WorldWideScience

Sample records for tritium surface contamination

  1. Evaluation of Unfixed Tritium Surface Contamination

    International Nuclear Information System (INIS)

    Postolache, C.; Matei, Lidia

    2005-01-01

    Surface unfixed radioactive contamination represents the amount of surface total radioactive contamination which can be eliminated by pure mechanical processes. This unfixed contamination represents the main risk factor for contamination of the personnel which operates in tritium laboratories. Unfixed contamination was determined using sampling smears type FPCSN-PSE-AA. Those FPCSN-PSE-AA smears are disks of expanded polystyrene which contain acrylic acid fragments superficially grafted. Sampling factor was determinated by contaminated surface wiping with moisten smears in 50 μL butylic alcohol and activity measuring at liquid scintillation measuring device. Sampling factor was determined by the ratio between measured activity and initially real conventional activity. The sampling factor was determined for Tritium Laboratory existent surfaces: stainless steel, aluminum, glass, ceramics, linoleum, washable coats, epoxy resins type ALOREX LP-52.The sampling factors and the reproducibility were determined in function of surface nature

  2. Monitoring of tritium-contaminated surfaces, including skin

    International Nuclear Information System (INIS)

    Surette, R.A.; Wood, M.J.

    1994-05-01

    We have examined various commercially available tritium surface contamination monitors along with different swipe media and techniques for direct and indirect (swipe) monitoring of contaminated surfaces, including skin. None of the methods or instruments evaluated were more sensitive than the swipe and liquid scintillation counting (LSC) method. Swipe measurements with open-window proportional counters were, in general, less than half as sensitive as LSC, but have the advantages of having the results available almost immediately, and no sample preparation is required. The Nuclear Measurement Corporation's PC-55 is the most suitable instrument we tested for the analysis of routine swipe measurement. The PC-55 was about one third as sensitive as LSC when used with Ontario Hydro filter paper swipe media. Surface contamination measurement results can be obtained within minutes using the PC-55, compared to hours using LSC. The selection of swipe media for use with proportional counter-based instruments is critical. A medium that is electrically insulating can develop an electrostatic charge on its surface; this may alter the field gradient in the detector and may adversely influence the results. Although the PC-55 is sufficiently sensitive and very convenient, operational experience with the instrument is needed before recommending that it replace current LSC methods. The PC-55's susceptibility to internal tritium contamination may limit its practical usefulness. Because of the complexity of using live animals to evaluate direct and indirect methods for assessing skin contamination, pig skin was investigated as a possible substitute. We concluded that, for the first few hours post-exposure, pig skin mimics the kinetics of animal skin that has contacted a tritium-contaminated surface. (author). 30 refs., 1 tab., 7 figs

  3. Dosimetry of skin-contact exposure to tritium gas contaminated surfaces

    International Nuclear Information System (INIS)

    Legare, M.

    1990-12-01

    The radiological hazards from tritium are usually associated with exposure to tritium oxide either by inhalation, ingestion or permeation through skin. However, exposure from skin contact with tritium gas contaminated surfaces represents a different radiological hazard in tritium removal facilities and future fusion power plants. Previous experiments on humans and more recent experiments on hairless rats at Chalk River Laboratories have shown that when a tritium gas-contaminated surface is brought into contact with intact skin, high concentrations of organically-bound tritium in urine and skin are observed which were not seen from single tritiated water (liquid or vapour form) contamination. The results of the rat experiments, which involved measurements of tritium activity in urine and skin, after contact with contaminated stainless steel, are described. These results are also compared to previous data from human experiments. The effect of various exposure conditions and different contaminated surfaces such as brass, aluminum and glass are analysed and related to the results from contaminated stainless steel exposure. Dosimetric models are being developed in order to improve the basis for dose assessment for this mode of tritium uptake. The presently studied model is explained along with the assumptions and methods involved in its derivation. The features of 'STELLA', the software program used to implement the model, are discussed. The methods used to estimate skin and whole body dose from a model are demonstrated. Finally, some experiments for improving the accuracy of the model are proposed. Briefly, this study compares the results from animal and human experiments as well as different exposure conditions, and determines the range of whole body and skin dose that may be involved from skin-contact intake. This information is essential for regulatory purposes particularly in the derivation of doses for skin-contact contamination. (15 figs., 7 tabs., 29 refs.)

  4. Monitoring of tritium-contaminated surfaces, including skin

    Energy Technology Data Exchange (ETDEWEB)

    Surette, R A; Wood, M J

    1994-05-01

    We have examined various commercially available tritium surface contamination monitors along with different swipe media and techniques for direct and indirect (swipe) monitoring of contaminated surfaces, including skin. None of the methods or instruments evaluated were more sensitive than the swipe and liquid scintillation counting (LSC) method. Swipe measurements with open-window proportional counters were, in general, less than half as sensitive as LSC, but have the advantages of having the results available almost immediately, and no sample preparation is required. The Nuclear Measurement Corporation`s PC-55 is the most suitable instrument we tested for the analysis of routine swipe measurement. The PC-55 was about one third as sensitive as LSC when used with Ontario Hydro filter paper swipe media. Surface contamination measurement results can be obtained within minutes using the PC-55, compared to hours using LSC. The selection of swipe media for use with proportional counter-based instruments is critical. A medium that is electrically insulating can develop an electrostatic charge on its surface; this may alter the field gradient in the detector and may adversely influence the results. Although the PC-55 is sufficiently sensitive and very convenient, operational experience with the instrument is needed before recommending that it replace current LSC methods. The PC-55`s susceptibility to internal tritium contamination may limit its practical usefulness. Because of the complexity of using live animals to evaluate direct and indirect methods for assessing skin contamination, pig skin was investigated as a possible substitute. We concluded that, for the first few hours post-exposure, pig skin mimics the kinetics of animal skin that has contacted a tritium-contaminated surface. (author). 30 refs., 1 tab., 7 figs.

  5. Tritium activity balance in hairless rats following skin-contact exposure to tritium-gas-contaminated stainless-steel surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Trivedi, A

    1994-06-01

    Studies using animals and human volunteers have demonstrated that the dosimetry for skin-contact exposure to contaminated metal surfaces differs from that for the intake of tritiated water or tritium gas. However, despite the availability of some information on the dosimetry for skin-contact with tritium-gas-contaminated metal surfaces, uncertainties in estimating skin doses remain, because of poor accounting for the applied tritium activity in the body (Eakins et al., 1975; Trivedi, 1993). Experiments on hairless rats were performed to account for the tritium activity applied onto the skin. Hairless rats were contaminated through skin-contact exposure to tritium-gas-contaminated stainless-steel planchets. The activity in the first smear was about 35% of the total removable activity (measured by summing ten consecutive swipes). The amount of tritium applied onto the skin can be approximated by estimating the tritium activity in the first smear removed form the contaminated surfaces. 87 {+-} 9% of the transferred tritium was retained in the exposed skin 30 min post-exposure. 30 min post exposure, the unexposed skin and the carcass retained 8 {+-} 6% and 3 {+-} 2% of the total applied tritium activity, respectively. The percentage of tritium evolved from the body or breathed out was estimated to be 2 {+-} 1% of the total applied activity 30 min post-exposure. It is recommended that to evaluate accurately the amount of tritium transferred to the skin, alternative measurement approaches are required that can directly account for the transferred activity onto the skin. 15 refs., 13 tabs., 7 figs.

  6. Tritium contamination of concrete walls and floors in tritium-handling laboratory

    International Nuclear Information System (INIS)

    Kawano, T.; Kuroyanagi, M.; Tabei, T.

    2006-01-01

    A tritium handling laboratory was constructed at the National Institute for Fusion Science about twenty years ago and it was recently closed down. We completed the necessary work that is legally required in Japan at the laboratory, when the use of radioisotopes is discontinued, involving measurements of radioactive contamination. We mainly used smear and direct-immersion methods for the measurements. In applying the smear method, we used a piece of filter paper to wipe up the tritium staining the surfaces. The filter paper containing the tritium was placed directly into a dedicated vial, a scintillation cocktail was then poured over it, and the tritium was measured with a liquid scintillation counter. With the direct-immersion method, a piece of concrete was placed directly into a vial containing a scintillation cocktail, and the tritium in the concrete was measured with a liquid scintillation counter. As well as these measurements, we investigated water-extraction and heating-cooling methods for measuring tritium contamination in concrete. With the former, a piece of concrete was placed into water in a tube to extract the tritium, the water containing the extracted tritium was then poured into a dedicated vial containing a scintillation cocktail, and the tritium contamination was measured. With the latter, a piece of concrete was placed into a furnace and heated to 800 degrees centigrade to vaporize the tritiated water into flowing dry air. The flowing air was then cooled to collect the vaporized tritiated water in a tube. The collected water was placed in a vial for scintillation counting. To evaluate the direct-immersion method, ratios were determined by dividing the contamination measured with the heating-cooling method by that measured with the direct-immersion method. The average ratio was about 2.5, meaning a conversion factor from contamination obtained with the direct-immersion method to that with the heating-cooling method. We also investigated the

  7. Smears for determinations surface unfixed tritium contamination

    International Nuclear Information System (INIS)

    Postolache, Cristian; Matei, Lidia

    2003-01-01

    The present paper describes a method of obtaining expanded polystyrene with hydrophilized surface smears by radioinduced grafting of acrylic acid. The grafting was carried out by using a 60 Co γ radiation source. The variation of grafting rates as a function of dose range and absorbed dose was established. Grafting radiochemical rates were determined by radiometric methods using acrylic acid labeled with tritium as a grafting agent. The sampling coefficients and the reproducibility were analyzed as a function of the nature of the contaminated surface. (authors)

  8. Tritium contamination experience in an operational D-T fusion reactor

    International Nuclear Information System (INIS)

    Gentile, C.A.; Ascione, G.

    1994-01-01

    During December 1993, the Tokamak Fusion Test Reactor (TFTR) injected a mixture of deuterium and tritium in the TFTR vacuum vessel for the purpose of creating D-T plasmas. The tritium used in these D-T plasmas was stored, delivered and processed in the TFTR tritium facility that includes the tritium vault, waste handling area, clean-up area, and gas holding tank room. During this time period, several components in the tritium process system were found to have tritium leaks which led to tritium deposition on process skids, components and floor area. Radiological surveys of surfaces contaminated with tritium oxide indicate a decrease in surface contamination in time (on the order of 12 to 36 hours) as the result of room ventilation. In instances where the facility HVAC system was maintained in the purge mode, a dramatic decrease in surface contamination was observed. Areas contaminated with tritium oxide (> 16.6 Bq/100 cm 2 ) were found to be clean ( 2 ) after several hours of continuous purging by the facility HVAC system. In instances where relative humidity was not decreased, the tritium surface contamination was found to be attenuated. During the months of December 1993, January and February 1994 tritium leaking components were either replaced, redesigned or repaired. During this time period, data were collected in the form of contamination surveys, real time tritium monitor output, and HVAC configuration indicating the correlation of purge ventilation leading to a decrease in tritium oxide surface contamination

  9. Substantiation of rate setting of surface contamination with amino acids, labelled with tritium

    International Nuclear Information System (INIS)

    Zhesko, T.V.

    1987-01-01

    For rate setting of surface contamination with the wide-spread biogenic tritium compounds-protein predecessors-experimental study of skin absorption and skin deposit of amino acids labelled with tritium is carried out on rats. While extrapolating data to people and calculating tolerable skin contamination with 3 H- amino acids, it is supposed that people arm skin, 100-500 cm 2 , has no defects and that the skin surface decontamination after radionuclide contact is carried out with a preparation, efficiency of which is not less than 97%. The value of tolerable skin absorption of tritium amino acids, being 110-550 MBq/year or 4.8 kBq/cm 2 per one working day, is calculated

  10. Tritium contamination experience in an operational D-T fusion reactor

    Energy Technology Data Exchange (ETDEWEB)

    Gentile, C.A.; Ascione, G. [Princeton Univ., NJ (United States). Plasma Physics Lab.; Anderson, J.L. [Los Alamos National Lab., NM (United States)] [and others

    1994-09-01

    During December 1993, the Tokamak Fusion Test Reactor (TFTR) injected a mixture of deuterium and tritium in the TFTR vacuum vessel for the purpose of creating D-T plasmas. The tritium used in these D-T plasmas was stored, delivered and processed in the TFTR tritium facility that includes the tritium vault, waste handling area, clean-up area, and gas holding tank room. During this time period, several components in the tritium process system were found to have tritium leaks which led to tritium deposition on process skids, components and floor area. Radiological surveys of surfaces contaminated with tritium oxide indicate a decrease in surface contamination in time (on the order of 12 to 36 hours) as the result of room ventilation. In instances where the facility HVAC system was maintained in the purge mode, a dramatic decrease in surface contamination was observed. Areas contaminated with tritium oxide (> 16.6 Bq/100 cm{sup 2}) were found to be clean (< 16.6 Bq/100 cm{sub 2}) after several hours of continuous purging by the facility HVAC system. In instances where relative humidity was not decreased, the tritium surface contamination was found to be attenuated. During the months of December 1993, January and February 1994 tritium leaking components were either replaced, redesigned or repaired. During this time period, data were collected in the form of contamination surveys, real time tritium monitor output, and HVAC configuration indicating the correlation of purge ventilation leading to a decrease in tritium oxide surface contamination.

  11. Automation system for tritium contaminated surface monitoring

    International Nuclear Information System (INIS)

    Culcer, Mihai; Iliescu, Mariana; Curuia, Marian; Raceanu, Mircea; Enache, Adrian; Stefanescu, Ioan; Ducu, Catalin; Malinovschi, Viorel

    2005-01-01

    The low energy of betas makes tritium difficult to detect. However, there are several methods used in tritium detection, such as liquid scintillation and ionization chambers. Tritium on or near a surface can be also detected using proportional counter and, recently, solid state devices. The paper presents our results in the design and achievement of a surface tritium monitor using a PIN photodiode as a solid state charged particle detector to count betas emitted from the surface. That method allows continuous, real-time and non-destructively measuring of tritium. (authors)

  12. Measurements of the spatial distribution of tritium in air above a chronically contaminated surface

    International Nuclear Information System (INIS)

    Workman, W.J.G.; Davis, P.A.; Wood, M.J.; Barry, P.J.

    1993-01-01

    Tritium in air (HTO) concentrations were measured over a 13 month period above a surface that is chronically contaminated by tritium-bearing groundwater from a waste management area. The measurements were made using passive diffusion samplers, which were sited at six locations (about 100 m apart) at 0.15, 0.9, and 1.8 m above ground level. The diffusion samplers were compact, sampled at a known rate, and required no external power source. They are ideal for remote locations and require a minimum of effort to collect and analyze the data. HTO-in-air concentration peaked in the summer at 500-1500 Bq.m -3 and decreased in the winter to 1-120 Bq.m -3 . In general, concentration decreased with height above ground level, implying that HTO is being lost from the surface to the atmosphere. The flux of tritium to the atmosphere must, therefore, be taken into account to estimate the tritium mass balance for a contaminated area. (Author) 3 figs., 5 tabs., 10 refs

  13. Development of a Novel Contamination Resistant Ion Chamber for Process Tritium Measurement and Use in the JET First Trace Tritium Experiment

    International Nuclear Information System (INIS)

    Worth, L.B.C.; Pearce, R.J.H.; Bruce, J.; Banks, J.; Scales, S.

    2005-01-01

    The accuracy of process measurements of tritium with conventional ion chambers is often affected by surface tritium contamination. The measurement of tritium in the exhaust of the JET torus is particularly difficult due to surface contamination with highly tritiated hydrocarbons. JET's first unsuccessful attempt to overcome the contamination problem was to use an ion chamber, with a heating element as the chamber wall so that it could be periodically decontaminated by baking. The newly developed ion chamber works on the principle of minimising the surface area within the boundary of the anode and cathode.This paper details the design of the ion chamber, which utilises a grid of 50-micron tungsten wire to define the ion chamber wall and the collector electrode. The effective surface area which, by contamination, is able to effect the measurement of tritium within the process gas has been reduced by a factor of ∼200 over a conventional ion chamber. It is concluded that the new process ion chamber enables sensitive accurate tritium measurements free from contamination issues. It will be a powerful new tool for future tritium experiments both to improve tritium tracking and to help in the understanding of tritium retention issues

  14. Tritium contaminated surface monitoring with a solid - state device

    International Nuclear Information System (INIS)

    Culcer, Mihai; Iliescu, Mariana; Curuia, Marian; Enache, Adrian; Stefanescu, Ioan; Ducu, Catalin; Malinovschi, Viorel

    2004-01-01

    The low energy of betas makes tritium difficult to detect. However, there are several methods used in tritium detection, such as liquid scintillation and ionization chambers. Tritium on or near a surface can be also detected using proportional counters and, recently, solid state devices. The paper presents our results in the design and achievement of a surface tritium monitor using a PIN photodiode as a solid state charged particle detector to count betas emitted from the surface. That method allows continuous, real-time and non-destructively measuring of tritium. (authors)

  15. Normalized Tritium Quantification Approach (NoTQA) a Method for Quantifying Tritium Contaminated Trash and Debris at LLNL

    International Nuclear Information System (INIS)

    Dominick, J.L.; Rasmussen, C.L.

    2008-01-01

    characterization method for quantification of tritium contaminated trash and debris. The characterization technique is applicable to surface and subsurface tritium contaminated materials with surfaces amenable to swiping. Some limitations of this characterization technique are identified

  16. Temporal sealing material of tritium-contaminated stainless steel

    International Nuclear Information System (INIS)

    Wen Wei; Dan Guiping; Zhang Dong; Qiu Yongmei; Zhang Li

    2010-01-01

    Tritium can be released from the exterior of tritium-contaminated stainless steel by slight stirring while decontaminating and disassembling. In order to avoid secondary tritium contamination to environment and operators, it is necessary to cover with an effective coating to tritium on the exterior of tritium-contaminated stainless steel and fill an effective substance to tritium inside. The results of tritium sealed experiments show that sealing efficiency of neutral silicone rubber is more than 85% for condition of static state and more than 99% for foam concrete condition of dynamic state. Neutral silicone rubber and foam concrete which have finer sealing efficiency can be used as temporal sealed material for the decontamination and disassembly of tritium-contaminated stainless steel. (authors)

  17. Tritium contaminated waste management at the tritium systems test assembly

    International Nuclear Information System (INIS)

    Jalbert, R.A.; Carlson, R.V.

    1987-01-01

    The Tritium Systems Test Assembly (TSTA) at Los Alamos continues to move toward full operation of an integrated, full-sized, computer-controlled fusion fuel processing loop. Concurrent nonloop experiments further the development of advanced tritium technologies and handling methods. Since tritium operations began in June 1984, tritium contaminated wastes have been produced at TSTA that are roughly typical in kind and amount of those to be produced by tritium fueling operations at fusion reactors. Methods of managing these wastes are described, including information on some methods of decontamination so that equipment can be reused. Data are given on the kinds and amounts of wastes and the general level of contamination. Also included are data on environmental emissions and doses to personnel that have resulted from TSTA operations. Particular problems in waste managements are discussed

  18. Oxidative Tritium Decontamination System

    International Nuclear Information System (INIS)

    Gentile, Charles A.; Parker, John J.; Guttadora, Gregory L.; Ciebiera, Lloyd P.

    2002-01-01

    The Princeton Plasma Physics Laboratory, Tritium Systems Group has developed and fabricated an Oxidative Tritium Decontamination System (OTDS), which is designed to reduce tritium surface contamination on various components and items. The system is configured to introduce gaseous ozone into a reaction chamber containing tritiated items that require a reduction in tritium surface contamination. Tritium surface contamination (on components and items in the reaction chamber) is removed by chemically reacting elemental tritium to tritium oxide via oxidation, while purging the reaction chamber effluent to a gas holding tank or negative pressure HVAC system. Implementing specific concentrations of ozone along with catalytic parameters, the system is able to significantly reduce surface tritium contamination on an assortment of expendable and non-expendable items. This paper will present the results of various experimentation involving employment of this system

  19. In-Situ Imaging and Quantification of Tritium Surface Contamination via Coherent Fiber Bundle

    International Nuclear Information System (INIS)

    Gentile, Charles A.; Parker, John J.; Zweben, Stewart J.

    2001-01-01

    Princeton Plasma Physics Laboratory (PPPL) has developed a method of imaging tritium on in-situ surfaces for the purpose of real-time data collection. This method expands upon a previous tritium imaging concept, also developed at PPPL. Enhancements include an objective lens coupled to the entry aperture of a coherent fiber optic (CFO) bundle, and a relay lens connecting the exit aperture of the fiber bundle to an intensifier tube and a charge-coupled device (CCD) camera. The system has been specifically fabricated for use in determining tritium concentrations on first wall materials. One potential complication associated with the development of D-T [deuterium-tritium] fueled fusion reactors is the deposition of tritium (i.e., co-deposited layer) on the surface of the primary wall of the vacuum vessel. It would be advantageous to implement a process to accurately determine tritium distribution on these inner surfaces. This fiber optic imaging device provides a highly practical method for determining the location, concentration, and activity of surface tritium deposition. In addition, it can be employed for detection of tritium ''hot-spots'' and ''hide-out'' regions present on the surfaces being imaged

  20. Tritium surface loading due to contamination of rainwater from atmospheric release at NAPS

    International Nuclear Information System (INIS)

    Sharma, L.N.; Dube, B.; Varakhedkar, V.K.

    2001-01-01

    Annual tritium (HTO) surface loading has been measured and calculated for the year 1998-99 within 0.8 km distance from 145m high stack of Narora Atomic Power Station (NAPS) at eight locations in different directions. The technique for measured values consists of the summation of product of tritium concentration (Bq/l) in daily rainfall samples and daily rainfall (mm) whereas that for calculated values having the use of prevailing meteorological conditions and average tritium release rate during a year. The ratios of measured and calculated values of tritium surface loading during the years 1998-99 are found to be in the range of 0.18 to 6.97. Tritium surface loading studies at NAPS reveal that a fraction 1.7E-03 of total annual tritium released through stack gets deposited on the surface due to washout / rainout of plume within 0.8 km radial distance from stack. The range of deposition velocity, V w (m.s - 1 ) i.e the ratio of annual tritium surface loading W(Bq.m - 2 . s - 1 ) and annual mean tritium concentration in air, χo(Bq.m - 3) at three locations for the years 1998-99 is found to be 5.59E-04 to 5.99E-03 ms - 1 . The average value for wet deposition velocity V bar w for NAPS site is estimated as 2.92E-03 m.s - 1. (author)

  1. On the possibility of using tritium as an indicator of surface water entry into underlying horizons

    International Nuclear Information System (INIS)

    Pavlov, V.A.; Romanov, V.V.; Petrukhin, V.A.; Andrievskij, E.I.; Gribanov, O.I.; Igumnov, A.S.; Malykhin, A.P.

    1981-01-01

    Tritium content in the surface water of the central section of Baikal-Amur railway is investigated to estimate sanitary toxicological state and hydrodynamic regime of these waters, as well as the possibility of using tritium as an indicator of contamination of surface waters. It is established that tritium is a convenient indicator of contamination processes of waters from underground sources. Tritium levels in waters of wells investigated correspond to existing sanitary norms [ru

  2. Environmental contamination due to release of a large amount of tritium

    International Nuclear Information System (INIS)

    Kawai, Hiroshi

    1988-01-01

    Tritium release incidents have occurred many times in the Savannah Rever Plant in the U.S. A tritium release incident also took place in the Lawrence Livermore Laboratory. The present article outlines the reports by the plant and laboratory on these incidents and makes some comments on environmental contamination that may results from release of a large amount of tritium from nuclear fusion facilities. Tritium is normally released in the form of a combination of chemical compounds such as HT, DT and T 2 and oxides such as HTO, DTO and T 2 O. The percentage of the oxides is given in the reports by the plant. Oxides, which can be absorbed through the skin, are considered to be nearly a thousand times more toxic than the other type of tritium compounds. The HT type compounds (HT, DT and T 2 ) can be oxidized by microorganisms in soil into oxides (HTO, DTO and T 2 O) and therefore, great care should also given to this type of compounds. After each accidental tritium release, the health physics group of the plant collected various environmental samples, including ground surface water, milk, leaves of plants, soil and human urine, in leeward areas. Results on the contamination of surface water, fish and underground water are outlined and discussed. (Nogami, K.)

  3. Internal contamination by tritium caused by radioluminescent paints

    Energy Technology Data Exchange (ETDEWEB)

    Adamiak-Ziemba, J.; Doniec, J.

    1985-01-01

    The internal contamination investigations covered 23 persons using radioluminescence paints containing tritium, assembling devices painted with those paints, and those having no contact with active paints but working next to the painting room. Determined were concentrations of tritium excreted with urine, air contamination at workplaces, contamination of workplace areas and hand skin. At the time covered by the investigations, the mean annual equivalent doses for those using tritium paints were reduced from 14-20 mSv to about 5 mSv. In those working next to the painting room they were reduced from 5.8-15 to 0.23 mSv. The exposure of those assembling the devices does not exceed 1 mSv. It was demonstrated that the main cause of the tritium exposure level was air contamination in working rooms.

  4. Tritium surface loading due to contamination of rainwater from atmospheric release at NAPS (2011)

    International Nuclear Information System (INIS)

    Gautam, Y.P.; Sharma, Saivajay; Rao, K.S.; Singh, Bhikam; Kumar, Avinash; Ravi, P.M.

    2012-01-01

    Annual tritium (HTO) surface loading has been measured and calculated for the year 2011 within 0.8 km distance from 145 m high stack of Narora Atomic Power Station (NAPS) at eight locations in different directions. The technique for measured values consists of the summation of product of tritium concentration (Bq/l) in daily rainfall samples and daily rainfall (mm). Tritium surface loading studies at NAPS reveal that a fraction 1.01E-03 of total annual tritium released through stack gets deposited on the surface due to washout/rainout of plume within 0.8 km radial distance from stack. The range of deposition velocity, Vw (m.s -1 ) i.e., the ratio of annual tritium surface loading W (Bq. m -2 .s -1 ) and annual mean tritium concentration in air, c 0 (Bq.m -3 ) at three locations for the years 2011 is found to be 6.12E-04 to 2.89E-03. The average value for wet deposition velocity V w for NAPS site is estimated as 3.17E-03 m.s -1 . (author)

  5. Stainless steel electrochemical behaviour - application to the decontamination of steel parts contaminated by tritium

    International Nuclear Information System (INIS)

    Bellanger, G.

    1991-01-01

    This purpose of this work is the study of an electrochemical decontamination process of stainless steel in which tritium is present on the surface of the metal, in the oxide layer and in the metal. We have first investigated the behaviour of the oxide layer. Then we have studied the hydrogen evolution, its diffusion and retrodiffusion in the metal. The results are applied to the decontamination of steel parts contamined by tritium. Part of the tritium can be eliminated by reducing the oxyde layer, which contains large amounts of tritium. However, it is more beneficial to electrolyse at the potential at which the H + ions are reduced. The hydrogen on the steel surface enters in the metal and displaces most of tritium located in the metallic layers near the surface. The tritium surface elimination rate is about 95%. The tritium eliminated through electrolysis is only a small fraction of all the tritium contained in the metal. However, according to conservation experiments of parts after electrolysis, it can be concluded that hydrogen, probably more strongly bound than tritium to steel, forms near the surface a barrier that prevents tritium retrodiffusion. Electrolysis appears as a satisfactory process for the surface decontamination of slightly tritiated steel parts. A decontamination automaton based on the preceding results is described using a pad electrolyser. This type of decontamination is little polluting, and the parts can be recycled after the in situ treatment [fr

  6. Contamination mechanisms of air basin with tritium in venues of underground nuclear explosions at the former Semipalatinsk test site.

    Science.gov (United States)

    Lyakhova, O N; Lukashenko, S N; Larionova, N V; Tur, Y S

    2012-11-01

    During the period of testing from 1945 to 1962 at the territory of Semipalatinsk test site (STS) within the Degelen Mountains in tunnels, 209 underground nuclear explosions were produced. Many of the tunnels have seasonal water seepage in the form of streams, through which tritium migrates from the underground nuclear explosion (UNE) venues towards the surface. The issue of tritium contamination occupies a special place in the radioactive contamination of the environment. In this paper we assess the level and distribution of tritium in the atmospheric air of ecosystems with water seepage at tunnels № 176 and № 177, located on "Degelen" site. There has been presented general nature of tritium distribution in the atmosphere relative to surface of a watercourse which has been contaminated with tritium. The basic mechanisms were studied for tritium distribution in the air of studied ecosystems, namely, the distribution of tritium in the systems: water-atmosphere, tunnel air-atmosphere, soil water-atmosphere, vegetation-atmosphere. An analytical calculation of tritium concentration in the atmosphere by the concentration of tritium in water has been performed. There has experimentally obtained the dependence for predictive assessment of tritium concentrations in air as a function of tritium concentration in one of the inlet sources such as water, tunnel air, soil water, vegetation, etc.. The paper also describes the general nature of tritium distribution in the air in the area "Degelen". Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. Contamination mechanisms of air basin with tritium in venues of underground nuclear explosions at the former Semipalatinsk test site

    International Nuclear Information System (INIS)

    Lyakhova, O.N.; Lukashenko, S.N.; Larionova, N.V.; Tur, Y.S.

    2012-01-01

    During the period of testing from 1945 to 1962 at the territory of Semipalatinsk test site (STS) within the Degelen Mountains in tunnels, 209 underground nuclear explosions were produced. Many of the tunnels have seasonal water seepage in the form of streams, through which tritium migrates from the underground nuclear explosion (UNE) venues towards the surface. The issue of tritium contamination occupies a special place in the radioactive contamination of the environment. In this paper we assess the level and distribution of tritium in the atmospheric air of ecosystems with water seepage at tunnels № 176 and № 177, located on “Degelen” site. There has been presented general nature of tritium distribution in the atmosphere relative to surface of a watercourse which has been contaminated with tritium. The basic mechanisms were studied for tritium distribution in the air of studied ecosystems, namely, the distribution of tritium in the systems: water–atmosphere, tunnel air–atmosphere, soil water–atmosphere, vegetation–atmosphere. An analytical calculation of tritium concentration in the atmosphere by the concentration of tritium in water has been performed. There has experimentally obtained the dependence for predictive assessment of tritium concentrations in air as a function of tritium concentration in one of the inlet sources such as water, tunnel air, soil water, vegetation, etc.. The paper also describes the general nature of tritium distribution in the air in the area “Degelen”. - Highlights: ► The basic mechanisms for tritium distribution in the air of nuclear testing sites were examined. ► We researched the distribution of tritium in the systems such as water–atmosphere, tunnel air–atmosphere, soil water–atmosphere and vegetation–atmosphere. ► An analytical calculation of tritium concentration in the atmosphere was performed. ► We experimentally obtained the dependence for predictive assessment of tritium concentrations in

  8. Volatilized tritiated water vapor in the vicinity of exposed tritium contaminated groundwater

    International Nuclear Information System (INIS)

    Dunn, D.L.; Carlton, B.; Hunter, C.; McAdams, T.

    1994-01-01

    Water vapor tritium concentrations in air above a known source of tritiated water can be estimated. Estimates should account for the mechanisms of evaporation and condensation at the water surface and water species exchange, and are typically applicable under a broad range of wind, temperature and humidity conditions. An estimate of volatilized tritium water vapor was made for a known outcropping of tritium contaminated groundwater at the Savannah River Site (SRS) old F-Area effluent stream. In order to validate this estimate and the associated dose calculation, sampling equipment was fabricated, tested, and installed at the effluent stream. The estimate and the dose calculation were confirmed using data from samples collected

  9. Practical aspects of tritium measurement in ground and surface waters

    Energy Technology Data Exchange (ETDEWEB)

    Nitzsche, O [Technische Univ. Bergakademie Freiberg (Germany). Inst. fuer Angewandte Physik; Hebert, D [Technische Univ. Bergakademie Freiberg (Germany). Inst. fuer Angewandte Physik

    1997-03-01

    Tritium measurements are a powerful tool in hydrological and hydrogeological investigations for detecting mean residence times of several water reservoirs. Due to the low tritium activities in precipitation, ground and surface waters a low level measurement is necessary. Therefore often the liquid scintillation counting after an electrolytic enrichment of water is used. In this paper some practical aspects and problems of measurement are discussed and the problem of contamination in low level laboratories is shown. (orig.)

  10. Protection against tritium radiations

    International Nuclear Information System (INIS)

    Bal, Georges

    1964-05-01

    This report presents the main characteristics of tritium, describes how it is produced as a natural or as an artificial radio-element. It outlines the hazards related to this material, presents how materials and tools are contaminated and decontaminated. It addresses the issue of permissible maximum limits: factors of assessment of the risk induced by tritium, maximum permissible activity in body water, maximum permissible concentrations in the atmosphere. It describes the measurement of tritium activity: generalities, measurement of gas activity and of tritiated water steam, tritium-induced ionisation in an ionisation chamber, measurement systems using ionisation chambers, discontinuous detection of tritium-containing water in the air, detection of surface contamination [fr

  11. Simulation of ground water contamination by tritium: Application to a Moroccan Site

    International Nuclear Information System (INIS)

    Qassoud, D.; Soufi, I.; Nacir, B.; Ziagos, J.; Demir, Z.; Hajjani, A.

    2006-01-01

    Tritium is a radioactive element. Its movement in the environment depends on the chemical forms that it takes. Tritiated water is one of this forms. The infiltration of tritiated water can causes contamination of the environment and the underground water. In this context, we have taken into account a waste contaminated by Tritium and stored in the surface of the soil. We studied the impact of an infiltration of a unit activity of this radioelement in the Moroccan site of Maamora localized in the Rharb region. The principal objective of the work presented in this paper is to give necessary information for the site environmental surveillance program establishment. The assessment is based on the characteristics of the site considered. It is carried out using the methodology taken into account in the Lawrence Livermore National Laboratory (LLNL) for the pollutant transport simulation in the unsaturated zone (between the soil and underground water). This methodology is based on the mathematical model called NUFT[1,2] witch is a unified suite of multiphase, multicomponent models for numerical solution of non-isothermal flow and transport in porous media with application to subsurface contaminant transport problems. NUFT have been developed in LLNL (Livermore-USA). Considering a quantity of one Curie of Tritium and considering the assumptions of impact assessments of the radioactivity on the Maamora ground water, the concentration of this radionuclide in water, will be lower than 0,4% of the acceptable Tritium limit in water. Taking in to account the physical and hydrogeological characteristics of the site studied and in the basis of the site radiological baseline, the environmental impact of the tritium infiltration into the underground water is negligible for the case studied

  12. Refurbishing tritium contaminated ion sources

    International Nuclear Information System (INIS)

    Wright, K.E.; Carnevale, R.H.; McCormack, B.E.; Stevenson, T.; Halle, A. von

    1995-01-01

    Extended tritium experimentation on TFTR has necessitated refurbishing Neutral Beam Long Pulse Ion Sources (LPIS) which developed operational difficulties, both in the TFTR Test Cell and later, in the NB Source Refurbishment Shop. Shipping contaminated sources off-site for repair was not permissible from a transport and safety perspective. Therefore, the NB source repair facility was upgraded by relocating fixtures, tooling, test apparatus, and three-axis coordinate measuring equipment; purchasing and fabricating fume hoods; installing exhaust vents; and providing a controlled negative pressure environment in the source degreaser/decon area. Appropriate air flow monitors, pressure indicators, tritium detectors and safety alarms were also included. The effectiveness of various decontamination methods was explored while the activation was monitored. Procedures and methods were developed to permit complete disassembly and rebuild of an ion source while continuously exhausting the internal volume to the TFTR Stack to avoid concentrations of tritium from outgassing and minimize personnel exposure. This paper presents upgrades made to the LPIS repair facility, various repair tasks performed, and discusses the effectiveness of the decontamination processes utilized

  13. Tritium means of detection and of protection; Le tritium moyens de detection et de protection

    Energy Technology Data Exchange (ETDEWEB)

    Sutra-Fourcade, Y [Commissariat a l' Energie Atomique, Marcoule (France). Centre d' Etudes Nucleaires

    1967-07-01

    The report is an attempt to correlate present data concerning tritium, especially from the health physics points of view. The various detection and measurement methods are reviewed in turn: measurement of tritium in the atmosphere, in liquids and on surfaces. The operation of various types of apparatus is analyzed and the sensitivity limits deduced from laboratory tests are given. Otter sections are devoted to the means of protection which can be used against inhalation of tritium (ventilation, protective clothing) and to calculations of the changes in atmospheric pollution in a given place and of the time spent in a contaminated zone. The last part deals with the decontamination of equipment contaminated with tritium. (author) [French] Le rapport represente un essai de synthese des connaissances actuelles sur le tritium, essentiellement du point de vue de la radioprotection. Les differents moyens de detection et de mesure sont successivement passes en revue: mesure du tritium dans l'atmosphere, dans les liquides, sur les surfaces. Le fonctionnement de differents types d'appareils est analyse et les limites de sensibilite sont donnees d'apres les essais effectues en laboratoire. D'autres paragraphes sont consacres aux moyens de protection contre l'inhalation du tritium (ventilation, vetements de protection), a des calculs d'evolution de pollution atmospherique dans les locaux et de temps de presence en atmosphere contaminee. La derniere partie se rapporte a la de contamination de materiel contamine par du tritium. (auteur)

  14. Tritium - is it underestimated

    International Nuclear Information System (INIS)

    Whitlock, G.D.

    1980-01-01

    Practical experience in the use of the Whitlock Tritium Meter in various laboratories and industrial establishments throughout the world has shown that:-a) Measurements by smear/wipe tests can often be in error by three orders of magnitude or more; b) Sub-visual surface scratches (8μ deep) are radiologically important; c) Volatile forms of tritium exist in 20% to 30% of establishments visited. It is concluded that a) the widespread use of smear/wipe techniques for the assessment of 3 H surface contamination based on the assumption that 10% of removable activity is collected by the smear/wipe should be re-examined and b) tritium surface contamination assessed as 'fixed' can contain volatile fractions with a hazard potential which may be considerably greater than the hazard from removable activity at present covered by maximum permissible level recommendations. (H.K.)

  15. Tritium contamination and monitoring at Frascati Neutron Generator

    Energy Technology Data Exchange (ETDEWEB)

    Lucci, F.; Sandri, S.; Ianni, A. [ENEA, Frascati (Italy). Dipartimento Ambiente; Vasselli, R. [ANPA, Roma (Italy); Pillon, M.; Bettinali, L. [ENEA, Frascati (Italy). Dipartimento Energia

    1994-11-01

    The Frascati Neutron Generator (FGN) is a specialised 300 keV, 3 mA direct electrostatic deuteron accelerator which produces about 5-10{sup 1}1 14 MeV neutrons per second by D-T reactions on a tritium-titanium fixed target. This paper concerns the tritium contamination control and monitoring aspects after some months of testing and a preliminary period of operation of the plant. The tritium monitoring system is composed of both on-line and off-line devices to control the tritium concentration in the atmosphere measured from different parts of the plant: vacuum exhaust clean up (VECU) system, stack, etc. The on-line devices are three flux monitors, that sample continuosly the air from up to eight different points in the plant. The passive sampling system is designed to select the chemical form of tritium and to collect respectively HTO and HT in two different cartridges filled with an appropriate drying material. The response of the on-line tritium monitor system are exposed and discussed: some measurements performed with atmosphere dehumidifying apparatus of this system are described and the relevant results are analysed.

  16. Tritium contamination and monitoring at Frascati Neutron Generator

    International Nuclear Information System (INIS)

    Lucci, F.; Sandri, S.; Ianni, A.; Pillon, M.; Bettinali, L.

    1994-11-01

    The Frascati Neutron Generator (FGN) is a specialised 300 keV, 3 mA direct electrostatic deuteron accelerator which produces about 5-10 1 1 14 MeV neutrons per second by D-T reactions on a tritium-titanium fixed target. This paper concerns the tritium contamination control and monitoring aspects after some months of testing and a preliminary period of operation of the plant. The tritium monitoring system is composed of both on-line and off-line devices to control the tritium concentration in the atmosphere measured from different parts of the plant: vacuum exhaust clean up (VECU) system, stack, etc. The on-line devices are three flux monitors, that sample continuosly the air from up to eight different points in the plant. The passive sampling system is designed to select the chemical form of tritium and to collect respectively HTO and HT in two different cartridges filled with an appropriate drying material. The response of the on-line tritium monitor system are exposed and discussed: some measurements performed with atmosphere dehumidifying apparatus of this system are described and the relevant results are analysed

  17. Feedback on the radiological management of a urban site contaminated with tritium

    Energy Technology Data Exchange (ETDEWEB)

    Leprieur, F.; Pierrard, O. [Institut de radioportection et de surete nucleaire - IRSN (France)

    2014-07-01

    Introduction: In November 2010, the IRSN is reached on a rare case of environmental tritium contamination on a site located in an urban area near Paris (Saint-Maur-des-Fosses - dpt 94). This contamination resulted from the presence in an enterprise's premises of an experimental device containing molecular sieve from the Valduc nuclear site, wrongly considered as un-used. First actions: IRSN has quickly performed an initial characterization of tritium contamination in the premises of the company and its close environment. The first results showed the existence of a strong local contamination (tritium activity> 150 000 Bq/m{sup 3} in air) and a important labeling in samples collected in the close vicinity of the company premises (between 1000 and 10000 Bq/kg f.w. in plants, between 500 and 1500 Bq/L in water). These results led IRSN to conduct multiple investigations: - tritium measurements on samples of water, air and plants collected in the area close to the building to know the importance and extent of environmental marking and follow its evolution over time. In this aim, 450 measurements were made between 2010 and 2013; - measurements of tritium in the urine of residents living near the contaminated building: the results showed traces of tritium for some of them but the assessments conducted by the IRSN from these results led to extremely low dosimetry estimates without consequences for the health of these people; - dosimetric evaluations of tritium exposure of employees and visitors of the company contaminated. Informing the public and stakeholders In November 2010, IRSN has collaborated with the mayor to facilitate early interventions in urban areas and in particular to facilitate contacts for access to private property. In this perspective, the IRSN participated in public meetings to explain the cause of this accident and the results of tritium measurements to residents. IRSN also published regularly on its web site briefing notes reflecting the results

  18. Liquid scintillation cocktails comparison for tritium contamination measurements

    International Nuclear Information System (INIS)

    Bazzarri, S.; Belloni, P.

    1996-01-01

    Liquid scintillation counting is one of the most used techniques for the measurements of tritium contamination. Until few years ago a problem related to this kind of measurement was the potential toxicity of the liquid cocktails used to produce the required scintillation. Some new products that guarantee an almost negligible impact on the environment and that are no longer toxic for the operators are now available. Some of this new scintillation cocktail are suitable to be used for tritium measurement. Due to the great benefit from the health point of view of these new materials a test of their scintillation performance has been done at the ENEA centers to select the product having the best characteristics for tritium measurement. (author)

  19. Tritium-surface interactions

    International Nuclear Information System (INIS)

    Kirkaldy, J.S.

    1983-06-01

    The report deals broadly with tritium-surface interactions as they relate to a fusion power reactor enterprise, viz., the vacuum chamber, first wall, peripherals, pumping, fuel recycling, isotope separation, repair and maintenance, decontamination and safety. The main emphasis is on plasma-surface interactions and the selection of materials for fusion chamber duty. A comprehensive review of the international (particularly U.S.) research and development is presented based upon a literature review (about 1 000 reports and papers) and upon visits to key laboratories, Sandia, Albuquerque, Sandia, Livermore and EGβG Idaho. An inventory of Canadian expertise and facilities for RβD on tritium-surface interactions is also presented. A number of proposals are made for the direction of an optimal Canadian RβD program, emphasizing the importance of building on strength in both the technological and fundamental areas. A compendium of specific projects and project areas is presented dealing primarily with plasma-wall interactions and permeation, anti-permeation materials and surfaces and health, safety and environmental considerations. Potential areas of industrial spinoff are identified

  20. Studying of tritium content in snowpack of Degelen mountain range.

    Science.gov (United States)

    Turchenko, D V; Lukashenko, S N; Aidarkhanov, A O; Lyakhova, O N

    2014-06-01

    The paper presents the results of investigation of tritium content in the layers of snow located in the streambeds of the "Degelen" massif contaminated with tritium. The objects of investigation were selected watercourses Karabulak, Uzynbulak, Aktybai located beyond the "Degelen" site. We studied the spatial distribution of tritium relative to the streambed of watercourses and defined the borders of the snow cover contamination. In the centre of the creek watercourses the snow contamination in the surface layer is as high as 40 000 Bq/L. The values of the background levels of tritium in areas not related to the streambed, which range from 40 to 50 Bq/L. The results of snow cover measurements in different seasonal periods were compared. The main mechanisms causing tritium transfer in snow were examined and identified. The most important mechanism of tritium transfer in the streams is tritium emanation from ice or soil surface. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Metabolism and dosimetry of tritium

    International Nuclear Information System (INIS)

    Hill, R.L.; Johnson, J.R.

    1993-01-01

    This document was prepared as a review of the current knowledge of tritium metabolism and dosimetry. The physical, chemical, and metabolic characteristics of various forms of tritium are presented as they pertain to performing dose assessments for occupational workers and for the general public. For occupational workers, the forms of tritium discussed include tritiated water, elemental tritium gas, skin absorption from elemental tritium gas-contaminated surfaces, organically bound tritium in pump oils, solvents and other organic compounds, metal tritides, and radioluminous paints. For the general public, age-dependent tritium metabolism is reviewed, as well as tritiated water, elemental tritium gas, organically bound tritium, organically bound tritium in food-stuffs, and tritiated methane. 106 refs

  2. Tritium removal from contaminated water via infrared laser multiple-photon dissociation

    International Nuclear Information System (INIS)

    Maienschein, J.L.; Magnotta, F.; Herman, I.P.; Aldridge, F.T.; Hsiao, P.

    1983-01-01

    Isotope separation by means of infrared-laser multiple-photon dissociation offers an efficient way to recover tritium from contaminated light or heavy water found in fission and fusion reactors. For tritium recovery from heavy water, chemical exchange of tritium into deuterated chloroform is followed by selective laser dissociation of tritiated chloroform and removal of the tritiated photoproduct, TCl. The single-step separation factor is at least 2700 and is probably greater than 5000. Here we present a description of the tritium recovery process, along with recent accomplishments in photochemical studies and engineering analysis of a recovery system

  3. Recommended radiological controls for tritium operations

    International Nuclear Information System (INIS)

    Mansfield, G.

    1992-01-01

    This informal report presents recommendations for an adequate radiological protection program for tritium operations. Topics include hazards analysis, facility design, personnel protection equipment, training, operational procedures, radiation monitoring, to include surface and airborne tritium contamination, and program management

  4. Tritium as a tracer for the movement of surface water and groundwater in the Glatt Valley, Switzerland

    International Nuclear Information System (INIS)

    Santschi, P.H.; Hoehn, E.; Lueck, A.; Farrenkothen, K.

    1987-01-01

    A pulse of tritiated water (∼ 500 Ci) accidentally discharged by an isotope processing plant in the Glatt River Valley, northern Switzerland, allowed us to observe the migration of a contaminant pulse through a sewage treatment plant, rivers, and various wells of infiltrated groundwater. The accident pointed to various memory effects of the tritium, which acted as a conservative tracer. Tritium concentrations in surface water and groundwater were used to test predictions for the transport of conservative anthropogenic trace contaminants accidentally discharged into the sewer system. Mass balance calculations indicate that about 2-10% of the tritium pulse infiltrated to the groundwater and about 0.5% of the total reached eight major drinking water wells of this densely populated area. In spite of the complex hydrogeology of the lower Glatt River Valley, tritium breakthrough curves could be effectively simulated with modeling approaches developed from an experimental well field

  5. Visual tritium imaging of In-Vessel surfaces

    International Nuclear Information System (INIS)

    Gentile, C. A.; Zweben, S. J.; Skinner, C. H.; Young, K. M.; Langish, S. W.; Nishi, M. F.; Shu, W. M.; Parker, J.; Isobe, K.

    2000-01-01

    A imaging detector has been developed for the purpose of providing a non-destructive, real time method of determining tritium concentrations on the surface of internal TFTR vacuum vessel components. The detector employs a green phosphor screen (P31, zinc sulfide: copper) with a wave length peak of 530 nm, a charge-coupled device (CCD) camera linked to a computer, and a detection chamber for inserting components recovered from the vacuum vessel. This detector is capable of determining tritium concentrations on the surfaces. The detector provides a method of imaging tritium deposition on the surfaces in a fairly rapid fashion

  6. Visual tritium imaging of in-vessel surfaces

    International Nuclear Information System (INIS)

    Gentile, C.A.; Zweben, S.J.; Skinner, C.H.; Young, K.M.; Langish, S.W.; Nishi, M.F.; Shu, W.M.; Parker, J.; Isobe, K.

