WorldWideScience

Sample records for tropical cyclone intensity

  1. Human Influence on Tropical Cyclone Intensity

    Science.gov (United States)

    Sobel, Adam H.; Camargo, Suzana J.; Hall, Timothy M.; Lee, Chia-Ying; Tippett, Michael K.; Wing, Allison A.

    2016-01-01

    Recent assessments agree that tropical cyclone intensity should increase as the climate warms. Less agreement exists on the detection of recent historical trends in tropical cyclone intensity.We interpret future and recent historical trends by using the theory of potential intensity, which predicts the maximum intensity achievable by a tropical cyclone in a given local environment. Although greenhouse gas-driven warming increases potential intensity, climate model simulations suggest that aerosol cooling has largely canceled that effect over the historical record. Large natural variability complicates analysis of trends, as do poleward shifts in the latitude of maximum intensity. In the absence of strong reductions in greenhouse gas emissions, future greenhouse gas forcing of potential intensity will increasingly dominate over aerosol forcing, leading to substantially larger increases in tropical cyclone intensities.

  2. Resolving Tropical Cyclone Intensity in Models

    Science.gov (United States)

    Davis, C. A.

    2018-02-01

    In recent years, global weather forecast models and global climate models have begun to depict intense tropical cyclones, even up to category 5 on the Saffir-Simpson scale. In light of the limitation of horizontal resolution in such models, the author performs calculations, using the extended Best Track data for Atlantic tropical cyclones, to estimate the ability of models with differing grid spacing to represent Atlantic tropical cyclone intensity statistically. Results indicate that, under optimistic assumptions, models with horizontal grid spacing of one fourth degree or coarser should not produce a realistic number of category 4 and 5 storms unless there are errors in spatial attributes of the wind field. Furthermore, the case of Irma (2017) is used to demonstrate the importance of a realistic depiction of angular momentum and to motivate the use of angular momentum in model evaluation.

  3. Is the poleward migration of tropical cyclone maximum intensity associated with a poleward migration of tropical cyclone genesis?

    Science.gov (United States)

    Daloz, Anne Sophie; Camargo, Suzana J.

    2018-01-01

    A recent study showed that the global average latitude where tropical cyclones achieve their lifetime-maximum intensity has been migrating poleward at a rate of about one-half degree of latitude per decade over the last 30 years in each hemisphere. However, it does not answer a critical question: is the poleward migration of tropical cyclone lifetime-maximum intensity associated with a poleward migration of tropical cyclone genesis? In this study we will examine this question. First we analyze changes in the environmental variables associated with tropical cyclone genesis, namely entropy deficit, potential intensity, vertical wind shear, vorticity, skin temperature and specific humidity at 500 hPa in reanalysis datasets between 1980 and 2013. Then, a selection of these variables is combined into two tropical cyclone genesis indices that empirically relate tropical cyclone genesis to large-scale variables. We find a shift toward greater (smaller) average potential number of genesis at higher (lower) latitudes over most regions of the Pacific Ocean, which is consistent with a migration of tropical cyclone genesis towards higher latitudes. We then examine the global best track archive and find coherent and significant poleward shifts in mean genesis position over the Pacific Ocean basins.

  4. Quantifying Environmental Control on Tropical Cyclone Intensity Change

    Science.gov (United States)

    2010-08-01

    is smaller and confined primarily to the Gulf of Mexico, Carribean Sea, and east of the Lesser Antilles. In the WPAC, SSTs vary significantly...environmental and climatology and persistence characteristics of tropical cyclones (TCs) undergoing different intensity changes in the western North Pacific...WPAC) and North Atlantic (ATL) ocean basins. Using the cumulative distribution functions of 24-h intensity changes from the 2003–08 best-track data, four

  5. Analysis of gravity-waves produced by intense tropical cyclones

    OpenAIRE

    Chane Ming, F.; Chen, Z.; Roux, F.

    2010-01-01

    International audience; Conventional and wavelet methods are combined to characterize gravity-waves (GWs) produced by two intense tropical cyclones (TCs) in the upper troposphere and lower stratosphere (UT/LS) from GPS winsonde data. Analyses reveal large contribution of GWs induced by TCs to wave energy densities in the UT/LS. An increase in total energy density of about 30% of the climatological energy density in austral summer was estimated in the LS above Tromelin during TC Dina. Four dis...

  6. Using Deep Learning for Tropical Cyclone Intensity Estimation

    Science.gov (United States)

    Miller, J.; Maskey, M.; Berendes, T.

    2017-12-01

    Satellite-based techniques are the primary approach to estimating tropical cyclone (TC) intensity. Tropical cyclone warning centers worldwide still apply variants of the Dvorak technique for such estimations that include visual inspection of the satellite images. The National Hurricane Center (NHC) estimates about 10-20% uncertainty in its post analyses when only satellite-based estimates are available. The success of the Dvorak technique proves that spatial patterns in infrared (IR) imagery strongly relate to TC intensity. With the ever-increasing quality and quantity of satellite observations of TCs, deep learning techniques designed to excel at pattern recognition have become more relevant in this area of study. In our current study, we aim to provide a fully objective approach to TC intensity estimation by utilizing deep learning in the form of a convolutional neural network trained to predict TC intensity (maximum sustained wind speed) using IR satellite imagery. Large amounts of training data are needed to train a convolutional neural network, so we use GOES IR images from historical tropical storms from the Atlantic and Pacific basins spanning years 2000 to 2015. Images are labeled using a special subset of the HURDAT2 dataset restricted to time periods with airborne reconnaissance data available in order to improve the quality of the HURDAT2 data. Results and the advantages of this technique are to be discussed.

  7. Tropical Cyclone Intensity and Position Analysis Using Passive Microwave Imager and Sounder Data

    Science.gov (United States)

    2015-03-26

    Tropical Cyclone Intensity Analysis Using Passive Microwave Imager and Sounder Data THESIS David C. Moreno, Captain, USAF AFIT-ENP-MS-15-M-093...Government and is not subject to copyright protection in the United States. AFIT-ENP-MS-15-M-093 TROPICAL CYCLONE INTENSITY AND POSITION ANALYSIS USING...DISTRIBUTION UNLIMITED. AFIT-ENP-MS-15-M-093 TROPICAL CYCLONE INTENSITY AND POSITION ANALYSIS USING PASSIVE MICROWAVE IMAGER AND SOUNDER DATA THESIS David C

  8. The Use of Satellite Microwave Rainfall Measurements to Predict Eastern North Pacific Tropical Cyclone Intensity

    National Research Council Canada - National Science Library

    West, Derek

    1998-01-01

    .../I) radiometers onboard the Defense Meteorological Satellite Program (DMSP) constellation of polar orbiting satellites to improve eastern North Pacific Ocean tropical cyclone intensity specifying and forecasting techniques...

  9. Rapid intensification and the bimodal distribution of tropical cyclone intensity.

    Science.gov (United States)

    Lee, Chia-Ying; Tippett, Michael K; Sobel, Adam H; Camargo, Suzana J

    2016-02-03

    The severity of a tropical cyclone (TC) is often summarized by its lifetime maximum intensity (LMI), and the climatological LMI distribution is a fundamental feature of the climate system. The distinctive bimodality of the LMI distribution means that major storms (LMI >96 kt) are not very rare compared with less intense storms. Rapid intensification (RI) is the dramatic strengthening of a TC in a short time, and is notoriously difficult to forecast or simulate. Here we show that the bimodality of the LMI distribution reflects two types of storms: those that undergo RI during their lifetime (RI storms) and those that do not (non-RI storms). The vast majority (79%) of major storms are RI storms. Few non-RI storms (6%) become major storms. While the importance of RI has been recognized in weather forecasting, our results demonstrate that RI also plays a crucial role in the TC climatology.

  10. Tropical cyclone fullness: A new concept for interpreting storm intensity

    Science.gov (United States)

    Guo, Xi; Tan, Zhe-Min

    2017-05-01

    Intensity and size are two crucial factors in determining the destructiveness of a tropical cyclone (TC), but little is known about the relationship between them because of a lack of observations. TC fullness, a new concept, is proposed to quantitatively measure the storm wind structure, which is defined as the ratio of the extent of the outer-core wind skirt to the outer-core size of the TC. TC intensity is more strongly correlated with fullness than with other measures comprising just a single size parameter. A scale is introduced to classify TCs into four categories based on TC fullness (FS1 to FS4). Regardless of the specific inner-core and outer-core size, the FS4 fullness structure is necessary for an intense TC's development, while category FS1 and FS2 TCs are generally weak. Most major TCs achieve FS4 fullness structure earlier and more frequently than nonmajor TCs. Rapidly increasing fullness favors the intensification of TC.Plain Language SummaryTropical cyclone (TC) disasters caused tremendous property loss and casualties all over the world every year, while the knowledge on what essentially determines TC intensity is far beyond enough. Should a large TC ought to be intense and disastrous? And is a small TC doomed to be weak? It confused us when some dapper small TCs struck us with their fierce wind and torrential rain, while other large TCs that finally turned out to be a false alarm tricked us with their puffiness body. The underlying factor that truly controls TC intensity has been grasped here. We unveil the mysteries between TC intensity and size by raising a new concept: TC fullness. Either small or large TC can be intense; it depends on the fullness. TCs should possess FS4 fullness structure (high fullness) as long as they are intense; on the other hand, TCs with low fullness are weak in majority. In addition, rapidly increasing fullness is beneficial for the intensification of TC. The concept of TC fullness may provide a new path in the

  11. Directional Wave Spectra Observed During Intense Tropical Cyclones

    Science.gov (United States)

    Collins, C. O.; Potter, H.; Lund, B.; Tamura, H.; Graber, H. C.

    2018-02-01

    Two deep-sea moorings were deployed 780 km off the coast of southern Taiwan for 4-5 months during the 2010 typhoon season. Directional wave spectra, wind speed and direction, and momentum fluxes were recorded on two Extreme Air-Sea Interaction buoys during the close passage of Severe Tropical Storm Dianmu and three tropical cyclones (TCs): Typhoon Fanapi, Super Typhoon Megi, and Typhoon Chaba. Conditions sampled include significant wave heights up to 11 m and wind speeds up to 26 m s-1. Details varied for large-scale spectral structure in frequency and direction but were mostly bimodal. The modes were generally composed of a swell system emanating from the most intense storm region and local wind-seas. The peak systems were consistently young, meaning actively forced by winds, when the storms were close. During the peaks of the most intense passages—Chaba at the northern mooring and Megi at the southern—the bimodal seas coalesced. During Chaba, the swell and wind-sea coupling directed the high frequency waves and the wind stress away from the wind direction. A spectral wave model was able reproduce many of the macrofeatures of the directional spectra.

  12. Effect of remote sea surface temperature change on tropical cyclone potential intensity.

    Science.gov (United States)

    Vecchi, Gabriel A; Soden, Brian J

    2007-12-13

    The response of tropical cyclone activity to global warming is widely debated. It is often assumed that warmer sea surface temperatures provide a more favourable environment for the development and intensification of tropical cyclones, but cyclone genesis and intensity are also affected by the vertical thermodynamic properties of the atmosphere. Here we use climate models and observational reconstructions to explore the relationship between changes in sea surface temperature and tropical cyclone 'potential intensity'--a measure that provides an upper bound on cyclone intensity and can also reflect the likelihood of cyclone development. We find that changes in local sea surface temperature are inadequate for characterizing even the sign of changes in potential intensity, but that long-term changes in potential intensity are closely related to the regional structure of warming; regions that warm more than the tropical average are characterized by increased potential intensity, and vice versa. We use this relationship to reconstruct changes in potential intensity over the twentieth century from observational reconstructions of sea surface temperature. We find that, even though tropical Atlantic sea surface temperatures are currently at a historical high, Atlantic potential intensity probably peaked in the 1930s and 1950s, and recent values are near the historical average. Our results indicate that--per unit local sea surface temperature change--the response of tropical cyclone activity to natural climate variations, which tend to involve localized changes in sea surface temperature, may be larger than the response to the more uniform patterns of greenhouse-gas-induced warming.

  13. Analysis of gravity-waves produced by intense tropical cyclones

    Directory of Open Access Journals (Sweden)

    F. Chane Ming

    2010-02-01

    Full Text Available Conventional and wavelet methods are combined to characterize gravity-waves (GWs produced by two intense tropical cyclones (TCs in the upper troposphere and lower stratosphere (UT/LS from GPS winsonde data. Analyses reveal large contribution of GWs induced by TCs to wave energy densities in the UT/LS. An increase in total energy density of about 30% of the climatological energy density in austral summer was estimated in the LS above Tromelin during TC Dina. Four distinct periods in GW activity in relation with TC Faxai stages is observed in the UT. Globally, GWs have periods of 6 h–2.5 days, vertical wavelenghts of 1–3 km and horizontal wavelengths <1000 km in the UT during the evolution of TCs. Horizontal wavelengths are longer in the LS and about 2200 km during TCs. Convective activity over the basin and GW energy density were modulated by mixed equatorial waves of 3–4 days, 6–8 days and 10–13 days confirmed by Hövmöller diagram, Fourier and wavelet analyses of OLR data. Moreover, location of GW sources is below the tropopause height when TCs are intense otherwise varies at lower tropospheric heights depending on the strength of convection. Finally, the maximum surface wind speeds of TCs Dina and Faxai can be linearly estimated with total energy densities.

  14. Analysis of gravity-waves produced by intense tropical cyclones

    Energy Technology Data Exchange (ETDEWEB)

    Chane Ming, F. [La Reunion Univ. (France). Lab. de l' Atmosphere et des Cyclones; Chen, Z. [Chinese Academy of Sciences, Beijing (China). Inst. of Atmospheric; Roux, F. [UMR CNRS Paul Sabatier Univ., Toulouse (France). Lab. d' Aerologie

    2010-07-01

    Conventional and wavelet methods are combined to characterize gravity-waves (GWs) produced by two intense tropical cyclones (TCs) in the upper troposphere and lower stratosphere (UT/LS) from GPS winsonde data. Analyses reveal large contribution of GWs induced by TCs to wave energy densities in the UT/LS. An increase in total energy density of about 30% of the climatological energy density in austral summer was estimated in the LS above Tromelin during TC Dina. Four distinct periods in GW activity in relation with TC Faxai stages is observed in the UT. Globally, GWs have periods of 6 h-2.5 days, vertical wavelengths of 1-3 km and horizontal wavelengths <1000 km in the UT during the evolution of TCs. Horizontal wavelengths are longer in the LS and about 2200 km during TCs. Convective activity over the basin and GW energy density were modulated by mixed equatorial waves of 3-4 days, 6-8 days and 10-13 days confirmed by Hoevmoeller diagram, Fourier and wavelet analyses of OLR data. Moreover, location of GW sources is below the tropopause height when TCs are intense otherwise varies at lower tropospheric heights depending on the strength of convection. Finally, the maximum surface wind speeds of TCs Dina and Faxai can be linearly estimated with total energy densities. (orig.)

  15. The relationships between precipitation, convective cloud and tropical cyclone intensity change

    Science.gov (United States)

    Ruan, Z.; Wu, Q.

    2017-12-01

    Using 16 years precipitation, brightness temperature (IR BT) data and tropical cyclone (TC) information, this study explores the relationship between precipitation, convective cloud and tropical cyclone (TC) intensity change in the Western North Pacific Ocean. It is found that TC intensity has positive relation with TC precipitation. TC precipitation increases with increased TC intensity. Based on the different phase of diurnal cycle, convective TC clouds were divided into very cold deep convective clouds (IR BTs<208K) and cold high clouds (208K

  16. Changes in Tropical Cyclone Intensity Over the Past 30 Years: A Global and Dynamic Perspective

    Science.gov (United States)

    Wu, Liguang; Wang, Bin; Braun, Scott A.

    2006-01-01

    The hurricane season of 2005 was the busiest on record and Hurricane Katrina (2005) is believed to be the costliest hurricane in U. S. history. There are growing concerns regarding whether this increased tropical cyclone activity is a result of global warming, as suggested by Emanuel(2005) and Webster et al. (2005), or just a natural oscillation (Goldenberg et al. 2001). This study examines the changes in tropical cyclone intensity to see what were really responsible for the changes in tropical cyclone activity over the past 30 years. Since the tropical sea surface temperature (SST) warming also leads to the response of atmospheric circulation, which is not solely determined by the local SST warming, this study suggests that it is better to take the tropical cyclone activities in the North Atlantic (NA), western North Pacific (WNP) and eastern North Pacific (ENP) basins as a whole when searching for the influence of the global-scale SST warming on tropical cyclone intensity. Over the past 30 years, as the tropical SST increased by about 0.5 C, the linear trends indicate 6%, 16% and 15% increases in the overall average intensity and lifetime and the annual frequency. Our analysis shows that the increased annual destructiveness of tropical cyclones reported by Emanuel(2005) resulted mainly from the increases in the average lifetime and annual frequency in the NA basin and from the increases in the average intensity and lifetime in the WNP basin, while the annual destructiveness in the ENP basin generally decreased over the past 30 years. The changes in the proportion of intense tropical cyclones reported by Webster et a1 (2005) were due mainly to the fact that increasing tropical cyclones took the tracks that favor for the development of intense tropical cyclones in the NA and WNP basins over the past 30 years. The dynamic influence associated with the tropical SST warming can lead to the impact of global warming on tropical cyclone intensity that may be very

  17. Spatial Distributions of Tropical Cyclone Tornadoes by Intensity and Size Characteristics

    Directory of Open Access Journals (Sweden)

    Todd W. Moore

    2017-08-01

    Full Text Available Tropical cyclones that make landfall often spawn tornadoes. Previous studies have shown that these tornadoes are not uniformly distributed in the United States or in the tropical cyclone environment. They show that tornadoes tend to occur relatively close to the coastline and that they tend to cluster to the east-of-center in the tropical cyclone environment, particularly in the northeast and east-of-center quadrants. This study contributes to these studies by analyzing the spatial distributions of tropical cyclone tornadoes by intensity, path length, path width, and the damage potential index. The analyses confirm that most tornadoes occur relatively close to the coastline, but show that stronger tornadoes with larger paths are disproportionately common farther inland. They also confirm that the highest amount of activity is located within the northeast and east-of-center quadrants and show that the most potentially damaging tornadoes cluster in a sub region near the intersection of these two quadrants.

  18. The poleward migration of the location of tropical cyclone maximum intensity.

    Science.gov (United States)

    Kossin, James P; Emanuel, Kerry A; Vecchi, Gabriel A

    2014-05-15

    Temporally inconsistent and potentially unreliable global historical data hinder the detection of trends in tropical cyclone activity. This limits our confidence in evaluating proposed linkages between observed trends in tropical cyclones and in the environment. Here we mitigate this difficulty by focusing on a metric that is comparatively insensitive to past data uncertainty, and identify a pronounced poleward migration in the average latitude at which tropical cyclones have achieved their lifetime-maximum intensity over the past 30 years. The poleward trends are evident in the global historical data in both the Northern and the Southern hemispheres, with rates of 53 and 62 kilometres per decade, respectively, and are statistically significant. When considered together, the trends in each hemisphere depict a global-average migration of tropical cyclone activity away from the tropics at a rate of about one degree of latitude per decade, which lies within the range of estimates of the observed expansion of the tropics over the same period. The global migration remains evident and statistically significant under a formal data homogenization procedure, and is unlikely to be a data artefact. The migration away from the tropics is apparently linked to marked changes in the mean meridional structure of environmental vertical wind shear and potential intensity, and can plausibly be linked to tropical expansion, which is thought to have anthropogenic contributions.

  19. Daily tropical cyclone intensity response to solar ultraviolet radiation

    Science.gov (United States)

    Elsner, J. B.; Jagger, T. H.; Hodges, R. E.

    2010-05-01

    An inverse relationship between hurricane activity over the Caribbean and the number of sunspots has recently been identified. Here we investigate this relationship using daily observations and find support for the hypothesis that changes in ultraviolet (UV) radiation rather than changes in other concomitant solar and cosmic variations are the cause. The relationship is statistically significant after accounting for annual variation in ocean heat and the El Niño cycle. A warming response in the upper troposphere to increased solar UV forcing as measured by the Mg II index (core-to-wing ratio) decreases the atmosphere's convective available potential energy leading to a weaker cyclone. The response amplitude at a cyclone intensity of 44 m s-1 is 6.7 ± 2.56 m s-1 per 0.01 Mg II units (s.d.), which compares with 4.6 m s-1 estimated from the heat-engine theory using a temperature trend derived from observations. The increasing hurricane response sensitivity with increasing strength is found in the observations and in an application of the theory.

  20. Latitudinal Change of Tropical Cyclone Maximum Intensity in the Western North Pacific

    OpenAIRE

    Choi, Jae-Won; Cha, Yumi; Kim, Hae-Dong; Kang, Sung-Dae

    2016-01-01

    This study obtained the latitude where tropical cyclones (TCs) show maximum intensity and applied statistical change-point analysis on the time series data of the average annual values. The analysis results found that the latitude of the TC maximum intensity increased from 1999. To investigate the reason behind this phenomenon, the difference of the average latitude between 1999 and 2013 and the average between 1977 and 1998 was analyzed. In a difference of 500 hPa streamline between the two ...

  1. Precipitation, Convective Clouds, and Their Connections With Tropical Cyclone Intensity and Intensity Change

    Science.gov (United States)

    Ruan, Zhenxin; Wu, Qiaoyan

    2018-01-01

    In this paper, satellite-based precipitation, clouds with infrared (IR) brightness temperature (BT), and tropical cyclone (TC) data from 2000 to 2015 are used to explore the relationship between precipitation, convective cloud, and TC intensity change in the Western North Pacific Ocean. An IR BT of 208 K was chosen as a threshold for deep convection based on different diurnal cycles of IR BT. More precipitation and colder clouds with 208 K < IR BT < 240 K are found as storms intensify, while TC 24 h future intensity change is closely connected with very deep convective clouds with IR BT < 208 K. Intensifying TCs follow the occurrence of colder clouds with IR BT < 208 K with greater areal extents. As an indicator of very deep convective clouds, IR BT < 208 K is suggested to be a good predictor of TC intensity change. Based upon the 16 year analysis in the western North Pacific, TCs under the conditions that the mean temperature of very deep convective clouds is less than 201 K, and the coverage of this type of clouds is more than 27.4% within a radius of 300 km of the TC center, will more likely undergo rapid intensification after 24 h.

  2. Spatial Distributions of Tropical Cyclone Tornadoes by Intensity and Size Characteristics

    OpenAIRE

    Todd W. Moore; Nicholas J. Sokol; Robert A. Blume

    2017-01-01

    Tropical cyclones that make landfall often spawn tornadoes. Previous studies have shown that these tornadoes are not uniformly distributed in the United States or in the tropical cyclone environment. They show that tornadoes tend to occur relatively close to the coastline and that they tend to cluster to the east-of-center in the tropical cyclone environment, particularly in the northeast and east-of-center quadrants. This study contributes to these studies by analyzing the spatial distributi...

  3. Tropical Cyclone Propagation

    National Research Council Canada - National Science Library

    Gray, William

    1994-01-01

    This paper discusses the question of tropical cyclone propagation or why the average tropical cyclone moves 1-2 m/s faster and usually 10-20 deg to the left of its surrounding (or 5-7 deg radius) deep layer (850-300 mb) steering current...

  4. Diabatic and frictional forcing effects on the structure and intensity of tropical cyclones

    Science.gov (United States)

    Slocum, Christopher J.

    Tropical cyclone intensity forecasting skill has slowed in improvement for both dynamical and statistical-dynamical forecasting methods in comparison to gains seen in track forecasting skill. Also, forecast skill related to rapid intensification, e.g. a 30 kt or greater increase in intensity within a 24-hour period, still remains poor. In order to make advances and gain a greater understanding, the processes that affect intensity change, especially rapid intensification, need further study. This work evaluates the roles of diabatic and frictional forcing on the structure and intensity of tropical cyclones. To assess the diabatic forcing effects on intensity change in tropical cyclones, this study develops applications of Eliassen's balanced vortex model to obtain one-dimensional solutions to the geopotential tendency and two-dimensional solutions to the transverse circulation. The one-dimensional balanced solutions are found with dynamical model outputs as well as aircraft reconnaissance combined with diabatic heating derived from microwave rainfall rate retrievals. This work uses solutions from both datasets to make short-range intensity predictions. The results show that for the one-dimensional solutions, the tangential tendency does not match the dynamical model or aircraft wind tendencies. To relax the assumptions of the one-dimensional solutions to the geopotential tendency, solutions for idealized vortices are examined by finding two-dimensional solutions to the transverse circulation. The two-dimensional solutions allow for evaluation of the axisymmetric structure of the vortex on the (r, z)-plane without setting the baroclinicity to zero and the static stability to a constant value. While the sensitivity of tangential wind tendency to diabatic forcing and the region of high inertial stability is more realistic in the two-dimensional results, the solutions still neglect the influence of friction from the boundary layer. To understand further the role of

  5. Simulating seasonal tropical cyclone intensities at landfall along the South China coast

    Science.gov (United States)

    Lok, Charlie C. F.; Chan, Johnny C. L.

    2018-04-01

    A numerical method is developed using a regional climate model (RegCM3) and the Weather Forecast and Research (WRF) model to predict seasonal tropical cyclone (TC) intensities at landfall for the South China region. In designing the model system, three sensitivity tests have been performed to identify the optimal choice of the RegCM3 model domain, WRF horizontal resolution and WRF physics packages. Driven from the National Centers for Environmental Prediction Climate Forecast System Reanalysis dataset, the model system can produce a reasonable distribution of TC intensities at landfall on a seasonal scale. Analyses of the model output suggest that the strength and extent of the subtropical ridge in the East China Sea are crucial to simulating TC landfalls in the Guangdong and Hainan provinces. This study demonstrates the potential for predicting TC intensities at landfall on a seasonal basis as well as projecting future climate changes using numerical models.

  6. Growing threat of intense tropical cyclones to East Asia over the period 1977–2010

    International Nuclear Information System (INIS)

    Park, Doo-Sun R; Ho, Chang-Hoi; Kim, Joo-Hong

    2014-01-01

    The threat of intense tropical cyclones (TCs) to East Asia has increased in recent decades. Integrated analyses of five available TC data sets for the period 1977–2010 revealed that the growing threat of TCs primarily results from the significant shift that the spatial positions of the maximum intensity of TCs moved closer to East Asian coastlines from Vietnam to Japan. This shift incurs a robust increase in landfall intensity over east China, Korea and Japan. In contrast, an increase of TC genesis frequency over the northern part of the South China Sea leads to a reduction in the maximum TC intensity before landfall, because of their short lifetime; thus, there are no clear tendencies in the landfall intensity across Vietnam, south China and Taiwan. All changes are related to the strengthening of the Pacific Walker circulation, closely linked with the recent manifestation that the warming trend of sea surface temperature in the tropical western Pacific is much higher than that in the central to eastern Pacific. (paper)

  7. A simple model for post-landfall intensity changes of tropical cyclone ...

    Indian Academy of Sciences (India)

    model selection criteria. We used Genetic Algorithms (GA) to derive empir- ical functions that explain the post-landfall cyclone intensity in terms of initial intensity, post-landfall time span and cyclone structural parameters. GA is a search heuristic that mimics the process of natural evolution such as inheritance, mutation,.

  8. 1997 Annual Tropical Cyclone Report

    National Research Council Canada - National Science Library

    Dillon, C

    1997-01-01

    .... Separate bulletins are issued for the Western Pacific and the Indian Ocean. TROPICAL CYCLONE FORMATION ALERT - Defines a specific area when synoptic, satellite, or other germane data indicate development of a significant tropical cyclone (TC...

  9. Dynamic Potential Intensity: An improved representation of the ocean’s impact on tropical cyclones

    Energy Technology Data Exchange (ETDEWEB)

    Balaguru, Karthik; Foltz, Gregory R.; Leung, Lai-Yung; D' Asaro, Eric; Emanuel, Kerry A.; Liu, Hailong; Zedler, Sarah E.

    2015-08-18

    To incorporate the effects of tropical cyclone (TC)-induced upper ocean mixing and sea surface temperature (SST) cooling on TC intensification, a vertical average of temperature down to a fixed depth was proposed as a replacement for SST within the framework of air-sea coupled Potential Intensity (PI). However, the depth to which TC-induced mixing penetrates may vary substantially with ocean stratification and storm state. To account for these effects, here we develop a “Dynamic Potential Intensity” (DPI) based on considerations of stratified fluid turbulence. For the Argo period 2004–2013 and the three major TC basins of the Northern Hemisphere, we show that the DPI explains 11–32% of the variance in TC intensification, compared to 0–16% using previous methods. The improvement obtained using the DPI is particularly large in the eastern Pacific where the thermocline is shallow and ocean stratification effects are strong.

  10. More intensive summer tropical cyclone near 30°N of East Asia

    Science.gov (United States)

    Choi, Jae-Won; Cha, Yumi; Kim, Hae-Dong; Lu, Riyu

    2017-06-01

    The present study revealed that a climate regime shift occurred during the 1988-1991 period involving changes in tropical cyclone (TC) intensity (central pressure, maximum sustained wind speed) during the summer near 30°N in East Asia. Climatologically, TC intensity at 110°-125°E near 30°N (over Mainland China) is the weakest at that latitude while the strongest is found at 125°-130°E (over Korea). The TC intensity during the 1991-2015 (91-15) period had strengthened significantly compared to that of the 1965-1988 (65-88) period. The strengthening was due to a significantly lower frequency of TCs that passed through Mainland China during the 91-15 period. This lower frequency of was due to anomalous northeasterlies blown from the anomalous anticyclonic circulation located over continental East Asia and that had strengthened along the coast. Instead, TCs mainly followed a path from eastern regions in the subtropical western North Pacific to Korea and Japan via the East China Sea due to anomalous cyclonic circulations that had strengthened in the western North Pacific. In addition, low vertical wind shear had formed along the mid-latitude region in East Asia and along the main TC track in the 91-15 period, and most regions in the western North Pacific experienced a higher sea surface temperature state during the 91-15 period than in the previous period, indicating that a favorable environment had formed to maintain strong intensities of TCs at the mid-latitudes. The characteristics of TCs at the lower latitudes caused a strong TC intensity at the time of landfall in Korea and a gradual shifting trend of landing location from the western to southern coast in recent years.

  11. Global trends in tropical cyclone risk

    Science.gov (United States)

    Peduzzi, P.; Chatenoux, B.; Dao, H.; de Bono, A.; Herold, C.; Kossin, J.; Mouton, F.; Nordbeck, O.

    2012-04-01

    The impact of tropical cyclones on humans depends on the number of people exposed and their vulnerability, as well as the frequency and intensity of storms. How will the cumulative effects of climate change, demography and vulnerability affect risk? Conventionally, reports assessing tropical cyclone risk trends are based on reported losses, but these figures are biased by improvements to information access. Here we present a new methodology based on thousands of physically observed events and related contextual parameters. We show that mortality risk depends on tropical cyclone intensity, exposure, levels of poverty and governance. Despite the projected reduction in the frequency of tropical cyclones, projected increases in both demographic pressure and tropical cyclone intensity over the next 20 years can be expected to greatly increase the number of people exposed per year and exacerbate disaster risk, despite potential progression in development and governance.

  12. Evaluation of the productivity decrease risk due to a future increase in tropical cyclone intensity in Japan.

    Science.gov (United States)

    Esteban, Miguel; Longarte-Galnares, Gorka

    2010-12-01

    A number of scientists have recently conducted research that shows that tropical cyclone intensity is likely to increase in the future. This would result in an increase in the damage along with a decrease in economic productivity due to precautionary cessation of the economic activity of the affected areas during the passage of the cyclone. The economic effect of this stop in economic activity is a phenomenon that has not received much attention in the past, and the cumulative effect that it can have on the Japanese economy over the next 75 years has never been evaluated. The starting point for the evaluation of the economic risks is the change in the patterns of tropical cyclone intensity suggested by Knutson and Tuleya. The results obtained show how a significant decrease in the overall productivity of the country could be expected, which could lower GDP by between 6% and 13% by 2085. © 2010 Society for Risk Analysis.

  13. A mechanism for long-term changes of Atlantic tropical cyclone intensity

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Liguang; Tao, Li [Nanjing University of Information Science and Technology, Key Laboratory of Meteorological Disaster of Ministry of Education, Nanjing, Jiangsu (China)

    2011-05-15

    Although previous studies reported upward trends in the basin-wide average lifetime, annual frequency, proportion of intense hurricanes and annual accumulated power dissipation index of Atlantic tropical cyclones (TCs) over the past 30 years, the basin-wide intensity did not increase significantly with the rising sea surface temperature (SST). Observational analysis and numerical simulation conducted in this study suggest that Sahel rainfall is the key to understanding of the long-term change of Atlantic TC intensity. The long-term changes of the basin-wide TC intensity are generally associated with variations in Sahara air layer (SAL) activity and vertical wind shear in the main development region (MDR), both of which are highly correlated with Sahel rainfall. The drying Sahel corresponds to an equatorward shift in the African easterly jet and African easterly wave activity, introducing the SAL to lower latitudes and increasing the MDR vertical wind shear. As a result, Atlantic TCs are more vulnerable to the suppressing effects of the SAL and vertical wind shear. Since the SST warming, especially in the tropical Indian Ocean, is a dominant factor for the Sahel drying that occurred over the past 30 years, it is suggested that the remote effect of SST warming is important for the long-term change of Atlantic TC intensity. Although influence of the AMO warm phase that started in the early 1990s alone can provide a favorable condition for TC intensification, its influence may have been offset by the influence of the ongoing SST warming, particularly in the Indian Ocean. As a result, there was no significant trend observed in the basin-wide average and peak intensity of Atlantic TCs. (orig.)

  14. A simple model for post-landfall intensity changes of tropical cyclone ...

    Indian Academy of Sciences (India)

    A non-linear data fitting approach, the Genetic Algorithm, has been used to develop the above empirical equation using data for 74 tropical cyclones that made landfall on the coasts of India, Bangladesh and Myanmar during the period 1978–2011. For an out of sample validation test, the mean absolute error of the ...

  15. Latitudinal Change of Tropical Cyclone Maximum Intensity in the Western North Pacific

    Directory of Open Access Journals (Sweden)

    Jae-Won Choi

    2016-01-01

    Full Text Available This study obtained the latitude where tropical cyclones (TCs show maximum intensity and applied statistical change-point analysis on the time series data of the average annual values. The analysis results found that the latitude of the TC maximum intensity increased from 1999. To investigate the reason behind this phenomenon, the difference of the average latitude between 1999 and 2013 and the average between 1977 and 1998 was analyzed. In a difference of 500 hPa streamline between the two periods, anomalous anticyclonic circulations were strong in 30°–50°N, while anomalous monsoon trough was located in the north of South China Sea. This anomalous monsoon trough was extended eastward to 145°E. Middle-latitude region in East Asia is affected by the anomalous southeasterlies due to these anomalous anticyclonic circulations and anomalous monsoon trough. These anomalous southeasterlies play a role of anomalous steering flows that make the TCs heading toward region in East Asia middle latitude. As a result, TCs during 1999–2013 had higher latitude of the maximum intensity compared to the TCs during 1977–1998.

  16. Tropical Cyclone Gonu

    Science.gov (United States)

    2007-01-01

    You might expect to see a storm with near-perfect symmetry and a well-defined eye hovering over the warm waters of the Caribbean or in the South Pacific, but Tropical Cyclone Gonu showed up in an unusual place. On June 4, 2007, when the Moderate Resolution Imaging Spectroradiometer (MODIS) on NASA's Aqua satellite captured this image, Tropical Cyclone Gonu was approaching the northeastern shore of Oman, a region better known for hot desert conditions. Though rare, cyclones like Gonu are not unheard of in the northern Indian Ocean basin. Most cyclones that form in the region form over the Bay of Bengal, east of India. Those that take shape over the Arabian Sea, west of the Indian peninsula, tend to be small and fizzle out before coming ashore. Cyclone Gonu is a rare exception. As of June 4, 2007, the powerful storm had reached a dangerous Category Four status, and it was forecast to graze Oman's northeastern shore, following the Gulf of Oman. According to storm statistics maintained on Unisys Weather, the last storm of this size to form over the Arabian Sea was Cyclone 01A, which tracked northwest along the coast of India between May 21 and May 28, 2001. Unlike Gonu's forecasted track, Cyclone 01A never came ashore. MODIS acquired this photo-like image at 12:00 p.m. local time (9:00 UTC), a few hours after the Joint Typhoon Warning Center estimated Gonu's sustained winds to be over 240 kilometers per hour (145 miles per hour). The satellite image confirms that Gonu was a super-powerful cyclone. The storm has the hallmark tightly wound arms that spiral around a well-defined, circular eye. The eye is surrounded by a clear wall of towering clouds that cast shadows on the surrounding clouds. Called hot towers, these clouds are a sign of the powerful uplift that feeds the storm. The symmetrical spirals, clear eye, and towering clouds are all features regularly seen in satellite images of other particularly powerful cyclones, which are also known as typhoons or hurricanes

  17. Enhanced intensity of global tropical cyclones during the mid-Pliocene warm period.

    Science.gov (United States)

    Yan, Qing; Wei, Ting; Korty, Robert L; Kossin, James P; Zhang, Zhongshi; Wang, Huijun

    2016-11-15

    Given the threats that tropical cyclones (TC) pose to people and infrastructure, there is significant interest in how the climatology of these storms may change with climate. The global historical record has been extensively examined, but it is short and plagued with recurring questions about its homogeneity, limiting its effectiveness at assessing how TCs vary with climate. Past warm intervals provide an opportunity to quantify TC behavior in a warmer-than-present world. Here, we use a TC-resolving (∼25 km) global atmospheric model to investigate TC activity during the mid-Pliocene warm period (3.264-3.025 Ma) that shares similarities with projections of future climate. Two experiments, one driven by the reconstructed sea surface temperatures (SSTs) and the other by the SSTs from an ensemble of mid-Pliocene simulations, consistently predict enhanced global-average peak TC intensity during the mid-Pliocene coupled with longer duration, increased power dissipation, and a poleward migration of the location of peak intensity. The simulations are similar to global TC changes observed during recent global warming, as well as those of many future projections, providing a window into the potential TC activity that may be expected in a warmer world. Changes to power dissipation and TC frequency, especially in the Pacific, are sensitive to the different SST patterns, which could affect the viability of the role of TCs as a factor for maintaining a reduced zonal SST gradient during the Pliocene, as recently hypothesized.

  18. Black Swan Tropical Cyclones

    Science.gov (United States)

    Emanuel, K.; Lin, N.

    2012-12-01

    Virtually all assessments of tropical cyclone risk are based on historical records, which are limited to a few hundred years at most. Yet stronger TCs may occur in the future and at places that have not been affected historically. Such events lie outside the realm of historically based expectations and may have extreme impacts. Their occurrences are also often made explainable after the fact (e.g., Hurricane Katrina). We nickname such potential future TCs, characterized by rarity, extreme impact, and retrospective predictability, "black swans" (Nassim Nicholas Taleb, 2007). As, by definition, black swan TCs have yet to happen, statistical methods that solely rely on historical track data cannot predict their occurrence. Global climate models lack the capability to predict intense storms, even with a resolution as high as 14 km (Emanuel et al. 2010). Also, most dynamic downscaling methods (e.g., Bender et al. 2010) are still limited in horizontal resolution and are too expensive to implement to generate enough events to include rare ones. In this study, we apply a simpler statistical/deterministic hurricane model (Emanuel et al. 2006) to simulate large numbers of synthetic storms under a given (observed or projected) climate condition. The method has been shown to generate realistic extremes in various basins (Emanuel et al. 2008 and 2010). We also apply a hydrodynamic model (ADCIRC; Luettich et al. 1992) to simulate the storm surges generated by these storms. We then search for black swan TCs, in terms of the joint wind and surge damage potential, in the generated large databases. Heavy rainfall is another important TC hazard and will be considered in a future study. We focus on three areas: Tampa Bay in the U.S., the Persian Gulf, and Darwin in Australia. Tampa Bay is highly vulnerable to storm surge as it is surrounded by shallow water and low-lying lands, much of which may be inundated by a storm tide of 6 m. High surges are generated by storms with a broad

  19. A simple model for post-landfall intensity changes of tropical cyclone ...

    Indian Academy of Sciences (India)

    intercepted by cyclones during the landfall is a better predictor of post-landfall intensity compared to post-landfall time span. This approach ... Post-landfall intensity; genetic algorithm; probability; TC decay rate. J. Earth Syst. Sci. 122, No. ... High resolution maps of land–ocean surface types can be helpful to make the first ...

  20. Improvement of High-Resolution Tropical Cyclone Structure and Intensity Forecasts using COAMPS-TC

    Science.gov (United States)

    2012-09-30

    north and east of the center. This large shield of heavy precipitation caused severe river flooding as it slowly moved north through the mid...invited) Doyle, J.D., 2011: An Overview of NRL’s COAMPS System and Physics. EMC Physics Workshop. 26-27 July 2011, NCEP/ EMC . Doyle, J.D., C...Overview of the COAMPS-TC Tropical Cyclone Boundary Layer Parameterization. HFIP Physics Workshop. 9-11 August 2011, NCEP/ EMC . 8 Hendricks, E

  1. Tropical Cyclone Intensity, Structure and Track Observed with Multi-Satellite Sensors

    Science.gov (United States)

    Yang, S.; Cossuth, J.; Richardson, K.; Surratt, M. L.; Bankert, R.

    2016-12-01

    Tropical cyclones (TCs) are among the most severe weather systems and can lead to catastrophic damage to human lives, properties, and society. A TC's intensity, structure and track are the major parameters for weather forecasts of TC activities. Satellite sensors provide the only method of global, near real-time observations of TC life cycles. Passive microwave sensors, such as Advanced Microwave Scanning Radiometer 2 (AMSR-2), Global Precipitation Measurement microwave imager (GMI), and Special Sensor Microwave Imager/Sounder (SSMIS), can present accurate analysis of TC intensity, center position, eyewall, and spiral convection zones because of the ability for microwave frequencies to penetrate clouds and observe hydrometeor structure. Multi-satellite sensors are required to provide a near real-time global coverage of TCs because each Low Earth Orbit (LEO) sensor can make observations twice per day over a given location. The Naval Research Laboratory-Monterey (NRL-MRY) TC web page is the one-stop site where people can search for all available TC microwave sensor observations and associated numerical weather prediction (NWP) TC forecasts for current TCs and historical TC datasets. This TC web page can provide information of near real-time TC observations and predictions for local/regional managements to make better decisions on mitigating potential TC damages. This presentation will describe recent advances on the rich resources of satellite-based TC observations and related NWP forecasts on the NRL-MRY TC web page, including the inter-sensor calibration on frequency shift between sensors for consistent view of TC brightness temperatures (TBs) among these sensors, recenter of TC position with the Automated Rotational Center Hurricane Eye Retrieval (ARCHER) algorithm, and a new interpolation scheme to create a unified TC TB database. An improved TC track analysis and TC diurnal properties with this new TC TB database will also be presented and discussed for better

  2. Tropical Cyclone Report, 1993

    Science.gov (United States)

    1993-01-01

    tropical cyclone positions based on the analysis port JTWC’s products remains a primary con- of surface/gradient-level synoptic data. These cern ... GENF 0(. 1CI - ’’ 0_C i 5t (13) 991 28W ’.0 01-G9 OC1/:2- 3 cc- 13 25 (G3) V072 29W ’IS HA FI E 19 9C] - 25 (o1:1 21 7 (26) 991 30W 7Y ’- :A 2’ y.--r

  3. Pattern recognition analysis of satellite data for tropical cyclone motion and intensity forecasts

    Science.gov (United States)

    Hunter, Herbert; Nunez, Edwin; Barker, Llyle; Rodgers, ED

    1986-01-01

    An objective empirical analysis technique is employed to investigate the extent to which satellite-obtained measurements (GOES IR and TOVS data) of a tropical cyclone and its environment can be used to predict cyclone motion. The paper describes the procedure used to process the satellite derived data in order to optimize their possible predictive value, the technique used in developing the regression algorithms, and the results of testing these algorithms using the Lachenbrach and Mickey (1968) procedure. The data were examined alone and in conjunction with available nonsatellite climatological and persistence variables for each storm. These predictors are similar to those used in the National Hurricane Center (NHC) CLIPPER model. The performances obtained using the Nichols Research Corporation CLIPPER model and the NHC CLIPPER model are compared, using homogeneous data sets for the comparisons. Major differences in results were found to be related to differences in the models.

  4. Tropical Cyclone Information System

    Science.gov (United States)

    Li, P. Peggy; Knosp, Brian W.; Vu, Quoc A.; Yi, Chao; Hristova-Veleva, Svetla M.

    2009-01-01

    The JPL Tropical Cyclone Infor ma tion System (TCIS) is a Web portal (http://tropicalcyclone.jpl.nasa.gov) that provides researchers with an extensive set of observed hurricane parameters together with large-scale and convection resolving model outputs. It provides a comprehensive set of high-resolution satellite (see figure), airborne, and in-situ observations in both image and data formats. Large-scale datasets depict the surrounding environmental parameters such as SST (Sea Surface Temperature) and aerosol loading. Model outputs and analysis tools are provided to evaluate model performance and compare observations from different platforms. The system pertains to the thermodynamic and microphysical structure of the storm, the air-sea interaction processes, and the larger-scale environment as depicted by ocean heat content and the aerosol loading of the environment. Currently, the TCIS is populated with satellite observations of all tropical cyclones observed globally during 2005. There is a plan to extend the database both forward in time till present as well as backward to 1998. The portal is powered by a MySQL database and an Apache/Tomcat Web server on a Linux system. The interactive graphic user interface is provided by Google Map.

  5. High Resolution Global Climate Modeling with GEOS-5: Intense Precipitation, Convection and Tropical Cyclones on Seasonal Time-Scales.

    Science.gov (United States)

    Putnam, WilliamM.

    2011-01-01

    In 2008 the World Modeling Summit for Climate Prediction concluded that "climate modeling will need-and is ready-to move to fundamentally new high-resolution approaches to capitalize on the seamlessness of the weather-climate continuum." Following from this, experimentation with very high-resolution global climate modeling has gained enhanced priority within many modeling groups and agencies. The NASA Goddard Earth Observing System model (GEOS-5) has been enhanced to provide a capability for the execution at the finest horizontal resolutions POS,SIOle with a global climate model today. Using this high-resolution, non-hydrostatic version of GEOS-5, we have developed a unique capability to explore the intersection of weather and climate within a seamless prediction system. Week-long weather experiments, to mUltiyear climate simulations at global resolutions ranging from 3.5- to 14-km have demonstrated the predictability of extreme events including severe storms along frontal systems, extra-tropical storms, and tropical cyclones. The primary benefits of high resolution global models will likely be in the tropics, with better predictions of the genesis stages of tropical cyclones and of the internal structure of their mature stages. Using satellite data we assess the accuracy of GEOS-5 in representing extreme weather phenomena, and their interaction within the global climate on seasonal time-scales. The impacts of convective parameterization and the frequency of coupling between the moist physics and dynamics are explored in terms of precipitation intensity and the representation of deep convection. We will also describe the seasonal variability of global tropical cyclone activity within a global climate model capable of representing the most intense category 5 hurricanes.

  6. Potential indirect effects of aerosol on tropical cyclone intensity: convective fluxes and cold-pool activity

    Science.gov (United States)

    Krall, G. M.; Cottom, W. R.

    2012-01-01

    aerosols resulted in large amounts of condensate being thrust into the storm anvil which weakened convective downdrafts and cold-pools, yet the system did show reductions in windspeed (although weaker) compared with the clean control run. This study suggests that ingestion of elevated amounts of CCN into a tropical cyclone (TC) can appreciably alter the intensity of the storm. This implies that intensity prediction of TCs would be improved by including indirect aerosol affects. However, the pollution aerosols have very little impact on the storm track.

  7. Relationships between convective asymmetry, imbalance and intensity in numerically simulated tropical cyclones

    Directory of Open Access Journals (Sweden)

    David A. Schecter

    2013-09-01

    Full Text Available This article examines the relationships between convective asymmetry (CA, imbalance and intensity in tropical cyclones (TCs that emerge from random winds on the periodic f-plane in a cloud-system-resolving numerical model. The model is configured with warm-rain microphysics and includes a basic parameterisation of long-wave radiation. Within the simulation set, the sea-surface temperature ranges from 26 to 32°C, and the Coriolis parameter f ranges from 10−5 to 10−4 s−1. The number of TCs that develop in a simulation increases rapidly with f and ranges from 1 to 18. Taken together, the simulations provide a diverse spectrum of vortices that can be used for a meaningful statistical study.Consistent with earlier studies, mature TCs with minimal asymmetry are found to have maximum wind speeds greater than the classic theoretical value derived by Emanuel under the assumptions of gradient-wind and hydrostatic balance. In a statistical sense, it is found that the degree of superintensity with respect to balance theory reliably decays with an increasing level of inner-core CA. It is verified that a more recent version of axisymmetric steady-state theory, revised to incorporate imbalance, provides a good approximation for the maximum (azimuthally averaged azimuthal wind speed V max when CA is relatively weak. More notably, this theory for axisymmetric vortices maintains less than 10% error as CA becomes comparable in magnitude to the symmetric component of inner-core convection. Above a large but finite threshold of CA, axisymmetric steady-state theory generally over-predicts V max. The underachievement of TCs in this parameter regime is shown to coincide with substantial violation of the theoretical assumption of slantwise convective neutrality in the main updraft of the basic state. Of further interest, a reliable curve-fit is obtained for the anticorrelation between a simple measure of CA and V max normalised to an estimate of its balanced

  8. JPL Tropical Cyclone Information System

    Data.gov (United States)

    National Aeronautics and Space Administration — The JPL Tropical Cyclone Information System (TCIS) brings together satellite and in situ data sets from various sources to help you find information for a particular...

  9. How can tropical cyclones survive?

    Science.gov (United States)

    Smedman, Ann-Sofi

    2013-04-01

    How can tropical cyclones survive? It is important for understanding the development of tropical cyclones to be able to quantify the exchange of enthalpy and momentum between air and water. Air-sea fluxes are often formulated as drag CD and enthalpy CK exchange coefficients. Emanuel, 1986, derived an expression for potential intensity that depends on local environment parameters and is proportional to the ratio of enthalpy and drag coefficients. This ratio should be larger than 0.75 for a cyclone to develop. There are no direct surface measurements of CK/ CD under hurricane conditions and extrapolation from most open-ocean measurements at 25 m/s gives values of CK/ CD0.75 is in accordance with Emanuel's prediction. The high CK values are observed during situations when there is a regime shift of the structure of turbulence in the boundary layer. From spectral analysis it was found that as the boundary layer approaches neutral stratification, smaller-scale eddies become increasingly important in the turbulent transport of humidity and sensible heat and thus enhance the exchange coefficient CK. This turbulence regime is called the UVCN regime and require high wind speed, small temperature difference between air and water, sufficiently strong wind gradients and growing sea condition ( Smedman et al., 2007, Sahlee et al., 2008). What is the difference between world oceans and enclosed seas? The answer is the waves. The wave field over the open oceans is swell dominated but in enclosed seas and coastal areas swell is restricted mainly to low wind speed conditions, and swell is short lived because of short distances to the shores. When swell is present the MABL will be dominated by large eddies of zi size creating weak gradients of wind, temperature and humidity and thus small scale eddies cannot be formed leading to reduced CK-values. However, during hurricane condition the waves are expected to be young, stratification is close to neutral and gradients are sufficiently

  10. Using Enabling Technologies to Advance Data Intensive Analysis Tools in the JPL Tropical Cyclone Information System

    Science.gov (United States)

    Knosp, B.; Gangl, M. E.; Hristova-Veleva, S. M.; Kim, R. M.; Lambrigtsen, B.; Li, P.; Niamsuwan, N.; Shen, T. P. J.; Turk, F. J.; Vu, Q. A.

    2014-12-01

    The JPL Tropical Cyclone Information System (TCIS) brings together satellite, aircraft, and model forecast data from several NASA, NOAA, and other data centers to assist researchers in comparing and analyzing data related to tropical cyclones. The TCIS has been supporting specific science field campaigns, such as the Genesis and Rapid Intensification Processes (GRIP) campaign and the Hurricane and Severe Storm Sentinel (HS3) campaign, by creating near real-time (NRT) data visualization portals. These portals are intended to assist in mission planning, enhance the understanding of current physical processes, and improve model data by comparing it to satellite and aircraft observations. The TCIS NRT portals allow the user to view plots on a Google Earth interface. To compliment these visualizations, the team has been working on developing data analysis tools to let the user actively interrogate areas of Level 2 swath and two-dimensional plots they see on their screen. As expected, these observation and model data are quite voluminous and bottlenecks in the system architecture can occur when the databases try to run geospatial searches for data files that need to be read by the tools. To improve the responsiveness of the data analysis tools, the TCIS team has been conducting studies on how to best store Level 2 swath footprints and run sub-second geospatial searches to discover data. The first objective was to improve the sampling accuracy of the footprints being stored in the TCIS database by comparing the Java-based NASA PO.DAAC Level 2 Swath Generator with a TCIS Python swath generator. The second objective was to compare the performance of four database implementations - MySQL, MySQL+Solr, MongoDB, and PostgreSQL - to see which database management system would yield the best geospatial query and storage performance. The final objective was to integrate our chosen technologies with our Joint Probability Density Function (Joint PDF), Wave Number Analysis, and

  11. 2003 Tropical Cyclones of the World

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Year 2003 Tropical Cyclones of the World poster. During calendar year 2003, fifty-one tropical cyclones with sustained surface winds of at least 64 knots were...

  12. Year 2001 Tropical Cyclones of the World

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Year 2001 Tropical Cyclones of the World poster. During calendar year 2001, fifty tropical cyclones with sustained surface winds of at least 64 knots were observed...

  13. Year 2000 Tropical Cyclones of the World

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Year 2000 Tropical Cyclones of the World poster. During calendar year 2000, forty-five tropical cyclones with sustained surface winds of at least 64 knots were...

  14. A new paradigm for intensity modification of tropical cyclones: thermodynamic impact of vertical wind shear on the inflow layer

    Science.gov (United States)

    Riemer, M.; Montgomery, M. T.; Nicholls, M. E.

    2009-05-01

    An important roadblock to improved intensity forecasts for tropical cyclones (TCs) is our incomplete understanding of the interaction of a TC with the environmental flow. In this paper we re-visit the classical idealised numerical experiment of tropical cyclones (TCs) in vertical wind shear on an f-plane. We employ a set of simplified model physics - a simple bulk aerodynamic boundary layer scheme and "warm rain" microphysics - to foster better understanding of the dynamics and thermodynamics that govern the modification of TC intensity. A suite of experiments is performed with intense TCs in moderate to strong vertical shear. In all experiments the TC is resilient to shear but significant differences in the intensity evolution occur. The ventilation of the TC core with dry environmental air at mid-levels and the dilution of the upper-level warm core are two prevailing hypotheses for the adverse effect of vertical shear on storm intensity. Here we propose an alternative and arguably more effective mechanism how cooler and drier (lower θe) air - "anti-fuel" for the TC power machine - can enter the core region of the TC. Strong and persistent downdrafts flux low θe air from the lower and middle troposphere into the boundary layer, significantly depressing the θe values in the storm's inflow layer. Air with lower θe values enters the eyewall updrafts, considerably reducing eyewall θe values in the azimuthal mean. When viewed from the perspective of an idealised Carnot-cycle heat engine a decrease of storm intensity can thus be expected. Although the Carnot cycle model is - if at all - only valid for stationary and axisymmetric TCs, a strong correlation between the downward transport of low θe into the boundary layer and the intensity evolution offers further evidence in support of our hypothesis. The downdrafts that flush the inflow layer with low θe air are associated with a quasi-stationary region of convective activity outside the TC's eyewall. We show

  15. Ocean barrier layers' effect on tropical cyclone intensification.

    Science.gov (United States)

    Balaguru, Karthik; Chang, Ping; Saravanan, R; Leung, L Ruby; Xu, Zhao; Li, Mingkui; Hsieh, Jen-Shan

    2012-09-04

    Improving a tropical cyclone's forecast and mitigating its destructive potential requires knowledge of various environmental factors that influence the cyclone's path and intensity. Herein, using a combination of observations and model simulations, we systematically demonstrate that tropical cyclone intensification is significantly affected by salinity-induced barrier layers, which are "quasi-permanent" features in the upper tropical oceans. When tropical cyclones pass over regions with barrier layers, the increased stratification and stability within the layer reduce storm-induced vertical mixing and sea surface temperature cooling. This causes an increase in enthalpy flux from the ocean to the atmosphere and, consequently, an intensification of tropical cyclones. On average, the tropical cyclone intensification rate is nearly 50% higher over regions with barrier layers, compared to regions without. Our finding, which underscores the importance of observing not only the upper-ocean thermal structure but also the salinity structure in deep tropical barrier layer regions, may be a key to more skillful predictions of tropical cyclone intensities through improved ocean state estimates and simulations of barrier layer processes. As the hydrological cycle responds to global warming, any associated changes in the barrier layer distribution must be considered in projecting future tropical cyclone activity.

  16. APR-2 Tropical Cyclone Observations

    Science.gov (United States)

    Durden, S. L.; Tanelli, S.

    2011-01-01

    The Second Generation Airborne Precipitation Radar (APR-2) participated in the Genesis and Rapid Intensification Processes (GRIP) experiment in August and September of 2010, collecting a large volume of data in several tropical systems, including Hurricanes Earl and Karl. Additional measurements of tropical cyclone have been made by APR-2 in experiments prior to GRIP (namely, CAMEX-4, NAMMA, TC4); Table 1 lists all the APR-2 tropical cyclone observations. The APR-2 observations consist of the vertical structure of rain reflectivity at 13.4 and 35.6 GHz, and at both co-polarization and crosspolarization, as well as vertical Doppler measurements and crosswind measurements. APR-2 normally flies on the NASA DC-8 aircraft, as in GRIP, collecting data with a downward looking, cross-track scanning geometry. The scan limits are 25 degrees on either side of the aircraft, resulting in a roughly 10-km swath, depending on the aircraft altitude. Details of the APR-2 observation geometry and performance can be found in Sadowy et al. (2003).The multiparameter nature of the APR-2 measurements makes the collection of tropical cyclone measurements valuable for detailed studies of the processes, microphysics and dynamics of tropical cyclones, as well as weaker systems that are associated with tropical cyclone formation. In this paper, we give a brief overview of how the APR-2 data are processed. We also discuss use of the APR-2 cross-track winds to estimate various quantities of interest in in studies of storm intensification. Finally, we show examples of the standard products and derived information.

  17. A Stealth Thermal Control by El Niño on Intense Tropical Cyclones in the Central and Eastern Pacific

    Science.gov (United States)

    Boucharel, J.; Jin, F. F.; Lin, I. I.

    2014-12-01

    The El Niño Southern Oscillation (ENSO) phenomenon, which features strong oceanic surface warming over the equatorial eastern Pacific, has major climatic and societal impacts. In particular, it greatly influences the yearly variations of tropical cyclone (TC) activities in both the Pacific and Atlantic basins via atmospheric dynamical factors such as vertical wind shear and stability. Until recently the direct ocean thermal control of ENSO on TCs has not been taken into consideration because of a mismatch in both timing and location. ENSO peaks in winter and the warming occurs along the equator, a region without TC activity. Here, we present evidence that El Niño discharges its heat into the eastern north Pacific basin 2-3 seasons after it peaks. This basin is characterized by abundant TC activity and is the second most active TC region in the world. As a result, an "El Niño heat reservoir" underneath the ocean surface is delivered to this basin during the TC season (boreal summer/fall) following the winter time peak of El Niño. ENSO exerts a delayed and stealth ocean thermal control on the overlying TCs that can draw the heat out from below the ocean surface, which provides an additional ocean heat supply favorable for the formation of hurricanes with strong intensities. This thermal control on intense TC variability has significant implications for seasonal predictions and long-term projections of TC activity over the eastern north Pacific.

  18. The sensitivity to the microphysical schemes on the skill of forecasting the track and intensity of tropical cyclones using WRF-ARW model

    Science.gov (United States)

    Choudhury, Devanil; Das, Someshwar

    2017-06-01

    The Advanced Research WRF (ARW) model is used to simulate Very Severe Cyclonic Storms (VSCS) Hudhud (7-13 October, 2014), Phailin (8-14 October, 2013) and Lehar (24-29 November, 2013) to investigate the sensitivity to microphysical schemes on the skill of forecasting track and intensity of the tropical cyclones for high-resolution (9 and 3 km) 120-hr model integration. For cloud resolving grid scale (CONTROL forecast. This study is aimed to investigate the sensitivity to microphysics on the track and intensity with explicitly resolved convection scheme. It shows that the Goddard one-moment bulk liquid-ice microphysical scheme provided the highest skill on the track whereas for intensity both Thompson and Goddard microphysical schemes perform better. The Thompson scheme indicates the highest skill in intensity at 48, 96 and 120 hr, whereas at 24 and 72 hr, the Goddard scheme provides the highest skill in intensity. It is known that higher resolution domain produces better intensity and structure of the cyclones and it is desirable to resolve the convection with sufficiently high resolution and with the use of explicit cloud physics. This study suggests that the Goddard cumulus ensemble microphysical scheme is suitable for high resolution ARW simulation for TC's track and intensity over the BoB. Although the present study is based on only three cyclones, it could be useful for planning real-time predictions using ARW modelling system.

  19. Sensitivity of tropical cyclone Jal simulations to physics ...

    Indian Academy of Sciences (India)

    PBL) and microphysics. (MP) parameterization schemes have more impact on the track and intensity prediction skill than the other parameterizations employed in the mesoscale model. 1. Introduction. Tropical cyclones (TC) are important weather ...

  20. A positive feedback process between tropical cyclone intensity and the moisture conveyor belt assessed with Lagrangian diagnostics

    Science.gov (United States)

    Fujiwara, K.; Kawamura, R.; Hirata, H.; Kawano, T.

    2017-12-01

    Using a cloud-resolving regional model and Lagrangian diagnostics, we assess a positive feedback process between tropical cyclone (TC) intensity and the moisture conveyor belt (MCB), which connects a TC and the Indian Ocean (IO), the South China Sea (SCS), and the Philippine Sea vapors, from a macroscopic view. We performed sensitivity experiments that modified the observed sea surface temperature (SST) field over the IO and the SCS to regulate the MCB behavior, and we examined the remote response of a prototypical TC. The results show that the connection between MCB formation and TC development is very robust, which was also observed in another TC's case. The MCB plays a vital role in transporting lots of moist air parcels toward the TC from the remote ocean. The transported parcels are easily trapped in the inner core by radial inflow in the atmospheric boundary layer and, subsequently, release latent heat around the eye wall, resulting in the TC's intensifying. This acts to further penetrate the moist parcels of remote ocean origin into the inner core through the enhanced and expanded inflow. An additional experiment confirmed that the MCB is not formed unless the westward propagation of equatorial Rossby waves induced by TC heating overlaps with the background monsoon westerlies. These findings support the reliability and validity of TC-MCB feedback.

  1. A Positive Feedback Process Between Tropical Cyclone Intensity and the Moisture Conveyor Belt Assessed With Lagrangian Diagnostics

    Science.gov (United States)

    Fujiwara, Keita; Kawamura, Ryuichi; Hirata, Hidetaka; Kawano, Tetsuya; Kato, Masaya; Shinoda, Taro

    2017-12-01

    Using a cloud-resolving regional model and Lagrangian diagnostics, we assess a positive feedback process between tropical cyclone (TC) intensity and the moisture conveyor belt (MCB), which connects a TC and the Indian Ocean (IO), the South China Sea (SCS), and the Philippine Sea (PS) vapors, from a macroscopic view. We performed sensitivity experiments that modified the observed sea surface temperature field over the IO and the SCS to regulate the MCB behavior, and we examined the remote response of a prototypical TC. The results show that the connection between MCB formation and TC development is very robust, which was also observed in another TC's case. The MCB plays a vital role in transporting lots of moist air parcels toward the TC from the IO, SCS, and PS regions. The transported parcels, which further gained the underlying ocean vapor along the MCB, are easily trapped in the inner core by radial inflow in the atmospheric boundary layer and, subsequently, release latent heat around the eyewall, resulting in the TC's intensifying. This acts to further penetrate the moist parcels of remote ocean origin into the inner core through the enhanced and expanded inflow. An additional experiment suggested that the MCB is not formed unless the westward propagation of equatorial waves induced by TC heating overlaps with the background monsoon westerlies. These findings support the reliability and validity of TC-MCB feedback.

  2. Towards Dependence of Tropical Cyclone Intensity on Sea Surface Temperature and Its Response in a Warming World

    Directory of Open Access Journals (Sweden)

    Kopal Arora

    2016-05-01

    Full Text Available Tropical Cyclone (TC systems affect global ocean heat transport due to mixing of the upper ocean and impact climate dynamics. A higher Sea Surface Temperature (SST, other influencing factors remaining supportive, fuels TC genesis and intensification. The atmospheric thermodynamic profile, especially the sea-air temperature contrast (SAT, also contributes due to heat transfer and affects TC’s maximum surface wind speed (Vmax explained by enthalpy exchange processes. Studies have shown that SST can approximately be used as a proxy for SAT. As a part of an ongoing effort in this work, we simplistically explored the connection between SST and Vmax from a climatological perspective. Subsequently, estimated Vmax is applied to compute Power Dissipation Index (an upper limit on TC’s destructive potential. The model is developed using long-term observational SST reconstructions employed on three independent SST datasets and validated against an established model. This simple approach excluded physical parameters, such as mixing ratio and atmospheric profile, however, renders it generally suitable to compute potential intensity associated with TCs spatially and weakly temporally and performs well for stronger storms. A futuristic prediction by the HadCM3 climate model under doubled CO2 indicates stronger storm surface wind speeds and rising SST, especially in the Northern Hemisphere.

  3. Ocean barrier layers’ effect on tropical cyclone intensification

    Science.gov (United States)

    Balaguru, Karthik; Chang, Ping; Saravanan, R.; Leung, L. Ruby; Xu, Zhao; Li, Mingkui; Hsieh, Jen-Shan

    2012-01-01

    Improving a tropical cyclone’s forecast and mitigating its destructive potential requires knowledge of various environmental factors that influence the cyclone’s path and intensity. Herein, using a combination of observations and model simulations, we systematically demonstrate that tropical cyclone intensification is significantly affected by salinity-induced barrier layers, which are “quasi-permanent” features in the upper tropical oceans. When tropical cyclones pass over regions with barrier layers, the increased stratification and stability within the layer reduce storm-induced vertical mixing and sea surface temperature cooling. This causes an increase in enthalpy flux from the ocean to the atmosphere and, consequently, an intensification of tropical cyclones. On average, the tropical cyclone intensification rate is nearly 50% higher over regions with barrier layers, compared to regions without. Our finding, which underscores the importance of observing not only the upper-ocean thermal structure but also the salinity structure in deep tropical barrier layer regions, may be a key to more skillful predictions of tropical cyclone intensities through improved ocean state estimates and simulations of barrier layer processes. As the hydrological cycle responds to global warming, any associated changes in the barrier layer distribution must be considered in projecting future tropical cyclone activity. PMID:22891298

  4. Impact of an El Nino forcing on intense tropical cyclones in ensemble simulations of a high-resolution nonhydrostatic model

    Science.gov (United States)

    Yamada, Y.; Kodama, C.; Masaki, S.; Nakano, M.; Nasuno, T.; Sugi, M.

    2016-12-01

    Previous studies indicated that the El Nino-Southern Oscillation affects TC activities over the western North Pacific, and intense TCs increases during El Nino events. A global warming had been on a hiatus since 2000's. The hiatus finished in 2013 and the global warming has been accelerated since 2014. In 2015, the number of category 4 or 5 tropical cyclones (TCs) in the northern hemisphere was beyond the previous record; and an extreme El Nino event was observed. In 1997, the most extreme El Nino event has been observed. An intense TC was defined as a TC whose minimum central sea-level pressure reaches 945 hPa or less. The numbers of the intense TC between June and October are 9 in 1997 and 10 in 2015, which is archived in a best-track dataset of Japan Meteorology Agency. The average of genesis number between 1979 and 2015 was about 5.60. In both years, more intense TCs occurred than the average as the previous studies showed. In the present study, we conducted two cases of ensemble simulations which were driven by sea surface temperature observed in 1997 and 2015. Those simulation spans are 5 months, from June to October. The number of ensemble is 50 for the each case. Ensemble members were generated by altering their start date by 6 hour between 00UTC June 1 and 18UTC May 19. A nonhydrostatic icosahedral atmospheric model was used in those simulations; the horizontal grid spacing was 14-km; and a cumulus convective scheme was not used. A result of the simulation shows that the number of intense TCs varies among ensemble members for the each case; one of 50 members generated intense TC of 10 (12) in 2015's (1997's) simulation, and another member generated intense TC of 1 (3). This indicates a possibility that the number of intense TCs increases not only because of El Nino but also because of internal variation in response of atmosphere to El Nino.

  5. Why Do Model Tropical Cyclones Grow Progressively in Size and Decay in Intensity after Reaching Maturity

    Science.gov (United States)

    2015-08-17

    anonymous reviewers for their thoughtful comments on the original version of the manuscript. RKS and GK acknowledge financial sup- port for this research from...Nichols, T. A. Cram , and A. B. Saun- ders, 2006: A vortical hot tower route to tropical cyclogenesis. J. Atmos. Sci., 63, 355–386. Montgomery, M. T

  6. The Use of Satellite Microwave Rainfall Measurements to Predict Eastern North Pacific Tropical Cyclone Intensity

    National Research Council Canada - National Science Library

    West, Derek

    1998-01-01

    .... Relationships between parameters obtained from an operational SSM/I based rainfall measuring algorithm and current intensity and ensuing 12, 24, 36, 48, 60, and 72 hour intensity changes from best...

  7. Promoting the confluence of tropical cyclone research.

    Science.gov (United States)

    Marler, Thomas E

    2015-01-01

    Contributions of biologists to tropical cyclone research may improve by integrating concepts from other disciplines. Employing accumulated cyclone energy into protocols may foster greater integration of ecology and meteorology research. Considering experienced ecosystems as antifragile instead of just resilient may improve cross-referencing among ecological and social scientists. Quantifying ecosystem capital as distinct from ecosystem services may improve integration of tropical cyclone ecology research into the expansive global climate change research community.

