and NH{sub 3}. Analysis of water soluble substances present on foliar surfaces of the trees indicated enhanced NH{sub 4}{sup +} deposition and thereby result in enhanced foliar protein contents. Though the enhanced nitrogen was almost the same in different plants, the plants exhibited differential metabolic disturbances. Critical analysis of the reults indicated three distinct types of plant response. Plants like {ital Azadirachta indica}, {ital Acacia auriculiformis} and {ital Bambusa arundinaceae} maintained enhanced total sugars and NR activity and incorporated excess NH{sub 4}{sup +} into proteins, thus enabling the plant to compensate/alleviate SO{sub 2} induced injury. Ficus benghalensis and Ficus religiosa maintained unaltered total sugars and NR activity and could partly incorporate NH{sub 4}{sup +} into proteins, thus modifying rhe SO{sub 2} impact to some extent. {ital Dalbergia sissoo}, {ital Eucalyptus rostrat}a and {ital Mangifera indica} could not incorporate the excess NH{sub 4}{sup +}, mainly due to declined total sugars. The results indicate the ability of a plant to undergo species specific metabolic changes in order to cope with the excess nitrogen deposition, which may ultimately result in increasing or decreasing tolerance to SO{sub 2}. 23 refs., 3 figs., 9 tabs.

  9. A Newly Naturalized Species in Taiwan: Rauvolfia tetraphylla L. (Apocynaceae

    Directory of Open Access Journals (Sweden)

    Yung-Nan Ko

    2011-06-01

    Full Text Available A newly naturalized plant, Rauvolfia tetraphylla L., a native species of the Apocynaceae distributed in the tropical Americas, has recently been found in southern Taiwan. It is a new record for this species to the flora of this island. A detailed description, line-drawings, photographs and geographic distribution are provided for identification of this species.

  10. Volatile isoprenoids as defense compounds during abiotic stress in tropical plants

    Science.gov (United States)

    Jardine, K.

    2015-12-01

    Emissions of volatile isoprenoids from tropical forests play central roles in atmospheric processes by fueling atmospheric chemistry resulting in modified aerosol and cloud lifecycles and their associated feedbacks with the terrestrial biosphere. However, the identities of tropical isoprenoids, their biological and environmental controls, and functions within plants and ecosystems remain highly uncertain. As part of the DOE ARM program's GoAmazon 2014/15 campaign, extensive field and laboratory observations of volatile isoprenoids are being conducted in the central Amazon. Here we report the results of our completed and ongoing activities at the ZF2 forest reserve in the central Amazon. Among the results of the research are the suprisingly high abundance of light-dependent volatile isoprenoid emissions across abundant tree genera in the Amazon in both primary and secondary forests, the discovery of highly reactive monoterpene emissions from Amazon trees, and evidence for the importance of volatile isoprenoids in protecting photosynthesis during oxidative stress under elevated temperatures including energy consumption and direct antioxidant functions and a tight connection betwen volatile isoprenoid emissions, photorespiration, and CO2 recycling within leaves. The results highlight the need to model allocation of carbon to isoprenoids during elevated temperature stress in the tropics.

  11. Species Diversity Distribution Patterns of Chinese Endemic Seed Plants Based on Geographical Regions.

    Science.gov (United States)

    Huang, Jihong; Ma, Keping; Huang, Jianhua

    2017-01-01

    Based on a great number of literatures, we established the database about the Chinese endemic seed plants and analyzed the compositions, growth form, distribution and angiosperm original families of them within three big natural areas and seven natural regions. The results indicate that the above characters of Chinese endemic plants take on relative rule at the different geographical scales. Among the three big natural areas, Eastern Monsoon area has the highest endemic plants richness, whereas Northwest Dryness area is the lowest. For life forms, herbs dominate. In contrast, the proportion of herbs of Eastern Monsoon area is remarkable under other two areas. Correspondingly the proportions of trees and shrubs are substantially higher than other two. For angiosperm original families, the number is the highest in Eastern Monsoon area, and lowest in Northwest Dryness area. On the other hand, among the seven natural regions, the humid and subtropical zone in Central and Southern China has the highest endemic plants richness, whereas the humid, hemi-humid region and temperate zone in Northeast China has the lowest. For life forms, the proportion of herbs tends to decrease from humid, hemi-humid region and temperate zone in Northeast China to humid and tropical zone in Southern China. Comparably, trees, shrubs and vines or lianas increase with the same directions. This fully represents these characters of Chinese endemic plants vary with latitudinal gradients. Furthermore, as to the number of endemic plants belonging to angiosperm original families, the number is the most in humid and subtropical zone in Center and Southern China, and tropical zone in Southern China in the next place. In contrast, the endemic plant of these two regions relatively is richer than that of The Qinghai-Tibet alpine and cold region. All above results sufficiently reflect that the Chinese endemic plants mainly distribute in Eastern Monsoon area, especially humid and subtropical zone in Center

  12. Land crabs as key drivers in tropical coastal forest recruitment

    Science.gov (United States)

    Lindquist, E.S.; Krauss, K.W.; Green, P.T.; O'Dowd, D. J.; Sherman, P.M.; Smith, T. J.

    2009-01-01

    Plant populations are regulated by a diverse assortment of abiotic and biotic factors that influence seed dispersal and viability, and seedling establishment and growth at the microsite. Rarely does one animal guild exert as significant an influence on different plant assemblages as land crabs. We review three tropical coastal ecosystems-mangroves, island maritime forests, and mainland coastal terrestrial forests-where land crabs directly influence forest composition by limiting tree establishment and recruitment. Land crabs differentially prey on seeds, propagules and seedlings along nutrient, chemical and physical environmental gradients. In all of these ecosystems, but especially mangroves, abiotic gradients are well studied, strong and influence plant species distributions. However, we suggest that crab predation has primacy over many of these environmental factors by acting as the first limiting factor of tropical tree recruitment to drive the potential structural and compositional organisation of coastal forests. We show that the influence of crabs varies relative to tidal gradient, shoreline distance, canopy position, time, season, tree species and fruiting periodicity. Crabs also facilitate forest growth and development through such activities as excavation of burrows, creation of soil mounds, aeration of soils, removal of leaf litter into burrows and creation of carbon-rich soil microhabitats. For all three systems, land crabs influence the distribution, density and size-class structure of tree populations. Indeed, crabs are among the major drivers of tree recruitment in tropical coastal forest ecosystems, and their conservation should be included in management plans of these forests. ?? 2009 Cambridge Philosophical Society.

  13. Insights into the historical construction of species-rich Mesoamerican seasonally dry tropical forests: the diversification of Bursera (Burseraceae, Sapindales).

    Science.gov (United States)

    De-Nova, J Arturo; Medina, Rosalinda; Montero, Juan Carlos; Weeks, Andrea; Rosell, Julieta A; Olson, Mark E; Eguiarte, Luis E; Magallón, Susana

    2012-01-01

    • Mesoamerican arid biomes epitomize neotropical rich and complex biodiversity. To document some of the macroevolutionary processes underlying the vast species richness of Mesoamerican seasonally dry tropical forests (SDTFs), and to evaluate specific predictions about the age, geographical structure and niche conservatism of SDTF-centered woody plant lineages, the diversification of Bursera is reconstructed. • Using a nearly complete Bursera species-level phylogeny from nuclear and plastid genomic markers, we estimate divergence times, test for phylogenetic and temporal diversification heterogeneity, test for geographical structure, and reconstruct habitat shifts. • Bursera became differentiated in the earliest Eocene, but diversified during independent early Miocene consecutive radiations that took place in SDTFs. The late Miocene average age of Bursera species, the presence of phylogenetic geographical structure, and its strong conservatism to SDTFs conform to expectations derived from South American SDTF-centered lineages. • The diversification of Bursera suggests that Mesoamerican SDTF richness derives from high speciation from the Miocene onwards uncoupled from habitat shifts, during a period of enhanced aridity resulting mainly from global cooling and regional rain shadows. © 2011 The Authors. New Phytologist © 2011 New Phytologist Trust.

  14. Phytotoxic studies of medicinal plant species of Pakistan

    International Nuclear Information System (INIS)

    Gilani, S.A.; Adnan, M.; Kikuchi, A.; Fujii, Y.; Shinwari, Z.K.; Kazuo, N.; Watanabe, K.N.

    2010-01-01

    Allelopathic screening of 81 medicinal plant species, collected from North West Frontier Province (NWFP) Pakistan, was carried out to identify significantly higher allelopathic species for future phyto chemical analyses. For this purpose, sandwich method was used to test allelopathic potentials of leaf leachates of these plant species against lettuce seeds (Lactuca sativa L.). Two different concentrations of 10 mg and 50 mg of leaf leachates were used in the study. The radicle and hypocotyl growths were measured and compared with control treatments. It was observed that an endemic species Seriphidium kurramense, Andrachne cordifolia and Rhazya stricta were the stronger phyto toxic plants as compared to the other test species. Based on the current screening, three potential medicinal plants are recommended for future bioassay guided isolation of allelochemicals and for genetic diversity studies. It would also be interesting to see correlation between genetic markers and isolated allelochemicals. (author)

  15. Climate-Related Local Extinctions Are Already Widespread among Plant and Animal Species.

    Directory of Open Access Journals (Sweden)

    John J Wiens

    2016-12-01

    Full Text Available Current climate change may be a major threat to global biodiversity, but the extent of species loss will depend on the details of how species respond to changing climates. For example, if most species can undergo rapid change in their climatic niches, then extinctions may be limited. Numerous studies have now documented shifts in the geographic ranges of species that were inferred to be related to climate change, especially shifts towards higher mean elevations and latitudes. Many of these studies contain valuable data on extinctions of local populations that have not yet been thoroughly explored. Specifically, overall range shifts can include range contractions at the "warm edges" of species' ranges (i.e., lower latitudes and elevations, contractions which occur through local extinctions. Here, data on climate-related range shifts were used to test the frequency of local extinctions related to recent climate change. The results show that climate-related local extinctions have already occurred in hundreds of species, including 47% of the 976 species surveyed. This frequency of local extinctions was broadly similar across climatic zones, clades, and habitats but was significantly higher in tropical species than in temperate species (55% versus 39%, in animals than in plants (50% versus 39%, and in freshwater habitats relative to terrestrial and marine habitats (74% versus 46% versus 51%. Overall, these results suggest that local extinctions related to climate change are already widespread, even though levels of climate change so far are modest relative to those predicted in the next 100 years. These extinctions will presumably become much more prevalent as global warming increases further by roughly 2-fold to 5-fold over the coming decades.

  16. Leaf level emissions of volatile organic compounds (VOC) from some Amazonian and Mediterranean plants

    Science.gov (United States)

    Bracho-Nunez, A.; Knothe, , N. M.; Welter, S.; Staudt, M.; Costa, W. R.; Liberato, M. A. R.; Piedade, M. T. F.; Kesselmeier, J.

    2013-09-01

    Emission inventories defining regional and global biogenic volatile organic compounds (VOC) emission strengths are needed to determine the impact of VOC on atmospheric chemistry (oxidative capacity) and physics (secondary organic aerosol formation and effects). The aim of this work was to contribute with measurements of tree species from the poorly described tropical vegetation in direct comparison with the quite well-investigated, highly heterogeneous emissions from Mediterranean vegetation. VOC emission from sixteen plant species from the Mediterranean area were compared with twelve plant species from different environments of the Amazon basin by an emission screening at leaf level using branch enclosures. Analysis of the volatile organics was performed online by a proton-transfer-reaction mass spectrometer (PTR-MS) and offline by collection on adsorbent tubes and subsequent gas chromatographic analysis. Isoprene was the most dominant compound emitted followed by monoterpenes, methanol and acetone. The average loss rates of VOC carbon in relation to the net CO2 assimilation were found below 4% and indicating normal unstressed plant behavior. Most of the Mediterranean species emitted a large variety of monoterpenes, whereas only five tropical species were identified as monoterpene emitters exhibiting a quite conservative emission pattern (α-pinene plants showed additional emissions of sesquiterpenes. In the case of Amazonian plants no sesquiterpenes were detected. However, missing of sesquiterpenes may also be due to a lack of sensitivity of the measuring systems. Furthermore, our screening activities cover only 1% of tree species of such tropical areas as estimated based on recent biodiversity reports. Methanol emissions, an indicator of growth, were found to be common in most of the tropical and Mediterranean species. A few species from both ecosystems showed acetone emissions. The observed heterogeneous emissions, including reactive VOC species which are not

  17. Leaf level emissions of volatile organic compounds (VOC from some Amazonian and Mediterranean plants

    Directory of Open Access Journals (Sweden)

    A. Bracho-Nunez

    2013-09-01

    Full Text Available Emission inventories defining regional and global biogenic volatile organic compounds (VOC emission strengths are needed to determine the impact of VOC on atmospheric chemistry (oxidative capacity and physics (secondary organic aerosol formation and effects. The aim of this work was to contribute with measurements of tree species from the poorly described tropical vegetation in direct comparison with the quite well-investigated, highly heterogeneous emissions from Mediterranean vegetation. VOC emission from sixteen plant species from the Mediterranean area were compared with twelve plant species from different environments of the Amazon basin by an emission screening at leaf level using branch enclosures. Analysis of the volatile organics was performed online by a proton-transfer-reaction mass spectrometer (PTR-MS and offline by collection on adsorbent tubes and subsequent gas chromatographic analysis. Isoprene was the most dominant compound emitted followed by monoterpenes, methanol and acetone. The average loss rates of VOC carbon in relation to the net CO2 assimilation were found below 4% and indicating normal unstressed plant behavior. Most of the Mediterranean species emitted a large variety of monoterpenes, whereas only five tropical species were identified as monoterpene emitters exhibiting a quite conservative emission pattern (α-pinene < limonene < sabinene < ß-pinene. Mediterranean plants showed additional emissions of sesquiterpenes. In the case of Amazonian plants no sesquiterpenes were detected. However, missing of sesquiterpenes may also be due to a lack of sensitivity of the measuring systems. Furthermore, our screening activities cover only 1% of tree species of such tropical areas as estimated based on recent biodiversity reports. Methanol emissions, an indicator of growth, were found to be common in most of the tropical and Mediterranean species. A few species from both ecosystems showed acetone emissions. The observed

  18. Plant litter dynamics in the forest-stream interface: precipitation is a major control across tropical biomes.

    Science.gov (United States)

    Tonin, Alan M; Gonçalves, José F; Bambi, Paulino; Couceiro, Sheyla R M; Feitoza, Lorrane A M; Fontana, Lucas E; Hamada, Neusa; Hepp, Luiz U; Lezan-Kowalczuk, Vânia G; Leite, Gustavo F M; Lemes-Silva, Aurea L; Lisboa, Leonardo K; Loureiro, Rafael C; Martins, Renato T; Medeiros, Adriana O; Morais, Paula B; Moretto, Yara; Oliveria, Patrícia C A; Pereira, Evelyn B; Ferreira, Lidiane P; Pérez, Javier; Petrucio, Mauricio M; Reis, Deusiano F; S Rezende, Renan; Roque, Nadia; Santos, Luiz E P; Siegloch, Ana E; Tonello, Gabriela; Boyero, Luz

    2017-09-07

    Riparian plant litter is a major energy source for forested streams across the world and its decomposition has repercussions on nutrient cycling, food webs and ecosystem functioning. However, we know little about plant litter dynamics in tropical streams, even though the tropics occupy 40% of the Earth's land surface. Here we investigated spatial and temporal (along a year cycle) patterns of litter inputs and storage in multiple streams of three tropical biomes in Brazil (Atlantic forest, Amazon forest and Cerrado savanna), predicting major differences among biomes in relation to temperature and precipitation regimes. Precipitation explained most of litter inputs and storage, which were generally higher in more humid biomes (litterfall: 384, 422 and 308 g m -2 y -1 , storage: 55, 113 and 38 g m -2 , on average in Atlantic forest, Amazon and Cerrado, respectively). Temporal dynamics varied across biomes in relation to precipitation and temperature, with uniform litter inputs but seasonal storage in Atlantic forest streams, seasonal inputs in Amazon and Cerrado streams, and aseasonal storage in Amazon streams. Our findings suggest that litter dynamics vary greatly within the tropics, but point to the major role of precipitation, which contrasts with the main influence of temperature in temperate areas.

  19. Endangered Species (Plants). LC Science Tracer Bullet.

    Science.gov (United States)

    Niskern, Diana, Comp.

    This guide is intended for those who wish to study the literature dealing with various aspects of endangered plant species. This document includes the following sections, some of which are bibliographies: (1) "Introductions to the Topic"; (2) "Subject Headings" (for endangered species of plants used by the Library of Congress); (3) "General…

  20. Key role of symbiotic dinitrogen fixation in tropical forest secondary succession

    NARCIS (Netherlands)

    Batterman, S.A.; Hedin, L.O.; Breugel, van M.; Ransijn, J.; Craven, D.J.; Hall, J.S.

    2013-01-01

    Forests contribute a significant portion of the land carbon sink, but their ability to sequester CO2 may be constrained by nitrogen1, 2, 3, 4, 5, 6, a major plant-limiting nutrient. Many tropical forests possess tree species capable of fixing atmospheric dinitrogen (N2)7, but it is unclear whether

  1. Evolution of associations between Cymothoe butterflies and their Rinorea host plants in tropical Africa

    NARCIS (Netherlands)

    Velzen, van R.

    2013-01-01

    This thesis aimed to elucidate the evolutionary history of the associations between Cymothoeforest butterflies (Nymphalidae, Limenitidinae) and their Rinoreahost plants (Violaceae) in tropical Africa. Insects are by far the most diverse group of multicellular organisms on

  2. Hydraulic architecture of two species differing in wood density: opposing strategies in co-occurring tropical pioneer trees

    Science.gov (United States)

    Katherine A. McCulloh; Daniel M. Johnson; Frederick C. Meinzer; Steven L. Voelker; Barbara Lachenbruch; Jean-Christophe. Domec

    2012-01-01

    Co-occurring species often have different strategies for tolerating daily cycles of water stress. One underlying parameter that can link together the suite of traits that enables a given strategy is wood density. Here we compare hydraulic traits of two pioneer species from a tropical forest in Panama that differ in wood density: Miconia argentea...

  3. Key role of symbiotic dinitrogen fixation in tropical forest secondary succession

    Science.gov (United States)

    Batterman, Sarah A.; Hedin, Lars O.; van Breugel, Michiel; Ransijn, Johannes; Craven, Dylan J.; Hall, Jefferson S.

    2013-10-01

    Forests contribute a significant portion of the land carbon sink, but their ability to sequester CO2 may be constrained by nitrogen, a major plant-limiting nutrient. Many tropical forests possess tree species capable of fixing atmospheric dinitrogen (N2), but it is unclear whether this functional group can supply the nitrogen needed as forests recover from disturbance or previous land use, or expand in response to rising CO2 (refs 6, 8). Here we identify a powerful feedback mechanism in which N2 fixation can overcome ecosystem-scale deficiencies in nitrogen that emerge during periods of rapid biomass accumulation in tropical forests. Over a 300-year chronosequence in Panama, N2-fixing tree species accumulated carbon up to nine times faster per individual than their non-fixing neighbours (greatest difference in youngest forests), and showed species-specific differences in the amount and timing of fixation. As a result of fast growth and high fixation, fixers provided a large fraction of the nitrogen needed to support net forest growth (50,000kg carbon per hectare) in the first 12years. A key element of ecosystem functional diversity was ensured by the presence of different N2-fixing tree species across the entire forest age sequence. These findings show that symbiotic N2 fixation can have a central role in nitrogen cycling during tropical forest stand development, with potentially important implications for the ability of tropical forests to sequester CO2.