    2000-01-01

    An imaging detector has been developed for the purpose of providing a non-destructive, real time method of determining tritium concentrations on the surface of internal TFTR vacuum vessel components. The detector employs a green phosphor screen (P31, zinc sulfide: copper) with a wave length peak of 530 nm, a charge-coupled device (CCD) camera linked to a computer, and a detection chamber for inserting components recovered from the vacuum vessel. This detector is capable of determining tritium concentrations on the surfaces. The detector provides a method of imaging tritium deposition on the surfaces in a fairly rapid fashion

  7. Recent environmental tritium levels in Japan

    International Nuclear Information System (INIS)

    Iwakura, T.; Inoue, Y.; Tanaka, K.; Kasida, Y.

    1982-01-01

    Data of the tritium surveillance program are summarized for the period of 1967 through 1980. Samples of surface water, tap water, coastal sea water and ground water were collected from environs of commercial nuclear power plants and nuclear facilities, and were analyzed by liquid scintillation counting. Although the results show some differences in tritium concentrations in water samples from various part of the country, there is a general tendency of the concentration in surface waters to decline as a function of time. This implies that environmental waters in Japan generally have not been influenced by the discharged effluents of the facilities or the stations with regard to tritium contamination and that the tritium content of precipitation still plays the dominant role in reflecting annual variation of tritium concentration in surface waters. (J.P.N.)

  8. Effects of interfering constituents on tritium smears

    International Nuclear Information System (INIS)

    Levi, G.D. Jr.; Cheeks, K.E.

    1993-01-01

    Tritium smears are performed by Health Protection Operations (HPO) to assess transferable contamination on work place surfaces, materials for movement outside Radiologically Controlled Areas (RCA), and product containers being shipped between facilities. Historically, gas proportional counters were used to detect transferable tritium contamination collected by smearing. Because tritium is a low-energy beta emitter, gas proportional counters do not provide the sensitivity or the counting efficiency to accurately measure the tritium activity on the smear. Liquid Scintillation Counters (LSC) provide greater counting efficiency for the low-energy beta particles along with greater reliability and reproducibility compared to gas flow proportional counters. The purpose of this technical evaluation was to determine the effects of interfering constituents such as filters, dirt and oil on the counting efficiency and tritium recoveries of tritium smears by LSC

  9. Long-term investigation of biosphere contamination by tritium

    International Nuclear Information System (INIS)

    Trnovec, T.; Kollar, J.; Tatara, M.; Chorvat, D.

    1974-03-01

    An apparatus was designed and built for isotope enrichment by electrolysis of water samples (taken in several localities in the vicinity of the Jaslovske Bohunice nuclear power plant) and a method was elaborated of measuring tritium using liquid scintillators, serving the determination of natural tritium concentrations. Operating experience showed that the degree of enrichment may easily be controlled and that the reproducibility of the enrichment coefficient value is conditional on the skill of personnel handling the apparatus. The apparatus constraints include a limited capacity of isotope enrichment (given by the number of electrolytic columns), demands on time, and sensitivity to secondary contamination. In addition to isotope enrichment of samples prior to measurement, also the feasibility of direct determination of natural tritium concentration without previous enrichment was tested. Tests were carried out of commercial products by Packard, INSTA-GEL and MONOPHASE-40. It was verified that the above method may be used in direct measuring tritium levels of several hundred TU. The preparation of a representative background sample was found to be the main problem involved in the type of determination described. The detection limit was mainly determined by the measurement statistics. (B.S.)

  10. Tritium contamination of hematopoietic stem cells alters long-term hematopoietic reconstitution

    International Nuclear Information System (INIS)

    Di Giacomo, F.; Barroca, V.; Laurent, D.; Lewandowski, D.; Saintigny, Y.; Romeo, P.H.; Granotier, Ch.; Boussin, F.D.

    2011-01-01

    Purpose: In vivo effects of tritium contamination are poorly documented. Here, we study the effects of tritiated Thymidine ([ 3 H] Thymidine) or tritiated water (HTO) contamination on the biological properties of hematopoietic stem cells (HSC). Materials and methods: Mouse HSC were contaminated with concentrations of [ 3 H] Thymidine ranging from 0.37-37.03 kBq/ml or of HTO ranging from 5-50 kBq/ml. The biological properties of contaminated HSC were studied in vitro after HTO contamination and in vitro and in vivo after [ 3 H] Thymidine contamination. Results: Proliferation, viability and double-strand breaks were dependent on [ 3 H] Thymidine or HTO concentrations used for contamination but in vitro myeloid differentiation of HSC was not affected by [ 3 H] Thymidine contamination. [ 3 H] Thymidine contaminated HSC showed a compromised long-term capacity of hematopoietic reconstitution and competition experiments showed an up to two-fold decreased capacity of contaminated HSC to reconstitute hematopoiesis. These defects were not due to impaired homing in bone marrow but to an initial decreased proliferation rate of HSC. Conclusion: These results indicate that contaminations of HSC with doses of tritium that do not result in cell death, induce short-term effects on proliferation and cell cycle and long-term effects on hematopoietic reconstitution capacity of contaminated HSC. (authors)

  11. Tritium in surface water of the Yenisei river Basin

    International Nuclear Information System (INIS)

    Bondareva, L.G.; Bolsunovsky, A.Ya.

    2005-01-01

    The paper reports an investigation of the tritium content in the surface waters of the Yenisei River basin near the Mining-and-Chemical Combine (MCC). In 2001-2003 the maximum tritium concentration in the Yenisei River did not exceed 4±1 Bq/L. It has been found that there are surface waters containing enhanced tritium, up to 168 Bq/L, as compared with the background values for the Yenisei River. There are two possible sources of tritium input. First, the last operating reactor of the MCC, which still uses the Yenisei water as coolant. Second, tritium may come from the deep aquifers at the Severny testing site. For the first time tritium has been found in two aquatic plant species of the Yenisei River with maximal tritium concentration 304 Bq/Kg wet weight. Concentration factors of tritium for aquatic plants are much higher than 1

  12. Tritium means of detection and of protection

    International Nuclear Information System (INIS)

    Sutra-Fourcade, Y.

    1967-01-01

    The report is an attempt to correlate present data concerning tritium, especially from the health physics points of view. The various detection and measurement methods are reviewed in turn: measurement of tritium in the atmosphere, in liquids and on surfaces. The operation of various types of apparatus is analyzed and the sensitivity limits deduced from laboratory tests are given. Otter sections are devoted to the means of protection which can be used against inhalation of tritium (ventilation, protective clothing) and to calculations of the changes in atmospheric pollution in a given place and of the time spent in a contaminated zone. The last part deals with the decontamination of equipment contaminated with tritium. (author) [fr

  13. Decontamination tests on tritium-contaminated materials

    International Nuclear Information System (INIS)

    Boutot, P.; Schipfer, P.

    1967-01-01

    These tests are designed to try out various processes liable to be applied to the decontamination of a material contaminated with tritium. The samples are thin stainless- steel slabs contaminated in the laboratory with elements extracted from industrial installations. The measurement of the initial and residual activities is carried out using an open-window BERTHOLD counter. The best results are obtained by passing a current of pre-heated (300 deg. C) air containing water vapour. This process makes it possible to reach a decontamination factor of 99.5 per cent in 4 hours. In a vacuum, the operation has to be prolonged to 100 hours in order to obtain a decontamination factor of 99.2 per cent. Wet-chemical or electrolytic treatments are efficient but their use is limited by the inherent corrosion risks. A study of the reappearance of the contamination has made it possible to observe that this phenomenon occurs whatever the process used. (authors) [fr

  14. Tritium sources

    International Nuclear Information System (INIS)

    Glodic, S.; Boreli, F.

    1993-01-01

    Tritium is the only radioactive isotope of hydrogen. It directly follows the metabolism of water and it can be bound into genetic material, so it is very important to control levels of contamination. In order to define the state of contamination it is necessary to establish 'zero level', i.e. actual global inventory. The importance of tritium contamination monitoring increases with the development of fusion power installations. Different sources of tritium are analyzed and summarized in this paper. (author)

  15. Tritium contamination in [18O] water containing 18F produced by a cyclotron

    International Nuclear Information System (INIS)

    Ito, S.; Saze, T.; Sakane, H.; Nishizawa, K.

    2003-01-01

    Tritium in the target [ 18 O] water irradiated with 9.6 MeV protons for producing [ 18 F] fluoride by 18 O(p, n) 18 F reaction was predicted from the consideration on the Q value of the 18 O(p, t) 16 O reaction. A tritium beta ray spectrum was measured by a liquid scintillation counter equipped with a multichannel analyzer. The ratio of the 3 H activity to the 18 F activity in the [ 18 O] target water was 2.4x10 -6 at the beam current of 25μA. Tritium also was detected in the [ 18 O] water for recycling and the wasted acetonitrile [ 18 O] water. The purified [ 18 F]-FDG solution was not contaminated by 3 H. The 40% 3 H out of the produced activity was lost in the course of the [ 18 F]-FDG synthesis. It was suggested that 3 H evaporated into the air during [ 18 F]-FDG synthesis and caused contamination of the workroom. The radiation workers should be prevented from environmental 3 H contamination. (author)

  16. Tritium saturation in plasma-facing materials surfaces

    International Nuclear Information System (INIS)

    Longhurst, G.R.; Anderl, R.A.; Pawelko, R.J.; Causey, R.A.; Federici, G.; Haasz, A.A.

    1998-01-01

    Plasma-facing components in the international thermonuclear experimental reactor (ITER) will experience high heat loads and intense plasma fluxes of order 10 20 -10 23 particles/m 2 s. Experiments on Be and W, two of the materials considered for use in ITER, have revealed that a tritium saturation phenomenon can take place under these conditions in which damage to the surface results that enhances the return of implanted tritium to the plasma and inhibits uptake of tritium. This phenomenon is important because it implies that tritium inventories due to implantation in these plasma-facing materials will probably be lower than was previously estimated using classical recombination-limited release at the plasma surface. Similarly, permeation through these components to the coolant streams should be reduced. In this paper we discuss evidences for the existence of this phenomenon, describe techniques for modeling it, and present results of the application of such modeling to prior experiments. (orig.)

  17. Tritium saturation in plasma-facing materials surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Longhurst, G.R.; Anderl, R.A.; Pawelko, R.J. [Idaho Nat. Eng. and Environ. Lab., Idaho Falls, ID (United States); Causey, R.A. [Sandia National Labs., Livermore, CA (United States); Federici, G. [ITER Garching Joint Work Site, Garching (Germany); Haasz, A.A. [Toronto Univ., ON (Canada). Inst. for Aerospace Studies

    1998-10-01

    Plasma-facing components in the international thermonuclear experimental reactor (ITER) will experience high heat loads and intense plasma fluxes of order 10{sup 20}-10{sup 23} particles/m{sup 2}s. Experiments on Be and W, two of the materials considered for use in ITER, have revealed that a tritium saturation phenomenon can take place under these conditions in which damage to the surface results that enhances the return of implanted tritium to the plasma and inhibits uptake of tritium. This phenomenon is important because it implies that tritium inventories due to implantation in these plasma-facing materials will probably be lower than was previously estimated using classical recombination-limited release at the plasma surface. Similarly, permeation through these components to the coolant streams should be reduced. In this paper we discuss evidences for the existence of this phenomenon, describe techniques for modeling it, and present results of the application of such modeling to prior experiments. (orig.) 39 refs.

  18. Rapid assessment of soil and groundwater tritium by vegetation sampling

    International Nuclear Information System (INIS)

    Murphy, C.E. Jr.

    1995-01-01

    A rapid and relatively inexpensive technique for defining the extent of groundwater contamination by tritium has been investigated. The technique uses existing vegetation to sample the groundwater. Water taken up by deep rooted trees is collected by enclosing tree branches in clear plastic bags. Water evaporated from the leaves condenses on the inner surface of the bag. The water is removed from the bag with a syringe. The bags can be sampled many times. Tritium in the water is detected by liquid scintillation counting. The water collected in the bags has no color and counts as well as distilled water reference samples. The technique was used in an area of known tritium contamination and proved to be useful in defining the extent of tritium contamination

  19. Evaluation of surface contamination based on certifiably traceable, internationally accreditable measurements

    International Nuclear Information System (INIS)

    Whitlock, G.D.

    1992-01-01

    National Accreditation and Measurement Service (NAMAS) adopted by the EUROMET agreement requires that the calibration of monitoring instruments be traceable internationally with the objective that radiation hazard assessment be improved. This objective is achieved for Tritium surface contamination by employing calibration sources and evaluation methods which comply with ISO standards including the measurement of activity removable by Volatilization as well as dust. Consideration should be given to organic binding of tritium in the skin with its implications in the event of litigation. (author)

  20. Study of tritium decontamination of stainless steel, copper, aluminum metals by tritium dry desorption

    International Nuclear Information System (INIS)

    Xie Yun; Shi Zhengkun; Wu Tao

    2014-01-01

    In order to study the decontamination efficiency of stainless steel, copper, aluminum metals contaminated by tritium, the metals were decontaminated by exposing to UV, ozone, heating, and the combination of heating, UV and ozone. The result indicates that the elevation of temperature can obviously improve decontamination. While irradiated by 172 nm UV, the decontamination efficiency is low, but it is better while heated and irradiated by 172 nm UV. If the stainless steel is irradiated by 172 nm UV and heated at 500℃ for 4 h, the decontamination efficiency is 99.2%. There is better decontamination efficiency of copper while exposed to ozone. While exposed to ozone and heated at 500℃, the decontamination efficiencies of stainless steel, copper and aluminum are higher than 99.2%. The decontamination efficiency can more obviously improve when metal is heated at high temperature (500℃) than low temperature (300℃). The surface tritium of metal placed at 30 d after decontamination increases because of diffusion and penetration of the tritium. Resolution spectra of tritium show that there are four kinds of contamination adsorbed tritium of stainless steel. (authors)

  1. The background concentration of the tritium in surface water before operation of the nuclear power plant Temelin

    International Nuclear Information System (INIS)

    Tomasek, M.; Wilhelmova, L.

    1997-01-01

    In this announcement the results of the tritium determination in surface waters in the period 1991-1996 are summarized. The water samples from Vltava river under the estuary of waste canal of the NPP Temelin and on the entrance in Prague water-work were taken away. Moreover, the samples from local rivers in the area of NPP Temelin construction which can be contaminated by scouring after condensation of the gaseous exhalation of the NPP were taken away. The samples by standard method in month interval were taken away. From every sample for the measurement of the tritium activity two parallel samples were prepared. The tritium activity with the scintillation spectrometer at the optimal conditions was measured. From measured values seasonal character and gradual decreasing of tritium activity in observed period is evident. Maximal activities obviously in the summer months are observed. From the exponential regression half time of decreasing of the tritium activity 8.1 year was calculated [sk

  2. Lichens as indicators of tritium and radiocarbon contamination

    International Nuclear Information System (INIS)

    Daillant, Olivier; Kirchner, Gerald; Pigree, Gilbert; Porstendorfer, Justin

    2004-01-01

    Lichens were collected in France in the surroundings of a military nuclear facility in Burgundy, near the la Hague reprocessing plant and in an area away from any direct source of contamination. Organically bound tritium (OBT) has been analysed on 18 samples and radiocarbon on 11. It appeared that on the most contaminated spots, the OBT activity in lichens was higher than the background by a factor of 1000 and was still a factor 10-100 at a distance of 20 km from the source. Radiocarbon from la Hague could be traced by lichens. The slow metabolism of lichens makes them suitable for the follow-up of 3 H and 14 C, which have been incorporated by photosynthesis

  3. Effects of tritium on electron multiplier performance

    International Nuclear Information System (INIS)

    Kerst, R.A.; Malinowski, M.E.

    1980-01-01

    In developing diagnostic instruments for fusion reactors, it is necessary to measure the effects of tritium contamination on channel electron multipliers (CEM). A CEM was exposed to T 2 pressures of up to 1.5 x 10 -1 Pa, with exposure quantities ranging up to 8800 Pa-s. The counting rate of the CEM is shown to consist of a prompt (Type I) signal caused by gas-phase tritium and a residual (Type II) signal, probably caused by near-surface tritium. The potential for using CEMs for observing the dynamics of tritium adsorption and absorption is discussed

  4. Metabolism of tritium uptake due to handling of metal surfaces exposed to tritiated hydrogen gas

    International Nuclear Information System (INIS)

    Johnson, J.R.; Peterman, B.F.

    1987-08-01

    Hairless rats were exposed to tritium by rubbing HT contaminated stainless steel planchets on them. The pattern of tritium excretion in the urine (n=4), shows the OBT (organically bound tritium) retention curve to be approximated by the sum of 2 exponential curves, one with a half-life of 0.4 days and another with a half-life of 1.4 days. The retention of HTO fit a single exponential curve with a half-life of 3.1 days. Exposed skin, unexposed skin, liver, muscle and blood (n=6) were assayed for HBO, and free HTO. Highest activity was found in the exposed skin, other organs with high activity are the unexposed skin and liver. Examination of the exposed skin showed HTO to be concentrated in the uppermost layers. The distribution of OBT was similar but was incorporated at a faster rate. The basal layer is exposed to a tritium concentration between 70-90% of that of the surface. The two macromolecule fractions with the highest amount of radioactivity were lipid and insoluble protein (mainly collagen)

  5. Tritium sources; Izvori tricijuma

    Energy Technology Data Exchange (ETDEWEB)

    Glodic, S [Institute of Nuclear Sciences VINCA, Belgrade (Yugoslavia); Boreli, F [Elektrotehnicki fakultet, Belgrade (Yugoslavia)

    1993-07-01

    Tritium is the only radioactive isotope of hydrogen. It directly follows the metabolism of water and it can be bound into genetic material, so it is very important to control levels of contamination. In order to define the state of contamination it is necessary to establish 'zero level', i.e. actual global inventory. The importance of tritium contamination monitoring increases with the development of fusion power installations. Different sources of tritium are analyzed and summarized in this paper. (author)

  6. Adaptive responses induced in bone marrow and blood of the rats by tritium contamination

    International Nuclear Information System (INIS)

    Savu, D.I.; Ionescu, M.A.; Petcu, I.

    2000-01-01

    It has been more than a decade since the initial report on the phenomenon termed 'adaptive response to ionizing radiation'. Although a number of reports have appeared since then, the understanding of this response is still incomplete. Our group intended to investigate whether the adaptive response could be induced in vivo by low level internal tritium contamination of rats and subsequently exposed to challenging irradiations with fast neutrons or gamma rays. Two experiments were performed and analysed comparatively. In the first experiment the rats have been pre-contaminated for 3 weeks to total doses of 7 cGy and 35 cGy and subsequently irradiated to 1 Gy by fast neutrons (d(13.5)+Be). They were sacrificed after 24 hours. In the second experiment rats were exposed to high gamma irradiation (1.4 Gy) after prior contamination with tritium for 20 days to total doses of 4.4 cGy and 5.1 cGy. We followed up the modifications of two biochemical parameters: (i) the in vitro tritiated thymidine incorporation in the bone marrow cells and (ii) the reduced glutathione level in the blood cells. The thymidine incorporation assay revealed a putative adaptive reaction only for the rats preirradiated with tritiated water to 35 cGy and post-irradiated with fast neutrons. The glutathione content was found to be increased (back to the normal level) for the tritium pre-contaminated and neutron irradiated animals as compared to those exposed only to fast neutrons. The adaptive response is believed to be a protective mechanism that confers resistance to the detrimental effects of ionizing radiation. Our studies suggest that the irradiation with low conditioning doses of tritium (7; 35 cGy) is more efficient in conferring radioresistance to bone marrow and blood cells at the treatment with fast neutrons (1 Gy) than the irradiation with tritium doses of 4.4 and 5.1 cGy followed by gamma rays (1.4 Gy). (authors)

  7. Experiences with decontaminating tritium-handling apparatus

    International Nuclear Information System (INIS)

    Maienschein, J.L.; Garcia, F.; Garza, R.G.; Kanna, R.L.; Mayhugh, S.R.; Taylor, D.T.

    1991-07-01

    Tritium-handling apparatus has been decontaminated as part of the shutdown of the LLNL Tritium Facility. Two stainless-steel gloveboxes that had been used to process lithium deuteride-tritide (LiDT) salt were decontaminated using the Portable Cleanup System so that they could be flushed with room air through the facility ventilation system. Further surface decontamination was performed by scrubbing the interior with paper towels and ethyl alcohol or Swish trademark. The surface contamination, as shown by swipe surveys, was reduced from 4x10 4 --10 6 disintegrations per minute (dpm)/cm 2 to 2x10 2 --4x10 4 dpm/cm 2 . Details on the decontamination operation are provided. A series of metal (palladium and vanadium) hydride storage beds have been drained of tritium and flushed with deuterium in order to remove as much tritium as possible. The bed draining and flushing procedure is described, and a calculational method is presented which allows estimation of the tritium remaining in a bed after it has been drained and flushed. Data on specific bed draining and flushing are given

  8. Measurement of Tritium Surface Distribution on TFTR Bumper Limiter Tiles

    International Nuclear Information System (INIS)

    Sugiyama, K.; Tanabe, T.; Skinner, C.H.; Gentile, C.A.

    2004-01-01

    The tritium surface distribution on graphite tiles used in the Tokamak Fusion Test Reactor (TFTR) bumper limiter and exposed to TFTR deuterium-tritium (D-T) discharges from 1993 to 1997 was measured by the Tritium Imaging Plate Technique (TIPT). The TFTR bumper limiter shows both re-/co-deposition and erosion. The tritium images for all tiles measured are strongly correlated with erosion and deposition patterns, and long-term tritium retention was found in the re-/co-depositions and flakes. The CFC tiles located at erosion dominated areas clearly showed their woven structure in their tritium images owing to different erosion yields between fibers and matrix. Significantly high tritium retention was observed on all sides of the erosion tiles, indicating carbon transport via repetition of local erosion/deposition cycles

  9. Tritium in rad waste management

    International Nuclear Information System (INIS)

    Gandhi, P.M.; Ali, S.S.; Mathur, R.K.; Rastogi, R.C.

    1990-01-01

    Radioactive waste arising from PHWR's are invariably contaminated with tritium activity. Their disposal is crucial as it governs the manner and extent of radioactive contamination of human environment. The technique of tritium measurement and its application plays an important role in assessing the safety of the disposal system. Thus, typical applications involving tritium measurements include the evaluation of a site for solid waste burial facility and evaluation of a water body for liquid waste dispersal. Tritium measurement is also required in assessing safe air route dispersal of tritium. (author)

  10. Evaluation of tritium transport in the biomass-fusion hybrid system and its environmental impact

    Energy Technology Data Exchange (ETDEWEB)

    Namba, Kyosuke [Graduate School of Energy Science, Kyoto University, Kyoto (Japan); Kasada, Ryuta, E-mail: r-kasada@iae.kyoto-u.ac.jp [Institute of Advanced Energy, Kyoto University, Kyoto (Japan); Konishi, Satoshi [Institute of Advanced Energy, Kyoto University, Kyoto (Japan); Yamamoto, Yasushi [Faculty of Engineering Science, Kansai University, Osaka (Japan)

    2015-10-15

    Highlights: • We assumed that tritium migrates from biomass hybrid fusion system to fuel cell vehicles. • We developed a seven-compartment model to describe the water flow and tritium in an urban area Osaka. • Tritium concentration of surface soil water run by 4 Bq/L level after 60 years later. • The tritium does not deserve health hazard but easily detectable in the environment. - Abstract: The behavior of tritium contained in the biofuel produced by the fusion energy is analyzed. Hydrogen product is contaminated with tritium from breeding blanket of fusion plant within the regulation limit and released to atmosphere when used for fuel cell vehicles. In the model city, Osaka, seven-compartment model describes the behavior of exhausted tritium by adapting the environment water flow and its migration was analyzed with STELLA system dynamics code. Tritium (HTO) with a concentration of 5000 Bq//m{sup 3} exhausted from the running vehicle increases decades and reaches steady state after about 50 years, at around 40 Bq/m{sup 3} in atmosphere and 4 Bq/L in surface soil water that does not deserve health hazard, however causes contamination of large populated area.

  11. Tritium solid targets for intense D-T neutron production and its related problems

    International Nuclear Information System (INIS)

    Sumita, Kenji

    1988-01-01

    This review paper is divided into three parts. Firstly, to attain an intense neutron production rate, the construction of a design with a higher tritium-containing surface and an effective cooling system like a rotating target device are discussed. The maximum attainable intensity based on tritium solid targets shall be estimated regarding planning for future D-T sources. Secondly, on the way to carry out some experiments, an absolute intensity calibration and an angular dependent neutron energy spectrum of the neutron source are essential parameters to analyse the results of the experiments. Sometimes the space dependent neutron spectrum is required as well as the space dependent neutron flux near the targets and irradiation samples. The measurement methods and their examples are reviewed for tritium solid targets. The third part is devoted to discuss the protection to tritium contamination problems due to unavoidable release of tritium gas from targets. Performance and effectiveness of tritium collection systems for intense D-T neutron sources shall be discussed in some examples. Tritium contamination incidents due to the faulted film powder of target surface are also reported in some real incident cases. (author). Abstract only

  12. A Visual Detection System for Determining Tritium Surface Deposition Employing Phosphor Coated Materials

    International Nuclear Information System (INIS)

    Gentile, C.A.; Skinner, C.H.; Young, K.M.; Zweben, S.J.

    1999-01-01

    A method for visually observing tritium deposition on the surface of the Tokamak Fusion Test Reactor (TFTR) deuterium-tritium (D-T) tiles is being investigated at the Princeton Plasma Physics Laboratory. A green phosphor (P31, zinc sulfide: copper) similar to that used in oscilloscope screens with a wavelength peak of 530 nm was positioned on the surface of a TFTR D-T tile. The approximately 600 gram tile, which contains approximately 1.5 Ci of tritium located on the top approximately 1-50 microns of the surface, was placed in a two liter lexan chamber at Standard Temperature and Pressure (STP). The phosphor plates and phosphor powder were placed on the surface of the tile which resulted in visible light being observed, the consequence of tritium betas interacting with the phosphor. This technique provides a method of visually observing varying concentrations of tritium on the surface of D-T carbon tiles, and may be employed (in a calibrated system) to obtain quantitative data

  13. Reconstruction of tritium release history from contaminated groundwater using tree ring analysis

    International Nuclear Information System (INIS)

    Kalin, R.M.; Murphy, C.E. Jr.; Hall, G.

    1995-01-01

    The history of tritium releases to the groundwater from buried waste was reconstructed through dendrochronology. Wood from dated tree rings was sectioned from a cross-section of a tree that was thought to tap the groundwater. Cellulose was chemically separated from the wood. The cellulose was combusted and the water of combustion collected for liquid scintillation counting. The tritium concentration in the rings rose rapidly after 1972 which was prior to the first measurements made in this area. Trends in the tritium concentration of water outcropping to the surface are similar to the trends in tritium concentration in tree rings. 14 refs., 3 figs

  14. Distribution of tritium in a chronically contaminated lake

    International Nuclear Information System (INIS)

    Blaylock, B.G.; Frank, M.L.

    1978-01-01

    White Oak Lake located on the U.S. Department of Energy's Oak Ridge Reservation receives a continuous input of tritium from operating facilities and waste disposal operations at the Oak Ridge National Laboratory. The purpose of this paper was (1) to determine the distribution and concentration of tritium in an aquatic environment which has received releases of tritium significantly greater than expected releases from nuclear power plants, and (2) to determine the effect of fluctuating tritium concentrations in ambient water on the concentration of tritium in fish. Aquatic biota from White Oak Lake were analyzed for tissue water tritium and tissue bound tritium. Except for one plant species, the ratio of tissue water tritium to lake water tritium ranged from 0.80 to 1.02. The tissue water tritium in Gambusia affinis, the mosquito fish, followed closely the significant changes in tritium concentration in lake water. The turnover of tissue water tritium was very rapid; Gambusia from White Oak Lake eliminated 50% of their tissue water tritium in 14 min. The ratio of the specific activity of the tissue bound tritium to the specific activity of the lake water was greatest for the larger species of fish but never exceeded unity. The radiation dose to man from tritium which could be acquired through the aquatic food chain was relatively small when compared to other pathways. The whole body dose to a hypothetical individual taking in concentrations of tritium measured in White Oak Lake was 1.8 mrem/yr from eating fish and 10.0 mrem/yr from drinking water

  15. Surface erosion and tritium inventory analysis for CIT [Compact Ignition Tokamak

    International Nuclear Information System (INIS)

    Brooks, J.N.; Dylla, H.F.

    1990-09-01

    The expected buildup of co-deposited tritium on the CIT carbon divertor and first wall surfaces and operational methods of minimizing the inventory have been examined. The analysis uses impurity transport computer codes, and associated plasma and tritium retention models, to compute the thickness of redeposited sputtered carbon and the resulting co-deposited tritium inventory on the divertor plates and first wall. Predicted erosion/growth rates are dominated by the effect of gaps between carbon tiles. The overall results appear favorable, showing stable operation (finite self-sputtering) and acceptably low (∼25 Ci/pulse) co-deposited tritium rates, at high surface temperature (1700 degree C) design conditions. These results, however, are highly speculative due to serious model inadequacies at the high sputtering rates predicted. If stable operation is obtainable, the prospects appear good for adequate tritium inventory control via helium-oxygen glow discharge cleaning. 25 refs

  16. Tritium control: October 1982-March 1983

    International Nuclear Information System (INIS)

    Lamberger, P.H.; Rogers, M.L.

    1983-01-01

    Surveys in gloveboxes indicated surface activity on stainless steel and its apparent dependence on time and atmospheric tritium levels. Surveys in fumehoods were completed to investigate the extent of surface contamination on surfaces of various materials. Gas generation rates caused by radiolysis of tritiated waste materials were determined for polymer and nonpolymer-impregnated tritiated concrete and fixated and nonfixated tritiated waste vacuum pump oil. In addition, the pressure change of hydrogen cover gas over tritiated water on cement-plaster was determined. The test program to measure and compare the release of tritium from tritiated concrete with and without styrene impregnation continued. Tritium permeation data from small test blocks are given. The drum study monitoring the release of tritium from actual burial packages continued. The maximum fractional release rate for the three types of high activity, tritiated liquid waste generated is 5.1 x 10 -5 , and the maximum total permeation is 179 mCi after 8.5 yr. These two values represent a 13% increase for the past 6 months. Tritium release from the polymer-impregnated, tritiated concrete (PITC) and from the control (non-PITC) remains very low. The Emergency Containment System (ECS), an automatically actuated system developed at Mound to remove tritium from room air, has been modified and upgraded to support new applications. The leakage rate in the ECS area has been lowered, a fast-start system installed for greater conversion efficiency at startup, and the alumina beds regenerated

  17. Development of a Remotely Operated, Field-Deployable Tritium Analysis System for Surface and Ground Water Measurement

    International Nuclear Information System (INIS)

    Hofstetter, K.J.; Cable, P.R.; Noakes, J.E.; Spaulding, J.D.; Neary, M. P.; Wasyl, M.S.

    1996-01-01

    The environmental contamination resulting from decades of testing and manufacturing of nuclear materials for a national defense purposes is a problem now being faced by the United States. The Center for Applied Isotope Studies at the University of Georgia, in cooperation with the Westinghouse Savannah River Company and Packard Instrument Company, have developed a prototype unit for remote, near real time, in situ analysis of tritium in surface and ground water samples

  18. Tritium loading in ITER plasma-facing surfaces and its release under accident conditions

    International Nuclear Information System (INIS)

    Longhurst, G.R.; Anderl, R.A.; Pawelko, R.J.

    1996-01-01

    Plasma-facing surfaces of the International Thermonuclear Experimental Reactor (ITER) will take up tritium from the plasma. These surfaces will probably consist of matures of Be, C, and possibly W together with other impurities. Recent experimental results have suggested mechanisms, not previously considered in analyses, by which tritium and other hydrogen isotopes are retained in Be. This warrants revised modeling and estimation of the amount of tritium that will be deposited in ITER beryllium plasma-facing surfaces and the rates at which it can be released under postulated accident scenarios. In this paper we describe improvements in modeling and experiments planned at the Idaho National Engineering Laboratory (INEL) to investigate the tritium uptake and thermal release behavior for mixed plasma- facing materials. TMAP4 calculations were made using recent data to estimate first-wall tritium inventories in ITER. 16 refs., 1 fig

  19. Tritium Measurements in Slovenia - Chronology Till 2004

    International Nuclear Information System (INIS)

    Logar, Jasmina Kozar; Vaupotic, Janja; Kobal, Ivan

    2005-01-01

    Almost all the analyses of tritium in Slovenia have been performed by the tritium laboratory at the Jozef Stefan Institute. Nearly 90 % of its measurements have been covered by two national programs, both approved by the Slovenian Nuclear Safety Administration: the radioactive monitoring program in the environs of Krsko Nuclear Power Plant (KNPP) and the program of global radioactive contamination monitoring in the environment. These programs include samples of groundwaters, surface waters, precipitation and drinking waters, as well as liquid and gaseous effluents from KNPP. Tritium was determined in some research projects and in hydrological studies of thermal waters, groundwater and coalmine waters. Tritium in the Karst region was mapped as well as the springs of entire territory of Slovenia. Around 5500 samples have been analyzed up to 2004

  20. Investigation of internal contamination by tritium in A-1 nuclear power plant personnel in 1974

    International Nuclear Information System (INIS)

    Ondris, D.; Herchl, M.; Homolova, E.

    1977-01-01

    The results are presented of the 1974 personnel monitoring of the Bohunice A-1 nuclear power plant staff for internal contamination with tritium. Totally, 650 urine samples taken from 103 workers were analyzed using the recommended ICRP procedure. In routine examinations, the highest dose equivalent value of tritium incorporated within two weeks did not exceed 10 mrem, i.e., the maximum annual dose equivalent did not exceed 260 mrem. 8.5 μCi tritium per 1 litre urine was considered to be an alarm value. In a selected group of 21 high-risk persons analyses were conducted before and after each operation associated with tritium hazards. The limit dose was set to 5.8 μCi.l -1 , i.e., the tritium concentration equivalent to 10% of the maximum permissible annual intake. In 18 workers where tritium risk was of a more serious nature the biological half-life was followed up, with the average biological half-life being 8.5 days, with 5 days for the minimum and 12 days for the maximum values. The results show that in 1974 the tritium burden did not exceed 1/10 of the maximum permissible dose for any of the A-1 nuclear power plant workers. (L.O.)

  1. Japanese university program on tritium radiobiology and environmental tritium

    International Nuclear Information System (INIS)

    Okada, Shigefumi

    1989-01-01

    The university program of the tritium study in the Special Research Project of Nuclear Fusion (1980-1989) is now on its 9th year. The study's aim is to assess tritium risk on man and environment for development of Japanese Nuclear Fusion Program. The tritium study begun by establishing various tritium safe-handling devices and methods to protect scientists from tritium contamination. Then, the tritium studies were initiated in three areas: The first was the studies on biological effects of tritiated water, where their RBE values, their modifying factors and mechanisms were investigated. Also, several human monitoring systems for detection of tritium-induced damage were developed. The second was the metabolic studies of tritium, including a daily tritium monitoring system, methods to enhance excretion of tritiated water from body and means to prevent oxidation of tritium gas in the body. The third was the study of environmental tritium. Tritium levels in environmental waters of various types were estimated all-over in Japan and their seasonal or regional variation were analyzed. Last two years, the studies were extended to estimate tritium activities of plants, foods and man in Japan. (author)

  2. Investigation of tritium in groundwater at Site 300

    International Nuclear Information System (INIS)

    Buddemeier, R.W.

    1985-01-01

    In 1984, landfill monitoring wells at Site 300, a Lawrence Livermore National Laboratory (LLNL) explosive test site, revealed the presence of groundwater contaminated with tritium. These tritium levels were in excess of the State of California drinking water standard. A major investigation was initiated that included a search of records concerning tritium use, disposal, and previous analyses, and a survey of tritium levels in soil, vegetation, and water in contaminated and potentially contaminated areas. Over 50 boreholes were drilled for this investigation to characterize the local hydrogeology and tritium distributions, and a network of soil moisture and groundwater monitoring points was installed. This report presents the work completed through the end of September 1985: the records search; records for drilling completed as part of this study; characterization of the geology, hydrology, and tritium distributions in the contaminated area; and an initial assessment of the probable tritium sources, pathways, and migration rates. 19 refs

  3. Investigation of tritium in groundwater at Site 300

    Energy Technology Data Exchange (ETDEWEB)

    Buddemeier, R.W.

    1985-12-30

    In 1984, landfill monitoring wells at Site 300, a Lawrence Livermore National Laboratory (LLNL) explosive test site, revealed the presence of groundwater contaminated with tritium. These tritium levels were in excess of the State of California drinking water standard. A major investigation was initiated that included a search of records concerning tritium use, disposal, and previous analyses, and a survey of tritium levels in soil, vegetation, and water in contaminated and potentially contaminated areas. Over 50 boreholes were drilled for this investigation to characterize the local hydrogeology and tritium distributions, and a network of soil moisture and groundwater monitoring points was installed. This report presents the work completed through the end of September 1985: the records search; records for drilling completed as part of this study; characterization of the geology, hydrology, and tritium distributions in the contaminated area; and an initial assessment of the probable tritium sources, pathways, and migration rates. 19 refs.

  4. Intervention and decontamination of hardware contaminated by tritium

    International Nuclear Information System (INIS)

    Cerre, Pierre; Mestre, Emile

    1964-10-01

    This report first describes the intervention process for teams intervening, either in case of accident or to modify or repair installations in which tritium is handled, i.e. in both cases in a contaminated atmosphere. Three main aspects are addressed: how to prepare and insulate the work place from the rest of the installation, how to protect the intervening personnel, and how to perform decontamination. The authors then present the various available decontamination techniques: decontamination bath at different temperatures and use of different chemical solutions at different temperatures, the degassing technique (temperature increase and vacuum, temperature hold during 30 to 45 minutes, return to atmospheric pressure), and mercury-based decontamination

  5. Management of tritium contaminated wastes national strategies and practices at some European countries, USA and Canada

    International Nuclear Information System (INIS)

    Mannone, F.

    1992-01-01

    The European Tritium Handling Experiment Laboratory (ETHEL) is the Commission of European Communities facility designed for handling multigram quantities of tritium for safety inherent R and D purposes. Tritium contamined wastes in gaseous, liquid and solid forms will be generated in ETHEL during the experiments as well as during the maintenance operations. All such wastes must be adequately managed under the safest operating conditions to minimize the releases of tritium to the environment and the consequent radiological risks to workers and general population. This safety requirement can be met by carefully defining strategies and practices to be applied for the safe management of these wastes. To this end an adequate background information must be collected which is the intent of this report. Through an exhaustive literature survey current strategies and practices applied in Europe, USA and Canada for managing tritiated wastes from specific tritium handling laboratories and plant have been assessed. For some countries, where only tritium bearing wastes simultaneously contaminated with nuclear fission products are generated, the attention has been focused on the strategies and practices currently applied for managing fission wastes. Operational criteria for waste collection, sorting, classification, conditioning and packaging as well as acceptance criteria for their storage or disposal have been identified. Waste storage or disposal options already applied in various countries or still being investigated in terms of safety have also been considered. Even if the radwaste management strategy is submitted to a nearly continuing process of review, some general comments resulting from the assessment of the present waste management scenario are presented. 60 refs., 16 figs., 13 tabs

  6. Comparison and Evaluation of Various Tritium Decontamination Techniques and Processes

    International Nuclear Information System (INIS)

    Gentile, C.A.; Langish, S.W.; Skinner, C.H.; Ciebiera, L.P.

    2004-01-01

    In support of fusion energy development, various techniques and processes have been developed over the past two decades for the removal and decontamination of tritium from a variety of items, surfaces, and components. Tritium decontamination, by chemical, physical, mechanical, or a combination of these methods, is driven by two underlying motivational forces. The first of these motivational forces is safety. Safety is paramount to the established culture associated with fusion energy. The second of these motivational forces is cost. In all aspects, less tritium contamination equals lower operational and disposal costs. This paper will discuss and evaluate the various processes employed for tritium removal and decontamination

  7. Comparison and Evaluation of Various Tritium Decontamination Techniques and Processes

    International Nuclear Information System (INIS)

    Gentile, C.A.; Langish, S.W.; Skinner, C.H.; Ciebiera, L.P.

    2005-01-01

    In support of fusion energy development, various techniques and processes have been developed over the past two decades for the removal and decontamination of tritium from a variety of items, surfaces, and components. The motivational force for tritium decontamination by chemical, physical, mechanical, or a combination of these methods, is driven by two underlying forces. The first of these motivational forces is safety. Safety is paramount to the established culture associated with fusion energy. The second of these motivational forces is cost. In all aspects, less tritium contamination equals lower operational and disposal costs. This paper will discuss and evaluate the various processes employed for tritium removal and decontamination

  8. Tritium pollution in the Swiss luminous compound industry

    International Nuclear Information System (INIS)

    Krejci, K.; Zeller, Jr.

    1979-01-01

    The Swiss luminous compound industry is an important consumer of tritium. About 350kCi go into production of tritium gas-filled light sources and 40kCi into production of tritium luminous compound annually. To illustrate the pollution problem, a factory is mentioned that handles 200kCi annually and a chain of luminizers, processing 20kCi over the same period as tritium luminous compound. This material is manufactured by coating phosphors with tritiated polystyrene having a specific activity up to 200Ci/g. Because of the high specific activity, the radiation damage produces an average activity release of 5.2% annually, which is one of the main reasons for public and occupational exposure. The processing of large quantities of tritium gas requires special equipment, such as units made entirely of stainless steel for purification and hydrogenation, oxidation systems for highly contaminated air, glove boxes, ventilation and monitoring systems. Nevertheless, contamination of air, surfaces, water and workers cannot be avoided. Only in a few cases were MPC-values for tritium content in urine of workers exceeded. From these results, biological half-lives between 5-15 days were estimated. Regular medical examinations showed no significant influence in blood picture parameters, except in one single case with a tritium concentration in urine of 2.8mCi/litre. Entirely different problems arise in most luminizing factories where luminous paint is processed as an open radioactive source. (author)

  9. TFTR tritium operations lessons learned

    International Nuclear Information System (INIS)

    Gentile, C.A.; Raftopoulos, S.; LaMarche, P.

    1996-01-01

    The Tokamak Fusion Test Reactor which is the progenitor for full D-T operating tokamaks has successfully processed > 81 grams of tritium in a safe and efficient fashion. Many of the fundamental operational techniques associated with the safe movement of tritium through the TFTR facility were developed over the course of many years of DOE tritium facilities (LANL, LLNL, SRS, Mound). In the mid 1980's The Tritium Systems Test Assembly (TSTA) at LANL began reporting operational techniques for the safe handling of tritium, and became a major conduit for the transfer of safe tritium handling technology from DOE weapons laboratories to non-weapon facilities. TFTR has built on many of the TSTA operational techniques and has had the opportunity of performing and enhancing these techniques at America's first operational D-T fusion reactor. This paper will discuss negative pressure employing 'elephant trunks' in the control and mitigation of tritium contamination at the TFTR facility, and the interaction between contaminated line operations and Δ pressure control. In addition the strategy employed in managing the movement of tritium through TFTR while maintaining an active tritium inventory of < 50,000 Ci will be discussed. 5 refs

  10. Study of Tritium Behavior in Cement Paste

    International Nuclear Information System (INIS)

    Takata, H.; Motoshima, T.; Satake, S.; Nishikawa, M.

    2005-01-01

    The concrete materials are used as the partition wall of the tritium handling facilities. It is important to grasp the tritium behavior in the concrete wall for radiation safety. It is considered in this study that the surface water on the concrete materials consists of physically adsorbed water, chemically adsorbed water and structural water as in the case of porous adsorption materials. The adsorption capacity due to physically and chemically adsorption isotherms observed in this study shows that the amount of water adsorption on the cement paste is a quarter of the amount adsorbed onto the surface of activated alumina or molecular sieves 5A (MS-5A). It shows that concrete is easily contaminated with tritiated water

  11. Tritium

    International Nuclear Information System (INIS)

    Anon.

    1975-01-01

    The role played the large amount supply of tritium and its effects are broadly reviewed. This report is divided into four parts. The introductory part includes the history of tritium research. The second part deals with the physicochemical properties of tritium and the compounds containing tritium such as tritium water and labeled compounds, and with the isotope effects and self radiation effects of tritium. The third part deals with the tritium production by artificial reaction. Attention is directed to the future productivity of tritium from B, Be, N, C, O, etc. by using the beams of high energy protons or neutrons. The problems of the accepting market and the accuracy of estimating manufacturing cost are discussed. The expansion of production may bring upon the reduction of cost but also a large possibility of social impact. The irradiation problem and handling problem in view of environmental preservation are discussed. The fourth part deals with the use of tritium as a target, as a source of radiation or light, and its utilization for geochemistry. The future development of the solid tritium target capable of elongating the life of neutron sources is expected. The rust thickness of the surface of iron can be measured with the X-ray of Ti-T or Zr-T. The tritium can substitute self-light emission paint or lamp. The tritium is suitable for tracing the movement of sea water and land surface water because of its long half life. (Iwakiri, K.)

  12. A dynamic compartment mode for evaluating the contamination level of tritium in agricultural plants

    Energy Technology Data Exchange (ETDEWEB)

    Keum, Dong Kwon; Lee, Han Soo; Kang, Hee Seok; Jun, In; Choi, Yong Ho; Lee, Chang Woo

    2006-03-15

    This report describes a dynamic compartment model for evaluating the tritium level in agricultural plants after a short-term exposure to HTO vapor and its comparison with experimental results to test the predictive accuracy of the model. The model uses a time-dependent growth equation of a plant so that it can predict the contamination level of tritium depending on the stage of the growth of the plant, which is a major difference from some other compartment models using a constant crop yield. The model is able to calculate the time variable concentrations of the compartments representing the atmosphere, soil, and plants of four categories including leafy vegetables, root vegetables, grains, and tuber plants. Experimental results include the tissue free water tritium (TFWT) and the organically bound tritium (OBT) concentration of rice, soybean, cabbage, and radish exposed to HTO vapor for 1 h in the daytime at different growth stages. The model predictions showed that the model could simulate well not only the time-dependent tritium concentration of the plants but also the effect of the growth stage of the plant at the exposure time. Comparison of the model predictions with the experimental results suggested that the model could predict reasonably well the observed TFWT and OBT concentrations of the plants considered.

  13. Effect of surface water on tritium release behavior from Li4SiO4

    International Nuclear Information System (INIS)

    Hanada, T.; Fukada, S.; Nishikawa, M.; Suematsu, K.; Yamashita, N.; Kanazawa, T.

    2010-01-01

    The tritium release model to represent the release behavior of bred tritium from solid breeder materials has been developed by the blanket group of Kyushu University. It has been found that water is released to the purge gas from solid breeder materials and that this water affects the tritium release behavior. In this study, the amount of surface water released from Li 4 SiO 4 is quantified by the experiment. In addition, the tritium release behavior from Li 4 SiO 4 are estimated based on the tritium release model using parameters obtained in our studies under conditions of commercial reactor operation and ITER test blanket module operation. The effect of the surface water on tritium release behavior is discussed from the obtained results. Moreover, the tritium inventory of Li 4 SiO 4 is discussed based on calculation under the unsteady state condition. Further, the effects of grain size and temperature on distribution of tritium inventory under the steady state condition are evaluated, and the optimal grain size is discussed from the view point of tritium release from Li 4 SiO 4 .

  14. Mound Laboratory tritium environmental study: 1976--1977

    International Nuclear Information System (INIS)

    Kershner, C.J.; Rhinehammer, T.B.

    1978-01-01

    In the course of an extensive investigation of tritium in the aquifer underlying the Mound Facility site, an unusual behavior was noted for a beta-emitting radionuclide contaminant present in the environs of the abandoned Miami-Erie Canal adjacent to the laboratory site. The soil contaminant was determined to be tritium, of which 90% was in the form of a relatively stable or bound species that was not readily exchangeable with the free water in the soil. (Bound-to-exchangeable transfer half-time was found to be approximately 3 yr.) The contamination was found to be concentrated within two feet of the surface in the center of the canal channel and near the Facility site drainage ditch and canal confluence. In order to characterize the contaminant and to assess its potential for reaching the aquifer, an analysis program and study were initiated in September 1976. The results and findings from the first phase of this work which was completed in February 1977 are the subject of this report

  15. Tritium Concentrations in Environmental Samples and Transpiration Rates from the Vicinity of Mary's Branch Creek and Background Areas, Barnwell, South Carolina, 2007-2009

    Science.gov (United States)

    Vroblesky, Don A.; Canova, Judy L.; Bradley, Paul M.; Landmeyer, James E.

    2009-01-01

    Tritium in groundwater from a low-level radioactive waste disposal facility near Barnwell, South Carolina, is discharging to Mary's Branch Creek. The U.S. Geological Survey conducted an investigation from 2007 to 2009 to examine the tritium concentration in trees and air samples near the creek and in background areas, in groundwater near the creek, and in surface water from the creek. Tritium was found in trees near the creek, but not in trees from background areas or from sites unlikely to be in direct root contact with tritium-contaminated groundwater. Tritium was found in groundwater near the creek and in the surface water of the creek. Analysis of tree material has the potential to be a useful tool in locating shallow tritium-contaminated groundwater. A tritium concentration of 1.4 million picocuries per liter was measured in shallow groundwater collected near a tulip poplar located in an area of tritium-contaminated groundwater discharge. Evapotranspiration rates from the tree and tritium concentrations in water extracted from tree cores indicate that during the summer, this tulip poplar may remove more than 17.1 million picocuries of tritium per day from the groundwater that otherwise would discharge to Mary's Branch Creek. Analysis of air samples near the tree showed no evidence that the transpirative release of tritium to the air created a vapor hazard in the forest.