  8. Tropical cyclones and climate change

    International Nuclear Information System (INIS)

    Andre, J.C.; Royer, J.F.; Chauvin, F.

    2008-01-01

    Results from observations and modelling studies, a number of which having been used to support the conclusions of the IPCC fourth assessment report, are presented. For the past and present-day (since 1970) periods, the increase of strong cyclonic activity over the North Atlantic Ocean appears to be in good correlation with increasing temperature of the ocean surface. For regions where observational data are of lesser quality, the increasing trend is less clear. In fact, assessing long-term changes is made difficult due to both the multi-decennial natural variability and the lesser coverage of observations before satellites were made available. Indirect observational data, such as those derived from quantitative estimations of damage caused by tropical cyclones, suffer from many artefacts and do not allow the resolving of the issue either. For the future, only numerical three-dimensional climate models can be used. They nevertheless run presently with too-large grid-sizes, so that their results are still not converging. Various simulations lead indeed to different results, and it is very often difficult to find the physical reasons for these differences. One concludes by indicating some ways through which numerical simulations could be improved, leading to a decrease of uncertainties affecting the prediction of cyclonic activity over the next decades. (authors)

  9. Tropical cyclone statistics in the Northeastern Pacific

    Energy Technology Data Exchange (ETDEWEB)

    Romero-Vadillo, E. [Universidad Autonoma de Baja California Sur (UABCS), La Paz, Baja California Sur (Mexico); Zaytsev, O. [Centro Interdisciplinario de Ciencias Marinas, Instituto Politecnico Nacional, La Paz, Baja California Sur (Mexico)]. E-mail: ozaytsev@ipn.mx; Morales-Perez, R. [Instituto Mexicano de Tecnologia del Agua (IMTA), Jiutepec, Morelos (Mexico)

    2007-04-15

    The principal area of tropical cyclogenesis in the tropical eastern Pacific Ocean is offshore in the Gulf of Tehuantepec, between 8 and 15 degrees Celsius N, and most of these cyclones move towards the west and northwest during their initial phase. Historical analysis of tropical cyclone data in the Northeastern (NE) Pacific over the last 38 years (from 1966 to 2004) shows a mean of 16.3 tropical cyclones per year, consisting of 8.8 hurricanes 198 and 7.4 tropical storms. The analysis shows great geographical variability of cyclone tracks, and that there were a considerable number of hurricane strikes along the Mexican coast. About 50% of the tropical cyclones formed turned north to northeast. It was rare that any passed further north than 30 degrees Celsius N in latitude because of the cold California Current. Hurricane tracks that affected the NE Pacific may be separated into 5 groups. We compared the historical record of the sea surface temperature (SST), related with the El Nino events with a data set of tropical cyclones, including frequency, intensity, trajectory, and duration. Although the statistical dependence between the frequencies of tropical cyclones of the most abundant categories, 1 and 2, over this region and SST data was not convincing, the percentage of high intensity hurricanes and hurricanes with a long life-time (greater than 12 days) was more during El Nino years than in non-El Nino years. [Spanish] La principal region de la formacion de ciclones en el oceano Pacifico Este es el Golfo de Tehuantepec, entre los 8 y los 15 grados Celsius N. En su fase inicial los ciclones se mueven hacia el oeste y el noroeste. El analisis historico de los ciclones que se han generado durante los ultimos 38 anos (de 1966 a 2004) muestra un promedio de 16.2 ciclones por ano, consistentes en 8.8 huracanes y 7.4 tormentas tropicales. El analisis muestra una gran variabilidad geografica en la trayectoria de los ciclones, de los cuales un gran numero impacta las

  10. The influence of sea surface temperature on the intensity and associated storm surge of tropical cyclone Yasi: a sensitivity study

    Science.gov (United States)

    Lavender, Sally L.; Hoeke, Ron K.; Abbs, Deborah J.

    2018-03-01

    Tropical cyclones (TCs) result in widespread damage associated with strong winds, heavy rainfall and storm surge. TC Yasi was one of the most powerful TCs to impact the Queensland coast since records began. Prior to Yasi, the SSTs in the Coral Sea were higher than average by 1-2 °C, primarily due to the 2010/2011 La Niña event. In this study, a conceptually simple idealised sensitivity analysis is performed using a high-resolution regional model to gain insight into the influence of SST on the track, size, intensity and associated rainfall of TC Yasi. A set of nine simulations with uniform SST anomalies of between -4 and 4 °C applied to the observed SSTs are analysed. The resulting surface winds and pressure are used to force a barotropic storm surge model to examine the influence of SST on the associated storm surge of TC Yasi. An increase in SST results in an increase in intensity, precipitation and integrated kinetic energy of the storm; however, there is little influence on track prior to landfall. In addition to an increase in precipitation, there is a change in the spatial distribution of precipitation as the SST increases. Decreases in SSTs result in an increase in the radius of maximum winds due to an increase in the asymmetry of the storm, although the radius of gale-force winds decreases. These changes in the TC characteristics also lead to changes in the associated storm surge. Generally, cooler (warmer) SSTs lead to reduced (enhanced) maximum storm surges. However, the increase in surge reaches a maximum with an increase in SST of 2 °C. Any further increase in SST does not affect the maximum surge but the total area and duration of the simulated surge increases with increasing upper ocean temperatures. A large decrease in maximum storm surge height occurs when a negative SST anomaly is applied, suggesting if TC Yasi had occurred during non-La Niña conditions the associated storm surge may have been greatly diminished, with a decrease in storm surge

  11. The persistent signature of tropical cyclones in ambient seismic noise

    Science.gov (United States)

    Gualtieri, Lucia; Camargo, Suzana J.; Pascale, Salvatore; Pons, Flavio M. E.; Ekström, Göran

    2018-02-01

    The spectrum of ambient seismic noise shows strong signals associated with tropical cyclones, yet a detailed understanding of these signals and the relationship between them and the storms is currently lacking. Through the analysis of more than a decade of seismic data recorded at several stations located in and adjacent to the northwest Pacific Ocean, here we show that there is a persistent and frequency-dependent signature of tropical cyclones in ambient seismic noise that depends on characteristics of the storm and on the detailed location of the station relative to the storm. An adaptive statistical model shows that the spectral amplitude of ambient seismic noise, and notably of the short-period secondary microseisms, has a strong relationship with tropical cyclone intensity and can be employed to extract information on the tropical cyclones.

  12. The persistent signature of tropical cyclones in ambient seismic noise

    KAUST Repository

    Gualtieri, Lucia

    2017-12-28

    The spectrum of ambient seismic noise shows strong signals associated with tropical cyclones, yet a detailed understanding of these signals and the relationship between them and the storms is currently lacking. Through the analysis of more than a decade of seismic data recorded at several stations located in and adjacent to the northwest Pacific Ocean, here we show that there is a persistent and frequency-dependent signature of tropical cyclones in ambient seismic noise that depends on characteristics of the storm and on the detailed location of the station relative to the storm. An adaptive statistical model shows that the spectral amplitude of ambient seismic noise, and notably of the short-period secondary microseisms, has a strong relationship with tropical cyclone intensity and can be employed to extract information on the tropical cyclones.

  13. A new paradigm for intensity modification of tropical cyclones: thermodynamic impact of vertical wind shear on the inflow layer

    Directory of Open Access Journals (Sweden)

    M. Riemer

    2010-04-01

    Full Text Available An important roadblock to improved intensity forecasts for tropical cyclones (TCs is our incomplete understanding of the interaction of a TC with the environmental flow. In this paper we re-visit the canonical problem of a TC in vertical wind shear on an f-plane. A suite of numerical experiments is performed with intense TCs in moderate to strong vertical shear. We employ a set of simplified model physics – a simple bulk aerodynamic boundary layer scheme and "warm rain" microphysics – to foster better understanding of the dynamics and thermodynamics that govern the modification of TC intensity. In all experiments the TC is resilient to shear but significant differences in the intensity evolution occur.

    The ventilation of the TC core with dry environmental air at mid-levels and the dilution of the upper-level warm core are two prevailing hypotheses for the adverse effect of vertical shear on storm intensity. Here we propose an alternative and arguably more effective mechanism how cooler and drier (lower θe air – "anti-fuel" for the TC power machine – can enter the core region of the TC. Strong and persistent, shear-induced downdrafts flux low θe air into the boundary layer from above, significantly depressing the θe values in the storm's inflow layer. Air with lower θe values enters the eyewall updrafts, considerably reducing eyewall θe values in the azimuthal mean. When viewed from the perspective of an idealised Carnot-cycle heat engine a decrease of storm intensity can thus be expected. Although the Carnot cycle model is – if at all – only valid for stationary and axisymmetric TCs, a close association of the downward transport of low θe into the boundary layer and the intensity evolution offers further evidence in support of our hypothesis.

    The downdrafts that flush the boundary layer with low

  14. Impacts of tropical cyclones on Fiji and Samoa

    Science.gov (United States)

    Kuleshov, Yuriy; Prakash, Bipendra; Atalifo, Terry; Waqaicelua, Alipate; Seuseu, Sunny; Ausetalia Titimaea, Mulipola

    2013-04-01

    on Samoa totalled to US130 million. Cyclone Val caused damage and destruction to 95% of houses in Samoa and severe crop damage; total damage was estimated as US200 million. Recently, severe tropical cyclone Evan affected Samoa and Fiji (December 2012). Significant progress in operational tropical cyclone forecasting has been achieved over the past few decades which resulted in improving early warning system but death toll attributed to cyclones is still high - at least 14 deaths in Samoa are related to cyclone Evan (luckily, no death reports in Fiji). Cyclone-related economic losses also remain very high making significant negative impact on economies of the countries. Preliminary assessment of damage caused by cyclone Evan in Fiji indicates loses of about 75.29 million. By the end of this century projections suggest decreasing numbers of tropical cyclones but a possible shift towards more intense categories. In addition, geographic shifts in distribution of tropical cyclone occurrences caused by warming of the atmospheric and oceanic environment are possible. This should be taken in consideration by authorities of the Pacific Island Countries when developing adaptation strategies to increasing tropical cyclone risk due to climate change.

  15. Dry and Semi-Dry Tropical Cyclones

    Science.gov (United States)

    Cronin, T.; Chavas, D. R.

    2017-12-01

    Our understanding of dynamics in our real moist atmosphere is strongly informed by idealized dry models. It is widely believed that tropical cyclones (TCs) are an intrinsically moist phenomenon - relying fundamentally on evaporation and latent heat release - yet recent numerical modeling work has found formation of dry axisymmetric tropical cyclones from a state of dry radiative-convective equilibrium. What can such "dry hurricanes" teach us about intensity, structure, and size of real moist tropical cyclones in nature? Are dry TCs even stable in 3D? What about surfaces that are nearly dry but have some latent heat flux - can they also support TCs? To address these questions, we use the SAM cloud-system resolving model to simulate radiative-convective equilibrium on a rapidly rotating f-plane, subject to constant tropospheric radiative cooling. We use a homogeneous surface with fixed temperature and with surface saturation vapor pressure scaled by a factor 0-1 relative to that over pure water - allowing for continuous variation between moist and dry limits. We also explore cases with surface enthalpy fluxes that are uniform in space and time, where partitioning between latent and sensible heat fluxes is specified directly. We find that a completely moist surface yields a TC-world where multiple vortices form spontaneously and persist for tens of days. A completely dry surface can also yield a parallel dry TC-world with many vortices that are even more stable and persistent. Spontaneous cyclogenesis, however, is impeded for a range of low to intermediate surface wetness values, and by the combination of large rotation rates and a dry surface. We discuss whether these constraints on spontaneous cyclogenesis might arise from: 1) rain evaporation in the subcloud layer limiting the range of viable surface wetness values, and 2) a natural convective Rossby number limiting the range of viable rotation rates. Finally, we discuss simulations with uniform surface enthalpy

  16. Analysis of North Atlantic Tropical Cyclone Intensify Change Using Data Mining

    Science.gov (United States)

    Tang, Jiang

    2010-01-01

    Tropical cyclones (TC), especially when their intensity reaches hurricane scale, can become a costly natural hazard. Accurate prediction of tropical cyclone intensity is very difficult because of inadequate observations on TC structures, poor understanding of physical processes, coarse model resolution and inaccurate initial conditions, etc. This…

  17. What Has Controlled the Poleward Migration of Annual Averaged Location of Tropical Cyclone Lifetime Maximum Intensity Over the Western North Pacific Since 1961?

    Science.gov (United States)

    Song, Jinjie; Klotzbach, Philip J.

    2018-01-01

    The long-term tendency of the average latitude at which tropical cyclones (TCs) reach their lifetime maximum intensity (LMI) over the western North Pacific (WNP) is investigated in this study. Despite the post-1961 significant poleward shift in the annual mean LMI latitude, the migration rate is nonuniform on decadal timescales, having an insignificant trend and a significant increasing trend before and after 1980, respectively. Interdecadal fluctuations of TC genesis latitude (φG) as well as increases in latitudinal distance between genesis position and LMI location (Δφ) are both responsible for the observed LMI latitude trends. The former is linked to the Interdecadal Pacific Oscillation (IPO), which favors TCs forming in the northwestern (southeastern) quadrant of the WNP in negative (positive) IPO phases. The latter primarily results from the continuous warming of WNP sea surface temperature, which further increases the maximum potential intensity and extends the region favorable for TC development to higher latitudes.

  18. Design basis tropical cyclone for nuclear power plants

    International Nuclear Information System (INIS)

    1984-01-01

    The general characteristics of tropical cyclones are discussed in this Safety Guide, with particular emphasis on their pressure and wind structures in the light of available data. General methods are given for the evaluation of the relevant parameters of a Probable Maximum Tropical Cyclone (PMTC), which can be used as the Design Basis Tropical Cyclone (DBTC); these parameters then serve as inputs for the derivation of a design basis surge and a design basis wind. A possible method is also given for the evaluation of the PMTC pressure and wind field based on an approach valid primarily for a particular region. This method depends on the results of a theoretical study on the tropical cyclone structure and makes use of a large amount of data, including aircraft reconnaissance observations for 170 most intense tropical cyclones near the coast of Japan, Taiwan and the Philippines for the period 1960-1974, as well as detailed analyses of all the extreme storms along the Gulf of Mexico and the east coast of the USA during 1900-1978, for the determination of the necessary parameters

  19. Impact of parameterization of physical processes on simulation of track and intensity of tropical cyclone Nargis (2008) with WRF-NMM model.

    Science.gov (United States)

    Pattanayak, Sujata; Mohanty, U C; Osuri, Krishna K

    2012-01-01

    The present study is carried out to investigate the performance of different cumulus convection, planetary boundary layer, land surface processes, and microphysics parameterization schemes in the simulation of a very severe cyclonic storm (VSCS) Nargis (2008), developed in the central Bay of Bengal on 27 April 2008. For this purpose, the nonhydrostatic mesoscale model (NMM) dynamic core of weather research and forecasting (WRF) system is used. Model-simulated track positions and intensity in terms of minimum central mean sea level pressure (MSLP), maximum surface wind (10 m), and precipitation are verified with observations as provided by the India Meteorological Department (IMD) and Tropical Rainfall Measurement Mission (TRMM). The estimated optimum combination is reinvestigated with six different initial conditions of the same case to have better conclusion on the performance of WRF-NMM. A few more diagnostic fields like vertical velocity, vorticity, and heat fluxes are also evaluated. The results indicate that cumulus convection play an important role in the movement of the cyclone, and PBL has a crucial role in the intensification of the storm. The combination of Simplified Arakawa Schubert (SAS) convection, Yonsei University (YSU) PBL, NMM land surface, and Ferrier microphysics parameterization schemes in WRF-NMM give better track and intensity forecast with minimum vector displacement error.

  20. A Probabilistic Approach to Tropical Cyclone Conditions of Readiness (TCCOR)

    National Research Council Canada - National Science Library

    Wallace, Kenneth A

    2008-01-01

    Tropical Cyclone Conditions of Readiness (TCCOR) are set at DoD installations in the Western Pacific to convey the risk associated with the onset of destructive winds from approaching tropical cyclones...

  1. The Tropical East Pacific as a Laboratory for Tropical Cyclones

    Science.gov (United States)

    Raymond, D. J.

    2007-05-01

    The summertime tropical cyclogenesis rate per unit area in the eastern Pacific ocean is arguably higher than in any other location in the world. Many if not most of these cyclones form from African easterly waves which cross Central America into the Pacific. Of order 25% of these waves intensify into cyclones. A significant fraction of east Pacific tropical cyclones undergoes landfall on the Mexican coast. Those which do not, generally dissipate over cold ocean waters north of the east Pacific intertropical convergence zone, often not far from land. The layer of warm ocean water which supports the development of east Pacific cyclones is unusually shallow and is structured by anticyclonic vortices which form by various processes and propagate slowly to the west. These vortices locally deepen the oceanic mixed layer and support stronger convection than their surroundings, possibly promoting cyclogenesis and cyclone intensification. Cyclones in turn have an unusually large effect on the ocean mixed layer due to its shallowness. The east Pacific is thus a region of strong coupling between the atmosphere and the ocean, mediated in large part by the action of tropical cyclones. In most cases cyclogenesis, intensification, landfall, and decay over cold water occur within easy range of research aircraft launched from a number of Central American and Mexican bases such as San Jose, Huatulco, Acapulco, Puerto Vallarta, and Cabo San Lucas. The U. S. National Center for Atmospheric Research, the National Oceanic and Atmospheric Administration, and the National Aeronautics and Space Administration have all successfully operated aircraft-based research projects from one or more of these locations. The frequency with which cyclones form, develop, and decay in the east Pacific and their proximity to land bases with excellent facilities make the tropical east Pacific an ideal international laboratory for the study of tropical cyclones. Given the importance of these cyclones to

  2. Comparison of the effect of easterly and westerly vertical wind shear on tropical cyclone intensity change over the western North Pacific

    Science.gov (United States)

    Na, Wei; Xinghai, Zhang; Lianshou, Chen; Hao, Hu

    2018-03-01

    The effects of vertical wind shear (VWS) with different directions on tropical cyclone (TC) intensity change are compared in this statistical study based on TCs occurring between 1982 and 2015 over the western North Pacific (WNP). Results show that a westerly VWS has a much higher correlation (‑0.36) with change in TC intensity than an easterly VWS (‑0.07) over the WNP, especially south-westerly VWS (‑0.43). Sea surface temperature (SST) is found to modulate the effect of VWS on TC intensity change as it has a close relationship with zonal VWS (‑0.48). The favorable effect of SST, which increases with increase in easterly VWS, could offset the detrimental effect of VWS, leading to a relatively low correlation coefficient between easterly VWS and TC intensity change. By contrast, westerly VWS increases with decreasing SST, and the largest correlation coefficient appears when SST is around 301 K. Therefore, it is suggested that the direction of VWS as well as its value is taken into consideration in models used to predict TC intensity.

  3. A Statistical Cyclone Intensity Prediction (SCIP) model for the Bay of ...

    Indian Academy of Sciences (India)

    been proposed. The model is developed applying multiple linear regression technique. The model ... Keywords. Tropical cyclone; intensity prediction; multiple linear regression; regression coefficient; statistical model. J. Earth Syst. Sci. 117, No. ... posed a simple empirical model for predicting the intensity of tropical cyclones ...

  4. Mesoscale interactions in tropical cyclone genesis

    OpenAIRE

    Simpson, J.; Ritchie, E.; Halverson, J.; Stewart, S.; Holland, G. J.

    1997-01-01

    Approved for public release; distribution is unlimited With the multitude of cloud clusters over tropical oceans, is has been perplexing that so few develop into tropical cyclones. the authors postulate that a major obstacle has been the complexity of scale interactions particularly those on the mesoscale, which have only recently been observable. While there are well-known climatological requirements, these are by no means sufficient. A major reason for this rarity is the essentially s...

  5. Lagrangian Vortices in Developing Tropical Cyclones

    Science.gov (United States)

    2015-06-25

    Meteorological Society Q. J. R. Meteorol. Soc. (2015) Lagrangian Vortices in Developing Tropical Cyclones these vortices through diabatic vortex stretching or...through horizontal mergers. The Lagrangian structures and their role in the merger of these smaller vorticity anomalies and diabatic activation

  6. Nuclear power plant risk from tropical cyclones

    International Nuclear Information System (INIS)

    Gilmore, T.F.

    1991-01-01

    Tropical cyclones are considered to have a potential for contributing to the overall core-melt frequency at Turkey Point. A tropical cyclone is known to have the four main hazards associated with it: wind, tidal surge, wind-generated missiles, and precipitation. To understand the contribution to overall core-melt risk at Turkey Point, it is essential to understand the mechanisms of these hazards and their relative importance. The results are bounded by the hurricane surge scenario, where the frequency of core melt is equal to the frequency of the surge reaching 19 ft NGVD (National Geographic Vertical Datum). This could be mitigated by potential recovery actions for the tropical cyclone scenario. The probability of the storm surge reaching 19 ft NVGD is estimated to be 1 x 10 -4 . The data associated with the tropical cyclones as discussed in detail in the body of this paper are lacking in quantity and quality. By taking the conservative approach in creating the wind/frequency, wind/surge, and surge/frequency relationships, the conclusion that the results are worst case is reasonable. With this in mind, it is logical to conclude that the value of further hazard analysis to narrow down the built-in conservative margin using the existing data and technology is doubtful. Thus, a recovery approach to driving the risk level down is the most pragmatic step to be taken

  7. Sensitivity of Simulated Cyclone Gonu Intensity and Track to Variety ...

    Indian Academy of Sciences (India)

    57

    improvement in simulated intensity, an accuracy reduction in simulated track was observed. Increasing ... improve the prediction of the TC Gonu using the Advanced Hurricane WRF (AHW) model. For the first time, ...... World Meteorological Organization (2014) Tropical cyclone operational plan for the Bay of. Bengal and the ...

  8. Tropical Cyclone Diurnal Cycle as Observed by TRMM

    Science.gov (United States)

    Leppert, Kenneth D., II; Cecil, D. J.

    2015-01-01

    Using infrared satellite data, previous work has shown a consistent diurnal cycle in the pattern of cold cloud tops around mature tropical cyclones. In particular, an increase in the coverage by cold cloud tops often occurs in the inner core of the storm around the time of sunset and subsequently propagates outward to several hundred kilometers over the course of the following day. This consistent cycle may have important implications for structure and intensity changes of tropical cyclones and the forecasting of such changes. Because infrared satellite measurements are primarily sensitive to cloud top, the goal of this study is to use passive and active microwave measurements from the Tropical Rainfall Measurement Mission (TRMM) Microwave Imager (TMI) and Precipitation Radar (PR), respectively, to examine and better understand the tropical cyclone diurnal cycle throughout a larger depth of the storm's clouds. The National Hurricane Center's best track dataset was used to extract all PR and TMI pixels within 1000 km of each tropical cyclone that occurred in the Atlantic basin between 1998-2011. Then the data was composited according to radius (100-km bins from 0-1000 km) and local standard time (LST; 3-hr bins). Specifically, PR composites involved finding the percentage of pixels with reflectivity greater than or equal to 20 dBZ at various heights (i.e., 2-14 km in increments of 2 km) as a function of radius and time. The 37- and 85- GHz TMI channels are especially sensitive to scattering by precipitation-sized ice in the mid to upper portions of clouds. Hence, the percentage of 37- and 85-GHz polarization corrected temperatures less than various thresholds were calculated using data from all storms as a function of radius and time. For 37 GHz, thresholds of 260 K, 265 K, 270 K, and 275 K were used, and for 85 GHz, thresholds of 200-270 K in increments of 10 K were utilized. Note that convection forced by the interactions of a tropical cyclone with land (e.g., due

  9. Sensitivity of tropical cyclone simulations to microphysics parameterizations in WRF

    International Nuclear Information System (INIS)

    Reshmi Mohan, P.; Srinivas, C.V.; Bhaskaran, R.; Venkatraman, B.; Yesubabu, V.

    2018-01-01

    Tropical cyclones (TC) cause storm surge along coastal areas where these storms cross the coast. As major nuclear facilities are usually installed in coastal region, the surge predictions are highly important for DAE. The critical TC parameters needed in estimating storm surge are intensity (winds, central pressure and radius of maximum winds) and storm tracks. The predictions with numerical models are generally made by representing the clouds and precipitation processes using convective and microphysics parameterization. At high spatial resolutions (1-3Km) microphysics can act as cloud resolving NWP model to explicitly resolve the convective precipitation without using convection schemes. Recent simulation studies using WRF on severe weather phenomena such as thunderstorms and hurricanes indicated large sensitivity of predicted rainfall and hurricane tracks to microphysics due to variation in temperature and pressure gradients which generate winds that determine the storm track. In the present study the sensitivity of tropical cyclone tracks and intensity to different microphysics schemes has been conducted

  10. Tropical cyclone rainfall area controlled by relative sea surface temperature.

    Science.gov (United States)

    Lin, Yanluan; Zhao, Ming; Zhang, Minghua

    2015-03-12

    Tropical cyclone rainfall rates have been projected to increase in a warmer climate. The area coverage of tropical cyclones influences their impact on human lives, yet little is known about how tropical cyclone rainfall area will change in the future. Here, using satellite data and global atmospheric model simulations, we show that tropical cyclone rainfall area is controlled primarily by its environmental sea surface temperature (SST) relative to the tropical mean SST (that is, the relative SST), while rainfall rate increases with increasing absolute SST. Our result is consistent with previous numerical simulations that indicated tight relationships between tropical cyclone size and mid-tropospheric relative humidity. Global statistics of tropical cyclone rainfall area are not expected to change markedly under a warmer climate provided that SST change is relatively uniform, implying that increases in total rainfall will be confined to similar size domains with higher rainfall rates.

  11. On the movement of tropical cyclone LEHAR

    Science.gov (United States)

    Dasari, Hari Prasad; V, Brahmananda Rao; SSVS, Ramakrishna; Gunta, Paparao; N, Nanaji Rao; P, Ramesh Kumar

    2017-12-01

    In this paper, an attempt has been made to delineate the physical processes which lead to the westward movement of the North Indian Ocean tropical cyclone LEHAR. The Advanced Weather Research and Forecasting (ARW) model is used to simulate LEHAR with 27 and 9 km resolutions. The results indicate that the model performed well in simulating the characteristics of cyclone compared with the Satellite and other observations. In addition to that all terms of the complete vorticity equation are computed to obtain the contribution of each term for the vorticity tendency. The vorticity tendency is calculated in four sectors, namely northwest, northeast, southwest and southeast and assumed that the cyclone moves from its existing location to the nearest point where the vortices tendency is maximum. It is noticed that the vorticity stretching term contributes most to the positive vorticity tendency. The second highest contribution is from the horizontal advection thus indicating the secondary importance of steering. The distribution of lightening flash rates also showing that the flash rates are higher in the SW and followed by NW sectors of the cyclone indicate more strong convective clouds are in SW sector. The equivalent potential temperatures ( θ e) at different stages of before, during and after the mature stage of the cyclone are also analysed and the analysis reveals that the wind-induced surface heat (WISH) exchange process is a plausible mechanism for the intensification of LEHAR.

  12. On the movement of tropical cyclone LEHAR

    KAUST Repository

    Dasari, Hari Prasad

    2017-11-09

    In this paper, an attempt has been made to delineate the physical processes which lead to the westward movement of the North Indian Ocean tropical cyclone LEHAR. The Advanced Weather Research and Forecasting (ARW) model is used to simulate LEHAR with 27 and 9 km resolutions. The results indicate that the model performed well in simulating the characteristics of cyclone compared with the Satellite and other observations. In addition to that all terms of the complete vorticity equation are computed to obtain the contribution of each term for the vorticity tendency. The vorticity tendency is calculated in four sectors, namely northwest, northeast, southwest and southeast and assumed that the cyclone moves from its existing location to the nearest point where the vortices tendency is maximum. It is noticed that the vorticity stretching term contributes most to the positive vorticity tendency. The second highest contribution is from the horizontal advection thus indicating the secondary importance of steering. The distribution of lightening flash rates also showing that the flash rates are higher in the SW and followed by NW sectors of the cyclone indicate more strong convective clouds are in SW sector. The equivalent potential temperatures (θe) at different stages of before, during and after the mature stage of the cyclone are also analysed and the analysis reveals that the wind-induced surface heat (WISH) exchange process is a plausible mechanism for the intensification of LEHAR.

  13. Sensitivity of hurricane track to cumulus parameterization schemes in the WRF model for three intense tropical cyclones: impact of convective asymmetry

    Science.gov (United States)

    Shepherd, Tristan J.; Walsh, Kevin J.

    2017-08-01

    This study investigates the effect of the choice of convective parameterization (CP) scheme on the simulated tracks of three intense tropical cyclones (TCs), using the Weather Research and Forecasting (WRF) model. We focus on diagnosing the competing influences of large-scale steering flow, beta drift and convectively induced changes in track, as represented by four different CP schemes (Kain-Fritsch (KF), Betts-Miller-Janjic (BMJ), Grell-3D (G-3), and the Tiedtke (TD) scheme). The sensitivity of the results to initial conditions, model domain size and shallow convection is also tested. We employ a diagnostic technique by Chan et al. (J Atmos Sci 59:1317-1336, 2002) that separates the influence of the large-scale steering flow, beta drift and the modifications of the steering flow by the storm-scale convection. The combined effect of the steering flow and the beta drift causes TCs typically to move in the direction of the wavenumber-1 (WN-1) cyclonic potential vorticity tendency (PVT). In instances of asymmetrical TCs, the simulated TC motion does not necessarily match the motion expected from the WN-1 PVT due to changes in the convective pattern. In the present study, we test this concept in the WRF simulations and investigate whether if the diagnosed motion from the WN-1 PVT and the TC motion do not match, this can be related to the emerging evolution of changes in convective structure. Several systematic results are found across the three cyclone cases. The sensitivity of TC track to initial conditions (the initialisation time and model domain size) is less than the sensitivity of TC track to changing the CP scheme. The simulated track is not overly sensitive to shallow convection in the KF, BMJ, and TD schemes, compared to the track difference between CP schemes. The G3 scheme, however, is highly sensitive to shallow convection being used. Furthermore, while agreement between the simulated TC track direction and the WN-1 diagnostic is usually good, there are

  14. Deep Ocean Response to Tropical Cyclone Forcing

    Science.gov (United States)

    Morey, S. L.; Dukhovskoy, D.

    2013-05-01

    Tropical cyclones passing over the ocean can induce inertia-gravity waves in the mixed layer. Vertical propagation of the inertia-gravity waves can excite near-inertial motions at depth. The time scale for these waves to reach the deep (O(1000m)) seafloor is several days. However, analysis of near-bottom current meter records over the outer continental shelf has shown rapid onset of near-inertial motions with evidence of intensification near the bottom. Realistic and idealized numerical model experiments and observational data from the Gulf of Mexico are analyzed to characterize the full water column response to a moving tropical cyclone. The simulations are used to explain the dynamics responsible for excitation of the near-bottom currents that have been observed in water depths greater than 1000m.

  15. Coastal Hazard due to Tropical Cyclones in Mexico

    Science.gov (United States)

    Silva-Casarin, R.; Mendoza-Baldwin, E.; Marino-Tapia, I.; Enriquez, C.; Ruiz, G.; Escalante-MAncera, E.; Ruíz-Rentería, F.

    2013-05-01

    The Mexican coast is hit every year by at least 3 cyclones and it is affected for nearly 59 hours a year on average; this induces undesirable consequences, such as coastal erosion and flooding. To evaluate the hazard to which the coastal zone is exposes, a historical characterization of atmospheric conditions (surface winds and pressure conditions of the storms), waves (wave heights and their associated wave periods) and flooding levels due to tropical storms for more than 60 years is presented. The atmospheric and wave conditions were evaluated using a modification of the original parametric Hydromet-Rankin Vortex Model by Bretschneider (1990) and Holland (1980) as presented by Silva, et al. (2002). The flooding levels caused by hurricanes were estimated using a two-dimensional, vertically averaged finite volume model to evaluate the storm surge, Posada et al. (2008). The cyclone model was compared to the data series of 29 cyclones recorded by buoys of the National Data Buoy Center-NOAA and some data recorded in shallow waters near Cancun, Mexico and the flooding model was compared with observed data from Cancun, Mexico; both models gave good results. For the extreme analyses of wind, wave heights and maximum flooding levels on the Mexican coasts, maps of the scale and location parameters used in the Weibull cumulative distribution function and numerical results for different return periods are provided. The historical occurrence of tropical storms is also revised as some studies indicate that the average intensity of tropical cyclones is increasing; no definite trends pointing to an increase in storm frequency or intensity were found. What was in fact found is that although there are more cyclones in the Pacific Ocean and these persist longer, the intensity of the cyclones in the Atlantic Ocean is greater affecting. In any case, the strong necessity of avoiding storm induced coastal damage (erosion and flooding) is reflected in numerous works, such as this one

  16. Classic Maya civilization collapse associated with reduction in tropical cyclone activity

    Science.gov (United States)

    Medina, M. A.; Polanco-Martinez, J. M.; Lases-Hernández, F.; Bradley, R. S.; Burns, S. J.

    2013-12-01

    In light of the increased destructiveness of tropical cyclones observed over recent decades one might assume that an increase and not a decrease in tropical cyclone activity would lead to societal stress and perhaps collapse of ancient cultures. In this study we present evidence that a reduction in the frequency and intensity of tropical Atlantic cyclones could have contributed to the collapse of the Maya civilization during the Terminal Classic Period (TCP, AD. 800-950). Statistical comparisons of a quantitative precipitation record from the Yucatan Peninsula (YP) Maya lowlands, based on the stalagmite known as Chaac (after the Mayan God of rain and agriculture), relative to environmental proxy records of El Niño/Southern Oscillation (ENSO), tropical Atlantic sea surface temperatures (SSTs), and tropical Atlantic cyclone counts, suggest that these records share significant coherent variability during the TCP and that summer rainfall reductions between 30 and 50% in the Maya lowlands occurred in association with decreased Atlantic tropical cyclones. Analysis of modern instrumental hydrological data suggests cyclone rainfall contributions to the YP equivalent to the range of rainfall deficits associated with decreased tropical cyclone activity during the collapse of the Maya civilization. Cyclone driven precipitation variability during the TCP, implies that climate change may have triggered Maya civilization collapse via freshwater scarcity for domestic use without significant detriment to agriculture. Pyramid in Tikal, the most prominent Maya Kingdom that collapsed during the Terminal Classic Period (circa C.E. 800-950) Rainfall feeding stalagmites inside Rio Secreto cave system, Yucatan, Mexico.

  17. The effect of tropical cyclones (typhoons) on emergency department visits.

    Science.gov (United States)

    Lin, Chien-Hao; Hou, Sen-Kuang; Shih, Frank Fuh-Yuan; Su, Syi

    2013-09-01

    Case reports have indicated that a tropical cyclone may increase Emergency Department (ED) visits significantly. To examine emergency health care demands across a series of tropical cyclones, and to build a predictive model to analyze a cyclone's potential effect. This was an observational non-concurrent prospective study performed in Taiwan. Twenty hospitals were included. The number of daily ED visits in each hospital was our primary end point, and data were retrieved from the database provided by the National Health Insurance Research Database. Our study examined the period from 2000 to 2008. A total of 22 tropical cyclones (typhoons) that had passed over eastern Taiwan and covered the area under study were included. Multiple linear regression time-series models were employed to estimate the effects of "days since typhoon landfall" and various characteristics of the typhoons on the end point of daily ED visits to each hospital. The final multiple linear regression time-series model showed that the number of daily ED visits increased in areas where a strong typhoon had landed directly, with the increase being evident during the first 2 days since landfall. Our model also indicated that the three most important variables to predict a change in the pattern of daily ED visits were intensity of typhoon, simultaneous heavy rain, and direct landfall. During tropical cyclones, emergency services were under increased demand in selected time periods and areas. Health care authorities should collect information to build local models to optimize their resources allocation in preparation. Crown Copyright © 2013. Published by Elsevier Inc. All rights reserved.

  18. Arabian Sea tropical cyclones intensified by emissions of black carbon and other aerosols.

    Science.gov (United States)

    Evan, Amato T; Kossin, James P; Chung, Chul Eddy; Ramanathan, V

    2011-11-02

    Throughout the year, average sea surface temperatures in the Arabian Sea are warm enough to support the development of tropical cyclones, but the atmospheric monsoon circulation and associated strong vertical wind shear limits cyclone development and intensification, only permitting a pre-monsoon and post-monsoon period for cyclogenesis. Thus a recent increase in the intensity of tropical cyclones over the northern Indian Ocean is thought to be related to the weakening of the climatological vertical wind shear. At the same time, anthropogenic emissions of aerosols have increased sixfold since the 1930s, leading to a weakening of the southwesterly lower-level and easterly upper-level winds that define the monsoonal circulation over the Arabian Sea. In principle, this aerosol-driven circulation modification could affect tropical cyclone intensity over the Arabian Sea, but so far no such linkage has been shown. Here we report an increase in the intensity of pre-monsoon Arabian Sea tropical cyclones during the period 1979-2010, and show that this change in storm strength is a consequence of a simultaneous upward trend in anthropogenic black carbon and sulphate emissions. We use a combination of observational, reanalysis and model data to demonstrate that the anomalous circulation, which is radiatively forced by these anthropogenic aerosols, reduces the basin-wide vertical wind shear, creating an environment more favourable for tropical cyclone intensification. Because most Arabian Sea tropical cyclones make landfall, our results suggest an additional impact on human health from regional air pollution.

  19. Emergency Department Presentations following Tropical Cyclone Yasi.

    Science.gov (United States)

    Aitken, Peter; Franklin, Richard Charles; Lawlor, Jenine; Mitchell, Rob; Watt, Kerrianne; Furyk, Jeremy; Small, Niall; Lovegrove, Leone; Leggat, Peter

    2015-01-01

    Emergency departments see an increase in cases during cyclones. The aim of this study is to describe patient presentations to the Emergency Department (ED) of a tertiary level hospital (Townsville) following a tropical cyclone (Yasi). Specific areas of focus include changes in: patient demographics (age and gender), triage categories, and classification of diseases. Data were extracted from the Townsville Hospitals ED information system (EDIS) for three periods in 2009, 2010 and 2011 to coincide with formation of Cyclone Yasi (31 January 2011) to six days after Yasi crossed the coast line (8 February 2012). The analysis explored the changes in ICD10-AM 4-character classification and presented at the Chapter level. There was a marked increase in the number of patients attending the ED during Yasi, particularly those aged over 65 years with a maximum daily attendance of 372 patients on 4 Feb 2011. The most marked increases were in: Triage categories--4 and 5; and ICD categories--diseases of the skin and subcutaneous tissue (L00-L99), and factors influencing health care status (Z00-Z99). The most common diagnostic presentation across all years was injury (S00-T98). There was an increase in presentations to the ED of TTH, which peaked in the first 24-48 hours following the cyclone and returned to normal over a five-day period. The changes in presentations were mostly an amplification of normal attendance patterns with some altered areas of activity. Injury patterns are similar to overseas experience.

  20. Multiformity of the tropical cyclone wind–pressure relationship in the western North Pacific: discrepancies among four best-track archives

    International Nuclear Information System (INIS)

    Kueh, Mien-Tze

    2012-01-01

    The reliability of tropical cyclone intensity estimates for the western North Pacific is assessed in the context of wind–pressure relationships. Four best-track datasets compiled in the International Best Track Archive for Climate Stewardship (IBTrACS) are compared to assess the data consistency. Over the past 20 yr period (1991–2010), apparent interagency discrepancies in the archived tropical cyclone intensities are found. Heavy reliance upon operational wind–pressure relationships may reduce subjective biases at the cost of potential loss of tropical cyclone natural variability. Given that the intercomparisons are performed based upon a set of identical tropical cyclones, the differences in operational wind–pressure relationships and in the mapping of satellite tropical cyclone intensity classification for these relationships are presumably critical causes of the interagency discrepancies. This result calls for imperative refinement of current satellite-based tropical cyclone intensity estimates and reanalysis of historical tropical cyclone best-track archives for the basin. (letter)

  1. Multi-Scale Aspects of Tropical Cyclone Predictability

    Science.gov (United States)

    Doyle, J. D.; Moskaitis, J.; Black, P. G.; Hendricks, E. A.; Reinecke, A.; Amerault, C. M.

    2014-12-01

    The intensification of tropical cyclones (TCs) may be sensitive to aspects of large-scale forcing, as well as internal mesoscale dynamics. In this presentation, the degree to which tropical cyclone intensity and structure is sensitive to small perturbations to the basic properties of the synoptic-scale environment, as well as in the immediate vicinity of the storm, is explored using both adjoint- and ensemble-based approaches. In particular, we explore the relationship between tropical cyclone intensity changes and upper-level outflow. We make use of observations from two recent field campaigns: i) the NASA Hurricane and Severe Storms Sentinel (HS3), which featured two fully instrumented Global Hawk unmanned aerial systems, and ii) the ONR Tropical Cyclone Intensity (TCI-14) experiment that utilized the NASA WB-57. We make use of the Navy's high-resolution tropical cyclone prediction system COAMPS-TC to provide ensemble forecasts, numerical experiments with and without the assimilation of specific observation types (e.g., satellite, dropsondes, high-frequency radiosonde), as well as mesoscale nested adjoint sensitivity and observation impact calculations, all of which provide insight into the initial state sensitivity and predictability issues. We assess the impact of observations in sensitive regions in the TC environment (including outflow regions away from the TC inner core) on predictions of TC intensity and structure. Overall the results underscore the importance of multiple scales that influence the predictability of TC intensification. During HS3, the assimilation of Global Hawk dropsondes has been shown to reduce the maximum wind error from 15 knots to less than 10 knots at 48 h for Hurricane Nadine (2012). In this particular case, the adjoint model shows strong sensitivity in the TC outflow near the entrance region of an upper-level jet. The impact of dropsondes from data denial experiments and adjoint-based observation impact calculations will be

  2. Sensitivity of tropical cyclone characteristics to the radial distribution ...

    Indian Academy of Sciences (India)

    Sensitivity of tropical cyclone to the radial distribution of SST. 693 the South China Sea. The cyclonic circulation, a low pressure over the Tenasserim coast on 6. October 2013, concentrated into a depression over the north Andaman Sea on 8 October, 2013 near. 12.0. ◦. N, 96.0. ◦. E. Progressing into a cyclonic storm.

  3. Tropical cyclones over the North Indian Ocean: experiments with the high-resolution global icosahedral grid point model GME

    Science.gov (United States)

    Kumkar, Yogesh V.; Sen, P. N.; Chaudhari, Hemankumar S.; Oh, Jai-Ho

    2018-02-01

    In this paper, an attempt has been made to conduct a numerical experiment with the high-resolution global model GME to predict the tropical storms in the North Indian Ocean during the year 2007. Numerical integrations using the icosahedral hexagonal grid point global model GME were performed to study the evolution of tropical cyclones, viz., Akash, Gonu, Yemyin and Sidr over North Indian Ocean during 2007. It has been seen that the GME model forecast underestimates cyclone's intensity, but the model can capture the evolution of cyclone's intensity especially its weakening during landfall, which is primarily due to the cutoff of the water vapor supply in the boundary layer as cyclones approach the coastal region. A series of numerical simulation of tropical cyclones have been performed with GME to examine model capability in prediction of intensity and track of the cyclones. The model performance is evaluated by calculating the root mean square errors as cyclone track errors.

  4. Satellite Observations of Stratospheric Gravity Waves Associated With the Intensification of Tropical Cyclones

    Science.gov (United States)

    Hoffmann, Lars; Wu, Xue; Alexander, M. Joan

    2018-02-01

    Forecasting the intensity of tropical cyclones is a challenging problem. Rapid intensification is often preceded by the formation of "hot towers" near the eyewall. Driven by strong release of latent heat, hot towers are high-reaching tropical cumulonimbus clouds that penetrate the tropopause. Hot towers are a potentially important source of stratospheric gravity waves. Using 13.5 years (2002-2016) of Atmospheric Infrared Sounder observations of stratospheric gravity waves and tropical cyclone data from the International Best Track Archive for Climate Stewardship, we found empirical evidence that stratospheric gravity wave activity is associated with the intensification of tropical cyclones. The Atmospheric Infrared Sounder and International Best Track Archive for Climate Stewardship data showed that strong gravity wave events occurred about twice as often for tropical cyclone intensification compared to storm weakening. Observations of stratospheric gravity waves, which are not affected by obscuring tropospheric clouds, may become an important future indicator of storm intensification.

  5. Statistical Aspects of Tropical Cyclone Activity in the North Atlantic Basin, 1945-2010

    Science.gov (United States)

    Wilson, Robert M.

    2012-01-01

    Examined are statistical aspects of the 715 tropical cyclones that formed in the North Atlantic basin during the interval 1945-2010. These 715 tropical cyclones include 306 storms that attained only tropical storm strength, 409 hurricanes, 179 major or intense hurricanes, and 108 storms that struck the US coastline as hurricanes. Comparisons made using 10-year moving average (10-yma) values between tropical cyclone parametric values and surface air and ENSO-related parametric values indicate strong correlations to exist, in particular, against the Armagh Observatory (Northern Ireland) surface air temperature, the Atlantic Multi-decadal Oscillation (AMO) index, the Atlantic Meridional Mode (AMM) index, and the North Atlantic Oscillation (NAO) index, in addition to the Oceanic Ni o index (ONI) and Quasi-Biennial Oscillation (QBO) indices. Also examined are the decadal variations of the tropical cyclone parametric values and a look ahead towards the 2012 hurricane season and beyond.

  6. Do tropical cyclones shape shorebird habitat patterns? Biogeoclimatology of snowy plovers in Florida.

    Science.gov (United States)

    Convertino, Matteo; Elsner, James B; Muñoz-Carpena, Rafael; Kiker, Gregory A; Martinez, Christopher J; Fischer, Richard A; Linkov, Igor

    2011-01-12

    The Gulf coastal ecosystems in Florida are foci of the highest species richness of imperiled shoreline dependent birds in the USA. However environmental processes that affect their macroecological patterns, like occupancy and abundance, are not well unraveled. In Florida the Snowy Plover (Charadrius alexandrinus nivosus) is resident along northern and western white sandy estuarine/ocean beaches and is considered a state-threatened species. Here we show that favorable nesting areas along the Florida Gulf coastline are located in regions impacted relatively more frequently by tropical cyclones. The odds of Snowy Plover nesting in these areas during the spring following a tropical cyclone impact are seven times higher compared to the odds during the spring following a season without a cyclone. The only intensity of a tropical cyclone does not appear to be a significant factor affecting breeding populations. Nevertheless a future climate scenario featuring fewer, but more extreme cyclones could result in a decrease in the breeding Snowy Plover population and its breeding range. This is because the spatio-temporal frequency of cyclone events was found to significantly affect nest abundance. Due to the similar geographic range and habitat suitability, and no decrease in nest abundance of other shorebirds in Florida after the cyclone season, our results suggest a common bioclimatic feedback between shorebird abundance and tropical cyclones in breeding areas which are affected by cyclones.

  7. Do tropical cyclones shape shorebird habitat patterns? Biogeoclimatology of snowy plovers in Florida.

    Directory of Open Access Journals (Sweden)

    Matteo Convertino

    Full Text Available BACKGROUND: The Gulf coastal ecosystems in Florida are foci of the highest species richness of imperiled shoreline dependent birds in the USA. However environmental processes that affect their macroecological patterns, like occupancy and abundance, are not well unraveled. In Florida the Snowy Plover (Charadrius alexandrinus nivosus is resident along northern and western white sandy estuarine/ocean beaches and is considered a state-threatened species. METHODOLOGY/PRINCIPAL FINDINGS: Here we show that favorable nesting areas along the Florida Gulf coastline are located in regions impacted relatively more frequently by tropical cyclones. The odds of Snowy Plover nesting in these areas during the spring following a tropical cyclone impact are seven times higher compared to the odds during the spring following a season without a cyclone. The only intensity of a tropical cyclone does not appear to be a significant factor affecting breeding populations. CONCLUSIONS/SIGNIFICANCE: Nevertheless a future climate scenario featuring fewer, but more extreme cyclones could result in a decrease in the breeding Snowy Plover population and its breeding range. This is because the spatio-temporal frequency of cyclone events was found to significantly affect nest abundance. Due to the similar geographic range and habitat suitability, and no decrease in nest abundance of other shorebirds in Florida after the cyclone season, our results suggest a common bioclimatic feedback between shorebird abundance and tropical cyclones in breeding areas which are affected by cyclones.

  8. Lessons learnt from tropical cyclone losses

    Science.gov (United States)

    Honegger, Caspar; Wüest, Marc; Zimmerli, Peter; Schoeck, Konrad

    2016-04-01

    Swiss Re has a long history in developing natural catastrophe loss models. The tropical cyclone USA and China model are examples for event-based models in their second generation. Both are based on basin-wide probabilistic track sets and calculate explicitly the losses from the sub-perils wind and storm surge in an insurance portfolio. Based on these models, we present two cases studies. China: a view on recent typhoon loss history Over the last 20 years only very few major tropical cyclones have caused severe insurance losses in the Pearl River Delta region and Shanghai, the two main exposure clusters along China's southeast coast. Several storms have made landfall in China every year but most struck areas with relatively low insured values. With this study, we make the point that typhoon landfalls in China have a strong hit-or-miss character and available insured loss experience is too short to form a representative view of risk. Historical storm tracks and a simple loss model applied to a market portfolio - all from publicly available data - are sufficient to illustrate this. An event-based probabilistic model is necessary for a reliable judgement of the typhoon risk in China. New York: current and future tropical cyclone risk In the aftermath of hurricane Sandy 2012, Swiss Re supported the City of New York in identifying ways to significantly improve the resilience to severe weather and climate change. Swiss Re provided a quantitative assessment of potential climate related risks facing the city as well as measures that could reduce those impacts.

  9. Tropical cyclones over NIO during La-Nina Modoki years

    Digital Repository Service at National Institute of Oceanography (India)

    Sumesh, K.G.; RameshKumar, M.R.

    Tropical cyclones over NIO (North Indian Ocean) are highly influenced by the El-Nino and La-Nina activities over the Pacific Ocean Influences of air-sea interaction processes like El-Nino Modoki and La-Nina Modoki on tropical cyclones are less...

  10. Emergency Department Presentations following Tropical Cyclone Yasi.

    Directory of Open Access Journals (Sweden)

    Peter Aitken

    Full Text Available Emergency departments see an increase in cases during cyclones. The aim of this study is to describe patient presentations to the Emergency Department (ED of a tertiary level hospital (Townsville following a tropical cyclone (Yasi. Specific areas of focus include changes in: patient demographics (age and gender, triage categories, and classification of diseases.Data were extracted from the Townsville Hospitals ED information system (EDIS for three periods in 2009, 2010 and 2011 to coincide with formation of Cyclone Yasi (31 January 2011 to six days after Yasi crossed the coast line (8 February 2012. The analysis explored the changes in ICD10-AM 4-character classification and presented at the Chapter level.There was a marked increase in the number of patients attending the ED during Yasi, particularly those aged over 65 years with a maximum daily attendance of 372 patients on 4 Feb 2011. The most marked increases were in: Triage categories--4 and 5; and ICD categories--diseases of the skin and subcutaneous tissue (L00-L99, and factors influencing health care status (Z00-Z99. The most common diagnostic presentation across all years was injury (S00-T98.There was an increase in presentations to the ED of TTH, which peaked in the first 24-48 hours following the cyclone and returned to normal over a five-day period. The changes in presentations were mostly an amplification of normal attendance patterns with some altered areas of activity. Injury patterns are similar to overseas experience.

  11. Extreme weather: Subtropical floods and tropical cyclones

    Science.gov (United States)

    Shaevitz, Daniel A.

    Extreme weather events have a large effect on society. As such, it is important to understand these events and to project how they may change in a future, warmer climate. The aim of this thesis is to develop a deeper understanding of two types of extreme weather events: subtropical floods and tropical cyclones (TCs). In the subtropics, the latitude is high enough that quasi-geostrophic dynamics are at least qualitatively relevant, while low enough that moisture may be abundant and convection strong. Extratropical extreme precipitation events are usually associated with large-scale flow disturbances, strong ascent, and large latent heat release. In the first part of this thesis, I examine the possible triggering of convection by the large-scale dynamics and investigate the coupling between the two. Specifically two examples of extreme precipitation events in the subtropics are analyzed, the 2010 and 2014 floods of India and Pakistan and the 2015 flood of Texas and Oklahoma. I invert the quasi-geostrophic omega equation to decompose the large-scale vertical motion profile to components due to synoptic forcing and diabatic heating. Additionally, I present model results from within the Column Quasi-Geostrophic framework. A single column model and cloud-revolving model are forced with the large-scale forcings (other than large-scale vertical motion) computed from the quasi-geostrophic omega equation with input data from a reanalysis data set, and the large-scale vertical motion is diagnosed interactively with the simulated convection. It is found that convection was triggered primarily by mechanically forced orographic ascent over the Himalayas during the India/Pakistan flood and by upper-level Potential Vorticity disturbances during the Texas/Oklahoma flood. Furthermore, a climate attribution analysis was conducted for the Texas/Oklahoma flood and it is found that anthropogenic climate change was responsible for a small amount of rainfall during the event but the

  12. Developing an enhanced tropical cyclone data portal for the Southern Hemisphere and the Western Pacific Ocean

    Science.gov (United States)

    Kuleshov, Yuriy; de Wit, Roald; Atalifo, Terry; Prakash, Bipendra; Waqaicelua, Alipate; Kunitsugu, Masashi; Caroff, Philippe; Chane-Ming, Fabrice

    2013-04-01

    Tropical cyclones are the most extreme weather phenomena which severely impact coastal communities and island nations. There is an ongoing research (i) on accurate analysis of observed trends in tropical cyclone occurrences, and (ii) how tropical cyclone frequency and intensity may change in the future as a result of climate change. Reliable historical records of cyclone activity are vital for this research. The Pacific Australia Climate Change Science and Adaptation Planning (PACCSAP) program is dedicated to help Pacific Island countries and Timor Leste gain a better understanding of how climate change will impact their regions. One of the key PACCSAP projects is focused on developing a tropical cyclone archive, climatology and seasonal prediction for the regions. As part of the project, historical tropical cyclone best track data have been examined and prepared to be subsequently displayed through the enhanced tropical cyclone data portal for the Southern Hemisphere and the Western Pacific Ocean. Data from the Regional Specialised Meteorological Centre (RSMC) Nadi, Fiji and Tropical Cyclone Warning Centres (TCWCs) in Brisbane, Darwin and Wellington for 1969-1970 to 2010-2011 tropical cyclone seasons have been carefully examined. Errors and inconsistencies which have been found during the quality control procedure have been corrected. To produce a consolidated data set for the South Pacific Ocean, best track data from these four centres have been used. Specifically, for 1969-1970 to 1994-1995 tropical cyclone seasons, data from TCWCs in Brisbane, Darwin and Wellington have been used. In 1995, RSMC Nadi, Fiji has been established with responsibilities for issuing tropical cyclone warnings and preparing best track data for the area south of the equator to 25°S, 160°E to 120°W. Consequently, data from RSMC Nadi have been used as a primary source for this area, starting from the 1995-1996 tropical cyclone season. These data have been combined with the data from

  13. Forecasting and Warning of Tropical Cyclones in China

    Directory of Open Access Journals (Sweden)

    Bangzhong Wang

    2007-10-01

    Full Text Available With the development of the global economy, the impact of tropical cyclones has become far-reaching. Thus they are a fundamental issue to be addressed both nationally and globally. The socio-economic impact is particularly noticeable in developing countries, especially China. This paper begins with the effects of cyclones on regional and global economies. Then a brief introduction to the past and current situations and progress in cyclones forecasting and warning in China are presented. Finally the paper gives recommendations about improving and perfecting the tropical cyclone forecasting and warning systems.

  14. Coastal flooding by tropical cyclones and sea-level rise.

    Science.gov (United States)

    Woodruff, Jonathan D; Irish, Jennifer L; Camargo, Suzana J

    2013-12-05

    The future impacts of climate change on landfalling tropical cyclones are unclear. Regardless of this uncertainty, flooding by tropical cyclones will increase as a result of accelerated sea-level rise. Under similar rates of rapid sea-level rise during the early Holocene epoch most low-lying sedimentary coastlines were generally much less resilient to storm impacts. Society must learn to live with a rapidly evolving shoreline that is increasingly prone to flooding from tropical cyclones. These impacts can be mitigated partly with adaptive strategies, which include careful stewardship of sediments and reductions in human-induced land subsidence.

  15. Electromagnetohydrodynamic nature of tropical cyclones, hurricanes, and tornadoes

    Science.gov (United States)

    Krasilnikov, Evgeny Y.

    1997-06-01

    The problem of genesis and intensification of tropical cyclones, hurricanes, and tornadoes is highly important in meteorology and to date has not been solved. At the same time, practically all researches made concerning these phenomena fail to take into account that the origin and intensification of tropical cyclones, hurricanes, and tornadoes take place under conditions of an abnormally strong electric field which together with electromagnetohydrodynamic interaction occupies a key position in the intensification process. The detailed description of the electromagnetohydrodynamic model explaining the processes of energy conversion in tropical cyclones, hurricanes, and tornadoes is presented.

  16. Quantitative observations on tropical cyclone tracks in the Arabian Sea

    Science.gov (United States)

    Terry, James P.; Gienko, Gennady

    2018-03-01

    The Arabian Sea basin represents a minor component of global total cyclones annually and has not featured so prominently in cyclone research compared with other basins where greater numbers of cyclones are registered each year. This paper presents the results of exploratory analysis of various features of cyclone tracks in the Arabian Sea, with a particular focus on examining their temporal and spatial patterns. Track morphometry also reveals further information on track shape. The study indicates how cyclones spawned during May in the early pre-monsoon period (often strong events) have a tendency to follow more sinuous tracks, whereas cyclones occurring in October in the post-monsoon period tend to follow straighter tracks. Track sinuosity is significantly related to other attributes, including cyclone longevity and intensity. Comparisons are also drawn between the general characteristics of cyclone tracks in the Arabian Sea and other ocean basins, suggesting how the size and geography of the Arabian Sea basin exert influences on these characteristics.

  17. Topographic Rossby Waves Generated by Tropical Cyclones

    Science.gov (United States)

    Dukhovskoy, D. S.; Morey, S. L.

    2013-05-01

    Analytical and numerical studies suggest that given appropriate slope, the ocean responds to a tropical storm with low-frequency motions trapped over a continental slope, the Coastal Trapped Waves. The presented study is focused on Topographic Rossby Waves (TRW), sub-inertial oscillations propagating over a sloping bottom. Generation and propagation of TRW under barotropic (Continental Shelf Waves or Shelf Waves) and baroclinic (Bottom Trapped Waves) approximations are discussed. A real-case model study of a storm surge in Apalachee Bay, northeastern Gulf of Mexico during Hurricane Dennis (July, 2005) is presented to demonstrate the role of the shelf waves in coastal inundation. The presentation also discusses excitation of baroclinic bottom-intensified wave motions on the continental slope by a tropical cyclone. An idealized model experiment demonstrates that a continental shelf that (1) responds to a storm as a baroclinic ocean and (2) has a slope steep enough to dominate the planetary β-effect (but small enough to prevent internal Kelvin-type modes) can support baroclinic topographic waves.

  18. Influence of upper ocean stratification interannual variability on tropical cyclones

    Digital Repository Service at National Institute of Oceanography (India)

    Vincent, E.M.; Emanuel, K.A.; Lengaigne, M.; Vialard, J.; Madec, G.

    Climate modes, such as the El Nino Southern Oscillation (ENSO), influence Tropical Cyclones ~ (TCs) interannual activity through their effect on large-scale atmospheric environment. These climate modes also induce interannual variations...

  19. Remote Sensing and Modeling of Cyclone Monica near Peak Intensity

    Directory of Open Access Journals (Sweden)

    Stephen L. Durden

    2010-07-01

    Full Text Available Cyclone Monica was an intense Southern Hemisphere tropical cyclone of 2006. Although no in situ measurements of Monica’s inner core were made, microwave, infrared, and visible satellite instruments observed Monica before and during peak intensity through landfall on Australia’s northern coast. The author analyzes remote sensing measurements in detail to investigate Monica’s intensity. While Dvorak analysis of its imagery argues that it was of extreme intensity, infrared and microwave soundings indicate a somewhat lower intensity, especially as it neared landfall. The author also describes several numerical model runs that were made to investigate the maximum possible intensity for the observed environmental conditions; these simulations also suggest a lower intensity than estimates from Dvorak analysis alone. Based on the evidence from the various measurements and modeling, the estimated range for the minimum sea level pressure at peak intensity is 900 to 920 hPa. The estimated range for the one-minute averaged maximum wind speed at peak intensity is 72 to 82 m/s. These maxima were likely reached about 24 hours prior to landfall, with some weakening occurring afterward.

  20. Leveraging LSTM for rapid intensifications prediction of tropical cyclones

    Science.gov (United States)

    Li, Y.; Yang, R.; Yang, C.; Yu, M.; Hu, F.; Jiang, Y.

    2017-10-01

    Tropical cyclones (TCs) usually cause severe damages and destructions. TC intensity forecasting helps people prepare for the extreme weather and could save lives and properties. Rapid Intensifications (RI) of TCs are the major error sources of TC intensity forecasting. A large number of factors, such as sea surface temperature and wind shear, affect the RI processes of TCs. Quite a lot of work have been done to identify the combination of conditions most favorable to RI. In this study, deep learning method is utilized to combine conditions for RI prediction of TCs. Experiments show that the long short-term memory (LSTM) network provides the ability to leverage past conditions to predict TC rapid intensifications.

  1. Downscaling CMIP5 climate models shows increased tropical cyclone activity over the 21st century.

    Science.gov (United States)

    Emanuel, Kerry A

    2013-07-23

    A recently developed technique for simulating large [O(10(4))] numbers of tropical cyclones in climate states described by global gridded data is applied to simulations of historical and future climate states simulated by six Coupled Model Intercomparison Project 5 (CMIP5) global climate models. Tropical cyclones downscaled from the climate of the period 1950-2005 are compared with those of the 21st century in simulations that stipulate that the radiative forcing from greenhouse gases increases by over preindustrial values. In contrast to storms that appear explicitly in most global models, the frequency of downscaled tropical cyclones increases during the 21st century in most locations. The intensity of such storms, as measured by their maximum wind speeds, also increases, in agreement with previous results. Increases in tropical cyclone activity are most prominent in the western North Pacific, but are evident in other regions except for the southwestern Pacific. The increased frequency of events is consistent with increases in a genesis potential index based on monthly mean global model output. These results are compared and contrasted with other inferences concerning the effect of global warming on tropical cyclones.

  2. Infectious Diseases and Tropical Cyclones in Southeast China.

    Science.gov (United States)

    Zheng, Jietao; Han, Weixiao; Jiang, Baofa; Ma, Wei; Zhang, Ying

    2017-05-07

    Southeast China is frequently hit by tropical cyclones (TCs) with significant economic and health burdens each year. However, there is a lack of understanding of what infectious diseases could be affected by tropical cyclones. This study aimed to examine the impacts of tropical cyclones on notifiable infectious diseases in southeast China. Disease data between 2005 and 2011 from four coastal provinces in southeast China, including Guangdong, Hainan, Zhejiang, and Fujian province, were collected. Numbers of cases of 14 infectious diseases were compared between risk periods and reference periods for each tropical cyclone. Risk ratios (RR s ) were calculated to estimate the risks. TCs were more likely to increase the risk of bacillary dysentery, paratyphoid fever, dengue fever and acute hemorrhagic conjunctivitis ( ps infectious diseases. TCs are more likely to increase the risk of intestinal and contact transmitted infectious diseases than to decrease the risk, and more likely to decrease the risk of respiratory infectious diseases than to increase the risk. Findings of this study would assist in developing public health strategies and interventions for the reduction of the adverse health impacts from tropical cyclones.

  3. Infectious Diseases and Tropical Cyclones in Southeast China

    Directory of Open Access Journals (Sweden)

    Jietao Zheng

    2017-05-01

    Full Text Available Southeast China is frequently hit by tropical cyclones (TCs with significant economic and health burdens each year. However, there is a lack of understanding of what infectious diseases could be affected by tropical cyclones. This study aimed to examine the impacts of tropical cyclones on notifiable infectious diseases in southeast China. Disease data between 2005 and 2011 from four coastal provinces in southeast China, including Guangdong, Hainan, Zhejiang, and Fujian province, were collected. Numbers of cases of 14 infectious diseases were compared between risk periods and reference periods for each tropical cyclone. Risk ratios (RRs were calculated to estimate the risks. TCs were more likely to increase the risk of bacillary dysentery, paratyphoid fever, dengue fever and acute hemorrhagic conjunctivitis (ps < 0.05 than to decrease the risk, more likely to decrease the risk of measles, mumps, varicella and vivax malaria (ps < 0.05 than to increase the risk. In conclusion, TCs have mixed effects on the risk of infectious diseases. TCs are more likely to increase the risk of intestinal and contact transmitted infectious diseases than to decrease the risk, and more likely to decrease the risk of respiratory infectious diseases than to increase the risk. Findings of this study would assist in developing public health strategies and interventions for the reduction of the adverse health impacts from tropical cyclones.

  4. Spatial and temporal distribution of North Atlantic tropical cyclones

    African Journals Online (AJOL)

    EJIRO

    3Laboratoire de Physique de l'Atmosphère et de l'Océan , ESP-UCAD, BP 5085, Dakar-Fann, Senegal. Accepted 29 October, 2009. The aim of this work is to provide a classification of tropical ... shear are needed for tropical cyclone formation. In addition, there is also the need of a precursor in order to develop a tropical ...

  5. Temporal clustering of tropical cyclones and its ecosystem impacts.

    Science.gov (United States)

    Mumby, Peter J; Vitolo, Renato; Stephenson, David B

    2011-10-25

    Tropical cyclones have massive economic, social, and ecological impacts, and models of their occurrence influence many planning activities from setting insurance premiums to conservation planning. Most impact models allow for geographically varying cyclone rates but assume that individual storm events occur randomly with constant rate in time. This study analyzes the statistical properties of Atlantic tropical cyclones and shows that local cyclone counts vary in time, with periods of elevated activity followed by relative quiescence. Such temporal clustering is particularly strong in the Caribbean Sea, along the coasts of Belize, Honduras, Costa Rica, Jamaica, the southwest of Haiti, and in the main hurricane development region in the North Atlantic between Africa and the Caribbean. Failing to recognize this natural nonstationarity in cyclone rates can give inaccurate impact predictions. We demonstrate this by exploring cyclone impacts on coral reefs. For a given cyclone rate, we find that clustered events have a less detrimental impact than independent random events. Predictions using a standard random hurricane model were overly pessimistic, predicting reef degradation more than a decade earlier than that expected under clustered disturbance. The presence of clustering allows coral reefs more time to recover to healthier states, but the impacts of clustering will vary from one ecosystem to another.

  6. Impact of horizontal resolution on prediction of tropical cyclones over ...

    Indian Academy of Sciences (India)

    Two cyclones, which formed over the Bay of Bengal during the years 1995 and 1997, are simulated using a regional weather prediction model with two horizontal resolutions of 165km and 55 km. The model is found to perform reasonably well towards simulation of the storms. The structure, intensity and track of the cyclones ...

  7. Damage costs of climate change through intensification of tropical cyclone activities: An application of FUND

    NARCIS (Netherlands)

    Narita, D.; Anthoff, D.; Tol, R.S.J.

    2009-01-01

    Climate change may intensify tropical cyclone activities and amplify their negative economic effects. We simulated the direct economic impact of tropical cyclones enhanced by climate change with the integrated assessment model Climate Framework for Uncertainty, Negotiation and Distribution (FUND),

  8. Real-Time Forecasting System of Winds, Waves and Surge in Tropical Cyclones

    National Research Council Canada - National Science Library

    Graber, Hans C; Donelan, Mark A; Brown, Michael G; Slinn, Donald N; Hagen, Scott C; Thompson, Donald R; Jensen, Robert E; Black, Peter G; Powell, Mark D; Guiney, John L; Cardone, Vincent J; Cox, Andrew T

    2006-01-01

    ... of tropical cyclones The results of this forecasting system would provide real-time information to the National Hurricane Center during the tropical cyclone season in the Atlantic for establishing improved...

  9. TRMM TROPICAL CYCLONE PRECIPITATION FEATURE (TCPF) DATABASE - LEVEL 1 V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The TRMM Cyclone Precipitation Feature (TCPF) Database - Level 1 provides Tropical Rainfall Measuring Mission (TRMM)-based tropical cyclone data in a common...

  10. NOAA JPSS Advanced Technology Microwave Sounder (ATMS)-based Tropical Cyclone (TC) Products from NDE

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The JPSS Microwave Sounder-based Tropical Cyclone (TC) Products provide estimates of tropical cyclone maximum wind speed, minimum sea level pressure, radii of 34,...

  11. Moist Thermodynamics of Tropical Cyclone Formation and Intensification in High-Resolution Climate Models

    Science.gov (United States)

    Wing, A. A.; Camargo, S. J.; Sobel, A. H.; Kim, D.; Moon, Y.; Bosilovich, M. G.; Murakami, H.; Reed, K. A.; Vecchi, G. A.; Wehner, M. F.; Zarzycki, C. M.; Zhao, M.

    2017-12-01

    In recent years, climate models have improved such that high-resolution simulations are able to reproduce the climatology of tropical cyclone activity with some fidelity and show some skill in seasonal forecasting. However, biases remain in many models, motivating a better understanding of what factors control the representation of tropical cyclone activity in climate models. We explore tropical cyclogenesis and intensification processes in six high-resolution climate models from NOAA/GFDL, NCAR, and NASA, including both coupled and uncoupled configurations. Our analysis framework focuses on how convection, moisture, clouds and related processes are coupled and employs budgets of column moist static energy and the spatial variance of column moist static energy. The latter allows us to quantify the different feedback processes responsible for the amplification of moist static energy anomalies associated with the organization of convection and cyclogenesis, including surface flux feedbacks and cloud-radiative feedbacks. We track the formation and evolution of tropical cyclones in the climate model simulations and apply our analysis along the individual tracks and composited over many tropical cyclones. We use two methods of compositing: a composite over all TC track points in a given intensity range, and a composite relative to the time of lifetime maximum intensity for each storm (at the same stage in the TC life cycle).