  4. Key role of symbiotic dinitrogen fixation in tropical forest secondary succession.

    Science.gov (United States)

    Batterman, Sarah A; Hedin, Lars O; van Breugel, Michiel; Ransijn, Johannes; Craven, Dylan J; Hall, Jefferson S

    2013-10-10

    Forests contribute a significant portion of the land carbon sink, but their ability to sequester CO2 may be constrained by nitrogen, a major plant-limiting nutrient. Many tropical forests possess tree species capable of fixing atmospheric dinitrogen (N2), but it is unclear whether this functional group can supply the nitrogen needed as forests recover from disturbance or previous land use, or expand in response to rising CO2 (refs 6, 8). Here we identify a powerful feedback mechanism in which N2 fixation can overcome ecosystem-scale deficiencies in nitrogen that emerge during periods of rapid biomass accumulation in tropical forests. Over a 300-year chronosequence in Panama, N2-fixing tree species accumulated carbon up to nine times faster per individual than their non-fixing neighbours (greatest difference in youngest forests), and showed species-specific differences in the amount and timing of fixation. As a result of fast growth and high fixation, fixers provided a large fraction of the nitrogen needed to support net forest growth (50,000 kg carbon per hectare) in the first 12 years. A key element of ecosystem functional diversity was ensured by the presence of different N2-fixing tree species across the entire forest age sequence. These findings show that symbiotic N2 fixation can have a central role in nitrogen cycling during tropical forest stand development, with potentially important implications for the ability of tropical forests to sequester CO2.

  5. Food Plants of 19 butterflies species (Lepidoptera from Loreto, Peru

    Directory of Open Access Journals (Sweden)

    Joel Vásquez Bardales

    2017-04-01

    Full Text Available This work reports the food plants utilized by 19 species of butterflies from Allpahuayo-Mishana Research Center and the Community of San Rafael, Loreto, Peru. We report 23 plant species and one hybrid of angiosperms used by the butterflies. Larval host plants were 21 species and five were adult nectar sources. Two species were both host plant and nectar source: Passiflora coccinea Aubl. and Passiflora edulis Sims. The most frequently used plant families were Solanaceae, Passifloraceae, Fabaceae and Aristolochiaceae.

  6. Traffic noise affects forest bird species in a protected tropical forest

    Directory of Open Access Journals (Sweden)

    J. Edgardo Arévalo

    2011-06-01

    Full Text Available The construction of roads near protected forest areas alters ecosystem function by creating habitat fragmentation and through several direct and indirect negative effects such as increased pollution, animal mortality through collisions, disturbance caused by excessive noise and wind turbulence. Noise in particular may have strong negative effects on animal groups such as frogs and birds, that rely on sound for communication as it can negatively interfere with vocalizations used for territorial defense or courtship. Thus, birds are expected to be less abundant close to the road where noise levels are high. In this study, we examined the effects of road traffic noise levels on forest bird species in a protected tropical forest in Costa Rica. Data collection was conducted in a forest segment of the Carara National Park adjacent to the Coastal Highway. We carried out 120 ten minute bird surveys and measured road noise levels 192 times from the 19th to the 23rd of April and from the 21st to the 28th of November, 2008. To maximize bird detection for the species richness estimates we operated six 12m standard mist nets simultaneously with the surveys. The overall mist-netting effort was 240net/h. In addition, we estimated traffic volumes by tallying the number of vehicles passing by the edge of the park using 24 one hour counts throughout the study. We found that the relative abundance of birds and bird species richness decreased significantly with the increasing traffic noise in the dry and wet season. Noise decreased significantly and in a logarithmic way with distance from the road in both seasons. However, noise levels at any given distance were significantly higher in the dry compared to the wet season. Our results suggest that noise might be an important factor influencing road bird avoidance as measured by species richness and relative abundance. Since the protected forest in question is located in a national park subjected to tourist visitation

  7. Involvement of adrenal hormones in tissue respiration of sub-tropical hibernating and non-hibernating species of frogs.

    Science.gov (United States)

    Gupta, B B; Mahanta, A

    1997-03-01

    Effects of norepinephrine (NE), epinephrine (EP), corticosterone and cortisol were studied both in vivo and in vitro on the rate of oxygen consumption of tissues (liver, skeletal muscle and kidney) of sub-tropical Indian frogs Rana limnocharis (a hibernating species) and Rana cyanophlyctis (a non-hibernating species) exposed to natural climatic conditions during winter and summer/rainy seasons. Further, the effects of NE and EP were also studied in vitro in the presence of specific beta- and alpha-adrenergic antagonists (propranolol and prazosin). NE, EP and corticosterone, when administered in vivo or in vitro, significantly stimulated the respiratory rate of the tissues of both the species irrespective of the seasons/temperature. Results suggest that NE, EP and corticosterone are directly involved in regulation of the energy metabolism of both hibernating and non-hibernating species of sub-tropical frogs. The calorigenic action of NE and EP seems to be mediated by both beta- and alpha-adrenergic receptors. However, the temporal involvement of beta- and alpha-adrenergic receptors seems to be tissue-dependent.

  8. Cantharellus violaceovinosus, a new species from tropical Quercus forests in eastern Mexico

    Science.gov (United States)

    Herrera, Mariana; Bandala, Victor M.; Montoya, Leticia

    2018-01-01

    Abstract During explorations of tropical oak forests in central Veracruz (eastern Mexico), the authors discovered a Cantharellus species that produces basidiomes with strikingly violet pileus and a hymenium with yellow, raised gill-like folds. It is harvested locally and valued as a prized edible wild mushroom. Systematic multiyear sampling of basidiomes allowed the recording of the morphological variation exhibited by fresh fruit bodies in different growth stages, which supports the recognition of this Cantharellus species from others in the genus. Two molecular phylogenetic analyses based on a set of sequences of species of all major clades in Cantharellus, one including sequences of the transcription elongation factor 1-alpha (tef-1α) and a combined tef-1α and nLSU region (the large subunit of the ribosome), confirm the isolated position of the new species in a clade close to C. lewisii from USA, in the subgenus Cantharellus. Detailed macroscopic and microscopic descriptions, accompanied by illustrations and a taxonomic discussion are presented. PMID:29681739

  9. Controls over foliar N:P ratios in tropical rain forests.

    Science.gov (United States)

    Townsend, Alan R; Cleveland, Cory C; Asner, Gregory P; Bustamante, Mercedes M C

    2007-01-01

    Correlations between foliar nutrient concentrations and soil nutrient availability have been found in multiple ecosystems. These relationships have led to the use of foliar nutrients as an index of nutrient status and to the prediction of broadscale patterns in ecosystem processes. More recently, a growing interest in ecological stoichiometry has fueled multiple analyses of foliar nitrogen:phosphorus (N:P) ratios within and across ecosystems. These studies have observed that N:P values are generally elevated in tropical forests when compared to higher latitude ecosystems, adding weight to a common belief that tropical forests are generally N rich and P poor. However, while these broad generalizations may have merit, their simplicity masks the enormous environmental heterogeneity that exists within the tropics; such variation includes large ranges in soil fertility and climate, as well as the highest plant species diversity of any biome. Here we present original data on foliar N and P concentrations from 150 mature canopy tree species in Costa Rica and Brazil, and combine those data with a comprehensive new literature synthesis to explore the major sources of variation in foliar N:P values within the tropics. We found no relationship between N:P ratios and either latitude or mean annual precipitation within the tropics alone. There is, however, evidence of seasonal controls; in our Costa Rica sites, foliar N:P values differed by 25% between wet and dry seasons. The N:P ratios do vary with soil P availability and/or soil order, but there is substantial overlap across coarse divisions in soil type, and perhaps the most striking feature of the data set is variation at the species level. Taken as a whole, our results imply that the dominant influence on foliar N:P ratios in the tropics is species variability and that, unlike marine systems and perhaps many other terrestrial biomes, the N:P stoichiometry of tropical forests is not well constrained. Thus any use of N

  10. Phytophthora Species, New Threats to the Plant Health in Korea

    Directory of Open Access Journals (Sweden)

    Ik-Hwa Hyun

    2014-12-01

    Full Text Available Given the lack of a resistant genetic pool in host plants, the introduction of exotic invasive pathogens can result in epidemics that affect a specific ecosystem and economy. Plant quarantine, which is designed to protect endemic plant resources, is a highly invaluable safeguard that should keep biosecurity with increasing international trade and global transportation. A total of 34 species of plant pathogens including Phytophthora infestans were documented as introduced from other countries into Korea from 1900 to 2010. The genus Phytophthora, classified in oomycetes, includes more than 120 species that are mostly recognized worldwide as highly invasive plant pathogens. After 2000, over 50 new species of Phytophthora were identified internationally as plant pathogens occurring in crops and forest trees. In Korea, Phytophthora is also one of the most serious plant pathogens. To date, 22 species (about one-fifth of known species of the genus have been identified and reported as plant pathogens in the country. The likelihood of new exotic Phytophthora species being introduced into Korea continues to increase, thus necessitating intensive plant quarantine inspections. As new potential threats to plant health in Korea, six Phytophthora species, namely, P. alni, P. inundata, P. kernoviae, P. pinifolia, P. quercina, and P. ramorum, are discussed in this review with focus on history, disease, biology, management, and plant quarantine issues.

  11. Mast fruiting is a frequent strategy in woody species of eastern South America.

    Directory of Open Access Journals (Sweden)

    Natalia Norden

    Full Text Available BACKGROUND: It is thought that mast seeding is a rare reproductive strategy in the tropics, since tropical climates are less variable, and fruit consumers tend to be more generalist in these regions. However, previous tests of this hypothesis were based on only few tropical datasets, and none from tropical South America. Moreover, reproductive strategies have been quantified based on the coefficient of variation of interannual seed production, an index that potentially confounds masting and high interannual variability in seed production. METHODOLOGY/PRINCIPAL FINDINGS: We developed a new approach to model the monthly variability in seed production for 28 tree species, and 20 liana species monitored during 5 years in a tropical forest of Central French Guiana. We found that 23% of the species showed a masting pattern, 54% an annual fruiting pattern, and 23% an irregular fruiting pattern. The majority of masting species were trees (8 out of 11, most of them animal-dispersed. The classification into reproductive strategies based on the coefficient of variation was inconsistent with our results in nearly half of the cases. CONCLUSIONS/SIGNIFICANCE: Our study is the first to clearly evidence the frequency of the masting strategy in a tropical forest community of Eastern South America. The commonness of the masting strategy in tropical plants may promote species coexistence through storage dynamics.

  12. Insecticide dissipation from soil and plant surfaces in tropical horticulture of southern Benin, West Africa.

    Science.gov (United States)

    Rosendahl, Ingrid; Laabs, Volker; Atcha-Ahowé, Cyrien; James, Braima; Amelung, Wulf

    2009-06-01

    In Sub-Saharan Africa, horticulture provides livelihood opportunities for millions of people, especially in urban and peri-urban areas. Although the vegetable agroecosystems are often characterized by intensive pesticide use, risks resulting therefrom are largely unknown under tropical horticultural conditions. The objective of this study therefore was to study the fate of pesticides in two representative horticultural soils (Acrisol and Arenosol) and plants (Solanum macrocarpon L.) after field application and thus to gain first insight on environmental persistence and dispersion of typical insecticides used in vegetable horticulture in Benin, West Africa. On plant surfaces, dissipation was rapid with half lives ranging from 2 to 87 h (alpha-endosulfan < beta-endosulfan < deltamethrin). Soil dissipation was considerably slower than dissipation from plant surfaces with half-lives ranging from 3 (diazinon) to 74 d (total endosulfan), but persistence of pesticides in soil was still reduced compared to temperate climates. Nevertheless, for deltamethrin and endosulfan, a tendency for mid-term accumulation in soil upon repeated applications was observed. The soil and plant surface concentrations of the metabolite endosulfan sulfate increased during the entire trial period, indicating that this compound is a potential long-term pollutant even in tropical environments.

  13. The Influence of Climatic Seasonality on the Diversity of Different Tropical Pollinator Groups

    Science.gov (United States)

    Abrahamczyk, Stefan; Kluge, Jürgen; Gareca, Yuvinka; Reichle, Steffen; Kessler, Michael

    2011-01-01

    Tropical South America is rich in different groups of pollinators, but the biotic and abiotic factors determining the geographical distribution of their species richness are poorly understood. We analyzed the species richness of three groups of pollinators (bees and wasps, butterflies, hummingbirds) in six tropical forests in the Bolivian lowlands along a gradient of climatic seasonality and precipitation ranging from 410 mm to 6250 mm. At each site, we sampled the three pollinator groups and their food plants twice for 16 days in both the dry and rainy seasons. The richness of the pollinator groups was related to climatic factors by linear regressions. Differences in species numbers between pollinator groups were analyzed by Wilcoxon tests for matched pairs and the proportion in species numbers between pollinator groups by correlation analyses. Species richness of hummingbirds was most closely correlated to the continuous availability of food, that of bees and wasps to the number of food plant species and flowers, and that of butterflies to air temperature. Only the species number of butterflies differed significantly between seasons. We were not able to find shifts in the proportion of species numbers of the different groups of pollinators along the study gradient. Thus, we conclude that the diversity of pollinator guilds is determined by group-specific factors and that the constant proportions in species numbers of the different pollinator groups constitute a general pattern. PMID:22073268

  14. The influence of climatic seasonality on the diversity of different tropical pollinator groups.

    Directory of Open Access Journals (Sweden)

    Stefan Abrahamczyk

    Full Text Available Tropical South America is rich in different groups of pollinators, but the biotic and abiotic factors determining the geographical distribution of their species richness are poorly understood. We analyzed the species richness of three groups of pollinators (bees and wasps, butterflies, hummingbirds in six tropical forests in the Bolivian lowlands along a gradient of climatic seasonality and precipitation ranging from 410 mm to 6250 mm. At each site, we sampled the three pollinator groups and their food plants twice for 16 days in both the dry and rainy seasons. The richness of the pollinator groups was related to climatic factors by linear regressions. Differences in species numbers between pollinator groups were analyzed by Wilcoxon tests for matched pairs and the proportion in species numbers between pollinator groups by correlation analyses. Species richness of hummingbirds was most closely correlated to the continuous availability of food, that of bees and wasps to the number of food plant species and flowers, and that of butterflies to air temperature. Only the species number of butterflies differed significantly between seasons. We were not able to find shifts in the proportion of species numbers of the different groups of pollinators along the study gradient. Thus, we conclude that the diversity of pollinator guilds is determined by group-specific factors and that the constant proportions in species numbers of the different pollinator groups constitute a general pattern.

  15. Seed dispersal and movement patterns in two species of Ceratogymna hornbills in a West African tropical lowland forest.

    Science.gov (United States)

    Holbrook, Kimberly M; Smith, Thomas B

    2000-10-01

    We studied two species of Ceratogymna hornbills, the black-casqued hornbill, C. atrata, and the white-thighed hornbill, C. cylindricus, in the tropical forests of Cameroon, to understand their movement patterns and evaluate their effectiveness as seed dispersers. To estimate hornbill contribution to a particular tree species' seed shadow we combined data from movements, determined by radio-tracking, with data from seed passage trials. For 13 individuals tracked over 12 months, home range varied between 925 and 4,472 ha, a much larger area than reported for other African avian frugivores. Seed passage times ranged from 51 to 765 min, with C. atrata showing longer passage times than C. cylindricus, and larger seeds having longer gut retention times than smaller seeds. Combining these data, we estimated that seed shadows were extensive for the eight tree species examined, with approximately 80% of seeds moved more than 500 m from the parent plant. Maximum estimated dispersal distances for larger seeds were 6,919 and 3,558 m for C. atrata and C. cylindricus, respectively. The extent of hornbill seed shadows suggests that their influence in determining forest structure will likely increase as other larger mammalian dispersers are exterminated.

  16. Taxonomic perspective of plant species yielding vegetable oils used ...

    African Journals Online (AJOL)

    A search conducted to determine the plants yielding vegetable oils resulted in 78 plant species with potential use in cosmetics and skin care products. The taxonomic position of these plant species is described with a description of vegetable oils from these plants and their use in cosmetic and skin care products.

  17. Roles of birds and bats in early tropical-forest restoration.

    Science.gov (United States)

    de la Peña-Domene, Marinés; Martínez-Garza, Cristina; Palmas-Pérez, Sebastián; Rivas-Alonso, Edith; Howe, Henry F

    2014-01-01

    Restoration of tropical forest depended in large part on seed dispersal by fruit-eating animals that transported seeds into planted forest patches. We tested effectiveness of dispersal agents as revealed by established recruits of tree and shrub species that bore seeds dispersed by birds, bats, or both. We documented restoration of dispersal processes over the first 76 months of experimental restoration in southern Mexico. Mixed-model repeated-measures randomized-block ANOVAs of seedlings recruited into experimental controls and mixed-species plantings from late-secondary and mature forest indicated that bats and birds played different roles in the first years of a restoration process. Bats dispersed pioneer tree and shrub species to slowly regenerating grassy areas, while birds mediated recruitment of later-successional species into planted stands of trees and to a lesser extent into controls. Of species of pioneer trees and shrubs established in plots, seven were primarily dispersed by birds, three by bats and four by both birds and bats. Of later-successional species recruited past the seedling stage, 13 were of species primarily dispersed by birds, and six were of species dispersed by both birds and bats. No later-successional species primarily dispersed by bats established in control or planted plots. Establishment of recruited seedlings was ten-fold higher under cover of planted trees than in grassy controls. Even pre-reproductive trees drew fruit-eating birds and the seeds that they carried from nearby forest, and provided conditions for establishment of shade-tolerant tree species. Overall, after 76 months of cattle exclusion, 94% of the recruited shrubs and trees in experimental plots were of species that we did not plant.

  18. Roles of birds and bats in early tropical-forest restoration.

    Directory of Open Access Journals (Sweden)

    Marinés de la Peña-Domene

    Full Text Available Restoration of tropical forest depended in large part on seed dispersal by fruit-eating animals that transported seeds into planted forest patches. We tested effectiveness of dispersal agents as revealed by established recruits of tree and shrub species that bore seeds dispersed by birds, bats, or both. We documented restoration of dispersal processes over the first 76 months of experimental restoration in southern Mexico. Mixed-model repeated-measures randomized-block ANOVAs of seedlings recruited into experimental controls and mixed-species plantings from late-secondary and mature forest indicated that bats and birds played different roles in the first years of a restoration process. Bats dispersed pioneer tree and shrub species to slowly regenerating grassy areas, while birds mediated recruitment of later-successional species into planted stands of trees and to a lesser extent into controls. Of species of pioneer trees and shrubs established in plots, seven were primarily dispersed by birds, three by bats and four by both birds and bats. Of later-successional species recruited past the seedling stage, 13 were of species primarily dispersed by birds, and six were of species dispersed by both birds and bats. No later-successional species primarily dispersed by bats established in control or planted plots. Establishment of recruited seedlings was ten-fold higher under cover of planted trees than in grassy controls. Even pre-reproductive trees drew fruit-eating birds and the seeds that they carried from nearby forest, and provided conditions for establishment of shade-tolerant tree species. Overall, after 76 months of cattle exclusion, 94% of the recruited shrubs and trees in experimental plots were of species that we did not plant.