  16. Removal of contaminating tritium and tritium pressure measurement by a secondary electron multiplier

    International Nuclear Information System (INIS)

    Ichimura, K.; Watanabe, K.; Nishizawa, K.; Fujita, J.

    1984-01-01

    A ceramic secondary electron multiplier (SEM), Ceratron, was used to study impairment of the SEM performance due to adsorbed tritium, its decontamination, and the applicability of the SEM to measure tritium pressure. The background level of the SEM increased significantly, up to its counting limit, due to tritium adsorption. Heating it to 300 0 C in vacuo and/or in the presence of reactive gases such as D 2 and CO at 1 x 10 -4 Pa was not effective to decontaminate the SEM, whereas photon irradiation was extremely powerful for the decontamination. The tritium (HT) pressure in a range of 1 x 10 -6 - 1 x 10 -3 Pa could be measured with no significant impairment of the SEM performance with the aid of photon irradiation. It is revealed that a particle flux as low as 1 particle/s will be able to measure in the presence of tritium if suitable photon sources are installed in the systems. (orig.)

  17. The tritium confinement and surface chemistry of plasma facing materials in controlled D-T fusion devices

    International Nuclear Information System (INIS)

    Wu, C.H.

    1987-01-01

    Tritium permeation through first walls, limiters or divertors subjected to energetic tritium charge exchange neutral bombardment is a potentially serious problem area for advanced D-T reactors operating at elevated temperatures. High concentrations of tritium in the near surface region can be reached by implantation of the charge neutral flux combined with a relatively slow recombination of these atoms into molecules at the plasma/ first wall interface. A concentration gradient is established, causing tritium to diffuse into the bulk and essentially to the outer wall surface where it can enter the first wall coolant. Since tritium separation from cooling water is very costly, release of even a small fraction of tritium to the environment could pose undesirable safety problems. Therefore, it is necessary to reduce the tritium permeation. An analysis of the way of inhibition has been made. The tritium interacts with the solid surface of the plasma facing components, resulting in trapping and material erosion, and posing problems with respect to plasma density control. The erosion of the plasma facing component materials is mainly caused by physical and chemical erosion. A detailed analysis of chemical erosion by tritium has been performed and the results are described. (author)

  18. Measurement of tritium with plastic scintillator surface improvement with plasma treatment

    Energy Technology Data Exchange (ETDEWEB)

    Yoshihara, Y.; Furuta, E. [Ochanomizu University, Bunkyo-ku, Tokyo (Japan); Ohyama, R.I.; Yokota, S. [Tokai University, Hiratsuka-shi, Kanagawa (Japan); Kato, Y.; Yoshimura, T.; Ogiwara, K. [Hitachi Aloka Medical, Mure, Mitaka-shi, Tokyo (Japan)

    2015-03-15

    Tritium is usually measured by using a liquid scintillation counter. However, liquid scintillator used for measurement will become radioactive waste fluid. To solve this issue, we have developed a method of measuring tritium samples with plasma-treated plastic scintillator (PS)sheets (Plasma method). The radioactive sample is held between 2 PS sheets and the whole is enclosed in a a low-potassium glass vial. With the Plasma method of 2-min plasma treatment, we have obtained measurement efficiency of 48 ± 2 % for 2 min measurement of tritium except for tritiated water. The plasma treatment makes the PS surface rough and hydrophilic which contributes to improve the contact between tritium and PS. On the other hand, it needed almost 6 hours to obtain constant measurement efficiency. The reason was that the dry-up handling in the vial needed longer time to vaporize H{sub 2}O molecules than in the air. We tried putting silica gel beads into vials to remove H{sub 2}O molecules from PS sheet surface quickly. The silica gel beads worked well and we got constant measurement efficiency within 1-3 hours. Also, we tried using other kinds of PS treated with plasma to obtain higher measurement efficiencies of tritium samples.

  19. Tritium in the aquatic environment

    International Nuclear Information System (INIS)

    Blaylock, B.G.; Hoffman, F.O.; Frank, M.L.

    1986-02-01

    Tritium is of environmental importance because it is released from nuclear facilities in relatively large quantities and because it has a half life of 12.26 y. Most of the tritium released into the atmosphere eventually reaches the aqueous environment, where it is rapidly taken up by aquatic organisms. This paper reviews the current literature on tritium in the aquatic environment. Conclusions from the review, which covered studies of algae, aquatic macrophytes, invertebrates, fish, and the food chain, were that aquatic organisms incorporate tritium into their tissue-free water very rapidly and reach concentrations near those of the external medium. The rate at which tritium from tritiated water is incorporated into the organic matter of cells is slower than the rate of its incorporation into the tissue-free water. If organisms consume tritiated food, incorporation of tritium into the organic matter is faster, and a higher tritium concentration is reached than when the organisms are exposed to only tritiated water alone. Incorporation of tritium bound to molecules into the organic matter depends on the chemical form of the ''carrier'' molecule. No evidence was found that biomagnification of tritium occurs at higher trophic levels. Radiation doses from tritium releases to large populations of humans will most likely come from the consumption of contaminated water rather than contaminated aquatic food products

  20. Radiotoxicity of tritium in mammals

    International Nuclear Information System (INIS)

    Silini, G.; Metalli, P.; Vulpis, G.

    1972-12-01

    Basic data relative to tritium, its physicochemical behaviour in environment, its major sources of contamination and its metabolism through the mammalian organisms are reviewed. After considering the radiotoxicity of tritium particularly at the cellular and whole-body level the conclusion is drawn that the major uncertainties regard the fraction of tritium incorporated into the nuclei of some tissues. This fraction is eliminated very slowly and is capable of modifying the genetic structures of the nucleus. A more refined analysis of radiobiological phenomena and a better knowledge of the dose effect relationship should permit the extrapolation of the data to the low doses of tritium contamination. This extrapolation is of great interest in the field of public health for the elaboration of the relevant radioprotection standards

  1. Retrospective evaluation of tritium fallout by tree-ring analysis

    International Nuclear Information System (INIS)

    Kozak, K.; Biro, T.; Golder, F.; Rank, D.; Rajner, V.; Staudner, F.

    1993-01-01

    Tritium analyses of tree-ring cellulose were made to test its suitability for retrospective evaluation of a local tritium fallout. Several spruce trees were taken from an Austrian alpine area where tritium contamination of May 1974 precipitation had been detected. Wood from the annual growth rings of 1973, 1974 and 1975 was separated and the cellulose extracted. After isotopic equilibration with dead water, cellulose was combusted to yield water, whose tritium concentration was measured by liquid scintillation counting. Rigorous statistical treatment proved the significance of the increased tritium concentration caused by the tritium anomaly, which occurred during the growing season. The long-term trends of local atmospheric tritium, including the 1974 peak, were also well reflected by analysis of a 24-year ring sequence from a single tree in the contaminated area. The tritium data gained by the given method can be used at present qualitatively and a better understanding of the possible sources of contamination is required in order that the quantitative criteria be satisfied. (Author)

  2. Catalyst study for the decontamination of atmospheres containing few traces of tritium

    International Nuclear Information System (INIS)

    Chabot, J.; Montel, J.; Sannier, J.

    1988-01-01

    The conversion of tritium at very low activity level using catalytic oxidation followed by water trapping is studied in the loop BEATRICE in order to measure kinetic parameters required for the design of the NET tritium clean-up system. Two precious-metal catalysts (Pd/alumina and Pt/alumina) are very efficient in removing tritium from contaminated gas mixtures down to a few MPC level at low temperatures, without need of isotopic swamping. However at room temperature, the trapping of tritium species on the catalyst surface gives rise to a progressive deactivation with time. Best regeneration conditions have to be determined in order to demonstrate industrial feasibility of operating at low temperatures

  3. Tritium metrology within different media: focus on organically bound tritium (OBT); Metrologie du tritium dans differentes matrices: cas du tritium organiquement lie (TOL)

    Energy Technology Data Exchange (ETDEWEB)

    Baglan, N. [CEA Bruyeres-le-Chatel, DIF, 91 (France); Ansoborlo, E. [CEA Marcoule, DEN/DRCP/CETAMA, 30 (France); Cossonnet, C. [IRSN, DEI/STEME/LMRE, 91 - Orsay (France); Fouhal, L. [CEA Cadarache, DEN/D2S/LANSE, 13 - Saint-Paul-lez-Durance (France); Deniau, I.; Mokili, M. [SUBATECH/IN2P3/CNRS, 44 - Nantes (France); Henry, A. [AREVA-NC/DQSSE/PR - La Hague, 50 - Beaumont-Hague, (France); Fourre, E. [CEA Saclay, DSM/DRECAM/LSCE, 91 - Gif-sur-Yvette (France); Olivier, A. [GEA-Marine nationale, 50 - Cherbourg (France)

    2010-07-15

    The measurement of tritium in its various forms (mainly gas (HT), water (HTO) or solid (hydrides)), is an important key step for evaluating health and environmental risks and finally, dosimetry assessment. In vegetable or animal samples, tritium is often associated with the free water fraction, but may be included in the organic form as organically bound tritium (OBT). In this case, 2 forms exist: (i) a fraction called exchangeable or labile (E-OBT), bound to oxygen and nitrogen atoms, and (ii) a so-called non-exchangeable fraction (NE-OBT) bound to carbon atoms. The main technique for tritium analysis is liquid scintillation, which enables one to measure concentrations in the range of several Bq.L{sup -1}. The standards (AFNOR, ISO) published to date relate only to tritium analysis in water. Only one CETAMA method addresses OBT analysis in biological environments. This method has been tested since 2001 through intercomparison circuits on grass samples collected from the environment. Regarding tritium analysis in water, the strengths are reliability of this analysis at low concentrations (order of Bq.L{sup -1}), robustness and simplicity, and weaknesses are linked to problems of background, conservation and contamination of samples. Concerning OBT analysis, the analysis is reliable for values around 50 Bq.kg{sup -1} of fresh sample. The weaknesses are problems of contamination, reproducibility, analysis time (2 to 6 days) and lack of reference materials. The difficulty to date is the separation between E-OBT and NE-OBT, that will need experimental validation. (authors)

  4. Improvement of the model for surface process of tritium release from lithium oxide

    International Nuclear Information System (INIS)

    Yamaki, Daiju; Iwamoto, Akira; Jitsukawa, Shiro

    2000-01-01

    Among the various tritium transport processes in lithium ceramics, the importance and the detailed mechanism of surface reactions remain to be elucidated. The dynamic adsorption and desorption model for tritium desorption from lithium ceramics, especially Li 2 O was constructed. From the experimental results, it was considered that both H 2 and H 2 O are dissociatively adsorbed on Li 2 O and generate OH - on the surface. In the first model developed in 1994, it was assumed that either the dissociative adsorption of H 2 or H 2 O on Li 2 O generates two OH - on the surface. However, recent calculation results show that the generation of one OH - and one H - is more stable than that of two OH - s by the dissociative adsorption of H 2 . Therefore, assumption of H 2 adsorption and desorption in the first model is improved and the tritium release behavior from Li 2 O surface is evaluated again by using the improved model. The tritium residence time on the Li 2 O surface is calculated using the improved model, and the results are compared with the experimental results. The calculation results using the improved model agree well with the experimental results than those using the first model

  5. Tritium volume activity in natural waters of NPP Temelin region

    Energy Technology Data Exchange (ETDEWEB)

    Tomasek, M; Wilhelmova, L [Academy of Sciences of the Czech Rep., Prague (Czech Republic). Nuclear Physics Inst., Dept. of Radiation Dosimetry

    1996-12-31

    This paper presents the results of tritium measurement in selected rivers of NPP Temelin before its operation obtained during the period 1991-1994. Particular attention is paid to Vltava river into which liquid effluents will be discharged and which is also utilized as a drinking water supply for the capital Prague. Samples from the Vltava river were collected near the mouth of NPP waste canal (point Hladna)and in front of the intake into Prague water works (point Podoli). Tritium content was analysed also in surface waters of Paleckuv, Temelinsky and Strouha streams which can be affected by gaseous effluents due to atmospheric removal processes. Tritium activity was measured with Tric-Carb 1050 TR/LL liquid scintillation counter. The mean annual tritium activities of investigated river waters varied within 1.9-3.0 Bq/l during the period 1991-1994 and that their trend has been slowly decreasing. This fact, as well as seasonal variability, suggests, that tritium level in the surface waters of studied region is largely governed by this radionuclide global atmospheric fallout. The results of this work indicate the trend of background tritium in examined natural waters and make possible the evaluation of their potential future contamination. (J.K.) 1 tab., 2 figs., 4 refs.

  6. Safe handling of tritium

    International Nuclear Information System (INIS)

    1991-01-01

    The main objective of this publication is to provide practical guidance and recommendations on operational radiation protection aspects related to the safe handling of tritium in laboratories, industrial-scale nuclear facilities such as heavy-water reactors, tritium removal plants and fission fuel reprocessing plants, and facilities for manufacturing commercial tritium-containing devices and radiochemicals. The requirements of nuclear fusion reactors are not addressed specifically, since there is as yet no tritium handling experience with them. However, much of the material covered is expected to be relevant to them as well. Annex III briefly addresses problems in the comparatively small-scale use of tritium at universities, medical research centres and similar establishments. However, the main subject of this publication is the handling of larger quantities of tritium. Operational aspects include designing for tritium safety, safe handling practice, the selection of tritium-compatible materials and equipment, exposure assessment, monitoring, contamination control and the design and use of personal protective equipment. This publication does not address the technologies involved in tritium control and cleanup of effluents, tritium removal, or immobilization and disposal of tritium wastes, nor does it address the environmental behaviour of tritium. Refs, figs and tabs

  7. Wind tunnel investigations on tritium reemission from soil

    International Nuclear Information System (INIS)

    Taeschner, M.; Bunnenberg, C.

    1993-01-01

    Future fusion plants and tritium handling facilities will contain large amounts of tritium. Following chronical or accidental releases to the atmosphere a secondary HTO source is established in the downwind sector of the tritium release point as a result of deposition processes. To investigate HTO reemission rates, experiments were performed with a special wind tunnel, in which the air flows across the surface of soil columns under controlled conditions. In order to measure the HTO content of an air sample that was experimentally contaminated by reemission of HTO from a labeled soil column, a fast method is used. The air sample is bubbled through a flask filled with a definite volume of low-tritium water. At the end of the sampling period, the volume and the specific activity of the flask water are measured. With the help of a simple mathematical formula, that is presented in this report, the HTO activity of the air sample can be calculated. (orig.) [de

  8. Environmental monitoring for tritium in tritium separation facility

    International Nuclear Information System (INIS)

    Varlam, Carmen; Stefanescu, Ioan; Steflea, Dumitru; Lazar, Roxana Elena

    2001-01-01

    The Cryogenic Pilot is an experimental project in the nuclear energy national research program, which has the aim of developing technologies for tritium and deuterium separation by cryogenic distillation. The experimental installation is located 15 km near the highest city of the area and 1 km near Olt River. An important chemical activity is developed in the area and chemical plants make up almost entire neighborhood of the Experimental Cryogenic Pilot. It is necessary to emphasize this aspect because the hall sewage system of the pilot is connected with the one of other three chemical plants from vicinity. This is the reason why we progressively established elements of an environmental monitoring program well in advance of tritium operation in order to determine baseline levels. The first step was the tritium level monitoring in environmental water and sewage from neighboring industrial activity. In this work, a low background liquid scintillation was used to determine tritium activity concentration according to ISO 9698/1998 standard. We measured drinking water, precipitation, river water, underground water and wastewater. The tritium level was between 10 TU and 27 TU what indicates that there is no source of tritium contamination in the neighborhood of Cryogenic Pilot. In order to determine baseline levels we decided to monitor monthly each location. In this paper it is presented a standard method used for tritium determination in water samples, the precautions needed to achieve reliable results and the evolution of tritium level in different location near the Experimental Pilot for Tritium and Deuterium Cryogenic Separation. (authors)

  9. Environmental monitoring for tritium at tritium separation facility

    International Nuclear Information System (INIS)

    Varlam, C.; Stefanescu, I.; Steflea, D.; Lazar, R.E.

    2001-01-01

    The Cryogenic Pilot is an experimental project in the nuclear energy national research program, which has the aim of developing technologies for tritium and deuterium separation by cryogenic distillation. The experimental installation is located 15 km near the highest city of the area and 1 km near Olt River. An important chemical activity is developed in the area and the Experimental Cryogenic Pilot's, almost the entire neighborhood are chemical plants. It is necessary to emphasize this aspect because the sewerage system is connected with the other three chemical plants from the neighborhood. This is the reason that we progressively established elements of an environmental monitoring program well in advance of tritium operation in order to determine baseline levels. The first step was the tritium level monitoring in environmental water and waste water of industrial activity from neighborhood. In this work, a low background liquid scintillation is used to determine tritium activity concentration according to ISO 9698/1998. We measured drinking water, precipitation, river water, underground water and waste water. The tritium level was between 10 TU and 27 TU that indicates there is no source of tritium contamination in the neighborhood of Cryogenic Pilot. In order to determine baseline levels we decide to monitories monthly each location. In this paper a standard method is presented which it is used for tritium determination in water sample, the precautions needed in order to achieve reliable results, and the evolution of tritium level in different location near the Experimental Pilot Tritium and Deuterium Cryogenic Separation.(author)

  10. Management of Tritium in ITER Waste

    International Nuclear Information System (INIS)

    Rosanvallon, S.; Benchikhoune, M.; Ciattaglia, S.; Uzan, J. Elbez; Na, B. C.; Taylor, N.; Gastaldi, O.

    2011-01-01

    ITER will use tritium as fuel. Procedures and processes are thus put in place in order to recover the tritium that is not used in the fusion reaction, including from waste and effluents. The tritium thus recovered can be re-injected into the fuel cycle. Moreover, tritium content and thus outgassing may be a safety concern, because of the potential for releases to the environment, both from the facility and from the final disposal (subjected to stringent acceptance criteria in the current waste final disposal). The aim of this paper is to present the measures considered to deal with the specific case of tritium in the liquid and solid waste that will arise from ITER operation and decommissioning. It concerns the processes that are considered from the waste production to its final disposal and in particular: the tritium removal stages (in-situ divertor baking at 350 C and tritium removal from solid waste and liquid and gaseous effluents), the removal of dust contamination (dust containing tritium produced by plasma-wall interaction and by the maintenance/ refurbishment processes) and the measures to enable safe processing and storage of the waste (wall-liner in the hot cell facility to limit concrete contamination and interim storage enabling tritium decay for waste that could not be directly accepted in the host-country final disposal facilities). (authors)

  11. Contamination analysis unit

    International Nuclear Information System (INIS)

    Gregg, H.R.; Meltzer, M.P.

    1996-01-01

    The portable Contamination Analysis Unit (CAU) measures trace quantities of surface contamination in real time. The detector head of the portable contamination analysis unit has an opening with an O-ring seal, one or more vacuum valves and a small mass spectrometer. With the valve closed, the mass spectrometer is evacuated with one or more pumps. The O-ring seal is placed against a surface to be tested and the vacuum valve is opened. Data is collected from the mass spectrometer and a portable computer provides contamination analysis. The CAU can be used to decontaminate and decommission hazardous and radioactive surfaces by measuring residual hazardous surface contamination, such as tritium and trace organics. It provides surface contamination data for research and development applications as well as real-time process control feedback for industrial cleaning operations and can be used to determine the readiness of a surface to accept bonding or coatings. 1 fig

  12. Status and practicality of detritiation and tritium production strategies for environmental remediation

    International Nuclear Information System (INIS)

    Fulbright, H.H.; Schwirian-Spann, A.L.; Brunt, V. van; Jerome, K.M.; Looney, B.B.

    1996-01-01

    Operation of nuclear facilities throughout the world generates wastewater, groundwater and surface water contaminated with tritium. Because of a commitment to minimize radiation exposures to ''levels as low as reasonably achievable'', the US Department of Energy supports development of tritium isotope separation technologies. Also, DOE periodically documents the status and potential viability of alternative tritium treatment technologies and management strategies. The specific objectives of the current effort are to evaluate practical engineering issues, technology acceptability issues, and costs for realistic tritium treatment scenarios. A unique feature of the assessment is that the portfolio of options was expanded to include various management strategies rather than only evaluating detritiation technologies. The ultimate purpose of this effort is to assist Environmental Restoration and its support organizations in allocating future investments

  13. Tritium in HTR systems

    International Nuclear Information System (INIS)

    Steinwarz, W.

    1987-07-01

    Starting from the basis of the radiological properties of tritium, the provisions of present-day radiation protection legislation are discussed in the context of the handling of this radionuclide in HTR plants. Tritium transportation is then followed through from the place of its creation up until the sink, i.e. disposal and/or environmental route, and empirical values obtained in experiments and in plant operation translated into guidelines for plant design and planning. The use of the example of modular HTR plants permits indication that environmental contamination via the 'classical' routes of air and water emissions, and contamination of products, and resulting consumer exposure, are extremely low even on the assumption of extreme conditions. This leads finally to a requirement that the expenditure for implementation of measures for further reduction of tritium activity rates be measured against low radiological effect. (orig.) [de

  14. Decommissioning of a tritium-contaminated laboratory

    International Nuclear Information System (INIS)

    Harper, J.R.; Garde, R.

    1982-01-01

    A tritium laboratory facility at the Los Alamos National Laboratory, Los Alamos, New Mexico, was decommissioned in 1979. The project involved dismantling the laboratory equipment and disposing of the equipment and debris at an on-site waste disposal/storage area. The laboratory, constructed in 1953, was in service for tritium research and fabrication of lithium tritide components until 1974. The major features of the laboratory included 25 meters of gloveboxes and hoods, associated vacuum lines, utility lines, exhaust ducts, electrodryers, blowers, and laboratory benches. This report presents details on the decommissioning, health physics, waste management, environmental surveillance, and costs for the operation

  15. Tritium sorption by cement and subsequent release

    International Nuclear Information System (INIS)

    Ono, F.; Tanaka, S.; Yamawaki, M.

    1994-01-01

    In a fusion reactor or tritium handling facilities, contamination of concrete by tritium and subsequent release from it to the reactor or experimental rooms is a matter of problem for safety control of tritium and management of operational environment. In order to evaluate these tritium behavior, interaction of tritiated water with concrete or cement should be clarified. In the present study, HTO sorption and subsequent release from cement were studied by combining various experimental methods. From the basic studies on tritium-cement interactions, it has become possible to evaluate tritium uptake by cement or concrete and subsequent tritium release behavior as well as tritium removing methods from them

  16. Overview of the tritium system of Ignitor

    International Nuclear Information System (INIS)

    Rizzello, C.; Tosti, S.

    2008-01-01

    Among the recent design activities of the Ignitor program, the analysis of the tritium system has been carried out with the aim to describe the main equipments and the operations needed for supplying the deuterium-tritium mixtures and recovering the plasma exhaust. In fact, the tritium system of Ignitor provides for injecting deuterium-tritium mixtures into the vacuum chamber in order to sustain the fusion reaction: furthermore, it generally manages and controls the tritium and the tritiated materials of the machine fuel cycle. Main functions consist of tritium storage and delivery, tritium injection, tritium recovery from plasma exhaust, treatment of the tritiated wastes, detritiation of the contaminated atmospheres, tritium analysis and accountability. In this work an analysis of the designed tritium system of Ignitor is summarized

  17. Tritium decontamination of machine components and walls

    International Nuclear Information System (INIS)

    Hircq, B.; Wong, K.Y.; Jalbert, R.A.; Shmayda, W.T.

    1991-01-01

    Tritium decontamination techniques for machine components and their application at tritium handling facilities are reviewed. These include commonly used methods such as vacuuming, purging, thermal desorption and isotopic exchange as well as less common methods such as chemical/electrochemical etching, plasma discharge cleaning, and destructive methods. Problems associated with tritium contamination of walls and use of protective coatings are reviewed. Tritium decontamination considerations at fusion facilities are discussed

  18. Tritium Permeability of Incoloy 800H and Inconel 617

    Energy Technology Data Exchange (ETDEWEB)

    Philip Winston; Pattrick Calderoni; Paul Humrickhouse

    2012-07-01

    Design of the Next Generation Nuclear Plant (NGNP) reactor and its high-temperature components requires information regarding the permeation of fission generated tritium and hydrogen product through candidate heat exchanger alloys. Release of fission-generated tritium to the environment and the potential contamination of the helium coolant by permeation of product hydrogen into the coolant system represent safety basis and product contamination issues. Of the three potential candidates for high-temperature components of the NGNP reactor design, only permeability for Incoloy 800H has been well documented. Hydrogen permeability data have been published for Inconel 617, but only in two literature reports and for partial pressures of hydrogen greater than one atmosphere, far higher than anticipated in the NGNP reactor. To support engineering design of the NGNP reactor components, the tritium permeability of Inconel 617 and Incoloy 800H was determined using a measurement system designed and fabricated at Idaho National Laboratory. The tritium permeability of Incoloy 800H and Inconel 617, was measured in the temperature range 650 to 950°C and at primary concentrations of 1.5 to 6 parts per million volume tritium in helium. (partial pressures of 10-6 atm)—three orders of magnitude lower partial pressures than used in the hydrogen permeation testing. The measured tritium permeability of Incoloy 800H and Inconel 617 deviated substantially from the values measured for hydrogen. This may be due to instrument offset, system absorption, presence of competing quantities of hydrogen, surface oxides, or other phenomena. Due to the challenge of determining the chemical composition of a mixture with such a low hydrogen isotope concentration, no categorical explanation of this offset has been developed.

  19. Tritium Permeability of Incoloy 800H and Inconel 617

    Energy Technology Data Exchange (ETDEWEB)

    Philip Winston; Pattrick Calderoni; Paul Humrickhouse

    2011-09-01

    Design of the Next Generation Nuclear Plant (NGNP) reactor and its high-temperature components requires information regarding the permeation of fission generated tritium and hydrogen product through candidate heat exchanger alloys. Release of fission-generated tritium to the environment and the potential contamination of the helium coolant by permeation of product hydrogen into the coolant system represent safety basis and product contamination issues. Of the three potential candidates for high-temperature components of the NGNP reactor design, only permeability for Incoloy 800H has been well documented. Hydrogen permeability data have been published for Inconel 617, but only in two literature reports and for partial pressures of hydrogen greater than one atmosphere, far higher than anticipated in the NGNP reactor. To support engineering design of the NGNP reactor components, the tritium permeability of Inconel 617 and Incoloy 800H was determined using a measurement system designed and fabricated at Idaho National Laboratory. The tritium permeability of Incoloy 800H and Inconel 617, was measured in the temperature range 650 to 950 C and at primary concentrations of 1.5 to 6 parts per million volume tritium in helium. (partial pressures of 10-6 atm) - three orders of magnitude lower partial pressures than used in the hydrogen permeation testing. The measured tritium permeability of Incoloy 800H and Inconel 617 deviated substantially from the values measured for hydrogen. This may be due to instrument offset, system absorption, presence of competing quantities of hydrogen, surface oxides, or other phenomena. Due to the challenge of determining the chemical composition of a mixture with such a low hydrogen isotope concentration, no categorical explanation of this offset has been developed.

  20. Mass transfer behavior of tritium from air to water through the water surface

    International Nuclear Information System (INIS)

    Takata, Hiroki; Nishikawa, Masabumi; Kamimae, Kozo

    2005-01-01

    It is anticipated that a certain amount of tritiated water exists in the atmosphere of tritium handling facilities, and it is recognized that the hazardous potential of tritiated water is rather high. Then, it is important to grasp the behavior of tritiated water for preserving of the radiation safety. The mass transfer behavior of tritium from air to water through the water surface was discussed in this study. The evaporation rate of water and the condensation rate of water were experimentally examined from measurement of change of the weight of distilled water. The tritium transfer rate from the tritiated water in air to the distilled water was also experimentally examined by using a liquid scintillation counter. Experimental results about change of tritium level in a small beaker placed in the atmosphere with tritiated water showed that diffusion of tritium in water and gas flow in the atmosphere gives considerable effect on tritium transfer. The estimation method of the tritium transfer made in this study was applied to explain the data at The Japan Atomic Power Company second power station at Tsuruga and good agreement was obtained. (author)

  1. Tritium production and processing in a Tokamak reactor

    International Nuclear Information System (INIS)

    Leger, D.

    1986-09-01

    Important aspects of the tritium system in Tokamak reactors that have to be controlled are overviewed in this paper. The doubling time is one of them, that is to say the time required to produce, in addition to the tritium burned enough tritium to be able to supply the initial tritium inventory. Another one is the tritium permeation through walls. In addition to the permeation phenomena, large tritium inventories are trapped in the reactor structural material. Finally, the different atmospheres of halls, etc.., that can be contaminated with tritium, have to be reprocessed

  2. Status and practicality of detritiation and tritium production strategies for environmental remediation

    Energy Technology Data Exchange (ETDEWEB)

    Fulbright, H.H.; Schwirian-Spann, A.L.; Brunt, V. van [Univ. of South Carolina, Columbia, SC (US); Jerome, K.M.; Looney, B.B. [Westinghouse Savannah River Co., Aiken, SC (US)

    1996-02-26

    Operation of nuclear facilities throughout the world generates wastewater, groundwater and surface water contaminated with tritium. Because of a commitment to minimize radiation exposures to ''levels as low as reasonably achievable'', the US Department of Energy supports development of tritium isotope separation technologies. Also, DOE periodically documents the status and potential viability of alternative tritium treatment technologies and management strategies. The specific objectives of the current effort are to evaluate practical engineering issues, technology acceptability issues, and costs for realistic tritium treatment scenarios. A unique feature of the assessment is that the portfolio of options was expanded to include various management strategies rather than only evaluating detritiation technologies. The ultimate purpose of this effort is to assist Environmental Restoration and its support organizations in allocating future investments.

  3. [Study on Tritium Content in Soil at Sites of Nuclear Explosions on the Territory of Semipalatinsk Test Site].

    Science.gov (United States)

    Timonova, L V; Lyakhova, O N; Lukashenko, S N; Aidarkhanov, A O

    2015-01-01

    As a result of investigations carried out on the territory of Semipalatinsk Test Site, tritium was found in different environmental objects--surface and ground waters, vegetation, air environment, and snow cover. The analysis of the data obtained has shown that contamination of environmental objects at the Semipalatinsk Test Site with tritium is associated with the places where underground nuclear tests were performed. Since tritium can originate from an activation reaction and be trapped by pock particles during a test, it was decided to examine the soil in the sites where surface and excavation tests took place. It was found that the concentration of tritium in soil correlates with the concentration of europium. Probably, the concentration of tritium in the soil depends on the character and yield of the tests performed. Findings of the study have revealed that tritium can be found in soil in significant amounts not only in sites where underground nuclear tests took place but also in sites where surface and excavation nuclear tests were carried out.

  4. Radioactive surface contamination monitors

    International Nuclear Information System (INIS)

    Aoyama, Kei; Minagoshi, Atsushi; Hasegawa, Toru

    1994-01-01

    To reduce radiation exposure and prevent contamination from spreading, each nuclear power plant has established a radiation controlled area. People and articles out of the controlled area are checked for the surface contamination of radioactive materials with surface contamination monitors. Fuji Electric has repeatedly improved these monitors on the basis of user's needs. This paper outlines typical of a surface contamination monitor, a personal surface contamination monitor, an article surface contamination monitor and a laundry monitor, and the whole-body counter of an internal contamination monitor. (author)

  5. In vitro study of proteins surface activity by tritium probe

    International Nuclear Information System (INIS)

    Chernysheva, M.G.; Badun, G.A.

    2010-01-01

    A new technique for in vitro studies of biomacromolecules interactions, their adsorption at aqueous/organic liquid interfaces and distribution in the bulk of liquid/liquid systems was developed. The method includes (1) tritium labeling of biomolecules by tritium thermal activation method and (2) scintillation phase step with organic phase, which can be concerned as a model of cellular membrane. Two globular proteins lysozyme and human serum albumin tested. We have determined the conditions of tritium labeling when labeled by-products can be easy separated by means of dialysis and size-exclusion chromatography. Scintillation phase experiments were conducted for three types of organic liquids. Thus, the influences of the nature of organic phase on proteins adsorption and its distribution in the bulk of aqueous/organic liquid system were determined. It was found that proteins possess high surface activity at aqueous/organic liquid interface. Furthermore, values of hydrophobicity of globular proteins were found by the experiment. (author)

  6. New data on the level of contamination with tritium aerosol fallout in the nearest influence zone of the mining-chemical combine of the Rosatom State Corporation

    Science.gov (United States)

    Bondareva, L. G.; Rubailo, A. I.

    2016-03-01

    The influence of tritium aerosol transport on radioactive contamination on the territory of the Krasnoyarsk region influenced by the mining-chemical combine of the Rosatom State Corporation was studied. Snow cover, foliage, and needles collected at various distances from the mining-chemical combine were selected as the object of this study. A new methodology of liquid extraction from plant material (leaves and needles) was worked out. As a result, the maximal concentrations of tritium (15 kBk/m3 in snow, 11 and 15 Bk/m2 for leaves and pine-tree needles, respectively) were determined. However, the results obtained are not anomalous. Consequently, contamination with tritium may not be accounted for entirely due to the low concentrations.

  7. Control of the tritium path in process heat HTR's

    International Nuclear Information System (INIS)

    Kirch, N.; Scheidler, G.

    1985-01-01

    Nuclear Process Heat plant converting fossil fuels into liquid or gaseous secondary energy carriers generate tritium by several nuclear reactions. Control of the tritium path through the walls of the heat exchanger is highly important to meet regulatory requirements on the acceptable contamination in the product gas or liquid. Therefore, significant effort in the project 'Prototypanlage Nukleare Prozesswaerme' was put not only into generating a data base, but also into means of reducing tritium generation and permeation. Clean graphites with lithium impurities in the ppb level provide a low tritium source term. Realistic modeling of graphite retention and special helium purification systems are essentials. The main barrier to tritium permeation are heat exchanger walls requiring detailed characterization of in-situ surface layers. Studies to optimize the water/steam mass flow in the conversion process offer possibilities for further tritium retention. Progress can be demonstrated as follows: In 1980, between 2 and 8 Bq tritium per gram of product were predicted based on available data and even higher concentrations during startup. However, present day validated code predictions are below required 0.5 Bq/g equilibrium concentration level. During transients - particularly startup - this limit cannot be guaranteed as yet, but further retention potential is being offered by tritium gettering or filtering. An expected increase of the German regulatory requirement to 5 Bq/g will easily be met by present plant design under all operational conditions. (author)

  8. Consideration of disposal alternatives for tritium-contaminated wastewater streams at Hanford

    International Nuclear Information System (INIS)

    Waters, E.D.

    1988-03-01

    Small quantities of tritium are produced as an undesirable by-product of the operation of light-water reactors. At the US Department of Energy Hanford Site in Washington State, some tritium has been discharged to the environment in low-level liquid and gaseous wastes from the N Reactor plant, but more than 97% of the tritium stays typically within the irradiated fuel as it is delivered for reprocessing. During fuel reprocessing, the tritium is distributed in the process streams, and most of the tritium is presently released to the soil column with excess process condensates from the Plutonium-Uranium Extraction (PUREX) Plant. On an annual basis, approximately 1 g of tritium is discharged in more than 1 x 10 6 L of process condensate water. Principal tritium release points and quantities are presented in section 4.0. The present study is intended to identify and evaluate alternate methods of tritium control and disposal that might merit additional study or development for potential application to Hanford Site effluents. 30 refs., 15 figs., 5 tabs

  9. Regeneration and tritium recovery from the large JET neutral injection cryopump system after the FTE

    International Nuclear Information System (INIS)

    Obert, W.; Bell, A.; Davies, J.; Mayaux, C.; Perinic, G.; Saibene, G.; Sartori, R.; Thompson, E.; Anderson, J.; Jenkins, E.; Walthers, C.

    1992-01-01

    Neutral Beam Injection (NBI) was used to introduce tritium into the plasma for the First Tritium Experiment In addition to the decisive advantage of depositing the tritium into the centre of the plasma, the use of NBI also minimized the total quantity of tritium introduced into the Torus and the contamination of the vacuum vessel. However, because of the relatively low gas efficiency of the positive ion injection system approximately 95% of the total quantity of tritium introduced was pumped by the large condensation cryopumps which form an integral part of the injector. Several hardware and associated software changes were implemented in order to making provision for possible fault scenarios during operation with tritium and to ensure complete regeneration of the tritium from the cryopumps. The tritium released after all subsequent regeneration's has been monitored carefully in order to determine the amount of tritium retained by the black anodized liquid nitrogen panel surfaces of the cryopump and to compare it with experiments at TSTA on JET samples before the FTE

  10. In-pile test of tritium release from tritium breeding materials (VOM-21H experiment)

    International Nuclear Information System (INIS)

    Kurasawa, Toshimasa; Takeshita, Hidefumi; Watanabe, Hitoshi; Yoshida, Hiroshi.

    1986-10-01

    Material development and blanket design of lithium-based ceramics such as lithium oxide, lithium aluminate, lithium silicate and lithium zirconate have been performed in Japan, United State of America and Europian Communities. Lithium oxide is a most attractive candidate for tritium breeding materials because of its high lithium density, high thermal conductivity and good tritium release performance. This work has been done to clarify the characteristics of tritium release and recovery from Li 2 O by means of in-situ tritium release measurement. The effects of temperature and sweep gas composition on the tritium release were investigated in this VOM-21H Experiment. Good measurement of tritium release was achieved but there were uncertainties in reproduciblity of data. The experimental results show that the role of surface adsorption/desorption makes a significant contribution to the tritium release and tritium inventory. Also, it is necessary to define the rate limiting process either diffusion or surface adsorption/desorption. (author)

  11. Tritium instrumentation for a fusion reactor power plant

    International Nuclear Information System (INIS)

    Shank, K.E.; Easterly, C.E.

    1976-09-01

    A review of tritium instrumentation is presented. This includes a discussion of currently available in-plant instrumentation and methods required for sampling stacks, monitoring process streams and reactor coolants, analyzing occupational work areas for air and surface contamination, and personnel monitoring. Off-site instrumentation and collection techniques are also presented. Conclusions are made concerning the adequacy of existing instrumentation in relation to the monitoring needs for fusion reactors

  12. Development of a compact tritium activity monitor and first tritium measurements

    Energy Technology Data Exchange (ETDEWEB)

    Röllig, M., E-mail: marco.roellig@kit.edu; Ebenhöch, S.; Niemes, S.; Priester, F.; Sturm, M.

    2015-11-15

    Highlights: • We report about experimental results of a new tritium activity monitoring system using the BIXS method. • The system is compact and easy to implement. It has a small dead volume of about 28 cm{sup 3} and can be used in a flow-through mode. • Gold coated surfaces are used to improve significantly count rate stability of the system and to reduce stored inventory. - Abstract: To develop a convenient tool for in-line tritium gas monitoring, the TRitium Activity Chamber Experiment (TRACE) was built and commissioned at the Tritium Laboratory Karlsruhe (TLK). The detection system is based on beta-induced X-ray spectrometry (BIXS), which observes the bremsstrahlung X-rays generated by tritium decay electrons in a gold layer. The setup features a measuring chamber with a gold-coated beryllium window and a silicon drift detector. Such a detection system can be used for accountancy and process control in tritium processing facilities like the Karlsruhe Tritium Neutrino Experiment (KATRIN). First characterization measurements with tritium were performed. The system demonstrates a linear response between tritium partial pressure and the integral count rate in a pressure range of 1 Pa up to 60 Pa. Within 100 s measurement time the lower detection limit for tritium is (143.63 ± 5.06) · 10{sup 4} Bq. The system stability of TRACE is limited by a linear decrease of integral count rate of 0.041 %/h. This decrease is most probably due to exchange interactions between tritium and the stainless steel walls. By reducing the interaction surface with stainless steel, the decrease of the integral count rate was reduced to 0.008 %/h. Based on the first results shown in this paper it can be concluded that TRACE is a promising complement to existing tritium monitoring tools.

  13. 2009 EVALUATION OF TRITIUM REMOVAL AND MITIGATION TECHNOLOGIES FOR WASTEWATER TREATMENT

    Energy Technology Data Exchange (ETDEWEB)

    LUECK KJ; GENESSE DJ; STEGEN GE

    2009-02-26

    Since 1995, a state-approved land disposal site (SALDS) has received tritium contaminated effluents from the Hanford Site Effluent Treatment Facility (ETF). Tritium in this effluent is mitigated by storage in slow moving groundwater to allow extended time for decay before the water reaches the site boundary. By this method, tritium in the SALDS is isolated from the general environment and human contact until it has decayed to acceptable levels. This report contains the 2009 update evaluation of alternative tritium mitigation techniques to control tritium in liquid effluents and groundwater at the Hanford site. A thorough literature review was completed and updated information is provided on state-of-the-art technologies for control of tritium in wastewaters. This report was prepared to satisfy the Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) Milestone M-026-07B (Ecology, EPA, and DOE 2007). Tritium separation and isolation technologies are evaluated periodically to determine their feasibility for implementation to control Hanford site liquid effluents and groundwaters to meet the Us. Code of Federal Regulations (CFR), Title 40 CFR 141.16, drinking water maximum contaminant level (MCL) for tritium of 20,000 pOll and/or DOE Order 5400.5 as low as reasonably achievable (ALARA) policy. Since the 2004 evaluation, there have been a number of developments related to tritium separation and control with potential application in mitigating tritium contaminated wastewater. These are primarily focused in the areas of: (1) tritium recycling at a commercial facility in Cardiff, UK using integrated tritium separation technologies (water distillation, palladium membrane reactor, liquid phase catalytic exchange, thermal diffusion), (2) development and demonstration of Combined Electrolysis Catalytic Exchange (CECE) using hydrogen/water exchange to separate tritium from water, (3) evaporation of tritium contaminated water for dispersion in the

  14. Measurement of tritium activity in the aluminum pipe of JRR-2 heavy water primary cooling system using imaging plate

    International Nuclear Information System (INIS)

    Motoishi, Shoji; Kobayashi, Katsutoshi

    2000-12-01

    JRR-2 is the heavy water cooling type nuclear reactor, which has been operated for 36 years (1960-1976) and in the process of decommissioning at present. For this reason, evaluation of tritium quantity permeated into the pipe and apparatus of the primary coolant heavy water circulating system is important. In the Radioisotope Production Division, activity of tritium in aluminum pipe was measured with imaging plate (IP), liquid scintillation analyzer and high purity germanium detector (HPGe). After acrylic paints was applied for the region except for tritium contamination on the surface of aluminum pipe, only the oxidized contaminated part was dissolved by 1.5%(1.21M) HF for 3 minutes, and measured with IP. As a result, the tritium was found to permeate in the depth of 25 μm. Moreover, 90% of it was found to be distributed within 7 μm. (author)

  15. Evaluation of the internal contamination risk for isotope laboratory workers

    International Nuclear Information System (INIS)

    Adamiak-Ziemba, J.; Doniec, J.; Kocznow, W.; Hawrynski, M.

    1985-01-01

    The investigation covered 484 workers. Altogether 1787 determinations have been made, in this - 1648 internal contaminations and 139 contaminations of air, hand skin and working surfaces. The internal contaminations (22% of results) resulted mainly from deviation from radiological protection rules and were reduced by certain changes. Those were tritium contaminations (application of tritium radioluminescence dyes) and 125, 131 J. The highest levels of which were 20 mSv and 0.25% ALI respectively. The results of 238 Pu air contamination measurements indicates that the dust arising during the production of smoke detectors (with 238 PuO 2 sources) probably has no respirable fraction properties, what confines its absorption in lower parts of the respiratory tract. It has been demonstrated that in Poland is no need of a central system of permanent internal contamination control. (author)

  16. Catalyst study for the decontamination of glove-box atmospheres containing tritium at MPC levels

    International Nuclear Information System (INIS)

    Chobot, J.; Montel, J.; Sannier, J.

    1988-01-01

    The BEATRICE loop was designed for studying the conversion of tritium at very low activity levels using catalytic oxidation followed by water trapping. The purpose is to study kinetic parameters required for the design of the NET tritium cleanup system with the two main objectives to operate without isotopic swamping and to determine the ability of efficient conversion at room temperature. From experiments carried out between 20 and 250 0 C it is concluded that two palladium/alumina and platinum/alumina catalysts are very efficient in removing tritium from contaminated gas mixtures down to a few MPC levels without isotopic swamping and even at room temperature. However at room temperature, in relation to tritium species trapped on the catalyst surface a progressive deactivation with time occurs. This phenomenon may be a concern for process efficiency and tritium inventory and regeneration conditions have to be determined in order to demonstrate industrial feasibility of operating at room temperature

  17. Catalyst study for the decontamination of glove-boxe atmospheres containing tritium at MPC levels

    International Nuclear Information System (INIS)

    Chabot, J.; Montel, J.; Sannier, J.

    1988-01-01

    The BEATRICE loop was designed for studying the conversion of tritium at very low activity levels using catalytic oxidation followed by water trapping. The purpose is to study kinetic parameters required for the design of the NET tritium clean-up system with the two main objectives to operate without isotopic swamping and to determine the ability of efficient conversion at room temperature. From experiments carried out between 20 and 250 0 C it is concluded that two palladium/alumina and platinum/alumina catalysts are very efficient in removing tritium from contaminated gas mixtures down to a few MPC levels without isotopic swamping and even at room temperature. However at room temperature, in relation to tritium species trapped on the catalyst surface a progressive deactivation with time occurs. This phenomenon may be a concern for process efficiency and tritium inventory and best regeneration conditions have to be determined in order to demonstrate industrial feasibility of operating at room temperature

  18. Develop of omni-tritium sample preparation device

    International Nuclear Information System (INIS)

    Tian Junhua; Zheng Min; Zhang Dong

    2008-06-01

    The content of total tritium analysis is required in order to know the tritium contaminated degree of biological samples accurately. But the conversion and collection of organic tritium are difficult. A device to treat total tritium samples was developed. Plant samples were treated by combustion and catalysis. After expelling the free HTO in the samples when heated in abundant oxygen, the samples were ignited. Combustion gas passed the catalysts at 800 degree C and its oxidation was catalyzed, and then the combined tritium in tissues was converted into HTO. HTO was collected by water-cooling tube and condenser. For other samples, HTO was treated and collected by high temperature (The highest temperature is 1000 degree C)-catalysis-double condensation method. This device had solved the problem that organic tritium is difficult to gather. (authors)

  19. Surface condition effects on tritium permeation through the first wall of a water-cooled ceramic breeder blanket

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, H.-S. [Institute of Plasma Physics, Chinese Academy of Sciences, P.O. Box 1126, Hefei (China); Xu, Y.-P.; Liu, H.-D. [Science Island Branch of Graduate School, University of Science and Technology of China, P.O. Box 1126, Hefei (China); Liu, F.; Li, X.-C.; Zhao, M.-Z.; Qi, Q.; Ding, F. [Institute of Plasma Physics, Chinese Academy of Sciences, P.O. Box 1126, Hefei (China); Luo, G.-N., E-mail: gnluo@ipp.ac.cn [Institute of Plasma Physics, Chinese Academy of Sciences, P.O. Box 1126, Hefei (China); Science Island Branch of Graduate School, University of Science and Technology of China, P.O. Box 1126, Hefei (China); Hefei Center for Physical Science and Technology, P.O. Box 1126, Hefei (China); Hefei Science Center of Chinese Academy of Science, P.O. Box 1126, Hefei (China)

    2016-11-01

    Highlights: • We investigate surface effects on T transport through the first wall. • We solve transport equations with various surface conditions. • The RAFMs walls w/and w/o W exhibit different T permeation behavior. • Diffusion in W has been found to be the rate-limiting step. - Abstract: Plasma-driven permeation of tritium (T) through the first wall of a water-cooled ceramic breeder (WCCB) blanket may raise safety and other issues. In the present work, surface effects on T transport through the first wall of a WCCB blanket have been investigated by theoretical calculation. Two types of wall structures, i.e., reduced activation ferritic/martensitic steels (RAFMs) walls with and without tungsten (W) armor, have been analyzed. Surface recombination is assumed to be the boundary condition for both the plasma-facing side and the coolant side. It has been found that surface conditions at both sides can affect T permeation flux and inventory. For the first wall using W as armor material, T permeation is not sensitive to the plasma-facing surface conditions. Contamination of the surfaces will lead to higher T inventory inside the first wall.

