WorldWideScience

Sample records for tropical cyclone intensity

  1. Human Influence on Tropical Cyclone Intensity

    Science.gov (United States)

    Sobel, Adam H.; Camargo, Suzana J.; Hall, Timothy M.; Lee, Chia-Ying; Tippett, Michael K.; Wing, Allison A.

    2016-01-01

    Recent assessments agree that tropical cyclone intensity should increase as the climate warms. Less agreement exists on the detection of recent historical trends in tropical cyclone intensity.We interpret future and recent historical trends by using the theory of potential intensity, which predicts the maximum intensity achievable by a tropical cyclone in a given local environment. Although greenhouse gas-driven warming increases potential intensity, climate model simulations suggest that aerosol cooling has largely canceled that effect over the historical record. Large natural variability complicates analysis of trends, as do poleward shifts in the latitude of maximum intensity. In the absence of strong reductions in greenhouse gas emissions, future greenhouse gas forcing of potential intensity will increasingly dominate over aerosol forcing, leading to substantially larger increases in tropical cyclone intensities.

  2. Resolving Tropical Cyclone Intensity in Models

    Science.gov (United States)

    Davis, C. A.

    2018-02-01

    In recent years, global weather forecast models and global climate models have begun to depict intense tropical cyclones, even up to category 5 on the Saffir-Simpson scale. In light of the limitation of horizontal resolution in such models, the author performs calculations, using the extended Best Track data for Atlantic tropical cyclones, to estimate the ability of models with differing grid spacing to represent Atlantic tropical cyclone intensity statistically. Results indicate that, under optimistic assumptions, models with horizontal grid spacing of one fourth degree or coarser should not produce a realistic number of category 4 and 5 storms unless there are errors in spatial attributes of the wind field. Furthermore, the case of Irma (2017) is used to demonstrate the importance of a realistic depiction of angular momentum and to motivate the use of angular momentum in model evaluation.

  3. Tropical Cyclone Intensity Estimation Using Deep Convolutional Neural Networks

    Science.gov (United States)

    Maskey, Manil; Cecil, Dan; Ramachandran, Rahul; Miller, Jeffrey J.

    2018-01-01

    Estimating tropical cyclone intensity by just using satellite image is a challenging problem. With successful application of the Dvorak technique for more than 30 years along with some modifications and improvements, it is still used worldwide for tropical cyclone intensity estimation. A number of semi-automated techniques have been derived using the original Dvorak technique. However, these techniques suffer from subjective bias as evident from the most recent estimations on October 10, 2017 at 1500 UTC for Tropical Storm Ophelia: The Dvorak intensity estimates ranged from T2.3/33 kt (Tropical Cyclone Number 2.3/33 knots) from UW-CIMSS (University of Wisconsin-Madison - Cooperative Institute for Meteorological Satellite Studies) to T3.0/45 kt from TAFB (the National Hurricane Center's Tropical Analysis and Forecast Branch) to T4.0/65 kt from SAB (NOAA/NESDIS Satellite Analysis Branch). In this particular case, two human experts at TAFB and SAB differed by 20 knots in their Dvorak analyses, and the automated version at the University of Wisconsin was 12 knots lower than either of them. The National Hurricane Center (NHC) estimates about 10-20 percent uncertainty in its post analysis when only satellite based estimates are available. The success of the Dvorak technique proves that spatial patterns in infrared (IR) imagery strongly relate to tropical cyclone intensity. This study aims to utilize deep learning, the current state of the art in pattern recognition and image recognition, to address the need for an automated and objective tropical cyclone intensity estimation. Deep learning is a multi-layer neural network consisting of several layers of simple computational units. It learns discriminative features without relying on a human expert to identify which features are important. Our study mainly focuses on convolutional neural network (CNN), a deep learning algorithm, to develop an objective tropical cyclone intensity estimation. CNN is a supervised learning

  4. Is the poleward migration of tropical cyclone maximum intensity associated with a poleward migration of tropical cyclone genesis?

    Science.gov (United States)

    Daloz, Anne Sophie; Camargo, Suzana J.

    2018-01-01

    A recent study showed that the global average latitude where tropical cyclones achieve their lifetime-maximum intensity has been migrating poleward at a rate of about one-half degree of latitude per decade over the last 30 years in each hemisphere. However, it does not answer a critical question: is the poleward migration of tropical cyclone lifetime-maximum intensity associated with a poleward migration of tropical cyclone genesis? In this study we will examine this question. First we analyze changes in the environmental variables associated with tropical cyclone genesis, namely entropy deficit, potential intensity, vertical wind shear, vorticity, skin temperature and specific humidity at 500 hPa in reanalysis datasets between 1980 and 2013. Then, a selection of these variables is combined into two tropical cyclone genesis indices that empirically relate tropical cyclone genesis to large-scale variables. We find a shift toward greater (smaller) average potential number of genesis at higher (lower) latitudes over most regions of the Pacific Ocean, which is consistent with a migration of tropical cyclone genesis towards higher latitudes. We then examine the global best track archive and find coherent and significant poleward shifts in mean genesis position over the Pacific Ocean basins.

  5. Directional Wave Spectra Observed During Intense Tropical Cyclones

    Science.gov (United States)

    Collins, C. O.; Potter, H.; Lund, B.; Tamura, H.; Graber, H. C.

    2018-02-01

    Two deep-sea moorings were deployed 780 km off the coast of southern Taiwan for 4-5 months during the 2010 typhoon season. Directional wave spectra, wind speed and direction, and momentum fluxes were recorded on two Extreme Air-Sea Interaction buoys during the close passage of Severe Tropical Storm Dianmu and three tropical cyclones (TCs): Typhoon Fanapi, Super Typhoon Megi, and Typhoon Chaba. Conditions sampled include significant wave heights up to 11 m and wind speeds up to 26 m s-1. Details varied for large-scale spectral structure in frequency and direction but were mostly bimodal. The modes were generally composed of a swell system emanating from the most intense storm region and local wind-seas. The peak systems were consistently young, meaning actively forced by winds, when the storms were close. During the peaks of the most intense passages—Chaba at the northern mooring and Megi at the southern—the bimodal seas coalesced. During Chaba, the swell and wind-sea coupling directed the high frequency waves and the wind stress away from the wind direction. A spectral wave model was able reproduce many of the macrofeatures of the directional spectra.

  6. The relationships between precipitation, convective cloud and tropical cyclone intensity change

    Science.gov (United States)

    Ruan, Z.; Wu, Q.

    2017-12-01

    Using 16 years precipitation, brightness temperature (IR BT) data and tropical cyclone (TC) information, this study explores the relationship between precipitation, convective cloud and tropical cyclone (TC) intensity change in the Western North Pacific Ocean. It is found that TC intensity has positive relation with TC precipitation. TC precipitation increases with increased TC intensity. Based on the different phase of diurnal cycle, convective TC clouds were divided into very cold deep convective clouds (IR BTs<208K) and cold high clouds (208K

  7. Spatial Distributions of Tropical Cyclone Tornadoes by Intensity and Size Characteristics

    Directory of Open Access Journals (Sweden)

    Todd W. Moore

    2017-08-01

    Full Text Available Tropical cyclones that make landfall often spawn tornadoes. Previous studies have shown that these tornadoes are not uniformly distributed in the United States or in the tropical cyclone environment. They show that tornadoes tend to occur relatively close to the coastline and that they tend to cluster to the east-of-center in the tropical cyclone environment, particularly in the northeast and east-of-center quadrants. This study contributes to these studies by analyzing the spatial distributions of tropical cyclone tornadoes by intensity, path length, path width, and the damage potential index. The analyses confirm that most tornadoes occur relatively close to the coastline, but show that stronger tornadoes with larger paths are disproportionately common farther inland. They also confirm that the highest amount of activity is located within the northeast and east-of-center quadrants and show that the most potentially damaging tornadoes cluster in a sub region near the intersection of these two quadrants.

  8. Spatial and Temporal Trends in the Location of the Lifetime Maximum Intensity of Tropical Cyclones

    Directory of Open Access Journals (Sweden)

    Sarah A. Tennille

    2017-10-01

    Full Text Available The climatology of tropical cyclones is an immediate research need, specifically to better understand their long-term patterns and elucidate their future in a changing climate. One important pattern that has recently been detected is the poleward shift of the lifetime maximum intensity (LMI of tropical cyclones. This study further assessed the recent (1977–2015 spatial changes in the LMI of tropical cyclones, specifically those of tropical storm strength or stronger in the North Atlantic and northern West Pacific basins. Analyses of moving decadal means suggested that LMI locations migrated south in the North Atlantic and north in the West Pacific. In addition to a linear trend, there is a cyclical migration of LMI that is especially apparent in the West Pacific. Relationships between LMI migration and intensity were explored, as well as LMI location relative to landfall. The southerly trend of LMI in the North Atlantic was most prevalent in the strongest storms, resulting in these storms reaching their LMI farther from land. The relationship between intensity and LMI migration in the West Pacific was not as clear, but the most intense storms have been reaching LMI closer to their eventual landfall location. This work adds to those emphasizing the importance of understanding the climatology of the most intense hurricanes and shows there are potential human impacts resulting from any migration of LMI.

  9. Latitudinal Change of Tropical Cyclone Maximum Intensity in the Western North Pacific

    OpenAIRE

    Choi, Jae-Won; Cha, Yumi; Kim, Hae-Dong; Kang, Sung-Dae

    2016-01-01

    This study obtained the latitude where tropical cyclones (TCs) show maximum intensity and applied statistical change-point analysis on the time series data of the average annual values. The analysis results found that the latitude of the TC maximum intensity increased from 1999. To investigate the reason behind this phenomenon, the difference of the average latitude between 1999 and 2013 and the average between 1977 and 1998 was analyzed. In a difference of 500 hPa streamline between the two ...

  10. Dynamics and Predictability of Tropical Cyclone Genesis, Structure and Intensity Change

    Science.gov (United States)

    2012-09-30

    analyses and forecasts of tropical cyclones, including genesis, intensity change, and extratropical transition. A secondary objective is to understand... storm -centered assimilation algorithm. Basic research in Report Documentation Page Form ApprovedOMB No. 0704-0188 Public reporting burden for the...COMPLETED For the four storms consider (Nuri, Jangmi, Sinlaku, and Hagupit), an 80-member EnKF has been cycled on observations (surface, rawinsondes, GPS

  11. Spatial Distributions of Tropical Cyclone Tornadoes by Intensity and Size Characteristics

    OpenAIRE

    Todd W. Moore; Nicholas J. Sokol; Robert A. Blume

    2017-01-01

    Tropical cyclones that make landfall often spawn tornadoes. Previous studies have shown that these tornadoes are not uniformly distributed in the United States or in the tropical cyclone environment. They show that tornadoes tend to occur relatively close to the coastline and that they tend to cluster to the east-of-center in the tropical cyclone environment, particularly in the northeast and east-of-center quadrants. This study contributes to these studies by analyzing the spatial distributi...

  12. Tropical Cyclone Propagation

    National Research Council Canada - National Science Library

    Gray, William

    1994-01-01

    This paper discusses the question of tropical cyclone propagation or why the average tropical cyclone moves 1-2 m/s faster and usually 10-20 deg to the left of its surrounding (or 5-7 deg radius) deep layer (850-300 mb) steering current...

  13. Interannual variability of the frequency and intensity of tropical cyclones striking the California coast

    Science.gov (United States)

    Mendez, F. J.; Rueda, A.; Barnard, P.; Mori, N.; Nakajo, S.; Albuquerque, J.

    2016-12-01

    Hurricanes hitting California have a very low ocurrence probability due to typically cool ocean temperature and westward tracks. However, damages associated to these improbable events would be dramatic in Southern California and understanding the oceanographic and atmospheric drivers is of paramount importance for coastal risk management for present and future climates. A statistical analysis of the historical events is very difficult due to the limited resolution of atmospheric and oceanographic forcing data available. In this work, we propose a combination of: (a) climate-based statistical downscaling methods (Espejo et al, 2015); and (b) a synthetic stochastic tropical cyclone (TC) model (Nakajo et al, 2014). To build the statistical downscaling model, Y=f(X), we apply a combination of principal component analysis and the k-means classification algorithm to find representative patterns from large-scale may-to-november averaged monthly anomalies of SST and thermocline depth fields in Tropical Pacific (predictor X) and the associated historical tropical cyclones in Eastern North Pacific basin (predictand Y). As data for the historical occurrence and paths of tropical cyclones are scarce, we apply a stochastic TC model which is based on a Monte Carlo simulation of the joint distribution of track, minimum sea level pressure and translation speed of the historical events in the Eastern Central Pacific Ocean. Results will show the ability of the approach to explain the interannual variability of the frequency and intensity of TCs in Southern California, which is clearly related to post El Niño Eastern Pacific and El Niño Central Pacific. References Espejo, A., Méndez, F.J., Diez, J., Medina, R., Al-Yahyai, S. (2015) Seasonal probabilistic forecasting of tropical cyclone activity in the North Indian Ocean, Journal of Flood Risk Management, DOI: 10.1111/jfr3.12197 Nakajo, S., N. Mori, T. Yasuda, and H. Mase (2014) Global Stochastic Tropical Cyclone Model Based on

  14. An empirical framework for tropical cyclone climatology

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Nam-Young [Korea Meteorological Administration, Seoul (Korea, Republic of); Florida State University, Tallahassee, FL (United States); Elsner, James B. [Florida State University, Tallahassee, FL (United States)

    2012-08-15

    An empirical approach for analyzing tropical cyclone climate is presented. The approach uses lifetime-maximum wind speed and cyclone frequency to induce two orthogonal variables labeled ''activity'' and ''efficiency of intensity''. The paired variations of activity and efficiency of intensity along with the opponent variations of frequency and intensity configure a framework for evaluating tropical cyclone climate. Although cyclone activity as defined in this framework is highly correlated with the commonly used exponent indices like accumulated cyclone energy, it does not contain cyclone duration. Empirical quantiles are used to determine threshold intensity levels, and variant year ranges are used to find consistent trends in tropical cyclone climatology. In the western North Pacific, cyclone activity is decreasing despite increases in lifetime-maximum intensity. This is due to overwhelming decreases in cyclone frequency. These changes are also explained by an increasing efficiency of intensity. The North Atlantic shows different behavior. Cyclone activity is increasing due to increasing frequency and, to a lesser extent, increasing intensity. These changes are also explained by a decreasing efficiency of intensity. Tropical cyclone trends over the North Atlantic basin are more consistent over different year ranges than tropical cyclone trends over the western North Pacific. (orig.)

  15. Simulating seasonal tropical cyclone intensities at landfall along the South China coast

    Science.gov (United States)

    Lok, Charlie C. F.; Chan, Johnny C. L.

    2018-04-01

    A numerical method is developed using a regional climate model (RegCM3) and the Weather Forecast and Research (WRF) model to predict seasonal tropical cyclone (TC) intensities at landfall for the South China region. In designing the model system, three sensitivity tests have been performed to identify the optimal choice of the RegCM3 model domain, WRF horizontal resolution and WRF physics packages. Driven from the National Centers for Environmental Prediction Climate Forecast System Reanalysis dataset, the model system can produce a reasonable distribution of TC intensities at landfall on a seasonal scale. Analyses of the model output suggest that the strength and extent of the subtropical ridge in the East China Sea are crucial to simulating TC landfalls in the Guangdong and Hainan provinces. This study demonstrates the potential for predicting TC intensities at landfall on a seasonal basis as well as projecting future climate changes using numerical models.

  16. Growing threat of intense tropical cyclones to East Asia over the period 1977–2010

    International Nuclear Information System (INIS)

    Park, Doo-Sun R; Ho, Chang-Hoi; Kim, Joo-Hong

    2014-01-01

    The threat of intense tropical cyclones (TCs) to East Asia has increased in recent decades. Integrated analyses of five available TC data sets for the period 1977–2010 revealed that the growing threat of TCs primarily results from the significant shift that the spatial positions of the maximum intensity of TCs moved closer to East Asian coastlines from Vietnam to Japan. This shift incurs a robust increase in landfall intensity over east China, Korea and Japan. In contrast, an increase of TC genesis frequency over the northern part of the South China Sea leads to a reduction in the maximum TC intensity before landfall, because of their short lifetime; thus, there are no clear tendencies in the landfall intensity across Vietnam, south China and Taiwan. All changes are related to the strengthening of the Pacific Walker circulation, closely linked with the recent manifestation that the warming trend of sea surface temperature in the tropical western Pacific is much higher than that in the central to eastern Pacific. (paper)

  17. 1997 Annual Tropical Cyclone Report

    National Research Council Canada - National Science Library

    Dillon, C

    1997-01-01

    .... Separate bulletins are issued for the Western Pacific and the Indian Ocean. TROPICAL CYCLONE FORMATION ALERT - Defines a specific area when synoptic, satellite, or other germane data indicate development of a significant tropical cyclone (TC...

  18. Dynamic Potential Intensity: An improved representation of the ocean’s impact on tropical cyclones

    Energy Technology Data Exchange (ETDEWEB)

    Balaguru, Karthik; Foltz, Gregory R.; Leung, Lai-Yung; D' Asaro, Eric; Emanuel, Kerry A.; Liu, Hailong; Zedler, Sarah E.

    2015-08-18

    To incorporate the effects of tropical cyclone (TC)-induced upper ocean mixing and sea surface temperature (SST) cooling on TC intensification, a vertical average of temperature down to a fixed depth was proposed as a replacement for SST within the framework of air-sea coupled Potential Intensity (PI). However, the depth to which TC-induced mixing penetrates may vary substantially with ocean stratification and storm state. To account for these effects, here we develop a “Dynamic Potential Intensity” (DPI) based on considerations of stratified fluid turbulence. For the Argo period 2004–2013 and the three major TC basins of the Northern Hemisphere, we show that the DPI explains 11–32% of the variance in TC intensification, compared to 0–16% using previous methods. The improvement obtained using the DPI is particularly large in the eastern Pacific where the thermocline is shallow and ocean stratification effects are strong.

  19. More intensive summer tropical cyclone near 30°N of East Asia

    Science.gov (United States)

    Choi, Jae-Won; Cha, Yumi; Kim, Hae-Dong; Lu, Riyu

    2017-06-01

    The present study revealed that a climate regime shift occurred during the 1988-1991 period involving changes in tropical cyclone (TC) intensity (central pressure, maximum sustained wind speed) during the summer near 30°N in East Asia. Climatologically, TC intensity at 110°-125°E near 30°N (over Mainland China) is the weakest at that latitude while the strongest is found at 125°-130°E (over Korea). The TC intensity during the 1991-2015 (91-15) period had strengthened significantly compared to that of the 1965-1988 (65-88) period. The strengthening was due to a significantly lower frequency of TCs that passed through Mainland China during the 91-15 period. This lower frequency of was due to anomalous northeasterlies blown from the anomalous anticyclonic circulation located over continental East Asia and that had strengthened along the coast. Instead, TCs mainly followed a path from eastern regions in the subtropical western North Pacific to Korea and Japan via the East China Sea due to anomalous cyclonic circulations that had strengthened in the western North Pacific. In addition, low vertical wind shear had formed along the mid-latitude region in East Asia and along the main TC track in the 91-15 period, and most regions in the western North Pacific experienced a higher sea surface temperature state during the 91-15 period than in the previous period, indicating that a favorable environment had formed to maintain strong intensities of TCs at the mid-latitudes. The characteristics of TCs at the lower latitudes caused a strong TC intensity at the time of landfall in Korea and a gradual shifting trend of landing location from the western to southern coast in recent years.

  20. Evaluation of the productivity decrease risk due to a future increase in tropical cyclone intensity in Japan.

    Science.gov (United States)

    Esteban, Miguel; Longarte-Galnares, Gorka

    2010-12-01

    A number of scientists have recently conducted research that shows that tropical cyclone intensity is likely to increase in the future. This would result in an increase in the damage along with a decrease in economic productivity due to precautionary cessation of the economic activity of the affected areas during the passage of the cyclone. The economic effect of this stop in economic activity is a phenomenon that has not received much attention in the past, and the cumulative effect that it can have on the Japanese economy over the next 75 years has never been evaluated. The starting point for the evaluation of the economic risks is the change in the patterns of tropical cyclone intensity suggested by Knutson and Tuleya. The results obtained show how a significant decrease in the overall productivity of the country could be expected, which could lower GDP by between 6% and 13% by 2085. © 2010 Society for Risk Analysis.

  1. Global warming hiatus contributed to the increased occurrence of intense tropical cyclones in the coastal regions along East Asia.

    Science.gov (United States)

    Zhao, Jiuwei; Zhan, Ruifen; Wang, Yuqing

    2018-04-16

    The recent global warming hiatus (GWH) was characterized by a La Niña-like cooling in the tropical Eastern Pacific accompanied with the Indian Ocean and the tropical Atlantic Ocean warming. Here we show that the recent GWH contributed significantly to the increased occurrence of intense tropical cyclones in the coastal regions along East Asia since 1998. The GWH associated sea surface temperature anomalies triggered a pair of anomalous cyclonic and anticyclonic circulations and equatorial easterly anomalies over the Northwest Pacific, which favored TC genesis and intensification over the western Northwest Pacific but suppressed TC genesis and intensification over the southeastern Northwest Pacific due to increased vertical wind shear and anticyclonic circulation anomalies. Results from atmospheric general circulation model experiments demonstrate that the Pacific La Niña-like cooling dominated the Indian Ocean and the tropical Atlantic Ocean warming in contributing to the observed GWH-related anomalous atmospheric circulation over the Northwest Pacific.

  2. Latitudinal Change of Tropical Cyclone Maximum Intensity in the Western North Pacific

    Directory of Open Access Journals (Sweden)

    Jae-Won Choi

    2016-01-01

    Full Text Available This study obtained the latitude where tropical cyclones (TCs show maximum intensity and applied statistical change-point analysis on the time series data of the average annual values. The analysis results found that the latitude of the TC maximum intensity increased from 1999. To investigate the reason behind this phenomenon, the difference of the average latitude between 1999 and 2013 and the average between 1977 and 1998 was analyzed. In a difference of 500 hPa streamline between the two periods, anomalous anticyclonic circulations were strong in 30°–50°N, while anomalous monsoon trough was located in the north of South China Sea. This anomalous monsoon trough was extended eastward to 145°E. Middle-latitude region in East Asia is affected by the anomalous southeasterlies due to these anomalous anticyclonic circulations and anomalous monsoon trough. These anomalous southeasterlies play a role of anomalous steering flows that make the TCs heading toward region in East Asia middle latitude. As a result, TCs during 1999–2013 had higher latitude of the maximum intensity compared to the TCs during 1977–1998.

  3. Black Swan Tropical Cyclones

    Science.gov (United States)

    Emanuel, K.; Lin, N.

    2012-12-01

    Virtually all assessments of tropical cyclone risk are based on historical records, which are limited to a few hundred years at most. Yet stronger TCs may occur in the future and at places that have not been affected historically. Such events lie outside the realm of historically based expectations and may have extreme impacts. Their occurrences are also often made explainable after the fact (e.g., Hurricane Katrina). We nickname such potential future TCs, characterized by rarity, extreme impact, and retrospective predictability, "black swans" (Nassim Nicholas Taleb, 2007). As, by definition, black swan TCs have yet to happen, statistical methods that solely rely on historical track data cannot predict their occurrence. Global climate models lack the capability to predict intense storms, even with a resolution as high as 14 km (Emanuel et al. 2010). Also, most dynamic downscaling methods (e.g., Bender et al. 2010) are still limited in horizontal resolution and are too expensive to implement to generate enough events to include rare ones. In this study, we apply a simpler statistical/deterministic hurricane model (Emanuel et al. 2006) to simulate large numbers of synthetic storms under a given (observed or projected) climate condition. The method has been shown to generate realistic extremes in various basins (Emanuel et al. 2008 and 2010). We also apply a hydrodynamic model (ADCIRC; Luettich et al. 1992) to simulate the storm surges generated by these storms. We then search for black swan TCs, in terms of the joint wind and surge damage potential, in the generated large databases. Heavy rainfall is another important TC hazard and will be considered in a future study. We focus on three areas: Tampa Bay in the U.S., the Persian Gulf, and Darwin in Australia. Tampa Bay is highly vulnerable to storm surge as it is surrounded by shallow water and low-lying lands, much of which may be inundated by a storm tide of 6 m. High surges are generated by storms with a broad

  4. Tropical Cyclone Lightning Distribution and Its Relationship to Convection and Intensity Change

    Science.gov (United States)

    Rodgers, Edward; Wienman, James; Pierce, Harold; Olson, William

    2000-01-01

    The long distance National Lightning Detection Network (NLDN) was used to monitor the distribution of lightning strokes in various 1998 and 1999 western North Atlantic tropical cyclones. These ground-based lightning observations together with the Defense Meteorological Satellite Program (DMSP) Special Sensor Microwave/Imager (SSM/I) and the Tropical Rain Mapping Mission (TRMM) Microwave Instrument (TMI) derived convective rain rates were used to monitor the propagation of electrically charged convective rain bands aid to qualitatively estimate intensification. An example of the lightning analyses was performed on hurricane George between 25-28 September, 1998 when the system left Key West and moved towards the Louisiana coast. During this period of time, George's maximum winds increased from 38 to 45 meters per second on 25 September and then remained steady state until it made landfall. Time-radius displays of the lightning strokes indicated that the greatest number of lightning strokes occurred within the outer core region (greater than 165 km) with little or no lightning strokes at radii less than 165 km. The trend in these lightning strokes decreased as George move into the Gulf of Mexico and showed no inward propagation. The lack inward propagating lightning strokes with time indicated that there was no evidence that an eye wall replacement was occurring that could alter George's intensity. Since George was steady state at this time, this result is not surprising. Time-azimuth displays of lightning strokes in an annulus whose outer and inner radii were respectively, 222 and 333 km from George's center were also constructed. A result from this analysis indicated that the maximum number of strokes occurred in the forward and rear right quadrant when George was over the Gulf of Mexico. This result is, consistent with the aircraft and satellite observations of maximum rainfall.

  5. Assessing the Regional Frequency, Intensity, and Spatial Extent of Tropical Cyclone Rainfall

    Science.gov (United States)

    Bosma, C.; Wright, D.; Nguyen, P.

    2017-12-01

    While the strength of a hurricane is generally classified based on its wind speed, the unprecedented rainfall-driven flooding experienced in southeastern Texas during Hurricane Harvey clearly highlights the need for better understanding of the hazards associated with extreme rainfall from hurricanes and other tropical systems. In this study, we seek to develop a framework for describing the joint probabilistic and spatio-temporal properties of extreme rainfall from hurricanes and other tropical systems. Furthermore, we argue that commonly-used terminology - such as the "500-year storm" - fail to convey the true properties of tropical cyclone rainfall occurrences in the United States. To quantify the magnitude and spatial extent of these storms, a database consisting of hundreds of unique rainfall volumetric shapes (or "voxels") was created. Each voxel is a four-dimensional object, created by connecting, in both space and time, gridded rainfall observations from the daily, gauge-based NOAA CPC-Unified precipitation dataset. Individual voxels were then associated with concurrent tropical cyclone tracks from NOAA's HURDAT-2 archive, to create distinct representations of the rainfall associated with every Atlantic tropical system making landfall over (or passing near) the United States since 1948. Using these voxels, a series of threshold-excess extreme value models were created to estimate the recurrence intervals of extreme tropical cyclone rainfall, both nationally and locally, for single and multi-day timescales. This voxel database also allows for the "indexing" of past events, placing recent extremes - such as the 50+ inches of rain observed during Hurricane Harvey - into a national context and emphasizing how rainfall totals that are rare at the point scale may be more frequent from a regional perspective.

  6. Tropical Cyclone Information System

    Science.gov (United States)

    Li, P. Peggy; Knosp, Brian W.; Vu, Quoc A.; Yi, Chao; Hristova-Veleva, Svetla M.

    2009-01-01

    The JPL Tropical Cyclone Infor ma tion System (TCIS) is a Web portal (http://tropicalcyclone.jpl.nasa.gov) that provides researchers with an extensive set of observed hurricane parameters together with large-scale and convection resolving model outputs. It provides a comprehensive set of high-resolution satellite (see figure), airborne, and in-situ observations in both image and data formats. Large-scale datasets depict the surrounding environmental parameters such as SST (Sea Surface Temperature) and aerosol loading. Model outputs and analysis tools are provided to evaluate model performance and compare observations from different platforms. The system pertains to the thermodynamic and microphysical structure of the storm, the air-sea interaction processes, and the larger-scale environment as depicted by ocean heat content and the aerosol loading of the environment. Currently, the TCIS is populated with satellite observations of all tropical cyclones observed globally during 2005. There is a plan to extend the database both forward in time till present as well as backward to 1998. The portal is powered by a MySQL database and an Apache/Tomcat Web server on a Linux system. The interactive graphic user interface is provided by Google Map.

  7. Impact of tropical cyclones on the intensity and phase propagation of fall Wyrtki jets

    Science.gov (United States)

    Sreenivas, P.; Chowdary, J. S.; Gnanaseelan, C.

    2012-11-01

    Observations and model simulations are used to study the impact of tropical cyclones (TC) on the fall Wyrtki jets (WJ). These strong narrow equatorial currents peak during November and play a vital role in the energy and mass transport in the tropical Indian Ocean (TIO). Maximum number of TCs is observed over TIO during November with longer than normal life span (8-15 days). These TCs enhance equatorial westerly winds (surface) and amplify monthly mean WJs (both at surface and subsurface) by 0.4 ms-1 (anomalies exceed 0.7 ms-1 during TC), which is about half of the climatological amplitude. Intensified WJs increase the heat content of eastern TIO and modulate air-sea interaction. It is also shown that movement of TCs is mainly responsible for the westward phase propagation of WJs, a previously unexplored mechanism. These features are evident in ECCO2 simulations as well.

  8. Potential indirect effects of aerosol on tropical cyclone intensity: convective fluxes and cold-pool activity

    Science.gov (United States)

    Krall, G. M.; Cottom, W. R.

    2012-01-01

    aerosols resulted in large amounts of condensate being thrust into the storm anvil which weakened convective downdrafts and cold-pools, yet the system did show reductions in windspeed (although weaker) compared with the clean control run. This study suggests that ingestion of elevated amounts of CCN into a tropical cyclone (TC) can appreciably alter the intensity of the storm. This implies that intensity prediction of TCs would be improved by including indirect aerosol affects. However, the pollution aerosols have very little impact on the storm track.

  9. Relationships between convective asymmetry, imbalance and intensity in numerically simulated tropical cyclones

    Directory of Open Access Journals (Sweden)

    David A. Schecter

    2013-09-01

    Full Text Available This article examines the relationships between convective asymmetry (CA, imbalance and intensity in tropical cyclones (TCs that emerge from random winds on the periodic f-plane in a cloud-system-resolving numerical model. The model is configured with warm-rain microphysics and includes a basic parameterisation of long-wave radiation. Within the simulation set, the sea-surface temperature ranges from 26 to 32°C, and the Coriolis parameter f ranges from 10−5 to 10−4 s−1. The number of TCs that develop in a simulation increases rapidly with f and ranges from 1 to 18. Taken together, the simulations provide a diverse spectrum of vortices that can be used for a meaningful statistical study.Consistent with earlier studies, mature TCs with minimal asymmetry are found to have maximum wind speeds greater than the classic theoretical value derived by Emanuel under the assumptions of gradient-wind and hydrostatic balance. In a statistical sense, it is found that the degree of superintensity with respect to balance theory reliably decays with an increasing level of inner-core CA. It is verified that a more recent version of axisymmetric steady-state theory, revised to incorporate imbalance, provides a good approximation for the maximum (azimuthally averaged azimuthal wind speed V max when CA is relatively weak. More notably, this theory for axisymmetric vortices maintains less than 10% error as CA becomes comparable in magnitude to the symmetric component of inner-core convection. Above a large but finite threshold of CA, axisymmetric steady-state theory generally over-predicts V max. The underachievement of TCs in this parameter regime is shown to coincide with substantial violation of the theoretical assumption of slantwise convective neutrality in the main updraft of the basic state. Of further interest, a reliable curve-fit is obtained for the anticorrelation between a simple measure of CA and V max normalised to an estimate of its balanced

  10. JPL Tropical Cyclone Information System

    Data.gov (United States)

    National Aeronautics and Space Administration — The JPL Tropical Cyclone Information System (TCIS) brings together satellite and in situ data sets from various sources to help you find information for a particular...

  11. How can tropical cyclones survive?

    Science.gov (United States)

    Smedman, Ann-Sofi

    2013-04-01

    How can tropical cyclones survive? It is important for understanding the development of tropical cyclones to be able to quantify the exchange of enthalpy and momentum between air and water. Air-sea fluxes are often formulated as drag CD and enthalpy CK exchange coefficients. Emanuel, 1986, derived an expression for potential intensity that depends on local environment parameters and is proportional to the ratio of enthalpy and drag coefficients. This ratio should be larger than 0.75 for a cyclone to develop. There are no direct surface measurements of CK/ CD under hurricane conditions and extrapolation from most open-ocean measurements at 25 m/s gives values of CK/ CD0.75 is in accordance with Emanuel's prediction. The high CK values are observed during situations when there is a regime shift of the structure of turbulence in the boundary layer. From spectral analysis it was found that as the boundary layer approaches neutral stratification, smaller-scale eddies become increasingly important in the turbulent transport of humidity and sensible heat and thus enhance the exchange coefficient CK. This turbulence regime is called the UVCN regime and require high wind speed, small temperature difference between air and water, sufficiently strong wind gradients and growing sea condition ( Smedman et al., 2007, Sahlee et al., 2008). What is the difference between world oceans and enclosed seas? The answer is the waves. The wave field over the open oceans is swell dominated but in enclosed seas and coastal areas swell is restricted mainly to low wind speed conditions, and swell is short lived because of short distances to the shores. When swell is present the MABL will be dominated by large eddies of zi size creating weak gradients of wind, temperature and humidity and thus small scale eddies cannot be formed leading to reduced CK-values. However, during hurricane condition the waves are expected to be young, stratification is close to neutral and gradients are sufficiently

  12. Using Enabling Technologies to Advance Data Intensive Analysis Tools in the JPL Tropical Cyclone Information System

    Science.gov (United States)

    Knosp, B.; Gangl, M. E.; Hristova-Veleva, S. M.; Kim, R. M.; Lambrigtsen, B.; Li, P.; Niamsuwan, N.; Shen, T. P. J.; Turk, F. J.; Vu, Q. A.

    2014-12-01

    The JPL Tropical Cyclone Information System (TCIS) brings together satellite, aircraft, and model forecast data from several NASA, NOAA, and other data centers to assist researchers in comparing and analyzing data related to tropical cyclones. The TCIS has been supporting specific science field campaigns, such as the Genesis and Rapid Intensification Processes (GRIP) campaign and the Hurricane and Severe Storm Sentinel (HS3) campaign, by creating near real-time (NRT) data visualization portals. These portals are intended to assist in mission planning, enhance the understanding of current physical processes, and improve model data by comparing it to satellite and aircraft observations. The TCIS NRT portals allow the user to view plots on a Google Earth interface. To compliment these visualizations, the team has been working on developing data analysis tools to let the user actively interrogate areas of Level 2 swath and two-dimensional plots they see on their screen. As expected, these observation and model data are quite voluminous and bottlenecks in the system architecture can occur when the databases try to run geospatial searches for data files that need to be read by the tools. To improve the responsiveness of the data analysis tools, the TCIS team has been conducting studies on how to best store Level 2 swath footprints and run sub-second geospatial searches to discover data. The first objective was to improve the sampling accuracy of the footprints being stored in the TCIS database by comparing the Java-based NASA PO.DAAC Level 2 Swath Generator with a TCIS Python swath generator. The second objective was to compare the performance of four database implementations - MySQL, MySQL+Solr, MongoDB, and PostgreSQL - to see which database management system would yield the best geospatial query and storage performance. The final objective was to integrate our chosen technologies with our Joint Probability Density Function (Joint PDF), Wave Number Analysis, and

  13. An effort to improve track and intensity prediction of tropical cyclones through vortex initialization in NCUM-global model

    Science.gov (United States)

    Singh, Vivek; Routray, A.; Mallick, Swapan; George, John P.; Rajagopal, E. N.

    2016-05-01

    Tropical cyclones (TCs) have strong impact on socio-economic conditions of the countries like India, Bangladesh and Myanmar owing to its awful devastating power. This brings in the need of precise forecasting system to predict the tracks and intensities of TCs accurately well in advance. However, it has been a great challenge for major operational meteorological centers over the years. Genesis of TCs over data sparse warm Tropical Ocean adds more difficulty to this. Weak and misplaced vortices at initial time are one of the prime sources of track and intensity errors in the Numerical Weather Prediction (NWP) models. Many previous studies have reported the forecast skill of track and intensity of TC improved due to the assimilation of satellite data along with vortex initialization (VI). Keeping this in mind, an attempt has been made to investigate the impact of vortex initialization for simulation of TC using UK-Met office global model, operational at NCMRWF (NCUM). This assessment is carried out by taking the case of a extremely severe cyclonic storm "Chapala" that occurred over Arabian Sea (AS) from 28th October to 3rd November 2015. Two numerical experiments viz. Vort-GTS (Assimilation of GTS observations with VI) and Vort-RAD (Same as Vort-GTS with assimilation of satellite data) are carried out. This vortex initialization study in NCUM model is first of its type over North Indian Ocean (NIO). The model simulation of TC is carried out with five different initial conditions through 24 hour cycles for both the experiments. The results indicate that the vortex initialization with assimilation of satellite data has a positive impact on the track and intensity forecast, landfall time and position error of the TCs.

  14. Year 2001 Tropical Cyclones of the World

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Year 2001 Tropical Cyclones of the World poster. During calendar year 2001, fifty tropical cyclones with sustained surface winds of at least 64 knots were observed...

  15. Year 2000 Tropical Cyclones of the World

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Year 2000 Tropical Cyclones of the World poster. During calendar year 2000, forty-five tropical cyclones with sustained surface winds of at least 64 knots were...

  16. Ocean barrier layers' effect on tropical cyclone intensification.

    Science.gov (United States)

    Balaguru, Karthik; Chang, Ping; Saravanan, R; Leung, L Ruby; Xu, Zhao; Li, Mingkui; Hsieh, Jen-Shan

    2012-09-04

    Improving a tropical cyclone's forecast and mitigating its destructive potential requires knowledge of various environmental factors that influence the cyclone's path and intensity. Herein, using a combination of observations and model simulations, we systematically demonstrate that tropical cyclone intensification is significantly affected by salinity-induced barrier layers, which are "quasi-permanent" features in the upper tropical oceans. When tropical cyclones pass over regions with barrier layers, the increased stratification and stability within the layer reduce storm-induced vertical mixing and sea surface temperature cooling. This causes an increase in enthalpy flux from the ocean to the atmosphere and, consequently, an intensification of tropical cyclones. On average, the tropical cyclone intensification rate is nearly 50% higher over regions with barrier layers, compared to regions without. Our finding, which underscores the importance of observing not only the upper-ocean thermal structure but also the salinity structure in deep tropical barrier layer regions, may be a key to more skillful predictions of tropical cyclone intensities through improved ocean state estimates and simulations of barrier layer processes. As the hydrological cycle responds to global warming, any associated changes in the barrier layer distribution must be considered in projecting future tropical cyclone activity.

  17. 1987 Annual Tropical Cyclone Report

    Science.gov (United States)

    1987-01-01

    as calculated for all tro ical cyclones in each year, is shown in fTa le 5-2A. Table 5-2B includes along-track and cross-track errors for 1987. A...so that the ATCM can maintain the tropical storm circulation during the forecast. Also, sensitivity experiments are being conducted to fmd the best

  18. NASA CYGNSS Tropical Cyclone Mission

    Science.gov (United States)

    Ruf, Chris; Atlas, Robert; Majumdar, Sharan; Ettammal, Suhas; Waliser, Duane

    2017-04-01

    The NASA Cyclone Global Navigation Satellite System (CYGNSS) mission consists of a constellation of eight microsatellites that were launched into low-Earth orbit on 15 December 2016. Each observatory carries a four-channel bistatic scatterometer receiver to measure near surface wind speed over the ocean. The transmitter half of the scatterometer is the constellation of GPS satellites. CYGNSS is designed to address the inadequacy in observations of the inner core of tropical cyclones (TCs) that result from two causes: 1) much of the TC inner core is obscured from conventional remote sensing instruments by intense precipitation in the eye wall and inner rain bands; and 2) the rapidly evolving (genesis and intensification) stages of the TC life cycle are poorly sampled in time by conventional polar-orbiting, wide-swath surface wind imagers. The retrieval of wind speed by CYGNSS in the presence of heavy precipitation is possible due to the long operating wavelength used by GPS (19 cm), at which scattering and attenuation by rain are negligible. Improved temporal sampling by CYGNSS is possible due to the use of eight spacecraft with 4 scatterometer channels on each one. Median and mean revisit times everywhere in the tropics are 3 and 7 hours, respectively. Wind speed referenced to 10m height above the ocean surface is retrieved from CYGNSS measurements of bistatic radar cross section in a manner roughly analogous to that of conventional ocean wind scatterometers. The technique has been demonstrated previously from space by the UK-DMC and UK-TDS missions. Wind speed is retrieved with 25 km spatial resolution and an uncertainty of 2 m/s at low wind speeds and 10% at wind speeds above 20 m/s. Extensive simulation studies conducted prior to launch indicate that there will be a significant positive impact on TC forecast skill for both track and intensity with CYGNSS measurements assimilated into HWRF numerical forecasts. Simulations of CYGNSS spatial and temporal sampling

  19. FAQ HURRICANES, TYPHOONS, AND TROPICAL CYCLONES

    Science.gov (United States)

    ? A6) What is a sub-tropical cyclone? A7) What is an extratropical cyclone ? A8) What is storm surge easterly wave and what causes them? A5) What is a tropical disturbance, tropical depression, tropical storm and how is it different from storm tide ? A9) What is a "CDO" ? A10) What is a TUTT ? A11

  20. Tropical Cyclone Report, 1988

    Science.gov (United States)

    1988-01-01

    Cmdr. David Gray; National Weather Service 5. Cooperation with the Naval Environmental Pacific Region for the startup of 24-hour operatiois at Ponape...0.1 27.7 TOTAL CASES 3 1 1 4 12 27 54 56 30 25 7 1 221 * (GRAY, 1979) TABLE 4-3 ANNUAL VARIATION C SOTR MUSHER TROPICAL CYCLOUZ BY O(EN BASIN SOUTH

  1. A Positive Feedback Process Between Tropical Cyclone Intensity and the Moisture Conveyor Belt Assessed With Lagrangian Diagnostics

    Science.gov (United States)

    Fujiwara, Keita; Kawamura, Ryuichi; Hirata, Hidetaka; Kawano, Tetsuya; Kato, Masaya; Shinoda, Taro

    2017-12-01

    Using a cloud-resolving regional model and Lagrangian diagnostics, we assess a positive feedback process between tropical cyclone (TC) intensity and the moisture conveyor belt (MCB), which connects a TC and the Indian Ocean (IO), the South China Sea (SCS), and the Philippine Sea (PS) vapors, from a macroscopic view. We performed sensitivity experiments that modified the observed sea surface temperature field over the IO and the SCS to regulate the MCB behavior, and we examined the remote response of a prototypical TC. The results show that the connection between MCB formation and TC development is very robust, which was also observed in another TC's case. The MCB plays a vital role in transporting lots of moist air parcels toward the TC from the IO, SCS, and PS regions. The transported parcels, which further gained the underlying ocean vapor along the MCB, are easily trapped in the inner core by radial inflow in the atmospheric boundary layer and, subsequently, release latent heat around the eyewall, resulting in the TC's intensifying. This acts to further penetrate the moist parcels of remote ocean origin into the inner core through the enhanced and expanded inflow. An additional experiment suggested that the MCB is not formed unless the westward propagation of equatorial waves induced by TC heating overlaps with the background monsoon westerlies. These findings support the reliability and validity of TC-MCB feedback.

  2. A positive feedback process between tropical cyclone intensity and the moisture conveyor belt assessed with Lagrangian diagnostics

    Science.gov (United States)

    Fujiwara, K.; Kawamura, R.; Hirata, H.; Kawano, T.

    2017-12-01

    Using a cloud-resolving regional model and Lagrangian diagnostics, we assess a positive feedback process between tropical cyclone (TC) intensity and the moisture conveyor belt (MCB), which connects a TC and the Indian Ocean (IO), the South China Sea (SCS), and the Philippine Sea vapors, from a macroscopic view. We performed sensitivity experiments that modified the observed sea surface temperature (SST) field over the IO and the SCS to regulate the MCB behavior, and we examined the remote response of a prototypical TC. The results show that the connection between MCB formation and TC development is very robust, which was also observed in another TC's case. The MCB plays a vital role in transporting lots of moist air parcels toward the TC from the remote ocean. The transported parcels are easily trapped in the inner core by radial inflow in the atmospheric boundary layer and, subsequently, release latent heat around the eye wall, resulting in the TC's intensifying. This acts to further penetrate the moist parcels of remote ocean origin into the inner core through the enhanced and expanded inflow. An additional experiment confirmed that the MCB is not formed unless the westward propagation of equatorial Rossby waves induced by TC heating overlaps with the background monsoon westerlies. These findings support the reliability and validity of TC-MCB feedback.

  3. The Use of Satellite Microwave Rainfall Measurements to Predict Eastern North Pacific Tropical Cyclone Intensity

    National Research Council Canada - National Science Library

    West, Derek

    1998-01-01

    .... Relationships between parameters obtained from an operational SSM/I based rainfall measuring algorithm and current intensity and ensuing 12, 24, 36, 48, 60, and 72 hour intensity changes from best...

  4. A simple model for post-landfall intensity changes of tropical cyclone ...

    Indian Academy of Sciences (India)

    economic importance. (Marks et al. ... models to enhance their skill for intensity pre- diction. There have been continued attempts to develop and ... decay model that can be applicable to the entire coastline. We tried to tackle the above problem by.

  5. Promoting the confluence of tropical cyclone research.

    Science.gov (United States)

    Marler, Thomas E

    2015-01-01

    Contributions of biologists to tropical cyclone research may improve by integrating concepts from other disciplines. Employing accumulated cyclone energy into protocols may foster greater integration of ecology and meteorology research. Considering experienced ecosystems as antifragile instead of just resilient may improve cross-referencing among ecological and social scientists. Quantifying ecosystem capital as distinct from ecosystem services may improve integration of tropical cyclone ecology research into the expansive global climate change research community.

  6. Tropical cyclones and climate change

    International Nuclear Information System (INIS)

    Andre, J.C.; Royer, J.F.; Chauvin, F.

    2008-01-01

    Results from observations and modelling studies, a number of which having been used to support the conclusions of the IPCC fourth assessment report, are presented. For the past and present-day (since 1970) periods, the increase of strong cyclonic activity over the North Atlantic Ocean appears to be in good correlation with increasing temperature of the ocean surface. For regions where observational data are of lesser quality, the increasing trend is less clear. In fact, assessing long-term changes is made difficult due to both the multi-decennial natural variability and the lesser coverage of observations before satellites were made available. Indirect observational data, such as those derived from quantitative estimations of damage caused by tropical cyclones, suffer from many artefacts and do not allow the resolving of the issue either. For the future, only numerical three-dimensional climate models can be used. They nevertheless run presently with too-large grid-sizes, so that their results are still not converging. Various simulations lead indeed to different results, and it is very often difficult to find the physical reasons for these differences. One concludes by indicating some ways through which numerical simulations could be improved, leading to a decrease of uncertainties affecting the prediction of cyclonic activity over the next decades. (authors)

  7. Cyclone Center: Insights on Historical Tropical Cyclones from Citizen Volunteers

    Science.gov (United States)

    Thorne, P.; Hennon, C. C.; Knapp, K. R.; Schreck, C. J., III; Stevens, S. E.; Kossin, J. P.; Rennie, J.; Hennon, P. A.; Kruk, M. C.

    2015-12-01

    The cyclonecenter.org project started in fall 2012 and has been collecting citizen scientist volunteer tropical cyclone intensity estimates ever since. The project is hosted by the Citizen Science Alliance (zooniverse) and the platform is supported by a range of scientists. We have over 30 years of satellite imagery of tropical cyclones but the analysis to date has been done on an ocean-basin by ocean-basin basis and worse still practices have changed over time. We therefore do not, presently, have a homogeneous record relevant for discerning climatic changes. Automated techniques can classify many of the images but have a propensity to be challenged during storm transitions. The problem is fundamentally one where many pairs of eyes are invaluable as there is no substitute for human eyes in discerning patterns. Each image is classified by ten unique users before it is retired. This provides a unique insight into the uncertainty inherent in classification. In the three years of the project much useful data has accrued. This presentation shall highlight some of the results and analyses to date and touch on insights as to what has worked and what perhaps has not worked so well. There are still many images left to complete so its far from too late to jump over to www.cyclonecenter.org and help out.

  8. Tropical cyclone statistics in the Northeastern Pacific

    Energy Technology Data Exchange (ETDEWEB)

    Romero-Vadillo, E. [Universidad Autonoma de Baja California Sur (UABCS), La Paz, Baja California Sur (Mexico); Zaytsev, O. [Centro Interdisciplinario de Ciencias Marinas, Instituto Politecnico Nacional, La Paz, Baja California Sur (Mexico)]. E-mail: ozaytsev@ipn.mx; Morales-Perez, R. [Instituto Mexicano de Tecnologia del Agua (IMTA), Jiutepec, Morelos (Mexico)

    2007-04-15

    The principal area of tropical cyclogenesis in the tropical eastern Pacific Ocean is offshore in the Gulf of Tehuantepec, between 8 and 15 degrees Celsius N, and most of these cyclones move towards the west and northwest during their initial phase. Historical analysis of tropical cyclone data in the Northeastern (NE) Pacific over the last 38 years (from 1966 to 2004) shows a mean of 16.3 tropical cyclones per year, consisting of 8.8 hurricanes 198 and 7.4 tropical storms. The analysis shows great geographical variability of cyclone tracks, and that there were a considerable number of hurricane strikes along the Mexican coast. About 50% of the tropical cyclones formed turned north to northeast. It was rare that any passed further north than 30 degrees Celsius N in latitude because of the cold California Current. Hurricane tracks that affected the NE Pacific may be separated into 5 groups. We compared the historical record of the sea surface temperature (SST), related with the El Nino events with a data set of tropical cyclones, including frequency, intensity, trajectory, and duration. Although the statistical dependence between the frequencies of tropical cyclones of the most abundant categories, 1 and 2, over this region and SST data was not convincing, the percentage of high intensity hurricanes and hurricanes with a long life-time (greater than 12 days) was more during El Nino years than in non-El Nino years. [Spanish] La principal region de la formacion de ciclones en el oceano Pacifico Este es el Golfo de Tehuantepec, entre los 8 y los 15 grados Celsius N. En su fase inicial los ciclones se mueven hacia el oeste y el noroeste. El analisis historico de los ciclones que se han generado durante los ultimos 38 anos (de 1966 a 2004) muestra un promedio de 16.2 ciclones por ano, consistentes en 8.8 huracanes y 7.4 tormentas tropicales. El analisis muestra una gran variabilidad geografica en la trayectoria de los ciclones, de los cuales un gran numero impacta las

  9. The persistent signature of tropical cyclones in ambient seismic noise

    KAUST Repository

    Gualtieri, Lucia; Camargo, Suzana J.; Pascale, Salvatore; Pons, Flavio M.E.; Ekströ m, Gö ran

    2017-01-01

    The spectrum of ambient seismic noise shows strong signals associated with tropical cyclones, yet a detailed understanding of these signals and the relationship between them and the storms is currently lacking. Through the analysis of more than a decade of seismic data recorded at several stations located in and adjacent to the northwest Pacific Ocean, here we show that there is a persistent and frequency-dependent signature of tropical cyclones in ambient seismic noise that depends on characteristics of the storm and on the detailed location of the station relative to the storm. An adaptive statistical model shows that the spectral amplitude of ambient seismic noise, and notably of the short-period secondary microseisms, has a strong relationship with tropical cyclone intensity and can be employed to extract information on the tropical cyclones.

  10. The persistent signature of tropical cyclones in ambient seismic noise

    KAUST Repository

    Gualtieri, Lucia

    2017-12-28

    The spectrum of ambient seismic noise shows strong signals associated with tropical cyclones, yet a detailed understanding of these signals and the relationship between them and the storms is currently lacking. Through the analysis of more than a decade of seismic data recorded at several stations located in and adjacent to the northwest Pacific Ocean, here we show that there is a persistent and frequency-dependent signature of tropical cyclones in ambient seismic noise that depends on characteristics of the storm and on the detailed location of the station relative to the storm. An adaptive statistical model shows that the spectral amplitude of ambient seismic noise, and notably of the short-period secondary microseisms, has a strong relationship with tropical cyclone intensity and can be employed to extract information on the tropical cyclones.

  11. Stratified coastal ocean interactions with tropical cyclones

    Science.gov (United States)

    Glenn, S. M.; Miles, T. N.; Seroka, G. N.; Xu, Y.; Forney, R. K.; Yu, F.; Roarty, H.; Schofield, O.; Kohut, J.

    2016-01-01

    Hurricane-intensity forecast improvements currently lag the progress achieved for hurricane tracks. Integrated ocean observations and simulations during hurricane Irene (2011) reveal that the wind-forced two-layer circulation of the stratified coastal ocean, and resultant shear-induced mixing, led to significant and rapid ahead-of-eye-centre cooling (at least 6 °C and up to 11 °C) over a wide swath of the continental shelf. Atmospheric simulations establish this cooling as the missing contribution required to reproduce Irene's accelerated intensity reduction. Historical buoys from 1985 to 2015 show that ahead-of-eye-centre cooling occurred beneath all 11 tropical cyclones that traversed the Mid-Atlantic Bight continental shelf during stratified summer conditions. A Yellow Sea buoy similarly revealed significant and rapid ahead-of-eye-centre cooling during Typhoon Muifa (2011). These findings establish that including realistic coastal baroclinic processes in forecasts of storm intensity and impacts will be increasingly critical to mid-latitude population centres as sea levels rise and tropical cyclone maximum intensities migrate poleward. PMID:26953963

  12. A new paradigm for intensity modification of tropical cyclones: thermodynamic impact of vertical wind shear on the inflow layer

    Directory of Open Access Journals (Sweden)

    M. Riemer

    2010-04-01

    Full Text Available An important roadblock to improved intensity forecasts for tropical cyclones (TCs is our incomplete understanding of the interaction of a TC with the environmental flow. In this paper we re-visit the canonical problem of a TC in vertical wind shear on an f-plane. A suite of numerical experiments is performed with intense TCs in moderate to strong vertical shear. We employ a set of simplified model physics – a simple bulk aerodynamic boundary layer scheme and "warm rain" microphysics – to foster better understanding of the dynamics and thermodynamics that govern the modification of TC intensity. In all experiments the TC is resilient to shear but significant differences in the intensity evolution occur.

    The ventilation of the TC core with dry environmental air at mid-levels and the dilution of the upper-level warm core are two prevailing hypotheses for the adverse effect of vertical shear on storm intensity. Here we propose an alternative and arguably more effective mechanism how cooler and drier (lower θe air – "anti-fuel" for the TC power machine – can enter the core region of the TC. Strong and persistent, shear-induced downdrafts flux low θe air into the boundary layer from above, significantly depressing the θe values in the storm's inflow layer. Air with lower θe values enters the eyewall updrafts, considerably reducing eyewall θe values in the azimuthal mean. When viewed from the perspective of an idealised Carnot-cycle heat engine a decrease of storm intensity can thus be expected. Although the Carnot cycle model is – if at all – only valid for stationary and axisymmetric TCs, a close association of the downward transport of low θe into the boundary layer and the intensity evolution offers further evidence in support of our hypothesis.

    The downdrafts that flush the boundary layer with low

  13. Impacts of tropical cyclones on Fiji and Samoa

    Science.gov (United States)

    Kuleshov, Yuriy; Prakash, Bipendra; Atalifo, Terry; Waqaicelua, Alipate; Seuseu, Sunny; Ausetalia Titimaea, Mulipola

    2013-04-01

    on Samoa totalled to US130 million. Cyclone Val caused damage and destruction to 95% of houses in Samoa and severe crop damage; total damage was estimated as US200 million. Recently, severe tropical cyclone Evan affected Samoa and Fiji (December 2012). Significant progress in operational tropical cyclone forecasting has been achieved over the past few decades which resulted in improving early warning system but death toll attributed to cyclones is still high - at least 14 deaths in Samoa are related to cyclone Evan (luckily, no death reports in Fiji). Cyclone-related economic losses also remain very high making significant negative impact on economies of the countries. Preliminary assessment of damage caused by cyclone Evan in Fiji indicates loses of about 75.29 million. By the end of this century projections suggest decreasing numbers of tropical cyclones but a possible shift towards more intense categories. In addition, geographic shifts in distribution of tropical cyclone occurrences caused by warming of the atmospheric and oceanic environment are possible. This should be taken in consideration by authorities of the Pacific Island Countries when developing adaptation strategies to increasing tropical cyclone risk due to climate change.

  14. Contributions of Tropical Cyclones to the North Atlantic Climatological Rainfall as Observed from Satellites

    Science.gov (United States)

    Rodgers, Edward B.; Adler, Robert F.; Pierce, Harold F.; Einaudi, Franco (Technical Monitor)

    2000-01-01

    The tropical cyclone rainfall climatology study that was performed for the North Pacific was extended to the North Atlantic. Similar to the North Pacific tropical cyclone study, mean monthly rainfall within 444 km of the center of the North Atlantic tropical cyclones (i.e., that reached storm stage and greater) was estimated from passive microwave satellite observations during, an eleven year period. These satellite-observed rainfall estimates were used to assess the impact of tropical cyclone rainfall in altering the geographical, seasonal, and inter-annual distribution of the North Atlantic total rainfall during, June-November when tropical cyclones were most abundant. The main results from this study indicate: 1) that tropical cyclones contribute, respectively, 4%, 3%, and 4% to the western, eastern, and entire North Atlantic; 2) similar to that observed in the North Pacific, the maximum in North Atlantic tropical cyclone rainfall is approximately 5 - 10 deg poleward (depending on longitude) of the maximum non-tropical cyclone rainfall; 3) tropical cyclones contribute regionally a maximum of 30% of the total rainfall 'northeast of Puerto Rico, within a region near 15 deg N 55 deg W, and off the west coast of Africa; 4) there is no lag between the months with maximum tropical cyclone rainfall and non-tropical cyclone rainfall in the western North Atlantic, while in the eastern North Atlantic, maximum tropical cyclone rainfall precedes maximum non-tropical cyclone rainfall; 5) like the North Pacific, North Atlantic tropical cyclones Of hurricane intensity generate the greatest amount of rainfall in the higher latitudes; and 6) warm ENSO events inhibit tropical cyclone rainfall.

  15. The environmental influence on tropical cyclone precipitation

    Science.gov (United States)

    Rodgers, Edward B.; Baik, Jong-Jin; Pierce, Harold F.

    1994-01-01

    The intensity, spatial, and temporal changes in precipitation were examined in three North Atlantic hurricanes during 1989 (Dean, Gabrielle, and Hugo) using precipitation estimates made from Special Sensor Microwave/Imager (SSM/I) measurements. In addition, analyses from a barotropic hurricane forecast model and the European Centre for Medium-Range Weather Forecast model were used to examine the relationship between the evolution of the precipitation in these tropical cyclones and external forcing. The external forcing parameters examined were (1) mean climatological sea surface temperatures, (2) vertical wind shear, (3) environmental tropospheric water vapor flux, and (4) upper-tropospheric eddy relative angular momentum flux convergence. The analyses revealed that (1) the SSM/I precipitation estimates were able to delineate and monitor convective ring cycles similar to those observed with land-based and aircraft radar and in situ measurements; (2) tropical cyclone intensification was observed to occur when these convective rings propagated into the inner core of these systems (within 111 km of the center) and when the precipitation rates increased; (3) tropical cyclone weakening was observed to occur when these inner-core convective rings dissipated; (4) the inward propagation of the outer convective rings coincided with the dissipation of the inner convective rings when they came within 55 km of each other; (5) in regions with the combined warm sea surface temperatures (above 26 C) and low vertical wind shear (less than 5 m/s), convective rings outside the region of strong lower-tropospheric inertial stability could be initiated by strong surges of tropospheric moisture, while convective rings inside the region of strong lower-tropospheric inertial stability could be enhanced by upper-tropospheric eddy relative angular momentum flux convergence.

  16. Dry and Semi-Dry Tropical Cyclones

    Science.gov (United States)

    Cronin, T.; Chavas, D. R.

    2017-12-01

    Our understanding of dynamics in our real moist atmosphere is strongly informed by idealized dry models. It is widely believed that tropical cyclones (TCs) are an intrinsically moist phenomenon - relying fundamentally on evaporation and latent heat release - yet recent numerical modeling work has found formation of dry axisymmetric tropical cyclones from a state of dry radiative-convective equilibrium. What can such "dry hurricanes" teach us about intensity, structure, and size of real moist tropical cyclones in nature? Are dry TCs even stable in 3D? What about surfaces that are nearly dry but have some latent heat flux - can they also support TCs? To address these questions, we use the SAM cloud-system resolving model to simulate radiative-convective equilibrium on a rapidly rotating f-plane, subject to constant tropospheric radiative cooling. We use a homogeneous surface with fixed temperature and with surface saturation vapor pressure scaled by a factor 0-1 relative to that over pure water - allowing for continuous variation between moist and dry limits. We also explore cases with surface enthalpy fluxes that are uniform in space and time, where partitioning between latent and sensible heat fluxes is specified directly. We find that a completely moist surface yields a TC-world where multiple vortices form spontaneously and persist for tens of days. A completely dry surface can also yield a parallel dry TC-world with many vortices that are even more stable and persistent. Spontaneous cyclogenesis, however, is impeded for a range of low to intermediate surface wetness values, and by the combination of large rotation rates and a dry surface. We discuss whether these constraints on spontaneous cyclogenesis might arise from: 1) rain evaporation in the subcloud layer limiting the range of viable surface wetness values, and 2) a natural convective Rossby number limiting the range of viable rotation rates. Finally, we discuss simulations with uniform surface enthalpy

  17. Design basis tropical cyclone for nuclear power plants

    International Nuclear Information System (INIS)

    1984-01-01

    The general characteristics of tropical cyclones are discussed in this Safety Guide, with particular emphasis on their pressure and wind structures in the light of available data. General methods are given for the evaluation of the relevant parameters of a Probable Maximum Tropical Cyclone (PMTC), which can be used as the Design Basis Tropical Cyclone (DBTC); these parameters then serve as inputs for the derivation of a design basis surge and a design basis wind. A possible method is also given for the evaluation of the PMTC pressure and wind field based on an approach valid primarily for a particular region. This method depends on the results of a theoretical study on the tropical cyclone structure and makes use of a large amount of data, including aircraft reconnaissance observations for 170 most intense tropical cyclones near the coast of Japan, Taiwan and the Philippines for the period 1960-1974, as well as detailed analyses of all the extreme storms along the Gulf of Mexico and the east coast of the USA during 1900-1978, for the determination of the necessary parameters

  18. Impacts of Particulate Matter on Gulf of Mexico Tropical Cyclones

    Science.gov (United States)

    Cao, W.; Rohli, R. V.

    2017-12-01

    The purpose of this project is to analyze the relationship between tropical cyclones of the Gulf of Mexico-Atlantic basin and fine particulate matter (PM2.5). The daily mean PM2.5 concentration values were collected from United States Environmental Protection Agency (EPA). Tropical cyclone data were collected from Tropical Prediction Center Best Track Reanalysis in Unisys Weather®. The GRIdded Binary (GRIB-formatted) data were downloaded from the Data Support Section of the Computational and Information Systems Laboratory at the National Center for Atmospheric Research (NCAR). Through ArcGIS®, the tropical cyclone tracks were compared with the interpolated daily mean PM2.5 concentration value. Results suggest that the tracks tend to avoid areas with higher PM2.5 concentrations, and the intensity was weakened significantly after passing the PM2.5-rich area. Through simulation using the Weather Research and Forecasting (WRF) model, the pressure and vertical structure of Hurricane Lili were weakened after passing the most PM2.5-rich area in Louisiana. Also, little evidence is found for the possibility of precipitation generated by the approaching tropical cyclone to cleanse the atmosphere of PM2.5 before storm passage. These results have important implications for tropical cyclone prediction as storms approach polluted areas or other places where PM2.5 particles are abundant, not only including urban environments but also in coastal areas where proscribed burns take place during tropical cyclone season, such as during sugarcane harvesting in southern Louisiana.

  19. A Probabilistic Approach to Tropical Cyclone Conditions of Readiness (TCCOR)

    National Research Council Canada - National Science Library

    Wallace, Kenneth A

    2008-01-01

    Tropical Cyclone Conditions of Readiness (TCCOR) are set at DoD installations in the Western Pacific to convey the risk associated with the onset of destructive winds from approaching tropical cyclones...

  20. Synoptic and climatological aspects of extra-tropical cyclones

    Science.gov (United States)

    Leckebusch, G. C.

    2010-09-01

    Mid-latitude cyclones are highly complex dynamical features embedded in the general atmospheric circulation of the extra-tropics. Although the basic mechanisms leading to the formation of cyclones are commonly understood, the specific conditions and physical reasons triggering extreme, partly explosive development, are still under investigation. This includes also the identification of processes which might modulate the frequency and intensity of cyclone systems on time scales from days to centennials. This overview presentation will thus focus on three main topics: Firstly, the dynamic-synoptic structures of cyclones, the possibility to objectively identify cyclones and wind storms, and actual statistical properties of cyclone occurrence under recent climate conditions are addressed. In a second part, aspects of the interannual variability and its causing mechanisms are related to the seasonal predictability of extreme cyclones producing severe storm events. Extending the time frame will mean to deduce information on decadal or even centennial time periods. Thus, actual work to decadal as well as climatological variability and changes will be presented. In the last part of the talk focus will be laid on potential socio-economical impacts of changed cyclone occurrence. By means of global and regional climate modeling, future damages in terms of insured losses will be investigated and measures of uncertainty estimated from a multi-model ensemble analysis will be presented.

  1. The Variation of Tropical Cyclone Rainfall within the North Atlantic and Pacific as Observed from Satellites

    Science.gov (United States)

    Rodgers, Edward; Pierce, Harold; Adler, Robert

    1999-01-01

    Tropical cyclone monthly rainfall amounts are estimated from passive microwave satellite observations in the North Atlantic and in three equal geographical regions of the North Pacific (i.e., Western, Central, and Eastern North Pacific). These satellite-derived rainfall amounts are used to assess the impact of tropical cyclone rainfall in altering the geographical, seasonal, and inter-annual distribution of the 1987-1989, 1991-1998 North Atlantic and Pacific rainfall during June-November when tropical cyclones are most abundant. To estimate these tropical cyclone rainfall amounts, mean monthly rain rates are derived from the Defence Meteorological Satellite Program (DMSP) Special Sensor Microwave/ Radiometer (SSM/I) observations within 444 km radius of the center of those North Atlantic and Pacific tropical cyclones that reached storm stage and greater. These rain rate observations are then multiplied by the number of hours in a given month. Mean monthly rainfall amounts are also constructed for all the other North Atlantic and Pacific raining systems during this eleven year period for the purpose of estimating the geographical distribution and intensity of rainfall contributed by non-tropical cyclone systems. Further, the combination of the non-tropical cyclone and tropical cyclone (i.e., total) rainfall is constructed to delineate the fractional amount that tropical cyclones contributed to the total North Pacific rainfall.

  2. Changes in intense tropical cyclone activity for the western North Pacific during the last decades derived from a regional climate model simulation

    Science.gov (United States)

    Barcikowska, Monika; Feser, Frauke; Zhang, Wei; Mei, Wei

    2017-11-01

    An atmospheric regional climate model (CCLM) was employed to dynamically downscale atmospheric reanalyses (NCEP/NCAR 1, ERA 40) over the western North Pacific and South East Asia. This approach is used for the first time to reconstruct a tropical cyclone climatology, which extends beyond the satellite era and serves as an alternative data set for inhomogeneous observation-derived records (Best Track Data sets). The simulated TC climatology skillfully reproduces observations of the recent decades (1978-2010), including spatial patterns, frequency, lifetime, trends, variability on interannual and decadal time scales and their association with the large-scale circulation patterns. These skills, facilitated here with the spectral nudging method, seem to be a prerequisite to understand the factors determining spatio-temporal variability of TC activity over the western North Pacific. Long-term trends (1948-2011 and 1959-2001) in both simulations show a strong increase of intense tropical cyclone activity. This contrasts with pronounced multidecadal variations found in observations. The discrepancy may partly originate from temporal inhomogeneities in atmospheric reanalyses and Best Track Data, which affect both the model-based and observational-based trends. An adjustment, which removes the simulated upward trend, reduces the apparent discrepancy. Ultimately, our observational and modeling analysis suggests an important contribution of multi-decadal fluctuations in the TC activity during the last six decades. Nevertheless, due to the uncertainties associated with the inconsistencies and quality changes of those data sets, we call for special caution when reconstructing long-term TC statistics either from atmospheric reanalyses or Best Track Data.

  3. Nuclear power plant risk from tropical cyclones

    International Nuclear Information System (INIS)

    Gilmore, T.F.

    1991-01-01

    Tropical cyclones are considered to have a potential for contributing to the overall core-melt frequency at Turkey Point. A tropical cyclone is known to have the four main hazards associated with it: wind, tidal surge, wind-generated missiles, and precipitation. To understand the contribution to overall core-melt risk at Turkey Point, it is essential to understand the mechanisms of these hazards and their relative importance. The results are bounded by the hurricane surge scenario, where the frequency of core melt is equal to the frequency of the surge reaching 19 ft NGVD (National Geographic Vertical Datum). This could be mitigated by potential recovery actions for the tropical cyclone scenario. The probability of the storm surge reaching 19 ft NVGD is estimated to be 1 x 10 -4 . The data associated with the tropical cyclones as discussed in detail in the body of this paper are lacking in quantity and quality. By taking the conservative approach in creating the wind/frequency, wind/surge, and surge/frequency relationships, the conclusion that the results are worst case is reasonable. With this in mind, it is logical to conclude that the value of further hazard analysis to narrow down the built-in conservative margin using the existing data and technology is doubtful. Thus, a recovery approach to driving the risk level down is the most pragmatic step to be taken

  4. Sensitivity of Simulated Cyclone Gonu Intensity and Track to Variety ...

    Indian Academy of Sciences (India)

    57

    improvement in simulated intensity, an accuracy reduction in simulated track was observed. Increasing ... improve the prediction of the TC Gonu using the Advanced Hurricane WRF (AHW) model. For the first time, ...... World Meteorological Organization (2014) Tropical cyclone operational plan for the Bay of. Bengal and the ...

  5. Applications of NASA TROPICS Data for Tropical Cyclone Analysis, Nowcasting, and Impacts

    Science.gov (United States)

    Zavodsky, B.; Dunion, J. P.; Blackwell, W. J.; Braun, S. A.; Green, D. S.; Velden, C.; Adler, R. F.; Cossuth, J.; Murray, J. J.; Brennan, M. J.