  19. Stable isotope-guided analysis of biomagnification profiles of arsenic species in a tropical mangrove ecosystem

    International Nuclear Information System (INIS)

    Tu, Nguyen Phuc Cam; Agusa, Tetsuro; Ha, Nguyen Ngoc; Tuyen, Bui Cach; Tanabe, Shinsuke; Takeuchi, Ichiro

    2011-01-01

    We performed stable carbon and nitrogen-guided analyses of biomagnification profiles of arsenic (As) species, including total As, lipid-soluble As, eight water-soluble As compounds (arsenobetaine (AB), arsenocholine (AC), tetramethylarsonium ion (TETRA), trimethylarsine oxide (TMAO), dimethylarsinic acid (DMA), monomethylarsonic acid (MMA), arsenate (As[V]), and arsenite (As[III])), and non-extracted As in a tropical mangrove ecosystem in the Ba Ria Vung Tau, South Vietnam. Arsenobetaine was the predominant As species (65-96% of water-soluble As). Simple linear regression slopes of log-transformed concentrations of total As, As fractions or individual As compounds on stable nitrogen isotopic ratio (δ 15 N) values are regarded as indices of biomagnification. In this ecosystem, lipid-soluble As (slope, 0.130) and AB (slope, 0.108) were significantly biomagnified through the food web; total As and other water-soluble As compounds were not. To our knowledge, this is one of the first reports on biomagnification profiles of As compounds from a tropical mangrove ecosystem.

  20. [Species composition and diversity of soil mesofauna in the 'Holy Hills' fragmentary tropical rain forest of Xishuangbanna, China].

    Science.gov (United States)

    Yang, X; Sha, L

    2001-04-01

    The species composition and diversity of soil mesofauna were examined in fragmented dry tropical seasonal rainforest of tow 'Holy Hills' of Dai nationality, compared with the continuous moist tropical seasonal rain forest of Nature Reserve in Xishuangbanna area. 5 sample quadrats were selected along the diagonal of 20 m x 20 m sampling plot, and the samples of litterfall and 0-3 cm soil were collected from each 50 cm x 10 cm sample quadrat. Animals in soil sample were collected by using dry-funnel(Tullgren's), were identified to their groups according to the order. The H' index, D.G index and the pattern of relative abundance of species were used to compare the diversity of soil mesofauna. The results showed that the disturbance of vegetation and soil resulted by tropical rainforest fragmentation was the major factor affecting the diversity of soil mesofauna. Because the fragmented forest was intruded by some pioneer tree species and the "dry and warm" effect operated, this forest had more litterfall on the floor and more humus in the soil than the continuous moist rain forest. The soil condition with more soil organic matter, total N and P, higher pH value and lower soil bulk density became more favorable to the soil mesofauna. Therefore, the species richness, abundance and diversity of soil mesofauna in fragmented forests were higher than those in continuous forest, but the similarity of species composition in fragmented forest to the continuous forest was minimal. Soil mesofauna diversity in fragmented forests did not change with decreasing fragmented area, indicating that there was no species-area effect operation in this forest. The pattern of relative abundance of species in these forest soils was logarithmic series distribution.

  1. Do abundance distributions and species aggregation correctly predict macroecological biodiversity patterns in tropical forests?

    Science.gov (United States)

    Wiegand, Thorsten; Lehmann, Sebastian; Huth, Andreas; Fortin, Marie‐Josée

    2016-01-01

    Abstract Aim It has been recently suggested that different ‘unified theories of biodiversity and biogeography’ can be characterized by three common ‘minimal sufficient rules’: (1) species abundance distributions follow a hollow curve, (2) species show intraspecific aggregation, and (3) species are independently placed with respect to other species. Here, we translate these qualitative rules into a quantitative framework and assess if these minimal rules are indeed sufficient to predict multiple macroecological biodiversity patterns simultaneously. Location Tropical forest plots in Barro Colorado Island (BCI), Panama, and in Sinharaja, Sri Lanka. Methods We assess the predictive power of the three rules using dynamic and spatial simulation models in combination with census data from the two forest plots. We use two different versions of the model: (1) a neutral model and (2) an extended model that allowed for species differences in dispersal distances. In a first step we derive model parameterizations that correctly represent the three minimal rules (i.e. the model quantitatively matches the observed species abundance distribution and the distribution of intraspecific aggregation). In a second step we applied the parameterized models to predict four additional spatial biodiversity patterns. Results Species‐specific dispersal was needed to quantitatively fulfil the three minimal rules. The model with species‐specific dispersal correctly predicted the species–area relationship, but failed to predict the distance decay, the relationship between species abundances and aggregations, and the distribution of a spatial co‐occurrence index of all abundant species pairs. These results were consistent over the two forest plots. Main conclusions The three ‘minimal sufficient’ rules only provide an incomplete approximation of the stochastic spatial geometry of biodiversity in tropical forests. The assumption of independent interspecific placements is most

  2. Projected impacts of climate change on regional capacities for global plant species richness.

    Science.gov (United States)

    Sommer, Jan Henning; Kreft, Holger; Kier, Gerold; Jetz, Walter; Mutke, Jens; Barthlott, Wilhelm

    2010-08-07

    Climate change represents a major challenge to the maintenance of global biodiversity. To date, the direction and magnitude of net changes in the global distribution of plant diversity remain elusive. We use the empirical multi-variate relationships between contemporary water-energy dynamics and other non-climatic predictor variables to model the regional capacity for plant species richness (CSR) and its projected future changes. We find that across all analysed Intergovernmental Panel on Climate Change emission scenarios, relative changes in CSR increase with increased projected temperature rise. Between now and 2100, global average CSR is projected to remain similar to today (+0.3%) under the optimistic B1/+1.8 degrees C scenario, but to decrease significantly (-9.4%) under the 'business as usual' A1FI/+4.0 degrees C scenario. Across all modelled scenarios, the magnitude and direction of CSR change are geographically highly non-uniform. While in most temperate and arctic regions, a CSR increase is expected, the projections indicate a strong decline in most tropical and subtropical regions. Countries least responsible for past and present greenhouse gas emissions are likely to incur disproportionately large future losses in CSR, whereas industrialized countries have projected moderate increases. Independent of direction, we infer that all changes in regional CSR will probably induce on-site species turnover and thereby be a threat to native floras.

  3. Studies on saponin production in tropical medicinal plants Maesa argentea and Maesa lanceolata

    Science.gov (United States)

    Faizal, Ahmad; Geelen, Danny

    2015-09-01

    The continuous need for new compounds with important medicinal activities has lead to the identification and characterization of various plant-derived natural products. As a part of this program, we studied the saponin production from two tropical medicinal plants Maesa argentea and M. lanceolata and evaluated several treatments to enhance their saponin production. In this experiment, we present the analyses of saponin production from greenhouse grown plants by means of TLC and HPLC-MS. We observed that the content of saponin from these plants varied depending on organ and physiological age of the plants. In addition, the impact of elicitors on saponin accumulation on in vitro grown plants was analyzed using TLC. The production of saponin was very stable and not affected by treatment with methyl jasmonate, and salicylic acid. In conclusion, Maesa saponins are constitutively produced in plants and the level of these compounds in plants is mainly affected by the developmental or physiological stage.

  4. Accumulation and long-term decline of radiocaesium contamination in tropical fruit trees

    Science.gov (United States)

    Anjos, R. M.; Mosquera, B.; Carvalho, C.; Sanches, N.; Bastos, J.; Gomes, P. R. S.; Macario, K.

    2007-09-01

    The accumulation of 137Cs, 40K and NH 4+ in several organs of tropical plants species were studied through measurements of its concentrations from mango, avocado, guava, papaya, banana and chili pepper trees. Our goal was to infer their differences in the uptake and translocation of such ions to the aboveground plant parts and to establish the suitability of using radiocaesium as a tracer for the plant uptake of nutrients. The results indicate Cs + is better tracer for K + as it is for NH 4+.

  5. Accumulation and long-term decline of radiocaesium contamination in tropical fruit trees

    International Nuclear Information System (INIS)

    Anjos, R.M.; Mosquera, B.; Carvalho, C.; Sanches, N.; Bastos, J.; Gomes, P.R.S.; Macario, K.

    2007-01-01

    The accumulation of 137 Cs, 40 K and NH 4 + in several organs of tropical plants species were studied through measurements of its concentrations from mango, avocado, guava, papaya, banana and chili pepper trees. Our goal was to infer their differences in the uptake and translocation of such ions to the aboveground plant parts and to establish the suitability of using radiocaesium as a tracer for the plant uptake of nutrients. The results indicate Cs + is better tracer for K + as it is for NH 4 +

  6. Transcriptome profiling of low temperature-treated cassava apical shoots showed dynamic responses of tropical plant to cold stress

    Directory of Open Access Journals (Sweden)

    An Dong

    2012-02-01

    Full Text Available Abstract Background Cassava is an important tropical root crop adapted to a wide range of environmental stimuli such as drought and acid soils. Nevertheless, it is an extremely cold-sensitive tropical species. Thus far, there is limited information about gene regulation and signalling pathways related to the cold stress response in cassava. The development of microarray technology has accelerated the study of global transcription profiling under certain conditions. Results A 60-mer oligonucleotide microarray representing 20,840 genes was used to perform transcriptome profiling in apical shoots of cassava subjected to cold at 7°C for 0, 4 and 9 h. A total of 508 transcripts were identified as early cold-responsive genes in which 319 sequences had functional descriptions when aligned with Arabidopsis proteins. Gene ontology annotation analysis identified many cold-relevant categories, including 'Response to abiotic and biotic stimulus', 'Response to stress', 'Transcription factor activity', and 'Chloroplast'. Various stress-associated genes with a wide range of biological functions were found, such as signal transduction components (e.g., MAP kinase 4, transcription factors (TFs, e.g., RAP2.11, and reactive oxygen species (ROS scavenging enzymes (e.g., catalase 2, as well as photosynthesis-related genes (e.g., PsaL. Seventeen major TF families including many well-studied members (e.g., AP2-EREBP were also involved in the early response to cold stress. Meanwhile, KEGG pathway analysis uncovered many important pathways, such as 'Plant hormone signal transduction' and 'Starch and sucrose metabolism'. Furthermore, the expression changes of 32 genes under cold and other abiotic stress conditions were validated by real-time RT-PCR. Importantly, most of the tested stress-responsive genes were primarily expressed in mature leaves, stem cambia, and fibrous roots rather than apical buds and young leaves. As a response to cold stress in cassava, an increase

  7. Plant Size as Determinant of Species Richness of Herbivores, Natural Enemies and Pollinators across 21 Brassicaceae Species.

    Directory of Open Access Journals (Sweden)

    Hella Schlinkert

    Full Text Available Large plants are often more conspicuous and more attractive for associated animals than small plants, e.g. due to their wider range of resources. Therefore, plant size can positively affect species richness of associated animals, as shown for single groups of herbivores, but studies usually consider intraspecific size differences of plants in unstandardised environments. As comprehensive tests of interspecific plant size differences under standardised conditions are missing so far, we investigated effects of plant size on species richness of all associated arthropods using a common garden experiment with 21 Brassicaceae species covering a broad interspecific plant size gradient from 10 to 130 cm height. We recorded plant associated ecto- and endophagous herbivores, their natural enemies and pollinators on and in each aboveground plant organ, i.e. flowers, fruits, leaves and stems. Plant size (measured as height from the ground, the number of different plant organ entities and their biomass were assessed. Increasing plant size led to increased species richness of associated herbivores, natural enemies and pollinating insects. This pattern was found for ectophagous and endophagous herbivores, their natural enemies, as well as for herbivores associated with leaves and fruits and their natural enemies, independently of the additional positive effects of resource availability (i.e. organ biomass or number of entities and, regarding natural enemies, herbivore species richness. We found a lower R2 for pollinators compared to herbivores and natural enemies, probably caused by the high importance of flower characteristics for pollinator species richness besides plant size. Overall, the increase in plant height from 10 to 130 cm led to a 2.7-fold increase in predicted total arthropod species richness. In conclusion, plant size is a comprehensive driver of species richness of the plant associated arthropods, including pollinators, herbivores and their

  8. BIOGEOGRAPHICAL IMPLICATIONS OF SOME PLANT SPECIES FROM A TROPICAL MONTANE RAIN FOREST IN SOUTHERN YUNNAN

    Institute of Scientific and Technical Information of China (English)

    ZHU Hua

    2004-01-01

    A pristine montane rain forest was recently discovered from Mengsong of Xishuangbanna in the southern Yunnan.It attracts botanists that many primitive plant taxa across various life forms were co-existed in the montane rain forest.In order to know the biogeography of the montane rain forest,distribution patterns of some species of biogeographical importance from the montane forest were enumerated and their biogeographical implications were discussed with geological explanation.It was concluded that the montane rain forest in the southern Yunnan has strong affinity to montane rain forests in Sumatra or Southeast Asia in broad sense.It was tentatively suggested that Sumatra could be once connected to Myanmar and drifted away due to northward movement of continental Asia by bumping of India plate.

  9. Drought resistance in early and late secondary successional species from a tropical dry forest: the interplay between xylem resistance to embolism, sapwood water storage and leaf shedding.

    Science.gov (United States)

    Pineda-García, Fernando; Paz, Horacio; Meinzer, Frederick C

    2013-02-01

    The mechanisms of drought resistance that allow plants to successfully establish at different stages of secondary succession in tropical dry forests are not well understood. We characterized mechanisms of drought resistance in early and late-successional species and tested whether risk of drought differs across sites at different successional stages, and whether early and late-successional species differ in resistance to experimentally imposed soil drought. The microenvironment in early successional sites was warmer and drier than in mature forest. Nevertheless, successional groups did not differ in resistance to soil drought. Late-successional species resisted drought through two independent mechanisms: high resistance of xylem to embolism, or reliance on high stem water storage capacity. High sapwood water reserves delayed the effects of soil drying by transiently decoupling plant and soil water status. Resistance to soil drought resulted from the interplay between variations in xylem vulnerability to embolism, reliance on sapwood water reserves and leaf area reduction, leading to a tradeoff of avoidance against tolerance of soil drought, along which successional groups were not differentiated. Overall, our data suggest that ranking species' performance under soil drought based solely on xylem resistance to embolism may be misleading, especially for species with high sapwood water storage capacity. © 2012 Blackwell Publishing Ltd.

  10. Scatter hoarding of seeds confers survival advantages and disadvantages to large-seeded tropical plants at different life stages.

    Directory of Open Access Journals (Sweden)

    Erin K Kuprewicz

    Full Text Available Scatter hoarding of seeds by animals contributes significantly to forest-level processes, including plant recruitment and forest community composition. However, the potential positive and negative effects of caching on seed survival, germination success, and seedling survival have rarely been assessed through experimental studies. Here, I tested the hypothesis that seed burial mimicking caches made by scatter hoarding Central American agoutis (Dasyprocta punctate enhances seed survival, germination, and growth by protecting seeds from seed predators and providing favorable microhabitats for germination. In a series of experiments, I used simulated agouti seed caches to assess how hoarding affects seed predation by ground-dwelling invertebrates and vertebrates for four plant species. I tracked germination and seedling growth of intact and beetle-infested seeds and, using exclosures, monitored the effects of mammals on seedling survival through time. All experiments were conducted over three years in a lowland wet forest in Costa Rica. The majority of hoarded palm seeds escaped predation by both invertebrates and vertebrates while exposed seeds suffered high levels of infestation and removal. Hoarding had no effect on infestation rates of D. panamensis, but burial negatively affected germination success by preventing endocarp dehiscence. Non-infested palm seeds had higher germination success and produced larger seedlings than infested seeds. Seedlings of A. alatum and I. deltoidea suffered high mortality by seed-eating mammals. Hoarding protected most seeds from predators and enhanced germination success (except for D. panamensis and seedling growth, although mammals killed many seedlings of two plant species; all seedling deaths were due to seed removal from the plant base. Using experimental caches, this study shows that scatter hoarding is beneficial to most seeds and may positively affect plant propagation in tropical forests, although

  11. FLORULA URBAN FRAGMENT OF TROPICAL DRY FOREST

    Directory of Open Access Journals (Sweden)

    Willington Barranco-Pérez

    2016-01-01

    Full Text Available The aim of this study was to record the composition of plant species in an urban fragment of tropical dry forest of secondary regeneration (bs-T to generate information that can be used in the planning and management of green spaces in the city of Santa Marta. Transects of 2 x 50 m were established equivalent to 0.1 ha and all species were counted >1.0 cm DBH (Diameter at Breast Height: 1.3m. 100 species of angiosperms were recorded of which 47% have herbaceous habit. The number of species recorded in this study represents 39.6% of the species reported for the hills of Santa Marta and 3.8% for the dry forests of Colombia. It is suggested to isolate this type of secondary formations of any intervention and contemplate the reintroduction of individuals and conservation strategies.

  12. Functional traits, drought performance, and the distribution of tree species in tropical forests of Ghana

    NARCIS (Netherlands)

    Amissah, L.

    2014-01-01

    Tropical forests occur along a rainfall gradient where annual amount, the length and intensity of dry season vary and water availability shapes therefore strongly the distribution of tree species. Annual rainfall in West Africa has declined at a rate of 4% per decade, and climate change

  13. Heat stress of two tropical seagrass species during low tides

    DEFF Research Database (Denmark)

    Pedersen, Ole; Colmer, Timothy D.; Borum, Jens

    2016-01-01

    Seagrasses grow submerged in aerated seawater but often in low O2 sediments. Elevated temperatures and low O2 are stress factors. Internal aeration was measured in two tropical seagrasses, Thalassia hemprichii and Enhalus acoroides, growing with extreme tides and diel temperature amplitudes......), the high temperatures and reduced CO2 would have diminished PN, whereas RD increased (Q10 of 2.0-2.7) above that at 33°C (0.45 and 0.33 μmol O2 m-2 s-1, respectively). During night-time low tides, O2 declined resulting in shoot base anoxia in both species, but incoming water containing c. 20 kPa O2...

  14. Fagaceae tree species allocate higher fraction of nitrogen to photosynthetic apparatus than Leguminosae in Jianfengling tropical montane rain forest, China.