  12. The View from the Top: CALIOP Ice Water Content in the Uppermost Layer of Tropical Cyclones

    Science.gov (United States)

    Avery, Melody A.; Deng, Min; Garnier, Anne; Heymsfield, Andrew; Pelon, Jacques; Powell, Kathleen A.; Trepte, Charles R.; Vaughan, Mark A.; Winker, David M.; Young, Stuart

    2012-01-01

    NASA's CALIPSO satellite carries both the Cloud and Aerosol Lidar with Orthogonal Polarization (CALIOP) and the Imaging Infrared Radiometer (IIR). The lidar is ideally suited to viewing the very top of tropical cyclones, and the IIR provides critical optical and microphysical information. The lidar and the IIR data work together to understand storm clouds since they are perfectly co-located, and big tropical cyclones provide an excellent complex target for comparing the observations. There is a lot of information from these case studies for understanding both the observations and the tropical cyclones, and we are just beginning to scratch the surface of what can be learned. Many tropical cyclone cloud particle measurements are focused on the middle and lower regions of storms, but characterization of cyclone interaction with the lowermost stratosphere at the upper storm boundary may be important for determining the total momentum and moisture transport budget, and perhaps for predicting storm intensity as well. A surprising amount of cloud ice is to be found at the very top of these big storms.

  13. On the Angular Momentum Loss of Tropical Cyclones: An f-Plane Approximation

    Science.gov (United States)

    Kang, Hyun-Gyu; Cheong, Hyeong-Bin; Kim, Won-Ho

    2018-02-01

    The angular momentum for ideal axisymmetric tropical cyclones on the f-plane is investigated with a focus on the total-volume integrated quantity. Budget analysis of the momentum equation at cylindrical coordinates shows that a tropical cyclone loses angular momentum during its development and mature stages due to the dynamical difference between the viscous inward-flow near the surface and the angular momentum conserving outward-flow aloft. The total relative angular momentum of a tropical cyclone, as a result, can be negative (i.e., implying anticyclonic rotation as a whole) despite intense cyclonic wind in the tropospheric layers. This anticyclonic rotation was measured in terms of the super-rotation ratio, the ratio of total relative angular momentum to the planetary angular momentum. Simulations with the numerical model of Weather Research and Forecasting (WRF) version 3.4.1 was found to be in favor of the theoretical angular-momentum budget analysis. It was revealed in the numerical simulations that the super-rotation ratio was negative, indicating a sub-rotation, as was predicted by analysis. The sub-rotation ratio was found to be less than one percent for typical tropical cyclones. To show the angular momentum decrease even in the decaying stage, numerical simulations where the thermal forcing by sea surface temperature switched off in the mature stage were carried out. In support of the angular momentum budget analysis, the results indicated that the angular momentum also decreases for a while soon after the forcing was eliminated.

  14. On the angular momentum loss of tropical cyclones: An f-plane approximation

    Science.gov (United States)

    Kang, Hyun-Gyu; Cheong, Hyeong-Bin; Kim, Won-Ho

    2017-12-01

    The angular momentum for ideal axisymmetric tropical cyclones on the f-plane is investigated with a focus on the total-volume integrated quantity. Budget analysis of the momentum equation at cylindrical coordinates shows that a tropical cyclone loses angular momentum during its development and mature stages due to the dynamical difference between the viscous inward-flow near the surface and the angular momentum conserving outward-flow aloft. The total relative angular momentum of a tropical cyclone, as a result, can be negative (i.e., implying anticyclonic rotation as a whole) despite intense cyclonic wind in the tropospheric layers. This anticyclonic rotation was measured in terms of the super-rotation ratio, the ratio of total relative angular momentum to the planetary angular momentum. Simulations with the numerical model of Weather Research and Forecasting (WRF) version 3.4.1 was found to be in favor of the theoretical angular-momentum budget analysis. It was revealed in the numerical simulations that the super-rotation ratio was negative, indicating a sub-rotation, as was predicted by analysis. The sub-rotation ratio was found to be less than one percent for typical tropical cyclones. To show the angular momentum decrease even in the decaying stage, numerical simulations where the thermal forcing by sea surface temperature switched off in the mature stage were carried out. In support of the angular momentum budget analysis, the results indicated that the angular momentum also decreases for a while soon after the forcing was eliminated.

  15. Tropical Cyclones as a Driver of Global Sediment Flux

    Science.gov (United States)

    Leyland, J.; Darby, S. E.; Cohen, S.

    2017-12-01

    The world's rivers deliver 19 billion tonnes of sediment to the coastal zone annually. The sediment supplied to the coastal zone is of significant importance for a variety of reasons, for example in acting as a vector for nutrients as well as in supplying sediment to coastal landforms such as deltas and beaches that can buffer those landforms from erosion and flooding. A greater understanding of the factors governing sediment flux to the oceans is therefore a key research gap. The non-linear relationship between river discharge and sediment flux implies that the global sediment flux may be disproportionately driven by large floods. Indeed, in our recent empirical research we have demonstrated that changes in the track locations, frequency and intensity of tropical storms in recent decades exert a significant control on the sediment flux emanating from the Mekong River. Since other large rivers potentially affected by tropical storms are known to make a significant contribution to the global sediment flux, this raises the question of the extent to which such storms play a significant role in controlling sediment loads at the global scale. In this paper we address that question by employing a global hydrological model (WBMsed) in order to predict runoff and sediment load forced by recent historical climate scenarios `with' and `without' tropical cyclones. We compare the two scenarios to (i) make the first estimate of the global contribution of sediment load forced by tropical storms; (ii) evaluate how that contribution has varied in recent decades and to (iii) explore variations in tropical-storm driven sediment loads in selected major river basins that are significantly affected by such storms.

  16. Field theoretical prediction of a property of the tropical cyclone

    Science.gov (United States)

    Spineanu, F.; Vlad, M.

    2014-01-01

    The large scale atmospheric vortices (tropical cyclones, tornadoes) are complex physical systems combining thermodynamics and fluid-mechanical processes. The late phase of the evolution towards stationarity consists of the vorticity concentration, a well known tendency to self-organization , an universal property of the two-dimensional fluids. It may then be expected that the stationary state of the tropical cyclone has the same nature as the vortices of many other systems in nature: ideal (Euler) fluids, superconductors, Bose-Einsetin condensate, cosmic strings, etc. Indeed it was found that there is a description of the atmospheric vortex in terms of a classical field theory. It is compatible with the more conventional treatment based on conservation laws, but the field theoretical model reveals properties that are almost inaccessible to the conventional formulation: it identifies the stationary states as being close to self-duality. This is of highest importance: the self-duality is known to be the origin of all coherent structures known in natural systems. Therefore the field theoretical (FT) formulation finds that the cuasi-coherent form of the atmospheric vortex (tropical cyclone) at stationarity is an expression of this particular property. In the present work we examine a strong property of the tropical cyclone, which arises in the FT formulation in a natural way: the equality of the masses of the particles associated to the matter field and respectively to the gauge field in the FT model is translated into the equality between the maximum radial extension of the tropical cyclone and the Rossby radius. For the cases where the FT model is a good approximation we calculate characteristic quantities of the tropical cyclone and find good comparison with observational data.

  17. Sea surface height evidence for long-term warming effects of tropical cyclones on the ocean.

    Science.gov (United States)

    Mei, Wei; Primeau, François; McWilliams, James C; Pasquero, Claudia

    2013-09-17

    Tropical cyclones have been hypothesized to influence climate by pumping heat into the ocean, but a direct measure of this warming effect is still lacking. We quantified cyclone-induced ocean warming by directly monitoring the thermal expansion of water in the wake of cyclones, using satellite-based sea surface height data that provide a unique way of tracking the changes in ocean heat content on seasonal and longer timescales. We find that the long-term effect of cyclones is to warm the ocean at a rate of 0.32 ± 0.15 PW between 1993 and 2009, i.e., ∼23 times more efficiently per unit area than the background equatorial warming, making cyclones potentially important modulators of the climate by affecting heat transport in the ocean-atmosphere system. Furthermore, our analysis reveals that the rate of warming increases with cyclone intensity. This, together with a predicted shift in the distribution of cyclones toward higher intensities as climate warms, suggests the ocean will get even warmer, possibly leading to a positive feedback.

  18. Physical understanding of the tropical cyclone wind-pressure relationship.

    Science.gov (United States)

    Chavas, Daniel R; Reed, Kevin A; Knaff, John A

    2017-11-08

    The relationship between the two common measures of tropical cyclone intensity, the central pressure deficit and the peak near-surface wind speed, is a long-standing problem in tropical meteorology that has been approximated empirically yet lacks physical understanding. Here we provide theoretical grounding for this relationship. We first demonstrate that the central pressure deficit is highly predictable from the low-level wind field via gradient wind balance. We then show that this relationship reduces to a dependence on two velocity scales: the maximum azimuthal-mean azimuthal wind speed and half the product of the Coriolis parameter and outer storm size. This simple theory is found to hold across a hierarchy of models spanning reduced-complexity and Earth-like global simulations and observations. Thus, the central pressure deficit is an intensity measure that combines maximum wind speed, storm size, and background rotation rate. This work has significant implications for both fundamental understanding and risk analysis, including why the central pressure better explains historical economic damages than does maximum wind speed.

  19. On tropical cyclone frequency and the warm pool area

    Directory of Open Access Journals (Sweden)

    R. E. Benestad

    2009-04-01

    Full Text Available The proposition that the rate of tropical cyclogenesis increases with the size of the "warm pool" is tested by comparing the seasonal variation of the warm pool area with the seasonality of the number of tropical cyclones. An analysis based on empirical data from the Northern Hemisphere is presented, where the warm pool associated with tropical cyclone activity is defined as the area, A, enclosed by the 26.5°C SST isotherm. Similar analysis was applied to the temperature weighted area AT with similar results.

    An intriguing non-linear relationship of high statistical significance was found between the temperature weighted area in the North Atlantic and the North-West Pacific on the one hand and the number of cyclones, N, in the same ocean basin on the other, but this pattern was not found over the North Indian Ocean. A simple statistical model was developed, based on the historical relationship between N and A. The simple model was then validated against independent inter-annual variations in the seasonal cyclone counts in the North Atlantic, but the correlation was not statistically significant in the North-West Pacific. No correlation, however, was found between N and A in the North Indian Ocean.

    A non-linear relationship between the cyclone number and temperature weighted area may in some ocean basins explain both why there has not been any linear trend in the number of cyclones over time as well as the recent upturn in the number of Atlantic hurricanes. The results also suggest that the notion of the number of tropical cyclones being insensitive to the area A is a misconception.

  20. Revisiting the steering principal of tropical cyclone motion in a numerical experiment

    Science.gov (United States)

    Wu, Liguang; Chen, Xiaoyu

    2016-12-01

    The steering principle of tropical cyclone motion has been applied to tropical cyclone forecasting and research for nearly 100 years. Two fundamental questions remain unanswered. One is why the steering flow plays a dominant role in tropical cyclone motion, and the other is when tropical cyclone motion deviates considerably from the steering. A high-resolution numerical experiment was conducted with the tropical cyclone in a typical large-scale monsoon trough over the western North Pacific. The simulated tropical cyclone experiences two eyewall replacement processes. Based on the potential vorticity tendency (PVT) diagnostics, this study demonstrates that the conventional steering, which is calculated over a certain radius from the tropical cyclone center in the horizontal and a deep pressure layer in the vertical, plays a dominant role in tropical cyclone motion since the contributions from other processes are largely cancelled out due to the coherent structure of tropical cyclone circulation. Resulting from the asymmetric dynamics of the tropical cyclone inner core, the trochoidal motion around the mean tropical cyclone track cannot be accounted for by the conventional steering. The instantaneous tropical cyclone motion can considerably deviate from the conventional steering that approximately accounts for the combined effect of the contribution of the advection of the symmetric potential vorticity component by the asymmetric flow and the contribution from the advection of the wave-number-one potential vorticity component by the symmetric flow.

  1. Improvement of wind field hindcasts for tropical cyclones

    Directory of Open Access Journals (Sweden)

    Yi Pan

    2016-01-01

    Full Text Available This paper presents a study on the improvement of wind field hindcasts for two typical tropical cyclones, i.e., Fanapi and Meranti, which occurred in 2010. The performance of the three existing models for the hindcasting of cyclone wind fields is first examined, and then two modification methods are proposed to improve the hindcasted results. The first one is the superposition method, which superposes the wind field calculated from the parametric cyclone model on that obtained from the Cross-Calibrated Multi-Platform (CCMP reanalysis data. The radius used for the superposition is based on an analysis of the minimum difference between the two wind fields. The other one is the direct modification method, which directly modifies the CCMP reanalysis data according to the ratio of the measured maximum wind speed to the reanalyzed value as well as the distance from the cyclone center. Using these two methods, the problem of underestimation of strong winds in reanalysis data can be overcome. Both methods show considerable improvements in the hindcasting of tropical cyclone wind fields, compared with the cyclone wind model and the reanalysis data.

  2. Improvement of wind field hindcasts for tropical cyclones

    Directory of Open Access Journals (Sweden)

    Yi Pan

    2016-01-01

    Full Text Available This paper presents a study on the improvement of wind field hindcasts for two typical tropical cyclones, i.e., Fanapi and Meranti, which occurred in 2010. The performance of the three existing models for the hindcasting of cyclone wind fields is first examined, and then two modification methods are proposed to improve the hindcasted results. The first one is the superposition method, which superposes the wind field calculated from the parametric cyclone model on that obtained from the cross-calibrated multi-platform (CCMP reanalysis data. The radius used for the superposition is based on an analysis of the minimum difference between the two wind fields. The other one is the direct modification method, which directly modifies the CCMP reanalysis data according to the ratio of the measured maximum wind speed to the reanalyzed value as well as the distance from the cyclone center. Using these two methods, the problem of underestimation of strong winds in reanalysis data can be overcome. Both methods show considerable improvements in the hindcasting of tropical cyclone wind fields, compared with the cyclone wind model and the reanalysis data.

  3. Training on Eastern Pacific tropical cyclones for Latin American students

    Science.gov (United States)

    Farfán, L. M.; Raga, G. B.

    2009-05-01

    Tropical cyclones are one of the most impressive atmospheric phenomena and their development in the Atlantic and Eastern Pacific basins has potential to affect several Latin-American and Caribbean countries, where human resources are limited. As part of an international research project, we are offering short courses based on the current understanding of tropical cyclones in the Eastern Pacific basin. Our main goal is to train students from higher-education institutions from various countries in Latin America. Key aspects are tropical cyclone formation and evolution, with particular emphasis on their development off the west coast of Mexico. Our approach includes lectures on tropical cyclone climatology and formation, dynamic and thermodynamic models, air-sea interaction and oceanic response, ocean waves and coastal impacts as well as variability and climate-related predictions. In particular, we use a best-track dataset issued by the United States National Hurricane Center and satellite observations to analyze convective patterns for the period 1970-2006. Case studies that resulted in landfall over northwestern Mexico are analyzed in more detail; this includes systems that developed during the 2006, 2007 and 2008 seasons. Additionally, we have organized a human-dimensions symposium to discuss socio-economic issues that are associated with the landfall of tropical cyclones. This includes coastal zone impact and flooding, the link between cyclones and water resources, the flow of weather and climate information from scientists to policy- makers, the role of emergency managers and decision makers, impact over health issues and the viewpoint of the insurance industry.

  4. Effect of Sulfate Aerosol Geoengineering on Tropical cyclones

    Science.gov (United States)

    Wang, Q.; Moore, J.; Ji, D.

    2017-12-01

    Variation in tropical cyclone (TC) number and intensity is driven in part by changes in the thermodynamics that can be defined by ocean and atmospheric variables. Genesis Potential Index (GPI) and ventilation index (VI) are combinations of potential intensity, vertical wind shear, relative humidity, midlevel entropy deficit, and absolute vorticity that quantify thermodynamic forcing of TC activity under changed climates, and can be calculated from climate model output. Here we use five CMIP5 models running the RCP45 experiment the Geoengineering Model Intercomparison Project (GeoMIP) stratospheric aerosol injection G4 experiment to calculate the two indices over the 2020 to 2069 period. Globally, GPI under G4 is lower than under RCP45, though both have a slight increasing trend. Spatial patterns in the relative effectiveness of geoengineering show reductions in TC in all models in the North Atlantic basin, and northern Indian Ocean in all except NorESM1-M. In the North Pacific, most models also show relative reductions under G4. VI generally coincide with the GPI patterns. Most models project Potential intensity and Relative Humidity to be the dominant variable to affect genesis potential. Changes in vertical wind shear and vorticity are small with scatter across different models and ocean basins. We find that tropopause temperature maybe as important as sea surface temperature in effecting TC genesis. Thus stratospheric aerosol geoengineering impacts on potential intensity and hence TC intensity are reasonably consistent, but probably underestimated by statistical forecasts of Tropical North Atlantic hurricane activity driven by sea surface temperatures alone. However the impacts of geoengineering on other ocean basins are more difficult to assess, and require more complete understanding of their driving parameters under present day climates. Furthermore, the possible effects of stratospheric injection on chemical reactions in the stratosphere, such as ozone, are

  5. Thermal stress and tropical cyclones affect economic production in Central America and Caribbean

    Science.gov (United States)

    Hsiang, S. M.

    2009-12-01

    Surface temperatures and tropical cyclones have large impacts on economic production. Local cyclone energy dissipation reduces output in agriculture and tourism, while stimulating output in construction. High surface temperatures reduce output in several labor-intensive industries; a 1° C increase for two consecutive years results in production losses of ˜13%. The response is greatest during the hottest season and is non-linear, with high temperature days contributing the most to production losses. The structure of this response matches results from a large ergonomics literature, supporting the hypothesis that thermal stress reduces human performance, driving macroeconomic fluctuations. This large response of non-agricultural sectors suggests that current estimates underestimate the scale and scope of economic vulnerabilities to climate change. Responses of each industry to surface temperature, tropical cyclones and rainfall. Estimates represent the change of value-added in the industry in response to each atmospheric variables during the year of production (L=0) and the years prior (L≥1). The responses to surface temperature are triangles, tropical cyclones are squares and rainfall are crosses. Estimates are grey if none of the annual responses are significant at the α = 0.1 level. Whiskers indicate 95% confidence intervals. Tourism receipts displays the five years prior (L=1-5) because of the long response of that industry to cyclones. Agriculture per worker is also plotted as circles when estimated a second time excluding mainland countries from the sample. Units are: temperature- percent change in output per 0.33°C; cyclones- percent changes in output per 1 standard deviation of tropical cyclone energy; rainfall- percent change in output per 2 cm/month.

  6. Contrasting Various Metrics for Measuring Tropical Cyclone Activity

    Directory of Open Access Journals (Sweden)

    Jia-Yuh Yu Ping-Gin Chiu

    2012-01-01

    Full Text Available Popular metrics used for measuring the tropical cyclone (TC activity, including NTC (number of tropical cyclones, TCD (tropical cyclone days, ACE (accumulated cyclone energy, PDI (power dissipation index, along with two newly proposed indices: RACE (revised accumulated cyclone energy and RPDI (revised power dissipation index, are compared using the JTWC (Joint Typhoon Warning Center best-track data of TC over the western North Pacific basin. Our study shows that, while the above metrics have demonstrated various degrees of discrepancies, but in practical terms, they are all able to produce meaningful temporal and spatial changes in response to climate variability. Compared with the conventional ACE and PDI, RACE and RPDI seem to provide a more precise estimate of the total TC activity, especially in projecting the upswing trend of TC activity over the past few decades, simply because of a better approach in estimating TC wind energy. However, we would argue that there is still no need to find a ¡§universal¡¨ or ¡§best¡¨ metric for TC activity because different metrics are designed to stratify different aspects of TC activity, and whether the selected metric is appropriate or not should be determined solely by the purpose of study. Except for magnitude difference, the analysis results seem insensitive to the choice of the best-track datasets.

  7. Cost-benefit analysis of a green electricity system in Japan considering the indirect economic impacts of tropical cyclones

    International Nuclear Information System (INIS)

    Esteban, Miguel; Zhang, Qi; Longarte-Galnares, Gorka

    2012-01-01

    Global warming is likely to profoundly influence future weather patterns, and one consequence of this is the likelihood of an increase in tropical cyclone intensity. The present paper presents a cost-benefit analysis of introducing significant amounts of green energy in the electricity system in Japan in the light of the economic damage that an increase in tropical cyclone intensity could have on GDP growth between 2010 and 2085. Essentially the passage of a tropical cyclone will result not only in physical damage but also on a decrease in economic productivity due to precautionary cessation of the economic activity, which has an effect on GDP growth. By comparing the economic performance of different electricity system scenarios with the indirect economic damage of tropical cyclones from 2010 to 2085, based on the yearly economic data of green electricity, fossil fuel, GDP and population, it can be seen that the green scenarios are generally a cost-effective way of mitigating the effects of these weather systems, despite the large amount of initial investments necessary. - Highlights: ► Climate change is likely to increase the future strength of tropical cyclones. ► An increase in tropical cyclone strength would reduce GDP growth in Japan. ► Reducing green-house gas emissions is a cost-effective mitigation strategy.

  8. The Impact of Dry Saharan Air on Tropical Cyclone Intensification

    Science.gov (United States)

    Braun, Scott A.

    2012-01-01

    The controversial role of the dry Saharan Air Layer (SAL) on tropical storm intensification in the Atlantic will be addressed. The SAL has been argued in previous studies to have potential positive influences on storm development, but most recent studies have argued for a strong suppressing influence on storm intensification as a result of dry air, high stability, increased vertical wind shear, and microphysical impacts of dust. Here, we focus on observations of Hurricane Helene (2006), which occurred during the NASA African Monsoon Multidisciplinary Activities (NAMMA) experiment. Satellite and airborne observations, combined with global meteorological analyses depict the initial environment of Helene as being dominated by the SAL, although with minimal evidence that the SAL air actually penetrated to the core of the disturbance. Over the next several days, the SAL air quickly moved westward and was gradually replaced by a very dry, dust-free layer associated with subsidence. Despite the wrapping of this very dry air around the storm, Helene intensified steadily to a Category 3 hurricane suggesting that the dry air was unable to significantly slow storm intensification. Several uncertainties remain about the role of the SAL in Helene (and in tropical cyclones in general). To better address these uncertainties, NASA will be conducting a three year airborne campaign called the Hurricane and Severe Storm Sentinel (HS3). The HS3 objectives are: To obtain critical measurements in the hurricane environment in order to identify the role of key factors such as large-scale wind systems (troughs, jet streams), Saharan air masses, African Easterly Waves and their embedded critical layers (that help to isolate tropical disturbances from hostile environments). To observe and understand the three-dimensional mesoscale and convective-scale internal structures of tropical disturbances and cyclones and their role in intensity change. The mission objectives will be achieved using

  9. A New Coupled Ocean-Waves-Atmosphere Model Designed for Tropical Storm Studies: Example of Tropical Cyclone Bejisa (2013-2014) in the South-West Indian Ocean

    Science.gov (United States)

    Pianezze, J.; Barthe, C.; Bielli, S.; Tulet, P.; Jullien, S.; Cambon, G.; Bousquet, O.; Claeys, M.; Cordier, E.

    2018-03-01

    Ocean-Waves-Atmosphere (OWA) exchanges are not well represented in current Numerical Weather Prediction (NWP) systems, which can lead to large uncertainties in tropical cyclone track and intensity forecasts. In order to explore and better understand the impact of OWA interactions on tropical cyclone modeling, a fully coupled OWA system based on the atmospheric model Meso-NH, the oceanic model CROCO, and the wave model WW3 and called MSWC was designed and applied to the case of tropical cyclone Bejisa (2013-2014). The fully coupled OWA simulation shows good agreement with the literature and available observations. In particular, simulated significant wave height is within 30 cm of measurements made with buoys and altimeters. Short-term (wind speed are necessary to produce sea salt aerosol emissions in the right place (in the eyewall of the tropical cyclone) and with the right size distribution, which is critical for cloud microphysics.

  10. Degree of simulated suppression of Atlantic tropical cyclones modulated by flavour of El Niño

    Science.gov (United States)

    Patricola, Christina M.; Chang, Ping; Saravanan, R.

    2016-02-01

    El Niño/Southern Oscillation, the dominant mode of interannual climate variability, strongly influences tropical cyclone activity. During canonical El Niño, the warm phase, Atlantic tropical cyclones are suppressed. However, the past decades have witnessed different El Niño characteristics, ranging from warming over the east Pacific cold tongue in canonical events to warming near the warm pool, known as warm pool El Niño or central Pacific El Niño. Global climate models project possible future increases in intensity of warm pool El Niño. Here we use a climate model at a resolution sufficient to explicitly simulate tropical cyclones to investigate how these flavours of El Niño may affect such cyclones. We show that Atlantic tropical cyclones are suppressed regardless of El Niño type. For the warmest 10% of each El Niño flavour, warm pool El Niño is substantially less effective at suppressing Atlantic tropical cyclones than cold tongue El Niño. However, for the same absolute warming intensity, the opposite is true. This is because less warming is required near the warm pool to satisfy the sea surface temperature threshold for deep convection, which leads to tropical cyclone suppression through vertical wind shear enhancements. We conclude that an understanding of future changes in not only location, but also intensity and frequency, of El Niño is important for forecasts and projections of Atlantic tropical cyclone activity.

  11. Impact of Vertical Wind Shear on Tropical Cyclone Rainfall

    Science.gov (United States)

    Cecil, Dan; Marchok, Tim

    2014-01-01

    While tropical cyclone rainfall has a large axisymmetric component, previous observational and theoretical studies have shown that environmental vertical wind shear leads to an asymmetric component of the vertical motion and precipitation fields. Composites consistently depict a precipitation enhancement downshear and also cyclonically downwind from the downshear direction. For consistence with much of the literature and with Northern Hemisphere observations, this is subsequently referred to as "Downshear-Left". Stronger shear magnitudes are associated with greater amplitude precipitation asymmetries. Recent work has reinforced the prior findings, and explored details of the response of the precipitation and kinematic fields to environmental vertical wind shear. Much of this research has focused on tropical cyclones away from land, to limit the influence of other processes that might distort the signal related to vertical wind shear. Recent evidence does suggest vertical wind shear can also play a major role in precipitation asymmetries during and after landfall.

  12. Tropical Cyclone Formation in 30-day Simulation Using Cloud-System-Resolving Global Nonhydrostatic Model (NICAM)

    Science.gov (United States)

    Yanase, W.; Satoh, M.; Iga, S.; Tomita, H.

    2007-12-01

    We are developing an icosahedral-grid non-hydrostatic AGCM, which can explicitly represent cumulus or meso-scale convection over the entire globe. We named the model NICAM (Nonhydrostatic ICosahedral Atmospheric Model). On 2005, we have performed a simulations with horizontal grid intervals of 14, 7 and 3.5 km using realistic topography and sea surface temperature in April 2004 (Miura et al., 2007; GRL). It simulated a typhoon Sudal that actually developed over the Northwestern Pacific in 2004. In the present study, the NICAM model with the horizontal grid interval of 14 km was used for perpetual July experiment with 30 forecasting days. In this simulation, several tropical cyclones formed over the wesetern and eastern North Pacific, althought the formation over the western North Pacific occured a little further north to the actually observed region. The mature tropical cyclones with intense wind speed had a structure of a cloud-free eye and eye wall. We have found that the enviromental parameters associated with the tropical cyclone genesis explain well the simulated region of tropical cyclone generation. Over the North Atlantic and eastern North Pacific, westward-moving disturbances like African wave are simulated, which seems to be related to the cyclone formation over the eastern North Pacific. On the other hand, the simulated tropical cyclones over the western North Pacifis seem to form by different factors as has been suggested by the previous studies based on observation. Although the model still has some problems and is under continuous improvement, we can discuss what dynamics is to be represented using a global high-resolution model.

  13. Impact of horizontal resolution on prediction of tropical cyclones over ...

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    great importance. During the last two decades, there have been considerable improvements in the prediction of tropical cyclones by numerical models. High res- ... focus is on the use of high-resolution hydro- .... Verification analysis and forecast of mean sea level pressure (all at 00 UTC); (a) analysis on 9th Nov.'95,.

  14. Decadal variation of ocean heat content and tropical cyclone activity ...

    Indian Academy of Sciences (India)

    made to examine the inter-decadal variations of tropical cyclone (TC) activity and OHC700 over the. Bay of Bengal (BOB) for the .... Decadal variation of OHC and TC activity over the Bay of Bengal. 67 available because of its ..... In: Climate change 2007: The physical science basis (eds). Solomon S, Qin D, Manning M, ...

  15. Spatial and temporal distribution of North Atlantic tropical cyclones ...

    African Journals Online (AJOL)

    month of genesis and their lifecycles and to study the role of African Easterly Waves (AEWs) in North Atlantic cyclogenesis. Between 1980 and 2004, 269 tropical cyclones (TCs) were formed over the North Atlantic, 77% of which occurred during the August-October period and 95% of major hurricanes (TCs in which the ...

  16. The response of land-falling tropical cyclone characteristics to projected climate change in northeast Australia

    Science.gov (United States)

    Parker, Chelsea L.; Bruyère, Cindy L.; Mooney, Priscilla A.; Lynch, Amanda H.

    2018-01-01

    Land-falling tropical cyclones along the Queensland coastline can result in serious and widespread damage. However, the effects of climate change on cyclone characteristics such as intensity, trajectory, rainfall, and especially translation speed and size are not well-understood. This study explores the relative change in the characteristics of three case studies by comparing the simulated tropical cyclones under current climate conditions with simulations of the same systems under future climate conditions. Simulations are performed with the Weather Research and Forecasting Model and environmental conditions for the future climate are obtained from the Community Earth System Model using a pseudo global warming technique. Results demonstrate a consistent response of increasing intensity through reduced central pressure (by up to 11 hPa), increased wind speeds (by 5-10% on average), and increased rainfall (by up to 27% for average hourly rainfall rates). The responses of other characteristics were variable and governed by either the location and trajectory of the current climate cyclone or the change in the steering flow. The cyclone that traveled furthest poleward encountered a larger climate perturbation, resulting in a larger proportional increase in size, rainfall rate, and wind speeds. The projected monthly average change in the 500 mb winds with climate change governed the alteration in the both the trajectory and translation speed for each case. The simulated changes have serious implications for damage to coastal settlements, infrastructure, and ecosystems through increased wind speeds, storm surge, rainfall, and potentially increased size of some systems.

  17. Tropical Cyclone Induced Air-Sea Interactions Over Oceanic Fronts

    Science.gov (United States)

    Shay, L. K.

    2012-12-01

    Recent severe tropical cyclones underscore the inherent importance of warm background ocean fronts and their interactions with the atmospheric boundary layer. Central to the question of heat and moisture fluxes, the amount of heat available to the tropical cyclone is predicated by the initial mixed layer depth and strength of the stratification that essentially set the level of entrainment mixing at the base of the mixed layer. In oceanic regimes where the ocean mixed layers are thin, shear-induced mixing tends to cool the upper ocean to form cold wakes which reduces the air-sea fluxes. This is an example of negative feedback. By contrast, in regimes where the ocean mixed layers are deep (usually along the western part of the gyres), warm water advection by the nearly steady currents reduces the levels of turbulent mixing by shear instabilities. As these strong near-inertial shears are arrested, more heat and moisture transfers are available through the enthalpy fluxes (typically 1 to 1.5 kW m-2) into the hurricane boundary layer. When tropical cyclones move into favorable or neutral atmospheric conditions, tropical cyclones have a tendency to rapidly intensify as observed over the Gulf of Mexico during Isidore and Lili in 2002, Katrina, Rita and Wilma in 2005, Dean and Felix in 2007 in the Caribbean Sea, and Earl in 2010 just north of the Caribbean Islands. To predict these tropical cyclone deepening (as well as weakening) cycles, coupled models must have ocean models with realistic ocean conditions and accurate air-sea and vertical mixing parameterizations. Thus, to constrain these models, having complete 3-D ocean profiles juxtaposed with atmospheric profiler measurements prior, during and subsequent to passage is an absolute necessity framed within regional scale satellite derived fields.

  18. Sensitivity of movement and intensity of severe cyclone AILA to the ...

    Indian Academy of Sciences (India)

    Accurate prediction of movement and intensity of tropical cyclone is still most challenging problem in numerical weather prediction. The positive progress in this field can be achieved by providing network of observations in the storm region and best representation of atmospheric physical processes in the model.

  19. Radio occultation bending angle anomalies during tropical cyclones

    DEFF Research Database (Denmark)

    Biondi, Riccardo; Neubert, Torsten; Syndergaard, S.

    2011-01-01

    The tropical deep convection affects the radiation balance of the atmosphere changing the water vapor mixing ratio and the temperature of the upper troposphere lower stratosphere. The aim of this work is to better understand these processes and to investigate if severe storms leave a significant...... signature in radio occultation profiles in the tropical tropopause layer. Using tropical cyclone best track database and data from different GPS radio occultation missions (COSMIC, GRACE, CHAMP, SACC and GPSMET), we selected 1194 profiles in a time window of 3 h and a space window of 300 km from the eye...... of the cyclone. We show that the bending angle anomaly of a GPS radio occultation signal is typically larger than the climatology in the upper troposphere and lower stratosphere and that a double tropopause during deep convection can easily be detected using this technique. Comparisons with co...

  20. Stable isotope anatomy of tropical cyclone Ita, North-Eastern Australia, April 2014.

    Science.gov (United States)

    Munksgaard, Niels C; Zwart, Costijn; Kurita, Naoyuki; Bass, Adrian; Nott, Jon; Bird, Michael I

    2015-01-01

    The isotope signatures registered in speleothems during tropical cyclones (TC) provides information about the frequency and intensity of past TCs but the precise relationship between isotopic composition and the meteorology of TCs remain uncertain. Here we present continuous δ18O and δ2H data in rainfall and water vapour, as well as in discrete rainfall samples, during the passage of TC Ita and relate the evolution in isotopic compositions to local and synoptic scale meteorological observations. High-resolution data revealed a close relationship between isotopic compositions and cyclonic features such as spiral rainbands, periods of stratiform rainfall and the arrival of subtropical and tropical air masses with changing oceanic and continental moisture sources. The isotopic compositions in discrete rainfall samples were remarkably constant along the ~450 km overland path of the cyclone when taking into account the direction and distance to the eye of the cyclone at each sampling time. Near simultaneous variations in δ18O and δ2H values in rainfall and vapour and a near-equilibrium rainfall-vapour isotope fractionation indicates strong isotopic exchange between rainfall and surface inflow of vapour during the approach of the cyclone. In contrast, after the passage of spiral rainbands close to the eye of the cyclone, different moisture sources for rainfall and vapour are reflected in diverging d-excess values. High-resolution isotope studies of modern TCs refine the interpretation of stable isotope signatures found in speleothems and other paleo archives and should aim to further investigate the influence of cyclone intensity and longevity on the isotopic composition of associated rainfall.

  1. Western North Pacific Monsoon Depressions: Formation, Structure, and Transition to Tropical Cyclones

    Science.gov (United States)

    2015-09-01

    synoptic precursors for a substantial fraction of the western North Pacific tropical cyclones, little is known about how they form. High resolution...monsoon depressions are the synoptic precursors for a substantial fraction of the western North Pacific tropical cyclones, little is known about how they...cyclone. vi THIS PAGE INTENTIONALLY LEFT BLANK vii TABLE OF CONTENTS I.   INTRODUCTION

  2. Sensitivity of tropical cyclone Jal simulations to physics ...

    Indian Academy of Sciences (India)

    The track and intensity of simulated cyclone are compared with best track estimates provided by the Joint Typhoon Warning Centre (JTWC) data. Two sets of experiments are conducted to determine the best combination of physics schemes for track and intensity and it is seen that the best set of physics combination for track ...

  3. Towards a Statistical Model of Tropical Cyclone Genesis

    Science.gov (United States)

    Fernandez, A.; Kashinath, K.; McAuliffe, J.; Prabhat, M.; Stark, P. B.; Wehner, M. F.

    2017-12-01

    Tropical Cyclones (TCs) are important extreme weather phenomena that have a strong impact on humans. TC forecasts are largely based on global numerical models that produce TC-like features. Aspects of Tropical Cyclones such as their formation/genesis, evolution, intensification and dissipation over land are important and challenging problems in climate science. This study investigates the environmental conditions associated with Tropical Cyclone Genesis (TCG) by testing how accurately a statistical model can predict TCG in the CAM5.1 climate model. TCG events are defined using TECA software @inproceedings{Prabhat2015teca, title={TECA: Petascale Pattern Recognition for Climate Science}, author={Prabhat and Byna, Surendra and Vishwanath, Venkatram and Dart, Eli and Wehner, Michael and Collins, William D}, booktitle={Computer Analysis of Images and Patterns}, pages={426-436}, year={2015}, organization={Springer}} to extract TC trajectories from CAM5.1. L1-regularized logistic regression (L1LR) is applied to the CAM5.1 output. The predictions have nearly perfect accuracy for data not associated with TC tracks and high accuracy differentiating between high vorticity and low vorticity systems. The model's active variables largely correspond to current hypotheses about important factors for TCG, such as wind field patterns and local pressure minima, and suggests new routes for investigation. Furthermore, our model's predictions of TC activity are competitive with the output of an instantaneous version of Emanuel and Nolan's Genesis Potential Index (GPI) @inproceedings{eman04, title = "Tropical cyclone activity and the global climate system", author = "Kerry Emanuel and Nolan, {David S.}", year = "2004", pages = "240-241", booktitle = "26th Conference on Hurricanes and Tropical Meteorology"}.

  4. United States and Caribbean tropical cyclone activity related to the solar cycle

    Science.gov (United States)

    Elsner, J. B.; Jagger, T. H.

    2008-09-01

    The authors report on a finding that annual U.S hurricane counts are significantly related to solar activity. The relationship results from fewer intense tropical cyclones over the Caribbean and Gulf of Mexico when sunspot numbers are high. The finding is in accord with the heat-engine theory of hurricanes that predicts a reduction in the maximum potential intensity with a warming in the layer near the top of the hurricane. An active sun warms the lower stratosphere and upper troposphere through ozone absorption of additional ultraviolet (UV) radiation. Since the dissipation of the hurricane's energy occurs through ocean mixing and atmospheric transport, tropical cyclones can act to amplify the effect of relatively small changes in the sun's output thereby appreciably altering the climate. Results have implications for life and property throughout the Caribbean, Mexico, and portions of the United States.

  5. Wave ensemble forecast system for tropical cyclones in the Australian region

    Science.gov (United States)

    Zieger, Stefan; Greenslade, Diana; Kepert, Jeffrey D.

    2018-05-01

    Forecasting of waves under extreme conditions such as tropical cyclones is vitally important for many offshore industries, but there remain many challenges. For Northwest Western Australia (NW WA), wave forecasts issued by the Australian Bureau of Meteorology have previously been limited to products from deterministic operational wave models forced by deterministic atmospheric models. The wave models are run over global (resolution 1/4∘) and regional (resolution 1/10∘) domains with forecast ranges of + 7 and + 3 day respectively. Because of this relatively coarse resolution (both in the wave models and in the forcing fields), the accuracy of these products is limited under tropical cyclone conditions. Given this limited accuracy, a new ensemble-based wave forecasting system for the NW WA region has been developed. To achieve this, a new dedicated 8-km resolution grid was nested in the global wave model. Over this grid, the wave model is forced with winds from a bias-corrected European Centre for Medium Range Weather Forecast atmospheric ensemble that comprises 51 ensemble members to take into account the uncertainties in location, intensity and structure of a tropical cyclone system. A unique technique is used to select restart files for each wave ensemble member. The system is designed to operate in real time during the cyclone season providing + 10-day forecasts. This paper will describe the wave forecast components of this system and present the verification metrics and skill for specific events.

  6. Historical North Atlantic Tropical Cyclone Tracks 1851-2005, Geographic NAD83, NOAA (2006) [atlantic_hurricane_tracks_1851_2005_NOAA_2006

    Data.gov (United States)

    Louisiana Geographic Information Center — This Historical North Atlantic Tropical Cyclone Tracks file contains the 6-hourly (0000, 0600, 1200, 1800 UTC) center locations and intensities for all subtropical...

  7. The Role of Tropical Cyclones in Precipitation Over the Tropical and Subtropical North America

    Directory of Open Access Journals (Sweden)

    Christian Dominguez

    2018-03-01

    Full Text Available Tropical cyclones (TCs are essential elements of the hydrological cycle in tropical and subtropical regions. In the present study, the contribution of TCs to seasonal precipitation around the tropical and subtropical North America is examined. When TC activity over the tropical eastern Pacific (TEP or the Intra Americas Seas (IAS is below (above-normal, regional precipitation may be below (above-normal. However, it is not only the number of TCs what may change seasonal precipitation, but the trajectory of the systems. TCs induce intense precipitation over continental regions if they are close enough to shorelines, for instance, if the TC center is located, on average, less than 500 km-distant from the coast. However, if TCs are more remote than this threshold distance, the chances of rain over continental regions decrease, particularly in arid and semi-arid regions. In addition, a distant TC may induce subsidence or produce moisture divergence that inhibits, at least for a few days, convective activity farther away than the threshold distance. An analysis of interannual variability in the TCs that produce precipitation over the tropical and subtropical North America shows that some regions in northern Mexico, which mostly depend on this effect to undergo wet years, may experience seasonal negative anomalies in precipitation if TCs trajectories are remote. Therefore, TCs (activity and trajectories are important modulators of climate variability on various time scales, either by producing intense rainfall or by inhibiting convection at distant regions from their trajectory. The impact of such variations on water availability in northern Mexico may be relevant, since water availability in dams recovers under the effects of TC rainfall. Seasonal precipitation forecasts or climate change scenarios for these regions should take into account the effect of TCs, if regional adaptation strategies are implemented.

  8. Impacts of tropical cyclones on U.S. forest tree mortality and carbon flux from 1851 to 2000.

    Science.gov (United States)

    Zeng, Hongcheng; Chambers, Jeffrey Q; Negrón-Juárez, Robinson I; Hurtt, George C; Baker, David B; Powell, Mark D

    2009-05-12

    Tropical cyclones cause extensive tree mortality and damage to forested ecosystems. A number of patterns in tropical cyclone frequency and intensity have been identified. There exist, however, few studies on the dynamic impacts of historical tropical cyclones at a continental scale. Here, we synthesized field measurements, satellite image analyses, and empirical models to evaluate forest and carbon cycle impacts for historical tropical cyclones from 1851 to 2000 over the continental U.S. Results demonstrated an average of 97 million trees affected each year over the entire United States, with a 53-Tg annual biomass loss, and an average carbon release of 25 Tg y(-1). Over the period 1980-1990, released CO(2) potentially offset the carbon sink in forest trees by 9-18% over the entire United States. U.S. forests also experienced twice the impact before 1900 than after 1900 because of more active tropical cyclones and a larger extent of forested areas. Forest impacts were primarily located in Gulf Coast areas, particularly southern Texas and Louisiana and south Florida, while significant impacts also occurred in eastern North Carolina. Results serve as an important baseline for evaluating how potential future changes in hurricane frequency and intensity will impact forest tree mortality and carbon balance.

  9. Statistical Aspects of the North Atlantic Basin Tropical Cyclones: Trends, Natural Variability, and Global Warming

    Science.gov (United States)

    Wilson, Robert M.

    2007-01-01

    Statistical aspects of the North Atlantic basin tropical cyclones for the interval 1945- 2005 are examined, including the variation of the yearly frequency of occurrence for various subgroups of storms (all tropical cyclones, hurricanes, major hurricanes, U.S. landfalling hurricanes, and category 4/5 hurricanes); the yearly variation of the mean latitude and longitude (genesis location) of all tropical cyclones and hurricanes; and the yearly variation of the mean peak wind speeds, lowest pressures, and durations for all tropical cyclones, hurricanes, and major hurricanes. Also examined is the relationship between inferred trends found in the North Atlantic basin tropical cyclonic activity and natural variability and global warming, the latter described using surface air temperatures from the Armagh Observatory Armagh, Northern Ireland. Lastly, a simple statistical technique is employed to ascertain the expected level of North Atlantic basin tropical cyclonic activity for the upcoming 2007 season.

  10. Multi-hazard risk assessment of coastal vulnerability from tropical cyclones - A GIS based approach for the Odisha coast.

    Science.gov (United States)

    Sahoo, Bishnupriya; Bhaskaran, Prasad K

    2018-01-15

    The coastal region bordering the East coast of India is a thickly populated belt exposed to high risk and vulnerability from natural hazards such as tropical cyclones. Tropical cyclone frequencies that develop over the Bay of Bengal (average of 5-6 per year) region are much higher as compared to the Arabian Sea thereby posing a high risk factor associated with storm surge, inland inundation, wind gust, intense rainfall, etc. The Odisha State in the East coast of India experiences the highest number of cyclone strikes as compared to West Bengal, Andhra Pradesh, and Tamil Nadu. To express the destructive potential resulting from tropical cyclones the Power Dissipation Index (PDI) is a widely used metric globally. A recent study indicates that PDI for cyclones in the present decade have increased about six times as compared to the past. Hence there is a need to precisely ascertain the coastal vulnerability and risk factors associated with high intense cyclones expected in a changing climate. As such there are no comprehensive studies attempted so far on the determination of Coastal Vulnerability Index (CVI) for Odisha coast that is highly prone to cyclone strikes. With this motivation, the present study makes an attempt to investigate the physical, environmental, social, and economic impacts on coastal vulnerability associated with tropical cyclones for the Odisha coast. The study also investigates the futuristic projection of coastal vulnerability over this region expected in a changing climate scenario. Eight fair weather parameters along with storm surge height and onshore inundation were used to estimate the Physical Vulnerability Index (PVI). Thereafter, the PVI along with social, economic, and environmental vulnerability was used to determine the overall CVI using the GIS based approach. The authors believe that the comprehensive nature of this study is expected to benefit coastal zone management authorities. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Comparison of Explicitly Simulated and Downscaled Tropical Cyclone Activity in a High-Resolution Global Climate Model

    Directory of Open Access Journals (Sweden)

    Hirofumi Tomita

    2010-01-01

    Full Text Available The response of tropical cyclone activity to climate change is a matter of great inherent interest and practical importance. Most current global climate models are not, however, capable of adequately resolving tropical cyclones; this has led to the development of downscaling techniques designed to infer tropical cyclone activity from the large-scale fields produced by climate models. Here we compare the statistics of tropical cyclones simulated explicitly in a very high resolution (~14 km grid mesh global climate model to the results of one such downscaling technique driven by the same global model. This is done for a simulation of the current climate and also for a simulation of a climate warmed by the addition of carbon dioxide. The explicitly simulated and downscaled storms are similarly distributed in space, but the intensity distribution of the downscaled events has a somewhat longer high-intensity tail, owing to the higher resolution of the downscaling model. Both explicitly simulated and downscaled events show large increases in the frequency of events at the high-intensity ends of their respective intensity distributions, but the downscaled storms also show increases in low-intensity events, whereas the explicitly simulated weaker events decline in number. On the regional scale, there are large differences in the responses of the explicitly simulated and downscaled events to global warming. In particular, the power dissipation of downscaled events shows a 175% increase in the Atlantic, while the power dissipation of explicitly simulated events declines there.

  12. Rapid Weakening of Hurricane Joaquin in Strong Vertical Wind Shear and Cold SSTs: Numerical Simulations with Assimilation of High-Definition Sounding System Dropsondes During Tropical Cyclone Intensity Experiment

    Science.gov (United States)

    Pu, Z.; Zhang, S.

    2017-12-01

    Observations from High-Definition Sounding System (HDSS) Dropsondes, collected for Hurricane Joaquin (2005) during the Office of Naval Research Tropical Cyclone Intensity (TCI) Experiment in 2015, are assimilated into the Gridpoint Statistical Interpolation (GSI)-based hybrid data assimilation systems embedded in the NCEP Hurricane Weather Research and Forecasting (HWRF) system. A three-dimensional and a four-dimensional ensemble-variational hybrid (3DEnVAR and 4DEnVar) data assimilation configuration are used. It is found that the experiments with assimilation of the HDSS dropsonde observations capture well the intensity changes during the rapid weakening (RW) of Hurricane Joaquin. Compared with 3DEnVAR, 4DEnVar leads to better assimilation results and subsequent forecasts and thus offers a set of simulations to diagnose the processes associated with the RW of Hurricane Joaquin. A drastic increase in the vertical wind shear (VWS, with a magnitude of 12 m s-1) is found before the RW. This high VWS is persistent during the 0-12 h period of RW, inducing changes in the vortex structure of Hurricane Joaquin through dry air intrusion in the mid-level and the dilution of the upper-level warm core. The transport of low air from above into the boundary layer occurs at the same time, resulting in depressed values in the storm inflow layer and reduced eyewall values through the updraft. As a consequence, downdrafts flush the boundary layer with low air, leading to the weakening of inflow in the boundary layers. When Hurricane Joaquin moves over an area where the SSTs are below 28oC within the hurricane inner core during the 18-30 h period of RW, the cold SSTs significantly inhibit latent and sensible heat release within the hurricane inner core and its vicinity, thus resulting in the continuous weakening of Hurricane Joaquin.

  13. Tropical Cyclone Prediction Using COAMPS-TC

    Science.gov (United States)

    2014-09-01

    meteorologist and head of the Mesoscale Modeling Section in the Marine Meteorology Division, Naval Research Laboratory (NRL), Monterey, CA, USA...particularly, intensity and structure, remains among the greatest challenges facing meteorologists today. The results of this research highlight

  14. Radio Occultation Bending Angle Anomalies During Tropical Cyclones

    DEFF Research Database (Denmark)

    Biondi, Riccardo; Neubert, Torsten; Syndergaard, Stig

    signature in radio occultation profiles in the tropical tropopause layer. Using tropical cyclone best track database and data from the Constellation Observing System for Meteorology, Ionosphere and Climate (COSMIC), we show that the bending angle anomaly of a GPS radio occultation signal is typically larger......The tropical deep convection affects the radiation balance of the atmosphere changing the water vapor mixing ratio and the temperature of the upper troposphere lower stratosphere. The aim of this work is to better understand these processes and to investigate if severe storms leave a significant...... than the annual mean of the atmosphere around the tropopause. Comparisons with co-located CALIPSO products and GOES analyses will also be shown. The results are discussed in connection to the GPS radio occultation receiver which will be part of the Atomic Clock Ensemble in Space (ACES) payload...

  15. Impact assessment of coastal hazards due to future changes of tropical cyclones in the North Pacific Ocean

    Directory of Open Access Journals (Sweden)

    Nobuhito Mori

    2016-03-01

    Full Text Available Tropical cyclones generate severe hazards in the middle latitudes. A brief review and applications of dynamical and statistical downscaling of tropical cyclone (TC are described targeting extreme storm surge and storm wave hazard assessment. First, a review of the current understanding of the changes in the characteristics of TCs in the past and in the future is shown. Then, a review and ongoing research about impact assessment of tropical cyclones both dynamical downscaling and statistical model are described for Typhoon Vera in 1959 and Typhoon Haiyan in 2013. Finally, several examples of impact assessment of storm surge and extreme wave changes are presented. Changes in both TC intensity and track are linked to future changes in extreme storm surge and wave climate in middle latitude.

  16. Study of tropical cyclone "Fanoos" using MM5 model – a case study

    Directory of Open Access Journals (Sweden)

    S. Ramalingeswara Rao

    2009-01-01

    Full Text Available Tropical cyclones are one of the most intense weather hazards over east coast of India and create a lot of devastation through gale winds and torrential floods while they cross the coast. So an attempt is made in this study to simulate track and intensity of tropical cyclone "Fanoos", which is formed over the Bay of Bengal during 5–10 December 2005 by using mesoscale model MM5. The simulated results are compared with the observed results of India Meteorological Department (IMD; results show that the cumulus parameterization scheme, Kain-Fritsch (KF is more accurately simulated both in track and intensity than the other Betts-Miller (BM and Grell Schemes. The reason for better performance of KF-1 scheme may be due to inclusion of updrafts and downdrafts. The model could predict the minimum Central Sea Level Pressure (CSLP as 983 hPa as compared to the IMD reports of 984 hPa and the wind speed is simulated at maximum 63 m/s compared to the IMD estimates of 65 m/s. Secondly "Fanoos" development from the lagrangian stand point in terms of vertical distribution of Potential Vorticity (PV is also carried out around cyclone centre.

  17. The Long Term Features of Tropical Cyclones Nearby Taiwan

    Science.gov (United States)

    Wu, Yueh-Shyuan; Lee, Cheng-Shang

    2017-04-01

    Tropical cyclone (TC) activity is affected by several factors. The variability of TC activity over the western North Pacific (WNP) has been examined in the past decade. Previous studies showed that TC activity (such as TC number, intensity and tracks) has multiscale variation or affected by natural oscillation of different scales. However, most of these studies focused mainly on the entire WNP. Very few studies examined the variability of annual TC track or the variability of TC number in the area nearby Taiwan, which caused severe economic loss and life damage to Taiwan in the typhoon season. The main purpose of this study is to analyze the variation of TC activity nearby Taiwan to address its long term features, and also the possible relationship with the associated flow patterns. Preliminary results of wavelet analysis showed that the TC number nearby Taiwan during 1970-2014 had multiscale variations. The following analysis focused on the scale about 4- and 11-year signals, in the targeted area of 118o-125oE, 20o-27oN. The positive phases of both scale 4 and scale 11 showed a tendency of TC tracks toward Taiwan area, while the negative phases showed a lower tendency toward Taiwan. An empirical orthogonal function (EOF) analysis was applied on the 4-yr and the 11-yr filtered 500-hPa wind fields and geopotential heights. Results showed that the 4-yr signal was mostly dominated by the 500-hPa U- and V-wind fields, suggesting that the TC track patterns were affected mainly by the midlevel steering flow. On the other hand, the 11-yr signal was mostly dominated by the 500-hPa U-wind field and geopotential anomalies, indicating that the main cause of the difference in TC occurrence nearby Taiwan was the location of TC formation.

  18. Development of a Multi-Model Ensemble Scheme for the Tropical Cyclone Forecast

    Science.gov (United States)

    Jun, S.; Lee, W. J.; Kang, K.; Shin, D. H.

    2015-12-01

    A Multi-Model Ensemble (MME) prediction scheme using selected and weighted method was developed and evaluated for tropical cyclone forecast. The analyzed tropical cyclone track and intensity data set provided by Korea Meteorological Administration and 11 numerical model outputs - GDAPS, GEPS, GFS (data resolution; 50 and 100 km), GFES, HWRF, IFS(data resolution; 50 and 100 km), IFS EPS, JGSM, and TEPS - during 2011-2014 were used for this study. The procedure suggested in this study was divided into two stages: selecting and weighting process. First several numerical models were chosen based on the past model's performances in the selecting stage. Next, weights, referred to as regression coefficients, for each model forecasts were calculated by applying the linear and nonlinear regression technique to past model forecast data in the weighting stage. Finally, tropical cyclone forecasts were determined by using both selected and weighted multi-model values at that forecast time. The preliminary result showed that selected MME's improvement rate (%) was more than 5% comparing with non-selected MME at 72 h track forecast.

  19. Detection of centers of tropical cyclones using Communication, Ocean, and Meteorological Satellite data

    Science.gov (United States)

    Lee, Juhyun; Im, Jungho; Park, Seohui; Yoo, Cheolhee

    2017-04-01

    Tropical cyclones are one of major natural disasters, which results in huge damages to human and society. Analyzing behaviors and characteristics of tropical cyclones is essential for mitigating the damages by tropical cyclones. In particular, it is important to keep track of the centers of tropical cyclones. Cyclone center and track information (called Best Track) provided by Joint Typhoon Warning Center (JTWC) are widely used for the reference data of tropical cyclone centers. However, JTWC uses multiple resources including numerical modeling, geostationary satellite data, and in situ measurements to determine the best track in a subjective way and makes it available to the public 6 months later after an event occurred. Thus, the best track data cannot be operationally used to identify the centers of tropical cyclones in real time. In this study, we proposed an automated approach for identifying the centers of tropical cyclones using only Communication, Ocean, and Meteorological Satellite (COMS) Meteorological Imager (MI) sensor derived data. It contains 5 bands—VIS (0.67µm), SWIR (3.7µm), WV (6.7µm), IR1 (10.8µm), and IR2 (12.0µm). We used IR1 band images to extract brightness temperatures of cloud tops over Western North Pacific between 2011 and 2012. The Angle deviation between brightness temperature-based gradient direction in a moving window and the reference angle toward the center of the window was extracted. Then, a spatial analysis index called circular variance was adopted to identify the centers of tropical cyclones based on the angle deviation. Finally, the locations of the minimum circular variance indexes were identified as the centers of tropical cyclones. While the proposed method has comparable performance for detecting cyclone centers in case of organized cloud convections when compared with the best track data, it identified the cyclone centers distant ( 2 degrees) from the best track centers for unorganized convections.

  20. Cumulus Momentum Transports in Tropical Cyclones,

    Science.gov (United States)

    1982-05-01

    convective transports on the large-scale dynamic I fields (Austin and Houze , 1973; Reed and Johnson, 1974; Shapiro, 1978; Cho et Al., 1979; Shapiro and...Professor William M. Gray. In addi- tion, the author would like to thank his colleagues Johnny Chan, Greg Holland, Geoff Love and Robert Merrill for...and intensity relation- ships. Dept. of Atmos. Sci. Paper No. 277, Colo. State Univ., Ft. Collins, CO. 154 pp. Austin, P. M. and R. A. Houze , 1973: A

  1. Tropical cyclones and climate change; Les cyclones tropicaux et le changement climatique

    Energy Technology Data Exchange (ETDEWEB)

    Andre, J.C. [Centre Europeen de Recherches Avancees en Calcul Scientifique, 31 - Toulouse (France); Royer, J.F.; Chauvin, F. [Meteo-France, Centre National de Recherches Meteorologique (CNRM), 31 - Toulouse (France)

    2008-09-15

    Results from observations and modelling studies, a number of which having been used to support the conclusions of the IPCC fourth assessment report, are presented. For the past and present-day (since 1970) periods, the increase of strong cyclonic activity over the North Atlantic Ocean appears to be in good correlation with increasing temperature of the ocean surface. For regions where observational data are of lesser quality, the increasing trend is less clear. In fact, assessing long-term changes is made difficult due to both the multi-decennial natural variability and the lesser coverage of observations before satellites were made available. Indirect observational data, such as those derived from quantitative estimations of damage caused by tropical cyclones, suffer from many artefacts and do not allow the resolving of the issue either. For the future, only numerical three-dimensional climate models can be used. They nevertheless run presently with too-large grid-sizes, so that their results are still not converging. Various simulations lead indeed to different results, and it is very often difficult to find the physical reasons for these differences. One concludes by indicating some ways through which numerical simulations could be improved, leading to a decrease of uncertainties affecting the prediction of cyclonic activity over the next decades. (authors)

  2. Variability in Global-Scale Circulations and Their Impacts on Atlantic Tropical Cyclone Activity

    National Research Council Canada - National Science Library

    Rosencrans, Matthew J

    2006-01-01

    ... favorable or unfavorable for tropical cyclone formation. Favorable impacts on tropical Atlantic circulation characteristics are defined by an increase in low-level relative vorticity, a decrease in westerly vertical wind shear, and increased convection...

  3. Tropical cyclones-Pacific Asian Research Campaign for Improvement of Intensity estimations/forecasts (T-PARCII): A research plan of typhoon aircraft observations in Japan

    Science.gov (United States)

    Tsuboki, Kazuhisa

    2017-04-01

    Typhoons are the most devastating weather system occurring in the western North Pacific and the South China Sea. Violent wind and heavy rainfall associated with a typhoon cause huge disaster in East Asia including Japan. In 2013, Supertyphoon Haiyan struck the Philippines caused a very high storm surge and more than 7000 people were killed. In 2015, two typhoons approached the main islands of Japan and severe flood occurred in the northern Kanto region. Typhoons are still the largest cause of natural disaster in East Asia. Moreover, many researches have projected increase of typhoon intensity with the climate change. This suggests that a typhoon risk is increasing in East Asia. However, the historical data of typhoon include large uncertainty. In particular, intensity data of the most intense typhoon category have larger error after the US aircraft reconnaissance of typhoon was terminated in 1987.The main objective of the present study is improvements of typhoon intensity estimations and of forecasts of intensity and track. We will perform aircraft observation of typhoon and the observed data are assimilated to numerical models to improve intensity estimation. Using radars and balloons, observations of thermodynamical and cloud-microphysical processes of typhoons will be also performed to improve physical processes of numerical model. In typhoon seasons (mostly in August and September), we will perform aircraft observations of typhoons. Using dropsondes from the aircraft, temperature, humidity, pressure, and wind are measured in surroundings of the typhoon inner core region. The dropsonde data are assimilated to a cloud-resolving model which has been developed in Nagoya University and named the Cloud Resolving Storm Simulator (CReSS). Then, more accurate estimations and forecasts of the typhoon intensity will be made as well as typhoon tracks. Furthermore, we will utilize a ground-based balloon with microscope camera, X-band precipitation radar, Ka-band cloud radar

  4. Observational and Theoretical Analyses of Physical Processes Influencing Tropical Cyclone Motion

    National Research Council Canada - National Science Library

    Gray, William

    1994-01-01

    This paper discusses the question of tropical cyclone propagation of why the average tropical cyclone moves 1-2 m/s faster and usually 10-20 to the left of its surrounding (or 5-7 deg radius) deep layer (850-300 mb) steering current...

  5. Tropical cyclones over north Indian Ocean during El-Nino Modoki years

    Digital Repository Service at National Institute of Oceanography (India)

    Sumesh, K.G.; RameshKumar, M.R.

    Tropical cyclones are the most hazardous weather systems, which form over warm ocean waters. The frequencies of tropical cyclones show variabilities over all the oceanic basins, during the El-Nino and El-Nino Modoki years. Recent studies have shown...

  6. Sensitivity of Simulated Cyclone Gonu Intensity and Track to Variety ...

    Indian Academy of Sciences (India)

    57

    Table 3 Errors in simulated track near shoreline of Iran, Oman, the intensity at peak time, and time errors in reaching cyclone to these shorelines for each sensitivity experiments. Peak intensity. Oman shoreline. Iran Shoreline. Time error. (h). Max wind. 10m error. (knot). CSLP error. (hPa). Time error. (h). Position error. (km).

  7. Statistical Aspects of North Atlantic Basin Tropical Cyclones During the Weather Satellite Era, 1960-2013: Part 1

    Science.gov (United States)

    Wilson, Robert M.

    2014-01-01

    A tropical cyclone is described as a warm-core, nonfrontal, synoptic-scale system that originates over tropical or subtropical waters, having organized deep convection and closed surface wind circulation (counterclockwise in the Northern Hemisphere) about a well defined center. When its sustained wind speed equals 34-63 kt, it is called a tropical (or subtropical) storm and is given a name (i.e., alternating male and female names, beginning in 1979); when its sustained wind speed equals 64-95 kt, it is called a hurricane (at least in the Eastern Pacific and North Atlantic basin); and when its sustained wind speed equals 96 kt or higher, it is called an intense or major hurricane (i.e., categories 3-5 on the Saffir-Simpson Hurricane Wind Scale). Although tropical cyclones have been reported and described since the voyages of Columbus, a detailed record of their occurrences extends only from 1851 to the present, with the most reliable portion extending only from about 1945 to the present, owing to the use of near-continuous routine reconnaissance aircraft monitoring flights and the use of satellite imagery (beginning in 1960; see Davis). Even so, the record may still be incomplete, possibly missing at least one tropical cyclone per yearly hurricane season, especially prior to the use of continuous satellite monitoring. In fact, often an unnamed tropical cyclone is included in the year-end listing of events at the conclusion of the season, following post-season analysis (e.g., as happened in 2011 and 2013, each having one unnamed event). In this two-part Technical Publication (TP), statistical aspects of the North Atlantic basin tropical cyclones are examined for the interval 1960-2013, the weather satellite era. Part 1 examines some 25 parameters of tropical cyclones (e.g., frequencies, peak wind speed (PWS), accumulated cyclone energy (ACE), etc.), while part 2 examines the relationship of these parameters against specific climate-related factors. These studies are

  8. Near-inertial ocean response to tropical cyclone forcing on the Australian North-West Shelf

    Science.gov (United States)

    Rayson, M. D.; Ivey, G. N.; Jones, N. L.; Lowe, R. J.; Wake, G. W.; McConochie, J. D.

    2015-12-01

    The Regional Ocean Modeling System (ROMS) was applied to the Australian North-West Shelf (NWS) to hindcast the ocean response to four intense historical tropical cyclones (TCs). While the four cyclones had very different trajectories across the NWS, all passed within 150 km of a long-term vertical mooring located on the continental shelf in 125 m depth. The observed ocean response at this relatively shallow, Southern Hemisphere shelf site was characterized by the development of a peak in the counter-clockwise (CCW) near-inertial kinetic energy, mixed layer deepening, and subsequent restratification. Strong near-inertial isotherm oscillations were also observed following two of the cyclones. ROMS reproduced these features and also showed that the peak in the near-inertial CCW kinetic energy was observed on the left side of each cyclone trajectory. The time rate of change of near-inertial kinetic energy depended strongly on the storm Rossby number, i.e., defined based on the storm speed, the storm length scale, and the Coriolis frequency. The shallow water depth on the NWS resulted in first, a more rapid decay of near-inertial oscillations than in the deep ocean, and second a generation efficiency (the ratio of near-inertial power to the rate of wind work) of up to 10%, smaller than found for cyclones propagating across deeper water. The total energy put into near-inertial motions is nevertheless large compared to the background tidal energy. The rapid decay of near-inertial motions emphasizes the importance of frictional effects in characterizing the response to cyclone forcing in shallow seas.

  9. Balanced thermal structure of an intensifying tropical cyclone

    Directory of Open Access Journals (Sweden)

    David J. Raymond

    2012-12-01

    Full Text Available This study tests the hypothesis that the formation of a virtual potential temperature dipole in a developing tropical cyclone is a balanced response to the growth of an associated mid-level vortex. The dipole is collocated with the vortex and consists of a warm anomaly in the upper troposphere and a cool anomaly in the lower troposphere. An axisymmetric approximation to the observed potential vorticity distribution is inverted subject to non-linear balance for two successive days during the formation of typhoon Nuri in 2008. Good agreement is found between the area-averaged actual and balanced virtual temperature dipoles in these two cases. Furthermore, a strong correlation exists between the degree of bottom-heaviness of convective mass flux profiles and the strength of the balanced virtual potential temperature dipole. Since the dipole is balanced, it cannot be an immediate artefact of the existing convection, but rather is an inherent feature of the developing cyclone. Cloud resolving numerical modelling suggests that the dipole temperature anomaly actually promotes more bottom-heavy convective mass flux profiles, as observed. Such profiles are associated with low-level mass and vorticity convergence via mass continuity and the circulation theorem, resulting in low-level spin-up. The present work thus supports the hypothesis that the low-level spin-up associated with tropical cyclogenesis is made possible by the thermodynamic environment created by a strong mid-level vortex.

  10. Tropical Cyclone Initiation by the Tropical Upper Tropospheric Trough

    Science.gov (United States)

    1976-02-01

    Fernandez- Partagas and Estoque (1970) showed that the majority of tropical disturbances in the eastern Caribbean Sea and BOMEX area were induced by...10-25, 1967. University of Miami Tech. Report under Grant No. E-22-29-69-G, 42 pp. Fernandez-Partagas, J.J., and M. Estoque , 1970: A preliminary

  11. Impacts of tropical cyclones and accompanying precipitation on infectious diarrhea in cyclone landing areas of Zhejiang Province, China.

    Science.gov (United States)

    Deng, Zhengyi; Xun, Huanmiao; Zhou, Maigeng; Jiang, Baofa; Wang, Songwang; Guo, Qing; Wang, Wei; Kang, Ruihua; Wang, Xin; Marley, Gifty; Ma, Wei

    2015-01-22

    Zhejiang Province, located in southeastern China, is frequently hit by tropical cyclones. This study quantified the associations between infectious diarrhea and the seven tropical cyclones that landed in Zhejiang from 2005-2011 to assess the impacts of the accompanying precipitation on the studied diseases. A unidirectional case-crossover study design was used to evaluate the impacts of tropical storms and typhoons on infectious diarrhea. Principal component analysis (PCA) was applied to eliminate multicollinearity. A multivariate logistic regression model was used to estimate the odds ratios (ORs) and the 95% confidence intervals (CIs). For all typhoons studied, the greatest impacts on bacillary dysentery and other infectious diarrhea were identified on lag 6 days (OR = 2.30, 95% CI: 1.81-2.93) and lag 5 days (OR = 3.56, 95% CI: 2.98-4.25), respectively. For all tropical storms, impacts on these diseases were highest on lag 2 days (OR = 2.47, 95% CI: 1.41-4.33) and lag 6 days (OR = 2.46, 95% CI: 1.69-3.56), respectively. The tropical cyclone precipitation was a risk factor for both bacillary dysentery and other infectious diarrhea when daily precipitation reached 25 mm and 50 mm with the largest OR = 3.25 (95% CI: 1.45-7.27) and OR = 3.05 (95% CI: 2.20-4.23), respectively. Both typhoons and tropical storms could contribute to an increase in risk of bacillary dysentery and other infectious diarrhea in Zhejiang. Tropical cyclone precipitation may also be a risk factor for these diseases when it reaches or is above 25 mm and 50 mm, respectively. Public health preventive and intervention measures should consider the adverse health impacts from tropical cyclones.

  12. Impacts of Tropical Cyclones and Accompanying Precipitation on Infectious Diarrhea in Cyclone Landing Areas of Zhejiang Province, China

    Directory of Open Access Journals (Sweden)

    Zhengyi Deng

    2015-01-01

    Full Text Available Background: Zhejiang Province, located in southeastern China, is frequently hit by tropical cyclones. This study quantified the associations between infectious diarrhea and the seven tropical cyclones that landed in Zhejiang from 2005–2011 to assess the impacts of the accompanying precipitation on the studied diseases. Method: A unidirectional case-crossover study design was used to evaluate the impacts of tropical storms and typhoons on infectious diarrhea. Principal component analysis (PCA was applied to eliminate multicollinearity. A multivariate logistic regression model was used to estimate the odds ratios (ORs and the 95% confidence intervals (CIs. Results: For all typhoons studied, the greatest impacts on bacillary dysentery and other infectious diarrhea were identified on lag 6 days (OR = 2.30, 95% CI: 1.81–2.93 and lag 5 days (OR = 3.56, 95% CI: 2.98–4.25, respectively. For all tropical storms, impacts on these diseases were highest on lag 2 days (OR = 2.47, 95% CI: 1.41–4.33 and lag 6 days (OR = 2.46, 95% CI: 1.69–3.56, respectively. The tropical cyclone precipitation was a risk factor for both bacillary dysentery and other infectious diarrhea when daily precipitation reached 25 mm and 50 mm with the largest OR = 3.25 (95% CI: 1.45–7.27 and OR = 3.05 (95% CI: 2.20–4.23, respectively. Conclusions: Both typhoons and tropical storms could contribute to an increase in risk of bacillary dysentery and other infectious diarrhea in Zhejiang. Tropical cyclone precipitation may also be a risk factor for these diseases when it reaches or is above 25 mm and 50 mm, respectively. Public health preventive and intervention measures should consider the adverse health impacts from tropical cyclones.