    2017-12-01

    The National Aeronautics and Space Administration (NASA) Time-Resolved Observations of Precipitation structure and storm Intensity with a Constellation of Smallsats (TROPICS) mission is a constellation of state-of-the-science observing platforms that will measure temperature and humidity soundings and precipitation with spatial resolution comparable to current operational passive microwave sounders but with unprecedented temporal resolution. TROPICS is a cost-capped ($30M) Venture-class mission funded by the NASA Earth Science Division. The mission is comprised of a constellation of 3 unit (3U) SmallSats, each hosting a 12-channel passive microwave spectrometer based on the Micro-sized Microwave Atmospheric Satellite 2 (MicroMAS-2) developed at MIT LL. TROPICS will provide imagery near 91 and 205 GHz, temperature sounding near 118 GHz, and moisture sounding near 183 GHz. Spatial resolution at nadir will be around 27 km for temperature and 17 km for moisture and precipitation. The swath width is approximately 2000 km. TROPICS enables temporal resolution similar to geostationary orbit but at a much lower cost, demonstrating a technology that could impact the design of future Earth-observing missions. The TROPICS satellites for the mission are slated for delivery to NASA in 2019 with potential launch opportunities in 2020. The primary mission objective of TROPICS is to relate temperature, humidity, and precipitation structure to the evolution of tropical cyclone (TC) intensity. This abstract summarizes the outcomes of the 1st TROPICS Applications Workshop, held from May 8-10, 2017 at the University of Miami. At this meeting, a series of presentations and breakout discussions in the topical areas of Tropical Cyclone Dynamics, Tropical Cyclone Analysis and Nowcasting, Tropical Cyclone Modeling and Data Assimilation, and Terrestrial Impacts were convened to identify applications of the mission data and to begin to establish a community of end-users who will be able to

  6. Sensitivity of tropical cyclone simulations to microphysics parameterizations in WRF

    International Nuclear Information System (INIS)

    Reshmi Mohan, P.; Srinivas, C.V.; Bhaskaran, R.; Venkatraman, B.; Yesubabu, V.

    2018-01-01

    Tropical cyclones (TC) cause storm surge along coastal areas where these storms cross the coast. As major nuclear facilities are usually installed in coastal region, the surge predictions are highly important for DAE. The critical TC parameters needed in estimating storm surge are intensity (winds, central pressure and radius of maximum winds) and storm tracks. The predictions with numerical models are generally made by representing the clouds and precipitation processes using convective and microphysics parameterization. At high spatial resolutions (1-3Km) microphysics can act as cloud resolving NWP model to explicitly resolve the convective precipitation without using convection schemes. Recent simulation studies using WRF on severe weather phenomena such as thunderstorms and hurricanes indicated large sensitivity of predicted rainfall and hurricane tracks to microphysics due to variation in temperature and pressure gradients which generate winds that determine the storm track. In the present study the sensitivity of tropical cyclone tracks and intensity to different microphysics schemes has been conducted

  7. On the movement of tropical cyclone LEHAR

    KAUST Repository

    Dasari, Hari Prasad

    2017-11-09

    In this paper, an attempt has been made to delineate the physical processes which lead to the westward movement of the North Indian Ocean tropical cyclone LEHAR. The Advanced Weather Research and Forecasting (ARW) model is used to simulate LEHAR with 27 and 9 km resolutions. The results indicate that the model performed well in simulating the characteristics of cyclone compared with the Satellite and other observations. In addition to that all terms of the complete vorticity equation are computed to obtain the contribution of each term for the vorticity tendency. The vorticity tendency is calculated in four sectors, namely northwest, northeast, southwest and southeast and assumed that the cyclone moves from its existing location to the nearest point where the vortices tendency is maximum. It is noticed that the vorticity stretching term contributes most to the positive vorticity tendency. The second highest contribution is from the horizontal advection thus indicating the secondary importance of steering. The distribution of lightening flash rates also showing that the flash rates are higher in the SW and followed by NW sectors of the cyclone indicate more strong convective clouds are in SW sector. The equivalent potential temperatures (θe) at different stages of before, during and after the mature stage of the cyclone are also analysed and the analysis reveals that the wind-induced surface heat (WISH) exchange process is a plausible mechanism for the intensification of LEHAR.

  8. On the movement of tropical cyclone LEHAR

    Science.gov (United States)

    Dasari, Hari Prasad; V, Brahmananda Rao; SSVS, Ramakrishna; Gunta, Paparao; N, Nanaji Rao; P, Ramesh Kumar

    2017-12-01

    In this paper, an attempt has been made to delineate the physical processes which lead to the westward movement of the North Indian Ocean tropical cyclone LEHAR. The Advanced Weather Research and Forecasting (ARW) model is used to simulate LEHAR with 27 and 9 km resolutions. The results indicate that the model performed well in simulating the characteristics of cyclone compared with the Satellite and other observations. In addition to that all terms of the complete vorticity equation are computed to obtain the contribution of each term for the vorticity tendency. The vorticity tendency is calculated in four sectors, namely northwest, northeast, southwest and southeast and assumed that the cyclone moves from its existing location to the nearest point where the vortices tendency is maximum. It is noticed that the vorticity stretching term contributes most to the positive vorticity tendency. The second highest contribution is from the horizontal advection thus indicating the secondary importance of steering. The distribution of lightening flash rates also showing that the flash rates are higher in the SW and followed by NW sectors of the cyclone indicate more strong convective clouds are in SW sector. The equivalent potential temperatures ( θ e) at different stages of before, during and after the mature stage of the cyclone are also analysed and the analysis reveals that the wind-induced surface heat (WISH) exchange process is a plausible mechanism for the intensification of LEHAR.

  9. On the movement of tropical cyclone LEHAR

    KAUST Repository

    Dasari, Hari Prasad; V, Brahmananda Rao; SSVS, Ramakrishna; Gunta, Paparao; N, Nanaji Rao; P, Ramesh Kumar

    2017-01-01

    In this paper, an attempt has been made to delineate the physical processes which lead to the westward movement of the North Indian Ocean tropical cyclone LEHAR. The Advanced Weather Research and Forecasting (ARW) model is used to simulate LEHAR with 27 and 9 km resolutions. The results indicate that the model performed well in simulating the characteristics of cyclone compared with the Satellite and other observations. In addition to that all terms of the complete vorticity equation are computed to obtain the contribution of each term for the vorticity tendency. The vorticity tendency is calculated in four sectors, namely northwest, northeast, southwest and southeast and assumed that the cyclone moves from its existing location to the nearest point where the vortices tendency is maximum. It is noticed that the vorticity stretching term contributes most to the positive vorticity tendency. The second highest contribution is from the horizontal advection thus indicating the secondary importance of steering. The distribution of lightening flash rates also showing that the flash rates are higher in the SW and followed by NW sectors of the cyclone indicate more strong convective clouds are in SW sector. The equivalent potential temperatures (θe) at different stages of before, during and after the mature stage of the cyclone are also analysed and the analysis reveals that the wind-induced surface heat (WISH) exchange process is a plausible mechanism for the intensification of LEHAR.

  10. Effect of Nock-Ten Tropical Cyclone on Atmospheric Condition and Distribution of Rainfall in Gorontalo, Ternate, and Sorong Regions

    Science.gov (United States)

    Lumbangaol, A.; Serhalawan, Y. R.; Endarwin

    2017-12-01

    Nock-Ten Tropical Cyclone is an atmospheric phenomenon that has claimed many lives in the Philippines. This super-typhoon cyclone grows in the Western Pacific Ocean, North of Papua. With the area directly contiguous to the trajectory of Nock-Ten Tropical Cyclone growth, it is necessary to study about the growth activity of this tropical cyclones in Indonesia, especially in 3 different areas, namely Gorontalo, Ternate, and Sorong. This study was able to determine the impact of Nock-Ten Tropical Cyclone on atmospheric dynamics and rainfall growth distribution based on the stages of tropical cyclone development. The data used in this study include Himawari-8 IR channel satellite data to see the development stage and movement track of Tropical Cyclone Nock-Ten, rainfall data from TRMM 3B42RT satellite product to know the rain distribution in Gorontalo, Ternate, and Sorong, and reanalysis data from ECMWF such as wind direction and speed, vertical velocity, and relative vorticity to determine atmospheric conditions at the time of development of the Nock-Ten Tropical Cyclone. The results of data analysis processed using GrADS application showed the development stage of Nock-Ten Tropical Cyclone has effect of changes in atmospheric dynamics condition and wind direction pattern. In addition, tropical cyclones also contribute to very light to moderate scale intensity during the cycle period of tropical cyclone development in all three regions.

  11. Paradigms for Tropical-Cyclone Intensification

    Science.gov (United States)

    2011-01-01

    Hurricane Opal (1995) using the Geo- physical Fluid Dynamics Laboratory hurricane prediction model, Möller and Shapiro (2002) found unbalanced flow...al. (2008) calculations on an f -plane, described in section 6.1. A specific aim was to deter- mine the separate contributions of diabatic heating and... Opal as diagnosed from a GFDL model forecast. Mon. Wea. Rev., 130, 1866-1881. Marks FD Shay LK. 1998: Landfalling tropical cyclones: Forecast

  12. On Steady-State Tropical Cyclones

    Science.gov (United States)

    2014-01-01

    Press: London. Marks FD, Black PG, Montgomery MT, Burpee RW. 2008. Structure of the eye and eyewall of Hurricane Hugo (1989). Mon. Weather Rev. 136: 1237... hurricanes ; tropical cyclones; typhoons; steady-state Received 18 April 2013; Revised 25 November 2013; Accepted 29 December 2013; Published online in Wiley...the concept of the ‘mature stage’ of a hurricane vortex. The definition of the ‘mature stage’ is commonly based on the time period in which the maximum

  13. Tropical Cyclone Ensemble Data Assimilation

    Science.gov (United States)

    2012-09-30

    the global system. The improvement is almost uniform in the extratropics , while in the tropics clear improvements tend to occur in the immediate...surrounding of storms . The latter result suggests that the limited area analysis provides a better representation of the interactions between the...circulation of the storm and the wind field in its immediate vicinity. 2

  14. Classic Maya civilization collapse associated with reduction in tropical cyclone activity

    Science.gov (United States)

    Medina, M. A.; Polanco-Martinez, J. M.; Lases-Hernández, F.; Bradley, R. S.; Burns, S. J.

    2013-12-01

    In light of the increased destructiveness of tropical cyclones observed over recent decades one might assume that an increase and not a decrease in tropical cyclone activity would lead to societal stress and perhaps collapse of ancient cultures. In this study we present evidence that a reduction in the frequency and intensity of tropical Atlantic cyclones could have contributed to the collapse of the Maya civilization during the Terminal Classic Period (TCP, AD. 800-950). Statistical comparisons of a quantitative precipitation record from the Yucatan Peninsula (YP) Maya lowlands, based on the stalagmite known as Chaac (after the Mayan God of rain and agriculture), relative to environmental proxy records of El Niño/Southern Oscillation (ENSO), tropical Atlantic sea surface temperatures (SSTs), and tropical Atlantic cyclone counts, suggest that these records share significant coherent variability during the TCP and that summer rainfall reductions between 30 and 50% in the Maya lowlands occurred in association with decreased Atlantic tropical cyclones. Analysis of modern instrumental hydrological data suggests cyclone rainfall contributions to the YP equivalent to the range of rainfall deficits associated with decreased tropical cyclone activity during the collapse of the Maya civilization. Cyclone driven precipitation variability during the TCP, implies that climate change may have triggered Maya civilization collapse via freshwater scarcity for domestic use without significant detriment to agriculture. Pyramid in Tikal, the most prominent Maya Kingdom that collapsed during the Terminal Classic Period (circa C.E. 800-950) Rainfall feeding stalagmites inside Rio Secreto cave system, Yucatan, Mexico.

  15. A satellite observational and numerical study of precipitation characteristics in western North Atlantic tropical cyclones

    Science.gov (United States)

    Rodgers, Edward B.; Chang, Simon W.; Pierce, Harold F.

    1994-01-01

    Special Sensor Microwave/Imager (SSM/I) observations were used to examine the spatial and temporal changes of the precipitation characteristics of tropical cyclones. SSM/I observations were also combined with the results of a tropical cyclone numerical model to examine the role of inner-core diabatic heating in subsequent intensity changes of tropical cyclones. Included in the SSM/I observations were rainfall characteristics of 18 named western North Atlantic tropical cyclones between 1987 and 1989. The SSM/I rain-rate algorithm that employed the 85-GHz channel provided an analysis of the rain-rate distribution in greater detail. However, the SSM/I algorithm underestimated the rain rates when compared to in situ techniques but appeared to be comparable to the rain rates obtained from other satellite-borne passive microwave radiometers. The analysis of SSM/I observations found that more intense systems had higher rain rates, more latent heat release, and a greater contribution from heavier rain to the total tropical cyclone rainfall. In addition, regions with the heaviest rain rates were found near the center of the most intense tropical cyclones. Observational analysis from SSM/I also revealed that the greatest rain rates in the inner-core regions were found in the right half of fast-moving cyclones, while the heaviest rain rates in slow-moving tropical cyclones were found in the forward half. The combination of SSM/I observations and an interpretation of numerical model simulations revealed that the correlation between changes in the inner core diabetic heating and the subsequent intensity became greater as the tropical cyclones became more intense.

  16. Topic 2.0: Tropical cyclone formation and extratropical transition

    OpenAIRE

    Harr, Patrick A.

    2010-01-01

    Approved for public release; distribution is unlimited In this section, progress since ITWC-VI on research, observations and forecasting of tropical cyclone formation and extratropical transition is summarized. While tropical cyclone formation and extratropical transition are stages at opposite ends of the tropical cyclone lifecycle, significant lack of understanding remains in relation to processes associated with each stage. Formation and extratropical transition involve interactions a...

  17. Observation-Based Estimates of Surface Cooling Inhibition by Heavy Rainfall under Tropical Cyclones

    Digital Repository Service at National Institute of Oceanography (India)

    Jourdain, N; Lengaigne, M.; Vialard, J.; Madec, G.; Menkes, C.E.; Vincent, E.M.; Jullien, E.; Barnier, B.

    Tropical cyclones drive intense ocean vertical mixing that explains most of the surface cooling observed in their wake (the "cold wake"). The influence of cyclonic rainfall on the cold wake at a global scale over the 2002-09 period is investigated...

  18. Multiformity of the tropical cyclone wind–pressure relationship in the western North Pacific: discrepancies among four best-track archives

    International Nuclear Information System (INIS)

    Kueh, Mien-Tze

    2012-01-01

    The reliability of tropical cyclone intensity estimates for the western North Pacific is assessed in the context of wind–pressure relationships. Four best-track datasets compiled in the International Best Track Archive for Climate Stewardship (IBTrACS) are compared to assess the data consistency. Over the past 20 yr period (1991–2010), apparent interagency discrepancies in the archived tropical cyclone intensities are found. Heavy reliance upon operational wind–pressure relationships may reduce subjective biases at the cost of potential loss of tropical cyclone natural variability. Given that the intercomparisons are performed based upon a set of identical tropical cyclones, the differences in operational wind–pressure relationships and in the mapping of satellite tropical cyclone intensity classification for these relationships are presumably critical causes of the interagency discrepancies. This result calls for imperative refinement of current satellite-based tropical cyclone intensity estimates and reanalysis of historical tropical cyclone best-track archives for the basin. (letter)

  19. Assessment of Tropical Cyclone Structure Variability

    Science.gov (United States)

    2013-09-01

    cyclone outer wind structure on the beta-effect propagation ( BEP ) component of stormmotion. Employing a non-divergent barotropic model, they demonstrated...that even when the BEP remained unchanged the inner (within 300 km in their vortex simulation) wind profiles had intensity variations from 20 m s−1 to...50 m s−1. Conversely, BEP changed significantly with corresponding intensity changes in the outer (beyond 300 km) wind 2 profiles. For example, larger

  20. Dissipative soliton vortices and tropical cyclones

    Science.gov (United States)

    Chefranov, S. G.; Chefranov, A. G.

    2017-10-01

    We have obtained a new exact steady-state solution to the hydrodynamic equation for a viscous incompressible liquid, which is a generalization of the well-known Sullivan solution (1959), taking into account additionally the external (Eckman) friction and rotation of the system as a single whole. In contrast to the radial structure of a Sullivan vortex, different circulation directions of velocity field tangential component are possible in the new solution in the inner and outer cells. We have considered the correspondence of this solution to the radial vortex structure observed in tropical cyclones, where the precisely anticyclonic circulation always exists in the inner core (typhoon, hurricane eye), which is associated with descending vertical currents for the cyclonic direction of rotation (as well as ascending currents) outside this core.

  1. Multi-Scale Aspects of Tropical Cyclone Predictability

    Science.gov (United States)

    Doyle, J. D.; Moskaitis, J.; Black, P. G.; Hendricks, E. A.; Reinecke, A.; Amerault, C. M.

    2014-12-01

    The intensification of tropical cyclones (TCs) may be sensitive to aspects of large-scale forcing, as well as internal mesoscale dynamics. In this presentation, the degree to which tropical cyclone intensity and structure is sensitive to small perturbations to the basic properties of the synoptic-scale environment, as well as in the immediate vicinity of the storm, is explored using both adjoint- and ensemble-based approaches. In particular, we explore the relationship between tropical cyclone intensity changes and upper-level outflow. We make use of observations from two recent field campaigns: i) the NASA Hurricane and Severe Storms Sentinel (HS3), which featured two fully instrumented Global Hawk unmanned aerial systems, and ii) the ONR Tropical Cyclone Intensity (TCI-14) experiment that utilized the NASA WB-57. We make use of the Navy's high-resolution tropical cyclone prediction system COAMPS-TC to provide ensemble forecasts, numerical experiments with and without the assimilation of specific observation types (e.g., satellite, dropsondes, high-frequency radiosonde), as well as mesoscale nested adjoint sensitivity and observation impact calculations, all of which provide insight into the initial state sensitivity and predictability issues. We assess the impact of observations in sensitive regions in the TC environment (including outflow regions away from the TC inner core) on predictions of TC intensity and structure. Overall the results underscore the importance of multiple scales that influence the predictability of TC intensification. During HS3, the assimilation of Global Hawk dropsondes has been shown to reduce the maximum wind error from 15 knots to less than 10 knots at 48 h for Hurricane Nadine (2012). In this particular case, the adjoint model shows strong sensitivity in the TC outflow near the entrance region of an upper-level jet. The impact of dropsondes from data denial experiments and adjoint-based observation impact calculations will be

  2. Satellite-based Tropical Cyclone Monitoring Capabilities

    Science.gov (United States)

    Hawkins, J.; Richardson, K.; Surratt, M.; Yang, S.; Lee, T. F.; Sampson, C. R.; Solbrig, J.; Kuciauskas, A. P.; Miller, S. D.; Kent, J.

    2012-12-01

    Satellite remote sensing capabilities to monitor tropical cyclone (TC) location, structure, and intensity have evolved by utilizing a combination of operational and research and development (R&D) sensors. The microwave imagers from the operational Defense Meteorological Satellite Program [Special Sensor Microwave/Imager (SSM/I) and the Special Sensor Microwave Imager Sounder (SSMIS)] form the "base" for structure observations due to their ability to view through upper-level clouds, modest size swaths and ability to capture most storm structure features. The NASA TRMM microwave imager and precipitation radar continue their 15+ yearlong missions in serving the TC warning and research communities. The cessation of NASA's QuikSCAT satellite after more than a decade of service is sorely missed, but India's OceanSat-2 scatterometer is now providing crucial ocean surface wind vectors in addition to the Navy's WindSat ocean surface wind vector retrievals. Another Advanced Scatterometer (ASCAT) onboard EUMETSAT's MetOp-2 satellite is slated for launch soon. Passive microwave imagery has received a much needed boost with the launch of the French/Indian Megha Tropiques imager in September 2011, basically greatly supplementing the very successful NASA TRMM pathfinder with a larger swath and more frequent temporal sampling. While initial data issues have delayed data utilization, current news indicates this data will be available in 2013. Future NASA Global Precipitation Mission (GPM) sensors starting in 2014 will provide enhanced capabilities. Also, the inclusion of the new microwave sounder data from the NPP ATMS (Oct 2011) will assist in mapping TC convective structures. The National Polar orbiting Partnership (NPP) program's VIIRS sensor includes a day night band (DNB) with the capability to view TC cloud structure at night when sufficient lunar illumination exits. Examples highlighting this new capability will be discussed in concert with additional data fusion efforts.

  3. Parameters determining maximum wind velocity in a tropical cyclone

    International Nuclear Information System (INIS)

    Choudhury, A.M.

    1984-09-01

    The spiral structure of a tropical cyclone was earlier explained by a tangential velocity distribution which varies inversely as the distance from the cyclone centre outside the circle of maximum wind speed. The case has been extended in the present paper by adding a radial velocity. It has been found that a suitable combination of radial and tangential velocities can account for the spiral structure of a cyclone. This enables parametrization of the cyclone. Finally a formula has been derived relating maximum velocity in a tropical cyclone with angular momentum, radius of maximum wind speed and the spiral angle. The shapes of the spirals have been computed for various spiral angles. (author)

  4. Paradigms for Tropical Cyclone Intensification

    Science.gov (United States)

    2014-03-01

    flight-level wind measurements at an altitude of about 500 m in hurricanes Allen (1980) and Hugo (1989) by Zhang et al. (2011b). In Hugo , maximum K... hurricane David (1979) that are comparable to these values and obtained estimates of horizontal diffusivity for hurricanes Hugo (1989), Allen (1980...2011b. An es- timation of turbulent characteristics in the low-level region of intense hurricanes Allen (1980) and Hugo (1989). Mon. Wea. Rev., 139, 1447–62.

  5. Do tropical cyclones shape shorebird habitat patterns? Biogeoclimatology of snowy plovers in Florida.

    Directory of Open Access Journals (Sweden)

    Matteo Convertino

    Full Text Available BACKGROUND: The Gulf coastal ecosystems in Florida are foci of the highest species richness of imperiled shoreline dependent birds in the USA. However environmental processes that affect their macroecological patterns, like occupancy and abundance, are not well unraveled. In Florida the Snowy Plover (Charadrius alexandrinus nivosus is resident along northern and western white sandy estuarine/ocean beaches and is considered a state-threatened species. METHODOLOGY/PRINCIPAL FINDINGS: Here we show that favorable nesting areas along the Florida Gulf coastline are located in regions impacted relatively more frequently by tropical cyclones. The odds of Snowy Plover nesting in these areas during the spring following a tropical cyclone impact are seven times higher compared to the odds during the spring following a season without a cyclone. The only intensity of a tropical cyclone does not appear to be a significant factor affecting breeding populations. CONCLUSIONS/SIGNIFICANCE: Nevertheless a future climate scenario featuring fewer, but more extreme cyclones could result in a decrease in the breeding Snowy Plover population and its breeding range. This is because the spatio-temporal frequency of cyclone events was found to significantly affect nest abundance. Due to the similar geographic range and habitat suitability, and no decrease in nest abundance of other shorebirds in Florida after the cyclone season, our results suggest a common bioclimatic feedback between shorebird abundance and tropical cyclones in breeding areas which are affected by cyclones.

  6. Global Model Forecasts of 2005 Atlantic Tropical Cyclone Formations After Post-Processing to Account for Initial Intensity

    National Research Council Canada - National Science Library

    Chesser, Stephen G

    2008-01-01

    ...). Histograms of model analyses of the 850 500 mb relative vorticity and the 700 500 mb warm core, which are derived from the VORTRACK files, are created for CARQ intensities of 20 kt, 25 kt, 30 kt...

  7. Tropical cyclones over NIO during La-Nina Modoki years

    Digital Repository Service at National Institute of Oceanography (India)

    Sumesh, K.G.; RameshKumar, M.R.

    Tropical cyclones over NIO (North Indian Ocean) are highly influenced by the El-Nino and La-Nina activities over the Pacific Ocean Influences of air-sea interaction processes like El-Nino Modoki and La-Nina Modoki on tropical cyclones are less...

  8. Emergency Department Presentations following Tropical Cyclone Yasi.

    Directory of Open Access Journals (Sweden)

    Peter Aitken

    Full Text Available Emergency departments see an increase in cases during cyclones. The aim of this study is to describe patient presentations to the Emergency Department (ED of a tertiary level hospital (Townsville following a tropical cyclone (Yasi. Specific areas of focus include changes in: patient demographics (age and gender, triage categories, and classification of diseases.Data were extracted from the Townsville Hospitals ED information system (EDIS for three periods in 2009, 2010 and 2011 to coincide with formation of Cyclone Yasi (31 January 2011 to six days after Yasi crossed the coast line (8 February 2012. The analysis explored the changes in ICD10-AM 4-character classification and presented at the Chapter level.There was a marked increase in the number of patients attending the ED during Yasi, particularly those aged over 65 years with a maximum daily attendance of 372 patients on 4 Feb 2011. The most marked increases were in: Triage categories--4 and 5; and ICD categories--diseases of the skin and subcutaneous tissue (L00-L99, and factors influencing health care status (Z00-Z99. The most common diagnostic presentation across all years was injury (S00-T98.There was an increase in presentations to the ED of TTH, which peaked in the first 24-48 hours following the cyclone and returned to normal over a five-day period. The changes in presentations were mostly an amplification of normal attendance patterns with some altered areas of activity. Injury patterns are similar to overseas experience.

  9. Extreme weather: Subtropical floods and tropical cyclones

    Science.gov (United States)

    Shaevitz, Daniel A.

    Extreme weather events have a large effect on society. As such, it is important to understand these events and to project how they may change in a future, warmer climate. The aim of this thesis is to develop a deeper understanding of two types of extreme weather events: subtropical floods and tropical cyclones (TCs). In the subtropics, the latitude is high enough that quasi-geostrophic dynamics are at least qualitatively relevant, while low enough that moisture may be abundant and convection strong. Extratropical extreme precipitation events are usually associated with large-scale flow disturbances, strong ascent, and large latent heat release. In the first part of this thesis, I examine the possible triggering of convection by the large-scale dynamics and investigate the coupling between the two. Specifically two examples of extreme precipitation events in the subtropics are analyzed, the 2010 and 2014 floods of India and Pakistan and the 2015 flood of Texas and Oklahoma. I invert the quasi-geostrophic omega equation to decompose the large-scale vertical motion profile to components due to synoptic forcing and diabatic heating. Additionally, I present model results from within the Column Quasi-Geostrophic framework. A single column model and cloud-revolving model are forced with the large-scale forcings (other than large-scale vertical motion) computed from the quasi-geostrophic omega equation with input data from a reanalysis data set, and the large-scale vertical motion is diagnosed interactively with the simulated convection. It is found that convection was triggered primarily by mechanically forced orographic ascent over the Himalayas during the India/Pakistan flood and by upper-level Potential Vorticity disturbances during the Texas/Oklahoma flood. Furthermore, a climate attribution analysis was conducted for the Texas/Oklahoma flood and it is found that anthropogenic climate change was responsible for a small amount of rainfall during the event but the

  10. Stalling Tropical Cyclones over the Atlantic Basin

    Science.gov (United States)

    Nielsen-Gammon, J. W.; Emanuel, K.

    2017-12-01

    Hurricane Harvey produced massive amounts of rain over southeast Texas and southwest Louisiana. Average storm total rainfall amounts over a 10,000 square mile (26,000 square km) area exceeded 30 inches (750 mm). An important aspect of the storm that contributed to the large rainfall totals was its unusual motion. The storm stalled shortly after making landfall, then moved back offshore before once again making landfall five days later. This storm motion permitted heavy rainfall to occur in the same general area for an extended period of time. The unusual nature of this event motivates an investigation into the characteristics and potential climate change influences on stalled tropical cyclones in the Atlantic basin using the HURDAT 2 storm track database for 1866-2016 and downscaled tropical cyclones driven by simulations of present and future climate. The motion of cyclones is quantified as the size of a circle circumscribing all storm locations during a given length of time. For a three-day period, Harvey remained inside a circle with a radius of 123 km. This ranks within the top 0.6% of slowest-moving historical storm instances. Among the 2% of slowest-moving storm instances prior to Harvey, only 13 involved storms that stalled near the continental United States coast, where they may have produced substantial rainfall onshore while tapping into marine moisture. Only two such storms stalled in the month of September, in contrast to 20 September stalls out of the 36 storms that stalled over the nearby open Atlantic. Just four of the stalled coastal storms were hurricanes, implying a return frequency for such storms of much less than once per decade. The synoptic setting of these storms is examined for common features, and historical and projected trends in occurrences of stalled storms near the coast and farther offshore are investigated.

  11. Parameter Uncertainty on AGCM-simulated Tropical Cyclones

    Science.gov (United States)

    He, F.

    2015-12-01

    This work studies the parameter uncertainty on tropical cyclone (TC) simulations in Atmospheric General Circulation Models (AGCMs) using the Reed-Jablonowski TC test case, which is illustrated in Community Atmosphere Model (CAM). It examines the impact from 24 parameters across the physical parameterization schemes that represent the convection, turbulence, precipitation and cloud processes in AGCMs. The one-at-a-time (OAT) sensitivity analysis method first quantifies their relative importance on TC simulations and identifies the key parameters to the six different TC characteristics: intensity, precipitation, longwave cloud radiative forcing (LWCF), shortwave cloud radiative forcing (SWCF), cloud liquid water path (LWP) and ice water path (IWP). Then, 8 physical parameters are chosen and perturbed using the Latin-Hypercube Sampling (LHS) method. The comparison between OAT ensemble run and LHS ensemble run shows that the simulated TC intensity is mainly affected by the parcel fractional mass entrainment rate in Zhang-McFarlane (ZM) deep convection scheme. The nonlinear interactive effect among different physical parameters is negligible on simulated TC intensity. In contrast, this nonlinear interactive effect plays a significant role in other simulated tropical cyclone characteristics (precipitation, LWCF, SWCF, LWP and IWP) and greatly enlarge their simulated uncertainties. The statistical emulator Extended Multivariate Adaptive Regression Splines (EMARS) is applied to characterize the response functions for nonlinear effect. Last, we find that the intensity uncertainty caused by physical parameters is in a degree comparable to uncertainty caused by model structure (e.g. grid) and initial conditions (e.g. sea surface temperature, atmospheric moisture). These findings suggest the importance of using the perturbed physics ensemble (PPE) method to revisit tropical cyclone prediction under climate change scenario.

  12. Physical and biological response of the Arabian sea to tropical cyclone Phyan and its implications

    Digital Repository Service at National Institute of Oceanography (India)

    Byju, P.; PrasannaKumar, S.

    regional climate shift since 1995, which is accompanied by a five-fold increase in the occurrence of the most intense cyclones. Even though cyclones are known for their destruction of life and property on the land, they often augment life in the ocean...-red and microwave frequencies provide a real- time recognition and diagnosis of tropical cyclone development. But ocean colour sensors are obscured by clouds, which are often present during and after the passage of a cyclone, therefore it can capture only a very...

  13. How ocean color can steer Pacific tropical cyclones

    Science.gov (United States)

    Gnanadesikan, Anand; Emanuel, Kerry; Vecchi, Gabriel A.; Anderson, Whit G.; Hallberg, Robert

    2010-09-01

    Because ocean color alters the absorption of sunlight, it can produce changes in sea surface temperatures with further impacts on atmospheric circulation. These changes can project onto fields previously recognized to alter the distribution of tropical cyclones. If the North Pacific subtropical gyre contained no absorbing and scattering materials, the result would be to reduce subtropical cyclone activity in the subtropical Northwest Pacific by 2/3, while concentrating cyclone tracks along the equator. Predicting tropical cyclone activity using coupled models may thus require consideration of the details of how heat moves into the upper thermocline as well as biogeochemical cycling.

  14. Forecasting and Warning of Tropical Cyclones in China

    Directory of Open Access Journals (Sweden)

    Bangzhong Wang

    2007-10-01

    Full Text Available With the development of the global economy, the impact of tropical cyclones has become far-reaching. Thus they are a fundamental issue to be addressed both nationally and globally. The socio-economic impact is particularly noticeable in developing countries, especially China. This paper begins with the effects of cyclones on regional and global economies. Then a brief introduction to the past and current situations and progress in cyclones forecasting and warning in China are presented. Finally the paper gives recommendations about improving and perfecting the tropical cyclone forecasting and warning systems.

  15. Tropical Cyclone Signatures in Atmospheric Convective Available Potential Energy

    Science.gov (United States)

    Studholme, Joshua; Gulev, Sergey

    2016-04-01

    Tropical cyclones play an important role in the climate system providing transports of energy and water vapor, forcing the ocean, and also affecting mid-latitude circulation phenomena. Tropical cyclone tracks experience strong interannual variability and in addition, longer term trend-like changes in all ocean basins. Analysis of recent historical data reveal a poleward shift in the locations of tropical cyclone tracks in both the Northern and Southern Hemispheres (Kossin et al. 2014, Nature, 509, 349-352). The physical consequences of these alterations are largely unconstrained. For example, the increasing encroachment of tropical cyclone activity into the extra-tropical environment presents a novel and still poorly understood paradigm for tropical-extratropical interactions. In this respect, the role that the atmospheric convective available potential energy (CAPE) plays in the dynamics of tropical cyclones is highly interesting. The two characteristic global-scale spatial patterns in CAPE are identified using EOF analysis. The first pattern shows an abundance of CAPE in the centre of the Pacific and corresponds to the El Nino Southern Oscillation. The second one is capturing positive CAPE anomalies in the oceanic tropics and negative anomalies over equatorial Africa. Associated with these buoyancy patterns, alterations in tropical cyclone activity occur in all basins forming both zonal and meridional patterns. Atmospheric buoyancy is the trigger for deep convection, and subsequently cyclone genesis. This is the mechanism of impact upon location at the start of cyclone tracks. It is found to have less impact upon where cyclones subsequently move, whether or not they undergo extratropical transition and when and where they experience lysis. It is shown that CAPE plays a critical role in the general circulation in the tropics which in turn is the larger steering context for embedded systems within the Walker and Hadley cells. So this lack of `latter life' impact

  16. Estimating Tropical Cyclone Precipitation from Station Observations

    Institute of Scientific and Technical Information of China (English)

    REN Fumin; WANG Yongmei; WANG Xiaoling; LI Weijing

    2007-01-01

    In this paper, an objective technique for estimating the tropical cyclone (TC) precipitation from station observations is proposed. Based on a comparison between the Original Objective Method (OOM) and the Expert Subjective Method (ESM), the Objective Synoptic Analysis Technique (OSAT) for partitioning TC precipitation was developed by analyzing the western North Pacific (WNP) TC historical track and the daily precipitation datasets. Being an objective way of the ESM, OSAT overcomes the main problems in OOM,by changing two fixed parameters in OOM, the thresholds for the distance of the absolute TC precipitation (D0) and the TC size (D1), into variable parameters.Case verification for OSAT was also carried out by applying CMORPH (Climate Prediction Center MORPHing technique) daily precipitation measurements, which is NOAA's combined satellite precipitation measurement system. This indicates that OSAT is capable of distinguishing simultaneous TC precipitation rain-belts from those associated with different TCs or with middle-latitude weather systems.

  17. Analysis of Tropical Cyclone Tracks in the North Indian Ocean

    Science.gov (United States)

    Patwardhan, A.; Paliwal, M.; Mohapatra, M.

    2011-12-01

    Cyclones are regarded as one of the most dangerous meteorological phenomena of the tropical region. The probability of landfall of a tropical cyclone depends on its movement (trajectory). Analysis of trajectories of tropical cyclones could be useful for identifying potentially predictable characteristics. There is long history of analysis of tropical cyclones tracks. A common approach is using different clustering techniques to group the cyclone tracks on the basis of certain characteristics. Various clustering method have been used to study the tropical cyclones in different ocean basins like western North Pacific ocean (Elsner and Liu, 2003; Camargo et al., 2007), North Atlantic Ocean (Elsner, 2003; Gaffney et al. 2007; Nakamura et al., 2009). In this study, tropical cyclone tracks in the North Indian Ocean basin, for the period 1961-2010 have been analyzed and grouped into clusters based on their spatial characteristics. A tropical cyclone trajectory is approximated as an open curve and described by its first two moments. The resulting clusters have different centroid locations and also differently shaped variance ellipses. These track characteristics are then used in the standard clustering algorithms which allow the whole track shape, length, and location to be incorporated into the clustering methodology. The resulting clusters have different genesis locations and trajectory shapes. We have also examined characteristics such as life span, maximum sustained wind speed, landfall, seasonality, many of which are significantly different across the identified clusters. The clustering approach groups cyclones with higher maximum wind speed and longest life span in to one cluster. Another cluster includes short duration cyclonic events that are mostly deep depressions and significant for rainfall over Eastern and Central India. The clustering approach is likely to prove useful for analysis of events of significance with regard to impacts.

  18. Quantitative observations on tropical cyclone tracks in the Arabian Sea

    Science.gov (United States)

    Terry, James P.; Gienko, Gennady

    2018-03-01

    The Arabian Sea basin represents a minor component of global total cyclones annually and has not featured so prominently in cyclone research compared with other basins where greater numbers of cyclones are registered each year. This paper presents the results of exploratory analysis of various features of cyclone tracks in the Arabian Sea, with a particular focus on examining their temporal and spatial patterns. Track morphometry also reveals further information on track shape. The study indicates how cyclones spawned during May in the early pre-monsoon period (often strong events) have a tendency to follow more sinuous tracks, whereas cyclones occurring in October in the post-monsoon period tend to follow straighter tracks. Track sinuosity is significantly related to other attributes, including cyclone longevity and intensity. Comparisons are also drawn between the general characteristics of cyclone tracks in the Arabian Sea and other ocean basins, suggesting how the size and geography of the Arabian Sea basin exert influences on these characteristics.

  19. The intensity of precipitation during extratropical cyclones in global warming simulations: a link to cyclone intensity?

    Energy Technology Data Exchange (ETDEWEB)

    Watterson, I.G. [CSIRO Atmospheric Research, Aspendale (Australia)

    2006-01-01

    Simulations of global warming over the coming century from two CSIRO GCMs are analysed to assess changes in the intensity of extratropical cyclones, and the potential role of increased latent heating associated with precipitation during cyclones. A simple surface cyclone detection scheme is applied to a four-member ensemble of simulations from the Mark 2 GCM, under rising greenhouse gas concentrations. The seasonal distribution of cyclones appears broadly realistic during 1961-1990. By 2071-2100, with 3 K global warming, numbers over 20 deg N to 70 deg N decrease by 6% in winter and 2% annually, with similar results for the south. The average intensity of cyclones, from relative central pressure and other measures, is largely unchanged however. 30-yr extremes of dynamic intensity also show little clear change, including values averaged over continents. Mean rain rates at cyclone centres are typically at least double rates from all days. Rates during cyclones increase by an average 14% in the northern winter under global warming. Rates over adjacent grid squares and during the previous day increase similarly, as do extreme rates. Results from simulations of the higher-resolution (1.8 deg grid) Mark 3 GCM are similar, with widespread increases in rain rates but not in cyclone intensity. The analyses suggest that latent heating during storms increases, as anticipated due to the increased moisture capacity of the warmer atmosphere. However, any role for enhanced heating in storm development in the GCMs is apparently masked by other factors. An exception is a 5% increase in extreme intensity around 55 deg S in Mark 3, despite decreased numbers of lows, a factor assessed using extreme value theory. Further studies with yet higher-resolution models may be needed to examine the potential realism of these results, particularly with regard to extremes at smaller scale.

  20. Leveraging LSTM for rapid intensifications prediction of tropical cyclones

    Science.gov (United States)

    Li, Y.; Yang, R.; Yang, C.; Yu, M.; Hu, F.; Jiang, Y.

    2017-10-01

    Tropical cyclones (TCs) usually cause severe damages and destructions. TC intensity forecasting helps people prepare for the extreme weather and could save lives and properties. Rapid Intensifications (RI) of TCs are the major error sources of TC intensity forecasting. A large number of factors, such as sea surface temperature and wind shear, affect the RI processes of TCs. Quite a lot of work have been done to identify the combination of conditions most favorable to RI. In this study, deep learning method is utilized to combine conditions for RI prediction of TCs. Experiments show that the long short-term memory (LSTM) network provides the ability to leverage past conditions to predict TC rapid intensifications.

  1. Leveraging LSTM for rapid intensifications prediction of tropical cyclones

    Directory of Open Access Journals (Sweden)

    Y. Li

    2017-10-01

    Full Text Available Tropical cyclones (TCs usually cause severe damages and destructions. TC intensity forecasting helps people prepare for the extreme weather and could save lives and properties. Rapid Intensifications (RI of TCs are the major error sources of TC intensity forecasting. A large number of factors, such as sea surface temperature and wind shear, affect the RI processes of TCs. Quite a lot of work have been done to identify the combination of conditions most favorable to RI. In this study, deep learning method is utilized to combine conditions for RI prediction of TCs. Experiments show that the long short-term memory (LSTM network provides the ability to leverage past conditions to predict TC rapid intensifications.

  2. Radio Occultation Bending Angle Anomalies During Tropical Cyclones

    DEFF Research Database (Denmark)

    Biondi, Riccardo; Neubert, Torsten; Syndergaard, Stig

    signature in radio occultation profiles in the tropical tropopause layer. Using tropical cyclone best track database and data from the Constellation Observing System for Meteorology, Ionosphere and Climate (COSMIC), we show that the bending angle anomaly of a GPS radio occultation signal is typically larger...

  3. Tropical cyclones in a stabilized 1.5 and 2 degree warmer world.

    Science.gov (United States)

    Wehner, M. F.; Stone, D. A.; Loring, B.; Krishnan, H.

    2017-12-01

    We present an ensemble of very high resolution global climate model simulations of a stabilized 1.5oC and 2oC warmer climate as envisioned by the Paris COP21 agreement. The resolution of this global climate model (25km) permits simulated tropical cyclones up to Category Five on the Saffir-Simpson scale Projected changes in tropical cyclones are significant. Tropical cyclones in the two stabilization scenarios are less frequent but more intense than in simulations of the present. Output data from these simulations is freely available to all interested parties and should prove a useful resource to those interested in studying the impacts of stabilized global warming.

  4. Infectious Diseases and Tropical Cyclones in Southeast China.

    Science.gov (United States)

    Zheng, Jietao; Han, Weixiao; Jiang, Baofa; Ma, Wei; Zhang, Ying

    2017-05-07

    Southeast China is frequently hit by tropical cyclones (TCs) with significant economic and health burdens each year. However, there is a lack of understanding of what infectious diseases could be affected by tropical cyclones. This study aimed to examine the impacts of tropical cyclones on notifiable infectious diseases in southeast China. Disease data between 2005 and 2011 from four coastal provinces in southeast China, including Guangdong, Hainan, Zhejiang, and Fujian province, were collected. Numbers of cases of 14 infectious diseases were compared between risk periods and reference periods for each tropical cyclone. Risk ratios (RR s ) were calculated to estimate the risks. TCs were more likely to increase the risk of bacillary dysentery, paratyphoid fever, dengue fever and acute hemorrhagic conjunctivitis ( ps infectious diseases. TCs are more likely to increase the risk of intestinal and contact transmitted infectious diseases than to decrease the risk, and more likely to decrease the risk of respiratory infectious diseases than to increase the risk. Findings of this study would assist in developing public health strategies and interventions for the reduction of the adverse health impacts from tropical cyclones.

  5. Infectious Diseases and Tropical Cyclones in Southeast China

    Directory of Open Access Journals (Sweden)

    Jietao Zheng

    2017-05-01

    Full Text Available Southeast China is frequently hit by tropical cyclones (TCs with significant economic and health burdens each year. However, there is a lack of understanding of what infectious diseases could be affected by tropical cyclones. This study aimed to examine the impacts of tropical cyclones on notifiable infectious diseases in southeast China. Disease data between 2005 and 2011 from four coastal provinces in southeast China, including Guangdong, Hainan, Zhejiang, and Fujian province, were collected. Numbers of cases of 14 infectious diseases were compared between risk periods and reference periods for each tropical cyclone. Risk ratios (RRs were calculated to estimate the risks. TCs were more likely to increase the risk of bacillary dysentery, paratyphoid fever, dengue fever and acute hemorrhagic conjunctivitis (ps < 0.05 than to decrease the risk, more likely to decrease the risk of measles, mumps, varicella and vivax malaria (ps < 0.05 than to increase the risk. In conclusion, TCs have mixed effects on the risk of infectious diseases. TCs are more likely to increase the risk of intestinal and contact transmitted infectious diseases than to decrease the risk, and more likely to decrease the risk of respiratory infectious diseases than to increase the risk. Findings of this study would assist in developing public health strategies and interventions for the reduction of the adverse health impacts from tropical cyclones.

  6. Impact of horizontal resolution on prediction of tropical cyclones over ...

    Indian Academy of Sciences (India)

    Two cyclones, which formed over the Bay of Bengal during the years 1995 and 1997, are simulated using a regional weather prediction model with two horizontal resolutions of 165km and 55 km. The model is found to perform reasonably well towards simulation of the storms. The structure, intensity and track of the cyclones ...

  7. NOAA JPSS Advanced Technology Microwave Sounder (ATMS)-based Tropical Cyclone (TC) Products from NDE

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The JPSS Microwave Sounder-based Tropical Cyclone (TC) Products provide estimates of tropical cyclone maximum wind speed, minimum sea level pressure, radii of 34,...

  8. Real-Time Forecasting System of Winds, Waves and Surge in Tropical Cyclones

    National Research Council Canada - National Science Library

    Graber, Hans C; Donelan, Mark A; Brown, Michael G; Slinn, Donald N; Hagen, Scott C; Thompson, Donald R; Jensen, Robert E; Black, Peter G; Powell, Mark D; Guiney, John L; Cardone, Vincent J; Cox, Andrew T

    2006-01-01

    ... of tropical cyclones The results of this forecasting system would provide real-time information to the National Hurricane Center during the tropical cyclone season in the Atlantic for establishing improved...

  9. Tropical cyclone disasters in the Gulf of Thailand

    Directory of Open Access Journals (Sweden)

    Suphat Vongvisessomjai

    2009-07-01

    Full Text Available The origin of tropical cyclones in the South China Sea is over a vast deep sea, southeast of the Philippines. The severetropical cyclones in summer with northerly tracks attack the Philippines, China, Korea and Japan, while the moderate ones inthe rainy season with northwesterly tracks pass Vietnam, Laos and northern Thailand. In October, November and December, the tropical cyclones are weakened and tracks shift to a lower latitude passing the Gulf of Thailand. Tropical cyclone disasters in the Gulf of Thailand due to strong winds causing storm surges and big waves or heavy rainfall over high mountains in causing floods and land slides result in moderate damages and casualties. Analyses are made of six decades of data of tropical cyclones from 1951-2006 having averaged numbers of 3 and 13 in Thailand and the South China Sea respectively. Detailed calculation of surges and wave heights of the 5 disastrous tropical cyclones in the Gulf of Thailand reveal that the Upper Gulf of Thailand with a limited fetch length of about 100 km in north/south direction and about 100 km width in the east/west direction, resulted in a limited maximum wave height of 2.3-2.5 m and maximum storm surge height of 1.2 m generated by Typhoon Vae (1952, while the east coast, with longer fetch lengthbut still limited by the existence of its shoreline, resulted in an increased maximum wave height of 4 m and maximum storm surge height of 0.6 m in the Upper Gulf of Thailand generated by Typhoon Linda (1997. These are the Probable Maximum Cyclones here.The southern shoreline, with unlimited fetch length on the east by tropical cyclones approaching from the South China Sea, generated maximum wave height of 6-11 m by Typhoon Gay (1989, resulting in more casualties and damages. Note that storm surges on the southern shorelines with steep slopes are small due to the short distance of shallow shorelines in receiving wind stresses for piling up sea levels. These disasters can be

  10. On the Angular Momentum Loss of Tropical Cyclones: An f-Plane Approximation

    Science.gov (United States)

    Kang, Hyun-Gyu; Cheong, Hyeong-Bin; Kim, Won-Ho

    2018-02-01

    The angular momentum for ideal axisymmetric tropical cyclones on the f-plane is investigated with a focus on the total-volume integrated quantity. Budget analysis of the momentum equation at cylindrical coordinates shows that a tropical cyclone loses angular momentum during its development and mature stages due to the dynamical difference between the viscous inward-flow near the surface and the angular momentum conserving outward-flow aloft. The total relative angular momentum of a tropical cyclone, as a result, can be negative (i.e., implying anticyclonic rotation as a whole) despite intense cyclonic wind in the tropospheric layers. This anticyclonic rotation was measured in terms of the super-rotation ratio, the ratio of total relative angular momentum to the planetary angular momentum. Simulations with the numerical model of Weather Research and Forecasting (WRF) version 3.4.1 was found to be in favor of the theoretical angular-momentum budget analysis. It was revealed in the numerical simulations that the super-rotation ratio was negative, indicating a sub-rotation, as was predicted by analysis. The sub-rotation ratio was found to be less than one percent for typical tropical cyclones. To show the angular momentum decrease even in the decaying stage, numerical simulations where the thermal forcing by sea surface temperature switched off in the mature stage were carried out. In support of the angular momentum budget analysis, the results indicated that the angular momentum also decreases for a while soon after the forcing was eliminated.

  11. Tropical Cyclones as a Driver of Global Sediment Flux

    Science.gov (United States)

    Leyland, J.; Darby, S. E.; Cohen, S.

    2017-12-01

    The world's rivers deliver 19 billion tonnes of sediment to the coastal zone annually. The sediment supplied to the coastal zone is of significant importance for a variety of reasons, for example in acting as a vector for nutrients as well as in supplying sediment to coastal landforms such as deltas and beaches that can buffer those landforms from erosion and flooding. A greater understanding of the factors governing sediment flux to the oceans is therefore a key research gap. The non-linear relationship between river discharge and sediment flux implies that the global sediment flux may be disproportionately driven by large floods. Indeed, in our recent empirical research we have demonstrated that changes in the track locations, frequency and intensity of tropical storms in recent decades exert a significant control on the sediment flux emanating from the Mekong River. Since other large rivers potentially affected by tropical storms are known to make a significant contribution to the global sediment flux, this raises the question of the extent to which such storms play a significant role in controlling sediment loads at the global scale. In this paper we address that question by employing a global hydrological model (WBMsed) in order to predict runoff and sediment load forced by recent historical climate scenarios `with' and `without' tropical cyclones. We compare the two scenarios to (i) make the first estimate of the global contribution of sediment load forced by tropical storms; (ii) evaluate how that contribution has varied in recent decades and to (iii) explore variations in tropical-storm driven sediment loads in selected major river basins that are significantly affected by such storms.

  12. Physical understanding of the tropical cyclone wind-pressure relationship.

    Science.gov (United States)

    Chavas, Daniel R; Reed, Kevin A; Knaff, John A

    2017-11-08

    The relationship between the two common measures of tropical cyclone intensity, the central pressure deficit and the peak near-surface wind speed, is a long-standing problem in tropical meteorology that has been approximated empirically yet lacks physical understanding. Here we provide theoretical grounding for this relationship. We first demonstrate that the central pressure deficit is highly predictable from the low-level wind field via gradient wind balance. We then show that this relationship reduces to a dependence on two velocity scales: the maximum azimuthal-mean azimuthal wind speed and half the product of the Coriolis parameter and outer storm size. This simple theory is found to hold across a hierarchy of models spanning reduced-complexity and Earth-like global simulations and observations. Thus, the central pressure deficit is an intensity measure that combines maximum wind speed, storm size, and background rotation rate. This work has significant implications for both fundamental understanding and risk analysis, including why the central pressure better explains historical economic damages than does maximum wind speed.

  13. Clustering Indian Ocean Tropical Cyclone Tracks by the Standard Deviational Ellipse

    Directory of Open Access Journals (Sweden)

    Md. Shahinoor Rahman

    2018-05-01

    Full Text Available The standard deviational ellipse is useful to analyze the shape and the length of a tropical cyclone (TC track. Cyclone intensity at each six-hour position is used as the weight at that location. Only named cyclones in the Indian Ocean since 1981 are considered for this study. The K-means clustering algorithm is used to cluster Indian Ocean cyclones based on the five parameters: x-y coordinates of the mean center, variances along zonal and meridional directions, and covariance between zonal and meridional locations of the cyclone track. Four clusters are identified across the Indian Ocean; among them, only one cluster is in the North Indian Ocean (NIO and the rest of them are in the South Indian Ocean (SIO. Other characteristics associated with each cluster, such as wind speed, lifespan, track length, track orientation, seasonality, landfall, category during landfall, total accumulated cyclone energy (ACE, and cyclone trend, are analyzed and discussed. Cyclone frequency and energy of Cluster 4 (in the NIO have been following a linear increasing trend. Cluster 4 also has a higher number of landfall cyclones compared to other clusters. Cluster 2, located in the middle of the SIO, is characterized by the long track, high intensity, long lifespan, and high accumulated energy. Sea surface temperature (SST and outgoing longwave radiation (OLR associated with genesis of TCs are also examined in each cluster. Cyclone genesis is co-located with the negative OLR anomaly and the positive SST anomaly. Localized SST anomalies are associated with clusters in the SIO; however, TC geneses of Cluster 4 are associated with SSTA all over the Indian Ocean (IO.

  14. Contribution of tropical cyclones to global rainfall

    Science.gov (United States)

    Khouakhi, Abdou; Villarini, Gabriele; Vecchi, Gabriel; Smith, James

    2016-04-01

    Rainfall associated with tropical cyclones (TCs) can have both devastating and beneficial impacts in different parts of the world. In this work, daily precipitation and historical six-hour best track TC datasets are used to quantify the contribution of TCs to global rainfall. We select 18607 rain gauge stations with at least 25 complete (at least 330 measurements per year) years between 1970 and 2014. We consider rainfall associated with TCs if the center of circulation of the storm passed within a given distance from the rain gauge and within a given time window. Spatial and temporal sensitivity analyses are performed with varying time windows (same day, ±1 day) and buffer radii (400 km and 500 km) around each rain gauge. Results highlight regional differences in TC-induced rainfall. The highest TC-induced precipitation totals (400 to 600+ mm/year) are prevalent along eastern Asia, western and northeastern Australia, and in the western Pacific islands. Stations along the southeast of the U.S. coast and surrounding the Gulf of Mexico receive up to 200 mm/year of TC rainfall. The highest annual fractional contributions of TCs to total rainfall (from 35 to 50%) are recorded in stations located in northwestern Australia, southeastern China, the northern Philippines and the southern Mexico peninsula. Seasonally, the highest proportions (40 to 50%) are recorded along eastern Australia and Mauritius in winter, and in eastern Asia and Mexico in summer and autumn. Analyses of the relative contribution of TCs to extreme rainfall using annual maximum (AM) and peaks-over-threshold (POT) approaches indicate notable differences among regions. The highest TC-AM rainfall proportions (45 to 60%) are found in stations located in Japan, eastern China, the Philippines, eastern and western Australia. Substantial contributions (25 to 40% of extreme rainfall) are also recorded in stations located along the U.S. East Coast, the Gulf of Mexico, and the Mexico peninsula. We find similar

  15. On tropical cyclone frequency and the warm pool area

    Directory of Open Access Journals (Sweden)

    R. E. Benestad

    2009-04-01

    Full Text Available The proposition that the rate of tropical cyclogenesis increases with the size of the "warm pool" is tested by comparing the seasonal variation of the warm pool area with the seasonality of the number of tropical cyclones. An analysis based on empirical data from the Northern Hemisphere is presented, where the warm pool associated with tropical cyclone activity is defined as the area, A, enclosed by the 26.5°C SST isotherm. Similar analysis was applied to the temperature weighted area AT with similar results.

    An intriguing non-linear relationship of high statistical significance was found between the temperature weighted area in the North Atlantic and the North-West Pacific on the one hand and the number of cyclones, N, in the same ocean basin on the other, but this pattern was not found over the North Indian Ocean. A simple statistical model was developed, based on the historical relationship between N and A. The simple model was then validated against independent inter-annual variations in the seasonal cyclone counts in the North Atlantic, but the correlation was not statistically significant in the North-West Pacific. No correlation, however, was found between N and A in the North Indian Ocean.

    A non-linear relationship between the cyclone number and temperature weighted area may in some ocean basins explain both why there has not been any linear trend in the number of cyclones over time as well as the recent upturn in the number of Atlantic hurricanes. The results also suggest that the notion of the number of tropical cyclones being insensitive to the area A is a misconception.

  16. Interactions between tropical cyclones and mid-latitude systems in the Northeastern Pacific

    Science.gov (United States)

    Lugo, A.; Abarca, S. F.; Raga, G. B.; Vargas, D. C.

    2014-12-01

    Major challenges in tropical meteorology include the short-term forecast of tropical cyclone (TC) intensity, which is defined as the maximum tangential wind. Several efforts have been made in order to reach this goal over the last decade: Among these efforts, the study of lightning in the TC inner core (the region inside a disc of 100 km radius from the center) as a proxy to deep convection, has the potential to be used as a predictor to forecast intensity (DeMaria et al, 2012, Mon. Wea. Rev., 140, 1828-1842).While most studies focus their objectives in studying the lightning flash density in the inner core, we study the probability of flash occurrence for intensifying and weakening cyclones. We have analyzed the trajectories of the observed 62 tropical cyclones that developed in the basin from 2006 to 2009, and classified them into separate clusters according to their trajectories. These clusters can broadly be described as having trajectories mostly oriented: East-West, towards the central Pacific, NW far from the Mexican coast, parallel to the Mexican coast and recurving towards the Mexican coast.We estimate that probability of inner core lightning occurrence increases as cyclones intensify but the probability rapidly decrease as the systems weaken. This is valid for cyclones in most of the clusters. However, the cyclones that exhibit trajectories that recurve towards the Mexican coast, do not present the same relationship between intensity and inner-core lightning probability, these cyclones show little or no decrease in the lightning occurrence probability as they weaken.We hypothesize that one of the reasons for this anomalous behavior is likely the fact that these cyclones interact with mid-latitude systems. Mid-latitude systems are important in determining the recurving trajectory but they may also influence the TC by advecting mid-level moisture towards the TC inner core. This additional supply of moisture as the system is approaching land may enhance deep

  17. Training on Eastern Pacific tropical cyclones for Latin American students

    Science.gov (United States)

    Farfán, L. M.; Raga, G. B.

    2009-05-01

    Tropical cyclones are one of the most impressive atmospheric phenomena and their development in the Atlantic and Eastern Pacific basins has potential to affect several Latin-American and Caribbean countries, where human resources are limited. As part of an international research project, we are offering short courses based on the current understanding of tropical cyclones in the Eastern Pacific basin. Our main goal is to train students from higher-education institutions from various countries in Latin America. Key aspects are tropical cyclone formation and evolution, with particular emphasis on their development off the west coast of Mexico. Our approach includes lectures on tropical cyclone climatology and formation, dynamic and thermodynamic models, air-sea interaction and oceanic response, ocean waves and coastal impacts as well as variability and climate-related predictions. In particular, we use a best-track dataset issued by the United States National Hurricane Center and satellite observations to analyze convective patterns for the period 1970-2006. Case studies that resulted in landfall over northwestern Mexico are analyzed in more detail; this includes systems that developed during the 2006, 2007 and 2008 seasons. Additionally, we have organized a human-dimensions symposium to discuss socio-economic issues that are associated with the landfall of tropical cyclones. This includes coastal zone impact and flooding, the link between cyclones and water resources, the flow of weather and climate information from scientists to policy- makers, the role of emergency managers and decision makers, impact over health issues and the viewpoint of the insurance industry.

  18. Improvement of wind field hindcasts for tropical cyclones

    Directory of Open Access Journals (Sweden)

    Yi Pan

    2016-01-01

    Full Text Available This paper presents a study on the improvement of wind field hindcasts for two typical tropical cyclones, i.e., Fanapi and Meranti, which occurred in 2010. The performance of the three existing models for the hindcasting of cyclone wind fields is first examined, and then two modification methods are proposed to improve the hindcasted results. The first one is the superposition method, which superposes the wind field calculated from the parametric cyclone model on that obtained from the Cross-Calibrated Multi-Platform (CCMP reanalysis data. The radius used for the superposition is based on an analysis of the minimum difference between the two wind fields. The other one is the direct modification method, which directly modifies the CCMP reanalysis data according to the ratio of the measured maximum wind speed to the reanalyzed value as well as the distance from the cyclone center. Using these two methods, the problem of underestimation of strong winds in reanalysis data can be overcome. Both methods show considerable improvements in the hindcasting of tropical cyclone wind fields, compared with the cyclone wind model and the reanalysis data.

  19. Improvement of wind field hindcasts for tropical cyclones

    Directory of Open Access Journals (Sweden)

    Yi Pan

    2016-01-01

    Full Text Available This paper presents a study on the improvement of wind field hindcasts for two typical tropical cyclones, i.e., Fanapi and Meranti, which occurred in 2010. The performance of the three existing models for the hindcasting of cyclone wind fields is first examined, and then two modification methods are proposed to improve the hindcasted results. The first one is the superposition method, which superposes the wind field calculated from the parametric cyclone model on that obtained from the cross-calibrated multi-platform (CCMP reanalysis data. The radius used for the superposition is based on an analysis of the minimum difference between the two wind fields. The other one is the direct modification method, which directly modifies the CCMP reanalysis data according to the ratio of the measured maximum wind speed to the reanalyzed value as well as the distance from the cyclone center. Using these two methods, the problem of underestimation of strong winds in reanalysis data can be overcome. Both methods show considerable improvements in the hindcasting of tropical cyclone wind fields, compared with the cyclone wind model and the reanalysis data.

  20. Effect of Sulfate Aerosol Geoengineering on Tropical cyclones

    Science.gov (United States)

    Wang, Q.; Moore, J.; Ji, D.

    2017-12-01

    Variation in tropical cyclone (TC) number and intensity is driven in part by changes in the thermodynamics that can be defined by ocean and atmospheric variables. Genesis Potential Index (GPI) and ventilation index (VI) are combinations of potential intensity, vertical wind shear, relative humidity, midlevel entropy deficit, and absolute vorticity that quantify thermodynamic forcing of TC activity under changed climates, and can be calculated from climate model output. Here we use five CMIP5 models running the RCP45 experiment the Geoengineering Model Intercomparison Project (GeoMIP) stratospheric aerosol injection G4 experiment to calculate the two indices over the 2020 to 2069 period. Globally, GPI under G4 is lower than under RCP45, though both have a slight increasing trend. Spatial patterns in the relative effectiveness of geoengineering show reductions in TC in all models in the North Atlantic basin, and northern Indian Ocean in all except NorESM1-M. In the North Pacific, most models also show relative reductions under G4. VI generally coincide with the GPI patterns. Most models project Potential intensity and Relative Humidity to be the dominant variable to affect genesis potential. Changes in vertical wind shear and vorticity are small with scatter across different models and ocean basins. We find that tropopause temperature maybe as important as sea surface temperature in effecting TC genesis. Thus stratospheric aerosol geoengineering impacts on potential intensity and hence TC intensity are reasonably consistent, but probably underestimated by statistical forecasts of Tropical North Atlantic hurricane activity driven by sea surface temperatures alone. However the impacts of geoengineering on other ocean basins are more difficult to assess, and require more complete understanding of their driving parameters under present day climates. Furthermore, the possible effects of stratospheric injection on chemical reactions in the stratosphere, such as ozone, are

  1. Contrasting Various Metrics for Measuring Tropical Cyclone Activity

    Directory of Open Access Journals (Sweden)

    Jia-Yuh Yu Ping-Gin Chiu

    2012-01-01

    Full Text Available Popular metrics used for measuring the tropical cyclone (TC activity, including NTC (number of tropical cyclones, TCD (tropical cyclone days, ACE (accumulated cyclone energy, PDI (power dissipation index, along with two newly proposed indices: RACE (revised accumulated cyclone energy and RPDI (revised power dissipation index, are compared using the JTWC (Joint Typhoon Warning Center best-track data of TC over the western North Pacific basin. Our study shows that, while the above metrics have demonstrated various degrees of discrepancies, but in practical terms, they are all able to produce meaningful temporal and spatial changes in response to climate variability. Compared with the conventional ACE and PDI, RACE and RPDI seem to provide a more precise estimate of the total TC activity, especially in projecting the upswing trend of TC activity over the past few decades, simply because of a better approach in estimating TC wind energy. However, we would argue that there is still no need to find a ¡§universal¡¨ or ¡§best¡¨ metric for TC activity because different metrics are designed to stratify different aspects of TC activity, and whether the selected metric is appropriate or not should be determined solely by the purpose of study. Except for magnitude difference, the analysis results seem insensitive to the choice of the best-track datasets.

  2. Cost-benefit analysis of a green electricity system in Japan considering the indirect economic impacts of tropical cyclones

    International Nuclear Information System (INIS)

    Esteban, Miguel; Zhang, Qi; Longarte-Galnares, Gorka

    2012-01-01

    Global warming is likely to profoundly influence future weather patterns, and one consequence of this is the likelihood of an increase in tropical cyclone intensity. The present paper presents a cost-benefit analysis of introducing significant amounts of green energy in the electricity system in Japan in the light of the economic damage that an increase in tropical cyclone intensity could have on GDP growth between 2010 and 2085. Essentially the passage of a tropical cyclone will result not only in physical damage but also on a decrease in economic productivity due to precautionary cessation of the economic activity, which has an effect on GDP growth. By comparing the economic performance of different electricity system scenarios with the indirect economic damage of tropical cyclones from 2010 to 2085, based on the yearly economic data of green electricity, fossil fuel, GDP and population, it can be seen that the green scenarios are generally a cost-effective way of mitigating the effects of these weather systems, despite the large amount of initial investments necessary. - Highlights: ► Climate change is likely to increase the future strength of tropical cyclones. ► An increase in tropical cyclone strength would reduce GDP growth in Japan. ► Reducing green-house gas emissions is a cost-effective mitigation strategy.

  3. A New Coupled Ocean-Waves-Atmosphere Model Designed for Tropical Storm Studies: Example of Tropical Cyclone Bejisa (2013-2014) in the South-West Indian Ocean

    Science.gov (United States)

    Pianezze, J.; Barthe, C.; Bielli, S.; Tulet, P.; Jullien, S.; Cambon, G.; Bousquet, O.; Claeys, M.; Cordier, E.

    2018-03-01

    Ocean-Waves-Atmosphere (OWA) exchanges are not well represented in current Numerical Weather Prediction (NWP) systems, which can lead to large uncertainties in tropical cyclone track and intensity forecasts. In order to explore and better understand the impact of OWA interactions on tropical cyclone modeling, a fully coupled OWA system based on the atmospheric model Meso-NH, the oceanic model CROCO, and the wave model WW3 and called MSWC was designed and applied to the case of tropical cyclone Bejisa (2013-2014). The fully coupled OWA simulation shows good agreement with the literature and available observations. In particular, simulated significant wave height is within 30 cm of measurements made with buoys and altimeters. Short-term (right place (in the eyewall of the tropical cyclone) and with the right size distribution, which is critical for cloud microphysics.

  4. Decadal variation of ocean heat content and tropical cyclone activity ...

    Indian Academy of Sciences (India)

    The upper ocean heat content up to 700 m depth (OHC700) is an important ... made to examine the inter-decadal variations of tropical cyclone (TC) activity and OHC700 over the ..... In: Climate change 2007: The physical science basis (eds).

  5. Tropical Cyclone Induced Air-Sea Interactions Over Oceanic Fronts

    Science.gov (United States)

    Shay, L. K.

    2012-12-01

    Recent severe tropical cyclones underscore the inherent importance of warm background ocean fronts and their interactions with the atmospheric boundary layer. Central to the question of heat and moisture fluxes, the amount of heat available to the tropical cyclone is predicated by the initial mixed layer depth and strength of the stratification that essentially set the level of entrainment mixing at the base of the mixed layer. In oceanic regimes where the ocean mixed layers are thin, shear-induced mixing tends to cool the upper ocean to form cold wakes which reduces the air-sea fluxes. This is an example of negative feedback. By contrast, in regimes where the ocean mixed layers are deep (usually along the western part of the gyres), warm water advection by the nearly steady currents reduces the levels of turbulent mixing by shear instabilities. As these strong near-inertial shears are arrested, more heat and moisture transfers are available through the enthalpy fluxes (typically 1 to 1.5 kW m-2) into the hurricane boundary layer. When tropical cyclones move into favorable or neutral atmospheric conditions, tropical cyclones have a tendency to rapidly intensify as observed over the Gulf of Mexico during Isidore and Lili in 2002, Katrina, Rita and Wilma in 2005, Dean and Felix in 2007 in the Caribbean Sea, and Earl in 2010 just north of the Caribbean Islands. To predict these tropical cyclone deepening (as well as weakening) cycles, coupled models must have ocean models with realistic ocean conditions and accurate air-sea and vertical mixing parameterizations. Thus, to constrain these models, having complete 3-D ocean profiles juxtaposed with atmospheric profiler measurements prior, during and subsequent to passage is an absolute necessity framed within regional scale satellite derived fields.

  6. The response of land-falling tropical cyclone characteristics to projected climate change in northeast Australia

    Science.gov (United States)

    Parker, Chelsea L.; Bruyère, Cindy L.; Mooney, Priscilla A.; Lynch, Amanda H.

    2018-01-01

    Land-falling tropical cyclones along the Queensland coastline can result in serious and widespread damage. However, the effects of climate change on cyclone characteristics such as intensity, trajectory, rainfall, and especially translation speed and size are not well-understood. This study explores the relative change in the characteristics of three case studies by comparing the simulated tropical cyclones under current climate conditions with simulations of the same systems under future climate conditions. Simulations are performed with the Weather Research and Forecasting Model and environmental conditions for the future climate are obtained from the Community Earth System Model using a pseudo global warming technique. Results demonstrate a consistent response of increasing intensity through reduced central pressure (by up to 11 hPa), increased wind speeds (by 5-10% on average), and increased rainfall (by up to 27% for average hourly rainfall rates). The responses of other characteristics were variable and governed by either the location and trajectory of the current climate cyclone or the change in the steering flow. The cyclone that traveled furthest poleward encountered a larger climate perturbation, resulting in a larger proportional increase in size, rainfall rate, and wind speeds. The projected monthly average change in the 500 mb winds with climate change governed the alteration in the both the trajectory and translation speed for each case. The simulated changes have serious implications for damage to coastal settlements, infrastructure, and ecosystems through increased wind speeds, storm surge, rainfall, and potentially increased size of some systems.

  7. Towards a Statistical Model of Tropical Cyclone Genesis

    Science.gov (United States)

    Fernandez, A.; Kashinath, K.; McAuliffe, J.; Prabhat, M.; Stark, P. B.; Wehner, M. F.

    2017-12-01

    Tropical Cyclones (TCs) are important extreme weather phenomena that have a strong impact on humans. TC forecasts are largely based on global numerical models that produce TC-like features. Aspects of Tropical Cyclones such as their formation/genesis, evolution, intensification and dissipation over land are important and challenging problems in climate science. This study investigates the environmental conditions associated with Tropical Cyclone Genesis (TCG) by testing how accurately a statistical model can predict TCG in the CAM5.1 climate model. TCG events are defined using TECA software @inproceedings{Prabhat2015teca, title={TECA: Petascale Pattern Recognition for Climate Science}, author={Prabhat and Byna, Surendra and Vishwanath, Venkatram and Dart, Eli and Wehner, Michael and Collins, William D}, booktitle={Computer Analysis of Images and Patterns}, pages={426-436}, year={2015}, organization={Springer}} to extract TC trajectories from CAM5.1. L1-regularized logistic regression (L1LR) is applied to the CAM5.1 output. The predictions have nearly perfect accuracy for data not associated with TC tracks and high accuracy differentiating between high vorticity and low vorticity systems. The model's active variables largely correspond to current hypotheses about important factors for TCG, such as wind field patterns and local pressure minima, and suggests new routes for investigation. Furthermore, our model's predictions of TC activity are competitive with the output of an instantaneous version of Emanuel and Nolan's Genesis Potential Index (GPI) @inproceedings{eman04, title = "Tropical cyclone activity and the global climate system", author = "Kerry Emanuel and Nolan, {David S.}", year = "2004", pages = "240-241", booktitle = "26th Conference on Hurricanes and Tropical Meteorology"}.

  8. Wave ensemble forecast system for tropical cyclones in the Australian region

    Science.gov (United States)

    Zieger, Stefan; Greenslade, Diana; Kepert, Jeffrey D.