    Science.gov (United States)

    Tang, Jingchao; Cheng, Ruimei; Shi, Zuomin; Xu, Gexi; Liu, Shirong; Centritto, Mauro

    2018-01-01

    Variation in photosynthetic-nitrogen use efficiency (PNUE) is generally affected by several factors such as leaf nitrogen allocation and leaf diffusional conductances to CO2, although it is still unclear which factors significantly affect PNUE in tropical montane rain forest trees. In this study, comparison of PNUE, photosynthetic capacity, leaf nitrogen allocation, and diffusional conductances to CO2 between five Fagaceae tree species and five Leguminosae tree species were analyzed in Jianfengling tropical montane rain forest, Hainan Island, China. The result showed that PNUE of Fagaceae was significantly higher than that of Leguminosae (+35.5%), attributed to lower leaf nitrogen content per area (Narea, -29.4%). The difference in nitrogen allocation was the main biochemical factor that influenced interspecific variation in PNUE of these tree species. Fagaceae species allocated a higher fraction of leaf nitrogen to the photosynthetic apparatus (PP, +43.8%), especially to Rubisco (PR, +50.0%) and bioenergetics (PB +33.3%) in comparison with Leguminosae species. Leaf mass per area (LMA) of Leguminosae species was lower than that of Fagaceae species (-15.4%). While there was no significant difference shown for mesophyll conductance (gm), Fagaceae tree species may have greater chloroplast to total leaf surface area ratios and that offset the action of thicker cell walls on gm. Furthermore, weak negative relationship between nitrogen allocation in cell walls and in Rubisco was found for Castanopsis hystrix, Cyclobalanopsis phanera and Cy. patelliformis, which might imply that nitrogen in the leaves was insufficient for both Rubisco and cell walls. In summary, our study concluded that higher PNUE might contribute to the dominance of most Fagaceae tree species in Jianfengling tropical montane rain forest.

  15. Fagaceae tree species allocate higher fraction of nitrogen to photosynthetic apparatus than Leguminosae in Jianfengling tropical montane rain forest, China

    Science.gov (United States)

    Cheng, Ruimei; Shi, Zuomin; Xu, Gexi; Liu, Shirong; Centritto, Mauro

    2018-01-01

    Variation in photosynthetic-nitrogen use efficiency (PNUE) is generally affected by several factors such as leaf nitrogen allocation and leaf diffusional conductances to CO2, although it is still unclear which factors significantly affect PNUE in tropical montane rain forest trees. In this study, comparison of PNUE, photosynthetic capacity, leaf nitrogen allocation, and diffusional conductances to CO2 between five Fagaceae tree species and five Leguminosae tree species were analyzed in Jianfengling tropical montane rain forest, Hainan Island, China. The result showed that PNUE of Fagaceae was significantly higher than that of Leguminosae (+35.5%), attributed to lower leaf nitrogen content per area (Narea, –29.4%). The difference in nitrogen allocation was the main biochemical factor that influenced interspecific variation in PNUE of these tree species. Fagaceae species allocated a higher fraction of leaf nitrogen to the photosynthetic apparatus (PP, +43.8%), especially to Rubisco (PR, +50.0%) and bioenergetics (PB +33.3%) in comparison with Leguminosae species. Leaf mass per area (LMA) of Leguminosae species was lower than that of Fagaceae species (-15.4%). While there was no significant difference shown for mesophyll conductance (gm), Fagaceae tree species may have greater chloroplast to total leaf surface area ratios and that offset the action of thicker cell walls on gm. Furthermore, weak negative relationship between nitrogen allocation in cell walls and in Rubisco was found for Castanopsis hystrix, Cyclobalanopsis phanera and Cy. patelliformis, which might imply that nitrogen in the leaves was insufficient for both Rubisco and cell walls. In summary, our study concluded that higher PNUE might contribute to the dominance of most Fagaceae tree species in Jianfengling tropical montane rain forest. PMID:29390007

  16. Why are tropical mountain passes "low" for some species? Genetic and stable-isotope tests for differentiation, migration and expansion in elevational generalist songbirds.

    Science.gov (United States)

    Gadek, Chauncey R; Newsome, Seth D; Beckman, Elizabeth J; Chavez, Andrea N; Galen, Spencer C; Bautista, Emil; Witt, Christopher C

    2018-05-01

    Most tropical bird species have narrow elevational ranges, likely reflecting climatic specialization. This is consistent with Janzen's Rule, the tendency for mountain passes to be effectively "higher" in the tropics. Hence, those few tropical species that occur across broad elevational gradients (elevational generalists) represent a contradiction to Janzen's Rule. Here, we aim to address the following questions. Are elevational generalists being sundered by diversifying selection along the gradient? Does elevational movement cause these species to resist diversification or specialization? Have they recently expanded, suggesting that elevational generalism is short-lived in geological time? To answer these questions, we tested for differentiation, movement and expansion in four elevational generalist songbird species on the Andean west slope. We used morphology and mtDNA to test for genetic differentiation between high- and low-elevation populations. To test for elevational movements, we measured hydrogen isotope (δ 2 H) values of metabolically inert feathers and metabolically active liver. Morphology differed for House Wren (Troglodytes aedon) and Hooded Siskin (Spinus magellanicus), but not for Cinereous Conebill (Conirostrum cinereum) and Rufous-collared Sparrow (Zonotrichia capensis) respectively. mtDNA was structured by elevation only in Z. capensis. δ 2 H data indicated elevational movements by two tree- and shrub-foraging species with moderate-to-high vagility (C. cinereum and S. magellanicus), and sedentary behaviour by two terrestrial-foraging species with low-to-moderate vagility (T. aedon and Z. capensis). In S. magellanicus, elevational movements and lack of mtDNA structure contrast with striking morphological divergence, suggesting strong diversifying selection on body proportions across the c. 50 km gradient. All species except C. cinereum exhibited mtDNA haplotype variation consistent with recent population expansion across the elevational

  17. Polyunsaturated fatty acids in various macroalgal species from north Atlantic and tropical seas

    OpenAIRE

    van Ginneken, Vincent JT; Helsper, Johannes PFG; de Visser, Willem; van Keulen, Herman; Brandenburg, Willem A

    2011-01-01

    Abstract Background In this study the efficacy of using marine macroalgae as a source for polyunsaturated fatty acids, which are associated with the prevention of inflammation, cardiovascular diseases and mental disorders, was investigated. Methods The fatty acid (FA) composition in lipids from seven sea weed species from the North Sea (Ulva lactuca, Chondrus crispus, Laminaria hyperborea, Fucus serratus, Undaria pinnatifida, Palmaria palmata, Ascophyllum nodosum) and two from tropical seas (...

  18. Resilience in plant-herbivore networks during secondary succession.

    Directory of Open Access Journals (Sweden)

    Edith Villa-Galaviz

    Full Text Available Extensive land-use change in the tropics has produced a mosaic of successional forests within an agricultural and cattle-pasture matrix. Post-disturbance biodiversity assessments have found that regeneration speed depends upon propagule availability and the intensity and duration of disturbance. However, reestablishment of species interactions is still poorly understood and this limits our understanding of the anthropogenic impacts upon ecosystem resilience. This is the first investigation that evaluates plant-herbivore interaction networks during secondary succession. In particular we investigated succession in a Mexican tropical dry forest using data of caterpillar associations with plants during 2007-2010. Plant-herbivore networks showed high resilience. We found no differences in most network descriptors between secondary and mature forest and only recently abandoned fields were found to be different. No significant nestedness or modularity network structure was found. Plant-herbivore network properties appear to quickly reestablish after perturbation, despite differences in species richness and composition. This study provides some valuable guidelines for the implement of restoration efforts that can enhance ecological processes such as the interaction between plants and their herbivores.

  19. Long-term persistence of pioneer species in tropical forest soil seed banks

    Energy Technology Data Exchange (ETDEWEB)

    Dalling, J W; Brown, T A

    2008-10-05

    In tropical forests, pioneer species regenerate from seeds dispersed directly into canopy gaps, and from seeds that persisted in soil seed banks before gap formation. However, life-history models suggest that selection for long-term persistence of seeds in soil should be weak, as persistence incurs a fitness cost resulting from prolonged generation time. We use a carbon dating technique to provide the first direct measurements of seed persistence in undisturbed tropical forest seed banks. We show that seeds germinate successfully from surface soil microsites up to 38 years after dispersal. Decades-long persistence may be common in pioneers with relatively large mass, and appears to be unrelated to specific regeneration requirements. In Croton billbergianus, a sub-canopy tree that recruits in abundant small gaps, long-term persistence is associated with short-distance ballistic seed dispersal. In Trema micrantha, a canopy tree with widespread dispersal, persistence is associated with a requirement for large gaps that form infrequently in old-growth forest.

  20. Hydrocarbons from plants: Analytical methods and observations

    Energy Technology Data Exchange (ETDEWEB)

    Calvin, Melvin

    1980-11-01

    We have suggested that certain plants rich in hydrocarbon-like materials might be cultivated for renewable photosynthetic products. Two species were selected for experimental plantations: Euphorbia lathyris, an annual from seed and Euphorbia tirucalli, a perennial from cuttings, The yield from each species is over 10 barrels of oil/acre/year without genetic or agronomic improvement. In addition to plants, there are trees, such as species of Copaifera in Brazil and other tropical areas, which produce a diesel-like oil upon tapping. Each tree produces approximately 40 liters of hydrocarbon per year, and this material can be used directly by a diesel-powered car. Further efforts to develop plants as alternate energy sources are underway, as well as a continuing search for additional plant species throughout the world which have a similar capability.

  1. Parallel responses of species and genetic diversities of Indonesian butterflies to disturbance in tropical rainforests

    NARCIS (Netherlands)

    Fauvelot, C.Y.; Cleary, D.F.R.; Menken, S.B.J.

    2007-01-01

    Cécile Fauvelot1,2, Daniel F.R Cleary2,3, and Steph B.J Menken2. Parallel responses of species and genetic diversities of Indonesian butterflies to disturbance in tropical rainforests. 1Environmental Science, University of Bologna at Ravenna, Via S. Alberto 163, I-48100 Ravenna, Italia; 2Institute

  2. Maize, tropical (Zea mays L.).

    Science.gov (United States)

    Assem, Shireen K

    2015-01-01

    Maize (Zea mays L.) is the third most important food crop globally after wheat and rice. In sub-Saharan Africa, tropical maize has traditionally been the main staple of the diet; 95 % of the maize grown is consumed directly as human food and as an important source of income for the resource-poor rural population. The biotechnological approach to engineer biotic and abiotic traits implies the availability of an efficient plant transformation method. The production of genetically transformed plants depends both on the ability to integrate foreign genes into target cells and the efficiency with which plants are regenerated. Maize transformation and regeneration through immature embryo culture is the most efficient system to regenerate normal transgenic plants. However, this system is highly genotype dependent. Genotypes adapted to tropic areas are difficult to regenerate. Therefore, transformation methods used with model genotypes adapted to temperate areas are not necessarily efficient with tropical lines. Agrobacterium-mediated transformation is the method of choice since it has been first achieved in 1996. In this report, we describe a transformation method used successfully with several tropical maize lines. All the steps of transformation and regeneration are described in details. This protocol can be used with a wide variety of tropical lines. However, some modifications may be needed with recalcitrant lines.

  3. Fructan biosynthesis in crop plants : the molecular regulation of fructan biosynthesis in chicory (Cichorium intybus L.)

    NARCIS (Netherlands)

    Arkel, van J.

    2013-01-01

    Fructan is a polymer of fructose produced by plants and microorganisms. Within the plant kingdom about 45.000 species accumulate fructan as storage carbohydrate in addition to, or instead of, starch. Fructan accumulating species are mainly found in temperate and sub-tropical regions with

  4. Accumulation and long-term decline of radiocaesium contamination in tropical fruit trees

    Energy Technology Data Exchange (ETDEWEB)

    Anjos, R.M. [Instituto de Fisica da Universidade Federal Fluminense, Av. Litoranea s/n, Gragoata, 24210-346 Niteroi, RJ (Brazil)], E-mail: meigikos@if.uff.br; Mosquera, B.; Carvalho, C.; Sanches, N.; Bastos, J.; Gomes, P.R.S.; Macario, K. [Instituto de Fisica da Universidade Federal Fluminense, Av. Litoranea s/n, Gragoata, 24210-346 Niteroi, RJ (Brazil)

    2007-09-21

    The accumulation of {sup 137}Cs, {sup 40}K and NH{sub 4}{sup +} in several organs of tropical plants species were studied through measurements of its concentrations from mango, avocado, guava, papaya, banana and chili pepper trees. Our goal was to infer their differences in the uptake and translocation of such ions to the aboveground plant parts and to establish the suitability of using radiocaesium as a tracer for the plant uptake of nutrients. The results indicate Cs{sup +} is better tracer for K{sup +} as it is for NH{sub 4}{sup +}.

  5. Evolutionary persistence in Gunnera and the contribution of southern plant groups to the tropical Andes biodiversity hotspot

    Directory of Open Access Journals (Sweden)

    Christine D. Bacon

    2018-03-01

    Full Text Available Several studies have demonstrated the contribution of northern immigrants to the flora of the tropical Andes—the world’s richest and most diverse biodiversity hotspot. However, much less is known about the biogeographic history and diversification of Andean groups with southern origins, although it has been suggested that northern and southern groups have contributed roughly equally to the high Andean (i.e., páramo flora. Here we infer the evolutionary history of the southern hemisphere plant genus Gunnera, a lineage with a rich fossil history and an important ecological role as an early colonising species characteristic of wet, montane environments. Our results show striking contrasts in species diversification, where some species may have persisted for some 90 million years, and whereas others date to less than 2 Ma since origination. The outstanding longevity of the group is likely linked to a high degree of niche conservatism across its highly disjunct range, whereby Gunnera tracks damp and boggy soils in cool habitats. Colonisation of the northern Andes is related to Quaternary climate change, with subsequent rapid diversification appearing to be driven by their ability to take advantage of environmental opportunities. This study demonstrates the composite origin of a mega-diverse biota.

  6. Performance of dryland and wetland plant species on extensive green roofs.

    Science.gov (United States)

    MacIvor, J Scott; Ranalli, Melissa A; Lundholm, Jeremy T

    2011-04-01

    Green roofs are constructed ecosystems where plants perform valuable services, ameliorating the urban environment through roof temperature reductions and stormwater interception. Plant species differ in functional characteristics that alter ecosystem properties. Plant performance research on extensive green roofs has so far indicated that species adapted to dry conditions perform optimally. However, in moist, humid climates, species typical of wetter soils might have advantages over dryland species. In this study, survival, growth and the performance of thermal and stormwater capture functions of three pairs of dryland and wetland plant species were quantified using an extensive modular green roof system. Seedlings of all six species were germinated in a greenhouse and planted into green roof modules with 6 cm of growing medium. There were 34 treatments consisting of each species in monoculture and all combinations of wet- and dryland species in a randomized block design. Performance measures were survival, vegetation cover and roof surface temperature recorded for each module over two growing seasons, water loss (an estimate of evapotranspiration) in 2007, and albedo and water capture in 2008. Over two seasons, dryland plants performed better than wetland plants, and increasing the number of dryland species in mixtures tended to improve functioning, although there was no clear effect of species or habitat group diversity. All species had survival rates >75 % after the first winter; however, dryland species had much greater cover, an important indicator of green roof performance. Sibbaldiopsis tridentata was the top performing species in monoculture, and was included in the best treatments. Although dryland species outperformed wetland species, planting extensive green roofs with both groups decreased performance only slightly, while increasing diversity and possibly habitat value. This study provides further evidence that plant composition and diversity can

  7. Herbivory and dominance shifts among exotic and congeneric native plant species during plant community establishment

    DEFF Research Database (Denmark)

    Engelkes, Tim; Meisner, Annelein; Morriën, Elly

    2016-01-01

    in a riparian ecosystem during early establishment of invaded communities. We planted ten plant communities each consisting of three individuals of each of six exotic plant species as well as six phylogenetically related natives. Exotic plant species were selected based on a rapid recent increase in regional...... abundance, the presence of a congeneric native species, and their co-occurrence in the riparian ecosystem. All plant communities were covered by tents with insect mesh. Five tents were open on the leeward side to allow herbivory. The other five tents were completely closed in order to exclude insects...... and vertebrates. Herbivory reduced aboveground biomass by half and influenced which of the plant species dominated the establishing communities. Exposure to herbivory did not reduce the total biomass of natives more than that of exotics, so aboveground herbivory did not selectively enhance exotics during...

  8. Distribution and content of ellagitannins in Finnish plant species.

    Science.gov (United States)

    Moilanen, Johanna; Koskinen, Piia; Salminen, Juha-Pekka

    2015-08-01

    The results of a screening study, in which a total of 82 Finnish plant species were studied for their ellagitannin composition and content, are presented. The total ellagitannin content was determined by HPLC-DAD, the detected ellagitannins were further characterized by HPLC-ESI-QTOF-MS and divided into four structurally different sub-groups. Thirty plant species were found to contain ellagitannins and the ellagitannin content in the crude extracts varied from few mgg(-1) to over a hundred mgg(-1). Plant families that were rich in ellagitannins (>90mgg(-1) of the crude extract) were Onagraceae, Lyhtraceae, Geraniaceae, Elaeagnaceae, Fagaceae and some species from Rosaceae. Plant species that contained moderate amounts of ellagitannins (31-89mgg(-1) of the crude extract) were representatives of the family Rosaceae. Plant species that contained low amounts of ellagitannins (1-30mgg(-1) of the crude extract) were representatives of the families Betulaceae and Myricaceae. The specific ellagitannin composition of the species allowed their chemotaxonomic classification and the comparison between the older Cronquist's classification and the nowadays preferred Angiosperm Phylogeny Group classification. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Freezing temperatures as a limit to forest recruitment above tropical Andean treelines.

    Science.gov (United States)

    Rehm, Evan M; Feeley, Kenneth J

    2015-07-01

    The elevation of altitudinal treelines is generally believed to occur where low mean temperatures during the growing season limit growth and prevent trees from establishing at higher elevations. Accordingly, treelines should move upslope with increasing global temperatures. Contrary to this prediction, tropical treelines have remained stable over the past several decades despite increasing mean temperatures. The observed stability of tropical treelines, coupled with the drastically different temperature profiles between temperate and tropical treelines, suggests that using mean measures of temperature to predict tropical treeline movements during climate change may be overly simplistic. We hypothesize that frost events at tropical treelines may slow climate driven treeline movement by preventing tree recruitment beyond the established forest canopy. To assess this hypothesis, we measured freezing resistance of four canopy-forming treeline species (Weinmannia fagaroides, Polylepis pauta, Clethra cuneata, and Gynoxys nitida) at two life stages (juvenile and adult) and during two seasons (warm-wet and cold-dry). Freezing resistances were then compared to microclimatic data to determine if freezing events in the grassland matrix above treeline are too harsh for these forest species. Freezing resistance varied among species and life stages from -5.7 degrees C for juveniles of P. pauta to -11.1 degrees C for juveniles of W. fagaroides. Over a four-year period, the lowest temperatures recorded at 10 cm above ground level in the grasslands above treeline and at treeline itself were -8.9 degrees C and -6.8 degrees C, respectively. Juveniles maintained freezing resistances similar to adults during the coldest parts of the year and ontogenetic differences in freezing resistance were only present during the warm season when temperatures did not represent a significant threat to active plant tissue. These findings support the hypothesis that rare extreme freezing events at and

  10. Potentialities of line planting technique in rehabilitation of logged over area referred to species diversity, growth and soil quality

    Directory of Open Access Journals (Sweden)

    PRIJANTO PAMOENGKAS

    2010-01-01

    Full Text Available Pamoengkas P (2010 Potentialities of line planting technique in rehabilitation of logged over area referred to species diversity, growth and soil quality. Biodiversitas 11: 34-39. Human interventions in the utilization of tropical forest resources are experiencing unanticipated consequences. The selective logging practices generally cause considerable damage to vegetation and the soil surface. It is supposed that soil condition and vegetation growth rate are deteriorated and reduced. Therefore, scientist strongly argue that the only way to achieve sustainability of Indonesian natural forest will require that the production natural forest is managed through methods that are acceptable from the perspective of environment as well as timber production. This means that there will be a strong need and incentive for methods and innovative technology. For more than two decades, tropical rainforest in Indonesia have been managed intensively under the Indonesian selective cutting (TPI and later on by the Indonesian selective cutting and replanting (TPTI and then, selective cutting and line planting (TPTJ system. TPTJ, as one example of selective cutting, recently become a proper alternative should be taken into consideration in the management of production natural forest in Indonesia by planting dipterocarp species in line. In this system, planting line (width 3 m and intermediate line (width 17 m are made alternately. The initial width of line is 3 m and to be expanded until 10 m within 5 years to introduce more light. The objective of this research was to assess growth and soil quality of TPTJ system. The object of research was TPTJ plot of various ages from 1 year to 7 years. For achieving the objective, 14 sample plots measuring 200 m x 200 m each, were laid out at research plots. The result showed that growth respond of Shorea leprosula toward the width of planting line was better comparing to Shorea parvifolia, but generally from this growth

  11. Thermal Hyperspectral Remote Sensing for Plant Species and Stress Detection

    Science.gov (United States)

    Schlerf, M.; Rock, G.; Ullah, S.; Gerhards, M.; Udelhoven, T.; Skidmore, A. K.