  20. Transfer of tritium released by nuclear facilities to the food supply

    International Nuclear Information System (INIS)

    Bovard, P.; Delmas, J.; Belot, Y.; Camus, H.; Grauby, A.; Hoek, J. van den

    1979-01-01

    The use for agricultural purposes of river waters receiving releases or discharges of tritium results in contamination of irrigated crops and of animals given such water to drink or consuming the contaminated crops. It therefore seemed of importance to assess the part played by tritium in the contamination of the food chain, together with its possible effects on organisms. With this in mind, French, Belgian and Netherlands laboratories have joined forces to study, more especially, the relationship between environmental contamination rates and those of produce harvested in the Mediterranean region and in a humid temperate climate, the transfer process in the chain: water - fodder - bovines - dairy produce, and the role of technology in the contamination of the food chain. The present status of research undertaken jointly by organizations in the three countries is reviewed. In the Atlantic environment the experiments involved four annual crops consumed on a large scale: potatoes, sugar beet, carrots and peas, and in the Mediterranean environment several perennial species such as vine, olive, orange and apple were studied. The results obtained relate to the residence time for tritium in the various organs of each species, the part played by evapotranspiration and the physiological functions of the different parts of the plants, the uptake of tritium by tissue water and organic matter, and the distribution of tritium in the soil profile. (author)

  1. Handling of tritium-bearing wastes

    International Nuclear Information System (INIS)

    1981-01-01

    The generation of nuclear power and reprocessing of nuclear fuel results in the production of tritium and the possible need to control the release of tritium-contaminated effluents. In assessing the need for controls, it is necessary to know the production rates of tritium at different nuclear facilities, the technologies available for separating tritium from different gaseous and liquid streams, and the methods that are satisfactory for storage and disposal of tritiated wastes. The intention in applying such control technologies and methods is to avoid undesirable effects on the environment, and to reduce the radiation burden on operational personnel and the general population. This technical report is a result of the IAEA Technical Committee Meeting on Handling of Tritium-bearing Effluents and Wastes, which was held in Vienna, 4 - 8 December 1978. It summarizes the main topics discussed at the meeting and appends the more detailed reports on particular aspects that were prepared for the meeting by individual participants

  2. Management of tritium-contaminated wastes a survey of alternative options

    International Nuclear Information System (INIS)

    Mannone, F.

    1990-01-01

    The European Tritium Handling Experimental Laboratory (ETHEL) under construction on the site of Ispra Joint Research Centre of the Commission of European Communities has been commissioned to experimentally develop operational and environmental safety aspects related to the tritium technology in fusion, i.e. dealing with the behaviour and reliability of materials, equipment and containment systems under tritium impact. For this reason a part of the experimental activities to be performed in ETHEL will be devoted to laboratory research on tritiated waste management. However, since all experimental activities planned for the execution in ETHEL will by itselves generate tritiated wastes, current strategies and practices to be applied for the routine management of these wastes need also to be defined. To attain this target an adequate background information must be provided, which is the intent of this report. Through an exhaustive literature survey tritiated waste management options till now investigated or currently applied in several countries have been assessed. A particular importance has been attached to the tritium leach test programmes, whose results enable to assess the tritium retention efficiency of the various waste immobilization options. The conclusions resulting from the overall assessment are presented

  3. Tritium control in fusion reactor materials: A model for Tritium Extracting System

    International Nuclear Information System (INIS)

    Zucchetti, Massimo; Utili, Marco; Nicolotti, Iuri; Ying, Alice; Franza, Fabrizio; Abdou, Mohamed

    2015-01-01

    Highlights: • A modeling work has been performed to address these issues in view of its utilization for the TES (Tritium Extraction System), in the case of the HCPB TBM and for a Molecular sieve as adsorbent material. • A computational model has been setup and tested in this paper. • The results of experimental measurement of fundamental parameters such as mass transfer coefficients have been implemented in the model. • It turns out the capability to model the extraction process of gaseous tritium compounds and to estimate the breakthrough curves of the two main tritium gaseous species (H2 and HT). - Abstract: In fusion reactors, tritium is bred by lithium isotopes inside the blanket and then extracted. However, tritium can contaminate the reactor structures, and can be eventually released into the environment. Tritium in reactor components should therefore be kept under close control throughout the fusion reactor lifetime, bearing in mind the risk of accidents, the need for maintenance and the detritiation of dismantled reactor components before their re-use or disposal. A modeling work has been performed to address these issues in view of its utilization for the TES (Tritium Extraction System), in the case of the HCPB TBM and for a molecular sieve as adsorbent material. A computational model has been setup and tested. The results of experimental measurement of fundamental parameters such as mass transfer coefficients have been implemented in the model. It turns out the capability of the model to describe the extraction process of gaseous tritium compounds and to estimate the breakthrough curves of the two main tritium gaseous species (H2 and HT).

  4. Tritium control in fusion reactor materials: A model for Tritium Extracting System

    Energy Technology Data Exchange (ETDEWEB)

    Zucchetti, Massimo [DENERG, Politecnico di Torino (Italy); Utili, Marco, E-mail: marco.utili@enea.it [ENEA UTIS – C.R. Brasimone, Bacino del Brasimone, Camugnano, BO (Italy); Nicolotti, Iuri [DENERG, Politecnico di Torino (Italy); Ying, Alice [University of California Los Angeles (UCLA), Los Angeles, CA (United States); Franza, Fabrizio [Karlsruhe Institute of Technology, Karlsruhe (Germany); Abdou, Mohamed [University of California Los Angeles (UCLA), Los Angeles, CA (United States)

    2015-10-15

    Highlights: • A modeling work has been performed to address these issues in view of its utilization for the TES (Tritium Extraction System), in the case of the HCPB TBM and for a Molecular sieve as adsorbent material. • A computational model has been setup and tested in this paper. • The results of experimental measurement of fundamental parameters such as mass transfer coefficients have been implemented in the model. • It turns out the capability to model the extraction process of gaseous tritium compounds and to estimate the breakthrough curves of the two main tritium gaseous species (H2 and HT). - Abstract: In fusion reactors, tritium is bred by lithium isotopes inside the blanket and then extracted. However, tritium can contaminate the reactor structures, and can be eventually released into the environment. Tritium in reactor components should therefore be kept under close control throughout the fusion reactor lifetime, bearing in mind the risk of accidents, the need for maintenance and the detritiation of dismantled reactor components before their re-use or disposal. A modeling work has been performed to address these issues in view of its utilization for the TES (Tritium Extraction System), in the case of the HCPB TBM and for a molecular sieve as adsorbent material. A computational model has been setup and tested. The results of experimental measurement of fundamental parameters such as mass transfer coefficients have been implemented in the model. It turns out the capability of the model to describe the extraction process of gaseous tritium compounds and to estimate the breakthrough curves of the two main tritium gaseous species (H2 and HT).

  5. Extraction of tritium from liquid lithium by permeation

    International Nuclear Information System (INIS)

    Alire, R.M.

    1978-01-01

    This paper assesses a method for extracting tritium from liquid lithium for specific application to the conceptual laser fusion reactor that uses a continuous lithium ''waterfall.'' The tritium diffuses through a refractory metal that contains a getter and is then stored in a hydride-forming alloy. There are various uncertainties with this method including helium-4 extraction, unknown impurities that may accumulate in liquid lithium, the effects of these impurities on tritium separation, and the maintenance of tritium-contaminated equipment. Our study indicates that major tritium losses will occur during equipment maintenance rather than as a result of permeation losses through the primary vessel

  6. The increase elimination rate of tritium after administration of furosemide in rats

    International Nuclear Information System (INIS)

    Chirovici, Maria; Jiquidi, Luminita; Reviu, Eugen

    2001-01-01

    It is well known that tritium has certain characteristics that present serious problems for dosimetry and health risk assessment. National Council on Radiation Protection recommends for persons contaminated with tritium oral intake of fluid (e.g. water, fruit juice, tea, coffee or beer), or instillation with 5 % glucose under a doctor's care, together with daily urinary monitoring. This paper tries to follow up the increase elimination rate of tritium in contaminated rats after administration of furosemide, a diuretic used in medical practice. The experiments has been realized on the Wistar rats divided into two groups. First, the control group was contaminated with 3 HHO by intraperitoneal (i.p.) inoculation. The second group was treated with 3 doses of 5.70 mg furosemide (i.p.) body weight at 2, 6 and 12 hours after i.p. inoculation with 3 HHO. Following exposure, the tritium elimination in excreta was monitored 18 days and blood, liver, muscle and kidney were extracted from rats at 1, 2, 4, 7, 11, 18 days after contamination. The excreta and tissues were analyzed with specific tritium radiochemical methods and the samples radioactivity was measured by liquid scintillation technique. Efficiency of treatment was about 30 %. (authors)

  7. Contribution to the tritium continental effect

    International Nuclear Information System (INIS)

    Lewis, R.R.; Froehlich, K.; Hebert, D.

    1987-01-01

    The results of tritium measurements of atmospheric water vapour and precipitation samples for 1982 and 1983 are presented. The data were used to establish a simple model describing the tritium continental effect taking into account re-evaporation of tritium from the continental land surfaces and man-made tritium. (author)

  8. Low pressure tritium interaction with Inconel 625 and AISI 316 L stainless steel surfaces: an evaluation of the recombination and adsorption constants

    International Nuclear Information System (INIS)

    Perujo, A.; Douglas, K.; Serra, E.

    1996-01-01

    The surface constants for the recombination (σk 2 ) and adsorption (σk 1 ) of tritium in Inconel 625 and austenitic stainless steel AISI 316 L were determined from the measurement of tritium permeation through engineering components (bellows) typical of those used on large fusion devices which will operate with tritium. Experimental permeation measurements were performed over the temperature range 450-620 K and an interpretation of the data was attempted based on a surface-limited tritium release model. At the tritium partial pressure of 0.1 Pa present in a machine such as JET, the flow of tritium is strongly influenced by surface reactions. Furthermore, it is often assumed that oxide layers, acting as permeation barriers, are present on such components. However, for effectiveness, such barriers must be intact and this may not necessarily be the case for engineering components in which mechanical stresses can lead to oxide cracking. The recombination (σk 2 ) and adsorption (σk 1 ) constants of tritium were estimated for both stationary and continually flexing bellows. (orig.)

  9. Thermal Removal of Tritium from Concrete and Soil to Reduce Groundwater Impacts - 13197

    Energy Technology Data Exchange (ETDEWEB)

    Jackson, Dennis G. [Savannah River National Laboratory, Building 773-42A, Aiken, South Carolina 29808 (United States); Blount, Gerald C. [Savannah River Nuclear Solutions (United States); Wells, Leslie H.; Cardoso, Joao E.; Kmetz, Thomas F.; Reed, Misty L. [U.S Department of Energy-Savannah River Site (United States)

    2013-07-01

    Legacy heavy-water moderator operations at the Savannah River Site (SRS) have resulted in the contamination of equipment pads, building slabs, and surrounding soil with tritium. At the time of discovery the tritium had impacted the shallow (< 3-m) groundwater at the facility. While tritium was present in the groundwater, characterization efforts determined that a significant source remained in a concrete slab at the surface and within the associated vadose zone soils. To prevent continued long-term impacts to the shallow groundwater a CERCLA non-time critical removal action for these source materials was conducted to reduce the leaching of tritium from the vadose zone soils and concrete slabs. In order to minimize transportation and disposal costs, an on-site thermal treatment process was designed, tested, and implemented. The on-site treatment consisted of thermal detritiation of the concrete rubble and soil. During this process concrete rubble was heated to a temperature of 815 deg. C (1,500 deg. F) resulting in the dehydration and removal of water bound tritium. During heating, tritium contaminated soil was used to provide thermal insulation during which it's temperature exceeded 100 deg. C (212 deg. F), causing drying and removal of tritium. The thermal treatment process volatiles the water bound tritium and releases it to the atmosphere. The released tritium was considered insignificant based upon Clean Air Act Compliance Package (CAP88) analysis and did not exceed exposure thresholds. A treatability study evaluated the effectiveness of this thermal configuration and viability as a decontamination method for tritium in concrete and soil materials. Post treatment sampling confirmed the effectiveness at reducing tritium to acceptable waste site specific levels. With American Recovery and Reinvestment Act (ARRA) funding three additional treatment cells were assembled utilizing commercial heating equipment and common construction materials. This provided a

  10. Tritium transport analysis for CFETR WCSB blanket

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Pinghui, E-mail: phzhao@mail.ustc.edu.cn; Yang, Wanli; Li, Yuanjie; Ge, Zhihao; Nie, Xingchen; Gao, Zhongping

    2017-01-15

    Highlights: • A simplified tritium transport model for CFETR WCSB blanket was developed. • Tritium transport process in CFETR WCSB blanket was analyzed. • Sensitivity analyses of tritium transport parameters were carried out. - Abstract: Water Cooled Solid Breeder (WCSB) blanket was put forward as one of the breeding blanket candidate schemes for Chinese Fusion Engineering Test Reactor (CFETR). In this study, a simplified tritium transport model was developed. Based on the conceptual engineering design, neutronics and thermal-hydraulic analyses of CFETR WCSB blanket, tritium transport process was analyzed. The results show that high tritium concentration and inventory exist in primary water loop and total tritium losses exceed CFETR limits under current conditions. Conducted were sensitivity analyses of influential parameters, including tritium source, temperature, flow-rate capacity and surface condition. Tritium performance of WCSB blanket can be significantly improved under a smaller tritium impinging rate, a larger flow-rate capacity or a better surface condition. This work provides valuable reference for the enhancement of tritium transport behavior in CFETR WCSB blanket.

  11. Contribution to the tritium continental effect

    International Nuclear Information System (INIS)

    Lewis, R.R.; Froehlich, K.; Hebert, D.

    1987-01-01

    The results of tritium measurements of atmospheric water vapour and precipitation samples for 1982 and 1983 are presented. The data were used to establish a simple model describing the tritium continental effect taking into account re-evaporation of tritium from the continental land surfaces. Some comments on man made tritium are given. (author)

  12. Tritium distribution in leachates from domestic solid waste landfills

    International Nuclear Information System (INIS)

    Park, Soon Dal; Kim, Jung Suk; Joe, Kih Soo; Kim, Jong Gu; Kim, Won Ho

    2004-01-01

    It is for the purpose of investigating the tritium distribution in the leachates, the raw and treated leachates and the condensates of the methane gas, which have occurred from domestic solid waste landfills. Also it aims to measure the tritium distribution level on the colloid size of the leachates, the raw and treated leachates. It was found that the major inorganic contaminants of the leachates were Na, K, Ca, Mg, NH 4 + -N and Cl - . The mean tritium level of the raw leachates of the investigated 13 landfill sites for 6 months was 17∼1196 TU. It corresponded to a several scores or hundreds of magnitude higher value than that of the normal environmental sample level except for two landfill sites. Also such a high concentration of the tritium was found in the treated leachates and methane gas condensates as well. Nevertheless it is important to emphasize that the tritium level which was found in this research is about 100 times lower than the tritium limit for the drinking water quality. And most of the tritium existed in the dissolved colloid of the leachate of which the colloid size is below 0.45 μm. Also, according to the tritium analysis results of the leachates after filtration with 0.45μm membrane filter for some landfills, it is likely that some tritium of the leachate would be distributed in a colloid size over 0.45μm. In general the relationship between the tritium and other contaminants in the raw leachate was low, but it was relatively high between the tritium and TOC. However, the tritium content in the leachate had no meaningful relationship with the scale, hydrological characteristics and age of the landfill

  13. The LLNL portable tritium processing system

    International Nuclear Information System (INIS)

    Anon.

    1995-01-01

    The end of the Cold War significantly reduced the need for facilities to handle radioactive materials for the US nuclear weapons program. The LLNL Tritium Facility was among those slated for decommissioning. The plans for the facility have since been reversed, and it remains open. Nevertheless, in the early 1990s, the cleanup (the Tritium Inventory Removal Project) was undertaken. However, removing the inventory of tritium within the facility and cleaning up any pockets of high-level residual contamination required that we design a system adequate to the task and meeting today's stringent standards of worker and environmental protection. In collaboration with Sandia National Laboratory and EG ampersand G Mound Applied Technologies, we fabricated a three-module Portable Tritium Processing System (PTPS) that meets current glovebox standards, is operated from a portable console, and is movable from laboratory to laboratory for performing the basic tritium processing operations: pumping and gas transfer, gas analysis, and gas-phase tritium scrubbing. The Tritium Inventory Removal Project is now in its final year, and the portable system continues to be the workhorse. To meet a strong demand for tritium services, the LLNL Tritium Facility will be reconfigured to provide state-of-the-art tritium and radioactive decontamination research and development. The PTPS will play a key role in this new facility

  14. Tritium behavior in the Caisson, a simulated fusion reactor room

    International Nuclear Information System (INIS)

    Hayashi, Takumi; Kobayashi, Kazuhiro; Iwai, Yasunori; Yamada, Masayuki; Suzuki, Takumi; O'hira, Shigeru; Nakamura, Hirofumi; Shu, Weimin; Yamanishi, Toshihiko; Kawamura, Yoshinori; Isobe, Kanetsugu; Konishi, Satoshi; Nishi, Masataka

    2000-01-01

    In order to confirm tritium confinement ability in the deuterium-tritium (DT) fusion reactor, intentional tritium release experiments have been started in a specially fabricated test stand called 'Caisson', at Tritium Process Laboratory in Japan Atomic Energy Research Institute. The Caisson is a stainless steel leak-tight vessel of 12 m 3 , simulating a reactor room or a tritium handling room. In the first stage experiments, about 260 MBq of pure tritium was put into the Caisson under simulated constant ventilation of four times air exchanges per h. The tritium mixing and migration in the Caisson was investigated with tritium contamination measurement and detritiation behavior measurement. The experimental tritium migration and removal behavior was almost perfectly reproduced and could almost be simulated by a three-dimensional flow analysis code

  15. Tritium monitor and collection system

    Science.gov (United States)

    Bourne, G.L.; Meikrantz, D.H.; Ely, W.E.; Tuggle, D.G.; Grafwallner, E.G.; Wickham, K.L.; Maltrud, H.R.; Baker, J.D.

    1992-01-14

    This system measures tritium on-line and collects tritium from a flowing inert gas stream. It separates the tritium from other non-hydrogen isotope contaminating gases, whether radioactive or not. The collecting portion of the system is constructed of various zirconium alloys called getters. These alloys adsorb tritium in any of its forms at one temperature and at a higher temperature release it as a gas. The system consists of four on-line getters and heaters, two ion chamber detectors, two collection getters, and two guard getters. When the incoming gas stream is valved through the on-line getters, 99.9% of it is adsorbed and the remainder continues to the guard getter where traces of tritium not collected earlier are adsorbed. The inert gas stream then exits the system to the decay chamber. Once the on-line getter has collected tritium for a predetermined time, it is valved off and the next on-line getter is valved on. Simultaneously, the first getter is heated and a pure helium purge is employed to carry the tritium from the getter. The tritium loaded gas stream is then routed through an ion chamber which measures the tritium activity. The ion chamber effluent passes through a collection getter that readsorbs the tritium and is removable from the system once it is loaded and is then replaced with a clean getter. Prior to removal of the collection getter, the system switches to a parallel collection getter. The effluent from the collection getter passes through a guard getter to remove traces of tritium prior to exiting the system. The tritium loaded collection getter, once removed, is analyzed by liquid scintillation techniques. The entire sequence is under computer control except for the removal and analysis of the collection getter. 7 figs.

  16. Current operations and experiments at the Tritium Systems Test Assembly

    International Nuclear Information System (INIS)

    Bartlit, J.R.; Anderson, J.L.

    1985-01-01

    The Tritium Systems Test Assembly (TSTA) has continued to move toward operation of a fully-integrated, full-sized, computer-controlled fusion fuel processing loop. Concurrent, nonloop experiments have answered important questions on new components and issues such as palladium diffusion membranes, ceramic electrolysis cells, regenerable tritium getters, laser Raman spectroscopy, unregenerable tritium inventory on molecular sieves, tritium contamination problems and decontamination methods, and operating data on reliability, emissions, doses, and wastes generated. 4 refs., 2 figs

  17. Handling of tritium contaminated effluents and wastes: Final Report

    International Nuclear Information System (INIS)

    Varghese, C.; Singh, I.; Agarwal, R.P.; Ramani, M.P.S.; Khan, A.A.

    1983-01-01

    This report deals with the work on: (1) applicability of cotton, woodpulp, sawdust and certian cellulosic derivatives for the removal of tritium from aqueous medium, (2) containment and fixation of tritiated water in nonleachable matrices. The absorption studies on cotton, woodpulp, sawdust, and cellulose acetates were carried out with a view to assess their potentialities as concentration media and also to choose a matrix which can concentrate tritium to the maximum extent possible. The experiments on water hyacinth plants were designed to see the applicability of concentrating tritium and also for providing a via medium for slow release of tritium into the atmosphere. The immobilisation of tritiated water in cement matrices was studied with combinations of portland cement and five filler materials namely sand, silica, vermiculite, portland cement aggregate and accoproof. If cement blocks come in contact with aqueous media as it may happen when the tritium bearing blocks are disposed to the ground, a considerable portion of the contained activity is likely to diffuse and leach out. In order to prevent this, it was proposed to try several coating materials as diffusion barriers over cement blocks. Screening of locally available coating materials was done using a diffusion cell. Shalismatic HD, Anticor and epoxy paint were found to be promising among the screened materials. Tritiated cement blocks with 29% vermiculite loading were coated with the above coating materials, and were subjected to leaching, both in sea water and distilled water. The cumulative leaching data for tritiated cement blocks over a period of 400 days show that Shalimastic HD, when used as a coating material, retards the leaching to the maximum extent. Further leaching studies were started on Shalimastic HD blocks in one ground water formulation, which is continued to this date. (author)

  18. Tritium sorption by cement and subsequent release

    International Nuclear Information System (INIS)

    Ono, F.; Yamawaki, M.

    1995-01-01

    In a fusion reactor or tritium-handling facilities, contamination of concrete by tritium and subsequent release from it to the reator or experimental room is a matter of problem for safe control of tritium and management of operational environment. In order to evaluate this tritium behavior, interaction of tritiated water with concrete or cement should be clarified. In the present study, HTO sorption and subsequent release from cement were experimentally studied.(1)Sorption experiments were conducted using columns packed with cement particles of different sizes. From the analysis of the breakthrough curve, tritium diffusivity in macropores and microparticles were evaluated.(2)From the short-term tritium release experiments, effective desorption rate constants were evaluated and the effects of temperature and moisture were studied.(3)In the long-term tritium release experiments to 6000h, the tritium release mechanism was found to be composed of three kinds of water: initially from capillary water, and in the second stage from gel water and from the water in the cement crystal.(4)Tritium release behavior by heat treatment to 800 C was studied. A high temperature above 600 C was required for the tritium trapped in the crystal water to be released. (orig.)

  19. Synergistic effects of surface erosion on tritium inventory and permeation in metallic plasma facing armours

    Science.gov (United States)

    Federici, G.; Holland, D. F.; Matera, R.

    1996-10-01

    In the next generation of DT fuelled tokamaks, i.e., the International Thermonuclear Experimental Reactor (ITER) implantation of energetic DT particles on some portions of the plasma facing components (PFCs) will take place along with significant erosion of the armour surfaces. As a result of the simultaneous removal of material from the front surface, the build-up of tritium inventory and the start of permeation originating in the presence of large densities of neutron-induced traps is expected to be influenced considerably and special provisions could be required to minimise the consequences on the design. This paper reports on the results of a tritium transport modelling study based on a new model which describes the migration of implanted tritium across the bulk of metallic plasma facing materials containing neutron-induced traps which can capture it and includes the synergistic effects of surface erosion. The physical basis of the model is summarised, but emphasis is on the discussion of the results of a comparative study performed for beryllium and tungsten armours for ranges of design and operation conditions similar to those anticipated in the divertor of ITER.

  20. Synergistic effects of surface erosion on tritium inventory and permeation in metallic plasma facing armours

    International Nuclear Information System (INIS)

    Federici, G.; Holland, D.F.; Matera, R.

    1996-01-01

    In the next generation of DT fuelled tokamaks, i.e., the international thermonuclear experimental reactor (ITER) implantation of energetic DT particles on some portions of the plasma facing components (PFCs) will take place along with significant erosion of the armour surfaces. As a result of the simultaneous removal of material from the front surface, the build-up of tritium inventory and the start of permeation originating in the presence of large densities of neutron-induced traps is expected to be influenced considerably and special provisions could be required to minimise the consequences on the design. This paper reports on the results of a tritium transport modelling study based on a new model which describes the migration of implanted tritium across the bulk of metallic plasma facing materials containing neutron-induced traps which can capture it and includes the synergistic effects of surface erosion. The physical basis of the model is summarised, but emphasis is on the discussion of the results of a comparative study performed for beryllium and tungsten armours for ranges of design and operation conditions similar to those anticipated in the divertor of ITER. (orig.)

  1. Tritium inventory and recovery in next-step fusion devices

    International Nuclear Information System (INIS)

    Causey, R.A.; Brooks, J.N.; Federici, G.

    2002-01-01

    Future fusion devices will use tritium and deuterium fuel. Because tritium is both radioactive and expensive, it is absolutely necessary that there be an understanding of the tritium retention characteristics of the materials used in these devices as well as how to recover the tritium. There are three materials that are strong candidates for plasma-facing-material use in next-step fusion devices. These are beryllium, tungsten, and carbon. While beryllium has the disadvantage of high sputtering and low melting point (which limits its power handling capabilities in divertor areas), it has the advantages of being a low-Z material with a good thermal conductivity and the ability to get oxygen from the plasma. Due to beryllium's very low solubility for hydrogen, implantation of beryllium with deuterium and tritium results in a saturated layer in the very near-surface with limited inventory (J. Nucl. Mater. 273 (1999) 1). Unfortunately, there are nuclear reactions generated by neutrons that will breed tritium and helium in the material bulk (J. Nucl. Mater. 179 (1991) 329). This process will lead to a substantial tritium inventory in the bulk of the beryllium after long-term neutron exposure (i.e. well beyond the operation life time of a next-step reactor like ITER). Tungsten is a high-Z material that will be used in the divertor region of next-step devices (e.g. ITER) and possibly as a first wall material in later devices. The divertor is the preferred location for tungsten use because net erosion is very low there due to low sputtering and high redeposition. While experiments are still continuing on tritium retention in tungsten, present data suggest that relatively low tritium inventories will result with this material (J. Nucl. Mater. 290-293 (2001) 505). For tritium inventories, carbon is the problem material. Neutron damage to the graphite can result in substantial bulk tritium retention (J. Nucl. Mater. 191-194 (1992) 368), and codeposition of the sputtered carbon

  2. Evaluation and mitigation of tritium memory in detritiation dryers

    International Nuclear Information System (INIS)

    Malara, C.; Ricapito, I.; Edwards, R.A.H.; Toci, F.

    1999-01-01

    In atmospheric detritiation, and other tritium processes, tritium is adsorbed on zeolites (molecular sieves) in the form of tritiated water. Regeneration removes almost all the physically adsorbed water, but a proportion remains permanently in the zeolite and binder structure as chemically bound water or hydroxyl groups. Exchange between adsorbed water and bound water means that tritiated water is retained in the structure after regeneration. At the end of its life, the zeolite therefore constitutes a tritiated waste. Furthermore, if an atmosphere detritiation dryer (ADD) gets highly contaminated from a tritium spill, retained tritium contaminates both the small amount of vapour leaving the bed during the next drying cycle, and the water produced in the subsequent regeneration. This report first describes experiments to measure the tritiated water retained in a 5A zeolite bed after standard regeneration treatments, and then investigates strategies to mitigate the effect: more thorough regeneration and isotope swamping or elution. The effect of zeolite ageing after thermal cycling is also seen. (orig.)

  3. Health Physics aspects of the use of tritium

    International Nuclear Information System (INIS)

    Martin, E.B.M.

    1982-01-01

    The health physics aspects of the use of tritium in university laboratories and similar establishments are considered. These aspects include discussion on the behaviour and hazards of tritium in the body, derived limits for contamination, monitoring methods, designation of workers, medical and dosimetric supervision, classification of laboratories, safety precautions, accidents and decontamination, and waste disposal. The radiation hazards from some special uses of tritium, e.g. tritium foil sources, luminous devices, gaseous light sources, are also considered. It was concluded that little harm is likely to come from careful handling of tritium labelled compounds at the millicurie level in a research laboratory. It would, however, be most unwise to be complacent about the use of tritium at the curie level, particularly when high specific activities, organic compounds and chronic exposure over long periods are involved. (U.K.)

  4. Fluorescence Imaging Reveals Surface Contamination

    Science.gov (United States)

    Schirato, Richard; Polichar, Raulf

    1992-01-01

    In technique to detect surface contamination, object inspected illuminated by ultraviolet light to make contaminants fluoresce; low-light-level video camera views fluorescence. Image-processing techniques quantify distribution of contaminants. If fluorescence of material expected to contaminate surface is not intense, tagged with low concentration of dye.

  5. Potential for saturated ground-water system contamination at the Lawrence Livermore National Laboratory

    International Nuclear Information System (INIS)

    Stone, R.; Ruggieri, M.R.; Rogers, L.L.; Emerson, D.O.; Buddemeier, R.W.

    1982-01-01

    A program of hydrogeologic investigation has been carried out to determine the likelihood of contaminant movement to the saturated zone from near the ground surface at Lawrence Livermore National Laboratory (LLNL). A companion survey of potential contaminant sources was also conducted at the LLNL. Water samples from selected LLNL wells were analyzed to test the water quality in the uppermost part of the saturated zone, which is from 14 to 48 m (45 to 158 ft) beneath the surface. Only nitrate and tritium were found in concentrations above natural background. In one well, the nitrate was slightly more concentrated than the drinking water limit. The nitrate source has not been found. The tritium in all ground-water samples from wells was found far less concentrated than the drinking water limit. The extent of infiltration of surface water was traced with environmental tritium. The thickness and stratigraphy of the unsaturated zone beneath the LLNL, and nearby area, was determined with specially constructed wells and boreholes. Well hydrograph analysis indicated where infiltration of surface water reached the saturated ground-water system. The investigation indicates that water infiltrating from the surface, through alluvial deposits, reaches the saturated zone along the course of Arroyo Seco, Arroyo Las Positas, and from the depression near the center of the site where seasonal water accumulates. Several potential contaminant sources were identified, and it is likely that contaminants could move from near the ground surface to the saturated zone beneath LLNL. Additional ground-water sampling and analysis will be performed and ongoing investigations will provide estimates of the speed with which potential contaminants can flow laterally in the saturated zone beneath LLNL. 34 references, 61 figures, 16 tables

  6. Tritium retention on the surface of stainless steel samples fixed on the plasma-facing wall in LHD

    International Nuclear Information System (INIS)

    Matsuyama, Masao; Abe, Shinsuke; Nishimura, Kiyohiko; Ashikawa, Naoko; Sagara, Akio; Oya, Yasuhisa; Okuno, Kenji; Yamauchi, Yuji; Nobuta, Yuji

    2014-01-01

    Effects of pre-heating for retention and distribution of tritium have been studied using samples fixed on the wall of the Large Helical Device during a plasma campaign. The samples were fixed at four different locations. The plasma-facing surface of the samples was covered with deposition layers of different thickness in each sample. Retention behavior in deposition layers was observed using β-ray-induced X-ray spectrometry and imaging plate technique. Pre-heating of the samples in vacuum was changed in a temperature range from 300 to 623 K, and subsequent tritium exposure was carried out at 300 K in every runs. Non-uniformity of tritium distribution clearly appeared even in the as-received samples which was not pre-heated. It is considered, therefore, that non-uniform adsorption sites of tritium have been produced during a formation process of deposition layers. In addition, it was seen that the amount of tritium retention increased with an increase in the pre-heating temperature, indicating that adsorption sites of tritium were newly formed in the deposition layers by heating in vacuum. (author)

  7. Radioactive contamination of oil produced from nuclear-broken shale

    International Nuclear Information System (INIS)

    Arnold, W.D.; Crouse, D.J.

    1970-01-01

    The results of small-scale exposure and retorting tests indicate that oil recovered from shale that has been broken with nuclear explosives will be contaminated with tritium. When oil shale was heated in sealed flasks with tritiated water vapor or with tritiated hydrogen, both the shale and the oil subsequently retorted from the shale contained tritium. There was much less contamination of the shale or oil, however, when the shale was exposed to tritiated methane and ethane. Contamination of shale and oil with tritium, as the result, of exposure to tritiated water, increased as the exposure temperature, exposure pressure, and the tritium concentration in the water were increased. This contamination also increased as the exposure time was increased up to 25 days, but not significantly thereafter. More than 90% of the tritium was removed from contaminated shale by treating the shale with moist air at elevated temperatures. Only small amounts of the tritium were removed from crude oil by contacting it with solid drying agents or with water. When tritium-contaminated shale oil was distilled, the tritium contents of the recovered fractions were found to be approximately equal. After being heated with a sample of underground test-shot debris, liquid shale oil became contaminated with radioactive fission products. Most of the radioactivity of the oil was due to finely dispersed solids rather than to dissolved radionuclides. Filtration of the oil removed a major fraction of the radioactive material. When the contaminated oil was distilled, more than 99% of the radionuclides remained in the pot residue. (author)

  8. Radioactive contamination of oil produced from nuclear-broken shale

    Energy Technology Data Exchange (ETDEWEB)

    Arnold, W D; Crouse, D J

    1970-05-15

    The results of small-scale exposure and retorting tests indicate that oil recovered from shale that has been broken with nuclear explosives will be contaminated with tritium. When oil shale was heated in sealed flasks with tritiated water vapor or with tritiated hydrogen, both the shale and the oil subsequently retorted from the shale contained tritium. There was much less contamination of the shale or oil, however, when the shale was exposed to tritiated methane and ethane. Contamination of shale and oil with tritium, as the result, of exposure to tritiated water, increased as the exposure temperature, exposure pressure, and the tritium concentration in the water were increased. This contamination also increased as the exposure time was increased up to 25 days, but not significantly thereafter. More than 90% of the tritium was removed from contaminated shale by treating the shale with moist air at elevated temperatures. Only small amounts of the tritium were removed from crude oil by contacting it with solid drying agents or with water. When tritium-contaminated shale oil was distilled, the tritium contents of the recovered fractions were found to be approximately equal. After being heated with a sample of underground test-shot debris, liquid shale oil became contaminated with radioactive fission products. Most of the radioactivity of the oil was due to finely dispersed solids rather than to dissolved radionuclides. Filtration of the oil removed a major fraction of the radioactive material. When the contaminated oil was distilled, more than 99% of the radionuclides remained in the pot residue. (author)

  9. Investigation of tritium in groundwater at Pickering NGS

    International Nuclear Information System (INIS)

    DeWilde, J.; Yu, L.; Belanger, D.; Wootton, R.; Hansen, K.; McGurk, E.; Teare, A.

    2001-01-01

    Ontario Power Generation Inc. (OPG) investigated tritium in groundwater at the Pickering Nuclear Generating Station (PNGS). The objectives of the study were to evaluate and define the extent of radio-nuclides, primarily tritium, in groundwater, investigate the causes or sources of contamination, determine impacts on the natural environment, and provide recommendations to prevent future discharges. This paper provides an overview of the investigations conducted in 1999 and 2000 to identify the extent of the tritium beneath the site and the potential sources of tritium released to the groundwater. The investigation and findings are summarized with a focus on unique aspects of the investigation, on lessons learned and benefits. Some of the investigative techniques discussed include process assessments, video inspections, hydrostatic and tracer tests, Helium 3 analysis for tritium age dating, deuterium and tritium in soil analysis. The investigative techniques have widespread applications to other nuclear generating stations. (author)

  10. Environmental monitoring for tritium separation facility

    International Nuclear Information System (INIS)

    Varlam, Carmen; Stefanescu, Ioan; Steflea, Dumitru; Lazar, Roxana Elena

    2001-01-01

    The Cryogenic Pilot is an experimental project within the nuclear energy national research program, which has the aim of developing technologies for tritium and deuterium separation by cryogenic distillation. The experimental installation is located 15 km near the highest city of the area and 1 km near Olt River. An important chemical activity is developed in the area and almost all the neighbors of the Experimental Cryogenic Pilot are chemical plants. It is necessary to emphasize this aspect because the sewage system is connected with the other tree chemical plants from the neighborhood. In this work, a low background liquid scintillation is used to determine tritium activity concentration according to ISO 9698/1998. We measured drinking water, precipitation, river water, underground and waste water. The tritium level was between 10 TU and 27 TU what indicates that there is no sources of tritium contamination in the neighborhood of Cryogenic Pilot. In order to determine baseline levels we decided to monitor monthly each location. In this paper it is presented the standard method used for tritium determination in water samples, the precautions needed in order to achieve reliable results, and the evolution of tritium level in different location near the Tritium and Deuterium Cryogenic Separation Experimental Pilot. (authors)

  11. Imaging of tritium implanted into graphite

    International Nuclear Information System (INIS)

    Malinowski, M.E.; Causey, R.A.

    1988-01-01

    The extensive use of graphite in plasma-facing surfaces of tokamaks such as the Tokamak Fusion Test Reactor, which has planned tritium discharges, makes two-dimensional tritium detection techniques important in helping to determine torus tritium inventories. We have performed experiments in which highly oriented pyrolytic graphite (HOPG) samples were first tritium implanted with fluences of ∼10 16 T/cm 2 at energies approx. 0 C resulted in no discernible motion of tritium along the basal plane, but did show that significant desorption of the implanted tritium occurred. The current results indicate that tritium in quantities of 10 12 T/cm 2 in tritiated components could be readily detected by imaging at lower magnifications

  12. Modeling of tritium behavior in ceramic breeder materials

    International Nuclear Information System (INIS)

    Kopasz, J.P.; Tam, S.W.; Johnson, C.E.

    1988-11-01

    Computer models are being developed to predict tritium release from candidate ceramic breeder materials for fusion reactors. Early models regarded the complex process of tritium release as being rate limited by a single slow step, usually taken to be tritium diffusion. These models were unable to explain much of the experimental data. We have developed a more comprehensive model which considers diffusion and desorption from the grain surface. In developing this model we found that it was necessary to include the details of the surface phenomena in order to explain the results from recent tritium release experiments. A diffusion-desorption model with a desorption activation energy which is dependent on the surface coverage was developed. This model provided excellent agreement with the results from the CRITIC tritium release experiment. Since evidence suggests that other ceramic breeder materials have desorption activation energies which are dependent on surface coverage, it is important that these variations in activation energy be included in a model for tritium release. 17 refs., 12 figs

  13. Data Needs for Erosion and Tritium Retention in Beryllium Surfaces

    International Nuclear Information System (INIS)

    Braams, B.J.

    2011-07-01

    A Consultants' Meeting was held at IAEA Headquarters 30-31 May 2011 with the aim to provide advice about the scope and aims of a planned IAEA coordinated research project on erosion and tritium retention in beryllium plasma-facing materials and about other activities of the A+M Data Unit in the area of plasma interaction with beryllium surfaces. The present report contains the proceedings, recommendations and conclusions of that Consultants' Meeting. (author)

  14. Tritium safety study using Caisson Assembly (CATS) at TPL/JAEA

    International Nuclear Information System (INIS)

    Hayashi, T.; Kobayashi, K.; Iwai, Y.; Isobe, K.; Nakamura, H.; Kawamura, Y.; Shu, W.; Suzuki, T.; Yamada, M.; Yamanishi, T.

    2008-01-01

    Tritium confinement is required as the most important safety Junction for a fusion reactor. In order to demonstrate the confinement performance experimentally, an unique equipment, called CATS: Caisson Assembly for Tritium Safety study, was installed in Tritium Process Laboratory of Japan Atomic Energy Agency and operated for about 10 years. Tritium confinement and migration data in CATS have been accumulated and dynamic simulation code was accumulated using these data. Contamination and decontamination behavior on various materials and new safety equipment functions have been investigated under collaborations with a lot of laboratories and universities. (authors)

  15. Tritium release during inspection of reactor 'RA' at 'Vinca' institute

    International Nuclear Information System (INIS)

    Sipka, V.; Miljevic, N.; Grsic, Z.; Todorovic, D.; Radenkovic, M.

    1997-01-01

    Tritium content in daily precipitation, atmospheric water vapor inside of the reactor hall and around 'Vinca' Institute as well as in soil up to 800 m distance was monitoring during the regular inspection of the fuel channels. Tritium activity in the reactor hall air moisture was in the range from 0.022 to 6.7 MBq/m 3 . Tritium content in soil moisture between 12.7 and 530.9 Bq/l indicate a certain contamination due to tritium release in the environment, depending on the depth and distance from the place of release (author) [sr

  16. Tritium incorporation in corn and bean after an accute contamination with tritiated water

    International Nuclear Information System (INIS)

    Silva, H.A.; Archundia, C.; Bravo, G.; Nulman, R.; Ortiz Magana, J.R.

    1979-01-01

    Tritium produced by natural or artificial processes is set free in the environment, generally as tritiated water, which the plants use to produce organic compounds such as proteins, fats and carbohidrates. The metabolism of tritium depends on the chemical form in which it is found, transport studies of tritium in different ecosystems, and in particular in food chains, gradually have become more important as a result of the tritium increase in the environment. In Mexico, corn and beans have been studied due to their great importance in the human food chain. The determination of tritium in organic compounds (bound tritium) requires an efficient conversion to tritiated water. For this reason, in this work we have detailed a dry oxidation method, which is a modification of the method of Schoniger, which consists of combustion in oxygen initiated by a simple electrical device using a disposable nichrome resistance, which is also used as a sample carrier. Tritium determination is done by a liquid scintillation counter with quenching correction using an internal standard. Graphs of tritium activity are shown plotted against the time between the application of tritiated water and the time of harvest. The highest activity is found about the 18th day for corn and the 16th day for beans. The calculated values for the half-lives for corn and beans are approximately 56 and 43 days respectively. (author)

  17. Tritium retention in candidate next-step protection materials: engineering key issues and research requirements

    International Nuclear Information System (INIS)

    Federici, G.; Andrew, P.L.; Wu, C.H.

    1995-01-01

    Although a considerable volume of valuable data on the behaviour of tritium in beryllium and carbon-based armours exposed to hydrogenic fusion plasmas has been compiled over the past years both from operation of present-day tokamaks and from laboratory simulations, knowledge is far from complete and tritium inventory predictions for these materials remain highly uncertain. In this paper we elucidate the main mechanisms responsible for tritium trapping and release in next-step D-T tokamaks, as well as the applicability of some of the presently known data bases for design purposes. Owing to their strong anticipated implications on tritium uptake and release, attention is focused mainly on the interaction of tritium with neutron damage induced defects, on tritium codeposition with eroded carbon and on the effects of oxide and surface contaminants. Some preliminary quantitative estimates are presented based on most recent experimental findings and latest modelling developments as well. The influence of important working conditions such as target temperature, loading particle fluxes, erosion and redeposition rates, as well as material characteristics such as the type of morphology of the protection material (i.e. amorphous plasma-sprayed beryllium vs. solid forms), and design dependent parameters are discussed in this paper. Remaining issues which require additional effort are identified. (orig.)

  18. A metabolic derivation of tritium transfer factors in animal products

    International Nuclear Information System (INIS)

    Galeriu, D.; Melintescu, A.; Crout, N. M. J.; Bersford, N. A.; Peterson, S. R.; Hess, M. van

    2001-01-01

    Tritium is a potentially important environmental contaminant arising from the nuclear industry. Because tritium is an isotope of hydrogen, its behaviour in the environment is controlled by the behaviour of hydrogen. Chronic releases of tritium to the atmosphere, in particular, will result in tritium-to-hydrogen (T/H) ratios in plants and animals that are more or less in equilibrium with T/H ratios in the air moisture. Tritium is thus a potentially important contaminant of plant and animal food products. The transfer of tritium from air moisture to plants is quite well understood. In contrast, although a number of regulatory agencies have published transfer coefficient values for diet tritium transfer for a limited number of animal products, a fresh evaluation of these transfers needs to be made In this paper we present an approach for the derivation of tritium transfer coefficients which is based on the metabolism of hydrogen in animals in conjunction with experimental data on tritium transfer. The derived transfer coefficients separately account for transfer to and from free (i.e. water) and organically bound tritium. The predicted transfer coefficients are compared to available data independent of model development. Agreement is good, with the exception of the transfer coefficient for transfer from tritiated water to organically bound tritium in ruminants, which may be attributable to the particular characteristics of ruminant digestion. We show that transfer coefficients will vary in response to the metabolic status of an animal (e.g. stage of lactation, digestibility of diet, etc.) and that the use of a single transfer coefficient from diet to animal product is not appropriate for tritium. It is possible to derive concentration ratio values which relate the concentration of tritiated water and organically bound tritium in an animal product to the corresponding concentrations in the animals diet. These concentration ratios are shown to be less subject to

  19. Source function for tritium transport models in the Pacific

    International Nuclear Information System (INIS)

    Fine, R.A.; Ostlund, H.G.

    1977-01-01

    An empirically fitted function describes surface Pacific Ocean tritium concentrations as varying exponentially with latitude, the r.m.s. fit to observations is 18%. The oceanic tritium concentration maximum in the North Pacific, which resulted from nuclear weapons testing, lagged the rain data by two to three years occurring in 1965--66. Tritium-salinity correlations are consistent with climatology. Tritium-longitude correlations are consistent with surface water circulation

  20. Operation of the tokamak fusion test reactor tritium systems during initial tritium experiments

    International Nuclear Information System (INIS)

    Anderson, J.L.; Gentile, C.; Kalish, M.; Kamperschroer, J.; Kozub, T.; LaMarche, P.; Murray, H.; Nagy, A.; Raftopoulos, S.; Rossmassler, R.; Sissingh, R.; Swanson, J.; Tulipano, F.; Viola, M.; Voorhees, D.; Walters, R.T.

    1995-01-01

    The high power D-T experiments on the tokamak fusion test reactor (TFTR) at the Princeton Plasma Physics Laboratory commenced in November 1993. During initial operation of the tritium systems a number of start-up problems surfaced and had to be corrected. These were corrected through a series of system modifications and upgrades and by repair of failed or inadequate components. Even as these operational concerns were being addressed, the tritium systems continued to support D-T operations on the tokamak. During the first six months of D-T operations more than 107kCi of tritium were processed successfully by the tritium systems. D-T experiments conducted at TFTR during this period provided significant new data. Fusion power in excess of 9MW was achieved in May 1994. This paper describes some of the early start-up issues, and reports on the operation of the tritium system and the tritium tracking and accounting system during the early phase of TFTR D-T experiments. (orig.)

  1. Segmentation strategies for the irradiated and tritium contaminated PPPL TFTR

    International Nuclear Information System (INIS)

    Walton, G.R.; Spampinato, P.T.

    1995-01-01

    The Tokamak Fusion Test Reactor (TFTR) at Princeton Plasma Physics Laboratory is scheduled to complete its final experiments in the Fall of 1995. As a result, the TFTR will be activated and tritium contaminated. After the experiments are complete, the TFTR will undergo Shutdown and Removal (S and R). The space vacated by the TFTR will be used for a new test reactor, the Tokamak Physics Experiment (TPX). Remote methods may be required to remove components and to segment the Vacuum Vessel. The TFTR has been studied to determine alternatives for the segmentation of the Vacuum Vessel from the inside (In-Vessel). The methodology to determine suitable strategies to segment the Vacuum Vessel from In-Vessel included several areas of concentration. These areas were segmentation locations, cutting/removal technologies, pros and cons, and cutting/removal technology delivery systems. The segmentation locations for easiest implementation and minimal steps in cutting and removal have been identified. Each of these will also achieve the baseline for packaging and shipment. The methods for cutting and removal of components were determined. In addition, the delivery systems were conceptualized

  2. Segmentation strategies for the irradiated and tritium contaminated PPPL TFTR

    Energy Technology Data Exchange (ETDEWEB)

    Walton, G.R. [Princeton Univ., NJ (United States). Plasma Physics Lab.; Litka, T.J. [Advanced Consulting Group, Inc., Chicago, IL (United States); Spampinato, P.T. [RHD Consultants, Inc., Princeton, NJ (United States)

    1995-02-09

    The Tokamak Fusion Test Reactor (TFTR) at Princeton Plasma Physics Laboratory is scheduled to complete its final experiments in the Fall of 1995. As a result, the TFTR will be activated and tritium contaminated. After the experiments are complete, the TFTR will undergo Shutdown and Removal (S and R). The space vacated by the TFTR will be used for a new test reactor, the Tokamak Physics Experiment (TPX). Remote methods may be required to remove components and to segment the Vacuum Vessel. The TFTR has been studied to determine alternatives for the segmentation of the Vacuum Vessel from the inside (In-Vessel). The methodology to determine suitable strategies to segment the Vacuum Vessel from In-Vessel included several areas of concentration. These areas were segmentation locations, cutting/removal technologies, pros and cons, and cutting/removal technology delivery systems. The segmentation locations for easiest implementation and minimal steps in cutting and removal have been identified. Each of these will also achieve the baseline for packaging and shipment. The methods for cutting and removal of components were determined. In addition, the delivery systems were conceptualized.