  13. Low probability of tropical cyclones on ocean planets in the habitable zones of M dwarfs

    Science.gov (United States)

    Bin, Jiayu; Tian, Feng; Lin, Yanluan; Wang, Yuwei

    2018-01-01

    The genesis potential index (GPI) of tropical cyclones (TC) on ocean planets in the habitable zones of M dwarfs is analyzed based on 3D GCM simulations. We found that GPI on these planets are smaller than those in TC basins on the Earth mainly because of slow rotation of such planets. GPI's on exoplanets with eccentric orbits are strong function of time with values generally greater than those on circular orbits. Future high resolution models are needed to better understand whether TCs could form on ocean exoplanets, and what their potential intensities and distributions might be.

  14. Sensitivity of 96 and 120-hour Numerical Model Tropical Cyclone Position Forecasts to Initial Position Errors

    Science.gov (United States)

    2014-03-27

    providing commanders a clear picture of severe weather impacts and how their personnel and assets could be affected. 4 II. Background The tropical cyclone...transition, storms may transition from a tropical environment dominated by easterly synoptic flow to westerly synoptic flow in the mid-latitudes. Accompanying...this change in the synoptic pattern comes a change in the the direction of movement of most tropical cyclones. Generally, storms at lower latitudes

  15. Predicting Tropical Cyclogenesis with a Global Mesoscale Model: Hierarchical Multiscale Interactions During the Formation of Tropical Cyclone Nargis(2008)

    Science.gov (United States)

    Shen, B.-W.; Tao, W.-K.; Lau, W. K.; Atlas, R.

    2010-01-01

    Very severe cyclonic storm Nargis devastated Burma (Myanmar) in May 2008, caused tremendous damage and numerous fatalities, and became one of the 10 deadliest tropical cyclones (TCs) of all time. To increase the warning time in order to save lives and reduce economic damage, it is important to extend the lead time in the prediction of TCs like Nargis. As recent advances in high-resolution global models and supercomputing technology have shown the potential for improving TC track and intensity forecasts, the ability of a global mesoscale model to predict TC genesis in the Indian Ocean is examined in this study with the aim of improving simulations of TC climate. High-resolution global simulations with real data show that the initial formation and intensity variations of TC Nargis can be realistically predicted up to 5 days in advance. Preliminary analysis suggests that improved representations of the following environmental conditions and their hierarchical multiscale interactions were the key to achieving this lead time: (1) a westerly wind burst and equatorial trough, (2) an enhanced monsoon circulation with a zero wind shear line, (3) good upper-level outflow with anti-cyclonic wind shear between 200 and 850 hPa, and (4) low-level moisture convergence.

  16. Sedimentary record of Tropical Cyclone Pam from Vanuatu: implications for long-term event records in the tropical South Pacific

    Science.gov (United States)

    Pilarczyk, Jessica; Kosciuch, Thomas; Hong, Isabel; Fritz, Hermann; Horton, Benjamin; Wallace, Davin; Dike, Clayton; Rarai, Allan; Harrison, Morris; Jockley, Fred

    2017-04-01

    Vanuatu has a history of tropical cyclones impacting its coastlines, including Tropical Cyclone (TC) Pam, a rare Category 5 event that made landfall in March 2015. Reliable records of tropical cyclones impacting Vanuatu are limited to the last several decades, with only fragmentary evidence of events extending as far back as the 1890's. Geological investigations are a means for expanding the short historical record of tropical cyclones by hundreds to thousands of years, permitting the study of even the rare, but intense events. However, geological records of past tropical cyclones are limited in their ability to quantify the intensity of past events. Modern analogues of landfalling tropical cyclones present an opportunity to characterize overwash sediments deposited by a storm of known intensity. In this study, we document the sedimentological and micropaleontological characteristics of sediments deposited by TC Pam in order to assess sediment provenance associated with a landfalling Category 5 storm. Within three months of TC Pam making landfall on Vanuatu we surveyed high-water marks associated with the storm surge and documented the foraminiferal assemblages and grain size distributions contained within the overwash sediments from Manuro (mixed-carbonate site on Efate Island) and Port Resolution Bay (volcaniclastic site on Tanna Island). The combined use of foraminiferal taxonomy and taphonomy (surface condition of foraminifera) was most useful in distinguishing the TC Pam sediments from the underlying layer. TC Pam sediments were characterized by an influx of calcareous marine foraminifera that were dominantly unaltered relative to those that were abraded and fragmented. Similar to studies that use mollusk taphonomy to identify overwash deposits, we found that TC Pam sediments were associated with an influx of angular fragments that were broken during transport by the storm surge. A statistical comparison of foraminifera from six modern environments on Efate

  17. An Estimate of the North Atlantic Basin Tropical Cyclone Activity for the 2011 Hurricane Season

    Science.gov (United States)

    Wilson, Robert M.

    2011-01-01

    Estimates are presented for the expected level of tropical cyclone activity for the 2011 North Atlantic Basin hurricane season. It is anticipated that the frequency of tropical cyclones for the North Atlantic Basin during the 2011 hurricane season will be near to above the post-1995 means. Based on the Poisson distribution of tropical cyclone frequencies for the current more active interval 1995-2010, one computes P(r) = 63.7% for the expected frequency of the number of tropical cyclones during the 2011 hurricane season to be 14 plus or minus 3; P(r) = 62.4% for the expected frequency of the number of hurricanes to be 8 plus or minus 2; P(r) = 79.3% for the expected frequency of the number of major hurricanes to be 3 plus or minus 2; and P(r) = 72.5% for the expected frequency of the number of strikes by a hurricane along the coastline of the United States to be 1 plus or minus 1. Because El Nino is not expected to recur during the 2011 hurricane season, clearly, the possibility exists that these seasonal frequencies could easily be exceeded. Also examined are the effects of the El Nino-Southern Oscillation phase and climatic change (global warming) on tropical cyclone seasonal frequencies, the variation of the seasonal centroid (latitude and longitude) location of tropical cyclone onsets, and the variation of the seasonal peak wind speed and lowest pressure for tropical cyclones.

  18. Testing coral-based tropical cyclone reconstructions: An example from Puerto Rico

    Science.gov (United States)

    Kilbourne, K. Halimeda; Moyer, Ryan P.; Quinn, Terrence M.; Grottoli, Andrea G.

    2011-01-01

    Complimenting modern records of tropical cyclone activity with longer historical and paleoclimatological records would increase our understanding of natural tropical cyclone variability on decadal to centennial time scales. Tropical cyclones produce large amounts of precipitation with significantly lower δ18O values than normal precipitation, and hence may be geochemically identifiable as negative δ18O anomalies in marine carbonate δ18O records. This study investigates the usefulness of coral skeletal δ18O as a means of reconstructing past tropical cyclone events. Isotopic modeling of rainfall mixing with seawater shows that detecting an isotopic signal from a tropical cyclone in a coral requires a salinity of ~ 33 psu at the time of coral growth, but this threshold is dependent on the isotopic composition of both fresh and saline end-members. A comparison between coral δ18O and historical records of tropical cyclone activity, river discharge, and precipitation from multiple sites in Puerto Rico shows that tropical cyclones are not distinguishable in the coral record from normal rainfall using this approach at these sites.

  19. Impacts of hemispheric solar geoengineering on tropical cyclone frequency.

    Science.gov (United States)

    Jones, Anthony C; Haywood, James M; Dunstone, Nick; Emanuel, Kerry; Hawcroft, Matthew K; Hodges, Kevin I; Jones, Andy

    2017-11-14

    Solar geoengineering refers to a range of proposed methods for counteracting global warming by artificially reducing sunlight at Earth's surface. The most widely known solar geoengineering proposal is stratospheric aerosol injection (SAI), which has impacts analogous to those from volcanic eruptions. Observations following major volcanic eruptions indicate that aerosol enhancements confined to a single hemisphere effectively modulate North Atlantic tropical cyclone (TC) activity in the following years. Here we investigate the effects of both single-hemisphere and global SAI scenarios on North Atlantic TC activity using the HadGEM2-ES general circulation model and various TC identification methods. We show that a robust result from all of the methods is that SAI applied to the southern hemisphere would enhance TC frequency relative to a global SAI application, and vice versa for SAI in the northern hemisphere. Our results reemphasise concerns regarding regional geoengineering and should motivate policymakers to regulate large-scale unilateral geoengineering deployments.

  20. North Atlantic Basin Tropical Cyclone Activity in Relation to Temperature and Decadal- Length Oscillation Patterns

    Science.gov (United States)

    Wilson, Robert M.

    2009-01-01

    Yearly frequencies of North Atlantic basin tropical cyclones, their locations of origin, peak wind speeds, average peak wind speeds, lowest pressures, and average lowest pressures for the interval 1950-2008 are examined. The effects of El Nino and La Nina on the tropical cyclone parametric values are investigated. Yearly and 10-year moving average (10-yma) values of tropical cyclone parameters are compared against those of temperature and decadal-length oscillation, employing both linear and bi-variate analysis, and first differences in the 10-yma are determined. Discussion of the 2009 North Atlantic basin hurricane season, updating earlier results, is given.

  1. Tropical cyclone cooling combats region-wide coral bleaching.

    Science.gov (United States)

    Carrigan, Adam D; Puotinen, Marji

    2014-05-01

    Coral bleaching has become more frequent and widespread as a result of rising sea surface temperature (SST). During a regional scale SST anomaly, reef exposure to thermal stress is patchy in part due to physical factors that reduce SST to provide thermal refuge. Tropical cyclones (TCs - hurricanes, typhoons) can induce temperature drops at spatial scales comparable to that of the SST anomaly itself. Such cyclone cooling can mitigate bleaching across broad areas when well-timed and appropriately located, yet the spatial and temporal prevalence of this phenomenon has not been quantified. Here, satellite SST and historical TC data are used to reconstruct cool wakes (n=46) across the Caribbean during two active TC seasons (2005 and 2010) where high thermal stress was widespread. Upon comparison of these datasets with thermal stress data from Coral Reef Watch and published accounts of bleaching, it is evident that TC cooling reduced thermal stress at a region-wide scale. The results show that during a mass bleaching event, TC cooling reduced thermal stress below critical levels to potentially mitigate bleaching at some reefs, and interrupted natural warming cycles to slow the build-up of thermal stress at others. Furthermore, reconstructed TC wave damage zones suggest that it was rare for more reef area to be damaged by waves than was cooled (only 12% of TCs). Extending the time series back to 1985 (n = 314), we estimate that for the recent period of enhanced TC activity (1995-2010), the annual probability that cooling and thermal stress co-occur is as high as 31% at some reefs. Quantifying such probabilities across the other tropical regions where both coral reefs and TCs exist is vital for improving our understanding of how reef exposure to rising SSTs may vary, and contributes to a basis for targeting reef conservation. © 2014 John Wiley & Sons Ltd.

  2. Remote Sensing Assessment of Forest Disturbance across Complex Mountainous Terrain: The Pattern and Severity of Impacts of Tropical Cyclone Yasi on Australian Rainforests

    Directory of Open Access Journals (Sweden)

    Robinson I. Negrón-Juárez

    2014-06-01

    Full Text Available Topography affects the patterns of forest disturbance produced by tropical cyclones. It determines the degree of exposure of a surface and can alter wind characteristics. Whether multispectral remote sensing data can sense the effect of topography on disturbance is a question that deserves attention given the multi-scale spatial coverage of these data and the projected increase in intensity of the strongest cyclones. Here, multispectral satellite data, topographic maps and cyclone surface wind data were used to study the patterns of disturbance in an Australian rainforest with complex mountainous terrain produced by tropical cyclone Yasi (2011. The cyclone surface wind data (H*wind was produced by the Hurricane Research Division of the National Oceanic and Atmospheric Administration (HRD/NOAA, and this was the first time that this data was produced for a cyclone outside of United States territory. A disturbance map was obtained by applying spectral mixture analyses on satellite data and presented a significant correlation with field-measured tree mortality. Our results showed that, consistent with cyclones in the southern hemisphere, multispectral data revealed that forest disturbance was higher on the left side of the cyclone track. The highest level of forest disturbance occurred in forests along the path of the cyclone track (±30°. Levels of forest disturbance decreased with decreasing slope and with an aspect facing off the track of the cyclone or away from the dominant surface winds. An increase in disturbance with surface elevation was also observed. However, areas affected by the same wind intensity presented increased levels of disturbance with increasing elevation suggesting that complex terrain interactions act to speed up wind at higher elevations. Yasi produced an important offset to Australia’s forest carbon sink in 2010. We concluded that multispectral data was sensitive to the main effects of complex topography on disturbance

  3. Dynamical system analysis of a low-order tropical cyclone model

    Directory of Open Access Journals (Sweden)

    Daria Schönemann

    2012-02-01

    Full Text Available Tropical cyclone dynamics is investigated by means of a conceptual box model. The tropical cyclone (TC is divided into three regions, the eye, eyewall and ambient region. The model forms a low-order dynamical system of three ordinary differential equations. These are based on entropy budget equations comprising processes of surface enthalpy transfer, entropy advection, convection and radiative cooling. For tropical ocean parameter settings, the system possesses four non-trivial steady state solutions when the sea surface temperature (SST is above a critical value. Two steady states are unstable while the two remaining states are stable. Bifurcation diagrams provide an explanation why only finite-amplitude perturbations above a critical SST can transform into TCs. Besides SST, relative humidity of the ambient region forms an important model parameter. The surfaces that describe equilibria as a function of SST and relative humidity reveal a cusp-catastrophe where the two non-trivial equilibria split into four. Within the model regime of four equilibria, cyclogenesis becomes very unlikely due to the repelling and attracting effects of the two additional equilibria. The results are in qualitative agreement with observations and evince the relevance of the simple model approach to the dynamics of TC formation and its maximum potential intensity.

  4. The TROPICS smallsat tropical cyclone mission: High temporal resolution microwave imagery as part of NASA's third Earth Venture-Instrument (EVI-3) program

    Science.gov (United States)

    Blackwell, W. J.; Braun, S. A.; Bennartz, R.; Velden, C.; Atlas, R. M.; Dunion, J. P.; Marks, F.; Rogers, R. F.; Demaria, M.

    2016-12-01

    The Time-Resolved Observations of Precipitation structure and storm Intensity with a Constellation of Smallsats (TROPICS) mission was recently selected by NASA as part of the Earth Venture-Instrument (EVI-3) program. The overarching goal for TROPICS is to provide nearly all-weather observations of 3-D temperature and humidity, as well as cloud ice and precipitation horizontal structure, at high temporal resolution to conduct high-value science investigations of tropical cyclones, including: (1) relationships of rapidly evolving precipitation and upper cloud structures to upper-level warm-core intensity and associated storm intensity changes; (2) the evolution of precipitation structure and storm intensification in relationship to environmental humidity fields; and (3) the impact of rapid-update observations on numerical and statistical intensity forecasts of tropical cyclones. TROPICS will provide rapid-refresh microwave measurements (median refresh rate of 21 minutes for the baseline mission) over the tropics that can be used to observe the thermodynamics of the troposphere and precipitation structure for storm systems at the mesoscale and synoptic scale over the entire storm lifecycle. TROPICS comprises 12 CubeSats in three low-Earth orbital planes. Each CubeSat will host a high performance radiometer to provide temperature profiles using seven channels near the 118.75 GHz oxygen absorption line, water vapor profiles using 3 channels near the 183 GHz water vapor absorption line, imagery in a single channel near 90 GHz for precipitation measurements (when combined with higher resolution water vapor channels), and a single channel at 206 GHz that is more sensitive to precipitation-sized ice particles. This observing system offers an unprecedented combination of horizontal and temporal resolution to measure environmental and inner-core conditions for tropical cyclones on a nearly global scale and is a major leap forward in the temporal resolution of several key

  5. IMPACT ASSESSMENT OF TROPICAL CYCLONE HUD HUD ON COASTAL REGION OF VISAKHAPATNAM, ANDHRA PRADESH, INDIA

    Directory of Open Access Journals (Sweden)

    G. Vivek

    2015-10-01

    Full Text Available Tropical cyclone is a rapidly rotating storm system characterized by a low pressure center, strong winds, and a spiral arrangements of thunderstorms that produce heavy rain. Tropical cyclones typically form over large bodies of relatively warm water. On 6th October 2014 Hud Hud originates from a low pressure system that formed under the influence of an upper air cyclonic circulation in the Andaman Sea. On 9th October 2014 the IMD department classified the Hud Hud as a very severe cyclonic storm on IMD scale and category 4 on Staffir-Simpson scale. The cyclone hit the coast of Visakhapatnam on 12th October 2014 at wind speed of 175 km/h which caused extensive damage to the city and the neighbouring districts. The damage caused by Cyclone Hud Hud not only changed the landscape of the port city, but also made it the first city in the country to be directly hit by a cyclone since 1891 as per the records of the IMD. The remote sensing technique used here is NDVI. NDVI will separate vegetation and non-vegetation part. The NDVI will be classified in ERDAS and calculated the area using ARCGIS. The satellite data of 4th October 2014 show s before the cyclone, 14th October 2014 shows after the cyclone and 7th December 2014 after two month of cyclone.

  6. Characteristics of lightning activity in tropical cyclones developed over North Indian Ocean basin during 2010-2015

    Science.gov (United States)

    Ranalkar, M. R.; Pawar, S. D.; Pradeep Kumar, P.

    2017-05-01

    The characteristics of lightning activity in tropical cyclones (TCs) over North Indian Ocean (NIO) are presented using sample of 21 TCs developed during 2010-2015 using TRMM and World Wide Lightning Location Network (WWLLN) datasets along with information from annual reports of Regional Specialized Meteorological Center (RSMC), New Delhi. The microphysical features such as Polarization Corrected Brightness Temperature (PCT), attenuation corrected reflectivity factor, Ice Water Path (IWP) play a pivotal role in development of convective systems within TCs. The TCs exhibited systematic variation in lightning flashes per day within 300 km of estimated center during their life cycle irrespective of their severity and flash rate within 300 km of storm center. The lightning flashes ranged from 1 to 3500 flashes per day during pre-cyclone stage, 100 to 8000 flashes per day during cyclone stage and 0 to 4300 flashes per day during post-cyclone stage. The TCs produced maximum flash density in eyewall region (20-40 km) and outer rainband region (200-260 km). The WWLLN recorded 165,512 flashes within 300 km of TC centers during their life cycle. The maximum flashes occurred during cyclone stage followed by pre-cyclone and post-cyclone. The time variation of flash rate for all cyclones was episodic and primarily peaked during late night and early morning hours. The diurnal variation of lightning flashes during TCs due to variation in detection efficiency of WWLLN also controls temporal distribution of lightning activity. During rapid intensification, TCs produced profuse lightning flashes per hour. Episodic lightning flashes per hour occurred during weakening stage and prior to landfall. It is evident that outbreaks of lightning flashes prior to maximum intensity change as manifested in maximum sustained wind speed and fall in estimated central pressure (ECP) indicate potential predictive value of lightning activity for TC intensity change.

  7. Atlantic tropical cyclones water budget in observations and CNRM-CM5 model

    Science.gov (United States)

    Chauvin, Fabrice; Douville, Hervé; Ribes, Aurélien

    2017-12-01

    Water budgets in tropical cyclones (TCs) are computed in the ERA-interim (ERAI) re-analysis and the CNRM-CM5 model for the late 20th and 21st centuries. At a 6-hourly timescale and averaged over a 5° × 5° box around a TC center, the main contribution to rainfall is moisture convergence, with decreasing contribution of evaporation for increasing rainfall intensities. It is found that TC rainfall in ERAI and the model are underestimated when compared with the tropical rainfall measuring mission (TRMM), probably due to underestimated TC winds in ERAI vs. observed TCs. It is also found that relative increase in TC rainfall between the second half of the 20th and 21st centuries may surpass the rate of change suggested by the Clausius-Clapeyron formula. It may even reach twice this rate for reduced spatial domains corresponding to the highest cyclonic rainfall. This is in agreement with an expected positive feedback between TC rainfall intensity and dynamics.

  8. Impacts of different grades of tropical cyclones on infectious diarrhea in Guangdong, 2005-2011.

    Science.gov (United States)

    Kang, Ruihua; Xun, Huanmiao; Zhang, Ying; Wang, Wei; Wang, Xin; Jiang, Baofa; Ma, Wei

    2015-01-01

    Guangdong province is one of the most vulnerable provinces to tropical cyclones in China. Most prior studies concentrated on the relationship between tropical cyclones and injuries and mortality. This study aimed to explore the impacts of different grades of tropical cyclones on infectious diarrhea incidence in Guangdong province, from 2005 to 2011. Mann-Whitney U test was firstly used to examine if infectious diarrhea were sensitive to tropical cyclone. Then unidirectional 1:1 case-crossover design was performed to quantitatively evaluate the relationship between daily number of infectious diarrhea and tropical cyclone from 2005 to 2011 in Guangdong, China. Principal component analysis (PCA) was applied to eliminate multicollinearity. Multivariate logistic regression model was used to estimate the hazard ratios (HRs) and the 95% confidence intervals (CI). There were no significant relationships between tropical cyclone and bacillary dysentery, amebic dysentery, typhoid, and paratyphoid cases. Infectious diarrhea other than cholera, dysentery, typhoid and paratyphoid significantly increased after tropical cyclones. The strongest effect were shown on lag 1 day (HRs = 1.95, 95%CI = 1.22, 3.12) and no lagged effect was detected for tropical depression, tropical storm, severe tropical storm and typhoon, with the largest HRs (95%CI) of 2.16 (95%CI = 1.69, 2.76), 2.43 (95%CI = 1.65, 3.58) and 2.21 (95%CI = 1.65, 2.69), respectively. Among children below 5 years old, the impacts of all grades of tropical cyclones were strongest at lag 0 day. And HRs were 2.67 (95%CI = 1.10, 6.48), 2.49 (95%CI = 1.80, 3.44), 4.89 (95%CI = 2.37, 7.37) and 3.18 (95%CI = 2.10, 4.81), respectively. All grades of tropical cyclones could increase risk of other infectious diarrhea. Severe tropical storm has the strongest influence on other infectious diarrhea. The impacts of tropical cyclones on children under 5 years old were higher than total population.

  9. Impacts of different grades of tropical cyclones on infectious diarrhea in Guangdong, 2005-2011.

    Directory of Open Access Journals (Sweden)

    Ruihua Kang

    Full Text Available Guangdong province is one of the most vulnerable provinces to tropical cyclones in China. Most prior studies concentrated on the relationship between tropical cyclones and injuries and mortality. This study aimed to explore the impacts of different grades of tropical cyclones on infectious diarrhea incidence in Guangdong province, from 2005 to 2011.Mann-Whitney U test was firstly used to examine if infectious diarrhea were sensitive to tropical cyclone. Then unidirectional 1:1 case-crossover design was performed to quantitatively evaluate the relationship between daily number of infectious diarrhea and tropical cyclone from 2005 to 2011 in Guangdong, China. Principal component analysis (PCA was applied to eliminate multicollinearity. Multivariate logistic regression model was used to estimate the hazard ratios (HRs and the 95% confidence intervals (CI.There were no significant relationships between tropical cyclone and bacillary dysentery, amebic dysentery, typhoid, and paratyphoid cases. Infectious diarrhea other than cholera, dysentery, typhoid and paratyphoid significantly increased after tropical cyclones. The strongest effect were shown on lag 1 day (HRs = 1.95, 95%CI = 1.22, 3.12 and no lagged effect was detected for tropical depression, tropical storm, severe tropical storm and typhoon, with the largest HRs (95%CI of 2.16 (95%CI = 1.69, 2.76, 2.43 (95%CI = 1.65, 3.58 and 2.21 (95%CI = 1.65, 2.69, respectively. Among children below 5 years old, the impacts of all grades of tropical cyclones were strongest at lag 0 day. And HRs were 2.67 (95%CI = 1.10, 6.48, 2.49 (95%CI = 1.80, 3.44, 4.89 (95%CI = 2.37, 7.37 and 3.18 (95%CI = 2.10, 4.81, respectively.All grades of tropical cyclones could increase risk of other infectious diarrhea. Severe tropical storm has the strongest influence on other infectious diarrhea. The impacts of tropical cyclones on children under 5 years old were higher than total population.

  10. Tropical Cyclones, Hurricanes, and Climate: NASA's Global Cloud-Scale Simulations and New Observations that Characterize the Lifecycle of Hurricanes

    Science.gov (United States)

    Putman, William M.

    2010-01-01

    One of the primary interests of Global Change research is the impact of climate changes and climate variability on extreme weather events, such as intense tropical storms and hurricanes. Atmospheric climate models run at resolutions of global weather models have been used to study the impact of climate variability, as seen in sea surface temperatures, on the frequency and intensity of tropical cyclones. NASA's Goddard Earth Observing System Model, version 5 (GEOS-5) in ensembles run at 50 km resolution has been able to reproduce the interannual variations of tropical cyclone frequency seen in nature. This, and other global models, have found it much more difficult to reproduce the interannual changes in intensity, a result that reflects the inability of the models to simulate the intensities of the most extreme storms. Better representation of the structures of cyclones requires much higher resolution models. Such improved representation is also fundamental to making best use of satellite observations. In collaboration with NOAA's Geophysical Fluid Dynamics Laboratory, GEOS-5 now has the capability of running at much higher resolution to better represent cloud-scale resolutions. Global simulations at cloud-permitting resolutions (10- to 3.5-km) allows for the development of realistic tropical cyclones from tropical storm 119 km/hr winds) to category 5 (>249km1hr winds) intensities. GEOS-5 has produced realistic rain-band and eye-wall structures in tropical cyclones that can be directly analyzed against satellite observations. For the first time a global climate model is capable of representing realistic intensity and track variability on a seasonal scale across basins. GEOS-5 is also used in assimilation mode to test the impact of NASA's observations on tropical cyclone forecasts. One such test, for tropical cyclone Nargis in the Indian Ocean in May 2008, showed that observations from Atmospheric Infrared Sounder (AIRS) and the Advanced Microwave Sounding Unit

  11. Future Changes in Tropical Cyclone Activity in High-Resolution Large-Ensemble Simulations

    Science.gov (United States)

    Yoshida, Kohei; Sugi, Masato; Mizuta, Ryo; Murakami, Hiroyuki; Ishii, Masayoshi

    2017-10-01

    Projected future changes in global tropical cyclone (TC) activity are assessed using 5,000 year scale ensemble simulations for both current and 4 K surface warming climates with a 60 km global atmospheric model. The global number of TCs decreases by 33% in the future projection. Although geographical TC occurrences decrease generally, they increase in the central and eastern parts of the extra tropical North Pacific. Meanwhile, very intense (category 4 and 5) TC occurrences increase over a broader area including the south of Japan and south of Madagascar. The global number of category 4 and 5 TCs significantly decreases, contrary to the increase seen in several previous studies. Lifetime maximum surface wind speeds and precipitation rate are amplified globally. Regional TC activity changes have large uncertainty corresponding to sea surface temperature warming patterns. TC-resolving large-ensemble simulations provide useful information, especially for policy making related to future climate change.

  12. Intensive rainfall recharges tropical groundwaters

    International Nuclear Information System (INIS)

    Jasechko, Scott; Taylor, Richard G

    2015-01-01

    Dependence upon groundwater to meet rising agricultural and domestic water needs is expected to increase substantially across the tropics where, by 2050, over half of the world’s population is projected to live. Rare, long-term groundwater-level records in the tropics indicate that groundwater recharge occurs disproportionately from heavy rainfalls exceeding a threshold. The ubiquity of this bias in tropical groundwater recharge to intensive precipitation is, however, unknown. By relating available long-term records of stable-isotope ratios of O and H in tropical precipitation (15 sites) to those of local groundwater, we reveal that groundwater recharge in the tropics is near-uniformly (14/15 sites) biased to intensive monthly rainfall, commonly exceeding the ∼70th intensity decile. Our results suggest that the intensification of precipitation brought about by global warming favours groundwater replenishment in the tropics. Nevertheless, the processes that transmit intensive rainfall to groundwater systems and enhance the resilience of tropical groundwater storage in a warming world, remain unclear. (letter)

  13. El Nino and La Nina Effects on Tropical Cyclones: The Mechanisms

    National Research Council Canada - National Science Library

    Ford, Bruce

    2000-01-01

    The effects that El Nino and La Nina events exert on western North Pacific tropical cyclones, and the physical mechanisms involved were examined using best track data from the Joint Typhoon Warning...

  14. Real-Time Forecasting System of Winds, Waves and Surge in Tropical Cyclones

    National Research Council Canada - National Science Library

    Graber, Hans C; Donelan, Mark A; Brown, Michael G; Slinn, Donald N; Hagen, Scott C; Thompson, Donald R; Jensen, Robert E; Black, Peter G; Powell, Mark D; Guiney, John L; Cardone, Vincent J; Cox, Andrew T; Augustus, Ellsworth H; Colonnese, Christopher P

    2003-01-01

    The long-term goal of this partnership is to establish an operational forecasting system of the wind field and resulting waves and surge impacting the coastline during the approach and landfall of tropical cyclones...

  15. Objective Identification of Environmental Patterns Related to Tropical Cyclone Track Forecast Errors

    National Research Council Canada - National Science Library

    Sanabia, Elizabeth R

    2006-01-01

    The increase in skill of numerical model guidance and the use of consensus forecast techniques have led to significant improvements in the accuracy of tropical cyclone track forecasts at ranges beyond 72 hours...

  16. Real-Time Forecasting System of Winds, Waves and Surge in Tropical Cyclones

    National Research Council Canada - National Science Library

    Graber, Hans C; Donelan, Mark A; Brown, Michael G; Slinn, Donald N; Hagen, Scott C; Thompson, Donald R; Jensen, Robert E; Black, Peter G; Powell, Mark D; Guiney, John L

    2004-01-01

    The long-term goal of this partnership is to establish an operational forecasting system of the wind field and resulting waves and surge impacting the coastline during the approach and landfall of tropical cyclones...

  17. Real-Time Forecasting System of Winds, Waves and Surge in Tropical Cyclones

    National Research Council Canada - National Science Library

    Graber, Hans C; Donelan, Mark A; Brown, Michael G; Slinn, Donald N; Hagen, Scott C; Thompson, Donald R; Jensen, Robert E; Black, Peter G; Powell, Mark D; Guiney, John L

    2005-01-01

    The long-term goal of this partnership is to establish an operational forecasting system of the wind field and resulting waves and surge impacting the coastline during the approach and landfall of tropical cyclones...

  18. Real-Time Forecasting System of Winds, Waves and Surge in Tropical Cyclones

    National Research Council Canada - National Science Library

    Graber, Hans C; Donelan, Mark A; Brown, Michael G; Slinn, Donald N; Hagen, Scott C; Thompson, Donald R; Jensen, Robert E; Black, Peter G; Powell, Mark D; Guiney, John L

    2004-01-01

    .... The results of this forecasting system would provide real-time information to the National Hurricane Center during the tropical cyclone season in the Atlantic for establishing improved advisories...

  19. Real-Time Forecasting System of Winds, Waves and Surge in Tropical Cyclones

    National Research Council Canada - National Science Library

    Graber, Hans C; Donelan, Mark A; Brown, Michael G; Slinn, Donald N; Hagen, Scott C; Thompson, Donald R; Jensen, Robert E; Black, Peter G; Powell, Mark D; Guiney, John L; Cardone, Vincent J; Cox, Andrew T; Augustus, Ellsworth H; Colonnese, Christopher P

    2003-01-01

    .... The results of this forecasting system would provide real-time information to the National Hurricane Center during the tropical cyclone season in the Atlantic for establishing improved advisories...

  20. Real-Time Forecasting System of Winds, Waves and Surge in Tropical Cyclones

    National Research Council Canada - National Science Library

    Graber, Hans C; Donelan, Mark A; Brown, Michael G; Slinn, Donald N; Hagen, Scott C; Thompson, Donald R; Jensen, Robert E; Black, Peter G; Powell, Mark D; Guiney, John L

    2005-01-01

    .... The results of this forecasting system would provide real-time information to the National Hurricane Center during the tropical cyclone season in the Atlantic for establishing improved advisories...

  1. Strongest Tropical cyclones: 1980-2009: A 30-year collage of Hurricane Satellite (HURSAT) data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Strongest Tropical Cyclones: 1980-2009 poster - a 30-year collage of Hurricane Satellite (HURSAT) data. This poster depicts a series of 5 degree grids where within...

  2. Predicting Tropical Cyclone Destructive Potential by Integrated Kinetic Energy According to the Powell/Reinhold Scale

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A method of predicting the destructive capacity of a tropical cyclone based on a new Wind Destructive Potential (WDP) and Storm Surge Destructive Potential (SDP)...

  3. A Review of Parametric Descriptions of Tropical Cyclone Wind-Wave Generation

    Directory of Open Access Journals (Sweden)

    Ian R. Young

    2017-10-01

    Full Text Available More than three decades of observations of tropical cyclone wind and wave fields have resulted in a detailed understanding of wave-growth dynamics, although details of the physics are still lacking. These observations are presented in a consistent manner, which provides the basis to be able to characterize the full wave spectrum in a parametric form throughout tropical cyclones. The data clearly shows that an extended fetch model can be used to represent the maximum significant wave height in such storms. The shape stabilizing influence of nonlinear interactions means that the spectral shape is remarkably similar to fetch-limited cases. As such, the tropical cyclone spectrum can also be described by using well-known parametric models. A detailed process is described to parameterize the wave spectrum at any point in a tropical cyclone.

  4. Influence of a tropical cyclone on chlorophyll-a concentration in the Arabian Sea

    Digital Repository Service at National Institute of Oceanography (India)

    Subrahmanyam, B; Rao, K.H.; Rao, N.S.; Murty, V.S.N.

    . Joint Typhoon Warning Center, Annual Tropical Cyclone Report, 323 pp. [Available from National Technical Information Service, 5285, Port Roy- al Road, Springfield, VA 22161], 2001. Levitus, S., and T. P. Boyer, World Ocean Atlas 1994, vol. 4, Temperature...

  5. The impact of environmental inertial stability on the secondary circulation of axisymmetric tropical cyclones

    Science.gov (United States)

    O'Neill, M. E.; Chavas, D. R.

    2017-12-01

    In f-plane numerical simulations and analytical theory, tropical cyclones completely recycle their exhausted outflow air back into the boundary layer. This low-angular momentum air must experience cyclonic torque at the sea surface for cyclone to reach equilibrium. On Earth, however, it is not clear that tropical cyclones recycle all of the outflow air in a closed secondary circulation, and strong asymmetric outflow-jet interactions suggest that much of the air may be permanently evacuated from the storm over its lifetime. The fraction of outflow air that is returned to the near-storm boundary layer is in part a function of the environmental inertial stability, which controls the size and strength of the upper anticyclone. We run a suite of idealized axisymmetric tropical cyclone simulations at constant latitude while varying the outer domain's inertial stability profile. Fixing the latitude allows the gradient wind balance of the storm core to remain constant except for changes due to the far environment. By varying both the outer inertial stability and its location with respect to the Rossby radius of deformation, we show how the tropical cyclone's area-of-influence is controlled by the nature and strength of the upper anticyclone. Parcel tracking additionally demonstrates the likelihood of outflow air parcels to be quickly re-consumed by the secondary circulation as a function of inertial stability. These experiments demonstrate the sensitivity of the tropical cyclone's secondary circulation, typically assumed to be closed, to the dynamics of the far environment.

  6. On predicting future economic losses from tropical cyclones: Comparing damage functions for the Eastern USA

    Science.gov (United States)

    Geiger, Tobias; Levermann, Anders; Frieler, Katja

    2015-04-01

    Recent years have seen an intense scientific debate of what to expect from future tropical cyclone activity under climate change [1,2]. Besides the projection of cyclones' genesis points and trajectories it is the cyclone's impact on future societies that needs to be quantified. In our present work, where we focus on the Eastern USA, we start out with a comprehensive comparison of a variety of presently available and novel functional relationships that are used to link cyclones' physical properties with their damage caused on the ground. These so-called damage functions make use of high quality data sets consisting of gridded population data, exposed capital at risk, and information on the cyclone's extension and its translational and locally resolved maximum wind speed. Based on a cross-validation ansatz we train a multitude of damage functions on a large variety of data sets in order to evaluate their performance on an equally sized test sample. Although different damage analyses have been conducted in the literature [3,4,5,6], the efforts have so far primarily been focused on determining fit parameters for individual data sets. As our analysis consists of a wide range of damage functions implemented on identical data sets, we can rigorously evaluate which (type of) damage function (for which set of parameters) does best in reproducing damages and should therefore be used for future loss analysis with highest certainty. We find that the benefits of using locally resolved data input tend to be outweighed by the large uncertainties that accompany the data. More coarse and generalized data input therefore captures the diversity of cyclonic features better. Furthermore, our analysis shows that a non-linear relation between wind speed and damage outperforms the linear as well as the exponential relationship discussed in the literature. In a second step, the damage function with the highest predictive quality is implemented to predict potential future cyclone losses

  7. Epidemiology of injuries due to tropical cyclones in Hong Kong: a retrospective observational study.

    Science.gov (United States)

    Rotheray, K R; Aitken, P; Goggins, W B; Rainer, T H; Graham, C A

    2012-12-01

    Tropical cyclones are huge circulating masses of wind which form over tropical and sub-tropical waters. They affect an average of 78 million people each year. Hong Kong is a large urban centre with a population of just over 7 million which is frequently affected by tropical cyclones. We aimed to describe the numbers and types of injuries due to tropical cyclones in Hong Kong, as well as their relation to tropical cyclone characteristics. The records of all patients presenting to Hong Kong's public hospital emergency departments from 1st January 2004 to 31st December 2009 with tropical cyclone related injuries were reviewed and information regarding patient and injury characteristics was collected. Meteorological records for the relevant periods were examined and data on wind speed, rainfall and timing of landfall and warning signals was recorded and compared with the timing of tropical cyclone related injuries. A total of 460 tropical cyclone related injuries and one fatality across 15 emergency departments were identified during the study period. The mean age of those injured was 48 years and 48% were female. 25.4% of injuries were work related. The head (33.5%) and upper limb (32.5%) were the most commonly injured regions, with contusions (48.6%) and lacerations (30.2%) being the most common injury types. Falls (42.6%) were the most common mechanism of injury, followed by being hit by a falling or flying object (22.0%). In univariable analysis the relative risk of injury increased with mean hourly wind speed and hourly maximum gust. Multivariable analysis, however, showed that relative risk of injury increased with maximum gust but not average wind speed, with relative risk of injury rising sharply above maximum gusts of greater than 20 m/s. Moderate wind speed with high gust (rather than high average and high gust) appears to be the most risky situation for injuries. Relative risk of injury was not associated with rainfall. The majority of injuries (56

  8. Development of a site specific dynamical tropical cyclone and other extreme weather early warning system for Kalpakkam

    International Nuclear Information System (INIS)

    Ramakrishna, S.S.V.S.; Bhaskar Rao, D.V.; Venkata Srinivas, C.; Venkatesan, R.; Srivastav, Rupa

    2014-01-01

    The project was to study the tropical cyclones over Bay of Bengal for the south east coast region in the neighbourhood of Kalpakkam, with the main objectives of developing a methodology for providing early warning of developing storms for Kalpakkam site region based on numerical methods. The main objectives of the project are to develop a numerical modeling system for the forecasting of cyclonic storms that form in the Bay of Bengal and cross the east coast of Kalpakkam. the model performance with respect to the intensity (extreme winds), rainfall and the movement of the storm will be assessed for a number of past cyclonic storms in the region and simulations will focus on the identification of proper model configuration in terms of horizontal/vertical resolutions and physics parameterizations for deriving best predictions and to implement the same for operations forecasting for the Kalpakkam site in Tamil Nadu

  9. Modeling the physical and biogeochemical response of a marine shelf system to a tropical cyclone

    Science.gov (United States)

    Condie, S. A.; Herzfeld, M.; Margvelashvili, N.; Andrewartha, J. R.

    2009-11-01

    We describe the first use of a fully integrated biogeochemical model to explore the response of a marine shelf system to a tropical cyclone. Ocean currents, nutrients, sediments and plankton dynamics were simulated under conditions representative of Tropical Cyclone Bobby, which traversed the Australian North West Shelf in February 1995. Results show strong upwelling of nutrients and a phytoplankton bloom. While chlorophyll changes were similar to those estimated from satellite data in other coastal systems exposed to cyclonic conditions, the overall phytoplankton response was limited by cyclone induced sediment resuspension and the net contribution to annual primary production on the shelf was relatively small. In contrast, sediment loads exported off the shelf during Bobby were found to be more than 50 times modeled annual loads in years with little cyclone exposure and equivalent to at least 20 years of annual river-loads to the North West Shelf.

  10. Modeling extreme sea levels due to tropical and extra-tropical cyclones at the global-scale

    Science.gov (United States)

    Muis, S.; Lin, N.; Verlaan, M.; Winsemius, H.; Ward, P.; Aerts, J.

    2017-12-01

    Extreme sea levels, a combination of storm surges and astronomical tides, can cause catastrophic floods. Due to their intense wind speeds and low pressure, tropical cyclones (TCs) typically cause higher storm surges than extra-tropical cyclones (ETCs), but ETCs may still contribute significantly to the overall flood risk. In this contribution, we show a novel approach to model extreme sea levels due to both tropical and extra-tropical cyclones at the global-scale. Using a global hydrodynamic model we have developed the Global Tide and Surge Reanalysis (GTSR) dataset (Muis et al., 2016), which provides daily maximum timeseries of storm tide from 1979 to 2014. GTSR is based on wind and pressure fields from the ERA-Interim climate reanalysis (Dee at al., 2011). A severe limitation of the GTSR dataset is the underrepresentation of TCs. This is due to the relatively coarse grid resolution of ERA-Interim, which means that the strong intensities of TCs are not fully included. Furthermore, the length of ERA-Interim is too short to estimate the probabilities of extreme TCs in a reliable way. We will discuss potential ways to address this limitation, and demonstrate how to improve the global GTSR framework. We will apply the improved framework to the east coast of the United States. First, we improve our meteorological forcing by applying a parametric hurricane model (Holland 1980), and we improve the tide and surge reanalysis dataset (Muis et al., 2016) by explicitly modeling the historical TCs in the Extended Best Track dataset (Demuth et al., 2006). Second, we improve our sampling by statistically extending the observed TC record to many thousands of years (Emanuel et al., 2006). The improved framework allows for the mapping of probabilities of extreme sea levels, including extremes TC events, for the east coast of the United States. ReferencesDee et al (2011). The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q. J. R. Meteorol

  11. Temporal clustering of tropical cyclones on the Great Barrier Reef and its ecological importance

    Science.gov (United States)

    Wolff, Nicholas H.; Wong, Aaron; Vitolo, Renato; Stolberg, Kristin; Anthony, Kenneth R. N.; Mumby, Peter J.

    2016-06-01

    Tropical cyclones have been a major cause of reef coral decline during recent decades, including on the Great Barrier Reef (GBR). While cyclones are a natural element of the disturbance regime of coral reefs, the role of temporal clustering has previously been overlooked. Here, we examine the consequences of different types of cyclone temporal distributions (clustered, stochastic or regular) on reef ecosystems. We subdivided the GBR into 14 adjoining regions, each spanning roughly 300 km, and quantified both the rate and clustering of cyclones using dispersion statistics. To interpret the consequences of such cyclone variability for coral reef health, we used a model of observed coral population dynamics. Results showed that clustering occurs on the margins of the cyclone belt, being strongest in the southern reefs and the far northern GBR, which also has the lowest cyclone rate. In the central GBR, where rates were greatest, cyclones had a relatively regular temporal pattern. Modelled dynamics of the dominant coral genus, Acropora, suggest that the long-term average cover might be more than 13 % greater (in absolute cover units) under a clustered cyclone regime compared to stochastic or regular regimes. Thus, not only does cyclone clustering vary significantly along the GBR but such clustering is predicted to have a marked, and management-relevant, impact on the status of coral populations. Additionally, we use our regional clustering and rate results to sample from a library of over 7000 synthetic cyclone tracks for the GBR. This allowed us to provide robust reef-scale maps of annual cyclone frequency and cyclone impacts on Acropora. We conclude that assessments of coral reef vulnerability need to account for both spatial and temporal cyclone distributions.

  12. Impacts and recovery from severe tropical cyclone Yasi on the Great Barrier Reef.

    Science.gov (United States)

    Beeden, Roger; Maynard, Jeffrey; Puotinen, Marjetta; Marshall, Paul; Dryden, Jen; Goldberg, Jeremy; Williams, Gareth

    2015-01-01

    Full recovery of coral reefs from tropical cyclone (TC) damage can take decades, making cyclones a major driver of habitat condition where they occur regularly. Since 1985, 44 TCs generated gale force winds (≥17 metres/second) within the Great Barrier Reef Marine Park (GBRMP). Of the hurricane strength TCs (≥H1-Saffir Simpson scale; ≥ category 3 Australian scale), TC Yasi (February, 2011) was the largest. In the weeks after TC Yasi crossed the GBRMP, participating researchers, managers and rangers assessed the extent and severity of reef damage via 841 Reef Health and Impact Surveys at 70 reefs. Records were scaled into five damage levels representing increasingly widespread colony-level damage (1, 2, 3) and reef structural damage (4, 5). Average damage severity was significantly affected by direction (north vs south of the cyclone track), reef shelf position (mid-shelf vs outer-shelf) and habitat type. More outer-shelf reefs suffered structural damage than mid-shelf reefs within 150 km of the track. Structural damage spanned a greater latitudinal range for mid-shelf reefs than outer-shelf reefs (400 vs 300 km). Structural damage was patchily distributed at all distances, but more so as distance from the track increased. Damage extended much further from the track than during other recent intense cyclones that had smaller circulation sizes. Just over 15% (3,834 km2) of the total reef area of the GBRMP is estimated to have sustained some level of coral damage, with ~4% (949 km2) sustaining a degree of structural damage. TC Yasi likely caused the greatest loss of coral cover on the GBR in a 24-hour period since 1985. Severely impacted reefs have started to recover; coral cover increased an average of 4% between 2011 and 2013 at re-surveyed reefs. The in situ assessment of impacts described here is the largest in scale ever conducted on the Great Barrier Reef following a reef health disturbance.

  13. Characteristics of Tropical Cyclones in High-resolution Models in the Present Climate

    Science.gov (United States)

    Shaevitz, Daniel A.; Camargo, Suzana J.; Sobel, Adam H.; Jonas, Jeffrey A.; Kim, Daehyun; Kumar, Arun; LaRow, Timothy E.; Lim, Young-Kwon; Murakami, Hiroyuki; Reed, Kevin; hide

    2014-01-01

    The global characteristics of tropical cyclones (TCs) simulated by several climate models are analyzed and compared with observations. The global climate models were forced by the same sea surface temperature (SST) fields in two types of experiments, using climatological SST and interannually varying SST. TC tracks and intensities are derived from each model's output fields by the group who ran that model, using their own preferred tracking scheme; the study considers the combination of model and tracking scheme as a single modeling system, and compares the properties derived from the different systems. Overall, the observed geographic distribution of global TC frequency was reasonably well reproduced. As expected, with the exception of one model, intensities of the simulated TC were lower than in observations, to a degree that varies considerably across models.

  14. Characteristics of Tropical Cyclones in High-Resolution Models of the Present Climate

    Science.gov (United States)

    Shaevitz, Daniel A.; Camargo, Suzana J.; Sobel, Adam H.; Jonas, Jeffery A.; Kim, Daeyhun; Kumar, Arun; LaRow, Timothy E.; Lim, Young-Kwon; Murakami, Hiroyuki; Roberts, Malcolm J.; hide

    2014-01-01

    The global characteristics of tropical cyclones (TCs) simulated by several climate models are analyzed and compared with observations. The global climate models were forced by the same sea surface temperature (SST) in two types of experiments, using a climatological SST and interannually varying SST. TC tracks and intensities are derived from each model's output fields by the group who ran that model, using their own preferred tracking scheme; the study considers the combination of model and tracking scheme as a single modeling system, and compares the properties derived from the different systems. Overall, the observed geographic distribution of global TC frequency was reasonably well reproduced. As expected, with the exception of one model, intensities of the simulated TC were lower than in observations, to a degree that varies considerably across models.

  15. Effects of a tropical cyclone on the distribution of hatchery-reared black-spot tuskfish Choerodon schoenleinii determined by acoustic telemetry.

    Science.gov (United States)

    Kawabata, Y; Okuyama, J; Asami, K; Okuzawa, K; Yoseda, K; Arai, N

    2010-08-01

    The effects of a tropical cyclone on the distribution of hatchery-reared black-spot tuskfish Choerodon schoenleinii were examined using acoustic telemetry. Nine fish were released in Urasoko Bay, Ishigaki Island, Japan, in September 2006, and another nine were released in June to July 2007, before a cyclone's passing through the area in September 2007. Data for the fish released in 2006 were used as the cyclone-inexperienced group to compare their distribution pattern to that of the 2007 cyclone-experienced group. Both groups of fish were monitored for up to 150 days. Of the nine fish in each group, four (44%) and two (22%) were monitored for over 150 days in the cyclone-inexperienced and the cyclone-experienced groups, respectively. Three of the five fish that had settled in the monitoring area left the area within a few days of the cyclone event. To estimate the time of disappearance of the fish, maximum wind speed during a period of 7 days (indicating the occurrence and intensity of the tropical cyclone), fish size and release year were evaluated as explanatory variables using a Cox proportional hazards model with Akaike's information criterion. The best predictive model included the effect of maximum wind speed. One fish that left the monitoring area displayed movement patterns related to strong winds, suggesting that wind-associated strong currents swept the fish away. No relationships were found between the movement patterns of the other two fish and any physical environmental data. The daily detection periods of one of the two fish gradually decreased after the cyclone hit, and this fish eventually left the monitoring area within 3 days, suggesting that it shifted to a habitat outside the monitoring area. These results indicate that tropical cyclones have both direct and indirect effects on the distribution of hatchery-reared C. schoenleinii.

  16. Tropical-Like Cyclones in the Mediterranean: The case of Medicane "Qendresa" in 2014

    Science.gov (United States)

    Patlakas, P.; Nenes, A.; Nikolopoulos, E. I.; Kallos, G. B.

    2016-12-01

    Intense storm characteristics and structure that resemble hurricanes can periodically form over the Mediterranean Sea. These so-called Medicanes form in a similar fashion to tropical cyclones, despite the different climatic characteristics between the Mediterranean Sea and the tropical oceans. Unlike their tropical counterparts, Medicanes are poorly understood and studied. The recurrence interval of such extreme conditions is lower than tropical cyclones, but they can cause significant damages to property and pose threat to human lives. The frequency and intensity of Medicanes, in response to climate change, is also completely unknown. One recent event is the case of Medicane "Qendresa" that took place during 7-8 November 2014. It was generated in the maritime area between Italy and Tunisia and dissipated within about 48 hours. Winds and wind gusts reached 111 km/h and 154 km/h respectively, while the lowest recorded pressure reached the value of 978.6 hPa. At the same time, a 24h accumulated precipitation of more than 100 mm was recorded in the SE part of Sicily during the second day of the event. The contact of the system with Sicily and the exhibited stationarity caused the large amounts of precipitating water over the island. The quick dissipation can be attributed to the relatively quick landfall that severely reduced latent heat supply from the warm sea surface. The formation of a cyclone was forecasted by the most of operational models but its characteristics deviated significantly. In this study we utilize a state-of-the-art atmospheric model, the RAMS-ICLAMS Modeling System, to simulate the full lifecycle of the storm and study in detail the underlying mechanisms associated with the initiation, intensification and dissipation of the system. A series of sensitivity simulations define the key drivers behind the formation and development of Medicanes. The simulations revealed the high sensitivity of these systems to different dynamical and microphysical

  17. Environmental modeling, technology, and communication for land falling tropical cyclone/hurricane prediction.

    Science.gov (United States)

    Tuluri, Francis; Reddy, R Suseela; Anjaneyulu, Y; Colonias, John; Tchounwou, Paul

    2010-05-01

    Katrina (a tropical cyclone/hurricane) began to strengthen reaching a Category 5 storm on 28th August, 2005 and its winds reached peak intensity of 175 mph and pressure levels as low as 902 mb. Katrina eventually weakened to a category 3 storm and made a landfall in Plaquemines Parish, Louisiana, Gulf of Mexico, south of Buras on 29th August 2005. We investigate the time series intensity change of the hurricane Katrina using environmental modeling and technology tools to develop an early and advanced warning and prediction system. Environmental Mesoscale Model (Weather Research Forecast, WRF) simulations are used for prediction of intensity change and track of the hurricane Katrina. The model is run on a doubly nested domain centered over the central Gulf of Mexico, with grid spacing of 90 km and 30 km for 6 h periods, from August 28th to August 30th. The model results are in good agreement with the observations suggesting that the model is capable of simulating the surface features, intensity change and track and precipitation associated with hurricane Katrina. We computed the maximum vertical velocities (W(max)) using Convective Available Kinetic Energy (CAPE) obtained at the equilibrium level (EL), from atmospheric soundings over the Gulf Coast stations during the hurricane land falling for the period August 21-30, 2005. The large vertical atmospheric motions associated with the land falling hurricane Katrina produced severe weather including thunderstorms and tornadoes 2-3 days before landfall. The environmental modeling simulations in combination with sounding data show that the tools may be used as an advanced prediction and communication system (APCS) for land falling tropical cyclones/hurricanes.

  18. Environmental Modeling, Technology, and Communication for Land Falling Tropical Cyclone/Hurricane Prediction

    Directory of Open Access Journals (Sweden)

    Paul Tchounwou

    2010-04-01

    Full Text Available Katrina (a tropical cyclone/hurricane began to strengthen reaching a Category 5 storm on 28th August, 2005 and its winds reached peak intensity of 175 mph and pressure levels as low as 902 mb. Katrina eventually weakened to a category 3 storm and made a landfall in Plaquemines Parish, Louisiana, Gulf of Mexico, south of Buras on 29th August 2005. We investigate the time series intensity change of the hurricane Katrina using environmental modeling and technology tools to develop an early and advanced warning and prediction system. Environmental Mesoscale Model (Weather Research Forecast, WRF simulations are used for prediction of intensity change and track of the hurricane Katrina. The model is run on a doubly nested domain centered over the central Gulf of Mexico, with grid spacing of 90 km and 30 km for 6 h periods, from August 28th to August 30th. The model results are in good agreement with the observations suggesting that the model is capable of simulating the surface features, intensity change and track and precipitation associated with hurricane Katrina. We computed the maximum vertical velocities (Wmax using Convective Available Kinetic Energy (CAPE obtained at the equilibrium level (EL, from atmospheric soundings over the Gulf Coast stations during the hurricane land falling for the period August 21–30, 2005. The large vertical atmospheric motions associated with the land falling hurricane Katrina produced severe weather including thunderstorms and tornadoes 2–3 days before landfall. The environmental modeling simulations in combination with sounding data show that the tools may be used as an advanced prediction and communication system (APCS for land falling tropical cyclones/hurricanes.

  19. Climatological Features of Korea-Landfalling Tropical Cyclones

    Directory of Open Access Journals (Sweden)

    Jae-Won Choi

    2016-01-01

    Full Text Available The present study analyzed the interdecadal variation by applying the statistical change-point analysis to the frequency of the tropical cyclone (TC that landed in the Korean Peninsula (KP for the recent 54 years (1951 to 2004 and performed cluster classification of the Korea-landfall TC tracks using a Fuzzy Clustering Method (FCM. First, in the interdecadal variation analysis, frequency of TC that landed in the KP was largely categorized into three periods: high frequency period from 1951 to 1965, low frequency period from 1966 to 1985, and high frequency period from 1986 to 2004. The cluster analysis result of the Korea-landfall TC tracks produced the optimum number of clusters as four. In more detail, Cluster A refers to a pattern of landing in the southern coast in the KP starting from East China Sea followed by heading north while Cluster B refers to a pattern of landing in the west coast of the Korean Peninsula, also starting from East China Sea followed by heading north. Cluster C refers to a pattern of landing in the southern region of the west coast in the KP moving from mainland China while Cluster D refers to a pattern of landing in the mid-north region of the west coast in the Korean Peninsula, also moving from mainland China.

  20. Improving NASA's Multiscale Modeling Framework for Tropical Cyclone Climate Study

    Science.gov (United States)

    Shen, Bo-Wen; Nelson, Bron; Cheung, Samson; Tao, Wei-Kuo

    2013-01-01

    One of the current challenges in tropical cyclone (TC) research is how to improve our understanding of TC interannual variability and the impact of climate change on TCs. Recent advances in global modeling, visualization, and supercomputing technologies at NASA show potential for such studies. In this article, the authors discuss recent scalability improvement to the multiscale modeling framework (MMF) that makes it feasible to perform long-term TC-resolving simulations. The MMF consists of the finite-volume general circulation model (fvGCM), supplemented by a copy of the Goddard cumulus ensemble model (GCE) at each of the fvGCM grid points, giving 13,104 GCE copies. The original fvGCM implementation has a 1D data decomposition; the revised MMF implementation retains the 1D decomposition for most of the code, but uses a 2D decomposition for the massive copies of GCEs. Because the vast majority of computation time in the MMF is spent computing the GCEs, this approach can achieve excellent speedup without incurring the cost of modifying the entire code. Intelligent process mapping allows differing numbers of processes to be assigned to each domain for load balancing. The revised parallel implementation shows highly promising scalability, obtaining a nearly 80-fold speedup by increasing the number of cores from 30 to 3,335.

  1. Multiple-Scale Interactions Affecting Tropical Cyclone Track Changes

    Directory of Open Access Journals (Sweden)

    Zhexian Luo

    2011-01-01

    Full Text Available Tropical Cyclone (TC track changes associated with Rossby wave energy dispersion are simulated in a shallow water primitive equation model with an initial field where a TC is located south of a subtropical high. An anticyclone east of the TC appears because of Rossby wave energy dispersion. The connection of the anticyclone with the subtropical high leads to a poleward TC track deflection. The TC eventually moves across the axis of the subtropical ridge. The formation of the track may be attributed to the nonlinear interaction between the subtropical high and the TC. This work validates the conceptual model proposed by previous observational research. The scenario of the nonlinear interaction between the TC and the subtropical high may also be modified through the influence of mesoscale vortices. The main modifications are (1 the anticyclone induced by energy dispersion of the TC weakens, (2 the connection between the anticyclone and the subtropical high is delayed, and (3 the TC shifts more westward and does not move across the ridge axis. We propose that some of the mesoscale vortices are axisymmetrized by the TC and results in an increase in TC size which modifies the properties of the energy dispersion. The phase and group speeds decrease and produce a simulated track deflection to the left compared to the simulation without mesoscale vortices. Our numerical results demonstrate that multiple scale nonlinear interactions have an essential role in influencing TC track changes.

  2. Forecasting tropical cyclone recurvature with upper tropospheric winds

    Science.gov (United States)

    Gentry, R. C.

    1983-01-01

    Data from 17 tropical cyclones during the 1974 through 1979 hurricane seasons are used to investigate whether the high level winds far to the northwest, north and northeast of the hurricane center can be used to predict hurricane track recurvature. When the man 200-mb winds 1500 to 2000 km northwest and north of the storm center equal or exceed 20 m/s, 80 per cent of the storms recurved before traveling as much as 12 degrees of longitude farther west. The high winds were also used to predict change in direction of forward motion during the next 72 hours. The regression equations developed explain up to 41 per cent of the variance in future direction. In addition to the geostrophic winds used, winds were also obtained by tracking clouds with successive satellite imagery. The u-components of the satellite winds are highly correlated with the geostrophic winds at 200-mb and could probably be used instead of them when available. The v-components are less highly correlated.

  3. Application of Deep Learning to Detect Precursors of Tropical Cyclone

    Science.gov (United States)

    Matsuoka, D.; Nakano, M.; Sugiyama, D.; Uchida, S.

    2017-12-01

    Tropical cyclones (TCs) affect significant damage to human society. Predicting TC generation as soon as possible is important issue in both academic and social perspectives. In the present work, we investigate the probability of predicting TCs seven days prior using deep neural networks. The training data is produced from 30-year cloud resolving global atmospheric simulation (NICAM) with 14 km horizontal resolution (Kodama et al., 2015). We employed a TCs tracking algorithm (Sugi et al., 2002; Nakano et al., 2015) to NICAM simulation data in order to generate supervised cloud images (horizontal sizes are 800-1,000km). We generate approximately one million images of "TCs (include their precursors)" and "not TCs (low pressure clouds)". We generate ten types of image classifier based on 2-dimensional convolutional neural network, includes four convolutional layers, three pooling layers and two fully connected layers. The final predicted results are obtained by these ensemble mean values. Generated classifiers are applied to untrained global simulation data (four million test images). As a result, we succeeded in predicting the precursors of TCs seven and five days before their formation with a Recall of 88.6% and 89.6% (Precision is 11.4%), respectively.

  4. Morphology of the tropopause layer and lower stratosphere above a tropical cyclone: a case study on cyclone Davina (1999

    Directory of Open Access Journals (Sweden)

    F. Cairo

    2008-07-01

    Full Text Available During the APE-THESEO mission in the Indian Ocean the Myasishchev Design Bureau stratospheric research aircraft M55 Geophysica performed a flight over and within the inner core region of tropical cyclone Davina. Measurements of total water, water vapour, temperature, aerosol backscattering, ozone and tracers were made and are discussed here in comparison with the averages of those quantities acquired during the campaign time frame.

    Temperature anomalies in the tropical tropopause layer (TTL, warmer than average in the lower part and colder than average in the upper TTL were observed. Ozone was strongly reduced compared to its average value, and thick cirrus decks were present up to the cold point, sometimes topped by a layer of very dry air. Evidence for meridional transport of trace gases in the stratosphere above the cyclone was observed and perturbed water distribution in the TTL was documented. The paper discuss possible processes of dehydration induced by the cirrus forming above the cyclone, and change in the chemical tracer and water distribution in the lower stratosphere 400–430 K due to meridional transport from the mid-latitudes and link with Davina. Moreover it compares the data prior and after the cyclone passage to discuss its actual impact on the atmospheric chemistry and thermodynamics.

  5. A Reassessment of the Integrated Impact of Tropical Cyclones on Surface Chlorophyll in the Western Subtropical North Atlantic

    Energy Technology Data Exchange (ETDEWEB)

    Foltz, Gregory R.; Balaguru, Karthik; Leung, Lai-Yung R.

    2015-02-28

    The impact of tropical cyclones on surface chlorophyll concentration is assessed in the western subtropical North Atlantic Ocean during 1998–2011. Previous studies in this area focused on individual cyclones and gave mixed results regarding the importance of tropical cyclone-induced mixing for changes in surface chlorophyll. Using a more integrated and comprehensive approach that includes quantification of cyclone-induced changes in mixed layer depth, here it is shown that accumulated cyclone energy explains 22% of the interannual variability in seasonally-averaged (June–November) chlorophyll concentration in the western subtropical North Atlantic, after removing the influence of the North Atlantic Oscillation (NAO). The variance explained by tropical cyclones is thus about 70% of that explained by the NAO, which has well-known impacts in this region. It is therefore likely that tropical cyclones contribute significantly to interannual variations of primary productivity in the western subtropical North Atlantic during the hurricane season.

  6. High-Resolution Modeling to Assess Tropical Cyclone Activity in Future Climate Regimes

    Energy Technology Data Exchange (ETDEWEB)

    Lackmann, Gary

    2013-06-10

    Applied research is proposed with the following objectives: (i) to determine the most likely level of tropical cyclone intensity and frequency in future climate regimes, (ii) to provide a quantitative measure of uncertainty in these predictions, and (iii) to improve understanding of the linkage between tropical cyclones and the planetary-scale circulation. Current mesoscale weather forecasting models, such as the Weather Research and Forecasting (WRF) model, are capable of simulating the full intensity of tropical cyclones (TC) with realistic structures. However, in order to accurately represent both the primary and secondary circulations in these systems, model simulations must be configured with sufficient resolution to explicitly represent convection (omitting the convective parameterization scheme). Most previous numerical studies of TC activity at seasonal and longer time scales have not utilized such explicit convection (EC) model runs. Here, we propose to employ the moving nest capability of WRF to optimally represent TC activity on a seasonal scale using a downscaling approach. The statistical results of a suite of these high-resolution TC simulations will yield a realistic representation of TC intensity on a seasonal basis, while at the same time allowing analysis of the feedback that TCs exert on the larger-scale climate system. Experiments will be driven with analyzed lateral boundary conditions for several recent Atlantic seasons, spanning a range of activity levels and TC track patterns. Results of the ensemble of WRF simulations will then be compared to analyzed TC data in order to determine the extent to which this modeling setup can reproduce recent levels of TC activity. Next, the boundary conditions (sea-surface temperature, tropopause height, and thermal/moisture profiles) from the recent seasons will be altered in a manner consistent with various future GCM/RCM scenarios, but that preserves the large-scale shear and incipient disturbance

  7. Impact of Moist Physics Complexity on Tropical Cyclone Simulations from the Hurricane Weather Research and Forecast System

    Science.gov (United States)

    Kalina, E. A.; Biswas, M.; Newman, K.; Grell, E. D.; Bernardet, L.; Frimel, J.; Carson, L.

    2017-12-01

    The parameterization of moist physics in numerical weather prediction models plays an important role in modulating tropical cyclone structure, intensity, and evolution. The Hurricane Weather Research and Forecast system (HWRF), the National Oceanic and Atmospheric Administration's operational model for tropical cyclone prediction, uses the Scale-Aware Simplified Arakawa-Schubert (SASAS) cumulus scheme and a modified version of the Ferrier-Aligo (FA) microphysics scheme to parameterize moist physics. The FA scheme contains a number of simplifications that allow it to run efficiently in an operational setting, which includes prescribing values for hydrometeor number concentrations (i.e., single-moment microphysics) and advecting the total condensate rather than the individual hydrometeor species. To investigate the impact of these simplifying assumptions on the HWRF forecast, the FA scheme was replaced with the more complex double-moment Thompson microphysics scheme, which individually advects cloud ice, cloud water, rain, snow, and graupel. Retrospective HWRF forecasts of tropical cyclones that occurred in the Atlantic and eastern Pacific ocean basins from 2015-2017 were then simulated and compared to those produced by the operational HWRF configuration. Both traditional model verification metrics (i.e., tropical cyclone track and intensity) and process-oriented metrics (e.g., storm size, precipitation structure, and heating rates from the microphysics scheme) will be presented and compared. The sensitivity of these results to the cumulus scheme used (i.e., the operational SASAS versus the Grell-Freitas scheme) also will be examined. Finally, the merits of replacing the moist physics schemes that are used operationally with the alternatives tested here will be discussed from a standpoint of forecast accuracy versus computational resources.

  8. Targeted observations to improve tropical cyclone track forecasts in the Atlantic and eastern Pacific basins

    Science.gov (United States)

    Aberson, Sim David

    In 1997, the National Hurricane Center and the Hurricane Research Division began conducting operational synoptic surveillance missions with the Gulfstream IV-SP jet aircraft to improve operational forecast models. During the first two years, twenty-four missions were conducted around tropical cyclones threatening the continental United States, Puerto Rico, and the Virgin Islands. Global Positioning System dropwindsondes were released from the aircraft at 150--200 km intervals along the flight track in the tropical cyclone environment to obtain wind, temperature, and humidity profiles from flight level (around 150 hPa) to the surface. The observations were processed and formatted aboard the aircraft and transmitted to the National Centers for Environmental Prediction (NCEP). There, they were ingested into the Global Data Assimilation System that subsequently provides initial and time-dependent boundary conditions for numerical models that forecast tropical cyclone track and intensity. Three dynamical models were employed in testing the targeting and sampling strategies. With the assimilation into the numerical guidance of all the observations gathered during the surveillance missions, only the 12-h Geophysical Fluid Dynamics Laboratory Hurricane Model forecast showed statistically significant improvement. Neither the forecasts from the Aviation run of the Global Spectral Model nor the shallow-water VICBAR model were improved with the assimilation of the dropwindsonde data. This mediocre result is found to be due mainly to the difficulty in operationally quantifying the storm-motion vector used to create accurate synthetic data to represent the tropical cyclone vortex in the models. A secondary limit on forecast improvements from the surveillance missions is the limited amount of data provided by the one surveillance aircraft in regular missions. The inability of some surveillance missions to surround the tropical cyclone with dropwindsonde observations is a possible

  9. Tropical cyclone activity enhanced by Sahara greening and reduced dust emissions during the African Humid Period.

    Science.gov (United States)

    Pausata, Francesco S R; Emanuel, Kerry A; Chiacchio, Marc; Diro, Gulilat T; Zhang, Qiong; Sushama, Laxmi; Stager, J Curt; Donnelly, Jeffrey P

    2017-06-13

    Tropical cyclones (TCs) can have devastating socioeconomic impacts. Understanding the nature and causes of their variability is of paramount importance for society. However, historical records of TCs are too short to fully characterize such changes and paleo-sediment archives of Holocene TC activity are temporally and geographically sparse. Thus, it is of interest to apply physical modeling to understanding TC variability under different climate conditions. Here we investigate global TC activity during a warm climate state (mid-Holocene, 6,000 yBP) characterized by increased boreal summer insolation, a vegetated Sahara, and reduced dust emissions. We analyze a set of sensitivity experiments in which not only solar insolation changes are varied but also vegetation and dust concentrations. Our results show that the greening of the Sahara and reduced dust loadings lead to more favorable conditions for tropical cyclone development compared with the orbital forcing alone. In particular, the strengthening of the West African Monsoon induced by the Sahara greening triggers a change in atmospheric circulation that affects the entire tropics. Furthermore, whereas previous studies suggest lower TC activity despite stronger summer insolation and warmer sea surface temperature in the Northern Hemisphere, accounting for the Sahara greening and reduced dust concentrations leads instead to an increase of TC activity in both hemispheres, particularly over the Caribbean basin and East Coast of North America. Our study highlights the importance of regional changes in land cover and dust concentrations in affecting the potential intensity and genesis of past TCs and suggests that both factors may have appreciable influence on TC activity in a future warmer climate.