    2014-12-01

    Thermal infrared (TIR) spectroscopy offers a novel opportunity for measuring emissivity spectra of natural surfaces. Emissivity spectra are not directly measured, they first have to be retrieved from the raw measurements. Once retrieved, the spectra can be used, for example, to discriminate plant species or to detect plant stress. Knowledge of plant species distribution is essential for the sustainable management of ecosystems. Remote sensing of plant species has so far mostly been limited to data in the visible and near-infrared where, however, different species often reveal similar reflectance curves. Da Luz and Crowley showed in a recent paper that in the TIR plants indeed have distinct spectral features. Also with a certain species, subtle changes of emissivity in certain wavebands may occur, when biochemical compounds change due to osmotic adjustment induced by water stress. Here we show, that i) emissive imaging spectroscopy allows for reliable and accurate retrieval of plant emissivity spectra, ii) emissivity spectra are well suited to discriminate plant species, iii) a reduction in stomatal conductance (caused by stress) changes the thermal infrared signal. For 13 plant species in the laboratory and for 8 plant species in a field setup emissivity spectra were retrieved. A comparison shows, that for most species the shapes of the emissivity curves agree quite well, but that clear offsets between the two types of spectra exist. Discrimination analysis revealed that based on the lab spectra, 13 species could be distinguished with an average overall classification accuracy of 92% using the 6 best spectral bands. For the field spectra (8 species), a similar high OAA of 89% was achieved. Species discrimination is likely to be possible due to variations in the composition of the superficial epidermal layer of plant leaves and in internal chemical concentrations producing unique emissivity features. However, to date, which spectral feature is responsible for which

  12. Investigation on the phytosanitary status of major ornamental hibiscus species in Italy to assess virus infection

    Science.gov (United States)

    The genus Hibiscus (family Malvaceae) includes more than 250 species that vary from annual to perennial herbs, and shrubs to small trees that are native to tropical, sub-tropical and temperate climates. A study in 2010-2011 examined viruses associated with symptoms observed on hibiscus plants in It...

  13. Diversified Native Species Restoration for Recovery of Multiple Ecosystem Services in a Highly Disturbed Tropical Dry Forest Landscape of Southwestern Nicaragua

    Science.gov (United States)

    Williams-Guillen, K.; Otterstrom, S.; Perla, C.

    2015-12-01

    Tropical dry forests have been reduced to a fraction of their original extent in the Neotropics due to conversion to agriculture and cattle pasture. While TDF can recover via natural regeneration, resulting forests are dominated by wind-dispersed pioneer species of limited value for frugivorous wildlife. Additionally, passive restoration can be perceived as "abandonment" resulting in neighbors casually invading property to rear livestock and extract timber. In 2007, the NGO Paso Pacífico initiated restoration in a highly degraded tropical dry forest landscape of southwestern Nicaragua; funded by an ex-ante carbon purchase, the project was designed to integrate multiple native tree species known to provide resources used by local wildlife. We restored roughly 400 hectares spanning a rainfall gradient from dry to transitional moist forest, using reforestation (planting 70 species of tree seedlings in degraded pastures on a 4x4 m grid, leaving occurring saplings) and assisted regeneration (clearing vines and competing vegetation from saplings in natural regeneration and strategically managing canopy cover). In just over seven years, mean carbon increased nearly threefold, from to 21.5±5.0 to 57.9±9.6 SE tonnes/ha. Current carbon stocks match those of 20-year-old forests in the area, accumulated in less than a decade. Stem density per 15-m radius plot decreased from 16.3±2.3 to 12.5±0.9 SE, while species richness increased from 3.9±0.4 to 18.4±1.4 SE. Alpha richness of woody stems across plots increased from 36 to 94 species, and over 20 tree species established as a result of natural dispersal and recruitment. We have observed sensitive species such as spider monkeys and parrots foraging in restoration areas. Managed reforestation is a highly effective method for rapidly restoring the functionality of multiple ecosystem services in degraded TDF, particularly when social and political realities force restoration to coexist with human productive activities

  14. The future of tropical forests.

    Science.gov (United States)

    Wright, S Joseph

    2010-05-01

    Five anthropogenic drivers--land use change, wood extraction, hunting, atmospheric change, climate change--will largely determine the future of tropical forests. The geographic scope and intensity of these five drivers are in flux. Contemporary land use change includes deforestation (approximately 64,000 km(2) yr(-1) for the entire tropical forest biome) and natural forests regenerating on abandoned land (approximately 21,500 km(2) yr(-1) with just 29% of the biome evaluated). Commercial logging is shifting rapidly from Southeast Asia to Africa and South America, but local fuelwood consumption continues to constitute 71% of all wood production. Pantropical rates of net deforestation are declining even as secondary and logged forests increasingly replace old-growth forests. Hunters reduce frugivore, granivore and browser abundances in most forests. This alters seed dispersal, seed and seedling survival, and hence the species composition and spatial template of plant regeneration. Tropical governments have responded to these local threats by protecting 7% of all land for the strict conservation of nature--a commitment that is only matched poleward of 40 degrees S and 70 degrees N. Protected status often fails to stop hunters and is impotent against atmospheric and climate change. There are increasing reports of stark changes in the structure and dynamics of protected tropical forests. Four broad classes of mechanisms might contribute to these changes. Predictions are developed to distinguish among these mechanisms.

  15. Palm Harvest Impact on Tropical Forests

    DEFF Research Database (Denmark)

    Balslev, Henrik; Eiserhardt, Wolf L.

    Palms are the most useful group of plants in tropical American forests and in this project we study the effect of extraction and trade of palms on forest in the western Amazon, Andes and Pacific lowlands. We determine the size of the resource by making palm community studies in the different forest...... formations and determine the number of species and individuals of all palm species. The genetic structure of useful palm species is studied to determine how much harvesting of the species contributes to genetic erosion of its populations, and whether extraction can be made without harm. We determine how much...... palms are used for subsistence purposes by carrying out quantitative, ethnobotanical research in different forest types and we also study trade patterns for palm products from local markets to markets that involve export to other countries and continents. We study different ways in which palms...

  16. Potassium incorporation in fruits of South American tropical species

    International Nuclear Information System (INIS)

    Cid, Alberto S.; Anjos, Roberto M.; Macario, Kita D.; Veiga, Rodrigo; Lacerda, Thiago; Velasco, Hugo; Rizzoto, Marcos; Valladares, Daniel; Zamboni, Cibelle B.; Medeiros, Ilca M.A.

    2010-01-01

    Full text: This work proposes the use of a new mathematical model liable for describing the temporal evolution of potassium concentration in fruits of tropical species. Studies of the potassium incorporation are important for two main reasons: a) from the physiological point of view, this flux characterizes the dynamics of the demand of this essential macro nutrient during the gestation period of the fruit; and b) from a radioecological perspective, potassium is a chemical analogue of cesium, particularly of 137 Cs, one of the most important contaminant deposited after accidental releases of radionuclides into the environment. Therefore, describing the potassium incorporation, we can obtain crucial information on how this radionuclide can enter to the human food chain trough fruits. Nutrients accumulation by fruits has been extensively studied for different trees. These investigations have been addressed to evaluate the nutritional status at different stages of the fruit development, estimating the amount of the soil nutrient removal and then to know the better time to program the control and supply of fertilizers. The fruit quality and its aptitude to the conservation are closely related with de nutrient content and the equilibrium between them. The rate of the weight increment in fruit is not uniform. The dry mass accumulation is small in the initial period, later a more expressive increment is observed and, finally during the maturation period, a lower dry mass accumulation was observed. The lengths in days of each one of these grown phases depend of the fruit type. A sigmoid grown model appears to be a very good approximation. The nutrient accumulations follow characteristics patterns along these fruit grown phases. When food-chain model are used to describe the radionuclide key transfer processes for dose assessment, the steady state radionuclide concentration is assumed in each compartment. In many cases that could be a strict simplification of the reality

  17. Potassium incorporation in fruits of South American tropical species

    Energy Technology Data Exchange (ETDEWEB)

    Cid, Alberto S.; Anjos, Roberto M.; Macario, Kita D.; Veiga, Rodrigo; Lacerda, Thiago [Universidade Federal Fluminense (UFF), Niteroi, RJ (Brazil); Velasco, Hugo; Rizzoto, Marcos; Valladares, Daniel [Univesidad Nacional de San Luis (Argentina); Zamboni, Cibelle B.; Medeiros, Ilca M.A. [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2010-07-01

    Full text: This work proposes the use of a new mathematical model liable for describing the temporal evolution of potassium concentration in fruits of tropical species. Studies of the potassium incorporation are important for two main reasons: a) from the physiological point of view, this flux characterizes the dynamics of the demand of this essential macro nutrient during the gestation period of the fruit; and b) from a radioecological perspective, potassium is a chemical analogue of cesium, particularly of {sup 137}Cs, one of the most important contaminant deposited after accidental releases of radionuclides into the environment. Therefore, describing the potassium incorporation, we can obtain crucial information on how this radionuclide can enter to the human food chain trough fruits. Nutrients accumulation by fruits has been extensively studied for different trees. These investigations have been addressed to evaluate the nutritional status at different stages of the fruit development, estimating the amount of the soil nutrient removal and then to know the better time to program the control and supply of fertilizers. The fruit quality and its aptitude to the conservation are closely related with de nutrient content and the equilibrium between them. The rate of the weight increment in fruit is not uniform. The dry mass accumulation is small in the initial period, later a more expressive increment is observed and, finally during the maturation period, a lower dry mass accumulation was observed. The lengths in days of each one of these grown phases depend of the fruit type. A sigmoid grown model appears to be a very good approximation. The nutrient accumulations follow characteristics patterns along these fruit grown phases. When food-chain model are used to describe the radionuclide key transfer processes for dose assessment, the steady state radionuclide concentration is assumed in each compartment. In many cases that could be a strict simplification of the

  18. Interactions between fleshy fruits and frugivores in a tropical seasonal forest in Thailand.

    Science.gov (United States)

    Kitamura, Shumpei; Yumoto, Takakazu; Poonswad, Pilai; Chuailua, Phitaya; Plongmai, Kamol; Maruhashi, Tamaki; Noma, Naohiko

    2002-12-01

    Large frugivores are considered to be important seed dispersers for many tropical plant species. Their roles as seed dispersers are not well known in Southeast Asia, where degraded landscapes typically lack these animals. Interactions between 259 (65 families) vertebrate-dispersed fruits and frugivorous animals (including 7 species of bulbul, 1 species of pigeon, 4 species of hornbill, 2 species of squirrel, 3 species of civet, 2 species of gibbon, 1 species of macaque, 2 species of bear, 2 species of deer, and 1 species of elephant) were studied for 3 years in a tropical seasonal forest in Khao Yai National Park, Thailand. The purpose was to examine the dietary overlaps among the large frugivores and the characteristics of fruits they consumed. Most fruit species are eaten by various kinds of frugivores; no close relationship between a particular fruit and a frugivore was found. The number of frugivore groups that served a given plant species was negatively correlated with seed size. Additionally, the fruit/seed diameters consumed by bulbuls were significantly smaller than consumed by the other nine groups. These trends of fruit characteristics were consistent with those observed elsewhere in Southeast Asia: small fruits and large, soft fruits with many small seeds are consumed by a wide spectrum of frugivores while larger fruits with a single large seed are consumed by relatively few potential dispersers. Importantly, these large, single-seed fruits are not consumed by the small frugivores that thrive in small forest fragments and degraded areas in Southeast Asia. To insure the natural seed dispersal process in the forest, an evaluation of all frugivore groups in the forest is urgently needed in Southeast Asia.

  19. Correlation between earthworms and plant litter decomposition in a tropical wet forest of Puerto Rico.

    Science.gov (United States)

    Jennifer Dechainea; Honghua Ruanb; Yaniria Sanchez-de Leon; Xiaoming Zou

    2005-01-01

    Earthworms are recognized to play an important role in the decomposition of organic materials. To test the use of earthworms as an indicator of plant litter decomposition, we examined the abundance and biomass of earthworms in relation to plant litter decomposition in a tropical wet forest of Puerto Rico. We collected earthworms at 0–0.1m and 0.1–0.25m soil depths from...

  20. Functional Traits and Water Transport Strategies in Lowland Tropical Rainforest Trees.

    Directory of Open Access Journals (Sweden)

    Deborah M G Apgaua

    Full Text Available Understanding how tropical rainforest trees may respond to the precipitation extremes predicted in future climate change scenarios is paramount for their conservation and management. Tree species clearly differ in drought susceptibility, suggesting that variable water transport strategies exist. Using a multi-disciplinary approach, we examined the hydraulic variability in trees in a lowland tropical rainforest in north-eastern Australia. We studied eight tree species representing broad plant functional groups (one palm and seven eudicot mature-phase, and early-successional trees. We characterised the species' hydraulic system through maximum rates of volumetric sap flow and velocities using the heat ratio method, and measured rates of tree growth and several stem, vessel, and leaf traits. Sap flow measures exhibited limited variability across species, although early-successional species and palms had high mean sap velocities relative to most mature-phase species. Stem, vessel, and leaf traits were poor predictors of sap flow measures. However, these traits exhibited different associations in multivariate analysis, revealing gradients in some traits across species and alternative hydraulic strategies in others. Trait differences across and within tree functional groups reflect variation in water transport and drought resistance strategies. These varying strategies will help in our understanding of changing species distributions under predicted drought scenarios.

  1. Functional Traits and Water Transport Strategies in Lowland Tropical Rainforest Trees.

    Science.gov (United States)

    Apgaua, Deborah M G; Ishida, Françoise Y; Tng, David Y P; Laidlaw, Melinda J; Santos, Rubens M; Rumman, Rizwana; Eamus, Derek; Holtum, Joseph A M; Laurance, Susan G W

    2015-01-01

    Understanding how tropical rainforest trees may respond to the precipitation extremes predicted in future climate change scenarios is paramount for their conservation and management. Tree species clearly differ in drought susceptibility, suggesting that variable water transport strategies exist. Using a multi-disciplinary approach, we examined the hydraulic variability in trees in a lowland tropical rainforest in north-eastern Australia. We studied eight tree species representing broad plant functional groups (one palm and seven eudicot mature-phase, and early-successional trees). We characterised the species' hydraulic system through maximum rates of volumetric sap flow and velocities using the heat ratio method, and measured rates of tree growth and several stem, vessel, and leaf traits. Sap flow measures exhibited limited variability across species, although early-successional species and palms had high mean sap velocities relative to most mature-phase species. Stem, vessel, and leaf traits were poor predictors of sap flow measures. However, these traits exhibited different associations in multivariate analysis, revealing gradients in some traits across species and alternative hydraulic strategies in others. Trait differences across and within tree functional groups reflect variation in water transport and drought resistance strategies. These varying strategies will help in our understanding of changing species distributions under predicted drought scenarios.

  2. Tropical and Holarctic Ants in Late Eocene Ambers

    Directory of Open Access Journals (Sweden)

    Perkovsky E. E.

    2016-04-01

    Full Text Available Based on representative collections, the ratio of tropical and Holarctic ant species in Priabonian (Late Eocene Baltic, Bitterfeld (Saxonian, Danish and Rovno ambers is analyzed for the first time. In surveyed representative collections of Baltic amber, the ratios of Holarctic and tropical ant species are from 1.1 to 1.5; with 10 Holarctic and 9 tropical species (out of 31 in the PIN-964 collection, and 9 and 5 species (out of 29 in the Giecewicz collection; the ratio in the representative collection of Saxonian amber is 0.9, 11 Holarctic species vs. 12 tropical species (out of 55; in the representative collection of Rovno amber it is 0.65, 15 vs. 23 species (out of 79; and in the representative collection of Danish amber it is 0.64, 7 vs. 11 species (out of 36. Hence, in representative collections of Baltic amber, Holarctic species clearly prevail not just in terms of the share of their specimens (by 9.8 to 19.6 times, but also by the number of species. In Bitterfeld amber, Holarctic species are somewhat less numerous than tropical ones, but their specimens are 6 times greater. In representative collections of Rovno and Danish ambers, the number of Holarctic species is 1.5 to 1.7 times smaller than that of tropical species, but the number of their specimens is 4.9 to 6.9 times greater. The numbers of tropical and Holarctic species represented by more than one specimen is similar in Priabonian ambers, 25 versus 22, but Holarctic species include four dominants or subdominants. The abundance of temperate elements in the Priabonian amber ant fauna along with the relatively small number of tropical elements greatly distinguishes it from the Middle European Lutetian ant faunas of Messel and Eckfeld in shale, which do not have temperate elements at all. Formica phaethusa Wheeler, Glaphyromyrmex oligocenicus Wheeler, Plagiolepis squamifera Mayr, Proceratium eocenicum Dlussky, Hypoponera atavia (Mayr, Ponera lobulifera Dlussky, Aphaenogaster mersa

  3. Effects of experimental nitrogen additions on plant diversity in tropical forests of contrasting disturbance regimes in southern China

    International Nuclear Information System (INIS)

    Lu Xiankai; Mo Jiangming; Gilliam, Frank S.; Yu Guirui; Zhang Wei; Fang Yunting; Huang Juan

    2011-01-01

    Responses of understory plant diversity to nitrogen (N) additions were investigated in reforested forests of contrasting disturbance regimes in southern China from 2003 to 2008: disturbed forest (with harvesting of understory vegetation and litter) and rehabilitated forest (without harvesting). Experimental additions of N were administered as the following treatments: Control, 50 kg N ha -1 yr -1 , and 100 kg N ha -1 yr -1 . Nitrogen additions did not significantly affect understory plant richness, density, and cover in the disturbed forest. Similarly, no significant response was found for canopy closure in this forest. In the rehabilitated forest, species richness and density showed no significant response to N additions; however, understory cover decreased significantly in the N-treated plots, largely a function of a significant increase in canopy closure. Our results suggest that responses of plant diversity to N deposition may vary with different land-use history, and rehabilitated forests may be more sensitive to N deposition. - Highlights: → Nitrogen addition had no significant effect on understory plant diversity in the disturbed forest. → Nitrogen addition significantly decreased understory plant cover. → Nitrogen addition had no effect on richness and density in the rehabilitated forest. → The decrease is largely a function of a significant increase in canopy closure. → Land-use practices may dominate the responses of plant diversity to N addition. - Research in disturbed forests of southeastern China demonstrates that land-use history can substantially alter effects of excess nitrogen deposition on plant diversity of tropical forest ecosystems.