    2018-05-01

    Forecasting of waves under extreme conditions such as tropical cyclones is vitally important for many offshore industries, but there remain many challenges. For Northwest Western Australia (NW WA), wave forecasts issued by the Australian Bureau of Meteorology have previously been limited to products from deterministic operational wave models forced by deterministic atmospheric models. The wave models are run over global (resolution 1/4∘) and regional (resolution 1/10∘) domains with forecast ranges of + 7 and + 3 day respectively. Because of this relatively coarse resolution (both in the wave models and in the forcing fields), the accuracy of these products is limited under tropical cyclone conditions. Given this limited accuracy, a new ensemble-based wave forecasting system for the NW WA region has been developed. To achieve this, a new dedicated 8-km resolution grid was nested in the global wave model. Over this grid, the wave model is forced with winds from a bias-corrected European Centre for Medium Range Weather Forecast atmospheric ensemble that comprises 51 ensemble members to take into account the uncertainties in location, intensity and structure of a tropical cyclone system. A unique technique is used to select restart files for each wave ensemble member. The system is designed to operate in real time during the cyclone season providing + 10-day forecasts. This paper will describe the wave forecast components of this system and present the verification metrics and skill for specific events.

  9. The role of tropical cyclones in precipitation over the tropical and subtropical North America

    Science.gov (United States)

    Dominguez, Christian; Magaña, Victor

    2018-03-01

    Tropical cyclones (TCs) are essential elements of the hydrological cycle in tropical and subtropical regions. In the present study, the contribution of TCs to seasonal precipitation around the tropical and subtropical North America is examined. When TC activity over the tropical eastern Pacific (TEP) or the Intra Americas Seas (IAS) is below (above-normal), regional precipitation may be below (above-normal). However, it is not only the number of TCs what may change seasonal precipitation, but the trajectory of the systems. TCs induce intense precipitation over continental regions if they are close enough to shorelines, for instance, if the TC center is located, on average, less than 500 km-distant from the coast. However, if TCs are more remote than this threshold distance, the chances of rain over continental regions decrease, particularly in arid and semi-arid regions. In addition, a distant TC may induce subsidence or produce moisture divergence that inhibits, at least for a few days, convective activity farther away than the threshold distance. An analysis of interannual variability in the TCs that produce precipitation over the tropical and subtropical North America shows that some regions in northern Mexico, which mostly depend on this effect to undergo wet years, may experience seasonal negative anomalies in precipitation if TCs trajectories are remote. Therefore, TCs (activity and trajectories) are important modulators of climate variability on various time scales, either by producing intense rainfall or by inhibiting convection at distant regions from their trajectory. The impact of such variations on water availability in northern Mexico may be relevant, since water availability in dams recovers under the effects of TC rainfall. Seasonal precipitation forecasts or climate change scenarios for these regions should take into account the effect of TCs, if regional adaptation strategies are implemented.

  10. Historical North Atlantic Tropical Cyclone Tracks 1851-2005, Geographic NAD83, NOAA (2006) [atlantic_hurricane_tracks_1851_2005_NOAA_2006

    Data.gov (United States)

    Louisiana Geographic Information Center — This Historical North Atlantic Tropical Cyclone Tracks file contains the 6-hourly (0000, 0600, 1200, 1800 UTC) center locations and intensities for all subtropical...

  11. Contribution of Tropical Cyclones to the North Pacific Climatological Rainfall as Observed from Satellites.

    Science.gov (United States)

    Rodgers, Edward B.; Adler, Robert F.; Pierce, Harold F.

    2000-10-01

    Tropical cyclone monthly rainfall amounts are estimated from passive microwave satellite observations for an 11-yr period. These satellite-derived rainfall amounts are used to assess the impact of tropical cyclone rainfall in altering the geographical, seasonal, and interannual distribution of the North Pacific Ocean total rainfall during June-November when tropical cyclones are most important.To estimate these tropical cyclone rainfall amounts, mean monthly rain rates are derived from passive microwave satellite observations within 444-km radius of the center of those North Pacific tropical cyclones that reached storm stage and greater. These rain-rate observations are converted to monthly rainfall amounts and then compared with those for nontropical cyclone systems.The main results of this study indicate that 1) tropical cyclones contribute 7% of the rainfall to the entire domain of the North Pacific during the tropical cyclone season and 12%, 3%, and 4% when the study area is limited to, respectively, the western, central, and eastern third of the ocean; 2) the maximum tropical cyclone rainfall is poleward (5°-10° latitude depending on longitude) of the maximum nontropical cyclone rainfall; 3) tropical cyclones contribute a maximum of 30% northeast of the Philippine Islands and 40% off the lower Baja California coast; 4) in the western North Pacific, the tropical cyclone rainfall lags the total rainfall by approximately two months and shows seasonal latitudinal variation following the Intertropical Convergence Zone; and 5) in general, tropical cyclone rainfall is enhanced during the El Niño years by warm SSTs in the eastern North Pacific and by the monsoon trough in the western and central North Pacific.

  12. Cluster analysis of tropical cyclone tracks in the Southern Hemisphere

    Energy Technology Data Exchange (ETDEWEB)

    Ramsay, Hamish A. [Monash University, Monash Weather and Climate, School of Mathematical Sciences, Clayton, VIC (Australia); Camargo, Suzana J.; Kim, Daehyun [Columbia University, Lamont-Doherty Earth Observatory, Palisades, NY (United States)

    2012-08-15

    A probabilistic clustering method is used to describe various aspects of tropical cyclone (TC) tracks in the Southern Hemisphere, for the period 1969-2008. A total of 7 clusters are examined: three in the South Indian Ocean, three in the Australian Region, and one in the South Pacific Ocean. Large-scale environmental variables related to TC genesis in each cluster are explored, including sea surface temperature, low-level relative vorticity, deep-layer vertical wind shear, outgoing longwave radiation, El Nino-Southern Oscillation (ENSO) and the Madden-Julian Oscillation (MJO). Composite maps, constructed 2 days prior to genesis, show some of these to be significant precursors to TC formation - most prominently, westerly wind anomalies equatorward of the main development regions. Clusters are also evaluated with respect to their genesis location, seasonality, mean peak intensity, track duration, landfall location, and intensity at landfall. ENSO is found to play a significant role in modulating annual frequency and mean genesis location in three of the seven clusters (two in the South Indian Ocean and one in the Pacific). The ENSO-modulating effect on genesis frequency is caused primarily by changes in low-level zonal flow between the equator and 10 S, and associated relative vorticity changes in the main development regions. ENSO also has a significant effect on mean genesis location in three clusters, with TCs forming further equatorward (poleward) during El Nino (La Nina) in addition to large shifts in mean longitude. The MJO has a strong influence on TC genesis in all clusters, though the amount modulation is found to be sensitive to the definition of the MJO. (orig.)

  13. Multi-hazard risk assessment of coastal vulnerability from tropical cyclones - A GIS based approach for the Odisha coast.

    Science.gov (United States)

    Sahoo, Bishnupriya; Bhaskaran, Prasad K

    2018-01-15

    The coastal region bordering the East coast of India is a thickly populated belt exposed to high risk and vulnerability from natural hazards such as tropical cyclones. Tropical cyclone frequencies that develop over the Bay of Bengal (average of 5-6 per year) region are much higher as compared to the Arabian Sea thereby posing a high risk factor associated with storm surge, inland inundation, wind gust, intense rainfall, etc. The Odisha State in the East coast of India experiences the highest number of cyclone strikes as compared to West Bengal, Andhra Pradesh, and Tamil Nadu. To express the destructive potential resulting from tropical cyclones the Power Dissipation Index (PDI) is a widely used metric globally. A recent study indicates that PDI for cyclones in the present decade have increased about six times as compared to the past. Hence there is a need to precisely ascertain the coastal vulnerability and risk factors associated with high intense cyclones expected in a changing climate. As such there are no comprehensive studies attempted so far on the determination of Coastal Vulnerability Index (CVI) for Odisha coast that is highly prone to cyclone strikes. With this motivation, the present study makes an attempt to investigate the physical, environmental, social, and economic impacts on coastal vulnerability associated with tropical cyclones for the Odisha coast. The study also investigates the futuristic projection of coastal vulnerability over this region expected in a changing climate scenario. Eight fair weather parameters along with storm surge height and onshore inundation were used to estimate the Physical Vulnerability Index (PVI). Thereafter, the PVI along with social, economic, and environmental vulnerability was used to determine the overall CVI using the GIS based approach. The authors believe that the comprehensive nature of this study is expected to benefit coastal zone management authorities. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Trends in Northern Hemisphere surface cyclone frequency and intensity

    Science.gov (United States)

    McCabe, G.J.; Clark, M.P.; Serreze, Mark C.

    2001-01-01

    One of the hypothesized effects of global warming from increasing concentrations of greenhouse gases is a change in the frequency and/or intensity of extratropical cyclones. In this study, winter frequencies and intensities of extratropical cyclones in the Northern Hemisphere for the period 1959-97 are examined to determine if identifiable trends are occurring. Results indicate a statistically significant decrease in midlatitude cyclone frequency and a significant increase in high-latitude cyclone frequency. In addition, storm intensity has increased in both the high and midlatitudes. The changes in storm frequency correlate with changes in winter Northern Hemisphere temperature and support hypotheses that global warming may result in a northward shift of storm tracks in the Northern Hemisphere.

  15. Comparison of Explicitly Simulated and Downscaled Tropical Cyclone Activity in a High-Resolution Global Climate Model

    Directory of Open Access Journals (Sweden)

    Hirofumi Tomita

    2010-01-01

    Full Text Available The response of tropical cyclone activity to climate change is a matter of great inherent interest and practical importance. Most current global climate models are not, however, capable of adequately resolving tropical cyclones; this has led to the development of downscaling techniques designed to infer tropical cyclone activity from the large-scale fields produced by climate models. Here we compare the statistics of tropical cyclones simulated explicitly in a very high resolution (~14 km grid mesh global climate model to the results of one such downscaling technique driven by the same global model. This is done for a simulation of the current climate and also for a simulation of a climate warmed by the addition of carbon dioxide. The explicitly simulated and downscaled storms are similarly distributed in space, but the intensity distribution of the downscaled events has a somewhat longer high-intensity tail, owing to the higher resolution of the downscaling model. Both explicitly simulated and downscaled events show large increases in the frequency of events at the high-intensity ends of their respective intensity distributions, but the downscaled storms also show increases in low-intensity events, whereas the explicitly simulated weaker events decline in number. On the regional scale, there are large differences in the responses of the explicitly simulated and downscaled events to global warming. In particular, the power dissipation of downscaled events shows a 175% increase in the Atlantic, while the power dissipation of explicitly simulated events declines there.

  16. The Long Term Features of Tropical Cyclones Nearby Taiwan

    Science.gov (United States)

    Wu, Yueh-Shyuan; Lee, Cheng-Shang

    2017-04-01

    Tropical cyclone (TC) activity is affected by several factors. The variability of TC activity over the western North Pacific (WNP) has been examined in the past decade. Previous studies showed that TC activity (such as TC number, intensity and tracks) has multiscale variation or affected by natural oscillation of different scales. However, most of these studies focused mainly on the entire WNP. Very few studies examined the variability of annual TC track or the variability of TC number in the area nearby Taiwan, which caused severe economic loss and life damage to Taiwan in the typhoon season. The main purpose of this study is to analyze the variation of TC activity nearby Taiwan to address its long term features, and also the possible relationship with the associated flow patterns. Preliminary results of wavelet analysis showed that the TC number nearby Taiwan during 1970-2014 had multiscale variations. The following analysis focused on the scale about 4- and 11-year signals, in the targeted area of 118o-125oE, 20o-27oN. The positive phases of both scale 4 and scale 11 showed a tendency of TC tracks toward Taiwan area, while the negative phases showed a lower tendency toward Taiwan. An empirical orthogonal function (EOF) analysis was applied on the 4-yr and the 11-yr filtered 500-hPa wind fields and geopotential heights. Results showed that the 4-yr signal was mostly dominated by the 500-hPa U- and V-wind fields, suggesting that the TC track patterns were affected mainly by the midlevel steering flow. On the other hand, the 11-yr signal was mostly dominated by the 500-hPa U-wind field and geopotential anomalies, indicating that the main cause of the difference in TC occurrence nearby Taiwan was the location of TC formation.

  17. Impact assessment of coastal hazards due to future changes of tropical cyclones in the North Pacific Ocean

    Directory of Open Access Journals (Sweden)

    Nobuhito Mori

    2016-03-01

    Full Text Available Tropical cyclones generate severe hazards in the middle latitudes. A brief review and applications of dynamical and statistical downscaling of tropical cyclone (TC are described targeting extreme storm surge and storm wave hazard assessment. First, a review of the current understanding of the changes in the characteristics of TCs in the past and in the future is shown. Then, a review and ongoing research about impact assessment of tropical cyclones both dynamical downscaling and statistical model are described for Typhoon Vera in 1959 and Typhoon Haiyan in 2013. Finally, several examples of impact assessment of storm surge and extreme wave changes are presented. Changes in both TC intensity and track are linked to future changes in extreme storm surge and wave climate in middle latitude.

  18. Variability in Global-Scale Circulations and Their Impacts on Atlantic Tropical Cyclone Activity

    National Research Council Canada - National Science Library

    Rosencrans, Matthew J

    2006-01-01

    ... favorable or unfavorable for tropical cyclone formation. Favorable impacts on tropical Atlantic circulation characteristics are defined by an increase in low-level relative vorticity, a decrease in westerly vertical wind shear, and increased convection...

  19. Tropical cyclones-Pacific Asian Research Campaign for Improvement of Intensity estimations/forecasts (T-PARCII): A research plan of typhoon aircraft observations in Japan

    Science.gov (United States)

    Tsuboki, Kazuhisa

    2017-04-01

    Typhoons are the most devastating weather system occurring in the western North Pacific and the South China Sea. Violent wind and heavy rainfall associated with a typhoon cause huge disaster in East Asia including Japan. In 2013, Supertyphoon Haiyan struck the Philippines caused a very high storm surge and more than 7000 people were killed. In 2015, two typhoons approached the main islands of Japan and severe flood occurred in the northern Kanto region. Typhoons are still the largest cause of natural disaster in East Asia. Moreover, many researches have projected increase of typhoon intensity with the climate change. This suggests that a typhoon risk is increasing in East Asia. However, the historical data of typhoon include large uncertainty. In particular, intensity data of the most intense typhoon category have larger error after the US aircraft reconnaissance of typhoon was terminated in 1987.The main objective of the present study is improvements of typhoon intensity estimations and of forecasts of intensity and track. We will perform aircraft observation of typhoon and the observed data are assimilated to numerical models to improve intensity estimation. Using radars and balloons, observations of thermodynamical and cloud-microphysical processes of typhoons will be also performed to improve physical processes of numerical model. In typhoon seasons (mostly in August and September), we will perform aircraft observations of typhoons. Using dropsondes from the aircraft, temperature, humidity, pressure, and wind are measured in surroundings of the typhoon inner core region. The dropsonde data are assimilated to a cloud-resolving model which has been developed in Nagoya University and named the Cloud Resolving Storm Simulator (CReSS). Then, more accurate estimations and forecasts of the typhoon intensity will be made as well as typhoon tracks. Furthermore, we will utilize a ground-based balloon with microscope camera, X-band precipitation radar, Ka-band cloud radar

  20. Sensitivity of Tropical-Cyclone Intensification to Perturbations in the Surface Drag Coefficient

    Science.gov (United States)

    2012-12-11

    low-level region of intense hurricanes Allen (1980) and Hugo (1989). Mon. Weather Rev. 139: 1447–1462. c© 2012 Royal Meteorological Society Q. J. R. Meteorol. Soc. 140: 407–415 (2014) ...accurately forecast tropical-cyclone intensification and mature intensity. Key Words: hurricanes ; typhoons; wind–wave coupling Received 2 February 2012...10.1002/qj.2048 1. Introduction The boundary layer of a mature hurricane has been long recognized to be an important feature of the storm as it strongly

  1. Western North Pacific Tropical Cyclone Formation and Structure Change in TCS-08

    Science.gov (United States)

    2012-09-30

    cyclones often transition to a fast-moving and rapidly- developing extratropical cyclone that may contain gale-, storm -, or hurricane-force winds...there is a need to improve understanding and prediction of the extratropical transition phase of a decaying tropical cyclone. The structural evolution...of the transition from a tropical to an extratropical circulation involves rapid changes to the wind, cloud, and precipitation patterns that

  2. Effect of tropical cyclones on the stratosphere–troposphere exchange observed using satellite observations over the north Indian Ocean

    Directory of Open Access Journals (Sweden)

    M. Venkat Ratnam

    2016-07-01

    Full Text Available Tropical cyclones play an important role in modifying the tropopause structure and dynamics as well as stratosphere–troposphere exchange (STE processes in the upper troposphere and lower stratosphere (UTLS region. In the present study, the impact of cyclones that occurred over the north Indian Ocean during 2007–2013 on the STE processes is quantified using satellite observations. Tropopause characteristics during cyclones are obtained from the Global Positioning System (GPS radio occultation (RO measurements, and ozone and water vapour concentrations in the UTLS region are obtained from Aura Microwave Limb Sounder (MLS satellite observations. The effect of cyclones on the tropopause parameters is observed to be more prominent within 500 km of the centre of the tropical cyclone. In our earlier study, we observed a decrease (increase in the tropopause altitude (temperature up to 0.6 km (3 K, and the convective outflow level increased up to 2 km. This change leads to a total increase in the tropical tropopause layer (TTL thickness of 3 km within 500 km of the centre of cyclone. Interestingly, an enhancement in the ozone mixing ratio in the upper troposphere is clearly noticed within 500 km from the cyclone centre, whereas the enhancement in the water vapour in the lower stratosphere is more significant on the south-east side, extending from 500 to 1000 km away from the cyclone centre. The cross-tropopause mass flux for different intensities of cyclones is estimated and it is found that the mean flux from the stratosphere to the troposphere for cyclonic storms is 0.05 ± 0.29 × 10−3 kg m−2, and for very severe cyclonic storms it is 0.5 ± 1.07 × 10−3 kg m−2. More downward flux is noticed on the north-west and south-west side of the cyclone centre. These results indicate that the cyclones have significant impact in effecting the tropopause structure, ozone and water vapour budget, and

  3. Estimating the Risk of Tropical Cyclone Characteristics Along the United States Gulf of Mexico Coastline Using Different Statistical Approaches

    Science.gov (United States)

    Trepanier, J. C.; Ellis, K.; Jagger, T.; Needham, H.; Yuan, J.

    2017-12-01

    Tropical cyclones, with their high wind speeds, high rainfall totals and deep storm surges, frequently strike the United States Gulf of Mexico coastline influencing millions of people and disrupting off shore economic activities. Events, such as Hurricane Katrina in 2005 and Hurricane Isaac in 2012, can be physically different but still provide detrimental effects due to their locations of influence. There are a wide variety of ways to estimate the risk of occurrence of extreme tropical cyclones. Here, the combined risk of tropical cyclone storm surge and nearshore wind speed using a statistical copula is provided for 22 Gulf of Mexico coastal cities. Of the cities considered, Bay St. Louis, Mississippi has the shortest return period for a tropical cyclone with at least a 50 m s-1 nearshore wind speed and a three meter surge (19.5 years, 17.1-23.5). Additionally, a multivariate regression model is provided estimating the compound effects of tropical cyclone tracks, landfall central pressure, the amount of accumulated precipitation, and storm surge for five locations around Lake Pontchartrain in Louisiana. It is shown the most intense tropical cyclones typically approach from the south and a small change in the amount of rainfall or landfall central pressure leads to a large change in the final storm surge depth. Data are used from the National Hurricane Center, U-Surge, SURGEDAT, and Cooperative Observer Program. The differences in the two statistical approaches are discussed, along with the advantages and limitations to each. The goal of combining the results of the two studies is to gain a better understanding of the most appropriate risk estimation technique for a given area.

  4. Balanced thermal structure of an intensifying tropical cyclone

    Directory of Open Access Journals (Sweden)

    David J. Raymond

    2012-12-01

    Full Text Available This study tests the hypothesis that the formation of a virtual potential temperature dipole in a developing tropical cyclone is a balanced response to the growth of an associated mid-level vortex. The dipole is collocated with the vortex and consists of a warm anomaly in the upper troposphere and a cool anomaly in the lower troposphere. An axisymmetric approximation to the observed potential vorticity distribution is inverted subject to non-linear balance for two successive days during the formation of typhoon Nuri in 2008. Good agreement is found between the area-averaged actual and balanced virtual temperature dipoles in these two cases. Furthermore, a strong correlation exists between the degree of bottom-heaviness of convective mass flux profiles and the strength of the balanced virtual potential temperature dipole. Since the dipole is balanced, it cannot be an immediate artefact of the existing convection, but rather is an inherent feature of the developing cyclone. Cloud resolving numerical modelling suggests that the dipole temperature anomaly actually promotes more bottom-heavy convective mass flux profiles, as observed. Such profiles are associated with low-level mass and vorticity convergence via mass continuity and the circulation theorem, resulting in low-level spin-up. The present work thus supports the hypothesis that the low-level spin-up associated with tropical cyclogenesis is made possible by the thermodynamic environment created by a strong mid-level vortex.

  5. Criteria for evaluating the condition of a tropical cyclone warning system.

    Science.gov (United States)

    Parker, D

    1999-09-01

    This paper evaluates the condition (i.e. health) of a tropical cyclone warning system (TCWS) during a 'quiet period' between infrequent intense cyclones. Capacity to make pre-disaster evaluations is important--disaster warning systems need to be in sound condition before, not after, disaster. The research--part of the UK's International Decade of Natural Disaster Reduction Flagship Programme--focuses upon an evaluatory method first used on flood warning systems. The Criteria-development Matrix comprises social, organisational and institutional criteria by which a TCWS may be assessed using a five-stage development scale. This method is used to evaluate Mauritius's TCWS using in-depth interview data. Ways to enhance the method and apply it to other disaster warning systems are discussed. The TCWS in Mauritius is a relatively sound one from which others can learn. Weaknesses requiring attention for Mauritius's TCWS to progress to an advanced level of development are identified.

  6. Potential indirect effects of aerosol on tropical cyclone development

    Science.gov (United States)

    Krall, Geoffrey

    storm. This study examines the physical mechanisms that could potentially alter a tropical cyclone (TC) in intensity and dynamics upon ingesting elevated levels of CCN.

  7. Impacts of Tropical Cyclones and Accompanying Precipitation on Infectious Diarrhea in Cyclone Landing Areas of Zhejiang Province, China

    Directory of Open Access Journals (Sweden)

    Zhengyi Deng

    2015-01-01

    Full Text Available Background: Zhejiang Province, located in southeastern China, is frequently hit by tropical cyclones. This study quantified the associations between infectious diarrhea and the seven tropical cyclones that landed in Zhejiang from 2005–2011 to assess the impacts of the accompanying precipitation on the studied diseases. Method: A unidirectional case-crossover study design was used to evaluate the impacts of tropical storms and typhoons on infectious diarrhea. Principal component analysis (PCA was applied to eliminate multicollinearity. A multivariate logistic regression model was used to estimate the odds ratios (ORs and the 95% confidence intervals (CIs. Results: For all typhoons studied, the greatest impacts on bacillary dysentery and other infectious diarrhea were identified on lag 6 days (OR = 2.30, 95% CI: 1.81–2.93 and lag 5 days (OR = 3.56, 95% CI: 2.98–4.25, respectively. For all tropical storms, impacts on these diseases were highest on lag 2 days (OR = 2.47, 95% CI: 1.41–4.33 and lag 6 days (OR = 2.46, 95% CI: 1.69–3.56, respectively. The tropical cyclone precipitation was a risk factor for both bacillary dysentery and other infectious diarrhea when daily precipitation reached 25 mm and 50 mm with the largest OR = 3.25 (95% CI: 1.45–7.27 and OR = 3.05 (95% CI: 2.20–4.23, respectively. Conclusions: Both typhoons and tropical storms could contribute to an increase in risk of bacillary dysentery and other infectious diarrhea in Zhejiang. Tropical cyclone precipitation may also be a risk factor for these diseases when it reaches or is above 25 mm and 50 mm, respectively. Public health preventive and intervention measures should consider the adverse health impacts from tropical cyclones.

  8. Impacts of Potential Aircraft Observations on Forecasts of Tropical Cyclones Over the Western North Pacific

    Science.gov (United States)

    2014-12-01

    tropical storm , red is a typhoon, and magenta is an extratropical cyclone. The numbers in each circle define the day in September 2008. (From...green is a tropical depression, yellow is a tropical storm , red is a typhoon, and magenta is an extratropical cyclone. The numbers in each circle define...depended on the location of the observation with respect to the storm and the altitude from which the observation provided a profile of winds

  9. Low probability of tropical cyclones on ocean planets in the habitable zones of M dwarfs

    Science.gov (United States)

    Bin, Jiayu; Tian, Feng; Lin, Yanluan; Wang, Yuwei

    2018-01-01

    The genesis potential index (GPI) of tropical cyclones (TC) on ocean planets in the habitable zones of M dwarfs is analyzed based on 3D GCM simulations. We found that GPI on these planets are smaller than those in TC basins on the Earth mainly because of slow rotation of such planets. GPI's on exoplanets with eccentric orbits are strong function of time with values generally greater than those on circular orbits. Future high resolution models are needed to better understand whether TCs could form on ocean exoplanets, and what their potential intensities and distributions might be.

  10. Tropical cyclone cooling combats region-wide coral bleaching.

    Science.gov (United States)

    Carrigan, Adam D; Puotinen, Marji

    2014-05-01

    Coral bleaching has become more frequent and widespread as a result of rising sea surface temperature (SST). During a regional scale SST anomaly, reef exposure to thermal stress is patchy in part due to physical factors that reduce SST to provide thermal refuge. Tropical cyclones (TCs - hurricanes, typhoons) can induce temperature drops at spatial scales comparable to that of the SST anomaly itself. Such cyclone cooling can mitigate bleaching across broad areas when well-timed and appropriately located, yet the spatial and temporal prevalence of this phenomenon has not been quantified. Here, satellite SST and historical TC data are used to reconstruct cool wakes (n=46) across the Caribbean during two active TC seasons (2005 and 2010) where high thermal stress was widespread. Upon comparison of these datasets with thermal stress data from Coral Reef Watch and published accounts of bleaching, it is evident that TC cooling reduced thermal stress at a region-wide scale. The results show that during a mass bleaching event, TC cooling reduced thermal stress below critical levels to potentially mitigate bleaching at some reefs, and interrupted natural warming cycles to slow the build-up of thermal stress at others. Furthermore, reconstructed TC wave damage zones suggest that it was rare for more reef area to be damaged by waves than was cooled (only 12% of TCs). Extending the time series back to 1985 (n = 314), we estimate that for the recent period of enhanced TC activity (1995-2010), the annual probability that cooling and thermal stress co-occur is as high as 31% at some reefs. Quantifying such probabilities across the other tropical regions where both coral reefs and TCs exist is vital for improving our understanding of how reef exposure to rising SSTs may vary, and contributes to a basis for targeting reef conservation. © 2014 John Wiley & Sons Ltd.

  11. Air-sea coupling during the tropical cyclones in the Indian Ocean: A case study using satellite observations

    Digital Repository Service at National Institute of Oceanography (India)

    Subrahmanyam, B.; Murty, V.S.N.; Sharp, R.J.; O'Brien, J.J.

    by HILBURN et al. (2003). Daily OLR data on 2.5 C176C22.5 C176 grids were obtained for the periods of cyclones (October 1999 and May 2001) from Climate Diagnostics Center (CDC), Boulder, Colorado, U.S.A. MURTY et al. (2000, 2002, 2003) reported that intense...-sea Coupling During the Tropical Cyclones 1669 Acknowledgements The interpolated OLR data is provided by the NOAA-CIRES CDC. We thank Dr. Harley Hurlburt and Dr. Birol Kara for providing the NLOM MLD simulations and Dr. Charlie Barron for providing the MODAS...

  12. Remote Sensing Assessment of Forest Disturbance across Complex Mountainous Terrain: The Pattern and Severity of Impacts of Tropical Cyclone Yasi on Australian Rainforests

    Directory of Open Access Journals (Sweden)

    Robinson I. Negrón-Juárez

    2014-06-01

    Full Text Available Topography affects the patterns of forest disturbance produced by tropical cyclones. It determines the degree of exposure of a surface and can alter wind characteristics. Whether multispectral remote sensing data can sense the effect of topography on disturbance is a question that deserves attention given the multi-scale spatial coverage of these data and the projected increase in intensity of the strongest cyclones. Here, multispectral satellite data, topographic maps and cyclone surface wind data were used to study the patterns of disturbance in an Australian rainforest with complex mountainous terrain produced by tropical cyclone Yasi (2011. The cyclone surface wind data (H*wind was produced by the Hurricane Research Division of the National Oceanic and Atmospheric Administration (HRD/NOAA, and this was the first time that this data was produced for a cyclone outside of United States territory. A disturbance map was obtained by applying spectral mixture analyses on satellite data and presented a significant correlation with field-measured tree mortality. Our results showed that, consistent with cyclones in the southern hemisphere, multispectral data revealed that forest disturbance was higher on the left side of the cyclone track. The highest level of forest disturbance occurred in forests along the path of the cyclone track (±30°. Levels of forest disturbance decreased with decreasing slope and with an aspect facing off the track of the cyclone or away from the dominant surface winds. An increase in disturbance with surface elevation was also observed. However, areas affected by the same wind intensity presented increased levels of disturbance with increasing elevation suggesting that complex terrain interactions act to speed up wind at higher elevations. Yasi produced an important offset to Australia’s forest carbon sink in 2010. We concluded that multispectral data was sensitive to the main effects of complex topography on disturbance

  13. IMPACT ASSESSMENT OF TROPICAL CYCLONE HUD HUD ON COASTAL REGION OF VISAKHAPATNAM, ANDHRA PRADESH, INDIA

    Directory of Open Access Journals (Sweden)

    G. Vivek

    2015-10-01

    Full Text Available Tropical cyclone is a rapidly rotating storm system characterized by a low pressure center, strong winds, and a spiral arrangements of thunderstorms that produce heavy rain. Tropical cyclones typically form over large bodies of relatively warm water. On 6th October 2014 Hud Hud originates from a low pressure system that formed under the influence of an upper air cyclonic circulation in the Andaman Sea. On 9th October 2014 the IMD department classified the Hud Hud as a very severe cyclonic storm on IMD scale and category 4 on Staffir-Simpson scale. The cyclone hit the coast of Visakhapatnam on 12th October 2014 at wind speed of 175 km/h which caused extensive damage to the city and the neighbouring districts. The damage caused by Cyclone Hud Hud not only changed the landscape of the port city, but also made it the first city in the country to be directly hit by a cyclone since 1891 as per the records of the IMD. The remote sensing technique used here is NDVI. NDVI will separate vegetation and non-vegetation part. The NDVI will be classified in ERDAS and calculated the area using ARCGIS. The satellite data of 4th October 2014 show s before the cyclone, 14th October 2014 shows after the cyclone and 7th December 2014 after two month of cyclone.

  14. Impacts of different grades of tropical cyclones on infectious diarrhea in Guangdong, 2005-2011.

    Directory of Open Access Journals (Sweden)

    Ruihua Kang

    Full Text Available Guangdong province is one of the most vulnerable provinces to tropical cyclones in China. Most prior studies concentrated on the relationship between tropical cyclones and injuries and mortality. This study aimed to explore the impacts of different grades of tropical cyclones on infectious diarrhea incidence in Guangdong province, from 2005 to 2011.Mann-Whitney U test was firstly used to examine if infectious diarrhea were sensitive to tropical cyclone. Then unidirectional 1:1 case-crossover design was performed to quantitatively evaluate the relationship between daily number of infectious diarrhea and tropical cyclone from 2005 to 2011 in Guangdong, China. Principal component analysis (PCA was applied to eliminate multicollinearity. Multivariate logistic regression model was used to estimate the hazard ratios (HRs and the 95% confidence intervals (CI.There were no significant relationships between tropical cyclone and bacillary dysentery, amebic dysentery, typhoid, and paratyphoid cases. Infectious diarrhea other than cholera, dysentery, typhoid and paratyphoid significantly increased after tropical cyclones. The strongest effect were shown on lag 1 day (HRs = 1.95, 95%CI = 1.22, 3.12 and no lagged effect was detected for tropical depression, tropical storm, severe tropical storm and typhoon, with the largest HRs (95%CI of 2.16 (95%CI = 1.69, 2.76, 2.43 (95%CI = 1.65, 3.58 and 2.21 (95%CI = 1.65, 2.69, respectively. Among children below 5 years old, the impacts of all grades of tropical cyclones were strongest at lag 0 day. And HRs were 2.67 (95%CI = 1.10, 6.48, 2.49 (95%CI = 1.80, 3.44, 4.89 (95%CI = 2.37, 7.37 and 3.18 (95%CI = 2.10, 4.81, respectively.All grades of tropical cyclones could increase risk of other infectious diarrhea. Severe tropical storm has the strongest influence on other infectious diarrhea. The impacts of tropical cyclones on children under 5 years old were higher than total population.

  15. Observing and Modelling the HighWater Level from Satellite Radar Altimetry During Tropical Cyclones

    DEFF Research Database (Denmark)

    Deng, Xiaoli; Gharineiat, Zahra; Andersen, Ole Baltazar

    2016-01-01

    This paper investigates the capability of observing tropical cyclones using satellite radar altimetry. Two representative cyclones Yasi (February 2011) and Larry (March 2006) in the northeast Australian coastal area are selected based also on available tide gauge sea level measurements. It is sho...

  16. The Genesis of Tropical Cyclone Bilis (2000) Associated with Cross-equatorial Surges

    Institute of Scientific and Technical Information of China (English)

    XU Yamei

    2011-01-01

    The purpose of this paper is to explore how a tropical cyclone forms from a pre-existing large-scale depression which has been observed and associated with cross-equatorial surges in the western North Pacific. Tropical cyclone Bilis (2000) was selected as the case to study. The research data used are from the results of the non-hydrostatic mesoscale model (MM5), which has successfully simulated the transformation of a pre-existing weak large-scale tropical depression into a strong tropical storm. The scale separation technique is used to separate the synoptic-scale and sub-synoptic-scale fields from the model output fields. The scale-separated fields show that the pre-existing synoptic-scale tropical depression and the subsynoptic scale tropical cyclone formed later were different scale systems from beginning to end. It is also shown that the pre-existing synoptic-scale tropical depression did not contract to become the tropical cyclone. A series of weak, sub-synoptic-scale low and high pressure systems appeared and disappeared in the synopticscale depression, with one of the low systems near the center of the synoptic-scale depression having deepened to become the tropical cyclone. The roles of the synoptic-scale flow and the sub-synoptic scale disturbances in the formation of the tropical cyclone are investigated by diagnoses of the scale-separated vertical vorticity equation. The results show that the early development of the sub-synoptic scale vortex was fundamentally dependent on the strengthening synoptic-scale environmental depression. The depression was strengthened by cross-equatorial surges, which increased the convergence of the synoptic-scale depression at low levels and triggered the formation of the tropical cyclone.

  17. Real-Time Forecasting System of Winds, Waves and Surge in Tropical Cyclones

    National Research Council Canada - National Science Library

    Graber, Hans C; Donelan, Mark A; Brown, Michael G; Slinn, Donald N; Hagen, Scott C; Thompson, Donald R; Jensen, Robert E; Black, Peter G; Powell, Mark D; Guiney, John L

    2004-01-01

    .... The results of this forecasting system would provide real-time information to the National Hurricane Center during the tropical cyclone season in the Atlantic for establishing improved advisories...

  18. Real-Time Forecasting System of Winds, Waves and Surge in Tropical Cyclones

    National Research Council Canada - National Science Library

    Graber, Hans C; Donelan, Mark A; Brown, Michael G; Slinn, Donald N; Hagen, Scott C; Thompson, Donald R; Jensen, Robert E; Black, Peter G; Powell, Mark D; Guiney, John L; Cardone, Vincent J; Cox, Andrew T; Augustus, Ellsworth H; Colonnese, Christopher P

    2003-01-01

    .... The results of this forecasting system would provide real-time information to the National Hurricane Center during the tropical cyclone season in the Atlantic for establishing improved advisories...

  19. Real-Time Forecasting System of Winds, Waves and Surge in Tropical Cyclones

    National Research Council Canada - National Science Library

    Graber, Hans C; Donelan, Mark A; Brown, Michael G; Slinn, Donald N; Hagen, Scott C; Thompson, Donald R; Jensen, Robert E; Black, Peter G; Powell, Mark D; Guiney, John L

    2005-01-01

    .... The results of this forecasting system would provide real-time information to the National Hurricane Center during the tropical cyclone season in the Atlantic for establishing improved advisories...

  20. Predicting Tropical Cyclone Destructive Potential by Integrated Kinetic Energy According to the Powell/Reinhold Scale

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A method of predicting the destructive capacity of a tropical cyclone based on a new Wind Destructive Potential (WDP) and Storm Surge Destructive Potential (SDP)...

  1. Strongest Tropical cyclones: 1980-2009: A 30-year collage of Hurricane Satellite (HURSAT) data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Strongest Tropical Cyclones: 1980-2009 poster - a 30-year collage of Hurricane Satellite (HURSAT) data. This poster depicts a series of 5 degree grids where within...

  2. Bottom-Up Determination of Air-Sea Momentum Exchange Under a Major Tropical Cyclone

    National Research Council Canada - National Science Library

    Jarosz, Ewa; Mitchell, Douglas A; Wang, David W; Teague, William J

    2007-01-01

    .... Using current observations recorded during a major tropical cyclone, we have estimated this momentum transfer from the ocean side of the air-sea interface, and we discuss it in terms of the drag coefficient...

  3. El Nino and La Nina Effects on Tropical Cyclones: The Mechanisms

    National Research Council Canada - National Science Library

    Ford, Bruce

    2000-01-01

    The effects that El Nino and La Nina events exert on western North Pacific tropical cyclones, and the physical mechanisms involved were examined using best track data from the Joint Typhoon Warning...

  4. Real-Time Forecasting System of Winds, Waves and Surge in Tropical Cyclones

    National Research Council Canada - National Science Library

    Graber, Hans C; Donelan, Mark A; Brown, Michael G; Slinn, Donald N; Hagen, Scott C; Thompson, Donald R; Jensen, Robert E; Black, Peter G; Powell, Mark D; Guiney, John L

    2005-01-01

    The long-term goal of this partnership is to establish an operational forecasting system of the wind field and resulting waves and surge impacting the coastline during the approach and landfall of tropical cyclones...

  5. A Review of Parametric Descriptions of Tropical Cyclone Wind-Wave Generation

    Directory of Open Access Journals (Sweden)

    Ian R. Young

    2017-10-01

    Full Text Available More than three decades of observations of tropical cyclone wind and wave fields have resulted in a detailed understanding of wave-growth dynamics, although details of the physics are still lacking. These observations are presented in a consistent manner, which provides the basis to be able to characterize the full wave spectrum in a parametric form throughout tropical cyclones. The data clearly shows that an extended fetch model can be used to represent the maximum significant wave height in such storms. The shape stabilizing influence of nonlinear interactions means that the spectral shape is remarkably similar to fetch-limited cases. As such, the tropical cyclone spectrum can also be described by using well-known parametric models. A detailed process is described to parameterize the wave spectrum at any point in a tropical cyclone.

  6. Objective Identification of Environmental Patterns Related to Tropical Cyclone Track Forecast Errors

    National Research Council Canada - National Science Library

    Sanabia, Elizabeth R

    2006-01-01

    The increase in skill of numerical model guidance and the use of consensus forecast techniques have led to significant improvements in the accuracy of tropical cyclone track forecasts at ranges beyond 72 hours...

  7. Real-Time Forecasting System of Winds, Waves and Surge in Tropical Cyclones

    National Research Council Canada - National Science Library

    Graber, Hans C; Donelan, Mark A; Brown, Michael G; Slinn, Donald N; Hagen, Scott C; Thompson, Donald R; Jensen, Robert E; Black, Peter G; Powell, Mark D; Guiney, John L

    2004-01-01

    The long-term goal of this partnership is to establish an operational forecasting system of the wind field and resulting waves and surge impacting the coastline during the approach and landfall of tropical cyclones...

  8. Real-Time Forecasting System of Winds, Waves and Surge in Tropical Cyclones

    National Research Council Canada - National Science Library

    Graber, Hans C; Donelan, Mark A; Brown, Michael G; Slinn, Donald N; Hagen, Scott C; Thompson, Donald R; Jensen, Robert E; Black, Peter G; Powell, Mark D; Guiney, John L; Cardone, Vincent J; Cox, Andrew T; Augustus, Ellsworth H; Colonnese, Christopher P

    2003-01-01

    The long-term goal of this partnership is to establish an operational forecasting system of the wind field and resulting waves and surge impacting the coastline during the approach and landfall of tropical cyclones...

  9. The impact of environmental inertial stability on the secondary circulation of axisymmetric tropical cyclones

    Science.gov (United States)

    O'Neill, M. E.; Chavas, D. R.

    2017-12-01

    In f-plane numerical simulations and analytical theory, tropical cyclones completely recycle their exhausted outflow air back into the boundary layer. This low-angular momentum air must experience cyclonic torque at the sea surface for cyclone to reach equilibrium. On Earth, however, it is not clear that tropical cyclones recycle all of the outflow air in a closed secondary circulation, and strong asymmetric outflow-jet interactions suggest that much of the air may be permanently evacuated from the storm over its lifetime. The fraction of outflow air that is returned to the near-storm boundary layer is in part a function of the environmental inertial stability, which controls the size and strength of the upper anticyclone. We run a suite of idealized axisymmetric tropical cyclone simulations at constant latitude while varying the outer domain's inertial stability profile. Fixing the latitude allows the gradient wind balance of the storm core to remain constant except for changes due to the far environment. By varying both the outer inertial stability and its location with respect to the Rossby radius of deformation, we show how the tropical cyclone's area-of-influence is controlled by the nature and strength of the upper anticyclone. Parcel tracking additionally demonstrates the likelihood of outflow air parcels to be quickly re-consumed by the secondary circulation as a function of inertial stability. These experiments demonstrate the sensitivity of the tropical cyclone's secondary circulation, typically assumed to be closed, to the dynamics of the far environment.

  10. Serial clustering of extratropical cyclones and relationship with NAO and jet intensity based on the IMILAST cyclone database

    Science.gov (United States)

    Ulbrich, Sven; Pinto, Joaquim G.; Economou, Theodoros; Stephenson, David B.; Karremann, Melanie K.; Shaffrey, Len C.

    2017-04-01

    Cyclone families are a frequent synoptic weather feature in the Euro-Atlantic area, particularly during wintertime. Given appropriate large-scale conditions, such series (clusters) of storms may cause large socio-economic impacts and cumulative losses. Recent studies analyzing reanalysis data using single cyclone tracking methods have shown that serial clustering of cyclones occurs on both flanks and downstream regions of the North Atlantic storm track. Based on winter (DJF) cyclone counts from the IMILAST cyclone database, we explore the representation of serial clustering in the ERA-Interim period and its relationship with the NAO-phase and jet intensity. With this aim, clustering is estimated by the dispersion of winter (DJF) cyclone passages for each grid point over the Euro-Atlantic area. Results indicate that clustering over the Eastern North Atlantic and Western Europe can be identified for all methods, although the exact location and the dispersion magnitude may vary. The relationship between clustering and (i) the NAO-phase and (ii) jet intensity over the North Atlantic is statistically evaluated. Results show that the NAO-index and the jet intensity show a strong contribution to clustering, even though some spread is found between methods. We conclude that the general features of clustering of extratropical cyclones over the North Atlantic and Western Europe are robust to the choice of tracking method. The same is true for the influence of the NAO and jet intensity on cyclone dispersion.

  11. Development of a site specific dynamical tropical cyclone and other extreme weather early warning system for Kalpakkam

    International Nuclear Information System (INIS)

    Ramakrishna, S.S.V.S.; Bhaskar Rao, D.V.; Venkata Srinivas, C.; Venkatesan, R.; Srivastav, Rupa

    2014-01-01

    The project was to study the tropical cyclones over Bay of Bengal for the south east coast region in the neighbourhood of Kalpakkam, with the main objectives of developing a methodology for providing early warning of developing storms for Kalpakkam site region based on numerical methods. The main objectives of the project are to develop a numerical modeling system for the forecasting of cyclonic storms that form in the Bay of Bengal and cross the east coast of Kalpakkam. the model performance with respect to the intensity (extreme winds), rainfall and the movement of the storm will be assessed for a number of past cyclonic storms in the region and simulations will focus on the identification of proper model configuration in terms of horizontal/vertical resolutions and physics parameterizations for deriving best predictions and to implement the same for operations forecasting for the Kalpakkam site in Tamil Nadu

  12. Simulated sensitivity of the tropical cyclone eyewall replacement cycle to the ambient temperature profile

    Science.gov (United States)

    Ma, Xulin; He, Jie; Ge, Xuyang

    2017-09-01

    In this study, the impacts of the environmental temperature profile on the tropical cyclone eyewall replacement cycle are examined using idealized numerical simulations. It is found that the environmental thermal condition can greatly affect the formation and structure of a secondary eyewall and the intensity change during the eyewall replacement cycle. Simulation with a warmer thermal profile produces a larger moat and a prolonged eyewall replacement cycle. It is revealed that the enhanced static stability greatly suppresses convection, and thus causes slow secondary eyewall formation. The possible processes influencing the decay of inner eyewall convection are investigated. It is revealed that the demise of the inner eyewall is related to a choking effect associated with outer eyewall convection, the radial distribution of moist entropy fluxes within the moat region, the enhanced static stability in the inner-core region, and the interaction between the inner and outer eyewalls due to the barotropic instability. This study motivates further research into how environmental conditions influence tropical cyclone dynamics and thermodynamics.

  13. Forecasting tropical cyclone recurvature with upper tropospheric winds

    Science.gov (United States)

    Gentry, R. C.

    1983-01-01

    Data from 17 tropical cyclones during the 1974 through 1979 hurricane seasons are used to investigate whether the high level winds far to the northwest, north and northeast of the hurricane center can be used to predict hurricane track recurvature. When the man 200-mb winds 1500 to 2000 km northwest and north of the storm center equal or exceed 20 m/s, 80 per cent of the storms recurved before traveling as much as 12 degrees of longitude farther west. The high winds were also used to predict change in direction of forward motion during the next 72 hours. The regression equations developed explain up to 41 per cent of the variance in future direction. In addition to the geostrophic winds used, winds were also obtained by tracking clouds with successive satellite imagery. The u-components of the satellite winds are highly correlated with the geostrophic winds at 200-mb and could probably be used instead of them when available. The v-components are less highly correlated.

  14. Application of Deep Learning to Detect Precursors of Tropical Cyclone

    Science.gov (United States)

    Matsuoka, D.; Nakano, M.; Sugiyama, D.; Uchida, S.

    2017-12-01

    Tropical cyclones (TCs) affect significant damage to human society. Predicting TC generation as soon as possible is important issue in both academic and social perspectives. In the present work, we investigate the probability of predicting TCs seven days prior using deep neural networks. The training data is produced from 30-year cloud resolving global atmospheric simulation (NICAM) with 14 km horizontal resolution (Kodama et al., 2015). We employed a TCs tracking algorithm (Sugi et al., 2002; Nakano et al., 2015) to NICAM simulation data in order to generate supervised cloud images (horizontal sizes are 800-1,000km). We generate approximately one million images of "TCs (include their precursors)" and "not TCs (low pressure clouds)". We generate ten types of image classifier based on 2-dimensional convolutional neural network, includes four convolutional layers, three pooling layers and two fully connected layers. The final predicted results are obtained by these ensemble mean values. Generated classifiers are applied to untrained global simulation data (four million test images). As a result, we succeeded in predicting the precursors of TCs seven and five days before their formation with a Recall of 88.6% and 89.6% (Precision is 11.4%), respectively.

  15. Impacts of tropical cyclones on hydrochemistry of a subtropical forest

    Directory of Open Access Journals (Sweden)

    C. T. Chang

    2013-10-01

    Full Text Available Tropical cyclones (typhoons/hurricanes have major impacts on the biogeochemistry of forest ecosystems, but the stochastic nature and the long intervals between storms means that there are limited data on their effects. We characterised the impacts of 14 typhoons over six years on hydrochemistry of a subtropical forest plantation in Taiwan, a region experiencing frequent typhoons. Typhoons contributed 1/3 of the annual rainfall on average, but ranged from 4 to 55%. The stochastic nature of annual typhoon related precipitation poses a challenge with respect to managing the impacts of these extreme events. This challenge is exacerbated by the fact that typhoon-related rainfall is not significantly correlated with wind velocity, the current focus of weather forecasts. Thus, little advance warning is provided for the hydrological impacts of these storms. The typhoons we studied contributed approximately one third of the annual input and output of most nutrients (except nitrogen during an average 9.5 day yr−1 period, resulting in nutrient input/output rates an order of magnitude greater than during non-typhoon months. Nitrate output balanced input during the non-typhoon period, but during the typhoon period an average of 10 kg ha−1 yr−1 nitrate was lost. Streamwater chemistry exhibited similarly high variability during typhoon and non-typhoon periods and returned to pre-typhoon levels one to three weeks following each typhoon. The streamwater chemistry appears to be very resilient in response to typhoons, resulting in minimal loss of nutrients.

  16. Environmental Modeling, Technology, and Communication for Land Falling Tropical Cyclone/Hurricane Prediction

    Directory of Open Access Journals (Sweden)

    Paul Tchounwou

    2010-04-01

    Full Text Available Katrina (a tropical cyclone/hurricane began to strengthen reaching a Category 5 storm on 28th August, 2005 and its winds reached peak intensity of 175 mph and pressure levels as low as 902 mb. Katrina eventually weakened to a category 3 storm and made a landfall in Plaquemines Parish, Louisiana, Gulf of Mexico, south of Buras on 29th August 2005. We investigate the time series intensity change of the hurricane Katrina using environmental modeling and technology tools to develop an early and advanced warning and prediction system. Environmental Mesoscale Model (Weather Research Forecast, WRF simulations are used for prediction of intensity change and track of the hurricane Katrina. The model is run on a doubly nested domain centered over the central Gulf of Mexico, with grid spacing of 90 km and 30 km for 6 h periods, from August 28th to August 30th. The model results are in good agreement with the observations suggesting that the model is capable of simulating the surface features, intensity change and track and precipitation associated with hurricane Katrina. We computed the maximum vertical velocities (Wmax using Convective Available Kinetic Energy (CAPE obtained at the equilibrium level (EL, from atmospheric soundings over the Gulf Coast stations during the hurricane land falling for the period August 21–30, 2005. The large vertical atmospheric motions associated with the land falling hurricane Katrina produced severe weather including thunderstorms and tornadoes 2–3 days before landfall. The environmental modeling simulations in combination with sounding data show that the tools may be used as an advanced prediction and communication system (APCS for land falling tropical cyclones/hurricanes.

  17. A Reassessment of the Integrated Impact of Tropical Cyclones on Surface Chlorophyll in the Western Subtropical North Atlantic

    Energy Technology Data Exchange (ETDEWEB)

    Foltz, Gregory R.; Balaguru, Karthik; Leung, Lai-Yung R.

    2015-02-28

    The impact of tropical cyclones on surface chlorophyll concentration is assessed in the western subtropical North Atlantic Ocean during 1998–2011. Previous studies in this area focused on individual cyclones and gave mixed results regarding the importance of tropical cyclone-induced mixing for changes in surface chlorophyll. Using a more integrated and comprehensive approach that includes quantification of cyclone-induced changes in mixed layer depth, here it is shown that accumulated cyclone energy explains 22% of the interannual variability in seasonally-averaged (June–November) chlorophyll concentration in the western subtropical North Atlantic, after removing the influence of the North Atlantic Oscillation (NAO). The variance explained by tropical cyclones is thus about 70% of that explained by the NAO, which has well-known impacts in this region. It is therefore likely that tropical cyclones contribute significantly to interannual variations of primary productivity in the western subtropical North Atlantic during the hurricane season.

  18. Impact of Moist Physics Complexity on Tropical Cyclone Simulations from the Hurricane Weather Research and Forecast System

    Science.gov (United States)

    Kalina, E. A.; Biswas, M.; Newman, K.; Grell, E. D.; Bernardet, L.; Frimel, J.; Carson, L.

    2017-12-01

    The parameterization of moist physics in numerical weather prediction models plays an important role in modulating tropical cyclone structure, intensity, and evolution. The Hurricane Weather Research and Forecast system (HWRF), the National Oceanic and Atmospheric Administration's operational model for tropical cyclone prediction, uses the Scale-Aware Simplified Arakawa-Schubert (SASAS) cumulus scheme and a modified version of the Ferrier-Aligo (FA) microphysics scheme to parameterize moist physics. The FA scheme contains a number of simplifications that allow it to run efficiently in an operational setting, which includes prescribing values for hydrometeor number concentrations (i.e., single-moment microphysics) and advecting the total condensate rather than the individual hydrometeor species. To investigate the impact of these simplifying assumptions on the HWRF forecast, the FA scheme was replaced with the more complex double-moment Thompson microphysics scheme, which individually advects cloud ice, cloud water, rain, snow, and graupel. Retrospective HWRF forecasts of tropical cyclones that occurred in the Atlantic and eastern Pacific ocean basins from 2015-2017 were then simulated and compared to those produced by the operational HWRF configuration. Both traditional model verification metrics (i.e., tropical cyclone track and intensity) and process-oriented metrics (e.g., storm size, precipitation structure, and heating rates from the microphysics scheme) will be presented and compared. The sensitivity of these results to the cumulus scheme used (i.e., the operational SASAS versus the Grell-Freitas scheme) also will be examined. Finally, the merits of replacing the moist physics schemes that are used operationally with the alternatives tested here will be discussed from a standpoint of forecast accuracy versus computational resources.

  19. Tropical Cyclone Paka's Initial Explosive Development (10-12 December, 1997)

    Science.gov (United States)

    Rodgers, Edward B.; Halverson, Jeff; Simpson, Joanne; Olson, William; Pierce, Harold

    1999-01-01

    Convection associated with an equatorial westerly wind burst was first observed late November during the strong El Nino of 1997 at approximately 2000 km southwest of the Hawaiian Islands. This region of convection lead to the formation of twin tropical cyclones, one in the southern hemisphere named Pam and the other in the northern hemisphere named Paka. During the first week in December, tropical cyclone Paka, the system of concern, reached tropical storm stage as it moved rapidly westward at relatively low latitudes. During the 10-12 of December, Paka rapidly developed into a typhoon.

  20. Targeted observations to improve tropical cyclone track forecasts in the Atlantic and eastern Pacific basins

    Science.gov (United States)

    Aberson, Sim David

    In 1997, the National Hurricane Center and the Hurricane Research Division began conducting operational synoptic surveillance missions with the Gulfstream IV-SP jet aircraft to improve operational forecast models. During the first two years, twenty-four missions were conducted around tropical cyclones threatening the continental United States, Puerto Rico, and the Virgin Islands. Global Positioning System dropwindsondes were released from the aircraft at 150--200 km intervals along the flight track in the tropical cyclone environment to obtain wind, temperature, and humidity profiles from flight level (around 150 hPa) to the surface. The observations were processed and formatted aboard the aircraft and transmitted to the National Centers for Environmental Prediction (NCEP). There, they were ingested into the Global Data Assimilation System that subsequently provides initial and time-dependent boundary conditions for numerical models that forecast tropical cyclone track and intensity. Three dynamical models were employed in testing the targeting and sampling strategies. With the assimilation into the numerical guidance of all the observations gathered during the surveillance missions, only the 12-h Geophysical Fluid Dynamics Laboratory Hurricane Model forecast showed statistically significant improvement. Neither the forecasts from the Aviation run of the Global Spectral Model nor the shallow-water VICBAR model were improved with the assimilation of the dropwindsonde data. This mediocre result is found to be due mainly to the difficulty in operationally quantifying the storm-motion vector used to create accurate synthetic data to represent the tropical cyclone vortex in the models. A secondary limit on forecast improvements from the surveillance missions is the limited amount of data provided by the one surveillance aircraft in regular missions. The inability of some surveillance missions to surround the tropical cyclone with dropwindsonde observations is a possible

  1. Tropical cyclones in the GISS ModelE2

    Directory of Open Access Journals (Sweden)

    Suzana J. Camargo

    2016-07-01

    Full Text Available The authors describe the characteristics of tropical cyclone (TC activity in the GISS general circulation ModelE2 with a horizontal resolution 1°×1°. Four model simulations are analysed. In the first, the model is forced with sea surface temperature (SST from the recent historical climatology. The other three have different idealised climate change simulations, namely (1 a uniform increase of SST by 2 degrees, (2 doubling of the CO2 concentration and (3 a combination of the two. These simulations were performed as part of the US Climate Variability and Predictability Program Hurricane Working Group. Diagnostics of standard measures of TC activity are computed from the recent historical climatological SST simulation and compared with the same measures computed from observations. The changes in TC activity in the three idealised climate change simulations, by comparison with that in the historical climatological SST simulation, are also described. Similar to previous results in the literature, the changes in TC frequency in the simulation with a doubling CO2 and an increase in SST are approximately the linear sum of the TC frequency in the other two simulations. However, in contrast with previous results, in these simulations the effects of CO2 and SST on TC frequency oppose each other. Large-scale environmental variables associated with TC activity are then analysed for the present and future simulations. Model biases in the large-scale fields are identified through a comparison with ERA-Interim reanalysis. Changes in the environmental fields in the future climate simulations are shown and their association with changes in TC activity discussed.

  2. Scaling future tropical cyclone damage with global mean temperature

    Science.gov (United States)

    Geiger, T.; Bresch, D.; Frieler, K.

    2017-12-01

    Tropical cyclones (TC) are one of the most damaging natural hazards and severely affectmany countries around the globe each year. Their nominal impact is projected to increasesubstantially as the exposed coastal population grows, per capita income increases, andanthropogenic climate change manifests. The magnitude of this increase, however, variesacross regions and is obscured by the stochastic behaviour of TCs, so far impeding arigorous quantification of trends in TC damage with global mean temperature (GMT) rise. Here, we build on the large sample of spatially explicit TCs simulations generated withinISIMIP(2b) for 1) pre-industrial conditions, 2) the historical period, and 3) future projectionsunder RCP2.6 and RCP6.0 to estimate future TC damage assuming fixed present-daysocio-economic conditions or SSP-based future projections of population patterns andincome. Damage estimates will be based on region-specific empirical damage modelsderived from reported damages and accounting for regional characteristics of vulnerability.Different combinations of 1) socio-economic drivers with pre-industrial climate or 2) changingclimate with fixed socio-economic conditions will be used to derive functional relationshipsbetween regionally aggregated changes in damages on one hand and global meantemperature and socio-economic predictors on the other hand. The obtained region-specific scaling of future TC damage with GMT provides valuable inputfor IPCC's special report on the impacts of global warming of 1.5°C by quantifying theincremental changes in impact with global warming. The approach allows for an update ofdamage functions used in integrated assessment models, and contributes to assessing theadequateness of climate mitigation and adaptation strategies.

  3. Will Outer Tropical Cyclone Size Change due to Anthropogenic Warming?

    Science.gov (United States)

    Schenkel, B. A.; Lin, N.; Chavas, D. R.; Vecchi, G. A.; Knutson, T. R.; Oppenheimer, M.

    2017-12-01

    Prior research has shown significant interbasin and intrabasin variability in outer tropical cyclone (TC) size. Moreover, outer TC size has even been shown to vary substantially over the lifetime of the majority of TCs. However, the factors responsible for both setting initial outer TC size and determining its evolution throughout the TC lifetime remain uncertain. Given these gaps in our physical understanding, there remains uncertainty in how outer TC size will change, if at all, due to anthropogenic warming. The present study seeks to quantify whether outer TC size will change significantly in response to anthropogenic warming using data from a high-resolution global climate model and a regional hurricane model. Similar to prior work, the outer TC size metric used in this study is the radius in which the azimuthal-mean surface azimuthal wind equals 8 m/s. The initial results from the high-resolution global climate model data suggest that the distribution of outer TC size shifts significantly towards larger values in each global TC basin during future climates, as revealed by 1) statistically significant increase of the median outer TC size by 5-10% (p<0.05) according to a 1,000-sample bootstrap resampling approach with replacement and 2) statistically significant differences between distributions of outer TC size from current and future climate simulations as shown using two-sample Kolmogorov Smirnov testing (p<<0.01). Additional analysis of the high-resolution global climate model data reveals that outer TC size does not uniformly increase within each basin in future climates, but rather shows substantial locational dependence. Future work will incorporate the regional mesoscale hurricane model data to help focus on identifying the source of the spatial variability in outer TC size increases within each basin during future climates and, more importantly, why outer TC size changes in response to anthropogenic warming.

  4. Impact of tropical cyclone Matmo on mixed zone of the Yellow and Bohai seas

    Science.gov (United States)

    Guo, Jie; Ji, Diansheng; Hou, Chawei; Guo, Kai; Ji, Ling

    2017-12-01

    The Bohai Sea is a low-lying semi-enclosed sea area that is linked to the Yellow Sea via the Bohai straits (mixed zone). Its off shore seabed is shallow, which makes it vulnerable to serious marine meteorological disasters associated with the northward passage of Pacifi c tropical cyclones. Analyses on data of remote sensing and buoy of the mixed zone of the Yellow and Bohai seas indicate that all the wind speed, signifi cant wave height, and salinity (SAL) increased, sea surface temperature decreased, and wind energy density changed considerably during the passage of tropical cyclone Matmo on July 25, 2014. It was found that the SAL inversion layer in the mixed zone of the Yellow and Bohai Seas was caused by the tropical cyclone. Furthermore, it was found that the tropical cyclone transported the northern Yellow Sea cold water mass (NYSCWM) into the mixed zone of the Yellow and Bohai Seas. The NYSCWM has direct infl uence on both the aquaculture and the ecological environment of the region. Therefore, further research is needed to establish the mechanism behind the formation of the SAL inversion layer in the mixed zone, and to determine the infl uence of tropical cyclones on the NYSCWM.

  5. Extreme waves from tropical cyclones and climate change in the Gulf of Mexico

    Science.gov (United States)

    Appendini, Christian M.; Pedrozo-Acuña, Adrian; Meza-Padilla, Rafael; Torres-Freyermuth, Alec; Cerezo-Mota, Ruth; López-González, José

    2017-04-01

    Tropical cyclones generate extreme waves that represent a risk to infrastructure and maritime activities. The projection of the tropical cyclones derived wave climate are challenged by the short historical record of tropical cyclones, their low occurrence, and the poor wind field resolution in General Circulation Models. In this study we use synthetic tropical cyclones to overcome such limitations and be able to characterize present and future wave climate associated with tropical cyclones in the Gulf of Mexico. Synthetic events derived from the NCEP/NCAR atmospheric reanalysis and the Coupled Model Intercomparison Project Phase 5 models NOAA/GFDL CM3 and UK Met Office HADGEM2-ES, were used to force a third generation wave model to characterize the present and future wave climate under RCP 4.5 and 8.5 escenarios. An increase in wave activity is projected for the future climate, particularly for the GFDL model that shows less bias in the present climate, although some areas are expected to decrease the wave energy. The practical implications of determining the future wave climate is exemplified by means of the 100-year design wave, where the use of the present climate may result in under/over design of structures, since the lifespan of a structure includes the future wave climate period.

  6. An Extended Forecast of the Frequencies of North Atlantic Basin Tropical Cyclone Activity for 2009

    Science.gov (United States)

    Wilson, Robert M.

    2009-01-01

    An extended forecast of the frequencies for the 2009 North Atlantic basin hurricane season is presented. Continued increased activity during the 2009 season with numbers of tropical cyclones, hurricanes, and major hurricanes exceeding long-term averages are indicated. Poisson statistics for the combined high-activity intervals (1950-1965 and 1995-2008) give the central 50% intervals to be 9-14, 5-8, and 2-4, respectively, for the number of tropical cyclones, hurricanes, and major hurricanes, with a 23.4% chance of exceeding 14 tropical cyclones, a 28% chance of exceeding 8 hurricanes, and a 31.9% chance of exceeding 4 major hurricanes. Based strictly on the statistics of the current high-activity interval (1995-2008), the central 50% intervals for the numbers of tropical cyclones, hurricanes, and major hurricanes are 12-18, 6-10, and 3-5, respectively, with only a 5% chance of exceeding 23, 13, or 7 storms, respectively. Also examined are the first differences in 10-yr moving averages and the effects of global warming and decadal-length oscillations on the frequencies of occurrence for North Atlantic basin tropical cyclones. In particular, temperature now appears to be the principal driver of increased activity and storm strength during the current high-activity interval, with near-record values possible during the 2009 season.

  7. Application of the Marsupial Paradigm to Tropical Cyclone Formation from Northwestward-Propagating Disturbances

    Science.gov (United States)

    Wang, Zhuo; Dunkerton, Timothy J.; Montgomery, Michael T.

    2012-01-01

    A wave-tracking algorithm is developed for northwestward-propagating waves that, on occasion, play a role in tropical cyclogenesis over the western oceans. To obtain the Lagrangian flow structure, the frame of reference is translated obliquely at the same propagation speed with the precursor disturbance. Trajectory analysis suggests that streamlines in the obliquely translated frame of reference can be used to approximate flow trajectories. The algorithm was applied to Super Typhoon Nakri (2008), Tropical Cyclone Erika (2009), and a few other examples. Diagnoses of meteorological analyses and satellite-derived moisture and precipitation fields show that the marsupial framework for tropical cyclogenesis in tropical easterly waves is relevant also for northwestward-propagating disturbances as are commonly observed in the tropical western Atlantic, the Gulf of Mexico, and the western North Pacific. Finally, it is suggested that analysis of the global model data and satellite observations in the marsupial framework can provide useful guidance on early tropical cyclone advisories.

  8. Change in ocean subsurface environment to suppress tropical cyclone intensification under global warming

    Science.gov (United States)

    Huang, Ping; Lin, I. -I; Chou, Chia; Huang, Rong-Hui

    2015-01-01

    Tropical cyclones (TCs) are hazardous natural disasters. Because TC intensification is significantly controlled by atmosphere and ocean environments, changes in these environments may cause changes in TC intensity. Changes in surface and subsurface ocean conditions can both influence a TC's intensification. Regarding global warming, minimal exploration of the subsurface ocean has been undertaken. Here we investigate future subsurface ocean environment changes projected by 22 state-of-the-art climate models and suggest a suppressive effect of subsurface oceans on the intensification of future TCs. Under global warming, the subsurface vertical temperature profile can be sharpened in important TC regions, which may contribute to a stronger ocean coupling (cooling) effect during the intensification of future TCs. Regarding a TC, future subsurface ocean environments may be more suppressive than the existing subsurface ocean environments. This suppressive effect is not spatially uniform and may be weak in certain local areas. PMID:25982028

  9. A climatological model of North Indian Ocean tropical cyclone genesis, tracks and landfall

    Science.gov (United States)

    Wahiduzzaman, Mohammad; Oliver, Eric C. J.; Wotherspoon, Simon J.; Holbrook, Neil J.

    2017-10-01

    Extensive damage and loss of life can be caused by tropical cyclones (TCs) that make landfall. Modelling of TC landfall probability is beneficial to insurance/re-insurance companies, decision makers, government policy and planning, and residents in coastal areas. In this study, we develop a climatological model of tropical cyclone genesis, tracks and landfall for North Indian Ocean (NIO) rim countries based on kernel density estimation, a generalised additive model (GAM) including an Euler integration step, and landfall detection using a country mask approach. Using a 35-year record (1979-2013) of tropical cyclone track observations from the Joint Typhoon Warning Centre (part of the International Best Track Archive Climate Stewardship Version 6), the GAM is fitted to the observed cyclone track velocities as a smooth function of location in each season. The distribution of cyclone genesis points is approximated by kernel density estimation. The model simulated TCs are randomly selected from the fitted kernel (TC genesis), and the cyclone paths (TC tracks), represented by the GAM together with the application of stochastic innovations at each step, are simulated to generate a suite of NIO rim landfall statistics. Three hindcast validation methods are applied to evaluate the integrity of the model. First, leave-one-out cross validation is applied whereby the country of landfall is determined by the majority vote (considering the location by only highest percentage of landfall) from the simulated tracks. Second, the probability distribution of simulated landfall is evaluated against the observed landfall. Third, the distances between the point of observed landfall and simulated landfall are compared and quantified. Overall, the model shows very good cross-validated hindcast skill of modelled landfalling cyclones against observations in each of the NIO tropical cyclone seasons and for most NIO rim countries, with only a relatively small difference in the percentage of

  10. Relating Tropical Cyclone Track Forecast Error Distributions with Measurements of Forecast Uncertainty

    Science.gov (United States)

    2016-03-01

    CYCLONE TRACK FORECAST ERROR DISTRIBUTIONS WITH MEASUREMENTS OF FORECAST UNCERTAINTY by Nicholas M. Chisler March 2016 Thesis Advisor...March 2016 3. REPORT TYPE AND DATES COVERED Master’s thesis 4. TITLE AND SUBTITLE RELATING TROPICAL CYCLONE TRACK FORECAST ERROR DISTRIBUTIONS...WITH MEASUREMENTS OF FORECAST UNCERTAINTY 5. FUNDING NUMBERS 6. AUTHOR(S) Nicholas M. Chisler 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES

  11. Detection and Tracking of Tropical Cyclones on a Seasonal Scale in the Philippines

    Directory of Open Access Journals (Sweden)

    Josefina C. Argete

    2007-12-01

    Full Text Available A regional climate model is used to detect tropical cyclones (TC and simulate their tracks for a four-month (June-July-August-September wet season in the Philippine region. The model, run at 45-km resolution, is forced along the boundaries with 6-hourly reanalyses data (ERA-40 with about 250-km resolution. Three experiments are devised which varied the size of the domain and placement of the boundaries.A detection and tracking algorithm is developed using 850-mb vorticity threshold, minimum sea level pressure and the presence of a warm core aloft as criteria. The tracks extracted from the ERA-40 field, herein called analyses track, are compared with JTWC best track to test the performance of the tracking algorithm. Of the fourteen (14 TC that entered the domain, ten were formed in the Pacific Ocean and four in the South China Sea. The algorithm detected all TC and skillfully captured the JTWC best track. From the 417 cases (6-hourly positions of the 14 TC, the mean zonal and meridional errors are -164, -23 km, respectively, where the analyses tracks are on the average moving faster westward and southward than the best track. The relatively small magnitude of errors indicates skill of the tracking method.The regional model is able to detect all 14 TC but with tracks that are farther displaced north of analyses. Simulation of track was enhanced as domain size is decreased. The intensity simulation is improved as more typhoons otherwise not found in the forcing data are generated by the regional model. This study demonstrates that a regional model forced by "perfect" boundary conditions can reasonably simulate the tracks and intensity of tropical cyclones on a seasonal scale. The importance of the use of the proper domain configuration is also shown.

  12. Upper Oceanic Energy Response to Tropical Cyclone Passage

    Science.gov (United States)

    2013-04-15

    lagged SST cooling is approximately 0.78C for a ‘‘typical’’ TC at 308 latitude, whereas the same storm results in 10-day (30-day) lagged decreases of...during tropical to extratropical transition). The scenario above led to the development of the TC potential intensity (PI) thesis, an important...is approximately 0.78C for a ??typical?? TC at 308 latitude, whereas the same storm results in 10-day (30-day) lagged decreases of upper oceanic

  13. Water security and societal impacts of tropical cyclones in northwestern Mexico, 1970-2010

    Science.gov (United States)

    Scott, C. A.; Farfan, L.