  10. Subseasonal shift in tropical cyclone genesis over the western North Pacific in 2013

    Science.gov (United States)

    Choi, Yumi; Ha, Kyung-Ja

    2017-09-01

    The 2013 subseasonal asymmetry in tropical cyclone (TC) genesis over the western North Pacific (WNP) was investigated by using the 1979-2013 RSMC best track dataset. The genesis frequency of the 2013 WNP TCs between June-August (summer) and September-November (fall) manifested an abnormal temporal asymmetry: fewer typhoons (more tropical storms) in summer and more typhoons (normal tropical storms) in fall. The 2013 active summer-tropical storm genesis arose from both a failure of eastward extension of monsoon confluence region, especially in August and a lack of moisture supply for TC genesis over the eastern part of WNP, and consequently from fewer probability to reach typhoon intensity due to the westward movement of favorable location for genesis. Thereafter, the eastward extension of monsoon shear line in September and the establishment of monsoon gyre in October induced the eastward movement of favorable location for genesis which increased probability to reach typhoon intensity. The relative contribution of mid-level relative humidity to the positive GPI change played a major role in favorable condition for typhoon genesis in September (45.2%) and October (50.9%). The monsoon gyre pattern played a leading role in the most active fall-typhoon in 2013 contributing to the highest number of October-typhoon. The eastward-migration of convection mainly contributed to the subseasonal shift of TC genesis location following eastward movement of local SST warming from summer to fall under the La Nina-like neutral state. The enhanced active boreal summer intraseasonal oscillation (BSISO) in fall provided more favorable conditions for TC genesis showing about twice as many TCs occurred regarding BSISO in fall than those in summer. This spatiotemporal asymmetry in the large-scale circulations and moisture conditions between summer and fall accounted for the subseasonal shift of genesis location of TCs, and consequently for the active summer-tropical storm genesis and the

  11. Using Proxy Records to Document Gulf of Mexico Tropical Cyclones from 1820-1915.

    Science.gov (United States)

    Pino, Jordan V; Rohli, Robert V; DeLong, Kristine L; Harley, Grant L; Trepanier, Jill C

    2016-01-01

    Observations of pre-1950 tropical cyclones are sparse due to observational limitations; therefore, the hurricane database HURDAT2 (1851-present) maintained by the National Oceanic and Atmospheric Administration may be incomplete. Here we provide additional documentation for HURDAT2 from historical United States Army fort records (1820-1915) and other archived documents for 28 landfalling tropical cyclones, 20 of which are included in HURDAT2, along the northern Gulf of Mexico coast. One event that occurred in May 1863 is not currently documented in the HURDAT2 database but has been noted in other studies. We identify seven tropical cyclones that occurred before 1851, three of which are potential tropical cyclones. We corroborate the pre-HURDAT2 storms with a tree-ring reconstruction of hurricane impacts from the Florida Keys (1707-2009). Using this information, we suggest landfall locations for the July 1822 hurricane just west of Mobile, Alabama and 1831 hurricane near Last Island, Louisiana on 18 August. Furthermore, we model the probable track of the August 1831 hurricane using the weighted average distance grid method that incorporates historical tropical cyclone tracks to supplement report locations.

  12. An Extended Forecast of the Frequencies of North Atlantic Basin Tropical Cyclone Activity for 2009

    Science.gov (United States)

    Wilson, Robert M.

    2009-01-01

    An extended forecast of the frequencies for the 2009 North Atlantic basin hurricane season is presented. Continued increased activity during the 2009 season with numbers of tropical cyclones, hurricanes, and major hurricanes exceeding long-term averages are indicated. Poisson statistics for the combined high-activity intervals (1950-1965 and 1995-2008) give the central 50% intervals to be 9-14, 5-8, and 2-4, respectively, for the number of tropical cyclones, hurricanes, and major hurricanes, with a 23.4% chance of exceeding 14 tropical cyclones, a 28% chance of exceeding 8 hurricanes, and a 31.9% chance of exceeding 4 major hurricanes. Based strictly on the statistics of the current high-activity interval (1995-2008), the central 50% intervals for the numbers of tropical cyclones, hurricanes, and major hurricanes are 12-18, 6-10, and 3-5, respectively, with only a 5% chance of exceeding 23, 13, or 7 storms, respectively. Also examined are the first differences in 10-yr moving averages and the effects of global warming and decadal-length oscillations on the frequencies of occurrence for North Atlantic basin tropical cyclones. In particular, temperature now appears to be the principal driver of increased activity and storm strength during the current high-activity interval, with near-record values possible during the 2009 season.

  13. Impact of tropical cyclone Matmo on mixed zone of the Yellow and Bohai seas

    Science.gov (United States)

    Guo, Jie; Ji, Diansheng; Hou, Chawei; Guo, Kai; Ji, Ling

    2017-12-01

    The Bohai Sea is a low-lying semi-enclosed sea area that is linked to the Yellow Sea via the Bohai straits (mixed zone). Its off shore seabed is shallow, which makes it vulnerable to serious marine meteorological disasters associated with the northward passage of Pacifi c tropical cyclones. Analyses on data of remote sensing and buoy of the mixed zone of the Yellow and Bohai seas indicate that all the wind speed, signifi cant wave height, and salinity (SAL) increased, sea surface temperature decreased, and wind energy density changed considerably during the passage of tropical cyclone Matmo on July 25, 2014. It was found that the SAL inversion layer in the mixed zone of the Yellow and Bohai Seas was caused by the tropical cyclone. Furthermore, it was found that the tropical cyclone transported the northern Yellow Sea cold water mass (NYSCWM) into the mixed zone of the Yellow and Bohai Seas. The NYSCWM has direct infl uence on both the aquaculture and the ecological environment of the region. Therefore, further research is needed to establish the mechanism behind the formation of the SAL inversion layer in the mixed zone, and to determine the infl uence of tropical cyclones on the NYSCWM.

  14. Change in ocean subsurface environment to suppress tropical cyclone intensification under global warming

    Science.gov (United States)

    Huang, Ping; Lin, I. -I; Chou, Chia; Huang, Rong-Hui

    2015-01-01

    Tropical cyclones (TCs) are hazardous natural disasters. Because TC intensification is significantly controlled by atmosphere and ocean environments, changes in these environments may cause changes in TC intensity. Changes in surface and subsurface ocean conditions can both influence a TC's intensification. Regarding global warming, minimal exploration of the subsurface ocean has been undertaken. Here we investigate future subsurface ocean environment changes projected by 22 state-of-the-art climate models and suggest a suppressive effect of subsurface oceans on the intensification of future TCs. Under global warming, the subsurface vertical temperature profile can be sharpened in important TC regions, which may contribute to a stronger ocean coupling (cooling) effect during the intensification of future TCs. Regarding a TC, future subsurface ocean environments may be more suppressive than the existing subsurface ocean environments. This suppressive effect is not spatially uniform and may be weak in certain local areas. PMID:25982028

  15. Change in ocean subsurface environment to suppress tropical cyclone intensification under global warming.

    Science.gov (United States)

    Huang, Ping; Lin, I-I; Chou, Chia; Huang, Rong-Hui

    2015-05-18

    Tropical cyclones (TCs) are hazardous natural disasters. Because TC intensification is significantly controlled by atmosphere and ocean environments, changes in these environments may cause changes in TC intensity. Changes in surface and subsurface ocean conditions can both influence a TC's intensification. Regarding global warming, minimal exploration of the subsurface ocean has been undertaken. Here we investigate future subsurface ocean environment changes projected by 22 state-of-the-art climate models and suggest a suppressive effect of subsurface oceans on the intensification of future TCs. Under global warming, the subsurface vertical temperature profile can be sharpened in important TC regions, which may contribute to a stronger ocean coupling (cooling) effect during the intensification of future TCs. Regarding a TC, future subsurface ocean environments may be more suppressive than the existing subsurface ocean environments. This suppressive effect is not spatially uniform and may be weak in certain local areas.

  16. Application of the Marsupial Paradigm to Tropical Cyclone Formation from Northwestward-Propagating Disturbances

    Science.gov (United States)

    Wang, Zhuo; Dunkerton, Timothy J.; Montgomery, Michael T.

    2012-01-01

    A wave-tracking algorithm is developed for northwestward-propagating waves that, on occasion, play a role in tropical cyclogenesis over the western oceans. To obtain the Lagrangian flow structure, the frame of reference is translated obliquely at the same propagation speed with the precursor disturbance. Trajectory analysis suggests that streamlines in the obliquely translated frame of reference can be used to approximate flow trajectories. The algorithm was applied to Super Typhoon Nakri (2008), Tropical Cyclone Erika (2009), and a few other examples. Diagnoses of meteorological analyses and satellite-derived moisture and precipitation fields show that the marsupial framework for tropical cyclogenesis in tropical easterly waves is relevant also for northwestward-propagating disturbances as are commonly observed in the tropical western Atlantic, the Gulf of Mexico, and the western North Pacific. Finally, it is suggested that analysis of the global model data and satellite observations in the marsupial framework can provide useful guidance on early tropical cyclone advisories.

  17. Tropical Cyclones in the GISS ModelE2

    Science.gov (United States)

    Camargo, Suzana J.; Sobel, Adam H.; Del Genio, Anthony; Jonas, Jeffrey A.; Kelley, Maxwell; Lu, Yun; Shaevitz, Daniel; Henderson, Naomi

    2016-01-01

    The authors describe the characteristics of tropical cyclone (TC) activity in the GISS general circulation ModelE2 with a horizontal resolution 1deg x 1deg. Four model simulations are analyzed. In the first, the model is forced with sea surface temperature (SST) from the recent historical climatology. The other three have different idealized climate change simulations, namely (1) a uniform increase of SST by 2 deg., (2) doubling of the CO2 concentration and (3) a combination of the two. These simulations were performed as part of the US Climate Variability and Predictability Program Hurricane Working Group. Diagnostics of standard measures of TC activity are computed from the recent historical climatological SST simulation and compared with the same measures computed from observations. The changes in TC activity in the three idealized climate change simulations, by comparison with that in the historical climatological SST simulation, are also described. Similar to previous results in the literature, the changes in TC frequency in the simulation with a doubling CO2 and an increase in SST are approximately the linear sum of the TC frequency in the other two simulations. However, in contrast with previous results, in these simulations the effects of CO2 and SST on TC frequency oppose each other. Large-scale environmental variables associated with TC activity are then analyzed for the present and future simulations. Model biases in the large-scale fields are identified through a comparison with ERA-Interim reanalysis. Changes in the environmental fields in the future climate simulations are shown and their association with changes in TC activity discussed.

  18. Characteristics of rainfall during tropical cyclone periods in Taiwan

    Directory of Open Access Journals (Sweden)

    K. K. W. Cheung

    2008-12-01

    Full Text Available Due to the Central Mountain Range with an elevation up to about 4 km, the amount and distribution of rainfall in Taiwan associated with typhoons or tropical cyclones (TCs depends not only on the distribution of convection within the TCs (internal structure and influences from monsoon-scale environmental flow, but also on the orographic effect. This study analyzes the spatial and temporal characteristics of rainfall associated with 62 TC cases that affected Taiwan by using observations from the 371 automatic rain stations available in the period 1989–2002. It is found from the climatology maps that highly different rainfall distributions occurred for TCs that approached the Taiwan area from different directions. By performing objective clustering analysis of the rainfall time series of all the rain gauges, several characteristic temporal rainfall profiles are obtained. The geographic distribution of rain gauges that possess a particular temporal profile is also consistent with the possible TC track types that bring maximum rain to the Taiwan area at different times.

    Based on data in the 1989–2002 period, the development of a TC rainfall climatology-persistence (CLIPER model is described. CLIPER is an optimized combination of climatology and persistence with different relative weighting for different forecast periods. Independent cases (other than the model development database during 2003–2004 are used to validate the model. Objective measures like equitable threat score and bias score show that CLIPER's skill is acceptable for practical applications for 24-h rain threshold below 100 mm. However, the underestimation bias for more heavy rainfall is serious and CLIPER seems to have better performance for the northwestern Taiwan than for the other locations. Future directions for improvement of the CLIPER model are discussed.

  19. Scaling future tropical cyclone damage with global mean temperature

    Science.gov (United States)

    Geiger, T.; Bresch, D.; Frieler, K.

    2017-12-01

    Tropical cyclones (TC) are one of the most damaging natural hazards and severely affectmany countries around the globe each year. Their nominal impact is projected to increasesubstantially as the exposed coastal population grows, per capita income increases, andanthropogenic climate change manifests. The magnitude of this increase, however, variesacross regions and is obscured by the stochastic behaviour of TCs, so far impeding arigorous quantification of trends in TC damage with global mean temperature (GMT) rise. Here, we build on the large sample of spatially explicit TCs simulations generated withinISIMIP(2b) for 1) pre-industrial conditions, 2) the historical period, and 3) future projectionsunder RCP2.6 and RCP6.0 to estimate future TC damage assuming fixed present-daysocio-economic conditions or SSP-based future projections of population patterns andincome. Damage estimates will be based on region-specific empirical damage modelsderived from reported damages and accounting for regional characteristics of vulnerability.Different combinations of 1) socio-economic drivers with pre-industrial climate or 2) changingclimate with fixed socio-economic conditions will be used to derive functional relationshipsbetween regionally aggregated changes in damages on one hand and global meantemperature and socio-economic predictors on the other hand. The obtained region-specific scaling of future TC damage with GMT provides valuable inputfor IPCC's special report on the impacts of global warming of 1.5°C by quantifying theincremental changes in impact with global warming. The approach allows for an update ofdamage functions used in integrated assessment models, and contributes to assessing theadequateness of climate mitigation and adaptation strategies.

  20. Tropical cyclones in the GISS ModelE2

    Directory of Open Access Journals (Sweden)

    Suzana J. Camargo

    2016-07-01

    Full Text Available The authors describe the characteristics of tropical cyclone (TC activity in the GISS general circulation ModelE2 with a horizontal resolution 1°×1°. Four model simulations are analysed. In the first, the model is forced with sea surface temperature (SST from the recent historical climatology. The other three have different idealised climate change simulations, namely (1 a uniform increase of SST by 2 degrees, (2 doubling of the CO2 concentration and (3 a combination of the two. These simulations were performed as part of the US Climate Variability and Predictability Program Hurricane Working Group. Diagnostics of standard measures of TC activity are computed from the recent historical climatological SST simulation and compared with the same measures computed from observations. The changes in TC activity in the three idealised climate change simulations, by comparison with that in the historical climatological SST simulation, are also described. Similar to previous results in the literature, the changes in TC frequency in the simulation with a doubling CO2 and an increase in SST are approximately the linear sum of the TC frequency in the other two simulations. However, in contrast with previous results, in these simulations the effects of CO2 and SST on TC frequency oppose each other. Large-scale environmental variables associated with TC activity are then analysed for the present and future simulations. Model biases in the large-scale fields are identified through a comparison with ERA-Interim reanalysis. Changes in the environmental fields in the future climate simulations are shown and their association with changes in TC activity discussed.

  1. A climatological model of North Indian Ocean tropical cyclone genesis, tracks and landfall

    Science.gov (United States)

    Wahiduzzaman, Mohammad; Oliver, Eric C. J.; Wotherspoon, Simon J.; Holbrook, Neil J.

    2017-10-01

    Extensive damage and loss of life can be caused by tropical cyclones (TCs) that make landfall. Modelling of TC landfall probability is beneficial to insurance/re-insurance companies, decision makers, government policy and planning, and residents in coastal areas. In this study, we develop a climatological model of tropical cyclone genesis, tracks and landfall for North Indian Ocean (NIO) rim countries based on kernel density estimation, a generalised additive model (GAM) including an Euler integration step, and landfall detection using a country mask approach. Using a 35-year record (1979-2013) of tropical cyclone track observations from the Joint Typhoon Warning Centre (part of the International Best Track Archive Climate Stewardship Version 6), the GAM is fitted to the observed cyclone track velocities as a smooth function of location in each season. The distribution of cyclone genesis points is approximated by kernel density estimation. The model simulated TCs are randomly selected from the fitted kernel (TC genesis), and the cyclone paths (TC tracks), represented by the GAM together with the application of stochastic innovations at each step, are simulated to generate a suite of NIO rim landfall statistics. Three hindcast validation methods are applied to evaluate the integrity of the model. First, leave-one-out cross validation is applied whereby the country of landfall is determined by the majority vote (considering the location by only highest percentage of landfall) from the simulated tracks. Second, the probability distribution of simulated landfall is evaluated against the observed landfall. Third, the distances between the point of observed landfall and simulated landfall are compared and quantified. Overall, the model shows very good cross-validated hindcast skill of modelled landfalling cyclones against observations in each of the NIO tropical cyclone seasons and for most NIO rim countries, with only a relatively small difference in the percentage of

  2. Detection and Tracking of Tropical Cyclones on a Seasonal Scale in the Philippines

    Directory of Open Access Journals (Sweden)

    Josefina C. Argete

    2007-12-01

    Full Text Available A regional climate model is used to detect tropical cyclones (TC and simulate their tracks for a four-month (June-July-August-September wet season in the Philippine region. The model, run at 45-km resolution, is forced along the boundaries with 6-hourly reanalyses data (ERA-40 with about 250-km resolution. Three experiments are devised which varied the size of the domain and placement of the boundaries.A detection and tracking algorithm is developed using 850-mb vorticity threshold, minimum sea level pressure and the presence of a warm core aloft as criteria. The tracks extracted from the ERA-40 field, herein called analyses track, are compared with JTWC best track to test the performance of the tracking algorithm. Of the fourteen (14 TC that entered the domain, ten were formed in the Pacific Ocean and four in the South China Sea. The algorithm detected all TC and skillfully captured the JTWC best track. From the 417 cases (6-hourly positions of the 14 TC, the mean zonal and meridional errors are -164, -23 km, respectively, where the analyses tracks are on the average moving faster westward and southward than the best track. The relatively small magnitude of errors indicates skill of the tracking method.The regional model is able to detect all 14 TC but with tracks that are farther displaced north of analyses. Simulation of track was enhanced as domain size is decreased. The intensity simulation is improved as more typhoons otherwise not found in the forcing data are generated by the regional model. This study demonstrates that a regional model forced by "perfect" boundary conditions can reasonably simulate the tracks and intensity of tropical cyclones on a seasonal scale. The importance of the use of the proper domain configuration is also shown.

  3. MISR CMVs and Multiangular Views of Tropical Cyclone Inner-Core Dynamics

    Science.gov (United States)

    Wu, Dong L.; Diner, David J.; Garay, Michael J; Jovanovic, Veljko M.; Lee, Jae N.; Moroney, Catherine M.; Mueller, Kevin J.; Nelson, David L.

    2010-01-01

    Multi-camera stereo imaging of cloud features from the MISR (Multiangle Imaging SpectroRadiometer) instrument on NASA's Terra satellite provides accurate and precise measurements of cloud top heights (CTH) and cloud motion vector (CMV) winds. MISR observes each cloudy scene from nine viewing angles (Nadir, +/-26(sup o), +/-46(sup o), +/-60(sup o), +/-70(sup o)) with approximatel 275-m pixel resolution. This paper provides an update on MISR CMV and CTH algorithm improvements, and explores a high-resolution retrieval of tangential winds inside the eyewall of tropical cyclones (TC). The MISR CMV and CTH retrievals from the updated algorithm are significantly improved in terms of spatial coverage and systematic errors. A new product, the 1.1-km cross-track wind, provides high accuracy and precision in measuring convective outflows. Preliminary results obtained from the 1.1-km tangential wind retrieval inside the TC eyewall show that the inner-core rotation is often faster near the eyewall, and this faster rotation appears to be related linearly to cyclone intensity.

  4. Measurements of the upper troposphere and lower stratosphere during tropical cyclones using the GPS radio occultation technique

    DEFF Research Database (Denmark)

    Biondi, Riccardo; Neubert, Torsten; Syndergaard, Stig

    2011-01-01

    and Climate (COSMIC) were analyzed, focusing on two particular tropical cyclones with completely different characteristics, the hurricane Bertha, which formed in the Atlantic Basin during July 2008 and reached a maximum intensity of Category 3, and the typhoon Hondo, which formed in the south Indian Ocean...... during 2008 reaching a maximum intensity of Category 4. The result is positive, suggesting that the bending angle of a GPS radio occultation signal contains interesting information on the atmosphere around the tropopause, but not any information regarding the water vapour. The maximum percentage anomaly...

  5. Water security and societal impacts of tropical cyclones in northwestern Mexico, 1970-2010

    Science.gov (United States)

    Scott, C. A.; Farfan, L.

    2012-12-01

    Hydroclimatic variability is one of several potential threats to water security, defined as sustainable quantities and qualities of water for resilient societies and ecosystems in the face of uncertain global environmental change. Other threats can stem from human dimensions of global change, e.g., long-distance trade of water-intensive agricultural commodities or pollution resulting from industrial production and mining in response to rising global market demand. Drought and water scarcity are considered the principal, chronic, hydroclimatic drivers of water insecurity in arid and semi-arid regions. In these conditions, however, rainfall is both the water-supply lifeline and, in extreme events, the cause of flood hazard. In this study, we consider the monsoon-dominated Pacific coast of Mexico and assess the human impacts from tropical cyclone landfall over the past four decades (1970-2010). Storm data from the U.S. National Hurricane Center, rainfall reports from Mexico's National Meteorological Service, and indicators from an international disaster database at Belgium's Université Catholique de Louvain are used to assess the impacts of more than 30 landfall events. For the ten events with the greatest population impact, between 20,000 to 800,000 people were affected by each landfalling cyclone. Strong winds and heavy rainfall, particularly when sustained over periods of 1-3 days, result in significant property damage and loss of life. Results indicate that, in densely populated areas, excessive rainfall accumulations and high daily rates are important causes of cyclone disasters. Strengthening water security associated with extreme events requires planning via structured exchanges between scientists and decision-makers. Adaptive management that accounts for uncertainties, initiates responses, and iteratively assesses outcomes is the thrust of an emerging water-security initiative for the arid Americas that seeks to strengthen water security in northwestern

  6. Application of K1/3 weather coefficient to tropical cyclone avoidance

    Directory of Open Access Journals (Sweden)

    Szymański Maciej

    2017-03-01

    Full Text Available The article presents the results of an application of K1/3 weather coefficient to tropical cyclone avoidance manoeuvre on the example of a tropical cyclones GASTON in the North Atlantic in. Avoidance manoeuvre was planned with the use of the Bon Voyage ORS (Onboard Routing System of the AWT and also with the use of the programme CYKLON. The routes considered in the Bon Voyage system were generated by the route optimization algorithms of the system and routes programmed manually were generated by the system operator. Weather coefficient K1/3 was utilized as an index of safety of navigation in decision making regarding the ultimate route choice of all route variants generated and programmed in both decision making support systems. Results obtained point at the legitimacy of utilizing several decision support systems in solving the problem of tropical cyclone avoidance manoeuvre.

  7. Assessing the Uncertainty of Tropical Cyclone Simulations in NCAR's Community Atmosphere Model

    Directory of Open Access Journals (Sweden)

    Kevin A Reed

    2011-08-01

    Full Text Available The paper explores the impact of the initial-data, parameter and structural model uncertainty on the simulation of a tropical cyclone-like vortex in the National Center for Atmospheric Research's (NCAR Community Atmosphere Model (CAM. An analytic technique is used to initialize the model with an idealized weak vortex that develops into a tropical cyclone over ten simulation days. A total of 78 ensemble simulations are performed at horizontal grid spacings of 1.0°, 0.5° and 0.25° using two recently released versions of the model, CAM 4 and CAM 5. The ensemble members represent simulations with random small-amplitude perturbations of the initial conditions, small shifts in the longitudinal position of the initial vortex and runs with slightly altered model parameters. The main distinction between CAM 4 and CAM 5 lies within the physical parameterization suite, and the simulations with both CAM versions at the varying resolutions assess the structural model uncertainty. At all resolutions storms are produced with many tropical cyclone-like characteristics. The CAM 5 simulations exhibit more intense storms than CAM 4 by day 10 at the 0.5° and 0.25° grid spacings, while the CAM 4 storm at 1.0° is stronger. There are also distinct differences in the shapes and vertical profiles of the storms in the two variants of CAM. The ensemble members show no distinction between the initial-data and parameter uncertainty simulations. At day 10 they produce ensemble root-mean-square deviations from an unperturbed control simulation on the order of 1--5 m s-1 for the maximum low-level wind speed and 2--10 hPa for the minimum surface pressure. However, there are large differences between the two CAM versions at identical horizontal resolutions. It suggests that the structural uncertainty is more dominant than the initial-data and parameter uncertainties in this study. The uncertainty among the ensemble members is assessed and quantified.

  8. Impact Factors and Risk Analysis of Tropical Cyclones on a Highway Network.

    Science.gov (United States)

    Yang, Saini; Hu, Fuyu; Jaeger, Carlo

    2016-02-01

    Coastal areas typically have high social and economic development and are likely to suffer huge losses due to tropical cyclones. These cyclones have a great impact on the transportation network, but there have been a limited number of studies about tropical-cyclone-induced transportation network functional damages, especially in Asia. This study develops an innovative measurement and analytical tool for highway network functional damage and risk in the context of a tropical cyclone, with which we explored the critical spatial characteristics of tropical cyclones with regard to functional damage to a highway network by developing linear regression models to quantify their relationship. Furthermore, we assessed the network's functional risk and calculated the return periods under different damage levels. In our analyses, we consider the real-world highway network of Hainan province, China. Our results illustrate that the most important spatial characteristics were location (in particular, the midlands), travel distance, landfalling status, and origin coordinates. However, the trajectory direction did not obviously affect the results. Our analyses indicate that the highway network of Hainan province may suffer from a 90% functional damage scenario every 4.28 years. These results have critical policy implications for the transport sector in reference to emergency planning and disaster reduction. © 2015 Society for Risk Analysis.

  9. Impact of horizontal resolution on prediction of tropical cyclones over ...

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    The causality figures associated with major cyclones in the Indian sub-continent in the recent past are 2,00,000 and 1,31,000 in Bangladesh in. 1971 and 1991; 10,000 and 1000 in 1977 and 1990 in Andhra Pradesh (India). The super cyclone that crossed Orissa (India) coast on 29th Novem- ber, 1999 affected 129.66lakh ...

  10. Australian tropical cyclone activity lower than at any time over the past 550-1,500 years

    NARCIS (Netherlands)

    Haig, J.; Nott, J.; Reichart, G.-J.

    2014-01-01

    The assessment of changes in tropical cyclone activity within the context of anthropogenically influenced climate change has been limited by the short temporal resolution of the instrumental tropical cyclone record(1,2) (less than 50 years). Furthermore, controversy exists regarding the robustness

  11. Australian tropical cyclone activity lower than at any time over the past 550–1,500 years

    NARCIS (Netherlands)

    Haig, J.; Nott, J.; Reichart, G.-J.

    2014-01-01

    The assessment of changes in tropical cyclone activity within the context of anthropogenically influenced climate change has been limited by the short temporal resolution of the instrumental tropical cyclone record (less than 50 years). Furthermore, controversy exists regarding the robustness of the

  12. Large-Scale Controls on Atlantic Tropical Cyclone Activity on Seasonal Time Scales

    Science.gov (United States)

    Lim, Young-Kwon; Schubert, Siegfried D.; Reale, Oreste; Molod, Andrea M.; Suarez, Max J.; Auer, Benjamin M.

    2016-01-01

    Interannual variations in seasonal tropical cyclone (TC) activity (e.g., genesis frequency and location, track pattern, and landfall) over the Atlantic are explored by employing observationally-constrained simulations with the NASA Goddard Earth Observing System version (GEOS-5) atmospheric general circulation model. The climate modes investigated are El Nino-Southern Oscillation (ENSO), the North Atlantic Oscillation (NAO), and the Atlantic Meridional Mode (AMM). The results show that the NAO and AMM can strongly modify and even oppose the well- known ENSO impacts, like in 2005, when a strong positive AMM (associated with warm SSTs and a negative SLP anomaly over the western tropical Atlantic), led to a very active TC season with enhanced TC genesis over the Caribbean Sea and a number of landfalls over North America, under a neutral ENSO condition. On the other end, the weak TC activity during 2013 (characterized by weak negative Nio index) appears caused by a NAO-induced positive SLP anomaly with enhanced vertical wind shear over the tropical North Atlantic. During 2010, the combined impact of the three modes produced positive SST anomalies across the entire low-latitudinal Atlantic and a weaker subtropical high, leading to more early recurvers and thus fewer landfalls despite enhanced TC genesis. The study provides evidence that TC number and track are very sensitive to the relative phases and intensities of these three modes, and not just to ENSO alone. Examination of seasonal predictability reveals that predictive skill of the three modes is limited over tropics to sub-tropics, with the AMM having the highest predictability over the North Atlantic, followed by ENSO and NAO.

  13. Response of tropical sea surface temperature, precipitation, and tropical cyclone-related variables to changes in global and local forcing

    Science.gov (United States)

    Emanuel, Kerry; Sobel, Adam

    2013-06-01

    A single-column model is used to estimate the equilibrium response of sea surface temperature (SST), precipitation, and several variables related to tropical cyclone (TC) activity to changes in both local and global forcing. Response to local forcing is estimated using the weak temperature gradient (WTG) approximation. The surface temperature is calculated using a thin slab ocean so as to maintain surface energy balance. Forcing is varied by changing the solar constant, atmospheric CO2 concentration, surface wind speed, and the convergence of upper ocean heat flux. These experiments show that precipitation and variables related to TC activity are not unique functions of SST on time scales long enough for surface energy balance to be maintained. Precipitation varies inversely with SST in experiments in which the surface wind speed is varied. At low wind speed, the WTG experiments reveal a regime of high relative SST and low precipitation, which is maintained by increased transmission of longwave radiation from the surface directly to space through a dry troposphere. In general, TC potential intensity and genesis potential vary much more rapidly with SST in response to varying surface wind speed than in response to other forcings. Local changes in TC potential intensity are highly correlated with local changes in SST, showing that relative SST is a good proxy for potential intensity when forcing is strictly local, but it cannot capture potentially important changes in potential intensity that arise from global-scale changes in forcing.

  14. Evolution of the Tropical Cyclone Integrated Data Exchange And Analysis System (TC-IDEAS)

    Science.gov (United States)

    Turk, J.; Chao, Y.; Haddad, Z.; Hristova-Veleva, S.; Knosp, B.; Lambrigtsen, B.; Li, P.; Licata, S.; Poulsen, W.; Su, H.; hide

    2010-01-01

    The Tropical Cyclone Integrated Data Exchange and Analysis System (TC-IDEAS) is being jointly developed by the Jet Propulsion Laboratory (JPL) and the Marshall Space Flight Center (MSFC) as part of NASA's Hurricane Science Research Program. The long-term goal is to create a comprehensive tropical cyclone database of satellite and airborne observations, in-situ measurements and model simulations containing parameters that pertain to the thermodynamic and microphysical structure of the storms; the air-sea interaction processes; and the large-scale environment.

  15. Impact of assimilated satellite observations on tropical cyclone precipitation analyses and forecasts

    Science.gov (United States)

    Lewis, W.

    2009-04-01

    Tropical Cyclones are among the most destructive natural phenomena, not only on account of extreme wind but also due to the excessive amounts of precipitation that these storms are capable of generating. Here we attempt to determine the extent to which remotely sensed observations can improve model-based analyses and forecasts of the precipitation fields associated with tropical cyclones. To accomplish this task, we assimilate infrared (10.7 micron) imagery from GOES-12 and passive microwave imagery from the Special Sensor Microwave Imager (SSMI) aboard the DMSP satellites using an ensemble Kalman filter (EnKF) within the University of Wisconsin Nonhyrdostatic Modeling System (UW-NMS).

  16. Tropicalization process of the 7 November 2014 Mediterranean cyclone: Numerical sensitivity study

    Science.gov (United States)

    Carrió, D. S.; Homar, V.; Jansa, A.; Romero, R.; Picornell, M. A.

    2017-11-01

    Tropical-like Mediterranean cyclones (medicanes) have been documented and investigated in the literature, revealing that their physical mechanisms are still poorly understood and likely not unique across cases. During late hours of 7 November 2014 a small-scale cyclone was detected over the Sicilian channel, affecting the Islands of Lampedusa, Pantelleria and Malta. Gust wind values exceeding 42.7 m s- 1 and a pressure drop above 20 hPa in 6 h were registered in Malta. Clear signatures of a well-defined cloud-free eye surrounded with convective activity of axisymmetric character were identifiable through IR satellite imagery during the late stages of the cyclone, resembling the properties of a hurricane. We investigate the cyclogenesis and posterior development of this small-scale cyclone as well as its physical nature; to this aim, a set of high-resolution sensitivity numerical experiments were performed. Hart's phase diagrams adapted to the Mediterranean region clearly reveal the tropical characteristics of the simulated storm. A numerical sensitivity analysis by means of a factor separation technique is used to gain quantitative insight on the roles latent heat release, surface heat fluxes and upper-level PV signatures (dynamically isolated through a PV-Inversion technique) have on the unfold of this singular event. Results show the importance of the upper-level dynamics to generate a baroclinic environment prone to surface cyclogenesis and in supporting the posterior tropicalization of the system. On the contrary, latent heat release and surface heat fluxes factors do not seem to contribute, as individual processes, to the genesis of the cyclone as much as it could be suspected, considering it behaves as a tropical-like cyclone. However, the asynchronous synergism between latent heat release and PV factors plays a crucial role for the intensification of the cyclone towards reaching the pure diabatic phase.

  17. The role of mid-level vortex in the intensification and weakening of tropical cyclones

    Science.gov (United States)

    Kutty, Govindan; Gohil, Kanishk

    2017-10-01

    The present study examines the dynamics of mid-tropospheric vortex during cyclogenesis and quantifies the importance of such vortex developments in the intensification of tropical cyclone. The genesis of tropical cyclones are investigated based on two most widely accepted theories that explain the mechanism of cyclone formation namely `top-down' and `bottom-up' dynamics. The Weather Research and Forecast model is employed to generate high resolution dataset required for analysis. The development of the mid-level vortex was analyzed with regard to the evolution of potential vorticity (PV), relative vorticity (RV) and vertical wind shear. Two tropical cyclones which include the developing cyclone, Hudhud and the non-developing cyclone, Helen are considered. Further, Hudhud and Helen, is compared to a deep depression formed over Bay of Bengal to highlight the significance of the mid-level vortex in the genesis of a tropical cyclone. Major results obtained are as follows: stronger positive PV anomalies are noticed over upper and lower levels of troposphere near the storm center for Hudhud as compared to Helen and the depression; Constructive interference in upper and lower level positive PV anomaly maxima resulted in the intensification of Hudhud. For Hudhud, the evolution of RV follows `top-down' dynamics, in which the growth starts from the middle troposphere and then progresses downwards. As for Helen, RV growth seems to follow `bottom-up' mechanism initiating growth from the lower troposphere. Though, the growth of RV for the depression initiates from mid-troposphere, rapid dissipation of mid-level vortex destabilizes the system. It is found that the formation mid-level vortex in the genesis phase is significantly important for the intensification of the storm.

  18. Solar Influence on Tropical Cyclone in Western North Pacific Ocean

    Science.gov (United States)

    Kim, Jung-Hee; Kim, Ki-Beom; Chang, Heon-Young

    2017-12-01

    Solar activity is known to be linked to changes in the Earth’s weather and climate. Nonetheless, for other types of extreme weather, such as tropical cyclones (TCs), the available evidence is less conclusive. In this study the modulation of TC genesis over the western North Pacific by the solar activity is investigated, in comparison with a large-scale environmental parameter, i.e., El-Niño-Southern Oscillation (ENSO). For this purpose, we have obtained the best track data for TCs in the western North Pacific from 1977 to 2016, spanning from the solar cycle 21 to the solar cycle 24. We have confirmed that in the El-Niño periods TCs tend to form in the southeast, reach its maximum strength in the southeast, and end its life as TSs in the northeast, compared with the La-Niña periods. TCs occurring in the El-Niño periods are found to last longer compared with the La-Niña periods. Furthermore, TCs occurring in the El-Niño periods have a lower central pressure at their maximum strength than those occurring in the La-Niña periods. We have found that TCs occurring in the solar maximum periods resemble those in the El-Niño periods in their properties. We have also found that TCs occurring in the solar descending periods somehow resemble those in the El-Niño periods in their properties. To make sure that it is not due to the ENSO effect, we have excluded TCs both in the El-Niño periods and in the La-Niña periods from the data set and repeated the analysis. In addition to this test, we have also reiterated our analysis twice with TCs whose maximum sustained winds speed exceeds 17 m/s, instead of 33 m/s, as well as TCs designated as a typhoon, which ends up with the same conclusions.

  19. Development of an Adaptable Display and Diagnostic System for the Evaluation of Tropical Cyclone Forecasts

    Science.gov (United States)

    Kucera, P. A.; Burek, T.; Halley-Gotway, J.

    2015-12-01

    NCAR's Joint Numerical Testbed Program (JNTP) focuses on the evaluation of experimental forecasts of tropical cyclones (TCs) with the goal of developing new research tools and diagnostic evaluation methods that can be transitioned to operations. Recent activities include the development of new TC forecast verification methods and the development of an adaptable TC display and diagnostic system. The next generation display and diagnostic system is being developed to support evaluation needs of the U.S. National Hurricane Center (NHC) and broader TC research community. The new hurricane display and diagnostic capabilities allow forecasters and research scientists to more deeply examine the performance of operational and experimental models. The system is built upon modern and flexible technology that includes OpenLayers Mapping tools that are platform independent. The forecast track and intensity along with associated observed track information are stored in an efficient MySQL database. The system provides easy-to-use interactive display system, and provides diagnostic tools to examine forecast track stratified by intensity. Consensus forecasts can be computed and displayed interactively. The system is designed to display information for both real-time and for historical TC cyclones. The display configurations are easily adaptable to meet the needs of the end-user preferences. Ongoing enhancements include improving capabilities for stratification and evaluation of historical best tracks, development and implementation of additional methods to stratify and compute consensus hurricane track and intensity forecasts, and improved graphical display tools. The display is also being enhanced to incorporate gridded forecast, satellite, and sea surface temperature fields. The presentation will provide an overview of the display and diagnostic system development and demonstration of the current capabilities.

  20. The influence of tropical cyclones on long-term riverine flooding; examples from tropical Australia

    Science.gov (United States)

    Nott, Jonathan

    2018-02-01

    Luminescence chronologies for two new slackwater flood deposit (SWD) sites (Broken River northeast Queensland and Ord River northwestern Western Australia) are presented and these along with other SWD chronologies from the same regions are compared with recently developed high resolution, isotope tropical cyclones (TC) records. Heightened TC activity occurred between 1400 and 1850 CE in Queensland and between 1500 and 1850 CE in Western Australia. A distinct clustering of flood events in northwest Western Australia during the period of enhanced TC activity suggests the two may be related. The SWD records in northeast Queensland do not cluster specifically during the period of heightened TC activity however several major floods do occur during this time suggesting that TCs may have been involved.

  1. Characteristics and development of European cyclones with tropical origin in reanalysis data

    Science.gov (United States)

    Dekker, Mark M.; Haarsma, Reindert J.; Vries, Hylke de; Baatsen, Michiel; Delden, Aarnout J. van

    2018-01-01

    Major storm systems over Europe frequently have a tropical origin. This paper analyses the characteristics and dynamics of such cyclones in the observational record, using MERRA reanalysis data for the period 1979-2013. By stratifying the cyclones along three key phases of their development (tropical phase, extratropical transition and final re-intensification), we identify four radically different life cycles: the tropical cyclone and extratropical cyclone life cycles, the classic extratropical transition and the warm seclusion life cycle. More than 50% of the storms reaching Europe from low latitudes follow the warm seclusion life cycle. It also contains the strongest cyclones. They are characterized by a warm core and a frontal T-bone structure, with a northwestward warm conveyor belt and the effects of dry intrusion. Rapid deepening occurs in the latest phase, around their arrival in Europe. Both baroclinic instability and release of latent heat contribute to the strong intensification. The pressure minimum occurs often a day after entering Europe, which enhances the potential threat of warm seclusion storms for Europe. The impact of a future warmer climate on the development of these storms is discussed.

  2. Investigating Sensitivity to Saharan Dust in Tropical Cyclone Formation Using Nasa's Adjoint Model

    Science.gov (United States)

    Holdaway, Daniel

    2015-01-01

    As tropical cyclones develop from easterly waves coming of the coast of Africa they interact with dust from the Sahara desert. There is a long standing debate over whether this dust inhibits or advances the developing storm and how much influence it has. Dust can surround the storm and absorb incoming solar radiation, cooling the air below. As a result an energy source for the system is potentially diminished, inhibiting growth of the storm. Alternatively dust may interact with clouds through micro-physical processes, for example by causing more moisture to condense, potentially increasing the strength. As a result of climate change, concentrations and amount of dust in the atmosphere will likely change. It it is important to properly understand its effect on tropical storm formation. The adjoint of an atmospheric general circulation model provides a very powerful tool for investigating sensitivity to initial conditions. The National Aeronautics and Space Administration (NASA) has recently developed an adjoint version of the Goddard Earth Observing System version 5 (GEOS-5) dynamical core, convection scheme, cloud model and radiation schemes. This is extended so that the interaction between dust and radiation is also accounted for in the adjoint model. This provides a framework for examining the sensitivity to dust in the initial conditions. Specifically the set up allows for an investigation into the extent to which dust affects cyclone strength through absorption of radiation. In this work we investigate the validity of using an adjoint model for examining sensitivity to dust in hurricane formation. We present sensitivity results for a number of systems that developed during the Atlantic hurricane season of 2006. During this period there was a significant outbreak of Saharan dust and it is has been argued that this outbreak was responsible for the relatively calm season. This period was also covered by an extensive observation campaign. It is shown that the

  3. Sensitivity of tropical cyclones to resolution, convection scheme and ocean flux parameterization over Eastern Tropical Pacific and Tropical North Atlantic Oceans in the RegCM4 model

    Science.gov (United States)

    Fuentes-Franco, Ramón; Giorgi, Filippo; Coppola, Erika; Zimmermann, Klaus

    2017-07-01

    The sensitivity of simulated tropical cyclones (TCs) to resolution, convection scheme and ocean surface flux parameterization is investigated with a regional climate model (RegCM4) over the CORDEX Central America domain, including the Tropical North Atlantic (TNA) and Eastern Tropical Pacific (ETP) basins. Simulations for the TC seasons of the ten-year period (1989-1998) driven by ERA-Interim reanalysis fields are completed using 50 and 25 km grid spacing, two convection schemes (Emanuel, Em; and Kain-Fritsch, KF) and two ocean surface flux representations, a Monin-Obukhov scheme available in the BATS land surface package (Dickinson et al. 1993), and the scheme of Zeng et al. (J Clim 11(10):2628-2644, 1998). The model performance is assessed against observed TC characteristics for the simulation period. In general, different sensitivities are found over the two basins investigated. The simulations using the KF scheme show higher TC density, longer TC duration (up to 15 days) and stronger peak winds (>50 ms-1) than those using Em (<40 ms-1). All simulations show a better spatial representation of simulated TC density and interannual variability over the TNA than over the ETP. The 25 km resolution simulations show greater TC density, duration and intensity compared to the 50 km resolution ones, especially over the ETP basin, and generally more in line with observations. Simulated TCs show a strong sensitivity to ocean fluxes, especially over the TNA basin, with the Monin-Obukhov scheme leading to an overestimate of the TC number, and the Zeng scheme being closer to observations. All simulations capture the density of cyclones during active TC seasons over the TNA, however, without data assimilation, the tracks of individual events do not match closely the corresponding observed ones. Overall, the best model performance is obtained when using the KF and Zeng schemes at 25 km grid spacing.

  4. Decrease of tropical cyclone genesis frequency in the western North Pacific since 1960s

    Science.gov (United States)

    Hu, Feng; Li, Tim; Liu, Jia; Bi, Mingyu; Peng, Melinda

    2018-03-01

    Tropical cyclone (TC) genesis frequency in the western North Pacific (WNP) during 1960-2014 shows a step-by-step decrease on interdecadal timescale, in accordance to the phase of the Interdecadal Pacific Oscillation (IPO). The environmental parameters responsible for the interdecadal change of TC genesis frequency were investigated. It was found that vertical wind shear especially the zonal wind shear plays a critical role, while other parameters such as sea surface temperature (SST), vertical velocity, divergence, humidity and maximum potential intensity cannot explain the step-by-step decrease of TC genesis frequency. A further diagnosis shows that the interdecadal change of vertical wind shear is caused by SST and associated rainfall pattern changes across the Indo-Pacific Ocean. A stronger warming in the Indian Ocean/western Pacific from 1960-1976 to 1977-1998 led to enhanced convection over the Maritime Continent and thus strengthened vertical shear over the key TC genesis region in the WNP. A La Nina-like SST pattern change from 1977-1998 to 1999-2014 led to a strengthened Walker circulation in the tropical Pacific, which further enhanced the vertical shear and decreased TC genesis frequency in the WNP.

  5. Diagnosis of tropical cyclone activity through gravity wave energy density in the southwest Indian Ocean

    Science.gov (United States)

    Ibrahim, C.; Chane-Ming, F.; Barthe, C.; Kuleshov, Y.

    2010-05-01

    Tropical cyclone (TC) activity is diagnosed through convective gravity waves (GWs) observed in the upper troposphere (UT)/lower stratosphere (LS) above Tromelin island (15.53°S, 54.31°E) in the tropical southwest Indian Ocean. Monthly and weekly GW total energy densities derived from daily GPS windsonde data are compared with Outgoing Longwave Radiation (OLR) and TC hours in the vicinity of Tromelin. A relationship between GW energy density and TC activity is observed in the LS, for the TC season 2001/2002. Moreover TCs (local convection) produce GWs with total energy density mostly higher (lower) than 12 J kg-1. A 10-season climatology (1997/1998-2006/2007) confirms that large values of GW total energy density in the LS are associated with weak values of OLR during the TC passage. Monthly total, kinetic and potential GW energy densities within 2000 km radius of Tromelin can be estimated using linear relationships with TC hours for a threshold of above 6 TC days per month. A linear relationship also exists between weekly GW total energy density in the LS and the activity of intense TCs above a threshold of 2 TC days per week within 1000 km radius of Tromelin. GW energy density in the LS could be used as a possible index to investigate TC activity in the UT/LS.

  6. Impact of tropical cyclones on the evolution of the monsoon-driven upwelling system in the coastal waters of the northern South China Sea

    Science.gov (United States)

    Zheng, Binxin; Li, Yunhai; Li, Jiufa; Shu, Fangfang; He, Jia

    2018-02-01

    An upwelling system exists in the coastal waters of the northern South China Sea (NSCS), a region that is frequently affected by tropical cyclones in summer. This study investigates the evolution of the NSCS monsoon-driven upwelling system and the effects of the Talim and Doksuri tropical cyclones on the system using in situ observational data obtained at three mooring stations, one land-based meteorological station, and concurrent satellite remote sensing data for the NSCS coastal waters from May to July 2012. The results show that the occurrence and evolution of the upwelling system were mainly controlled by the Asian southwest monsoon, while the eastward current also made important contributions to the upwelling intensity. A decrease in the bottom water temperature and shifts in the along-shore and cross-shore currents were direct evidence of the establishment, existence, and recovery of this upwelling. Tropical cyclones have significant impacts on hydrodynamics and can thus influence the evolution of the NSCS upwelling system by changing the local wind and current fields. Variations in water level and local current systems impeded the development of upwelling during tropical cyclones Talim and Doksuri in the study area, which have low-frequency fluctuations of approximately 2-10 days. These variations were the results of the coupled interactions between local wind fields, coastal trapped waves, and other factors. The hydrodynamic environment of the marine water (including coastal upwelling system) rapidly recovered to normal sea conditions after each cyclone passed due to the relatively short duration of the impact of a tropical cyclone on the dynamic environment of the waters.

  7. Influence of upper-ocean stratification on tropical cyclone-induced surface cooling in the Bay of Bengal

    Digital Repository Service at National Institute of Oceanography (India)

    Neetu, S.; Lengaigne, M.; Vincent, E.M.; Vialard, J.; Madec, G.; Samson, G.; RameshKumar, M.R.; Durand, F.

    The Bay of Bengal (BoB) is home to about four named tropical cyclones (TCs) each year, which accounts for ~5% of the total annual TC numbers worldwide [Alam et al., 2003]. These few TCs may not be the most intense but have catastrophic impacts... and magnitude are derived from the International Best Track Archive for Climate Stewardship [IBTrACS, Knapp et al., 2010]. In this study, we focus on the 1978-2007 period, over which global satellite coverage provides the position and estimated maximum wind...

  8. Preservice Primary Teachers' Depth and Accuracy of Knowledge of Tropical Cyclones

    Science.gov (United States)

    Lane, Rod; Catling, Simon

    2016-01-01

    Climatic hazards are a key feature of life. It is vital that teachers are knowledgeable about these phenomena in order to develop their students' understanding of them. This study used a mixed methods approach to examine the accuracy and depth of preservice primary teachers' (n = 430) knowledge of tropical cyclones. The findings suggest that…

  9. An economic assessment of tropical cyclone risk on offshore wind farms

    DEFF Research Database (Denmark)

    Hong, Lixuan; Möller, Bernd

    2012-01-01

    . A probabilistic tropical cyclone event model is applied to evaluate 20-year, 30-year, 50-year and 100-year recurrence of extreme wind speeds by geographical location. Combining a damage model derived from empirical loss data and an investment cost model within a Geographical Information System (GIS), the annual...

  10. Tropical cyclone sensitivity to ocean coupling in the ECMWF coupled model

    Science.gov (United States)

    Mogensen, Kristian S.; Magnusson, Linus; Bidlot, Jean-Raymond

    2017-05-01

    We present an investigation of the performance of the ECMWF coupled atmosphere-waves-ocean model for different ocean and atmosphere resolutions on a series of tropical cyclones in the Western Pacific with the aim to better understand the coupled feedback mechanisms in these extreme conditions. For some of the test cases, we only find little impact of coupling the atmosphere to the ocean, while in others, we observe a very large impact. To further understand these differences, we have selected two tropical cyclones (TCs) as case studies: TC Haiyan (with small impact of coupling) and TC Neoguri (with large impact of coupling). The comparison between these two cases suggests that the upper ocean stratification is the key in determining the strength of the coupled feedback. A strong coupled feedback is found whenever the ocean heat content of the upper layer is low while a very weak coupled feedback is found whenever the ocean has a thick warm mixed layer. The oceanographic response to tropical cyclones for the two storms has been compared to sea surface temperature and derived surface currents from drifting buoys and to subsurface observations from Argo and ship launched XBT's. These comparisons show that we are able to realistically reproduce the atmospheric and oceanographic interaction during tropical cyclone conditions which gives us confidence that the coupled modeling system is physically sound.

  11. GPS radio occultation technique for measurement of the atmosphere above tropical cyclones

    DEFF Research Database (Denmark)

    Biondi, Riccardo; Neubert, Torsten; Syndergaard, Stig

    2009-01-01

    /lower stratosphere (UT/LS). The result is positive, suggesting that the bending angle of a GPS signal contains interesting information on the atmosphere around the tropopause. The presentation is focused on one particular Tropical Cyclone (TC), the hurricane Bertha, which formed in the Atlantic Basin during July...

  12. Contribution of tropical cyclones to the air-sea CO2 flux: A global view

    Digital Repository Service at National Institute of Oceanography (India)

    Levy, M.; Lengaigne, M.; Bopp, L.; Vincent, E.M.; Madec, G.; Ethe, C.; DileepKumar, M.; Sarma, V.V.S.S.

    Previous case studies have illustrated the strong local influence of tropical cyclones (TCs) on CO sub(2) air-sea flux (F sub(CO2)), suggesting that they can significantly contribute to the global F sub(CO2). In this study, we use a state-of-the art...

  13. Thermodynamics of Tropical Cyclones: A Thermodynamic Approach to Nonlinear Non-equilibrium Phenomena

    Science.gov (United States)

    Ozawa, H.; Shimokawa, S.

    2016-12-01

    A formation process of circulatory motion of tropical cyclones is investigated from a thermodynamic viewpoint. The generation rate of mechanical energy by a fluid motion under diabatic heating and cooling, and the dissipation rate of this energy due to irreversible processes are formulated from the 1st and 2nd laws of thermodynamics. This formulation is applied to a tropical cyclone, and the formation process of the circulatory motion is examined from a balance between the generation and dissipation rates of mechanical energy in the fluid system. We find from this formulation and data analysis that the thermodynamic efficiency of tropical cyclones is about 40% lower than the Carnot maximum efficiency because of the presence of thermal dissipation due to irreversible transport of sensible and latent heat in the system. We show that a tropical cyclone tends to develop within a few days through a feedback supply of mechanical energy when the sea surface temperature is higher than 300 K, and when the horizontal scale of circulation becomes larger than the vertical height of the troposphere, being consistent with statistical properties of typhoons observed in the western North Pacific. Applications of this method to other nonlinear non-equilibrium phenomena are also discussed. Ref.) H. Ozawa and S. Shimokawa, Tellus A 67, 24216 (2015).

  14. Does It Make Sense to Modify Tropical Cyclones? A Decision-Analytic Assessment

    Science.gov (United States)

    Klima, K.; Morgan, M. G.; Grossmann, I.

    2010-12-01

    Recent dramatic increases in damages caused by tropical cyclones (TCs) and improved understanding of the physics of TCs, have led DHS and NOAA to reconsider intentional hurricane modification. We present a decision analytic assessment of whether, and under what circumstances, it might be rational to attempt to lower the wind speed in a TC approaching South Florida by reducing sea surface temperatures using wind-wave pumps. We compare wind damages after storm modification with damages after investing in mitigation strategies that protect buildings. Using historical data on hurricanes approaching the east coast of Florida since 1953, we develop prior probabilities of how model storms might evolve. The effects of modification are estimated using five hundred simulations with a modern TC model. The FEMA HAZUS-MH MR3 damage model and census data on the value of property at risk are used to estimate expected economic losses. We find that the effect of natural variability is larger than that of either modification or mitigation. If it were properly implemented, and worked as expected, the modification strategy we study could result in slightly lower net losses from an intense storm than the mitigation options considered. However, for all but the most intense storms, mitigation provides "fail safe" protection that might not always be achieved if the only option were modification. A strategy that combines routine mitigation with occasional modification of very intense storms warrants further study.

  15. Evaluation of official tropical cyclone track forecast over north Indian ...

    Indian Academy of Sciences (India)

    information on overall forecast performance and the relative .... pret the track forecast properly and decide effec- tive cyclone management response actions by the disaster managers. To determine the COU in track forecast, it is essential to know the track forecast ..... ing 140 km based on the latest technology includ-.

  16. Climatology and Landfall of Tropical Cyclones in the South- West ...

    African Journals Online (AJOL)

    Abstract—The climatology of cyclone formation and behaviour in the South-West Indian Ocean, including landfall in Mozambique and Madagascar, has been investigated. The records used were obtained by merging track data from the Joint Typhoon Warning Centre with data from. La Reunion – Regional Specialised ...

  17. Climatology and Landfall of Tropical Cyclones in the South- West ...

    African Journals Online (AJOL)

    Abstract—The climatology of cyclone formation and behaviour in the South-West Indian Ocean, including landfall in Mozambique and Madagascar, has been investigated. The records used were obtained by merging track data from the Joint Typhoon Warning Centre with data from La Reunion – Regional Specialised ...

  18. Impacts of Tropical North Atlantic SST on Western North Pacific Landfalling Tropical Cyclones

    Science.gov (United States)

    Zhang, W.; Gao, S.; Chen, Z.

    2017-12-01

    This study examines the impacts of tropical North Atlantic (TNA) sea surface temperature (SST) anomaly (SSTA) on tropical cyclones (TCs) making landfall over East Asia. We find that TNA SSTA has significant negative correlations with the frequency of TCs making landfall over China, Vietnam, Korea and Japan, and the entire East Asia. TNA SST influences the frequency of TC landfalls over these regions by regulating TC genesis location and frequency and steering flow associated with modulated environmental conditions. During cold TNA SST years, larger low-level relative vorticity and weaker vertical wind shear lead to more TC formations in the northern SCS and to the east of Philippines, and larger low-level relative vorticity, higher mid-level relative humidity, and weaker vertical wind shear result in more TC formations over the eastern part of WNP. Anomalous northeasterly steering flow favors more TCs to move westward or west-northwestward and make landfall over Vietnam, South China and Taiwan Island and thus in the entire China, and more TCs take regular northeastward recurving tracks and make landfall over Korea and Japan because of insignificant steering flow anomalies in the vicinity. The modulation of large-scale environments by TNA SSTA may be through two possible pathways proposed in previous studies, i.e., Indian Ocean relaying effect and subtropical eastern Pacific relaying effect. Our results suggest that TNA SSTA is a potential predictor for the frequency of TCs making landfall over China, Vietnam, Korea and Japan, and the entire East Asia.

  19. The Impact of Canonical and Non-canonical El Niño on Atlantic Tropical Cyclone Activity: High-resolution Tropical Channel Model Simulations

    Science.gov (United States)

    Patricola, C. M.; Chang, P.; Saravanan, R.

    2013-12-01

    Tropical Pacific sea surface temperature (SST) variability during the El Niño-Southern Oscillation (ENSO) influences seasonal Atlantic tropical cyclone activity by modulating vertical wind shear and tropospheric temperature in the tropical Atlantic, with warmer than average SST during El Niño suppressing Atlantic tropical cyclones. The location of maximum SST warming during El Niño varies from the East Pacific (canonical) to Central Pacific (non-canonical/Modoki). This study investigates how the location and magnitude of maximum tropical Pacific warming impacts Atlantic tropical cyclones, and through what mechanisms. Climate simulations are performed to supplement observationally based studies, which yield conflicting results and rely on a relatively short data record that is complicated by factors other than ENSO, such as Atlantic SST variability. The simulations are run with the Weather Research and Forecasting (WRF) model configured as a tropical channel model at a relatively fine horizontal resolution of 27 km compared to the current generation of global climate models that typically use a 50 - 100 km grid. Monthly climatological SST is prescribed in the control simulation, and mechanistic experiments are forced by tropical Pacific SST patterns characteristic of Central Pacific and East Pacific El Niño. Seasonal accumulated cyclone energy is used to evaluate the response in Atlantic tropical cyclone activity to Central and East Pacific El Niño, and the response in atmospheric conditions relevant for tropical cyclones is diagnosed using a genesis potential index.

  20. Australian tropical cyclone activity lower than at any time over the past 550-1,500 years.

    Science.gov (United States)

    Haig, Jordahna; Nott, Jonathan; Reichart, Gert-Jan

    2014-01-30

    The assessment of changes in tropical cyclone activity within the context of anthropogenically influenced climate change has been limited by the short temporal resolution of the instrumental tropical cyclone record (less than 50 years). Furthermore, controversy exists regarding the robustness of the observational record, especially before 1990. Here we show, on the basis of a new tropical cyclone activity index (CAI), that the present low levels of storm activity on the mid west and northeast coasts of Australia are unprecedented over the past 550 to 1,500 years. The CAI allows for a direct comparison between the modern instrumental record and long-term palaeotempest (prehistoric tropical cyclone) records derived from the (18)O/(16)O ratio of seasonally accreting carbonate layers of actively growing stalagmites. Our results reveal a repeated multicentennial cycle of tropical cyclone activity, the most recent of which commenced around AD 1700. The present cycle includes a sharp decrease in activity after 1960 in Western Australia. This is in contrast to the increasing frequency and destructiveness of Northern Hemisphere tropical cyclones since 1970 in the Atlantic Ocean and the western North Pacific Ocean. Other studies project a decrease in the frequency of tropical cyclones towards the end of the twenty-first century in the southwest Pacific, southern Indian and Australian regions. Our results, although based on a limited record, suggest that this may be occurring much earlier than expected.

  1. Fluvial sediment supply to a mega-delta reduced by shifting tropical-cyclone activity.

    Science.gov (United States)

    Darby, Stephen E; Hackney, Christopher R; Leyland, Julian; Kummu, Matti; Lauri, Hannu; Parsons, Daniel R; Best, James L; Nicholas, Andrew P; Aalto, Rolf

    2016-11-10

    The world's rivers deliver 19 billion tonnes of sediment to the coastal zone annually, with a considerable fraction being sequestered in large deltas, home to over 500 million people. Most (more than 70 per cent) large deltas are under threat from a combination of rising sea levels, ground surface subsidence and anthropogenic sediment trapping, and a sustainable supply of fluvial sediment is therefore critical to prevent deltas being 'drowned' by rising relative sea levels. Here we combine suspended sediment load data from the Mekong River with hydrological model simulations to isolate the role of tropical cyclones in transmitting suspended sediment to one of the world's great deltas. We demonstrate that spatial variations in the Mekong's suspended sediment load are correlated (r = 0.765, P sediment load reaching the delta is delivered by runoff generated by rainfall associated with tropical cyclones. Furthermore, we estimate that the suspended load to the delta has declined by 52.6 ± 10.2 megatonnes over recent years (1981-2005), of which 33.0 ± 7.1 megatonnes is due to a shift in tropical-cyclone climatology. Consequently, tropical cyclones have a key role in controlling the magnitude of, and variability in, transmission of suspended sediment to the coast. It is likely that anthropogenic sediment trapping in upstream reservoirs is a dominant factor in explaining past, and anticipating future, declines in suspended sediment loads reaching the world's major deltas. However, our study shows that changes in tropical-cyclone climatology affect trends in fluvial suspended sediment loads and thus are also key to fully assessing the risk posed to vulnerable coastal systems.

  2. The roles of ENSO on the occurrence of abruptly recurving tropical cyclones over the Western North Pacific Ocean Basin

    Directory of Open Access Journals (Sweden)

    N. K. W. Cheung

    2006-01-01

    Full Text Available The abruptly recurving tropical cyclones over the Western North Pacific Ocean Basin during El Niño and La Niña events are studied. Temporal and spatial variations of these anomalous tracks under different phases of ENSO are shown. The anomalies of the pressure field in relation to ENSO circulation for the occurrence of the abruptly recurving cyclone tracks are investigated using fuzzy method. These are supplemented by wind field analyses. It is found that the occurrence of recurving-left (RL and recurving-right (RR tropical cyclones under the modification of the steering currents, including the re-adjustment of the westerly trough, the expansion or contraction of the sub-tropical high pressure, the intensifying easterly flow and the strengthening of the cross-equatorial flow, can be in El Niño or La Niña events. Evidently, there is a higher chance of occurrence of anomalous tropical cyclone trajectories in El Niño rather than La Niña events, but there is not any pronounced spatial pattern of anomalous tropical cyclone tracks. By analyzing the pressure-field, it is seen RL (RR tropical cyclones tend to occur when the subtropical high pressure is weak (strong in El Niño and La Niña events. More importantly, how the internal force of tropical cyclones changed by the steering current, which relies upon the relative location of tropical cyclones to the re-adjustment of the weather systems, shows when and where RL and RR tropical cyclones occur in El Niño and La Niña events.

  3. Impact of bogus vortex for track and intensity prediction of tropical ...

    Indian Academy of Sciences (India)

    Wind speed and location of the tropical cyclone obtained from best track data are used to define maximum wind speed, and centre of the storm respectively, in the initial vortex. The initialization scheme produced an initial vortex that was well adapted to the forecast model and was much more realistic in size and intensity ...

  4. Preparedness for and impact of tropical cyclone Yasi in North Queensland, Australia.

    Science.gov (United States)

    Usher, Kim; Buettner, Petra; West, Caryn; Millis, Jane; Woods, Cindy; Mason, Matt; Boon, Helen; Chamberlain-Salaun, Jennifer

    2013-06-01

    Tropical cyclone (TC) Yasi, thought to be the largest and most severe cyclone to cross the Queensland coast since 1918, made landfall on the southern tropical coast near Mission Beach and continued to track westward across Northern Queensland on February 3, 2011. The warning and response model (WRM) suggests that situational factors, personal characteristics, and social contextual variables influence the degree of threat perceived and protective actions taken. Aim The aim of this study was to examine preparation for this impending natural disaster by residents of the affected regions, and to identify the residents' resource losses and symptoms of psychological distress following TC Yasi. A cross-sectional survey was conducted 6-12 months after the cyclone using an adapted tool designed to measure preparedness, loss and psychosocial distress. Four hundred and thirty-three responses were received. Statistical analysis was conducted using Statistical Package for the Social Sciences (SPSS). Categorical characteristics were described using sample size and percentages. Almost all respondents perceived the cyclone warning as serious or very serious, and more than a third started preparing for the cyclone at least three days before it reached landfall. Overall, 115 (26.7%) respondents reported moderate and 59 (13.7%) reported major property damage; 72 (17.1%) reported a moderate and 49 (11.6%) reported a major change in their feeling of whether they have control over their life; 55 (13.1%) reported a major change in their motivation of getting things done; and 33 (7.9%) reported a major change in their perception of feeling valuable to others. Overall, 142 (34.1%) documented at least one of five symptoms of acute distress. The findings document the experiences of Australians who have lived through tropical cyclone Yasi. The results support the WRM theory which proposes that people with previous experience take threatened disasters seriously.

  5. Divergent responses of tropical cyclone genesis factors to strong volcanic eruptions at different latitudes

    Science.gov (United States)

    Yan, Qing; Zhang, Zhongshi; Wang, Huijun

    2018-03-01

    To understand the behaviors of tropical cyclones (TCs), it is very important to explore how TCs respond to anthropogenic greenhouse gases and natural forcings. Volcanic eruptions are a major natural forcing mechanism because they inject sulphate aerosols into the stratosphere, which modulate the global climate by absorbing and scattering solar radiation. The number of Atlantic hurricanes is thought to be reduced following strong tropical eruptions, but whether the response of TCs varies with the locations of the volcanoes and the different ocean basins remains unknown. Here, we use the Community Earth System Model-Last Millennium Ensemble to investigate the response of the large-scale environmental factors that spawn TCs to strong volcanic eruptions at different latitudes. A composite analysis indicates that tropical and northern hemisphere volcanic eruptions lead to significantly unfavorable conditions for TC genesis over the whole Pacific basin and the North Atlantic during the 3 years post-eruption, relative to the preceding 3 years. Southern hemisphere volcanic eruptions result in obviously unfavorable conditions for TC formation over the southwestern Pacific, but more favorable conditions over the North Atlantic. The mean response over the Indian Ocean is generally muted and insignificant. It should be noted that volcanic eruptions impact on environmental conditions through both the direct effect (i.e. on radiative forcing) and the indirect effect (i.e. on El Niño-Southern Oscillation), which is not differentiated in this study. In addition, the spread of the TC genesis response is considerably large for each category of eruptions over each ocean basin, which is also seen in the observational/proxy-based records. This large spread is attributed to the differences in stratospheric aerosol distributions, initial states and eruption intensities, and makes the short-term forecast of TC activity following the next large eruption challenging.

  6. Global composites of surface wind speeds in tropical cyclones based on a 12 year scatterometer database

    Science.gov (United States)

    Klotz, Bradley W.; Jiang, Haiyan

    2016-10-01

    A 12 year global database of rain-corrected satellite scatterometer surface winds for tropical cyclones (TCs) is used to produce composites of TC surface wind speed distributions relative to vertical wind shear and storm motion directions in each TC-prone basin and various TC intensity stages. These composites corroborate ideas presented in earlier studies, where maxima are located right of motion in the Earth-relative framework. The entire TC surface wind asymmetry is down motion left for all basins and for lower strength TCs after removing the motion vector. Relative to the shear direction, the motion-removed composites indicate that the surface wind asymmetry is located down shear left for the outer region of all TCs, but for the inner-core region it varies from left of shear to down shear right for different basin and TC intensity groups. Quantification of the surface wind asymmetric structure in further stratifications is a necessary next step for this scatterometer data set.

  7. Ensemble Kalman Filter data assimilation and storm surge experiments of tropical cyclone Nargis

    Directory of Open Access Journals (Sweden)

    Le Duc

    2015-07-01

    Full Text Available Data assimilation experiments on Myanmar tropical cyclone (TC, Nargis, using the Local Ensemble Transform Kalman Filter (LETKF method and the Japan Meteorological Agency (JMA non-hydrostatic model (NHM were performed to examine the impact of LETKF on analysis performance in real cases. Although the LETKF control experiment using NHM as its driving model (NHM–LETKF produced a weak vortex, the subsequent 3-day forecast predicted Nargis’ track and intensity better than downscaling from JMA's global analysis. Some strategies to further improve the final analysis were considered. They were sea surface temperature (SST perturbations and assimilation of TC advisories. To address SST uncertainty, SST analyses issued by operational forecast centres were used in the assimilation window. The use of a fixed source of SST analysis for each ensemble member was more effective in practice. SST perturbations were found to have slightly positive impact on the track forecasts. Assimilation of TC advisories could have a positive impact with a reasonable choice of its free parameters. However, the TC track forecasts exhibited northward displacements, when the observation error of intensities was underestimated in assimilation of TC advisories. The use of assimilation of TC advisories was considered in the final NHM–LETKF by choosing an appropriate set of free parameters. The extended forecast based on the final analysis provided meteorological forcings for a storm surge simulation using the Princeton Ocean Model. Probabilistic forecasts of the water levels at Irrawaddy and Yangon significantly improved the results in the previous studies.

  8. A Study of Oceans and Atmospheric Interactions Associated with Tropical Cyclone Activity using Earth Observing Technology

    Science.gov (United States)

    Abdullah, Warith; Reddy, Remata

    computations for atmospheric interface suggests unusual warmth associated with Gulf Stream current, such that it provided Sandy with enough kinetic energy to intensify at high latitude. The study further suggests that energy gained from Caribbean TCHP and Gulf Stream SST’s were largely retained by Sandy upon losing tropical-cyclone characteristics and merging with strong cold front and polar jet stream. Storms of Sandy’s magnitude and unusual source of energy resulting from Gulf Stream may indicate a building average for tropical cyclone development and intensity for North Atlantic, particularly as the GOM waters continue to warm on seasonal averages.