  4. Plant diversity in a changing world: Status, trends, and conservation needs

    Directory of Open Access Journals (Sweden)

    Richard T. Corlett

    2016-02-01

    Full Text Available The conservation of plants has not generated the sense of urgency—or the funding—that drives the conservation of animals, although plants are far more important for us. There are an estimated 500,000 species of land plants (angiosperms, gymnosperms, ferns, lycophytes, and bryophytes, with diversity strongly concentrated in the humid tropics. Many species are still unknown to science. Perhaps a third of all land plants are at risk of extinction, including many that are undescribed, or are described but otherwise data deficient. There have been few known global extinctions so far, but many additional species have not been recorded recently and may be extinct. Although only a minority of plant species have a specific human use, many more play important roles in natural ecosystems and the services they provide, and rare species are more likely to have unusual traits that could be useful in the future. The major threats to plant diversity include habitat loss, fragmentation, and degradation, overexploitation, invasive species, pollution, and anthropogenic climate change. Conservation of plant diversity is a massive task if viewed globally, but the combination of a well-designed and well-managed protected area system and ex situ gap-filling and back-up should work anywhere. The most urgent needs are for the completion of the global botanical inventory and an assessment of the conservation status of the 94% of plant species not yet evaluated, so that both in and ex situ conservation can be targeted efficiently. Globally, the biggest conservation gap is in the hyperdiverse lowland tropics and this is where attention needs to be focused.

  5. Ecology of Land Cover Change in Glaciated Tropical Mountains

    Directory of Open Access Journals (Sweden)

    Kenneth R. Young

    2014-12-01

    Full Text Available Tropical mountains contain unique biological diversity, and are subject to many consequences of global climate change, exasperated by concurrent socioeconomic shifts. Glaciers are in a negative mass balance, exposing substrates to primary succession and altering downslope wetlands and streams. A review of recent trends and future predictions suggests a likely reduction in areas of open habitat for species of high mountains due to greater woody plant cover, accompanied by land use shifts by farmers and pastoralists along the environmental gradients of tropical mountains. Research is needed on the biodiversity and ecosystem consequences of successional change, including the direct effects of retreating glaciers and the indirect consequences of combined social and ecological drivers in lower elevations. Areas in the high mountains that are protected for nature conservation or managed collectively by local communities represent opportunities for integrated research and development approaches that may provide ecological spaces for future species range shifts.

  6. Determining the annual periodicity of growth rings in seven tree species of a tropical moist forest in Santa Cruz, Bolivia

    Energy Technology Data Exchange (ETDEWEB)

    Lopez, L.; Villalba, R.; Pena-Claros, M.

    2012-07-01

    To determine the annual periodicity of growth rings in seven tree species from a tropical moist forest in Santa Cruz, Bolivia, a fire scar was used as a marker point to verify the annual nature of tree rings. The number of tree rings formed between the 1995 fire scar and the collection of the cross sections in 2002 was visually identified. The seven species showed annual growth rings. In most cases, boundaries between rings were marked by the presence of marginal parenchyma and wall-thick ed fibers formed at the end of the growing season. Growth lenses and false rings were recorded in some species. Tree rings can be carefully used in Santa Cruz forests to determine rates of growth. This information is crucial for defining forest management practices in tropical regions. (Author) 21 refs.

  7. Connecting infrared spectra with plant traits to identify species

    Science.gov (United States)

    Buitrago, Maria F.; Skidmore, Andrew K.; Groen, Thomas A.; Hecker, Christoph A.

    2018-05-01

    Plant traits are used to define species, but also to evaluate the health status of forests, plantations and crops. Conventional methods of measuring plant traits (e.g. wet chemistry), although accurate, are inefficient and costly when applied over large areas or with intensive sampling. Spectroscopic methods, as used in the food industry and mineralogy, are nowadays applied to identify plant traits, however, most studies analysed visible to near infrared, while infrared spectra of longer wavelengths have been little used for identifying the spectral differences between plant species. This study measured the infrared spectra (1.4-16.0 μm) on individual, fresh leaves of 19 species (from herbaceous to woody species), as well as 14 leaf traits for each leaf. The results describe at which wavelengths in the infrared the leaves' spectra can differentiate most effectively between these plant species. A Quadratic Discrimination Analysis (QDA) shows that using five bands in the SWIR or the LWIR is enough to accurately differentiate these species (Kappa: 0.93, 0.94 respectively), while the MWIR has a lower classification accuracy (Kappa: 0.84). This study also shows that in the infrared spectra of fresh leaves, the identified species-specific features are correlated with leaf traits as well as changes in their values. Spectral features in the SWIR (1.66, 1.89 and 2.00 μm) are common to all species and match the main features of pure cellulose and lignin spectra. The depth of these features varies with changes of cellulose and leaf water content and can be used to differentiate species in this region. In the MWIR and LWIR, the absorption spectra of leaves are formed by key species-specific traits including lignin, cellulose, water, nitrogen and leaf thickness. The connection found in this study between leaf traits, features and spectral signatures are novel tools to assist when identifying plant species by spectroscopy and remote sensing.

  8. An updated checklist of aquatic plants of Myanmar and Thailand

    Directory of Open Access Journals (Sweden)

    Yu Ito

    2014-01-01

    Full Text Available The flora of Tropical Asia is among the richest in the world, yet the actual diversity is estimated to be much higher than previously reported. Myanmar and Thailand are adjacent countries that together occupy more than the half the area of continental Tropical Asia. This geographic area is diverse ecologically, ranging from cool-temperate to tropical climates, and includes from coast, rainforests and high mountain elevations. An updated checklist of aquatic plants, which includes 78 species in 44 genera from 24 families, are presented based on floristic works. This number includes seven species, that have never been listed in the previous floras and checklists. The species (excluding non-indigenous taxa were categorized by five geographic groups with the exception of to reflect the rich diversity of the countries' floras.

  9. Pervasive Defaunation of Forest Remnants in a Tropical Biodiversity Hotspot

    Science.gov (United States)

    Canale, Gustavo R.; Peres, Carlos A.; Guidorizzi, Carlos E.; Gatto, Cassiano A. Ferreira; Kierulff, Maria Cecília M.

    2012-01-01

    Tropical deforestation and forest fragmentation are among the most important biodiversity conservation issues worldwide, yet local extinctions of millions of animal and plant populations stranded in unprotected forest remnants remain poorly explained. Here, we report unprecedented rates of local extinctions of medium to large-bodied mammals in one of the world's most important tropical biodiversity hotspots. We scrutinized 8,846 person-years of local knowledge to derive patch occupancy data for 18 mammal species within 196 forest patches across a 252,669-km2 study region of the Brazilian Atlantic Forest. We uncovered a staggering rate of local extinctions in the mammal fauna, with only 767 from a possible 3,528 populations still persisting. On average, forest patches retained 3.9 out of 18 potential species occupancies, and geographic ranges had contracted to 0–14.4% of their former distributions, including five large-bodied species that had been extirpated at a regional scale. Forest fragments were highly accessible to hunters and exposed to edge effects and fires, thereby severely diminishing the predictive power of species-area relationships, with the power model explaining only ∼9% of the variation in species richness per patch. Hence, conventional species-area curves provided over-optimistic estimates of species persistence in that most forest fragments had lost species at a much faster rate than predicted by habitat loss alone. PMID:22905103

  10. Pervasive defaunation of forest remnants in a tropical biodiversity hotspot.

    Directory of Open Access Journals (Sweden)

    Gustavo R Canale

    Full Text Available Tropical deforestation and forest fragmentation are among the most important biodiversity conservation issues worldwide, yet local extinctions of millions of animal and plant populations stranded in unprotected forest remnants remain poorly explained. Here, we report unprecedented rates of local extinctions of medium to large-bodied mammals in one of the world's most important tropical biodiversity hotspots. We scrutinized 8,846 person-years of local knowledge to derive patch occupancy data for 18 mammal species within 196 forest patches across a 252,669-km(2 study region of the Brazilian Atlantic Forest. We uncovered a staggering rate of local extinctions in the mammal fauna, with only 767 from a possible 3,528 populations still persisting. On average, forest patches retained 3.9 out of 18 potential species occupancies, and geographic ranges had contracted to 0-14.4% of their former distributions, including five large-bodied species that had been extirpated at a regional scale. Forest fragments were highly accessible to hunters and exposed to edge effects and fires, thereby severely diminishing the predictive power of species-area relationships, with the power model explaining only ~9% of the variation in species richness per patch. Hence, conventional species-area curves provided over-optimistic estimates of species persistence in that most forest fragments had lost species at a much faster rate than predicted by habitat loss alone.

  11. Global diversification of a tropical plant growth form: environmental correlates and historical contingencies in climbing palms.

    Science.gov (United States)

    Couvreur, Thomas L P; Kissling, W Daniel; Condamine, Fabien L; Svenning, Jens-Christian; Rowe, Nick P; Baker, William J

    2014-01-01

    Tropical rain forests (TRF) are the most diverse terrestrial biome on Earth, but the diversification dynamics of their constituent growth forms remain largely unexplored. Climbing plants contribute significantly to species diversity and ecosystem processes in TRF. We investigate the broad-scale patterns and drivers of species richness as well as the diversification history of climbing and non-climbing palms (Arecaceae). We quantify to what extent macroecological diversity patterns are related to contemporary climate, forest canopy height, and paleoclimatic changes. We test whether diversification rates are higher for climbing than non-climbing palms and estimate the origin of the climbing habit. Climbers account for 22% of global palm species diversity, mostly concentrated in Southeast Asia. Global variation in climbing palm species richness can be partly explained by past and present-day climate and rain forest canopy height, but regional differences in residual species richness after accounting for current and past differences in environment suggest a strong role of historical contingencies in climbing palm diversification. Climbing palms show a higher net diversification rate than non-climbers. Diversification analyses of palms detected a diversification rate increase along the branches leading to the most species-rich clade of climbers. Ancestral character reconstructions revealed that the climbing habit originated between early Eocene and Miocene. These results imply that changes from non-climbing to climbing habits may have played an important role in palm diversification, resulting in the origin of one fifth of all palm species. We suggest that, in addition to current climate and paleoclimatic changes after the late Neogene, present-day diversity of climbing palms can be explained by morpho-anatomical innovations, the biogeographic history of Southeast Asia, and/or ecological opportunities due to the diversification of high-stature dipterocarps in Asian TRFs.

  12. Knowledge of the Yucatec Maya in seasonal tropical forest management: the forage plants El conocimiento de los mayas yucatecos en el manejo del bosque tropical estacional: las plantas forrajeras

    Directory of Open Access Journals (Sweden)

    José Salvador Flores

    2012-06-01

    Full Text Available Indigenous knowledge and the millenary experience in management of natural vegetation on karstic landscapes are important aspects that should be considered in animal production in seasonal tropical environments. The aim of the present work was to make an inventory of native plants associated to soilscapes from seasonal tropical forests from the Yucatán Peninsula that are used as forage by Mayan people. The work was carried out in 27 Mayan communities on karst landscapes in the Yucatán Peninsula as a part of the "Ethnoflora Yucatanense" project of the Universidad Autónoma de Yucatán. Samples were taken of forage plants together with corresponding floristic and ethnobotanical information. Data were processed in EXCEL dynamic tables, grouped by plant family, geoforms and soils, life form and animal consumers. Results indicate that Mayan communities use 196 plant species as forage: 139 herbaceous, 17 shrubs, 35 trees and 2 palms. These plants are fed to cows, pigs, horses, lambs, turkeys, chickens, ducks and pigeons. The use of native forage plants may be an agricultural option both for rural communities and for intensive animal production on silvopastoral systems on karstic tropical landscapes from the Yucatán Peninsula.El conocimiento indígena y la experiencia de milenios de años en el manejo de la vegetación natural en ambientes kársticos tropicales son aspectos importantes que deben ser considerados en la producción animal. El objetivo de este trabajo fue hacer un inventario de las plantas forrajeras nativas de los bosques tropicales estacionales de la península de Yucatán que son utilizadas por los mayas, incluyendo los paisajes edáficos en los que se encuentran las plantas, información que servirá de base para la planeación de las actividades agropecuarias. El trabajo se llevó al cabo en 27 comunidades indígenas mayas, como parte del proyecto "Etnoflora Yucatanense" de la Universidad Autónoma de Yucatán. Las muestras de

  13. Functional Traits and Water Transport Strategies in Lowland Tropical Rainforest Trees

    Science.gov (United States)

    Apgaua, Deborah M. G.; Ishida, Françoise Y.; Tng, David Y. P.; Laidlaw, Melinda J.; Santos, Rubens M.; Rumman, Rizwana; Eamus, Derek; Holtum, Joseph A. M.; Laurance, Susan G. W.

    2015-01-01

    Understanding how tropical rainforest trees may respond to the precipitation extremes predicted in future climate change scenarios is paramount for their conservation and management. Tree species clearly differ in drought susceptibility, suggesting that variable water transport strategies exist. Using a multi-disciplinary approach, we examined the hydraulic variability in trees in a lowland tropical rainforest in north-eastern Australia. We studied eight tree species representing broad plant functional groups (one palm and seven eudicot mature-phase, and early-successional trees). We characterised the species’ hydraulic system through maximum rates of volumetric sap flow and velocities using the heat ratio method, and measured rates of tree growth and several stem, vessel, and leaf traits. Sap flow measures exhibited limited variability across species, although early-successional species and palms had high mean sap velocities relative to most mature-phase species. Stem, vessel, and leaf traits were poor predictors of sap flow measures. However, these traits exhibited different associations in multivariate analysis, revealing gradients in some traits across species and alternative hydraulic strategies in others. Trait differences across and within tree functional groups reflect variation in water transport and drought resistance strategies. These varying strategies will help in our understanding of changing species distributions under predicted drought scenarios. PMID:26087009

  14. Biodiversity hotspots house most undiscovered plant species.

    Science.gov (United States)

    Joppa, Lucas N; Roberts, David L; Myers, Norman; Pimm, Stuart L

    2011-08-09

    For most organisms, the number of described species considerably underestimates how many exist. This is itself a problem and causes secondary complications given present high rates of species extinction. Known numbers of flowering plants form the basis of biodiversity "hotspots"--places where high levels of endemism and habitat loss coincide to produce high extinction rates. How different would conservation priorities be if the catalog were complete? Approximately 15% more species of flowering plant are likely still undiscovered. They are almost certainly rare, and depending on where they live, suffer high risks of extinction from habitat loss and global climate disruption. By using a model that incorporates taxonomic effort over time, regions predicted to contain large numbers of undiscovered species are already conservation priorities. Our results leave global conservation priorities more or less intact, but suggest considerably higher levels of species imperilment than previously acknowledged.

  15. Testing the ecotoxicology of vegetable versus mineral based lubricating oils: 2. Induction of mixed function oxidase enzymes in barramundi, Lates calcarifer, a tropical fish species

    International Nuclear Information System (INIS)

    Mercurio, Philip; Burns, Kathryn A.; Cavanagh, Joanne

    2004-01-01

    An increasing number of vegetable-based oils are being developed as environmentally friendly alternatives to petroleum products. However, toxicity towards key tropical marine species has not been investigated. In this study we used laboratory-based biomarker induction experiments to compare the relative stress of a vegetable-based lubricating oil for marine 2-stroke engines with its mineral oil-based counterpart on tropical fish. The sub-lethal stress of 2-stoke outboard lubricating oils towards the fish Lates calcarifer (barramundi) was examined using liver microsomal mixed function oxidase (MFO) induction assays. This study is the first investigation into the use of this key commercial species in tropical North Queensland, Australia in stress assessment of potential hydrocarbon pollution using ethoxyresorufin O-deethylase (EROD) induction. Our results indicated that barramundi provide a wide range of inducible rates of EROD activity in response to relevant organic stressors. The vegetable- and mineral-based lubricants induced significant EROD activity at 1.0 mg kg -1 and there was no significant difference between the two oil treatments at that concentration. At increasing concentrations of 2 and 3 mg kg -1 , the mineral-based lubricant resulted in slightly higher EROD activity than the vegetable-based lubricant. The EROD activity of control and treated barramundi are found to be within ranges for other species from temperate and tropical environments. These results indicate that vegetable-based lubricants may be less stressful to barramundi than their mineral counterparts at concentrations of lubricant ≥2 mg kg -1 . There is great potential for this species to be used in the biomonitoring of waterways around tropical North Queensland and SE Asia. - Vegetable-based lubricating oils appear to cause a tropical fish species less stress than mineral oils

  16. Testing the ecotoxicology of vegetable versus mineral based lubricating oils: 2. Induction of mixed function oxidase enzymes in barramundi, Lates calcarifer, a tropical fish species

    Energy Technology Data Exchange (ETDEWEB)

    Mercurio, Philip; Burns, Kathryn A.; Cavanagh, Joanne

    2004-05-01

    An increasing number of vegetable-based oils are being developed as environmentally friendly alternatives to petroleum products. However, toxicity towards key tropical marine species has not been investigated. In this study we used laboratory-based biomarker induction experiments to compare the relative stress of a vegetable-based lubricating oil for marine 2-stroke engines with its mineral oil-based counterpart on tropical fish. The sub-lethal stress of 2-stoke outboard lubricating oils towards the fish Lates calcarifer (barramundi) was examined using liver microsomal mixed function oxidase (MFO) induction assays. This study is the first investigation into the use of this key commercial species in tropical North Queensland, Australia in stress assessment of potential hydrocarbon pollution using ethoxyresorufin O-deethylase (EROD) induction. Our results indicated that barramundi provide a wide range of inducible rates of EROD activity in response to relevant organic stressors. The vegetable- and mineral-based lubricants induced significant EROD activity at 1.0 mg kg{sup -1} and there was no significant difference between the two oil treatments at that concentration. At increasing concentrations of 2 and 3 mg kg{sup -1}, the mineral-based lubricant resulted in slightly higher EROD activity than the vegetable-based lubricant. The EROD activity of control and treated barramundi are found to be within ranges for other species from temperate and tropical environments. These results indicate that vegetable-based lubricants may be less stressful to barramundi than their mineral counterparts at concentrations of lubricant {>=}2 mg kg{sup -1}. There is great potential for this species to be used in the biomonitoring of waterways around tropical North Queensland and SE Asia. - Vegetable-based lubricating oils appear to cause a tropical fish species less stress than mineral oils.

  17. Site and plant species are important determinants of the Methylobacterium community composition in the plant phyllosphere.