  3. Tritium systems test assembly stabilization

    International Nuclear Information System (INIS)

    Jasen, William G.; Michelotti, Roy A.; Anast, Kurt R.; Tesch, Charles

    2004-01-01

    The Tritium Systems Test Assembly (TSTA) was a facility dedicated to tritium technology Research and Development (R and D) primarily for future fusion power reactors. The facility was conceived in mid 1970's, operations commenced in early 1980's, stabilization and deactivation began in 2000 and were completed in 2003. The facility will remain in a Surveillance and Maintenance (S and M) mode until the Department of Energy (DOE) funds demolition of the facility, tentatively in 2009. A safe and stable end state was achieved by the TSTA Facility Stabilization Project (TFSP) in anticipation of long term S and M. At the start of the stabilization project, with an inventory of approximately 140 grams of tritium, the facility was designated a Hazard Category (HC) 2 Non-Reactor Nuclear facility as defined by US Department of Energy standard DOE-STD-1027-92 (1997). The TSTA facility comprises a laboratory area, supporting rooms, offices and associated laboratory space that included more than 20 major tritium handling systems. The project's focus was to reduce the tritium inventory by removing bulk tritium, tritiated water wastes, and tritium-contaminated high-inventory components. Any equipment that remained in the facility was stabilized in place. All of the gloveboxes and piping were rendered inoperative and vented to atmosphere. All equipment, and inventoried tritium contamination, remaining in the facility was left in a safe-and-stable state. The project used the End Points process as defined by the DOE Office of Environmental Management (web page http://www.em.doe.- gov/deact/epman.htmtlo) document and define the end state required for the stabilization of TSTA Facility. The End Points process added structure that was beneficial through virtually all phases of the project. At completion of the facility stabilization project the residual tritium inventory was approximately 3,000 curies, considerably less than the 1.6-gram threshold for a HC 3 facility. TSTA is now

  4. Is Tritium an Issue for High Temperature Reactors?

    International Nuclear Information System (INIS)

    Fütterer, Michael A.; D'Agata, Elio; Raepsaet, Xavier

    2014-01-01

    In a High Temperature Reactor, tritium is produced by a number of mechanisms. Due to its high mobility, some of this tritium ends up in the primary helium cooling circuit from where it can be extracted by the coolant purification system to keep the partial pressure of tritiated compounds low. The remaining partial pressure of tritium in the coolant is the driving force for permeation across the heat exchanger from the primary cooling system into the secondary cooling system. From there the contamination may further propagate and ultimately escape into the environment. This paper summarizes a study on the different tritium control options capable of meeting possible future safety requirements. Our results indicate that compliance with plausible tritium control requirements can indeed be achieved with reasonable effort both for electricity generation using a closed steam cycle and for process steam generation with an open steam cycle. However, for new-build HTR, definite country-specific licensing requirements (e.g. chronic and accidental tritium release) are yet to be determined and will shape the required tritium control strategy. (author)

  5. Is tritium an issue for high temperature reactors?

    Energy Technology Data Exchange (ETDEWEB)

    Fütterer, Michael A., E-mail: michael.fuetterer@ec.europa.eu [European Commission – Joint Research Centre, Institute for Energy and Transport, P.O. Box 2, 1755 ZG Petten (Netherlands); D’Agata, Elio [European Commission – Joint Research Centre, Institute for Energy and Transport, P.O. Box 2, 1755 ZG Petten (Netherlands); Raepsaet, Xavier [Commissariat à l’Energie Atomique et aux Energies Alternatives, DEN/DM2S, 91191 Gif-sur-Yvette Cedex (France)

    2016-09-15

    In a high temperature reactor, tritium is produced by a number of mechanisms. Due to its high mobility, some of this tritium ends up in the primary helium cooling circuit from where it can be extracted by the coolant purification system to keep the partial pressure of tritiated compounds low. The remaining partial pressure of tritium in the coolant is the driving force for permeation across the heat exchanger from the primary cooling system into the secondary cooling system. From there the contamination may further propagate and ultimately escape into the environment. This paper summarizes a study on the different tritium control options capable of meeting possible future safety requirements. Our results indicate that compliance with plausible tritium control requirements can indeed be achieved with reasonable effort both for electricity generation using a closed steam cycle and for process steam generation with an open steam cycle. However, for new-build HTR, definite country-specific licensing requirements (e.g. chronic and accidental tritium release) are yet to be determined and will shape the required tritium control strategy.

  6. Separation of Tritium from Wastewater

    International Nuclear Information System (INIS)

    JEPPSON, D.W.

    2000-01-01

    A proprietary tritium loading bed developed by Molecular Separations, Inc (MSI) has been shown to selectively load tritiated water as waters of hydration at near ambient temperatures. Tests conducted with a 126 (micro)C 1 tritium/liter water standard mixture showed reductions to 25 (micro)C 1 /L utilizing two, 2-meter long columns in series. Demonstration tests with Hanford Site wastewater samples indicate an approximate tritium concentration reduction from 0.3 (micro)C 1 /L to 0.07 (micro)C 1 /L for a series of two, 2-meter long stationary column beds Further reduction to less than 0.02 (micro)C 1 /L, the current drinking water maximum contaminant level (MCL), is projected with additional bed media in series. Tritium can be removed from the loaded beds with a modest temperature increase and the beds can be reused Results of initial tests are presented and a moving bed process for treating large quantities of wastewaters is proposed. The moving bed separation process appears promising to treat existing large quantities of wastewater at various US Department of Energy (DOE) sites. The enriched tritium stream can be grouted for waste disposition. The separations system has also been shown to reduce tritium concentrations in nuclear reactor cooling water to levels that allow reuse. Energy requirements to reconstitute the loading beds and waste disposal costs for this process appear modest

  7. Tritium issues in plasma wall interactions

    International Nuclear Information System (INIS)

    Tanabe, T.

    2009-01-01

    In order to establish a D-T fusion reactor as an energy source, it is not enough to have a DT burning plasma, and economical conversion of fusion energy to electricity and/or heat, a large enough margin of tritium breeding and tritium safety must be simultaneously achieved. In particular, handling of huge amount of tritium needs a significant effort to ensure that the radiation dose of radiological workers and of the public is below the limits specified by the International Commission on Radiological Protection. For the safety reasons, tritium in a reactor will be limited to only a few kg orders in weight, with radioactivity up to 10 17 Bq. Since public exposure to tritium is regulated at a level as tiny as a few Bq/cm 2 , tritium must be strictly confined in a reactor system with accountancy of an order of pg (pico-gram). Generally qualitative analysis with the accuracy of more than 3 orders of magnitude is hardly possible. We are facing to lots of safety concerns in the handling of huge amounts of radioactive tritium as a fuel and to be bred in a blanket. In addition, tritium resources are very limited. Not only for the safety reason but also for the saving of tritium resources, tritium retention in a reactor must be kept as small as possible. In the present tokamaks, however, hydrogen retention is significantly large, i.e. more than 20% of fueled hydrogen is continuously piled up in the vacuum vessel, which must not be allowed in a reactor. After the introduction of tritium as a hydrogen radioisotope, this lecture will present tritium issues in plasma wall interactions, in particular, fueling, retention and recovering, considering the handling of large amounts of tritium, i.e. confinement, leakage, contamination, permeation, regulations and tritium accountancy. Progress in overcoming such problems will be also presented. This document is made of the slides of the presentation. (author)

  8. Tritium conference days; Journees tritium

    Energy Technology Data Exchange (ETDEWEB)

    Garnier-Laplace, J.; Lebaron-Jacobs, L.; Sene, M.; Devin, P.; Chretien, V.; Le Guen, B.; Guetat, Ph.; Baglan, N.; Ansoborlo, E.; Boyer, C.; Masson, M.; Bailly-Du-Bois, P.; Jenkinson, St.; Wakeford, R.; Saintigny, Y.; Romeo, P.H.; Thompson, P.; Leterq, D.; Chastagner, F.; Cortes, P.; Philippe, M.; Paquet, F.; Fournier, M.

    2009-07-01

    This document gathers the slides of the available presentations given during this conference day. Twenty presentations out of 21 are assembled in the document and deal with: 1 - tritium in the environment (J. Garnier-Laplace); 2 - status of knowledge about tritium impact on health (L. Lebaron-Jacobs); 3 - tritium, discrete but present everywhere (M. Sene); 4 - management of tritium effluents from Areva NC La Hague site - related impact and monitoring (P. Devin); 5 - tritium effluents and impact in the vicinity of EDF's power plants (V. Chretien and B. Le Guen); 6 - contribution of CEA-Valduc centre monitoring to the knowledge of atmospheric tritiated water transfers to the different compartments of the environment (P. Guetat); 7 - tritium analysis in environment samples: constraints and means (N. Baglan); 8 - organically-linked tritium: the analyst view (E. Ansoborlo); 9 - study of tritium transfers to plants via OBT/HTO{sub air} and OBT/HTO{sub free} (C. Boyer); 10 - tritium in the British Channel (M. Masson and P. Bailly-Du-Bois); 11 - tritium in British coastal waters (S. Jenkinson); 12 - recent results from epidemiology (R. Wakeford); 13 - effects of tritiated thymidine on hematopoietic stem cells (P.H. Romeo); 14 - tritium management issue in Canada: the point of view from authorities (P. Thompson); 15 - experience feedback of the detritiation process of Valduc centre (D. Leterq); 16 - difficulties linked with tritiated wastes confinement (F. Chastagner); 17 - optimisation of tritium management in the ITER project (P. Cortes); 18 - elements of thought about the management of tritium generated by nuclear facilities (M. Philippe); 19 - CIPR's position about the calculation of doses and risks linked with tritium exposure (F. Paquet); 20 - tritium think tanks (M. Fournier). (J.S.)

  9. A model for global cycling of tritium

    International Nuclear Information System (INIS)

    Killough, G.G.; Kocher, D.C.

    1988-01-01

    Dynamic compartment models are widely used to describe global cycling of radionuclides for purposes of dose estimation. In this paper the authors present a new global tritium model that reproduces environmental time-series data on concentrations in precipitation, ocean surface waters, and surface fresh waters in the northern hemisphere, concentrations of atmospheric tritium in the southern hemisphere, and the latitude dependence of tritium in both hemispheres. Names TRICYCLE (for TRItium CYCLE) the model is based on the global hydrologic cycle and includes hemispheric stratospheric compartments, disaggregation of the troposphere and ocean surface waters into eight latitude zones, consideration of the different concentrations of atmospheric tritium over land and over the ocean, and a diffusive model for transport in the ocean. TRICYCLE reproduces the environmental data if it is assumed that about 50% of the tritium from atmospheric weapons testing was injected directly into the northern stratosphere as HTO. The model's latitudinal disaggregation permits taking into account the distribution of population. For a uniformly distributed release of HTO into the worldwide troposphere, TRICYCLE predicts a collective dose commitment to the world population that exceeds the NCRP model's corresponding prediction by a factor of three

  10. A model for global cycling of tritium

    International Nuclear Information System (INIS)

    Killough, G.G.; Kocher, D.C.

    1988-01-01

    Dynamic compartment models are widely used to describe global cycling of radionuclides for purposes of dose estimation. In this paper, we present a new global tritium model that reproduces environmental time-series data on concentrations in precipitation, ocean surface waters, and surface fresh waters in the northern hemisphere, concentrations of atmospheric tritium in the soutehrn hemisphere, and the latitude dependence of tritium in both hemispheres. Named TRICYCLE for Tritium CYCLE, the model is based on the global hydrologic cycle and includes hemisphereic stratospheric compartments, disaggregation of the troposphere and ocean surface waters into eight latitudezones, consideration of the different concentrations of atmospheric tritium over land and over the ocean, and a diffusive model for transport in the ocean. TRICYCLE reproduces the environmental data if we assume that about 50% of the tritium from atmospheric weapons testing was injected directly into the northern stratosphere as HTO. The models latitudinal disaggregation permits taking into account the distribution of population. For a unfiormaly distributed release of HTO into the worldwide troposphere, TRICYCLE predicts a collective dose commitment to the world population that exceeds the corresponding prediction by the NCRP model by about a factor of 3. 11 refs., 5 figs., 1 tab

  11. Tritium decontamination of TFTR carbon tiles employing ultra violet light

    International Nuclear Information System (INIS)

    Shu, W.M.; Ohira, S.; Gentile, C.A.; Oya, Y.; Nakamura, H.; Hayashi, T.; Iwai, Y.; Kawamura, Y.; Konishi, S.; Nishi, M.F.; Young, K.M.

    2001-01-01

    Tritium decontamination on the surface of Tokamak Fusion Test Reactor (TFTR) bumper limiter tiles used during the Deuterium-Deuterium (D-D) phase of TFTR operations was investigated employing an ultra violet light source with a mean wavelength of 172 nm and a maximum radiant intensity of 50 mW/cm 2 . The partial pressures of H 2 , HD, C and CO 2 during the UV exposure were enhanced more than twice, compared to the partial pressures before UV exposure. In comparison, the amount of O 2 decreased during the UV exposure and the production of a small amount of O 3 was observed when the UV light was turned on. Unlike the decontamination method of baking in air or oxygen, the UV exposure removed hydrogen isotopes from the tile to vacuum predominantly in forms of gases of hydrogen isotopes. The tritium surface contamination on the tile in the area exposed to the UV light was reduced after the UV exposure. The results show that the UV light with a wavelength of 172 nm can remove hydrogen isotopes from carbon-based tiles at the very surface

  12. Mercury and tritium removal from DOE waste oils

    Energy Technology Data Exchange (ETDEWEB)

    Klasson, E.T. [Oak Ridge National Lab., TN (United States)

    1997-10-01

    This work covers the investigation of vacuum extraction as a means to remove tritiated contamination as well as the removal via sorption of dissolved mercury from contaminated oils. The radiation damage in oils from tritium causes production of hydrogen, methane, and low-molecular-weight hydrocarbons. When tritium gas is present in the oil, the tritium atom is incorporated into the formed hydrocarbons. The transformer industry measures gas content/composition of transformer oils as a diagnostic tool for the transformers` condition. The analytical approach (ASTM D3612-90) used for these measurements is vacuum extraction of all gases (H{sub 2}, N{sub 2}, O{sub 2}, CO, CO{sub 2}, etc.) followed by analysis of the evolved gas mixture. This extraction method will be adapted to remove dissolved gases (including tritium) from the SRS vacuum pump oil. It may be necessary to heat (60{degrees}C to 70{degrees}C) the oil during vacuum extraction to remove tritiated water. A method described in the procedures is a stripper column extraction, in which a carrier gas (argon) is used to remove dissolved gases from oil that is dispersed on high surface area beads. This method appears promising for scale-up as a treatment process, and a modified process is also being used as a dewatering technique by SD Myers, Inc. (a transformer consulting company) for transformers in the field by a mobile unit. Although some mercury may be removed during the vacuum extraction, the most common technique for removing mercury from oil is by using sulfur-impregnated activated carbon (SIAC). SIAC is currently being used by the petroleum industry to remove mercury from hydrocarbon mixtures, but the sorbent has not been previously tested on DOE vacuum oil waste. It is anticipated that a final process will be similar to technologies used by the petroleum industry and is comparable to ion exchange operations in large column-type reactors.

  13. Evaluation of the risk of internal contamination of persons working in isotope laboratories

    Energy Technology Data Exchange (ETDEWEB)

    Adamiak-Ziemba, J.; Doniec, J.; Kocznow, W.; Hawrynski, M.

    1985-01-01

    The investigation covered 484 workers. Altogether 1787 determinations have been made, in this--1648 internal contaminations and 139 contaminations of air, hand skin and working surfaces. The internal contaminations (22% of results) resulted mainly from deviation from radiological protection rules and were reduced through certain changes. Those were tritium contaminations (application of tritium radioluminiscence dyes) and 125--and 131-iodine radioisotopes (in nuclear medicine laboratories) the highest levels of which were 20 mSv and 0.25% ALI respectively. The results of /sup 238/Pu air contamination measurements have indicates that the dust arising during the production of smoke detectors (with /sup 238/PuO/sub 2/ sources) probably has no respirable fraction properties, which confines its absorption in lower segments of the respiratory tract. It has been demonstrated that in Poland there is no need of constructing a permanent central system of internal contamination control.

  14. The development of a versatile field program for measuring tritium in real-time

    International Nuclear Information System (INIS)

    Rego, J.H.; Smith, D.K.

    1994-04-01

    Robust sample handling and liquid scintillation counting procedures have been developed to routinely monitor tritium in the field relative to the 20,000 pCi/L drinking water standard. This procedure allows tritium to be monitored hourly during 24 hour drilling operations at depths in the saturated zone potentially contaminated by sub-surface nuclear weapons testing at the Nevada Test Site. Using retrofitted shock hardened and vibration damped counters and strict analytical protocols, tritium may be measured rapidly in the field under hostile conditions. Concentration standards and ''dead'' tritium backgrounds are prepared weekly in a central laboratory and delivered to remote monitoring locations where they are recounted daily as a check on counter efficiency and calibration. Portable counters are located in trailers and powered off a battery pack and line filter fed by mobile generator. Samples are typically ground-waters mixed with drilling fluids returned after circulation through a drill string. Fluids are aerated and ''de-foamed,'' filtered, mixed with scintillation cocktail and subsequently dark-adapted before counting. Besides meeting regulatory requirements, ''real-time'' monitoring affords drilling and field personnel maximum protection against potential exposure to radionuclides; for routine operations, tritium activities may not exceed a 10,000 pCi/L threshold

  15. Tritium in the DIII-D carbon tiles

    International Nuclear Information System (INIS)

    Taylor, P.L.; Kellman, A.G.; Lee, R.L.

    1993-06-01

    The amount of tritium in the carbon tiles used as a first wall in the DIII-D tokamak was measured recently when the tiles were removed and cleaned. The measurements were made as part of the task of developing the appropriate safety procedures for processing of the tiles. The surface tritium concentration on the carbon tiles was surveyed and the total tritium released from tile samples was measured in test bakes. The total tritium in all the carbon tiles at the time the tiles were removed for cleaning is estimated to be 15 mCi and the fraction of tritium retained in the tiles from DIII-D operations has a lower bound of 10%. The tritium was found to be concentrated in a narrow surface layer on the plasma facing side of the tile, was fully released when baked to 1,000 degree C, and was released in the form of tritiated gas (DT) as opposed to tritiated water (DTO) when baked

  16. Operational experience with two tritium-effluent-monitoring systems

    International Nuclear Information System (INIS)

    Haynie, J.S.; Gutierrez, J.A.

    1982-01-01

    Two new tritium stack monitoring systems were designed and built. The operational experience of a wide-range detector with a useful range of a few μCi/m 3 to 10 8 μCi/m 3 , and a second monitoring system using an improved Kanne chamber and a new electrometer, called a Model 39 Electrometer-Chargemeter are discussed. Both tritium chambers have been designed to have a reduced sensitivity to tritium contamination, a fast response, and an integrating chargemeter with digital readout for easy conversion to microcuries. The calibration of these monitors and advantages of using these chambers over conventional systems are discussed

  17. The hazard to man of accidental releases of tritium

    International Nuclear Information System (INIS)

    Brearley, I.R.

    1985-03-01

    Some aspects of the atmospheric dispersion of tritium are discussed, followed by consideration of the dosimetric pathways. In order to assess the significance of a tritium release the doses from various pathways are estimated and compared with the doses estimated from a similar release of iodine-131. The major hazard from tritium is the ingestion of contaminated food products. For similar releases of tritium and I 131 the ingestion hazard can be comparable if the release occurs near and before the end of the harvest season. However, in the tritium release case the agricultural season influences the consequences markedly and, at other times during the year, the ingestion hazard from tritium may be approximately 20 times less. The dose from inhalation of tritium is sensitive to its chemical form and for similar releases of tritiated water and tritium gas then the dose from tritiated water is approximately 10 4 greater than the dose from tritium gas. For similar releases of tritiated water and iodine-131 then a comparison of the inhalation shows that the dose from the iodine is approximately 300 times greater. (author)

  18. The tritium operations experience on TFTR

    International Nuclear Information System (INIS)

    Halle, A. von; Anderson, J.L.; Gentile, C.; Grisham, L.; Hosea, J.; Kamperschroer, J.; LaMarche, P.; Oldaker, M.; Nagy, A.; Raftopoulos, S.; Stevenson, T.

    1995-01-01

    The Tokamak Fusion Test Reactor (TFTR) tritium gas system is administratively limited to 5 grams of tritium and provides the feedstock gas for the neutral beam and torus injection systems. Tritium operations on TFTR began with leak checking of gas handling systems, qualification of the gas injection systems, and high power plasma operations using trace amounts of tritium in deuterium feedstock gas. Full tritium operation commenced with four highly diagnosed neutral beam pulses into a beamline calorimeter to verify planned tritium beam operating routines and to demonstrate the deuterium to tritium beam isotope exchange. Since that time, TFTR has successfully operated each of the twelve neutral beam ion sources in tritium during hundreds of tritium beam pulses and torus gas injections. This paper describes the TFTR tritium gas handling systems and TFTR tritium operations of the gas injection systems and the neutral beam ion sources. Tritium accounting and accountability is discussed, including tritium retention issues of the torus limiters and beam impinged surfaces of the beamline components. Also included is tritium beam velocity analysis that compares the neutral beam extracted ion species composition for deuterium and tritium and that determines the extent of beam isotope exchange on subsequent deuterium and tritium beam pulses. The required modifications to TFTR operating routines to meet the U.S. Department of Energy regulations for a low hazard nuclear facility and the problems encountered during initial tritium operations are described. (orig.)

  19. The tritium operations experience on TFTR

    International Nuclear Information System (INIS)

    von Halle, A.; Gentile, C.

    1994-01-01

    The Tokamak Fusion Test Reactor (TFTR) tritium gas system is administratively limited to 5 grains of tritium and provides the feedstock gas for the neutral beam and torus injection systems. Tritium operations on TFTR began with leak checking of gas handling systems, qualification of the gas injection systems, and high power plasma operations using using trace amounts of tritium in deuterium feedstock gas. Full tritium operation commenced with four highly diagnosed neutral beam pulses into a beamline calorimeter to verify planned tritium beam operating routines and to demonstrate the deuterium to tritium beam isotope exchange. Since that time, TFTR has successfully operated each of the twelve neutral beam ion sources in tritium during hundreds of tritium beam pulses and torus gas injections. This paper describes- the TFTR tritium gas handling systems and TFTR tritium operations of the gas injection systems and the neutral beam ion sources. Tritium accounting and accountability is discussed, including tritium retention issues of the torus limiters and beam impinged surfaces of the beamline components. Also included is tritium beam velocity analysis that compares the neutral beam extracted ion species composition for deuterium and tritium and that determines the extent of beam isotope exchange on subsequent deuterium and tritium beam pulses. The required modifications to TFTR operating routines to meet the US Department of Energy regulations for a low hazard nuclear facility and the problems encountered during initial tritium operations are described

  20. Behavior of environmental carbon-14 and tritium in Japan

    International Nuclear Information System (INIS)

    Iwakura, T.; Kasida, Y.; Inoue, Y.; Tanaka, K.; Arai, K.

    1979-01-01

    The 14 C activity in plants began to rise appreciably above normal in 1957, and the level rose almost linearly with the rate of 7% per year to the level in 1959. Steep increase of the level to a peak in 1963, between 85% and 90% above normal, shows the effect of large scale nuclear explosions through the end of 1962. Liquid scintillation counting was used as a sensitive assay method of 14 C and 3 H. For 14 C determination, the naturally incorporated 14 C into alcohol and essential oils (thymol, menthol and lemongrass oil) and used, and water samples were used for 3 H measurement. The total amount 65 x 10 27 of 14 C atoms has been produced in nuclear tests, and this amount is about 3% of the total amount of 14 C in nature. The 3 H concentration in rivers, streams and ponds decreased exponentially from 600 pCi/l in 1967 to 150 pCi/l in 1972, with the half life of 2.5yr. The difference of the 3 H concentration in surface water according to the sampling locations implies geographical and meteorological variations in fallout 3 H level. It is said conclusively that environmental waters in Japan have not been influenced by the discharge effluent of the facilities with regard to tritium contamination and that tritium content in precipitation still play an important role in reflecting annual variation of tritium concentration to surface waters. (J.P.N.)

  1. Radioactive contamination of the Shagan river ecosystem components with artificial radionuclides

    International Nuclear Information System (INIS)

    Subbotin, S.B.; Lukashenko, S.N.; Larionova, N.V.; Yakovenko, Yu.Yu.

    2008-01-01

    Full text: The Shagan river is the only surface waterway on the Semipalatinsk Nuclear Test Site territory. It flows along the eastern boundary of the SNTS and is a left-bank tributary of the Irtysh river. The length of the Shagan riverbed is 275 km with an average slope 0.003, which changes considerably from one part of the riverbed to the other. Within the Balapan testing ground the length of the riverbed is about 50 km, and the slope angle is, on average, 0.002. The watershed area of the left-bank part of the testing ground, where testing wells are located, is about 900 km 2 . In 2006 during radio-ecological investigations of the SNTS aquatic environment, scientists determined contamination of the Shagan river with radioactive products of nuclear explosions. The main radioactive pollutant is tritium. Maximal tritium concentration in the river waters (40*10 4 Bq/l) was registered 4.7 km away from the Atomic lake at levels of more than 50 times higher than the maximal permissible level for drinking water. As the distance from the Atomic lake increases, tritium concentration in the Shagan waters considerably decreases, and in the place of its confluence with the Irtysh rivertritium concentration in water becomes 10 Bq/l, which is equal to MPL (maximal permissible level) used for equipment. A complex of scientific investigations including hydrogeological, hydrological and geophysical investigation showed that tritium contamination of the Shagan waters is caused by the discharge of contaminated ground waters from the testing ground Balapan. In 2007 additional investigations of the river ecosystem showed that surface waters of the river in addition to tritium contained 90 Sr, and bottom sedimentations were contaminated with 60 Co, 152 Eu, 154 Eu and 137 Cs. It should be noted that concentration of 90 Sr in water reaches the level comparable with intervention level established by NRB-99 (Radiation Safety Norms) for water and food intake. By the character of tritium and

  2. Effects of tritium in elastomers

    International Nuclear Information System (INIS)

    Zapp, P.E.

    1982-01-01

    Elastomers are used as flange gaskets in the piping system of the Savannah River Plant tritium facilities. A number of elastomers is being examined to identify those compounds more radiation-resistant than the currently specified Buna-N rubber and to study the mechanism of tritium radiation damage. Radiation resistance is evaluated by compression set tests on specimens exposed to about 1 atm tritium for several months. Initial results show that ethylene-propylene rubber and three fluoroelastomers are superior to Buna-N. Off-gassing measurements and autoradiography show that retained surface absorption of tritium varies by more than an order of magnitude among the different elastomer compounds. Therefore, tritium solubility and/or exchange may have a role in addition to that of chemical structure in the damage process. Ongoing studies of the mechanism of radiation damage include: (1) tritium absorption kinetics, (2) mass spectroscopy of radiolytic products, and (3) infrared spectroscopy

  3. Study of the transfer of tritium in cultivated vegetation in Mediterranean temperate regions. Part of a coordinated programme on the cycling of tritium and other radionuclides of global character in different types of ecosystems

    International Nuclear Information System (INIS)

    Grauby, A.

    1979-06-01

    The utilization for agricultural purposes of water from rivers in which tritium has been dumped, and possible food chain hazards has stimulated investigations by the Cadarache, Mol and Wageningen centres on the contamination rate of products harvested in the Mediterranean region and in temperate climates; transfer via water, forage, cattle, and milk products and any food chain contamination attributable to technology. In agriculture, experiments have been concerned with potatoes, sugar beet, carrots and peas, and with vine, olive and orange trees. Tritium retention time has been determined in various parts of the plant; also tritium incorporation in tissue water and organic matter; and the distribution of tritium in progressive layers of soil

  4. Radon 222 and Tritium in the identification and quantification of NAPL contamination in ground water. 1. Theoretical principles

    International Nuclear Information System (INIS)

    Molerio Leon, LF; Fernandez Gomez, IM; Carrazana Gonzalez, J A

    2012-01-01

    This is the first of two papers presenting the basic concepts and the main results of the application of environmental Rn 222a nd Tritium in the identification and quantification of Non-Aqueous Phase Liquids contamination of Cuban ground waters and their relation with sea water intrusion and/or spills of produced waters. The interpretation technique is based on the partition properties of the tracers involved and in the geochemical affinity of some major and minor constituents of the ground waters occurring beneath the exploration and production facilities of the Northern Havana-Matanzas Heavy Oil Belt. The second paper in this series discusses several cases of interaction among the fresh water aquifer, the sea, the sea water-fresh water interface and oil contamination

  5. Design and operational experience with a portable tritium cleanup system

    International Nuclear Information System (INIS)

    Maienschein, J.L.; Wilson, S.W.; Garcia, F.

    1991-06-01

    We built a portable tritium cleanup system to scavenge tritium from contaminated gases in any tritium-containing system in the LLNL Tritium Facility. The cleanup system uses standard catalytic oxidation of tritium to water followed by water removal with a molecular sieve dryer. The cleanup unit, complete with instrumentation, is contained in a portable cart that is rolled into place and connected to the apparatus to be cleaned. The cleanup systems is effective, low-tech, simple, and reliable. The nominal flow rate of the system is 30 liters/minute, and the decontamination factor is > 1000. In this paper we will show design information on our portable cleanup system, and will discuss our operational experience with it over the past several years

  6. Synthesis of tritium measurement results performed by IRSN and CEA from November 5, 2010, to February 1, 2012, in the environment of the 2M Process company building at Saint-Maur-des-Fosses; Synthese des resultats des mesures de tritium effectuees par l'IRSN et le CEA du 5 novembre 2010 au 1er fevrier 2012 dans l'environnement de l'entreprise 2M Process a Saint-Maur-des-Fosses

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-02-22

    A building of 2M Process company at Saint-Maur-des-Fosses (France) has been accidentally contaminated after the handling of a tritium contaminated device. The consequence has been a tritium release inside and in the close environment of the building. Since November 5, on request of the French nuclear safety authority (ASN), the French institute of radiation protection and nuclear safety (IRSN) has performed tritium measurements in water, air and plants sampled in the vicinity of the building in order to delimit the contaminated area and to follow its decay during and after the cleansing of the building. From March 16, 2011 onward, the IRSN's monitoring has been lightened as an answer to the complementary monitoring implemented by the CEA in the framework of the environment monitoring plan ordered by the Prefecture. The results published in previous reports have shown a strong contamination of the building and the presence of significant amounts of tritium in plant leaves and superficial waters in a 50 m radius around the 2M Process building. This note makes a synthesis of the tritium concentrations measured in plant leaves, surface waters, air, and rainwater sampled near the 2M Process building since November 5, 2010, and up to February 1, 2012. (J.S.)

  7. Tritium and neutron measurements from deuterated Pd-Si

    International Nuclear Information System (INIS)

    Claytor, T.N.; Tuggle, D.G.; Menlove, H.O.; Seeger, P.A.; Doty, W.R.; Rohwer, R.K.

    1990-01-01

    Evidence has been found for tritium and neutron production in palladium and silicon stacks when pulsed with a high electric current. These palladium-silicon stacks consist of alternating layers of pressed palladium and silicon powder. A pulsed high electric current is thought to promote non equilibrium conditions important for tritium and neutron production. More than 2000 hours of neutron counting time has been accumulated in a underground, low background, environment with high efficiency counters (21%). Neutron emission has occurred as infrequent burst or as low level emission lasting for up to 20 hours. In eight of 30 cells, excess tritium greater than 3 sigma has been observed. In each of these measurements, with the powder system, the ratio of tritium detected to total integrated total neutrons inferred has been anomalously high. Recent cells have shown reproducible tritium generation at a level of about 0.5 nCi/hr. Several hydrogen and air control cells have been run with no anomalous excess tritium or neutron emission above background. A significant amount of the total palladium inventory (18%) has been checked for tritium contamination by three independent means. 12 refs., 6 figs., 2 tabs

  8. Redispersion of indoor surface contamination: a review

    International Nuclear Information System (INIS)

    Sansone, E.B.; Slein, M.W.

    1978-01-01

    The importance of surface contamination as a potential source of exposure to hazardous materials is discussed. Data from the literature concerning the resuspension of indoor surface contamination are presented. Reported procedures for quantitating surface contamination are compared. It is suggested that, despite its limitations, surface contamination monitoring may be useful in estimating potential risks from hazardous materials. (Auth.)

  9. Selection of fluids for tritium pumping systems

    International Nuclear Information System (INIS)

    Chastagner, P.

    1984-02-01

    The degradation characteristics of three types of vacuum pump fluids, polyphenyl ethers, perfluoropolyethers and hydrocarbon oils were reviewed. Fluid selection proved to be a critical factor in the long-term performance of tritium pumping systems and subsequent tritium recovery operations. Thermal degradation and tritium radiolysis of pump fluids produce contaminants which can damage equipment and interfere with tritium recovery operations. General characteristics of these fluids are as follows: polyphenyl ether has outstanding radiation resistance, is very stable under normal diffusion pump conditions, but breaks down in the presence of oxygen at anticipated operating temperatures. Perfluoropolyether fluids are very stable and do not react chemically with most gases. Thermal and mechanical degradation products are inert, but the radiolysis products are very corrosive. Most of the degradation products of hydrogen oils are volatile and the principal radiolysis product is methane. Our studies show that polyphenyl ethers and hydrocarbon oils are the preferred fluids for use in tritium pumping systems. No corrosive materials are formed and most of the degradation products can be removed with suitable filter systems

  10. Tritium in the burial ground of the Savannah River Site

    International Nuclear Information System (INIS)

    Hyder, M.L.

    1993-06-01

    This memorandum reviews the available information on tritium-contaminated material discarded to burial grounds. Tritium was the first isotope studied because it represents the most immediate concern with regard to release to the environment. Substantial amounts of tritium are known to be present in the ground water underneath the area, and outcropping of this ground water in springs and seeps has been observed. The response to this release of tritium from the burial ground is a current concern. The amount of tritium emplaced in the burial ground facilities is very uncertain, however, some general conclusions can be made. In particular, most of the tritium buried is associated with spent equipment and other waste, rather than spent melts. Correspondingly, most of the tritium in the ground water seems to be associated with burials of this type, rather than the spent melts. Maps are presented showing the location of burials of tritiated waste by type, and the location of the largest individual burials according to COBRA records

  11. Behaviour of tritium in the vacuum vessel of JT-60U

    International Nuclear Information System (INIS)

    Kobayashi, K.; Miya, N.; Ikeda, Y.; Torikai, Y.; Saito, M.; Alimov, V.

    2015-01-01

    The disassembly of the JT-60U torus started in 2010 after 18 years of deuterium plasma operations. The vessel is made of Inconel 625. Therefore, it was very important to study the hydrogen isotope (particularly tritium) behavior in Inconel 625 from the viewpoint of the clearance procedure. Inconel 625 specimen was exposed to the D 2 (92.8 %) - T 2 (7.2 %) gas mixture at 573 K for 5 hours. The tritium release from the specimen at 298 K was controlled for about 1 year. After that a part of tritium remaining in the specimen was released by heating up to 1073 K. Other part of tritium trapped in the specimen was measured by chemical etching method. Most of the chemical form of the released tritium was HTO. The contaminated specimen by tritium was released continuously the diffusible tritium under the ambient condition. In the tritium release experiment, the amount of desorbed tritium was about 99% during 1 year. It was considered that the tritium in Inconel 625 was released easily

  12. Behaviour of tritium in the vacuum vessel of JT-60U

    Energy Technology Data Exchange (ETDEWEB)

    Kobayashi, K.; Miya, N.; Ikeda, Y. [JT-60 Safety Assessment Group, JAEA, Mukoyama (Japan); Torikai, Y. [Hydrogen Isotope Research Center, University of Toyama, Gofuku (Japan); Saito, M.; Alimov, V. [ITER Project Management Group, JAEA, Mukoyama (Japan)

    2015-03-15

    The disassembly of the JT-60U torus started in 2010 after 18 years of deuterium plasma operations. The vessel is made of Inconel 625. Therefore, it was very important to study the hydrogen isotope (particularly tritium) behavior in Inconel 625 from the viewpoint of the clearance procedure. Inconel 625 specimen was exposed to the D{sub 2} (92.8 %) - T{sub 2} (7.2 %) gas mixture at 573 K for 5 hours. The tritium release from the specimen at 298 K was controlled for about 1 year. After that a part of tritium remaining in the specimen was released by heating up to 1073 K. Other part of tritium trapped in the specimen was measured by chemical etching method. Most of the chemical form of the released tritium was HTO. The contaminated specimen by tritium was released continuously the diffusible tritium under the ambient condition. In the tritium release experiment, the amount of desorbed tritium was about 99% during 1 year. It was considered that the tritium in Inconel 625 was released easily.

  13. Tritium Formation and Mitigation in High Temperature Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Piyush Sabharwall; Carl Stoots

    2012-08-01

    Tritium is a radiologically active isotope of hydrogen. It is formed in nuclear reactors by neutron absorption and ternary fission events and can subsequently escape into the environment. In order to prevent the tritium contamination of proposed reactor buildings and surrounding sites, this paper examines the root causes and potential solutions for the production of this radionuclide, including materials selection and inert gas sparging. A model is presented that can be used to predict permeation rates of hydrogen through metallic alloys at temperatures from 450–750°C. Results of the diffusion model are presented for one steadystate value of tritium production in the reactor.

  14. Tritium behavior in ITER beryllium

    International Nuclear Information System (INIS)

    Longhurst, G.R.

    1990-10-01

    The beryllium neutron multiplier in the ITER breeding blanket will generate tritium through transmutations. That tritium constitutes a safety hazard. Experiments evaluating tritium storage and release mechanisms have shown that most of the tritium comes out in a burst during thermal ramping. A small fraction of retained tritium is released by thermally activated processes. Analysis of recent experimental data shows that most of the tritium resides in helium bubbles. That tritium is released when the bubbles undergo swelling sufficient to develop porosity that connects with the surface. That appears to occur when swelling reaches about 10--15%. Other tritium appears to be stored chemically at oxide inclusions, probably as Be(OT) 2 . That component is released by thermal activation. There is considerable variation in published values for tritium diffusion through the beryllium and solubility in it. Data from experiments using highly irradiated beryllium from the Idaho National Engineering Laboratory showed diffusivity generally in line with the most commonly accepted values for fully dense material. Lower density material, planned for use in the ITER blanket may have very short diffusion times because of the open structure. The beryllium multiplier of the ITER breeding blanket was analyzed for tritium release characteristics using temperature and helium production figures at the midplane generated in support of the ITER Summer Workshop, 1990 in Garching. Ordinary operation, either in Physics or Technology phases, should not result in the release of tritium trapped in the helium bubbles. Temperature excursions above 600 degree C result in large-scale release of that tritium. 29 refs., 10 figs., 3 tabs

  15. Tritium Removal by Laser Heating and Its Application to Tokamaks

    International Nuclear Information System (INIS)

    Skinner, C.H.; Gentile, C.A.; Guttadora, G.; Carpe, A.; Langish, S.; Young, K.M.; Nishi, M.; Shu, W.

    2001-01-01

    A novel laser heating technique has recently been applied to removing tritium from carbon tiles that had been exposed to deuterium-tritium (DT) plasmas in the Tokamak Test Fusion Reactor (TFTR). A continuous wave neodymium laser, of power up to 300 watts, was used to heat the surface of the tiles. The beam was focused to an intensity, typically 8 kW/cm 2 , and rapidly scanned over the tile surface by galvanometer-driven scanning mirrors. Under the laser irradiation, the surface temperature increased dramatically, and temperatures up to 2,300 degrees C were recorded by an optical pyrometer. Tritium was released and circulated in a closed-loop system to an ionization chamber that measured the tritium concentration. Most of the tritium (up to 84%) could be released by the laser scan. This technique appears promising for tritium removal in a next-step DT device as it avoids oxidation, the associated deconditioning of the plasma facing surfaces, and the expense of processing large quantities of tritium oxide. Some engineering aspects of the implementation of this method in a next-step fusion device will be discussed

  16. Tritium decay helium-3 effects in tungsten

    Directory of Open Access Journals (Sweden)

    M. Shimada

    2017-08-01

    Full Text Available Tritium (T implanted by plasmas diffuses into bulk material, especially rapidly at elevated temperatures, and becomes trapped in neutron radiation-induced defects in materials that act as trapping sites for the tritium. The trapped tritium atoms will decay to produce helium-3 (3He atoms at a half-life of 12.3 years. 3He has a large cross section for absorbing thermal neutrons, which after absorbing a neutron produces hydrogen (H and tritium ions with a combined kinetic energy of 0.76 MeV through the 3He(n,HT nuclear reaction. The purpose of this paper is to quantify the 3He produced in tungsten by tritium decay compared to the neutron-induced helium-4 (4He produced in tungsten. This is important given the fact that helium in materials not only creates microstructural damage in the bulk of the material but alters surface morphology of the material effecting plasma-surface interaction process (e.g. material evolution, erosion and tritium behavior of plasma-facing component materials. Effects of tritium decay 3He in tungsten are investigated here with a simple model that predicts quantity of 3He produced in a fusion DEMO FW based on a neutron energy spectrum found in literature. This study reveals that: (1 helium-3 concentration was equilibrated to ∼6% of initial/trapped tritium concentration, (2 tritium concentration remained approximately constant (94% of initial tritium concentration, and (3 displacement damage from 3He(n,HT nuclear reaction became >1 dpa/year in DEMO FW.

  17. Commercial Light Water Reactor -Tritium Extraction Facility Process Waste Assessment (Project S-6091)

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, R.H.; Delley, A.O.; Alexander, G.J.; Clark, E.A.; Holder, J.S.; Lutz, R.N.; Malstrom, R.A.; Nobles, B.R. [Westinghouse Savannah River Co., Aiken, SC (United States); Carson, S.D. [Sandia National Laboratories, New Mexico, NM (United States); Peterson, P.K. [Sandia National Laboratories, New Mexico, NM (United States)

    1997-11-30

    The Savannah River Site (SRS) has been tasked by the Department of Energy (DOE) to design and construct a Tritium Extraction Facility (TEF) to process irradiated tritium producing burnable absorber rods (TPBARs) from a Commercial Light Water Reactor (CLWR). The plan is for the CLWR-TEF to provide tritium to the SRS Replacement Tritium Facility (RTF) in Building 233-H in support of DOE requirements. The CLWR-TEF is being designed to provide 3 kg of new tritium per year, from TPBARS and other sources of tritium (Ref. 1-4).The CLWR TPBAR concept is being developed by Pacific Northwest National Laboratory (PNNL). The TPBAR assemblies will be irradiated in a Commercial Utility light water nuclear reactor and transported to the SRS for tritium extraction and processing at the CLWR-TEF. A Conceptual Design Report for the CLWR-TEF Project was issued in July 1997 (Ref. 4).The scope of this Process Waste Assessment (PWA) will be limited to CLWR-TEF processing of CLWR irradiated TPBARs. Although the CLWR- TEF will also be designed to extract APT tritium-containing materials, they will be excluded at this time to facilitate timely development of this PWA. As with any process, CLWR-TEF waste stream characteristics will depend on process feedstock and contaminant sources. If irradiated APT tritium-containing materials are to be processed in the CLWR-TEF, this PWA should be revised to reflect the introduction of this contaminant source term.

  18. Commercial Light Water Reactor -Tritium Extraction Facility Process Waste Assessment (Project S-6091)

    International Nuclear Information System (INIS)

    Hsu, R.H.; Delley, A.O.; Alexander, G.J.; Clark, E.A.; Holder, J.S.; Lutz, R.N.; Malstrom, R.A.; Nobles, B.R.; Carson, S.D.; Peterson, P.K.

    1997-01-01

    The Savannah River Site (SRS) has been tasked by the Department of Energy (DOE) to design and construct a Tritium Extraction Facility (TEF) to process irradiated tritium producing burnable absorber rods (TPBARs) from a Commercial Light Water Reactor (CLWR). The plan is for the CLWR-TEF to provide tritium to the SRS Replacement Tritium Facility (RTF) in Building 233-H in support of DOE requirements. The CLWR-TEF is being designed to provide 3 kg of new tritium per year, from TPBARS and other sources of tritium (Ref. 1-4).The CLWR TPBAR concept is being developed by Pacific Northwest National Laboratory (PNNL). The TPBAR assemblies will be irradiated in a Commercial Utility light water nuclear reactor and transported to the SRS for tritium extraction and processing at the CLWR-TEF. A Conceptual Design Report for the CLWR-TEF Project was issued in July 1997 (Ref. 4).The scope of this Process Waste Assessment (PWA) will be limited to CLWR-TEF processing of CLWR irradiated TPBARs. Although the CLWR- TEF will also be designed to extract APT tritium-containing materials, they will be excluded at this time to facilitate timely development of this PWA. As with any process, CLWR-TEF waste stream characteristics will depend on process feedstock and contaminant sources. If irradiated APT tritium-containing materials are to be processed in the CLWR-TEF, this PWA should be revised to reflect the introduction of this contaminant source term

  19. Tritium in groundwater investigation at the Pickering Nuclear Generating Station

    International Nuclear Information System (INIS)

    DeWilde, J.; Yu, L.; Wootton, R.; Belanger, D.; Hansen, K.; McGurk, E.; Teare, A.

    2001-01-01

    Ontario Power Generation Inc. (OPG) investigated tritium in groundwater at the Pickering Nuclear Generating Station (PNGS). The objectives of the study were to evaluate and define the extent of radionuclides, primarily tritium, in groundwater, investigate the causes or sources of contamination, determine impacts on the natural environment, and provide recommendations to prevent future discharges. This paper provides an overview of the investigations conducted in 1999 and 2000 to identity the extent of the tritium beneath the site and the potential sources of tritium released to the groundwater. The investigation and findings are summarized with a focus on unique aspects of the investigation, on lessons learned and benefits. Some of the investigative techniques discussed include process assessments, video inspections, hydrostatic and tracer tests, Helium 3 analysis for tritium age dating, deuterium and tritium in soil analysis. The investigative techniques have widespread applications to other nuclear generating stations. (author)

  20. Biological effects of tritium

    International Nuclear Information System (INIS)

    Nieto, M.

    1985-01-01

    The aim of this project is to study the thermal effects on proliferation activity in the intestinal epithelium of the goldfish acclimated at different temperatures (stationary state). The cell division occurs only at certain phases of the circadian cycle when the proliferative activity is synchronized or trained by an environmental factor such as light-dark cycle. Another aspect of the project is the study of the biological effects, non-stochastic, on cell kinetics in animals chronically exposed to low dose rates or tritium and gamma rays from 60 CO, used as a standard radiation. The influence on the accumulated dose per cell and cycle cell in function of the duration of the cell cycle at different acclimation temperatures should be considered. To calculate the risk of tritium contamination from nuclear power plants (radiation exposure), the organic tissue-bond is of decisive importance due to the long turnover of the organic tissue-bond in organisms favouring transport of tritium to other organisms of the ecosystem and to man. (author)

  1. Spatial distribution of tritium in surface water and assessment of ingestion dose

    International Nuclear Information System (INIS)

    Rupali, C.K.; Jha, S.K.; Tripathi, R.M.; Sonali, B.; Reddy, Priyanka

    2014-01-01

    The present study focuses on the distribution of tritium in drinking water samples from Mumbai and other suburban areas. Measurement of tritium in the drinking water was carried out using an ultra-low background LKB Quantulus Spectrometer, model 1220. The concentration of tritium in the drinking water ranged between ≤12.3-19.8TU with a geometric mean of 13.3TU. The observed values doesn't indicate any fresh input of tritium and are well within prescribed limit of 740 Bq/L (approx. 6,271.2 TU) given by USEPA for tritium ingestion through drinking water. The estimated dose due to tritium ingestion through drinking was 0.02 μSv/y which is negligible when compared to the limit of 1000 μSv/y assigned to general public. (author)

  2. Experimental determination of the kinetic conversion rate of gaseous tritium into HTO

    International Nuclear Information System (INIS)

    Gulden, W.; Guenot, J.; Djerassi, H.; Clerc, H.

    1986-09-01

    To assess the impact of atmospheric tritium releases from a fusion plant to the environment, the dose to man usually is determined under the conservative assumption that all tritium is released in the more dangerous oxide form. To quantify this overprediction, experiments are presently being performed by CEA. Oxidation of tritium gas by soil and subsequent resuspension of HTO from soil to atmosphere is one of them. First results have been obtained by CEA on the kinetics of HTO resuspension from contaminated soils. Immediately after contamination, the fraction of the deposited activity which is resuspended to atmosphere is in the range of 1% to 5% per hour. This resuspension rate then decreases more or less slowly with time, depending on specific conditions

  3. Tritium management in fusion reactors

    International Nuclear Information System (INIS)

    Galloway, T.R.