  9. Characteristics of tropical cyclone extreme precipitation and its preliminary causes in Southeast China

    Science.gov (United States)

    Qiu, Wenyu; Ren, Fumin; Wu, Liguang; Chen, Lianshou; Ding, Chenchen

    2018-03-01

    Extreme precipitation induced by a tropical cyclone (TC) is of great concern to Southeast China. Regional characteristics of daily TC-induced extreme precipitation (TCEP) between 1958 and 2016 and the associated preliminary causes over Southeast China (Zhejiang, Fujian, and Shanghai) were examined by applying the objective synoptic analysis technique, TC track similarity area index, daily precipitation observations, and reanalysis data. The intensity and frequency of high-intensity TCEP (≥ 100, ≥ 200, ≥ 300 mm) have had an increasing trend over recent decades. Most of TCEP occurs from July to September, with frequency peaks in August for TCEP at all intensity levels, apart from the frequency for TCEP ≥ 300 mm that peaks in September. Regions with high frequency and large TCEP (R-HFLTs) (relatively high frequency for TCEP ≥ 100 mm) were concentrated along the coastline of the southern coastal Fujian (Southern R-HFLT), the regions from northern coastal Fujian to southernmost coastal Zhejiang (Central R-HFLT), and central coastal Zhejiang (Northern R-HFLT), decreasing from the coastline to inland. The Central R-HFLT region had the highest TCEP intensity and frequency for TCEP ≥ 100 mm compared with the other R-HFLTs. Further analysis showed that the special terrain of Southeast China matched the spatial distribution of TCEP, which highlights the significance of the topography of Southeast China. To discover other factors responsible for the heavy TCEP, we compared two TC groups that influence Central R-HFLT. Under a more northerly direction and slow movement combined with the unique terrain, TCs with stronger vortex circulation generated heavier TCEP during landfall in Central R-HFLT. Heavy TCEP occurred with easterly and southeasterly winds interacting with terrain over the eastern coast for Central R-HFLT. Although large changes in the internal and external environment were sensitive to the observed TCEP intensity, the interaction between TC circulation

  10. Doppler Radar and Lightning Network Observations of a Severe Outbreak of Tropical Cyclone Tornadoes

    Science.gov (United States)

    Mccaul, Eugene W., Jr.; Buechler, Dennis E.; Goodman, Steven J.; Cammarata, Michael

    2004-01-01

    Data from a single Weather Surveillance Radar-1988 Doppler (WSR-88D) and the National Lightning Detection Network are used to examine the characteristics of the convective storms that produced a severe tornado outbreak, including three tornadoes that reached F3 intensity, within Tropical Storm Beryl s remnants on 16 August 1994. Comparison of the radar data with reports of tornadoes suggests that only 13 cells produced the 29 tornadoes that were documented in Georgia and the Carolinas on that date. Six of these cells spawned multiple tornadoes, and the radar data confirm the presence of miniature supercells. One of the cells was identifiable on radar for 11 h. spawning tornadoes over a time period spanning approximately 6.5 h. Several other tornadic cells also exhibited great longevity, with cell lifetimes longer than ever previously documented in a landfalling tropical cyclone (TC) tornado event. This event is easily the most intense TC tornado outbreak yet documented with WSR-88Ds. Time-height analyses of the three strongest tornadic supercells are presented in order to document storm kinematic structure and to show how these storms appear at different ranges from a WSR-88D. In addition, cloud-to-ground (CG) lightning data are examined in Beryl s remnants. Although the tornadic cells were responsible for most of Beryl's CG lightning, their flash rates were only weak to moderate, and in all the tornadic storms the lightning flashes were almost entirely negative in polarity. A few of the single-tornado storms produced no detectable CG lightning at all. There is evidence that CG lightning rates decreased during the tornadoes, compared to 30-min periods before the tornadoes. A number of the storms spawned tornadoes just after producing their final CG lightning flashes. Contrary to the findings for flash rates, both peak currents and positive flash percentages were larger in Beryl's nontornadic storms than in the tornadic ones.

  11. Characteristics of tropical cyclones and overshooting from GPS radio occultation data

    Science.gov (United States)

    Biondi, Riccardo; Rieckh, Therese; Steiner, Andrea; Kirchengast, Gottfried

    2014-05-01

    Tropical cyclones (TCs) are extreme weather events causing every year huge damages and several deaths. In some countries they are the natural catastrophes accounting for the major economic damages. The thermal structure of TCs gives important information on the cloud top height allowing for a better understanding of the troposphere-stratosphere transport, which is still poorly understood. The measurement of atmospheric parameters (such as temperature, pressure and humidity) with high vertical resolution and accuracy in the upper troposphere and lower stratosphere (UTLS) is difficult especially during severe weather events (e.g TCs). Satellite remote sensing has improved the TC forecast and monitoring accuracy. In the last decade the Global Positioning Systems (GPS) Radio Occultation (RO) technique contributed to improve our knowledge especially at high troposphere altitudes and in remote regions of the globe thanks to the high vertical resolution, avoiding temperature smoothing issues (given by microwave and infrared instruments) in the UTLS and improving the poor temporal resolution and global coverage given by lidars and radars. We selected more than twenty-thousand GPS RO profiles co-located with TC best tracks for the period 2001 to 2012 and computed temperature anomaly profiles relative to a RO background climatology in order to detect TC cloud tops. We characterized the thermal structure for different ocean basins and for different TC intensities, distinguishing between tropical and extra-tropical cases. The analysis shows that all investigated storms have a common feature: they warm the troposphere and cool the UTLS near the cloud top. This behavior is amplified in the extra-tropical areas. Results reveal that the storms' cloud tops in the southern hemisphere basins reach higher altitudes and lower temperatures than in the northern hemisphere basins. We furthermore compared the cloud top height of each profile with the mean tropopause altitude (from the RO

  12. Cascading hazards: Understanding triggering relations between wet tropical cyclones, landslides, and earthquakes

    Science.gov (United States)

    Wdowinski, S.; Peng, Z.; Ferrier, K.; Lin, C. H.; Hsu, Y. J.; Shyu, J. B. H.

    2017-12-01

    Earthquakes, landslides, and tropical cyclones are extreme hazards that pose significant threats to human life and property. Some of the couplings between these hazards are well known. For example, sudden, widespread landsliding can be triggered by large earthquakes and by extreme rainfall events like tropical cyclones. Recent studies have also shown that earthquakes can be triggered by erosional unloading over 100-year timescales. In a NASA supported project, titled "Cascading hazards: Understanding triggering relations between wet tropical cyclones, landslides, and earthquake", we study triggering relations between these hazard types. The project focuses on such triggering relations in Taiwan, which is subjected to very wet tropical storms, landslides, and earthquakes. One example for such triggering relations is the 2009 Morakot typhoon, which was the wettest recorded typhoon in Taiwan (2850 mm of rain in 100 hours). The typhoon caused widespread flooding and triggered more than 20,000 landslides, including the devastating Hsiaolin landslide. Six months later, the same area was hit by the 2010 M=6.4 Jiashian earthquake near Kaohsiung city, which added to the infrastructure damage induced by the typhoon and the landslides. Preliminary analysis of temporal relations between main-shock earthquakes and the six wettest typhoons in Taiwan's past 50 years reveals similar temporal relations between M≥5 events and wet typhoons. Future work in the project will include remote sensing analysis of landsliding, seismic and geodetic monitoring of landslides, detection of microseismicity and tremor activities, and mechanical modeling of crustal stress changes due to surface unloading.

  13. Relating Convective and Microphysical Properties to Large-scale Dynamical and Thermodynamical processes within Tropical Cyclones

    Science.gov (United States)

    Mehta, A. V.; Smith, E. A.; Tripoli, G. J.

    2008-12-01

    It is well known that precipitating convection within tropical cyclones result from a complex interactions among large-scale, storm-scale, cloud-scale, and micro-scale processes. For improved representation of these processes within tropical cyclone models, it is crucial to first understand how micro-scale and cloud- scale properties within tropical cyclones are related to large-scale processes, one of the key objectives of the Year of Tropical Convection (YOTC) program. In this study, a combination of cloud resolving model (CRM) simulations, TRMM Microwave Imager (TMI) measurements, NOAA Optimum Interpolation sea surface temperatures (SST), and Global Forecasting System (GFS) analysis are used to address this issue. The University of Wisconsin Nonhydrostatic Modeling System (UWNMS), a CRM, is used to simulate hurricanes Dennis (9-10 July 2005), Katrina (29-30 2005), and Gustav (30-31 August 2008) at 2-km resolution, nested within 1ºx1º GFS analyses. The UWNMS-generated thermodynamic and hydrometeor profiles are used in a radiative transfer model to calculate brightness temperatures (Tbs) at TMI frequencies. The UWNMS-based Tbs and TRMM-based Tbs are compared to validate overall consistency of the CRM simulations. The cloud-scale profiles of hydrometeors, vertical wind, temperature, and wind shear from UWNMS are analyzed to study their characteristics as functions of SST and GFS-based large-scale regimes represented by parameters including horizontal moisture divergence, vertical moisture flux at 500 hPa, potential vorticity, large-scale wind shear, and Convective Available Potential Energy among others, throughout mature stage of these major hurricanes. Results of this study show how cloud-scale processes are related to large-scale processes within these tropical cyclones.

  14. Tropical Cyclone Exposure for U.S. waters within the North Atlantic Ocean basin, 1900-2013

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These data represent modeled, historical exposure of U.S. offshore and coastal waters to tropical cyclone activity within the North Atlantic Ocean basin. BOEM Outer...

  15. Tropical Cyclone Exposure for U.S. waters within the Eastern Pacific Ocean basin, 1900-2013

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These data represent modeled, historical exposure of U.S. offshore and coastal waters to tropical cyclone activity within the Eastern Pacific Ocean basin. BOEM Outer...

  16. An Observing System Simulation Experiment for the use of Unmanned Aircraft Systems in improving tropical cyclone forecasts

    Science.gov (United States)

    Prive, N.; Xie, Y.; Koch, S. E.; Atlas, R.; Majumdar, S.; Masutani, M.; Woollen, J.; Riishojgaard, L.

    2010-12-01

    Unmanned Aircraft Systems (UAS) are capable of providing in situ observations in tropical cyclones which are not possible by other means. An Observing System Simulation Experiment (OSSE) is performed to evaluate the potential use of UAS for improving the analysis and forecasting of tropical cyclones in the Atlantic basin. The OSSE framework allows many different data sampling strategies to be tested, revealing how the new observations interact with the data assimilation system. In this OSSE, the Global Forecast System and Gridpoint Statistical Interpolation data assimilation package are used as the experimental forecast model, with Nature Run from the European Centre for Medium-range Weather Forecasts. Improvements in the 3-5 day tropical cyclone track forecasts are seen when tropical cyclones are observed by a high-altitude UAS with dropsonde deployment. The potential use of OSSEs for addressing theoretical aspects of data assimilation and new observing systems will be discussed.

  17. The bi-decadal rainfall cycle, Southern Annular Mode and tropical cyclones over the Limpopo River Basin, southern Africa

    CSIR Research Space (South Africa)

    Malherbe, J

    2014-06-01

    Full Text Available contribution to rainfall by tropical cyclones and depressions. The findings suggest that a broadening of the Hadley circulation underpinned by an anomalous anticyclonic pattern to the east of southern Africa altered tropospheric steering flow, relative...

  18. Is the State of the Air-Sea Interface a Factor in Rapid Intensification and Rapid Decline of Tropical Cyclones?

    Science.gov (United States)

    Soloviev, Alexander V.; Lukas, Roger; Donelan, Mark A.; Haus, Brian K.; Ginis, Isaac

    2017-12-01

    Tropical storm intensity prediction remains a challenge in tropical meteorology. Some tropical storms undergo dramatic rapid intensification and rapid decline. Hurricane researchers have considered particular ambient environmental conditions including the ocean thermal and salinity structure and internal vortex dynamics (e.g., eyewall replacement cycle, hot towers) as factors creating favorable conditions for rapid intensification. At this point, however, it is not exactly known to what extent the state of the sea surface controls tropical cyclone dynamics. Theoretical considerations, laboratory experiments, and numerical simulations suggest that the air-sea interface under tropical cyclones is subject to the Kelvin-Helmholtz type instability. Ejection of large quantities of spray particles due to this instability can produce a two-phase environment, which can attenuate gravity-capillary waves and alter the air-sea coupling. The unified parameterization of waveform and two-phase drag based on the physics of the air-sea interface shows the increase of the aerodynamic drag coefficient Cd with wind speed up to hurricane force (U10≈35 m s-1). Remarkably, there is a local Cd minimum—"an aerodynamic drag well"—at around U10≈60 m s-1. The negative slope of the Cd dependence on wind-speed between approximately 35 and 60 m s-1 favors rapid storm intensification. In contrast, the positive slope of Cd wind-speed dependence above 60 m s-1 is favorable for a rapid storm decline of the most powerful storms. In fact, the storms that intensify to Category 5 usually rapidly weaken afterward.

  19. An assessment of the ECMWF tropical cyclone ensemble forecasting system and its use for insurance loss predictions

    Science.gov (United States)

    Aemisegger, F.; Martius, O.; Wüest, M.

    2010-09-01

    Tropical cyclones (TC) are amongst the most impressive and destructive weather systems of Earth's atmosphere. The costs related to such intense natural disasters have been rising in recent years and may potentially continue to increase in the near future due to changes in magnitude, timing, duration or location of tropical storms. This is a challenging situation for numerical weather prediction, which should provide a decision basis for short term protective measures through high quality medium range forecasts on the one hand. On the other hand, the insurance system bears great responsibility in elaborating proactive plans in order to face these extreme events that individuals cannot manage independently. Real-time prediction and early warning systems are needed in the insurance sector in order to face an imminent hazard and minimise losses. Early loss estimates are important in order to allocate capital and to communicate to investors. The ECMWF TC identification algorithm delivers information on the track and intensity of storms based on the ensemble forecasting system. This provides a physically based framework to assess the uncertainty in the forecast of a specific event. The performance of the ECMWF TC ensemble forecasts is evaluated in terms of cyclone intensity and location in this study and the value of such a physically-based quantification of uncertainty in the meteorological forecast for the estimation of insurance losses is assessed. An evaluation of track and intensity forecasts of hurricanes in the North Atlantic during the years 2005 to 2009 is carried out. Various effects are studied like the differences in forecasts over land or sea, as well as links between storm intensity and forecast error statistics. The value of the ECMWF TC forecasting system for the global re-insurer Swiss Re was assessed by performing insurance loss predictions using their in-house loss model for several case studies of particularly devastating events. The generally known

  20. Thermodynamics of a tropical cyclone: generation and dissipation of mechanical energy in a self-driven convection system

    OpenAIRE

    Hisashi Ozawa; Shinya Shimokawa

    2015-01-01

    The formation process of circulatory motion of a tropical cyclone is investigated from a thermodynamic viewpoint. The generation rate of mechanical energy by a fluid motion under diabatic heating and cooling, and the dissipation rate of this energy due to irreversible processes are formulated from the first and second laws of thermodynamics. This formulation is applied to a tropical cyclone, and the formation process of the circulatory motion is examined from a balance between the generation ...

  1. Eastern Pacific tropical cyclones intensified by El Niño delivery of subsurface ocean heat.

    Science.gov (United States)

    Jin, F-F; Boucharel, J; Lin, I-I

    2014-12-04

    The El Niño Southern Oscillation (ENSO) creates strong variations in sea surface temperature in the eastern equatorial Pacific, leading to major climatic and societal impacts. In particular, ENSO influences the yearly variations of tropical cyclone (TC) activities in both the Pacific and Atlantic basins through atmospheric dynamical factors such as vertical wind shear and stability. Until recently, however, the direct ocean thermal control of ENSO on TCs has not been taken into consideration because of an apparent mismatch in both timing and location: ENSO peaks in winter and its surface warming occurs mostly along the Equator, a region without TC activity. Here we show that El Niño--the warm phase of an ENSO cycle--effectively discharges heat into the eastern North Pacific basin two to three seasons after its wintertime peak, leading to intensified TCs. This basin is characterized by abundant TC activity and is the second most active TC region in the world. As a result of the time involved in ocean transport, El Niño's equatorial subsurface 'heat reservoir', built up in boreal winter, appears in the eastern North Pacific several months later during peak TC season (boreal summer and autumn). By means of this delayed ocean transport mechanism, ENSO provides an additional heat supply favourable for the formation of strong hurricanes. This thermal control on intense TC variability has significant implications for seasonal predictions and long-term projections of TC activity over the eastern North Pacific.

  2. Does it make sense to modify tropical cyclones? A decision-analytic assessment.

    Science.gov (United States)

    Klima, Kelly; Morgan, M Granger; Grossmann, Iris; Emanuel, Kerry

    2011-05-15

    Recent dramatic increases in damages caused by tropical cyclones (TCs) and improved understanding of TC physics have led DHS to fund research on intentional hurricane modification. We present a decision analytic assessment of whether it is potentially cost-effective to attempt to lower the wind speed of TCs approaching South Florida by reducing sea surface temperatures with wind-wave pumps. Using historical data on hurricanes approaching South Florida, we develop prior probabilities of how storms might evolve. The effects of modification are estimated using a modern TC model. The FEMA HAZUS-MH MR3 damage model and census data on the value of property at risk are used to estimate expected economic losses. We compare wind damages after storm modification with damages after implementing hardening strategies protecting buildings. We find that if it were feasible and properly implemented, modification could reduce net losses from an intense storm more than hardening structures. However, hardening provides "fail safe" protection for average storms that might not be achieved if the only option were modification. The effect of natural variability is larger than that of either strategy. Damage from storm surge is modest in the scenario studied but might be abated by modification.

  3. Ecosystem effects of a tropical cyclone on a network of lakes in northeastern North America.

    Science.gov (United States)

    Klug, Jennifer L; Richardson, David C; Ewing, Holly A; Hargreaves, Bruce R; Samal, Nihar R; Vachon, Dominic; Pierson, Donald C; Lindsey, Amanda M; O'Donnell, David M; Effler, Steven W; Weathers, Kathleen C

    2012-11-06

    Here we document the regional effects of Tropical Cyclone Irene on thermal structure and ecosystem metabolism in nine lakes and reservoirs in northeastern North America using a network of high-frequency, in situ, automated sensors. Thermal stability declined within hours in all systems following passage of Irene, and the magnitude of change was related to the volume of water falling on the lake and catchment relative to lake volume. Across systems, temperature change predicted the change in primary production, but changes in mixed-layer thickness did not affect metabolism. Instead, respiration became a driver of ecosystem metabolism that was decoupled from in-lake primary production, likely due to addition of terrestrially derived carbon. Regionally, energetic disturbance of thermal structure was shorter-lived than disturbance from inflows of terrestrial materials. Given predicted regional increases in intense rain events with climate change, the magnitude and longevity of ecological impacts of these storms will be greater in systems with large catchments relative to lake volume, particularly when significant material is available for transport from the catchment. This case illustrates the power of automated sensor networks and associated human networks in assessing both system response and the characteristics that mediate physical and ecological responses to extreme events.

  4. Pacific island tropical cyclones are more frequent and globally relevant, yet less studied

    Directory of Open Access Journals (Sweden)

    Thomas Edward Marler

    2014-10-01

    Full Text Available Typhoon Haiyan devastated the Philippines in 2013 and illuminates the fact that the majority of tropical cyclone (TC research has focused on the Atlantic Basin, continental socio-ecological systems, affluent regions where the resilience attributes of the human element differ from that of the of majority the world’s population, and organized countries where research and relief capacities are among the best worldwide. I contend that this collective international bias minimizes the usefulness of global TC research in light of global change forecasts, which predict increased frequency of intense TCs. Moreover, paleoecological studies indicate ecosystem resilience following a TC is greatly increased within habitats that experienced a prior history of frequent TCs. When these retrospective and future visions are connected, science-based analysis of the influences of climate change on TC disturbance argues for an increase in contemporary research on TCs of developing island nations in the western Pacific where TCs are already relatively frequent. Otherwise the current research trajectory may further widen the disconnect between best available science and future management decisions.

  5. Natural and anthropogenic forcing of North Atlantic tropical cyclone track position since 1550 A.D.

    Science.gov (United States)

    Baldini, Lisa; Baldini, James; McElwaine, Jim; Frappier, Amy; Asmerom, Yemane; Liu, Kam-biu; Prufer, Keith; Ridley, Harriet; Polyak, Victor; Kennett, Douglas; Macpherson, Colin; Aquino, Valorie; Awe, Jamie; Breitenbach, Sebastian

    2016-04-01

    Over the last 30 years, North Atlantic tropical cyclones (TC) have increased in frequency, intensity, and duration in response to rising North Atlantic sea surface temperatures (SST). Here we present a 450-year record of western Caribbean TC activity reconstructed using subannually-resolved carbon and oxygen isotope ratios in a stalagmite from Yok Balum Cave, southern Belize. Western Caribbean TC activity peaked at 1650 A.D. coincident with maximum Little Ice Age cooling and decreased gradually to 1983 A.D. (the end of the record). Comparison with existing basin-wide reconstructions reveals that the dominant TC tracks corridor migrated from the western Caribbean toward the North American east coast through time. A close link with Atlantic Multidecadal Oscillation (AMO) exists throughout the record but with a clear polarity shift in the TC-AMO relationship at 1870 A.D., coincident with industrialisation. We suggest that the cause of this reversal is Greenhouse gas and aerosol emission induced changes in the relationship between the Intertropical Convergence Zone and the Bermuda High between the modern warm period and the Pre-Industrial Era. The likely impact of continued anthropogenic forcing of TC track on population centres of the western North Atlantic and Caribbean will be addressed.

  6. Tropical Cyclone Activity in the North Atlantic Basin During the Weather Satellite Era, 1960-2014

    Science.gov (United States)

    Wilson, Robert M.

    2016-01-01

    This Technical Publication (TP) represents an extension of previous work concerning the tropical cyclone activity in the North Atlantic basin during the weather satellite era, 1960-2014, in particular, that of an article published in The Journal of the Alabama Academy of Science. With the launch of the TIROS-1 polar-orbiting satellite in April 1960, a new era of global weather observation and monitoring began. Prior to this, the conditions of the North Atlantic basin were determined only from ship reports, island reports, and long-range aircraft reconnaissance. Consequently, storms that formed far from land, away from shipping lanes, and beyond the reach of aircraft possibly could be missed altogether, thereby leading to an underestimate of the true number of tropical cyclones forming in the basin. Additionally, new analysis techniques have come into use which sometimes has led to the inclusion of one or more storms at the end of a nominal hurricane season that otherwise would not have been included. In this TP, examined are the yearly (or seasonal) and 10-year moving average (10-year moving average) values of the (1) first storm day (FSD), last storm day (LSD), and length of season (LOS); (2) frequencies of tropical cyclones (by class); (3) average peak 1-minute sustained wind speed () and average lowest pressure (); (4) average genesis location in terms of north latitudinal () and west longitudinal () positions; (5) sum and average power dissipation index (); (6) sum and average accumulated cyclone energy (); (7) sum and average number of storm days (); (8) sum of the number of hurricane days (NHD) and number of major hurricane days (NMHD); (9) net tropical cyclone activity index (NTCA); (10) largest individual storm (LIS) PWS, LP, PDI, ACE, NSD, NHD, NMHD; and (11) number of category 4 and 5 hurricanes (N4/5). Also examined are the December-May (D-M) and June-November (J-N) averages and 10-year moving average values of several climatic factors, including the (1

  7. The impacts of tropical cyclones on the net carbon balance of eastern US forests (1851-2000)

    Science.gov (United States)

    Fisk, J. P.; Hurtt, G. C.; Chambers, J. Q.; Zeng, H.; Dolan, K. A.; Negrón-Juárez, R. I.

    2013-12-01

    In temperate forests of the eastern US, tropical cyclones are a principal agent of catastrophic wind damage, with dramatic impacts on the structure and functioning of forests. Substantial progress has been made to quantify forest damage and resulting gross carbon emissions from tropical cyclones. However, the net effect of storms on the carbon balance of forests depends not only on the biomass lost in single events, but also on the uptake during recovery from a mosaic of past events. This study estimates the net impacts of tropical cyclones on the carbon balance of US forests over the period 1851-2000. To track both disturbance and recovery and to isolate the effects of storms, a modeling framework is used combining gridded historical estimates of mortality and damage with a mechanistic model using an ensemble approach. The net effect of tropical cyclones on the carbon balance is shown to depend strongly on the spatial and temporal scales of analysis. On average, tropical cyclones contribute a net carbon source over latter half of the 19th century. However, throughout much of the 20th century a regional carbon sink is estimated resulting from periods of forest recovery exceeding damage. The large-scale net annual flux resulting from tropical cyclones varies by up to 50 Tg C yr-1, an amount equivalent to 17%-36% of the US forest carbon sink.

  8. Moisture and Precipitation Evolution during Tropical Cyclone Formation as Revealed by SSMI/SSMIS

    Science.gov (United States)

    Wang, Z.; Hankes, I. E.

    2015-12-01

    The simultaneous precipitation and column water vapor retrievals from the SSM/I and SSMIS passive microwave instruments were used to examine the convective evolution during tropical cyclone evolution. The data were analyzed based on a wave pouch track dataset, and composites were constructed with more than 1,500 satellite passes. It was found that column water vapor increases with the decreasing radius of the pouch center and starts to increase within two days prior to genesis; significant increase in precipitation occurs within 24 hours prior to genesis. These features are consistent with a recently proposed two-stage conceptual model for tropical cyclone formation. On the other hand, the analysis also reveals an unexpected decrease in column water vapor from -18 h to genesis time.

  9. Sedimentary Reconstructions of Tropical Cyclone Activity over the Past 1500 Years from Blue Holes in the Caribbean

    Science.gov (United States)

    Wallace, E. J.; Donnelly, J. P.; van Hengstum, P. J.; Wiman, C.; McKeon, K.; LaBella, A.; Sullivan, R.; Winkler, T. S.; Woodruff, J. D.; Hawkes, A.; Maio, C. V.

    2017-12-01

    Given the devastating socioeconomic impacts of tropical cyclones, it is of critical importance to quantify the risk of such storms to local human populations. However, this is difficult to accomplish given that historical tropical cyclone records are short and incomplete. A new array of sedimentary reconstructions from coastal basins record significant temporal variability in intense hurricane landfalls over the last several thousands of years. Unfortunately, these reconstructions are often limited to documenting changes in hurricane landfalls at one location. Here we present a larger spatial analysis of the changing frequency of hurricanes in the tropical Atlantic using near annually resolved records of intense hurricane events in blue holes from three islands in the Caribbean. The first record is a 1500-year record from South Andros Island on the Great Bahama Bank. This record is corroborated by cores collected from an adjacent blue hole. The second record is an 1100-year record from Long Island situated approximately 265 km southeast of South Andros. The final record is a 1000-year record from Caicos Island. All three carbonate islands are positioned in the western North Atlantic Ocean along the trackway of many storms originating in the Caribbean and Atlantic basins. All records contain coarse grained event deposits that correlate with known historical intense hurricane strikes in the Bahamas, within age uncertainties, including Hurricane Joaquin in 2015 at Long Island and the 1945 category 4 storm at South Andros. Over the past 1500 years, all three sedimentary archives show evidence of active and quiescent periods of hurricane activity. In particular, these records suggest that the Caribbean has experienced a higher frequency of hurricane events in intervals over of the past 1500 years than in the historical interval. However, the differences in hurricane frequency among the three records suggest regional controls on hurricane activity in the Atlantic.

  10. Increased threat of tropical cyclones and coastal flooding to New York City during the anthropogenic era.

    Science.gov (United States)

    Reed, Andra J; Mann, Michael E; Emanuel, Kerry A; Lin, Ning; Horton, Benjamin P; Kemp, Andrew C; Donnelly, Jeffrey P

    2015-10-13

    In a changing climate, future inundation of the United States' Atlantic coast will depend on both storm surges during tropical cyclones and the rising relative sea levels on which those surges occur. However, the observational record of tropical cyclones in the North Atlantic basin is too short (A.D. 1851 to present) to accurately assess long-term trends in storm activity. To overcome this limitation, we use proxy sea level records, and downscale three CMIP5 models to generate large synthetic tropical cyclone data sets for the North Atlantic basin; driving climate conditions span from A.D. 850 to A.D. 2005. We compare pre-anthropogenic era (A.D. 850-1800) and anthropogenic era (A.D.1970-2005) storm surge model results for New York City, exposing links between increased rates of sea level rise and storm flood heights. We find that mean flood heights increased by ∼1.24 m (due mainly to sea level rise) from ∼A.D. 850 to the anthropogenic era, a result that is significant at the 99% confidence level. Additionally, changes in tropical cyclone characteristics have led to increases in the extremes of the types of storms that create the largest storm surges for New York City. As a result, flood risk has greatly increased for the region; for example, the 500-y return period for a ∼2.25-m flood height during the pre-anthropogenic era has decreased to ∼24.4 y in the anthropogenic era. Our results indicate the impacts of climate change on coastal inundation, and call for advanced risk management strategies.

  11. Tropical-cyclone-driven erosion of the terrestrial biosphere from mountains.

    OpenAIRE

    Hilton, R. G.; Galy, A.; Hovius, N.; Chen, M.-C.; Horng, M.-J.; Chen, H.

    2008-01-01

    The transfer of organic carbon from the terrestrial biosphere to the oceans via erosion and riverine transport constitutes an important component of the global carbon cycle. More than one third of this organic carbon flux comes from sediment-laden rivers that drain the mountains in the western Pacific region. This region is prone to tropical cyclones, but their role in sourcing and transferring vegetation and soil is not well constrained. Here we measure particulate organic carbon load and co...

  12. Evaluating Atlantic tropical cyclone track error distributions for use in probabilistic forecasts of wind distribution

    OpenAIRE

    Neese, Jay M.

    2010-01-01

    Approved for public release; distribution is unlimited This thesis investigates whether the National Hurricane Center (NHC) operational product for producing probabilistic forecasts of tropical cyclone (TC) wind distributions could be further improved by examining the distributions of track errors it draws upon to calculate probabilities. The track spread/skill relationship for several global ensemble prediction system forecasts is examined as a condition for a description of a full p...

  13. Tropical Cyclone Footprint in the Ocean Mixed Layer Observed by Argo in the Northwest Pacific

    Science.gov (United States)

    2014-10-25

    RESEARCH ARTICLE 10.1002/2014JC010316 Tropical cyclone footprint in the ocean mixed layer observed by Argo in the Northwest Pacific HongLi Fu1...using available Argo profiles during the period of 1998–2011 in the northwest Pacific. Results reveal that iso- thermal layer (IL) deepening and...and TC, subsurface measurements following TC are impor- tant. The Array for Real-time Geostrophic Oceanography ( Argo ) floats measure the global ocean

  14. Processes setting the characteristics of sea surface cooling induced by tropical cyclones

    OpenAIRE

    Vincent, E.M.; Lengaigne, Matthieu; Madec, G.; Vialard, Jérôme; Samson, G.; Jourdain, N.C.; Menkès, Christophe; Jullien, S.

    2012-01-01

    A 1/2 degrees resolution global ocean general circulation model is used to investigate the processes controlling sea surface cooling in the wake of tropical cyclones (TCs). Wind forcing related to more than 3000 TCs occurring during the 1978-2007 period is blended with the CORE II interannual forcing, using an idealized TC wind pattern with observed magnitude and track. The amplitude and spatial characteristics of the TC-induced cooling are consistent with satellite observations, with an aver...

  15. Recent Colorado State University Tropical Cyclone Research of Interest to Forecasters

    Science.gov (United States)

    1987-06-01

    inner-core convection by Marks and Houze (1985) has docunented some cases of a secondary maximum in upper level vertical motion within the TC’s...tropical cyclone structural changes. .Qjignt. J. JfiX- Meteor. ^^.. 110, 723-745. Marks, F. D., Jr., and R. A. Houze , Jr., 1985: Inner...the author has had many beneficial discussions. This Includes: Dr. Robert Merrill; Llanshou Chen and Ding-wen Wei of the PRC; Cheng- Shang Lee

  16. Impact of resolution and downscaling technique in simulating recent Atlantic tropical cyclone activity

    Energy Technology Data Exchange (ETDEWEB)

    Caron, Louis-Philippe; Winger, Katja [CRCMD Network, UQAM, Montreal, QC (Canada); Jones, Colin G. [Swedish Meteorological and Hydrological Institute, Rossby Centre, Norrkoping (Sweden)

    2011-09-15

    Using the global environmental multiscale (GEM) model, we investigate the impact of increasing model resolution from 2 to 0.3 on Atlantic tropical cyclone activity. There is a clear improvement in the realism of Atlantic storms with increased resolution, in part, linked to a better representation of African easterly waves. The geographical distribution of a Genesis Potential Index, composed of large-scales fields known to impact cyclone formation, coincides closely in the model with areas of high cyclogenesis. The geographical distribution of this index also improves with resolution. We then compare two techniques for achieving local high resolution over the tropical Atlantic: a limited-area model driven at the boundaries by the global 2 GEM simulation and a global variable resolution model (GVAR). The limited-area domain and high-resolution part of the GVAR model coincide geographically, allowing a direct comparison between these two downscaling options. These integrations are further compared with a set of limited-area simulations employing the same domain and resolution, but driven at the boundaries by reanalysis. The limited-area model driven by reanalysis produces the most realistic Atlantic tropical cyclone variability. The GVAR simulation is clearly more accurate than the limited-area version driven by GEM-Global. Degradation in the simulated interannual variability is partly linked to the models failure to accurately reproduce the impact of atmospheric teleconnections from the equatorial Pacific and Sahel on Atlantic cyclogenesis. Through the use of a smaller limited-area grid, driven by GEM-Global 2 , we show that an accurate representation of African Easterly Waves is crucial for simulating Atlantic tropical cyclone variability. (orig.)

  17. Impact of Ocean Warming on Tropical Cyclone Size and Its Destructiveness

    OpenAIRE

    Sun, Yuan; Zhong, Zhong; Li, Tim; Yi, Lan; Hu, Yijia; Wan, Hongchao; Chen, Haishan; Liao, Qianfeng; Ma, Chen; Li, Qihua

    2017-01-01

    The response of tropical cyclone (TC) destructive potential to global warming is an open issue. A number of previous studies have ignored the effect of TC size change in the context of global warming, which resulted in a significant underestimation of the TC destructive potential. The lack of reliable and consistent historical data on TC size limits the confident estimation of the linkage between the observed trend in TC size and that in sea surface temperature (SST) under the background of g...

  18. Observation and a numerical study of gravity waves during tropical cyclone Ivan~(2008)

    OpenAIRE

    F. Chane Ming; C. Ibrahim; S. Jolivet; P. Keckhut; Y.-A. Liou; Y. Kuleshov

    2013-01-01

    Activity and spectral characteristics of gravity-waves (GWs) are analyzed during tropical cyclone (TC) Ivan (2008) in the troposphere and lower stratosphere using radiosonde and GPS radio occultation data, ECMWF outputs and simulations of French numerical model Meso-NH with vertical resolution varying between 150 m near the surface and 500 m in the lower stratosphere. Conventional methods for GW analysis and signal and image processing tools provide information on a wide spectrum of GW...

  19. Rapid wave and storm surge warning system for tropical cyclones in Mexico

    Science.gov (United States)

    Appendini, C. M.; Rosengaus, M.; Meza, R.; Camacho, V.

    2015-12-01

    The National Hurricane Center (NHC) in Miami, is responsible for the forecast of tropical cyclones in the North Atlantic and Eastern North Pacific basins. As such, Mexico, Central America and Caribbean countries depend on the information issued by the NHC related to the characteristics of a particular tropical cyclone and associated watch and warning areas. Despite waves and storm surge are important hazards for marine operations and coastal dwellings, their forecast is not part of the NHC responsibilities. This work presents a rapid wave and storm surge warning system based on 3100 synthetic tropical cyclones doing landfall in Mexico. Hydrodynamic and wave models were driven by the synthetic events to create a robust database composed of maximum envelops of wind speed, significant wave height and storm surge for each event. The results were incorporated into a forecast system that uses the NHC advisory to locate the synthetic events passing inside specified radiuses for the present and forecast position of the real event. Using limited computer resources, the system displays the information meeting the search criteria, and the forecaster can select specific events to generate the desired hazard map (i.e. wind, waves, and storm surge) based on the maximum envelop maps. This system was developed in a limited time frame to be operational in 2015 by the National Hurricane and Severe Storms Unit of the Mexican National Weather Service, and represents a pilot project for other countries in the region not covered by detailed storm surge and waves forecasts.

  20. Perturbations to the Lower Ionosphere by Tropical Cyclone Evan in the South Pacific Region

    DEFF Research Database (Denmark)

    Kumar, Sushil; Amor, Samir Nait; Chanrion, Olivier

    2017-01-01

    ) observed during tropical cyclone (TC) Evan, 9-16 December 2012 when TC was in the proximity of the transmitter-receiver links. We observed a maximum amplitude perturbation of 5.7dB on JJI transmitter during 16 December event. From Long Wave Propagation Capability model applied to three selected events we...... and sink (bringing the lower ionosphere with it), an effect that may be mediated by gravity waves generated by the TC. The perturbations were observed before the storm was classified as a TC, at a time when it was a tropical depression, suggesting the broader conclusion that severe convective storms...

  1. Analyzing the Response of Climate Perturbations to (Tropical) Cyclones using the WRF Model

    Science.gov (United States)

    Tewari, M.; Mittal, R.; Radhakrishnan, C.; Cipriani, J.; Watson, C.

    2015-12-01

    An analysis of global climate models shows considerable changes in the intensity and characteristics of future, warm climate cyclones. At regional scales, deviations in cyclone characteristics are often derived using idealized perturbations in the humidity, temperature and surface conditions. In this work, a more realistic approach is adopted by applying climate perturbations from the Community Climate System Model (CCSM4) to ERA-interim data to generate the initial and boundary conditions for future climate simulations. The climate signal perturbations are generated from the differences in 21 years of mean data from CCSM4 with representative concentration pathways (RCP8.5) for the periods: (a) 2070-2090 (future climate), (b) 2025-2045 (near-future climate) and (c) 1985-2005 (current climate). Four individual cyclone cases are simulated with and without climate perturbations using the Weather Research and Forecasting model with a nested configuration. Each cyclone is characterized by variations in intensity, landfall location, precipitation and societal damage. To calculate societal damage, we use the recently introduced Cyclone Damage Potential (CDP) index evolved from the Willis Hurricane Index (WHI). As CDP has been developed for general societal applications, this work should provide useful insights for resilience analyses and industry (e.g., re-insurance).

  2. North Atlantic Tropical Cyclone Activity over the last 2000 years: Patterns, Consequences and Potential Climatic Forcing

    Science.gov (United States)

    Donnelly, J. P.; Lane, P.; Hawkes, A.; van Hengstum, P. J.; Ranasinghe, P. N.; Toomey, M.; MacDonald, D.

    2011-12-01

    With a series of high-resolution reconstructions of hurricane-induced overwash from high deposition rate sites from across the western North Atlantic, we document patterns of event occurrence dating back more than 2000 years. Some sites with interbedded overwash sediments preserve annual laminations, which provide exceptional chronologies of hurricanes. The records suggest that while the frequency of hurricane landfall in the region has not changed dramatically over the last two millennia, the frequency of intense hurricanes has varied considerably. Sedimentary evidence suggests the eastern seaboard of the United States experienced a period of elevated intense hurricane activity during the 15th, 16th and early 17th Centuries. Spanish document archives also suggest elevated tropical cyclone activity during the late 16th and early 17th Centuries. This interval of increased intense hurricane activity had significant impacts on coastal landforms and ecosystems including more frequent and widespread inlet formation, erosion of coastal wetlands, and forest disturbance. Similarly, an earlier active interval between 2500 and 1000 years ago may have had a dramatic impact on coastal pine and scrub oak forests in the northeastern United States. Pollen and charcoal analyses indicate more frequent forest disturbance with the highest concentration of charcoal occurring during the active period between 1900 and 1300 years ago. Many of the peaks in charcoal follow closely after storm-induced coarse grained deposits. The increase of large fires during the active hurricane regime between 1900 and 1300 years ago provides compelling evidence of hurricane/fire interactions. However drought, identified by a lake level lowstand in the region, may have contributed to increased fires during this interval. Fossil pollen preserved in the sediment provides evidence of significant changes in vegetation composition in most taxonomic groups during the active hurricane interval between 1900 and

  3. Sensitivity of Tropical Cyclones to Resolution, Convection Scheme and Ocean Flux Parameterization over Eastern Tropical Pacific and Tropical North Atlantic Oceans in RegCM4 Model

    Science.gov (United States)

    Fuentes-Franco, Ramon; Giorgi, Filippo; Coppola, Erika; Zimmermann, Klaus

    2016-04-01

    The sensitivity of simulated tropical cyclones (TC) to resolution and convection scheme parameterization is investigated over the CORDEX Central America domain. The performance of the simulations, performed for a ten-year period (1989-1998) using ERA-Interim reanalysis as boundary and initial conditions, is assessed considering 50 km and 25 km resolution, and the use of two different convection schemes: Emanuel (Em) and Kain-Fritsch (KF). Two ocean surface fluxes are also compared as well: the Monin-Obukhov scheme, and the one proposed by Zeng et al. (1998). By comparing with observations, for the whole period we assess the spatial representation of the TC, and their intensity. At interannual scale we assess the representation of their variability and at daily scale we compare observed and simulated tracks in order to establish a measure of how similar to observed are the simulated tracks. In general the simulations using KF convection scheme show higher TC density, as well as longer-duration TC (up to 15 days) with stronger winds (> 50ms-1) than those using Em (<40ms-1). Similar results were found for simulations using 25 km respect to 50 km resolution. All simulations show a better spatial representation of simulated TC density and its interannual variability over the Tropical North Atlantic Ocean (TNA) than over the Eastern Tropical Pacific Ocean (ETP). The 25 km resolution simulations show an overestimation of TC density compared to observations over ETP off the coast of Mexico. The duration of the TC in simulations using 25km resolution is similar to the observations, while is underestimated by the 50km resolution. The Monin-Obukhov ocean flux overestimates the number of TCs, while Zeng parameterization give a number similar to observations in both oceans. At daily scale, in general all simulations capture the density of cyclones during highly active TC seasons over the TNA, however the tracks generally are not coincident with observations, except for highly

  4. Orographic Effects on Rainfall Induced by the Passage of Tropical Cyclones over Mountainous Islands Part I: Control Experiment

    Science.gov (United States)

    Colon-Pagan, I. C.; Lin, Y.; Kuo, Y.; Schreiner, W. S.

    2009-12-01

    The passage of a tropical cyclone (TC) over a mesoscale mountainous island, such as Puerto Rico, often brings heavy rainfall which produces flooding and landslides. Factors that affect quantities and distribution of this type of orographic rainfall in this region are not well understood. The numerical mesoscale Advanced Research Weather Research and Forecast (ARW) model was adopted to conduct a study of Hurricane Jeanne’s (2004) passage over the island. Four sensitivity experiments using microphysics (MP) schemes were performed. Each sensitivity experiment was represented by a single MP scheme, i.e.: WSM 5-Class (EXP1), Eta Ferrier Microphysics (EXP2), WSM 6-Class (EXP3), and the Thompson Graupel scheme (EXP4). In particular, we investigate the following scientific problem, what would be the impact of microphysics schemes in a tropical cyclone simulation using the ARW model? Results show strong consistency for the cyclonic track among all experiments with a significant landfall time difference of ~4 hours ahead of observations. Rainfall distribution was well represented, with maxima on the southeastern and higher regions. Only EXP3 reproduced acceptably both rainfall distribution and high peak locations. The cyclone’s wind intensity and minimum sea-level pressure at model landfall differ significantly from the reality. EXP2 and EXP3 produced a more realistic sea-level pressure between 988 and 992 hPa, and sustained winds of less than 87 mph, compared with 991 mbar and 60 mph, respectively. In conclusion, the WSM 6-Class scheme (EXP3) appears to be strongly comparable with observations and is more reliable for further investigations of the production of heavy orographic rainfall. Estimates of some control parameters and common ingredients, such as Convective Available Potential Energy (CAPE) and Precipitation Efficiency (E), respectively, and major sensitivity tests with mountain height variations, were performed to help understand the dynamical and physical

  5. Evaluation of the Utility of Static and Adaptive Mesh Refinement for Idealized Tropical Cyclone Problems in a Spectral Element Shallow Water Model

    Science.gov (United States)

    2015-04-09

    Refinement for Idealized Tropical Cyclone Problems in a Spectral Element Shallow Water Model 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM...amined for idealized tropical cyclone (TC) simulations in a spectral element f-plane shallow water model. The SMR simulations have varying sizes of...adaptive mesh refinement1 for idealized tropical cyclone problems in a spectral element2 shallow water model3 Eric A. Hendricks ∗ Marine Meteorology Division

  6. Tropical cyclones and permanent El Niño in the early Pliocene epoch.

    Science.gov (United States)

    Fedorov, Alexey V; Brierley, Christopher M; Emanuel, Kerry

    2010-02-25

    Tropical cyclones (also known as hurricanes and typhoons) are now believed to be an important component of the Earth's climate system. In particular, by vigorously mixing the upper ocean, they can affect the ocean's heat uptake, poleward heat transport, and hence global temperatures. Changes in the distribution and frequency of tropical cyclones could therefore become an important element of the climate response to global warming. A potential analogue to modern greenhouse conditions, the climate of the early Pliocene epoch (approximately 5 to 3 million years ago) can provide important clues to this response. Here we describe a positive feedback between hurricanes and the upper-ocean circulation in the tropical Pacific Ocean that may have been essential for maintaining warm, El Niño-like conditions during the early Pliocene. This feedback is based on the ability of hurricanes to warm water parcels that travel towards the Equator at shallow depths and then resurface in the eastern equatorial Pacific as part of the ocean's wind-driven circulation. In the present climate, very few hurricane tracks intersect the parcel trajectories; consequently, there is little heat exchange between waters at such depths and the surface. More frequent and/or stronger hurricanes in the central Pacific imply greater heating of the parcels, warmer temperatures in the eastern equatorial Pacific, warmer tropics and, in turn, even more hurricanes. Using a downscaling hurricane model, we show dramatic shifts in the tropical cyclone distribution for the early Pliocene that favour this feedback. Further calculations with a coupled climate model support our conclusions. The proposed feedback should be relevant to past equable climates and potentially to contemporary climate change.

  7. Large-scale factors in tropical and extratropical cyclone transition and extreme weather events.

    Science.gov (United States)

    Pezza, Alexandre Bernardes; Simmonds, Ian

    2008-12-01

    Transition mechanisms characterizing changes from hurricanes to midlatitude cyclones and vice-versa (extratropical and tropical transition) have become a topic of increasing interest, partially because of their association with recent unusual storms that have developed in different ocean basins of both hemispheres. The aim of this work is to discuss some recent cases of transition and highly unusual hurricane developments and to address some of their wider implications for climate science. Frequently those dramatic cyclones are responsible for severe weather, potentially causing significant damage to property and infrastructure. An additional manifestation discussed here is their association with cold surges, a topic that has been very little explored in the literature. In the Southern Hemisphere, the first South Atlantic hurricane, Catarina, developed in March 2004 under very unusual large-scale conditions. That exceptional cyclone is viewed as a case of tropical transition facilitated by a well-developed blocking structure. A new index for monitoring tropical transition in the subtropical South Atlantic is discussed. This "South Atlantic index" is used to show that the unusual flow during and prior to Catarina's genesis can be attributed to tropical/extratropical interaction mechanisms. The "Donald Duck" case in Australia and Vince in the North Atlantic have also been examined and shown to belong to a category of hybrid-transitioning systems that will achieve at least partial tropical transition. While clearly more research is needed on the topic of transition, as we gain further insight, it is becoming increasingly apparent that features of large-scale circulation do play a fundamental role. A complex interaction between an extratropical transition case and an extreme summer cold surge affecting southeastern Australia is discussed as an example of wider climate implications.

  8. Tropical Cyclone Genesis Efficiency: Mid-Level Versus Bottom Vortex

    Science.gov (United States)

    2011-12-16

    show the vertical-radial cross section of the tangential wind of these initial vortices. In both cases, the initial water vapor mixing ratio and...large amount of cloud liquid water as measured from the Tropical Rainfall Measurement Mission (TRMM) 5 Microwave Image (TMI) had already appeared over... longwave and shortwave radiation processes are included in the simulations. We used a fixed lateral boundary condition, that is, the tendency of

  9. A global historical data set of tropical cyclone exposure (TCE-DAT)

    Science.gov (United States)

    Geiger, Tobias; Frieler, Katja; Bresch, David N.

    2018-01-01

    Tropical cyclones pose a major risk to societies worldwide, with about 22 million directly affected people and damages of USD 29 billion on average per year over the last 20 years. While data on observed cyclones tracks (location of the center) and wind speeds are publicly available, these data sets do not contain information about the spatial extent of the storm and people or assets exposed. Here, we apply a simplified wind field model to estimate the areas exposed to wind speeds above 34, 64, and 96 knots (kn). Based on available spatially explicit data on population densities and gross domestic product (GDP) we estimate (1) the number of people and (2) the sum of assets exposed to wind speeds above these thresholds accounting for temporal changes in historical distribution of population and assets (TCE-hist) and assuming fixed 2015 patterns (TCE-2015). The associated spatially explicit and aggregated country-event-level exposure data (TCE-DAT) cover the period 1950 to 2015 and are freely available at https://doi.org/10.5880/pik.2017.011 (Geiger at al., 2017c). It is considered key information to (1) assess the contribution of climatological versus socioeconomic drivers of changes in exposure to tropical cyclones, (2) estimate changes in vulnerability from the difference in exposure and reported damages and calibrate associated damage functions, and (3) build improved exposure-based predictors to estimate higher-level societal impacts such as long-term effects on GDP, employment, or migration. We validate the adequateness of our methodology by comparing our exposure estimate to estimated exposure obtained from reported wind fields available since 1988 for the United States. We expect that the free availability of the underlying model and TCE-DAT will make research on tropical cyclone risks more accessible to non-experts and stakeholders.

  10. An Observing System Simulation Experiment (OSSE to Assess the Impact of Doppler Wind Lidar (DWL Measurements on the Numerical Simulation of a Tropical Cyclone

    Directory of Open Access Journals (Sweden)

    Lei Zhang

    2010-01-01

    Full Text Available The importance of wind observations has been recognized for many years. However, wind observations—especially three-dimensional global wind measurements—are very limited. A satellite-based Doppler Wind Lidar (DWL is proposed to measure three-dimensional wind profiles using remote sensing techniques. Assimilating these observations into a mesoscale model is expected to improve the performance of the numerical weather prediction (NWP models. In order to examine the potential impact of the DWL three-dimensional wind profile observations on the numerical simulation and prediction of tropical cyclones, a set of observing simulation system experiments (OSSEs is performed using the advanced research version of the Weather Research and Forecasting (WRF model and its three-dimensional variational (3DVAR data assimilation system. Results indicate that assimilating the DWL wind observations into the mesoscale numerical model has significant potential for improving tropical cyclone track and intensity forecasts.

  11. Combining New Satellite Tools and Models to Examine Role of Mesoscale Interactions in Formation and Intensification of Tropical Cyclones

    Science.gov (United States)

    Simpson, Joanne; Pierce, H.; Ritchie, L.; Liu, T.; Brueske, K.; Velden, C.; Halverson, J.; Einaudi, Franco (Technical Monitor)

    2001-01-01

    The objective of this research is to start filling the mesoscale gap to improve understanding and probability forecasts of formation and intensity variations of tropical cyclones. Sampling by aircraft equipped to measure mesoscale processes is expensive, thus confined in place and time. Hence we turn to satellite products. This paper reports preliminary results of a tropical cyclone genesis and early intensification study. We explore the role of mesoscale processes using a combination of products from TRMM, QuikSCAT, AMSU, also SSM/I, geosynchronous and model output. Major emphasis is on the role of merging mesoscale vortices. These initially form in midlevel stratiform cloud. When they form in regions of lowered Rossby radius of deformation (strong background vorticity) the mesoscale vortices can last long enough to interact and merge, with the weaker vortex losing vorticity to the stronger, which can then extend down to the surface. In an earlier cyclongenesis case (Oliver 1993) off Australia, intense deep convection occurred when the stronger vortex reached the surface; this vortex became the storm center while the weaker vortex was sheared out as the major rainband. In our study of Atlantic tropical cyclones originating from African waves, we use QuikSCAT to examine surface winds in the African monsoon trough and in the vortices which move westward off the coast, which may or may not undergo genesis (defined by NHC as reaching TD, or tropical depression, with a west wind to the south of the surface low). We use AMSU mainly to examine development of warm cores. TRMM passive microwave TMI is used with SSM/I to look at the rain structure, which often indicates eye formation, and to look at the ice scattering signatures of deep convection. The TRMM precipitation radar, PR, when available, gives precipitation cross sections. So far we have detailed studies of two African-origin cyclones, one which became severe hurricane Floyd 1999, and the other reached TD2 in June

  12. Variability of tropical cyclone rapid intensification in the North Atlantic and its relationship with climate variations

    Science.gov (United States)

    Wang, Chunzai; Wang, Xidong; Weisberg, Robert H.; Black, Michael L.

    2017-12-01

    The paper uses observational data from 1950 to 2014 to investigate rapid intensification (RI) variability of tropical cyclones (TCs) in the North Atlantic and its relationships with large-scale climate variations. RI is defined as a TC intensity increase of at least 15.4 m/s (30 knots) in 24 h. The seasonal RI distribution follows the seasonal TC distribution, with the highest number in September. Although an RI event can occur anywhere over the tropical North Atlantic (TNA), there are three regions of maximum RI occurrence: (1) the western TNA of 12°N-18°N and 60°W-45°W, (2) the Gulf of Mexico and the western Caribbean Sea, and (3) the open ocean southeast and east of Florida. RI events also show a minimum value in the eastern Caribbean Sea north of South America—a place called a hurricane graveyard due to atmospheric divergence and subsidence. On longer time scales, RI displays both interannual and multidecadal variability, but RI does not show a long-term trend due to global warming. The top three climate indices showing high correlations with RI are the June-November ENSO and Atlantic warm pool indices, and the January-March North Atlantic oscillation index. It is found that variabilities of vertical wind shear and TC heat potential are important for TC RI in the hurricane main development region, whereas relative humidity at 500 hPa is the main factor responsible for TC RI in the eastern TNA. However, the large-scale oceanic and atmospheric variables analyzed in this study do not show an important role in TC RI in the Gulf of Mexico and the open ocean southeast and east of Florida. This suggests that other factors such as small-scale changes of oceanic and atmospheric variables or TC internal processes may be responsible for TC RI in these two regions. Additionally, the analyses indicate that large-scale atmospheric and oceanic variables are not critical to TC genesis and formation; however, once a tropical depression forms, large-scale climate

  13. Reconstructing tropical cyclone frequency using hydrogen isotope ratios of sedimentary n-alkanes in northern Queensland, Australia

    NARCIS (Netherlands)

    Soelen, E.E. van; Wagner-Cremer, F.; Sinninghe Damsté, J.S.; Reichart, G.-J.

    2013-01-01

    A peat record from Quincan Crater (Queensland, Australia), spanning the past 200 years, was used to test if hydrogen isotope ratios of leaf wax long-chain n-alkanes derived of higher plants can be used to reconstruct past tropical cyclone activity. Queensland is frequently impacted by tropical

  14. The Formation of Concentric Eyewalls with Heat Sink in a Simple Tropical Cyclone Model

    Directory of Open Access Journals (Sweden)

    Jia-Yi Peng

    2006-01-01

    Full Text Available A linearized, two-layer axisymmetric model analogous to Schubert el al. (1980 is used to simulate the formation of concentric eyewalls in an ideal strong tropical cyclone. By imposing a heat sink near the center of a cyclone the induced perturbation wind, through thermodynamic adjustment to the heat sink, forms a double-peak structure when the disturbance is added to the basic state tangential wind. The heat sink represents, in a crude way, evaporative cooling of precipitation falling from cloud during late stage convective activity or a cooling through environmental advection. Detailed profiling of the induced double-peak wind structure is dependent on the radial profile of the imposed heat sink. After the double-peak tangential wind structure is formed, if a heat source corresponding to a new convective activity is generated inside the outer maximum tangential wind, the outer eyewall contracts and strengthens while the inner eyewall weakens. This result suggests that thermodynamic adjustments to changes in the heating of a tropical-cyclone-core region may contribute to the formation of the double-eyewall phenomenon.

  15. The influence of tropical cyclones in gully formation: A case study from Madagascar

    Science.gov (United States)

    Raveloson, Andrea; Szabó, Amanda; Székely, Balázs

    2017-04-01

    Soil erosion has been recognized as the main cause of land degradation worldwide and gully erosion is currently considered as one of the most striking erosion type. Madagascar is one of the most affected country with special gullies called lavakas. Despite of the several decade long research, the reasons and the mechanism of their formation are still unknown. Anthropogenic factors, specific combination of lithology, weathering profile and topography are most often stated but numerous publications mention climate as a main factor. We studied the role of climatic conditions and tropical cyclones since 2014. This study aims to analyze lavaka distribution with GIS methods and to find relation between lavaka density, lavaka density change and climatic conditions. Lavakas have been identified in 17 selected study sites by visual recognition using satellite images from years 2000-2009 and 2003-2008. A total of 1330 km2 has been processed at 1 km x 1 km grid cell scale. The total number of recognized lavakas was 1592 in the 17 sites that corresponds to a varying lavaka density of 0 and 8.53 km-2. Data show that the appearance of lavakas is related to the spatial distribution and the inter-annual variability of precipitation and this connection is further strengthened by the tropical cyclones. Furthermore, among our 17 study sites changes in lavaka density were observed between 2000-2009 and 2003-2008 only in areas frequently hit by cyclones in the last 20 years.

  16. The coincidence of daily rainfall events in Liberia, Costa Rica and tropical cyclones in the Caribbean basin

    Science.gov (United States)

    Waylen, Peter R.; Harrison, Michael

    2005-10-01

    The occurrence of tropical cyclones in the Caribbean and North Atlantic basins has been previously noted to have a significant effect both upon individual hydro-climatological events as well as on the quantity of annual precipitation experienced along the Pacific flank of Central America. A methodology for examining the so-called indirect effects of tropical cyclones (i.e. those effects resulting from a tropical cyclone at a considerable distance from the area of interest) on a daily rainfall record is established, which uses a variant of contingency table analysis. The method is tested using a single station on the Pacific slope of Costa Rica. Employing daily precipitation records from Liberia, north-western Costa Rica (1964-1995), and historic storm tracks of tropical cyclones in the North Atlantic, it is determined that precipitation falling in coincidence with the passage of tropical depressions, tropical storms, and hurricanes accounts for approximately 15% of average annual precipitation. The greatest effects are associated with storms passing within 1300 km of the precipitation station, and are most apparent in the increased frequency of daily rainfall totals in the range of 40-60 mm, rather than in the largest daily totals. The complexity and nonstationarity of factors affecting precipitation in this region are reflected in the decline in the number of tropical cyclones and their significance to annual precipitation totals after 1980, simultaneous to an increase in annual precipitation totals. The methodology employed in this study is shown to be a useful tool in illuminating the indirect effects of tropical cyclones in the region, with the potential for application in other areas.

  17. Physical and biological response of the Arabian Sea to tropical cyclone Phyan and its implications.

    Science.gov (United States)

    Byju, P; Prasanna Kumar, S

    2011-06-01

    The response to the tropical cyclone Phyan, which developed in the eastern Arabian Sea during 9-11 November 2009, was rapid cooling of sea surface temperature (SST), enhancement of chlorophyll a and two-fold increase in net primary productivity (NPP). Cooling of SST was immediate in response to the strong wind-mixing, and the subsequent upward Ekman pumping sustained the cooling even after the dissipation of Phyan. The biological response mediated by the upward Ekman pumping driven vertical transport of subsurface nutrient showed a time lag of 3-4 days. The CO₂ flux to the atmosphere associated with Phyan was 0.123 Tg C, which accounted for ~85% of the total out-gassing from the eastern Arabian Sea during November. Thus, an increased occurrence of cyclones in a warming environment will lead to an enhanced biomass production and also increase in CO₂ out-gassing. Copyright © 2011 Elsevier Ltd. All rights reserved.

  18. Identifying recharge from tropical cyclonic storms, Baja California Sur, Mexico.

    Science.gov (United States)

    Eastoe, Christopher J; Hess, Greg; Mahieux, Susana

    2015-04-01

    Groundwater in the Todos Santos watershed in southern Baja California, and throughout the peninsula south of latitude 28°N, has values of (δ18 O‰, δD‰) ranging between (-8.3, -57) and (-10.9, -78). Such negative values are uncharacteristic of the site latitude near the sea level. Altitude effects do not explain the isotope data. Tropical depressions originating along the Pacific coast of North America yield rain with isotopic depletion; rain from these weather systems in southern Arizona commonly has δ18O valuestropical depressions bring large rains (>50 mm) at least once every 2 to 3 years, and along the Pacific coast between Jalisco and Oaxaca. © 2014, National Ground Water Association.

  19. Sediment transport off Bangladesh: the power of tropical cyclones recorded in a submarine canyon

    Science.gov (United States)

    Meyer, I.; Kudrass, H.; Palamenghi, L.

    2011-12-01

    Marine sediments offshore Bangladesh are mainly supplied by the Ganges-Brahmaputra river system and are accumulated on the shelf of Bangladesh. The average sediment discharge of the world's biggest river system is estimated to be 0.8-1 billion tons per year. The shallow shelf is cut by a steep and up to 1000 m deep anaerobic canyon, called the "Swatch of No Ground", which acts as a sediment trap. An extremely high annual sedimentation flux of 20-45 cm was determined for the last 50 years by 137Cs and 210Pb measurements. In order to investigate the sediment transport in the Bay of Bengal a marine sediment core was taken from the mid-part of the Swatch of No Ground (21°18N/89°34E) and analyzed for element composition and grain-size distributions. Results show a sequence of graded fine-sand-silt-clay layers. These sequences can be directly related to the historical record of tropical storms, which move across the northern Bay of Bengal during pre- and post-monsoon flood peak and mobilize huge amounts of the shallow marine and coastal sediments into turbid hyperpycnal water masses. Due to the anti-clockwise rotation of the cyclones and their northward path the main transport direction is westward. The coarse grained sediment, remobilized by storm waves, is supported by cyclone-induced currents toward the canyon while the fine grained fraction follows afterward supported by the storm swell plus the semi-diurnal tidal component. Despite the high riverine input the amount of sediment mobilized during normal weather conditions is minimal compared to the sediment mobilized by the cyclonic high-energy input. Similar cyclone-induced sediment transport probably also governs erosion and deposition in most tropical shelf areas affected by the monsoon regime.

  20. Tropical cyclone influence on the long-term variability of Philippine summer monsoon onset

    Science.gov (United States)

    Kubota, Hisayuki; Shirooka, Ryuichi; Matsumoto, Jun; Cayanan, Esperanza O.; Hilario, Flaviana D.

    2017-12-01

    The long-term variability of Philippine summer monsoon onset from 1903 to 2013 was investigated. The onset date is defined by daily rainfall data at eight stations in the northwestern Philippines. Summer monsoons tended to start earlier in May after the mid-1990s. Other early onset periods were found during the 1900s, 1920s, and 1930s, and an interdecadal variability of summer monsoon onset was identified. Independent surface wind data observed by ships in the South China Sea (SCS) revealed prevailing westerly wind in May during the early monsoon onset period. To identify atmospheric structures that trigger Philippine summer monsoon onset, we focused on the year 2013, conducting intensive upper-air observations. Tropical cyclone (TC) Yagi traveled northward in the Philippine Sea (PS) in 2013 and triggered the Philippine monsoon onset by intensifying moist low-level southwesterly wind in the southwestern Philippines and intensifying low-level southerly wind after the monsoon onset in the northwestern Philippines. The influence of TC was analyzed by the probability of the existence of TC in the PS and the SCS since 1951, which was found to be significantly correlated with the Philippine summer monsoon onset date. After the mid-1990s, early monsoon onset was influenced by active TC formation in the PS and the SCS. However, the role of TC activity decreased during the late summer monsoon periods. In general, it was found that TC activity in the PS and the SCS plays a key role in initiating Philippine summer monsoon onset. [Figure not available: see fulltext.

  1. Chlorophyll concentration forecasts during tropical cyclones using satellite remote sensing imagery

    Science.gov (United States)

    Wei, C. C.

    2016-02-01

    Phytoplankton pigment concentrations such as chlorophyll-a (Chl-a) provide a measure of the biological state of the surface ocean. The Chl-a concentration, a proxy for phytoplankton abundance, is a valuable indicator of the marine ecosystem, and satellite remote sensing is the only way at present to take frequent measurements of Chl-a at regional and ocean-basin scales. Tropical cyclones when passing over land may have devastating effects on human lives, but over the ocean they can strongly enhance another form of life-ocean primary (phytoplankton) production. Researchers indicated that the passing of typhoon in the open ocean can induce the decreasing of sea surface temperature and Chl-a concentration increasing. Meanwhile, the typhoon-induced SST and Chl-a changes is related to the typhoon intensity, moving speed, and days of influence on the ocean. This study adopted the machine learning algorithms in forecasting the Chl-a concentrations from 1- to 5-day ahead by using datasets from the climatologic characteristics of typhoons from Central Weather Bureau (CWB), the typhoon path from Joint Typhoon Warning Center (JTWC), and the satellite observations from Moderate Resolution Imaging Spectroradiometer (MODIS) during typhoon attacks. The study collected the typhoon tracks from JTWC, the typhoon climatologic data issued by CWB, and the atmosphere and ocean color products from MODIS/Aqua satellites. The Chl-a concentration forecast models are constructed by machine learning, namely, multilayer perceptron neural networks and classification and regression tree. The study area was the Taiwan Strait which is between Taiwan and China. This study collected a total of 36 typhoon events affecting the Taiwan Strait over years 2002-2014. The results showed that the proposed methodology was promising to improve the typhoon Chl-a forecast efficiency by prediction models using the typhoon path, climatological, and MODIS/Aqua remote sensing data.

  2. Nonstationarity in timing of extreme precipitation across China and impact of tropical cyclones

    Science.gov (United States)

    Gu, Xihui; Zhang, Qiang; Singh, Vijay P.; Shi, Peijun

    2017-02-01

    This study examines the seasonality and nonstationarity in the timing of extreme precipitation obtained by annual maximum (AM) sampling and peak-over-threshold (POT) sampling techniques using circular statistics. Daily precipitation data from 728 stations with record length of at least 55 years across China were analyzed. In general, the average seasonality is subject mainly to summer season (June-July - August), which is potentially related to East Asian monsoon and Indian monsoon activities. The strength of precipitation seasonality varied across China with the highest strength being in northeast, north, and central-north China; whereas the weakest seasonality was found in southeast China. There are three seasonality types: circular uniform, reflective symmetric, and asymmetric. However, the circular uniform seasonality of extreme precipitation was not detected at stations across China. The asymmetric distribution was observed mainly in southeast China, and the reflective distribution of precipitation extremes was also identified the other regions besides the above-mentioned regions. Furthermore, a strong signal of nonstationarity in the seasonality was detected at half of the weather stations considered in the study, exhibiting a significant shift in the timing of extreme precipitation, and also significant trends in the average and strength of seasonality. Seasonal vapor flux and related delivery pathways and also tropical cyclones (TCs) are most probably the driving factors for the shifts or changes in the seasonality of extreme precipitation across China. Timing of precipitation extremes is closely related to seasonal shifts of floods and droughts and which means much for management of agricultural irrigation and water resources management. This study sheds new light on nonstationarity in timing of precipitation extremes which differs from existing ones which focused on precipitation extremes from perspective of magnitude and intensity.

  3. Air-sea coupling during the tropical cyclones in the Indian Ocean: A case study using satellite observations

    Digital Repository Service at National Institute of Oceanography (India)

    Subrahmanyam, B.; Murty, V.S.N.; Sharp, R.J.; O'Brien, J.J.

    of 3.05 days to suppress the effect of inertial oscillations. 3. Results and Discussion 3.1 Surface Wind Field and Sea-level Pressure during the Tropical Cyclones The cyclone 04B was located at 16.0 C176N, 88.5 C176E at 0300 Z and at 17.8 C176N, 87 C176E... weakening. The cyclone intensified on 24 May reaching a vorticity of 25–30C210 )5 s )1 at the cyclone center (17.5 C176N, 68.5 C176E)(Fig. 3a). The rain band was located on the southern edge of the cyclone. The SeaWinds-calculated mean sea-level pressure...

  4. Analysis of the interannual variability of tropical cyclones striking the California coast based on statistical downscaling

    Science.gov (United States)

    Mendez, F. J.; Rueda, A.; Barnard, P.; Mori, N.; Nakajo, S.; Espejo, A.; del Jesus, M.; Diez Sierra, J.; Cofino, A. S.; Camus, P.

    2016-02-01

    Hurricanes hitting California have a very low ocurrence probability due to typically cool ocean temperature and westward tracks. However, damages associated to these improbable events would be dramatic in Southern California and understanding the oceanographic and atmospheric drivers is of paramount importance for coastal risk management for present and future climates. A statistical analysis of the historical events is very difficult due to the limited resolution of atmospheric and oceanographic forcing data available. In this work, we propose a combination of: (a) statistical downscaling methods (Espejo et al, 2015); and (b) a synthetic stochastic tropical cyclone (TC) model (Nakajo et al, 2014). To build the statistical downscaling model, Y=f(X), we apply a combination of principal component analysis and the k-means classification algorithm to find representative patterns from a potential TC index derived from large-scale SST fields in Eastern Central Pacific (predictor X) and the associated tropical cyclone ocurrence (predictand Y). SST data comes from NOAA Extended Reconstructed SST V3b providing information from 1854 to 2013 on a 2.0 degree x 2.0 degree global grid. As data for the historical occurrence and paths of tropical cycloneas are scarce, we apply a stochastic TC model which is based on a Monte Carlo simulation of the joint distribution of track, minimum sea level pressure and translation speed of the historical events in the Eastern Central Pacific Ocean. Results will show the ability of the approach to explain seasonal-to-interannual variability of the predictor X, which is clearly related to El Niño Southern Oscillation. References Espejo, A., Méndez, F.J., Diez, J., Medina, R., Al-Yahyai, S. (2015) Seasonal probabilistic forecasting of tropical cyclone activity in the North Indian Ocean, Journal of Flood Risk Management, DOI: 10.1111/jfr3.12197 Nakajo, S., N. Mori, T. Yasuda, and H. Mase (2014) Global Stochastic Tropical Cyclone Model Based on

  5. Magnitudes of nearshore waves generated by tropical cyclone Winston, the strongest landfalling cyclone in South Pacific records. Unprecedented or unremarkable?