    2012-12-01

    Hydroclimatic variability is one of several potential threats to water security, defined as sustainable quantities and qualities of water for resilient societies and ecosystems in the face of uncertain global environmental change. Other threats can stem from human dimensions of global change, e.g., long-distance trade of water-intensive agricultural commodities or pollution resulting from industrial production and mining in response to rising global market demand. Drought and water scarcity are considered the principal, chronic, hydroclimatic drivers of water insecurity in arid and semi-arid regions. In these conditions, however, rainfall is both the water-supply lifeline and, in extreme events, the cause of flood hazard. In this study, we consider the monsoon-dominated Pacific coast of Mexico and assess the human impacts from tropical cyclone landfall over the past four decades (1970-2010). Storm data from the U.S. National Hurricane Center, rainfall reports from Mexico's National Meteorological Service, and indicators from an international disaster database at Belgium's Université Catholique de Louvain are used to assess the impacts of more than 30 landfall events. For the ten events with the greatest population impact, between 20,000 to 800,000 people were affected by each landfalling cyclone. Strong winds and heavy rainfall, particularly when sustained over periods of 1-3 days, result in significant property damage and loss of life. Results indicate that, in densely populated areas, excessive rainfall accumulations and high daily rates are important causes of cyclone disasters. Strengthening water security associated with extreme events requires planning via structured exchanges between scientists and decision-makers. Adaptive management that accounts for uncertainties, initiates responses, and iteratively assesses outcomes is the thrust of an emerging water-security initiative for the arid Americas that seeks to strengthen water security in northwestern

  14. Measurements of the upper troposphere and lower stratosphere during tropical cyclones using the GPS radio occultation technique

    DEFF Research Database (Denmark)

    Biondi, Riccardo; Neubert, Torsten; Syndergaard, Stig

    2011-01-01

    and Climate (COSMIC) were analyzed, focusing on two particular tropical cyclones with completely different characteristics, the hurricane Bertha, which formed in the Atlantic Basin during July 2008 and reached a maximum intensity of Category 3, and the typhoon Hondo, which formed in the south Indian Ocean...... during 2008 reaching a maximum intensity of Category 4. The result is positive, suggesting that the bending angle of a GPS radio occultation signal contains interesting information on the atmosphere around the tropopause, but not any information regarding the water vapour. The maximum percentage anomaly...

  15. An economic assessment of tropical cyclone risk on offshore wind farms

    DEFF Research Database (Denmark)

    Hong, Lixuan; Möller, Bernd

    2012-01-01

    and cost and setting design parameters for offshore wind turbines are then discussed. The impact of tropical cyclones on offshore wind farms likes a double-edged sword, which might be advantageous for some regions in terms of increasing full-loaded hours of turbines, but also disadvantageous for others due....... A probabilistic tropical cyclone event model is applied to evaluate 20-year, 30-year, 50-year and 100-year recurrence of extreme wind speeds by geographical location. Combining a damage model derived from empirical loss data and an investment cost model within a Geographical Information System (GIS), the annual...... to its destructive effects. However, specific design standards and insurance of turbines would help reduce risks and economic losses of offshore wind farms in tropical cyclone-prone areas and expand exploitable locations for future offshore wind farms....

  16. Assessing the Uncertainty of Tropical Cyclone Simulations in NCAR's Community Atmosphere Model

    Directory of Open Access Journals (Sweden)

    Kevin A Reed

    2011-08-01

    Full Text Available The paper explores the impact of the initial-data, parameter and structural model uncertainty on the simulation of a tropical cyclone-like vortex in the National Center for Atmospheric Research's (NCAR Community Atmosphere Model (CAM. An analytic technique is used to initialize the model with an idealized weak vortex that develops into a tropical cyclone over ten simulation days. A total of 78 ensemble simulations are performed at horizontal grid spacings of 1.0°, 0.5° and 0.25° using two recently released versions of the model, CAM 4 and CAM 5. The ensemble members represent simulations with random small-amplitude perturbations of the initial conditions, small shifts in the longitudinal position of the initial vortex and runs with slightly altered model parameters. The main distinction between CAM 4 and CAM 5 lies within the physical parameterization suite, and the simulations with both CAM versions at the varying resolutions assess the structural model uncertainty. At all resolutions storms are produced with many tropical cyclone-like characteristics. The CAM 5 simulations exhibit more intense storms than CAM 4 by day 10 at the 0.5° and 0.25° grid spacings, while the CAM 4 storm at 1.0° is stronger. There are also distinct differences in the shapes and vertical profiles of the storms in the two variants of CAM. The ensemble members show no distinction between the initial-data and parameter uncertainty simulations. At day 10 they produce ensemble root-mean-square deviations from an unperturbed control simulation on the order of 1--5 m s-1 for the maximum low-level wind speed and 2--10 hPa for the minimum surface pressure. However, there are large differences between the two CAM versions at identical horizontal resolutions. It suggests that the structural uncertainty is more dominant than the initial-data and parameter uncertainties in this study. The uncertainty among the ensemble members is assessed and quantified.

  17. Ocean feedback to tropical cyclones: Climatology and processes

    Digital Repository Service at National Institute of Oceanography (India)

    Jullien, S.; Marchesiello, P.; Menkes, C.E.; Lefevre, J.; Jourdain, N.C.; Samson, G.; Lengaigne, M.

    This study presents the first multidecadal and coupled regional simulation of cyclonic activity in the South Pacific. The long-term integration of state-of the art models provides reliable statistics, missing in usual event studies, of air...

  18. Impact Factors and Risk Analysis of Tropical Cyclones on a Highway Network.

    Science.gov (United States)

    Yang, Saini; Hu, Fuyu; Jaeger, Carlo

    2016-02-01

    Coastal areas typically have high social and economic development and are likely to suffer huge losses due to tropical cyclones. These cyclones have a great impact on the transportation network, but there have been a limited number of studies about tropical-cyclone-induced transportation network functional damages, especially in Asia. This study develops an innovative measurement and analytical tool for highway network functional damage and risk in the context of a tropical cyclone, with which we explored the critical spatial characteristics of tropical cyclones with regard to functional damage to a highway network by developing linear regression models to quantify their relationship. Furthermore, we assessed the network's functional risk and calculated the return periods under different damage levels. In our analyses, we consider the real-world highway network of Hainan province, China. Our results illustrate that the most important spatial characteristics were location (in particular, the midlands), travel distance, landfalling status, and origin coordinates. However, the trajectory direction did not obviously affect the results. Our analyses indicate that the highway network of Hainan province may suffer from a 90% functional damage scenario every 4.28 years. These results have critical policy implications for the transport sector in reference to emergency planning and disaster reduction. © 2015 Society for Risk Analysis.

  19. Proxies of Tropical Cyclone Isotope Spikes in Precipitation: Landfall Site Selection

    Science.gov (United States)

    Lawrence, J. R.; Maddocks, R.

    2011-12-01

    The human experience of climate change is not one of gradual changes in seasonal or yearly changes in temperature or rainfall. Despite that most paleoclimatic reconstructions attempt to provide just such information. Humans experience climate change on much shorter time scales. We remember hurricanes, weeks of drought or overwhelming rainy periods. Tropical cyclones produce very low isotope ratios in both rainfall and in atmospheric water vapor. Thus, climate proxies that potentially record these low isotope ratios offer the most concrete record of climate change to which humans can relate. The oxygen isotopic composition of tropical cyclone rainfall has the potential to be recorded in fresh water carbonate fossil material, cave deposits and corals. The hydrogen isotopic composition of tropical cyclone rainfall has the potential to be recorded in tree ring cellulose and organic matter in fresh water bodies. The Class of carbonate organisms known as Ostracoda form their carapaces very rapidly. Thus fresh water ephemeral ponds in the subtropics are ideal locations for isotopic studies because they commonly are totally dry when tropical cyclones make landfall. The other proxies suffer primarily from a dilution effect. The water from tropical cyclones is mixed with pre-existing water. In cave deposits tropical cyclone rains mix with soil and ground waters. In the near shore coral environment the rain mixes with seawater. For tree rings there are three sources of water: soil water, atmospheric water vapor that exchanges with leaf water and tropical cyclone rain. In lakes because of their large size rainfall runoff mixes with ground water and preexisting water in the lake. A region that shows considerable promise is Texas / Northeast Mexico. In a study of surface waters that developed from the passage of Tropical Storm Allison (2001) in SE Texas both the pond water and Ostracoda that bloomed recorded the low oxygen isotope signal of that storm (Lawrence et al, 2008). In

  20. Disaster, Deprivation and Death: Large but delayed infant mortality in the wake of Filipino tropical cyclones

    Science.gov (United States)

    Anttila-Hughes, J. K.; Hsiang, S. M.

    2011-12-01

    Tropical cyclones are some of the most disastrous and damaging of climate events, and estimates of their destructive potential abound in the natural and social sciences. Nonetheless, there have been few systematic estimates of cyclones' impact on children's health. This is concerning because cyclones leave in their wake a swath of asset losses and economic deprivation, both known to be strong drivers of poor health outcomes among children. In this paper we provide a household-level estimate of the effect of tropical cyclones on infant mortality in the Philippines, a country with one of the most active cyclone climatologies in the world. We reconstruct historical cyclones with detailed spatial and temporal resolution, allowing us to estimate the multi-year effects of cyclones on individuals living in specific locations. We combine the cyclone reconstruction with woman-level fertility and mortality data from four waves of the Filipino Demographic and Health Survey, providing birth histories for over 55,000 women. In multiple regressions that control for year and region fixed effects as well as intra-annual climate variation, we find that there is a pronounced and robust increase in female infant mortality among poor families in the 12-24 months after storms hit. The estimated mortality rate among this demographic subgroup is much larger than official mortality rates reported by the Filipino government immediately after storms, implying that much of a cyclone's human cost arrives well after the storm has passed. We find that high infant mortality rates are associated with declines in poor families' income and expenditures, including consumption of food and medical services, suggesting that the mechanism by which these deaths are effected may be economic deprivation. These results indicate that a major health and welfare impact of storms has been thus far overlooked, but may be easily prevented through appropriately targeted income support policies.

  1. Evolution of the Tropical Cyclone Integrated Data Exchange And Analysis System (TC-IDEAS)

    Science.gov (United States)

    Turk, J.; Chao, Y.; Haddad, Z.; Hristova-Veleva, S.; Knosp, B.; Lambrigtsen, B.; Li, P.; Licata, S.; Poulsen, W.; Su, H.; hide

    2010-01-01

    The Tropical Cyclone Integrated Data Exchange and Analysis System (TC-IDEAS) is being jointly developed by the Jet Propulsion Laboratory (JPL) and the Marshall Space Flight Center (MSFC) as part of NASA's Hurricane Science Research Program. The long-term goal is to create a comprehensive tropical cyclone database of satellite and airborne observations, in-situ measurements and model simulations containing parameters that pertain to the thermodynamic and microphysical structure of the storms; the air-sea interaction processes; and the large-scale environment.

  2. An Intrathermocline Eddy and a tropical cyclone in the Bay of Bengal

    OpenAIRE

    Gordon, Arnold L.; Shroyer, Emily; Murty, V. S. N.

    2017-01-01

    The Bay of Bengal, subjected to monsoonal forcing and tropical cyclones, displays a complex field of ocean eddies. On 5 December 2013 a sub-surface vortex or Intrathermocline Eddy (ITE) composed of water characteristic of the Andaman Sea was observed within the thermocline of the western Bay of Bengal. We propose that the ITE was the product of Tropical Cyclone Lehar interaction on 27 November 2013 with a westward propagating surface eddy from the eastern Bay of Bengal. While Lehar?s interact...

  3. Development of an Adaptable Display and Diagnostic System for the Evaluation of Tropical Cyclone Forecasts

    Science.gov (United States)

    Kucera, P. A.; Burek, T.; Halley-Gotway, J.

    2015-12-01

    NCAR's Joint Numerical Testbed Program (JNTP) focuses on the evaluation of experimental forecasts of tropical cyclones (TCs) with the goal of developing new research tools and diagnostic evaluation methods that can be transitioned to operations. Recent activities include the development of new TC forecast verification methods and the development of an adaptable TC display and diagnostic system. The next generation display and diagnostic system is being developed to support evaluation needs of the U.S. National Hurricane Center (NHC) and broader TC research community. The new hurricane display and diagnostic capabilities allow forecasters and research scientists to more deeply examine the performance of operational and experimental models. The system is built upon modern and flexible technology that includes OpenLayers Mapping tools that are platform independent. The forecast track and intensity along with associated observed track information are stored in an efficient MySQL database. The system provides easy-to-use interactive display system, and provides diagnostic tools to examine forecast track stratified by intensity. Consensus forecasts can be computed and displayed interactively. The system is designed to display information for both real-time and for historical TC cyclones. The display configurations are easily adaptable to meet the needs of the end-user preferences. Ongoing enhancements include improving capabilities for stratification and evaluation of historical best tracks, development and implementation of additional methods to stratify and compute consensus hurricane track and intensity forecasts, and improved graphical display tools. The display is also being enhanced to incorporate gridded forecast, satellite, and sea surface temperature fields. The presentation will provide an overview of the display and diagnostic system development and demonstration of the current capabilities.

  4. Emergence timescales for detection of anthropogenic climate change in US tropical cyclone loss data

    International Nuclear Information System (INIS)

    Crompton, Ryan P; McAneney, K John; Pielke, Roger A Jr

    2011-01-01

    Recent reviews have concluded that efforts to date have yet to detect or attribute an anthropogenic climate change influence on Atlantic tropical cyclone (of at least tropical storm strength) behaviour and concomitant damage. However, the possibility of identifying such influence in the future cannot be ruled out. Using projections of future tropical cyclone activity from a recent prominent study we estimate the time that it would take for anthropogenic signals to emerge in a time series of normalized US tropical cyclone losses. Depending on the global climate model(s) underpinning the projection, emergence timescales range between 120 and 550 years, reflecting a large uncertainty. It takes 260 years for an 18-model ensemble-based signal to emerge. Consequently, under the projections examined here, the detection or attribution of an anthropogenic signal in tropical cyclone loss data is extremely unlikely to occur over periods of several decades (and even longer). This caution extends more generally to global weather-related natural disaster losses.

  5. Environmental Disaster and Economic Change: Do tropical cyclones have permanent effects on economic growth and structure?

    Science.gov (United States)

    Jina, A.; von der Goltz, J.; Hsiang, S. M.

    2011-12-01

    Natural disasters have important, often devastating, effects upon economic growth and well-being. Due to this, disasters have become an active area of recent research and policy attention. However, much of this research has been narrowly focused, relying on anecdotal evidence and aggregated data to support conclusions about disaster impacts in the short-term. Employing a new global data set of tropical cyclone exposure from 1960 to 2008, we investigate in greater detail whether permanent changes in economic performance and structure can result from these extreme events in some cases. Our macro-economic analyses use the World Development Indicator dataset and have shown promising results: there are dramatic long-term economic transformations associated with tropical cyclones across a number of countries and industries. This effect is most clearly seen in Small Island Developing States (SIDS) and some countries in Latin America, where negative changes in long-term growth trends are observed in the years following a large tropical cyclone. In many economies with a high exposure to tropical cyclone damage, there are noticeable structural changes within the economy. The impacts of disasters might be expressed through various economic and social channels, through direct loss of lives and infrastructure damage; for instance, the destruction of infrastructure such as ports may damage export opportunities where replacement capital is not readily available. These structural changes may have far-reaching implications for economic growth and welfare. Larger nations subjected to the impacts of tropical cyclones are thought to be able to relocate economically important activities that are damaged by cyclones, and so long-term trend changes are not observed, even for events that cause a large immediate decrease in national productivity. By investigating in a more rigorous fashion the hypothesis that the environment triggers these permanent economic changes, our work has

  6. Characteristics and development of European cyclones with tropical origin in reanalysis data

    Science.gov (United States)

    Dekker, Mark M.; Haarsma, Reindert J.; Vries, Hylke de; Baatsen, Michiel; Delden, Aarnout J. van

    2018-01-01

    Major storm systems over Europe frequently have a tropical origin. This paper analyses the characteristics and dynamics of such cyclones in the observational record, using MERRA reanalysis data for the period 1979-2013. By stratifying the cyclones along three key phases of their development (tropical phase, extratropical transition and final re-intensification), we identify four radically different life cycles: the tropical cyclone and extratropical cyclone life cycles, the classic extratropical transition and the warm seclusion life cycle. More than 50% of the storms reaching Europe from low latitudes follow the warm seclusion life cycle. It also contains the strongest cyclones. They are characterized by a warm core and a frontal T-bone structure, with a northwestward warm conveyor belt and the effects of dry intrusion. Rapid deepening occurs in the latest phase, around their arrival in Europe. Both baroclinic instability and release of latent heat contribute to the strong intensification. The pressure minimum occurs often a day after entering Europe, which enhances the potential threat of warm seclusion storms for Europe. The impact of a future warmer climate on the development of these storms is discussed.

  7. Understanding the geographic distribution of tropical cyclone formation for applications in climate models

    Science.gov (United States)

    Tory, Kevin J.; Ye, H.; Dare, R. A.

    2018-04-01

    Projections of Tropical cyclone (TC) formation under future climate scenarios are dependent on climate model simulations. However, many models produce unrealistic geographical distributions of TC formation, especially in the north and south Atlantic and eastern south Pacific TC basins. In order to improve confidence in projections it is important to understand the reasons behind these model errors. However, considerable effort is required to analyse the many models used in projection studies. To address this problem, a novel diagnostic is developed that provides compelling insight into why TCs form where they do, using a few summary diagrams. The diagnostic is developed after identifying a relationship between seasonal climatologies of atmospheric variables in 34 years of ECMWF reanalysis data, and TC detection distributions in the same data. Geographic boundaries of TC formation are constructed from four threshold quantities. TCs form where Emanuel's Maximum Potential Intensity, V_{{PI}}, exceeds 40 {ms}^{{ - 1}}, 700 hPa relative humidity, RH_{{700}}, exceeds 40%, and the magnitude of the difference in vector winds between 850 and 200 hPa, V_{{sh}}, is less than 20 {ms}^{{ - 1}}. The equatorial boundary is best defined by a composite quantity containing the ratio of absolute vorticity (η ) to the meridional gradient of absolute vorticity (β ^{*}), rather than η alone. {β ^*} is also identified as a potentially important ingredient for TC genesis indices. A comparison of detected Tropical Depression (TD) and Tropical Storm (TS) climatologies revealed TDs more readily intensify further to TS where {V_{PI}} is elevated and {V_{sh}} is relatively weak. The distributions of each threshold quantity identify the factors that favour and suppress TC formation throughout the tropics in the real world. This information can be used to understand why TC formation is poorly represented in some climate models, and shows potential for understanding anomalous TC formation

  8. Reconstructing Holocene (sub)tropical climate and cyclone variability using geochemical proxies

    OpenAIRE

    van Soelen, E.E.

    2012-01-01

    Anthropogenic greenhouse gas emissions are responsible for a warming trend that cannot easily be reversed. This warming trend is expected to have a large impact on global weather patterns and local environmental conditions, for example by changing precipitation patterns, sea level rise and increasing tropical cyclone activity. Therefore, (sub)tropical coastal regions are expected to be heavily impacted by future climate change. To improve our understanding of the possible consequences of futu...

  9. Decrease of tropical cyclone genesis frequency in the western North Pacific since 1960s

    Science.gov (United States)

    Hu, Feng; Li, Tim; Liu, Jia; Bi, Mingyu; Peng, Melinda

    2018-03-01

    Tropical cyclone (TC) genesis frequency in the western North Pacific (WNP) during 1960-2014 shows a step-by-step decrease on interdecadal timescale, in accordance to the phase of the Interdecadal Pacific Oscillation (IPO). The environmental parameters responsible for the interdecadal change of TC genesis frequency were investigated. It was found that vertical wind shear especially the zonal wind shear plays a critical role, while other parameters such as sea surface temperature (SST), vertical velocity, divergence, humidity and maximum potential intensity cannot explain the step-by-step decrease of TC genesis frequency. A further diagnosis shows that the interdecadal change of vertical wind shear is caused by SST and associated rainfall pattern changes across the Indo-Pacific Ocean. A stronger warming in the Indian Ocean/western Pacific from 1960-1976 to 1977-1998 led to enhanced convection over the Maritime Continent and thus strengthened vertical shear over the key TC genesis region in the WNP. A La Nina-like SST pattern change from 1977-1998 to 1999-2014 led to a strengthened Walker circulation in the tropical Pacific, which further enhanced the vertical shear and decreased TC genesis frequency in the WNP.

  10. High resolution model projections of tropical cyclone landfall over southern Africa under enhanced anthropogenic forcing

    CSIR Research Space (South Africa)

    Malherbe, J

    2011-09-01

    Full Text Available , no such change has been noted when all closed warm-core low pressure systems are considered. Several studies have through the use of coupled global circulation models globally reported a projected decrease in the number of tropical cyclones expected under...

  11. Mesoscale simulation of tropical cyclones in the South Pacific: Climatology and interannual variability

    Digital Repository Service at National Institute of Oceanography (India)

    Jourdain, N.C.; Marchesiello, P.; Menkes, C.E.; Lefevre, J.; Vincent, E.M.; Lengaigne, M.; Chauvin, F.

    The Weather Research and Forecast model at 1/3 degree resolution is used to simulate the statistics of tropical cyclone (TC) activity in the present climate of the South Pacific. In addition to the large-scale conditions, the model is shown...

  12. Tropical cyclone cloud‐top height and vertical temperature structure detection using GPS radio occultation measurements

    DEFF Research Database (Denmark)

    Biondi, Riccardo; Ho, Shu‐Peng; Randel, William

    2013-01-01

    The accurate determination of tropical cyclone (TC) cloud-top height and its vertical thermal structure using the GPS radio occultation (RO) technique is demonstrated in this study. Cloud-top heights are determined by using the bending angle anomaly and the temperature anomaly profiles during...

  13. Climatology and Landfall of Tropical Cyclones in the South- West ...

    African Journals Online (AJOL)

    Abstract—The climatology of cyclone formation and behaviour in the South-West Indian Ocean, including landfall in Mozambique and Madagascar, has been investigated. The records used were obtained by merging track data from the Joint Typhoon Warning Centre with data from La Reunion – Regional Specialised ...

  14. Climatology and Landfall of Tropical Cyclones in the South- West ...

    African Journals Online (AJOL)

    with a substantial increase (about 0.3˚C) in sea surface temperature. However, it is ... Julian (1994). El Niño is known to cause increased cyclone activity in the South and in the North-East. Pacific, but decreased activity in the North Atlantic.

  15. Fluvial sediment supply to a mega-delta reduced by shifting tropical-cyclone activity.

    Science.gov (United States)

    Darby, Stephen E; Hackney, Christopher R; Leyland, Julian; Kummu, Matti; Lauri, Hannu; Parsons, Daniel R; Best, James L; Nicholas, Andrew P; Aalto, Rolf

    2016-11-10

    The world's rivers deliver 19 billion tonnes of sediment to the coastal zone annually, with a considerable fraction being sequestered in large deltas, home to over 500 million people. Most (more than 70 per cent) large deltas are under threat from a combination of rising sea levels, ground surface subsidence and anthropogenic sediment trapping, and a sustainable supply of fluvial sediment is therefore critical to prevent deltas being 'drowned' by rising relative sea levels. Here we combine suspended sediment load data from the Mekong River with hydrological model simulations to isolate the role of tropical cyclones in transmitting suspended sediment to one of the world's great deltas. We demonstrate that spatial variations in the Mekong's suspended sediment load are correlated (r = 0.765, P sediment load reaching the delta is delivered by runoff generated by rainfall associated with tropical cyclones. Furthermore, we estimate that the suspended load to the delta has declined by 52.6 ± 10.2 megatonnes over recent years (1981-2005), of which 33.0 ± 7.1 megatonnes is due to a shift in tropical-cyclone climatology. Consequently, tropical cyclones have a key role in controlling the magnitude of, and variability in, transmission of suspended sediment to the coast. It is likely that anthropogenic sediment trapping in upstream reservoirs is a dominant factor in explaining past, and anticipating future, declines in suspended sediment loads reaching the world's major deltas. However, our study shows that changes in tropical-cyclone climatology affect trends in fluvial suspended sediment loads and thus are also key to fully assessing the risk posed to vulnerable coastal systems.

  16. Divergent responses of tropical cyclone genesis factors to strong volcanic eruptions at different latitudes

    Science.gov (United States)

    Yan, Qing; Zhang, Zhongshi; Wang, Huijun

    2018-03-01

    To understand the behaviors of tropical cyclones (TCs), it is very important to explore how TCs respond to anthropogenic greenhouse gases and natural forcings. Volcanic eruptions are a major natural forcing mechanism because they inject sulphate aerosols into the stratosphere, which modulate the global climate by absorbing and scattering solar radiation. The number of Atlantic hurricanes is thought to be reduced following strong tropical eruptions, but whether the response of TCs varies with the locations of the volcanoes and the different ocean basins remains unknown. Here, we use the Community Earth System Model-Last Millennium Ensemble to investigate the response of the large-scale environmental factors that spawn TCs to strong volcanic eruptions at different latitudes. A composite analysis indicates that tropical and northern hemisphere volcanic eruptions lead to significantly unfavorable conditions for TC genesis over the whole Pacific basin and the North Atlantic during the 3 years post-eruption, relative to the preceding 3 years. Southern hemisphere volcanic eruptions result in obviously unfavorable conditions for TC formation over the southwestern Pacific, but more favorable conditions over the North Atlantic. The mean response over the Indian Ocean is generally muted and insignificant. It should be noted that volcanic eruptions impact on environmental conditions through both the direct effect (i.e. on radiative forcing) and the indirect effect (i.e. on El Niño-Southern Oscillation), which is not differentiated in this study. In addition, the spread of the TC genesis response is considerably large for each category of eruptions over each ocean basin, which is also seen in the observational/proxy-based records. This large spread is attributed to the differences in stratospheric aerosol distributions, initial states and eruption intensities, and makes the short-term forecast of TC activity following the next large eruption challenging.

  17. The Tropical Cyclone Response to Structural and Temporal Variability in the Environmental Wind Profile

    Science.gov (United States)

    Onderlinde, Matthew J.

    The aim of this dissertation is to attain a better understanding of how tropical cyclones (TCs) respond to variations in the three-dimensional environmental wind field. Much attention has been given to the impact of environmental wind shear in the 850 -- 200 hPa layer on tropical cyclones. However, even with the same magnitude of shear, helicity in this layer can vary significantly. A new parameter is presented, the tropical cyclone-relative environmental helicity (TCREH). Positive TCREH leads to a tilted storm that enhances local storm scale helicity in regions of convection within the TC. Initially we proposed that this enhanced local scale helicity may allow for more robust and longer lasting convection which is more effective at generating latent heat and subsequent TC intensification. Further investigation shows that this is a secondary influence on TC intensity and that variations in the azimuthal and radial position of convection in the TC play a stronger role. Vertical tilt of the vortex is often attributed to wind shear. Different values of helicity modulate this tilt and certain tilt configurations are more favorable for development or intensification than others, suggesting that mean positive environmental helicity is more favorable for development and intensification than mean negative helicity. Idealized modeling simulations demonstrate the impact of environmental helicity on TC development and intensification. Results show that wind profiles with the same 850-200 hPa wind shear but different values of helicity lead to different rates of development. TCREH also is computed from Era-Interim reanalysis (1979 -- 2011) and GFS analyses (2004 -- 2011) to determine if a significant signal exists between TCREH and TC intensification. Mean annular helicity is averaged over various time periods and correlated with the TC intensity change during those periods. Results suggest a weak but statistically significant correlation between environmental helicity and TC

  18. Global composites of surface wind speeds in tropical cyclones based on a 12 year scatterometer database

    Science.gov (United States)

    Klotz, Bradley W.; Jiang, Haiyan

    2016-10-01

    A 12 year global database of rain-corrected satellite scatterometer surface winds for tropical cyclones (TCs) is used to produce composites of TC surface wind speed distributions relative to vertical wind shear and storm motion directions in each TC-prone basin and various TC intensity stages. These composites corroborate ideas presented in earlier studies, where maxima are located right of motion in the Earth-relative framework. The entire TC surface wind asymmetry is down motion left for all basins and for lower strength TCs after removing the motion vector. Relative to the shear direction, the motion-removed composites indicate that the surface wind asymmetry is located down shear left for the outer region of all TCs, but for the inner-core region it varies from left of shear to down shear right for different basin and TC intensity groups. Quantification of the surface wind asymmetric structure in further stratifications is a necessary next step for this scatterometer data set.

  19. Ensemble Kalman Filter data assimilation and storm surge experiments of tropical cyclone Nargis

    Directory of Open Access Journals (Sweden)

    Le Duc

    2015-07-01

    Full Text Available Data assimilation experiments on Myanmar tropical cyclone (TC, Nargis, using the Local Ensemble Transform Kalman Filter (LETKF method and the Japan Meteorological Agency (JMA non-hydrostatic model (NHM were performed to examine the impact of LETKF on analysis performance in real cases. Although the LETKF control experiment using NHM as its driving model (NHM–LETKF produced a weak vortex, the subsequent 3-day forecast predicted Nargis’ track and intensity better than downscaling from JMA's global analysis. Some strategies to further improve the final analysis were considered. They were sea surface temperature (SST perturbations and assimilation of TC advisories. To address SST uncertainty, SST analyses issued by operational forecast centres were used in the assimilation window. The use of a fixed source of SST analysis for each ensemble member was more effective in practice. SST perturbations were found to have slightly positive impact on the track forecasts. Assimilation of TC advisories could have a positive impact with a reasonable choice of its free parameters. However, the TC track forecasts exhibited northward displacements, when the observation error of intensities was underestimated in assimilation of TC advisories. The use of assimilation of TC advisories was considered in the final NHM–LETKF by choosing an appropriate set of free parameters. The extended forecast based on the final analysis provided meteorological forcings for a storm surge simulation using the Princeton Ocean Model. Probabilistic forecasts of the water levels at Irrawaddy and Yangon significantly improved the results in the previous studies.

  20. A Study of Oceans and Atmospheric Interactions Associated with Tropical Cyclone Activity using Earth Observing Technology

    Science.gov (United States)

    Abdullah, Warith; Reddy, Remata

    computations for atmospheric interface suggests unusual warmth associated with Gulf Stream current, such that it provided Sandy with enough kinetic energy to intensify at high latitude. The study further suggests that energy gained from Caribbean TCHP and Gulf Stream SST’s were largely retained by Sandy upon losing tropical-cyclone characteristics and merging with strong cold front and polar jet stream. Storms of Sandy’s magnitude and unusual source of energy resulting from Gulf Stream may indicate a building average for tropical cyclone development and intensity for North Atlantic, particularly as the GOM waters continue to warm on seasonal averages.

  1. Characteristics of tropical cyclone extreme precipitation and its preliminary causes in Southeast China

    Science.gov (United States)

    Qiu, Wenyu; Ren, Fumin; Wu, Liguang; Chen, Lianshou; Ding, Chenchen

    2018-03-01

    Extreme precipitation induced by a tropical cyclone (TC) is of great concern to Southeast China. Regional characteristics of daily TC-induced extreme precipitation (TCEP) between 1958 and 2016 and the associated preliminary causes over Southeast China (Zhejiang, Fujian, and Shanghai) were examined by applying the objective synoptic analysis technique, TC track similarity area index, daily precipitation observations, and reanalysis data. The intensity and frequency of high-intensity TCEP (≥ 100, ≥ 200, ≥ 300 mm) have had an increasing trend over recent decades. Most of TCEP occurs from July to September, with frequency peaks in August for TCEP at all intensity levels, apart from the frequency for TCEP ≥ 300 mm that peaks in September. Regions with high frequency and large TCEP (R-HFLTs) (relatively high frequency for TCEP ≥ 100 mm) were concentrated along the coastline of the southern coastal Fujian (Southern R-HFLT), the regions from northern coastal Fujian to southernmost coastal Zhejiang (Central R-HFLT), and central coastal Zhejiang (Northern R-HFLT), decreasing from the coastline to inland. The Central R-HFLT region had the highest TCEP intensity and frequency for TCEP ≥ 100 mm compared with the other R-HFLTs. Further analysis showed that the special terrain of Southeast China matched the spatial distribution of TCEP, which highlights the significance of the topography of Southeast China. To discover other factors responsible for the heavy TCEP, we compared two TC groups that influence Central R-HFLT. Under a more northerly direction and slow movement combined with the unique terrain, TCs with stronger vortex circulation generated heavier TCEP during landfall in Central R-HFLT. Heavy TCEP occurred with easterly and southeasterly winds interacting with terrain over the eastern coast for Central R-HFLT. Although large changes in the internal and external environment were sensitive to the observed TCEP intensity, the interaction between TC circulation

  2. Doppler Radar and Lightning Network Observations of a Severe Outbreak of Tropical Cyclone Tornadoes

    Science.gov (United States)

    Mccaul, Eugene W., Jr.; Buechler, Dennis E.; Goodman, Steven J.; Cammarata, Michael

    2004-01-01

    Data from a single Weather Surveillance Radar-1988 Doppler (WSR-88D) and the National Lightning Detection Network are used to examine the characteristics of the convective storms that produced a severe tornado outbreak, including three tornadoes that reached F3 intensity, within Tropical Storm Beryl s remnants on 16 August 1994. Comparison of the radar data with reports of tornadoes suggests that only 13 cells produced the 29 tornadoes that were documented in Georgia and the Carolinas on that date. Six of these cells spawned multiple tornadoes, and the radar data confirm the presence of miniature supercells. One of the cells was identifiable on radar for 11 h. spawning tornadoes over a time period spanning approximately 6.5 h. Several other tornadic cells also exhibited great longevity, with cell lifetimes longer than ever previously documented in a landfalling tropical cyclone (TC) tornado event. This event is easily the most intense TC tornado outbreak yet documented with WSR-88Ds. Time-height analyses of the three strongest tornadic supercells are presented in order to document storm kinematic structure and to show how these storms appear at different ranges from a WSR-88D. In addition, cloud-to-ground (CG) lightning data are examined in Beryl s remnants. Although the tornadic cells were responsible for most of Beryl's CG lightning, their flash rates were only weak to moderate, and in all the tornadic storms the lightning flashes were almost entirely negative in polarity. A few of the single-tornado storms produced no detectable CG lightning at all. There is evidence that CG lightning rates decreased during the tornadoes, compared to 30-min periods before the tornadoes. A number of the storms spawned tornadoes just after producing their final CG lightning flashes. Contrary to the findings for flash rates, both peak currents and positive flash percentages were larger in Beryl's nontornadic storms than in the tornadic ones.

  3. Structural Changes and Convective Processes in Tropical Cyclones as Seen in Infrared and Water Vapor Satellite Data

    Science.gov (United States)

    2013-05-10

    tropical depression; yellow, a tropical storm ; red, a typhoon; and purple, an extratropical cyclone (after http://agora.ex.nii.ac.jp/digital- typhoon... storm (JTWC 2012). Tropical Storm Jelawat continued into the Sea of Japan, where it completed extratropical transition (JTWC 2012...including strong winds, storm surge, high waves, and heavy rainfall, threaten archipelagos, densely crowded coastlines, and naval forces ashore and

  4. Shallow ocean response to tropical cyclones observed on the continental shelf of the northwestern South China Sea

    Science.gov (United States)

    Yang, Bing; Hou, Yijun; Hu, Po; Liu, Ze; Liu, Yahao

    2015-05-01

    Based on observed temperature and velocity in 2005 in northwestern South China Sea, the shallow ocean responses to three tropical cyclones were examined. The oceanic response to Washi was similar to common observations with 2°C cooling of the ocean surface and slight warming of the thermocline resulted from vertical entrainment. Moreover, the wavefield was dominated by first mode near-inertial oscillations, which were red-shifted and trapped by negative background vorticity leading to an e-folding timescale of 12 days. The repeated reflections by the surface and bottom boundaries were thought to yield the successive emergence of higher modes. The oceanic responses to Vicente appeared to be insignificant with cooling of the ocean surface by only 0.5°C and near-inertial currents no larger than 0.10 m/s as a result of a deepened surface mixed layer. However, the oceanic responses to Typhoon Damrey were drastic with cooling of 4.5°C near the surface and successive barotropic-like near-inertial oscillations. During the forced stage, the upper ocean heat content decreased conspicuously by 11.65% and the stratification was thoroughly destroyed by vertical mixing. In the relaxation stage, the water particle had vertical displacement of 20-30 m generated by inertial pumping. The current response to Damrey was weaker than Washi due to the deepened mixed layer and the destroyed stratification. Our results suggested that the shallow water oceanic responses to tropical cyclones varied significantly with the intensity of tropical cyclones, and was affected by local stratification and background vorticity.

  5. Cascading hazards: Understanding triggering relations between wet tropical cyclones, landslides, and earthquakes

    Science.gov (United States)

    Wdowinski, S.; Peng, Z.; Ferrier, K.; Lin, C. H.; Hsu, Y. J.; Shyu, J. B. H.

    2017-12-01

    Earthquakes, landslides, and tropical cyclones are extreme hazards that pose significant threats to human life and property. Some of the couplings between these hazards are well known. For example, sudden, widespread landsliding can be triggered by large earthquakes and by extreme rainfall events like tropical cyclones. Recent studies have also shown that earthquakes can be triggered by erosional unloading over 100-year timescales. In a NASA supported project, titled "Cascading hazards: Understanding triggering relations between wet tropical cyclones, landslides, and earthquake", we study triggering relations between these hazard types. The project focuses on such triggering relations in Taiwan, which is subjected to very wet tropical storms, landslides, and earthquakes. One example for such triggering relations is the 2009 Morakot typhoon, which was the wettest recorded typhoon in Taiwan (2850 mm of rain in 100 hours). The typhoon caused widespread flooding and triggered more than 20,000 landslides, including the devastating Hsiaolin landslide. Six months later, the same area was hit by the 2010 M=6.4 Jiashian earthquake near Kaohsiung city, which added to the infrastructure damage induced by the typhoon and the landslides. Preliminary analysis of temporal relations between main-shock earthquakes and the six wettest typhoons in Taiwan's past 50 years reveals similar temporal relations between M≥5 events and wet typhoons. Future work in the project will include remote sensing analysis of landsliding, seismic and geodetic monitoring of landslides, detection of microseismicity and tremor activities, and mechanical modeling of crustal stress changes due to surface unloading.

  6. Tropical Cyclone Exposure for U.S. waters within the Eastern Pacific Ocean basin, 1900-2013

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These data represent modeled, historical exposure of U.S. offshore and coastal waters to tropical cyclone activity within the Eastern Pacific Ocean basin. BOEM Outer...

  7. The bi-decadal rainfall cycle, Southern Annular Mode and tropical cyclones over the Limpopo River Basin, southern Africa

    CSIR Research Space (South Africa)

    Malherbe, J

    2014-06-01

    Full Text Available contribution to rainfall by tropical cyclones and depressions. The findings suggest that a broadening of the Hadley circulation underpinned by an anomalous anticyclonic pattern to the east of southern Africa altered tropospheric steering flow, relative...

  8. Tropical Cyclone Exposure for U.S. waters within the North Atlantic Ocean basin, 1900-2013

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These data represent modeled, historical exposure of U.S. offshore and coastal waters to tropical cyclone activity within the North Atlantic Ocean basin. BOEM Outer...

  9. RELATIONSHIPS BETWEEN ZONAL WIND ANOMALIES IN HIGH AND LOW TROPOSPHERE AND ANNUAL FREQUENCY OF NW PACIFIC TROPICAL CYCLONES

    Institute of Scientific and Technical Information of China (English)

    GONG Zhen-song; HE Min

    2007-01-01

    Relationships between large-scale zonal wind anomalies and annual frequency of NW Pacific tropical cyclones and possible mechanisms are investigated with the methods of correlation and composition.It is indicated that when △ U200-△U850 >0 in the eastern tropical Pacific and △ U200- △U850 <0 in western tropical Pacific, the Walker cell is stronger in the Pacific tropical region and the annual frequency of NW Pacific tropical cyclone are above normal. In the years with zonal wind anomalies, the circulation of high and low troposphere and the vertical motions in the troposphere have significant characteristics. In the time scale of short-range climate prediction, zonal wind anomalies in high and low troposphere are useful as a preliminary signal of the annual frequency prediction of NW Pacific tropical cyclones.

  10. An assessment of the ECMWF tropical cyclone ensemble forecasting system and its use for insurance loss predictions

    Science.gov (United States)

    Aemisegger, F.; Martius, O.; Wüest, M.

    2010-09-01

    Tropical cyclones (TC) are amongst the most impressive and destructive weather systems of Earth's atmosphere. The costs related to such intense natural disasters have been rising in recent years and may potentially continue to increase in the near future due to changes in magnitude, timing, duration or location of tropical storms. This is a challenging situation for numerical weather prediction, which should provide a decision basis for short term protective measures through high quality medium range forecasts on the one hand. On the other hand, the insurance system bears great responsibility in elaborating proactive plans in order to face these extreme events that individuals cannot manage independently. Real-time prediction and early warning systems are needed in the insurance sector in order to face an imminent hazard and minimise losses. Early loss estimates are important in order to allocate capital and to communicate to investors. The ECMWF TC identification algorithm delivers information on the track and intensity of storms based on the ensemble forecasting system. This provides a physically based framework to assess the uncertainty in the forecast of a specific event. The performance of the ECMWF TC ensemble forecasts is evaluated in terms of cyclone intensity and location in this study and the value of such a physically-based quantification of uncertainty in the meteorological forecast for the estimation of insurance losses is assessed. An evaluation of track and intensity forecasts of hurricanes in the North Atlantic during the years 2005 to 2009 is carried out. Various effects are studied like the differences in forecasts over land or sea, as well as links between storm intensity and forecast error statistics. The value of the ECMWF TC forecasting system for the global re-insurer Swiss Re was assessed by performing insurance loss predictions using their in-house loss model for several case studies of particularly devastating events. The generally known

  11. Impacts of category 5 tropical cyclone Fantala (April 2016) on Farquhar Atoll, Seychelles Islands, Indian Ocean

    Science.gov (United States)

    Duvat, Virginie K. E.; Volto, Natacha; Salmon, Camille

    2017-12-01

    This paper provides new insights on the impacts of a category 5 tropical cyclone on Indian Ocean atoll reef islands. Using multi-date aerial imagery and field observations, the contribution of tropical cyclone Fantala to shoreline and island change, and to sediment production and transport, was assessed on Farquhar Atoll, Seychelles Islands. Results show that the two largest islands (> 3 km2) only suffered limited land loss (- 1.19 to - 8.35%) while small islets lost 13.17 to 28.45% of their initial land area. Islands and islets exhibited contrasting responses depending on their location, topography and vegetation type. Depending on islands, the retreat of the vegetation line occurred either along all shorelines, or along ocean shoreline only. The structure (wooded vs. grassy) and origin (native vs. introduced) of the vegetation played a major role in island response. Five days after the cyclone, beach width and beach area were multiplied by 1.5 to 10, depending on the setting, and were interpreted as resulting from both sediment reworking and the supply of large amounts of fresh sediments by the reef outer slopes to the island system. Fourth months after the cyclone, extended sheets of loose sediments were still present on the reef flat and in inter-islet channels and shallow lagoon waters, indicating continuing sediment transfer to islands. As a reminder (see Section 3.1.4), beach width uncertainty equals to 6 m for all beach sections.

  12. Simulated sensitivity of tropical cyclone track to the moisture in an idealized monsoon gyre

    Science.gov (United States)

    Yan, Ziyu; Ge, Xuyang; Guo, Bingyao

    2017-12-01

    In this study, the sensitivity of tropical cyclone (TC) track to the moisture condition in a nearby monsoon gyre (MG) is investigated. Numerical simulations reveal that TC track is highly sensitive to the spatial distribution of relative humidity (RH). In an experiment conducted with higher (lower) RH in the eastern (western) semicircle of an MG, the TC experiences a sharp northward turning. In contrast, when the RH pattern is reversed, the simulated TC does not show a sharp northward turning. The RH distribution modulates the intensity and structure of both the TC and MG, so that when the TC is initially embedded in a moister environment, convection is enhanced in the outer core, which favors an expansion of the outer core size. A TC with a larger outer size has greater beta-effect propagation, favoring a faster westward translational speed. Meanwhile, higher RH enhances the vorticity gradient within the MG and promotes a quicker attraction between the TC and MG centers through vorticity segregation process. These cumulative effects cause the TC to collocate with the MG center. Once the coalescence process takes place, the energy dispersion associated with the TC and MG is enhanced, which rapidly strengthens southwesterly flows on the eastern flanks. The resulting steering flow leads the TC to take a sharp northward track.

  13. Does it make sense to modify tropical cyclones? A decision-analytic assessment.

    Science.gov (United States)

    Klima, Kelly; Morgan, M Granger; Grossmann, Iris; Emanuel, Kerry

    2011-05-15

    Recent dramatic increases in damages caused by tropical cyclones (TCs) and improved understanding of TC physics have led DHS to fund research on intentional hurricane modification. We present a decision analytic assessment of whether it is potentially cost-effective to attempt to lower the wind speed of TCs approaching South Florida by reducing sea surface temperatures with wind-wave pumps. Using historical data on hurricanes approaching South Florida, we develop prior probabilities of how storms might evolve. The effects of modification are estimated using a modern TC model. The FEMA HAZUS-MH MR3 damage model and census data on the value of property at risk are used to estimate expected economic losses. We compare wind damages after storm modification with damages after implementing hardening strategies protecting buildings. We find that if it were feasible and properly implemented, modification could reduce net losses from an intense storm more than hardening structures. However, hardening provides "fail safe" protection for average storms that might not be achieved if the only option were modification. The effect of natural variability is larger than that of either strategy. Damage from storm surge is modest in the scenario studied but might be abated by modification.

  14. Predictability of tropical cyclone events on intraseasonal timescales with the ECMWF monthly forecast model

    Science.gov (United States)

    Elsberry, Russell L.; Jordan, Mary S.; Vitart, Frederic

    2010-05-01

    The objective of this study is to provide evidence of predictability on intraseasonal time scales (10-30 days) for western North Pacific tropical cyclone formation and subsequent tracks using the 51-member ECMWF 32-day forecasts made once a week from 5 June through 25 December 2008. Ensemble storms are defined by grouping ensemble member vortices whose positions are within a specified separation distance that is equal to 180 n mi at the initial forecast time t and increases linearly to 420 n mi at Day 14 and then is constant. The 12-h track segments are calculated with a Weighted-Mean Vector Motion technique in which the weighting factor is inversely proportional to the distance from the endpoint of the previous 12-h motion vector. Seventy-six percent of the ensemble storms had five or fewer member vortices. On average, the ensemble storms begin 2.5 days before the first entry of the Joint Typhoon Warning Center (JTWC) best-track file, tend to translate too slowly in the deep tropics, and persist for longer periods over land. A strict objective matching technique with the JTWC storms is combined with a second subjective procedure that is then applied to identify nearby ensemble storms that would indicate a greater likelihood of a tropical cyclone developing in that region with that track orientation. The ensemble storms identified in the ECMWF 32-day forecasts provided guidance on intraseasonal timescales of the formations and tracks of the three strongest typhoons and two other typhoons, but not for two early season typhoons and the late season Dolphin. Four strong tropical storms were predicted consistently over Week-1 through Week-4, as was one weak tropical storm. Two other weak tropical storms, three tropical cyclones that developed from precursor baroclinic systems, and three other tropical depressions were not predicted on intraseasonal timescales. At least for the strongest tropical cyclones during the peak season, the ECMWF 32-day ensemble provides

  15. The impacts of tropical cyclones on the net carbon balance of eastern US forests (1851-2000)

    Science.gov (United States)

    Fisk, J. P.; Hurtt, G. C.; Chambers, J. Q.; Zeng, H.; Dolan, K. A.; Negrón-Juárez, R. I.

    2013-12-01

    In temperate forests of the eastern US, tropical cyclones are a principal agent of catastrophic wind damage, with dramatic impacts on the structure and functioning of forests. Substantial progress has been made to quantify forest damage and resulting gross carbon emissions from tropical cyclones. However, the net effect of storms on the carbon balance of forests depends not only on the biomass lost in single events, but also on the uptake during recovery from a mosaic of past events. This study estimates the net impacts of tropical cyclones on the carbon balance of US forests over the period 1851-2000. To track both disturbance and recovery and to isolate the effects of storms, a modeling framework is used combining gridded historical estimates of mortality and damage with a mechanistic model using an ensemble approach. The net effect of tropical cyclones on the carbon balance is shown to depend strongly on the spatial and temporal scales of analysis. On average, tropical cyclones contribute a net carbon source over latter half of the 19th century. However, throughout much of the 20th century a regional carbon sink is estimated resulting from periods of forest recovery exceeding damage. The large-scale net annual flux resulting from tropical cyclones varies by up to 50 Tg C yr-1, an amount equivalent to 17%-36% of the US forest carbon sink.

  16. The impacts of tropical cyclones on the net carbon balance of eastern US forests (1851–2000)

    International Nuclear Information System (INIS)

    Fisk, J P; Hurtt, G C; Dolan, K A; Chambers, J Q; Zeng, H; Negrón-Juárez, R I

    2013-01-01

    In temperate forests of the eastern US, tropical cyclones are a principal agent of catastrophic wind damage, with dramatic impacts on the structure and functioning of forests. Substantial progress has been made to quantify forest damage and resulting gross carbon emissions from tropical cyclones. However, the net effect of storms on the carbon balance of forests depends not only on the biomass lost in single events, but also on the uptake during recovery from a mosaic of past events. This study estimates the net impacts of tropical cyclones on the carbon balance of US forests over the period 1851–2000. To track both disturbance and recovery and to isolate the effects of storms, a modeling framework is used combining gridded historical estimates of mortality and damage with a mechanistic model using an ensemble approach. The net effect of tropical cyclones on the carbon balance is shown to depend strongly on the spatial and temporal scales of analysis. On average, tropical cyclones contribute a net carbon source over latter half of the 19th century. However, throughout much of the 20th century a regional carbon sink is estimated resulting from periods of forest recovery exceeding damage. The large-scale net annual flux resulting from tropical cyclones varies by up to 50 Tg C yr −1 , an amount equivalent to 17%–36% of the US forest carbon sink. (letter)

  17. Wind data collected by a fixed-wing aircraft in the vicinity of a tropical cyclone over the south China coastal waters

    Energy Technology Data Exchange (ETDEWEB)

    Chan, P.W.; Hon, K.K. [Hong Kong Observatory, Kowloon, HK (China); Foster, S. [Aventech Research Inc., Ontario (Canada)

    2011-06-15

    The fixed-wing aircraft of Government Flying Service of the Hong Kong Government has recently equipped with an upgraded meteorological measuring system. This system provides horizontal wind velocity components up to 90 m/s at an accuracy of 0.5 m/s for straight and level flight. Besides search and rescue (SAR) missions, this aircraft is also used for windshear and turbulence investigation flights at the Hong Kong International Airport. In a SAR operation in July 2009, the aircraft flew close to the eye of tropical cyclone Molave, when it was located at about 200 km to the east of Hong Kong over the south China coastal waters. The aircraft provided valuable information about the winds in association with Molave because aircraft reconnaissance for tropical cyclones is not carried out for South China Sea. Based on the aircraft measurements, the 1-second mean wind reached the maximum value of 88 knots at a height of 200 m above mean sea level. Assuming a power law with altitude with an exponent of 0.11 over open waters, the corresponding 1-second mean wind at a height of 10 m would be about 63 knots. The maximum 10-minute mean wind reached 69 knots with an average height of 260 m above mean sea level. The corresponding mean at 10 m would be about 48 knots. As such, based on the aircraft measurements (in which the aircraft might not fly into the areas of maximum winds associated with the tropical cyclone), Molave had at least a strength of tropical storm to severe tropical storm at the times of the measurements. Nowadays, the determination of the intensity of tropical cyclones over the South China Sea is normally based on remote sensing data only (e.g. radar and satellite observations). To the knowledge of the authors, the results presented in the paper are the first time that direct measurements of the winds near the centre of a tropical cyclone over the northern part of the South China Sea are made with an aircraft. Apart from the mean wind and gust, other properties

  18. Sedimentary Reconstructions of Tropical Cyclone Activity over the Past 1500 Years from Blue Holes in the Caribbean

    Science.gov (United States)

    Wallace, E. J.; Donnelly, J. P.; van Hengstum, P. J.; Wiman, C.; McKeon, K.; LaBella, A.; Sullivan, R.; Winkler, T. S.; Woodruff, J. D.; Hawkes, A.; Maio, C. V.

    2017-12-01

    Given the devastating socioeconomic impacts of tropical cyclones, it is of critical importance to quantify the risk of such storms to local human populations. However, this is difficult to accomplish given that historical tropical cyclone records are short and incomplete. A new array of sedimentary reconstructions from coastal basins record significant temporal variability in intense hurricane landfalls over the last several thousands of years. Unfortunately, these reconstructions are often limited to documenting changes in hurricane landfalls at one location. Here we present a larger spatial analysis of the changing frequency of hurricanes in the tropical Atlantic using near annually resolved records of intense hurricane events in blue holes from three islands in the Caribbean. The first record is a 1500-year record from South Andros Island on the Great Bahama Bank. This record is corroborated by cores collected from an adjacent blue hole. The second record is an 1100-year record from Long Island situated approximately 265 km southeast of South Andros. The final record is a 1000-year record from Caicos Island. All three carbonate islands are positioned in the western North Atlantic Ocean along the trackway of many storms originating in the Caribbean and Atlantic basins. All records contain coarse grained event deposits that correlate with known historical intense hurricane strikes in the Bahamas, within age uncertainties, including Hurricane Joaquin in 2015 at Long Island and the 1945 category 4 storm at South Andros. Over the past 1500 years, all three sedimentary archives show evidence of active and quiescent periods of hurricane activity. In particular, these records suggest that the Caribbean has experienced a higher frequency of hurricane events in intervals over of the past 1500 years than in the historical interval. However, the differences in hurricane frequency among the three records suggest regional controls on hurricane activity in the Atlantic.

  19. Piecewise Potential Vorticity Inversion for Intense Extratropical Cyclones

    Science.gov (United States)

    Seiler, C.; Zwiers, F. W.

    2017-12-01

    Global climate models (GCMs) tend to simulate too few intense extratropical cyclones (ETCs) in the Northern Hemisphere (NH) under historic climate conditions. This bias may arise from the interactions of multiple drivers, including surface temperature gradients, latent heating in the lower troposphere, and the upper-level jet stream. Previous attempts to quantify the importance of these drivers include idealized model experiments or statistical approaches. The first method however cannot easily be implemented for a multi-GCM ensemble, and the second approach does not disentangle the interactions among drivers, nor does it prove causality. An alternative method that overcomes these limitations is piecewise potential vorticity inversion (PPVI). PPVI derives the wind and geopotential height fields by inverting potential vorticity (PV) for discrete atmospheric levels. Despite being a powerful diagnostic tool, PPVI has primarily been used to study the dynamics of individual events only. This study presents the first PPVI climatology for the 5% most intense NH ETCs that occurred from 1980 to 2016. Conducting PPVI to 3273 ETC tracks identified in ERA-Interim reanalysis, we quantified the contributions from 3 atmospheric layers to ETC intensity. The respective layers are the surface (1000 hPa), a lower atmospheric level (700-850 hPa) and an upper atmospheric level (100-500 hPa) that are associated with the contributions from surface temperature gradients, latent heating, and the jet stream, respectively. Results show that contributions are dominated by the lower level (40%), followed by the upper level (20%) and the surface (17%), while the remaining 23% are associated with the background flow. Contributions from the surface and the lower level are stronger in the western ocean basins owed to the presence of the warm ocean currents, while contributions from the upper level are stronger in the eastern basins. Vertical cross sections of ETC-centered composites show an

  20. An Evaluation of 700 mb Aircraft Reconnaissance Data for Selected Northwest Pacific Tropical Cyclones.

    Science.gov (United States)

    1983-09-01

    ccesearch flights inte both Atlantic and ncr-.hwust Pacific tropical cyclones. Infcrmation providal by these studies expanded and, in some cases, altered...This assumption iaplies t at the curl of the tangential frictional drag is equal to zero. This further implies that the partial derivative of the sur...20) at 30 NM1, prior to the period of most rapidl deepening, Is reflecti at 60 NNl, and possibly at 90 NMl. In the case of super typhoon. rip (Fig

  1. Processes setting the characteristics of sea surface cooling induced by tropical cyclones

    OpenAIRE

    Vincent, E.M.; Lengaigne, Matthieu; Madec, G.; Vialard, Jérôme; Samson, G.; Jourdain, N.C.; Menkès, Christophe; Jullien, S.

    2012-01-01

    A 1/2 degrees resolution global ocean general circulation model is used to investigate the processes controlling sea surface cooling in the wake of tropical cyclones (TCs). Wind forcing related to more than 3000 TCs occurring during the 1978-2007 period is blended with the CORE II interannual forcing, using an idealized TC wind pattern with observed magnitude and track. The amplitude and spatial characteristics of the TC-induced cooling are consistent with satellite observations, with an aver...

  2. Simulation of tropical cyclone activity over the western North Pacific based on CMIP5 models

    Science.gov (United States)

    Shen, Haibo; Zhou, Weican; Zhao, Haikun

    2017-09-01

    Based on the Coupled Model Inter-comparison Project 5 (CMIP5) models, the tropical cyclone (TC) activity in the summers of 1965-2005 over the western North Pacific (WNP) is simulated by a TC dynamically downscaling system. In consideration of diversity among climate models, Bayesian model averaging (BMA) and equal-weighed model averaging (EMA) methods are applied to produce the ensemble large-scale environmental factors of the CMIP5 model outputs. The environmental factors generated by BMA and EMA methods are compared, as well as the corresponding TC simulations by the downscaling system. Results indicate that BMA method shows a significant advantage over the EMA. In addition, impacts of model selections on BMA method are examined. To each factor, ten models with better performance are selected from 30 CMIP5 models and then conduct BMA, respectively. As a consequence, the ensemble environmental factors and simulated TC activity are similar with the results from the 30 models' BMA, which verifies the BMA method can afford corresponding weight for each model in the ensemble based on the model's predictive skill. Thereby, the existence of poor performance models will not particularly affect the BMA effectiveness and the ensemble outcomes are improved. Finally, based upon the BMA method and downscaling system, we analyze the sensitivity of TC activity to three important environmental factors, i.e., sea surface temperature (SST), large-scale steering flow, and vertical wind shear. Among three factors, SST and large-scale steering flow greatly affect TC tracks, while average intensity distribution is sensitive to all three environmental factors. Moreover, SST and vertical wind shear jointly play a critical role in the inter-annual variability of TC lifetime maximum intensity and frequency of intense TCs.

  3. Is a changing climate affecting the tropical cyclone behavior of Cape Verde?

    Science.gov (United States)

    Emmenegger, T. W.; Mann, M. E.; Evans, J. L.

    2016-12-01

    An existing dataset of synthetic tropical cyclone (TC) tracks derived from climate change simulations were used to explore TC variability within a 250 km radius of the Cape Verde Islands (16.5388N, 23.0418W). The synthetic sets were examined according to genesis point location, track projection, intensity, frequency, and seasonality within the observational era (1851 AD to present). These factors of TC variability have been shown to be strongly related to climate oscillations, thus the historical era was grouped by the increasing and decreasing regimes of sea surface temperature (SST) in the main development region (MDR) of the Atlantic Ocean. Numerous studies have examined Atlantic Basin activity throughout this era; the goal of this study is to investigate possible variations in TC behavior around Cape Verde, ultimately determining whether Cape Verde experiences similar fluctuations in activity as observed basin-wide. We find that several facets of TC variability such as intensity, seasonality, and genesis point location around Cape Verde are not significantly different to that of the entire basin, thus forecasts of the entire basin in these respects may also apply to our site. A long-term trend of increasing TC frequency can be identified basin-wide within the observed set, yet activity around Cape Verde does not display this same behavior observably or in any synthetic set. A relationship between the location of genesis points and the regimes of SST fluctuation is shown to be existent. We find both more observed and synthetic genesis points within the vicinity of Cape Verde during cool periods, and an eastward and equatorward shift in cyclogenesis is evident during warm regimes. This southeastern shift in genesis points attributes to the increased intensities of TCs seen during periods of warmer SST. Years of increased SST are additionally linked to an earlier seasonality in Cape Verde.

  4. Reconstruction of the North Atlantic tropical cyclones in Azores for the last 800 years.

    Science.gov (United States)

    Rubio-Ingles, Maria Jesus; Sánchez, Guiomar; Trigo, Ricardo; Francus, Pierre; Gonçalves, Vitor; Raposeiro, Pedro; Freitas, Conceiçao; Borges, Paolo; Hernández, Armand; Bao, Roberto; Vázquez-Loureiro, David; Andrade, Cesar; Sáez, Alberto; Giralt, Santiago

    2014-05-01

    The variability of North Atlantic tropical storms has been the focus of several studies. Duration and seasonality has been attributed to a number of climate patterns and processes such as El Niño-Southern Oscillation, Atlantic Meridional Mode, African easterly waves, and atmospheric Rossby waves, but their tracks have been widely related to the North Atlantic Oscillation. Several authors have pointed out an increase and track shifting of North Atlantic tropical cyclones since 1995 with increased probability of these turning north far away from the North American continent. However, this cannot be regarded as an infrequent phenomenon as most proxy records from the Atlantic North have shown the existence of similar patterns in the past. Sao Miguel Island (Azores archipelago, Portugal) is settled in the middle of the Atlantic Ocean. This location makes this island an excellent natural laboratory to record shifts on North Atlantic tropical storms tracks that can reach the archipelago as low intensity hurricanes (e.g. Nadine in 2012) or downgraded to tropical storm (e.g. Grace in 2009). In the present work, lake sediment records have been used as a proxy sensor of tropical storms. Lagoa Azul is located inside Sete Cidades volcanic caldera and its catchment is characterized by stepped and forested caldera walls. Tropical storms and heavy rainfalls produce a flashy and substantial enhancement in the erosion of the catchment, increasing the sediments reaching the lake by rockfalls deposits (in littoral zones) and flood events deposits (in offshore zones). These flood events can be recognized in the sedimentary record as lobe deposits dominated by terrestrial components. It can be found in the sedimentary record and the bathymetry. Instrumental meteorological data and historical records have been compiled to reconstruct the most recent history of the North Atlantic tropical storms that have landed or affected the Sao Miguel Island (Andrade et al., 2008). In addition, a 1

  5. Ocean waves from tropical cyclones in the Gulf of Mexico and the effect of climate change

    Science.gov (United States)

    Appendini, C. M.; Pedrozo-Acuña, A.; Meza-Padilla, R.; Torres-Freyermuth, A.; Cerezo-Mota, R.; López-González, J.

    2016-12-01

    To generate projections of wave climate associated to tropical cyclones is a challenge due to their short historical record of events, their low occurrence, and the poor wind field resolution in General Circulation Models. Synthetic tropical cyclones provide an alternative to overcome such limitations, improving robust statistics under present and future climates. We use synthetic events to characterize present and future wave climate associated with tropical cyclones in the Gulf of Mexico. The NCEP/NCAR atmospheric reanalysis and the Coupled Model Intercomparison Project Phase 5 models NOAA/GFDL CM3 and UK Met Office HADGEM2-ES, were used to derive present and future wave climate under RCPs 4.5 and 8.5. The results suggest an increase in wave activity for the future climate, particularly for the GFDL model that shows less bias in the present climate, although some areas are expected to decrease the wave energy. The practical implications of determining the future wave climate is exemplified by means of the 100-year design wave, where the use of the present climate may result in under/over design of structures, since the lifespan of a structure includes the future wave climate period.

  6. Rapid wave and storm surge warning system for tropical cyclones in Mexico

    Science.gov (United States)

    Appendini, C. M.; Rosengaus, M.; Meza, R.; Camacho, V.

    2015-12-01

    The National Hurricane Center (NHC) in Miami, is responsible for the forecast of tropical cyclones in the North Atlantic and Eastern North Pacific basins. As such, Mexico, Central America and Caribbean countries depend on the information issued by the NHC related to the characteristics of a particular tropical cyclone and associated watch and warning areas. Despite waves and storm surge are important hazards for marine operations and coastal dwellings, their forecast is not part of the NHC responsibilities. This work presents a rapid wave and storm surge warning system based on 3100 synthetic tropical cyclones doing landfall in Mexico. Hydrodynamic and wave models were driven by the synthetic events to create a robust database composed of maximum envelops of wind speed, significant wave height and storm surge for each event. The results were incorporated into a forecast system that uses the NHC advisory to locate the synthetic events passing inside specified radiuses for the present and forecast position of the real event. Using limited computer resources, the system displays the information meeting the search criteria, and the forecaster can select specific events to generate the desired hazard map (i.e. wind, waves, and storm surge) based on the maximum envelop maps. This system was developed in a limited time frame to be operational in 2015 by the National Hurricane and Severe Storms Unit of the Mexican National Weather Service, and represents a pilot project for other countries in the region not covered by detailed storm surge and waves forecasts.

  7. Analyzing the Response of Climate Perturbations to (Tropical) Cyclones using the WRF Model

    Science.gov (United States)

    Tewari, M.; Mittal, R.; Radhakrishnan, C.; Cipriani, J.; Watson, C.

    2015-12-01

    An analysis of global climate models shows considerable changes in the intensity and characteristics of future, warm climate cyclones. At regional scales, deviations in cyclone characteristics are often derived using idealized perturbations in the humidity, temperature and surface conditions. In this work, a more realistic approach is adopted by applying climate perturbations from the Community Climate System Model (CCSM4) to ERA-interim data to generate the initial and boundary conditions for future climate simulations. The climate signal perturbations are generated from the differences in 21 years of mean data from CCSM4 with representative concentration pathways (RCP8.5) for the periods: (a) 2070-2090 (future climate), (b) 2025-2045 (near-future climate) and (c) 1985-2005 (current climate). Four individual cyclone cases are simulated with and without climate perturbations using the Weather Research and Forecasting model with a nested configuration. Each cyclone is characterized by variations in intensity, landfall location, precipitation and societal damage. To calculate societal damage, we use the recently introduced Cyclone Damage Potential (CDP) index evolved from the Willis Hurricane Index (WHI). As CDP has been developed for general societal applications, this work should provide useful insights for resilience analyses and industry (e.g., re-insurance).

  8. A Statistical Cyclone Intensity Prediction (SCIP) model for the Bay of ...

    Indian Academy of Sciences (India)

    tive character and impact on human activities. Three elements associated with a cyclone which cause destruction, are heavy and prolonged rain, storm surge and very strong winds. In tropical countries like India, where thick population exists along the large segments of the coasts, it is one of the most disastrous events.

  9. A global historical data set of tropical cyclone exposure (TCE-DAT)

    Science.gov (United States)

    Geiger, Tobias; Frieler, Katja; Bresch, David N.

    2018-01-01

    Tropical cyclones pose a major risk to societies worldwide, with about 22 million directly affected people and damages of USD 29 billion on average per year over the last 20 years. While data on observed cyclones tracks (location of the center) and wind speeds are publicly available, these data sets do not contain information about the spatial extent of the storm and people or assets exposed. Here, we apply a simplified wind field model to estimate the areas exposed to wind speeds above 34, 64, and 96 knots (kn). Based on available spatially explicit data on population densities and gross domestic product (GDP) we estimate (1) the number of people and (2) the sum of assets exposed to wind speeds above these thresholds accounting for temporal changes in historical distribution of population and assets (TCE-hist) and assuming fixed 2015 patterns (TCE-2015). The associated spatially explicit and aggregated country-event-level exposure data (TCE-DAT) cover the period 1950 to 2015 and are freely available at https://doi.org/10.5880/pik.2017.011 (Geiger at al., 2017c). It is considered key information to (1) assess the contribution of climatological versus socioeconomic drivers of changes in exposure to tropical cyclones, (2) estimate changes in vulnerability from the difference in exposure and reported damages and calibrate associated damage functions, and (3) build improved exposure-based predictors to estimate higher-level societal impacts such as long-term effects on GDP, employment, or migration. We validate the adequateness of our methodology by comparing our exposure estimate to estimated exposure obtained from reported wind fields available since 1988 for the United States. We expect that the free availability of the underlying model and TCE-DAT will make research on tropical cyclone risks more accessible to non-experts and stakeholders.

  10. An Observing System Simulation Experiment (OSSE to Assess the Impact of Doppler Wind Lidar (DWL Measurements on the Numerical Simulation of a Tropical Cyclone

    Directory of Open Access Journals (Sweden)

    Lei Zhang

    2010-01-01

    Full Text Available The importance of wind observations has been recognized for many years. However, wind observations—especially three-dimensional global wind measurements—are very limited. A satellite-based Doppler Wind Lidar (DWL is proposed to measure three-dimensional wind profiles using remote sensing techniques. Assimilating these observations into a mesoscale model is expected to improve the performance of the numerical weather prediction (NWP models. In order to examine the potential impact of the DWL three-dimensional wind profile observations on the numerical simulation and prediction of tropical cyclones, a set of observing simulation system experiments (OSSEs is performed using the advanced research version of the Weather Research and Forecasting (WRF model and its three-dimensional variational (3DVAR data assimilation system. Results indicate that assimilating the DWL wind observations into the mesoscale numerical model has significant potential for improving tropical cyclone track and intensity forecasts.

  11. Variability of tropical cyclone rapid intensification in the North Atlantic and its relationship with climate variations

    Science.gov (United States)

    Wang, Chunzai; Wang, Xidong; Weisberg, Robert H.; Black, Michael L.

    2017-12-01

    The paper uses observational data from 1950 to 2014 to investigate rapid intensification (RI) variability of tropical cyclones (TCs) in the North Atlantic and its relationships with large-scale climate variations. RI is defined as a TC intensity increase of at least 15.4 m/s (30 knots) in 24 h. The seasonal RI distribution follows the seasonal TC distribution, with the highest number in September. Although an RI event can occur anywhere over the tropical North Atlantic (TNA), there are three regions of maximum RI occurrence: (1) the western TNA of 12°N-18°N and 60°W-45°W, (2) the Gulf of Mexico and the western Caribbean Sea, and (3) the open ocean southeast and east of Florida. RI events also show a minimum value in the eastern Caribbean Sea north of South America—a place called a hurricane graveyard due to atmospheric divergence and subsidence. On longer time scales, RI displays both interannual and multidecadal variability, but RI does not show a long-term trend due to global warming. The top three climate indices showing high correlations with RI are the June-November ENSO and Atlantic warm pool indices, and the January-March North Atlantic oscillation index. It is found that variabilities of vertical wind shear and TC heat potential are important for TC RI in the hurricane main development region, whereas relative humidity at 500 hPa is the main factor responsible for TC RI in the eastern TNA. However, the large-scale oceanic and atmospheric variables analyzed in this study do not show an important role in TC RI in the Gulf of Mexico and the open ocean southeast and east of Florida. This suggests that other factors such as small-scale changes of oceanic and atmospheric variables or TC internal processes may be responsible for TC RI in these two regions. Additionally, the analyses indicate that large-scale atmospheric and oceanic variables are not critical to TC genesis and formation; however, once a tropical depression forms, large-scale climate

  12. The influence of tropical cyclones in gully formation: A case study from Madagascar

    Science.gov (United States)

    Raveloson, Andrea; Szabó, Amanda; Székely, Balázs

    2017-04-01

    Soil erosion has been recognized as the main cause of land degradation worldwide and gully erosion is currently considered as one of the most striking erosion type. Madagascar is one of the most affected country with special gullies called lavakas. Despite of the several decade long research, the reasons and the mechanism of their formation are still unknown. Anthropogenic factors, specific combination of lithology, weathering profile and topography are most often stated but numerous publications mention climate as a main factor. We studied the role of climatic conditions and tropical cyclones since 2014. This study aims to analyze lavaka distribution with GIS methods and to find relation between lavaka density, lavaka density change and climatic conditions. Lavakas have been identified in 17 selected study sites by visual recognition using satellite images from years 2000-2009 and 2003-2008. A total of 1330 km2 has been processed at 1 km x 1 km grid cell scale. The total number of recognized lavakas was 1592 in the 17 sites that corresponds to a varying lavaka density of 0 and 8.53 km-2. Data show that the appearance of lavakas is related to the spatial distribution and the inter-annual variability of precipitation and this connection is further strengthened by the tropical cyclones. Furthermore, among our 17 study sites changes in lavaka density were observed between 2000-2009 and 2003-2008 only in areas frequently hit by cyclones in the last 20 years.