    1978-05-01

    This is a review paper covering the key environmental and safety issues and how they have been handled in the various magnetic and inertial confinement concepts and reference designs. The issues treated include: tritium accident analyses, tritium process control, occupational safety, HTO formation rate from the gas-phase, disposal of tritium contaminated wastes, and environmental impact--each covering the Joint European Tokamak (J.E.T. experiment), Tokamak Fusion Test Reactor (TFTR), Russian T-20, The Next Step (TNS) designs by Westinghouse/ORNL and General Atomic/ANL, the ANL and ORNL EPR's, the G.A. Doublet Demonstration Reactor, the Italian Fintor-D and the ORNL Demo Studies. There are also the following full scale plant reference designs: UWMAK-III, LASL's Theta Pinch Reactor Design (RTPR), Mirror Fusion Reactor (MFR), Tandem Mirror Reactor (TMR), and the Mirror Hybrid Reactor (MHR). There are four laser device breakeven experiments, SHIVA-NOVA, LLL reference designs, ORNL Laser Fusion power plant, the German ''Saturn,'' and LLL's Laser Fusion EPR I and II

  4. Comparison of inventory of tritium in various ceramic breeder blankets

    International Nuclear Information System (INIS)

    Nishikawa, M.; Beloglazov, S.; Nakashima, N.; Hashimoto, K.; Enoeda, M.

    2002-01-01

    It has been pointed out by the present authors that it is essential to understand such mass transfer steps as diffusion of tritium in the grain of breeder material, absorption of water vapor into bulk of the grain, and adsorption of water on surface of the grain, together with the isotope exchange reaction between hydrogen in purge gas and tritium on surface of breeder material and the isotope exchange reaction between water vapor in purge gas and tritium on surface, for estimation of the tritium inventory in a uniform ceramic breeder blanket under the steady-state condition. It has been also pointed out by the present authors that the water formation reaction on the surface of ceramic breeder materials at introduction of hydrogen can give effect on behavior of bred tritium and lithium transfer in blanket. The tritium inventory for various ceramic breeder blankets are compared in this study basing on adsorption capacity, absorption capacity, isotope exchange capacity, and isotope exchange reactions on the Li 2 O, LiAlO 2 , Li 2 ZrO 3 , Li 4 SiO 4 and Li 2 TiO 3 surface experimentally obtained by the present authors. Effect of each mass transfer steps on the shape of release curve of bred tritium at change of the operational conditions is also discussed from the observation at out pile experiment in KUR. (orig.)

  5. Tritium permeation evaluation through vertical target of divertor based on recent tritium transport properties

    International Nuclear Information System (INIS)

    Nakamura, Hirofumi; Nishi, Masataka

    2003-11-01

    Re-evaluation of tritium permeation through vertical target of divertor under the ITER operation condition was carried out using tritium properties in the candidate materials such as the diffusion coefficient and the trapping factors in tungsten for armor, and the surface recombination coefficient on copper for the heat sink obtained by authours' recent investigation (authors' data), which simulated the plasma-facing conditions of ITER. Evaluation with the data set of previous evaluation was also carried out for comparison (previous data). The permeation analysis was carried out individually by classifying into the armor region (Carbon Fiber Composites and tungsten) and the slit region without armor (3% of armor surface area) assuming the incident flux and temperature for each region. As the results of the permeation analysis, estimated permeation amount with the authors' data was one order less than that with the previous data at the end of lifetime of the divertor due to authors' small diffusion coefficient of tritium in tungsten. It also indicated the possibility that permeation through the slit region of the armor tiles could dominate total permeation through the vertical target, since tritium permeation amount through tungsten armor with the authors' data was estimated to be reduced drastically smaller than that with the previous evaluation data. The result of a little tritium permeation amount through the vertical target with the authors' data ensured the conservatism of the current evaluation of tritium concentration in the primary cooling water in ITER divertor, as it indicated the possibility of direct drainage of the divertor primary cooling water. (author)

  6. Tritium Assay and Dispensing of KEPRI Tritium Lab

    International Nuclear Information System (INIS)

    Sohn, S. H.; Song, K. M.; Lee, S. K.; Lee, K.W.; Ko, B. W.

    2009-01-01

    The Wolsong Tritium Removal Facility(WTRF) has been constructed to reduce tritium levels in the heavy water systems and environmental emissions at the site. The WTRF was designed to process 100 kg/h of heavy water with the overall tritium extraction efficiency of 97% per single pass and to produce ∼700 g of tritium as T2 per year at the feed concentration of 0.37 TBq/kg. The high purity tritium greater than 99% is immobilized as a metal hydride to secure its long term storage. The recovered tritium will be made available for industrial uses and some research applications in the future. Then KEPRI is constructing the tritium lab. to build-up infrastructure to support tritium research activities and to support tritium control and accountability systems for tritium export. This paper describes the initial phases of the tritium application program including the laboratory infrastructure to support the tritium related R and D activities and the tritium controls in Korea

  7. Measurements of tritium for radiological protection purposes in dial painting industry

    International Nuclear Information System (INIS)

    Sawant, J.V.; Rudran, Kamala; Pillai, K.C.

    1990-01-01

    Tritium is used as the active component in self-luminous paint. During dial painting process luminous paints releases tritium in air, causing air contamination. In the present paper results of a preliminary study on air monitoring and estimation of air samples in a local watch industry are given. (author). 5 refs., 2 t abs

  8. The measurement of tritium in Canadian food items

    International Nuclear Information System (INIS)

    Brown, R.M.

    1995-03-01

    Food items locally grown near Perth, Ontario and grocery store produce and locally grown items from the Pickering-Ajax area in the vicinity of the Pickering Nuclear Generating Station (PNGS) have been analyzed for free water tritium (HTO) and organically bound tritium (OBT). The technique of measuring 3 He ingrowth in samples by mass spectrometry has been used because of its sensitivity and freedom from opportunity for contamination during processing and measurement. Concentrations observed at each site were of the order expected on the basis of known levels of tritium in the local atmosphere and precipitation. There was considerable variation between different materials and limited correlation between materials of a single type. (author). 10 refs., 8 tabs., 4 figs

  9. Tritium Removal from Carbon Plasma Facing Components

    International Nuclear Information System (INIS)

    Skinner, C.H.; Coad, J.P.; Federici, G.

    2003-01-01

    Tritium removal is a major unsolved development task for next-step devices with carbon plasma-facing components. The 2-3 order of magnitude increase in duty cycle and associated tritium accumulation rate in a next-step tokamak will place unprecedented demands on tritium removal technology. The associated technical risk can be mitigated only if suitable removal techniques are demonstrated on tokamaks before the construction of a next-step device. This article reviews the history of codeposition, the tritium experience of TFTR (Tokamak Fusion Test Reactor) and JET (Joint European Torus) and the tritium removal rate required to support ITER's planned operational schedule. The merits and shortcomings of various tritium removal techniques are discussed with particular emphasis on oxidation and laser surface heating

  10. Importance of root HTO uptake in controlling land-surface tritium dynamics after an-acute HT deposition: a numerical experiment

    International Nuclear Information System (INIS)

    Ota, Masakazu; Nagai, Haruyasu; Koarashi, Jun

    2012-01-01

    To investigate the role of belowground root uptake of tritiated water (HTO) in controlling land-surface tritium (T) dynamics, a sophisticated numerical model predicting tritium behavior in an atmosphere-vegetation-soil system was developed, and numerical experiments were conducted using the model. The developed model covered physical tritiated hydrogen (HT) transport in a multilayered atmosphere and soil, as well as microbial oxidation of HT to HTO in the soil, and it was incorporated into a well-established HTO-transfer organically bound tritium (OBT)-formation model. The model performance was tested through the simulation of an existing HT-release experiment. Numerical experiments involving a hypothetical acute HT exposure to a grassland field with a range of rooting depths showed that the HTO release from the leaves to the atmosphere, driven by the root uptake of the deposited HTO, can exceed the HTO evaporation from the ground surface to the atmosphere when root water absorption preferentially occurs beneath the ground surface. Such enhanced soil-leaf-atmosphere HTO transport, caused by the enhanced root HTO uptake, increased HTO concentrations in both the surface atmosphere and in the cellular water of the leaf. Consequently, leaf OBT assimilation calculated for shallow rooting depths increased by nearly an order of magnitude compared to that for large rooting depths. - Highlights: ► A model that calculates HT deposition from atmosphere to soil was developed. ► Tritium dynamics after an-acute HT deposition was studied by numerical experiments. ► OBT formation highly depends on magnitude of uptake of the deposited HTO by roots.

  11. Cellular- and micro-dosimetry of heterogeneously distributed tritium.

    Science.gov (United States)

    Chao, Tsi-Chian; Wang, Chun-Ching; Li, Junli; Li, Chunyan; Tung, Chuan-Jong

    2012-01-01

    The assessment of radiotoxicity for heterogeneously distributed tritium should be based on the subcellular dose and relative biological effectiveness (RBE) for cell nucleus. In the present work, geometry-dependent absorbed dose and RBE were calculated using Monte Carlo codes for tritium in the cell, cell surface, cytoplasm, or cell nucleus. Penelope (PENetration and Energy LOss of Positrins and Electrons) code was used to calculate the geometry-dependent absorbed dose, lineal energy, and electron fluence spectrum. RBE for the intestinal crypt regeneration was calculated using a lineal energy-dependent biological weighting function. RBE for the induction of DNA double strand breaks was estimated using a nucleotide-level map for clustered DNA lesions of the Monte Carlo damage simulation (MCDS) code. For a typical cell of 10 μm radius and 5 μm nuclear radius, tritium in the cell nucleus resulted in much higher RBE-weighted absorbed dose than tritium distributed uniformly. Conversely, tritium distributed on the cell surface led to trivial RBE-weighted absorbed dose due to irradiation geometry and great attenuation of beta particles in the cytoplasm. For tritium uniformly distributed in the cell, the RBE-weighted absorbed dose was larger compared to tritium uniformly distributed in the tissue. Cellular- and micro-dosimetry models were developed for the assessment of heterogeneously distributed tritium.

  12. Surface contamination technology in decommissioning of nuclear fuel cycle

    International Nuclear Information System (INIS)

    Ishiguro, Hideharu

    2012-01-01

    Surface contamination measurement is the most basic technology in radiation control of the nuclear and radiation facilities. Loose surface contamination causes internal exposure through airborne contamination. Surface contamination measurement is recently more important in the waste management such as confirmation of decontamination factor, contamination survey of carried-out materials from radioactive control area, and application of clearance level. This report describes the base of surface contamination standards, meaning of contamination in decommissioning, relationship between clearance level and surface contamination, and current technology of surface contamination measurement. (author)

  13. Tritium in well waters, streams and atomic lakes in the East Kazakhstan Oblast of the Semipalatinsk Nuclear Test Site.

    Science.gov (United States)

    Mitchell, Peter I; Vintró, Luis León; Omarova, Aigul; Burkitbayev, Mukhambetkali; Nápoles, Humberto Jiménez; Priest, Nicholas D

    2005-06-01

    The concentration of tritium has been determined in well waters, streams and atomic lakes in the Sarzhal, Tel'kem, Balapan and Degelen Mountains areas of the Semipalatinsk Test Site. The data show that levels of tritium in domestic well waters within the settlement of Sarzhal are extremely low at the present time with a median value of 4.4 Bq dm(-3) (95% confidence interval:4.1-4.7 Bq dm(-3)). These levels are only marginally above the background tritium content in surface waters globally. Levels in the atomic craters at Tel'kem 1 and Tel'kem 2 are between one and two orders of magnitude higher, while the level in Lake Balapan is approximately 12,600 Bq dm(-3). Significantly, levels in streams and test-tunnel waters sourced in the Degelen Mountains, the site of approximately 215 underground nuclear tests, are a further order of magnitude higher, being in the range 133,000--235,500 Bq dm(-3). No evidence was adduced which indicates that domestic wells in Sarzhal are contaminated by tritium-rich waters sourced in the Degelen massif, suggesting that the latter are not connected hydrologically to the near-surface groundwater recharging the Sarzhal wells. Annual doses to humans arising from the ingestion of tritium in these well waters are very low at the present time and are of no radiological significance.

  14. Establishment of tritium dating facility for hydrological studies in PNRI

    International Nuclear Information System (INIS)

    Mendoza, Norman; Sucgang, Raymond; Castaneda, Soledad

    2009-01-01

    The release of excess tritium ( 3 H) into the atmosphere from nuclear weapons tests conducted between 1952 and 1963 'tagged' rain water, and thereby all surface waters with 3 HHO. Measurement of 3 H concentrations in rain, surface water and groundwater is useful index of vulnerability and sustainability of the aquifer to pollution and human exploitation. These determinations are currently being used in the characterization of different environments and in pollution studies, in the framework of research projects, international collaborations and services. Liquid scintillation counting (LSC) was the method of choice for the evaluation of the tritium concentrations in precipitation, groundwater and surface water samples. Prior to counting process, the samples are enriched in tritium by an electrolysis procedure to improve the overall detection limit. Low-level hydrological water samples go through an electrolytic enrichment step, in which tritium concentrations are increased to about seventy-fold through volume reduction. The amount of tritium in water is expressed in tritium units (TU). Water samples taken from selected areas of Bulacan province within the period of 2007 and 2008 were analyzed as part of the current hydrological studies being done by our group in PNRI. The typical tritium values for the rain water, surface water, and groundwater were found to be 1.20±0.11 TU, 1.12±0.11 TU, and 0.40±0.07, respectively. Procedures are now available in our laboratory for measurement of tritium in water samples of different water types. (author)

  15. Development of radioactive surface contamination monitor

    International Nuclear Information System (INIS)

    Hashimoto, Tadao; Hasegawa, Toru; Fukumoto, Keisuke; Ooki, Yasushi

    2008-01-01

    In the radiation facilities such as nuclear power plants, surface contamination of the people accessing or articles conveyed in and out of the radiation controlled areas is detected and monitored by installing contamination monitors at the boundary of controlled areas and uncontrolled areas against the expansion of the radioactive materials to out of the facilities. It is required for the surface contamination of articles to be tightened of control criteria as 'Guidelines for discrimination ways of nonradioactive waste (not classified as radioactive waste) generated from nuclear power plants' (hereinafter referred to as 'the Guideline') was established by the Nuclear and Industrial Safety Agency of the Ministry of Economy, Trade and Industry in August, 2005. It predicts that the control criteria of monitors other than article monitors are also tightened in the future. Fuji electric has been fabricating and delivering surface contamination detecting monitors. Now we are developing the new contamination monitor corresponding to the tightening of the control criteria. 'Large article transfer monitor', 'Clothing monitor' and 'Body surface contamination monitor' are introduced in this article. (author)

  16. Tritium interactions with steel and construction materials in fusion devices

    International Nuclear Information System (INIS)

    Dickson, R.S.

    1990-11-01

    The literature on the interactions of tritium and tritiated water with metals, glasses, ceramics, concrete, paints, polymers and other organic materials is reviewed in this report Some of the processes affecting the amount of tritium found on various materials, such as permeation, sorption and the conversion of tritium found on various materials, such as permeation, sorption and conversion of elemental tritium (T 2 ) to tritiated water (HTO), are also briefly outlined. Tritium permeation in steels is fairly well understood, but effects of surface preparation and coatings on sorption are not yet clear. Permeation of T 2 into other metals with cleaned surfaces has been studied thoroughly at high temperature, and the effect of surface oxidation has also been explored. The room-temperature permeation rates of low-permeability metals with cleaned surfaces are much faster than indicated by high-temperature results, because of grain-boundary diffusion. Elastomers have been studied to a certain extent, but some mechanisms of interaction with tritium gas and sorbed tritium are unclear. Ceramics have some of the lowest sorption and permeation rates, but ceramic coatings on stainless steels do not lower permeation or tritium as effectively as coatings obtained by oxidation of the steel, probably because of cracking caused by differences in thermal expansion coefficient. Studies on concrete are in their early stages; they show that sorption of tritiated water on concrete is a major concern in cleanup of releases of elemental tritium into air in tritium handling facilities. Some of the codes for modelling releases and sorption of T 2 and HTO contain unproven assumptions about sorption and T 2 → HTO conversion. Several experimental programs will be required in order to clear up ambiguities in previous work and to determine parameters for materials which have not yet been investigated. (146 refs., tab.)

  17. Estimating the tritium input to groundwater from wine samples: Groundwater and direct run-off contribution to Central European surface waters

    International Nuclear Information System (INIS)

    Roether, W.

    1967-01-01

    A model is derived which allows a quantitative evaluation of wine tritium data. It is shown that the tritium content of a wine sample is not determined exclusively by water taken up by the roots, but is also influenced to a large extent by direct exchange with atmospheric moisture. The soil-water fraction amounts normally to not more than 40%. Thus, wine is a sample partly of atmospheric moisture at ground level, partly of soil moisture, integrated over a period around three weeks before vintage. The tritium content of two sets of wine samples originating from two selected sites in the Federal Republic of Germany and dating back to 1949 is reported. For the period since records of the tritium content of rain in Europe have become available comparisons of wine tritium with reported tritium activities of rain are in favour of the model outlined. The first distinguishable influence of bomb tritium shows up in the 1953 wine, whilst no detectable response to Castle tritium is found in 1954. By comparison with recorded rain activities at Ottawa, Canada, it is concluded that Castle influenced the tritium fall-out in Central Europe much less than it did at Ottawa. For the period before 1955 the tritium activity of the annual groundwater recharge, including pre-thermonuclear recharge in Central Europe, is estimated from the wine data. An estimation of the total assimilation of pre-thermonuclear tritium into the ocean at 50 degrees N is also given, which points to a value of 1-1.5 atoms/cm 2 s. It is shown that in further uses of pre-thermonuclear wines the possibility that samples have been contaminated by penetration of thermonuclear tritium through the bottle seals must be considered. The estimates of the tritium activities of groundwater recharge are based on the fact that in our climate the main contribution to groundwater is made up by autumn and winter precipitation. Because of this correlation with season the groundwater recharge is much lower in tritium than the

  18. TRICYCLE: a new mathematical model for tritium at the global scale

    International Nuclear Information System (INIS)

    Killough, G.G.; Kocher, D.C.

    1987-01-01

    TRICYCLE (for TRItium CYCLE) is a new linear dynamic compartment model that has been successful in reproducing environmental time-series data that show levels of tritium from nuclear weapons testing. Based on the global hydrologic cycle and other geophysical data, TRICYCLE includes (1) separate stratosphere compartments for the northern and southern hemispheres, (2) disaggregation of the troposphere and ocean surface waters into eight latitude zones each, (3) consideration of the different concentrations of tritium in atmospheric water vapor over land and over the ocean (the concentration over land exceeds that over the ocean by a factor of 3-4), and (4) a box-diffusion model for vertical transport in the ocean. The authors have used the model to simulate tritium in precipitation, ocean surface waters, and surface fresh waters (rivers and lakes). When they assume that 50% of the tritium from atmospheric weapons testing was injected directly into the northern stratosphere, the model gives good representations of tritium in the ocean surface waters and the rivers and lakes of the northern hemisphere; moreover, it estimates reasonable approximations to time-series measurements of tritium in marine precipitation taken at specific latitudes; and over the full range of latitudes, its representation of the high-to-low latitude gradient of tritium in marine precipitation is remarkable. Apart from their intrinsic geophysical interest, such models are useful in assessing the collective radiation dose to populations from tritium that is reeased at a particular latitude

  19. A new tritium process monitor based on scintillating fibres

    International Nuclear Information System (INIS)

    Pacenti, P.; Edwards, R.A.H.; Monte, A. de; Campi, F.

    1998-01-01

    The main requirements for tritium monitoring in processes related with fusion fuel cycle are low tritium memory, fast response and accuracy, in decreasing order of importance. At present, in-line tritium monitoring in such tritium processing is done mostly using ionization chambers, which suffer a number of drawbacks: output and sensitivity depends on total gas pressure, composition and flow, etc., and have problems such as tritium memory and generally of saturation effect at high tritium concentrations. Solid scintillators can only work well with tritium if they offer a large surface area, because tritium is absorbed within the first microns of material. The present design uses entirely inorganic scintillator and construction materials, chosen to minimize tritium memory. The described on line and real time tritium detector presents some advantages in comparison with well established flow-through tritium process monitors, such as ionization chambers and thermal conductivity detectors. (authors)

  20. Distribution of tritium in a nuclear process heat plant with HTR

    International Nuclear Information System (INIS)

    Steinwarz, W.; Stoever, D.; Hecker, R.; Thiele, W.

    1984-01-01

    The application of HTR-process heat in chemical processes involves low contamination of the product by tritium permeation through the heat exchanger walls. According to conservative assumptions for the tritium release rate and based on experimental permeation data of the German R und D-program a tritium concentration in the PNP-product gas of about 10 pCi/g was calculated. The domestic use of the product gas in unvented kitchen ranges as the most important direct radiation exposure pathway then leads to an effective equivalent radiation dose of only 20 μrem/a. (orig.)

  1. Tritium concentrations in natural waters in Japan before use of a large quantity of tritium on its fusion program

    International Nuclear Information System (INIS)

    Kaji, Toshio; Momoshima, Noriyuki; Takashima, Yoshimasa.

    1989-01-01

    To clarify environmental tritium levels in Japan before use of a large quantity of tritium on its fusion program, the authors analyzed the tritium concentrations in various water samples, such as rain, river, lake, coastal sea and deep sea waters in Japan. The tritium concentrations in rain water were high at higher latitude. The definite differences of the tritium concentrations due to the weather conditions or seasons were not observed. The average tritium concentration in river water was 51.5 pCi/l in 1982 and that in lake water was 63.5 pCi/l in 1983. The vertical profiles of the tritium concentrations in the representative lakes were almost homogeneous except surface water. The average tritium concentrations in coastal seawater were about 20 pCi/l in both 1982 and 1983. The tendency of the increased tritium level with latitude as reported in literature was not observed by these experiments. Tritium levels in natural water in small isolated islands were lower than those at other places. In the Japan Sea, it was recognized that tritium was distributed down to around 2000 m in depth. This means that the more active vertical mixing of water masses than that in the Pacific Ocean is taking place. (author)

  2. Secondary containment system for a high tritium research cryostat

    International Nuclear Information System (INIS)

    Tsugawa, R.T.; Fearon, D.; Souers, P.C.; Hickman, R.G.; Roberts, P.E.

    1976-01-01

    A 4.2- to 300-K liquid helium cryostat has been constructed for cryogenic samples of D--T containing up to 4 x 10 14 dis/s (10,000 Ci) of tritium radioactivity. The cryostat is enclosed in a secondary box, which acts as the ultimate container in case of a tritium release. Dry argon is flushed through the box, and the box atmosphere is monitored for tritium, oxygen, and water vapor. A rupture disk and abort tank protect the box atmosphere in case the sample cell breaks. If tritium breaks into the box, a powdered uranium getter trap reduces the 4 x 10 14 dis/s (10,000 Ci) to 4 x 10 9 dis/s (0.1 Ci) in 24 h. A backup palladium--zeolite getter system goes into operation if an overabundance of oxygen contaminates the uranium getter

  3. Some problems in calibrating surface contamination meters

    International Nuclear Information System (INIS)

    Chen Zigen; LI Xingyuan; Shuai Xiaoping.

    1984-01-01

    It is necessary that instruments are calibrated accurately in order to obtain reliable survey data of surface contamination. Some problems in calibrating surface contamination meters are expounded in this paper. Measurement comparison for beta surface contamination meters is organized within limited scope, thus survey quality is understood, questions are discovered, significance of calibration is expounded further. (Author)

  4. Experiments on tritium behavior in beryllium, (2)

    International Nuclear Information System (INIS)

    Ishitsuka, Etsuo; Kawamura, Hiroshi; Nakata, Hirokatsu; Sugai, Hiroyuki; Tanase, Masakazu.

    1990-02-01

    Beryllium has been used as the neutron reflector of material testing reactor and as the neutron multiplier for the fusion reactor lately. To study the tritium behavior in beryllium, we conducted the experiments, i.e., tritium release by recoil or diffusion by using the hot-pressed beryllium which had been produced both tritium and helium by neutron irradiation. From our experiments, we found that (1) amount of tritium production per one cycle irradiation (lasting 22 days) of JMTR is 10 mCi/g, (2) amount of tritium per surface area of hot-pressed beryllium released by recoil is 4 μCi/cm 2 , (3) diffusion coefficient of tritium in a temperature range of 800 ∼1180degC can be expressed with the following equation; D = 8.7 x 10 4 exp(-2.9x10 5 /R/T) cm 2 /s. (author)

  5. Monitoring of surface and airborne contamination

    Energy Technology Data Exchange (ETDEWEB)

    Pradeep Kumar, K S [Bhabha Atomic Research Centre, Bombay (India)

    1997-06-01

    Indian nuclear energy programme aims at total safety in all activities involved in the entire fuel cycle for the occupational workers, members of the public and the environment as a whole. Routine radiation monitoring with clearly laid out procedures are followed for ensuring the safety of workers and public. Radiation monitoring carried out for the nuclear installations comprises of process monitoring, monitoring of effluent releases and also of the radiation protection monitoring of the individuals, work place and environment. Regulations like banning of smoking and consumption of food and drink etc. reduces the risk of direct ingestion even if inadvertent spread of contamination takes place. Though limit of transportable surface contamination is prescribed, the health physicists always follow a ``clean on swipe`` philosophy which compensates any error in the measurement of surface contamination. In this paper, the following items are contained: Necessity of contamination monitoring, accuracy required in the calibration of surface contamination monitors, methodology for contamination monitoring, air monitoring, guidelines for unrestricted release of scrap materials, and problems in contamination monitoring. (G.K.)

  6. Follow-up of some biochemical parameters to detect adaptive reactions induced in vivo by tritium contamination

    International Nuclear Information System (INIS)

    Petcu, I.; Moisoi, N.; Savu, D.; Constantinescu, B.

    1999-01-01

    The experiment intended to examine whether adaptive response could be elicited in vivo by low level internal contamination of rats with tritiated water and subsequently observed after a challenging irradiation with fast neutrons. Rats have been pre-contaminated for 3 weeks to total doses of 7 cGy and 35 cGy. Subsequently they were irradiated 1 Gy by fast neutrons obtained from deuterons (13.5 MeV) on a Be target. After 24 h the rats were sacrificed and the lipid peroxidation level was determined in liver, kidney, small intestine, spleen, bone marrow and plasma. The reduced glutathion and the glucose-6-phosphate dehydrogenase activity was determined in erythrocytes. Concurrently an in vivo assay was performed to observe the modifications of the thymidine intake in the isolated bone marrow cells. For the rats pre-exposed to tritiated water the lipid peroxides level was significantly decreased only for liver and kidney and only after the highest preirradiation dose (35 cGy). The thymidine incorporation assay revealed a putative adaptive reaction also for the 35 cGy preirradiated rats. The glutathion content was found to be increased (back to the normal level) for the tritium pre-contaminated and neutron irradiated animals as compared to those exposed only to fast neutrons. (authors)

  7. Tritium loss in molten flibe systems

    Energy Technology Data Exchange (ETDEWEB)

    Longhurst, G.R.; Anderl, R.A. [Idaho National Eng. and Environ. Lab., Idaho Falls, ID (United States); Scott Willms, R. [Los Alamos National Lab., NM (United States)

    2000-04-01

    An emerging issue relative to beryllium technology in fusion involves tritium interactions with molten beryllium-bearing salts. Innovative designs for fusion reactors, both magnetic and inertially confined, feature the molten salt mixture 2LiF.BeF{sub 2}, commonly called Flibe, as a tritium breeder and coolant. Tritium is bred in the Flibe as neutrons from the plasma are absorbed by Li atoms, which then transmute to tritium and helium. Transmutation of tritium from Be also occurs. Among the issues to be resolved for such coolant systems is the potential loss of tritium from the Flibe coolant to the walls of the system, particularly through heat exchanger tubes, and from there into secondary coolants or working fluids and the environment. Effectively removing tritium from Flibe in clean-up units is also important. In quiescent or low Reynolds number flow, tritium movement through Flibe is governed by diffusion. For Flibe in turbulent flow, as in heat exchanger tubes, transport is by turbulent mixing, and the same flow conditions and structural design features that maximize heat transfer to the heat exchanger walls will enhance the transport of tritium to those same surfaces. Analyses have been performed to estimate the fractional loss of tritium through heat exchanger tubes and release rates from Flibe droplets in vacuum disengagers in molten Flibe systems. The calculations suggest unacceptably large losses of tritium through heat exchanger tubes. The gravity of the implications of these estimates calls for experimental verification to determine if tritium losses through molten Flibe heat exchangers or other Flibe systems can really be so high and whether vacuum disengagers will really work. There is also a need for better information on evolution of tritium from Flibe droplets in a vacuum. Several experiments are presently being planned to address these issues and are discussed. These include experiments to induce tritium in Flibe using spontaneous fission neutrons

  8. Tritium loss in molten flibe systems

    International Nuclear Information System (INIS)

    Longhurst, G.R.; Anderl, R.A.; Scott Willms, R.

    2000-01-01

    An emerging issue relative to beryllium technology in fusion involves tritium interactions with molten beryllium-bearing salts. Innovative designs for fusion reactors, both magnetic and inertially confined, feature the molten salt mixture 2LiF.BeF 2 , commonly called Flibe, as a tritium breeder and coolant. Tritium is bred in the Flibe as neutrons from the plasma are absorbed by Li atoms, which then transmute to tritium and helium. Transmutation of tritium from Be also occurs. Among the issues to be resolved for such coolant systems is the potential loss of tritium from the Flibe coolant to the walls of the system, particularly through heat exchanger tubes, and from there into secondary coolants or working fluids and the environment. Effectively removing tritium from Flibe in clean-up units is also important. In quiescent or low Reynolds number flow, tritium movement through Flibe is governed by diffusion. For Flibe in turbulent flow, as in heat exchanger tubes, transport is by turbulent mixing, and the same flow conditions and structural design features that maximize heat transfer to the heat exchanger walls will enhance the transport of tritium to those same surfaces. Analyses have been performed to estimate the fractional loss of tritium through heat exchanger tubes and release rates from Flibe droplets in vacuum disengagers in molten Flibe systems. The calculations suggest unacceptably large losses of tritium through heat exchanger tubes. The gravity of the implications of these estimates calls for experimental verification to determine if tritium losses through molten Flibe heat exchangers or other Flibe systems can really be so high and whether vacuum disengagers will really work. There is also a need for better information on evolution of tritium from Flibe droplets in a vacuum. Several experiments are presently being planned to address these issues and are discussed. These include experiments to induce tritium in Flibe using spontaneous fission neutrons

  9. Study on the tritium behaviors in the VHTR system. Part 2: Analyses on the tritium behaviors in the VHTR/HTSE system

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Eung S. [Idaho National Laboratory, P.O. Box 1625, Idaho Falls, ID 83415-3885 (United States); Oh, Chang H., E-mail: Chang.Oh@inl.go [Idaho National Laboratory, P.O. Box 1625, Idaho Falls, ID 83415-3885 (United States); Patterson, Mike [Idaho National Laboratory, P.O. Box 1625, Idaho Falls, ID 83415-3885 (United States)

    2010-07-15

    Tritium behaviors in the very high temperature gas reactor (VHTR)/high temperature steam electrolysis (HTSE) system have been analyzed by the TPAC developed by Idaho National Laboratory (INL). The reference system design and conditions were based on the indirect parallel configuration between a VHTR and a HTSE. The analyses were based on the SOBOL method, a modern uncertainty and sensitivity analyses method using variance decomposition and Monte Carlo method. A total of 14 parameters have been taken into account associated with tritium sources, heat exchangers, purification systems, and temperatures. Two sensitivity indices (first order index and total index) were considered, and 15,360 samples were totally used for solution convergence. As a result, important parameters that affect tritium concentration in the hydrogen product have been identified and quantified with the rankings. Several guidelines and recommendations for reducing modeling uncertainties have been also provided throughout the discussions along with some useful ideas for mitigating tritium contaminations in the hydrogen product.

  10. Long Term Tritium Trapping in TFTR and JET

    International Nuclear Information System (INIS)

    Skinner, C.H.; Gentile, C.A.; Young, K.M.; Coad, J.P.; Hogan, J.T.; Penzhorn, R.-D.; Bekris, N.

    2001-01-01

    Tritium retention in TFTR [Tokamak Fusion Test Reactor] and JET [Joint European Torus] shows striking similarities and contrasts. In TFTR, 5 g of tritium were injected into circular plasmas over a 3.5 year period, mostly by neutral-beam injection. In JET, 35 g were injected into divertor plasmas over a 6 month campaign, mostly by gas puffing. In TFTR, the bumper limiter provided a large source of eroded carbon and a major part of tritium was co-deposited on the limiter and vessel wall. Only a small area of the co-deposit flaked off. In JET, the wall is a net erosion area, and co-deposition occurs principally in shadowed parts of the inner divertor, with heavy flaking. In both machines, the initial tritium retention, after a change from deuterium [D] to tritium [T] gas puffing, is high and is due to isotope exchange with deuterium on plasma-facing surfaces (dynamic inventory). The contribution of co-deposition is lower but cumulative, and is revealed by including periods of D fueling that reversed the T/D isotope exchange. Ion beam analysis of flakes from TFTR showed an atomic D/C ratio of 0.13 on the plasma facing surface, 0.25 on the back surface and 0.11 in the bulk. Data from a JET divertor tile showed a larger D/C ratio with 46% C, 30% D, 20% H and 4% O. Deuterium, tritium, and beryllium profiles have been measured and show a thin less than 50 micron co-deposited layer. Flakes retrieved from the JET vacuum vessel exhibited a high tritium release rate of 2e10 Bq/month/g. BBQ modeling of the effect of lithium on retention in TFTR showed overlapping lithium and tritium implantation and a 1.3x increase in local T retention

  11. Development of compact tritium confinement system using gas separation membrane

    International Nuclear Information System (INIS)

    Hayashi, Takumi; Okuno, Kenji

    1994-01-01

    In order to develop more compact and cost-effective tritium confinement system for fusion reactor, a new system using gas separation membranes has been studied at the Tritium Process Laboratory in the Japan Atomic Energy Research Institute. The preliminary result showed that the gas separation membrane system could reduce processing volume of tritium contaminated gas to more than one order of magnitude compared with the conventional system, and that most of tritiated water vapor (humidity) could be directly recovered by water condenser before passing through dryer such as molecular sieves. More detail investigations of gas separation characteristics of membrane were started to design ITER Atmospheric Detritiation System (ADS). Furthermore, a scaled polyimide membrane module (hollow-filament type) loop was just installed to investigate the actual tritium confinement performance under various ITER-ADS conditions. (author)

  12. Tritium permeation evaluation through vertical target of divertor based on recent tritium transport properties

    OpenAIRE

    中村 博文; 西 正孝

    2003-01-01

    Re-evaluation of tritium permeation through vertical target of divertor under the ITER operation condition was carried out using tritium transport properties in the candidate materials such as the diffusion coefficient and the trapping factors in tungsten for armor, and the surface recombination coefficient on copper for the heat sink obtained by authors' recent investigation (authors' data), which simulated the plasma-facing conditions of ITER. Evaluation with the data set of previous evalua...

  13. Thermal Removal of Tritium from Concrete and Soil to Reduce Groundwater Impacts - 13197

    International Nuclear Information System (INIS)

    Jackson, Dennis G.; Blount, Gerald C.; Wells, Leslie H.; Cardoso, Joao E.; Kmetz, Thomas F.; Reed, Misty L.

    2013-01-01

    Legacy heavy-water moderator operations at the Savannah River Site (SRS) have resulted in the contamination of equipment pads, building slabs, and surrounding soil with tritium. At the time of discovery the tritium had impacted the shallow ( 3 (1,650-yd 3 ) of contaminated concrete and soils were treated with an actual incurred cost of $3,980,000. This represents a unit treatment cost of $3,156/m 3 ($2,412/yd 3 ). In 2011 the project was recognized with an e-Star Sustainability Award by DOE's Office of Environmental Management. (authors)

  14. Tritium migration at the Gasbuggy site: Evaluation of possible hydrologic pathways

    International Nuclear Information System (INIS)

    Chapman, J.; Mihevc, T.; Lyles, B.

    1996-09-01

    An underground nuclear test named Gasbuggy was conducted in northwestern New Mexico in 1967. Subsequent groundwater monitoring in an overlying aquifer by the U.S. Environmental Protection Agency revealed increasing levels of tritium in monitoring well EPNG 10-36, located 132 m from the test, suggesting migration of contaminants from the nuclear cavity. There are three basic scenarios that could explain the occurrence of tritium in well 10-36: (1) introduction of tritium into the well from the land surface, (2) migration of tritium through the Ojo Alamo Formation, and (3) migration through the Pictured Cliffs Formation. The two subsurface transport scenarios were evaluated with a travel time analysis. In one, transport occurs to the Ojo Alamo sandstone either up the emplacement hole or through fractures created by the blast, and then laterally through the aquifer to the monitoring well. In the other, lateral transport occurs through fractures in the underlying Pictured Cliffs detonation horizon and then migrates up the monitoring well through plugged casing connecting the two formations. The travel time analysis indicates that the hydraulic conductivity measured in the Ojo Alamo Formation is too low for lateral transport to account for the observed arrival of tritium at the monitoring well. This suggests transport either through fractures intersecting the Ojo Alamo close to well EPNG 10-36, or through fractures in the Pictured Cliffs and up through the bottom plug in the well. The transport scenarios were investigated using hydrologic logging techniques and sampling at the monitoring well, with the fieldwork conducted after the removal of a string of 0.05-m-diameter tubing that had previously provided the only monitoring access

  15. Physicochemical processes behind atomic tritium harnessing for investigation into surface of solids

    International Nuclear Information System (INIS)

    Badun, G.A.; Fedoseev, V.M.

    2000-01-01

    The thermal dissociation of hydrogen molecules on tungsten wire heated up to 1500 - 2000 K is a comfortable method for the atomic hydrogen production. The role of the different physicochemical processes taking place during dissociation of the molecular tritium interaction, atomic tritium transport to the target and its interaction with the molecules of the target is discussed. High selectivity of the atomic tritium interaction with the components of the different chemical nature target allowed such investigations to be made. The examples of atomic tritium use for the investigation into polymeric materials, absorption layers of surfactants, structure of biological macromolecules and hypomolecular formations are demonstrated [ru

  16. Alternative containers for low-level wastes containing large amounts of tritium

    International Nuclear Information System (INIS)

    Gause, E.P.; Lee, B.S.; MacKenzie, D.R.; Wiswall, R. Jr.

    1984-11-01

    High-activity tritiated waste generated in the United States is mainly composed of tritium gas and tritium-contaminated organic solvents sorbed onto Speedi-Dri which are packaged in small glass bulbs. Low-activity waste consists of solidified and adsorbed liquids. In this report, current packages for high-activity gaseous and low-activity adsorbed liquid wastes are emphasized with regard to containment potential. Containers for low-level radioactive waste containing large amounts of tritium need to be developed. An integrity may be threatened by: physical degradation due to soil corrosion, gas pressure build-up (due to radiolysis and/or biodegradation), rapid permeation of tritium through the container, and corrosion from container contents. Literature available on these points is summarized in this report. 136 references, 20 figures, 40 tables

  17. The tritium balance of the Ems river basin

    International Nuclear Information System (INIS)

    Krause, W.J.

    1989-01-01

    For the Ems river basin, as a fine example of a Central European lowland basin, an inventory of the tritium distribution is presented for the hydrologic years 1951 to 1983. On the basis of a balance model, the tritium contents in surface waters and groundwater of the Ems river basin are calculated, using known and extrapolated tritium input data and comparing them with the corresponding values measured since 1974. A survey of tritium flows occurring in this basin is presented, taking meteorologic and hydrologic facts into account. (orig.)

  18. Tritium in well waters, streams and atomic lakes in the East Kazakhstan Oblast of the Semipalatinsk Nuclear Test Site

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, Peter I [Department of Experimental Physics, University College Dublin, Belfield, Dublin 4 (Ireland); Vintro, Luis Leon [Department of Experimental Physics, University College Dublin, Belfield, Dublin 4 (Ireland); Omarova, Aigul [Department of Experimental Physics, University College Dublin, Belfield, Dublin 4 (Ireland); Burkitbayev, Mukhambetkali [Department of Inorganic Chemistry, Al-Farabi Kazakh National University, Almaty (Kazakhstan); Napoles, Humberto Jimenez [Department of Experimental Physics, University College Dublin, Belfield, Dublin 4 (Ireland); Priest, Nicholas D [School of Health and Social Sciences, Middlesex University, Enfield EN3 4SA (United Kingdom)

    2005-06-01

    The concentration of tritium has been determined in well waters, streams and atomic lakes in the Sarzhal, Tel'kem, Balapan and Degelen Mountains areas of the Semipalatinsk Test Site. The data show that levels of tritium in domestic well waters within the settlement of Sarzhal are extremely low at the present time with a median value of 4.4 Bq dm{sup -3} (95% confidence interval: 4.1-4.7 Bq dm{sup -3}). These levels are only marginally above the background tritium content in surface waters globally. Levels in the atomic craters at Tel'kem 1 and Tel'kem 2 are between one and two orders of magnitude higher, while the level in Lake Balapan is approximately 12 600 Bq dm{sup -3}. Significantly, levels in streams and test-tunnel waters sourced in the Degelen Mountains, the site of approximately 215 underground nuclear tests, are a further order of magnitude higher, being in the range 133 000-235 500 Bq dm{sup -3}. No evidence was adduced which indicates that domestic wells in Sarzhal are contaminated by tritium-rich waters sourced in the Degelen massif, suggesting that the latter are not connected hydrologically to the near-surface groundwater recharging the Sarzhal wells. Annual doses to humans arising from the ingestion of tritium in these well waters are very low at the present time and are of no radiological significance.

  19. ITER safety task NID-5a: on the effect of tritium sorption on building surfaces as a passive mechanism for reducing airborne concentrations

    International Nuclear Information System (INIS)

    Natalizio, A.

    1994-09-01

    As part of the source term analysis for ITER, it is important to investigate the potential for building surface interaction with tritium as a potential attenuation mechanism, which in the absence of engineered systems may be effective in reducing tritium environmental releases. (author). 2 refs., 8 tabs., 3 figs

  20. Techniques for removing contaminated concrete surfaces

    International Nuclear Information System (INIS)

    Halter, J.M.; Sullivan, R.G.

    1981-01-01

    This discussion compares various techniques that have been used to clean concrete surfaces by removing the surface. Three techniques which have been investigated by the Pacific Northwest Laboratory for removing surfaces are also described: the water cannon, the concrete spaller, and high-pressure water jet. The equipment was developed with the assumption that removal of the top 1/8 to 1/4 in. of surface would remove most of the contamination. If the contamination has gone into cracks or deep voids in the surface, the removal processes can be repeated until the surface is acceptable

  1. Determination of low-level tritium concentrations in surface water and precipitation in the Czech Republic

    International Nuclear Information System (INIS)

    Maresova, Diana; Hanslik, Eduard; Sedlarova, Barbora; Juranova, Eva; Charles University, Prague

    2017-01-01

    Past tests of nuclear weapons in the atmosphere, nuclear energy facilities and tritium of natural origin are main sources of tritium in the environment. Thanks to its presence in environment and its favourable properties, tritium is used as a radiotracer. Since stopping of atmospheric nuclear tests, tritium in precipitation has been decreasing towards natural levels below 1 Bq l -1 and precise analyses of low level tritium activities are necessary. This paper focuses on tritium development at sites not influenced by any technogenic release of tritium in Elbe River basin (Bohemia) in the Czech Republic using liquid scintillation measurement with electrolytic enrichment. (author)

  2. Tritium fuel cycle modeling and tritium breeding analysis for CFETR

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Hongli; Pan, Lei; Lv, Zhongliang; Li, Wei; Zeng, Qin, E-mail: zengqin@ustc.edu.cn

    2016-05-15

    Highlights: • A modified tritium fuel cycle model with more detailed subsystems was developed. • The mean residence time method applied to tritium fuel cycle calculation was updated. • Tritium fuel cycle analysis for CFETR was carried out. - Abstract: Attaining tritium self-sufficiency is a critical goal for fusion reactor operated on the D–T fuel cycle. The tritium fuel cycle models were developed to describe the characteristic parameters of the various elements of the tritium cycle as a tool for evaluating the tritium breeding requirements. In this paper, a modified tritium fuel cycle model with more detailed subsystems and an updated mean residence time calculation method was developed based on ITER tritium model. The tritium inventory in fueling system and in plasma, supposed to be important for part of the initial startup tritium inventory, was considered in the updated mean residence time method. Based on the model, the tritium fuel cycle analysis of CFETR (Chinese Fusion Engineering Testing Reactor) was carried out. The most important two parameters, the minimum initial startup tritium inventory (I{sub m}) and the minimum tritium breeding ratio (TBR{sub req}) were calculated. The tritium inventories in steady state and tritium release of subsystems were obtained.

  3. Environmental health-risk assessment for tritium releases from the National Tritium Labeling Facility (NTLF) at Lawrence Berkeley Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    McKone, T.E.; Brand, K.P.

    1994-12-01

    This report is a health risk assessment that addresses continuous releases of tritium to the environment from the National Tritium Labeling Facility (NTLF) at the Lawrence Berkeley Laboratory (LBL). The NTLF contributes approximately 95% of all tritium releases from LBL. Transport and transformation models were used to determine the movement of tritium releases from the NRLF to the air, surface water, soils, and plants and to determine the subsequent doses to humans. These models were calibrated against environmental measurements of tritium levels in the vicinity of the NTLF and in the surrounding community. Risk levels were determined for human populations in each of these zones. Risk levels to both individuals and populations were calculated. In this report population risks and individual risks were calculated for three types of diseases--cancer, heritable genetic effects, and developmental and reproductive effects.

  4. Environmental health-risk assessment for tritium releases from the National Tritium Labeling Facility (NTLF) at Lawrence Berkeley Laboratory

    International Nuclear Information System (INIS)

    McKone, T.E.; Brand, K.P.

    1994-12-01

    This report is a health risk assessment that addresses continuous releases of tritium to the environment from the National Tritium Labeling Facility (NTLF) at the Lawrence Berkeley Laboratory (LBL). The NTLF contributes approximately 95% of all tritium releases from LBL. Transport and transformation models were used to determine the movement of tritium releases from the NRLF to the air, surface water, soils, and plants and to determine the subsequent doses to humans. These models were calibrated against environmental measurements of tritium levels in the vicinity of the NTLF and in the surrounding community. Risk levels were determined for human populations in each of these zones. Risk levels to both individuals and populations were calculated. In this report population risks and individual risks were calculated for three types of diseases--cancer, heritable genetic effects, and developmental and reproductive effects

  5. A study of electrolytic tritium production

    International Nuclear Information System (INIS)

    Storms, E.K.; Talcott, C.L.

    1990-01-01

    Tritium production is being investigated using cathodes made from palladium and its alloys with various surface treatments. Three anode materials have been studied as well as different impurities in the electrolyte. Tritium has been produced in about 10% of the cells studied but there is, as yet, no pattern of behavior that would make the effect predictable. 15 refs., 4 figs., 6 tabs

  6. Activities of the EMRAS Tritium/C14 Working Group

    International Nuclear Information System (INIS)

    Davis, P.A.; Balonov, M.; Venter, A.

    2005-01-01

    A new model evaluation program, Environmental Modeling for Radiation Safety (EMRAS), was initiated by the International Atomic Energy Agency in September 2003. EMRAS includes a working group (WG) on modeling tritium and C-14 transfer through the environment to biota and man. The main objective of this WG is to develop and test models of the uptake, formation and translocation of organically bound tritium (OBT) in food crops, animals and aquatic systems. To the extent possible, the WG is carrying out its work by comparing model predictions with experimental data to identify the modeling approaches and assumptions that lead to the best agreement between predictions and observations. Results for scenarios involving a chronically contaminated aquatic ecosystem and short-term exposure of soybeans are presently being analyzed. In addition, calculations for scenarios involving chronically contaminated terrestrial food chains and hypothetical short-term releases are currently underway, and a pinetree scenario is being developed. The preparation of datasets on tritium dynamics in large animals and fish is being encouraged, since these are the areas of greatest uncertainty in OBT modeling. These activities will be discussed in this paper

  7. Tritium waste control: April-September 1982

    International Nuclear Information System (INIS)

    Lamberger, P.H.; Rogers, M.L.

    1983-01-01

    The pilot-scale, water feed cleanup system was used to successfully remove organic and inorganic impurities from Effluent Removal System (ERS) water. Tests with activated carbon traps removed organic impurities to as low as 2.5 ppM total carbon. Traps containing Amberlite resins for removing organic impurities were not successful and actually contaminated the water with higher levels (>2000 ppM) of organics. Gas generation rates caused by radiolysis of tritiated waste materials were determined for polymer and nonpolymer-impregnated tritiated concrete and fixated and nonfixated tritiated waste vacuum pump oil. In addition, the pressure change of hydrogen cover gas over tritiated water on cement-plaster was determined. The test program to measure and compare the release of tritium from tritiated concrete with and without styrene impregnation continued. Tritium permeation data from small test blocks are given. The drum study monitoring the release of tritium from actual burial packages continued. The maximum fractional release rate for the three types of high activity, tritiated liquid waste generated is 2.97 x 10 -5 , and the maximum total permeation is 158 mCi after 8 yr. These two values represent a 13% increase for the past 6 months. Tritium release from the polymer-impregnated, tritiated concrete (PITC) and from the control (non-PITC) remains very low

  8. Confinement and Tritium Stripping Systems for APT Tritium Processing

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, R.H. [Westinghouse Savannah River Company, AIKEN, SC (United States); Heung, L.K.