    Science.gov (United States)

    Terry, James P.; Lau, A. Y. Annie

    2018-02-01

    We delimit nearshore storm waves generated by category-5 Tropical Cyclone Winston in February 2016 on the northern Fijian island of Taveuni. Wave magnitudes (heights and flow velocities) are hindcast by inverse modelling, based on the characteristics of large carbonate boulders (maximum 33.8 m3, 60.9 metric tons) that were quarried from reef-front sources, transported and deposited on coral reef platforms during Winston and older extreme events. Results indicate that Winston's storm waves on the seaward-margin of reefs fringing the southeastern coasts of Taveuni reached over 10 m in height and generated flow velocities of 14 m s- 1, thus coinciding with the scale of the biggest ancient storms as estimated from pre-existing boulder evidence. We conclude that although Winston tracked an uncommon path and was described as the most powerful storm on record to make landfall in the Fiji Islands, its coastal wave characteristics were not unprecedented on centennial timescales. At least seven events of comparable magnitude have occurred over the last 400 years.

  6. Sensitivity of tropical cyclone characteristics to the radial distribution ...

    Indian Academy of Sciences (India)

    708. Deepika Rai et al. hurricane intensity issue; Mon. Weather Rev. 133(7). 1886–1912. Liu Y, Zhang Da-Lin and Yau M K 1997 A multiscale numer- ical study of hurricane Andrew (1992). Part I: Explicit simulation and varification; Mon. Weather Rev. 125(12). 3073–3093. Malkus J S and Riehl H 1960 On the dynamics and.

  7. Characteristics of surface wind structure of tropical cyclones over the ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 124; Issue 7 ... The maximum radial extent of winds reaching threshold values of 34(17), 50(26) and 64(33) knot (ms−1) in each of the four geographical quadrants has been segregated with respect to season of formation, basin of formation and intensity of TC for ...

  8. Characteristics of surface wind structure of tropical cyclones over the ...

    Indian Academy of Sciences (India)

    the effective utilization of above-mentioned multi- platform-based satellite-derived wind product is very essential to minimize the error in intensity and structure monitoring and forecast. So, a study has been undertaken to analyze the mean character- istics of surface wind distribution and hence the structure of TC based on ...

  9. A New Tropical Cyclone Dynamic Initialization Technique Using High Temporal and Spatial Density Atmospheric Motion Vectors and Airborne Field Campaign Data

    Science.gov (United States)

    Hendricks, Eric A.; Bell, Michael M.; Elsberry, Russell L.; Velden, Chris S.; Cecil, Dan

    2016-01-01

    Background: Initialization of tropical cyclones in numerical weather prediction (NWP) systems is a great challenge: Mass-wind ?eld balance; Secondary circulation and heating; Asymmetries. There can be large adjustments in structure and intensity in the ?rst 24 hours if the initial vortex is not in balance: Spurious gravity waves; Spin-up (model and physics). Existing mesoscale NWP model TC (Tropical Cyclone) initialization strategies: Bogus vortex, cold start from global analyses; 3DVAR or 4DVAR, possibly with synthetic observations; EnKF (Ensemble Kalman Filter); Dynamic initialization. Dynamic initialization allows vortex to have improved balance and physics spin-up at the initial time (e.g., Hendricks et al. 2013, 2011; Nguyen and Chen 2011; Fiorino and Warner 1981; Hoke and Anthes 1976). Himawari-8 geostationary satellite has capability of continuous imagery (10-minutes) over the full disk: New GOES-R satellites will have same capability. This will allow for unprecedented observations of tropical cyclones. However, current data assimila1on systems are not capable of ingesting such high temporal observations (Atmospheric Mo1on Vectors - AMVs). Hourly AMVs are produced, and thinned to 100-kilometer spacing in the horizontal. An entirely new data assimilation concept is required to utilize these observations.

  10. Contrasting Chl-a responses to the tropical cyclones Thane and Phailin in the Bay of Bengal

    Digital Repository Service at National Institute of Oceanography (India)

    Vidya, P.J.; Das, S.; ManiMurali, R.

    cyclone (8-14 October 2013), and both occurred during the post-monsoon season. The present study examined the effect of cyclone intensity difference on the chlorophyll a (Chl-a) production in the BoB. Two and seven times Chl-a enhancement was observed...

  11. Objective Tracking of Tropical Cyclones in the North-West Pacific Basin Based on Wind Field Information only

    Science.gov (United States)

    Leckebusch, G. C.; Befort, D. J.; Kruschke, T.

    2016-12-01

    Although only ca. 12% of the global insured losses of natural disasters occurred in Asia, there are two major reasons to be concerned about risks in Asia: a) The fraction of loss events was substantial higher with 39% of which 94% were due to atmospheric processes; b) Asia and especially China, is undergoing quick transitions and especially the insurance market is rapidly growing. In order to allow for the estimation of potential future (loss) impacts in East-Asia, in this study we further developed and applied a feature tracking system based on extreme wind speed occurrences to tropical cyclones, which was originally developed for extra-tropical cyclones (Leckebusch et al., 2008). In principle, wind fields will be identified and tracked once a coherent exceedance of local percentile thresholds is identified. The focus on severe wind impact will allow an objective link between the strength of a cyclone and its potential damages over land. The wind tracking is developed in such a way to be applicable also to course-gridded AOGCM simulation. In the presented configuration the wind tracking algorithm is applied to the Japanese reanalysis (JRA55) and TC Identification is based on 850hPa wind speeds (6h resolution) from 1979 to 2014 over the Western North Pacific region. For validation the IBTrACS Best Track archive version v03r8 is used. Out of all 904 observed tracks, about 62% can be matched to at least one windstorm event identified in JRA55. It is found that the relative amount of matched best tracks increases with the maximum intensity. Thus, a positive matching (hit rate) of above 98% for Violent Typhoons (VTY), above 90% for Very Strong Typhoons (VSTY), about 75% for Typhoons (TY), and still some 50% for less intense TCs (TD, TS, STS) is found. This result is extremely encouraging to apply this technique to AOGCM outputs and to derive information about affected regions and intensity-frequency distributions potentially changed under future climate conditions.

  12. Rapid assessment tool for tropical cyclone waves and storm surge hazards in Mexico

    Science.gov (United States)

    Appendini, Christian M.; Rosengaus, Michel; Meza-Padilla, Rafael; Camacho-Magaña, Victor

    2017-04-01

    Mexico is under the constant threat of tropical cyclones generated in the Atlantic and the Eastern Pacific oceans. While the National Hurricane Center (NHC) in Miami is responsible for the forecast of tropical cyclones in both basins and providing watch and warning areas information for Mexico, Central America and the Caribbean, they are not responsible to issue waves and storm surge hazards. This work presents a quick assessment tool for waves and storm surge hazards developed under conditions that are common to developing countries: tight budget and time constraints, as well as limited numerical modeling capabilities. The system is based on 3100 synthetic tropical cyclones doing landfall in Mexico. Hydrodynamic and wave models were driven by the synthetic events to create a robust database composed of maximum envelops of wind speed, significant wave height and storm surge for each event. The results were incorporated into a forecast system that uses the NHC advisory to locate the synthetic events passing inside specified radiuses for the present and forecast position of the real event. Using limited computer resources, the system displays the information meeting the search criteria, and the forecaster can select specific events to generate the desired hazard map (i.e. wind, waves, and storm surge) based on the maximum envelop maps. This system was developed in a limited time frame to be operational in 2015 by the Hurricane and Severe Storms Unit of the Mexican National Weather Service, and represents a pilot project for other countries in the region not covered by detailed storm surge and waves forecasts.

  13. Dust-Medicane Interaction: Tropical-Like Cyclone on November 7th, 2014

    Science.gov (United States)

    Isik, A. G.

    2017-12-01

    Mineral dust aerosols, soil particles suspended in the atmosphere, play a vital role in climate and can alter weather systems. Those particles have both direct (dust-radiation effect) and indirect (dust-microphysical effect) impacts on the energy budget. This study aims to investigate the dust impact on tropical-like cyclones over the Mediterranean Basin. Tropical-like cyclones (TLCs) called Medicanes (MEDIterranean hurriCANE) are rare cases observed in the Mediterranean Sea. On average, one TLC case is caught by satellite images in the Mediterranean basin. Moreover, tropical cyclone (TC) activity over Atlantic region peaks during summer and early fall while TLCs occur in September, October and November. There are many studies examining the relation between Saharan dust and TC development over Atlantic. TC's environmental conditions could be influenced by dust. An environment with weaker vertical wind shear is more favorable to TC development. Similar to TCs, TLCs require minimal wind shear and abundant amount of moisture and vorticity. However, there are not many studies related to dust impact on medicanes. This study tries to find out if dust transport could effect medicane formation and development. One of the objectives of the study is to analyze the medicane and dust transport by satellite data. For this purpose, Medicane case on 7th of November, 2014 was chosen. The TLC formed early on November 7th, hit eastern Sicily. It was dissipated on 8th of November. A strong low level jet-stream blew warm air masses from the Sahara desert towards the Mediterranean. Another objective is to study the dust-medicane interaction over Mediterranean Sea in 2014 using a numerical model. The case simulated with WRF will enlighten the interaction between dust and TLC activity. Furthermore, more studies in different TLC cases and simulations with different physics options will give insight into the interaction.

  14. Tropical Cyclone Track and Structure Sensitivity to Initialization in Idealized Simulations: A Preliminary Study

    Directory of Open Access Journals (Sweden)

    Yang Cao

    2011-01-01

    Full Text Available In the absence of environmental steering, tropical cyclone (TC motion largely reflects ¡§beta drift¡¨ owing to differential planetary vorticity advection by the storm¡¦s outer circulation. It is known that model physics choices (especially those relating to convection can significantly alter these outer winds and thus the storm track. Here, semi-idealized simulations are used to explore the influence of the initialization on subsequent vortex evolution and motion. Specifically, TCs bred from a buoyant ¡§bubble¡¨ are compared to bogussed vortices having a wide variety of parameterized shapes and sizes matching observations.

  15. Communicating the Threat of a Tropical Cyclone to the Eastern Range

    Science.gov (United States)

    Winters, Katherine A.; Roeder, William P.; McAleenan, Mike; Belson, Brian L.; Shafer, Jaclyn A.

    2012-01-01

    The 45th Weather Squadron (45 WS) has developed a tool to help visualize the Wind Speed Probability product from the National Hurricane Center (NHC) and to help communicate that information to space launch customers and decision makers at the 45th Space Wing (45 SW) and Kennedy Space Center (KSC) located in east central Florida. This paper reviews previous work and presents the new visualization tool, including initial feedback as well as the pros and cons. The NHC began issuing their Wind Speed Probability product for tropical cyclones publicly in 2006. The 45 WS uses this product to provide a threat assessment to 45 SW and KSC leadership for risk evaluations with an approaching tropical cyclone. Although the wind speed probabilities convey the uncertainty of a tropical cyclone well, communicating this information to customers is a challenge. The 45 WS continually strives to provide the wind speed probability information to customers in a context which clearly communicates the threat of a tropical cyclone. First, an intern from the Florida Institute of Technology (FIT) Atmospheric Sciences department, sponsored by Scitor Corporation, independently evaluated the NHC wind speed probability product. This work was later extended into a M.S. thesis at FIT, partially funded by Scitor Corporation and KSC. A second thesis at FIT further extended the evaluation partially funded by KSC. Using this analysis, the 45 WS categorized the probabilities into five probability interpretation categories: Very Low, Low, Moderate, High, and Very High. These probability interpretation categories convert the forecast probability and forecast interval into easily understood categories that are consistent across all ranges of probabilities and forecast intervals. As a follow-on project, KSC funded a summer intern to evaluate the human factors of the probability interpretation categories, which ultimately refined some of the thresholds. The 45 WS created a visualization tool to express the

  16. Idealized tropical cyclone simulations of intermediate complexity: A test case for AGCMs

    Directory of Open Access Journals (Sweden)

    Kevin Reed

    2012-04-01

    Full Text Available The paper introduces a moist, deterministic test case of intermediate complexity for Atmospheric General Circulation Models (AGCMs. We suggest pairing an AGCM dynamical core with simple physical parameterizations to test the evolution of a single, idealized, initially weak vortex into a tropical cyclone. The initial conditions are based on an initial vortex seed that is in gradient-wind and hydrostatic balance. The suggested ``simple-physics'' package consists of parameterizations of bulk aerodynamic surface fluxes for moisture, sensible heat and momentum, boundary layer diffusion, and large-scale condensation. Such a configuration includes the important driving mechanisms for tropical cyclones, and leads to a rapid intensification of the initial vortex over a forecast period of ten days. The simple-physics test paradigm is not limited to tropical cyclones, and can be universally applied to other flow fields. The physical parameterizations are described in detail to foster model intercomparisons.The characteristics of the intermediate-complexity test case are demonstrated with the help of four hydrostatic dynamical cores that are part of the Community Atmosphere Model version 5 (CAM 5 developed at the National Center for Atmospheric Research (NCAR. In particular, these are the Finite-Volume, Spectral Element, and spectral transform Eulerian and semi-Lagrangian dynamical cores that are coupled to the simple-physics suite. The simulations show that despite the simplicity of the physics forcings the models develop the tropical cyclone at horizontal grid spacings of about 55 km and finer. The simple-physics simulations reveal essential differences in the storm's structure and strength due to the choice of the dynamical core. Similar differences are also seen in complex full-physics aqua-planet experiments with CAM 5 which serve as a motivator for this work. The results suggest that differences in complex full-physics simulations can be, at least

  17. Aerosol influence on the recent decadal decrease in tropical cyclone activity over the western North Pacific

    Science.gov (United States)

    Takahashi, C.; Watanabe, M.; Mori, M.

    2017-12-01

    Over the past two decades, the number of Tropical cyclone (TCs) has decreased markedly in the southeastern part of the western North Pacific (WNP) as a component of the interdecadal variation. This decrease has partially been explained by an internal low-frequency variability of sea surface temperature in the Pacific, but influences of external forcing remain unclear. We show that past changes in sulphate aerosol emissions significantly contributed to the resent observed decreasing trends in TC genesis frequency in the southeastern WNP, using multiple simulations by a global climate model. This mechanism and near-future projection of WNP TC genesis frequency will be presented.

  18. Tropical cyclone cloud‐top height and vertical temperature structure detection using GPS radio occultation measurements

    DEFF Research Database (Denmark)

    Biondi, Riccardo; Ho, Shu‐Peng; Randel, William

    2013-01-01

    The accurate determination of tropical cyclone (TC) cloud-top height and its vertical thermal structure using the GPS radio occultation (RO) technique is demonstrated in this study. Cloud-top heights are determined by using the bending angle anomaly and the temperature anomaly profiles during......-derived inversion heights and those from radiosonde temperature profiles is approximately 500 m. Results show that, while cloud-top height detected from nadir-viewing satellites can be easily biased by a few kilometers, the biases of RO-derived cloud-top height are within ~500 m....

  19. Interannual variability of the South Pacific Convergence Zone and implications for tropical cyclone genesis

    Digital Repository Service at National Institute of Oceanography (India)

    Vincent, E.M.; Lengaigne, M.; Menkes, C.E.; Jourdain, N.C.; Marchesiello, P.; Madec, G.

    SPCZ con- trols the large scale environment favouring cyclonic activity have not yet been investigated. In addition, the characteristics of El Nin˜o events vary widely from one event to another, and the influence of this diversity on the SPCZ location... which the classification is performed) accu- rately summarizes the large-scale precipitation variability in the tropical South Pacific (on which the EOFs are con- structed). The same AHC applied to PC1–PC2 coordinates instead of latW–latE indices gives...

  20. Tropical cyclones in two atmospheric (re)analyses and their response in two oceanic reanalyses

    Digital Repository Service at National Institute of Oceanography (India)

    Jourdain, N.C.; Barnier, B.; Ferry, N.; Vialard, J.; Menkes, C.E.; Lengaigne, M.; Parent, L.

    : Tropical cyclone Reanalysis GLORYS ERA-Interim ECMWFtion et Approches Numériques, Université Pierre et Marie Curie, Muséum National d’Histoire Naturelle, Centre National de la veloppement, Paris, France New Caledonia a b s t r a c t In this paper, we first... Research Center, University of New South Wales, Sydney, Australia b Laboratoire de Glaciologie et Géophysique de l’Environnement (LGGE), Centre National de la Recherche Scientifique, Université de Grenoble, Grenoble, France c Laboratoire d’Océanographie et...

  1. An intrathermocline eddy and a tropical cyclone in the Bay of Bengal

    Digital Repository Service at National Institute of Oceanography (India)

    Gordon, A.L.; Shroyer, E.; Murty, V.S.N.

    -stationary salinity balance at long timescales. Atmospheric forcing is highly seasonal, exposing the BoB to the drier NE monsoon of the boreal winter, and the rainy SW summer monsoon. Tropical cyclones are common from May to December, with peaks in the transitional... markers show the anticyclone trajectory3. The black marker shows the centroid of the eddy on the day of the SLA fields. The black line on the 5 December 2013 panel shows the ship transect through the ITE. The map was produced using Netcdf toolbox...

  2. Characteristics of the Nonoccurrence of Tropical Cyclones in the Western North Pacific in August 2014

    Directory of Open Access Journals (Sweden)

    Jae-Won Choi

    2016-10-01

    Full Text Available This study identified the causes of the nonoccurrence of tropical cyclones (TCs in August 2014 by examining large-scale environments. First, over the previous 30 years, the TC genesis frequency in August showed an overall statistically significant decline. In the tropical and subtropical western Pacific, the outgoing longwave radiation anomaly index also exhibited an overall increase until recently. Regarding precipitable water and precipitation, an analysis was performed on the difference between the mean values for August 2014 and the mean values for August over the previous 30 years. As a result, while convective activities were suppressed in the tropical and subtropical western Pacific, convective activities were strong in the mid-latitudes of East Asia. This indicates that while the western North Pacific summer monsoon was weakened in August 2014, the East Asian summer monsoon was strengthened. The weakening of the western North Pacific summer monsoon may have made it difficult for TCs to occur. An analysis of 850 hPa and 500 hPa stream flows showed the strengthening of anomalous huge anticyclonic circulations in the tropical and subtropical western Pacific, whereas anomalously cyclonic circulations were reinforced in the mid-latitudes of East Asia. This was associated with the result that the western North Pacific subtropical high (WNPSH showed further westward and southward expansion in August 2014 compared to the climatological mean WNPSH. Therefore, TCs were unlikely to occur in the tropical and subtropical western Pacific, but anomalous cold northerlies and anomalous warm southerlies converged in the Japanese Islands after originating in China’s central region and passing the East China Sea. Therefore, a favorable environment for the occurrence of precipitation had been formed.

  3. The evacuation of cairns hospitals due to severe tropical cyclone Yasi.

    Science.gov (United States)

    Little, Mark; Stone, Theona; Stone, Richard; Burns, Jan; Reeves, Jim; Cullen, Paul; Humble, Ian; Finn, Emmeline; Aitken, Peter; Elcock, Mark; Gillard, Noel

    2012-09-01

    On February 2, 2011, Tropical Cyclone Yasi, the largest cyclone to cross the Australian coast and a system the size of Hurricane Katrina, threatened the city of Cairns. As a result, the Cairns Base Hospital (CBH) and Cairns Private Hospital (CPH) were both evacuated, the hospitals were closed, and an alternate emergency medical center was established in a sports stadium 15 km from the Cairns central business district. This article describes the events around the evacuation of 356 patients, staff, and relatives to Brisbane (approximately 1,700 km away by road), closure of the hospitals, and the provision of a temporary emergency medical center for 28 hours during the height of the cyclone. Our experience highlights the need for adequate and exercised hospital evacuation plans; the need for clear command and control with identified decision-makers; early decision-making on when to evacuate; having good communication systems with redundancy; ensuring that patients are adequately identified and tracked and have their medications and notes; ensuring adequate staff, medications, and oxygen for holding patients; and planning in detail the alternate medical facility safety and its role, function, and equipment. © 2012 by the Society for Academic Emergency Medicine.

  4. Recruitment of invasive plant species in the Sundarbans following tropical Cyclone Aila

    Science.gov (United States)

    Rahman, M. M.; Vacik, H.

    2016-02-01

    The Sundarbans is the largest mangrove forest in the world. Two-thirds of the forest (62%) is in the southwest corner of Bangladesh while the rest is in the West Bengal of India. The out flow of water from Bangladesh is the third highest in the world, next to the Amazonia and Congo basin. Major rivers of Bangladesh flow from north to south, silting up the mangroves delta and draining into the Bay of Bengal. The mangroves delta is also a region of transition between the freshwater of the rivers originating from the Ganges and the saline water of the Bay of Bengal. The ecosystems as well as the luxuriant biodiversity of Sundarbans have strong interactions with marine environments. The environmental parameters with the direct influences on Sundarbans in terms of global climate change are sea-level rise, natural calamities like cyclones, salinity and drought. Almost 26 percent frequency of cyclones was increased over past 120 years in the Bay of Bengal. Five disastrous tropical cyclones originated in the Bay of Bengal since 2006 - Sidr, Nargis, Bijli, Aila and Mahasen. Cyclones impact Sundarbans through four primary mechanisms: wind damage, storm surge, sedimentation and colonization of invasive species. Many researches were carried out to investigate the wind damages. The invasions of plant species were not documented; this study is the first attempt to do so in a scientific manner. The study area in the Chandpai Range of Sundarbans was classified as `less affected' (LAA) and `high affected' (HAA) areas due to the tropical cyclone `Aila'. In total 23 invasive plant species were identified in the Chandpai Range of Sundarbans, out of them 19 species are indigenous and the rest are alien. All species were found in the HAA, where only 09 species were found in the LAA. The abundance, diversity and rate of invasion were higher in the HAA than that of LAA. Proper management must be adopted to control the invasion to protect the endemic species. Key words: Mangrove, Marine

  5. Polychaete Community of a Marine Protected Area along the West Coast of India—Prior and Post the Tropical Cyclone, Phyan

    Science.gov (United States)

    Kubal, Priti; Mulik, Jyoti; Rokade, M. A.; Salvi, Shailesh; Thomas, Jubin; Naidu, V. S.

    2016-01-01

    Tropical cyclones are extreme random meteorological events that can have profound implications to coastal biodiversities. Given that the frequency, intensity and duration of these events are poised to increase due to the global climate change, understanding the ecological impacts of such erratic occurrences becomes imperative to devise better management strategies. The eventful passage of the tropical cyclone, Phyan, along the northwestern coast of India in November 2009, coupled with the availability of historical data presented a rare opportunity to elucidate the consequences on the polychaete assemblages of the Malvan Marine Sanctuary and their subsequent recovery. This was achieved by comparison of the pre- and post-Phyan seasonal data from four different sites in and around the Sanctuary. MDS analyses and polychaete community parameters suggested conspicuous cyclone related effects on the polychaete community characteristics in the three outer stations off Malvan, whereas the relatively protected bay station remained more or less unscathed. Impacts, attributable to the cyclone apart from seasonal variations, included changes in polychaete composition, reductions in total polychaete density, species diversity, evenness and functional groups. Dominance of the opportunistic polychaete, Paraprionospiopatiens was all pervasive just after Phyan, resulting in poor diversity and evenness values. In the outer stations, diverse feeding modes present prior to the cyclone were replaced by microphagous feeders post the disturbance. However, the study also observed complete recovery as substantiated by the improvement inpolychaete density, diversity indices and re-instatement of multiple feeding guilds in affected areas. This resilience of the coastal waters off Malvan is attributed to its marine protected status, implying that reduced human interference aided rapid revival of damaged ecosystems. PMID:27556895

  6. Polychaete Community of a Marine Protected Area along the West Coast of India-Prior and Post the Tropical Cyclone, Phyan.

    Science.gov (United States)

    Sukumaran, Soniya; Vijapure, Tejal; Kubal, Priti; Mulik, Jyoti; Rokade, M A; Salvi, Shailesh; Thomas, Jubin; Naidu, V S

    2016-01-01

    Tropical cyclones are extreme random meteorological events that can have profound implications to coastal biodiversities. Given that the frequency, intensity and duration of these events are poised to increase due to the global climate change, understanding the ecological impacts of such erratic occurrences becomes imperative to devise better management strategies. The eventful passage of the tropical cyclone, Phyan, along the northwestern coast of India in November 2009, coupled with the availability of historical data presented a rare opportunity to elucidate the consequences on the polychaete assemblages of the Malvan Marine Sanctuary and their subsequent recovery. This was achieved by comparison of the pre- and post-Phyan seasonal data from four different sites in and around the Sanctuary. MDS analyses and polychaete community parameters suggested conspicuous cyclone related effects on the polychaete community characteristics in the three outer stations off Malvan, whereas the relatively protected bay station remained more or less unscathed. Impacts, attributable to the cyclone apart from seasonal variations, included changes in polychaete composition, reductions in total polychaete density, species diversity, evenness and functional groups. Dominance of the opportunistic polychaete, Paraprionospiopatiens was all pervasive just after Phyan, resulting in poor diversity and evenness values. In the outer stations, diverse feeding modes present prior to the cyclone were replaced by microphagous feeders post the disturbance. However, the study also observed complete recovery as substantiated by the improvement inpolychaete density, diversity indices and re-instatement of multiple feeding guilds in affected areas. This resilience of the coastal waters off Malvan is attributed to its marine protected status, implying that reduced human interference aided rapid revival of damaged ecosystems.

  7. Polychaete Community of a Marine Protected Area along the West Coast of India-Prior and Post the Tropical Cyclone, Phyan.

    Directory of Open Access Journals (Sweden)

    Soniya Sukumaran

    Full Text Available Tropical cyclones are extreme random meteorological events that can have profound implications to coastal biodiversities. Given that the frequency, intensity and duration of these events are poised to increase due to the global climate change, understanding the ecological impacts of such erratic occurrences becomes imperative to devise better management strategies. The eventful passage of the tropical cyclone, Phyan, along the northwestern coast of India in November 2009, coupled with the availability of historical data presented a rare opportunity to elucidate the consequences on the polychaete assemblages of the Malvan Marine Sanctuary and their subsequent recovery. This was achieved by comparison of the pre- and post-Phyan seasonal data from four different sites in and around the Sanctuary. MDS analyses and polychaete community parameters suggested conspicuous cyclone related effects on the polychaete community characteristics in the three outer stations off Malvan, whereas the relatively protected bay station remained more or less unscathed. Impacts, attributable to the cyclone apart from seasonal variations, included changes in polychaete composition, reductions in total polychaete density, species diversity, evenness and functional groups. Dominance of the opportunistic polychaete, Paraprionospiopatiens was all pervasive just after Phyan, resulting in poor diversity and evenness values. In the outer stations, diverse feeding modes present prior to the cyclone were replaced by microphagous feeders post the disturbance. However, the study also observed complete recovery as substantiated by the improvement inpolychaete density, diversity indices and re-instatement of multiple feeding guilds in affected areas. This resilience of the coastal waters off Malvan is attributed to its marine protected status, implying that reduced human interference aided rapid revival of damaged ecosystems.

  8. Towards a climatology of tropical cyclone morphometric structures using a newly standardized passive microwave satellite dataset

    Science.gov (United States)

    Cossuth, J.; Hart, R. E.

    2013-12-01

    The structure of a tropical cyclone (TC) is a spatial representation of its organizational pattern and distribution of energy acquisition and release. Physical processes that react to both the external environment and its own internal dynamics manifest themselves in the TC shape. This structure depicts a specific phase in the TC's meteorological lifecycle, reflecting its past and potentially constraining its future development. For a number of reasons, a thorough objective definition of TC structures and an intercomparison of their varieties have been neglected. This lack of knowledge may be a key reason why TC intensity forecasts, despite numerical model improvements and theoretical advances, have been stagnant in recent years relative to track forecasts. Satellite microwave imagers provide multiple benefits in discerning TC structure, but compiling a research quality data set has been problematic due to several inherent technical and logistical issues. While there are multiple satellite sensors that incorporate microwave frequencies, inter-comparison between such sensors is limited by the different available channels, spatial resolutions, and calibration metrics between satellites, all of which provide inconsistencies in resolving TC structural features. To remedy these difficulties, a global archive of TCs as measured by all available US satellite microwave sensors is compiled and standardized. Using global historical best track data, TC microwave data is retrieved from the Defense Meteorological Satellite Program (DMSP) series (including all SSM/I and SSMIS), TMI, AMSR-E, and WindSat sensors. Standardization between sensors for each TC overpass are performed, including: 1) Recalibration of data from the 'ice scattering' channels to a common frequency (89GHz); 2) Resampling the DMSP series to a higher resolution using the Backus-Gilbert technique; and 3) Re-centering the TC center more precisely using the ARCHER technique (Wimmers and Velden 2010) to analyze the

  9. An Intrathermocline Eddy and a tropical cyclone in the Bay of Bengal.

    Science.gov (United States)

    Gordon, Arnold L; Shroyer, Emily; Murty, V S N

    2017-04-12

    The Bay of Bengal, subjected to monsoonal forcing and tropical cyclones, displays a complex field of ocean eddies. On 5 December 2013 a sub-surface vortex or Intrathermocline Eddy (ITE) composed of water characteristic of the Andaman Sea was observed within the thermocline of the western Bay of Bengal. We propose that the ITE was the product of Tropical Cyclone Lehar interaction on 27 November 2013 with a westward propagating surface eddy from the eastern Bay of Bengal. While Lehar's interaction with the ocean initially removes heat from the upper layers of the eddy, air-sea flux is limited as the deeper portions of the eddy was subducted into the stratified thermocline, inhibiting further interaction with the atmosphere. The ITE core from 30 to 150 m is thus isolated from local air-sea fluxes by strong stratification at the mixed layer base, and its periphery is stable to shear instability, suggestive of longevity and the ability to carry water far distances with minimal modification.

  10. Synoptic-Scale Precursors to Tropical Cyclone Rapid Intensification in the Atlantic Basin

    Directory of Open Access Journals (Sweden)

    Alexandria Grimes

    2015-01-01

    Full Text Available Forecasting rapid intensification (hereafter referred to as RI of tropical cyclones in the Atlantic Basin is still a challenge due to a limited understanding of the meteorological processes that are necessary for predicting RI. To address this challenge, this study considered large-scale processes as RI indicators within tropical cyclone environments. The large-scale processes were identified by formulating composite map types of RI and non-RI storms using NASA MERRA data from 1979 to 2009. The composite fields were formulated by a blended RPCA and cluster analysis approach, yielding multiple map types of RI’s and non-RI’s. Additionally, statistical differences in the large-scale processes were identified by formulating permutation tests, based on the composite output, revealing variables that were statistically significantly distinct between RI and non-RI storms. These variables were used as input in two prediction schemes: logistic regression and support vector machine classification. Ultimately, the approach identified midlevel vorticity, pressure vertical velocity, 200–850 hPa vertical shear, low-level potential temperature, and specific humidity as the most significant in diagnosing RI, yielding modest skill in identifying RI storms.

  11. An Estimate of the North Atlantic Basin Tropical Cyclone Activity for the 2010 Hurricane Season

    Science.gov (United States)

    Wilson, Robert M.

    2010-01-01

    Estimates are presented for the tropical cyclone activity expected for the 2010 North Atlantic basin hurricane season. It is anticipated that the 2010 season will be more active than the 2009 season, reflecting increased frequencies more akin to that of the current more active phase that has been in vogue since 1995. Averages (+/- 1 sd) during the current more active phase are 14.5+/-4.7, 7.8+/-3.2, 3.7+/-1.8, and 2+/- 2, respectively, for the number of tropical cyclones (NTC), the number of hurricanes (NH), the number of major hurricanes (NMH), and the number of United States (U.S.) land-falling hurricanes (NUSLFH). Based on the "usual" behavior of the 10-yma parametric first differences, one expects NTC = 19+/-2, NH = 14+/-2, NMH = 7+/-2, and NUSLFH = 4+/-2 for the 2010 hurricane season; however, based on the "best guess" 10-yma values of surface-air temperature at the Armagh Observatory (Northern Ireland) and the Oceanic Nino Index, one expects NTC > or equals 16, NH > or equals 14, NMH > or equals 7, and NUSLFH > or equals 6.

  12. Contribution of tropical cyclone for the preconditioning of the Madden-Julian Oscillation during CINDY2011

    Science.gov (United States)

    Kubota, H.; Yoneyama, K.; Hamada, J.

    2012-12-01

    During the international field experiment "Cooperative Indian Ocean experiment on intraseasonal variability in the Year 2011 (CINDY2011)", three Madden-Julian Oscillation (MJO) were generated over the Indian Ocean. In this study, the preconditioning process of the third MJO is investigated. After the second active phase of MJO reached maritime continent in early December 2011, its eastward propagation became unclear. Different convections were activated over the maritime continent in mid-December and third MJO was generated in late December over the Indian Ocean. During the preconditioning stage of the third MJO, westward propagating disturbances were observed from Sumatera Island to the central Indian Ocean and moistened the atmosphere. Convections over the Sumatera Island were activated from December 15th when the moist air mass reached from South China Sea. The origin of the moist air mass was tropical cyclone which was formed in South China Sea in December 10th. The high moisture associated with tropical cyclone activated the convection over Sumatera Island, promoted westward propagating disturbances, and acted a favorable environment for the preconditioning of the MJO.

  13. A numerical study of the role of the vertical structure of vorticity during tropical cyclone genesis

    International Nuclear Information System (INIS)

    Venkatesh, T N; Mathew, Joseph

    2010-01-01

    An eight-level axisymmetric model with simple parameterizations for clouds and the atmospheric boundary layer was developed to examine the evolution of vortices that are precursors to tropical cyclones. The effect of vertical distributions of vorticity, especially that arising from a merger of mid-level vortices, was studied by us to provide support for a new vortex-merger theory of tropical cyclone genesis. The basic model was validated with the analytical results available for the spin-down of axisymmetric vortices. With the inclusion of the cloud and boundary layer parameterizations, the evolution of deep vortices into hurricanes and the subsequent decay are simulated quite well. The effects of several parameters such as the initial vortex strength, radius of maximum winds, sea-surface temperature and latitude (Coriolis parameter) on the evolution were examined. A new finding is the manner in which mid-level vortices of the same strength decay and how, on simulated merger of these mid-level vortices, the resulting vortex amplifies to hurricane strength in a realistic time frame. The importance of sea-surface temperature on the evolution of full vortices was studied and explained. Also it was found that the strength of the surface vortex determines the time taken by the deep vortex to amplify to hurricane strength.

  14. Extreme meteorological events in nuclear power plant siting, excluding tropical cyclones

    International Nuclear Information System (INIS)

    1981-01-01

    This Safety Guide deals with the extremes of meteorological variables and the extreme meteorological phenomena in accordance with the general criteria of the Code. The Guide outlines a procedure based on the following steps: (1) The meteorological phenomena and variables are described and classified, according to their effects on safety. (2) Data sources are identified, and data are collected. (3) Meteorological variables such as air temperature are analysed to determine their design bases; and the design basis event in case of phenomena such as the design basis tornado is identified. (4) As appropriate, the design basis value for the variable, or the design basis for the phenomena (such as pressure drop and maximum wind speed of the design basis tornado), is defined. In the following sections, the general procedure for evaluating the design bases of extreme meteorological variables and phenomena is outlined. The procedure is then presented in detail for each variable or phenomenon considered. The variables characterizing the meteorological environment dealt with in this Guide are wind speed, atmospheric precipitation, and temperature. The extreme meteorological phenomena discussed here are the tornado and, briefly, the tropical cyclone, which is discussed more extensively in the Safety Guide on Design Basis Tropical Cyclone for Nuclear Power Plants (IAEA Safety Series No. 50-SG-S11B)

  15. Combined impact of global river-floods and tropical cyclones on long-term economic growth

    Science.gov (United States)

    Geiger, Tobias; Piontek, Franziska; Frieler, Katja

    2016-04-01

    Worldwide direct economic losses associated with the impact of river-floods and tropical cyclones have seen a rapid increase over time. Their nominal impact is projected to rise even further as the exposed population grows, per capita income increases, and anthropogenic climate change manifests. Beyond the immediate damage of each event, indirect economic impacts can affect growth trajectories of countries as a whole for many years after the disaster. Whether the cumulated indirect effects stimulate or hinder economic growth in the long-run is so far undecided as previous studies find contradicting results depending on the analysed hazard and the underlying methodology. We here combine two types of the costliest meteorological disasters worldwide in order to gain certainty on their joint impact in a comprehensive way. Relative affected population by country and year is determined based on historical tropical cyclone tracks (IBTrACS) and historical simulations of river-flood return periods forced by observed weather and used as a predictor for the disaster's impact on national Gross Domestic Product (GDP) time series. Controlling for various non-disaster related effects, we find a cumulated GDP deficit that remains robust for more than a decade after the event.

  16. An Intercomparison of GPS RO Retrievals with Colocated Analysis and In Situ Observations within Tropical Cyclones

    Directory of Open Access Journals (Sweden)

    Henry R. Winterbottom

    2010-01-01

    Full Text Available Observations from four Global Position System (GPS Radio Occultation (RO missions: Global Positioning System/Meteorology, CHAallenging Minisatellite Payload, Satellite de Aplicaciones Cientificas-C, and Constellation Observing System for Meteorology, Ionosphere and Climate and Taiwan's FORMOsa SATellite Mission #3 (COSMIC/FORMOSAT-3 are collected within a 600 km radius and ±180 minute temporal window of all observed tropical cyclones (TCs from 1995 to 2006 that were recorded in the global hurricane best-track reanalysis data set (Jarvinen et al. (1984; Davis et al. (1984. A composite analysis of tropical cyclone radial mean temperature and water vapor profiles is carried out using the GPS RO retrievals which are colocated with global analysis profiles and available in situ radiosonde observations. The differences between the respective observations and analysis profiles are quantified and the preliminary results show that the observations collected within TCs correspond favorably with both the analysis and radiosonde profiles which are colocated. It is concluded that GPS RO observations will contribute significantly to the understanding and modeling of TC structures, especially those related to vertical variability of the atmospheric state within TCs.

  17. Change in the tropical cyclone activity around Korea by the East Asian summer monsoon

    Science.gov (United States)

    Choi, Jae-Won; Cha, Yumi; Kim, Jeoung-Yun

    2017-12-01

    Correlation between the frequency of summer tropical cyclones (TCs) affecting Korea and the East Asian summer monsoon index (EASMI) was analyzed over the last 37 years. A clear positive correlation existed between the two variables, and this high positive correlation remained unchanged even when excluding El Niño-Southern Oscillation (ENSO) years. To investigate the causes of the positive correlation between the two variables in non-ENSO years, after the 8 years with the highest EASMI (high EASMI years) and the 8 years with the lowest EASMI (low EASMI years) were selected, and the average difference between the two phases was analyzed. In high EASMI years, in the difference between the two phases regarding 850 and 500 hPa streamline, anomalous cyclones were reinforced in the tropical and subtropical western North Pacific, while anomalous anticyclones were reinforced in mid-latitude East Asian areas. Due to these two anomalous pressure systems, anomalous southeasterlies developed near Korea, with these anomalous southeasterlies playing the role of anomalous steering flows making the TCs head toward areas near Korea. In addition, a monsoon trough strengthened more eastward, and TCs in high EASMI years occurred more in east ward over the western North Pacific.

  18. Suppression of Powerful Clouds and Prevention of D Estructive Tropical and Extratropical Cyclones, S Evere Thunderstorms, Tornadoes, and Catastrophic Floods

    Science.gov (United States)

    Krasilnikov, E.

    Destructive tropical storms, hurricanes (typhoons), tornadoes, severe thunderstorms, and extratropical cyclones and storms resulted in catastrophic floods annually inflict multitudinous death and injury and bring huge material damage in many countries. This problem is highly important and to date has not been solved. At the same time, practically all researches made concerning these phenomena fail to take into account that the origin and intensification of tropical cyclones, hurricanes, and tornadoes take place under conditions of an abnormally strong electric field which together with electromagnetohydrodynamic interaction occupies a key position in the ntensification process. The detailed description of the electromagnetohydrodynamic model explaining the processes of energy conversion in tropical cyclones, hurricanes, and tornadoes is presented. Herewith, tropical cyclones and storms, hurricanes, powerful thunderclouds generating tornadoes, destructive extratropical cyclones resulting in catastrophic floods are the powerful cloud systems containing huge mass of water. According to a hypothesis proposed in the paper an electric field coupled with powerful clouds and electric forces play a cardinal role in supporting of this huge mass of water at a high altitude in the troposphere and in stability of powerful clouds sometimes during rather long-duration time. On the basis of the hypothesis a highly effective method of volume electric charge neutralization of powerful clouds is proposed. It results in the decrease of an electric field, a sudden increase of precipitation, and subsequent degradation of powerful clouds. This method based on the natural phenomenon ensures prevention of intensification of tropical and extratropical cyclones and their transition to the storm and hurricane (typhoon) stages, which makes it possible to avoid catastrophic floods. It ensures as well suppression of severe thunderclouds, which, in turn, eliminates development of dangerous

  19. Coupled Atmosphere-Wave-Ocean Modeling of Tropical Cyclones: Progress, Challenges, and Ways Forward

    Science.gov (United States)

    Chen, Shuyi

    2015-04-01

    It has long been recognized that air-sea interaction plays an important role in tropical cyclones (TC) intensity change. However, most current numerical weather prediction (NWP) models are deficient in predicting TC intensity. The extreme high winds, intense rainfall, large ocean waves, and copious sea spray in TCs push the surface-exchange parameters for temperature, water vapor, and momentum into untested regimes. Parameterizations of air-sea fluxes in NWP models are often crude and create "manmade" energy source/sink that does not exist, especially in the absence of a fully interactive ocean in the model. The erroneous surface heat, moisture, and momentum fluxes can cause compounding errors in the model (e.g., precipitation, water vapor, boundary layer properties). The energy source (heat and moisture fluxes from the ocean) and sink (surface friction and wind-induced upper ocean cooling) are critical to TC intensity. However, observations of air-sea fluxes in TCs are very limited, especially in extreme high wind conditions underneath of the eyewall region. The Coupled Boundary Layer Air-Sea Transfer (CBLAST) program was designed to better understand the air-sea interaction, especially in high wind conditions, which included laboratory and coupled model experiments and field campaign in 2003-04 hurricane seasons. Significant progress has been made in better understanding of air-sea exchange coefficients up to 30 m/s, i.e., a leveling off in drag coefficient and relatively invariant exchange coefficient of enthalpy with wind speed. More recently, the Impact of Typhoon on the Ocean in the Pacific (ITOP) field campaign in 2010 has provided an unprecedented data set to study the air-sea fluxes in TCs and their impact on TC structure and intensity. More than 800 GPS dropsondes and 900 AXBTs/AXCTs as well as drifters, floats, and moorings were deployed in TCs, including Typhoons Fanapi and Malakas, and Supertyphoon Megi with a record peak wind speed of more than 80 m

  20. The Improved NRL Tropical Cyclone Monitoring System with a Unified Microwave Brightness Temperature Calibration Scheme

    Directory of Open Access Journals (Sweden)

    Song Yang

    2014-05-01

    Full Text Available The near real-time NRL global tropical cyclone (TC monitoring system based on multiple satellite passive microwave (PMW sensors is improved with a new inter-sensor calibration scheme to correct the biases caused by differences in these sensor’s high frequency channels. Since the PMW sensor 89 GHz channel is used in multiple current and near future operational and research satellites, a unified scheme to calibrate all satellite PMW sensor’s ice scattering channels to a common 89 GHz is created so that their brightness temperatures (TBs will be consistent and permit more accurate manual and automated analyses. In order to develop a physically consistent calibration scheme, cloud resolving model simulations of a squall line system over the west Pacific coast and hurricane Bonnie in the Atlantic Ocean are applied to simulate the views from different PMW sensors. To clarify the complicated TB biases due to the competing nature of scattering and emission effects, a four-cloud based calibration scheme is developed (rain, non-rain, light rain, and cloudy. This new physically consistent inter-sensor calibration scheme is then evaluated with the synthetic TBs of hurricane Bonnie and a squall line as well as observed TCs. Results demonstrate the large TB biases up to 13 K for heavy rain situations before calibration between TMI and AMSR-E are reduced to less than 3 K after calibration. The comparison stats show that the overall bias and RMSE are reduced by 74% and 66% for hurricane Bonnie, and 98% and 85% for squall lines, respectively. For the observed hurricane Igor, the bias and RMSE decrease 41% and 25% respectively. This study demonstrates the importance of TB calibrations between PMW sensors in order to systematically monitor the global TC life cycles in terms of intensity, inner core structure and convective organization. A physics-based calibration scheme on TC’s TB corrections developed in this study is able to significantly reduce the

  1. Changes in tropical cyclones under stabilized 1.5 and 2.0 °C global warming scenarios as simulated by the Community Atmospheric Model under the HAPPI protocols

    Directory of Open Access Journals (Sweden)

    M. F. Wehner

    2018-02-01

    Full Text Available The United Nations Framework Convention on Climate Change (UNFCCC invited the scientific community to explore the impacts of a world in which anthropogenic global warming is stabilized at only 1.5 °C above preindustrial average temperatures. We present a projection of future tropical cyclone statistics for both 1.5 and 2.0 °C stabilized warming scenarios with direct numerical simulation using a high-resolution global climate model. As in similar projections at higher warming levels, we find that even at these low warming levels the most intense tropical cyclones become more frequent and more intense, while simultaneously the frequency of weaker tropical storms is decreased. We also conclude that in the 1.5 °C stabilization, the effect of aerosol forcing changes complicates the interpretation of greenhouse gas forcing changes.

  2. Changes in tropical cyclones under stabilized 1.5 and 2.0 °C global warming scenarios as simulated by the Community Atmospheric Model under the HAPPI protocols

    Science.gov (United States)

    Wehner, Michael F.; Reed, Kevin A.; Loring, Burlen; Stone, Dáithí; Krishnan, Harinarayan

    2018-02-01

    The United Nations Framework Convention on Climate Change (UNFCCC) invited the scientific community to explore the impacts of a world in which anthropogenic global warming is stabilized at only 1.5 °C above preindustrial average temperatures. We present a projection of future tropical cyclone statistics for both 1.5 and 2.0 °C stabilized warming scenarios with direct numerical simulation using a high-resolution global climate model. As in similar projections at higher warming levels, we find that even at these low warming levels the most intense tropical cyclones become more frequent and more intense, while simultaneously the frequency of weaker tropical storms is decreased. We also conclude that in the 1.5 °C stabilization, the effect of aerosol forcing changes complicates the interpretation of greenhouse gas forcing changes.

  3. Integrating and Visualizing Tropical Cyclone Data Using the Real Time Mission Monitor

    Science.gov (United States)

    Goodman, H. Michael; Blakeslee, Richard; Conover, Helen; Hall, John; He, Yubin; Regner, Kathryn

    2009-01-01

    Laboratory in the joint development of a Tropical Cyclone Integrated Data Exchange and Analysis System (TC IDEAS) which will serve as a web portal for access to tropical cyclone data, visualizations and model output.

  4. Thermodynamics of a tropical cyclone: generation and dissipation of mechanical energy in a self-driven convection system

    Directory of Open Access Journals (Sweden)

    Hisashi Ozawa

    2015-01-01

    Full Text Available The formation process of circulatory motion of a tropical cyclone is investigated from a thermodynamic viewpoint. The generation rate of mechanical energy by a fluid motion under diabatic heating and cooling, and the dissipation rate of this energy due to irreversible processes are formulated from the first and second laws of thermodynamics. This formulation is applied to a tropical cyclone, and the formation process of the circulatory motion is examined from a balance between the generation and dissipation rates of mechanical energy in the fluid system. We find from this formulation and data analysis that the thermodynamic efficiency of tropical cyclones is about 40% lower than the Carnot maximum efficiency because of the presence of thermal dissipation due to irreversible transport of sensible and latent heat in the atmosphere. We show that a tropical cyclone tends to develop within a few days through a feedback supply of mechanical energy when the sea surface temperature is higher than 300 K, and when the horizontal scale of circulation becomes larger than the vertical height of the troposphere. This result is consistent with the critical radius of 50 km and the corresponding central pressure of about 995 hPa found in statistical properties of typhoons observed in the western North Pacific.

  5. Breaching vulnerability of coastal barriers under effects of tropical cyclones : A model study on the Hue lagoon - Vietnam

    NARCIS (Netherlands)

    Tuan, T.Q.; Stive, M.J.F.; Verhagen, H.J.

    2006-01-01

    Under effects of tropical cyclones, the coast is subjected to attack both by surge and wave from the sea and by flooding from the bay. These forces pose a serious breaching threat to natural sea-defence works such as barrier spits, barrier islands, lagoon barriers, etc. on the coast. Unintended

  6. Improving Tropical Cyclone Intensity Forecasting with Theoretically-Based Statistical

    Science.gov (United States)

    2013-01-03

    solely by diabatic heating. The sense of the circulation is counterclockwise for the dashed lines and clockwise for the solid lines. The four panels...indicates the region of diabatic heating. Colored contours indicate  , the vertical pressure velocity, which is related to w by  = −gw, with...equation (GTE) and determine the associated tangential wind tendency for a variety of initial tangential wind profiles and annular rings of diabatic

  7. Tropical cyclone losses in the USA and the impact of climate change - A trend analysis based on data from a new approach to adjusting storm losses

    International Nuclear Information System (INIS)

    Schmidt, Silvio; Kemfert, Claudia; Hoeppe, Peter

    2009-01-01

    Economic losses caused by tropical cyclones have increased dramatically. Historical changes in losses are a result of meteorological factors (changes in the incidence of severe cyclones, whether due to natural climate variability or as a result of human activity) and socio-economic factors (increased prosperity and a greater tendency for people to settle in exposed areas). This paper aims to isolate the socio-economic effects and ascertain the potential impact of climate change on this trend. Storm losses for the period 1950-2005 have been adjusted to the value of capital stock in 2005 so that any remaining trend cannot be ascribed to socio-economic developments. For this, we introduce a new approach to adjusting losses based on the change in capital stock at risk. Storm losses are mainly determined by the intensity of the storm and the material assets, such as property and infrastructure, located in the region affected. We therefore adjust the losses to exclude increases in the capital stock of the affected region. No trend is found for the period 1950-2005 as a whole. In the period 1971-2005, since the beginning of a trend towards increased intense cyclone activity, losses excluding socio-economic effects show an annual increase of 4% per annum. This increase must therefore be at least due to the impact of natural climate variability but, more likely than not, also due to anthropogenic forcings.

  8. Variations in tropical cyclone-related discharge in four watersheds near Houston, Texas

    Directory of Open Access Journals (Sweden)

    Laiyin Zhu

    2015-01-01

    Full Text Available We examined a 60-year record of daily precipitation and river discharge related to tropical cyclones (TCs in four watersheds undergoing land use and land cover change near Houston, Texas. Results show that TCs are responsible for ∼20% of the annual maximum discharge events in the four selected watersheds. Although there are no trends in TC precipitation, increasing trends were observed in daily extreme discharge and TC-related discharge. The more developed watersheds (Whiteoak Bayou and Brays Bayou, tend to have higher extreme discharge and steeper trends in extreme discharge than the less developed watersheds (Cypress Creek. Increases in TC-related extreme discharges correspond with increases in developed land and decreases in vegetated land between 1980 and 2006. Therefore, changes in land cover/use in watersheds near Houston are a major cause of the increased flooding risk in recent years.

  9. Effects of Asymmetric Secondary Eyewall on Tropical Cyclone Evolution in Hurricane Ike (2008)

    Science.gov (United States)

    Zhang, Guosheng; Perrie, William

    2018-02-01

    The secondary eyewall plays an important role in tropical cyclone evolution and intensification and is routinely assumed to be axisymmetric. A unique opportunity to investigate the characteristics of the secondary eyewall in two dimensions is provided by the high spatial resolution (about 1 km) sea surface winds that were observed by spaceborne synthetic aperture radar over Hurricane Ike (2008). Here we extract the asymmetric characteristics using our Symmetric Hurricane Estimates for Winds model and analyze the related hurricane evolution by comparisons with aircraft measurements. Compared to the classic eyewall replacement cycle theory, our investigation finds that the primary eyewall did not weaken and the secondary eyewall did not shrink over a period of more than 30 hr. We suggest that the reason for this persistence is that a boundary layer inflow pathway is provided by the relatively low winds in the asymmetric secondary eyewall area, as observed by synthetic aperture radar.

  10. The Upshear Environment-Outflow Interface of a Sheared, Rapidly Intensifying Tropical Cyclone

    Science.gov (United States)

    Ryglicki, D.; Doyle, J. D.; Jin, Y.; Hodyss, D.; Viner, K.

    2017-12-01

    An idealized, simulated tropical cyclone (TC) which undergoes rapid intensification in moderate vertical wind shear is shown to exhibit structural similarities to observed TCs of this class. Due to a complex vortex tilt evolution, enhanced convection causes enhanced outflow from the TC which subsequently serves to block and to divert environmental flow around the TC. This allows for the TC to come back into vertical alignment and undergo rapid intensification. A trajectory analysis indicates that blocking is limited to a narrow range of heights, indicating that the vertical profile of environmental winds is a key factor for permitting this evolution. Satellite observations indicate the presence of upper-level arcs extending upshear beyond the TC. Synthetic satellite imagery of the simulated TC indicates this is the termination of the outflow. Using a Helmholtz decomposition, it is found that the divergent component of the outflow extends 1000 km upshear into the environment, potentially explaining the 1000-km clearing seen in satellite observations.

  11. Waves of the East in Colombia and some excellent aspects of the tropical cyclones

    International Nuclear Information System (INIS)

    Leon Aristizabal Gloria Esperanza; Zea Mazo, Jorge Anibal; Eslava Ramirez, Jesus Antonio

    2001-01-01

    The handling of the socio-economic activities requires a deep and detailed knowledge of the different atmospheric systems that alter the weather conditions in the country. This note contains a description of the main atmospheric patterns on a synoptic scale, related to the easterly waves and the tropical cyclones of the Caribbean. The work was developed partly on the basis of the Reanalysis data on grids of high quality, prepared by the National Center of Environmental Prediction and the National Center for Atmospheric Research (NCEP/NCAR) of the National Oceanographic and Atmospheric Administration (NOAA) of the United States, and partly on the application implemented with the program GRADS, developed by the Center for studying the Ocean-Land-Atmosphere system (COLA)

  12. Generation of baroclinic topographic waves by a tropical cyclone impacting a low-latitude continental shelf

    Science.gov (United States)

    Dukhovskoy, Dmitry S.; Morey, Steven L.; O'Brien, James J.

    2009-01-01

    Numerical model experiments have been performed to analyze the low-latitude baroclinic continental shelf response to a tropical cyclone. The theory of coastally trapped waves suggests that, provided appropriate slope, latitude, stratification and wind stress, bottom-intensified topographic Rossby waves can be generated by the storm. Based on a scale analysis, the Nicaragua Shelf is chosen to study propagating topographic waves excited by a storm, and a model domain is configured with simplified but similar geometry. The model is forced with wind stress representative of a hurricane translating slowly over the region at 6 km h -1. Scale analysis leads to the assumption that baroclinic Kelvin wave modes have minimal effect on the low-frequency wave motions along the slope, and coastal-trapped waves are restricted to topographic Rossby waves. Analysis of the simulated motions suggests that the shallow part of the continental slope is under the influence of barotropic topographic wave motions and at the deeper part of the slope baroclinic topographic Rossby waves dominate the low-frequency motions. Numerical solutions are in a good agreement with theoretical scale analysis. Characteristics of the simulated baroclinic waves are calculated based on linear theory of bottom-intensified topographic Rossby waves. Simulated waves have periods ranging from 153 to 203 h. The length scale of the waves is from 59 to 87 km. Analysis of energy fluxes for a fixed volume on the slope reveals predominantly along-isobath energy propagation in the direction of the group velocity of a topographic Rossby wave. Another model experiment forced with a faster translating hurricane demonstrates that fast moving tropical cyclones do not excite energetic baroclinic topographic Rossby waves. Instead, robust inertial oscillations are identified over the slope.

  13. Genesis of Twin Tropical Cyclones as Revealed by a Global Mesoscale Model: The Role of Mixed Rossby Gravity Waves

    Science.gov (United States)

    Shen, Bo-Wen; Tao, Wei-Kuo; Lin, Yuh-Lang; Laing, Arlene

    2012-01-01

    In this study, it is proposed that twin tropical cyclones (TCs), Kesiny and 01A, in May 2002 formed in association with the scale interactions of three gyres that appeared as a convectively coupled mixed Rossby gravity (ccMRG) wave during an active phase of the Madden-Julian Oscillation (MJO). This is shown by analyzing observational data, including NCEP reanalysis data and METEOSAT 7 IR satellite imagery, and performing numerical simulations using a global mesoscale model. A 10-day control run is initialized at 0000 UTC 1 May 2002 with grid-scale condensation but no sub-grid cumulus parameterizations. The ccMRG wave was identified as encompassing two developing and one non-developing gyres, the first two of which intensified and evolved into the twin TCs. The control run is able to reproduce the evolution of the ccMRG wave and thus the formation of the twin TCs about two and five days in advance as well as their subsequent intensity evolution and movement within an 8-10 day period. Five additional 10-day sensitivity experiments with different model configurations are conducted to help understand the interaction of the three gyres, leading to the formation of the TCs. These experiments suggest the improved lead time in the control run may be attributed to the realistic simulation of the ccMRG wave with the following processes: (1) wave deepening (intensification) associated with a reduction in wavelength and/or the intensification of individual gyres, (2) poleward movement of gyres that may be associated with boundary layer processes, (3) realistic simulation of moist processes at regional scales in association with each of the gyres, and (4) the vertical phasing of low- and mid-level cyclonic circulations associated with a specific gyre.

  14. Simulating the characteristics of tropical cyclones over the South West Indian Ocean using a Stretched-Grid Global Climate Model

    Science.gov (United States)

    Maoyi, Molulaqhooa L.; Abiodun, Babatunde J.; Prusa, Joseph M.; Veitch, Jennifer J.

    2018-03-01

    Tropical cyclones (TCs) are one of the most devastating natural phenomena. This study examines the capability of a global climate model with grid stretching (CAM-EULAG, hereafter CEU) in simulating the characteristics of TCs over the South West Indian Ocean (SWIO). In the study, CEU is applied with a variable increment global grid that has a fine horizontal grid resolution (0.5° × 0.5°) over the SWIO and coarser resolution (1° × 1°—2° × 2.25°) over the rest of the globe. The simulation is performed for the 11 years (1999-2010) and validated against the Joint Typhoon Warning Center (JTWC) best track data, global precipitation climatology project (GPCP) satellite data, and ERA-Interim (ERAINT) reanalysis. CEU gives a realistic simulation of the SWIO climate and shows some skill in simulating the spatial distribution of TC genesis locations and tracks over the basin. However, there are some discrepancies between the observed and simulated climatic features over the Mozambique channel (MC). Over MC, CEU simulates a substantial cyclonic feature that produces a higher number of TC than observed. The dynamical structure and intensities of the CEU TCs compare well with observation, though the model struggles to produce TCs with a deep pressure centre as low as the observed. The reanalysis has the same problem. The model captures the monthly variation of TC occurrence well but struggles to reproduce the interannual variation. The results of this study have application in improving and adopting CEU for seasonal forecasting over the SWIO.

  15. Tropical Cyclones Cause CaCO3 Undersaturation of Coral Reef Seawater in a High-CO2 World

    Science.gov (United States)

    Manzello, D.; Enochs, I.; Carlton, R.; Musielewicz, S.; Gledhill, D. K.

    2013-12-01

    Ocean acidification is the global decline in seawater pH and calcium carbonate (CaCO3) saturation state (Ω) due to the uptake of anthropogenic CO2 by the world's oceans. Acidification impairs CaCO3 shell and skeleton construction by marine organisms. Coral reefs are particularly vulnerable, as they are constructed by the CaCO3 skeletons of corals and other calcifiers. We understand relatively little about how coral reefs will respond to ocean acidification in combination with other disturbances, such as tropical cyclones. Seawater carbonate chemistry data collected from two reefs in the Florida Keys before, during, and after Tropical Storm Isaac provide the most thorough data to-date on how tropical cyclones affect the seawater CO2-system of coral reefs. Tropical Storm Isaac caused both an immediate and prolonged decline in seawater pH. Aragonite saturation state was depressed by 1.0 for a full week after the storm impact. Based on current 'business-as-usual' CO2 emissions scenarios, we show that tropical cyclones with high rainfall and runoff can cause periods of undersaturation (Ω negatively impact the structural persistence of coral reefs over this century.

  16. North Atlantic Tropical Cyclones: historical simulations and future changes with the new high-resolution Arpege AGCM.

    Science.gov (United States)

    Pilon, R.; Chauvin, F.; Palany, P.; Belmadani, A.

    2017-12-01

    A new version of the variable high-resolution Meteo-France Arpege atmospheric general circulation model (AGCM) has been developed for tropical cyclones (TC) studies, with a focus on the North Atlantic basin, where the model horizontal resolution is 15 km. Ensemble historical AMIP (Atmospheric Model Intercomparison Project)-type simulations (1965-2014) and future projections (2020-2080) under the IPCC (Intergovernmental Panel on Climate Change) representative concentration pathway (RCP) 8.5 scenario have been produced. TC-like vortices tracking algorithm is used to investigate TC activity and variability. TC frequency, genesis, geographical distribution and intensity are examined. Historical simulations are compared to best-track and reanalysis datasets. Model TC frequency is generally realistic but tends to be too high during the rst decade of the historical simulations. Biases appear to originate from both the tracking algorithm and model climatology. Nevertheless, the model is able to simulate extremely well intense TCs corresponding to category 5 hurricanes in the North Atlantic, where grid resolution is highest. Interaction between developing TCs and vertical wind shear is shown to be contributing factor for TC variability. Future changes in TC activity and properties are also discussed.

  17. Statistical Aspects of North Atlantic Basin Tropical Cyclones During the Weather Satellite Era, 1960-2013. Part 2

    Science.gov (United States)

    Wilson, Robert M.

    2014-01-01

    This Technical Publication (TP) is part 2 of a two-part study of the North Atlantic basin tropical cyclones that occurred during the weather satellite era, 1960-2013. In particular, this TP examines the inferred statistical relationships between 25 tropical cyclone parameters and 9 specific climate-related factors, including the (1) Oceanic Niño Index (ONI), (2) Southern Oscillation Index (SOI), (3) Atlantic Multidecadal Oscillation (AMO) index, (4) Quasi-Biennial Oscillation (QBO) index, (5) North Atlantic Oscillation (NAO) index of the Climate Prediction Center (CPC), (6) NAO index of the Climate Research Unit (CRU), (7) Armagh surface air temperature (ASAT), (8) Global Land-Ocean Temperature Index (GLOTI), and (9) Mauna Loa carbon dioxide (CO2) (MLCO2) index. Part 1 of this two-part study examined the statistical aspects of the 25 tropical cyclone parameters (e.g., frequencies, peak wind speed (PWS), accumulated cyclone energy (ACE), etc.) and provided the results of statistical testing (i.e., runs-testing, the t-statistic for independent samples, and Poisson distributions). Also, the study gave predictions for the frequencies of the number of tropical cyclones (NTC), number of hurricanes (NH), number of major hurricanes (NMH), and number of United States land-falling hurricanes (NUSLFH) expected for the 2014 season, based on the statistics of the overall interval 1960-2013, the subinterval 1995-2013, and whether the year 2014 would be either an El Niño year (ENY) or a non-El Niño year (NENY).

  18. Convection in tropical cyclones associated with vapor volume reduction - a new concept

    Science.gov (United States)

    Mardhekar, D.

    2010-09-01

    Low pressure zone formation due to convection in a tropical cyclone is associated by a newly discovered phenomenon. The explanation is based on Avogadro's law. According to the law 18 grams (molecular weight expressed in grams) of water when evaporated occupies 22.414 litres of vapor at standard temperature and pressure (STP). Therefore, 1.0 gram of water in the vapor form will occupy 1.245 litres. That is, 1245 ml volume of vapor at STP when condensed will form 1.0 ml volume of water. Due to the phase change that is from water vapor to liquid water, huge reduction in volume occurs. The process of condensation of vapor into liquid water from the vapor component of the vapor-rich air is continuously taking place in a tropical cyclone particularly in the eye wall on a very large scale. The condensed water precipitates as rain or forms clouds. Each ml of the rain leaves behind a vacant space equal to 1245 ml forming a low-pressure zone and consequently a pressure gradient force is formed. Therefore, when there are continuous heavy rains in the eye wall, the magnitude of the low pressure zone and the pressure gradient force forming continuously in the condensation regions of the eye wall is gigantic. At the same time the latent heat released in the condensation process is absorbed by the remaining air component, it becomes warmer and buoyant, therefore ascends and ultimately escapes from the top of the cyclone as the outflow, again forming a low pressure zone. Thus, continuous condensation and continuous ascent and escape of warm air from the top together form a continuous pressure gradient and the vapour-rich air is continuously sucked up from below, that is from above the sea surface in the region of the eye wall due to the continuously forming pressure gradient force maintaining the near sea surface convergence of the vapour rich air. The value 1245 changes with change in temperature and pressure, but it does not affect the presented concept. The formation of the

  19. Doppler Radar and Cloud-to-Ground Lightning Observations of a Severe Outbreak of Tropical Cyclone Tornadoes

    Science.gov (United States)

    McCaul, Eugene W., Jr.; Buechler, Dennis; Cammarata, Michael; Arnold, James E. (Technical Monitor)

    2002-01-01

    Data from a single WSR-88D Doppler radar and the National Lightning Detection Network are used to examine the characteristics of the convective storms that produced a severe tornado outbreak within Tropical Storm Beryl's remnants on 16 August 1994. Comparison of the radar data with reports of tornadoes suggests that only 12 cells produced the 29 tornadoes that were documented in Georgia and the Carolinas on that date. Six of these cells spawned multiple tornadoes, and the radar data confirm the presence of miniature supercells. One of the cells was identifiable on radar for 11 hours, spawning tornadoes over a time period spanning approximately 6.5 hours. Time-height analyses of the three strongest supercells are presented in order to document storm kinematic structure and evolution. These Beryl mini-supercells were comparable in radar-observed intensity but much more persistent than other tropical cyclone-spawned tornadic cells documented thus far with Doppler radars. Cloud-to-ground lightning data are also examined for all the tornadic cells in this severe swarm-type tornado outbreak. These data show many of the characteristics of previously reported heavy-precipitation supercells. Lightning rates were weak to moderate, even in the more intense supercells, and in all the storms the lightning flashes were almost entirely negative in polarity. No lightning at all was detected in some of the single-tornado storms. In the stronger cells, there is some evidence that lightning rates can decrease during tornadogenesis, as has been documented before in some midlatitude tornadic storms. A number of the storms spawned tornadoes just after producing their final cloud-to-ground lightning flashes. These findings suggest possible benefits from implementation of observing systems capable of monitoring intracloud as well as cloud-to-ground lightning activity.

  20. The Structure of Vertical Wind Shear in Tropical Cyclone Environments: Implications for Forecasting and Predictability

    Science.gov (United States)

    Finocchio, Peter M.

    The vertical wind shear measured between 200 and 850 hPa is commonly used to diagnose environmental interactions with a tropical cyclone (TC) and to forecast the storm's intensity and structural evolution. More often than not, stronger vertical shear within this deep layer prohibits the intensification of TCs and leads to predictable asymmetries in precipitation. But such bulk measures of vertical wind shear can occasionally mislead the forecaster. In the first part of this dissertation, we use a series of idealized numerical simulations to examine how a TC responds to changing the structure of unidirectional vertical wind shear while fixing the 200-850-hPa shear magnitude. These simulations demonstrate a significant intensity response, in which shear concentrated in shallow layers of the lower troposphere prevents vortex intensification. We attribute the arrested development of TCs in lower-level shear to the intrusion of mid-level environmental air over the surface vortex early in the simulations. Convection developing on the downshear side of the storm interacts with the intruding air so as to enhance the downward flux of low-entropy air into the boundary layer. We also construct a two-dimensional intensity response surface from a set of simulations that sparsely sample the joint shear height-depth parameter space. This surface reveals regions of the two-parameter space for which TC intensity is particularly sensitive. We interpret these parameter ranges as those which lead to reduced intensity predictability. Despite the robust response to changing the shape of a sheared wind profile in idealized simulations, we do not encounter such sensitivity within a large set of reanalyzed TCs in the Northern Hemisphere. Instead, there is remarkable consistency in the structure of reanalyzed wind profiles around TCs. This is evident in the distributions of two new parameters describing the height and depth of vertical wind shear, which highlight a clear preference for

  1. AIRS Impact on the Analysis and Forecast Track of Tropical Cyclone Nargis in a Global Data Assimilation and Forecasting System

    Science.gov (United States)

    Reale, O.; Lau, W.K.; Susskind, J.; Brin, E.; Liu, E.; Riishojgaard, L. P.; Rosenburg, R.; Fuentes, M.

    2009-01-01

    Tropical cyclones in the northern Indian Ocean pose serious challenges to operational weather forecasting systems, partly due to their shorter lifespan and more erratic track, compared to those in the Atlantic and the Pacific. Moreover, the automated analyses of cyclones over the northern Indian Ocean, produced by operational global data assimilation systems (DASs), are generally of inferior quality than in other basins. In this work it is shown that the assimilation of Atmospheric Infrared Sounder (AIRS) temperature retrievals under partial cloudy conditions can significantly impact the representation of the cyclone Nargis (which caused devastating loss of life in Myanmar in May 2008) in a global DAS. Forecasts produced from these improved analyses by a global model produce substantially smaller track errors. The impact of the assimilation of clear-sky radiances on the same DAS and forecasting system is positive, but smaller than the one obtained by ingestion of AIRS retrievals, possibly due to poorer coverage.