  13. Predicting Tropical Cyclogenesis with a Global Mesoscale Model: Preliminary Results with Very Severe Cyclonic Storm Nargis (2008)

    Science.gov (United States)

    Shen, B.; Tao, W.; Atlas, R.

    2008-12-01

    Very Severe Cyclonic Storm Nargis, the deadliest named tropical cyclone (TC) in the North Indian Ocean Basin, devastated Burma (Myanmar) in May 2008, causing tremendous damage and numerous fatalities. An increased lead time in the prediction of TC Nargis would have increased the warning time and may therefore have saved lives and reduced economic damage. Recent advances in high-resolution global models and supercomputers have shown the potential for improving TC track and intensity forecasts, presumably by improving multi-scale simulations. The key but challenging questions to be answered include: (1) if and how realistic, in terms of timing, location and TC general structure, the global mesoscale model (GMM) can simulate TC genesis and (2) under what conditions can the model extend the lead time of TC genesis forecasts. In this study, we focus on genesis prediction for TCs in the Indian Ocean with the GMM. Preliminary real-data simulations show that the initial formation and intensity variations of TC Nargis can be realistically predicted at a lead time of up to 5 days. These simulations also suggest that the accurate representations of a westerly wind burst (WWB) and an equatorial trough, associated with monsoon circulations and/or a Madden-Julian Oscillation (MJO), are important for predicting the formation of this kind of TC. In addition to the WWB and equatorial trough, other favorable environmental conditions will be examined, which include enhanced monsoonal circulation, upper-level outflow, low- and middle-level moistening, and surface fluxes.

  14. Assessing extreme sea levels due to tropical cyclones in the Atlantic basin

    Science.gov (United States)

    Muis, Sanne; Lin, Ning; Verlaan, Martin; Winsemius, Hessel; Vatvani, Deepak; Ward, Philip; Aerts, Jeroen

    2017-04-01

    Tropical cyclones (TCs), including hurricanes and typhoons, are characterised by high wind speeds and low pressure and cause dangerous storm surges in coastal areas. Over the last 50 years, storm surge incidents in the Atlantic accounted for more than 1,000 deaths in the United Stated. Recent flooding disasters, such as Hurricane Katrina in New Orleans in 2005 and, Hurricane Sandy in New York in 2012, exemplify the significant TC surge risk in the United States. In this contribution, we build on Muis et al. (2016), and present a new modelling framework to simulate TC storm surges and estimate their probabilities for the Atlantic basin. In our framework we simulate the surge levels by forcing the Global Tide and Surge Model (GTSM) with wind and pressure fields from TC events. To test the method, we apply it to historical storms that occurred between 1988 and 2015 in the Atlantic Basin. We obtain high-resolution meteorological forcing by applying a parametric hurricane model (Holland 1980; Lin and Chavas 2012) to the TC extended track data set (Demuth et al. 2006; updated), which describes the position, intensity and size of the historical TCs. Preliminary results show that this framework is capable of accurately reproducing the main surge characteristics during past events, including Sandy and Katrina. While the resolution of GTSM is limited for local areas with a complex bathymetry, the overall performance of the model is satisfactory for the basin-scale application. For an accurate assessment of risk to coastal flooding in the Atlantic basin it is essential to provide reliable estimates of surge probabilities. However, the length of observed TC tracks is too short to accurately estimate the probabilities of extreme TC events. So next steps are to statistically extend the observed record to many thousands of years (e.g., Emanuel et al. 2006), in order to force GTSM with a large number of synthetic storms. Based on these synthetic simulations, we would be able to

  15. Analysis of the interannual variability of tropical cyclones striking the California coast based on statistical downscaling

    Science.gov (United States)

    Mendez, F. J.; Rueda, A.; Barnard, P.; Mori, N.; Nakajo, S.; Espejo, A.; del Jesus, M.; Diez Sierra, J.; Cofino, A. S.; Camus, P.

    2016-02-01

    Hurricanes hitting California have a very low ocurrence probability due to typically cool ocean temperature and westward tracks. However, damages associated to these improbable events would be dramatic in Southern California and understanding the oceanographic and atmospheric drivers is of paramount importance for coastal risk management for present and future climates. A statistical analysis of the historical events is very difficult due to the limited resolution of atmospheric and oceanographic forcing data available. In this work, we propose a combination of: (a) statistical downscaling methods (Espejo et al, 2015); and (b) a synthetic stochastic tropical cyclone (TC) model (Nakajo et al, 2014). To build the statistical downscaling model, Y=f(X), we apply a combination of principal component analysis and the k-means classification algorithm to find representative patterns from a potential TC index derived from large-scale SST fields in Eastern Central Pacific (predictor X) and the associated tropical cyclone ocurrence (predictand Y). SST data comes from NOAA Extended Reconstructed SST V3b providing information from 1854 to 2013 on a 2.0 degree x 2.0 degree global grid. As data for the historical occurrence and paths of tropical cycloneas are scarce, we apply a stochastic TC model which is based on a Monte Carlo simulation of the joint distribution of track, minimum sea level pressure and translation speed of the historical events in the Eastern Central Pacific Ocean. Results will show the ability of the approach to explain seasonal-to-interannual variability of the predictor X, which is clearly related to El Niño Southern Oscillation. References Espejo, A., Méndez, F.J., Diez, J., Medina, R., Al-Yahyai, S. (2015) Seasonal probabilistic forecasting of tropical cyclone activity in the North Indian Ocean, Journal of Flood Risk Management, DOI: 10.1111/jfr3.12197 Nakajo, S., N. Mori, T. Yasuda, and H. Mase (2014) Global Stochastic Tropical Cyclone Model Based on

  16. Using Multispectral False Color Imaging to Characterize Tropical Cyclone Structure and Environment

    Science.gov (United States)

    Cossuth, J.; Bankert, R.; Richardson, K.; Surratt, M. L.

    2016-12-01

    The Naval Research Laboratory's (NRL) tropical cyclone (TC) web page (http://www.nrlmry.navy.mil/TC.html) has provided nearly two decades of near real-time access to TC-centric images and products by TC forecasters and enthusiasts around the world. Particularly, microwave imager and sounder information that is featured on this site provides crucial internal storm structure information by allowing users to perceive hydrometeor structure, providing key details beyond cloud top information provided by visible and infrared channels. Towards improving TC analysis techniques and helping advance the utility of the NRL TC webpage resource, new research efforts are presented. This work demonstrates results as well as the methodology used to develop new automated, objective satellite-based TC structure and intensity guidance and enhanced data fusion imagery products that aim to bolster and streamline TC forecast operations. This presentation focuses on the creation and interpretation of false color RGB composite imagery that leverages the different emissive and scattering properties of atmospheric ice, liquid, and vapor water as well as ocean surface roughness as seen by microwave radiometers. Specifically, a combination of near-realtime data and a standardized digital database of global TCs in microwave imagery from 1987-2012 is employed as a climatology of TC structures. The broad range of TC structures, from pinhole eyes through multiple eyewall configurations, is characterized as resolved by passive microwave sensors. The extraction of these characteristic features from historical data also lends itself to statistical analysis. For example, histograms of brightness temperature distributions allows a rigorous examination of how structural features are conveyed in image products, allowing a better representation of colors and breakpoints as they relate to physical features. Such climatological work also suggests steps to better inform the near-real time application of

  17. A New Tropical Cyclone Dynamic Initialization Technique Using High Temporal and Spatial Density Atmospheric Motion Vectors and Airborne Field Campaign Data

    Science.gov (United States)

    Hendricks, Eric A.; Bell, Michael M.; Elsberry, Russell L.; Velden, Chris S.; Cecil, Dan

    2016-01-01

    Background: Initialization of tropical cyclones in numerical weather prediction (NWP) systems is a great challenge: Mass-wind ?eld balance; Secondary circulation and heating; Asymmetries. There can be large adjustments in structure and intensity in the ?rst 24 hours if the initial vortex is not in balance: Spurious gravity waves; Spin-up (model and physics). Existing mesoscale NWP model TC (Tropical Cyclone) initialization strategies: Bogus vortex, cold start from global analyses; 3DVAR or 4DVAR, possibly with synthetic observations; EnKF (Ensemble Kalman Filter); Dynamic initialization. Dynamic initialization allows vortex to have improved balance and physics spin-up at the initial time (e.g., Hendricks et al. 2013, 2011; Nguyen and Chen 2011; Fiorino and Warner 1981; Hoke and Anthes 1976). Himawari-8 geostationary satellite has capability of continuous imagery (10-minutes) over the full disk: New GOES-R satellites will have same capability. This will allow for unprecedented observations of tropical cyclones. However, current data assimila1on systems are not capable of ingesting such high temporal observations (Atmospheric Mo1on Vectors - AMVs). Hourly AMVs are produced, and thinned to 100-kilometer spacing in the horizontal. An entirely new data assimilation concept is required to utilize these observations.

  18. Objective Tracking of Tropical Cyclones in the North-West Pacific Basin Based on Wind Field Information only

    Science.gov (United States)

    Leckebusch, G. C.; Befort, D. J.; Kruschke, T.

    2016-12-01

    Although only ca. 12% of the global insured losses of natural disasters occurred in Asia, there are two major reasons to be concerned about risks in Asia: a) The fraction of loss events was substantial higher with 39% of which 94% were due to atmospheric processes; b) Asia and especially China, is undergoing quick transitions and especially the insurance market is rapidly growing. In order to allow for the estimation of potential future (loss) impacts in East-Asia, in this study we further developed and applied a feature tracking system based on extreme wind speed occurrences to tropical cyclones, which was originally developed for extra-tropical cyclones (Leckebusch et al., 2008). In principle, wind fields will be identified and tracked once a coherent exceedance of local percentile thresholds is identified. The focus on severe wind impact will allow an objective link between the strength of a cyclone and its potential damages over land. The wind tracking is developed in such a way to be applicable also to course-gridded AOGCM simulation. In the presented configuration the wind tracking algorithm is applied to the Japanese reanalysis (JRA55) and TC Identification is based on 850hPa wind speeds (6h resolution) from 1979 to 2014 over the Western North Pacific region. For validation the IBTrACS Best Track archive version v03r8 is used. Out of all 904 observed tracks, about 62% can be matched to at least one windstorm event identified in JRA55. It is found that the relative amount of matched best tracks increases with the maximum intensity. Thus, a positive matching (hit rate) of above 98% for Violent Typhoons (VTY), above 90% for Very Strong Typhoons (VSTY), about 75% for Typhoons (TY), and still some 50% for less intense TCs (TD, TS, STS) is found. This result is extremely encouraging to apply this technique to AOGCM outputs and to derive information about affected regions and intensity-frequency distributions potentially changed under future climate conditions.

  19. Contrasting Chl-a responses to the tropical cyclones Thane and Phailin in the Bay of Bengal

    Digital Repository Service at National Institute of Oceanography (India)

    Vidya, P.J.; Das, S.; ManiMurali, R.

    cyclone (8-14 October 2013), and both occurred during the post-monsoon season. The present study examined the effect of cyclone intensity difference on the chlorophyll a (Chl-a) production in the BoB. Two and seven times Chl-a enhancement was observed...

  20. Ionospheric precursors of the intensification of isolated tropical cyclones according to the IKB-1300 and Cosmos-1809 satellite data

    Science.gov (United States)

    Kostin, V. M.; Belyaev, G. G.; Boichev, B.; Trushkina, E. P.; Ovcharenko, O. Ya.

    2015-03-01

    The ionospheric parameters were analyzed, which made it possible to distinguish several successive stages in the development of isolated tropical cyclones (TCs). Data were taken from the Cosmos-1809 and Intercosmos Bulgaria-1300 satellites, which passed over several dozen TCs. The first stage of TC development consists of a sharp increase in altitudinal substorm activity caused by a tropical disturbance and depression. During this stage, plasma density caverns extending over several hundreds of kilometers are observed in the nighttime upper ionosphere a day before the formation of a tropical storm or even a category-I hurricane. The second stage, typical of TCs with intensities reaching categories I and II, is the displacement of a wide plasma density maximum in the upper ionosphere from the geomagnetic equator into the region, the center of which along the geomagnetic field line is projected to 200-230 km altitudes at a TC latitude. The third stage, which is typical of TC categories III-V, consists of the formation of an additional Ne peak (with a width reaching 1000 km) near the TC zenith. This peak includes Δ Ne disturbances and is accompanied by electrostatic oscillations at the H+ and He+ cyclotron frequencies and at the lower hybrid resonance frequency and by electric fields that are projected into the magnetically conjugate region. The crossing of New Caledonia by the category-IV TC Harry was considered in detail. It was shown that the neutral particle ascending jet probably deviated along the meridian in this case.

  1. Coastal sea level response to the tropical cyclonic forcing in the northern Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Mehra, P.; Soumya, M.; Vethamony, P.; Vijaykumar, K.; Nair, T.M.B.; Agarvadekar, Y.; Jyoti, K.; Sudheesh, K.; Luis, R.; Lobo, S.; Halmalkar, B.

    –173, 2015 www.ocean-sci.net/11/159/2015/ doi:10.5194/os-11-159-2015 © Author(s) 2015. CC Attribution 3.0 License. Coastal sea level response to the tropical cyclonic forcing in the northern Indian Ocean P. Mehra1, M. Soumya1, P. Vethamony1, K. Vijaykumar1, T.... Note: sea level data at Colombo, Kochi, Karachi, Chabahar, Jask, Masirah, Minocoy and Hanimaadhoo are downloaded from www.gloss-sealevel.org and are shown with red stars. (Time is in Indian standard time (IST).) land locations of India are provided...

  2. An intrathermocline eddy and a tropical cyclone in the Bay of Bengal

    Digital Repository Service at National Institute of Oceanography (India)

    Gordon, A.L.; Shroyer, E.; Murty, V.S.N.

    RepoRts | 7:46218 | DOI: 10.1038/srep46218 www.nature.com/scientificreports An Intrathermocline Eddy and a tropical cyclone in the Bay of Bengal Arnold L. Gordon1, Emily Shroyer2 & V. S. N. Murty3 The Bay of Bengal, subjected to monsoonal forcing..., India. Correspondence and requests for materials should be addressed to A.L.G. (email: agordon@ldeo.columbia.edu) Received: 17 October 2016 Accepted: 13 March 2017 Published: 12 April 2017 OPEN www.nature.com/scientificreports/ 2Scientific RepoRts | 7...

  3. Idealized tropical cyclone simulations of intermediate complexity: A test case for AGCMs

    Directory of Open Access Journals (Sweden)

    Kevin Reed

    2012-04-01

    Full Text Available The paper introduces a moist, deterministic test case of intermediate complexity for Atmospheric General Circulation Models (AGCMs. We suggest pairing an AGCM dynamical core with simple physical parameterizations to test the evolution of a single, idealized, initially weak vortex into a tropical cyclone. The initial conditions are based on an initial vortex seed that is in gradient-wind and hydrostatic balance. The suggested ``simple-physics'' package consists of parameterizations of bulk aerodynamic surface fluxes for moisture, sensible heat and momentum, boundary layer diffusion, and large-scale condensation. Such a configuration includes the important driving mechanisms for tropical cyclones, and leads to a rapid intensification of the initial vortex over a forecast period of ten days. The simple-physics test paradigm is not limited to tropical cyclones, and can be universally applied to other flow fields. The physical parameterizations are described in detail to foster model intercomparisons.The characteristics of the intermediate-complexity test case are demonstrated with the help of four hydrostatic dynamical cores that are part of the Community Atmosphere Model version 5 (CAM 5 developed at the National Center for Atmospheric Research (NCAR. In particular, these are the Finite-Volume, Spectral Element, and spectral transform Eulerian and semi-Lagrangian dynamical cores that are coupled to the simple-physics suite. The simulations show that despite the simplicity of the physics forcings the models develop the tropical cyclone at horizontal grid spacings of about 55 km and finer. The simple-physics simulations reveal essential differences in the storm's structure and strength due to the choice of the dynamical core. Similar differences are also seen in complex full-physics aqua-planet experiments with CAM 5 which serve as a motivator for this work. The results suggest that differences in complex full-physics simulations can be, at least

  4. Interannual variability of the South Pacific Convergence Zone and implications for tropical cyclone genesis

    Digital Repository Service at National Institute of Oceanography (India)

    Vincent, E.M.; Lengaigne, M.; Menkes, C.E.; Jourdain, N.C.; Marchesiello, P.; Madec, G.

    SPCZ con- trols the large scale environment favouring cyclonic activity have not yet been investigated. In addition, the characteristics of El Nin˜o events vary widely from one event to another, and the influence of this diversity on the SPCZ location... which the classification is performed) accu- rately summarizes the large-scale precipitation variability in the tropical South Pacific (on which the EOFs are con- structed). The same AHC applied to PC1–PC2 coordinates instead of latW–latE indices gives...

  5. Shock-like structures in the tropical cyclone boundary layer

    Science.gov (United States)

    Williams, Gabriel J.; Taft, Richard K.; McNoldy, Brian D.; Schubert, Wayne H.

    2013-06-01

    This paper presents high horizontal resolution solutions of an axisymmetric, constant depth, slab boundary layer model designed to simulate the radial inflow and boundary layer pumping of a hurricane. Shock-like structures of increasing intensity appear for category 1-5 hurricanes. For example, in the category 3 case, the u>(∂u/∂r>) term in the radial equation of motion produces a shock-like structure in the radial wind, i.e., near the radius of maximum tangential wind the boundary layer radial inflow decreases from approximately 22 m s-1 to zero over a radial distance of a few kilometers. Associated with this large convergence is a spike in the radial distribution of boundary layer pumping, with updrafts larger than 22 m s-1 at a height of 1000 m. Based on these model results, it is argued that observed hurricane updrafts of this magnitude so close to the ocean surface are attributable to the dry dynamics of the frictional boundary layer rather than moist convective dynamics. The shock-like structure in the boundary layer radial wind also has important consequences for the evolution of the tangential wind and the vertical component of vorticity. On the inner side of the shock the tangential wind tendency is essentially zero, while on the outer side of the shock the tangential wind tendency is large due to the large radial inflow there. The result is the development of a U-shaped tangential wind profile and the development of a thin region of large vorticity. In many respects, the model solutions resemble the remarkable structures observed in the boundary layer of Hurricane Hugo (1989).

  6. ESTIMATING THE BENEFIT OF TRMM TROPICAL CYCLONE DATA IN SAVING LIVES

    Science.gov (United States)

    Adler, Robert F.

    2005-01-01

    The Tropical Rainfall Measuring Mission (TRMM) is a joint NASA/JAXA research mission launched in late 1997 to improve our knowledge of tropical rainfall processes and climatology (Kummerow et ai., 2000; Adler et ai., 2003). In addition to being a highly successful research mission, its data are available in real time and operational weather agencies in the U.S. and internationally are using TRMM data and images to monitor and forecast hazardous weather (tropical cyclones, floods, etc.). For example, in 2004 TRMM data were used 669 times for determining tropical cyclone location fixes (National Research Council, 2004). TRMM flies at a relatively low altitude, 400 km, and requires orbit adjustment maneuvers to maintain altitude against the small drag of the atmosphere. There is enough fuel used for these maneuvers remaining on TRMM for the satellite to continue flying until 2011-12. However, most of the remaining fuel may be used to perform a controlled re-entry of the satellite into the Pacific Ocean. The fuel threshold for this operation will be reached in the summer of 2005, although the maneuver would actually occur in late 2006 or 2007. The full science mission would end in 2005 under the controlled re-entry option. This re-entry option is related to the estimated probability of injury (1/5,000) that might occur during an uncontrolled re-entry of the satellite. If the estimated probability of injury exceeds 1/10,000 a satellite is a candidate for a possible controlled re-entry. In the TRMM case the NASA Safety Office examined the related issues and concluded that, although TRMM exceeded the formal threshold, the use of TRMM data in the monitoring and forecasting of hazardous weather gave a public safety benefit that compensated for TRMM slightly exceeding the orbital debris threshold (Martin, 2002). This conclusion was based in part on results of an independent panel during a workshop on benefits of TRMM data in concluded that the benefit of TRMM data in saving

  7. Towards a climatology of tropical cyclone morphometric structures using a newly standardized passive microwave satellite dataset

    Science.gov (United States)

    Cossuth, J.; Hart, R. E.

    2013-12-01

    The structure of a tropical cyclone (TC) is a spatial representation of its organizational pattern and distribution of energy acquisition and release. Physical processes that react to both the external environment and its own internal dynamics manifest themselves in the TC shape. This structure depicts a specific phase in the TC's meteorological lifecycle, reflecting its past and potentially constraining its future development. For a number of reasons, a thorough objective definition of TC structures and an intercomparison of their varieties have been neglected. This lack of knowledge may be a key reason why TC intensity forecasts, despite numerical model improvements and theoretical advances, have been stagnant in recent years relative to track forecasts. Satellite microwave imagers provide multiple benefits in discerning TC structure, but compiling a research quality data set has been problematic due to several inherent technical and logistical issues. While there are multiple satellite sensors that incorporate microwave frequencies, inter-comparison between such sensors is limited by the different available channels, spatial resolutions, and calibration metrics between satellites, all of which provide inconsistencies in resolving TC structural features. To remedy these difficulties, a global archive of TCs as measured by all available US satellite microwave sensors is compiled and standardized. Using global historical best track data, TC microwave data is retrieved from the Defense Meteorological Satellite Program (DMSP) series (including all SSM/I and SSMIS), TMI, AMSR-E, and WindSat sensors. Standardization between sensors for each TC overpass are performed, including: 1) Recalibration of data from the 'ice scattering' channels to a common frequency (89GHz); 2) Resampling the DMSP series to a higher resolution using the Backus-Gilbert technique; and 3) Re-centering the TC center more precisely using the ARCHER technique (Wimmers and Velden 2010) to analyze the

  8. A numerical study of the role of the vertical structure of vorticity during tropical cyclone genesis

    International Nuclear Information System (INIS)

    Venkatesh, T N; Mathew, Joseph

    2010-01-01

    An eight-level axisymmetric model with simple parameterizations for clouds and the atmospheric boundary layer was developed to examine the evolution of vortices that are precursors to tropical cyclones. The effect of vertical distributions of vorticity, especially that arising from a merger of mid-level vortices, was studied by us to provide support for a new vortex-merger theory of tropical cyclone genesis. The basic model was validated with the analytical results available for the spin-down of axisymmetric vortices. With the inclusion of the cloud and boundary layer parameterizations, the evolution of deep vortices into hurricanes and the subsequent decay are simulated quite well. The effects of several parameters such as the initial vortex strength, radius of maximum winds, sea-surface temperature and latitude (Coriolis parameter) on the evolution were examined. A new finding is the manner in which mid-level vortices of the same strength decay and how, on simulated merger of these mid-level vortices, the resulting vortex amplifies to hurricane strength in a realistic time frame. The importance of sea-surface temperature on the evolution of full vortices was studied and explained. Also it was found that the strength of the surface vortex determines the time taken by the deep vortex to amplify to hurricane strength.

  9. Automatic Type Recognition and Mapping of Global Tropical Cyclone Disaster Chains (TDC

    Directory of Open Access Journals (Sweden)

    Ran Wang

    2016-10-01

    Full Text Available The catastrophic events caused by meteorological disasters are becoming more severe in the context of global warming. The disaster chains triggered by Tropical Cyclones induce the serious losses of population and economy. It is necessary to make the regional type recognition of Tropical Cyclone Disaster Chain (TDC effective in order to make targeted preventions. This study mainly explores the method of automatic recognition and the mapping of TDC and designs a software system. We constructed an automatic recognition system in terms of the characteristics of a hazard-formative environment based on the theory of a natural disaster system. The ArcEngine components enable an intelligent software system to present results by the automatic mapping approach. The study data comes from global metadata such as Digital Elevation Model (DEM, terrain slope, population density and Gross Domestic Product (GDP. The result shows that: (1 according to the characteristic of geomorphology type, we establish a type of recognition system for global TDC; (2 based on the recognition principle, we design a software system with the functions of automatic recognition and mapping; and (3 we validate the type of distribution in terms of real cases of TDC. The result shows that the automatic recognition function has good reliability. The study can provide the basis for targeted regional disaster prevention strategy, as well as regional sustainable development.

  10. Extreme meteorological events in nuclear power plant siting, excluding tropical cyclones

    International Nuclear Information System (INIS)

    1981-01-01

    This Safety Guide deals with the extremes of meteorological variables and the extreme meteorological phenomena in accordance with the general criteria of the Code. The Guide outlines a procedure based on the following steps: (1) The meteorological phenomena and variables are described and classified, according to their effects on safety. (2) Data sources are identified, and data are collected. (3) Meteorological variables such as air temperature are analysed to determine their design bases; and the design basis event in case of phenomena such as the design basis tornado is identified. (4) As appropriate, the design basis value for the variable, or the design basis for the phenomena (such as pressure drop and maximum wind speed of the design basis tornado), is defined. In the following sections, the general procedure for evaluating the design bases of extreme meteorological variables and phenomena is outlined. The procedure is then presented in detail for each variable or phenomenon considered. The variables characterizing the meteorological environment dealt with in this Guide are wind speed, atmospheric precipitation, and temperature. The extreme meteorological phenomena discussed here are the tornado and, briefly, the tropical cyclone, which is discussed more extensively in the Safety Guide on Design Basis Tropical Cyclone for Nuclear Power Plants (IAEA Safety Series No. 50-SG-S11B)

  11. An Intercomparison of GPS RO Retrievals with Colocated Analysis and In Situ Observations within Tropical Cyclones

    Directory of Open Access Journals (Sweden)

    Henry R. Winterbottom

    2010-01-01

    Full Text Available Observations from four Global Position System (GPS Radio Occultation (RO missions: Global Positioning System/Meteorology, CHAallenging Minisatellite Payload, Satellite de Aplicaciones Cientificas-C, and Constellation Observing System for Meteorology, Ionosphere and Climate and Taiwan's FORMOsa SATellite Mission #3 (COSMIC/FORMOSAT-3 are collected within a 600 km radius and ±180 minute temporal window of all observed tropical cyclones (TCs from 1995 to 2006 that were recorded in the global hurricane best-track reanalysis data set (Jarvinen et al. (1984; Davis et al. (1984. A composite analysis of tropical cyclone radial mean temperature and water vapor profiles is carried out using the GPS RO retrievals which are colocated with global analysis profiles and available in situ radiosonde observations. The differences between the respective observations and analysis profiles are quantified and the preliminary results show that the observations collected within TCs correspond favorably with both the analysis and radiosonde profiles which are colocated. It is concluded that GPS RO observations will contribute significantly to the understanding and modeling of TC structures, especially those related to vertical variability of the atmospheric state within TCs.

  12. Change in the tropical cyclone activity around Korea by the East Asian summer monsoon

    Science.gov (United States)

    Choi, Jae-Won; Cha, Yumi; Kim, Jeoung-Yun

    2017-12-01

    Correlation between the frequency of summer tropical cyclones (TCs) affecting Korea and the East Asian summer monsoon index (EASMI) was analyzed over the last 37 years. A clear positive correlation existed between the two variables, and this high positive correlation remained unchanged even when excluding El Niño-Southern Oscillation (ENSO) years. To investigate the causes of the positive correlation between the two variables in non-ENSO years, after the 8 years with the highest EASMI (high EASMI years) and the 8 years with the lowest EASMI (low EASMI years) were selected, and the average difference between the two phases was analyzed. In high EASMI years, in the difference between the two phases regarding 850 and 500 hPa streamline, anomalous cyclones were reinforced in the tropical and subtropical western North Pacific, while anomalous anticyclones were reinforced in mid-latitude East Asian areas. Due to these two anomalous pressure systems, anomalous southeasterlies developed near Korea, with these anomalous southeasterlies playing the role of anomalous steering flows making the TCs head toward areas near Korea. In addition, a monsoon trough strengthened more eastward, and TCs in high EASMI years occurred more in east ward over the western North Pacific.

  13. The Dependence of Tropical Cyclone Count and Size on Rotation Rate

    Science.gov (United States)

    Chavas, D. R.; Reed, K. A.

    2017-12-01

    Both theory and idealized equilibrium modeling studies indicate that tropical cyclone size decreases with background rotation rate. In contrast, in real-world observations size tends to increase with latitude. Here we seek to resolve this apparent contradiction via a set of reduced-complexity global aquaplanet simulations with varying planetary rotation rates using the NCAR Community Atmosphere Model 5. The latitudinal distribution of both storm count and size are found to vary markedly with rotation rate, yielding insight into the dynamical constraints on tropical cyclone activity on a rotating planet. Moreover, storm size is found to vary non-monotonically with latitude, indicating that non-equilibrium effects are crucial to the life-cycle evolution of size in nature. Results are then compared to experiments in idealized, time-dependent limited-area modeling simulations using CM1 in axisymmetric and three-dimensional geometry. Taken together, this hierarchy of models is used to quantify the role of equilibrium versus transient controls on storm size and the relevance of each to real storms in nature.

  14. An Intrathermocline Eddy and a tropical cyclone in the Bay of Bengal

    Science.gov (United States)

    Gordon, Arnold L.; Shroyer, Emily; Murty, V. S. N.

    2017-04-01

    The Bay of Bengal, subjected to monsoonal forcing and tropical cyclones, displays a complex field of ocean eddies. On 5 December 2013 a sub-surface vortex or Intrathermocline Eddy (ITE) composed of water characteristic of the Andaman Sea was observed within the thermocline of the western Bay of Bengal. We propose that the ITE was the product of Tropical Cyclone Lehar interaction on 27 November 2013 with a westward propagating surface eddy from the eastern Bay of Bengal. While Lehar’s interaction with the ocean initially removes heat from the upper layers of the eddy, air-sea flux is limited as the deeper portions of the eddy was subducted into the stratified thermocline, inhibiting further interaction with the atmosphere. The ITE core from 30 to 150 m is thus isolated from local air-sea fluxes by strong stratification at the mixed layer base, and its periphery is stable to shear instability, suggestive of longevity and the ability to carry water far distances with minimal modification.

  15. Large-Scale Influences on the Genesis of Tropical Cyclone Karl (2010)

    Science.gov (United States)

    Griffin, K.; Bosart, L. F.

    2012-12-01

    The events leading up to the genesis of Tropical Cyclone (TC) Karl (2010) provides a unique opportunity to examine the continuing problem of understanding tropical cyclogenesis. The PRE-Depression Investigation of Cloud-systems in the Tropics (PREDICT) field campaign allowed for detailed investigation of the tropical disturbance that served as the precursor to TC Karl as it progressed westward through the Caribbean Sea. The purpose of this presentation is to examine the evolution of the pre-Karl disturbance using both common synoptic-scale analyses as well as statistically-based equatorial wave analyses, focusing on where these analyses complement and enhance each other. One of the major factors in the initial spin-up of the pre-Karl tropical disturbance is a surge of southerly and westerly winds from northern South America on 8-10 September 2010. As the surge entered the Caribbean on 9 September, it aided in the formation of a nearly closed earth-relative cyclonic circulation near the southern Leeward Islands. This circulation weakened late on 10 September and remained weak through 13 September before increased organization led to TC genesis on 14 September. This southerly wind surge can be traced to a well-defined surge of anomalously cold air and enhanced southerly winds originating in the lee of the Argentinian Andes over a week prior. While the temperature anomalies wash out prior to reaching the equator, anomalous low-level winds progress into Colombia and Venezuela, where topography aids in turning the southerly winds eastward. An investigation of the pre-Karl environment utilizing wavenumber-frequency filtering techniques also suggests that the initial spin-up of pre-Karl can be associated with the active phase of a convectively coupled Kelvin wave (CCKW). The observed formation of the nearly closed cyclonic circulation on 10 September is well timed with the passage of anomalous westerly winds along and behind the convectively active phase of a CCKW. These

  16. Coupled Atmosphere-Wave-Ocean Modeling of Tropical Cyclones: Progress, Challenges, and Ways Forward

    Science.gov (United States)

    Chen, Shuyi

    2015-04-01

    It has long been recognized that air-sea interaction plays an important role in tropical cyclones (TC) intensity change. However, most current numerical weather prediction (NWP) models are deficient in predicting TC intensity. The extreme high winds, intense rainfall, large ocean waves, and copious sea spray in TCs push the surface-exchange parameters for temperature, water vapor, and momentum into untested regimes. Parameterizations of air-sea fluxes in NWP models are often crude and create "manmade" energy source/sink that does not exist, especially in the absence of a fully interactive ocean in the model. The erroneous surface heat, moisture, and momentum fluxes can cause compounding errors in the model (e.g., precipitation, water vapor, boundary layer properties). The energy source (heat and moisture fluxes from the ocean) and sink (surface friction and wind-induced upper ocean cooling) are critical to TC intensity. However, observations of air-sea fluxes in TCs are very limited, especially in extreme high wind conditions underneath of the eyewall region. The Coupled Boundary Layer Air-Sea Transfer (CBLAST) program was designed to better understand the air-sea interaction, especially in high wind conditions, which included laboratory and coupled model experiments and field campaign in 2003-04 hurricane seasons. Significant progress has been made in better understanding of air-sea exchange coefficients up to 30 m/s, i.e., a leveling off in drag coefficient and relatively invariant exchange coefficient of enthalpy with wind speed. More recently, the Impact of Typhoon on the Ocean in the Pacific (ITOP) field campaign in 2010 has provided an unprecedented data set to study the air-sea fluxes in TCs and their impact on TC structure and intensity. More than 800 GPS dropsondes and 900 AXBTs/AXCTs as well as drifters, floats, and moorings were deployed in TCs, including Typhoons Fanapi and Malakas, and Supertyphoon Megi with a record peak wind speed of more than 80 m

  17. Integrating and Visualizing Tropical Cyclone Data Using the Real Time Mission Monitor

    Science.gov (United States)

    Goodman, H. Michael; Blakeslee, Richard; Conover, Helen; Hall, John; He, Yubin; Regner, Kathryn

    2009-01-01

    Laboratory in the joint development of a Tropical Cyclone Integrated Data Exchange and Analysis System (TC IDEAS) which will serve as a web portal for access to tropical cyclone data, visualizations and model output.

  18. The Improved NRL Tropical Cyclone Monitoring System with a Unified Microwave Brightness Temperature Calibration Scheme

    Directory of Open Access Journals (Sweden)

    Song Yang

    2014-05-01

    Full Text Available The near real-time NRL global tropical cyclone (TC monitoring system based on multiple satellite passive microwave (PMW sensors is improved with a new inter-sensor calibration scheme to correct the biases caused by differences in these sensor’s high frequency channels. Since the PMW sensor 89 GHz channel is used in multiple current and near future operational and research satellites, a unified scheme to calibrate all satellite PMW sensor’s ice scattering channels to a common 89 GHz is created so that their brightness temperatures (TBs will be consistent and permit more accurate manual and automated analyses. In order to develop a physically consistent calibration scheme, cloud resolving model simulations of a squall line system over the west Pacific coast and hurricane Bonnie in the Atlantic Ocean are applied to simulate the views from different PMW sensors. To clarify the complicated TB biases due to the competing nature of scattering and emission effects, a four-cloud based calibration scheme is developed (rain, non-rain, light rain, and cloudy. This new physically consistent inter-sensor calibration scheme is then evaluated with the synthetic TBs of hurricane Bonnie and a squall line as well as observed TCs. Results demonstrate the large TB biases up to 13 K for heavy rain situations before calibration between TMI and AMSR-E are reduced to less than 3 K after calibration. The comparison stats show that the overall bias and RMSE are reduced by 74% and 66% for hurricane Bonnie, and 98% and 85% for squall lines, respectively. For the observed hurricane Igor, the bias and RMSE decrease 41% and 25% respectively. This study demonstrates the importance of TB calibrations between PMW sensors in order to systematically monitor the global TC life cycles in terms of intensity, inner core structure and convective organization. A physics-based calibration scheme on TC’s TB corrections developed in this study is able to significantly reduce the

  19. Assessing the hydrological impacts of Tropical Cyclones on the Carolinas: An observational and modeling based investigation

    Science.gov (United States)

    Leeper, R. D.; Prat, O. P.; Blanton, B. O.

    2012-12-01

    During the warm season, the Carolinas are particularly prone to tropical cyclone (TC) activity and can be impacted in many different ways depending on storm track. The coasts of the Carolinas are the most vulnerable areas, but particular situations (Frances and Ivan 2004) affected communities far from the coasts (Prat and Nelson 2012). Regardless of where landfall occurs, TCs are often associated with intense precipitation and strong winds triggering a variety of natural hazards (storm surge, flooding, landslides). The assessment of societal and environmental impacts of TCs requires a suite of observations. The scarcity of station coverage, sensor limitations, and rainfall retrieval uncertainties are issues limiting the ability to assess accurately the impact of extreme precipitation events. Therefore, numerical models, such as the Weather Research and Forecasting model (WRF), can be valuable tools to investigate those impacts at regional and local scales and bridge the gap between observations. The goal of this study is to investigate the impact of TCs across the Carolinas using both observational and modeling technologies, and explore the usefulness of numerical methods in data-scarce regions. To fully assess TC impacts on the Carolinas inhabitants, storms impacting both coastal and inner communities will be selected and high-resolution WRF ensemble simulations generated from a suite of physic schemes for each TC to investigate their impact at finer scales. The ensemble member performance will be evaluated with respect to ground-based and satellite observations. Furthermore, results from the high-resolution WRF simulations, including the average wind-speed and the sea level pressure, will be used with the ADCIRC storm-surge and wave-model (Westerink et al, 2008) to simulate storm surge and waves along the Carolinas coast for TCs travelling along the coast or making landfall. This work aims to provide an assessment of the various types of impacts TCs can have

  20. Rainfall and Extratropical Transition of Tropical Cyclones: Simulation, Prediction, and Projection

    Science.gov (United States)

    Liu, Maofeng

    Rainfall and associated flood hazards are one of the major threats of tropical cyclones (TCs) to coastal and inland regions. The interaction of TCs with extratropical systems can lead to enhanced precipitation over enlarged areas through extratropical transition (ET). To achieve a comprehensive understanding of rainfall and ET associated with TCs, this thesis conducts weather-scale analyses by focusing on individual storms and climate-scale analyses by focusing on seasonal predictability and changing properties of climatology under global warming. The temporal and spatial rainfall evolution of individual storms, including Hurricane Irene (2011), Hurricane Hanna (2008), and Hurricane Sandy (2012), is explored using the Weather Research and Forecast (WRF) model and a variety of hydrometeorological datasets. ET and Orographic mechanism are two key players in the rainfall distribution of Irene over regions experiencing most severe flooding. The change of TC rainfall under global warming is explored with the Forecast-oriented Low Ocean Resolution (FLOR) climate model under representative concentration pathway (RCP) 4.5 scenario. Despite decreased TC frequency, FLOR projects increased landfalling TC rainfall over most regions of eastern United States, highlighting the risk of increased flood hazards. Increased storm rain rate is an important player of increased landfalling TC rainfall. A higher atmospheric resolution version of FLOR (HiFLOR) model projects increased TC rainfall at global scales. The increase of TC intensity and environmental water vapor content scaled by the Clausius-Clapeyron relation are two key factors that explain the projected increase of TC rainfall. Analyses on the simulation, prediction, and projection of the ET activity with FLOR are conducted in the North Atlantic. FLOR model exhibits good skills in simulating many aspects of present-day ET climatology. The 21st-century-projection under RCP4.5 scenario demonstrates the dominant role of ET

  1. Changes in tropical cyclones under stabilized 1.5 and 2.0 °C global warming scenarios as simulated by the Community Atmospheric Model under the HAPPI protocols

    Directory of Open Access Journals (Sweden)

    M. F. Wehner

    2018-02-01

    Full Text Available The United Nations Framework Convention on Climate Change (UNFCCC invited the scientific community to explore the impacts of a world in which anthropogenic global warming is stabilized at only 1.5 °C above preindustrial average temperatures. We present a projection of future tropical cyclone statistics for both 1.5 and 2.0 °C stabilized warming scenarios with direct numerical simulation using a high-resolution global climate model. As in similar projections at higher warming levels, we find that even at these low warming levels the most intense tropical cyclones become more frequent and more intense, while simultaneously the frequency of weaker tropical storms is decreased. We also conclude that in the 1.5 °C stabilization, the effect of aerosol forcing changes complicates the interpretation of greenhouse gas forcing changes.

  2. Changes in tropical cyclones under stabilized 1.5 and 2.0 °C global warming scenarios as simulated by the Community Atmospheric Model under the HAPPI protocols

    Science.gov (United States)

    Wehner, Michael F.; Reed, Kevin A.; Loring, Burlen; Stone, Dáithí; Krishnan, Harinarayan

    2018-02-01

    The United Nations Framework Convention on Climate Change (UNFCCC) invited the scientific community to explore the impacts of a world in which anthropogenic global warming is stabilized at only 1.5 °C above preindustrial average temperatures. We present a projection of future tropical cyclone statistics for both 1.5 and 2.0 °C stabilized warming scenarios with direct numerical simulation using a high-resolution global climate model. As in similar projections at higher warming levels, we find that even at these low warming levels the most intense tropical cyclones become more frequent and more intense, while simultaneously the frequency of weaker tropical storms is decreased. We also conclude that in the 1.5 °C stabilization, the effect of aerosol forcing changes complicates the interpretation of greenhouse gas forcing changes.

  3. The Intense Arctic Cyclone of Early August 2012: A Dynamically Driven Cyclogenesis Event

    Science.gov (United States)

    Bosart, L. F.; Turchioe, A.; Adamchcik, E.

    2013-12-01

    A series of surface cyclones formed along an anomalously strong northeast-southwest oriented baroclinic zone over north-central Russia on 1-3 August 2012. These cyclones moved northeastward, intensified slowly, and crossed the coast of Russia by 4 August. The last cyclone in the series strengthened rapidly as it moved poleward over the Arctic Ocean on 5-6 August, achieved a minimum sea level pressure of life cycle of this Arctic Ocean cyclone from a multiscale perspective. Anticyclonic wave breaking in the upper troposphere across Russia in late July and very early August 2012 created an anomalously strong baroclinic zone across northern Asia between 60-80°N. During 1-5 August, negative 850 hPa temperature anomalies between -2° and -4°C were found poleward of 70-75°N between 90°E and the Dateline over the Arctic Ocean while positive 850 hPa temperature anomalies of 8-9°C were found over eastern Russia near 60°N. The associated anomalously strong 850 hPa meridional temperature gradient of ~10°C (2000 km)-1 helped to sustain an anomalously strong (20-30 m s-1) 250 hPa jet along the coast of northeastern Russia. A local wind speed maximum (~50 m s-1 ) embedded in this 250 hPa jet corridor contributed to the extreme intensity of the trailing (last) surface cyclone in the series. Although the dominant surface cyclone in the series of surface cyclones intensified most rapidly over the relatively ice free Arctic Ocean, the impact of surface heat and moisture fluxes appeared to be secondary to jet-driven dynamical processes in the deepening process. Anomalously high observed 1000-500 hPa thickness values between 564-570 dam, precipitable water values between 30-40 mm, and CAPE values between 500-1000 J kg-1 in the warm sector of the developing cyclone over north-central Russia were indicative of the enhanced baroclinicity and instability in the cyclone warm sector and the ability of lower tropospheric warm-air advection to sustain deep ascent in the intensifying

  4. Breaching vulnerability of coastal barriers under effects of tropical cyclones : A model study on the Hue lagoon - Vietnam

    NARCIS (Netherlands)

    Tuan, T.Q.; Stive, M.J.F.; Verhagen, H.J.

    2006-01-01

    Under effects of tropical cyclones, the coast is subjected to attack both by surge and wave from the sea and by flooding from the bay. These forces pose a serious breaching threat to natural sea-defence works such as barrier spits, barrier islands, lagoon barriers, etc. on the coast. Unintended

  5. Impact of the dynamical core on the direct simulation of tropical cyclones in a high-resolution global model

    International Nuclear Information System (INIS)

    Reed, K. A.

    2015-01-01

    Our paper examines the impact of the dynamical core on the simulation of tropical cyclone (TC) frequency, distribution, and intensity. The dynamical core, the central fluid flow component of any general circulation model (GCM), is often overlooked in the analysis of a model's ability to simulate TCs compared to the impact of more commonly documented components (e.g., physical parameterizations). The Community Atmosphere Model version 5 is configured with multiple dynamics packages. This analysis demonstrates that the dynamical core has a significant impact on storm intensity and frequency, even in the presence of similar large-scale environments. In particular, the spectral element core produces stronger TCs and more hurricanes than the finite-volume core using very similar parameterization packages despite the latter having a slightly more favorable TC environment. Furthermore, these results suggest that more detailed investigations into the impact of the GCM dynamical core on TC climatology are needed to fully understand these uncertainties. Key Points The impact of the GCM dynamical core is often overlooked in TC assessments The CAM5 dynamical core has a significant impact on TC frequency and intensity A larger effort is needed to better understand this uncertainty

  6. The importance of vegetation change in the prediction of future tropical cyclone flood statistics

    Science.gov (United States)

    Irish, J. L.; Resio, D.; Bilskie, M. V.; Hagen, S. C.; Weiss, R.

    2015-12-01

    Global sea level rise is a near certainty over the next century (e.g., Stocker et al. 2013 [IPCC] and references therein). With sea level rise, coastal topography and land cover (hereafter "landscape") is expected to change and tropical cyclone flood hazard is expected to accelerate (e.g., Irish et al. 2010 [Ocean Eng], Woodruff et al. 2013 [Nature], Bilskie et al. 2014 [Geophys Res Lett], Ferreira et al. 2014 [Coast Eng], Passeri et al. 2015 [Nat Hazards]). Yet, the relative importance of sea-level rise induced landscape change on future tropical cyclone flood hazard assessment is not known. In this paper, idealized scenarios are used to evaluate the relative impact of one class of landscape change on future tropical cyclone extreme-value statistics in back-barrier regions: sea level rise induced vegetation migration and loss. The joint probability method with optimal sampling (JPM-OS) (Resio et al. 2009 [Nat Hazards]) with idealized surge response functions (e.g., Irish et al. 2009 [Nat Hazards]) is used to quantify the present-day and future flood hazard under various sea level rise scenarios. Results are evaluated in terms of their impact on the flood statistics (a) when projected flood elevations are included directly in the JPM analysis (Figure 1) and (b) when represented as additional uncertainty within the JPM integral (Resio et al. 2013 [Nat Hazards]), i.e., as random error. Findings are expected to aid in determining the level of effort required to reasonably account for future landscape change in hazard assessments, namely in determining when such processes are sufficiently captured by added uncertainty and when sea level rise induced vegetation changes must be considered dynamically, via detailed modeling initiatives. Acknowledgements: This material is based upon work supported by the National Science Foundation under Grant No. CMMI-1206271 and by the National Sea Grant College Program of the U.S. Department of Commerce's National Oceanic and

  7. Understanding the impact of climate change on Northern Hemisphere extra-tropical cyclones

    Energy Technology Data Exchange (ETDEWEB)

    McDonald, Ruth E. [Met Office Hadley Centre, Exeter (United Kingdom)

    2011-10-15

    Extra-tropical cyclones strongly influence weather and climate in mid-latitudes and any future changes may have large impacts on the local scale. In this study Northern Hemisphere storms are analysed in ensembles of time-slice experiments carried out with an atmosphere only model with present day and future anthropogenic emissions. The present day experiment is forced by observed sea-surface temperature and sea-ice. The sea-surface temperatures and sea-ice for the future experiment are derived by adding anomalies, from parallel but lower resolution coupled model experiments, to the observed data. The storms in the present day simulation compare fairly well with observations in all seasons but some errors remain. In the future simulations there is some evidence of a poleward shift in the storm tracks in some seasons and regions. There are fewer cyclones in the Northern Hemisphere in winter and spring. The northeast end of the North Atlantic storm track is shifted south in winter giving more storms and increased frequency of strong winds over the British Isles. This shift is related to an increase in baroclinicity and a southward shift of the jet that occurs as a response to a minimum in ocean warming in the central North Atlantic. An increase in the frequency of storms over the UK is likely to cause enhanced levels of wind and flood damage. These results concur with those from some other models, however, large uncertainties remain. (orig.)

  8. Introduction to Special Section on Oceanic Responses and Feedbacks to Tropical Cyclones

    Science.gov (United States)

    Zhou, Lei; Chen, Dake; Karnauskas, Kristopher B.; Wang, Chunzai; Lei, Xiaotu; Wang, Wei; Wang, Guihua; Han, Guijun

    2018-02-01

    Tropical cyclones (TCs) are among the most destructive natural hazards on Earth. The ocean can have dramatic responses to TCs and further imposes significant feedbacks to the atmosphere. A comprehensive understanding of the ocean-TC interaction is a challenging hindrance for improving the simulation and prediction of TCs and therefore avoidance of human and economic losses. A special section of JGR-Oceans was thus organized, in order to have a broad summary of latest progress in ocean-TC interactions. This introduction presents a brief overview of the contributions found in this collection. We hope it can also shed light on recent advance and future challenges in the studies on the oceanic responses and feedbacks to TCs.

  9. Effects of Asymmetric Secondary Eyewall on Tropical Cyclone Evolution in Hurricane Ike (2008)

    Science.gov (United States)

    Zhang, Guosheng; Perrie, William

    2018-02-01

    The secondary eyewall plays an important role in tropical cyclone evolution and intensification and is routinely assumed to be axisymmetric. A unique opportunity to investigate the characteristics of the secondary eyewall in two dimensions is provided by the high spatial resolution (about 1 km) sea surface winds that were observed by spaceborne synthetic aperture radar over Hurricane Ike (2008). Here we extract the asymmetric characteristics using our Symmetric Hurricane Estimates for Winds model and analyze the related hurricane evolution by comparisons with aircraft measurements. Compared to the classic eyewall replacement cycle theory, our investigation finds that the primary eyewall did not weaken and the secondary eyewall did not shrink over a period of more than 30 hr. We suggest that the reason for this persistence is that a boundary layer inflow pathway is provided by the relatively low winds in the asymmetric secondary eyewall area, as observed by synthetic aperture radar.

  10. Variations in tropical cyclone-related discharge in four watersheds near Houston, Texas

    Directory of Open Access Journals (Sweden)

    Laiyin Zhu

    2015-01-01

    Full Text Available We examined a 60-year record of daily precipitation and river discharge related to tropical cyclones (TCs in four watersheds undergoing land use and land cover change near Houston, Texas. Results show that TCs are responsible for ∼20% of the annual maximum discharge events in the four selected watersheds. Although there are no trends in TC precipitation, increasing trends were observed in daily extreme discharge and TC-related discharge. The more developed watersheds (Whiteoak Bayou and Brays Bayou, tend to have higher extreme discharge and steeper trends in extreme discharge than the less developed watersheds (Cypress Creek. Increases in TC-related extreme discharges correspond with increases in developed land and decreases in vegetated land between 1980 and 2006. Therefore, changes in land cover/use in watersheds near Houston are a major cause of the increased flooding risk in recent years.

  11. Evaluating Environmental Favorability for Tropical Cyclone Development with the Method of Point-Downscaling

    Directory of Open Access Journals (Sweden)

    David S Nolan

    2011-08-01

    Full Text Available A new method is presented to determine the favorability for tropical cyclone development of an atmospheric environment, as represented by a mean sounding of temperature, humidity, and wind as a function of height. A mesoscale model with nested, moving grids is used to simulate the evolution of a weak, precursor vortex in a large domain with doubly periodic boundary conditions. The equations of motion are modified to maintain arbitrary profiles of both zonal and meridional wind as a function of height, without the necessary large-scale temperature gradients that cannot be consistent with doubly periodic boundary conditions. Comparisons between simulations using the point-downscaling method and simulations using wind shear balanced by temperature gradients illustrate both the advantages and the limitations of the technique. Further examples of what can be learned with this method are presented using both idealized and observed soundings and wind profiles.

  12. Impacts of raindrop evaporative cooling on tropical cyclone secondary eyewall formation

    Science.gov (United States)

    Ge, Xuyang; Guan, Liang; Yan, Ziyu

    2018-06-01

    The impacts of raindrop evaporative cooling on secondary eyewall formation (SEF) of simulated tropical cyclones are investigated using idealized numerical experiments. The results suggest that the raindrop evaporative cooling effect is beneficial to the development of secondary eyewall through the planetary boundary layer (PBL) cold pool process. The evaporative cooling-driven downdrafts bring about the surface cold pool beneath a precipitation cloud. This cold pool dynamics act as a lifting mechanism to trigger the outer convection. The radially outward propagation of spiral rainbands broadens the TC size, by which modifies the surface heat fluxes and thus outer convection. Furthermore, the unbalanced PBL process contributes to the SEF. The radially outward surface outflows forces convection at outer region and thus favors a larger TC size. A larger TC implies an enhanced inertial stability at the outer region, which favors a higher conversion efficiency of diabatic heating to kinetic energy.

  13. A Statistical Approach For Modeling Tropical Cyclones. Synthetic Hurricanes Generator Model

    Energy Technology Data Exchange (ETDEWEB)

    Pasqualini, Donatella [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-05-11

    This manuscript brie y describes a statistical ap- proach to generate synthetic tropical cyclone tracks to be used in risk evaluations. The Synthetic Hur- ricane Generator (SynHurG) model allows model- ing hurricane risk in the United States supporting decision makers and implementations of adaptation strategies to extreme weather. In the literature there are mainly two approaches to model hurricane hazard for risk prediction: deterministic-statistical approaches, where the storm key physical parameters are calculated using physi- cal complex climate models and the tracks are usually determined statistically from historical data; and sta- tistical approaches, where both variables and tracks are estimated stochastically using historical records. SynHurG falls in the second category adopting a pure stochastic approach.

  14. The Upshear Environment-Outflow Interface of a Sheared, Rapidly Intensifying Tropical Cyclone

    Science.gov (United States)

    Ryglicki, D.; Doyle, J. D.; Jin, Y.; Hodyss, D.; Viner, K.

    2017-12-01

    An idealized, simulated tropical cyclone (TC) which undergoes rapid intensification in moderate vertical wind shear is shown to exhibit structural similarities to observed TCs of this class. Due to a complex vortex tilt evolution, enhanced convection causes enhanced outflow from the TC which subsequently serves to block and to divert environmental flow around the TC. This allows for the TC to come back into vertical alignment and undergo rapid intensification. A trajectory analysis indicates that blocking is limited to a narrow range of heights, indicating that the vertical profile of environmental winds is a key factor for permitting this evolution. Satellite observations indicate the presence of upper-level arcs extending upshear beyond the TC. Synthetic satellite imagery of the simulated TC indicates this is the termination of the outflow. Using a Helmholtz decomposition, it is found that the divergent component of the outflow extends 1000 km upshear into the environment, potentially explaining the 1000-km clearing seen in satellite observations.

  15. Tropical cyclone losses in the USA and the impact of climate change - A trend analysis based on data from a new approach to adjusting storm losses

    International Nuclear Information System (INIS)

    Schmidt, Silvio; Kemfert, Claudia; Hoeppe, Peter

    2009-01-01

    Economic losses caused by tropical cyclones have increased dramatically. Historical changes in losses are a result of meteorological factors (changes in the incidence of severe cyclones, whether due to natural climate variability or as a result of human activity) and socio-economic factors (increased prosperity and a greater tendency for people to settle in exposed areas). This paper aims to isolate the socio-economic effects and ascertain the potential impact of climate change on this trend. Storm losses for the period 1950-2005 have been adjusted to the value of capital stock in 2005 so that any remaining trend cannot be ascribed to socio-economic developments. For this, we introduce a new approach to adjusting losses based on the change in capital stock at risk. Storm losses are mainly determined by the intensity of the storm and the material assets, such as property and infrastructure, located in the region affected. We therefore adjust the losses to exclude increases in the capital stock of the affected region. No trend is found for the period 1950-2005 as a whole. In the period 1971-2005, since the beginning of a trend towards increased intense cyclone activity, losses excluding socio-economic effects show an annual increase of 4% per annum. This increase must therefore be at least due to the impact of natural climate variability but, more likely than not, also due to anthropogenic forcings.

  16. Tropical Cyclones Cause CaCO3 Undersaturation of Coral Reef Seawater in a High-CO2 World

    Science.gov (United States)

    Manzello, D.; Enochs, I.; Carlton, R.; Musielewicz, S.; Gledhill, D. K.

    2013-12-01

    Ocean acidification is the global decline in seawater pH and calcium carbonate (CaCO3) saturation state (Ω) due to the uptake of anthropogenic CO2 by the world's oceans. Acidification impairs CaCO3 shell and skeleton construction by marine organisms. Coral reefs are particularly vulnerable, as they are constructed by the CaCO3 skeletons of corals and other calcifiers. We understand relatively little about how coral reefs will respond to ocean acidification in combination with other disturbances, such as tropical cyclones. Seawater carbonate chemistry data collected from two reefs in the Florida Keys before, during, and after Tropical Storm Isaac provide the most thorough data to-date on how tropical cyclones affect the seawater CO2-system of coral reefs. Tropical Storm Isaac caused both an immediate and prolonged decline in seawater pH. Aragonite saturation state was depressed by 1.0 for a full week after the storm impact. Based on current 'business-as-usual' CO2 emissions scenarios, we show that tropical cyclones with high rainfall and runoff can cause periods of undersaturation (Ω negatively impact the structural persistence of coral reefs over this century.

  17. Genesis of Twin Tropical Cyclones as Revealed by a Global Mesoscale Model: The Role of Mixed Rossby Gravity Waves

    Science.gov (United States)

    Shen, Bo-Wen; Tao, Wei-Kuo; Lin, Yuh-Lang; Laing, Arlene

    2012-01-01

    In this study, it is proposed that twin tropical cyclones (TCs), Kesiny and 01A, in May 2002 formed in association with the scale interactions of three gyres that appeared as a convectively coupled mixed Rossby gravity (ccMRG) wave during an active phase of the Madden-Julian Oscillation (MJO). This is shown by analyzing observational data, including NCEP reanalysis data and METEOSAT 7 IR satellite imagery, and performing numerical simulations using a global mesoscale model. A 10-day control run is initialized at 0000 UTC 1 May 2002 with grid-scale condensation but no sub-grid cumulus parameterizations. The ccMRG wave was identified as encompassing two developing and one non-developing gyres, the first two of which intensified and evolved into the twin TCs. The control run is able to reproduce the evolution of the ccMRG wave and thus the formation of the twin TCs about two and five days in advance as well as their subsequent intensity evolution and movement within an 8-10 day period. Five additional 10-day sensitivity experiments with different model configurations are conducted to help understand the interaction of the three gyres, leading to the formation of the TCs. These experiments suggest the improved lead time in the control run may be attributed to the realistic simulation of the ccMRG wave with the following processes: (1) wave deepening (intensification) associated with a reduction in wavelength and/or the intensification of individual gyres, (2) poleward movement of gyres that may be associated with boundary layer processes, (3) realistic simulation of moist processes at regional scales in association with each of the gyres, and (4) the vertical phasing of low- and mid-level cyclonic circulations associated with a specific gyre.

  18. Simulating the characteristics of tropical cyclones over the South West Indian Ocean using a Stretched-Grid Global Climate Model

    Science.gov (United States)

    Maoyi, Molulaqhooa L.; Abiodun, Babatunde J.; Prusa, Joseph M.; Veitch, Jennifer J.

    2018-03-01

    Tropical cyclones (TCs) are one of the most devastating natural phenomena. This study examines the capability of a global climate model with grid stretching (CAM-EULAG, hereafter CEU) in simulating the characteristics of TCs over the South West Indian Ocean (SWIO). In the study, CEU is applied with a variable increment global grid that has a fine horizontal grid resolution (0.5° × 0.5°) over the SWIO and coarser resolution (1° × 1°—2° × 2.25°) over the rest of the globe. The simulation is performed for the 11 years (1999-2010) and validated against the Joint Typhoon Warning Center (JTWC) best track data, global precipitation climatology project (GPCP) satellite data, and ERA-Interim (ERAINT) reanalysis. CEU gives a realistic simulation of the SWIO climate and shows some skill in simulating the spatial distribution of TC genesis locations and tracks over the basin. However, there are some discrepancies between the observed and simulated climatic features over the Mozambique channel (MC). Over MC, CEU simulates a substantial cyclonic feature that produces a higher number of TC than observed. The dynamical structure and intensities of the CEU TCs compare well with observation, though the model struggles to produce TCs with a deep pressure centre as low as the observed. The reanalysis has the same problem. The model captures the monthly variation of TC occurrence well but struggles to reproduce the interannual variation. The results of this study have application in improving and adopting CEU for seasonal forecasting over the SWIO.

  19. North Atlantic Tropical Cyclones: historical simulations and future changes with the new high-resolution Arpege AGCM.

    Science.gov (United States)

    Pilon, R.; Chauvin, F.; Palany, P.; Belmadani, A.

    2017-12-01

    A new version of the variable high-resolution Meteo-France Arpege atmospheric general circulation model (AGCM) has been developed for tropical cyclones (TC) studies, with a focus on the North Atlantic basin, where the model horizontal resolution is 15 km. Ensemble historical AMIP (Atmospheric Model Intercomparison Project)-type simulations (1965-2014) and future projections (2020-2080) under the IPCC (Intergovernmental Panel on Climate Change) representative concentration pathway (RCP) 8.5 scenario have been produced. TC-like vortices tracking algorithm is used to investigate TC activity and variability. TC frequency, genesis, geographical distribution and intensity are examined. Historical simulations are compared to best-track and reanalysis datasets. Model TC frequency is generally realistic but tends to be too high during the rst decade of the historical simulations. Biases appear to originate from both the tracking algorithm and model climatology. Nevertheless, the model is able to simulate extremely well intense TCs corresponding to category 5 hurricanes in the North Atlantic, where grid resolution is highest. Interaction between developing TCs and vertical wind shear is shown to be contributing factor for TC variability. Future changes in TC activity and properties are also discussed.

  20. Doppler Radar and Cloud-to-Ground Lightning Observations of a Severe Outbreak of Tropical Cyclone Tornadoes

    Science.gov (United States)

    McCaul, Eugene W., Jr.; Buechler, Dennis; Cammarata, Michael; Arnold, James E. (Technical Monitor)

    2002-01-01

    Data from a single WSR-88D Doppler radar and the National Lightning Detection Network are used to examine the characteristics of the convective storms that produced a severe tornado outbreak within Tropical Storm Beryl's remnants on 16 August 1994. Comparison of the radar data with reports of tornadoes suggests that only 12 cells produced the 29 tornadoes that were documented in Georgia and the Carolinas on that date. Six of these cells spawned multiple tornadoes, and the radar data confirm the presence of miniature supercells. One of the cells was identifiable on radar for 11 hours, spawning tornadoes over a time period spanning approximately 6.5 hours. Time-height analyses of the three strongest supercells are presented in order to document storm kinematic structure and evolution. These Beryl mini-supercells were comparable in radar-observed intensity but much more persistent than other tropical cyclone-spawned tornadic cells documented thus far with Doppler radars. Cloud-to-ground lightning data are also examined for all the tornadic cells in this severe swarm-type tornado outbreak. These data show many of the characteristics of previously reported heavy-precipitation supercells. Lightning rates were weak to moderate, even in the more intense supercells, and in all the storms the lightning flashes were almost entirely negative in polarity. No lightning at all was detected in some of the single-tornado storms. In the stronger cells, there is some evidence that lightning rates can decrease during tornadogenesis, as has been documented before in some midlatitude tornadic storms. A number of the storms spawned tornadoes just after producing their final cloud-to-ground lightning flashes. These findings suggest possible benefits from implementation of observing systems capable of monitoring intracloud as well as cloud-to-ground lightning activity.

  1. AIRS Impact on the Analysis and Forecast Track of Tropical Cyclone Nargis in a Global Data Assimilation and Forecasting System

    Science.gov (United States)

    Reale, O.; Lau, W.K.; Susskind, J.; Brin, E.; Liu, E.; Riishojgaard, L. P.; Rosenburg, R.; Fuentes, M.

    2009-01-01

    Tropical cyclones in the northern Indian Ocean pose serious challenges to operational weather forecasting systems, partly due to their shorter lifespan and more erratic track, compared to those in the Atlantic and the Pacific. Moreover, the automated analyses of cyclones over the northern Indian Ocean, produced by operational global data assimilation systems (DASs), are generally of inferior quality than in other basins. In this work it is shown that the assimilation of Atmospheric Infrared Sounder (AIRS) temperature retrievals under partial cloudy conditions can significantly impact the representation of the cyclone Nargis (which caused devastating loss of life in Myanmar in May 2008) in a global DAS. Forecasts produced from these improved analyses by a global model produce substantially smaller track errors. The impact of the assimilation of clear-sky radiances on the same DAS and forecasting system is positive, but smaller than the one obtained by ingestion of AIRS retrievals, possibly due to poorer coverage.

  2. Explosive cyclogenesis of extra-tropical cyclone Klaus and its effects in Catalonia. A case study of hurricane force gusts.

    Science.gov (United States)

    Calvo, J.; López, J. A.; Martín, F.; Morales, G.; Pascual, R.

    2009-09-01

    On 23th and 24th of January 2009, the extra-tropical cyclone Klaus crossed the north of Spain and the south of France producing several deaths and generalized damages. The cyclone of Atlantic origin underwent an explosive deepening of more than 1 hPa per hour at the surface level. Catalonia region was affected by gale-force winds and hurricane gusts. The Atlantic depression underwent a process called explosive cyclogenesis (when a surface cyclone deepens at a rate higher than 1 hPa/hr over 24 hours, approximately) in front of the Spanish Atlantic coasts. In this study we focus on its impact in the Catalonia areas where both synoptic and local effects were important. Also we evaluate the performance of the numerical weather prediction model outputs against observed data.

  3. The impact of summertime north Indian Ocean SST on tropical cyclone genesis over the western North Pacific

    Science.gov (United States)

    Zheng, Jiayu; Wu, Qiaoyan; Guo, Yipeng; Zhao, Sen

    2017-04-01

    In this study, we investigate the impact of interannual variability of boreal summertime (June-September) north Indian Ocean (NIO) sea surface temperature (SST) on the distribution of tropical cyclone (TC) genesis over the western North Pacific (WNP) using observational datasets. In the boreal summers with warm (cold) SST in the NIO, fewer (more) than normal TCs form over the entire WNP, with fewer (more) TCs forming north of 10°N and more (fewer) TCs forming south of 10°N. The warm (cold) SST in the NIO induces anomalous anticyclonic (cyclonic) vorticity north of 10°N and cyclonic (anticyclonic) vorticity south of 10°N, which contributes to the meridional seesaw-like distribution of WNP TC genesis. This study provides a new perspective to understand TC activities over the WNP and may help seasonal TC prediction.

  4. Tropical cyclone genesis in the Southern Hemisphere and its relationship with the ENSO

    Energy Technology Data Exchange (ETDEWEB)

    Kuleshov, Y.; Qi, L. [Australian Bureau of Meteorology, Melbourne, VIC (Australia). National Climate Centre; Chane Ming, F.; Chouaibou, I.; Hoareau, C. [UMR CNRS-Meteo-France-Univ. de la Reunion, La Reunion (France). Lab. de l' Atmosphere et des Cyclones; Roux, F. [Paul Sabatier Univ., CNRS, Toulouse (France). Lab. d' Aerologie

    2009-07-01

    Tropical cyclogenesis climatology over the South Indian and South Pacific Oceans has been developed using a new tropical cyclone (TC) archive for the Southern Hemisphere, and changes in geographical distribution of areas favourable for TC genesis related to changes in the El Nino-Southern Oscillation (ENSO) phases have been investigated. To explain these changes, large-scale environmental variables which influence TC genesis and development such as sea surface temperatures (SSTs), relative humidity in mid-troposphere, vertical wind shear and lower tropospheric vorticity have been examined. In the South Indian Ocean, reduction of TC genesis in the western part of the basin and its increase in the eastern part as well as displacement of the area favourable for TC genesis further away from the equator during La Nina events compared to El Nino events can be explained by changes in geographical distribution of relative humidity and vorticity across the basin as primary contributors; positive anomalies of SSTs observed during La Nina seasons in the eastern part of the basin additionally contribute to enhanced cyclogenesis near the Western Australia. In the South Pacific Ocean, changes in geographical distribution of relative humidity and vorticity appear to be the key large-scale environmental factors responsible for enhanced TC genesis in the eastern (western) part of the basin as well as for the northeast (southwest) shift of points of cyclogenesis during El Nino (La Nina) events, with vertical wind shear and SSTs as additional contributing large-scale environmental variables. (orig.)

  5. Assessment of Tropical Cyclone Induced Transgression of the Chandeleur Islands for Restoration and Wildlife Management

    Science.gov (United States)

    Reahard, Ross; Mitchell, Brandie; Brown, Tevin; Billiot, Amanda

    2010-01-01

    Barrier Islands are the first line of defense against tropical storms and hurricanes for coastal areas. Historically, tropical cyclonic events have had a great impact on the transgression of barrier islands, especially the Chandeleur Island chain off the eastern coast of Louisiana. These islands are of great importance, aiding in the protection of southeastern Louisiana from major storms, providing habitat for nesting and migratory bird species, and are part of the second oldest wildlife refuge in the country. In 1998, Hurricane Georges caused severe damage to the chain, prompting restoration and monitoring efforts by both federal and state agencies. Since then, multiple storm events have steadily diminished the integrity of the islands. Hurricane Katrina in 2005 thwarted all previous restoration efforts, with Hurricane Gustav in 2008 exacerbating island erosion and vegetation loss. Data from the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER), Moderate Resolution Imaging Spectroradiometer (MODIS), Landsat 2-4 Multispectral Scanner (MSS), and Landsat 5 Thematic Mapper (TM) will be utilized to detect land loss, island transgression, and vegetation change from 1979 to 2009. This study looks to create a more synoptic view of the transgression of the Chandeleur Islands and correlate weather and sea surface phenomena with erosion trends over the past 30 years, so that partnering organizations such as the Pontchartrain Institute for Environmental Sciences (PIES) can better monitor and address the continual change of the island chain.

  6. Attribution of Extreme Rainfall from Landfalling Tropical Cyclones to Climate Change for the Eastern United States

    Science.gov (United States)

    Liu, M.; Yang, L.; Smith, J. A.; Vecchi, G. A.

    2017-12-01

    Extreme rainfall and flooding associated with landfalling tropical cyclones (TC) is responsible for vast socioeconomic losses and fatalities. Landfalling tropical cyclones are an important element of extreme rainfall and flood peak distributions in the eastern United States. Record floods for USGS stream gauging stations over the eastern US are closely tied to landfalling hurricanes. A small number of storms account for the largest record floods, most notably Hurricanes Diane (1955) and Agnes (1972). The question we address is: if the synoptic conditions accompanying those hurricanes were to be repeated in the future, how would the thermodynamic and dynamic storm properties and associated extreme rainfall differ in response to climate change? We examine three hurricanes: Diane (1955), Agnes (1972) and Irene (2011), due to the contrasts in structure/evolution properties and their important roles in dictating the upper tail properties of extreme rainfall and flood frequency over eastern US. Extreme rainfall from Diane is more localized as the storm maintains tropical characteristics, while synoptic-scale vertical motion associated with extratropical transition is a central feature for extreme rainfall induced by Agnes. Our analyses are based on ensemble simulations using the Weather Research and Forecasting (WRF) model, considering combinations of different physics options (i.e., microphysics, boundary layer schemes). The initial and boundary conditions of WRF simulations for the present-day climate are using the Twentieth Century Reanalysis (20thCR). A sub-selection of GCMs is used, as part of phase 5 of the Coupled Model Intercomparison Project (CMIP5), to provide future climate projections. For future simulations, changes in model fields (i.e., temperature, humidity, geopotential height) between present-day and future climate are first derived and then added to the same 20thCR initial and boundary data used for the present-day simulations, and the ensemble is

  7. A new approach for the determination of the drag coefficient from the upper ocean response to a tropical cyclone: A feasibility study

    KAUST Repository

    Zedler, Sarah; Kanschat, Guido; Korty, Robert L.; Hoteit, Ibrahim

    2011-01-01

    forward models of the ocean's response to a tropical cyclone, whereby the probability density function of drag coefficient values as a function of wind speed that results from adding realistic levels of noise to the simulated ocean response variables

  8. A Study on the Impact of Observation Assimilation on the Numerical Simulation of Tropical Cyclones JAL and THANE Using 3DVAR

    KAUST Repository

    Viswanadhapalli, Yesubabu; Srinivas, C. V.; Hariprasad, K. B R R; Baskaran, R.