    1997-10-20

    This report identifies functions and requirements for the tritium process confinement and clean-up system (PCCS) and provides supporting technical information for the selection and design of tritium confinement, clean-up (stripping) and recovery technologies for new tritium processing facilities in the Accelerator for the Production of Tritium (APT). The results of a survey of tritium confinement and clean-up systems for large-scale tritium handling facilities and recommendations for the APT are also presented.

  9. Confinement and Tritium Stripping Systems for APT Tritium Processing

    International Nuclear Information System (INIS)

    Hsu, R.H.; Heung, L.K.

    1997-01-01

    This report identifies functions and requirements for the tritium process confinement and clean-up system (PCCS) and provides supporting technical information for the selection and design of tritium confinement, clean-up (stripping) and recovery technologies for new tritium processing facilities in the Accelerator for the Production of Tritium (APT). The results of a survey of tritium confinement and clean-up systems for large-scale tritium handling facilities and recommendations for the APT are also presented

  10. Tritium Decay Helium-3 Effects in Tungsten

    Energy Technology Data Exchange (ETDEWEB)

    Shimada, M. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Merrill, B. J. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-06-01

    A critical challenge for long-term operation of ITER and beyond to a Demonstration reactor (DEMO) and future fusion reactor will be the development of plasma-facing components (PFCs) that demonstrate erosion resistance to steady-state/transient heat fluxes and intense neutral/ion particle fluxes under the extreme fusion nuclear environment, while at the same time minimizing in-vessel tritium inventories and permeation fluxes into the PFC’s coolant. Tritium will diffuse in bulk tungsten at elevated temperatures, and can be trapped in radiation-induced trap site (up to 1 at. % T/W) in tungsten [1,2]. Tritium decay into helium-3 may also play a major role in microstructural evolution (e.g. helium embrittlement) in tungsten due to relatively low helium-4 production (e.g. He/dpa ratio of 0.4-0.7 appm [3]) in tungsten. Tritium-decay helium-3 effect on tungsten is hardly understood, and its database is very limited. Two tungsten samples (99.99 at. % purity from A.L.M.T. Co., Japan) were exposed to high flux (ion flux of 1.0x1022 m-2s-1 and ion fluence of 1.0x1026 m-2) 0.5%T2/D2 plasma at two different temperatures (200, and 500°C) in Tritium Plasma Experiment (TPE) at Idaho National Laboratory. Tritium implanted samples were stored at ambient temperature in air for more than 3 years to investigate tritium decay helium-3 effect in tungsten. The tritium distributions on plasma-exposed was monitored by a tritium imaging plate technique during storage period [4]. Thermal desorption spectroscopy was performed with a ramp rate of 10°C/min up to 900°C to outgas residual deuterium and tritium but keep helium-3 in tungsten. These helium-3 implanted samples were exposed to deuterium plasma in TPE to investigate helium-3 effect on deuterium behavior in tungsten. The results show that tritium surface concentration in 200°C sample decreased to 30 %, but tritium surface concentration in 500°C sample did not alter over the 3 years storage period, indicating possible tritium

  11. Contribution to the dosimetry of tritium in the presence of inactive or active gases; Contribution a la dosimetrie du tritium en presence de gaz inactifs ou actifs

    Energy Technology Data Exchange (ETDEWEB)

    Soudain, G [Commissariat a l' Energie Atomique, Fontenay-aux-Roses (France). Centre d' Etudes Nucleaires

    1966-07-01

    Tritium is a dangerous gas for man and the maximum admissible doses in the atmosphere are sufficiently low for the dosage to be fairly difficult. We have developed an apparatus for measuring selectively the contamination of air by this gas when it is alone or when it is associated with other gaseous contaminants. The differential apparatus using two ionization chambers makes it possible to eliminate a parasitic {gamma} radiation field. In a few particular cases, the presence of the radio-active gas has been studied. From the practical point of view, the use of these chambers made of stainless steel makes for easier use since the problems connected with wall adsorption have been satisfactorily resolved. The method can be applied without restriction and very easily to the dosage of traces tritium in air or in the form of tritiated water or tritiated steam in the atmosphere. (author) [French] Le tritium est un gaz dangereux pour l'homme et les concentrations maximales admissibles dans l'atmosphere sont suffisamment basses pour que le dosage soit delicat. Nous avons etudie et realise un appareil qui permet de mesurer selectivement la contamination de l'air par ce gaz lorsqu'il est seul ou lorsqu'il est associe a d'autres agents gazeux contaminants. Le montage differentiel a deux chambres d'ionisation permet d'eliminer un champ de rayonnement {beta} parasite. Dans certains cas particuliers, la presence du gaz radioactif a ete etudiee. Sur le plan pratique, l'utilisation des chambres en acier inoxydable facilite les applications car les problemes d'adsorption aux parois ont ete bien resolus. La methode peut s'appliquer sans restriction et tres pratiquement au dosage des traces de tritium dans l'air ou encore sous forme d'eau tritiee ou de vapeur d'eau tritiee dans l'atmosphere. (auteur)

  12. Theoretical investigation of isotope exchange reaction in tritium-contaminated mineral oil in vacuum pump.

    Science.gov (United States)

    Dong, Liang; Xie, Yun; Du, Liang; Li, Weiyi; Tan, Zhaoyi

    2015-04-28

    The mechanism of the isotope exchange reaction between molecular tritium and several typical organic molecules in vacuum pump mineral oil has been investigated by density functional theory (DFT), and the reaction rates are determined by conventional transition state theory (TST). The tritium-hydrogen isotope exchange reaction can proceed with two different mechanisms, the direct T-H exchange mechanism and the hyrogenation-dehydrogenation exchange mechanism. In the direct exchange mechanism, the titrated product is obtained through one-step via a four-membered ring hydrogen migration transition state. In the hyrogenation-dehydrogenation exchange mechanism, the T-H exchange could be accomplished by the hydrogenation of the unsaturated bond with tritium followed by the dehydrogenation of HT. Isotope exchange between hydrogen and tritium is selective, and oil containing molecules with OH and COOH groups can more easily exchange hydrogen for tritium. For aldehydes and ketones, the ability of T-H isotope exchange can be determined by the hydrogenation of T2 or the dehydrogenation of HT. The molecules containing one type of hydrogen provide a single product, while the molecules containing different types of hydrogens provide competitive products. The rate constants are presented to quantitatively estimate the selectivity of the products. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Analysis of tritium migration and deposition in fusion-reactor systems

    International Nuclear Information System (INIS)

    Holland, D.F.; Merrill, B.J.

    1981-01-01

    EG and G Idaho, Inc., is developing a safety analysis code, TMAP (Tritium Migration Analysis Program), to determine tritium loss into the environment and tritium buildup in components, coolants, and walls during normal and accident conditions. TMAP determines the thermal response of structures, solves equations for hydrogen movement through surface and in bulk materials, and also includes equations for chemical reactions. TMAP calculations of tritium movement through metal barriers at low tritium pressure agree closely with experimental measurements. The code has been used to predict inventory buildup and loss to the coolant of tritium implanted in the first wall of a fusion device, and concentrations during cleanup of tritium released into an enclosure

  14. substantiation of the standards for tritium amino acids intake by human organism

    International Nuclear Information System (INIS)

    Zhesko, T.V.; Balonov, M.I.

    1984-01-01

    Calculated values of β-irradiation tissue doses of bound tritium and tritium oxide absorbed by animals treated with different amino acids are given. The obtained dose values are compared with tritium water doses. The data obtained in animal studies are extrapolated to man in order to determine the dose equivalent to the incorporated 3 H-amino acids dose. It is assumed that the dose equivalent to 3 H-amino acids radiation is three times as high as the equivalent amount of tritium oxide. 9 mCi/yr is established as the maximum allowable blood intake of 3 H-amino acids. Due to their metabolic characteristics, air permissible concentrations of 3 H-amino acids and tritium oxide have approximately the same values. The value of 30 nCi/cm 2 is recommended as a standard for work clothing contamination with 3 H-amino acids

  15. Development of a new monitor for tritium in air model TAM-II

    International Nuclear Information System (INIS)

    Wu Bin; Yang Hailan; Wen Xuelian; Zhao Yi; Yang Huaiyuan

    2001-01-01

    The author introduces development of a real-time continuous tritium monitor model TAM-II. The detector of the instrument is comprised of four geometric-symmetry open wall ionization chamber with the effective volume of 2 L, which enables to minimize the remember effect of the ionization chamber due to contamination by the monitored tritium. It is γ background compensation rate is better than 97% in almost all direction. The detector is equipped with a FET static electrometer working in micro-current integration mode. The measurement process of the tritium monitor can be controlled automatically by a micro-processor sheet, such as automatic range changing, data displaying and storing, and data processing. The measuring range is 6 - 10 6 Bq/L. It is especially application for monitoring tritium in off-gas effluence from glove-box or stack of tritium facility and laboratory

  16. Surface soil contamination standards

    International Nuclear Information System (INIS)

    Boothe, G.F.

    1979-01-01

    The purpose of this document is to define surface soil contamination limits for radioactive materials below which posting, restrictions and environmental controls are not necessary in order to protect personnel and the environment. The standards can also be used to determine if solid waste or other material is contaminated relative to disposal requirements. The derivation of the standards is given

  17. An improved air-supplied plastic suit for protection against tritium

    International Nuclear Information System (INIS)

    Wiernicki, C.

    1987-01-01

    A newly developed Saran/CPE plastic suit material is described which offers significantly better protection against HTO penetration and permeation than the 12-mil PVC currently used at SRP and most other DOE and commercial sites where tritium and HTO are exposure hazards. Tritium breakthrough time is an important parameter when evaluating the applicability of protective clothing; previously published tritium permeation tests did not measure this parameter. Future studies should quantify steady-state permeation rate and breakthrough time to more fully evaluate potential tritium protective clothing. Saran/CPE has successfully been fabricated into a plastic suit because, in addition to its superior tritium resistance, it has all the characteristics required to construct a rugged, dependable, and comfortable suit. The use of the Saran/CPE suit at SRP reactor and tritium production facilities should be a major contribution to the site As Low As Reasonably Achievable program. Both Saran/CPE have demonstrated excellent resistance to a wide range of chemical contaminants; therefore, this suit material may have applications in the general chemical industry and hazardous waste site cleanup operations. 4 refs., 3 figs., 1 tab

  18. Experimental and modelling studies on the exposure of wall surfaces to tritium gas in ambient room conditions

    International Nuclear Information System (INIS)

    Housiadas, C.; Douglas, K.

    1995-01-01

    An experimental set-up is used to carry out static exposure tests to study the uptake and oxidation of tritium released in ambient room air, routinely or accidentally, in the presence of selected surface materials. Tritium, in its elemental form at concentrations of the order of approx.0.4 GBq/m 3 (10 -2 Ci/m 3 ), is injected into the glass exposure chamber containing the selected surface material and air at atmospheric pressure. Periodically, samples of the chamber atmosphere are analysed, using liquid scintillation counting, to obtain the concentrations of HTO and T 2 . The exposures have been performed using aluminium, 316L stainless steel and painted stainless steel plates, as the selected surface materials. Results are compared with predictions using the ITER approved TMAP4 code. The results indicate practically the same conversion rate, of about 0.02% per day, for both the aluminium and stainless steel samples and give reasonable agreement with modelling predictions. Strong absorption of both T 2 and HTO by the painted surface is observed, suggesting the use of high values for the solubility constant to correctly predict this behaviour. 19 refs., 5 figs., 1 tab

  19. On the mechanism of biological activation by tritium.

    Science.gov (United States)

    Rozhko, T V; Badun, G A; Razzhivina, I A; Guseynov, O A; Guseynova, V E; Kudryasheva, N S

    2016-06-01

    The mechanism of biological activation by beta-emitting radionuclide tritium was studied. Luminous marine bacteria were used as a bioassay to monitor the biological effect of tritium with luminescence intensity as the physiological parameter tested. Two different types of tritium sources were used: HTO molecules distributed regularly in the surrounding aqueous medium, and a solid source with tritium atoms fixed on its surface (tritium-labeled films, 0.11, 0.28, 0.91, and 2.36 MBq/cm(2)). When using the tritium-labeled films, tritium penetration into the cells was prevented. The both types of tritium sources revealed similar changes in the bacterial luminescence kinetics: a delay period followed by bioluminescence activation. No monotonic dependences of bioluminescence activation efficiency on specific radioactivities of the films were found. A 15-day exposure to tritiated water (100 MBq/L) did not reveal mutations in bacterial DNA. The results obtained give preference to a "non-genomic" mechanism of bioluminescence activation by tritium. An activation of the intracellular bioluminescence process develops without penetration of tritium atoms into the cells and can be caused by intensification of trans-membrane cellular processes stimulated by ionization and radiolysis of aqueous media. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Dependence of CuO particle size and diameter of reaction tubing on tritium recovery for tritium safety operation

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Cui, E-mail: cdxohc10000@163.com [Shizuoka University, 836 Ohya, Suruga-ku Shizuoka 422-8529 (Japan); Uemura, Yuki; Yuyama, Kenta; Fujita, Hiroe; Sakurada, Shodai; Azuma, Keisuke [Shizuoka University, 836 Ohya, Suruga-ku Shizuoka 422-8529 (Japan); Taguchi, Akira; Hara, Masanori; Hatano, Yuji [University of Toyama, 3190 Gofuku, Toyama 939-8555 (Japan); Chikada, Takumi; Oya, Yasuhisa [Shizuoka University, 836 Ohya, Suruga-ku Shizuoka 422-8529 (Japan)

    2016-12-15

    Highlights: • Influence of CuO particle size and diameter of reaction tubing on the tritium recovery was evaluated. • Reaction rate constant of tritium with CuO particle has been calculated by the combination of experimental results and a simulation code. • Dependence of reaction tubing length on tritium conversion ratio has been explored. - Abstract: Usage of CuO and water bubbler is one of the conventional and convenient methods for tritium recovery. In present work, influence of CuO particle size and diameter of reaction tubing on the tritium recovery was evaluated. Reaction rate constant of tritium with CuO particle has been calculated by the combination of experimental results and a simulation code. Then, these results were applied for exploring the dependence of reaction tubing length on tritium conversion ratio. The results showed that the surface area of CuO has a great influence on the oxidation rate constant. The frequency factor of the reaction would be approximately doubled by reducing the CuO particle size from 1.0 mm to 0.2 mm. Cross section of reaction tubing mainly affected on the duration of tritium at the temperature below 600 K. Reaction tubing with length of 1 m at temperature of 600 K would be suitable for keeping the tritium conversion ratio above 99.9%. The length of reaction tubing can be reduced by using the smaller CuO particle or increasing the CuO temperature.

  1. Tritium recycling and inventory in eroded debris of plasma-facing materials

    International Nuclear Information System (INIS)

    Hassanein, A.

    1999-01-01

    Damage to plasma-facing components (PFCs) and structural materials due to loss of plasma confinement in magnetic fusion reactors remains one of the most serious concerns for safe, successful, and reliable tokamak operation. High erosion losses due to surface vaporization, spallation, and melt-layer splashing are expected during such an event. The eroded debris and dust of the PFCs, including trapped tritium, will be contained on the walls or within the reactor chamber therefore, they can significantly influence plasma behavior and tritium inventory during subsequent operations. Tritium containment and behavior in PFCS and in the dust and debris is an important factor in evaluating and choosing the ideal plasma-facing materials (PFMs). Tritium buildup and release in the debris of candidate materials is influenced by the effect of material porosity on diffusion and retention processes. These processes have strong nonlinear behavior due to temperature, volubility, and existing trap sites. A realistic model must therefore account for the nonlinear and multidimensional effects of tritium diffusion in the porous-redeposited and neutron-irradiated materials. A tritium-transport computer model, TRAPS (Tritium Accumulation in Porous Structure), was developed and used to evaluate and predict the kinetics of tritium transport in porous media. This model is coupled with the TRICS (Tritium In Compound Systems) code that was developed to study the effect of surface erosion during normal and abnormal operations on tritium behavior in PFCS

  2. Tritium breeding blanket device of D-T reactors

    International Nuclear Information System (INIS)

    Chevereau, G.

    1984-01-01

    This blanket device uses solid tritium breeding materials as those which include, in a known manner, near a neutron breeding plasma, a neutron multiplier medium and a tritium breeding medium, cooled by a cooling fluid circulation. This device is characterized by the fact that the association of the multiplier media and the tritium breeding media is realized by pellet alternated piling up of each of those both media, help in close contact on all their lateral surfaces [fr

  3. Tritium transport calculations for the IFMIF Tritium Release Test Module

    Energy Technology Data Exchange (ETDEWEB)

    Freund, Jana, E-mail: jana.freund@kit.edu; Arbeiter, Frederik; Abou-Sena, Ali; Franza, Fabrizio; Kondo, Keitaro

    2014-10-15

    Highlights: • Delivery of material data for the tritium balance in the IFMIF Tritium Release Test Module. • Description of the topological models in TMAP and the adapted fusion-devoted Tritium Permeation Code (FUS-TPC). • Computation of release of tritium from the breeder solid material into the purge gas. • Computation of the loss of tritium over the capsule wall, rig hull, container wall and purge gas return line. - Abstract: The IFMIF Tritium Release Test Module (TRTM) is projected to measure online the tritium release from breeder ceramics and beryllium pebble beds under high energy neutron irradiation. Tritium produced in the pebble bed of TRTM is swept out continuously by a purge gas flow, but can also permeate into the module's metal structures, and can be lost by permeation to the environment. According analyses on the tritium inventory are performed to support IFMIF plant safety studies, and to support the experiment planning. This paper describes the necessary elements for calculation of the tritium transport in the Tritium Release Test Module as follows: (i) applied equations for the tritium balance, (ii) material data from literature and (iii) the topological models and the computation of the five different cases; namely release of tritium from the breeder solid material into the purge gas, loss of tritium over the capsule wall, rig hull, container wall and purge gas return line in detail. The problem of tritium transport in the TRTM has been studied and analyzed by the Tritium Migration Analysis Program (TMAP) and the adapted fusion-devoted Tritium Permeation Code (FUS-TPC). TMAP has been developed at INEEL and now exists in Version 7. FUS-TPC Code was written in MATLAB with the original purpose to study the tritium transport in Helium Cooled Lead Lithium (HCLL) blanket and in a later version the Helium Cooled Pebble Bed (HCPB) blanket by [6] (Franza, 2012). This code has been further modified to be applicable to the TRTM. Results from the

  4. Tritium transport calculations for the IFMIF Tritium Release Test Module

    International Nuclear Information System (INIS)

    Freund, Jana; Arbeiter, Frederik; Abou-Sena, Ali; Franza, Fabrizio; Kondo, Keitaro

    2014-01-01

    Highlights: • Delivery of material data for the tritium balance in the IFMIF Tritium Release Test Module. • Description of the topological models in TMAP and the adapted fusion-devoted Tritium Permeation Code (FUS-TPC). • Computation of release of tritium from the breeder solid material into the purge gas. • Computation of the loss of tritium over the capsule wall, rig hull, container wall and purge gas return line. - Abstract: The IFMIF Tritium Release Test Module (TRTM) is projected to measure online the tritium release from breeder ceramics and beryllium pebble beds under high energy neutron irradiation. Tritium produced in the pebble bed of TRTM is swept out continuously by a purge gas flow, but can also permeate into the module's metal structures, and can be lost by permeation to the environment. According analyses on the tritium inventory are performed to support IFMIF plant safety studies, and to support the experiment planning. This paper describes the necessary elements for calculation of the tritium transport in the Tritium Release Test Module as follows: (i) applied equations for the tritium balance, (ii) material data from literature and (iii) the topological models and the computation of the five different cases; namely release of tritium from the breeder solid material into the purge gas, loss of tritium over the capsule wall, rig hull, container wall and purge gas return line in detail. The problem of tritium transport in the TRTM has been studied and analyzed by the Tritium Migration Analysis Program (TMAP) and the adapted fusion-devoted Tritium Permeation Code (FUS-TPC). TMAP has been developed at INEEL and now exists in Version 7. FUS-TPC Code was written in MATLAB with the original purpose to study the tritium transport in Helium Cooled Lead Lithium (HCLL) blanket and in a later version the Helium Cooled Pebble Bed (HCPB) blanket by [6] (Franza, 2012). This code has been further modified to be applicable to the TRTM. Results from the

  5. Tritium breeding and release-rate kinetics from neutron-irradiated lithium oxide

    International Nuclear Information System (INIS)

    Quanci, J.F.

    1989-01-01

    The research encompasses the measurement of the tritium breeding and release-rate kinetics from lithium oxide, a ceramic tritium-breeding material. A thermal extraction apparatus which allows the accurate measurement of the total tritium inventory and release rate from lithium oxide samples under different temperatures, pressures and carrier-gas compositions with an uncertainty not exceeding 3% was developed. The goal of the Lithium Blanket Module program was to determine if advanced computer codes could accurately predict the tritium production in the lithium oxide blanket of a fusion power plant. A fusion blanket module prototype was built and irradiated with a deuterium-tritium fusion-neutron source. The tritium production throughout the module was modeled with the MCNP three dimensional Monte Carlo code and was compared to the assay of the tritium bred in the module. The MCNP code accurately predicted tritium-breeding trends but underestimated the overall tritium breeding by 30%. The release rate of tritium from small grain polycrystalline sintered lithium oxides with a helium carrier gas from 300 to 450 C was found to be controlled by the first order surface desorption of monotritiated water. When small amounts of hydrogen were added to the helium carrier gas, the first order rate constant increased from the isotopic exchange of hydrogen for tritium at the lithium oxide surface occurring in parallel with the first order desorption process. The isotopic-exchange first order rate constant temperature dependence and hydrogen partial pressure dependence were evaluated

  6. Tritium-caused background currents in electron multipliers

    International Nuclear Information System (INIS)

    Malinowski, M.E.

    1979-05-01

    One channel electron multiplier (Galileo No. 4501) and one 14 stage Be/Cu multiplier (Dumont No. SPM3) were exposed to tritium pressures between approx. 10 -7 Torr to 10 -3 Torr in amounts from approx. 10 -5 Torr-s to 60 Torr-s and the β-decay caused currents in the multipliers measured. The background currents in both multipliers consisted of two components: (1) a high, reversible current which was proportional to the tritium exposure pressure; and (2) a lower, irreversible background current which increased with increasing cumulative tritium exposure. The β-decay caused currents in each multiplier increased the same way with exposure, suggesting the detected electrons arose from decaying tritium adsorbed on surfaced external to the multipliers

  7. Tritium evolution from various morphologies of palladium

    International Nuclear Information System (INIS)

    Tuggle, D.G.; Claytor, T.N.; Taylor, S.F.

    1994-01-01

    The authors have been able to extend the tritium production techniques to various novel morphologies of palladium. These include small solid wires of various diameters and a type of pressed powder wire and a plasma cell. In most successful experiments, the amount of palladium required, for an equivalent tritium output, has been reduced by a factor of 100 over the older powder methods. In addition, they have observed rates of tritium production (>5 nCi/h) that far exceed most of the previous results. Unfortunately, the methods that they currently use to obtain the tritium are poorly understood and consequently there are numerous variables that need to be investigated before the new methods are as reliable and repeatable as the previous techniques. For instance, it seems that surface and/or bulk impurities play a major role in the successful generation of any tritium. In those samples with total impurity concentrations of >400 ppM essentially no tritium has been generated by the gas loading and electrical simulation methods

  8. Tritium monitoring in the environment of the French territory

    Energy Technology Data Exchange (ETDEWEB)

    Leprieur, F.; Roussel-Debet, S.; Pierrard, O.; Tournieux, D.; Boissieux, T.; Caldera-Ideias, P. [Institut de radioprotection et de surete nucleaire (France)

    2014-07-01

    Introduction: Radioactive releases in the environment from civilian and military nuclear facilities have significantly decreased over the last few decades, except for discharges of tritium which are forecast to increase due to changes in the fuel management in power plants and in the longer term by new tritium-emitting units (fusion reactors). In the aim to perform its radiological monitoring mission throughout the French territory, IRSN uses and develops advanced technology equipment to sample and to analyze tritium in the different environmental compartments. Methodology: IRSN uses bubblers to collect both tritium vapour (HTO) and gaseous tritium (mainly HT) in the air. Another method, developed by IRSN, consists in directly sampling the water vapour in the air by condensing in a cold trap and more recently with passive sampler. In continental and marine surface water, samples are usually collected by automatic water samplers. Instantaneous surface water samples are also collected by grab sample devices. In addition, IRSN conducts animal and plant samples near French nuclear facilities. Natural origin and tritium remaining from testing of nuclear weapons In the atmosphere, the background levels of tritium of 1 to 2 Bq/L measured in water vapour, equivalent to an activity of 0.01 to 0.02 Bq/m{sup 3} of air. In fresh waters, the tritium activity currently ranges between 1 and 3 Bq/L of water. In the marine environment, tritium emitted during nuclear weapon tests has been totally 'diluted' in cosmogenic tritium and concentration levels at the surface have remained around 0.1 to 0.2 Bq/L. In biological matrices, total tritium concentration range from 1 to 3 Bq/kg f.w. with a variable proportion of free and organically bounded forms. Tritium around nuclear facilities: Close to facilities releasing more than 2x10{sup 13} Bq/year of gaseous tritium, higher activity levels, ranging from a few tens to a few hundred Bq/L, are observed in the atmospheric and

  9. Rate of Isotope Exchange Reaction Between Tritiated Water in a Gas Phase and Water on the Surface of Piping Materials

    International Nuclear Information System (INIS)

    Nakashio, Nobuyuki; Yamaguchi, Junya; Kobayashi, Ryusuke; Nishikawa, Masabumi

    2001-01-01

    The system effect of tritium arises from the interaction of tritium in the gas phase with water on the surface of piping materials. It has been reported that the system effect can be quantified by applying the serial reactor model to the piping system and that adsorption and isotope exchange reactions play the main roles in the trapping of tritium. The isotope exchange reaction that occurs when the chemical form of tritium in the gas phase is in the molecular form, i.e., HT or T 2 , has been named isotope exchange reaction 1, and that which occurs when tritium in the gas phase is in water form, i.e., HTO or T 2 O, has been named isotope exchange reaction 2.The rate of isotope exchange reaction 2 is experimentally quantified, and the rate is observed to be about one-third of the rate of adsorption. The trapping and release behavior of tritium from the piping surface due to isotope exchange reaction 2 is also discussed. It is certified that swamping of water vapor to process gas is effective to release tritium from the surface contaminated with tritium

  10. Tritium transport in the water cooled Pb-17Li blanket concept of DEMO

    International Nuclear Information System (INIS)

    Reiter, F.; Tominetti, S.; Perujo, A.

    1992-01-01

    The code TIRP has been used to calculate the time dependence of tritium inventory and tritium permeation into the coolant and into the first wall boxes in the water cooled Pb-17Li blanket concept of DEMO. The calculations have been performed for the martensitic steel MANET and the austenitic steel AISI 316L as blanket structure materials, for water or helium cooling and for convective or no motion of the liquid breeder in the blanket. Tritium inventories are rather low in blankets with MANET structure and higher in those with AISI 316L structure. Tritium permeation rates are too high in both blankets. Further calculations on tritium inventory and permeation are therefore presented for blankets with TiC permeation barriers of 1 μm thickness on various surfaces of the blanket structure and for blankets with any permeation barriers in function of their thickness, tritium diffusivities, tritium surface recombination rates and atomic densities. These last calculations have been performed for a blanket with coatings on the outer surfaces of the blanket and with a tritium residence time of 10 4 s and for a blanket with coatings on both sides of the cooling tubes and stagnant Pb-17Li in the blanket. The second case for a blanket with MANET structure presents a very interesting solution for tritium recovery by permeation into and pumping from the first wall boxes. (orig.)

  11. Shipment and Storage Containers for Tritium Production Transportation Casks

    International Nuclear Information System (INIS)

    Massey, W.M.

    1998-01-01

    A shipping and storage container for the Tritium production transportation casks may be required but requirements for protection of the irradiated rods and radioactive contamination have not been finalized. This report documents the various possibilities for the container depending on the final requirements

  12. Tritium storage

    International Nuclear Information System (INIS)

    Hircq, B.

    1990-01-01

    This document represents a synthesis relative to tritium storage. After indicating the main storage particularities as regards tritium, storages under gaseous and solid form are after examined before establishing choices as a function of the main criteria. Finally, tritium storage is discussed regarding tritium devices associated to Fusion Reactors and regarding smaller devices [fr

  13. Bonding of radioactive contamination. IV. Effect of surface finish

    International Nuclear Information System (INIS)

    Rankin, W.N.

    1983-01-01

    The mechanisms by which radioactive contamination would be bonded to a DWPF canister are being investigated. Previous investigations in this series have examined the effects of temperature, oxidation before contamination, and atmosphere composition control on the bonding of contamination. This memorandum describes the results of tests to determine the effect of special surface finishes on the bonding of contamination to waste glass canisters. Surface pretreatments which produce smoother canister surfaces actually cause radioactive contamination to be more tightly bonded to the metal surface than on an untreated surface. Based on the results of these tests it is recommended that the canister surface finish be specified as having a bright cold rolled mill finish equivalent to ASTM No. 2B. 7 references, 3 figures, 3 tables

  14. Tritium enrichment of environmental waters by electrolysis: Development of cathodes exhibiting high isotopic separation and precise measurement of tritium enrichment factors

    International Nuclear Information System (INIS)

    Taylor, C.B.

    1976-01-01

    Equations are developed for the estimation of tritium enrichment in batch, continuous feed and periodic addition electrolysis cells. Optimum enrichment and minimum variability is obtained using developed cathode surfaces which catalyse the separation of tritium, as exhibited by the results of experiments using mild steel cathodes with NaOH electrolyte. The equations and various simple refinements of technique are applied to the determination of tritium enrichment factors by the spike cell method: for batch cells the standard errors are less than 1%. (author)

  15. DECOMMISSIONING THE HIGH PRESSURE TRITIUM LABORATORY AT LOS ALAMOS NATIONAL LABORATORY

    International Nuclear Information System (INIS)

    Peifer, M.J.; Rendell, K.; Hearnsberger, D.W.

    2003-01-01

    In May 0f 2000, the Cerro Grande wild land fire burned approximately 48,000 acres in and around Los Alamos. In addition to the many buildings that were destroyed in the town site, many structures were also damaged and destroyed within the 43 square miles that comprise the Los Alamos National Laboratory (LANL). A special Act of Congress provided funding to remove Laboratory structures that were damaged by the fire, or that could be threatened by subsequent catastrophic wild land fires. The High Pressure Tritium Laboratory (HPTL) is located at Technical Area (TA) 33, building 86 in the far southeast corner of the Laboratory property. It is immediately adjacent to Bandelier National Park. Because it was threatened by both the Cerro Grande fire in 2000, and the 16,000- acre Dome fire in 1996, the former tritium processing facility was placed on the list of facilities scheduled for Decontamination and Decommissioning under the Cerro Grande Rehabilitation Project. The work was performed through the Facilities and Waste Operations (FWO) Division and is integrated with other Laboratory D and D efforts. The primary demolition contractor was Clauss Construction of San Diego, California. Earth Tech Global Environmental Services of San Antonio, Texas was sub-contracted to Clauss Construction, and provided radiological decontamination support to the project. Although the forty-seven year old facility had been in a state of safe-shutdown since operations ceased in 1990, a significant amount of tritium remained in the rooms where process systems were located. Tritium was the only radiological contaminant associated with this facility. Since no specific regulatory standards have been set for the release of volumetrically contaminated materials, concentration guidelines were derived in order to meet other established regulatory criteria. A tritium removal system was developed for this project with the goal of reducing the volume of tritium concentrated in the concrete of the

  16. Tritium handling and vacuum considerations for the STARFIRE commercial tokamak reactor

    International Nuclear Information System (INIS)

    Finn, P.A.; Clemmer, R.G.; Maroni, V.A.; Dillow, C.

    1979-01-01

    Tritium processing and vacuum pumping requirements were analyzed for the STARFIRE commercial fusion reactor design. It was found that vacuum pumps having a helium capture probability of 0.5 (total helium pump speed 1.2 x 10 4 m 3 /s) in combination with the proposed STARFIRE limiter-vacuum concept is sufficient to achieve plasma impurity control and, simultaneously, high fractional burnup (11%). The high fractional burnup and minimum fuel recycle time result in a very low fuel cycle tritium inventory, approx. 1300 g. A Lean-T burn method that can further reduce the fuel cycle inventory by 30 to 50% is discussed. D 2 O is proposed as a first wall coolant from considerations of plasma contamination (due to hydrogen isotope permeation through coolant tubes) and enrichment of recycled tritium from the coolant circuit. Tritium recovery from solid breeders, under realistic structural and breeder materials constraints, appears to represent a formidable task. The tritium inventory in the solid breeder is estimated to be as high as 10 kg, which would make the blanket the largest single hold-up point for tritium in the plant

  17. Tritium Issues in Next Step Devices

    Energy Technology Data Exchange (ETDEWEB)

    C.H. Skinner; G. Federici

    2001-09-05

    Tritium issues will play a central role in the performance and operation of next-step deuterium-tritium (DT) burning plasma tokamaks and the safety aspects associated with tritium will attract intense public scrutiny. The orders-of-magnitude increase in duty cycle and stored energy will be a much larger change than the increase in plasma performance necessary to achieve high fusion gain and ignition. Erosion of plasma-facing components will scale up with the pulse length from being barely measurable on existing machines to centimeter scale. Magnetic Fusion Energy (MFE) devices with carbon plasma-facing components will accumulate tritium by co-deposition with the eroded carbon and this will strongly constrain plasma operations. We report on a novel laser-based method to remove co-deposited tritium from carbon plasma-facing components in tokamaks. A major fraction of the tritium trapped in a co-deposited layer during the deuterium-tritium (DT) campaign on the Tokamak Fusion Test Reactor (TFTR) was released by heating with a scanning laser beam. This technique offers the potential for tritium removal in a next-step DT device without the use of oxidation and the associated deconditioning of the plasma-facing surfaces and expense of processing large quantities of tritium oxide. The operational lifetime of alternative materials such as tungsten has significant uncertainties due to melt layer loss during disruptions. Production of dust and flakes will need careful monitoring and minimization, and control and accountancy of the tritium inventory will be critical issues. Many of the tritium issues in Inertial Fusion Energy (IFE) are similar to MFE, but some, for example those associated with the target factory, are unique to IFE. The plasma-edge region in a tokamak has greater complexity than the core due to lack of poloidal symmetry and nonlinear feedback between the plasma and wall. Sparse diagnostic coverage and low dedicated experimental run time has hampered the

  18. Tritium Issues in Next Step Devices

    International Nuclear Information System (INIS)

    C.H. Skinner; G. Federici

    2001-01-01

    Tritium issues will play a central role in the performance and operation of next-step deuterium-tritium (DT) burning plasma tokamaks and the safety aspects associated with tritium will attract intense public scrutiny. The orders-of-magnitude increase in duty cycle and stored energy will be a much larger change than the increase in plasma performance necessary to achieve high fusion gain and ignition. Erosion of plasma-facing components will scale up with the pulse length from being barely measurable on existing machines to centimeter scale. Magnetic Fusion Energy (MFE) devices with carbon plasma-facing components will accumulate tritium by co-deposition with the eroded carbon and this will strongly constrain plasma operations. We report on a novel laser-based method to remove co-deposited tritium from carbon plasma-facing components in tokamaks. A major fraction of the tritium trapped in a co-deposited layer during the deuterium-tritium (DT) campaign on the Tokamak Fusion Test Reactor (TFTR) was released by heating with a scanning laser beam. This technique offers the potential for tritium removal in a next-step DT device without the use of oxidation and the associated deconditioning of the plasma-facing surfaces and expense of processing large quantities of tritium oxide. The operational lifetime of alternative materials such as tungsten has significant uncertainties due to melt layer loss during disruptions. Production of dust and flakes will need careful monitoring and minimization, and control and accountancy of the tritium inventory will be critical issues. Many of the tritium issues in Inertial Fusion Energy (IFE) are similar to MFE, but some, for example those associated with the target factory, are unique to IFE. The plasma-edge region in a tokamak has greater complexity than the core due to lack of poloidal symmetry and nonlinear feedback between the plasma and wall. Sparse diagnostic coverage and low dedicated experimental run time has hampered the

  19. Tritium permeation losses in HYLIFE-II heat exchanger tubes

    International Nuclear Information System (INIS)

    Longhurst, G.R.; Dolan, T.J.

    1990-01-01

    Tritium permeation through the intermediate heat exchanger of the HYLIFE-II inertial fusion design concept is evaluated for routine operating conditions. The permeation process is modelled using the Lewis analogy combined with surface recombination. It is demonstrated that at very low driving potentials, permeation becomes proportional to the first power of the driving potential. The model predicts that under anticipated conditions the primary cooling loop will pass about 6% of the tritium entering it to the intermediate coolant. Possible approached to reducing tritium permeation are explored. Permeation is limited by turbulent diffusion transport through the molten salt. Hence, surface barriers with impendance factors typical of present technology can do very little to reduce permeation. Low Flibe viscosity is desirable. An efficient tritium removal system operating on the Flibe before it gets to the intermediate heat exchanger is required. Needs for further research are highlighted. 9 refs., 2 figs., 1 tab

  20. Chemical form of tritium released from solid breeder materials and the influences of it on a bred tritium recovery systems

    International Nuclear Information System (INIS)

    Furukubo, Y.; Nishikawa, M.; Nishida, Y.; Kinjyo, T.; Tanifuji, Takaaki; Kawamura, Yoshinori; Enoeda, Mikio

    2004-01-01

    The ratio of HTO in total tritium was measured at release of the bred tritium to the purge gas with hydrogen using the thermal release after irradiation method, where neutron irradiation was performed at JRR-3 reactor in JAERI or KUR reactor in Kyoto University. It is experimentally confirmed in this study that not a small portion of bred tritium is released to the purge gas in the form of HTO form ceramic breeder materials even when hydrogen is added to the purge gas. The chemical composition is to be decided by the competitive reaction at the grain surface of a ceramic breeder material where desorption reaction, isotope exchange reaction 1, isotope exchange reaction 2 and water formation reaction are considered to take part. Observation in this study implies that it is necessary to have a bred tritium recovery system applicable for both HT and HTO form to recover whole bred tritium. The chemical composition also decides the amount of tritium transferable to the cooling water of the electricity generation system through the structural material in the blanket system. Permeation behavior of tritium through some structural materials at various conditions are also discussed. (author)

  1. Measurement assurance program for LSC analyses of tritium samples

    International Nuclear Information System (INIS)

    Levi, G.D. Jr.; Clark, J.P.

    1997-01-01

    Liquid Scintillation Counting (LSC) for Tritium is done on 600 to 800 samples daily as part of a contamination control program at the Savannah River Site's Tritium Facilities. The tritium results from the LSCs are used: to release items as radiologically clean; to establish radiological control measures for workers; and to characterize waste. The following is a list of the sample matrices that are analyzed for tritium: filter paper smears, aqueous, oil, oily rags, ethylene glycol, ethyl alcohol, freon and mercury. Routine and special causes of variation in standards, counting equipment, environment, operators, counting times, samples, activity levels, etc. produce uncertainty in the LSC measurements. A comprehensive analytical process measurement assurance program such as JTIPMAP trademark has been implemented. The process measurement assurance program is being used to quantify and control many of the sources of variation and provide accurate estimates of the overall measurement uncertainty associated with the LSC measurements. The paper will describe LSC operations, process improvements, quality control and quality assurance programs along with future improvements associated with the implementation of the process measurement assurance program

  2. Tritium and helium retention and release from irradiated beryllium

    Energy Technology Data Exchange (ETDEWEB)

    Anderl, R.A.; Longhurst, G.R.; Oates, M.A.; Pawelko, R.J. [Idaho National Engineering and Environmental Lab., Idaho Falls, ID (United States)

    1998-01-01

    This paper reports the results of an experimental effort to anneal irradiated beryllium specimens and characterize them for steam-chemical reactivity experiments. Fully-dense, consolidated powder metallurgy Be cylinders, irradiated in the EBR-II to a fast neutron (>0.1 MeV) fluence of {approx}6 x 10{sup 22} n/cm{sup 2}, were annealed at temperatures from 450degC to 1200degC. The releases of tritium and helium were measured during the heat-up phase and during the high-temperature anneals. These experiments revealed that, at 600degC and below, there was insignificant gas release. Tritium release at 700degC exhibited a delayed increase in the release rate, while the specimen was at 700degC. For anneal temperatures of 800degC and higher, tritium and helium release was concurrent and the release behavior was characterized by gas-burst peaks. Essentially all of the tritium and helium was released at temperatures of 1000degC and higher, whereas about 1/10 of the tritium was released during the anneals at 700degC and 800degC. Measurements were made to determine the bulk density, porosity and specific surface area for each specimen before and after annealing. These measurements indicated that annealing caused the irradiated Be to swell, by as much as 14% at 700degC and 56% at 1200degC. Kr gas adsorption measurements for samples annealed at 1000degC and 1200degC determined specific surface areas between 0.04 m{sup 2}/g and 0.1 m{sup 2}/g for these annealed specimens. The tritium and helium gas release measurements and the specific surface area measurements indicated that annealing of irradiated Be caused a porosity network to evolve and become surface-connected to relieve internal gas pressure. (author)

  3. Measurement of tritium in environment, (2)

    International Nuclear Information System (INIS)

    Chaya, Ikuo; Kagami, Tadaaki; Hamamura, Norikatsu

    1975-01-01

    In order to know the amount of natural tritium in environmental water and also to know the tendency of tritium concentration in surface water which is necessary for the measurement of ground water age, the tritium concentration in rain, river, and sea water in Aichi Prefecture were measured. In order to make the appropriate utilization of ground water such as city water and hot springs and to elucidate the effect of ground water utilization on ground subsidence, it is desirable to clarify the state of underground water-bearing strata, the flow direction and flow speed of ground water, and the change of ground water quality owing to the flow. As the means of knowing the flow speed of ground water, the age determination with tritium was carried out. The amount of tritium was determined by measuring the concentrated samples with a liquid scintillation counter. The tritium concentration in river was 1.7 times as much as that in rain water, and it is attributed to the time difference from raining to flowing in rivers. The tritium concentration in sea water was high at the estuary of Kiso River, and about a half of it in the other places. The water of the hot spring source in Nobi Plain is the old ground water soaked more than 20 years ago. The city water sources utilizing ground water shallower than 300 m use both new and old ground water. (Kako, I.)

  4. Discharges of tritium to the environment from unrestricted use of consumer products containing this radionuclide

    International Nuclear Information System (INIS)

    Wehner, G.

    1979-01-01

    Not only nuclear installations but also consumer products containing tritium are an important source of man-made tritium discharge to the environment. In the Federal Republic of Germany about the same tritium activity is annually added to consumer products as is released each year from all nuclear installations. The total tritium activity distributed may rise considerably if devices with Gaseous Tritium Light Sources (GTLS) are permitted for large-scale unrestricted use and consequently also for large-scale uncontrolled disposal. The tritium added to consumer products and, at least partly, finally discharged to the environment is converted to HTO and participates in the normal water cycle of the earth. Therefore it would be very desirable to know how much tritium is used worldwide for such purposes, and it is proposed that the competent national authorities should report to an international organization the amount of tritium in consumer products permitted for unrestricted use and disposal. Finally a review of the normal waste management of tritium in the Federal Republic of Germany is given, and doses that could result from incineration and pyrolysis of waste contaminated with tritium are assessed. (author)

  5. Hydrogen Contamination of Niobium Surfaces

    International Nuclear Information System (INIS)

    Viet Nguyen-Tuong; Lawrence Doolittle

    1993-01-01

    The presence of hydrogen is blamed for dramatic reductions in cavity Q's. Hydrogen concentration is difficult to measure, so there is a great deal of Fear, Uncertainty, and Doubt (FUD) associated with the problem. This paper presents measurements of hydrogen concentration depth profiles, commenting on the pitfalls of the methods used and exploring how material handling can change the amount of hydrogen in pieces of niobium. Hydrogen analysis was performed by a forward scattering experiment with Helium used as the primary beam. This technique is variously known as FRES (Forward Recoil Elastic Scattering), FRS, HFS (Hydrogen Forward Scattering), and HRA (Hydrogen Recoil Analysis). Some measurements were also made using SIMS (Secondary Ion Mass Spectrometry). Both HFS and SIMS are capable of measuring a depth profile of Hydrogen. The primary difficulty in interpreting the results from these techniques is the presence of a surface peak which is due (at least in part) to contamination with either water or hydrocarbons. With HFS, the depth resolution is about 30 nm, and the maximum depth profiled is about 300 nm. (This 10-1 ratio is unusually low for ion beam techniques, and is a consequence of the compromises that must be made in the geometry of the experiment, surface roughness, and energy straggling in the absorber foil that must be used to filter out the forward scattered helium.) All the observed HFS spectra include a surface peak which includes both surface contamination and any real hydrogen uptake by the niobium surface. Some contamination occurs during the analysis. The vacuum in the analysis chamber is typically a few times 10(sup -6) torr, and some of the contamination is in the form of hydrocarbons from the pumping system. Hydrocarbons normally form a very thin (less than a monolayer) film which is in equilibrium between arrival rate and the evaporation rate. In the presence of the incoming ion beam, however, these hydrocarbons crack on the surface into non

  6. Tritium conference days

    International Nuclear Information System (INIS)

    Garnier-Laplace, J.; Lebaron-Jacobs, L.; Sene, M.; Devin, P.; Chretien, V.; Le Guen, B.; Guetat, Ph.; Baglan, N.; Ansoborlo, E.; Boyer, C.; Masson, M.; Bailly-Du-Bois, P.; Jenkinson, St.; Wakeford, R.; Saintigny, Y.; Romeo, P.H.; Thompson, P.; Leterq, D.; Chastagner, F.; Cortes, P.; Philippe, M.; Paquet, F.; Fournier, M.

    2009-01-01

    This document gathers the slides of the available presentations given during this conference day. Twenty presentations out of 21 are assembled in the document and deal with: 1 - tritium in the environment (J. Garnier-Laplace); 2 - status of knowledge about tritium impact on health (L. Lebaron-Jacobs); 3 - tritium, discrete but present everywhere (M. Sene); 4 - management of tritium effluents from Areva NC La Hague site - related impact and monitoring (P. Devin); 5 - tritium effluents and impact in the vicinity of EDF's power plants (V. Chretien and B. Le Guen); 6 - contribution of CEA-Valduc centre monitoring to the knowledge of atmospheric tritiated water transfers to the different compartments of the environment (P. Guetat); 7 - tritium analysis in environment samples: constraints and means (N. Baglan); 8 - organically-linked tritium: the analyst view (E. Ansoborlo); 9 - study of tritium transfers to plants via OBT/HTO air and OBT/HTO free (C. Boyer); 10 - tritium in the British Channel (M. Masson and P. Bailly-Du-Bois); 11 - tritium in British coastal waters (S. Jenkinson); 12 - recent results from epidemiology (R. Wakeford); 13 - effects of tritiated thymidine on hematopoietic stem cells (P.H. Romeo); 14 - tritium management issue in Canada: the point of view from authorities (P. Thompson); 15 - experience feedback of the detritiation process of Valduc centre (D. Leterq); 16 - difficulties linked with tritiated wastes confinement (F. Chastagner); 17 - optimisation of tritium management in the ITER project (P. Cortes); 18 - elements of thought about the management of tritium generated by nuclear facilities (M. Philippe); 19 - CIPR's position about the calculation of doses and risks linked with tritium exposure (F. Paquet); 20 - tritium think tanks (M. Fournier). (J.S.)

  7. Tritium concentrations in flow from selected springs that discharge to the Snake River, Twin Falls-Hagerman area, Idaho

    International Nuclear Information System (INIS)

    Mann, L.J.