    Science.gov (United States)

    Knief, Claudia; Ramette, Alban; Frances, Lisa; Alonso-Blanco, Carlos; Vorholt, Julia A

    2010-06-01

    The plant phyllosphere constitutes a habitat for numerous microorganisms; among them are members of the genus Methylobacterium. Owing to the ubiquitous occurrence of methylobacteria on plant leaves, they represent a suitable target for studying plant colonization patterns. The influence of the factor site, host plant species, time and the presence of other phyllosphere bacteria on Methylobacterium community composition and population size were evaluated in this study. Leaf samples were collected from Arabidopsis thaliana or Medicago truncatula plants and from the surrounding plant species at several sites. The abundance of cultivable Methylobacterium clearly correlated with the abundance of other phyllosphere bacteria, suggesting that methylobacteria constitute a considerable and rather stable fraction of the phyllosphere microbiota under varying environmental conditions. Automated ribosomal intergenic spacer analysis (ARISA) was applied to characterize the Methylobacterium community composition and showed the presence of similar communities on A. thaliana plants at most sites in 2 consecutive years of sampling. A substantial part of the observed variation in the community composition was explained by site and plant species, especially in the case of the plants collected at the Arabidopsis sites (50%). The dominating ARISA peaks that were detected on A. thaliana plants were found on other plant species grown at the same site, whereas some different peaks were detected on A. thaliana plants from other sites. This indicates that site-specific factors had a stronger impact on the Methylobacterium community composition than did plant-specific factors and that the Methylobacterium-plant association is not highly host plant species specific.

  18. Biological screening of Brazilian medicinal plants

    Directory of Open Access Journals (Sweden)

    Tânia Maria de Almeida Alves

    2000-06-01

    Full Text Available In this study, we screened sixty medicinal plant species from the Brazilian savanna ("cerrado" that could contain useful compounds for the control of tropical diseases. The plant selection was based on existing ethnobotanic information and interviews with local healers. Plant extracts were screened for: (a molluscicidal activity against Biomphalaria glabrata, (b toxicity to brine shrimp (Artemia salina L., (c antifungal activity in the bioautographic assay with Cladosporium sphaerospermum and (d antibacterial activity in the agar diffusion assay against Staphylococcus aureus, Escherichia coli, Bacillus cereus and Pseudomonas aeruginosa. Forty-two species afforded extracts that showed some degree of activity in one or more of these bioassays.

  19. Molecular phylogenetics and species delimitation of leaf-toed geckos (Phyllodactylidae: Phyllodactylus) throughout the Mexican tropical dry forest.

    Science.gov (United States)

    Blair, Christopher; Méndez de la Cruz, Fausto R; Law, Christopher; Murphy, Robert W

    2015-03-01

    Methods and approaches for accurate species delimitation continue to be a highly controversial subject in the systematics community. Inaccurate assessment of species' limits precludes accurate inference of historical evolutionary processes. Recent evidence suggests that multilocus coalescent methods show promise in delimiting species in cryptic clades. We combine multilocus sequence data with coalescence-based phylogenetics in a hypothesis-testing framework to assess species limits and elucidate the timing of diversification in leaf-toed geckos (Phyllodactylus) of Mexico's dry forests. Tropical deciduous forests (TDF) of the Neotropics are among the planet's most diverse ecosystems. However, in comparison to moist tropical forests, little is known about the mode and tempo of biotic evolution throughout this threatened biome. We find increased speciation and substantial, cryptic molecular diversity originating following the formation of Mexican TDF 30-20million years ago due to orogenesis of the Sierra Madre Occidental and Mexican Volcanic Belt. Phylogenetic results suggest that the Mexican Volcanic Belt, the Rio Fuerte, and Isthmus of Tehuantepec may be important biogeographic barriers. Single- and multilocus coalescent analyses suggest that nearly every sampling locality may be a distinct species. These results suggest unprecedented levels of diversity, a complex evolutionary history, and that the formation and expansion of TDF vegetation in the Miocene may have influenced subsequent cladogenesis of leaf-toed geckos throughout western Mexico. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Plant species richness enhances nitrogen retention in green roof plots.

    Science.gov (United States)

    Johnson, Catherine; Schweinhart, Shelbye; Buffam, Ishi

    2016-10-01

    Vegetated (green) roofs have become common in many cities and are projected to continue to increase in coverage, but little is known about the ecological properties of these engineered ecosystems. In this study, we tested the biodiversity-ecosystem function hypothesis using commercially available green roof trays as replicated plots with varying levels of plant species richness (0, 1, 3, or 6 common green roof species per plot, using plants with different functional characteristics). We estimated accumulated plant biomass near the peak of the first full growing season (July 2013) and measured runoff volume after nearly every rain event from September 2012 to September 2013 (33 events) and runoff fluxes of inorganic nutrients ammonium, nitrate, and phosphate from a subset of 10 events. We found that (1) total plant biomass increased with increasing species richness, (2) green roof plots were effective at reducing storm runoff, with vegetation increasing water retention more than soil-like substrate alone, but there was no significant effect of plant species identity or richness on runoff volume, (3) green roof substrate was a significant source of phosphate, regardless of presence/absence of plants, and (4) dissolved inorganic nitrogen (DIN = nitrate + ammonium) runoff fluxes were different among plant species and decreased significantly with increasing plant species richness. The variation in N retention was positively related to variation in plant biomass. Notably, the increased biomass and N retention with species richness in this engineered ecosystem are similar to patterns observed in published studies from grasslands and other well-studied ecosystems. We suggest that more diverse plantings on vegetated roofs may enhance the retention capacity for reactive nitrogen. This is of importance for the sustained health of vegetated roof ecosystems, which over time often experience nitrogen limitation, and is also relevant for water quality in receiving waters

  1. Applying a Dynamic Stomatal Optimization to Predict Shifts in the Functional Composition of Tropical Forests Under Increased Drought And CO2

    Science.gov (United States)

    Bartlett, M. K.; Detto, M.; Pacala, S. W.

    2017-12-01

    The accurate prediction of tropical forest carbon fluxes is key to forecasting global climate, but forest responses to projected increases in CO2 and drought are highly uncertain. Here we present a dynamic optimization that derives the trajectory of stomatal conductance (gs) during drought, a key source of model uncertainty, from plant and soil water relations and the carbon economy of the plant hydraulic system. This optimization scheme is novel in two ways. First, by accounting for the ability of capacitance (i.e., the release of water from plant storage tissue; C) to buffer evaporative water loss and maintain gs during drought, this optimization captures both drought tolerant and avoidant hydraulic strategies. Second, by determining the optimal trajectory of plant and soil water potentials, this optimization quantifies species' impacts on the water available to competing plants. These advances allowed us to apply this optimization across the range of physiology trait values observed in tropical species to evaluate shifts in the competitively optimal trait values, or evolutionarily stable hydraulic strategy (ESS), under increased drought and CO2. Increasing the length of the dry season shifted the ESS towards more drought tolerant, rather than avoidant, trait values, and these shifts were larger for longer individual drought periods (i.e., more consecutive days without rainfall), even if the total time spent in drought was the same. Concurrently doubling the CO2 level reduced the magnitude of these shifts and slightly favored drought avoidant strategies under wet conditions. Overall, these analyses predicted that short, frequent droughts would allow elevated CO2 to shift the functional composition in tropical forests towards more drought avoidant species, while infrequent but long drought periods would shift the ESS to more drought tolerant trait values, despite increased CO2. Overall, these analyses quantified the impact of physiology traits on plant performance

  2. Advances in the Use of DNA Barcodes to Build a Community Phylogeny for Tropical Trees in a Puerto Rican Forest Dynamics Plot

    Science.gov (United States)

    W. John Kress; David L. Erickson; Nathan G. Swenson; Jill Thompson; Maria Uriarte; Jess K. Zimmerman; Jerome Chave

    2010-01-01

    BACKGROUND: Species number, functional traits, and phylogenetic history all contribute to characterizing the biological diversity in plant communities. The phylogenetic component of diversity has been particularly difficult to quantify in species-rich tropical tree assemblages. The compilation of previously published (and often incomplete) data on evolutionary...

  3. Traffic noise affects forest bird species in a protected tropical forest

    Directory of Open Access Journals (Sweden)

    J. Edgardo Arévalo

    2011-06-01

    , these results have conservation as well as management implications. A decrease in bird species richness and bird abundance due to intrusive road noise could negatively affect the use of trails by visitors. Alternatives for noise attenuation in the affected forest area include the enforcement of speed limits and the planting of live barriers. Rev. Biol. Trop. 59 (2: 969-980. Epub 2011 June 01.Las carreteras cerca de bosques alteran la función del ecosistema por fragmentación del hábitat y tienen otros efectos negativos como contaminación, mortalidad de animales y ruido excesivo; sobre todo en animales como ranas y aves que dependen del sonido para comunicarse. Se espera menos abundancia de aves cerca de la carretera donde el ruido es alto. Este estudio evalúa los efectos del ruido por carretera sobre las aves en un bosque tropical de Costa Rica. También realizamos censos de aves y medimos el ruido del 19 al 23 de abril y del 21 al 28 de noviembre 2008. Además, utilizamos redes de niebla para maximizar la detección de aves en la estimación de riqueza de especies. La abundancia de aves así como la riqueza de especies decrecieron significativamente con el incremento del ruido tanto en la estación seca como en la lluviosa. El ruido disminuyó en forma logarítmica con el aumento en la distancia a la carretera y fue más alto durante la estación seca. Nuestros resultados sugieren que las aves tienden generalmente a evitar el ruido del tráfico y tienen implicaciones en la conservación y manejo del área protegida

  4. Chlorophyll fluorescence is a rigorous, high throughput tool to analyze the impacts of genotype, species, and stress on plant and ecosystem productivity

    Science.gov (United States)

    Ewers, B. E.; Pleban, J. R.; Aston, T.; Beverly, D.; Speckman, H. N.; Hosseini, A.; Bretfeld, M.; Edwards, C.; Yarkhunova, Y.; Weinig, C.; Mackay, D. S.

    2017-12-01

    Abiotic and biotic stresses reduce plant productivity, yet high-throughput characterization of plant responses across genotypes, species and stress conditions are limited by both instrumentation and data analysis techniques. Recent developments in chlorophyll a fluorescence measurement at leaf to landscape scales could improve our predictive understanding of plants response to stressors. We analyzed the interaction of species and stress across two crop types, five gymnosperm and two angiosperm tree species from boreal and montane forests, grasses, forbs and shrubs from sagebrush steppe, and 30 tree species from seasonally wet tropical forest. We also analyzed chlorophyll fluorescence and gas exchange data from twelve Brassica rapa crop accessions and 120 recombinant inbred lines to investigate phenotypic responses to drought. These data represent more than 10,000 measurements of fluorescence and allow us to answer two questions 1) are the measurements from high-throughput, hand held and drone-mounted instruments quantitatively similar to lower throughput camera and gas exchange mounted instruments and 2) do the measurements find differences in genotypic, species and environmental stress on plants? We found through regression that the high and low throughput instruments agreed across both individual chlorophyll fluorescence components and calculated ratios and were not different from a 1:1 relationship with correlation greater than 0.9. We used hierarchical Bayesian modeling to test the second question. We found a linear relationship between the fluorescence-derived quantum yield of PSII and the quantum yield of CO2 assimilation from gas-exchange, with a slope of ca. 0.1 indicating that the efficiency of the entire photosynthetic process was about 10% of PSII across genotypes, species and drought stress. Posterior estimates of quantum yield revealed that drought-treatment, genotype and species differences were preserved when accounting for measurement uncertainty

  5. Invasive Plant Species in the National Parks of Vietnam

    OpenAIRE

    Bernard Dell; Pham Quang Thu; Dang Thanh Tan

    2012-01-01

    The impact of invasive plant species in national parks and forests in Vietnam is undocumented and management plans have yet to be developed. Ten national parks, ranging from uncut to degraded forests located throughout Vietnam, were surveyed for invasive plant species. Transects were set up along roads, trails where local people access park areas, and also tracks through natural forest. Of 134 exotic weeds, 25 were classified as invasive species and the number of invasive species ranged from ...

  6. Life Cycle and Secondary Production of Four Species from Functional Feeding Groups in a Tropical Stream of South India

    Directory of Open Access Journals (Sweden)

    Sankarappan Anbalagan

    2014-01-01

    Full Text Available This study focused on life strategies of species from functional feeding groups (FFGs found in a tropical stream of the Sirumalai hills, South India. We examined the life cycle and secondary production of species of shredders (Lepidostoma nuburagangai, scrapers (Baetis sp., collectors (Choroterpes alagarensis, and predators (Neoperla biseriata. In addition, we studied the assemblage structure of functional feeding groups. We found the collectors occupied the highest percentage, followed in turn by scrapers, predators, and shredders. The diversity of FFGs was higher at riffle areas and assemblage with stream substrates differing in each functional group. An asynchronous life cycle was observed for Baetis, C. alagarensis, and N. biseriata, while L. nuburagangai was found in four to five generations per year. We acquired data on secondary production of scraper species of Baetis, which reached the highest values among all investigated species. This observation stresses the importance of scrapers as playing a key role in converting coarse particulate organic matter to fine particulate organic matter with low or high abundances of shredder population and maintaining the food chain in tropical streams.

  7. Notes on some sertulariid hydroids (Cnidaria: Hydrozoa from the tropical western Pacific, with descriptions of nine new species

    Directory of Open Access Journals (Sweden)

    Horia R. Galea

    2016-08-01

    Full Text Available Forty-three species of sertulariid hydroids (Cnidaria: Hydrozoa: Sertulariidae, collected from the tropical western Pacific (Taiwan, Philippines, New Caledonia, French Polynesia, Vanuatu, Fiji, Tonga, Solomon Islands during various expeditions of the French Tropical Deep-Sea Benthos program, are discussed. Of these, nine are new to science: Gonaxia nova sp. nov., G. plumularioides sp. nov., Sertularella folliformis sp. nov., Se. plicata sp. nov., Se. pseudocatena sp. nov., Se. splendida sp. nov., Se. tronconica sp. nov., Se. tubulosa sp. nov., and Symplectoscyphus paucicatillus sp. nov. The subspecies Symplectoscyphus johnstoni (Gray, 1843 tropicus Vervoort, 1993 is raised to species but, in order to avoid the secondary homonymy with Sy. tropicus (Hartlaub, 1901, the replacement name, Sy. fasciculatus nom. nov., is introduced. The male and female gonothecae of Diphasia cristata Billard, 1920, the male gonothecae of Gonaxia elegans Vervoort, 1993, as well as the female gonothecae of Salacia macer Vervoort & Watson, 2003, are described for the first time. Additional notes on the morphology of several other species are provided. All taxa are illustrated, in most cases using figures drawn at the same scale, so as to highlight the differences between related species.

  8. Tree species, spatial heterogeneity, and seasonality drive soil fungal abundance, richness, and composition in Neotropical rainforests.

    Science.gov (United States)

    Kivlin, Stephanie N; Hawkes, Christine V

    2016-12-01

    Tropical ecosystems remain poorly understood and this is particularly true for belowground soil fungi. Soil fungi may respond to plant identity when, for example, plants differentially allocate resources belowground. However, spatial and temporal heterogeneity in factors such as plant inputs, moisture, or nutrients can also affect fungal communities and obscure our ability to detect plant effects in single time point studies or within diverse forests. To address this, we sampled replicated monocultures of four tree species and secondary forest controls sampled in the drier and wetter seasons over 2 years. Fungal community composition was primarily related to vegetation type and spatial heterogeneity in the effects of vegetation type, with increasing divergence partly reflecting greater differences in soil pH and soil moisture. Across wetter versus drier dates, fungi were 7% less diverse, but up to four-fold more abundant. The combined effects of tree species and seasonality suggest that predicted losses of tropical tree diversity and intensification of drought have the potential to cascade belowground to affect both diversity and abundance of tropical soil fungi. © 2016 Society for Applied Microbiology and John Wiley & Sons Ltd.

  9. Generalist Bee Species on Brazilian Bee-Plant Interaction Networks

    Directory of Open Access Journals (Sweden)

    Astrid de Matos Peixoto Kleinert

    2012-01-01

    Full Text Available Determining bee and plant interactions has an important role on understanding general biology of bee species as well as the potential pollinating relationship between them. Bee surveys have been conducted in Brazil since the end of the 1960s. Most of them applied standardized methods and had identified the plant species where the bees were collected. To analyze the most generalist bees on Brazilian surveys, we built a matrix of bee-plant interactions. We estimated the most generalist bees determining the three bee species of each surveyed locality that presented the highest number of interactions. We found 47 localities and 39 species of bees. Most of them belong to Apidae (31 species and Halictidae (6 families and to Meliponini (14 and Xylocopini (6 tribes. However, most of the surveys presented Apis mellifera and/or Trigona spinipes as the most generalist species. Apis mellifera is an exotic bee species and Trigona spinipes, a native species, is also widespread and presents broad diet breath and high number of individuals per colony.

  10. A sarabande of tropical fruit proteomics: Avocado, banana, and mango.

    Science.gov (United States)

    Righetti, Pier Giorgio; Esteve, Clara; D'Amato, Alfonsina; Fasoli, Elisa; Luisa Marina, María; Concepción García, María

    2015-05-01

    The present review highlights the progress made in plant proteomics via the introduction of combinatorial peptide ligand libraries (CPLL) for detecting low-abundance species. Thanks to a novel approach to the CPLL methodology, namely, that of performing the capture both under native and denaturing conditions, identifying plant species in the order of thousands, rather than hundreds, is now possible. We report here data on a trio of tropical fruits, namely, banana, avocado, and mango. The first two are classified as "recalcitrant" tissues since minute amounts of proteins (in the order of 1%) are embedded on a very large matrix of plant-specific material (e.g., polysaccharides and other plant polymers). Yet, even under these adverse conditions we could report, in a single sweep, from 1000 to 3000 unique gene products. In the case of mango the investigation has been extended to the peel too, since this skin is popularly used to flavor dishes in Far East cuisine. Even in this tough peel 330 proteins could be identified, whereas in soft peels, such as in lemons, one thousand unique species could be detected. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Tropics accelerate the evolution of hybrid male sterility in Drosophila.

    Science.gov (United States)

    Yukilevich, Roman

    2013-06-01

    Understanding the evolutionary mechanisms that facilitate speciation and explain global patterns of species diversity has remained a challenge for decades. The most general pattern of species biodiversity is the latitudinal gradient, whereby species richness increases toward the tropics. Although such a global pattern probably has a multitude of causes, recent attention has focused on the hypothesis that speciation and the evolution of reproductive isolation occur faster in the tropics. Here, I tested this prediction using a dataset on premating and postzygotic isolation between recently diverged Drosophila species. Results showed that while the evolution of premating isolation was not greater between tropical Drosophila relative to nontropical species, postzygotic isolation evolved faster in the tropics. In particular, hybrid male sterility was much greater among tropical Drosophila compared to nontropical species pairs of similar genetic age. Several testable explanations for the novel pattern are discussed, including greater role for sterility-inducing bacterial endosymbionts in the tropics and more intense sperm-sperm competition or sperm-egg sexual conflict in the tropics. The results imply that processes of speciation in the tropics may evolve at different rates or may even be somewhat different from those at higher latitudes. © 2013 The Author(s). Evolution © 2013 The Society for the Study of Evolution.

  12. Differential responses of soil bacteria, fungi, archaea and protists to plant species richness and plant functional group identity.