    2013-01-01

    In this work, the impact of assimilation of conventional and satellite remote sensing observations (Oceansat-2 winds, MODIS temperature/humidity profiles) is studied on the simulation of two tropical cyclones in the Bay of Bengal region

  9. Continued Analysis on Multiscale Aspects of Tropical Cyclone Formation, Structure Change and Predictability in the Western North Pacific Region as Part of the TCS08 DRI

    Science.gov (United States)

    2012-09-30

    Atmospheric Administration. The published paper was entitled “Structure of the Eye and Eyewall of Hurricane Hugo (1989) and was published in Mon. Wea. Rev., 136, 1237-1259. ...developments in tropical cyclone intensification theory A new paradigm of tropical cyclone intensification and hurricane boundary layer dynamics has been... Hurricane Rita (2005) show strong support for the second spin-up mechanism in the concentric eyewall lifecycle. Didlake and Houze (2011) found a

  10. Prediction of tropical cyclone over North Indian Ocean using WRF model: sensitivity to scatterometer winds, ATOVS and ATMS radiances

    KAUST Repository

    Dodla, Venkata B.

    2016-05-03

    Tropical cyclone prediction, in terms of intensification and movement, is important for disaster management and mitigation. Hitherto, research studies were focused on this issue that lead to improvement in numerical models, initial data with data assimilation, physical parameterizations and application of ensemble prediction. Weather Research and Forecasting (WRF) model is the state-of-art model for cyclone prediction. In the present study, prediction of tropical cyclone (Phailin, 2013) that formed in the North Indian Ocean (NIO) with and without data assimilation using WRF model has been made to assess impacts of data assimilation. WRF model was designed to have nested two domains of 15 and 5 km resolutions. In the present study, numerical experiments are made without and with the assimilation of scatterometer winds, and radiances from ATOVS and ATMS. The model performance was assessed in respect to the movement and intensification of cyclone. ATOVS data assimilation experiment had produced the best prediction with least errors less than 100 km up to 60 hours and producing pre-deepening and deepening periods accurately. The Control and SCAT wind assimilation experiments have shown good track but the errors were 150-200 km and gradual deepening from the beginning itself instead of sudden deepening.

  11. Looping tracks associated with tropical cyclones approaching an isolated mountain. Part I: Essential parameters

    Science.gov (United States)

    Huang, Yi-Chih; Lin, Yuh-Lang

    2017-05-01

    Essential parameters for making a looping track when a westward-moving tropical cyclone (TC) approaches a mesoscale mountain are investigated by examining several key nondimensional control parameters with a series of systematic, idealized numerical experiments, such as U/Nh, V max/Nh, U/fL x , V max/fR, h/L x , and R/L y . Here U is the uniform zonal wind velocity, N the Brunt-Vaisala frequency, h the mountain height, f the Coriolis parameter, V max the maximum tangential velocity at a radius of R from the cyclone center and L x is the halfwidth of the mountain in the east-west direction. It is found that looping tracks (a) tend to occur under small U/Nh and U/fL x , moderate h/L x , and large V max/Nh, which correspond to slow movement (leading to subgeostrophic flow associated with strong orographic blocking), moderate steepness, and strong tangential wind associated with TC vortex; (b) are often accompanied by an area of perturbation high pressure to the northeast of the mountain, which lasts for only a short period; and (c) do not require the existence of a northerly jet. The nondimensional control parameters are consolidated into a TC looping index (LI), {U2 R2 }/{V_{max}2 hLy }} , which is tested by several historical looping and non-looping typhoons approaching Taiwan's Central Mountain Range (CMR) from east or southeast. It is found that LI < 0.0125 may serve as a criterion for looping track to occur.

  12. Looping tracks associated with tropical cyclones approaching an isolated mountain. Part I: Essential parameters

    Science.gov (United States)

    Huang, Yi-Chih; Lin, Yuh-Lang

    2018-06-01

    Essential parameters for making a looping track when a westward-moving tropical cyclone (TC) approaches a mesoscale mountain are investigated by examining several key nondimensional control parameters with a series of systematic, idealized numerical experiments, such as U/ Nh, V max/ Nh, U/ fL x , V max/ fR, h/ L x , and R/ L y . Here U is the uniform zonal wind velocity, N the Brunt-Vaisala frequency, h the mountain height, f the Coriolis parameter, V max the maximum tangential velocity at a radius of R from the cyclone center and L x is the halfwidth of the mountain in the east-west direction. It is found that looping tracks (a) tend to occur under small U/ Nh and U/ fL x , moderate h/ L x , and large V max/ Nh, which correspond to slow movement (leading to subgeostrophic flow associated with strong orographic blocking), moderate steepness, and strong tangential wind associated with TC vortex; (b) are often accompanied by an area of perturbation high pressure to the northeast of the mountain, which lasts for only a short period; and (c) do not require the existence of a northerly jet. The nondimensional control parameters are consolidated into a TC looping index (LI), {U2 R2 }/{V_{max 2 hLy }} , which is tested by several historical looping and non-looping typhoons approaching Taiwan's Central Mountain Range (CMR) from east or southeast. It is found that LI < 0.0125 may serve as a criterion for looping track to occur.

  13. A Study on the Impact of Observation Assimilation on the Numerical Simulation of Tropical Cyclones JAL and THANE Using 3DVAR

    KAUST Repository

    Viswanadhapalli, Yesubabu

    2013-12-08

    In this work, the impact of assimilation of conventional and satellite remote sensing observations (Oceansat-2 winds, MODIS temperature/humidity profiles) is studied on the simulation of two tropical cyclones in the Bay of Bengal region of the Indian Ocean using a three-dimensional variational data assimilation (3DVAR) technique. The Weather Research and Forecasting (WRF)-Advanced Research WRF (ARW) mesoscale model is used to simulate the severe cyclone JAL: 5–8 November 2010 and the very severe cyclone THANE: 27–30 December 2011 with a double nested domain configuration and with a horizontal resolution of 27 × 9 km. Five numerical experiments are conducted for each cyclone. In the control run (CTL) the National Centers for Environmental Prediction global forecast system analysis and forecasts available at 50 km resolution were used for the initial and boundary conditions. In the second (VARAWS), third (VARSCAT), fourth (VARMODIS) and fifth (VARALL) experiments, the conventional surface observations, Oceansat-2 ocean surface wind vectors, temperature and humidity profiles of MODIS, and all observations were respectively used for assimilation. Results indicate meager impact with surface observations, and relatively higher impact with scatterometer wind data in the case of the JAL cyclone, and with MODIS temperature and humidity profiles in the case of THANE for the simulation of intensity and track parameters. These relative impacts are related to the area coverage of scatterometer winds and MODIS profiles in the respective storms, and are confirmed by the overall better results obtained with assimilation of all observations in both the cases. The improvements in track prediction are mainly contributed by the assimilation of scatterometer wind vector data, which reduced errors in the initial position and size of the cyclone vortices. The errors are reduced by 25, 21, 38 % in vector track position, and by 57, 36, 39 % in intensity, at 24, 48, 72

  14. The Impacts of Satellite Remotely Sensed Winds and Total Precipitable Vapour in WRF Tropical Cyclone Track Forecasts

    Directory of Open Access Journals (Sweden)

    Diandong Ren

    2016-01-01

    Full Text Available This study assesses the impact assimilating the scatterometer near-surface wind observations and total precipitable water from the SSMI, into WRF on genesis and track forecasting of four tropical cyclones (TCs. These TCs are selected to be representative of different intensity categories and basins. Impact is via a series of data denial experiments that systematically exclude the remote sensed information. Compared with the control case, in which only the final analysis atmospheric variables are used to initialize and provide the lateral boundary conditions, the data assimilation runs performed consistently better, but with very different skill levels for the different TCs. Eliassen-Palm flux analyses are employed. It is confirmed that if a polar orbital satellite footprint passes over the TC’s critical genesis region, the forecast will profit most from assimilating the remotely sensed information. If the critical genesis region lies within an interorbital gap then, regardless of how strong the TC later becomes (e.g., Katrina 2005, the improvement from assimilating near-surface winds and total precipitable water in the model prediction is severely limited. This underpins the need for a synergy of data from different scatterometers/radiometers. Other approaches are suggested to improve the accuracy in the prediction of TC genesis and tracks.

  15. Interannual and Decadal Variability of Landfalling Tropical Cyclones in the Southeast Coastal States of the United States

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The interannual variability of the At lantic tropical cyclone (TC) frequency is well known. Separately,recent studies have also suggested that a much longer, multidecadal (40-60 year) trend might be emerging from the recent increase in Atlantic TC activity. However, the overall structure of the intrinsic frequencies (or temporal modes) of Atlantic TC activity is not yet known. The focus of this study is to systematically analyze the intrinsic frequencies of Atlantic TC activity using hurricane and tropical storm landfall data collected along the southeast coast (SEC) of the United States. Based on an Empirical Mode Decomposition (EMD) analysis of the frequency of landfall TCs along the SEC from 1887-1999, we have found that Atlantic TC activity has four primary, temporal modes. The interannual and multidecadal modes reported in the published literature are two such modes. After identifying all primary modes, the relative importance of each mode and its physical cause can be analyzed. For example, the most energetic mode is the interannual mode (2-7 year period). This mode is known to be associated with the 2-7 year El Nino / La Ni na cycle. The average number of annual landfalling TCs along the SEC decreased by 24% during El Nino years, but did not show significant increase during weak and moderate La Nina years. However, intense La Nina years were generally associated with more than average landfalling TCs along the SEC. The effects of El Nino and La Nina also became more significant when only hurricanes were considered. The significance of the effects of El Nino and La Nina on landfalling TCs and hurricanes in different US southeast coastal states showed significant differences.

  16. Modulating Effects of Mesoscale Oceanic Eddies on Sea Surface Temperature Response to Tropical Cyclones Over the Western North Pacific

    Science.gov (United States)

    Ma, Zhanhong; Fei, Jianfang; Huang, Xiaogang; Cheng, Xiaoping

    2018-01-01

    The impact of mesoscale oceanic eddies on the temporal and spatial characteristics of sea surface temperature (SST) response to tropical cyclones is investigated in this study based on composite analysis of cyclone-eddy interactions over the western North Pacific. The occurrence times of maximum cooling, recovery time, and spatial patterns of SST response are specially evaluated. The influence of cold-core eddies (CCEs) renders the mean occurrence time of maximum SST cooling to become about half a day longer than that in eddy-free condition, while warm-core eddies (WCEs) have little effect on this facet. The recovery time of SST cooling also takes longer in presence of CCEs, being overall more pronounced for stronger or slower tropical cyclones. The effect of WCEs on the recovery time is again not significant. The modulation of maximum SST decrease by WCEs for category 2-5 storms is found to be remarkable in the subtropical region but not evident in the tropical region, while the role of CCEs is remarkable in both regions. The CCEs are observed to change the spatial characteristics of SST response, with enhanced SST decrease initially at the right side of storm track. During the recovery period the strengthened SST cooling by CCEs propagates leftward gradually, with a feature similar as both the westward-propagating eddies and the recovery of cold wake. These results underscore the importance of resolving mesoscale oceanic eddies in coupled numerical models to improve the prediction of storm-induced SST response.

  17. Understanding and simulating the link between African easterly waves and Atlantic tropical cyclones using a regional climate model: the role of domain size and lateral boundary conditions

    Energy Technology Data Exchange (ETDEWEB)

    Caron, Louis-Philippe [MISU, Stockholm University, Stockholm (Sweden); Universite du Quebec a Montreal, CRCMD Network, Montreal, QC (Canada); Jones, Colin G. [Swedish Meterological and Hydrological Institute, Rossby Center, Norrkoeping (Sweden)

    2012-07-15

    Using a suite of lateral boundary conditions, we investigate the impact of domain size and boundary conditions on the Atlantic tropical cyclone and african easterly Wave activity simulated by a regional climate model. Irrespective of boundary conditions, simulations closest to observed climatology are obtained using a domain covering both the entire tropical Atlantic and northern African region. There is a clear degradation when the high-resolution model domain is diminished to cover only part of the African continent or only the tropical Atlantic. This is found to be the result of biases in the boundary data, which for the smaller domains, have a large impact on TC activity. In this series of simulations, the large-scale Atlantic atmospheric environment appears to be the primary control on simulated TC activity. Weaker wave activity is usually accompanied by a shift in cyclogenesis location, from the MDR to the subtropics. All ERA40-driven integrations manage to capture the observed interannual variability and to reproduce most of the upward trend in tropical cyclone activity observed during that period. When driven by low-resolution global climate model (GCM) integrations, the regional climate model captures interannual variability (albeit with lower correlation coefficients) only if tropical cyclones form in sufficient numbers in the main development region. However, all GCM-driven integrations fail to capture the upward trend in Atlantic tropical cyclone activity. In most integrations, variations in Atlantic tropical cyclone activity appear uncorrelated with variations in African easterly wave activity. (orig.)

  18. Perturbations to the lower ionosphere by tropical cyclone Evan in the South Pacific Region

    Science.gov (United States)

    Kumar, Sushil; NaitAmor, Samir; Chanrion, Olivier; Neubert, Torsten

    2017-08-01

    Very low frequency (VLF) electromagnetic signals from navigational transmitters propagate worldwide in the Earth-ionosphere waveguide formed by the Earth and the electrically conducting lower ionosphere. Changes in the signal properties are signatures of variations in the conductivity of the reflecting boundary of the lower ionosphere which is located in the mesosphere and lower thermosphere, and their analysis is, therefore, a way to study processes in these remote regions. Here we present a study on amplitude perturbations of local origin on the VLF transmitter signals (NPM, NLK, NAA, and JJI) observed during tropical cyclone (TC) Evan, 9-16 December 2012 when TC was in the proximity of the transmitter-receiver links. We observed a maximum amplitude perturbation of 5.7 dB on JJI transmitter during 16 December event. From Long Wave Propagation Capability model applied to three selected events we estimate a maximum decrease in the nighttime D region reference height (H') by 5.2 km (13 December, NPM) and maximum increase in the daytime D region H' by 6.1 km and 7.5 km (14 and 16 December, JJI). The results suggest that the TC caused the neutral densities of the mesosphere and lower thermosphere to lift and sink (bringing the lower ionosphere with it), an effect that may be mediated by gravity waves generated by the TC. The perturbations were observed before the storm was classified as a TC, at a time when it was a tropical depression, suggesting the broader conclusion that severe convective storms, in general, perturb the mesosphere and the stratosphere through which the perturbations propagate.

  19. Tropical cyclone genesis in the Southern Hemisphere and its relationship with the ENSO

    Directory of Open Access Journals (Sweden)

    Y. Kuleshov

    2009-06-01

    Full Text Available Tropical cyclogenesis climatology over the South Indian and South Pacific Oceans has been developed using a new tropical cyclone (TC archive for the Southern Hemisphere, and changes in geographical distribution of areas favourable for TC genesis related to changes in the El Niño-Southern Oscillation (ENSO phases have been investigated. To explain these changes, large-scale environmental variables which influence TC genesis and development such as sea surface temperatures (SSTs, relative humidity in mid-troposphere, vertical wind shear and lower tropospheric vorticity have been examined. In the South Indian Ocean, reduction of TC genesis in the western part of the basin and its increase in the eastern part as well as displacement of the area favourable for TC genesis further away from the equator during La Niña events compared to El Niño events can be explained by changes in geographical distribution of relative humidity and vorticity across the basin as primary contributors; positive anomalies of SSTs observed during La Niña seasons in the eastern part of the basin additionally contribute to enhanced cyclogenesis near the Western Australia. In the South Pacific Ocean, changes in geographical distribution of relative humidity and vorticity appear to be the key large-scale environmental factors responsible for enhanced TC genesis in the eastern (western part of the basin as well as for the northeast (southwest shift of points of cyclogenesis during El Niño (La Niña events, with vertical wind shear and SSTs as additional contributing large-scale environmental variables.

  20. Shipwreck rates reveal Caribbean tropical cyclone response to past radiative forcing.

    Science.gov (United States)

    Trouet, Valerie; Harley, Grant L; Domínguez-Delmás, Marta

    2016-03-22

    Assessing the impact of future climate change on North Atlantic tropical cyclone (TC) activity is of crucial societal importance, but the limited quantity and quality of observational records interferes with the skill of future TC projections. In particular, North Atlantic TC response to radiative forcing is poorly understood and creates the dominant source of uncertainty for twenty-first-century projections. Here, we study TC variability in the Caribbean during the Maunder Minimum (MM; 1645-1715 CE), a period defined by the most severe reduction in solar irradiance in documented history (1610-present). For this purpose, we combine a documentary time series of Spanish shipwrecks in the Caribbean (1495-1825 CE) with a tree-growth suppression chronology from the Florida Keys (1707-2009 CE). We find a 75% reduction in decadal-scale Caribbean TC activity during the MM, which suggests modulation of the influence of reduced solar irradiance by the cumulative effect of cool North Atlantic sea surface temperatures, El Niño-like conditions, and a negative phase of the North Atlantic Oscillation. Our results emphasize the need to enhance our understanding of the response of these oceanic and atmospheric circulation patterns to radiative forcing and climate change to improve the skill of future TC projections.

  1. Data Normalization to Accelerate Training for Linear Neural Net to Predict Tropical Cyclone Tracks

    Directory of Open Access Journals (Sweden)

    Jian Jin

    2015-01-01

    Full Text Available When pure linear neural network (PLNN is used to predict tropical cyclone tracks (TCTs in South China Sea, whether the data is normalized or not greatly affects the training process. In this paper, min.-max. method and normal distribution method, instead of standard normal distribution, are applied to TCT data before modeling. We propose the experimental schemes in which, with min.-max. method, the min.-max. value pair of each variable is mapped to (−1, 1 and (0, 1; with normal distribution method, each variable’s mean and standard deviation pair is set to (0, 1 and (100, 1. We present the following results: (1 data scaled to the similar intervals have similar effects, no matter the use of min.-max. or normal distribution method; (2 mapping data to around 0 gains much faster training speed than mapping them to the intervals far away from 0 or using unnormalized raw data, although all of them can approach the same lower level after certain steps from their training error curves. This could be useful to decide data normalization method when PLNN is used individually.

  2. Impact of spectral nudging on the downscaling of tropical cyclones in regional climate simulations

    Science.gov (United States)

    Choi, Suk-Jin; Lee, Dong-Kyou

    2016-06-01

    This study investigated the simulations of three months of seasonal tropical cyclone (TC) activity over the western North Pacific using the Advanced Research WRF Model. In the control experiment (CTL), the TC frequency was considerably overestimated. Additionally, the tracks of some TCs tended to have larger radii of curvature and were shifted eastward. The large-scale environments of westerly monsoon flows and subtropical Pacific highs were unreasonably simulated. The overestimated frequency of TC formation was attributed to a strengthened westerly wind field in the southern quadrants of the TC center. In comparison with the experiment with the spectral nudging method, the strengthened wind speed was mainly modulated by large-scale flow that was greater than approximately 1000 km in the model domain. The spurious formation and undesirable tracks of TCs in the CTL were considerably improved by reproducing realistic large-scale atmospheric monsoon circulation with substantial adjustment between large-scale flow in the model domain and large-scale boundary forcing modified by the spectral nudging method. The realistic monsoon circulation took a vital role in simulating realistic TCs. It revealed that, in the downscaling from large-scale fields for regional climate simulations, scale interaction between model-generated regional features and forced large-scale fields should be considered, and spectral nudging is a desirable method in the downscaling method.

  3. Process-Oriented Diagnostics of Tropical Cyclones in Global Climate Models

    Science.gov (United States)

    Moon, Y.; Kim, D.; Camargo, S. J.; Wing, A. A.; Sobel, A. H.; Bosilovich, M. G.; Murakami, H.; Reed, K. A.; Vecchi, G. A.; Wehner, M. F.; Zarzycki, C. M.; Zhao, M.

    2017-12-01

    Simulating tropical cyclone (TC) activity with global climate models (GCMs) remains a challenging problem. While some GCMs are able to simulate TC activity that is in good agreement with the observations, many other models exhibit strong biases. Decreasing horizontal grid spacing of the GCM simulations tends to improve the characteristics of simulated TCs, but this enhancement alone does not necessarily lead to greater skill in simulating TC activity. This study uses process-based diagnostics to identify model characteristics that could explain why some GCM simulations are able to produce more realistic TC activity than others. The diagnostics examine how convection, moisture, clouds and related processes are coupled at individual grid points, which yields useful information into how convective parameterizations interact with resolved model dynamics. These diagnostics share similarities with those originally developed to examine the Madden-Julian Oscillations in climate models. This study will examine TCs in eight different GCM simulations performed at NOAA/GFDL, NCAR and NASA that have different horizontal resolutions and ocean coupling. Preliminary results suggest that stronger TCs are closely associated with greater rainfall - thus greater diabatic heating - in the inner-core regions of the storms, which is consistent with previous theoretical studies. Other storm characteristics that can be used to infer why GCM simulations with comparable horizontal grid spacings produce different TC activity will be examined.

  4. Projected increase in El Niño-driven tropical cyclone frequency in the Pacific

    Science.gov (United States)

    Chand, Savin S.; Tory, Kevin J.; Ye, Hua; Walsh, Kevin J. E.

    2017-02-01

    The El Niño/Southern Oscillation (ENSO) drives substantial variability in tropical cyclone (TC) activity around the world. However, it remains uncertain how the projected future changes in ENSO under greenhouse warming will affect TC activity, apart from an expectation that the overall frequency of TCs is likely to decrease for most ocean basins. Here we show robust changes in ENSO-driven variability in TC occurrence by the late twenty-first century. In particular, we show that TCs become more frequent (~20-40%) during future-climate El Niño events compared with present-climate El Niño events--and less frequent during future-climate La Niña events--around a group of small island nations (for example, Fiji, Vanuatu, Marshall Islands and Hawaii) in the Pacific. We examine TCs across 20 models from the Coupled Model Intercomparison Project phase 5 database, forced under historical and greenhouse warming conditions. The 12 most realistic models identified show a strong consensus on El Niño-driven changes in future-climate large-scale environmental conditions that modulate development of TCs over the off-equatorial western Pacific and the central North Pacific regions. These results have important implications for climate change and adaptation pathways for the vulnerable Pacific island nations.

  5. Interdecadal Change of Tropical Cyclone Genesis Controlling Parameter in Western North Pacific

    Science.gov (United States)

    Li, T.

    2017-12-01

    The main environmental parameter controlling tropical cyclone (TC) genesis in the western North Pacific (WNP) changed in different interdecadal periods. The interannual variability of TC genesis frequency was primarily control by specific humidity in 1950-1976, sea surface temperature (SST) in 1977-1998, and vorticity in 1999-2014. A further diagnosis shows that the change of environmental specific humidity during 1950-1976 was attributed to anomalous advection of mean moisture during ENSO developing summer. The SST change during 1977-1998 was associated with circulation change during ENSO decaying summer. The change of environment vorticity was primarily related to CP-type El Niño during 1999-2014. The ultimate cause of the controlling parameter change is attributed to the change of ENSO behavior. Compared to the first period, a stronger EP-type ENSO variability in the second period leads to a stronger circulation/SST response during ENSO decaying phase. The occurrence of more frequent CP type El Niño in the third period was responsible for greater vorticity controlling in the WNP.

  6. Objective estimation of tropical cyclone innercore surface wind structure using infrared satellite images

    Science.gov (United States)

    Zhang, Changjiang; Dai, Lijie; Ma, Leiming; Qian, Jinfang; Yang, Bo

    2017-10-01

    An objective technique is presented for estimating tropical cyclone (TC) innercore two-dimensional (2-D) surface wind field structure using infrared satellite imagery and machine learning. For a TC with eye, the eye contour is first segmented by a geodesic active contour model, based on which the eye circumference is obtained as the TC eye size. A mathematical model is then established between the eye size and the radius of maximum wind obtained from the past official TC report to derive the 2-D surface wind field within the TC eye. Meanwhile, the composite information about the latitude of TC center, surface maximum wind speed, TC age, and critical wind radii of 34- and 50-kt winds can be combined to build another mathematical model for deriving the innercore wind structure. After that, least squares support vector machine (LSSVM), radial basis function neural network (RBFNN), and linear regression are introduced, respectively, in the two mathematical models, which are then tested with sensitivity experiments on real TC cases. Verification shows that the innercore 2-D surface wind field structure estimated by LSSVM is better than that of RBFNN and linear regression.

  7. Tropical cyclone turbulent mixing as observed by autonomous oceanic profilers with the high repetition rate

    International Nuclear Information System (INIS)

    Baranowski, D B; Malinowski, S P; Flatau, P J

    2011-01-01

    Changes in the ocean mixed layer caused by passage of two consecutive typhoons in the Western Pacific are presented. Ocean profiles were measured by a unique Argo float sampling the upper ocean in high repetition cycle with a period of about one day. It is shown that the typhoon passage coincides with cooling of the mixed layer and variations of its salinity. Independent data from satellite measurements of surface winds were used to set-up an and idealized numerical simulation of mixed layer evolution. Results, compared to Argo profiles, confirm known effect that cooling is a result of increased entrainment from the thermocline due to enhancement of turbulence in the upper ocean by the wind stress. Observed pattern of salinity changes in the mixed layer suggest important role of typhoon precipitation. Fast changes of the mixed layer in course of typhoon passage show that fast profiling (at least once a day) is crucial to study response of the upper ocean to tropical cyclone.

  8. Objective determination of the extratropical transition of tropical cyclones in the Northern Hemisphere

    Directory of Open Access Journals (Sweden)

    Joshua Studholme

    2015-05-01

    Full Text Available Extratropical transition (ET has eluded objective identification since the realisation of its existence in the 1970s. Recent advances in numerical, computational models have provided data of higher resolution than previously available. In conjunction with this, an objective characterisation of the structure of a storm has now become widely accepted in the literature. Here we present a method of combining these two advances to provide an objective method for defining ET. The approach involves applying K-means clustering to isolate different life-cycle stages of cyclones and then analysing the progression through these stages. This methodology is then tested by applying it to five recent years from the European Centre of Medium-Range Weather Forecasting operational analyses. It is found that this method is able to determine the general characteristics for ET in the Northern Hemisphere. Between 2008 and 2012, 54% (±7, 32 of 59 of Northern Hemisphere tropical storms are estimated to undergo ET. There is great variability across basins and time of year. To fully capture all the instances of ET is necessary to introduce and characterise multiple pathways through transition. Only one of the three transition types needed has been previously well-studied. A brief description of the alternate types of transitions is given, along with illustrative storms, to assist with further study.

  9. The Application of Barnes Filter to Positioning the Center of Landed Tropical Cyclone in Numerical Models

    Directory of Open Access Journals (Sweden)

    Haibo Zou

    2018-01-01

    Full Text Available After a tropical cyclone (TC making landfall, the numerical model output sea level pressure (SLP presents many small-scale perturbations which significantly influence the positioning of the TC center. To fix the problem, Barnes filter with weighting parameters C=2500 and G=0.35 is used to remove these perturbations. A case study of TC Fung-Wong which landed China in 2008 shows that Barnes filter not only cleanly removes these perturbations, but also well preserves the TC signals. Meanwhile, the centers (track obtained from SLP processed with Barnes filter are much closer to the observations than that from SLP without Barnes filter. Based on the distance difference (DD between the TC center determined by SLP with/without Barnes filter and observation, statistics analysis of 12 TCs which landed China during 2005–2015 shows that in most cases (about 85% the DDs are small (between −30 km and 30 km, while in a few cases (about 15% the DDs are large (greater than 30 km even 70 km. This further verifies that the TC centers identified from SLP with Barnes filter are more accurate compared to that directly obtained from model output SLP. Moreover, the TC track identified with Barnes filter is much smoother than that without Barnes filter.

  10. Modelling mean transit time of stream base flow during tropical cyclone rainstorm in a steep relief forested catchment

    Science.gov (United States)

    Lee, Jun-Yi; Huang, -Chuan, Jr.

    2017-04-01

    Mean transit time (MTT) is one of the of fundamental catchment descriptors to advance understanding on hydrological, ecological, and biogeochemical processes and improve water resources management. However, there were few documented the base flow partitioning (BFP) and mean transit time within a mountainous catchment in typhoon alley. We used a unique data set of 18O isotope and conductivity composition of rainfall (136 mm to 778 mm) and streamflow water samples collected for 14 tropical cyclone events (during 2011 to 2015) in a steep relief forested catchment (Pinglin, in northern Taiwan). A lumped hydrological model, HBV, considering dispersion model transit time distribution was used to estimate total flow, base flow, and MTT of stream base flow. Linear regression between MTT and hydrometric (precipitation intensity and antecedent precipitation index) variables were used to explore controls on MTT variation. Results revealed that both the simulation performance of total flow and base flow were satisfactory, and the Nash-Sutcliffe model efficiency coefficient of total flow and base flow was 0.848 and 0.732, respectively. The event magnitude increased with the decrease of estimated MTTs. Meanwhile, the estimated MTTs varied 4-21 days with the increase of BFP between 63-92%. The negative correlation between event magnitude and MTT and BFP showed the forcing controls the MTT and BFP. Besides, a negative relationship between MTT and the antecedent precipitation index was also found. In other words, wetter antecedent moisture content more rapidly active the fast flow paths. This approach is well suited for constraining process-based modeling in a range of high precipitation intensity and steep relief forested environments.

  11. Tropical cyclone induced asymmetry of sea level surge and fall and its presentation in a storm surge model with parametric wind fields

    Science.gov (United States)

    Peng, Machuan; Xie, Lian; Pietrafesa, Leonard J.

    The asymmetry of tropical cyclone induced maximum coastal sea level rise (positive surge) and fall (negative surge) is studied using a three-dimensional storm surge model. It is found that the negative surge induced by offshore winds is more sensitive to wind speed and direction changes than the positive surge by onshore winds. As a result, negative surge is inherently more difficult to forecast than positive surge since there is uncertainty in tropical storm wind forecasts. The asymmetry of negative and positive surge under parametric wind forcing is more apparent in shallow water regions. For tropical cyclones with fixed central pressure, the surge asymmetry increases with decreasing storm translation speed. For those with the same translation speed, a weaker tropical cyclone is expected to gain a higher AI (asymmetry index) value though its induced maximum surge and fall are smaller. With fixed RMW (radius of maximum wind), the relationship between central pressure and AI is heterogeneous and depends on the value of RMW. Tropical cyclone's wind inflow angle can also affect surge asymmetry. A set of idealized cases as well as two historic tropical cyclones are used to illustrate the surge asymmetry.

  12. Tropical cyclone prediction skills - MJO and ENSO dependence in S2S data sets

    Science.gov (United States)

    Lee, C. Y.; Camargo, S.; Vitart, F.; Sobel, A. H.; Tippett, M.

    2017-12-01

    The El Niño-Southern Oscillation (ENSO) and the Madden-Julian Oscillation (MJO) are two important climate controls on tropical cyclone (TC) activity. The seasonal prediction skill of dynamical models is determined in large part by their accurate representations of the ENSO-TC relationship. Regarding intraseasonal TC variability, observations suggest MJO to be the primary control. Given the ongoing effort to develop dynamical seasonal-to-subseasonal (S2S) TC predictions, it is important to examine whether the global models, running on S2S timescales, are able to reproduce these known ENSO-TC and MJO-TC relationships, and how this ability affects forecasting skill. Results from the S2S project (from F. Vitart) suggest that global models have skill in predicting MJO phase with up to two weeks of lead time (four weeks for ECMWF). Meanwhile, our results show that, qualitatively speaking, the MJO-TC relationship in storm genesis is reasonably captured, with some models (e.g., ECMWF, BoM, NCEP, MetFr) performing better than the others. However, we also find that model skill in predicting basin-wide genesis and accumulated cyclone energy (ACE) are mainly due to the models' ability to capture the climatological seasonality. Removing the seasonality significantly reduces the models' skill; even the best model (ECMWF) in the most reliable basin (western north Pacific and Atlantic) has very little skill (close to 0.1 in Brier skill score for genesis and close to 0 in rank probability skill score for ACE). This brings up the question: do any factors contribute to intraseasonal TC prediction skill other than seasonality? Is the low skill, after removing the seasonality, due to poor MJO and ENSO simulations, or to poor representation of other ENSO-TC or MJO-TC relationships, such as ENSO's impact on the storm tracks? We will quantitatively discuss the dependence of the TC prediction skill on ENSO and MJO, focusing on Western North Pacific and Atlantic, where we have sufficient

  13. Climatology of extratropical transition for North Atlantic tropical cyclones in the high-resolution GFDL climate model

    Science.gov (United States)

    Liu, M.; Vecchi, G. A.; Smith, J. A.

    2015-12-01

    The extratropical transition (ET) process of tropical cyclones can lead to fundamental changes in hurricane structure and storms that continue to pose large threats to life and properties. Given the importance of ET, it is necessary to understand how ET changes under a warming climate. Towards this goal, the GFDL climate model (FLOR) is first used to understand the current-day ET climatology. The standard model and a flux-adjusted version of FLOR are both used to examine ET climatology. The operational cyclone phase space method is used to define the onset and completion times of ET. The ET climatology from the climate model is compared with those from two reanalysis data sets ranging from 1979 to 2012. Both models exhibit good skills at simulating the frequency map of phase space diagram. The flux-adjusted version shows much better skill in capturing the ET climatology in terms of ET track patterns, ET locations and monthly ET variations. The model is able to simulate the frequency ratio of reintensified tropical cyclones from all ET cases. Future work involves examining changes in the ET climatology under a changing climate.

  14. Air-Sea Momentum and Enthalpy Exchange in Coupled Atmosphere-Wave-Ocean Modeling of Tropical Cyclones

    Science.gov (United States)

    Curcic, M.; Chen, S. S.

    2016-02-01

    The atmosphere and ocean are coupled through momentum, enthalpy, and mass fluxes. Accurate representation of these fluxes in a wide range of weather and climate conditions is one of major challenges in prediction models. Their current parameterizations are based on sparse observations in low-to-moderate winds and are not suited for high wind conditions such as tropical cyclones (TCs) and winter storms. In this study, we use the Unified Wave INterface - Coupled Model (UWIN-CM), a high resolution, fully-coupled atmosphere-wave-ocean model, to better understand the role of ocean surface waves in mediating air-sea momentum and enthalpy exchange in TCs. In particular, we focus on the explicit treatment of wave growth and dissipation for calculating atmospheric and oceanic stress, and its role in upper ocean mixing and surface cooling in the wake of the storm. Wind-wave misalignment and local wave disequilibrium result in difference between atmospheric and oceanic stress being largest on the left side of the storm. We find that explicit wave calculation in the coupled model reduces momentum transfer into the ocean by more than 10% on average, resulting in reduced cooling in TC's wake and subsequent weakening of the storm. We also investigate the impacts of sea surface temperature and upper ocean parameterization on air-sea enthalpy fluxes in the fully coupled model. High-resolution UWIN-CM simulations of TCs with various intensities and structure are conducted in this study to better understand the complex TC-ocean interaction and improve the representation of air-sea coupling processes in coupled prediction models.

  15. Conditional Stochastic Models in Reduced Space: Towards Efficient Simulation of Tropical Cyclone Precipitation Patterns

    Science.gov (United States)

    Dodov, B.

    2017-12-01

    Stochastic simulation of realistic and statistically robust patterns of Tropical Cyclone (TC) induced precipitation is a challenging task. It is even more challenging in a catastrophe modeling context, where tens of thousands of typhoon seasons need to be simulated in order to provide a complete view of flood risk. Ultimately, one could run a coupled global climate model and regional Numerical Weather Prediction (NWP) model, but this approach is not feasible in the catastrophe modeling context and, most importantly, may not provide TC track patterns consistent with observations. Rather, we propose to leverage NWP output for the observed TC precipitation patterns (in terms of downscaled reanalysis 1979-2015) collected on a Lagrangian frame along the historical TC tracks and reduced to the leading spatial principal components of the data. The reduced data from all TCs is then grouped according to timing, storm evolution stage (developing, mature, dissipating, ETC transitioning) and central pressure and used to build a dictionary of stationary (within a group) and non-stationary (for transitions between groups) covariance models. Provided that the stochastic storm tracks with all the parameters describing the TC evolution are already simulated, a sequence of conditional samples from the covariance models chosen according to the TC characteristics at a given moment in time are concatenated, producing a continuous non-stationary precipitation pattern in a Lagrangian framework. The simulated precipitation for each event is finally distributed along the stochastic TC track and blended with a non-TC background precipitation using a data assimilation technique. The proposed framework provides means of efficient simulation (10000 seasons simulated in a couple of days) and robust typhoon precipitation patterns consistent with observed regional climate and visually undistinguishable from high resolution NWP output. The framework is used to simulate a catalog of 10000 typhoon

  16. Tropical cyclone-related socio-economic losses in the western North Pacific region

    Science.gov (United States)

    Welker, C.; Faust, E.

    2013-01-01

    The western North Pacific (WNP) is the area of the world most frequently affected by tropical cyclones (TCs). However, little is known about the socio-economic impacts of TCs in this region, probably because of the limited relevant loss data. Here, loss data from Munich RE's NatCatSERVICE database is used, a high-quality and widely consulted database of natural disasters. In the country-level loss normalisation technique we apply, the original loss data are normalised to present-day exposure levels by using the respective country's nominal gross domestic product at purchasing power parity as a proxy for wealth. The main focus of our study is on the question of whether the decadal-scale TC variability observed in the Northwest Pacific region in recent decades can be shown to manifest itself economically in an associated variability in losses. It is shown that since 1980 the frequency of TC-related loss events in the WNP exhibited, apart from seasonal and interannual variations, interdecadal variability with a period of about 22 yr - driven primarily by corresponding variations of Northwest Pacific TCs. Compared to the long-term mean, the number of loss events was found to be higher (lower) by 14% (9%) in the positive (negative) phase of the decadal-scale WNP TC frequency variability. This was identified for the period 1980-2008 by applying a wavelet analysis technique. It was also possible to demonstrate the same low-frequency variability in normalised direct economic losses from TCs in the WNP region. The identification of possible physical mechanisms responsible for the observed decadal-scale Northwest Pacific TC variability will be the subject of future research, even if suggestions have already been made in earlier studies.

  17. Tropical cyclone-related socio-economic losses in the western North Pacific region

    Directory of Open Access Journals (Sweden)

    C. Welker

    2013-01-01

    Full Text Available The western North Pacific (WNP is the area of the world most frequently affected by tropical cyclones (TCs. However, little is known about the socio-economic impacts of TCs in this region, probably because of the limited relevant loss data. Here, loss data from Munich RE's NatCatSERVICE database is used, a high-quality and widely consulted database of natural disasters. In the country-level loss normalisation technique we apply, the original loss data are normalised to present-day exposure levels by using the respective country's nominal gross domestic product at purchasing power parity as a proxy for wealth. The main focus of our study is on the question of whether the decadal-scale TC variability observed in the Northwest Pacific region in recent decades can be shown to manifest itself economically in an associated variability in losses. It is shown that since 1980 the frequency of TC-related loss events in the WNP exhibited, apart from seasonal and interannual variations, interdecadal variability with a period of about 22 yr – driven primarily by corresponding variations of Northwest Pacific TCs. Compared to the long-term mean, the number of loss events was found to be higher (lower by 14% (9% in the positive (negative phase of the decadal-scale WNP TC frequency variability. This was identified for the period 1980–2008 by applying a wavelet analysis technique. It was also possible to demonstrate the same low-frequency variability in normalised direct economic losses from TCs in the WNP region. The identification of possible physical mechanisms responsible for the observed decadal-scale Northwest Pacific TC variability will be the subject of future research, even if suggestions have already been made in earlier studies.

  18. Evidence of reduced vulnerability to tropical cyclones in the Republic of Korea

    Science.gov (United States)

    Park, Doo-Sun R.; Ho, Chang-Hoi; Nam, Chaehyeon C.; Kim, Hyeong-Seog

    2015-05-01

    On average, three tropical cyclones (TCs) affect the Republic of Korea each year, causing extensive damage. To alleviate the TC-induced disasters, the Korean government has invested nearly 4% of its annual budget in recent decades in prevention efforts; however, the effectiveness of this costly program has not been evaluated. This study determined whether any evidence shows a reduced vulnerability to TCs in Korea over 1979-2010 by utilizing multi-linear regression. Homelessness, casualties, and property losses were individually examined. These explained variables were normalized into the socio-economic circumstances of 2005 before the regression to eliminate the effect of changing exposure by dealing with population and wealth at provincial levels. Three potential explanatory variables based on nationwide weather-station data were considered, including the maximum wind, maximum rainfall, and number of affected stations over each TC’s damaging period. In addition, the annual per capita income, showing a quasi-linear increasing tendency, was used as an additional explanatory variable to examine how vulnerability is altered. The results revealed that each empirical model of homelessness, casualties, and property losses can account for 47%, 57%, and 57% of each variance, respectively, which is highest when considering all four explanatory variables. Consistently negative coefficients of the per capita income terms for all damage types suggest that the vulnerability to TCs has been significantly reduced. This finding appears to be partly the result of the national prevention effort, although it also can be attributed to other unintended adaptation factors, such as building codes, industrial structures, and land use.

  19. Impacts of the Pacific Meridional Mode on Landfalling North Atlantic tropical cyclones

    Science.gov (United States)

    Zhang, Wei; Villarini, Gabriele; Vecchi, Gabriel A.; Murakami, Hiroyuki

    2018-02-01

    This study examines the impacts of the Pacific Meridional Mode (PMM) on North Atlantic tropical cyclones (TCs) making landfall along the coastal US, Caribbean Islands and Mexico, and provides insights on the underlying physical mechanisms using observations and model simulations. There is a statistically significant time-lagged association between spring PMM and the August-October US and Caribbean landfalling TCs. Specifically, the positive (negative) spring PMM events tend to be followed by fewer (more) TCs affecting the coastal US (especially over the Gulf of Mexico and Florida) and the Caribbean Islands. This lagged association is mainly caused by the lagged impacts of PMM on the El Niño Southern Oscillation (ENSO), and the subsequent impacts of ENSO on TC frequency and landfalls. Positive (negative) PMM events are largely followed by El Niño (La Niña) events, which lead to less (more) TC geneses close to the US coast (i.e., the Gulf of Mexico and the Caribbean Sea); this also leads to easterly (westerly) steering flow in the vicinity of the US and Caribbean coast, which is unfavorable (favorable) to TC landfall across the Gulf of Mexico, Florida and Caribbean Islands. Perturbation simulations with the state-of-the-art Geophysical Fluid Dynamics Laboratory Forecast-oriented Low Ocean Resolution Version of CM2.5 (FLOR) support the linkage between PMM and TC landfall activity. The time-lagged impacts of spring PMM on TC landfalling activity results in a new predictor to forecast seasonal TC landfall activity along the US (especially over the Gulf of Mexico and Florida) and Caribbean coastal regions.

  20. Interannual variability of the South Pacific Convergence Zone and implications for tropical cyclone genesis

    Energy Technology Data Exchange (ETDEWEB)

    Vincent, Emmanuel M. [IRD/UPMC/CNRS/MNHN, Laboratoire d' Oceanographie et du Climat: Experimentation et Approches Numeriques (LOCEAN), Paris (France); UPMC, LOCEAN/IPSL, Paris Cedex 05 (France); Lengaigne, Matthieu [IRD/UPMC/CNRS/MNHN, Laboratoire d' Oceanographie et du Climat: Experimentation et Approches Numeriques (LOCEAN), Paris (France); National Institute of Oceanography, Goa (India); Menkes, Christophe E. [IRD/UPMC/CNRS/MNHN, Laboratoire d' Oceanographie et du Climat: Experimentation et Approches Numeriques (LOCEAN), Paris (France); Institut de Recherche pour le Developpement, Noumea (New Caledonia); Jourdain, Nicolas C. [Institut de Recherche pour le Developpement, Noumea (New Caledonia); Marchesiello, Patrick [Institut de Recherche pour le Developpement, Noumea (New Caledonia); CNES/CNRS/UPS/IRD, Laboratoire d' Etudes en Geophysique et Oceanographie Spatiale (LEGOS), Toulouse (France); Madec, Gurvan [IRD/UPMC/CNRS/MNHN, Laboratoire d' Oceanographie et du Climat: Experimentation et Approches Numeriques (LOCEAN), Paris (France); National Oceanographic Centre, Southampton (United Kingdom)

    2011-05-15

    The interannual variability of the South Pacific Convergence Zone (SPCZ) and its influence on tropical cyclone (TC) genesis in the South Pacific are investigated using observations and ERA40 reanalysis over the 1979-2002 period. In austral summer, the SPCZ displays four typical structures at interannual timescales. The first three are characterized by a diagonal orientation of the SPCZ and account for 85% of the summer seasons. One is close to climatology and the other two exhibit a 3 northward or southward departure from the SPCZ climatological position. In contrast, the fourth one, that only encompasses three austral summer seasons (the extreme 1982/1983 and 1997/1998 El Nino events and the moderate 1991/1992 El Nino event), displays very peculiar behaviour where the SPCZ largely departs from its climatological position and is zonally oriented. Variability of the western/central Pacific equatorial sea surface temperature (SST) is shown to modulate moisture transport south of the equator, thereby strongly constraining the location of the SPCZ. The SPCZ location is also shown to strongly modulate the atmospheric circulation variability in the South Pacific with specific patterns for each class. However, independently of its wide year-to-year excursions, the SPCZ is always collocated with the zero relative vorticity at low levels while the maximum vorticity axis lies 6 to the south of the SPCZ position. This coherent atmospheric organisation in the SPCZ region is shown to constrain tropical cyclogenesis to occur preferentially within 10 south of the SPCZ location as this region combines all the large-scale atmospheric conditions that favour the breeding of TCs. This analysis also reveals that cyclogenesis in the central Pacific (in the vicinity of French Polynesia) only occurs when the SPCZ displays a zonal orientation while this observation was previously attributed to El Nino years in general. Different characteristics of El Nino Southern Oscillation (ENSO

  1. The combined risk of extreme tropical cyclone winds and storm surges along the U.S. Gulf of Mexico Coast

    Science.gov (United States)

    Trepanier, J. C.; Yuan, J.; Jagger, T. H.

    2017-03-01

    Tropical cyclones, with their nearshore high wind speeds and deep storm surges, frequently strike the United States Gulf of Mexico coastline influencing millions of people and disrupting offshore economic activities. The combined risk of occurrence of tropical cyclone nearshore wind speeds and storm surges is assessed at 22 coastal cities throughout the United States Gulf of Mexico. The models used are extreme value copulas fitted with margins defined by the generalized Pareto distribution or combinations of Weibull, gamma, lognormal, or normal distributions. The statistical relationships between the nearshore wind speed and storm surge are provided for each coastal city prior to the copula model runs using Spearman's rank correlations. The strongest significant relationship between the nearshore wind speed and storm surge exists at Shell Beach, LA (ρ = 0.67), followed by South Padre Island, TX (ρ = 0.64). The extreme value Archimedean copula models for each city then provide return periods for specific nearshore wind speed and storm surge pairs. Of the 22 cities considered, Bay St. Louis, MS, has the shortest return period for a tropical cyclone with at least a 50 ms-1 nearshore wind speed and a 3 m surge (19.5 years, 17.1-23.5). The 90% confidence intervals are created by recalculating the return periods for a fixed set of wind speeds and surge levels using 100 samples of the model parameters. The results of this study can be utilized by policy managers and government officials concerned with coastal populations and economic activity in the Gulf of Mexico.

  2. Impact of period and timescale of FDDA analysis nudging on the numerical simulation of tropical cyclones in the Bay of Bengal

    KAUST Repository

    Viswanadhapalli, Yesubabu

    2014-06-22

    In this study, the impact of four-dimensional data assimilation (FDDA) analysis nudging is examined on the prediction of tropical cyclones (TC) in the Bay of Bengal to determine the optimum period and timescale of nudging. Six TCs (SIDR: November 13–16, 2007; NARGIS: April 29–May 02, 2008; NISHA: November 25–28, 2008; AILA: May 23–26, 2009; LAILA: May 18–21, 2010; JAL: November 04–07, 2010) were simulated with a doubly nested Weather Research and Forecasting (WRF) model with a horizontal resolution of 9 km in the inner domain. In the control run for each cyclone, the National Centers for Environmental Prediction (NCEP) Global Forecast System (GFS) analysis and forecasts at 0.5_ resolution are used for initial and boundary conditions. In the FDDA experiments available surface, upper air observations obtained from NCEP Atmospheric Data Project (ADP) data sets were used for assimilation after merging with the first guess through objective analysis procedure. Analysis nudging experiments with different nudging periods (6, 12, 18, and 24 h) indicated a period of 18 or 24 h of nudging during the pre-forecast stage provides maximum impact on simulations in terms of minimum track and intensity forecasts. To determine the optimum timescale of nudging, two cyclone cases (NARGIS: April 28–May 02, 2008; NISHA: November 25–28, 2008) were simulated varying the inverse timescales as 1.0e-4 to 5.0e-4 s−1 in steps of 1.0e-4 s−1. A positive impact of assimilation is found on the simulated characteristics with a nudging coefficient of either 3.0e-4 or 4.0e-4 s−1 which corresponds to a timescale of about 1 h for nudging dynamic (u,v) and thermodynamical (t,q) fields.

  3. Evaluating the Impact of Localized GCM Grid Refinement on Regional Tropical Cyclone Climatology and Synoptic Variability using Variable-Resolution CAM-SE

    Science.gov (United States)

    Zarzycki, C.; Jablonowski, C.

    2013-12-01

    Using General Circulation Models (GCMs) to resolve sub-synoptic features in climate simulations has traditionally been difficult due to a multitude of atmospheric processes operating at subgrid scales requiring significant parameterization. For example, at traditional GCM horizontal grid resolutions of 50-300 km, tropical cyclones are generally under-resolved. This paper explores a novel variable-resolution global modeling approach that allows for high spatial resolutions in areas of interest, such as low-latitude ocean basins where tropical cyclogenesis occurs. Such multi-resolution GCM designs allow for targeted use of computing resources at the regional level while maintaining a globally-continuous model domain and may serve to bridge the gap between GCMs with uniform grids and boundary-forced limited area models. A statically-nested, variable-resolution option has recently been introduced into the Community Atmosphere Model's (CAM) Spectral Element (SE) dynamical core. A 110 km CAM-SE grid with a 28 km nest over the Atlantic Ocean has been coupled to land, ocean, and ice components within the Community Earth System Model (CESM). We present the results of a multi-decadal climate simulation using Atmospheric Model Intercomparison Project (AMIP) protocols, which force the model with historical sea surface temperatures and airborne chemical species. To investigate whether refinement improves the representation of tropical cyclones, we compare Atlantic storm statistics to observations with specific focus paid to intensity profiles and track densities. The resolution dependance of both cyclone structure and objective detection between refined and unrefined basins is explored. In addition, we discuss the potential impact of using variable-resolution grids on the large-scale synoptic interannual variability by comparing refined grid simulations to reanalysis data as well as an unrefined, globally-uniform CAM-SE simulation with identical forcing. We also evaluate the

  4. An estimation of water origins in the vicinity of a tropical cyclone's center and associated dynamic processes

    Science.gov (United States)

    Takakura, Toshinari; Kawamura, Ryuichi; Kawano, Tetsuya; Ichiyanagi, Kimpei; Tanoue, Masahiro; Yoshimura, Kei

    2018-01-01

    To clarify the time evolution of water origins in the vicinity of a tropical cyclone (TC)'s center, we have simulated Typhoon Man-yi (July 2007) in our case study, using an isotopic regional spectral model. The model results confirm that the replacement of water origins occurs successively as the TC develops and migrates northward over the western North Pacific. It is confirmed that, in this case, a significant proportion of total precipitable water around the cyclone center comes from external regions rather than the underlying ocean during the mature stage of a TC. Similar features can also be seen in the proportion of each oceanic origin to total condensation. Indian Ocean, South China Sea, and Maritime Continent water vapors begin to increase gradually at the developing stage and reach their peak at the decay stage when the TC approaches southwestern Japan. These remote ocean vapors are transported to the east of the cyclone via the moisture conveyor belt, a zone characterized by distinct low-level moisture flux that stretches from the Indian Ocean to the TC, and are further supplied into the inner region of the TC by inflow within the boundary layer associated with its secondary circulation. Since it takes time to undergo these two dynamic processes, the delayed influence of remote ocean vapors on the TC appears to become evident during the mature stage.

  5. Are greenhouse gas signals of Northern Hemisphere winter extra-tropical cyclone activity dependent on the identification and tracking algorithm?

    Energy Technology Data Exchange (ETDEWEB)

    Ulbrich, Uwe; Grieger, Jens [Freie Univ. Berlin (Germany). Inst. of Meteorology; Leckebusch, Gregor C. [Birmingham Univ. (United Kingdom). School of Geography, Earth and Environmental Sciences] [and others

    2013-02-15

    For Northern Hemisphere extra-tropical cyclone activity, the dependency of a potential anthropogenic climate change signal on the identification method applied is analysed. This study investigates the impact of the used algorithm on the changing signal, not the robustness of the climate change signal itself. Using one single transient AOGCM simulation as standard input for eleven state-of-the-art identification methods, the patterns of model simulated present day climatologies are found to be close to those computed from re-analysis, independent of the method applied. Although differences in the total number of cyclones identified exist, the climate change signals (IPCC SRES A1B) in the model run considered are largely similar between methods for all cyclones. Taking into account all tracks, decreasing numbers are found in the Mediterranean, the Arctic in the Barents and Greenland Seas, the mid-latitude Pacific and North America. Changing patterns are even more similar, if only the most severe systems are considered: the methods reveal a coherent statistically significant increase in frequency over the eastern North Atlantic and North Pacific. We found that the differences between the methods considered are largely due to the different role of weaker systems in the specific methods. (orig.)

  6. Pattern Classification of Tropical Cyclone Tracks over the Western North Pacific using a Fuzzy Clustering Method

    Science.gov (United States)

    Kim, H.; Ho, C.; Kim, J.

    2008-12-01

    This study presents the pattern classification of tropical cyclone (TC) tracks over the western North Pacific (WNP) basin during the typhoon season (June through October) for 1965-2006 (total 42 years) using a fuzzy clustering method. After the fuzzy c-mean clustering algorithm to the TC trajectory interpolated into 20 segments of equivalent length, we divided the whole tracks into 7 patterns. The optimal number of the fuzzy cluster is determined by several validity measures. The classified TC track patterns represent quite different features in the recurving latitudes, genesis locations, and geographical pathways: TCs mainly forming in east-northern part of the WNP and striking Korean and Japan (C1); mainly forming in west-southern part of the WNP, traveling long pathway, and partly striking Japan (C2); mainly striking Taiwan and East China (C3); traveling near the east coast of Japan (C4); traveling the distant ocean east of Japan (C5); moving toward South China and Vietnam straightly (C6); and forming in the South China Sea (C7). Atmospheric environments related to each cluster show physically consistent with each TC track patterns. The straight track pattern is closely linked to a developed anticyclonic circulation to the north of the TC. It implies that this ridge acts as a steering flow forcing TCs to move to the northwest with a more west-oriented track. By contrast, recurving patterns occur commonly under the influence of the strong anomalous westerlies over the TC pathway but there definitely exist characteristic anomalous circulations over the mid- latitudes by pattern. Some clusters are closely related to the well-known large-scale phenomena. The C1 and C2 are highly related to the ENSO phase: The TCs in the C1 (C2) is more active during La Niña (El Niño). The TC activity in the C3 is associated with the WNP summer monsoon. The TCs in the C4 is more (less) vigorous during the easterly (westerly) phase of the stratospheric quasi-biennial oscillation

  7. Physically-based Assessment of Tropical Cyclone Damage and Economic Losses

    Science.gov (United States)

    Lin, N.

    2012-12-01

    Estimating damage and economic losses caused by tropical cyclones (TC) is a topic of considerable research interest in many scientific fields, including meteorology, structural and coastal engineering, and actuarial sciences. One approach is based on the empirical relationship between TC characteristics and loss data. Another is to model the physical mechanism of TC-induced damage. In this talk we discuss about the physically-based approach to predict TC damage and losses due to extreme wind and storm surge. We first present an integrated vulnerability model, which, for the first time, explicitly models the essential mechanisms causing wind damage to residential areas during storm passage, including windborne-debris impact and the pressure-debris interaction that may lead, in a chain reaction, to structural failures (Lin and Vanmarcke 2010; Lin et al. 2010a). This model can be used to predict the economic losses in a residential neighborhood (with hundreds of buildings) during a specific TC (Yau et al. 2011) or applied jointly with a TC risk model (e.g., Emanuel et al 2008) to estimate the expected losses over long time periods. Then we present a TC storm surge risk model that has been applied to New York City (Lin et al. 2010b; Lin et al. 2012; Aerts et al. 2012), Miami-Dade County, Florida (Klima et al. 2011), Galveston, Texas (Lickley, 2012), and other coastal areas around the world (e.g., Tampa, Florida; Persian Gulf; Darwin, Australia; Shanghai, China). These physically-based models are applicable to various coastal areas and have the capability to account for the change of the climate and coastal exposure over time. We also point out that, although made computationally efficient for risk assessment, these models are not suitable for regional or global analysis, which has been a focus of the empirically-based economic analysis (e.g., Hsiang and Narita 2012). A future research direction is to simplify the physically-based models, possibly through

  8. Potential use of a regional climate model in seasonal tropical cyclone activity predictions in the western North Pacific

    Energy Technology Data Exchange (ETDEWEB)

    Au-Yeung, Andie Y.M.; Chan, Johnny C.L. [City University of Hong Kong, Guy Carpenter Asia-Pacific Climate Impact Centre, School of Energy and Environment, Kowloon, Hong Kong (China)

    2012-08-15

    This study investigates the potential use of a regional climate model in forecasting seasonal tropical cyclone (TC) activity. A modified version of Regional Climate Model Version 3 (RegCM3) is used to examine the ability of the model to simulate TC genesis and landfalling TC tracks for the active TC season in the western North Pacific. In the model, a TC is identified as a vortex satisfying several conditions, including local maximum relative vorticity at 850 hPa with a value {>=}450 x 10{sup -6} s{sup -1}, and the temperature at 300 hPa being 1 C higher than the average temperature within 15 latitude radius from the TC center. Tracks are traced by following these found vortices. Six-month ensemble (8 members each) simulations are performed for each year from 1982 to 2001 so that the climatology of the model can be compared to the Joint Typhoon Warning Center (JTWC) observed best-track dataset. The 20-year ensemble experiments show that the RegCM3 can be used to simulate vortices with a wind structure and temperature profile similar to those of real TCs. The model also reproduces tracks very similar to those observed with features like genesis in the tropics, recurvature at higher latitudes and landfall/decay. The similarity of the 500-hPa geopotential height patterns between RegCM3 and the European Centre for Medium-Range Weather Forecasts 40 Year Re-analysis (ERA-40) shows that the model can simulate the subtropical high to a large extent. The simulated climatological monthly spatial distributions as well as the interannual variability of TC occurrence are also similar to the JTWC data. These results imply the possibility of producing seasonal forecasts of tropical cyclones using real-time global climate model predictions as boundary conditions for the RegCM3. (orig.)

  9. Modelling of large-scale structures arising under developed turbulent convection in a horizontal fluid layer (with application to the problem of tropical cyclone origination

    Directory of Open Access Journals (Sweden)

    G. V. Levina

    2000-01-01

    Full Text Available The work is concerned with the results of theoretical and laboratory modelling the processes of the large-scale structure generation under turbulent convection in the rotating-plane horizontal layer of an incompressible fluid with unstable stratification. The theoretical model describes three alternative ways of creating unstable stratification: a layer heating from below, a volumetric heating of a fluid with internal heat sources and combination of both factors. The analysis of the model equations show that under conditions of high intensity of the small-scale convection and low level of heat loss through the horizontal layer boundaries a long wave instability may arise. The condition for the existence of an instability and criterion identifying the threshold of its initiation have been determined. The principle of action of the discovered instability mechanism has been described. Theoretical predictions have been verified by a series of experiments on a laboratory model. The horizontal dimensions of the experimentally-obtained long-lived vortices are 4÷6 times larger than the thickness of the fluid layer. This work presents a description of the laboratory setup and experimental procedure. From the geophysical viewpoint the examined mechanism of the long wave instability is supposed to be adequate to allow a description of the initial step in the evolution of such large-scale vortices as tropical cyclones - a transition form the small-scale cumulus clouds to the state of the atmosphere involving cloud clusters (the stage of initial tropical perturbation.

  10. Impact of period and timescale of FDDA analysis nudging on the numerical simulation of tropical cyclones in the Bay of Bengal

    KAUST Repository

    Viswanadhapalli, Yesubabu; Srinivas, C. V.; Ramakrishna, S. S V S; Hari Prasad, K. B R R

    2014-01-01

    In this study, the impact of four-dimensional data assimilation (FDDA) analysis nudging is examined on the prediction of tropical cyclones (TC) in the Bay of Bengal to determine the optimum period and timescale of nudging. Six TCs (SIDR: November 13

  11. A Field Guide to Extra-Tropical Cyclones: Comparing Models to Observations

    Science.gov (United States)

    Bauer, M.

    2008-12-01

    Climate it is said is the accumulation of weather. And weather is not the concern of climate models. Justification for this latter sentiment has long hidden behind coarse model resolutions and blunt validation tools based on climatological maps and the like. The spatial-temporal resolutions of today's models and observations are converging onto meteorological scales however, which means that with the correct tools we can test the largely unproven assumption that climate model weather is correct enough, or at least lacks perverting biases, such that its accumulation does in fact result in a robust climate prediction. Towards this effort we introduce a new tool for extracting detailed cyclone statistics from climate model output. These include the usual cyclone distribution statistics (maps, histograms), but also adaptive cyclone- centric composites. We have also created a complementary dataset, The MAP Climatology of Mid-latitude Storminess (MCMS), which provides a detailed 6 hourly assessment of the areas under the influence of mid- latitude cyclones based on Reanalysis products. Using this we then extract complimentary composites from sources such as ISCCP and GPCP to create a large comparative dataset for climate model validation. A demonstration of the potential usefulness of these tools will be shown. dime.giss.nasa.gov/mcms/mcms.html

  12. Extra-Tropical Cyclones at Climate Scales: Comparing Models to Observations

    Science.gov (United States)

    Tselioudis, G.; Bauer, M.; Rossow, W.

    2009-04-01

    Climate is often defined as the accumulation of weather, and weather is not the concern of climate models. Justification for this latter sentiment has long been hidden behind coarse model resolutions and blunt validation tools based on climatological maps. The spatial-temporal resolutions of today's climate models and observations are converging onto meteorological scales, however, which means that with the correct tools we can test the largely unproven assumption that climate model weather is correct enough that its accumulation results in a robust climate simulation. Towards this effort we introduce a new tool for extracting detailed cyclone statistics from observations and climate model output. These include the usual cyclone characteristics (centers, tracks), but also adaptive cyclone-centric composites. We have created a novel dataset, the MAP Climatology of Mid-latitude Storminess (MCMS), which provides a detailed 6 hourly assessment of the areas under the influence of mid-latitude cyclones, using a search algorithm that delimits the boundaries of each system from the outer-most closed SLP contour. Using this we then extract composites of cloud, radiation, and precipitation properties from sources such as ISCCP and GPCP to create a large comparative dataset for climate model validation. A demonstration of the potential usefulness of these tools in process-based climate model evaluation studies will be shown.

  13. Impact of tropical cyclone on biogeochemistry of the central Arabian Sea

    Digital Repository Service at National Institute of Oceanography (India)

    Naik, H.; Naqvi, S.W.A.; Suresh, T.; Narvekar, P.V.

    is geographically and tempo- rally limited. As mentioned above, the process does not occur within the area affected by the WICC. The region that was most affected by the cyclone (08A-98, see sections 3.1, 4.1, and 4.2) is at the periphery of the zone of winter...

  14. Effects of a tropical cyclone on the drinking-water quality of a remote Pacific island.

    Science.gov (United States)

    Mosley, Luke M; Sharp, Donald S; Singh, Sarabjeet

    2004-12-01

    The effect of a cyclone (Ami, January 2003) on drinking-water quality on the island of Vanua Levu, Fiji was investigated. Following the cyclone nearly three-quarters of the samples analysed did not conform to World Health Organisation (WHO) guideline values for safe drinking-water in terms of chlorine residual, total and faecal coliforms, and turbidity. Turbidity and total coliform levels significantly increased (up 56 and 62 per cent, respectively) from pre-cyclone levels, which was likely due to the large amounts of silt and debris entering water-supply sources during the cyclone. The utility found it difficult to maintain a reliable supply of treated water in the aftermath of the disaster. Communities were unaware they were drinking water that had not been adequately treated. Circumstances permitted this cyclone to be used as a case study to assess whether a simple paper-strip water-quality test (the hydrogen sulphide, H(2)S) kit could be distributed and used for community-based monitoring following such a disaster event to better protect public health. The H(2)S test results correlated well with faecal and total coliform results as found in previous studies. A small percentage of samples (about 10 per cent) tested positive for faecal and total coliforms but did not test positive in the H(2)S test. It was concluded that the H(2)S test would be well suited to wider use, especially in the absence of water-quality monitoring capabilities for outer island groups as it is inexpensive and easy to use, thus enabling communities and community health workers with minimal training to test their own water supplies without outside assistance. The importance of public education before and after natural disasters is also discussed.

  15. Tropical Cyclone Track Convergence Patterns, Arctic Sea-Ice Loss, and Superstorm Sandy: Is There a Connection?

    Science.gov (United States)

    Barnes, C. C.; Francis, J. A.; Byrne, J. M.; Graham, J. R.; McDaniel, S. A.

    2013-12-01

    The potential for disruption to populations and food production due to global climate change will be catastrophic in some regions. Among the most vulnerable regions are those impacted by intensifying or changing tropical cyclones (TC). The objective of this research is to identify historical trends in TC tracks and regional circulation patterns that may forecast increasing risks due to TC intensification under global climate warming. We carry out spatial and temporal analysis of the 1979 - 2011 International Best Track Archive for Climate Stewardship (IBTrACS) historical hurricane database. The data were divided into several subsets to allow analysis of trend in: (i) early (JJAS) and late (OND) seasonal trends; and (ii) multi-year intervals (1979-95 and 1996-2011) to differentiate possible long term trends, if any. Geographical Information Systems (GIS) overlay analysis of the IBTrACS 64 knot hurricane wind radii data identified varying levels of historical tropical cyclone track convergence in the North Atlantic (NA) basin. Results of the track convergence analysis provide a first order analysis regarding changing potential population vulnerabilities due to changing seasonal or long-term tropical cyclone activity. During the summer of 2012, the amount of sea ice on the Arctic Ocean was diminished to about half of its normal extent and 25% of its normal volume relative to the nearly steady conditions that existed before the 1980s. This record loss continues an inexorable decline observed during recent decades. The dramatic increase in open water allows much more solar energy absorption at high latitude. Most of this extra heat returns to the atmosphere in autumn, contributing to the Arctic's rate of warming; exceeding that of mid-latitudes by a factor of two to three, a phenomenon called Arctic Amplification (AA). During October 2012, prior to the arrival of Superstorm Sandy along the eastern seaboard, AA was particularly strong, resulting in a substantial

  16. Unravelling the Natural and Anthropogenic Drivers of North Atlantic Tropical Cyclone Track Position since the Little Ice Age

    Science.gov (United States)

    Baldini, L. M.; Baldini, J. U. L.; McElwaine, J.; Frappier, A. B.; Asmerom, Y.; Liu, K. B.; Prufer, K. M.; Ridley, H.; Polyak, V. J.; Kennett, D. J.; Macpherson, C.; Aquino, V. V.; Awe, J.; Breitenbach, S. F. M.

    2017-12-01

    In the last decade, stalagmites have been recognised as valuable archives of past hurricane activity. The characteristically low δ18O rainfall of tropical cyclones (TCs, including both hurricanes and tropical storms) is particularly well-preserved in fast-growing tropical speleothems. Here we present a new multi-proxy approach used to extract the western Caribbean TC signal from background wet season rainfall that, at our site in southern Belize, is driven by seasonal migration of the Intertropical Convergence Zone (ITCZ). The result is an annual 450-year record of western Caribbean TC activity that, when compared to documentary and statistical model-based reconstructions of North Atlantic TC activity, reveals a northward migration of dominant TC track since the height of Little Ice Age cooling. Importantly, the record reveals a reversal in the TC track position-North Atlantic sea surface temperature relationship between the pre-Industrial and Industrial Eras. During the pre-Industrial interval, TC track position migrated with the ITCZ toward the warmer hemisphere. Conversely, anthropogenic greenhouse gas and aerosol emissions during the Industrial Era have decoupled TC track position from the ITCZ through expansion of the Hadley Cell. This research suggests that under future greenhouse gas and aerosol emissions scenarios, the dominant TC track is likely to remain to the north. Combined with greenhouse gas-induced rising sea surface temperatures, the risk to the NE US population and financial centres is likely to increase in the future.

  17. Surveillance for malaria outbreak on malaria-eliminating islands in Tafea Province, Vanuatu after Tropical Cyclone Pam in 2015.

    Science.gov (United States)

    Chan, C W; Iata, H; Yaviong, J; Kalkoa, M; Yamar, S; Taleo, G; Isozumi, R; Fukui, M; Aoyama, F; Pomer, A; Dancause, K N; Kaneko, A

    2017-01-01

    The risk of malaria outbreak surfaced in Vanuatu after Tropical Cyclone (TC) Pam in March 2015. In June and July 2015 we conducted malariometric surveys on the islands of Tanna, Aneityum, and Erromango in Tafea Province, where malaria elimination had been targeted, to determine if malaria incidence had increased after TC Pam. No Plasmodium infection was detected by microscopy and PCR in 3009 survey participants. Only 6·3% (190/3007) of participants had fever. Spleen rates in children aged ⩽12 years from Aneityum and Tanna were low, at 3·6% (14/387) and 5·3% (27/510), respectively. Overall bed net use was high at 72·8% (2175/2986); however, a significantly higher (P Pam. The path towards malaria elimination in Tafea Province was not adversely affected by TC Pam.

  18. Determining tropical cyclone inland flooding loss on a large scale through a new flood peak ratio-based methodology

    International Nuclear Information System (INIS)

    Czajkowski, Jeffrey; Michel-Kerjan, Erwann; Villarini, Gabriele; Smith, James A

    2013-01-01

    In recent years, the United States has been severely affected by numerous tropical cyclones (TCs) which have caused massive damages. While media attention mainly focuses on coastal losses from storm surge, these TCs have inflicted significant devastation inland as well. Yet, little is known about the relationship between TC-related inland flooding and economic losses. Here we introduce a novel methodology that first successfully characterizes the spatial extent of inland flooding, and then quantifies its relationship with flood insurance claims. Hurricane Ivan in 2004 is used as illustration. We empirically demonstrate in a number of ways that our quantified inland flood magnitude produces a very good representation of the number of inland flood insurance claims experienced. These results highlight the new technological capabilities that can lead to a better risk assessment of inland TC flood. This new capacity will be of tremendous value to a number of public and private sector stakeholders dealing with disaster preparedness. (letter)

  19. Potential Vorticity Streamers as Precursors to Tropical Cyclone Genesis in the Western Pacific

    Science.gov (United States)

    2012-03-01

    study a developing system with an extratropical precursor (TCS-037) developing into Tropical Storm 16W (TS 16W)” (Schönenberger 2010). This subsection...tropopause maps), the TC genesis event is termed a tropical transition (TT) case. If no such extratropical feature 38 is present, the storm in... extratropical origin is deemed to play an important role in the dynamical evolution leading to tropical cyclogenesis. In contrast, non-TT storms

  20. Variations in large-scale tropical cyclone genesis factors over the western North Pacific in the PMIP3 last millennium simulations

    Science.gov (United States)

    Yan, Qing; Wei, Ting; Zhang, Zhongshi

    2017-02-01

    Investigation of past tropical cyclone (TC) activity in the Western North Pacific (WNP) is potentially helpful to enable better understanding of future TC behaviors. In this study, we examine variations in large-scale environmental factors important to TC genesis in the last millennium simulations from the Paleoclimate Modelling Intercomparison Project Phase 3 (PMIP3). The results show that potential intensity, a theoretical prediction of the maximum TC intensity, is increased relative to the last millennium in the north part of the WNP in the Medieval Climate Anomaly (MCA; 950-1200 AD) while it is decreased in the Little Ice Age (LIA; 1600-1850 AD). Vertical wind shear that generally inhibits TC genesis is enhanced (reduced) to the south of 20°N and is reduced (enhanced) to the north in the MCA (LIA). Relative humidity (at 600 hPa) that measures the mid-tropospheric moisture content broadly shows an increase (decrease) in the MCA (LIA). A genesis potential index indicates that conditions are generally favorable (unfavorable) for TC formation in the WNP in the MCA (LIA), especially in the northern part. Taking changes in steering flows into account, there may be an increasing (decreasing) favorability for storm strikes in East Asia in the MCA (LIA). The estimated TC activity is consistent with the geological proxies in Japan, but contradicts with the typhoon records in southern China and Taiwan. This model-data discrepancy is attributed to the limitations in both simulations and reconstructions.