  2. The impact of summertime north Indian Ocean SST on tropical cyclone genesis over the western North Pacific

    Science.gov (United States)

    Zheng, Jiayu; Wu, Qiaoyan; Guo, Yipeng; Zhao, Sen

    2017-04-01

    In this study, we investigate the impact of interannual variability of boreal summertime (June-September) north Indian Ocean (NIO) sea surface temperature (SST) on the distribution of tropical cyclone (TC) genesis over the western North Pacific (WNP) using observational datasets. In the boreal summers with warm (cold) SST in the NIO, fewer (more) than normal TCs form over the entire WNP, with fewer (more) TCs forming north of 10°N and more (fewer) TCs forming south of 10°N. The warm (cold) SST in the NIO induces anomalous anticyclonic (cyclonic) vorticity north of 10°N and cyclonic (anticyclonic) vorticity south of 10°N, which contributes to the meridional seesaw-like distribution of WNP TC genesis. This study provides a new perspective to understand TC activities over the WNP and may help seasonal TC prediction.

  3. The NOW regional coupled model: Application to the tropical Indian Ocean climate and tropical cyclone activity

    Digital Repository Service at National Institute of Oceanography (India)

    Samson, G.; Masson, S.; Lengaigne, M.; Keerthi, M.G.; Vialard, J.; Pous, S.; Madec, G.; Jourdain, N.C.; Jullien, S.; Menkes, C.; Marchesiello, P.

    , France, 3Indo-French Cell for Water Sciences, IISc-NIO-IITM-IRD Joint International Laboratory, NIO, Goa, India, 4LMI ICEMASA, IRD, Department of Oceanography, University of Cape Town, Cape Town, South Africa, 5Laboratoire de Glaciologie et G... be related to an overly active cumulus parameterization in KF. 1. Introduction The Indian Ocean (IO) is unique among the three tropical oceans for being bounded to the north by the Asian continent. The resulting summer land-sea temperature gradient promotes...

  4. Towards Direct Simulation of Future Tropical Cyclone Statistics in a High-Resolution Global Atmospheric Model

    Directory of Open Access Journals (Sweden)

    Michael F. Wehner

    2010-01-01

    Full Text Available We present a set of high-resolution global atmospheric general circulation model (AGCM simulations focusing on the model's ability to represent tropical storms and their statistics. We find that the model produces storms of hurricane strength with realistic dynamical features. We also find that tropical storm statistics are reasonable, both globally and in the north Atlantic, when compared to recent observations. The sensitivity of simulated tropical storm statistics to increases in sea surface temperature (SST is also investigated, revealing that a credible late 21st century SST increase produced increases in simulated tropical storm numbers and intensities in all ocean basins. While this paper supports previous high-resolution model and theoretical findings that the frequency of very intense storms will increase in a warmer climate, it differs notably from previous medium and high-resolution model studies that show a global reduction in total tropical storm frequency. However, we are quick to point out that this particular model finding remains speculative due to a lack of radiative forcing changes in our time-slice experiments as well as a focus on the Northern hemisphere tropical storm seasons.

  5. Assessment of Tropical Cyclone Induced Transgression of the Chandeleur Islands for Restoration and Wildlife Management

    Science.gov (United States)

    Reahard, Ross; Mitchell, Brandie; Brown, Tevin; Billiot, Amanda

    2010-01-01

    Barrier Islands are the first line of defense against tropical storms and hurricanes for coastal areas. Historically, tropical cyclonic events have had a great impact on the transgression of barrier islands, especially the Chandeleur Island chain off the eastern coast of Louisiana. These islands are of great importance, aiding in the protection of southeastern Louisiana from major storms, providing habitat for nesting and migratory bird species, and are part of the second oldest wildlife refuge in the country. In 1998, Hurricane Georges caused severe damage to the chain, prompting restoration and monitoring efforts by both federal and state agencies. Since then, multiple storm events have steadily diminished the integrity of the islands. Hurricane Katrina in 2005 thwarted all previous restoration efforts, with Hurricane Gustav in 2008 exacerbating island erosion and vegetation loss. Data from the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER), Moderate Resolution Imaging Spectroradiometer (MODIS), Landsat 2-4 Multispectral Scanner (MSS), and Landsat 5 Thematic Mapper (TM) will be utilized to detect land loss, island transgression, and vegetation change from 1979 to 2009. This study looks to create a more synoptic view of the transgression of the Chandeleur Islands and correlate weather and sea surface phenomena with erosion trends over the past 30 years, so that partnering organizations such as the Pontchartrain Institute for Environmental Sciences (PIES) can better monitor and address the continual change of the island chain.

  6. Tropical cyclone genesis in the Southern Hemisphere and its relationship with the ENSO

    Energy Technology Data Exchange (ETDEWEB)

    Kuleshov, Y.; Qi, L. [Australian Bureau of Meteorology, Melbourne, VIC (Australia). National Climate Centre; Chane Ming, F.; Chouaibou, I.; Hoareau, C. [UMR CNRS-Meteo-France-Univ. de la Reunion, La Reunion (France). Lab. de l' Atmosphere et des Cyclones; Roux, F. [Paul Sabatier Univ., CNRS, Toulouse (France). Lab. d' Aerologie

    2009-07-01

    Tropical cyclogenesis climatology over the South Indian and South Pacific Oceans has been developed using a new tropical cyclone (TC) archive for the Southern Hemisphere, and changes in geographical distribution of areas favourable for TC genesis related to changes in the El Nino-Southern Oscillation (ENSO) phases have been investigated. To explain these changes, large-scale environmental variables which influence TC genesis and development such as sea surface temperatures (SSTs), relative humidity in mid-troposphere, vertical wind shear and lower tropospheric vorticity have been examined. In the South Indian Ocean, reduction of TC genesis in the western part of the basin and its increase in the eastern part as well as displacement of the area favourable for TC genesis further away from the equator during La Nina events compared to El Nino events can be explained by changes in geographical distribution of relative humidity and vorticity across the basin as primary contributors; positive anomalies of SSTs observed during La Nina seasons in the eastern part of the basin additionally contribute to enhanced cyclogenesis near the Western Australia. In the South Pacific Ocean, changes in geographical distribution of relative humidity and vorticity appear to be the key large-scale environmental factors responsible for enhanced TC genesis in the eastern (western) part of the basin as well as for the northeast (southwest) shift of points of cyclogenesis during El Nino (La Nina) events, with vertical wind shear and SSTs as additional contributing large-scale environmental variables. (orig.)

  7. Verification of TMI-Adjusted Rainfall Analyses of Tropical Cyclones at ECMWF Using TRMM Precipitation Radar.

    Science.gov (United States)

    Benedetti, A.; Lopez, P.; Moreau, E.; Bauer, P.; Venugopal, V.

    2005-11-01

    A validation of passive microwave adjusted rainfall analyses of tropical cyclones using spaceborne radar data is presented. This effort is part of the one-dimensional plus four-dimensional variational (1D+4D-Var) rain assimilation project that is being carried out at the European Centre for Medium-Range Weather Forecasts (ECMWF). Brightness temperatures or surface rain rates from the Tropical Rainfall Measuring Mission (TRMM) satellite are processed through a 1D-Var retrieval to derive values of total column water vapor that can be ingested into the operational ECMWF 4D-Var. As an indirect validation, the precipitation fields produced at the end of the 1D-Var minimization process are converted into equivalent radar reflectivity at the frequency of the TRMM precipitation radar (13.8 GHz) and are compared with the observations averaged at model resolution. The averaging process is validated using a sophisticated downscaling/upscaling approach that is based on wavelet decomposition. The precipitation radar measurements are ideal for this validation exercise, being approximately collocated with but completely independent of the TRMM Microwave Imager (TMI) radiometer measurements. Qualitative and statistical comparisons between radar observations and retrievals from the TMI-derived surface rain rates and from TMI radiances are made using 17 well-documented tropical cyclone occurrences between January and April of 2003. Several statistical measures, such as bias, root-mean-square error, and Heidke skill score, are introduced to assess the 1D-Var skill as well as the model background skill in producing a realistic rain distribution. Results show a good degree of skill in the retrievals, especially near the surface and for medium heavy rain. The model background produces precipitation in the domain that is sometimes in excess with respect to the observations, and it often shows an error in the location of precipitation maxima. Differences between the two 1D-Var approaches

  8. Southern Hemisphere Application of the Systematic Approach to Tropical Cyclone Forecasting Part IV: Sources of Large Track Errors by Dynamical Models

    National Research Council Canada - National Science Library

    Reader, Grahame

    2000-01-01

    Sources of 72-h track errors> 300 n mi by four dynamical model tropical cyclone predictions in the Southern Hemisphere during the 1997-98 and 1998-99 seasons are studied using conceptual models Carr and Elsberry have previously...

  9. Southern Hemisphere Application of the Systematic Approach to Tropical Cyclone Forecasting Part 4: Sources of Large Track Errors by Dynamical Models

    National Research Council Canada - National Science Library

    Reader, Grahame

    2000-01-01

    Sources of 72-h track errors > 300 n mi by four dynamical model tropical cyclone predictions in the Southern Hemisphere during the 1997-98 and 1998-99 seasons are studied using conceptual models Carr and Elsberry have previously...

  10. Analyzing the impact of severe tropical cyclone Yasi on public health infrastructure and the management of noncommunicable diseases.

    Science.gov (United States)

    Ryan, Benjamin J; Franklin, Richard C; Burkle, Frederick M; Watt, Kerrianne; Aitken, Peter; Smith, Erin C; Leggat, Peter

    2015-02-01

    Traditionally, post disaster response activities have focused on immediate trauma and communicable diseases. In developed countries such as Australia, the post disaster risk for communicable disease is low. However, a "disease transition" is now recognized at the population level where noncommunicable diseases (NCDs) are increasingly documented as a post disaster issue. This potentially places an extra burden on health care resources and may have implications for disaster-management systems. With increasing likelihood of major disasters for all sectors of global society, there is a need to ensure that health systems, including public health infrastructure (PHI), can respond properly. Problem There is limited peer-reviewed literature on the impact of disasters on NCDs. Research is required to better determine both the impact of NCDs post disaster and their impact on PHI and disaster-management systems. A literature review was used to collect and analyze data on the impact of the index case event, Australia's Severe Tropical Cyclone Yasi (STC Yasi), on PHI and the management of NCDs. The findings were compared with data from other world cyclone events. The databases searched were MEDLINE, CINAHL, Google Scholar, and Google. The date range for the STC Yasi search was January 26, 2011 through May 2, 2013. No time limits were applied to the search from other cyclone events. The variables compared were tropical cyclones and their impacts on PHI and NCDs. The outcome of interest was to identify if there were trends across similar world events and to determine if this could be extrapolated for future crises. This research showed a tropical cyclone (including a hurricane and typhoon) can impact PHI, for instance, equipment (oxygen, syringes, and medications), services (treatment and care), and clean water availability/access that would impact both the treatment and management of NCDs. The comparison between STC Yasi and worldwide tropical cyclones found the challenges faced

  11. A Study on the Impact of Observation Assimilation on the Numerical Simulation of Tropical Cyclones JAL and THANE Using 3DVAR

    KAUST Repository

    Viswanadhapalli, Yesubabu

    2013-12-08

    In this work, the impact of assimilation of conventional and satellite remote sensing observations (Oceansat-2 winds, MODIS temperature/humidity profiles) is studied on the simulation of two tropical cyclones in the Bay of Bengal region of the Indian Ocean using a three-dimensional variational data assimilation (3DVAR) technique. The Weather Research and Forecasting (WRF)-Advanced Research WRF (ARW) mesoscale model is used to simulate the severe cyclone JAL: 5–8 November 2010 and the very severe cyclone THANE: 27–30 December 2011 with a double nested domain configuration and with a horizontal resolution of 27 × 9 km. Five numerical experiments are conducted for each cyclone. In the control run (CTL) the National Centers for Environmental Prediction global forecast system analysis and forecasts available at 50 km resolution were used for the initial and boundary conditions. In the second (VARAWS), third (VARSCAT), fourth (VARMODIS) and fifth (VARALL) experiments, the conventional surface observations, Oceansat-2 ocean surface wind vectors, temperature and humidity profiles of MODIS, and all observations were respectively used for assimilation. Results indicate meager impact with surface observations, and relatively higher impact with scatterometer wind data in the case of the JAL cyclone, and with MODIS temperature and humidity profiles in the case of THANE for the simulation of intensity and track parameters. These relative impacts are related to the area coverage of scatterometer winds and MODIS profiles in the respective storms, and are confirmed by the overall better results obtained with assimilation of all observations in both the cases. The improvements in track prediction are mainly contributed by the assimilation of scatterometer wind vector data, which reduced errors in the initial position and size of the cyclone vortices. The errors are reduced by 25, 21, 38 % in vector track position, and by 57, 36, 39 % in intensity, at 24, 48, 72

  12. Prediction of tropical cyclone over North Indian Ocean using WRF model: sensitivity to scatterometer winds, ATOVS and ATMS radiances

    KAUST Repository

    Dodla, Venkata B.

    2016-05-03

    Tropical cyclone prediction, in terms of intensification and movement, is important for disaster management and mitigation. Hitherto, research studies were focused on this issue that lead to improvement in numerical models, initial data with data assimilation, physical parameterizations and application of ensemble prediction. Weather Research and Forecasting (WRF) model is the state-of-art model for cyclone prediction. In the present study, prediction of tropical cyclone (Phailin, 2013) that formed in the North Indian Ocean (NIO) with and without data assimilation using WRF model has been made to assess impacts of data assimilation. WRF model was designed to have nested two domains of 15 and 5 km resolutions. In the present study, numerical experiments are made without and with the assimilation of scatterometer winds, and radiances from ATOVS and ATMS. The model performance was assessed in respect to the movement and intensification of cyclone. ATOVS data assimilation experiment had produced the best prediction with least errors less than 100 km up to 60 hours and producing pre-deepening and deepening periods accurately. The Control and SCAT wind assimilation experiments have shown good track but the errors were 150-200 km and gradual deepening from the beginning itself instead of sudden deepening.

  13. Perceptions of Cyclone Preparedness: Assessing the Role of Individual Adaptive Capacity and Social Capital in the Wet Tropics, Australia

    Directory of Open Access Journals (Sweden)

    Sandanam Anushka

    2018-04-01

    Full Text Available Given projections of future climate-related disasters, understanding the conditions that facilitate disaster preparedness is critical to achieving sustainable development. Here, we studied communities within the Wet Tropics bioregion, Australia to explore whether people’s perceived preparedness for a future cyclone relates to their: (1 perceived individual adaptive capacity (in terms of flexibility and capacity to plan and learn; and (2 structural and cognitive social capital. We found that people’s perceived cyclone preparedness was only related to their perceived individual flexibility in the face of change. Given that people’s perceived cyclone preparedness was related to individualistic factors, it is plausible that individualism-collectivism orientations influence people’s perceptions at an individual level. These results suggest that in the Wet Tropics region, enhancing people’s psychological flexibility may be an important step when preparing for future cyclones. Our study highlights the need to tailor disaster preparedness initiatives to the region in question, and thus our results may inform disaster risk management and sustainable development policies.

  14. The Impacts of Satellite Remotely Sensed Winds and Total Precipitable Vapour in WRF Tropical Cyclone Track Forecasts

    Directory of Open Access Journals (Sweden)

    Diandong Ren

    2016-01-01

    Full Text Available This study assesses the impact assimilating the scatterometer near-surface wind observations and total precipitable water from the SSMI, into WRF on genesis and track forecasting of four tropical cyclones (TCs. These TCs are selected to be representative of different intensity categories and basins. Impact is via a series of data denial experiments that systematically exclude the remote sensed information. Compared with the control case, in which only the final analysis atmospheric variables are used to initialize and provide the lateral boundary conditions, the data assimilation runs performed consistently better, but with very different skill levels for the different TCs. Eliassen-Palm flux analyses are employed. It is confirmed that if a polar orbital satellite footprint passes over the TC’s critical genesis region, the forecast will profit most from assimilating the remotely sensed information. If the critical genesis region lies within an interorbital gap then, regardless of how strong the TC later becomes (e.g., Katrina 2005, the improvement from assimilating near-surface winds and total precipitable water in the model prediction is severely limited. This underpins the need for a synergy of data from different scatterometers/radiometers. Other approaches are suggested to improve the accuracy in the prediction of TC genesis and tracks.

  15. Looping tracks associated with tropical cyclones approaching an isolated mountain. Part I: Essential parameters

    Science.gov (United States)

    Huang, Yi-Chih; Lin, Yuh-Lang

    2017-05-01

    Essential parameters for making a looping track when a westward-moving tropical cyclone (TC) approaches a mesoscale mountain are investigated by examining several key nondimensional control parameters with a series of systematic, idealized numerical experiments, such as U/Nh, V max/Nh, U/fL x , V max/fR, h/L x , and R/L y . Here U is the uniform zonal wind velocity, N the Brunt-Vaisala frequency, h the mountain height, f the Coriolis parameter, V max the maximum tangential velocity at a radius of R from the cyclone center and L x is the halfwidth of the mountain in the east-west direction. It is found that looping tracks (a) tend to occur under small U/Nh and U/fL x , moderate h/L x , and large V max/Nh, which correspond to slow movement (leading to subgeostrophic flow associated with strong orographic blocking), moderate steepness, and strong tangential wind associated with TC vortex; (b) are often accompanied by an area of perturbation high pressure to the northeast of the mountain, which lasts for only a short period; and (c) do not require the existence of a northerly jet. The nondimensional control parameters are consolidated into a TC looping index (LI), {U2 R2 }/{V_{max}2 hLy }} , which is tested by several historical looping and non-looping typhoons approaching Taiwan's Central Mountain Range (CMR) from east or southeast. It is found that LI < 0.0125 may serve as a criterion for looping track to occur.

  16. Ensemble tropical-extratropical cyclone coastal flood hazard assessment with climate change

    Science.gov (United States)

    Orton, P. M.; Lin, N.; Colle, B.

    2016-12-01

    A challenge with quantifying future changes in coastal flooding for the U.S. East Coast is that climate change has varying effects on different types of storms, in addition to raising mean sea levels. Moreover, future flood hazard uncertainties are large and come from many sources. Here, a new coastal flood hazard assessment approach is demonstrated that separately evaluates and then combines probabilities of storm tide generated from tropical cyclones (TCs) and extratropical cyclones (ETCs). The separation enables us to incorporate climate change impacts on both types of storms. The assessment accounts for epistemic storm tide uncertainty using an ensemble of different prior studies and methods of assessment, merged with uncertainty in climate change effects on storm tides and sea levels. The assessment is applied for New York Harbor, under the auspices of the New York City Panel on Climate Change (NPCC). In the New York Bight region and much of the U.S. East Coast, differing flood exceedance curve slopes for TCs and ETCs arise due to their differing physics. It is demonstrated how errors can arise for this region from mixing together storm types in an extreme value statistical analysis, a common practice when using observations. The effects of climate change on TC and ETC flooding have recently been assessed for this region, for TCs using a Global Climate Model (GCM) driven hurricane model with hydrodynamic modeling, and for ETCs using a GCM-driven multilinear regression-based storm surge model. The results of these prior studies are applied to our central estimates of the flood exceedance curve probabilities, transforming them for climate change effects. The results are useful for decision-makers because they highlight the large uncertainty in present-day and future flood risk, and also for scientists because they identify the areas where further research is most needed.

  17. Initializing the WRF Model with Tropical Cyclone Real-Time Reports Using the Ensemble Kalman Filter Algorithm

    Science.gov (United States)

    Du, Tien Duc; Ngo-Duc, Thanh; Kieu, Chanh

    2017-07-01

    This study presents an approach to assimilate tropical cyclone (TC) real-time reports and the University of Wisconsin-Cooperative Institute for Meteorological Satellite Studies (CIMSS) Atmospheric Motion Vectors (AMV) data into the Weather Research and Forecasting (WRF) model for TC forecast applications. Unlike current methods in which TC real-time reports are used to either generate a bogus vortex or spin up a model initial vortex, the proposed approach ingests the TC real-time reports through blending a dynamically consistent synthetic vortex structure with the CIMSS-AMV data. The blended dataset is then assimilated into the WRF initial condition, using the local ensemble transform Kalman filter (LETKF) algorithm. Retrospective experiments for a number of TC cases in the northwestern Pacific basin during 2013-2014 demonstrate that this approach could effectively increase both the TC circulation and enhance the large-scale environment that the TCs are embedded in. Further evaluation of track and intensity forecast errors shows that track forecasts benefit more from improvement in the large-scale flow at 4-5-day lead times, whereas the intensity improvement is minimal. While the difference between the track and intensity improvement could be due to a specific model configuration, this result appears to be consistent with the recent reports of insignificant impacts of inner core data assimilation in operational TC models at the long range of 4-5 days. The new approach will be most beneficial for future regional TC models that are directly initialized from very high-resolution global models whose storm initial locations are sufficiently accurate at the initial analysis that there is no need to carry out any artificial vortex removal or filtering steps.

  18. In situ evidence of rapid, vertical, irreversible transport of lower tropospheric air into the lower tropical stratosphere by convective cloud turrets and by larger-scale upwelling in tropical cyclones

    Science.gov (United States)

    Danielsen, Edwin F.

    1993-01-01

    The STEP tropical objectives were successfully met during the flight experiments conducted from Darwin, Australia, January 16 to February 16, 1987. Necessary and sufficient measurements were made in, above, and downwind from very cold cirrus clouds, produced by three convective cloud types, to demonstrate irreversible mass transports into and dehydration in the lower tropical stratosphere. The three types are defined and described in terms of the physical processes that produce them and illustrated by examples derived from in situ and remote measurements. Intense solar heating is shown to produce, in addition to the usual vertical, sea breeze circulations normal to the coastline, an unusual pair of continental spanning, horizontal circulations. An upper tropospheric-lower stratospheric anticyclonic circulation, inclined upward toward the tropics, contributes to the dehydration of dissipating cirrus anvils and intensifies the upper level, tropical easterlies. The lower tropospheric cyclonic circulation with tropical westerlies and extratropical easterlies is in direct conflict with the normal tropical easterlies and extratropical westerlies. Impulsive switches between these two opposing lower-level wind systems create conditions favorable for each of these cloud types and explain the summer season's aperiodic variability.

  19. Modulating Effects of Mesoscale Oceanic Eddies on Sea Surface Temperature Response to Tropical Cyclones Over the Western North Pacific

    Science.gov (United States)

    Ma, Zhanhong; Fei, Jianfang; Huang, Xiaogang; Cheng, Xiaoping

    2018-01-01

    The impact of mesoscale oceanic eddies on the temporal and spatial characteristics of sea surface temperature (SST) response to tropical cyclones is investigated in this study based on composite analysis of cyclone-eddy interactions over the western North Pacific. The occurrence times of maximum cooling, recovery time, and spatial patterns of SST response are specially evaluated. The influence of cold-core eddies (CCEs) renders the mean occurrence time of maximum SST cooling to become about half a day longer than that in eddy-free condition, while warm-core eddies (WCEs) have little effect on this facet. The recovery time of SST cooling also takes longer in presence of CCEs, being overall more pronounced for stronger or slower tropical cyclones. The effect of WCEs on the recovery time is again not significant. The modulation of maximum SST decrease by WCEs for category 2-5 storms is found to be remarkable in the subtropical region but not evident in the tropical region, while the role of CCEs is remarkable in both regions. The CCEs are observed to change the spatial characteristics of SST response, with enhanced SST decrease initially at the right side of storm track. During the recovery period the strengthened SST cooling by CCEs propagates leftward gradually, with a feature similar as both the westward-propagating eddies and the recovery of cold wake. These results underscore the importance of resolving mesoscale oceanic eddies in coupled numerical models to improve the prediction of storm-induced SST response.

  20. Meteorological impacts of sea-surface temperature associated with the humid airflow from Tropical Cyclone Talas (2011

    Directory of Open Access Journals (Sweden)

    M. Yamamoto

    2014-07-01

    Full Text Available This paper examines meteorological impacts of sea-surface temperature (SST in the presence of the humid airflow from Tropical Cyclone Talas (2011. To investigate the influence of the SST on the severe weather in and around Japan, sensitivity simulations were conducted using six SST data products covering a period of 7 days. The upward sea-surface latent heat flux that accumulated over the 7-day period was high around the Kuroshio during the slow passage of the tropical cyclone. Large differences were found among the individual SST products around the southern coast of Japan. The coastal warm SST anomaly of ~ 1.5 °C enhanced the surface upward latent heat fluxes (by 60 to 80%, surface southeasterly winds (by 6 to 8%, and surface water mixing ratios (by 4% over the coastal sea area. The enhanced latent heat flux resulting from the coastal SST anomaly contributed to the further enhancement of the latent heat flux itself via a positive feedback with the amplified surface horizontal wind. The SST anomalies produced an anomaly in 7-day precipitation (ca. 40 mm along the mountainsides and over a coastal area where the surface wind anomaly was locally large. Thus, coastal SST error is important in the atmospheric simulation of accumulated evaporation and precipitation associated with tropical cyclones making landfall.

  1. How Well Do Global Climate Models Simulate the Variability of Atlantic Tropical Cyclones Associated with ENSO?

    Science.gov (United States)

    Wang, Hui; Long, Lindsey; Kumar, Arun; Wang, Wanqiu; Schemm, Jae-Kyung E.; Zhao, Ming; Vecchi, Gabriel A.; LaRow, Timorhy E.; Lim, Young-Kwon; Schubert, Siegfried D.; hide

    2013-01-01

    The variability of Atlantic tropical cyclones (TCs) associated with El Nino-Southern Oscillation (ENSO) in model simulations is assessed and compared with observations. The model experiments are 28-yr simulations forced with the observed sea surface temperature from 1982 to 2009. The simulations were coordinated by the U.S. CLIVAR Hurricane Working Group and conducted with five global climate models (GCMs) with a total of 16 ensemble members. The model performance is evaluated based on both individual model ensemble means and multi-model ensemble mean. The latter has the highest anomaly correlation (0.86) for the interannual variability of TCs. Previous observational studies show a strong association between ENSO and Atlantic TC activity, as well as distinctions in the TC activities during eastern Pacific (EP) and central Pacific (CP) El Nino events. The analysis of track density and TC origin indicates that each model has different mean biases. Overall, the GCMs simulate the variability of Atlantic TCs well with weaker activity during EP El Nino and stronger activity during La Nina. For CP El Nino, there is a slight increase in the number of TCs as compared with EP El Nino. However, the spatial distribution of track density and TC origin is less consistent among the models. Particularly, there is no indication of increasing TC activity over the U.S. southeast coastal region as in observations. The difference between the models and observations is likely due to the bias of vertical wind shear in response to the shift of tropical heating associated with CP El Nino, as well as the model bias in the mean circulation.

  2. Tropical cyclone genesis in the Southern Hemisphere and its relationship with the ENSO

    Directory of Open Access Journals (Sweden)

    Y. Kuleshov

    2009-06-01

    Full Text Available Tropical cyclogenesis climatology over the South Indian and South Pacific Oceans has been developed using a new tropical cyclone (TC archive for the Southern Hemisphere, and changes in geographical distribution of areas favourable for TC genesis related to changes in the El Niño-Southern Oscillation (ENSO phases have been investigated. To explain these changes, large-scale environmental variables which influence TC genesis and development such as sea surface temperatures (SSTs, relative humidity in mid-troposphere, vertical wind shear and lower tropospheric vorticity have been examined. In the South Indian Ocean, reduction of TC genesis in the western part of the basin and its increase in the eastern part as well as displacement of the area favourable for TC genesis further away from the equator during La Niña events compared to El Niño events can be explained by changes in geographical distribution of relative humidity and vorticity across the basin as primary contributors; positive anomalies of SSTs observed during La Niña seasons in the eastern part of the basin additionally contribute to enhanced cyclogenesis near the Western Australia. In the South Pacific Ocean, changes in geographical distribution of relative humidity and vorticity appear to be the key large-scale environmental factors responsible for enhanced TC genesis in the eastern (western part of the basin as well as for the northeast (southwest shift of points of cyclogenesis during El Niño (La Niña events, with vertical wind shear and SSTs as additional contributing large-scale environmental variables.

  3. Perturbations to the lower ionosphere by tropical cyclone Evan in the South Pacific Region

    Science.gov (United States)

    Kumar, Sushil; NaitAmor, Samir; Chanrion, Olivier; Neubert, Torsten

    2017-08-01

    Very low frequency (VLF) electromagnetic signals from navigational transmitters propagate worldwide in the Earth-ionosphere waveguide formed by the Earth and the electrically conducting lower ionosphere. Changes in the signal properties are signatures of variations in the conductivity of the reflecting boundary of the lower ionosphere which is located in the mesosphere and lower thermosphere, and their analysis is, therefore, a way to study processes in these remote regions. Here we present a study on amplitude perturbations of local origin on the VLF transmitter signals (NPM, NLK, NAA, and JJI) observed during tropical cyclone (TC) Evan, 9-16 December 2012 when TC was in the proximity of the transmitter-receiver links. We observed a maximum amplitude perturbation of 5.7 dB on JJI transmitter during 16 December event. From Long Wave Propagation Capability model applied to three selected events we estimate a maximum decrease in the nighttime D region reference height (H') by 5.2 km (13 December, NPM) and maximum increase in the daytime D region H' by 6.1 km and 7.5 km (14 and 16 December, JJI). The results suggest that the TC caused the neutral densities of the mesosphere and lower thermosphere to lift and sink (bringing the lower ionosphere with it), an effect that may be mediated by gravity waves generated by the TC. The perturbations were observed before the storm was classified as a TC, at a time when it was a tropical depression, suggesting the broader conclusion that severe convective storms, in general, perturb the mesosphere and the stratosphere through which the perturbations propagate.

  4. Dependence of tropical cyclone development on coriolis parameter: A theoretical model

    Science.gov (United States)

    Deng, Liyuan; Li, Tim; Bi, Mingyu; Liu, Jia; Peng, Melinda

    2018-03-01

    A simple theoretical model was formulated to investigate how tropical cyclone (TC) intensification depends on the Coriolis parameter. The theoretical framework includes a two-layer free atmosphere and an Ekman boundary layer at the bottom. The linkage between the free atmosphere and the boundary layer is through the Ekman pumping vertical velocity in proportion to the vorticity at the top of the boundary layer. The closure of this linear system assumes a simple relationship between the free atmosphere diabatic heating and the boundary layer moisture convergence. Under a set of realistic atmospheric parameter values, the model suggests that the most preferred latitude for TC development is around 5° without considering other factors. The theoretical result is confirmed by high-resolution WRF model simulations in a zero-mean flow and a constant SST environment on an f -plane with different Coriolis parameters. Given an initially balanced weak vortex, the TC-like vortex intensifies most rapidly at the reference latitude of 5°. Thus, the WRF model simulations confirm the f-dependent characteristics of TC intensification rate as suggested by the theoretical model.

  5. Landscape-scale analysis of wetland sediment deposition from four tropical cyclone events.

    Science.gov (United States)

    Tweel, Andrew W; Turner, R Eugene

    2012-01-01

    Hurricanes Katrina, Rita, Gustav, and Ike deposited large quantities of sediment on coastal wetlands after making landfall in the northern Gulf of Mexico. We sampled sediments deposited on the wetland surface throughout the entire Louisiana and Texas depositional surfaces of Hurricanes Katrina, Rita, Gustav, and the Louisiana portion of Hurricane Ike. We used spatial interpolation to model the total amount and spatial distribution of inorganic sediment deposition from each storm. The sediment deposition on coastal wetlands was an estimated 68, 48, and 21 million metric tons from Hurricanes Katrina, Rita, and Gustav, respectively. The spatial distribution decreased in a similar manner with distance from the coast for all hurricanes, but the relationship with distance from the storm track was more variable between events. The southeast-facing Breton Sound estuary had significant storm-derived sediment deposition west of the storm track, whereas sediment deposition along the south-facing coastline occurred primarily east of the storm track. Sediment organic content, bulk density, and grain size also decreased significantly with distance from the coast, but were also more variable with respect to distance from the track. On average, eighty percent of the mineral deposition occurred within 20 km from the coast, and 58% was within 50 km of the track. These results highlight an important link between tropical cyclone events and coastal wetland sedimentation, and are useful in identifying a more complete sediment budget for coastal wetland soils.

  6. North American Tropical Cyclone Landfall and SST: A Statistical Model Study

    Science.gov (United States)

    Hall, Timothy; Yonekura, Emmi

    2013-01-01

    A statistical-stochastic model of the complete life cycle of North Atlantic (NA) tropical cyclones (TCs) is used to examine the relationship between climate and landfall rates along the North American Atlantic and Gulf Coasts. The model draws on archived data of TCs throughout the North Atlantic to estimate landfall rates at high geographic resolution as a function of the ENSO state and one of two different measures of sea surface temperature (SST): 1) SST averaged over the NA subtropics and the hurricane season and 2) this SST relative to the seasonal global subtropical mean SST (termed relSST). Here, the authors focus on SST by holding ENSO to a neutral state. Jackknife uncertainty tests are employed to test the significance of SST and relSST landfall relationships. There are more TC and major hurricane landfalls overall in warm years than cold, using either SST or relSST, primarily due to a basinwide increase in the number of storms. The signal along the coast, however, is complex. Some regions have large and significant sensitivity (e.g., an approximate doubling of annual major hurricane landfall probability on Texas from -2 to +2 standard deviations in relSST), while other regions have no significant sensitivity (e.g., the U.S. mid-Atlantic and Northeast coasts). This geographic structure is due to both shifts in the regions of primary TC genesis and shifts in TC propagation.

  7. The Application of Barnes Filter to Positioning the Center of Landed Tropical Cyclone in Numerical Models

    Directory of Open Access Journals (Sweden)

    Haibo Zou

    2018-01-01

    Full Text Available After a tropical cyclone (TC making landfall, the numerical model output sea level pressure (SLP presents many small-scale perturbations which significantly influence the positioning of the TC center. To fix the problem, Barnes filter with weighting parameters C=2500 and G=0.35 is used to remove these perturbations. A case study of TC Fung-Wong which landed China in 2008 shows that Barnes filter not only cleanly removes these perturbations, but also well preserves the TC signals. Meanwhile, the centers (track obtained from SLP processed with Barnes filter are much closer to the observations than that from SLP without Barnes filter. Based on the distance difference (DD between the TC center determined by SLP with/without Barnes filter and observation, statistics analysis of 12 TCs which landed China during 2005–2015 shows that in most cases (about 85% the DDs are small (between −30 km and 30 km, while in a few cases (about 15% the DDs are large (greater than 30 km even 70 km. This further verifies that the TC centers identified from SLP with Barnes filter are more accurate compared to that directly obtained from model output SLP. Moreover, the TC track identified with Barnes filter is much smoother than that without Barnes filter.

  8. Numerical simulations and observations of surface wave fields under an extreme tropical cyclone

    Science.gov (United States)

    Fan, Y.; Ginis, I.; Hara, T.; Wright, C.W.; Walsh, E.J.

    2009-01-01

    The performance of the wave model WAVEWATCH III under a very strong, category 5, tropical cyclone wind forcing is investigated with different drag coefficient parameterizations and ocean current inputs. The model results are compared with field observations of the surface wave spectra from an airborne scanning radar altimeter, National Data Buoy Center (NDBC) time series, and satellite altimeter measurements in Hurricane Ivan (2004). The results suggest that the model with the original drag coefficient parameterization tends to overestimate the significant wave height and the dominant wavelength and produces a wave spectrum with narrower directional spreading. When an improved drag parameterization is introduced and the wave-current interaction is included, the model yields an improved forecast of significant wave height, but underestimates the dominant wavelength. When the hurricane moves over a preexisting mesoscale ocean feature, such as the Loop Current in the Gulf of Mexico or a warm-and cold-core ring, the current associated with the feature can accelerate or decelerate the wave propagation and significantly modulate the wave spectrum. ?? 2009 American Meteorological Society.

  9. A Top-Down Pathway to Secondary Eyewall Formation in Simulated Tropical Cyclones

    Science.gov (United States)

    Tyner, Bryce; Zhu, Ping; Zhang, Jun A.; Gopalakrishnan, Sundararaman; Marks, Frank; Tallapragada, Vijay

    2018-01-01

    Idealized and real-case simulations conducted using the Hurricane Weather Research and Forecasting (HWRF) model demonstrate a "top-down" pathway to secondary eyewall formation (SEF) for tropical cyclones (TCs). For the real-case simulations of Hurricane Rita (2005) and Hurricane Edouard (2014), a comparison to observations reveals the timing and overall characteristics of the simulated SEF appear realistic. An important control of the top-down pathway to SEF is the amount and radial-height distribution of hydrometeors at outer radii. Examination into the simulated hydrometeor particle fall speed distribution reveals that the HWRF operational microphysics scheme is not producing the lightest hydrometeors, which are likely present in observed TCs and are most conducive to being advected from the primary eyewall to the outer rainband region of the TC. Triggering of SEF begins with the fallout of hydrometeors at the outer radii from the TC primary eyewall, where penetrative downdrafts resulting from evaporative cooling of precipitation promote the development of local convection. As the convection-induced radial convergence that is initially located in the midtroposphere extends downward into the boundary layer, it results in the eruption of high entropy air out of the boundary layer. This leads to the rapid development of rainband convection and subsequent SEF via a positive feedback among precipitation, convection, and boundary layer processes.

  10. The Response of Atlantic Tropical Cyclones to Suppression of African Easterly Waves

    Science.gov (United States)

    Patricola, Christina M.; Saravanan, R.; Chang, Ping

    2018-01-01

    Atlantic tropical cyclone (TC) genesis is strongly linked with African easterly waves (AEWs) on the synoptic time scale. However, the TC-AEW relationship is unclear on interannual to climate time scales, and it is unknown whether AEWs are necessary to maintain climatological TC frequency, that is, whether TCs are limited by AEWs. We investigated the impact of AEW suppression on seasonal Atlantic TC activity using a 10-member ensemble of regional climate model simulations in which AEWs were either prescribed or removed through the lateral boundary condition. The climate model experiments produced no significant change in seasonal Atlantic TC number, indicating that AEWs are not necessary to maintain climatological basin-wide TC frequency even though TCs readily originate from these types of disturbances. This suggests that the specific type of "seedling" disturbance is unimportant for determining basin-wide seasonal Atlantic TC number and that in the absence of AEWs, TCs will generate by other mechanisms. The results imply that changes in the presence of AEWs may not be reliable predictors of seasonal variability and future change in Atlantic TC frequency.

  11. Midtropospheric frontogenesis associated with antecedent indirect precipitation ahead of tropical cyclones over the Korean Peninsula

    Directory of Open Access Journals (Sweden)

    Eun-Hyuk Baek

    2015-07-01

    Full Text Available On the Korean Peninsula (KP, heavy rainfall often precedes the landfall of a tropical cyclone (TC. This rainfall is called antecedent indirect precipitation (AIP, because it occurs well beyond the effective radius of the TC. The present study examines the statistical characteristics and physical mechanism of the AIP produced by TCs that influenced the KP during the period 1993–2004. Composite analyses demonstrate that the AIP events were accompanied by midtropospheric frontogenesis due to the TC-mid-latitude environment interaction. When an approaching TC encountered an approaching mid-latitude upper-level trough, this encounter resulted in confluent and deformed flows at the mid-level by the combination of westerlies from the trough and southerlies from the TC. The delicate balance of horizontal winds related to the two systems at the mid-level led to the midtropospheric frontogenesis to the north of the KP. The frontogenetic feature related to the AIP was in marked contrast to those of the remote rainfall event over the KP and the predecessor rainfall event over the United States suggested by previous studies. Quasi-geostrophic analysis demonstrates that the midtropospheric front induced thermally direct circulation, which led to ascending motion over the KP. Consequently, the midtropospheric front helped to intensify the AIP, together with the convective instability that was amplified by the transport of warm and moist air along the conduit between the TC and subtropical high.

  12. Data Normalization to Accelerate Training for Linear Neural Net to Predict Tropical Cyclone Tracks

    Directory of Open Access Journals (Sweden)

    Jian Jin

    2015-01-01

    Full Text Available When pure linear neural network (PLNN is used to predict tropical cyclone tracks (TCTs in South China Sea, whether the data is normalized or not greatly affects the training process. In this paper, min.-max. method and normal distribution method, instead of standard normal distribution, are applied to TCT data before modeling. We propose the experimental schemes in which, with min.-max. method, the min.-max. value pair of each variable is mapped to (−1, 1 and (0, 1; with normal distribution method, each variable’s mean and standard deviation pair is set to (0, 1 and (100, 1. We present the following results: (1 data scaled to the similar intervals have similar effects, no matter the use of min.-max. or normal distribution method; (2 mapping data to around 0 gains much faster training speed than mapping them to the intervals far away from 0 or using unnormalized raw data, although all of them can approach the same lower level after certain steps from their training error curves. This could be useful to decide data normalization method when PLNN is used individually.

  13. Decreasing trend of tropical cyclone frequency in 228-year high-resolution AGCM simulations

    Science.gov (United States)

    Sugi, Masato; Yoshimura, Jun

    2012-10-01

    We conducted 228-year long, three-member ensemble simulations using a high resolution (60 km grid size) global atmosphere model, MRI-AGCM3.2, with prescribed sea surface temperature and greenhouse gases and aerosols from 1872 to 2099. We found a clear decreasing trend of global tropical cyclone (TC) frequency throughout the 228 years of the simulation. We also found a significant multidecadal variation (MDV) in the long term variation of Northern Hemisphere and Southern Hemisphere TC count in addition to the decreasing trend. The decreasing trend and MDV in the long term variation of TC count correspond well to a similar decreasing trend and MDV of upward mass flux averaged over the TC genesis region and active TC season. It has been shown that the upward mass flux decreases primarily because the rate of increase of dry static stability, which is close to that of surface specific humidity, is much larger than the rate of increase of precipitation, which is nearly the same as that of atmospheric radiative cooling. Thus, it is suggested that the decreasing trend of TC count is mainly caused by the decreasing trend of upward mass flux associated with the increasing dry static stability.

  14. Objective estimation of tropical cyclone innercore surface wind structure using infrared satellite images

    Science.gov (United States)

    Zhang, Changjiang; Dai, Lijie; Ma, Leiming; Qian, Jinfang; Yang, Bo

    2017-10-01

    An objective technique is presented for estimating tropical cyclone (TC) innercore two-dimensional (2-D) surface wind field structure using infrared satellite imagery and machine learning. For a TC with eye, the eye contour is first segmented by a geodesic active contour model, based on which the eye circumference is obtained as the TC eye size. A mathematical model is then established between the eye size and the radius of maximum wind obtained from the past official TC report to derive the 2-D surface wind field within the TC eye. Meanwhile, the composite information about the latitude of TC center, surface maximum wind speed, TC age, and critical wind radii of 34- and 50-kt winds can be combined to build another mathematical model for deriving the innercore wind structure. After that, least squares support vector machine (LSSVM), radial basis function neural network (RBFNN), and linear regression are introduced, respectively, in the two mathematical models, which are then tested with sensitivity experiments on real TC cases. Verification shows that the innercore 2-D surface wind field structure estimated by LSSVM is better than that of RBFNN and linear regression.

  15. Impact of Ocean Warming on Tropical Cyclone Size and Its Destructiveness.

    Science.gov (United States)

    Sun, Yuan; Zhong, Zhong; Li, Tim; Yi, Lan; Hu, Yijia; Wan, Hongchao; Chen, Haishan; Liao, Qianfeng; Ma, Chen; Li, Qihua

    2017-08-15

    The response of tropical cyclone (TC) destructive potential to global warming is an open issue. A number of previous studies have ignored the effect of TC size change in the context of global warming, which resulted in a significant underestimation of the TC destructive potential. The lack of reliable and consistent historical data on TC size limits the confident estimation of the linkage between the observed trend in TC size and that in sea surface temperature (SST) under the background of global climate warming. A regional atmospheric model is used in the present study to investigate the response of TC size and TC destructive potential to increases in SST. The results show that a large-scale ocean warming can lead to not only TC intensification but also TC expansion. The TC size increase in response to the ocean warming is possibly attributed to the increase in atmospheric convective instability in the TC outer region below the middle troposphere, which facilitates the local development of grid-scale ascending motion, low-level convergence and the acceleration of tangential winds. The numerical results indicate that TCs will become stronger, larger, and unexpectedly more destructive under global warming.

  16. Interdecadal Change of Tropical Cyclone Genesis Controlling Parameter in Western North Pacific

    Science.gov (United States)

    Li, T.

    2017-12-01

    The main environmental parameter controlling tropical cyclone (TC) genesis in the western North Pacific (WNP) changed in different interdecadal periods. The interannual variability of TC genesis frequency was primarily control by specific humidity in 1950-1976, sea surface temperature (SST) in 1977-1998, and vorticity in 1999-2014. A further diagnosis shows that the change of environmental specific humidity during 1950-1976 was attributed to anomalous advection of mean moisture during ENSO developing summer. The SST change during 1977-1998 was associated with circulation change during ENSO decaying summer. The change of environment vorticity was primarily related to CP-type El Niño during 1999-2014. The ultimate cause of the controlling parameter change is attributed to the change of ENSO behavior. Compared to the first period, a stronger EP-type ENSO variability in the second period leads to a stronger circulation/SST response during ENSO decaying phase. The occurrence of more frequent CP type El Niño in the third period was responsible for greater vorticity controlling in the WNP.

  17. A prediction scheme of tropical cyclone frequency based on lasso and random forest

    Science.gov (United States)

    Tan, Jinkai; Liu, Hexiang; Li, Mengya; Wang, Jun

    2017-07-01

    This study aims to propose a novel prediction scheme of tropical cyclone frequency (TCF) over the Western North Pacific (WNP). We concerned the large-scale meteorological factors inclusive of the sea surface temperature, sea level pressure, the Niño-3.4 index, the wind shear, the vorticity, the subtropical high, and the sea ice cover, since the chronic change of these factors in the context of climate change would cause a gradual variation of the annual TCF. Specifically, we focus on the correlation between the year-to-year increment of these factors and TCF. The least absolute shrinkage and selection operator (Lasso) method was used for variable selection and dimension reduction from 11 initial predictors. Then, a prediction model based on random forest (RF) was established by using the training samples (1978-2011) for calibration and the testing samples (2012-2016) for validation. The RF model presents a major variation and trend of TCF in the period of calibration, and also fitted well with the observed TCF in the period of validation though there were some deviations. The leave-one-out cross validation of the model exhibited most of the predicted TCF are in consistence with the observed TCF with a high correlation coefficient. A comparison between results of the RF model and the multiple linear regression (MLR) model suggested the RF is more practical and capable of giving reliable results of TCF prediction over the WNP.

  18. Tropical cyclone turbulent mixing as observed by autonomous oceanic profilers with the high repetition rate

    International Nuclear Information System (INIS)

    Baranowski, D B; Malinowski, S P; Flatau, P J

    2011-01-01

    Changes in the ocean mixed layer caused by passage of two consecutive typhoons in the Western Pacific are presented. Ocean profiles were measured by a unique Argo float sampling the upper ocean in high repetition cycle with a period of about one day. It is shown that the typhoon passage coincides with cooling of the mixed layer and variations of its salinity. Independent data from satellite measurements of surface winds were used to set-up an and idealized numerical simulation of mixed layer evolution. Results, compared to Argo profiles, confirm known effect that cooling is a result of increased entrainment from the thermocline due to enhancement of turbulence in the upper ocean by the wind stress. Observed pattern of salinity changes in the mixed layer suggest important role of typhoon precipitation. Fast changes of the mixed layer in course of typhoon passage show that fast profiling (at least once a day) is crucial to study response of the upper ocean to tropical cyclone.

  19. A training course on tropical cyclones over the eastern Pacific Ocean

    Science.gov (United States)

    Farfan, L. M.; Pozo, D.; Raga, G.; Romero, R.; Zavala, J.

    2008-05-01

    As part of a research project funded by the Inter-American Institute for Global Change Research (IAI), we are performing a short course based on the current understanding of tropical cyclones in the eastern Pacific basin. In particular, we are focused in discussing the formation and intensification off the Mexican coast. Our main goal is to train students from higher-education institutions from selected countries in Latin America. Our approach includes the review of climatological features derived from the best-track dataset issued by the National Hurricane Center. Using this dataset, we built a climatology of relevant positions and storm tracks for the base period 1970-2006. Additionally, we designed hands-on sessions in which students analyze satellite imagery from several platforms (GOES, QuikSCATT and TRMM) along with mesoscale model simulations from the WRF model. Case studies that resulted in landfall over northwestern Mexico are used; this includes Hurricanes John, Lane and Paul all of which developed during the season of 2006. So far, the course has been taught in the Atmospheric Sciences Department at the University of Buenos Aires, Argentina, and in La Paz, Mexico, with students from Mexico, Chile, Brazil, Costa Rica and Cuba.

  20. Tropical Cyclone Activity in the High-Resolution Community Earth System Model and the Impact of Ocean Coupling

    Science.gov (United States)

    Li, Hui; Sriver, Ryan L.

    2018-01-01

    High-resolution Atmosphere General Circulation Models (AGCMs) are capable of directly simulating realistic tropical cyclone (TC) statistics, providing a promising approach for TC-climate studies. Active air-sea coupling in a coupled model framework is essential to capturing TC-ocean interactions, which can influence TC-climate connections on interannual to decadal time scales. Here we investigate how the choices of ocean coupling can affect the directly simulated TCs using high-resolution configurations of the Community Earth System Model (CESM). We performed a suite of high-resolution, multidecadal, global-scale CESM simulations in which the atmosphere (˜0.25° grid spacing) is configured with three different levels of ocean coupling: prescribed climatological sea surface temperature (SST) (ATM), mixed layer ocean (SLAB), and dynamic ocean (CPL). We find that different levels of ocean coupling can influence simulated TC frequency, geographical distributions, and storm intensity. ATM simulates more storms and higher overall storm intensity than the coupled simulations. It also simulates higher TC track density over the eastern Pacific and the North Atlantic, while TC tracks are relatively sparse within CPL and SLAB for these regions. Storm intensification and the maximum wind speed are sensitive to the representations of local surface flux feedbacks in different coupling configurations. Key differences in storm number and distribution can be attributed to variations in the modeled large-scale climate mean state and variability that arise from the combined effect of intrinsic model biases and air-sea interactions. Results help to improve our understanding about the representation of TCs in high-resolution coupled Earth system models, with important implications for TC-climate applications.

  1. Modelling mean transit time of stream base flow during tropical cyclone rainstorm in a steep relief forested catchment

    Science.gov (United States)

    Lee, Jun-Yi; Huang, -Chuan, Jr.

    2017-04-01

    Mean transit time (MTT) is one of the of fundamental catchment descriptors to advance understanding on hydrological, ecological, and biogeochemical processes and improve water resources management. However, there were few documented the base flow partitioning (BFP) and mean transit time within a mountainous catchment in typhoon alley. We used a unique data set of 18O isotope and conductivity composition of rainfall (136 mm to 778 mm) and streamflow water samples collected for 14 tropical cyclone events (during 2011 to 2015) in a steep relief forested catchment (Pinglin, in northern Taiwan). A lumped hydrological model, HBV, considering dispersion model transit time distribution was used to estimate total flow, base flow, and MTT of stream base flow. Linear regression between MTT and hydrometric (precipitation intensity and antecedent precipitation index) variables were used to explore controls on MTT variation. Results revealed that both the simulation performance of total flow and base flow were satisfactory, and the Nash-Sutcliffe model efficiency coefficient of total flow and base flow was 0.848 and 0.732, respectively. The event magnitude increased with the decrease of estimated MTTs. Meanwhile, the estimated MTTs varied 4-21 days with the increase of BFP between 63-92%. The negative correlation between event magnitude and MTT and BFP showed the forcing controls the MTT and BFP. Besides, a negative relationship between MTT and the antecedent precipitation index was also found. In other words, wetter antecedent moisture content more rapidly active the fast flow paths. This approach is well suited for constraining process-based modeling in a range of high precipitation intensity and steep relief forested environments.

  2. A Weather Analysis System for the Baja California Peninsula: Tropical Cyclone Season of 2008

    Science.gov (United States)

    Farfán, L. M.

    2009-05-01

    General characteristics of tropical weather systems are documented on a real-time basis. This study covers the warm season of 2008, from May through November, and includes observations from satellite imagery as well as reports from a rain-gauge network. During this season, the basin had 16 tropical storms and three of them made landfall in the Baja California peninsula, in northwestern Mexico. Tropical storm Julio developed in August and tropical storm Lowell made landfall in mid-September. Norbert, in early October, was the most intense hurricane of the season with strong winds and heavy rainfall that caused significant damage to the infrastructure in the southern peninsula. By the next day, the system moved over the mainland, causing major flooding in Sinaloa, Sonora, and Chihuahua. By request of the Baja California government, a meteorological perspective associated with the structure, intensity, and motion of Hurricane Norbert was presented. This consisted of high-resolution satellite imagery used to explain the spatial and temporal patterns of convection. This material provided an integral analysis of Norbert's behavior during its approach and passage over land, and it was one element, used by emergency managers, to determine the extent of the affected areas.

  3. Assessment of landscape change associated with tropical cyclone phenomena in Baja California Sur, Mexico, using satellite remote sensing

    Science.gov (United States)

    Martinez-Gutierrez, Genaro

    Baja California Sur (Mexico), as well as mainland Mexico, is affected by tropical cyclone storms, which originate in the eastern north Pacific. Historical records show that Baja has been damaged by intense summer storms. An arid to semiarid climate characterizes the study area, where precipitation mainly occurs during the summer and winter seasons. Natural and anthropogenic changes have impacted the landscape of southern Baja. The present research documents the effects of tropical storms over the southern region of Baja California for a period of approximately twenty-six years. The goal of the research is to demonstrate how remote sensing can be used to detect the important effects of tropical storms including: (a) evaluation of change detection algorithms, and (b) delineating changes to the landscape including coastal modification, fluvial erosion and deposition, vegetation change, river avulsion using change detection algorithms. Digital image processing methods with temporal Landsat satellite remotely sensed data from the North America Landscape Characterization archive (NALC), Thematic Mapper (TM), and Enhanced Thematic Mapper (ETM) images were used to document the landscape change. Two image processing methods were tested including Image differencing (ID), and Principal Component Analysis (PCA). Landscape changes identified with the NALC archive and TM images showed that the major changes included a rapid change of land use in the towns of San Jose del Cabo and Cabo San Lucas between 1973 and 1986. The features detected using the algorithms included flood deposits within the channels of active streams, erosion banks, and new channels caused by channel avulsion. Despite the 19 year period covered by the NALC data and approximately 10 year intervals between acquisition dates, there were changed features that could be identified in the images. The TM images showed that flooding from Hurricane Isis (1998) produced new large deposits within the stream channels

  4. Impacts of Microphysics Schemes and Topography on the Prediction of the Heavy Rainfall in Western Myanmar Associated with Tropical Cyclone ROANU (2016

    Directory of Open Access Journals (Sweden)

    Khin Win Maw

    2017-01-01

    Full Text Available The impacts of different microphysics and boundary schemes and terrain settings on the heavy rainfall over western Myanmar associated with the tropical cyclone (TC ROANU (2016 are investigated using the Weather Research and Forecasting (WRF model. The results show that the microphysics scheme of Purdue Lin (LIN scheme produces the strongest cyclone. Six experiments with various combinations of microphysics and boundary schemes indicated that a combination of WRF Single-Moment 6-class (WSM6 scheme and Mellor-Yamada-Janjic (MYJ best fits to the Joint Typhoon Warning Center (JTWC data. WSM6-MYJ also performs the best for the track and intensity of rainfall and obtains the best statistics skill scores in the range of maximum rainfall intensity for 48-h. Sensitivity experiments on different terrain settings with Normal Rakhine Mountain (NRM, with Half of Rakhine Mountain (HRM, and Without Rakhine Mountain (WoRM are designed with the use of WSM6-MYJ scheme. The track of TC ROANU moved northwestward in WoRM and HRM. Due to the presence of Rakhine Mountain, TC track moved into Myanmar and the peak rainfall occurred on the leeward side of the Mountain. In the absence of Rakhine Mountain, a shift in peak rainfall was observed in north side of the Mountain.

  5. Tropical cyclone prediction skills - MJO and ENSO dependence in S2S data sets

    Science.gov (United States)

    Lee, C. Y.; Camargo, S.; Vitart, F.; Sobel, A. H.; Tippett, M.

    2017-12-01

    The El Niño-Southern Oscillation (ENSO) and the Madden-Julian Oscillation (MJO) are two important climate controls on tropical cyclone (TC) activity. The seasonal prediction skill of dynamical models is determined in large part by their accurate representations of the ENSO-TC relationship. Regarding intraseasonal TC variability, observations suggest MJO to be the primary control. Given the ongoing effort to develop dynamical seasonal-to-subseasonal (S2S) TC predictions, it is important to examine whether the global models, running on S2S timescales, are able to reproduce these known ENSO-TC and MJO-TC relationships, and how this ability affects forecasting skill. Results from the S2S project (from F. Vitart) suggest that global models have skill in predicting MJO phase with up to two weeks of lead time (four weeks for ECMWF). Meanwhile, our results show that, qualitatively speaking, the MJO-TC relationship in storm genesis is reasonably captured, with some models (e.g., ECMWF, BoM, NCEP, MetFr) performing better than the others. However, we also find that model skill in predicting basin-wide genesis and accumulated cyclone energy (ACE) are mainly due to the models' ability to capture the climatological seasonality. Removing the seasonality significantly reduces the models' skill; even the best model (ECMWF) in the most reliable basin (western north Pacific and Atlantic) has very little skill (close to 0.1 in Brier skill score for genesis and close to 0 in rank probability skill score for ACE). This brings up the question: do any factors contribute to intraseasonal TC prediction skill other than seasonality? Is the low skill, after removing the seasonality, due to poor MJO and ENSO simulations, or to poor representation of other ENSO-TC or MJO-TC relationships, such as ENSO's impact on the storm tracks? We will quantitatively discuss the dependence of the TC prediction skill on ENSO and MJO, focusing on Western North Pacific and Atlantic, where we have sufficient

  6. Development after Disaster: Multidecadal Impacts of Tropical Cyclones upon Long-run Economic Growth

    Science.gov (United States)

    Jina, A.; Hsiang, S. M.

    2012-12-01

    Weather-related disasters lead to immediate costs in the billions of dollars each year, and this loss informs the strategies for disaster mitigation and recovery. However, the causal effect of natural disasters on long-run economic development remains unclear. We reconstruct every country's physical exposure to the universe of tropical cyclones (TCs) during 1950-2008 using the International Best Tracks Archive for Climate Stewardship (IBTrACS) and then exploit year-to-year variation in cyclone strikes to identify the effect of disasters on GDP growth. Linking this economic data to a physical model of TC hazard, we are the first analysis to deconvolve the long-run cumulative impact of year-to-year changes in TC incidence. We reject long-standing hypotheses that disasters stimulate growth via "creative destruction" or that losses disappear following transfers of wealth. Instead, we find robust evidence that national incomes decline, relative to their pre-disaster trend, and do not recover within twenty years. This result is consistent across income sources, regions, countries' geographic size, and income level. Global patterns of climate-based adaptation, in addition to similar long-run changes in consumption, investment, trade and international aid, further corroborate this finding. Consistent with the idea that long-term loans finance the replacement of lost capital, national income loss arises from a small reduction of annual growth rates spread across the decades following disaster. The cumulative effect of this persistently suppressed growth is significant and large: a 90th percentile event reduces per capita incomes by 7.4% two decades later (fig. A). The gradual nature of these losses render them inconspicuous to a casual observer, however simulations indicate that they have dramatic influence over the long-run development of countries that face regular exposure to TCs (fig. B). Our results indicate that the true cost of a disaster may not only be the

  7. Climatology of extratropical transition for North Atlantic tropical cyclones in the high-resolution GFDL climate model

    Science.gov (United States)

    Liu, M.; Vecchi, G. A.; Smith, J. A.

    2015-12-01

    The extratropical transition (ET) process of tropical cyclones can lead to fundamental changes in hurricane structure and storms that continue to pose large threats to life and properties. Given the importance of ET, it is necessary to understand how ET changes under a warming climate. Towards this goal, the GFDL climate model (FLOR) is first used to understand the current-day ET climatology. The standard model and a flux-adjusted version of FLOR are both used to examine ET climatology. The operational cyclone phase space method is used to define the onset and completion times of ET. The ET climatology from the climate model is compared with those from two reanalysis data sets ranging from 1979 to 2012. Both models exhibit good skills at simulating the frequency map of phase space diagram. The flux-adjusted version shows much better skill in capturing the ET climatology in terms of ET track patterns, ET locations and monthly ET variations. The model is able to simulate the frequency ratio of reintensified tropical cyclones from all ET cases. Future work involves examining changes in the ET climatology under a changing climate.

  8. Impact of tropical cyclones on the heat budget of the south Pacific Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Jullien, S.; Menkes, C.E.; Marchesiello, P.; Jourdain, N.C.; Lengaigne, M.; Koch-Larrouy, A.; Lefevre, J.; Vincent, E.M.; Faure, V.

    . Figure 1 shows an example of the resulting wind forcing in the cyclone and no-cyclone experiments for a strong TC. Only the extreme winds are removed, but the large- scale wind pattern remains unchanged. It may be ques- tioned whether the weak large...

  9. Small-scale field-aligned currents caused by tropical cyclones as observed by the SWARM satellites above the ionosphere

    Science.gov (United States)

    Aoyama, T.; Iyemori, T.; Nakanishi, K.

    2014-12-01

    We present case studies of small-scale magnetic fluctuations above typhoons, hurricanes and cyclones as observed by the swarm constellation. It is reported lately that AGWs(atmospheric gravity waves) generated by meteorological phenomena in the troposphere such as typhoons and tornadoes, large earthquakes and volcanic eruptions propagate to the mesosphere and thermosphere. We observe them in various forms(e.g. airglows, ionospheric disturbances and TEC variations). We are proposing the following model. AGWs caused by atmospheric disturbances in the troposphere propagate to the ionospheric E-layer, drive dynamo action and generate field-aligned currents. The satellites observe magnetic fluctuations above the ionosphere. In this presentation, we focus on cases of tropical cyclone(hurricanes in North America, typhoons in North-West Pacific).

  10. Impact of bogus vortex for track and intensity prediction of tropical ...

    Indian Academy of Sciences (India)

    The initialization scheme designed to improve the representation of a tropical cyclone in the initial condition is tested during Orissa super cyclone (1999) over Bay of Bengal using the fifth-generation Pennsylvania State University — National Center for Atmospheric Research (Penn State — NCAR) Mesoscale Model (MM5).

  11. Quantifying changes of wind speed distributions in the historical record of Atlantic tropical cyclones

    Directory of Open Access Journals (Sweden)

    K. Chen

    2009-10-01

    Full Text Available Here we re-examine the official Atlantic basin tropical cyclone (hurricane database HURDAT (1851–2008 and quantify differences between wind speed distributions in the early historical (1851–1943 record and more recent observations. Analyses were performed at three different geographical levels: for all six-hourly track segments of all Atlantic basin events, all segments of all events that crossed the US mainland, and US landfalling segments alone. At all three geographical levels of study, distributions of windspeeds over the last two, four and six decades display negligible dispersion or systematic change over time. On the other hand and relative to wind speed frequencies for subsequent years, the 1851–1943 record has a marked and statistically significant over-representation of wind speeds largely corresponding to Saffir-Simpson Categories 1 and 2 and under-representation of Categories 4 and 5 events; importantly, no single Category 5 event is recorded prior to 1924. The stability of the distribution of windspeeds at landfall over the last six decades, the dataset in which we can have most confidence, suggests that the differences in the earlier record are most likely explained by well-known measurement and observational deficiencies. Moreover by disaggregating the Power Dissipation Index (PDI, we demonstrate that the upward trend in Atlantic basin PDI since 1970s does not imply stronger and longer duration Category 5 windspeeds despite a warming climate. These results have implications for hurricane catastrophe loss modeling for the insurance industry and long-term trend analyses of the historical wind speed record, especially those related to the attribution of the role of Global Climate Change.

  12. Sensitivity of Tropical Cyclones to Parameterized Convection in the NASA GEOS5 Model

    Science.gov (United States)

    Lim, Young-Kwon; Schubert, Siegfried D.; Reale, Oreste; Lee, Myong-In; Molod, Andrea M.; Suarez, Max J.

    2014-01-01

    The sensitivity of tropical cyclones (TCs) to changes in parameterized convection is investigated to improve the simulation of TCs in the North Atlantic. Specifically, the impact of reducing the influence of the Relaxed Arakawa-Schubert (RAS) scheme-based parameterized convection is explored using the Goddard Earth Observing System version5 (GEOS5) model at 0.25 horizontal resolution. The years 2005 and 2006 characterized by very active and inactive hurricane seasons, respectively, are selected for simulation. A reduction in parameterized deep convection results in an increase in TC activity (e.g., TC number and longer life cycle) to more realistic levels compared to the baseline control configuration. The vertical and horizontal structure of the strongest simulated hurricane shows the maximum lower-level (850-950hPa) wind speed greater than 60 ms and the minimum sea level pressure reaching 940mb, corresponding to a category 4 hurricane - a category never achieved by the control configuration. The radius of the maximum wind of 50km, the location of the warm core exceeding 10 C, and the horizontal compactness of the hurricane center are all quite realistic without any negatively affecting the atmospheric mean state. This study reveals that an increase in the threshold of minimum entrainment suppresses parameterized deep convection by entraining more dry air into the typical plume. This leads to cooling and drying at the mid- to upper-troposphere, along with the positive latent heat flux and moistening in the lower-troposphere. The resulting increase in conditional instability provides an environment that is more conducive to TC vortex development and upward moisture flux convergence by dynamically resolved moist convection, thereby increasing TC activity.

  13. Conditional Stochastic Models in Reduced Space: Towards Efficient Simulation of Tropical Cyclone Precipitation Patterns

    Science.gov (United States)

    Dodov, B.

    2017-12-01

    Stochastic simulation of realistic and statistically robust patterns of Tropical Cyclone (TC) induced precipitation is a challenging task. It is even more challenging in a catastrophe modeling context, where tens of thousands of typhoon seasons need to be simulated in order to provide a complete view of flood risk. Ultimately, one could run a coupled global climate model and regional Numerical Weather Prediction (NWP) model, but this approach is not feasible in the catastrophe modeling context and, most importantly, may not provide TC track patterns consistent with observations. Rather, we propose to leverage NWP output for the observed TC precipitation patterns (in terms of downscaled reanalysis 1979-2015) collected on a Lagrangian frame along the historical TC tracks and reduced to the leading spatial principal components of the data. The reduced data from all TCs is then grouped according to timing, storm evolution stage (developing, mature, dissipating, ETC transitioning) and central pressure and used to build a dictionary of stationary (within a group) and non-stationary (for transitions between groups) covariance models. Provided that the stochastic storm tracks with all the parameters describing the TC evolution are already simulated, a sequence of conditional samples from the covariance models chosen according to the TC characteristics at a given moment in time are concatenated, producing a continuous non-stationary precipitation pattern in a Lagrangian framework. The simulated precipitation for each event is finally distributed along the stochastic TC track and blended with a non-TC background precipitation using a data assimilation technique. The proposed framework provides means of efficient simulation (10000 seasons simulated in a couple of days) and robust typhoon precipitation patterns consistent with observed regional climate and visually undistinguishable from high resolution NWP output. The framework is used to simulate a catalog of 10000 typhoon

  14. Evidence of reduced vulnerability to tropical cyclones in the Republic of Korea

    Science.gov (United States)

    Park, Doo-Sun R.; Ho, Chang-Hoi; Nam, Chaehyeon C.; Kim, Hyeong-Seog

    2015-05-01

    On average, three tropical cyclones (TCs) affect the Republic of Korea each year, causing extensive damage. To alleviate the TC-induced disasters, the Korean government has invested nearly 4% of its annual budget in recent decades in prevention efforts; however, the effectiveness of this costly program has not been evaluated. This study determined whether any evidence shows a reduced vulnerability to TCs in Korea over 1979-2010 by utilizing multi-linear regression. Homelessness, casualties, and property losses were individually examined. These explained variables were normalized into the socio-economic circumstances of 2005 before the regression to eliminate the effect of changing exposure by dealing with population and wealth at provincial levels. Three potential explanatory variables based on nationwide weather-station data were considered, including the maximum wind, maximum rainfall, and number of affected stations over each TC’s damaging period. In addition, the annual per capita income, showing a quasi-linear increasing tendency, was used as an additional explanatory variable to examine how vulnerability is altered. The results revealed that each empirical model of homelessness, casualties, and property losses can account for 47%, 57%, and 57% of each variance, respectively, which is highest when considering all four explanatory variables. Consistently negative coefficients of the per capita income terms for all damage types suggest that the vulnerability to TCs has been significantly reduced. This finding appears to be partly the result of the national prevention effort, although it also can be attributed to other unintended adaptation factors, such as building codes, industrial structures, and land use.

  15. Interannual variability of the South Pacific Convergence Zone and implications for tropical cyclone genesis

    Energy Technology Data Exchange (ETDEWEB)

    Vincent, Emmanuel M. [IRD/UPMC/CNRS/MNHN, Laboratoire d' Oceanographie et du Climat: Experimentation et Approches Numeriques (LOCEAN), Paris (France); UPMC, LOCEAN/IPSL, Paris Cedex 05 (France); Lengaigne, Matthieu [IRD/UPMC/CNRS/MNHN, Laboratoire d' Oceanographie et du Climat: Experimentation et Approches Numeriques (LOCEAN), Paris (France); National Institute of Oceanography, Goa (India); Menkes, Christophe E. [IRD/UPMC/CNRS/MNHN, Laboratoire d' Oceanographie et du Climat: Experimentation et Approches Numeriques (LOCEAN), Paris (France); Institut de Recherche pour le Developpement, Noumea (New Caledonia); Jourdain, Nicolas C. [Institut de Recherche pour le Developpement, Noumea (New Caledonia); Marchesiello, Patrick [Institut de Recherche pour le Developpement, Noumea (New Caledonia); CNES/CNRS/UPS/IRD, Laboratoire d' Etudes en Geophysique et Oceanographie Spatiale (LEGOS), Toulouse (France); Madec, Gurvan [IRD/UPMC/CNRS/MNHN, Laboratoire d' Oceanographie et du Climat: Experimentation et Approches Numeriques (LOCEAN),