    Science.gov (United States)

    Dassen, Sigrid; Cortois, Roeland; Martens, Henk; de Hollander, Mattias; Kowalchuk, George A; van der Putten, Wim H; De Deyn, Gerlinde B

    2017-08-01

    Plants are known to influence belowground microbial community structure along their roots, but the impacts of plant species richness and plant functional group (FG) identity on microbial communities in the bulk soil are still not well understood. Here, we used 454-pyrosequencing to analyse the soil microbial community composition in a long-term biodiversity experiment at Jena, Germany. We examined responses of bacteria, fungi, archaea, and protists to plant species richness (communities varying from 1 to 60 sown species) and plant FG identity (grasses, legumes, small herbs, tall herbs) in bulk soil. We hypothesized that plant species richness and FG identity would alter microbial community composition and have a positive impact on microbial species richness. Plant species richness had a marginal positive effect on the richness of fungi, but we observed no such effect on bacteria, archaea and protists. Plant species richness also did not have a large impact on microbial community composition. Rather, abiotic soil properties partially explained the community composition of bacteria, fungi, arbuscular mycorrhizal fungi (AMF), archaea and protists. Plant FG richness did not impact microbial community composition; however, plant FG identity was more effective. Bacterial richness was highest in legume plots and lowest in small herb plots, and AMF and archaeal community composition in legume plant communities was distinct from that in communities composed of other plant FGs. We conclude that soil microbial community composition in bulk soil is influenced more by changes in plant FG composition and abiotic soil properties, than by changes in plant species richness per se. © 2017 The Authors. Molecular Ecology Published by John Wiley & Sons Ltd.

  13. Changes in semi-arid plant species associations along a livestock grazing gradient.

    Directory of Open Access Journals (Sweden)

    Hugo Saiz

    Full Text Available In semi-arid ecosystems, vegetation is heterogeneously distributed, with plant species often associating in patches. These associations between species are not constant, but depend on the particular response of each species to environmental factors. Here, we investigated how plant species associations change in response to livestock grazing in a semi-arid ecosystem, Cabo de Gata-Níjar Natural Park in South East Spain. We established linear point-intercept transects at four sites with different grazing intensity, and recorded all species at each point. We investigated plant associations by comparing the number of times that each pair of species occurred at the same spatial point (co-occurrences, with the expected number of times based on species abundances. We also assessed associations for each shrub and grass species by considering all their pairs of associations and for the whole plant community by considering all pairs of associations on each site. At all sites, the plant community had a negative pattern of association, with fewer co-occurrences than expected. Negative association in the plant community increased at maximum grazing intensity. Most species associated as expected, particularly grass species, and positive associations were most important at intermediate grazing intensities. No species changed its type of association along the grazing gradient. We conclude that in the present plant community, grazing-resistant species compete among themselves and segregate in space. Some shrub species act as refuges for grazing-sensitive species that benefit from being spatially associated with shrub species, particularly at intermediate grazing intensities where positive associations were highest. At high grazing intensity, these shrubs can no longer persist and positive associations decrease due to the disappearance of refuges. Spatial associations between plant species and their response to grazing help identify the factors that organize

  14. Ozone injury to some Japanese woody plant species in summer

    Energy Technology Data Exchange (ETDEWEB)

    Kadota, M; Ohta, K

    1972-01-01

    Ozone is an important constituent of photochemical oxidant smog. This paper reveals the semiquantitative responses of various Japanese woody plant species to ozone (0.25 ppm). Plant species examined in this investigation include four coniferous trees, eleven evergreen broad-leaf trees, and twenty-one deciduous broad-leaf trees or shrubs. Generally, plants having thin leaves were susceptible. The plant species with higher activity of photosynthesis appeared to be more susceptible. As a whole, evergreen broad-leaf trees could be said to be more resistant to ozone than deciduous broad-leaf trees.

  15. Weights, hematology and serum chemistry of seven species of free-ranging tropical pelagic seabirds

    Science.gov (United States)

    Work, Thierry M.

    1996-01-01

    I established reference values for weight, hematology, and serum chemistry for seven species of free-ranging Hawaiian tropical pelagic seabirds comprising three orders (Procellariiformes, Pelecaniformes, Charadriiformes) and six families (Procellariidae, Phaethontidae, Diomedeidae, Sulidae, Fregatidae, and Laridae). Species examined included 84 Hawaiian dark-rumped petrels (Pterodoma phaeopygia), 90 wedge-tailed shearwaters (Puffinus pacificus), 151 Laysan albatrosses (Diomedea immutabilis), 69 red-footed boobies (Sula sula), 154 red-tailed tropicbirds (Phaeton rubricauda), 90 great frigatebirds (Fregata minor), and 72 sooty terns (Sterna fuscata). Hematocrit, total plasma solids, total and differential white cell counts, serum glucose, calcium, phosphorus, uric acid, total protein, albumin, globulin, aspartate aminotransferase and creatinine phosphokinase were analyzed. Among and within species, hematology and chemistry values varied with age, sex, season, and island of collection. Despite this variation, order-wide trends were observed.

  16. Light requirements of Australian tropical vs. cool-temperate rainforest tree species show different relationships with seedling growth and functional traits.

    Science.gov (United States)

    Lusk, Christopher H; Kelly, Jeff W G; Gleason, Sean M

    2013-03-01

    A trade-off between shade tolerance and growth in high light is thought to underlie the temporal dynamics of humid forests. On the other hand, it has been suggested that tree species sorting on temperature gradients involves a trade-off between growth rate and cold resistance. Little is known about how these two major trade-offs interact. Seedlings of Australian tropical and cool-temperate rainforest trees were grown in glasshouse environments to compare growth versus shade-tolerance trade-offs in these two assemblages. Biomass distribution, photosynthetic capacity and vessel diameters were measured in order to examine the functional correlates of species differences in light requirements and growth rate. Species light requirements were assessed by field estimation of the light compensation point for stem growth. Light-demanding and shade-tolerant tropical species differed markedly in relative growth rates (RGR), but this trend was less evident among temperate species. This pattern was paralleled by biomass distribution data: specific leaf area (SLA) and leaf area ratio (LAR) of tropical species were significantly positively correlated with compensation points, but not those of cool-temperate species. The relatively slow growth and small SLA and LAR of Tasmanian light-demanders were associated with narrow vessels and low potential sapwood conductivity. The conservative xylem traits, small LAR and modest RGR of Tasmanian light-demanders are consistent with selection for resistance to freeze-thaw embolism, at the expense of growth rate. Whereas competition for light favours rapid growth in light-demanding trees native to environments with warm, frost-free growing seasons, frost resistance may be an equally important determinant of the fitness of light-demanders in cool-temperate rainforest, as seedlings establishing in large openings are exposed to sub-zero temperatures that can occur throughout most of the year.

  17. Invasive exotic plant species in Sierra Nevada ecosystems

    Science.gov (United States)

    Carla M. D' Antonio; Eric L. Berlow; Karen L. Haubensak

    2004-01-01

    The Sierra Nevada is a topographically and floristically diverse region of the western United States. While it comprises only a fifth of the total land area of California, half of the native plant species in the state occur within the range. In addition, more than 400 plant species are endemic to the Sierra Nevada and many of these are listed as threatened or have...

  18. Design basis tropical cyclone for nuclear power plants

    International Nuclear Information System (INIS)

    1984-01-01

    The general characteristics of tropical cyclones are discussed in this Safety Guide, with particular emphasis on their pressure and wind structures in the light of available data. General methods are given for the evaluation of the relevant parameters of a Probable Maximum Tropical Cyclone (PMTC), which can be used as the Design Basis Tropical Cyclone (DBTC); these parameters then serve as inputs for the derivation of a design basis surge and a design basis wind. A possible method is also given for the evaluation of the PMTC pressure and wind field based on an approach valid primarily for a particular region. This method depends on the results of a theoretical study on the tropical cyclone structure and makes use of a large amount of data, including aircraft reconnaissance observations for 170 most intense tropical cyclones near the coast of Japan, Taiwan and the Philippines for the period 1960-1974, as well as detailed analyses of all the extreme storms along the Gulf of Mexico and the east coast of the USA during 1900-1978, for the determination of the necessary parameters

  19. Chemical review and studies related to species from the genus Tynanthus (Bignoniaceae

    Directory of Open Access Journals (Sweden)

    Fernanda Colombi Cansian

    2015-09-01

    Full Text Available Species from the Bignoniaceae Family, including the genus Tynanthus, are very prevalent in the tropical Americas, with specimens found in a large part of the Brazilian territory. These plants are commonly used in traditional medicine for several purposes, and some studies have described their chemical structure, in addition to other reports related to some species from this genus. This review aimed to gather information from published works concerning species of the genus Tynanthus, as well as to detect flaws in research related to these plants, which may have great biological and pharmaceutical importance. Also, this review points out some common chemical characteristics of these species, providing information that may help new researchers to improve their knowledge about these plants.

  20. Interspecific competition of early successional plant species in ex-arable fields as influenced by plant-soil feedback

    OpenAIRE

    Jing, Jingying; Bezemer, T. Martijn; Van der Putten, Wim H.

    2015-01-01

    Plant–soil feedback can affect plants that belong to the same (intraspecific feedback) or different species (interspecific feedback). However, little is known about how intra- and interspecific plant–soil feedbacks influence interspecific plant competition. Here, we used plants and soil from early-stage ex-arable fields to examine how intra- and interspecific plant–soil feedbacks affect the performance of 10 conditioning species and the focal species, Jacobaea vulgaris. Plants were grown alon...

  1. Reforestation Sites Show Similar and Nested AMF Communities to an Adjacent Pristine Forest in a Tropical Mountain Area of South Ecuador

    Science.gov (United States)

    Haug, Ingeborg; Setaro, Sabrina; Suárez, Juan Pablo

    2013-01-01

    Arbuscular mycorrhizae are important for growth and survival of tropical trees. We studied the community of arbuscular mycorrhizal fungi in a tropical mountain rain forest and in neighbouring reforestation plots in the area of Reserva Biológica San Francisco (South Ecuador). The arbuscular mycorrhizal fungi were analysed with molecular methods sequencing part of the 18 S rDNA. The sequences were classified as Operational Taxonomic Units (OTUs). We found high fungal species richness with OTUs belonging to Glomerales, Diversisporales and Archaeosporales. Despite intensive sampling, the rarefaction curves are still unsaturated for the pristine forest and the reforestation plots. The communities consisted of few frequent and many rare species. No specific interactions are recognizable. The plant individuals are associated with one to ten arbuscular mycorrhizal fungi and mostly with one to four. The fungal compositions associated with single plant individuals show a great variability and variety within one plant species. Planted and naturally occurring plants show high similarities in their fungal communities. Pristine forest and reforestation plots showed similar richness, similar diversity and a significantly nested structure of plant-AMF community. The results indicate that small-scale fragmentation presently found in this area has not destroyed the natural AMF community, at least yet. Thus, the regeneration potential of natural forest vegetation at the tested sites is not inhibited by a lack of appropriate mycobionts. PMID:23671682

  2. Effects of 'target' plant species body size on neighbourhood species richness and composition in old-field vegetation.

    Directory of Open Access Journals (Sweden)

    Brandon S Schamp

    Full Text Available Competition is generally regarded as an important force in organizing the structure of vegetation, and evidence from several experimental studies of species mixtures suggests that larger mature plant size elicits a competitive advantage. However, these findings are at odds with the fact that large and small plant species generally coexist, and relatively smaller species are more common in virtually all plant communities. Here, we use replicates of ten relatively large old-field plant species to explore the competitive impact of target individual size on their surrounding neighbourhoods compared to nearby neighbourhoods of the same size that are not centred by a large target individual. While target individuals of the largest of our test species, Centaurea jacea L., had a strong impact on neighbouring species, in general, target species size was a weak predictor of the number of other resident species growing within its immediate neighbourhood, as well as the number of resident species that were reproductive. Thus, the presence of a large competitor did not restrict the ability of neighbouring species to reproduce. Lastly, target species size did not have any impact on the species size structure of neighbouring species; i.e. they did not restrict smaller, supposedly poorer competitors, from growing and reproducing close by. Taken together, these results provide no support for a size-advantage in competition restricting local species richness or the ability of small species to coexist and successfully reproduce in the immediate neighbourhood of a large species.

  3. Iron Availability in Tropical Soils and Iron Uptake by Plants

    Directory of Open Access Journals (Sweden)

    Guilherme Furlan Mielki

    Full Text Available ABSTRACT Given the increase in crop yields and the expansion of agriculture in low fertility soils, deficiency of micronutrients, such as iron, in plants grown in tropical soils has been observed. The aim of this study was to evaluate Fe availability and Fe uptake by corn (Zea mays L. plants in 13 different soils, at two depths. Iron was extracted by Mehlich-1, Mehlich-3, and CaCl2 (Fe-CC and was fractionated in forms related to low (Feo and high (Fed crystallinity pedogenic oxyhydroxides, and organic matter (Fep using ammonium oxalate, dithionite-citrate, and sodium pyrophosphate, respectively. In order to relate Fe availability to soil properties and plant growth, an experiment was carried out in a semi-hydroponic system in which part of the roots developed in a nutrient solution (without Fe and part in the soil (the only source of Fe. Forty-five days after seeding, we quantified shoot dry matter and leaf Fe concentration and content. Fed levels were high, from 5 to 132 g kg-1, and Feo and Fe-CC levels were low, indicating the predominance of Fe as crystalline oxyhydroxides and a low content of Fe readily available to plants. The extraction solutions showed significant correlations with various soil properties, many common to both, indicating that they act similarly. The correlation between the Mehlich-1 and Mehlich-3 extraction solutions was highly significant. However, these two extraction methods were inefficient in predicting Fe availability to plants. There was a positive correlation between dry matter and Fe levels in plant shoots, even within the ranges considered adequate in the soil and in the plant. Dry matter production and leaf Fe concentration and content were positively correlated with Fep concentration, indicating that the Fe fraction related to soil organic matter most contributes to Fe availability to plants.

  4. Widespread plant species: natives vs. aliens in our changing world

    Science.gov (United States)

    Stohlgren, Thomas J.; Pyšek, Petr; Kartesz, John; Nishino, Misako; Pauchard, Aníbal; Winter, Marten; Pino, Joan; Richardson, David M.; Wilson, John R.U.; Murray, Brad R.; Phillips, Megan L.; Ming-yang, Li; Celesti-Grapow, Laura; Font, Xavier

    2011-01-01

    Estimates of the level of invasion for a region are traditionally based on relative numbers of native and alien species. However, alien species differ dramatically in the size of their invasive ranges. Here we present the first study to quantify the level of invasion for several regions of the world in terms of the most widely distributed plant species (natives vs. aliens). Aliens accounted for 51.3% of the 120 most widely distributed plant species in North America, 43.3% in New South Wales (Australia), 34.2% in Chile, 29.7% in Argentina, and 22.5% in the Republic of South Africa. However, Europe had only 1% of alien species among the most widespread species of the flora. Across regions, alien species relative to native species were either as well-distributed (10 comparisons) or more widely distributed (5 comparisons). These striking patterns highlight the profound contribution that widespread invasive alien plants make to floristic dominance patterns across different regions. Many of the most widespread species are alien plants, and, in particular, Europe and Asia appear as major contributors to the homogenization of the floras in the Americas. We recommend that spatial extent of invasion should be explicitly incorporated in assessments of invasibility, globalization, and risk assessments.

  5. Widespread plant species: Natives versus aliens in our changing world

    Science.gov (United States)

    Stohlgren, T.J.; Pysek, P.; Kartesz, J.; Nishino, M.; Pauchard, A.; Winter, M.; Pino, J.; Richardson, D.M.; Wilson, J.R.U.; Murray, B.R.; Phillips, M.L.; Ming-yang, L.; Celesti-Grapow, L.; Font, X.

    2011-01-01

    Estimates of the level of invasion for a region are traditionally based on relative numbers of native and alien species. However, alien species differ dramatically in the size of their invasive ranges. Here we present the first study to quantify the level of invasion for several regions of the world in terms of the most widely distributed plant species (natives vs. aliens). Aliens accounted for 51.3% of the 120 most widely distributed plant species in North America, 43.3% in New South Wales (Australia), 34.2% in Chile, 29.7% in Argentina, and 22.5% in the Republic of South Africa. However, Europe had only 1% of alien species among the most widespread species of the flora. Across regions, alien species relative to native species were either as well-distributed (10 comparisons) or more widely distributed (5 comparisons). These striking patterns highlight the profound contribution that widespread invasive alien plants make to floristic dominance patterns across different regions. Many of the most widespread species are alien plants, and, in particular, Europe and Asia appear as major contributors to the homogenization of the floras in the Americas. We recommend that spatial extent of invasion should be explicitly incorporated in assessments of invasibility, globalization, and risk assessments. ?? 2011 Springer Science+Business Media B.V.

  6. Efficient distinction of invasive aquatic plant species from non-invasive related species using DNA barcoding.

    Science.gov (United States)

    Ghahramanzadeh, R; Esselink, G; Kodde, L P; Duistermaat, H; van Valkenburg, J L C H; Marashi, S H; Smulders, M J M; van de Wiel, C C M

    2013-01-01

    Biological invasions are regarded as threats to global biodiversity. Among invasive aliens, a number of plant species belonging to the genera Myriophyllum, Ludwigia and Cabomba, and to the Hydrocharitaceae family pose a particular ecological threat to water bodies. Therefore, one would try to prevent them from entering a country. However, many related species are commercially traded, and distinguishing invasive from non-invasive species based on morphology alone is often difficult for plants in a vegetative stage. In this regard, DNA barcoding could become a good alternative. In this study, 242 samples belonging to 26 species from 10 genera of aquatic plants were assessed using the chloroplast loci trnH-psbA, matK and rbcL. Despite testing a large number of primer sets and several PCR protocols, the matK locus could not be amplified or sequenced reliably and therefore was left out of the analysis. Using the other two loci, eight invasive species could be distinguished from their respective related species, a ninth one failed to produce sequences of sufficient quality. Based on the criteria of universal application, high sequence divergence and level of species discrimination, the trnH-psbA noncoding spacer was the best performing barcode in the aquatic plant species studied. Thus, DNA barcoding may be helpful with enforcing a ban on trade of such invasive species, such as is already in place in the Netherlands. This will become even more so once DNA barcoding would be turned into machinery routinely operable by a nonspecialist in botany and molecular genetics. © 2012 Blackwell Publishing Ltd.

  7. Plant Species Identification by Bi-channel Deep Convolutional Networks

    Science.gov (United States)

    He, Guiqing; Xia, Zhaoqiang; Zhang, Qiqi; Zhang, Haixi; Fan, Jianping

    2018-04-01

    Plant species identification achieves much attention recently as it has potential application in the environmental protection and human life. Although deep learning techniques can be directly applied for plant species identification, it still needs to be designed for this specific task to obtain the state-of-art performance. In this paper, a bi-channel deep learning framework is developed for identifying plant species. In the framework, two different sub-networks are fine-tuned over their pretrained models respectively. And then a stacking layer is used to fuse the output of two different sub-networks. We construct a plant dataset of Orchidaceae family for algorithm evaluation. Our experimental results have demonstrated that our bi-channel deep network can achieve very competitive performance on accuracy rates compared to the existing deep learning algorithm.

  8. Coexistence induced by pollen limitation in flowering-plant species.

    OpenAIRE

    Ishii, R; Higashi, M

    2001-01-01

    We report a novel mechanism for species coexistence that does not invoke a trade-off relationship in the case of outbreeding flowering plants. Competition for pollination services may lead to interspecific segregation of the timing of flowering among plants. This, in turn, sets limits on the pollination services, which restrain the population growth of a competitively superior species, thereby allowing an inferior species to sustain its population in the habitat. This explains the often-obser...