  1. Multi-factor evaluation indicator method for the risk assessment of atmospheric and oceanic hazard group due to the attack of tropical cyclones

    Science.gov (United States)

    Qi, Peng; Du, Mei

    2018-06-01

    China's southeast coastal areas frequently suffer from storm surge due to the attack of tropical cyclones (TCs) every year. Hazards induced by TCs are complex, such as strong wind, huge waves, storm surge, heavy rain, floods, and so on. The atmospheric and oceanic hazards cause serious disasters and substantial economic losses. This paper, from the perspective of hazard group, sets up a multi-factor evaluation method for the risk assessment of TC hazards using historical extreme data of concerned atmospheric and oceanic elements. Based on the natural hazard dynamic process, the multi-factor indicator system is composed of nine natural hazard factors representing intensity and frequency, respectively. Contributing to the indicator system, in order of importance, are maximum wind speed by TCs, attack frequency of TCs, maximum surge height, maximum wave height, frequency of gusts ≥ Scale 8, rainstorm intensity, maximum tidal range, rainstorm frequency, then sea-level rising rate. The first four factors are the most important, whose weights exceed 10% in the indicator system. With normalization processing, all the single-hazard factors are superposed by multiplying their weights to generate a superposed TC hazard. The multi-factor evaluation indicator method was applied to the risk assessment of typhoon-induced atmospheric and oceanic hazard group in typhoon-prone southeast coastal cities of China.

  2. Estimation of tropical cyclone heat potential in the Bay of Bengal and its role in the genesis and intensification of storms

    Digital Repository Service at National Institute of Oceanography (India)

    Sadhuram, Y.; Murthy, T.V.R.; Somayajulu, Y.K.

    in the intensification of a storm. Warm layers of 26?C extended at least 100 m beneath the surface in these oceanic features which represent high heat potential (> 90 kJ/cm2) in the western Gulf of Mexico8,9. Monitoring of warm and cold core eddies and the regions... of Mexico, J.Phys.Oceonogr, 2 (1972) 218-224. 4 Palmen E, On the formation and structure of tropical cyclones, Geophysics, 3 (1948) 26-38. 5 Sadhuram Y, Rao B P, Rao D P, Shastri P N M & Subrahmanyam M V, Seasonal variability of cyclone heat potential...

  3. The mechanical influence of continental topography on the trajectories of tropical cyclones near the west coast of Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Zavala Sanson, L. [Departamento de Oceanografia Fisica, CICESE, Ensenada, Baja California (Mexico)

    2004-07-01

    The evolution of tropical cyclonic vortices on the eastern North Pacific is examined by means of a barotropic model with an idealized continental topography. The aim of the study is to investigate the trajectories of cyclones in this area affected by both the topography and the planetary {beta} effects. The topographic {beta} effect is mainly due to the ascending slope of the orography, and induces the vortex to drift towards local northwest direction, which coincides with the geographical northwest (because of the topography orientation). As a result, the vortex drift is clearly enhanced when both effects are considered. The precise direction of the trajectory depends on the initial geographical position with respect to the continent. Vortices initialized at southeastern areas (around 12{center_dot} N, 95{center_dot} W) are deflected by the Sierra Madre del Sur more to the west, following a trajectory almost parallel to the continent. For vortices initialized at 15{center_dot} N or more, their drift is mainly due to the planetary {beta} effect, although eventually they are attracted towards the Sierra Madre Occidental at higher latitudes. These conclusion suggest the possible influence of orography on the trajectories of real tropical cyclones in this area. [Spanish] La evolucion de ciclones tropicales en el Pacifico Norte oriental es estudiada por medio de un modelo barotropico con topografia continental. El objetivo es investigar la trayectoria de vortices ciclonicos en esta area cuando son afectados solamente por los efectos {beta} planetario y topografico. Este ultimo se deba a la pendiente de la orografia continental e induce la deriva del vortice en la direccion noroeste local, la cual coincide con el noroeste geografico (debido a la orientacion de la topografia). Un claro resultado de la combinacion de estos dos mecanismos es el aumento de la rapidez de derivada del ciclon. La direccion precisa de la trayectoria depende de la posicion inicial con respecto

  4. Cyclone and after...

    Digital Repository Service at National Institute of Oceanography (India)

    Joseph, A.

    This is a general article meant for the non-specialist reader. The article provides a brief description of the devastating effects of tropical cyclones in general, and super-cyclone that hit the Orissa Coast, India in 1999, which has been described...

  5. Sensitivity of simulated cyclone Gonu intensity and track to variety of ...

    Indian Academy of Sciences (India)

    M Alimohammadi

    2018-04-06

    Apr 6, 2018 ... USD of financial losses and 78 human casualties were caused by cyclone ... scheme (vortex replacement strategy in the initial- ization fields), made AHW .... and out of these two, Charnock formulation is a default scheme in ...

  6. Tropical Cyclones in the 7km NASA Global Nature Run for use in Observing System Simulation Experiments

    Science.gov (United States)

    Reale, Oreste; Achuthavarier, Deepthi; Fuentes, Marangelly; Putman, William M.; Partyka, Gary

    2018-01-01

    The National Aeronautics and Space Administration (NASA) Nature Run (NR), released for use in Observing System Simulation Experiments (OSSEs), is a 2-year long global non-hydrostatic free-running simulation at a horizontal resolution of 7 km, forced by observed sea-surface temperatures (SSTs) and sea ice, and inclusive of interactive aerosols and trace gases. This article evaluates the NR with respect to tropical cyclone (TC) activity. It is emphasized that to serve as a NR, a long-term simulation must be able to produce realistic TCs, which arise out of realistic large-scale forcings. The presence in the NR of the realistic, relevant dynamical features over the African Monsoon region and the tropical Atlantic is confirmed, along with realistic African Easterly Wave activity. The NR Atlantic TC seasons, produced with 2005 and 2006 SSTs, show interannual variability consistent with observations, with much stronger activity in 2005. An investigation of TC activity over all the other basins (eastern and western North Pacific, North and South Indian Ocean, and Australian region), together with relevant elements of the atmospheric circulation, such as, for example, the Somali Jet and westerly bursts, reveals that the model captures the fundamental aspects of TC seasons in every basin, producing realistic number of TCs with realistic tracks, life spans and structures. This confirms that the NASA NR is a very suitable tool for OSSEs targeting TCs and represents an improvement with respect to previous long simulations that have served the global atmospheric OSSE community. PMID:29674806

  7. Assessing the impact of cyclones in the coastal zone of Bangladesh

    Science.gov (United States)

    Wolf, Judith; Bricheno, Lucy; Chowdury, Shahad; Rahman, Munsur; Ghosh, Tuhin; Kay, Susan; Caesar, John

    2014-05-01

    We review the state of knowledge regarding tropical cyclones and their impacts on coastal ecosystems, as well as the livelihood and health of the coastal communities, under the present and future climate, with application to the coastal zone of Bangladesh. This region is particularly vulnerable to tropical cyclones as it is very low-lying and densely populated. Cyclones cause damage due to the high wind speed and also the ensuing storm surge, which causes inundation and salinity intrusion into agricultural land and contaminates fresh water. The world's largest mangrove forest, the Sundarbans, protects the coast of the Brahmaputra-Ganges-Meghna (BGM) delta from these cyclonic storms but mangroves are themselves vulnerable to cyclone damage, as in 2007 when ~36% of the mangrove area was severely damaged leading to further losses of livelihood. We apply an idealised cyclone model and use the winds and pressures from this model to drive a storm surge model in the Bay of Bengal, in order to examine the impact of the intensity, track speed and landfall of the cyclones in terms of surge and inundation. The model is tested by reproducing the track and intensity of Cyclone Sidr of 2007. We also examine the projected future climate from the South Asia Regional Climate Model to understand how tropical cyclones may change under global warming and assess how this may impact the BGM Delta over the 21st century.

  8. Variability and decline in the number of severe tropical cyclones making land-fall over eastern Australia since the late nineteenth century

    Energy Technology Data Exchange (ETDEWEB)

    Callaghan, Jeff [Bureau of Meteorology, Brisbane (Australia); Power, Scott B. [Bureau of Meteorology, Centre for Australian Weather and Climate Research, GPO Box 1289, Melbourne (Australia)

    2011-08-15

    Recent studies have raised concerns that tropical cyclones (TCs), particularly severe TCs, have become more frequent in many places in response to global warming. Other studies discuss errors in TC data that can cause large inaccuracies in some of the observed trends. Additional studies conclude that TCs are likely to become more intense in the future in response to global warming, while regional modelling studies for the south-west Pacific near north-eastern Australia project an intensification of TCs and either a decrease or no change in TC numbers. Here we describe and use a new data base of severe land-falling TCs for eastern Australia derived from numerous historical sources, that has taken over a decade to develop. It provides one of the world's longest reliable records of tropical cyclone activity, and allows us to document changes over much longer periods than has been done previously for the Southern Hemisphere. Land-fall numbers are shown to vary a great deal on interannual, decadal and longer time-scales. The interannual variability is consistent with previous studies using much shorter data sets: land-fall numbers are well-simulated as a Poisson process and are modulated by the El Nino-Southern Oscillation (ENSO). Land-falls occurred almost twice as often in La Nina years as they did in El Nino years, and multiple land-falls only occurred during La Nina years. The statistical link between land-falls and pre-season values of the Southern Oscillation Index provides a modest predictive capability. Decadal variability in ENSO drives some of the decadal variability in land-fall numbers. The sign and magnitude of trends calculated over 30 years periods vary substantially, highlighting that caution needs to be taken in making inferences about trends based on e.g. satellite era data only. The linear trend in the number of severe TCs making land-fall over eastern Australia declined from about 0.45 TCs/year in the early 1870s to about 0.17 TCs/year in recent

  9. Projecting the risk of damage to reef-lined coasts due to intensified tropical cyclones and sea level rise in Palau to 2100

    OpenAIRE

    Hongo, Chuki; Kurihara, Haruko; Golbuu, Yimnang

    2017-01-01

    Tropical cyclones (TCs), sea level rise (SLR), and storm surges cause major problems including beach erosion, saltwater intrusion into groundwater, and damage to infrastructure in coastal areas. The magnitude and extent of damage is predicted to increase as a consequence of future climate change and local factors. Upward reef growth has attracted attention for its role as a natural breakwater able to reduce the risks of natural disasters to coastal communities. However, projections of change ...

  10. Impact of the intraseasonal variability of large-scale circulation over the Western North Pacific on the characteristics of tropical cyclone track

    OpenAIRE

    Chen, T. C.; Wang, Shih-Yu (Simon); Yen, M. C.; Clark, A. J.

    2009-01-01

    The life cycle of the Southeast Asian–western North Pacific monsoon circulation is established by the northward migrations of the monsoon trough and the western Pacific subtropical anticyclone, and is reflected by the intraseasonal variations of mo nsoon westerlies and trad e easterlies in the form of an east–west seesaw oscillation. In this paper, an effort is made to disclose the influence of this monsoon circulation on tropical cyclone tracks during its different ph ases using composite ch...

  11. Verification of the skill of numerical weather prediction models in forecasting rainfall from U.S. landfalling tropical cyclones

    Science.gov (United States)

    Luitel, Beda; Villarini, Gabriele; Vecchi, Gabriel A.

    2018-01-01

    The goal of this study is the evaluation of the skill of five state-of-the-art numerical weather prediction (NWP) systems [European Centre for Medium-Range Weather Forecasts (ECMWF), UK Met Office (UKMO), National Centers for Environmental Prediction (NCEP), China Meteorological Administration (CMA), and Canadian Meteorological Center (CMC)] in forecasting rainfall from North Atlantic tropical cyclones (TCs). Analyses focus on 15 North Atlantic TCs that made landfall along the U.S. coast over the 2007-2012 period. As reference data we use gridded rainfall provided by the Climate Prediction Center (CPC). We consider forecast lead-times up to five days. To benchmark the skill of these models, we consider rainfall estimates from one radar-based (Stage IV) and four satellite-based [Tropical Rainfall Measuring Mission - Multi-satellite Precipitation Analysis (TMPA, both real-time and research version); Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks (PERSIANN); the CPC MORPHing Technique (CMORPH)] rainfall products. Daily and storm total rainfall fields from each of these remote sensing products are compared to the reference data to obtain information about the range of errors we can expect from "observational data." The skill of the NWP models is quantified: (1) by visual examination of the distribution of the errors in storm total rainfall for the different lead-times, and numerical examination of the first three moments of the error distribution; (2) relative to climatology at the daily scale. Considering these skill metrics, we conclude that the NWP models can provide skillful forecasts of TC rainfall with lead-times up to 48 h, without a consistently best or worst NWP model.

  12. Perceptions, impacts and adaptation of tropical cyclones in the Southwest Pacific: an urban perspective from Fiji, Vanuatu and Tonga

    Science.gov (United States)

    Magee, A. D.; Verdon-Kidd, D. C.; Kiem, A. S.; Royle, S. A.

    2015-11-01

    To better understand perceptions, impacts and adaptation strategies related to tropical cyclones (TCs) in urban environments of the Southwest Pacific (SWP), a survey (with 130 participants) was conducted across three island nations; Fiji, Vanuatu and Tonga. The key aims of this study include: (i) understanding local perceptions of TC activity, (ii) investigating physical impacts of TC activity, and (iii) uncovering adaptation strategies used to offset the impacts of TCs. It was found that current methods of adaptation generally occur at the local level immediately prior to a TC event (preparation of property, gathering of food, setting up of community centres). This method of adaptation appears to be effective, however higher level adaptation measures (such as the development of building codes as developed in Fiji) may reduce vulnerability further. The survey responses also highlight that there is significant scope to provide education programs specifically aimed at improving the understanding of weather related aspects of TCs. Finally, we investigate the potential to merge ecological traditional knowledge with the non-traditional knowledge of empirical and climate mode based weather forecasts to improve forecasting of TCs, which would ultimately reduce vulnerability and increase adaptive capacity.

  13. Tropical cyclone perceptions, impacts and adaptation in the Southwest Pacific: an urban perspective from Fiji, Vanuatu and Tonga

    Science.gov (United States)

    Magee, Andrew D.; Verdon-Kidd, Danielle C.; Kiem, Anthony S.; Royle, Stephen A.

    2016-05-01

    The destruction caused by tropical cyclone (TC) Pam in March 2015 is considered one of the worst natural disasters in the history of Vanuatu. It has highlighted the need for a better understanding of TC impacts and adaptation in the Southwest Pacific (SWP) region. Therefore, the key aims of this study are to (i) understand local perceptions of TC activity, (ii) investigate impacts of TC activity and (iii) uncover adaptation strategies used to offset the impacts of TCs. To address these aims, a survey (with 130 participants from urban areas) was conducted across three SWP small island states (SISs): Fiji, Vanuatu and Tonga (FVT). It was found that respondents generally had a high level of risk perception and awareness of TCs and the associated physical impacts, but lacked an understanding of the underlying weather conditions. Responses highlighted that current methods of adaptation generally occur at the local level, immediately prior to a TC event (preparation of property, gathering of food, finding a safe place to shelter). However higher level adaptation measures (such as the modification to building structures) may reduce vulnerability further. Finally, we discuss the potential of utilising weather-related traditional knowledge and non-traditional knowledge of empirical and climate-model-based weather forecasts to improve TC outlooks, which would ultimately reduce vulnerability and increase adaptive capacity. Importantly, lessons learned from this study may result in the modification and/or development of existing adaptation strategies.

  14. Evaluations of Extended-Range tropical Cyclone Forecasts in the Western North Pacific by using the Ensemble Reforecasts: Preliminary Results

    Science.gov (United States)

    Tsai, Hsiao-Chung; Chen, Pang-Cheng; Elsberry, Russell L.

    2017-04-01

    The objective of this study is to evaluate the predictability of the extended-range forecasts of tropical cyclone (TC) in the western North Pacific using reforecasts from National Centers for Environmental Prediction (NCEP) Global Ensemble Forecast System (GEFS) during 1996-2015, and from the Climate Forecast System (CFS) during 1999-2010. Tsai and Elsberry have demonstrated that an opportunity exists to support hydrological operations by using the extended-range TC formation and track forecasts in the western North Pacific from the ECMWF 32-day ensemble. To demonstrate this potential for the decision-making processes regarding water resource management and hydrological operation in Taiwan reservoir watershed areas, special attention is given to the skill of the NCEP GEFS and CFS models in predicting the TCs affecting the Taiwan area. The first objective of this study is to analyze the skill of NCEP GEFS and CFS TC forecasts and quantify the forecast uncertainties via verifications of categorical binary forecasts and probabilistic forecasts. The second objective is to investigate the relationships among the large-scale environmental factors [e.g., El Niño Southern Oscillation (ENSO), Madden-Julian Oscillation (MJO), etc.] and the model forecast errors by using the reforecasts. Preliminary results are indicating that the skill of the TC activity forecasts based on the raw forecasts can be further improved if the model biases are minimized by utilizing these reforecasts.

  15. Tropical cyclones over north Indian Ocean during El-Nino Modoki years

    Digital Repository Service at National Institute of Oceanography (India)

    Sumesh, K.G.; RameshKumar, M.R.

     and Pankaj Kumar. (2004).    The El‐Niño and positive  IOD occured simultaneously  in 1982 and 1997, and El‐Niño Modoki   and positive  IOD occured simultaneously in 1994. Table 3, presents the variations in the frequencies of cyclones in various  basins... as seasonal genesis parameter (SGP) this is the product of three dynamic parameters as well as three  thermodynamic parameters,  such  as 1.  low  level  relative  vorticity, 2.  coriolis parameter, 3.  inverse of  the  vertical shear of the horizontal wind between lower and upper troposphere, 4. ocean thermal energy or sea  surface temperature above 26°C...

  16. Putting to Rest WISHE-ful Misconceptions for Tropical Cyclone Intensification

    Science.gov (United States)

    2014-11-27

    Persing1, and Roger K. Smith2 1Department of Meteorology, Naval Postgraduate School , Monterey, California, USA, 2Meteorological Institute, Ludwig...NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Naval Postgraduate School ,Department of Meteorology,Monterey,CA,93943...paper presented at 29th Conference on Hurri- canes and Tropical Meteorology, p. 8C.7, Amer. Meteorol. Soc., Tucson, Ariz. Figure 7. Azimuthally-averaged

  17. Potential of Future Hurricane Imaging Radiometer (HIRAD) Ocean Surface Wind Observations for Determining Tropical Storm Vortex Intensity and Structure

    Science.gov (United States)

    Atlas, Robert; Bailey, M. C.; Black, Peter; James, Mark; Johnson, James; Jones, Linwood; Miller, Timothy; Ruf, Christopher; Uhlhorn, Eric

    2008-01-01

    The Hurricane Imaging Radiometer (HIRAD) is an innovative technology development, which offers the potential of new and unique remotely sensed observations of both extreme oceanic wind events and strong precipitation from either UAS or satellite platforms. It is based on the airborne Stepped Frequency Microwave Radiometer (SFMR), which is a proven aircraft remote sensing technique for observing tropical cyclone ocean surface wind speeds and rain rates, including those of major hurricane intensity. The proposed HIRAD instrument advances beyond the current nadir viewing SFMR to an equivalent wide-swath SFMR imager using passive microwave synthetic thinned aperture radiometer technology. This sensor will operate over 4-7 GHz (C-band frequencies) where the required tropical cyclone remote sensing physics has been validated by both SFMR and WindSat radiometers. HIRAD incorporates a unique, technologically advanced array antenna and several other technologies successfully demonstrated by the NASA's Instrument Incubator Program. A brassboard version of the instrument is complete and has been successfully tested in an anechoic chamber, and development of the aircraft instrument is well underway. HIRAD will be a compact, lightweight, low-power instrument with no moving parts that will produce wide-swath imagery of ocean vector winds and rain during hurricane conditions when existing microwave sensors (radiometers or scatterometers) are hindered. Preliminary studies show that HIRAD will have a significant positive impact on analyses as either a new aircraft or satellite sensor.

  18. Impact of Representing Model Error in a Hybrid Ensemble-Variational Data Assimilation System for Track Forecast of Tropical Cyclones over the Bay of Bengal

    Science.gov (United States)

    Kutty, Govindan; Muraleedharan, Rohit; Kesarkar, Amit P.

    2018-03-01

    Uncertainties in the numerical weather prediction models are generally not well-represented in ensemble-based data assimilation (DA) systems. The performance of an ensemble-based DA system becomes suboptimal, if the sources of error are undersampled in the forecast system. The present study examines the effect of accounting for model error treatments in the hybrid ensemble transform Kalman filter—three-dimensional variational (3DVAR) DA system (hybrid) in the track forecast of two tropical cyclones viz. Hudhud and Thane, formed over the Bay of Bengal, using Advanced Research Weather Research and Forecasting (ARW-WRF) model. We investigated the effect of two types of model error treatment schemes and their combination on the hybrid DA system; (i) multiphysics approach, which uses different combination of cumulus, microphysics and planetary boundary layer schemes, (ii) stochastic kinetic energy backscatter (SKEB) scheme, which perturbs the horizontal wind and potential temperature tendencies, (iii) a combination of both multiphysics and SKEB scheme. Substantial improvements are noticed in the track positions of both the cyclones, when flow-dependent ensemble covariance is used in 3DVAR framework. Explicit model error representation is found to be beneficial in treating the underdispersive ensembles. Among the model error schemes used in this study, a combination of multiphysics and SKEB schemes has outperformed the other two schemes with improved track forecast for both the tropical cyclones.

  19. COSMIC Radio Occultation technique for measurement of the tropopause during tropical cyclones

    DEFF Research Database (Denmark)

    Biondi, Riccardo; Neubert, Torsten; Syndergaard, Stig

    Basin during July 2008 and reached a maximum intensity of Category 3 and the typhoon Hondo, formed in the south Indian basin during February 2008 with maximum intensity of Category 4. Using measurements from a variety of earth observation satellites (A-Train constellation) and from aircraft together...... and they cool the tropopause layers. The GPS radio occultation technique is useful for studying severe weather phenomena because the GPS signals penetrate through clouds and allow measurements of atmospheric profiles related to temperature, pressure, and water vapour with high vertical resolution...

  20. The ability of general circulation models to simulate tropical cyclones and their precursors over the North Atlantic main development region

    Energy Technology Data Exchange (ETDEWEB)

    Daloz, Anne Sophie; Chauvin, Fabrice [Groupe de Modelisation Grande Echelle et Climat, CNRM-GAME, Meteo-France, Toulouse Cedex 1 (France); Walsh, Kevin [University of Melbourne, School of Earth Sciences, Melbourne, VIC (Australia); Lavender, Sally; Abbs, Deborah [CSIRO Atmospheric and Marine Research, Aspendale, VIC (Australia); Roux, Frank [Universite de Toulouse and Centre National de la Recherche Scientifique, Laboratoire d' Aerologie, Toulouse (France)

    2012-10-15

    The ability of General Circulation Models (GCMs) to generate Tropical Cyclones (TCs) over the North Atlantic Main Development Region (MDR; 10-20 N, 20-80 W; Goldenberg and Shapiro in J Clim 9:1169-1187, 1996) is examined through a subset of ocean-atmosphere coupled simulations from the World Climate Research Programme (WCRP) Coupled Model Intercomparison Project phase 3 (CMIP3) multimodel data set and a high-resolution (0.5 ) Sea Surface Temperature (SST)-forced simulation from the Australian Conformal-Cubic Atmospheric Model GCM. The results are compared with National Center for Environmental Prediction (NCEP-2) and European Center for Medium Range Weather Forecasts Re-Analysis (ERA-40) reanalyses over a common period from 1980 to 1998. Important biases in the representation of the TC activity are encountered over the MDR. This study emphasizes the strong link in the GCMs between African Easterly Waves (AEWs) and TC activity in this region. However, the generation of AEWs is not a sufficient condition alone for the models to produce TCs. Precipitation over the Sahel, especially rainfall over the Fouta Djallon highlands (cf. Fig. 1), is playing a role in the generation of TCs over the MDR. The influence of large-scale fields such as SST, vertical wind shear and tropospheric humidity on TC genesis is also examined. The ability of TC genesis indices, such as the Genesis Potential Index and the Convective Yearly Genesis Potential, to represent TC activity over the MDR in simulations at low to high spatial resolutions is analysed. These indices are found to be a reasonable method for comparing cyclogenesis in different models, even though other factors such as AEW activity should also be considered. (orig.)

  1. Tropical Cyclone Storm Surge Inundation and Velocity Hazard Mapping of the State of Andhra Pradesh (India) using ADCIRC

    Science.gov (United States)

    Brackins, J. T.; Kalyanapu, A. J.

    2017-12-01

    The Northern Indian Ocean Bay of Bengal region, including parts of India, Bangladesh, Myanmar, and Sri Lanka, is the largest bay in the world and is structured in such a manner as to produce the world's largest tropical cyclone (TC) storm surges (SS), with approximately five surge events greater than 5 meters in magnitude each decade. (Needham et al. 2015). Although some studies have been performed to attempt to capture the magnitude and location of historical surges (Shaji et al. 2014) and to model surges in the immediate sense, there is a notable lack of application to the effects on coastal infrastructure in these areas. Given that these areas are some of the most densely populated and least economically able to prepare and recover, it is important to consider the potential effects of storm surge to discover areas where improvements can be made with the limited resources available to these areas. To this end, an ADvanced-CIRCulation (ADCIRC) model (Luettich and Westerink 2004) was created for the Bay of Bengal, using the General Bathymetric Chart of the Oceans (GEBCO 2014) as bathymetric and topographic data, and a combination of the Joint Typhoon Warning Center (JTWC) and India Meteorological Department (IMD) records for storm tracks. For the state of Andhra Pradesh, several major TC events ranging from 1977 to 2014 were selected to be modeled with the goal of creating hazard maps of storm surge inundation and velocity for the state. These hazard maps would be used to identify high-vulnerability areas with the goal of implementing land-use planning and coastal development practices that will aid in ameliorating both the loss of life and economic damages sustained as a result of these TCs.

  2. Observational study of ionospheric irregularities and GPS scintillations associated with the 2012 tropical cyclone Tembin passing Hong Kong

    Science.gov (United States)

    Yang, Zhe; Liu, Zhizhao

    2016-05-01

    This study presents the ionospheric responses observed in Hong Kong to a Typhoon, namely, Tembin, from the aspects of the occurrence of ionospheric irregularities and scintillations, using Global Positioning System (GPS) observations from a ground-based GPS scintillation monitoring station in Hong Kong and from GPS receivers on board the Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC) satellites. The ionospheric irregularities and scintillations are characterized by the rate of total electron content variation index (ROTI) and the amplitude scintillation index S4, respectively. The typhoon Tembin formed over the western North Pacific during 18-30 August 2012 and approached Hong Kong during 24-27 August 2012 with the closest distance 290 km from Hong Kong at around 17 universal time (UT) on 25 August 2012. The ground-based observations indicate that in the nighttime period of 20:00-02:00 local time (LT = UT + 8 h) on 26 August when Tembin passed closely to Hong Kong, the ionospheric irregularities and scintillations of GPS signals were observed in the south of Hong Kong, over the area of 13°N ~ 23°N in latitude and 110°E ~ 120°E in longitude. From the COSMIC observations, it shows that the number of radio occultation scintillation events peaks on 26 August 2012 during the passage of Tembin. Without the presence of strong geomagnetic or solar activity, it is suspected that gravity waves might be generated in the lower atmosphere and likely seed the formation of ionospheric plasma irregularities. This work for the first time from Hong Kong observes the sign of coupling between the lower atmosphere and ionosphere in a tropical cyclone event, combining both ground- and space-based GPS observation data.

  3. Finding Tropical Cyclones on a Cloud Computing Cluster: Using Parallel Virtualization for Large-Scale Climate Simulation Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Hasenkamp, Daren; Sim, Alexander; Wehner, Michael; Wu, Kesheng

    2010-09-30

    Extensive computing power has been used to tackle issues such as climate changes, fusion energy, and other pressing scientific challenges. These computations produce a tremendous amount of data; however, many of the data analysis programs currently only run a single processor. In this work, we explore the possibility of using the emerging cloud computing platform to parallelize such sequential data analysis tasks. As a proof of concept, we wrap a program for analyzing trends of tropical cyclones in a set of virtual machines (VMs). This approach allows the user to keep their familiar data analysis environment in the VMs, while we provide the coordination and data transfer services to ensure the necessary input and output are directed to the desired locations. This work extensively exercises the networking capability of the cloud computing systems and has revealed a number of weaknesses in the current cloud system software. In our tests, we are able to scale the parallel data analysis job to a modest number of VMs and achieve a speedup that is comparable to running the same analysis task using MPI. However, compared to MPI based parallelization, the cloud-based approach has a number of advantages. The cloud-based approach is more flexible because the VMs can capture arbitrary software dependencies without requiring the user to rewrite their programs. The cloud-based approach is also more resilient to failure; as long as a single VM is running, it can make progress while as soon as one MPI node fails the whole analysis job fails. In short, this initial work demonstrates that a cloud computing system is a viable platform for distributed scientific data analyses traditionally conducted on dedicated supercomputing systems.

  4. Modeling Tropical Cyclone Storm Surge and Wind Induced Risk Along the Bay of Bengal Coastline Using a Statistical Copula

    Science.gov (United States)

    Bushra, N.; Trepanier, J. C.; Rohli, R. V.

    2017-12-01

    High winds, torrential rain, and storm surges from tropical cyclones (TCs) cause massive destruction to property and cost the lives of many people. The coastline of the Bay of Bengal (BoB) ranks as one of the most susceptible to TC storm surges in the world due to low-lying elevation and a high frequency of occurrence. Bangladesh suffers the most due to its geographical setting and population density. Various models have been developed to predict storm surge in this region but none of them quantify statistical risk with empirical data. This study describes the relationship and dependency between empirical TC storm surge and peak reported wind speed at the BoB using a bivariate statistical copula and data from 1885-2011. An Archimedean, Gumbel copula with margins defined by the empirical distributions is specified as the most appropriate choice for the BoB. The model provides return periods for pairs of TC storm surge and peak wind along the BoB coastline. The BoB can expect a TC with peak reported winds of at least 24 m s-1 and surge heights of at least 4.0 m, on average, once every 3.2 years, with a quartile pointwise confidence interval of 2.7-3.8 years. In addition, the BoB can expect peak reported winds of 62 m s-1 and surge heights of at least 8.0 m, on average, once every 115.4 years, with a quartile pointwise confidence interval of 55.8-381.1 years. The purpose of the analysis is to increase the understanding of these dangerous TC characteristics to reduce fatalities and monetary losses into the future. Application of the copula will mitigate future threats of storm surge impacts on coastal communities of the BoB.

  5. ENSO Effect on East Asian Tropical Cyclone Landfall via Changes in Tracks and Genesis in a Statistical Model

    Science.gov (United States)

    Yonekura, Emmi; Hall, Timothy M.

    2014-01-01

    Improvements on a statistical tropical cyclone (TC) track model in the western North Pacific Ocean are described. The goal of the model is to study the effect of El Nino-Southern Oscillation (ENSO) on East Asian TC landfall. The model is based on the International Best-Track Archive for Climate Stewardship (IBTrACS) database of TC observations for 1945-2007 and employs local regression of TC formation rates and track increments on the Nino-3.4 index and seasonally varying climate parameters. The main improvements are the inclusion of ENSO dependence in the track propagation and accounting for seasonality in both genesis and tracks. A comparison of simulations of the 1945-2007 period with observations concludes that the model updates improve the skill of this model in simulating TCs. Changes in TC genesis and tracks are analyzed separately and cumulatively in simulations of stationary extreme ENSO states. ENSO effects on regional (100-km scale) landfall are attributed to changes in genesis and tracks. The effect of ENSO on genesis is predominantly a shift in genesis location from the southeast in El Nino years to the northwest in La Nina years, resulting in higher landfall rates for the East Asian coast during La Nina. The effect of ENSO on track propagation varies seasonally and spatially. In the peak activity season (July-October), there are significant changes in mean tracks with ENSO. Landfall-rate changes from genesis- and track-ENSO effects in the Philippines cancel out, while coastal segments of Vietnam, China, the Korean Peninsula, and Japan show enhanced La Nina-year increases.

  6. Finding Tropical Cyclones on a Cloud Computing Cluster: Using Parallel Virtualization for Large-Scale Climate Simulation Analysis

    International Nuclear Information System (INIS)

    Hasenkamp, Daren; Sim, Alexander; Wehner, Michael; Wu, Kesheng

    2010-01-01

    Extensive computing power has been used to tackle issues such as climate changes, fusion energy, and other pressing scientific challenges. These computations produce a tremendous amount of data; however, many of the data analysis programs currently only run a single processor. In this work, we explore the possibility of using the emerging cloud computing platform to parallelize such sequential data analysis tasks. As a proof of concept, we wrap a program for analyzing trends of tropical cyclones in a set of virtual machines (VMs). This approach allows the user to keep their familiar data analysis environment in the VMs, while we provide the coordination and data transfer services to ensure the necessary input and output are directed to the desired locations. This work extensively exercises the networking capability of the cloud computing systems and has revealed a number of weaknesses in the current cloud system software. In our tests, we are able to scale the parallel data analysis job to a modest number of VMs and achieve a speedup that is comparable to running the same analysis task using MPI. However, compared to MPI based parallelization, the cloud-based approach has a number of advantages. The cloud-based approach is more flexible because the VMs can capture arbitrary software dependencies without requiring the user to rewrite their programs. The cloud-based approach is also more resilient to failure; as long as a single VM is running, it can make progress while as soon as one MPI node fails the whole analysis job fails. In short, this initial work demonstrates that a cloud computing system is a viable platform for distributed scientific data analyses traditionally conducted on dedicated supercomputing systems.

  7. GPS radio occultation technique for measurement of the atmosphere above tropical cyclones

    DEFF Research Database (Denmark)

    Biondi, Riccardo; Neubert, Torsten; Syndergaard, Stig

    2009-01-01

    Water vapour transport to the upper troposphere (UT) and lower stratosphere (LS) by deep convective storms affects the radiation balance of the atmosphere and has been proposed as an important component of climate change. The aim of the work presented here is to understand if the GPS Radio Occult...... 2008 and reached a maximum intensity of Category 3....

  8. Intensity of Urban Heat Islands in Tropical and Temperate Climates

    Directory of Open Access Journals (Sweden)

    Margarete Cristiane de Costa Trindade Amorim

    2017-12-01

    Full Text Available Nowadays, most of the Earth’s population lives in urban areas. The replacement of vegetation by buildings and the general soil sealing, associated with human activity, lead to a rise in cities temperature, resulting in the formation of urban heat islands. This article aims to evaluate the intensity and the hourly maintenance of the atmospheric heat islands in two climates: one tropical (Presidente Prudente, Brazil and one temperate (Rennes, France throughout 2016. For this, air temperature and hourly averages were measured and calculated using both a HOBO datalogger (U23-002—protected under the same RS3 brand and weather stations Davis Vantage PRO 2. The daily evolution of the heat islands presented characteristics that varied according to the hours and seasons of the year. For both Rennes and Presidente Prudente, the largest magnitudes occurred overnight, being more greatly expressed in the tropical environment and during the driest months (winter in the tropical city and summer in the temperate one. The variability of synoptic conditions from one month to another also leads to a great heterogeneity of UHI intensity throughout the year.

  9. Tropical-Cyclone Flow Asymmetries Induced by a Uniform Flow Revisited

    Science.gov (United States)

    2011-11-01

    of about 500 m in Hurricanes Allen (1980) and Hugo (1989) by Zhang et al. (2011a). In Hugo , maximum K-values were about 110 m2 s−1 beneath the eyewall...region of intense Hurricanes Allen (1980) and Hugo (1989). Mon. Wea. Rev., 139, 1447-1462. Zhang JA Rogers RF Nolan DS and Marks FD. 2011b On the...Dept. of Meteorology, Naval Postgraduate School, Monterey, CA & NOAA’s Hurricane Research Division ∗Correspondence to: Roger K. Smith, Meteorological

  10. Contribution of tropical cyclones to the air-sea CO2 flux: A global view

    Digital Repository Service at National Institute of Oceanography (India)

    Levy, M.; Lengaigne, M.; Bopp, L.; Vincent, E.M.; Madec, G.; Ethe, C.; DileepKumar, M.; Sarma, V.V.S.S.

    .ocemod.2006.11.003.501 D’Asaro, E. (2003), The ocean boundary layer below hurricane dennis, Journal of physical502 oceanography, 33(3), 561–579.503 D’Asaro,E.,andC.McNeil(2007),Air-seagasexchangeatextremewindspeedsmeasured504 by autonomous oceanographic floats... at high wind speed [Liss and Merlivat, 1986; Wanninkhof, 1992; D’Asaro and McNeil,55 2007; McNeil and D’Asaro, 2007]. TCs also impact F CO 2 because their intense surface56 winds increase vertical entrainment of subsurface waters (hereafter referred...

  11. Impact of tropical cyclones on the heat budget of the south Pacific Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Jullien, S.; Menkes, C.E.; Marchesiello, P.; Jourdain, N.C.; Lengaigne, M.; Koch-Larrouy, A.; Lefevre, J.; Vincent, E.M.; Faure, V.

    ; Withee and Johnson 1976; Pudov et al. 1979; McPhaden et al. 2008), which feeds back to them, moderating their intensity (Schade and Emanuel 1999; D’Asaro et al. 2007). Un- derstanding the surface heat balance associated with TCs is thus of major relevance... SST cooling asymmetry (in the Northern Hemisphere) is often ob- served (e.g., Pudov et al. 1979; McPhaden et al. 2008; Shay et al. 1992) and has been largely attributed to two phenomena. First, the wind stress asymmetry associated with TC translation...

  12. Initial Assessment of Cyclone Global Navigation Satellite System (CYGNSS) Observations

    Science.gov (United States)

    McKague, D. S.; Ruf, C. S.

    2017-12-01

    The NASA Cyclone Global Navigation Satellite System (CYNSS) mission provides high temporal resolution observations of cyclones from a constellation of eight low-Earth orbiting satellites. Using the relatively new technique of Global Navigation Satellite System reflectometry (GNSS-R), all-weather observations are possible, penetrating even deep convection within hurricane eye walls. The compact nature of the GNSS-R receivers permits the use of small satellites, which in turn enables the launch of a constellation of satellites from a single launch vehicle. Launched in December of 2016, the eight CYGNSS satellites provide 25 km resolution observations of mean square slope (surface roughness) and surface winds with a 2.8 hour median revisit time from 38 S to 38 N degrees latitude. In addition to the calibration and validation of CYGNSS sea state observations, the CYGNSS science team is assessing the ability of the mission to provide estimates of cyclone size, intensity, and integrated kinetic energy. With its all-weather ability and high temporal resolution, the CYGNSS mission will add significantly to our ability to monitor cyclone genesis and intensification and will significantly reduce uncertainties in our ability to estimate cyclone intensity, a key variable in predicting its destructive potential. Members of the CYGNSS Science Team are also assessing the assimilation of CYGNSS data into hurricane forecast models to determine the impact of the data on forecast skill, using the data to study extra-tropical cyclones, and looking at connections between tropical cyclones and global scale weather, including the global hydrologic cycle. This presentation will focus on the assessment of early on-orbit observations of cyclones with respect to these various applications.

  13. Impact of global warming on tropical cyclone genesis in coupled and forced simulations: role of SST spatial anomalies

    Science.gov (United States)

    Royer, Jean-François; Chauvin, Fabrice; Daloz, Anne-Sophie

    2010-05-01

    The response of tropical cyclones (TC) activity to global warming has not yet reached a clear consensus in the Fourth Assessment Report (AR4) published by the Intergovernmental Panel on Climate Change (IPCC, 2007) or in the recent scientific literature. Observed series are neither long nor reliable enough for a statistically significant detection and attribution of past TC trends, and coupled climate models give widely divergent results for the future evolution of TC activity in the different ocean basins. The potential importance of the spatial structure of the future SST warming has been pointed out by Chauvin et al. (2006) in simulations performed at CNRM with the ARPEGE-Climat GCM. The current presentation describes a new set of simulations that have been performed with the ARPEGE-Climat model to try to understand the possible role of SST patterns in the TC cyclogenesis response in 15 CMIP3 coupled simulations analysed by Royer et al (2009). The new simulations have been performed with the atmospheric component of the ARPEGE-Climat GCM forced in 10 year simulations by the SST patterns from each of 15 CMIP3 simulations with different climate model at the end of the 21st century according to scenario A2. The TC analysis is based on the computation of a Convective Yearly Genesis Parameter (CYGP) and the Genesis Potential Index (GPI). The computed genesis indices for each of the ARPEGE-Climat forced simulations is compared with the indices computed directly from the initial coupled simulation. The influence of SST patterns can then be more easily assessed since all the ARPEGE-Climat simulations are performed with the same atmospheric model, whereas the original simulations used models with different parameterization and resolutions. The analysis shows that CYGP or GPI anomalies obtained with ARPEGE are as variable between each other as those obtained originally by the different IPCC models. The variety of SST patterns used to force ARPEGE explains a large part of

  14. Tropical Cyclone Report, 1990.

    Science.gov (United States)

    1990-01-01

    organization as system underwent increased vertical wind shear and loss of latent and sensible heat. HI. TRACK AND MOTION After initially tracking...PASADENA CIUDAD UNIVERSITARIA. MEXICO LISD CAMP SPRINGS CENTER, MD CIVIL DEFENSE, BELAU LOS ANGELES PUBLIC LIBRARY CIVIL DEFENSE, MAJURO MAURITIUS

  15. Tropical Cyclone Report

    Science.gov (United States)

    1989-01-01

    CHULALONGKORN UNIVERSITY, BANGKOK LOS ANGELES PUBLIC LIBRARY CHUNG CHENG INSTITUTE, TAIWAN MASS INST OF TECH CITIES SERVICES OIL GAS CORP MCAS FUTENMA CIUDAD ...reached the mountainous oceanic sensible and latent heat sources . The terrain of Laos. system was downgraded to a typhoon at 190600Z, and then to a

  16. November 2009 tropical cyclone Phyan in the eastern Arabian Sea: Oceanic response along west India coast and Kavaratti lagoon

    Digital Repository Service at National Institute of Oceanography (India)

    Joseph, A.; Desai, R.G.P.; Mehra, P.; VijayKumar, K.; Agarvadekar, Y.; Ryan, L.; Rivankar, P.; Viegas, B.

    satellite-derived and in-situ measurements. The maximum wind-speed (U sub(10)) of approx. 16 m/s occurred at Kavaratti Island region followed by approx. 8 m/s at Dwarka in Gujarat, where the cyclone landfall occurred, and approx. 7 m/s at Diu located just...

  17. Why Do Model Tropical Cyclones Grow Progressively in Size and Decay in Intensity after Reaching Maturity

    Science.gov (United States)

    2015-08-17

    the distribution of azimuthally-averaged diabatic heating rate derived from the MM5 output. The coefficients of this equation are deter- mined by the...contributions to the intensification of Hurricane Opal as diagnosed from a GFDL model forecast. Mon. Wea. Rev., 130, 1866–1881. Montgomery, M. T., M. E

  18. Real-Time Prediction of Tropical Cyclone Intensity Using COAMPS-TC

    Science.gov (United States)

    2012-01-01

    troposphere. Volcanic sul- fur dioxide and hydrogen sulfide vapor molecules are photo- oxidized in the LS, forming gaseous sulphuric acid, which in...proximity to the U.S. East Coast. The COAMPS-TC prediction captures the large areal extent of the precipitation field, as well as its asymmetry about

  19. Characteristics of different convective parameterization schemes on the simulation of intensity and track of severe extratropical cyclones over North Atlantic

    Science.gov (United States)

    Pradhan, P. K.; Liberato, Margarida L. R.; Ferreira, Juan A.; Dasamsetti, S.; Vijaya Bhaskara Rao, S.

    2018-01-01

    The role of the convective parameterization schemes (CPSs) in the ARW-WRF (WRF) mesoscale model is examined for extratropical cyclones (ETCs) over the North Atlantic Ocean. The simulation of very severe winter storms such as Xynthia (2010) and Gong (2013) are considered in this study. Most popular CPSs within WRF model, along with Yonsei University (YSU) planetary boundary layer (PBL) and WSM6 microphysical parameterization schemes are incorporated for the model experiments. For each storm, four numerical experiments were carried out using New Kain Fritsch (NKF), Betts-Miller-Janjic (BMJ), Grell 3D Ensemble (Gr3D) and no convection scheme (NCS) respectively. The prime objectives of these experiments were to recognize the best CPS that can forecast the intensity, track, and landfall over the Iberian Peninsula in advance of two days. The WRF model results such as central sea level pressure (CSLP), wind field, moisture flux convergence, geopotential height, jet stream, track and precipitation have shown sensitivity CPSs. The 48-hour lead simulations with BMJ schemes produce the best simulations both regarding ETCs intensity and track than Gr3D and NKF schemes. The average MAE and RMSE of intensities are least that (6.5 hPa in CSLP and 3.4 ms- 1 in the 10-m wind) found in BMJ scheme. The MAE and RMSE for and intensity and track error have revealed that NCS produces large errors than other CPSs experiments. However, for track simulation of these ETCs, at 72-, 48- and 24-hour means track errors were 440, 390 and 158 km respectively. In brevity, BMJ and Gr3D schemes can be used for short and medium range predictions of the ETCs over North Atlantic. For the evaluation of precipitation distributions using Gr3D scheme are good agreement with TRMM satellite than other CPSs.

  20. A Look Under the Hood: How the JPL Tropical Cyclone Information System Uses Database Technologies to Present Big Data to Users

    Science.gov (United States)

    Knosp, B.; Gangl, M.; Hristova-Veleva, S. M.; Kim, R. M.; Li, P.; Turk, J.; Vu, Q. A.

    2015-12-01

    The JPL Tropical Cyclone Information System (TCIS) brings together satellite, aircraft, and model forecast data from several NASA, NOAA, and other data centers to assist researchers in comparing and analyzing data and model forecast related to tropical cyclones. The TCIS has been running a near-real time (NRT) data portal during North Atlantic hurricane season that typically runs from June through October each year, since 2010. Data collected by the TCIS varies by type, format, contents, and frequency and is served to the user in two ways: (1) as image overlays on a virtual globe and (2) as derived output from a suite of analysis tools. In order to support these two functions, the data must be collected and then made searchable by criteria such as date, mission, product, pressure level, and geospatial region. Creating a database architecture that is flexible enough to manage, intelligently interrogate, and ultimately present this disparate data to the user in a meaningful way has been the primary challenge. The database solution for the TCIS has been to use a hybrid MySQL + Solr implementation. After testing other relational database and NoSQL solutions, such as PostgreSQL and MongoDB respectively, this solution has given the TCIS the best offerings in terms of query speed and result reliability. This database solution also supports the challenging (and memory overwhelming) geospatial queries that are necessary to support analysis tools requested by users. Though hardly new technologies on their own, our implementation of MySQL + Solr had to be customized and tuned to be able to accurately store, index, and search the TCIS data holdings. In this presentation, we will discuss how we arrived on our MySQL + Solr database architecture, why it offers us the most consistent fast and reliable results, and how it supports our front end so that we can offer users a look into our "big data" holdings.

  1. Characteristics of cyclones causing extreme sea levels in the northern Baltic Sea** The study was supported by the Estonian Ministry of Education and Research (IUT20-11 and Grant ETF9134 and by the EU Regional Development Foundation, Environmental Conservation and Environmental Technology R&D Programme Project No. 3.2.0801.12-0044.

    Directory of Open Access Journals (Sweden)

    Piia Post

    2014-01-01

    Full Text Available The basic parameters of extra-tropical cyclones in the northern Baltic are examined in relation to extreme sea level events at Estonian coastal stations between 1948 and 2010. The hypothesis that extreme sea level events might be caused not by one intense extra-tropical cyclone, as suggested by earlier researchers, but by the temporal clustering of cyclones in a certain trajectory corridor, is tested. More detailed analysis of atmospheric conditions at the time of the two most extreme cases support this concept: the sequence of 5 cyclones building up the extreme sea level within about 10 days was very similar in structure and periodicity.

  2. Climate Prediction Center (CPC) Western Pacific Basin Cyclone Monitoring

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Tropical cyclones are one of the nature?s destructive phenomena, causing loss of lives and property damage. The affected countries associated with the cyclones of...

  3. The phase differences of the interdecadal variabilities of tropical cyclone activity in the peak and late seasons over the western North Pacific

    Science.gov (United States)

    Fan, Tingting; Xu, Shibin; Huang, Fei; Zhao, Jinping

    2018-04-01

    This study compares the interdecadal variations in tropical cyclone (TC) activities over the western North Pacific (WNP) basin during the peak season (July-September) and late season (October-December) of 1955-2014 and explores the possible physical mechanisms behind the variations. Both the peak- and late-season tropical storm (TS) days show distinct interdecadal variations, while the late-season TS days lead the peak-season TS days by approximately 4 years on an interdecadal time scale. The late-season TC activity is related to the east-west sea surface temperature (SST) gradient across the equatorial Pacific. The westerly winds induced by the SST gradient can reduce the vertical wind shear and increase the low-level vorticity, which favors TC genesis over the TC genesis region. The peak-season TC activity appears to relate to the SST gradient between the Indian Ocean and the Central Pacific. The westerly wind induced by the SST gradient can reduce the vertical wind shear and increase the mid-level relative humidity, thereby enhancing the TC activity. The full picture of the interdecadal variation in the WNP TC activity during the peak and late seasons revealed in this study provides a new perspective on the seasonal TC forecasts and future projections.

  4. Impact of Intraseasonal Oscillations on the Tropical Cyclone Activity Over the Gulf of Mexico and Western Caribbean Sea in GFDL HiRAM

    Science.gov (United States)

    Gao, Kun; Chen, Jan-Huey; Harris, Lucas M.; Lin, Shian-Jiann; Xiang, Baoqiang; Zhao, Ming

    2017-12-01

    The tropical cyclones (TCs) that form over the warm waters in the Gulf of Mexico region pose a major threat to the surrounding coastal communities. Skillful subseasonal prediction of TC activity is important for early preparedness and reducing the TC damage in this region. In this study, we evaluate the performance of a 25 km resolution Geophysical Fluid Dynamics Laboratory (GFDL) High Resolution Atmospheric Model (HiRAM) in simulating the modulation of the TC activity in the Gulf of Mexico and western Caribbean Sea by the intraseasonal oscillation (ISO) based on multiyear retrospective seasonal predictions. We demonstrate that the HiRAM faithfully captures the observed influence of ISO on TC activity over the region of interest, including the formation of tropical storms and (major) hurricanes, as well as the landfalling storms. This is likely because of the realistic representation of the large-scale anomalies associated with boreal summer ISO over Northeast Pacific in HiRAM, especially the enhanced (reduced) moisture throughout the troposphere during the convectively enhanced (suppressed) phase of ISO. The reasonable performance of HiRAM suggests its potential for the subseasonal prediction of regional TC risk.

  5. Asymmetric response of tropical cyclone activity to global warming over the North Atlantic and western North Pacific from CMIP5 model projections.

    Science.gov (United States)

    Park, Doo-Sun R; Ho, Chang-Hoi; Chan, Johnny C L; Ha, Kyung-Ja; Kim, Hyeong-Seog; Kim, Jinwon; Kim, Joo-Hong

    2017-01-30

    Recent improvements in the theoretical understanding of the relationship between tropical cyclones (TCs) and their large-scale environments have resulted in significant improvements in the skill for forecasting TC activity at daily and seasonal time-scales. However, future changes in TC activity under a warmer climate remain uncertain, particularly in terms of TC genesis locations and subsequent pathways. Applying a track-pattern-based statistical model to 22 Coupled Model Intercomparison Project Phase 5 (CMIP5) model runs for the historical period and the future period corresponding to the Representative Concentration Pathway 8.5 emissions scenarios, this study shows that in future climate conditions, TC passage frequency will decrease over the North Atlantic, particularly in the Gulf of Mexico, but will increase over the western North Pacific, especially that hits Korea and Japan. Unlike previous studies based on fine-resolution models, an ensemble mean of CMIP5 models projects an increase in TC activity in the western North Pacific, which is owing to enhanced subtropical deep convection and favorable dynamic conditions therein in conjunction with the expansion of the tropics and vice versa for the North Atlantic. Our results suggest that North America will experience less TC landfalls, while northeast Asia will experience more TCs than in the present-day climate.

  6. Identification of Storm Surge Vulnerable Areas in the Philippines Through Simulations of Typhoon Haiyan-Induced Storm Surge Using Tracks of Historical Tropical Cyclones

    Science.gov (United States)

    Lapidez, John Phillip; Suarez, John Kenneth; Tablazon, Judd; Dasallas, Lea; Gonzalo, Lia Anne; Santiago, Joy; Cabacaba, Krichi May; Ramos, Michael Marie Angelo; Mahar Francisco Lagmay, Alfredo; Malano, Vicente

    2014-05-01

    Super Typhoon Haiyan entered the Philippine Area of Responsibility (PAR) 07 November 2013, causing tremendous damage to infrastructure and loss of lives mainly due to the typhoon's storm surge and strong winds. Storm surges up to a height of 7 meters were reported in the hardest hit areas. The threat imposed by this kind of natural calamity compelled researchers of the Nationwide Operational Assessment of Hazards, the flagship disaster mitigation program of the Department of Science and Technology, Government of the Philippines, to undertake a study to determine the vulnerability of all Philippine coastal communities to storm surges of the same magnitude as those generated by Haiyan. This study calculates the maximum probable storm surge height for every coastal locality by running simulations of Haiyan-type conditions but with tracks of tropical cyclones that entered PAR from 1948-2013. DOST-Project NOAH used the Japan Meteorological Agency (JMA) Storm Surge Model, a numerical code that simulates and predicts storm surges spawned by tropical cyclones. Input parameters for the storm surge model include bathymetric data, storm track, central atmospheric pressure, and maximum wind speed. The simulations were made using Haiyan's pressure and wind speed as the forcing parameters. The simulated storm surge height values were added to the maximum tide level obtained from WXTide, software that contains a catalogue of worldwide astronomical tides, to come up with storm tide levels. The resulting water level was used as input to FLO-2D to generate the storm tide inundation maps. One product of this study is a list of the most vulnerable coastal areas that can be used as basis for choosing priority sites for further studies to implement appropriate site-specific solutions. Another product is the storm tide inundation maps that the local government units can use to develop a Risk-Sensitive Land Use Plan for identifying appropriate areas to build residential buildings

  7. On the Characterization of Rainfall Associated with U.S. Landfalling North Atlantic Tropical Cyclones Based on Satellite Data and Numerical Weather Prediction Outputs

    Science.gov (United States)

    Luitel, B. N.; Villarini, G.; Vecchi, G. A.

    2014-12-01

    When we talk about tropical cyclones (TCs), the first things that come to mind are strong winds and storm surge affecting the coastal areas. However, according to the Federal Emergency Management Agency (FEMA) 59% of the deaths caused by TCs since 1970 is due to fresh water flooding. Heavy rainfall associated with TCs accounts for 13% of heavy rainfall events nationwide for the June-October months, with this percentage being much higher if the focus is on the eastern and southern United States. This study focuses on the evaluation of precipitation associated with the North Atlantic TCs that affected the continental United States over the period 2007 - 2012. We evaluate the rainfall associated with these TCs using four satellite based rainfall products: Tropical Rainfall Measuring Mission - Multi-satellite Precipitation Analysis (TMPA; both real-time and research version); Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks (PERSIANN); Climate Prediction Center (CPC) MORPHing technique (CMORPH). As a reference data we use gridded rainfall provided by CPC (Daily US Unified Gauge-Based Analysis of Precipitation). Rainfall fields from each of these satellite products are compared to the reference data, providing valuable information about the realism of these products in reproducing the rainfall associated with TCs affecting the continental United States. In addition to the satellite products, we evaluate the forecasted rainfall produced by five state-of-the-art numerical weather prediction (NWP) models: European Centre for Medium-Range Weather Forecasts (ECMWF), UK Met Office (UKMO), National Centers for Environmental Prediction (NCEP), China Meteorological Administration (CMA), and Canadian Meteorological Center (CMC). The skill of these models in reproducing TC rainfall is quantified for different lead times, and discussed in light of the performance of the satellite products.

  8. Wind and Wave Setup Contributions to Extreme Sea Levels at a Tropical High Island: A Stochastic Cyclone Simulation Study for Apia, Samoa

    Directory of Open Access Journals (Sweden)

    Ron Karl Hoeke

    2015-09-01

    Full Text Available Wind-wave contributions to tropical cyclone (TC-induced extreme sea levels are known to be significant in areas with narrow littoral zones, particularly at oceanic islands. Despite this, little information exists in many of these locations to assess the likelihood of inundation, the relative contribution of wind and wave setup to this inundation, and how it may change with sea level rise (SLR, particularly at scales relevant to coastal infrastructure. In this study, we explore TC-induced extreme sea levels at spatial scales on the order of tens of meters at Apia, the capitol of Samoa, a nation in the tropical South Pacific with typical high-island fringing reef morphology. Ensembles of stochastically generated TCs (based on historical information are combined with numerical simulations of wind waves, storm-surge, and wave setup to develop high-resolution statistical information on extreme sea levels and local contributions of wind setup and wave setup. The results indicate that storm track and local morphological details lead to local differences in extreme sea levels on the order of 1 m at spatial scales of less than 1 km. Wave setup is the overall largest contributor at most locations; however, wind setup may exceed wave setup in some sheltered bays. When an arbitrary SLR scenario (+1 m is introduced, overall extreme sea levels are found to modestly decrease relative to SLR, but wave energy near the shoreline greatly increases, consistent with a number of other recent studies. These differences have implications for coastal adaptation strategies.

  9. Impact of the configuration of stretching and ocean-atmosphere coupling on tropical cyclone activity in the variable-resolution GCM ARPEGE

    Energy Technology Data Exchange (ETDEWEB)

    Daloz, Anne Sophie; Chauvin, Fabrice [CNRM-GAME, Groupe de Modelisation Grande Echelle et Climat, Toulouse Cedex 1 (France); Roux, Frank [Universite de Toulouse, Laboratoire d' Aerologie, Centre National de la Recherche Scientifique, Toulouse (France)

    2012-11-15

    This study starts by investigating the impact of the configuration of the variable-resolution atmospheric grid on tropical cyclone (TC) activity. The French atmospheric general circulation model ARPEGE, the grid of which is rotated and stretched over the North Atlantic basin, was used with prescribed sea surface temperatures. The study clearly shows that changing the position of the stretching pole strongly modifies the representation of TC activity over the North Atlantic basin. A pole in the centre of the North Atlantic basin provides the best representation of the TC activity for this region. In a second part, the variable-resolution climate model ARPEGE is coupled with the European oceanic global climate model NEMO in order to study the impact of ocean-atmosphere coupling on TC activity over the North Atlantic basin. Two pre-industrial runs, a coupled simulation and a simulation forced by the sea surface temperatures from the coupled one, are compared. The results show that the coupled simulation is more active in the Caribbean Sea and the Gulf of Mexico while the forced simulation is more active over eastern Florida and the eastern Atlantic. The difference in the distribution of TC activity is certainly linked with the location of TC genesis. In the forced simulation, tropical cyclogenesis is closer to the west African coast than in the coupled simulation. Moreover, the difference in TC activity over the eastern Atlantic seems to be related to two different mechanisms: the difference in African easterly wave activity over the west of Africa and the cooling produced, in the coupled simulation, by African easterly waves over the eastern Atlantic. Finally, the last part studies the impact of changing the frequency of ocean-atmosphere coupling on Atlantic TC activity. Increasing the frequency of coupling decreases the density of TC activity over the North Atlantic basin. However, it does not modify the spatial distribution of the TC activity. TC rainfalls are

  10. A new approach for the determination of the drag coefficient from the upper ocean response to a tropical cyclone: A feasibility study

    KAUST Repository

    Zedler, Sarah

    2011-12-30

    We seek to determine if a small number of measurements of upper ocean temperature and currents can be used to make estimates of the drag coefficient that have a smaller range of uncertainty than previously found. We adopt a numerical approach using forward models of the ocean\\'s response to a tropical cyclone, whereby the probability density function of drag coefficient values as a function of wind speed that results from adding realistic levels of noise to the simulated ocean response variables is sought. Allowing the drag coefficient two parameters of freedom, namely the values at 35 and at 45 m/s, we found that the uncertainty in the optimal value is about 20% for levels of instrument noise up to 1 K for a misfit function based on temperature, or 1.0 m/s for a misfit function based on 15 m velocity components. This is within tolerable limits considering the spread of measurement-based drag coefficient estimates. The results are robust for several different instrument arrays; the noise levels do not decrease by much for arrays with more than 40 sensors when the sensor positions are random. Our results suggest that for an ideal case, having a small number of sensors (20-40) in a data assimilation problem would provide sufficient accuracy in the estimated drag coefficient. © 2011 The Oceanographic Society of Japan and Springer.

  11. Long term changes in flooding and heavy rainfall associated with North Atlantic tropical cyclones: Roles of the North Atlantic Oscillation and El Niño-Southern Oscillation

    Science.gov (United States)

    Aryal, Yog N.; Villarini, Gabriele; Zhang, Wei; Vecchi, Gabriel A.

    2018-04-01

    The aim of this study is to examine the contribution of North Atlantic tropical cyclones (TCs) to flooding and heavy rainfall across the continental United States. Analyses highlight the spatial variability in these hazards, their temporal changes in terms of frequency and magnitude, and their connection to large-scale climate, in particular to the North Atlantic Oscillation (NAO) and El Niño-Southern Oscillation (ENSO). We use long-term stream and rain gage measurements, and our analyses are based on annual maxima (AMs) and peaks-over-threshold (POTs). TCs contribute to ∼20-30% of AMs and POTs over Florida and coastal areas of the eastern United States, and the contribution decreases as we move inland. We do not detect statistically significant trends in the magnitude or frequency of TC floods. Regarding the role of climate, NAO and ENSO do not play a large role in controlling the frequency and magnitude of TC flooding. The connection between heavy rainfall and TCs is comparable to what observed in terms of flooding. Unlike flooding, NAO plays a significant role in TC-related extreme rainfall along the U.S. East Coast, while ENSO is most strongly linked to the TC precipitation in Texas.

  12. Long-Term Changes in the Extreme Significant Wave Heights on the Western North Pacific: Impacts of Tropical Cyclone Activity and ENSO

    Science.gov (United States)

    Yang, Sinil; Oh, Jaiho

    2018-02-01

    Seasonal extreme wave statistics were reproduced by using the 25-km-grid global wave model of WAVEWATCH-III. The results showed that the simulated wave dataset for the present climate (1979-2009) was similar to Climate Forecast System Reanalysis (CFSR) wave data. Statistics such as the root mean squared error (RMSE) and correlation coefficient (CC) over the western North Pacific (WNP) basin were 0.5 m and 0.69 over the analysis domain. The largest trends and standard deviation were around the southern coast of Japan and western edge of the WNP. Linear regression analysis was employed to identify the relationship between the leading principal components (PCs) of significant wave heights (SWHs) in the peak season of July to September and sea surface temperature (SST) anomalies in the equatorial Pacific. The results indicated that the inter-annual variability of SWH can be associated with the El Niño-Southern Oscillation in the peak season. The CC between the first PC of the SWH and anomalies in the Nino 3.4 SST index was also significant at a 99% confidence level. Significant variations in the SWH are affected by tropical cyclones (TCs) caused by increased SST anomalies. The genesis and development of simulated TCs can be important to the variation in SWHs for the WNP in the peak season. Therefore, we can project the variability of SWHs through TC activity based on changes in SST conditions for the equatorial Pacific in the future.

  13. Future changes in tropical cyclone activity projected by multi-physics and multi-SST ensemble experiments using the 60-km-mesh MRI-AGCM

    Energy Technology Data Exchange (ETDEWEB)

    Murakami, Hiroyuki [Japan Agency for Marine-Earth Science and Technology (JAMSTEC)/Meteorological Research Institute (MRI), Tsukuba, Ibaraki (Japan); University of Hawaii at Manoa, International Pacific Research Center, School of Ocean and Earth Science and Technology, Honolulu, Hawaii (United States); Mizuta, Ryo; Shindo, Eiki [Meteorological Research Institute (MRI), Climate Research Department, Tsukuba, Ibaraki (Japan)

    2012-11-15

    Uncertainties in projected future changes in tropical cyclone (TC) activity are investigated using future (2075-2099) ensemble projections of global warming under the Intergovernmental Panel on Climate Change (IPCC) A1B scenario. Twelve ensemble experiments are performed using three different cumulus convection schemes and four different assumptions for prescribed future sea surface temperatures (SSTs). All ensemble experiments consistently project significant reductions in global and hemispheric TC genesis numbers as well as reductions in TC frequency of occurrence (TCF) and TC genesis frequency (TGF) in the western North Pacific, South Indian Ocean, and South Pacific Ocean. TCF and TGF are projected to increase over the central Pacific which is consistent with the findings of Li et al. (2010). Inter-experimental variations of projected future changes in TGF and TC genesis number are caused mainly by differences in large-scale dynamical parameters and SST anomalies. Thermodynamic parameters are of secondary importance for variations in TGF and TC genesis number. These results imply that differences in SST spatial patterns can cause substantial variations and uncertainties in projected future changes of TGF and TC numbers at ocean-basin scales. (orig.)

  14. Barotropic Interactions Between Summertime Tropical Cyclones/Sub-Monthly Wave Patterns and Intraseasonal Oscillations over the Western North Pacific

    Directory of Open Access Journals (Sweden)

    Ken-Chung Ko Huang-Hsiung Hsu

    2014-01-01

    Full Text Available This study used the barotropic kinetic energy conversion to record the active eddy-mean flow interaction between the TC/sub-monthly wave pattern (TSM and the intraseasonal oscillation (ISO in the western North Pacific (WNP. Overall, the TSM extracted (lost kinetic energy from (to the cyclonic (anticyclonic circulation of the ISO, which is located in the South China Sea and the Philippine Sea, during the ISO westerly (easterly phase. The phase change in barotropic energy conversion was due to the opposite background flow set up by the ISO. When the climatological-mean southwesterly was retained as part of the background flow in both ISO westerly and easterly phases as in previous studies, the ISO along with the low-frequency background flow always provided kinetic energy to the TSM regardless of the phase. The stronger (weaker southwesterly in the ISO westerly (easterly phase, the stronger (weaker energy conversion to the TSM. Climatological mean flow exclusion showed an upscale feedback in the TSM to the ISO during the easterly phase. However, this feedback was weaker than the downscale conversion from the ISO to the TSM during the westerly phase.

  15. An assessment of tropical cyclone representation in a regional reanalysis and a shape metric methodology for studying the evolving precipitation structure prior to and during landfall

    Science.gov (United States)

    Zick, Stephanie E.

    Tropical cyclone (TC) precipitation is intricately organized with multiple scales of phenomena collaborating to harness the massive energy required to support these storms. During landfall, a TC leaves the tropical oceanic environment and encounters a wide range of continental air mass regimes. Although evolving precipitation patterns are qualitatively observed in these storms during landfall, the timing and spatial variability of these structural changes have yet to be quantified or documented. This dissertation integrates meteorological and geographic concepts to explore the representation and evolution of TC rainfall at the crucial time of landfall when coastal and inland communities and environments are most vulnerable to TC-associated flooding. This research begins with a two-part assessment of TC representation in the North American Regional Reanalysis (NARR), which is selected for its documented skill in characterizing North American precipitation patterns. Due to the sparsely available data over the tropical oceans, spatial biases exist in both global and regional reanalysis datasets. However, within the NARR the introduction of over-ocean precipitation assimilation in 2004 leads to an improved analysis of TC warm core structure, which results in an improved precipitation forecast. Collectively, these studies highlight the need for sophisticated observational and data assimilation systems. Specifically, the development of new, novel precipitation assimilation techniques will be valuable to the construction of better-quality forecasting tools with more authentic TC representation. In the third study, the fundamental geographic concept of compactness is utilized to construct a shape metric methodology for investigating (a) the overall evolution of and (b) the spatiotemporal positions of significant changes to synoptic-scale precipitation structure. These metrics encompass the characteristic geometries of TCs moving into the mid-latitudes: asymmetry

  16. Influence of upper-ocean stratification on tropical cyclone-induced surface cooling in the Bay of Bengal

    Digital Repository Service at National Institute of Oceanography (India)

    Neetu, S.; Lengaigne, M.; Vincent, E.M.; Vialard, J.; Madec, G.; Samson, G.; RameshKumar, M.R.; Durand, F.

    homeless people and over $10 billion in economic losses [Webster, 2008; McPhaden et al., 2009]. It is therefore of utter practical importance to identify the key factors that control TC intensity in this region. Uncertainties in TC intensity forecasts... stratification on TC intensification has recently been illustrated within the BoB [Ali et al., 2007]. In the case of TC Nargis, Yu and McPhaden [2011] highlighted the apparent connection between a high temperature, a low salinity front, and the TC intensity...

  17. An air pollution episode and its formation mechanism during the tropical cyclone Nuri's landfall in a coastal city of south China

    Science.gov (United States)

    Yang, John Xun; Lau, Alexis Kai Hon; Fung, Jimmy Chi Hung; Zhou, Wen; Wenig, Mark

    2012-07-01

    In this work we investigated an air pollution episode during the landfall process of a tropical cyclone (TC) in Hong Kong. TCs affect air condition and account for most air pollution episodes in summer of this region. In August 2008, TC Nuri made direct landfall in Hong Kong. Before its landfall, an air pollution episode occurred, where major pollutants like SO2 and PM10 increased eight and six times higher respectively. Rather than using single measurement method, we combined ground air sampling, lidar, sunphotometer and satellite lidar CALIPSO with focus on aerosol to study the episode mechanism, and some new phenomena were found. During the episode, it was found that heavy inland aerosol plumes existed in areas larger than urbanized regions and were elevated vertically and transported southward. During episode, planetary boundary layer (PBL) expansion and height increase were observed, which is different from previous reported PBL compression and height decrease. While vertical subsidence and horizontal stagnation and consequently local aerosol accumulation were attributed as the main episode cause in previous cases, our observation showed that transported aerosols dominated in this TC landfall event. This can be further confirmed by examining aerosol chemical composition, size distribution and single scattering albedo, where transported related species showed significantly change and local indicators remained relatively stable. Invigorated cloud droplets were found on the boundary layer top upon aerosol elevation. The results indicate that site difference and TC tracks should be considered for analyzing episode formation mechanism. They can cause difference in the strength of vertical subsidence and horizontal advection and affect pollution flow direction, which subsequently results in different pollution formation processes.

  18. Hybrid artificial intelligence approach based on neural fuzzy inference model and metaheuristic optimization for flood susceptibilitgy modeling in a high-frequency tropical cyclone area using GIS

    Science.gov (United States)

    Tien Bui, Dieu; Pradhan, Biswajeet; Nampak, Haleh; Bui, Quang-Thanh; Tran, Quynh-An; Nguyen, Quoc-Phi

    2016-09-01

    This paper proposes a new artificial intelligence approach based on neural fuzzy inference system and metaheuristic optimization for flood susceptibility modeling, namely MONF. In the new approach, the neural fuzzy inference system was used to create an initial flood susceptibility model and then the model was optimized using two metaheuristic algorithms, Evolutionary Genetic and Particle Swarm Optimization. A high-frequency tropical cyclone area of the Tuong Duong district in Central Vietnam was used as a case study. First, a GIS database for the study area was constructed. The database that includes 76 historical flood inundated areas and ten flood influencing factors was used to develop and validate the proposed model. Root Mean Square Error (RMSE), Mean Absolute Error (MAE), Receiver Operating Characteristic (ROC) curve, and area under the ROC curve (AUC) were used to assess the model performance and its prediction capability. Experimental results showed that the proposed model has high performance on both the training (RMSE = 0.306, MAE = 0.094, AUC = 0.962) and validation dataset (RMSE = 0.362, MAE = 0.130, AUC = 0.911). The usability of the proposed model was evaluated by comparing with those obtained from state-of-the art benchmark soft computing techniques such as J48 Decision Tree, Random Forest, Multi-layer Perceptron Neural Network, Support Vector Machine, and Adaptive Neuro Fuzzy Inference System. The results show that the proposed MONF model outperforms the above benchmark models; we conclude that the MONF model is a new alternative tool that should be used in flood susceptibility mapping. The result in this study is useful for planners and decision makers for sustainable management of flood-prone areas.

  19. On the Sizes of the North Atlantic Basin Tropical Cyclones Based on 34- and 64-kt Wind Radii Data, 2004-2013

    Science.gov (United States)

    Wilson, Robert M.

    2014-01-01

    At end of the 2012 hurricane season the National Hurricane Center retired the original HURDAT dataset and replaced it with the newer version HURDAT2, which reformatted the original data and included additional information, in particular, estimates of the 34-, 50, and 64-kt wind radii for the interval 2004-2013. During the brief 10-year interval, some 164 tropical cyclones are noted to have formed in the North Atlantic basin, with 77 becoming hurricanes. Hurricane Sandy (2012) stands out as being the largest individual storm that occurred in the North Atlantic basin during the 2004 -2013 timeframe, both in terms of its 34- and 64-kt wind radii and wind areas, having maximum 34- and 64-kt wind radii, maximum wind areas, and average wind areas each more than 2 standard deviations larger than the corresponding means. In terms of the largest yearly total 34-kt wind area (i.e., the sum of all individual storm 34-kt wind areas during the year), the year 2010 stands out as being the largest (about 423 × 10(exp 6) nmi(exp 2)), compared to the mean of about 174 × 10(exp 6) nmi(exp 2)), surpassing the year 2005 (353 x 10(exp 6) nmi(exp 2)) that had the largest number of individual storms (28). However, in terms of the largest yearly total 64-kt wind area, the year 2005 was the largest (about 9 × 10(exp 6) nmi(exp 2)), compared to the mean of about 3 × 106 nmi(exp 2)). Interesting is that the ratio of total 64-kt wind area to total 34-kt wind area has decreased over time, from 0.034 in 2004 to 0.008 in 2013.

  20. Analysis of Tropical Cyclone Initialization in COAMPS-TC for Hurricane Patricia (2015) Utilizing TCI Experiment Datasets

    Science.gov (United States)

    2017-06-01

    at 1800 UTC 22 October had a radius of maximum winds that was too large, a warm core too low in elevation , and an outer circulation where the winds...core too low in elevation , and an outer circulation where the winds were too strong. While other factors may have contributed to the intensity...INTENTIONALLY LEFT BLANK vii TABLE OF CONTENTS I. INTRODUCTION

  1. Role of exposure in projected residential building cyclone risk for the Australian region

    International Nuclear Information System (INIS)

    Waters, Denis; Cechet, Bob; Arthur, Craig

    2010-01-01

    The paper presents a methodology to analyse the direct impact of tropical cyclone hazard on communities in northern Australia. The study focuses on the maximum potential intensity (MPI) of the cyclonic wind hazard, and location. Storm surge impacts were developed using a simple relationship between intensity and storm surge height and mid-point sea-level rise projections. The impact on residential building stock of severe wind and storm surge hazards associated with IPCC climate change scenarios is considered. Changes in residential building stock, for over 500 coastal statistical local areas (SLAs) from Southeast Queensland anticlockwise to Perth, were estimated using Australian Bureau of Statistics population projections through to 2100. A Probable Maximum Loss (PML) curve was derived, and the average annual cost across a 5000 year period (or 'annualised loss') was evaluated for each region. The projected population growth and the drift to coastal locations are significant elements in determining the damage associated with possible future cyclone threat.

  2. The short-term impacts of a cyclone on seagrass communities in Southwest Madagascar

    Science.gov (United States)

    Côté-Laurin, Marie-Claude; Benbow, Sophie; Erzini, Karim

    2017-04-01

    Cyclones are large-scale disturbances with highly destructive potential in coastal ecosystems. On February 22, 2013, a powerful tropical cyclone made landfall on the southwest coast of Madagascar, a region which is infrequently hit by such extreme weather events coming from the Mozambique Channel. Seagrass ecosystems, which provide valuable ecosystems services to local communities, are especially vulnerable because they thrive in shallow waters. The impact of Cyclone Haruna on seagrass diversity, height and coverage and associated fish diversity, abundance and biomass was assessed in 3 sites near Andavadoaka (22°07‧S, 43°23‧E) before and after the event using fish underwater visual census, video-transects, and seagrass quadrats. The cyclone caused a significant loss in seagrass cover at all 3 sites. Thalassia hemprichii and Syringodium isoetifolium were the most affected species. Andavadoaka beach, the most exposed site, which was also subject to human use and was most fragmented, suffered the largest negative effects of the cyclone. Cyclone Haruna was not found to significantly affect fish assemblages, which are highly mobile organisms able to use a diversity of niches and adjacent habitats after seagrass fragmentation. Extensive sampling and longer time-scale studies would be needed to fully evaluate the cyclone impact on communities of seagrass and fish, and track potential recovery in seagrass coverage. The intensity and destructive potential of cyclones is expected to increase with global warming, which is of concern for developing countries that encompass most of the world's seagrass beds. This study provided a unique and key opportunity to monitor immediate impacts of an extreme disturbance in a region where cyclones rarely hit coastal ecosystems and where local populations remain highly dependent on seagrass meadows.

  3. Variability of radiatively forced diurnal cycle of intense convection in the tropical west pacific

    Energy Technology Data Exchange (ETDEWEB)

    Gray, W.M.; Sheaffer, J.D.; Thorson, W.B. [Colorado State Univ., Fort Collins, CO (United States)

    1996-04-01

    Strong differences occur in daytime versus nighttime (DVN) net radiative cooling in clear versus cloudy areas of the tropical atmosphere. Daytime average cooling is approximately -0.7{degrees}C/day, whereas nighttime net tropospheric cooling rates are about -1.5{degrees}C/day, an approximately two-to-one difference. The comparatively strong nocturnal cooling in clear areas gives rise to a diurnally varying vertical circulation and horizontal convergence cycle. Various manifestations of this cyclic process include the observed early morning heavy rainfall maxima over the tropical oceans. The radiatively driven DVN circulation appears to strongly modulate the resulting diurnal cycle of intense convection which creates the highest, coldest cloudiness over maritime tropical areas and is likely a fundamental mechanism governing both small and large scale dynamics over much of the tropical environment.

  4. Cyclone Simulation via Action Minimization

    Science.gov (United States)

    Plotkin, D. A.; Weare, J.; Abbot, D. S.

    2016-12-01

    A postulated impact of climate change is an increase in intensity of tropical cyclones (TCs). This hypothesized effect results from the fact that TCs are powered subsaturated boundary layer air picking up water vapor from the surface ocean as it flows inwards towards the eye. This water vapor serves as the energy input for TCs, which can be idealized as heat engines. The inflowing air has a nearly identical temperature as the surface ocean; therefore, warming of the surface leads to a warmer atmospheric boundary layer. By the Clausius-Clapeyron relationship, warmer boundary layer air can hold more water vapor and thus results in more energetic storms. Changes in TC intensity are difficult to predict due to the presence of fine structures (e.g. convective structures and rainbands) with length scales of less than 1 km, while general circulation models (GCMs) generally have horizontal resolutions of tens of kilometers. The models are therefore unable to capture these features, which are critical to accurately simulating cyclone structure and intensity. Further, strong TCs are rare events, meaning that long multi-decadal simulations are necessary to generate meaningful statistics about intense TC activity. This adds to the computational expense, making it yet more difficult to generate accurate statistics about long-term changes in TC intensity due to global warming via direct simulation. We take an alternative approach, applying action minimization techniques developed in molecular dynamics to the WRF weather/climate model. We construct artificial model trajectories that lead from quiescent (TC-free) states to TC states, then minimize the deviation of these trajectories from true model dynamics. We can thus create Monte Carlo model ensembles that are biased towards cyclogenesis, which reduces computational expense by limiting time spent in non-TC states. This allows for: 1) selective interrogation of model states with TCs; 2) finding the likeliest paths for

  5. Evaluating decadal predictions of northern hemispheric cyclone frequencies

    Directory of Open Access Journals (Sweden)

    Tim Kruschke

    2014-04-01

    Full Text Available Mid-latitudinal cyclones are a key factor for understanding regional anomalies in primary meteorological parameters such as temperature or precipitation. Extreme cyclones can produce notable impacts on human society and economy, for example, by causing enormous economic losses through wind damage. Based on 41 annually initialised (1961–2001 hindcast ensembles, this study evaluates the ability of a single-model decadal forecast system (MPI-ESM-LR to provide skilful probabilistic three-category forecasts (enhanced, normal or decreased of winter (ONDJFM extra-tropical cyclone frequency over the Northern Hemisphere with lead times from 1 yr up to a decade. It is shown that these predictions exhibit some significant skill, mainly for lead times of 2–5 yr, especially over the North Atlantic and Pacific. Skill for intense cyclones is generally higher than for all detected systems. A comparison of decadal hindcasts from two different initialisation techniques indicates that initialising from reanalysis fields yields slightly better results for the first forecast winter (month 10–15, while initialisation based on an assimilation experiment provides better skill for lead times between 2 and 5 yr. The reasons and mechanisms behind this predictive skill are subject to future work. Preliminary analyses suggest a strong relationship of the model's skill over the North Atlantic with the ability to predict upper ocean temperatures modulating lower troposphere baroclinicity for the respective area and time scales.

  6. 1990 Annual Tropical Cyclone Report

    Science.gov (United States)

    1995-01-01

    land) - followed further loss of convective organization as system underwent increased vertical wind shear and loss of latent and sensible heat. III...FOLXTECHNICOF HONG KONG CIUDAD UNIVERSITARLA,M)XICO CML DEFENSE, BELAU CML DEFENSE, MAJURO CML DEFENSE, POHNPEI CML DEFENSE, SAIPAN CML DEFENSE, TRUK

  7. Annual Tropical Cyclone Report, 1982.

    Science.gov (United States)

    1982-01-01

    FiguAe 3-01-1. SateLie ifageky 6UOw6 an alea oA convection aouth o6 the equato’t which mig’rated nokth- wad and eveyntuay became a6ociated wit the...the mountainous region to the west. 21 -I V b~--4--+ -4-4---4- 1- ±+±- -- +----- -4-----4 --- IC-4 C 4 -fe% Ln Ln Ln C Ln T = 90. II - 44 U.4 - XI .14...in the mountainous area of intensification. At 271800Z, Andy reached southeastern China on 30 July. 55 ______ _____Z 3A z + + to Ln AL L % Ln LA ---- 4

  8. Annual Tropical Cyclone Report 2011

    Science.gov (United States)

    2012-05-24

    Ann Schrader, Mr. Mike Frost, and Mr. Chris Sisko for their outstanding support and continued development of the ATCF system. 5 JTWC Personnel...AG2 Ethan Wright AGAA Kristin Terrell AGAA Tyler Terrell AGAN Vaughan Dill 6 Table of Contents CHAPTER 1 WESTERN NORTH PACIFIC OCEAN

  9. Annual Tropical Cyclone Report, 1984.

    Science.gov (United States)

    1984-01-01

    5 2. Reconnaissance Availabilit ---------------------------------S5 3. Aircraft Reconnaissance Summary--------------------------- 5 4. Satellite...similar to that described by Sadler (1976). an MLSP of 1004 mb with estimated maximum While remaining over water its entire life, surface winds of 25 kt...until late on the Ed transited the East China Sea, entrainment 24th that the cloud mass became detached of drier air and passage over cooler waters from

  10. Thunderstorms caused by southern cyclones in Estonia

    Directory of Open Access Journals (Sweden)

    Kaupo Mändla

    2014-05-01

    Full Text Available The relationships between the frequency and duration of thunderstorms, lightning and southern cyclones over Estonia are presented for the period 1950–2010. A total of 545 southern cyclones and 2106 thunderstorm days were detected, whereas 11.3% of the observed thunder days were associated with southern cyclones. At the same time, 29.2% of all southern cyclones were accompanied by thunderstorms. In the thunder season, however, this percentage was much higher, reaching up to 80% in summer months. The number of thunder days was largest when the centres of southern cyclones passed a measuring station at a distance less than 500 km. The number of cloud-to-ground lightning strikes related to southern cyclones was larger than that of any other thunder events. The results of our study demonstrate that the intensity of thunderstorms related to southern cyclones is higher than that of other thunderstorms. Correlation analysis revealed statistically significant relationships between the frequency of thunder days related to southern cyclones and the frequency of southern cyclones, also between the frequency of thunder days related to southern cyclones and days of other thunder events.

  11. Tropical cyclones in the Bay of Bengal and extreme sea-level projections along the east coast of India in a future climate scenario

    Digital Repository Service at National Institute of Oceanography (India)

    Unnikrishnan, A.S.; RameshKumar, M.R.; Sindhu, B.

    (2071– 2100), A2. The analysis showed an increase in the frequency of cyclones in the Bay of Bengal during the late monsoon (August and September) in the A2 scenario compared to the baseline scenario. Extreme sea-level projections along the east coast...

  12. A New Observational Strategy for Monitoring the Tropical Cyclone Outflow Layer and its Relationship to Intensity and Structure Change

    Science.gov (United States)

    2013-09-30

    vertical structure of outflow layer jets for Hurricanes Leslie and Nadine in 2012 and Invest 97L in 2013 has been conducted using NCAR- EOL /Vaisala mini...generation of dropsonde, the Yankee, Inc HDSS and XDD sonde was intercompared during CIRPAS Twin Otter test flights on 24-25 June, 2011 with NCAR- EOL

  13. Projecting of wave height and water level on reef-lined coasts due to intensified tropical cyclones and sea level rise in Palau to 2100

    Directory of Open Access Journals (Sweden)

    C. Hongo

    2018-03-01

    Full Text Available Tropical cyclones (TCs and sea level rise (SLR cause major problems including beach erosion, saltwater intrusion into groundwater, and damage to infrastructure in coastal areas. The magnitude and extent of damage is predicted to increase as a consequence of future climate change and local factors. Upward reef growth has attracted attention for its role as a natural breakwater, reducing the risks of natural disasters to coastal communities. However, projections of change in the risk to coastal reefs under conditions of intensified TCs and SLR are poorly quantified. In this study we projected the wave height and water level on Melekeok reef in the Palau Islands by 2100, based on wave simulations under intensified TCs (significant wave height at the outer ocean: SWHo = 8.7–11.0 m; significant wave period at the outer ocean: SWPo = 13–15 s and SLR (0.24–0.98 m. To understand effects of upward reef growth on the reduction of the wave height and water level, the simulation was conducted for two reef condition scenarios: a degraded reef and a healthy reef. Moreover, analyses of reef growth based on a drilled core provided an assessment of the coral community and rate of reef production necessary to reduce the risk from TCs and SLR on the coastal areas. According to our calculations under intensified TCs and SLR by 2100, significant wave heights at the reef flat (SWHr will increase from 1.05–1.24 m at present to 2.14 m if reefs are degraded. Similarly, by 2100 the water level at the shoreline (WLs will increase from 0.86–2.10 m at present to 1.19–3.45 m if reefs are degraded. These predicted changes will probably cause beach erosion, saltwater intrusion into groundwater, and damage to infrastructure, because the coastal village is located at  ∼ 3 m above the present mean sea level. These findings imply that even if the SWHr is decreased by only 0.1 m by upward reef growth, it will probably reduce the risks of

  14. Projecting of wave height and water level on reef-lined coasts due to intensified tropical cyclones and sea level rise in Palau to 2100

    Science.gov (United States)

    Hongo, Chuki; Kurihara, Haruko; Golbuu, Yimnang

    2018-03-01

    Tropical cyclones (TCs) and sea level rise (SLR) cause major problems including beach erosion, saltwater intrusion into groundwater, and damage to infrastructure in coastal areas. The magnitude and extent of damage is predicted to increase as a consequence of future climate change and local factors. Upward reef growth has attracted attention for its role as a natural breakwater, reducing the risks of natural disasters to coastal communities. However, projections of change in the risk to coastal reefs under conditions of intensified TCs and SLR are poorly quantified. In this study we projected the wave height and water level on Melekeok reef in the Palau Islands by 2100, based on wave simulations under intensified TCs (significant wave height at the outer ocean: SWHo = 8.7-11.0 m; significant wave period at the outer ocean: SWPo = 13-15 s) and SLR (0.24-0.98 m). To understand effects of upward reef growth on the reduction of the wave height and water level, the simulation was conducted for two reef condition scenarios: a degraded reef and a healthy reef. Moreover, analyses of reef growth based on a drilled core provided an assessment of the coral community and rate of reef production necessary to reduce the risk from TCs and SLR on the coastal areas. According to our calculations under intensified TCs and SLR by 2100, significant wave heights at the reef flat (SWHr) will increase from 1.05-1.24 m at present to 2.14 m if reefs are degraded. Similarly, by 2100 the water level at the shoreline (WLs) will increase from 0.86-2.10 m at present to 1.19-3.45 m if reefs are degraded. These predicted changes will probably cause beach erosion, saltwater intrusion into groundwater, and damage to infrastructure, because the coastal village is located at ˜ 3 m above the present mean sea level. These findings imply that even if the SWHr is decreased by only 0.1 m by upward reef growth, it will probably reduce the risks of costal damages. Our results showed that a healthy reef

  15. Acceleration of tropical cyclogenesis by self-aggregation feedbacks.

    Science.gov (United States)

    Muller, Caroline J; Romps, David M

    2018-03-20

    Idealized simulations of tropical moist convection have revealed that clouds can spontaneously clump together in a process called self-aggregation. This results in a state where a moist cloudy region with intense deep convection is surrounded by extremely dry subsiding air devoid of deep convection. Because of the idealized settings of the simulations where it was discovered, the relevance of self-aggregation to the real world is still debated. Here, we show that self-aggregation feedbacks play a leading-order role in the spontaneous genesis of tropical cyclones in cloud-resolving simulations. Those feedbacks accelerate the cyclogenesis process by a factor of 2, and the feedbacks contributing to the cyclone formation show qualitative and quantitative agreement with the self-aggregation process. Once the cyclone is formed, wind-induced surface heat exchange (WISHE) effects dominate, although we find that self-aggregation feedbacks have a small but nonnegligible contribution to the maintenance of the mature cyclone. Our results suggest that self-aggregation, and the framework developed for its study, can help shed more light into the physical processes leading to cyclogenesis and cyclone intensification. In particular, our results point out the importance of the longwave radiative cooling outside the cyclone.

  16. Increasing potential for intense tropical and subtropical thunderstorms under global warming.

    Science.gov (United States)

    Singh, Martin S; Kuang, Zhiming; Maloney, Eric D; Hannah, Walter M; Wolding, Brandon O

    2017-10-31

    Intense thunderstorms produce rapid cloud updrafts and may be associated with a range of destructive weather events. An important ingredient in measures of the potential for intense thunderstorms is the convective available potential energy (CAPE). Climate models project increases in summertime mean CAPE in the tropics and subtropics in response to global warming, but the physical mechanisms responsible for such increases and the implications for future thunderstorm activity remain uncertain. Here, we show that high percentiles of the CAPE distribution (CAPE extremes) also increase robustly with warming across the tropics and subtropics in an ensemble of state-of-the-art climate models, implying strong increases in the frequency of occurrence of environments conducive to intense thunderstorms in future climate projections. The increase in CAPE extremes is consistent with a recently proposed theoretical model in which CAPE depends on the influence of convective entrainment on the tropospheric lapse rate, and we demonstrate the importance of this influence for simulated CAPE extremes using a climate model in which the convective entrainment rate is varied. We further show that the theoretical model is able to account for the climatological relationship between CAPE and a measure of lower-tropospheric humidity in simulations and in observations. Our results provide a physical basis on which to understand projected future increases in intense thunderstorm potential, and they suggest that an important mechanism that contributes to such increases may be present in Earth's atmosphere. Published under the PNAS license.

  17. Investigations of an intense aerosol loading during 2007 cyclone SIDR - A study using satellite data and ground measurements over Indian region

    Digital Repository Service at National Institute of Oceanography (India)

    Badarinath, K.V.S.; Kharol, S.K.; Sharma, A.R.; Ramaswamy, V.; Kaskaoutis, D.G.; Kambezidis, H.D.

    upwind of BoB consists of cement factories, thermal power plants (coal- based), steel plants, etc (Satheesh, 2002). This general characteristic ofaerosolshoweverwasstronglymodifiedduringthepassageofthe cyclone SIDR and thus rendering its investigation a...

  18. Relative role of subinertial and superinertial modes in the coastal long wave response forced by the landfall of a tropical cyclone

    Science.gov (United States)

    Ke, Ziming; Yankovsky, Alexander E.

    2011-06-01

    A set of numerical experiments has been performed in order to analyze the long-wave response of the coastal ocean to a translating mesoscale atmospheric cyclone approaching the coastline at a normal angle. An idealized two-slope shelf topography is chosen. The model is forced by a radially symmetric atmospheric pressure perturbation with a corresponding gradient wind field. The cyclone's translation speed, radius, and the continental shelf width are considered as parameters whose impact on the long wave period, modal structure, and amplitude is studied. Subinertial continental shelf waves (CSW) dominate the response under typical forcing conditions and on the narrower shelves. They propagate in the downstream (in the sense of Kelvin wave propagation) direction. Superinertial edge wave modes have higher free surface amplitudes and faster phase speeds than the CSW modes. While potentially more dangerous, edge waves are not as common as subinertial shelf waves because their generation requires a wide, gently sloping shelf and a storm system translating at a relatively high (˜10 m s -1 or faster) speed. A relatively smaller size of an atmospheric cyclone also favors edge wave generation. Edge waves with the highest amplitude (up to 60% of the forced storm surge) propagate upstream. They are produced by a storm system with an Eulerian time scale equal to the period of a zero-mode edge wave with the wavelength of the storm spatial scale. Large amplitude edge waves were generated during Hurricane Wilma's landfall (2005) on the West Florida shelf with particularly severe flooding occurring upstream of the landfall site.

  19. Relationship of boreal summer 10-20-day and 30-60-day intraseasonal oscillation intensity over the tropical western North Pacific to tropical Indo-Pacific SST

    Science.gov (United States)

    Wu, Renguang; Cao, Xi

    2017-06-01

    The present study contrasts interannual variations in the intensity of boreal summer 10-20-day and 30-60-day intraseasonal oscillations (ISOs) over the tropical western North Pacific and their factors. A pronounced difference is found in the relationship of the two ISOs to El Niño-Southern Oscillation. The 10-20-day ISO intensity is enhanced during El Niño developing summer, whereas the 30-60-day ISO intensity is enhanced during La Niña decaying summer. The above different relationship is interpreted as follows. The equatorial central and eastern Pacific SST anomalies modify vertical wind shear, lower-level moisture, and vertical motion in a southeast-northwest oriented band from the equatorial western Pacific to the tropical western North Pacific where the 10-20-day ISOs originate and propagate. These background field changes modulate the amplitude of 10-20-day ISOs. Preceding equatorial central and eastern Pacific SST anomalies induce SST anomalies in the North Indian Ocean in summer, which in turn modify vertical wind shear and vertical motion over the tropical western North Pacific. The modified background fields influence the amplitude of the 30-60-day ISOs when they reach the tropical western North Pacific from the equatorial region. A feedback of ISO intensity on local SST change is identified in the tropical western North Pacific likely due to a net effect of ISOs on surface heat flux anomalies. This feedback is more prominent from the 10-20-day than the 30-60-day ISO intensity change.

  20. Cyclone trends constrain monsoon variability during late Oligocene sea level highstands (Kachchh Basin, NW India)

    Science.gov (United States)

    Reuter, M.; Piller, W. E.; Harzhauser, M.; Kroh, A.

    2013-09-01

    Climate change has an unknown impact on tropical cyclones and the Asian monsoon. Herein we present a sequence of fossil shell beds from the shallow-marine Maniyara Fort Formation (Kachcch Basin) as a recorder of tropical cyclone activity along the NW Indian coast during the late Oligocene warming period (~ 27-24 Ma). Proxy data providing information about the atmospheric circulation dynamics over the Indian subcontinent at this time are important since it corresponds to a major climate reorganization in Asia that ends up with the establishment of the modern Asian monsoon system at the Oligocene-Miocene boundary. The vast shell concentrations are comprised of a mixture of parautochthonous and allochthonous assemblages indicating storm-generated sediment transport from deeper to shallow water during third-order sea level highstands. Three distinct skeletal assemblages were distinguished, each recording a relative storm wave base. (1) A shallow storm wave base is shown by nearshore molluscs, reef corals and Clypeaster echinoids; (2) an intermediate storm wave base depth is indicated by lepidocyclinid foraminifers, Eupatagus echinoids and corallinacean algae; and (3) a deep storm wave base is represented by an Amussiopecten bivalve-Schizaster echinoid assemblage. These wave base depth estimates were used for the reconstruction of long-term tropical storm intensity during the late Oligocene. The development and intensification of cyclones over the recent Arabian Sea is primarily limited by the atmospheric monsoon circulation and strength of the associated vertical wind shear. Therefore, since the topographic boundary conditions for the Indian monsoon already existed in the late Oligocene, the reconstructed long-term cyclone trends were interpreted to reflect monsoon variability during the initiation of the Asian monsoon system. Our results imply an active monsoon over the Eastern Tethys at ~ 26 Ma followed by a period of monsoon weakening during the peak of the late

  1. Analysis of sensitivity to different parameterization schemes for a subtropical cyclone

    Science.gov (United States)

    Quitián-Hernández, L.; Fernández-González, S.; González-Alemán, J. J.; Valero, F.; Martín, M. L.

    2018-05-01

    A sensitivity analysis to diverse WRF model physical parameterization schemes is carried out during the lifecycle of a Subtropical cyclone (STC). STCs are low-pressure systems that share tropical and extratropical characteristics, with hybrid thermal structures. In October 2014, a STC made landfall in the Canary Islands, causing widespread damage from strong winds and precipitation there. The system began to develop on October 18 and its effects lasted until October 21. Accurate simulation of this type of cyclone continues to be a major challenge because of its rapid intensification and unique characteristics. In the present study, several numerical simulations were performed using the WRF model to do a sensitivity analysis of its various parameterization schemes for the development and intensification of the STC. The combination of parameterization schemes that best simulated this type of phenomenon was thereby determined. In particular, the parameterization combinations that included the Tiedtke cumulus schemes had the most positive effects on model results. Moreover, concerning STC track validation, optimal results were attained when the STC was fully formed and all convective processes stabilized. Furthermore, to obtain the parameterization schemes that optimally categorize STC structure, a verification using Cyclone Phase Space is assessed. Consequently, the combination of parameterizations including the Tiedtke cumulus schemes were again the best in categorizing the cyclone's subtropical structure. For strength validation, related atmospheric variables such as wind speed and precipitable water were analyzed. Finally, the effects of using a deterministic or probabilistic approach in simulating intense convective phenomena were evaluated.

  2. Diabatic processes and the evolution of two contrasting extratropical cyclones

    Science.gov (United States)

    Martinez-Alvarado, Oscar; Gray, Suzanne; Methven, John

    2016-04-01

    Two contrasting extratropical cyclones were observed over the United Kingdom during the summer 2012 field campaign of the DIAMET (DIAbatic influences on Mesoscale structures in ExtraTropical storms) project. The first cyclone, observed in July, was a shallow system typical of summer over west Europe while the second cyclone, observed in August, was a much deeper system which developed a potential vorticity (PV) tower. The evolution of these two cyclones was analysed and compared in terms of diabatic effects with respect to two aspects. The first aspect is the amount and distribution of heat produced during the development of each cyclone, measured by the cross-isentropic motion around the cyclone centre. The second aspect is the modification to the circulation around the cyclones' centres, measured by area-averaged isentropic vorticity. The contributions from individual diabatic processes, such as convection, cloud microphysics and radiation, to these two aspects is also considered. The cyclones were analysed via hindcast simulations with a research version of the Met Office Unified Model, enhanced with on-line tracers of diabatic changes of potential temperature and PV. A new methodology for the interpretation of these tracers was also implemented and used. The hindcast simulations were compared with the available dropsonde observations from the field campaign as well as operational analyses and radar rainfall rates. It is shown that, while boundary layer and turbulent mixing processes and cloud microphysics processes contributed to the development of both cyclones, the main differences between the cyclones in terms of diabatic effects could be attributed to differences in convective activity. It is also shown that the contribution from all these diabatic processes to changes in the circulation was modulated by the characteristics of advection around each cyclone in a highly nonlinear fashion. This research establishes a new framework for a systematic comparison

  3. Modified diffusion with memory for cyclone track fluctuations

    Energy Technology Data Exchange (ETDEWEB)

    Bernido, Christopher C., E-mail: cbernido@mozcom.com [Research Center for Theoretical Physics, Central Visayan Institute Foundation, Jagna, Bohol 6308 (Philippines); Carpio-Bernido, M. Victoria [Research Center for Theoretical Physics, Central Visayan Institute Foundation, Jagna, Bohol 6308 (Philippines); Escobido, Matthew G.O. [W. Sycip Graduate School of Business, Asian Institute of Management, 123 Paseo de Roxas Ave., Makati City 1260 (Philippines)

    2014-06-13

    Fluctuations in a time series for tropical cyclone tracks are investigated based on an exponentially modified Brownian motion. The mean square displacement (MSD) is evaluated and compared to a recent work on cyclone tracks based on fractional Brownian motion (fBm). Unlike the work based on fBm, the present approach is found to capture the behavior of MSD versus time graphs for cyclones even for large values of time. - Highlights: • Cyclone track fluctuations are modeled as stochastic processes with memory. • Stochastic memory functions beyond fractional Brownian motion are introduced. • The model captures the behavior of cyclone track fluctuations for longer periods of time. • The approach can model time series for other fluctuating phenomena.

  4. Spatiotemporal change of intraseasonal oscillation intensity over the tropical Indo-Pacific Ocean associated with El Niño and La Niña events

    Science.gov (United States)

    Wu, Renguang; Song, Lei

    2018-02-01

    The present study analyzes the intraseasonal oscillation (ISO) intensity change over the tropical Indo-Pacific associated with the El Niño-Southern Oscillation (ENSO) and compares the intensity change between El Niño and La Niña years and between the 10-20-day and 30-60-day ISOs. The ISO intensity change tends to be opposite between El Niño and La Niña years in the developing and mature phases. The intensity change features a contrast between the tropical southeastern Indian Ocean and the tropical western North Pacific (WNP) in the developing phases and between the Maritime Continent and the tropical central Pacific in the mature phase. In the decaying phases, the intensity change shows notable differences between El Niño and La Niña events and between fast and slow decaying El Niño events. Large intensity change is observed over the tropical WNP in the developing summer, over the tropical southeastern Indian Ocean in the developing fall, and over the tropical WNP in the fast decaying El Niño summer due to a combined effect of vertical shear, vertical motion, and lower-level moisture. In the ENSO developing summer and in the El Niño decaying summer, the 10-20-day ISO intensity change displays a northwest-southeast tilted distribution over the tropical WNP, whereas the large 30-60-day ISO intensity change is confined to the off-equatorial WNP. In the La Niña decaying summer, the 30-60-day ISO intensity change features a large zonal contrast across the Philippines, whereas the 10-20-day ISO intensity anomaly is characterized by a north-south contrast over the tropical WNP.

  5. Initialization, Prediction and Diagnosis of the Rapid Intensification of Tropical Cyclones using the Australian Community Climate and Earth System Simulator, ACCESS

    Science.gov (United States)

    2012-10-12

    structure on the evolving storm behaviour. 13 7. Large scale influences on Rapid Intensification and Extratropical Transition: RI and ET...assimilation techniques to better initialize and validate TC structures (including the intense inner core and storm asymmetries) consistent with the large...Without vortex specification, initial conditions usually contain a weak and misplaced circulation. Based on estimates of central pressure and storm size

  6. Soil C dynamics under intensive oil palm plantations in poor tropical soils

    Science.gov (United States)

    Guillaume, Thomas; Ruegg, Johanna; Quezada, Juan Carlos; Buttler, Alexandre

    2017-04-01

    Oil palm cultivation mainly takes place on heavily-weathered tropical soils where nutrients are limiting factors for plant growth and microbial activity. Intensive fertilization and changes of C input by oil palms strongly affects soil C and nutrient dynamics, challenging long-term soil fertility. Oil palm plantations management offers unique opportunities to study soil C and nutrients interactions in field conditions because 1) they can be considered as long-term litter manipulation experiments since all aboveground C inputs are concentrated in frond pile areas and 2) mineral fertilizers are only applied in specific areas, i.e. weeded circle around the tree and interrows, but not in harvest paths. Here, we determined impacts of mineral fertilizer and organic matter input on soil organic carbon dynamics and microbial activity in mature oil palm plantation established on savanna grasslands. Rates of savanna-derived soil organic carbon (SOC) decomposition and oil palm-derived SOC net stabilization were determined using changes in isotopic signature of in C input following a shift from C4 (savanna) to C3 (oil palm) vegetation. Application of mineral fertilizer alone did not affect savanna-derived SOC decomposition or oil palm-derived SOC stabilization rates, but fertilization associated with higher C input lead to an increase of oil palm-derived SOC stabilization rates, with about 50% of topsoil SOC derived from oil palm after 9 years. High carbon and nutrients inputs did not increase microbial biomass but microorganisms were more active per unit of biomass and SOC. In conclusion, soil organic matter decomposition was limited by C rather than nutrients in the studied heavily-weathered soils. Fresh C and nutrient inputs did not lead to priming of old savanna-derived SOC but increased turnover and stabilization of new oil palm-derived SOC.

  7. Extratropical cyclone variability in the Northern Hemisphere winter from the NCEP/NCAR reanalysis data

    Energy Technology Data Exchange (ETDEWEB)

    Gulev, S.K.; Zolina, O.; Grigoriev, S. [AN SSSR, Moscow (USSR). Inst. Okeanologii

    2001-07-01

    The winter climatology of Northern Hemisphere cyclone activity was derived from 6-hourly NCEP/NCAR reanalysis data for the period from 1958 to 1999, using software which provides improved accuracy in cyclone identification in comparison to numerical tracking schemes. Cyclone characteristics over the Kuroshio and Gulfstream are very different to those over continental North America and the Arctic. Analysis of Northern Hemisphere cyclones shows secular and decadal-scale changes in cyclone frequency, intensity, lifetime and deepening rates. The western Pacific and Atlantic are characterized by an increase in cyclone intensity and deepening during the 42-year period, although the eastern Pacific and continental North America demonstrate opposite tendencies in most cyclone characteristics. There is an increase of the number of cyclones in the Arctic and in the western Pacific and a downward tendency over the Gulf Stream and subpolar Pacific. Decadal scale variability in cyclone activity over the Atlantic and Pacific exhibits south-north dipole-like patterns. Atlantic and Pacific cyclone activity associated with the NAO and PNA is analyzed. Atlantic cyclone frequency demonstrates a high correlation with NAO and reflects the NAO shift in the mid 1970s, associated with considerable changes in European storm tracks. The PNA is largely linked to the eastern Pacific cyclone frequencies, and controls cyclone activity over the Gulf region and the North American coast during the last two decades. Assessment of the accuracy of the results and comparison with those derived using numerical algorithms, shows that biases inherent in numerical procedures are not negligible. (orig.)

  8. Cyclone track forecasting based on satellite images using artificial neural networks

    OpenAIRE

    Kovordanyi, Rita; Roy, Chandan

    2009-01-01

    Many places around the world are exposed to tropical cyclones and associated storm surges. In spite of massive efforts, a great number of people die each year as a result of cyclone events. To mitigate this damage, improved forecasting techniques must be developed. The technique presented here uses artificial neural networks to interpret NOAA-AVHRR satellite images. A multi-layer neural network, resembling the human visual system, was trained to forecast the movement of cyclones based on sate...

  9. Analysis of Sub-Grid Boundary-Layer Processes Observed by the P-3 Doppler Wind Lidar in Support of the Western Pacific Tropical Cyclone Structure 2008 Experiment

    Science.gov (United States)

    2012-02-02

    characteristics in the low-level region of intense hurricanes Allen (1980) and Hugo (1989). Mon Wea, Rev, 139, 1447-1462. 9 PUBLICATIONS Refereed Journals...experiment that involved USAF Hurricane Hunter C-130s, the Navy’s P-3, the German Falcon aircraft and the Taiwanese DOTSTAR. The P-3 was equipped with... hurricane research with airborne 8 DWLs for the next 5 years. All of this airborne DWL activity is being done with the expectation of under flying the

  10. Inter-decadal change of the lagged inter-annual relationship between local sea surface temperature and tropical cyclone activity over the western North Pacific

    Science.gov (United States)

    Zhao, Haikun; Wu, Liguang; Raga, G. B.

    2018-02-01

    This study documents the inter-decadal change of the lagged inter-annual relationship between the TC frequency (TCF) and the local sea surface temperature (SST) in the western North Pacific (WNP) during 1979-2014. An abrupt shift of the lagged relationship between them is observed to occur in 1998. Before the shift (1979-1997), a moderately positive correlation (0.35) between previous-year local SST and TCF is found, while a significantly negative correlation (- 0.71) is found since the shift (1998-2014). The inter-decadal change of the lagged relationship between TCF and local SST over the WNP is also accompanied by an inter-decadal change in the lagged inter-annual relationship between large-scale factors affecting TCs and local SST over the WNP. During 1998-2014, the previous-year local SST shows a significant negative correlation with the mid-level moisture and a significant positive correlation with the vertical wind shear over the main development region of WNP TC genesis. Almost opposite relationships are seen during 1979-1997, with a smaller magnitude of the correlation coefficients. These changes are consistent with the changes of the lagged inter-annual relationship between upper- and lower-level winds and local SST over the WNP. Analyses further suggests that the inter-decadal shift of the lagged inter-annual relationship between WNP TCF and local SST may be closely linked to the inter-decadal change of inter-annual SST transition over the tropical central-eastern Pacific associated with the climate regime shift in the late 1990s. Details on the underlying physical process need further investigation using observations and simulations.

  11. Impact of cloud parameterization on the numerical simulation of a super cyclone

    Energy Technology Data Exchange (ETDEWEB)

    Deshpande, M.S.; Pattnaik, S.; Salvekar, P.S. [Indian Institute of Tropical Meteorology, Pune (India)

    2012-07-01

    This study examines the role of parameterization of convection and explicit moisture processes on the simulated track, intensity and inner core structure of Orissa super cyclone (1999) in Bay of Bengal (north Indian Ocean). Sensitivity experiments are carried out to examine the impact of cumulus parameterization schemes (CPS) using MM5 model (Version 3.7) in a two-way nested domain (D1 and D2) configuration at horizontal resolutions (45-15 km). Three different cumulus parameterization schemes, namely Grell (Gr), Betts-Miller (BM) and updated Kain Fritsch (KF2), are tested. It is noted that track and intensity both are very sensitive to CPS and comparatively, KF2 predicts them reasonably well. Particularly, the rapid intensification phase of the super cyclone is best simulated by KF2 compared to other CPS. To examine the effect of the cumulus parameterization scheme at high resolution (5 km), the three-domain configuration (45-15-5 km resolution) is utilized. Based on initial results, KF2 scheme is used for both the domains (D1 and D2). Two experiments are conducted: one in which KF2 is used as CPS and another in which no CPS is used in the third domain. The intensity is well predicted when no CPS is used in the innermost domain. The sensitivity experiments are also carried out to examine the impact from microphysics parameterization schemes (MPS). Four cloud microphysics parameterization schemes, namely mixed phase (MP), Goddard microphysics with Graupel (GG), Reisner Graupel (RG) and Schultz (Sc), are tested in these experiments. It is noted that the tropical cyclone tracks and intensity variation have considerable sensitivity to the varying cloud microphysical parameterization schemes. The MPS of MP and Sc could very well capture the rapid intensification phase. The final intensity is well predicted by MP, which is overestimated by Sc. The MPS of GG and RG underestimates the intensity. (orig.)

  12. Study of Sea Surface Temperatures changes due to tropical cyclone fanoos in the southwest Bay of Bengal using satellite and argo observations

    Science.gov (United States)

    Krishna Kailasam, Muni

    Sea surface temperature (SST) plays an important role in the studies of global climate system and as a boundary condition for operational numerical forecasts. Estimation of SST has tra-ditionally been performed with satellite based sensors operating in the infrared (IR) portion of the electromagnetic spectrum, where the ocean emissivity is close to unity. The National Oceanic and Atmospheric Administration (NOAA) satellite series, the GOES Imagers on the Geostationary Operational Environmental Satellites, the Along Track Scanning Radiometer (ATSR) on the European Remote Sensing satellites and the Moderate Resolution Imaging Spectroradiometer (MODIS) on the NASA EOS platform are successful examples of IR sen-sors currently used for operational SST retrievals. Significant progress in SST retrieval from remote sensing data came with the introduction of a new low-frequency channel (10.7 GHz) on microwave (MW) sensors. The anthropogenic effects over a period of time resulted in increase of infrared absorbers such as greenhouse gases and absorbing aerosol would produce increase of both daytime maximum and nighttime minimum temperatures. In contrast, the increases of visible reflectors such as sulfate aerosols and low cloud amount would result in a decrease of the daytime maximum temperature. Solar radiation, wind stress and vertical mixing are known to be the three major factors impacting the SST seasonal variations. In the present study, impact of absorbing aerosols on the sea surface temperature (SST) over Bay of Bengal (BoB) region was investigated. Increased aerosol loading over BoB was observed due to advection of aerosols from continental region consisting of absorbing particles primarily from dust and biomass burning. This increased loading over BoB resulted in reduction of surface reaching solar radiation. Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (TMI) de-rived SST over BoB showed negative correlation with OMI-Aerosol Index (AI) (R = 0.87) and

  13. High primary production contrasts with intense carbon emission in a eutrophic tropical reservoir

    NARCIS (Netherlands)

    Almeida, Rafael M.; Nóbrega, Gabriel N.; Junger, Pedro C.; Figueiredo, Aline V.; Andrade, Anízio S.; Moura, de Caroline G.B.; Tonetta, Denise; Oliveira, Ernandes S.; Araújo, Fabiana; Rust, Felipe; Piñeiro-Guerra, Juan M.; Mendonça, Jurandir R.; Medeiros, Leonardo R.; Pinheiro, Lorena; Miranda, Marcela; Costa, Mariana R.A.; Melo, Michaela L.; Nobre, Regina L.G.; Benevides, Thiago; Roland, Fábio; Klein, de Jeroen; Barros, Nathan O.; Mendonça, Raquel; Becker, Vanessa; Huszar, Vera L.M.; Kosten, Sarian

    2016-01-01

    Recent studies from temperate lakes indicate that eutrophic systems tend to emit less carbon dioxide (CO2) and bury more organic carbon (OC) than oligotrophic ones, rendering them CO2 sinks in some cases. However, the scarcity of data from tropical systems is critical for a

  14. Track prediction of very severe cyclone 'Nargis' using high resolution ...

    Indian Academy of Sciences (India)

    tides (surges) as they cross the coast of India,. Bangladesh and other coasts. Strong winds, heavy and torrential rains and the cumulative effect of storm surges and astronomical tides are the three major elements of tropical cyclone ... Ocean move predominantly along westerly/ northwesterly direction. However, some ...

  15. The sensitivity of characteristics of cyclone activity to identification procedures in tracking algorithms

    Directory of Open Access Journals (Sweden)

    Irina Rudeva

    2014-12-01

    Full Text Available The IMILAST project (‘Intercomparison of Mid-Latitude Storm Diagnostics’ was set up to compare low-level cyclone climatologies derived from a number of objective identification algorithms. This paper is a contribution to that effort where we determine the sensitivity of three key aspects of Northern Hemisphere cyclone behaviour [namely the number of cyclones, their intensity (defined here in terms of the central pressure and their deepening rates] to specific features in the automatic cyclone identification. The sensitivity is assessed with respect to three such features which may be thought to influence the ultimate climatology produced (namely performance in areas of complicated orography, time of the detection of a cyclone, and the representation of rapidly propagating cyclones. We make use of 13 tracking methods in this analysis. We find that the filtering of cyclones in regions where the topography exceeds 1500 m can significantly change the total number of cyclones detected by a scheme, but has little impact on the cyclone intensity distribution. More dramatically, late identification of cyclones (simulated by the truncation of the first 12 hours of cyclone life cycle leads to a large reduction in cyclone numbers over the both continents and oceans (up to 80 and 40%, respectively. Finally, the potential splitting of the trajectories at times of the fastest propagation has a negligible climatological effect on geographical distribution of cyclone numbers. Overall, it has been found that the averaged deepening rates and averaged cyclone central pressure are rather insensitive to the specifics of the tracking procedure, being more sensitive to the data set used (as shown in previous studies and the geographical location of a cyclone.

  16. Tropical Cyclone Wind Probability Forecasting (WINDP).

    Science.gov (United States)

    1981-04-01

    llq. h. ,c ilrac (t’ small probabilities (below 107c) is limited II(t’h, numb(r o!, significant digits given: therefore 1t( huld lU r~ruidvd as being...APPLIED SCI. CORP. ENGLAMD ;7MOS. SCIENCES OEPT., LIBRARY ATTN: LIBARY , SUITE 500 400 WASHINGTON AVE. 6811 KENILWORTH AVE. EUROPEAN CENTRE FOR MEDIUM

  17. Ensemble Prediction of Tropical Cyclone Genesis

    Science.gov (United States)

    2017-02-23

    5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) I PRCISOEST, University of Hawaii at Manoa 1680 East - West Road, POST...Tim Li IPRC/SOEST, University of Hawaii at Manoa 1680 East - West Road, POST Building 409B Honolulu, Hawaii 96822 Phone: (808) 956-9427, fax: (808... environment with a near bottom vortex or an environment with a mid- level vortex. Five experiments were designed with different initial vertical vorticity and

  18. Toward Clarity on Understanding Tropical Cyclone Intensification

    Science.gov (United States)

    2015-08-01

    Munich, Germany MICHAEL T. MONTGOMERY Department of Meteorology, Naval Postgraduate School , Monterey, California (Manuscript received 13 January 2015...PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Naval Postgraduate School ,Department of...Fig. 1b of Chen and Zhang (2013), which shows time series of minimum surface pressure from a simulation of Hurri- cane Wilma (2005), obtained by

  19. Warm Water Pools of the Western Caribbean and Eastern Tropical Pacific: Their Influence on Intraseasonal Rainfall Regimes and Tropical Storm Activity in Mexico

    Science.gov (United States)

    Douglas, A. V.; Englehart, P. J.

    2007-05-01

    A dipole in tropical cyclone development between the Caribbean and the eastern tropical Pacific will be examined relative to its affect on southern Mexican rainfall. With the change over in the AMO and PDO in 1994 and 1998, respectively, tropical storm genesis has been increasing in the Caribbean while declining in the tropical east Pacific. This dipole in tropical cyclone development appears to be related to changes in the pre storm season heat content of the two ocean basins (data Scripps Institution of Oceanography). Preliminary work indicates that if the Caribbean is warmer than the Pacific by late May the dipole will be accentuated with a pronounced decrease in tropical storms in the east Pacific with an early and prolonged season in the Caribbean. In recent years there appears to have been an increase in the intensity and duration of midsummer drought (Canicula) in Mexico associated with changes in the PDO and AMO. These long term ocean oscillations appear to control the dipole in the strength of the Caribbean and East Pacific warm pools. Mid summer drought is a normal occurrence in much of Mexico and Central America, but the intensified droughts of the recent period have stressed the agricultural community of the region. Based on preliminary work, it appears that the recent increased frequency of midsummer drought can be linked to a shift in the warmest pool from the East Pacific to the Caribbean.

  20. The neighbor enclosed area tracking algorithm and its application to cyclone merger in the midlatitudes

    Science.gov (United States)

    Inatsu, Masaru; Amada, Shotarou; Satake, Yuya

    2010-05-01

    The neighbor enclosed area tracking (NEAT) algorithm is proposed as an alternative method to conventional point-to-point cyclone tracking approaches. Most automated Lagrangian tracking algorithms contain three procedures: cyclone identification, cyclone tracking, and quantification of cyclone intensity and activity. The cyclone identification was simply based on a comparison of neighboring grid points; cyclone tracking mainly employed a near-neighbor point search to neighbor-time cyclone-center datasets; and cyclone intensity and activity are mainly quantified as cyclone track density, and other accompanying products such as genesis and lysis densities, mean lifetime, average moving vector, and mean growth rate can also be obtained in the final procedure. But a crucial problem in the above technique is its requirement of some complicated connecting conditions for near-neighbor tracking. To overcome the problem, NEAT completes cyclone identification and cyclone tracking in a single process of equivalent labeling for spatiotemporally connected domains, i.e., if two spatially enclosed areas in a neighboring time frame overlap, they should be connected. NEAT enables us to count the genesis and tracks of individual cyclones as the conventional tracking. Moreover, NEAT has the ability to produce fruitful information on cyclone mergers and separations, cyclone shape, and material transport by individual eddies (the latter two features will be reported elsewhere). There are many possible applications of NEAT to meteorology and oceanography, but now we focus on the situation, well-known by Japanese synopticians, that two cyclones pass respectively over the north and south of Japan and then they frequently merge and are rapidly deepened in the western Pacific. For the case, the southern cyclones tend to be stimulated just above the sea surface temperature front to the north of oceanic western boundary currents, while the northern cyclones, moving eastward along the polar

  1. Future Changes in Cyclonic Wave Climate in the North Atlantic, with a Focus on the French West Indies

    Science.gov (United States)

    Belmadani, A.; Palany, P.; Dalphinet, A.; Pilon, R.; Chauvin, F.

    2017-12-01

    Tropical cyclones (TCs) are a major environmental hazard in numerous small islands such as the French West Indies (Guadeloupe, Martinique, St-Martin, St-Barthélémy). The intense associated winds, which can reach 300 km/h or more, can cause serious damage in the islands and their coastlines. In particular, the combined action of waves, currents and low atmospheric pressure leads to severe storm surge and coastal flooding. Here we report on future changes in cyclonic wave climate for the North Atlantic basin, as a preliminary step for downscaled projections over the French West Indies at sub-kilometer-scale resolution. A new configuration of the Météo-France ARPEGE atmospheric general circulation model on a stretched grid with increased resolution in the tropical North Atlantic ( 15 km) is able to reproduce the observed distribution of maximum surface winds, including extreme events corresponding to Category 5 hurricanes. Ensemble historical simulations (1985-2014, 5 members) and future projections with the IPCC (Intergovernmental Panel on Climate Change) RCP8.5 scenario (2051-2080, 5 members) are used to drive the MFWAM (Météo-France Wave Action Model) over the North Atlantic basin. A lower 50-km resolution grid is used to propagate distant mid-latitude swells into a higher 10-km resolution grid over the cyclonic basin. Wave model performance is evaluated over a few TC case studies including the Sep-Oct 2016 Category 5 Hurricane Matthew, using an operational version of ARPEGE at similar resolution to force MFWAM together with wave buoy data. The latter are also used to compute multi-year wave statistics, which then allow assessing the realism of the MFWAM historical runs. For each climate scenario and ensemble member, a simulation of the cyclonic season (July to mid-November) is performed every year. The simulated sea states over the North Atlantic cyclonic basin over 150 historical simulations are compared to their counterparts over 150 future simulations

  2. Microbial and genetic ecology of tropical Vertisols under intensive chemical farming.

    Science.gov (United States)

    Malhotra, Jaya; Aparna, K; Dua, Ankita; Sangwan, Naseer; Trimurtulu, N; Rao, D L N; Lal, Rup

    2015-01-01

    There are continued concerns on unscientific usage of chemical fertilizers and pesticides, particularly in many developing countries leading to adverse consequences for soil biological quality and agricultural sustainability. In farmers' fields in tropical Vertisols of peninsular India, "high" fertilizer and pesticide usage at about 2.3 times the recommended rates in black gram (Vigna mungo) did not have a deleterious effect on the abundance of culturable microorganisms, associative nitrogen fixers, nitrifiers, and 16S rRNA gene diversity compared to normal rates. However, "very high" application at about five times the fertilizers and 1.5 times pesticides in chilies (Capsicum annuum) adversely affected the populations of fungi, actinomycetes, and ammonifiers, along with a drastic change in the eubacterial community profile and diversity over normal rates. Actinobacteria were dominant in black gram normal (BG1) (47%), black gram high (BG2) (36%), and chili normal (CH1) (30%) and were least in chili very high (CH2) (14%). Geodermatophilus formed 20% of Actinobacteria in BG1 but disappeared in BG2, CH1, and CH2. Asticcacaulis dominated at "very high" input site (CH2). Diversity of nitrogen fixers was completely altered; Dechloromonas and Anaeromyxobacter were absent in BG1 but proliferated well in BG2. There was reduction in rhizobial nifH sequences in BG2 by 46%. Phylogenetic differences characterized by UniFrac and principal coordinate analysis showed that BG2 and CH2 clustered together depicting a common pattern of genetic shift, while BG1 and CH1 fell at different axis. Overall, there were adverse consequences of "very high" fertilizer and pesticide usage on soil microbial diversity and function in tropical Vertisols.

  3. Impacts of an extreme cyclone event on landscape-scale savanna fire, productivity and greenhouse gas emissions

    International Nuclear Information System (INIS)

    Hutley, L B; Maier, S W; Evans, B J; Beringer, J; Cook, G D; Razon, E

    2013-01-01

    North Australian tropical savanna accounts for 12% of the world’s total savanna land cover. Accordingly, understanding processes that govern carbon, water and energy exchange within this biome is critical to global carbon and water budgeting. Climate and disturbances drive ecosystem carbon dynamics. Savanna ecosystems of the coastal and sub-coastal of north Australia experience a unique combination of climatic extremes and are in a state of near constant disturbance from fire events (1 in 3 years), storms resulting in windthrow (1 in 5–10 years) and mega-cyclones (1 in 500–1000 years). Critically, these disturbances occur over large areas creating a spatial and temporal mosaic of carbon sources and sinks. We quantify the impact on gross primary productivity (GPP) and fire occurrence from a tropical mega-cyclone, tropical Cyclone Monica (TC Monica), which affected 10 400 km 2 of savanna across north Australia, resulting in the mortality and severe structural damage to ∼140 million trees. We estimate a net carbon equivalent emission of 43 Tg of CO 2 -e using the moderate resolution imaging spectroradiometer (MODIS) GPP (MOD17A2) to quantify spatial and temporal patterns pre- and post-TC Monica. GPP was suppressed for four years after the event, equivalent to a loss of GPP of 0.5 Tg C over this period. On-ground fuel loads were estimated to potentially release 51.2 Mt CO 2 -e, equivalent to ∼10% of Australia’s accountable greenhouse gas emissions. We present a simple carbon balance to examine the relative importance of frequency versus impact for a number of key disturbance processes such as fire, termite consumption and intense but infrequent mega-cyclones. Our estimates suggested that fire and termite consumption had a larger impact on Net Biome Productivity than infrequent mega-cyclones. We demonstrate the importance of understanding how climate variability and disturbance impacts savanna dynamics in the context of the increasing interest in

  4. Numerical modeling of wind waves in the Black Sea generated by atmospheric cyclones

    Science.gov (United States)

    Fomin, V. V.

    2017-09-01

    The influence of the translation speed and intensity of atmospheric cyclones on surface wind waves in the Black Sea is investigated by using tightly-coupled model SWAN+ADCIRC. It is shown that the wave field has a spatial asymmetry, which depends on the velocity and intensity of the cyclone. The region of maximum waves is formed to the right of the direction of the cyclone motion. Speedier cyclones generate wind waves of lower height. The largest waves are generated at cyclonic translation speed of 7-9 m/s. This effect is due to the coincidence of the characteristic values of the group velocity of the dominant wind waves in the deep-water part of the Black Sea with the cyclone translation speed.

  5. Trade-offs between carbon stocks and timber recovery in tropical forests are mediated by logging intensity.

    Science.gov (United States)

    Roopsind, Anand; Caughlin, T Trevor; van der Hout, Peter; Arets, Eric; Putz, Francis E

    2018-03-30

    Forest degradation accounts for ~ 70% of total carbon losses from tropical forests. Substantial emissions are from selective logging, a land-use activity that decreases forest carbon density. To maintain carbon values in selectively logged forests, climate change mitigation policies and government agencies promote the adoption of reduced-impact logging (RIL) practices. However, whether RIL will maintain both carbon and timber values in managed tropical forests over time remains uncertain. In this study, we quantify the recovery of timber stocks and aboveground carbon at an experimental site where forests were subjected to different intensities of RIL (4 trees ha -1 , 8 trees ha -1 , and 16 trees ha -1 ). Our census data spans 20 years post-logging and 17 years after the liberation of future crop trees from competition in a tropical forest on the Guiana Shield, a globally important forest carbon reservoir. We model recovery of timber and carbon with a breakpoint regression that allowed us to capture elevated tree mortality immediately after logging. Recovery rates of timber and carbon were governed by the presence of residual trees (i.e., trees that persisted through the first harvest). The liberation treatment stimulated faster recovery of timber albeit at a carbon cost. Model results suggest a threshold logging intensity beyond which forests managed for timber and carbon derive few benefits from RIL, with recruitment and residual growth not sufficient to offset losses. Inclusion of the breakpoint at which carbon and timber gains outpaced post-logging mortality led to high predictive accuracy, including out-of-sample R 2 values >90%, and enabled inference on demographic changes post-logging. Our modeling framework is broadly applicable to studies that aim to quantify impacts of logging on forest recovery. Overall, we demonstrate that initial mortality drives variation in recovery rates, that the second harvest depends on old growth wood, and that timber

  6. Water quality under intensive banana production and extensive pastureland in tropical Mexico

    NARCIS (Netherlands)

    Arya, D.R.; Geissen, V.; Ponce-Mendoza, A.; Ramos-Reyes, R.; Becker, M.

    2012-01-01

    The effects of intensive banana production with high mineral-fertilizer application and of extensive pastures were compared regarding water quality in a lowland region of SE Mexico. We monitored NO, NO, and PO43– concentrations in groundwater (80 m depth), subsurface water (5 m depth), and surface

  7. An examination of Southwest Pacific explosive cyclones, 1989 to 2009

    International Nuclear Information System (INIS)

    Black, M T; Pezza, A B; Kreft, P

    2010-01-01

    This study has assembled a climatology of Southwest Pacific explosively developing cyclones, based on the European Centre for Medium-Range Weather Forecasts' ERA-Interim reanalysis data, over the 21-year period from 1989 to 2009. The recently developed 'combined explosive' expression, a refinement of the 'relative explosive' criterion, was used to identify cyclones deemed explosive with respect to both the drop in central pressure and the climatological pressure gradient. Over the period of analysis, 47 explosive cyclones were identified within the Southwest Pacific, equating to an average of 2.2 explosive events per year. Seasonally, explosive cyclones are most frequent during the winter months, while least frequent during the summer. Two case explosive systems are briefly considered, with their corresponding measures of intensity and scale placed into climatological perspective.

  8. Martian extratropical cyclones

    Science.gov (United States)

    Hunt, G. E.; James, P. B.

    1979-01-01

    Physical properties of summer-season baroclinic waves on Mars are discussed on the basis of vidicon images and infrared thermal mapping generated by Viking Orbiter 1. The two northern-hemisphere storm systems examined here appear to be similar to terrestrial mid-latitude cyclonic storms. The Martian storm clouds are probably composed of water ice, rather than dust or CO2 ice particles.

  9. Intensification rapide des cyclones tropicaux du sud-ouest de l'océan Indien : dynamique interne et influences externes

    OpenAIRE

    Leroux , Marie-Dominique

    2012-01-01

    Les articles de la MWR et du JAS récemment accepté pour publication sont mis en ligne avec l'aimable autorisation de l'éditeur AMS. © American Meteorological Society. Reprinted with permission.; Despite significant improvements in Tropical Cyclone (TC) track forecasts over the past few decades, anticipating the sudden intensity changes of TCs remains a major operational issue. The main purpose of this thesis is to analyze TC rapid intensification processes in relation with external forcing in...

  10. Assessment of Mediterranean cyclones in the multi-ensemble EC-Earth

    Science.gov (United States)

    Gil, Victoria; Liberato, Margarida L. R.; Trigo, Isabel F.; Trigo, Ricardo M.

    2015-04-01

    The geographical location and characteristics of the Mediterranean basin make this a particularly active region in terms of cyclone forming and re-development (Trigo et al., 2002). The area is affected by moving depressions, most originated over the North Atlantic, which may later be forced by the orography surrounding the Mediterranean Sea and enhanced by the local source of moisture and heat fluxes over the Sea itself. The present work analyses the response of Mediterranean cyclones to climate change by means of 7 ensemble members of EC-EARTH model from CMIP5 (Fifth Coupled Model Intercomparison Project). We restrict the analysis to a relatively small subset (7 members) of the total number of ensemble members available in order to take into account only the members present in the three selected experiments for robust detection of extra-tropical cyclones in the Mediterranean (Trigo, 2006). We have applied the standard procedure by comparing a common 25-year period of the historical (1980-2004), present day simulations, and the future climate simulations (2074-2098) forced by RCP4.5 and RCP8.5 scenarios. The study area corresponds to the window between 10°W-42°E and 27°N-48°N. The analysis is performed with a focus in spatial distribution density and main characteristics of the overall cyclones for winter (DJF) and summer (JJA) seasons. Despite the discrepancies in cyclone numbers when compared with the ERA Interim common period (reducing to only 72% in DJF and 78% in JJA), the ensemble average matches relatively well the main spatial patterns of areas. Results indicate that the ensemble average is characterized by a small decrease in winter (-3%) and a notable increase in summer (+10%) in total number of cyclones and that the individual ensemble members reveal small spread. Such tendency is particularly pronounced under the high RCP8.5 emission scenario being more moderated under the RCP4.5 scenario. Additionally, an assessment of changes in the annual cycle

  11. Characteristics of Extreme Extratropical Cyclones in a High-Resolution Global Climate Model

    Science.gov (United States)

    Catalano, A. J.; Broccoli, A. J.; Kapnick, S. B.; Janoski, T. P.

    2017-12-01

    In the northeastern United States, many of the strongest impacts from extratropical cyclones (ETCs) are associated with storms that exhibit slow movement, unusual tracks, or exceptional intensity. Examples of extreme ETCs include the Appalachian storm of November 1950, the Perfect Storm of October 1991, and the Superstorm of March 1993. Owing to the rare nature of these events, it is difficult to quantify the associated risks (e.g. high winds, storm surge) given the limited duration of high-quality observational datasets. Furthermore, storms with even greater impacts than those observed may be possible, particularly in a warming climate. In the context of tropical cyclones, Lin and Emanuel (2016) have used the metaphor "grey swans" to refer to high-impact events that have not been observed but may be physically possible. One method for analyzing "grey swans" is to generate a larger sample of ETCs using a coupled climate model. Therefore, we use long simulations (over 1,000 years with atmospheric constituents fixed at 1990 levels) from a global climate model (GFDL FLOR) with 50km atmospheric resolution. FLOR has been shown to realistically simulate the spatial distribution and climatology of ETCs during the reanalysis era. We will discuss the climatological features of these extreme ETC events.

  12. Cyclone Activity in the Arctic From an Ensemble of Regional Climate Models (Arctic CORDEX)

    Science.gov (United States)

    Akperov, Mirseid; Rinke, Annette; Mokhov, Igor I.; Matthes, Heidrun; Semenov, Vladimir A.; Adakudlu, Muralidhar; Cassano, John; Christensen, Jens H.; Dembitskaya, Mariya A.; Dethloff, Klaus; Fettweis, Xavier; Glisan, Justin; Gutjahr, Oliver; Heinemann, Günther; Koenigk, Torben; Koldunov, Nikolay V.; Laprise, René; Mottram, Ruth; Nikiéma, Oumarou; Scinocca, John F.; Sein, Dmitry; Sobolowski, Stefan; Winger, Katja; Zhang, Wenxin

    2018-03-01

    The ability of state-of-the-art regional climate models to simulate cyclone activity in the Arctic is assessed based on an ensemble of 13 simulations from 11 models from the Arctic-CORDEX initiative. Some models employ large-scale spectral nudging techniques. Cyclone characteristics simulated by the ensemble are compared with the results forced by four reanalyses (ERA-Interim, National Centers for Environmental Prediction-Climate Forecast System Reanalysis, National Aeronautics and Space Administration-Modern-Era Retrospective analysis for Research and Applications Version 2, and Japan Meteorological Agency-Japanese 55-year reanalysis) in winter and summer for 1981-2010 period. In addition, we compare cyclone statistics between ERA-Interim and the Arctic System Reanalysis reanalyses for 2000-2010. Biases in cyclone frequency, intensity, and size over the Arctic are also quantified. Variations in cyclone frequency across the models are partly attributed to the differences in cyclone frequency over land. The variations across the models are largest for small and shallow cyclones for both seasons. A connection between biases in the zonal wind at 200 hPa and cyclone characteristics is found for both seasons. Most models underestimate zonal wind speed in both seasons, which likely leads to underestimation of cyclone mean depth and deep cyclone frequency in the Arctic. In general, the regional climate models are able to represent the spatial distribution of cyclone characteristics in the Arctic but models that employ large-scale spectral nudging show a better agreement with ERA-Interim reanalysis than the rest of the models. Trends also exhibit the benefits of nudging. Models with spectral nudging are able to reproduce the cyclone trends, whereas most of the nonnudged models fail to do so. However, the cyclone characteristics and trends are sensitive to the choice of nudged variables.

  13. Simulations of Cyclone Sidr in the Bay of Bengal with a High-Resolution Model: Sensitivity to Large-Scale Boundary Forcing

    Science.gov (United States)

    Kumar, Anil; Done, James; Dudhia, Jimy; Niyogi, Dev

    2011-01-01

    The predictability of Cyclone Sidr in the Bay of Bengal was explored in terms of track and intensity using the Advanced Research Hurricane Weather Research Forecast (AHW) model. This constitutes the first application of the AHW over an area that lies outside the region of the North Atlantic for which this model was developed and tested. Several experiments were conducted to understand the possible contributing factors that affected Sidr s intensity and track simulation by varying the initial start time and domain size. Results show that Sidr s track was strongly controlled by the synoptic flow at the 500-hPa level, seen especially due to the strong mid-latitude westerly over north-central India. A 96-h forecast produced westerly winds over north-central India at the 500-hPa level that were notably weaker; this likely caused the modeled cyclone track to drift from the observed actual track. Reducing the model domain size reduced model error in the synoptic-scale winds at 500 hPa and produced an improved cyclone track. Specifically, the cyclone track appeared to be sensitive to the upstream synoptic flow, and was, therefore, sensitive to the location of the western boundary of the domain. However, cyclone intensity remained largely unaffected by this synoptic wind error at the 500-hPa level. Comparison of the high resolution, moving nested domain with a single coarser resolution domain showed little difference in tracks, but resulted in significantly different intensities. Experiments on the domain size with regard to the total precipitation simulated by the model showed that precipitation patterns and 10-m surface winds were also different. This was mainly due to the mid-latitude westerly flow across the west side of the model domain. The analysis also suggested that the total precipitation pattern and track was unchanged when the domain was extended toward the east, north, and south. Furthermore, this highlights our conclusion that Sidr was influenced from the west

  14. Long-term dynamics of tropical walking sticks in response to multiple large-scale and intense disturbances.

    Science.gov (United States)

    Willig, Michael R; Presley, Steven J; Bloch, Christopher P

    2011-02-01

    Understanding the effects of disturbance and secondary succession on spatio-temporal patterns in the abundance of species is stymied by a lack of long-term demographic data, especially in response to infrequent and high intensity disturbances, such as hurricanes. Moreover, resistance and resilience to hurricane-induced disturbance may be mediated by legacies of previous land use, although such interactive effects are poorly understood, especially in tropical environments. We address these central issues in disturbance ecology by analyzing an extensive dataset, spanning the impacts of Hurricanes Hugo and Georges, on the abundance of a Neotropical walking stick, Lamponius portoricensis, in tabonuco rainforest of Puerto Rico during the wet and dry seasons from 1991 to 2007. By synthesizing data from two proximate sites in tabonuco forest, we show that resistance to Hurricane Hugo (97% reduction in abundance) was much less than resistance to Hurricane Georges (21% reduction in abundance). Based on a powerful statistical approach (generalized linear mixed-effects models with Poisson error terms), we documented that the temporal trajectories of abundance during secondary succession (i.e., patterns of resilience) differed between hurricanes and among historical land use categories, but that the effects of hurricanes and land use histories were independent of each other. These complex results likely arise because of differences in the intensities of the two hurricanes with respect to microclimatic effects (temperature and moisture) in the forest understory, as well as to time-lags in the response of L. portoricensis to changes in the abundance and distribution of preferred food plants (Piper) in post-hurricane environments.

  15. Up-date on cyclone combustion and cyclone boilers

    Energy Technology Data Exchange (ETDEWEB)

    Carmo, Felipe Alfaia do; Nogueira, Manoel Fernandes Martins; Rocha, Rodrigo Carnera Castro da; Gazel, Hussein Felix; Martins, Diego Henrique dos Reis [Universidade Federal do Para (UFPA), Belem, PA (Brazil). Campus Universitario Jose da Silveira Netto], E-mails: mfmn@ufpa.br, mfmn@ufpa.br

    2010-07-01

    The boiler concept has been around for more than 70 years, and there are many types available. Boilers provide steam or hot water for industrial and commercial use. The Federal University of Para (UFPA) through the research group EBMA (Energy,Biomass and Environment) has been developing cyclonic furnace with a water wall, a boiler, aiming to use regional timbers (sawdust) and agro-industries residues as fuel to produce steam to be used in industrial processes as well as in power generation,. The use of cyclonic combustion for burning waste instead of burning in a fixed bed is mainly due to two factors efficiency improvement causing a more compact boiler and less risk of explosion, since their process does not generate an accumulation of volatile. Present state-of-art for commercial cyclone boilers has as set up a cyclone combustor with two combustion chambers, in fluid communication, where there ducts for supplying air and fuel directly into the first chamber and for forming a cyclonic flow pattern and a heat exchanger surrounding the second chamber for keeping low combustion temperature in both chambers. This paper shows the results of a literature review about design, construction and operation of cyclonic boilers using solid, liquid or gaseous fuel. This information has been used for the design of a cyclone boiler to be constructed at UFPA for research purposes and its basic concept is presented at the end of this article. (author)

  16. Impact of global warming on the typhoon intensities during 2015

    Science.gov (United States)

    Kang, N. Y.; Yang, S. H.; Elsner, J.; Chun, Y.

    2017-12-01

    T