    1989-01-01

    Concern has been expressed that some of the approximately 30,900 curies of tritium disposed to the Snake River Plain aquifer from 1952 to 1988 at the INEL (idaho National Engineering Laboratory) have migrated to springs discharging to the Snake River in the Twin Falls-Hagerman area. To document tritium concentrations in springflow, 17 springs were sampled in November 1988 and 19 springs were sampled in March 1989. Tritium concentrations were less than the minimum detectable concentration of 0.5 pCi/mL (picocuries/mL) in November 1988 and less than the minimum detectable concentration of 0.2 pCi/mL in March 1989 the minimum detectable concentration was smaller in March 1989. The maximum contaminant level of tritium in drinking water as established by the US Environmental Protection Agency is 20 pCi/mL. US Environmental Protection Agency sample analyses indicate that the tritium concentration has decreased in the Snake River near Buhl since the 1970's. In 1974-79, tritium concentrations were less than 0.3 ± 0.2 pCi/mL in 3 of 20 samples; in 1983-88, 17 of 23 samples contaminated less than 0.3 ± 0.2 pCi/mL of tritium; the minimum detectable concentration is 0.2 pCi/mL. On the basis of decreasing tritium concentrations in the Snake River, their correlation to cessation of atmospheric weapons tests tritium concentrations in springflow less than the minimum detectable concentration, and the distribution of tritium in groundwater at the INEL, aqueous disposal of tritium at the INEL has had no measurable effect on tritium concentrations in springflow from the Snake River Plain aquifer and in the Snake River near Buhl. 15 refs., 2 figs., 3 tabs

  8. Simulation of tritium behavior after intended tritium release in ventilated room

    International Nuclear Information System (INIS)

    Iwai, Yasunori; Hayashi, Takumi; Yamanishi, Toshihiko; Kobayashi, Kazuhiro; Nishi, Masataka

    2001-01-01

    At the Tritium Process Laboratory (TPL) at the Japan Atomic Energy Research Institute (JAERI), Caisson Assembly for Tritium Safety study (CATS) with 12 m 3 of large airtight vessel (Caisson) was fabricated for confirmation and enhancement of fusion reactor safety to estimate tritium behavior in the case where a tritium leak event should happen. One of the principal objectives of the present studies is the establishment of simulation method to predict the tritium behavior after the tritium leak event should happen in a ventilated room. The RNG model was found to be valid for eddy flow calculation in the 50 m 3 /h ventilated Caisson with acceptable engineering precision. The calculated initial and removal tritium concentration histories after intended tritium release were consistent with the experimental observations in the 50 m 3 /h ventilated Caisson. It is found that the flow near a wall plays an important role for the tritium transport in the ventilated room. On the other hand, tritium behavior intentionally released in the 3,000 m 3 of tritium handling room was investigated experimentally under a US-Japan collaboration. The tritium concentration history calculated with the same method was consistent with the experimental observations, which proves that the present developed method can be applied to the actual scale of tritium handling room. (author)

  9. A small and compact AMS facility for tritium depth profiling

    Indian Academy of Sciences (India)

    employing diamond-like carbon (DLC) stripper foils at this accelerator, another ... the switching magnet the tritium ions are counted with a surface barrier detector. .... AMS has been successfully applied to depth profiling of tritium in graphite ...

  10. Estimating Tritium Fluxes from the Shallow Unsaturated Zone to the Atmosphere in an Arid Environment Dominated by Creosote Bush (USGS-ADRS)

    Science.gov (United States)

    Garcia, C. A.; Andraski, B. J.; Wheatcraft, S. W.; Johnson, M. J.; Michel, R. L.; Stonestrom, D. A.

    2006-12-01

    Understanding the transport and fate of tritium is essential when evaluating options for low-level radioactive waste (LLRW) isolation. The magnitude and spatio-temporal variability of tritium transport from the shallow unsaturated zone to the atmosphere are being investigated adjacent to a LLRW facility at the U.S. Geological Survey's Amargosa Desert Research Site (ADRS) in Southern Nevada. Site and community-scale tritium fluxes from the subsurface to the atmosphere were quantified using a simple gas-phase diffusive loading approach combining evaporation and transpiration fluxes with mass fractions of gas-phase tritium concentrations. A Priestly-Taylor model, calibrated with quarterly bare-soil evaporation measurements, was used to estimate continuous bare-soil evaporation from measured continuous eddy-covariance evapotransporation. Continuous transpiration was computed as the difference between measured evapotranspiration and estimated bare-soil evaporation. Tritium concentrations in plant water and soil-water vapor were measured along two transects perpendicular to the LLRW using azeotropic distillation of creosote bush (Larrea tridentata) foliage and soil vapor extraction from 0.5 and 1.5 m depths below land surface. A preliminary daily tritium flux estimate at a single plant site was 1.66 × 10-11 gm-2. Spatio- temporal variability over a 75-ha area and 2-yr period will be quantified using a combination of tritium concentration maps and continuous evaporation and transpiration flux estimates. Quantifying tritium fluxes from the shallow unsaturated zone to the atmosphere on a site and community-scale will improve knowledge and understanding of vertical contaminant transport in arid environments.

  11. Modeling of tritium behavior in Li2O

    International Nuclear Information System (INIS)

    Billone, M.C.; Attaya, H.; Kopasz, J.P.

    1992-08-01

    The TIARA and DISPL2 codes are being developed at Argonne National Laboratory to predict tritium retention and release from lithium ceramics under steady-state and transient conditions, respectively. Tritium retention and release are important design and safety issues for tritium-breeding blankets of fusion reactors. Emphasis has been placed on tritium behavior in Li 2 O because of the selection of this ceramic as a first option for the ITER driver blanket and because of the relatively good material properties data base for Li 2 O. Models and correlations for diffusion, surface desorption/adsorption, and solubility/precipitation of tritium in Li 2 0 have been developed based on well-controlled laboratory data from as-fabricated and irradiated samples. With the models and correlations, the codes are validated to the results of in-reactor purge flow tests. The results of validation of TIARA to tritium retention data from VOM-15H, EXOTIC-2, and CRITIC-1 are presented, along with predictions of tritium retention in BEATRIX-II. For DISPL2, results are presented for tritium release predictions vs. data for MOZART, CRITIC-1, and BEATRIX-II. Recommendations are made for improving both the data base and the modeling to allow extrapolation with reasonable uncertainty levels to fusion reactor design conditions

  12. Analysis of surface contaminants on beryllium and aluminum windows

    International Nuclear Information System (INIS)

    Gmur, N.F.

    1987-06-01

    An effort has been made to document the types of contamination which form on beryllium window surfaces due to interaction with a synchrotron radiation beam. Beryllium windows contaminated in a variety of ways (exposure to water and air) exhibited surface powders, gels, crystals and liquid droplets. These contaminants were analyzed by electron diffraction, electron energy loss spectroscopy, energy dispersive x-ray spectroscopy and wet chemical methods. Materials found on window surfaces include beryllium oxide, amorphous carbon, cuprous oxide, metallic copper and nitric acid. Aluminum window surface contaminants were also examined

  13. Tritium breeding and release-rate kinetics from neutron-irradiated lithium oxide

    International Nuclear Information System (INIS)

    Quanci, J.F.

    1989-01-01

    The research encompasses the measurement of the tritium breeding and release-rate kinetics from lithium oxide, a ceramic tritium-breeding material. A thermal extraction apparatus which allows the accurate measurement of the total tritium inventory and release rate from lithium oxide samples under different temperatures, pressures and carrier-gas compositions with an uncertainty not exceeding 3% was developed. The goal of the Lithium Blanket Module program was to determine if advanced computer codes could accurately predict the tritium production in the lithium oxide blanket of a fusion power plant. A fusion blanket module prototype, was built and irradiated with a deuterium-tritium fusion-neutron source. The tritium production throughout the module was modeled with the MCNP three dimensional Monte Carlo code and was compared to the assay of the tritium bred in the module. The MCNP code accurately predicted tritium-breeding trends but underestimated the overall tritium breeding by 30%. The release rate of tritium from small grain polycrystalline sintered lithium oxide with a helium carrier gas from 300 to 450 C was found to be controlled by the first order surface desorption of mono-tritiated water. When small amounts of hydrogen were added to the helium carrier gas, the first order rate constant increased from the isotopic exchange of hydrogen for tritium at the lithium oxide surface occurring in parallel with the first order desorption process. The isotopic-exchange first order rate constant temperature dependence and hydrogen partial pressure dependence were evaluated. Large single crystals of lithium oxide were fabricated by the vacuum fusion technique. The release rate of tritium from the large single crystals was found to be controlled by diffusion, and the mixed diffusion-desorption controlled release regime

  14. Design and test about de tritium system to filling tritium glove box

    International Nuclear Information System (INIS)

    Lei, Jiarong; Du, Yang; Yang, Yong

    2008-01-01

    In order to deal tritium permeated from inflating tritium system at the scene of inflating tritium, dealing waste tritium gas system was designed according to demand and action of dealing waste tritium gas from inflating tritium, and the data of character and volume about appliance of catalyst reaction and drying agent was calculated. Through the test at the scene of inflating tritium, it is result that dealing waste tritium gas system's efficiency reaches above 85% average in circulatory system, so that it can be used in practice extensively. (author)

  15. Design and construction of thermal desorption measurement system for tritium contained materials

    International Nuclear Information System (INIS)

    Hara, M.; Hatano, Y.; Calderoni, P.; Shimada, M.

    2014-01-01

    The dual-mode thermal desorption analysis system was designed and built in Idaho National Laboratory (INL) to examine the evolution of the hydrogen isotope gas from materials. The system is equipped with a mass spectrometer for stable hydrogen isotopes and an ionization chamber for tritium components. The performance of the system built was tested with using tritium contained materials. The evolution of tritiated gas species from contaminated materials was measured successfully by using the system. (author)

  16. Computer program for assessing the human dose due to stationary release of tritium

    International Nuclear Information System (INIS)

    Saito, Masahiro; Raskob, Wolfgang

    2003-01-01

    The computer program TriStat (Tritium dose assessment for stationary release) has been developed to assess the dose to humans assuming a stationary release of tritium as HTO and/or HT from nuclear facilities. A Gaussian dispersion model describes the behavior of HT gas and HTO vapor in the atmosphere. Tritium concentrations in soil, vegetables and forage were estimated on the basis of specific tritium concentrations in the free water component and the organic component. The uptake of contamination via food by humans was modeled by assuming a forage compartment, a vegetable component, and an animal compartment. A standardized vegetable and a standardized animal with the relative content of major nutrients, i.e. proteins, lipids and carbohydrates, representing a standard Japanese diet, were included. A standardized forage was defined in a similar manner by using the forage composition for typical farm animals. These standard feed- and foodstuffs are useful to simplify the tritium dosimetry and the food chain related to the tritium transfer to the human body. (author)

  17. The requirements for processing tritium recovered from liquid lithium blankets: The blanket interface

    International Nuclear Information System (INIS)

    Clemmer, R.G.; Finn, P.A.; Greenwood, L.R.; Grimm, T.L.; Sze, D.K.; Bartlit, J.R.; Anderson, J.L.; Yoshida, H.; Naruse.

    1988-03-01

    We have initiated a study to define a blanket processing mockup for Tritium Systems Test Assembly. Initial evaluation of the requirements of the blanket processing system have been started. The first step of the work is to define the condition of the gaseous tritium stream from the blanket tritium recovery system. This report summarizes this part of the work for one particular blanket concept, i.e., a self-cooled lithium blanket. The total gas throughput, the hydrogen to tritium ratio, the corrosive chemicals, and the radionuclides are defined. The key discoveries are: the throughput of the blanket gas stream (including the helium carrier gas) is about two orders of magnitude higher than the plasma exhaust stream;the protium to tritium ratio is about 1, the deuterium to tritium ratio is about 0.003;the corrosion chemicals are dominated by halides;the radionuclides are dominated by C-14, P-32, and S-35;their is high level of nitrogen contamination in the blanket stream. 77 refs., 6 figs., 13 tabs

  18. Body-surface contamination monitoring preparatory to monitoring for internal contamination

    International Nuclear Information System (INIS)

    Schlueter, W.; Klucke, H.

    1980-01-01

    Measurements in the whole-body counter of the SAAS are routinely preceded by a thorough inspection of the patients for body-surface contamination to protect the sensitive counting equipment against becoming contaminated and to avoid a falsified indication of incorporated radionuclides. The measuring system employed for these examinations is described. (author)

  19. Water and tritium balance of the Ems region, 1951 through 1983

    International Nuclear Information System (INIS)

    Krause, W.J.

    1988-03-01

    The distribution of tritium flows was presented in tabular form for this period of time by means of monthly and annual values in the form of tritium contents and tritium transports for the individual component flows and interpreted by means of graphical representations. The contributions of the Northwest German canal system to the tritium input and discharge and the tritium emission from the nuclear power station 'Lingen' were also considered, whose shares refered to the inland Ems area only amount to approximately 2% or max. 1% of the tritium load. The most important tritium flows are the tritium evaporation with a mean value of 65% over many years, the tritium load with 28% and the tritium decompostion with 6.5% compared with the impact (100%). The division of the tritium discharge between groundwater discharge and direct discharge amounts, on average, to approximately 2 to 3; this ratio can drastically shift in the case of heavy changes of the tritium input. The applied balance model describes the groundwater by 4 compartments on the basis of data extrapolated and measured for surface water. (orig./HP) [de

  20. ZEPHYR tritium system

    International Nuclear Information System (INIS)

    Swansiger, W.; Andelfinger, C.; Buchelt, E.; Fink, J.; Sandmann, W.; Stimmelmayr, A.; Wegmann, H.G.; Weichselgartner, H.

    1982-04-01

    The ignition experiment ZEPHYR will need tritium as an essential component of the fuel. The ZEPHYR Tritium Systems are designed as to recycle the fuel directly at the experiment. An amount of tritium, which is significantly below the total throughput, for example 10 5 Ci will be stored in uranium getters and introduced into the torus by a specially designed injection system. The torus vacuum system operates with tritium-tight turbomolecular pumps and multi-stage roots pumps in order to extract and store the spent fuel in intermediate storage tanks at atmospheric pressure. A second high vacuum system, similar in design, serves as to evacuate the huge containments of the neutral injection system. The spent fuel will be purified and subsequently processed by an isotope separation system in which the species D 2 , DT and T 2 will be recovered for further use. This isotope separation will be achieved by a preparative gaschromatographic process. All components of the tritium systems will be installed within gloveboxes which are located in a special tritium handling room. The atmospheres of the gloveboxes and of the tritium rooms are controlled by a tritium monitor system. In the case of a tritium release - during normal operation as well as during an accident - these atmospheres become processed by efficient tritium absorption systems. All ZEPHYR tritium handling systems are designed as to minimize the quantity of tritium released to the environment, so that the stringent German laws on radiological protection are satisfied. (orig.)

  1. Prediction of tritium behavior in rice plant after a short-term exposure of HTO

    International Nuclear Information System (INIS)

    Yook, Dae Sik; Lee, Kun Jai; Choi, Heui Joo; Lee, Chang Min

    2001-01-01

    In many Asian countries including Korea, rice is a very important food crop. Its grain is consumed by humans and its straw is used to feed animals. Because four CANDU reactors are in operation in Korea, relatively large amounts of tritium are released into the environment and the dose by these tritium in the rice plant must be estimated. Since 1997, KAERI (Korea Atomic Energy Research Institute) has carried out experimental studies to obtain domestic data on various parameters related to the direct tritium contamination of plant. But the analysis of the tritium behavior in the rice plant has been insufficient. In this study, the behavior of the tritium in the rice plant is predicted and compared with the measurement performed at KAERI. Using the conceptual model of the soil-plant-atmosphere tritiated water transport system which was suggested by Charles E. Murphy, transient tritium concentrations in soil and leaves were predicted. If the effect of tritium concentration in the soil is taken into account, the tritium concentration in leaves can be described by a double exponential model, however if the tritium concentration in the soil is disregarded, the tritium concentration in leaves can be described by a single exponential term like other relevant models e.g. UFOTRI or STAR-H3 model. The results can be used to predict the tritium concentration in the rice plant near the plant site and to estimate the ingestion dose after the release of tritium to the environment

  2. Development of a tritium recovery system from CANDU tritium removal facility

    International Nuclear Information System (INIS)

    Draghia, M.; Pasca, G.; Porcariu, F.

    2015-01-01

    The main purpose of the Tritium Recovery System (TRS) is to reduce to a maximum possible extent the release of tritium from the facility following a tritium release in confinement boundaries and also to have provisions to recover both elemental and vapors tritium from the purging gases during maintenance and components replacement from various systems processing tritium. This work/paper proposes a configuration of Tritium Recovery System wherein elemental tritium and water vapors are recovered in a separated, parallel manner. The proposed TRS configuration is a combination of permeators, a platinum microreactor (MR) and a trickle bed reactor (TBR) and consists of two branches: one branch for elemental tritium recovery from tritiated deuterium gas and the second one for tritium recovery from streams containing a significant amount of water vapours but a low amount, below 5%, of tritiated gas. The two branches shall work in a complementary manner in such a way that the bleed stream from the permeators shall be further processed in the MR and TBR in view of achieving the required decontamination level. A preliminary evaluation of the proposed TRS in comparison with state of the art tritium recovery system from tritium processing facilities is also discussed. (authors)

  3. Development of a tritium recovery system from CANDU tritium removal facility

    Energy Technology Data Exchange (ETDEWEB)

    Draghia, M.; Pasca, G.; Porcariu, F. [SC.IS.TECH SRL, Timisoara (Romania)

    2015-03-15

    The main purpose of the Tritium Recovery System (TRS) is to reduce to a maximum possible extent the release of tritium from the facility following a tritium release in confinement boundaries and also to have provisions to recover both elemental and vapors tritium from the purging gases during maintenance and components replacement from various systems processing tritium. This work/paper proposes a configuration of Tritium Recovery System wherein elemental tritium and water vapors are recovered in a separated, parallel manner. The proposed TRS configuration is a combination of permeators, a platinum microreactor (MR) and a trickle bed reactor (TBR) and consists of two branches: one branch for elemental tritium recovery from tritiated deuterium gas and the second one for tritium recovery from streams containing a significant amount of water vapours but a low amount, below 5%, of tritiated gas. The two branches shall work in a complementary manner in such a way that the bleed stream from the permeators shall be further processed in the MR and TBR in view of achieving the required decontamination level. A preliminary evaluation of the proposed TRS in comparison with state of the art tritium recovery system from tritium processing facilities is also discussed. (authors)

  4. The requirement for proper storage of nuclear and related decommissioning samples to safeguard accuracy of tritium data.

    Science.gov (United States)

    Kim, Daeji; Croudace, Ian W; Warwick, Phillip E

    2012-04-30

    Large volumes of potentially tritium-contaminated waste materials are generated during nuclear decommissioning that require accurate characterisation prior to final waste sentencing. The practice of initially determining a radionuclide waste fingerprint for materials from an operational area is often used to save time and money but tritium cannot be included because of its tendency to be chemically mobile. This mobility demands a specific measurement for tritium and also poses a challenge in terms of sampling, storage and reliable analysis. This study shows that the extent of any tritium redistribution during storage will depend on its form or speciation and the physical conditions of storage. Any weakly or moderately bound tritium (e.g. adsorbed water, waters of hydration or crystallisation) may be variably lost at temperatures over the range 100-300 °C whereas for more strongly bound tritium (e.g. chemically bound or held in mineral lattices) the liberation temperature can be delayed up to 800 °C. For tritium that is weakly held the emanation behaviour at different temperatures becomes particularly important. The degree of (3)H loss and cross-contamination that can arise after sampling and before analysis can be reduced by appropriate storage. Storing samples in vapour tight containers at the point of sampling, the use of triple enclosures, segregating high activity samples and using a freezer all lead to good analytical practice. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. Tritium in [18O]water containing [18F]fluoride for [18F]FDG synthesis

    International Nuclear Information System (INIS)

    Ito, Shigeki; Saze, Takuya; Sakane, Hitoshi; Ito, Satoshi; Ito, Shinichi; Nishizawa, Kunihide

    2004-01-01

    The presence of tritium in enriched [ 18 O]water irradiated with 9.6 MeV protons used to produce [ 18 F]fluoride by the 18 O(p, n) 18 F reaction was inferred from the cross sections and threshold energies of the 18 O(p, t) 16 O reaction, and the existence of tritium was confirmed experimentally. Tritium was also detected in both [ 18 O]water recovered for recycling and waste acetonitrile solutions. The purified [ 18 F]FDG was not contaminated with 3 H. The amount of 3 H discharged into the air was far less than the International Basic Safety Standard Level

  6. Influence of surface roughness and melt superheat on HDA process to form a tritium permeation barrier on RAFM steel

    Energy Technology Data Exchange (ETDEWEB)

    Purushothaman, J. [B.S. Abdur Rahman University, Chennai 600048 (India); MTD, MMG, IGCAR, Kalpakkam 603102 (India); Ramaseshan, R., E-mail: seshan@igcar.gov.in [TFCS, SND, MSG, IGCAR, Kalpakkam 603102 (India); Albert, S.K. [MTD, MMG, IGCAR, Kalpakkam 603102 (India); Rajendran, R. [B.S. Abdur Rahman University, Chennai 600048 (India); Gowrishankar, N. [IP Rings Ltd., Maraimalainagar, Chennai 603209 (India); Ramasubbu, V. [MTD, MMG, IGCAR, Kalpakkam 603102 (India); Murugesan, S.; Dasgupta, Arup [PMG, MMG, IGCAR, Kalpakkam 603102 (India); Jayakumar, T. [MTD, MMG, IGCAR, Kalpakkam 603102 (India)

    2015-12-15

    Highlights: • Surface modified RAFMS samples were subjected to HDA and thermal oxidation. • Sample modified by SB process showed better coating and interface morphology. • Aluminized samples at 740 °C for 2 min showed Fe{sub 2}Al{sub 9}Si{sub 2} intermetallic phase. • Oxidized samples showed Fe{sub 2}Al{sub 8}Si, Fe{sub 2}Al{sub 3}Si{sub 3} and Fe{sub 3}Al{sub 2}Si{sub 3} intermetallic phases. • A uniform permeation barrier Al{sub 2}O{sub 3} was formed on the coating of oxidized HDA samples. - Abstract: The most optimal candidate material for fabrication of Test Blanket Module (TBM) in the installation of ITER and future fusion reactors is Reduced Activation Ferritic Martensitic (RAFM) steel, yet one of the major challenges that need to be addressed with RAFM is minimizing the loss of tritium in a reactor environment through the formation of tritium permeation barrier. One of the most promising methods for the tritium permeation barrier is through duplex coating with Al{sub 2}O{sub 3}/Fe–Al which is well known to reduce tritium permeation rate by several orders of magnitude. The present work aims to form an alumina layer on RAFM steel by a two-step method, which consists of (i) Hot Dip Aluminizing (HDA) and (ii) conversion of Al into alumina by a subsequent oxidation process. In addition, the influence of surface roughness of the substrate, superheat condition of the Al alloy melt and its composition on microstructural properties of coating before and after oxidation were investigated using OM, SEM–EDS, XRD, indentation micro hardness and scratch test. The experimental results confirmed the formation of alumina layer on RAFM steel after the HDA and oxidation process. Moreover, the surface roughness of the substrate, melt superheat of Al alloy and its composition are found to have a significant influence on the microstructure, thickness, micro-hardness, nature of intermetallic compounds formed and adhesion strength of the coating.

  7. Using the Tritium Plasma Experiment to evaluate ITER PFC safety

    International Nuclear Information System (INIS)

    Longhurst, G.R.; Anderl, R.A.; Bartlit, J.R.; Causey, R.A.; Haines, J.R.

    1993-01-01

    The Tritium Plasma Experiment was assembled at Sandia National Labs., Livermore and is being moved to the Tritium Systems Test Assembly facility at Los Alamos National Lab. to investigate interactions between dense plasmas at low energies and plasma-facing component materials. This apparatus has the unique capability of replicating plasma conditions in a tokamak divertor with particle flux densities of 2 x 10 23 ions/m 2 .s and a plasma temperature of about 15 eV using a plasma that includes tritium. An experimental program has been initiated using the Tritium Plasma Experiment to examine safety issues related to tritium in plasma-facing components, particularly the ITER divertor. Those issues include tritium retention and release characteristics, tritium permeation rates and transient times to coolant streams, surface modification and erosion by the plasma, the effects of thermal loads and cycling, and particulate production. An industrial consortium led by McDonnell Douglas will design and fabricate the test fixtures

  8. Tritium as tracer of groundwater pollution extension: case study of Andralanitra landfill site, Antananarivo-Madagascar

    Science.gov (United States)

    Ramaroson, Voahirana; Rakotomalala, Christian Ulrich; Rajaobelison, Joel; Fareze, Lahimamy Paul; Razafitsalama, Falintsoa A.; Rasolofonirina, Mamiseheno

    2018-05-01

    This study aims to understand the extension of groundwater pollution downstream of a landfill, Andralanitra-Antananarivo-Madagascar. Twenty-one samples, composed of dug well waters, spring waters, river, and lake, were measured in stable isotopes ( δ 2H, δ 18O) and tritium. Results showed that only two dug well waters, collected at the immediate vicinity of the landfill, have high tritium activities (22.82 TU and 10.43 TU), probably of artificial origin. Both upstream and further downstream of the landfill, tritium activities represent natural source, with values varying from 0.17 TU to 1.46 TU upstream and from 0.88 TU to 1.88 TU further downstream. Stable isotope data suggest that recharge occurs through infiltration of slightly evaporated rainfall. Using the radioactive decay equation, the calculated tracer ages related to two recent ground water samples collected down gradient of the landfill lay between [8-15] years and [4-7] years, taking into account the uncertainty of tritium measurements. For the calculation, a value of 2.36 TU was taken as A o. The latter was estimated based on similarity between stable isotope compositions of nearby spring and dug well waters as well as tritium activities of the local precipitation. Calculation of the tritium activities from the contaminated water point having 22.82 TU to further downstream using the calculated tracer ages showed values of one order of magnitude higher than the measured values. The absence of hydrological connection from the contaminated water point to further downstream the landfill would explain the lower tritium activities measured. Groundwater pollution seems to be limited to the closest proximity of the landfill.

  9. Release enhancement of tritium from graphite by addition of hydrogen

    International Nuclear Information System (INIS)

    Saeki, Masakatsu; Masaki, N.M.

    1989-01-01

    The release behavior of tritium from graphite was studied in pure He and He + H 2 atmosphere. The release from powdered graphite was significantly enhanced in hydrogen environment. Apparent diffusion coefficients of tritium in graphite also became much higher in an atmosphere containing hydrogen than values obtained in pure helium atmosphere. A careful investigation of the release processes resulted in the conclusion that the most important process of tritium behaviour in graphite was diffusion, but the desorption process of tritium from the surface played a significant role. The enhancement of the desorption process was controlled by atomic hydrogen. (orig.)

  10. Occurrence of Surface Water Contaminations: An Overview

    Science.gov (United States)

    Shahabudin, M. M.; Musa, S.

    2018-04-01

    Water is a part of our life and needed by all organisms. As time goes by, the needs by human increased transforming water quality into bad conditions. Surface water contaminated in various ways which is pointed sources and non-pointed sources. Pointed sources means the source are distinguished from the source such from drains or factory but the non-pointed always occurred in mixed of elements of pollutants. This paper is reviewing the occurrence of the contaminations with effects that occurred around us. Pollutant factors from natural or anthropology factors such nutrients, pathogens, and chemical elements contributed to contaminations. Most of the effects from contaminated surface water contributed to the public health effects also to the environments.

  11. STAR facility tritium accountancy

    International Nuclear Information System (INIS)

    Pawelko, R. J.; Sharpe, J. P.; Denny, B. J.

    2008-01-01

    The Safety and Tritium Applied Research (STAR) facility has been established to provide a laboratory infrastructure for the fusion community to study tritium science associated with the development of safe fusion energy and other technologies. STAR is a radiological facility with an administrative total tritium inventory limit of 1.5 g (14,429 Ci) [1]. Research studies with moderate tritium quantities and various radionuclides are performed in STAR. Successful operation of the STAR facility requires the ability to receive, inventory, store, dispense tritium to experiments, and to dispose of tritiated waste while accurately monitoring the tritium inventory in the facility. This paper describes tritium accountancy in the STAR facility. A primary accountancy instrument is the tritium Storage and Assay System (SAS): a system designed to receive, assay, store, and dispense tritium to experiments. Presented are the methods used to calibrate and operate the SAS. Accountancy processes utilizing the Tritium Cleanup System (TCS), and the Stack Tritium Monitoring System (STMS) are also discussed. Also presented are the equations used to quantify the amount of tritium being received into the facility, transferred to experiments, and removed from the facility. Finally, the STAR tritium accountability database is discussed. (authors)

  12. Current Sandia programs and laboratory facilities for tritium research

    International Nuclear Information System (INIS)

    Swansiger, W.A.; West, L.A.

    1975-01-01

    Currently envisioned fusion reactor systems will contain substantial quantities of tritium. Strict control of the overall tritium inventory and environmental safety considerations require an accurate knowledge of the behavior of this isotope in the presence of Controlled Thermonuclear Reactor (CTR) materials. A 14,000 ft 2 laboratory for tritium research is currently under construction at Sandia Laboratories in Livermore. Details about the laboratory in general are provided. Results from studies of hydrogen isotope diffusion in surface-characterized metals will be presented. Details of two permeation systems (one for hydrogen and deuterium, the other for tritium) will be discussed. Data will also be presented concerning the gettering of hydrogen isotopes and application to CTR collector designs. (auth)

  13. Modeling tritium behavior in Li{sub 2}ZrO{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Billone, M C [Argonne National Lab., IL (United States). Fusion Power Program

    1998-03-01

    Lithium metazirconate (Li{sub 2}ZrO{sub 3}) is a promising tritium breeder material for fusion reactors because of its excellent tritium release characteristics. In particular, for water-cooled breeding blankets (e.g., ITER), Li{sub 2}ZrO{sub 3} is appealing from a design perspective because of its good tritium release at low operating temperatures. The steady-state and transient tritium release/retention database for Li{sub 2}ZrO{sub 3} is reviewed, along with conventional diffusion and first-order surface desorption models which have been used to match the database. A first-order surface desorption model is recommended in the current work both for best-estimate and conservative (i.e., inventory upper-bound) predictions. Model parameters are determined and validated for both types of predictions, although emphasis is placed on conservative design predictions. The effects on tritium retention of ceramic microstructure, protium partial pressure in the purge gas and purge gas flow rate are discussed, along with other mechanisms for tritium retention which may not be dominant in the experiments, but may be important in blanket design analyses. The proposed tritium retention/release model can be incorporated into a transient thermal performance code to enable whole-blanket predictions of tritium retention/release during cyclic reactor operation. Parameters for the ITER driver breeding blanket are used to generate a numerical set of model predictions for steady-state operation. (author)

  14. A critical analysis of the impact assessment of environmental tritium

    International Nuclear Information System (INIS)

    Jain, Narendra; Bhatia, Arvind

    2013-01-01

    Tritium, a radionuclide of hydrogen has longer life and gets more rapidly dispersed, but before becoming globally distributed, it represents a significant radiobiological risk to the local population exposed. It is produced naturally in the upper atmosphere by the interaction of cosmic rays with nitrogen and hydrogen. The tritons in the upper atmosphere are oxidized to tritiated water (HTO) and mix with the hydrosphere generally through the movement of air masses and precipitation. Terrestrially, tritium may be formed by the action of lithium on neutrons. There is apprehension that the recent controversy concerning the health and environmental impact of tritium may end up as worldwide contaminants in the final analysis. From many varied reports from different laboratories, it appears that projected levels for fusion reactors may also produce deleterious and detectable effects. The degree of concern over tritium problem is evidenced by a rapid increase in publications on the health implications of environmental tritium. The present issues of controversy will be intensified as the fusion reactor technology approaches the door step of public and the possible health detriment from its radioactive emissions arouse concern. The current project has been planned keeping some such points in view. It reviews the work on the behavior of tritium in its various forms in the environment with an emphasis on the release from various sources, its world inventories at present level sand its transfer into the various compartments of ecosystems. Besides this, its metabolism in biosystem and the possible implications of low doses of tritium in present and future generations have also been discussed. (author)

  15. Tritium release from lithium titanate, a low-activation tritium breeding material

    International Nuclear Information System (INIS)

    Kopasz, J.P.; Miller, J.M.; Johnson, C.E.

    1994-01-01

    The goals for fusion power are to produce energy in as safe, economical, and environmentally benign a manner as possible. To ensure environmentally sound operation low-activation materials should be used where feasible. The ARIES Tokamak Reactor Study has based reactor designs on the concept of using low-activation materials throughout the fusion reactor. For the tritium breeding blanket, the choices for low activation tritium breeding materials are limited. Lithium titanate is an alternative low-activation ceramic material for use in the tritium breeding blanket. To date, very little work has been done on characterizing the tritium release for lithium titanate. We have thus performed laboratory studies of tritium release from irradiated lithium titanate. The results indicate that tritium is easily removed from lithium titanate at temperatures as low as 600 K. The method of titanate preparation was found to affect the tritium release, and the addition of 0.1% H 2 to the helium purge gas did not improve tritium recovery. ((orig.))

  16. Organically bound tritium

    International Nuclear Information System (INIS)

    Diabate, S.; Strack, S.

    1993-01-01

    Tritium released into the environment may be incorporated into organic matter. Organically bound tritium in that case will show retention times in organisms that are considerably longer than those of tritiated water which has significant consequences on dose estimates. This article reviews the most important processes of organically bound tritium production and transport through food networks. Metabolic reactions in plant and animal organisms with tritiated water as a reaction partner are of great importance in this respect. The most important production process, in quantitative terms, is photosynthesis in green plants. The translocation of organically bound tritium from the leaves to edible parts of crop plants should be considered in models of organically bound tritium behavior. Organically bound tritium enters the human body on several pathways, either from the primary producers (vegetable food) or at a higher tropic level (animal food). Animal experiments have shown that the dose due to ingestion of organically bound tritium can be up to twice as high as a comparable intake of tritiated water in gaseous or liquid form. In the environment, organically bound tritium in plants and animals is often found to have higher specific tritium concentrations than tissue water. This is not due to some tritium enrichment effects but to the fact that no equilibrium conditions are reached under natural conditions. 66 refs

  17. Analysis of tritium releases to the atmosphere by a CTR

    International Nuclear Information System (INIS)

    Renne, D.S.; Sandusky, W.F.; Dana, M.T.

    1975-08-01

    Removal by atmospheric processes of routinely and accidentally released tritium from a controlled thermonuclear reactor (CTR) was investigated. Based on previous studies, the assumed form of the tritium for this analysis was HTO or tritiated water vapor. Assuming a CTR operation in Morris, Illinois, surface water and ground-level air concentration values of tritium were computed for three space (or time) scales: local (50 Km of a plant), regional (up to 1000 Km of the plant), and global

  18. Developments in surface contamination and cleaning fundamentals and applied aspects

    CERN Document Server

    Kohli, Rajiv

    2015-01-01

    Developments in Surface Contamination and Cleaning, Vol. 1: Fundamentals and Applied Aspects, Second Edition, provides an excellent source of information on alternative cleaning techniques and methods for characterization of surface contamination and validation. Each volume in this series contains a particular topical focus, covering the key techniques and recent developments in the area. This volume forms the heart of the series, covering the fundamentals and application aspects, characterization of surface contaminants, and methods for removal of surface contamination. In addition, new cleaning techniques effective at smaller scales are considered and employed for removal where conventional cleaning techniques fail, along with new cleaning techniques for molecular contaminants. The Volume is edited by the leading experts in small particle surface contamination and cleaning, providing an invaluable reference for researchers and engineers in R&D, manufacturing, quality control, and procurement specific...

  19. Measurement of environmental tritium for isotope hydrology studies

    International Nuclear Information System (INIS)

    1973-01-01

    The Section of Isotope Hydrology of the IAEA Division of Research and Laboratories gains valuable hydrological information from studies of the concentration of environmental tritium in precipitation, surface and groundwater samples from various sites around the world. This photo story shows the steps in the measurement of these very low levels of tritium in water as performed in the Isotope Hydrology Laboratory of the Agency. (author)

  20. Tritium breeders and tritium permeation barrier coatings for fusion reactor

    International Nuclear Information System (INIS)

    Yamawaki, Michio; Kawamura, Hiroshi; Tsuchiya, Kunihiko

    2004-01-01

    A state of R and D of tritium breeders and tritium permeation barrier coatings for fusion reactor is explained. A list of candidate for tritium breeders consists of ceramics containing lithium, for examples, Li 2 O, Li 2 TiO 3 , Li 2 ZrO 3 , Li 4 SiO 4 and LiAlO 2 . The characteristics and form are described. The optimum particle size is from 1 to 10 μm. The production technologies of tritium breeders in the world are stated. Characteristics of ceramics with lithium as tritium breeders are compared. TiC, TiN/TiC, Al 2 O 3 and Cr 2 O 3 -SiO 2 -P 2 O 5 are tritium permeation barrier coating materials. These production methods and evaluation of characteristics are explained. (S.Y.)

  1. [Tritium in the Water System of the Techa River].

    Science.gov (United States)

    Chebotina, M Ja; Nikolin, O A

    2016-01-01

    The aim of the paper is to study modern tritium levels in various sources of the drinking water supply in the settlements situated in the riverside zone of the Techa. Almost everywhere the water entering water-conduit wells from deep slits (100-180 m) contains averagely 2-3 times higher tritium concentrations than the water from less deep personal wells, slits and springs. Tritium levels in the drinking water supply decrease with the distance from the dam; while in wells, springs and personal wells they are constant all along the river. The observed phenomenon can be explained by the fact that the river bed of the Techa is situated at a break zone of the earth crust, where the contaminated deep water penetrates from the reservoirs of the "Mayak" enterprise situated in the upper part of the regulated river bed. Less deep water sources (personal wells, slits and springs) receive predominantly flood, atmospheric and subsoil waters and are not connected with the reservoirs.

  2. Conformation evolution of oil contaminants onto aluminum oxide surface in aqueous solution: The effect of surface coverage

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Wenkun; Liu, Haitao, E-mail: xwk584523412@126.com; Sun, Yazhou; Fu, Hongya; Liang, Yingchun

    2017-01-15

    Highlights: • The dynamic conformational change of oil contaminations, at various surface coverages onto perfect α-Al{sub 2}O{sub 3}(0001) surface in aqueous solution is given. • The effect of surface coverage of oil molecules on the driving forces for the conformational change of oil contaminations is described. • The effect of interfacial water on the conformational change and even detachment of oil contaminations is considered. - Abstract: The microscopic conformational change process of oil contaminants adhered onto perfect α-Al{sub 2}O{sub 3} (0001) surface in aqueous solution was investigated by using all-atom classic molecular dynamics simulations. The change in removal mechanism of oil contaminants induced by surface coverage (surface area per molecule) was emphatically explored. Our simulation results strongly reveal that the increase in oil surface coverage induces an evident difference in microscopic detachment processes of oil contaminants. At a low surface coverage, oil contaminants can be thoroughly detached from solid surface. The whole detachment process could be divided into multi stages, including conformational change of oil contaminants on solid surface, dynamic motion of those in bulk solution and rapid migration of those from bulk solution to air/water interface. With surface coverage increasing, water diffusion becomes the key to induce conformational change and promote the detachment of oil contaminants. When oil surface coverage exceeds a threshold value, oil contaminants also undertake an evident conformational change process exhibiting typical characteristics but an incomplete detachment process occurs. All findings of the present study are helpful for the interpretation of the removal mechanism of oil contaminants on solid surface.

  3. Studies on chemical phenomena of high concentration tritium water and organic compounds of tritium from viewpoint of the tritium confinement

    International Nuclear Information System (INIS)

    Yamanishi, Toshihiko; Hayashi, Takumi; Iwai, Yasunori; Isobe, Kanetsugu; Hara, Masanori; Sugiyama, Takahiko; Okuno, Kenji

    2009-01-01

    As a part of the grant-in-aid for scientific research on priority areas entitled 'frontiers of tritium researches toward fusion reactors', coordinated two research programs on chemical phenomena of high concentration tritium water and organic compounds of tritium from view point of the tritium confinement have been conducted by the C01 team. The results are summarized as follows: (1) Chemical effects of the high concentration tritium water on stainless steels as structural materials of fusion reactors were investigated. Basic data on tritium behaviors at the metal-water interface and corrosion of metal in tritium water were obtained. (2) Development of the tritium confinement and extraction system for the circulating cooling water in the fusion reactor was studied. Improvement was obtained in the performance of a chemical exchange column and catalysts as major components of the water processing system. (J.P.N.)

  4. Fluorine 18 in tritium generator ceramic materials

    International Nuclear Information System (INIS)

    Jimenez-Becerril, J.; Bosch, P.; Bulbulian, S.

    1992-01-01

    At present time, the ceramic materials generators of tritium are very interesting mainly by the necessity of to found an adequate product for its application as fusion reactor shielding. The important element that must contain the ceramic material is the lithium and especially the isotope with mass=6. The tritium in these materials is generated by neutron irradiation, however, when the ceramic material contains oxygen, then is generated too fluorine 18 by the action of energetic atoms of tritium in recoil on the 16 O, as it is showed in the next reactions: 1) 6 Li (n, α) 3 H ; 2) 16 O( 3 H, n) 18 F . In the present work was studied the LiAlO 2 and the Li 2 O. The first was prepared in the laboratory and the second was used such as it is commercially expended. In particular the interest of this work is to study the chemical behavior of fluorine-18, since if it would be mixed with tritium it could be contaminate the fusion reactor fuel. The ceramic materials were irradiated with neutrons and also the chemical form of fluorine-18 produced was studied. It was determined the amount of fluorine-18 liberated by the irradiated materials when they were submitted to extraction with helium currents and argon-hydrogen mixtures and also it was investigated the possibility about the fluorine-18 was volatilized then it was mixed so with the tritium. Finally it was founded that the liberated amount of fluorine-18 depends widely of the experimental conditions, such as the temperature and the hydrogen amount in the mixture of dragging gas. (Author)

  5. Separation of tritium from gaseous and aqueous effluent systems

    International Nuclear Information System (INIS)

    Kobisk, E.H.

    1977-01-01

    Three processes are discussed for separating tritium from gaseous and aqueous effluent systems: separation in the gas phase using Pd-25 wt percent Ag alloy diffusion membranes; electrolytic separation in the aqueous phase using ''bipolar'' electrodes; and the countercurrent exchange of tritium-containing hydrogen gas with water on catalytic surfaces combined with separation by direct electrolysis

  6. Tritium target manufacturing for use in accelerators

    Science.gov (United States)

    Bach, P.; Monnin, C.; Van Rompay, M.; Ballanger, A.

    2001-07-01

    As a neutron tube manufacturer, SODERN is now in charge of manufacturing tritium targets for accelerators, in cooperation with CEA/DAM/DTMN in Valduc. Specific deuterium and tritium targets are manufactured on request, according to the requirements of the users, starting from titanium target on copper substrate, and going to more sophisticated devices. A wide range of possible uses is covered, including thin targets for neutron calibration, thick targets with controlled loading of deuterium and tritium, rotating targets for higher lifetimes, or large size rotating targets for accelerators used in boron neutron therapy. Activity of targets lies in the 1 to 1000 Curie, diameter of targets being up to 30 cm. Special targets are also considered, including surface layer targets for lowering tritium desorption under irradiation, or those made from different kinds of occluders such as titanium, zirconium, erbium, scandium, with different substrates. It is then possible to optimize either neutron output, or lifetime and stability, or thermal behavior.

  7. Tritium inventories and tritium safety design principles for the fuel cycle of ITER

    International Nuclear Information System (INIS)

    Cristescu, I.R.; Cristescu, I.; Doerr, L.; Glugla, M.; Murdoch, D.

    2007-01-01

    Within the tritium plant of ITER a total inventory of about 2-3 kg will be necessary to operate the machine in the DT phase. During plasma operation, tritium will be distributed in the different sub-systems of the fuel cycle. A tool for tritium inventory evaluation within each sub-system of the fuel cycle is important with respect to both the process of licensing ITER and also for operation. It is very likely that measurements of total tritium inventories may not be possible for all sub-systems; however, tritium accounting may be achieved by modelling its hold-up within each sub-system and by validating these models in real-time against the monitored flows and tritium streams between the sub-systems. To get reliable results, an accurate dynamic modelling of the tritium content in each sub-system is necessary. A dynamic model (TRIMO) for tritium inventory calculation reflecting the design of each fuel cycle sub-systems was developed. The amount of tritium needed for ITER operation has a direct impact on the tritium inventories within the fuel cycle sub-systems. As ITER will function in pulses, the main characteristics that influence the rapid tritium recovery from the fuel cycle as necessary for refuelling are discussed. The confinement of tritium within the respective sub-systems of the fuel cycle is one of the most important safety objectives. The design of the deuterium/tritium fuel cycle of ITER includes a multiple barrier concept for the confinement of tritium. The buildings are equipped with a vent detritiation system and re-circulation type room atmosphere detritiation systems, required for tritium confinement barrier during possible tritium spillage events. Complementarily to the atmosphere detritiation systems, in ITER a water detritiation system for tritium recovery from various sources will also be operated

  8. Release of Streptomyces albus propagules from contaminated surfaces

    International Nuclear Information System (INIS)

    Gorny, R.L.; Mainelis, Gediminas; Grinshpun, Sergey A.; Willeke, Klaus; Dutkiewicz, Jacek; Reponen, Tiina

    2003-01-01

    The release of Streptomyces albus propagules from contaminated agar an ceiling tile surfaces was studied under controlled environmental condition in a newly developed aerosolization chamber. The experiments revealed tha both spores and cell fragments can be simultaneously released from the colonized surface by relatively gentle air currents of 0.3 m s -1 . A 100x increase of the air velocity can result in a 50-fold increase in the number of released propagules. The aerosolization rate depends strongly on the typ and roughness of the contaminated surface. Up to 90% of available actinomycete propagules can become airborne during the first 10 min of th release process. Application of vibration to the surface did not reveal an influence on the aerosolization process of S. albus propagules under th tested conditions. This study has shown that propagules in the fine particle size range can be released in large amounts from contaminated surfaces Measurement of the number of S. albus fragments in the vicinity of contaminated area, as an alternative to conventional air or surface sampling appears to be a promising approach for quantitative exposure assessment

  9. Evaluation of tritium release behavior from Li{sub 2}TiO{sub 3} during DT neutron irradiation by use of an improved tritium collection method

    Energy Technology Data Exchange (ETDEWEB)

    Edao, Yuki, E-mail: edao.yuki@jaea.go.jp [Tritium Technology Group, Department of Blanket Systems Research, Rokkasho Fusion Institute, Sector of Fusion Research and Development, Japan Atomic Energy Agency, 2-4 Shirane Shirakata, Tokai-mura, Naka-gun, Ibaraki 319-1195 (Japan); Kawamura, Yoshinori [Blanket Technology Group, Department of Blanket Systems Research, Rokkasho Fusion Institute, Sector of Fusion Research and Development, Japan Atomic Energy Agency, 801-1 Mukoyama, Naka, Ibaraki 311-0193 (Japan); Hoshino, Tsuyoshi [Breeding Functional Materials Development Group, Department of Blanket Systems Research, Rokkasho Fusion Institute, Sector of Fusion Research and Development, Japan Atomic Energy Agency, 2-166 Omotedate Obuchi, Rokkasho, Aomori 039-3212 (Japan); Ochiai, Kentaro [BA Project Coordination Group, Department of Fusion Power Systems Research, Rokkasho Fusion Institute, Sector of Fusion Research and Development, Japan Atomic Energy Agency, 2-166 Omotedate Obuchi, Rokkasho, Aomori 039-3212 (Japan)

    2016-11-15

    Highlights: • Behavior of tritium released from Li{sub 2}TiO{sub 3} under neutron irradiation was measured. • Tritium collection method with hydrophobic catalyst was demonstrated successfully. • Temperature of Li{sub 2}TiO{sub 3} was dominant to control the chemical form of tritium release. - Abstract: The accurate measurement of behavior of bred tritium released from a tritium breeder is indispensable to understand the behavior for a design of a tritium extraction system. The tritium collection method combined a CuO bed and water bubbles was not suitable to measure transient behavior of tritium released from Li{sub 2}TiO{sub 3} during neutron irradiation because tritium released behavior was changed to be delayed due to adsorption of oxidized tritium on the CuO. Hence, the tritium collection method with hydrophobic catalyst instead of the CuO was demonstrated and succeeded the accurate release measurement of tritium from Li{sub 2}TiO{sub 3}. With the method, we assessed the behavior of tritium release under the various conditions since tritium should be released from Li{sub 2}TiO{sub 3} as the form of HT as much as possible from the view point of the fuel cycle. Our results indicated; promotion of isotopic exchange reaction on the surface of Li{sub 2}TiO{sub 3} by addition of hydrogen in sweep gas is mandatory in order to release tritium smoothly from Li{sub 2}TiO{sub 3} irradiated with neutrons; the favorable sweep gas to release as the form of HT was hydrogen added inert gas; and the temperature of Li{sub 2}TiO{sub 3} was the dominant parameter to control the chemical form of tritium released from the Li{sub 2}TiO{sub 3}.

  10. Development of tritium technology at the Tritium Systems Test Assembly

    International Nuclear Information System (INIS)

    Anderson, J.L.; Bartlit, J.R.

    1982-01-01

    The Tritium Systems Test Assembly (TSTA) at the Los Alamos National Laboratory is dedicated to the development, demonstration, and interfacing of technologies related to the deuterium-tritium fuel cycle for large scale fusion reactor systems starting with the Fusion Engineering Device (FED) or the International Tokamak Reactor (INTOR). This paper briefly describes the fuel cycle and safety systems at TSTA including the Vacuum Facility, Fuel Cleanup, Isotope Separation, Transfer Pumping, Emergency Tritium Cleanup, Tritium Waste Treatment, Tritium Monitoring, Data Acquisition and Control, Emergency Power and Gas Analysis systems. Discussed in further detail is the experimental program proposed for the startup and testing of these systems

  11. Design of a tritium decontamination workstation based on plasma cleaning

    International Nuclear Information System (INIS)

    Antoniazzi, A.B.; Shmayda, W.T.; Fishbien, B.F.

    1993-01-01

    A design for a tritium decontamination workstation based on plasma cleaning is presented. The activity of tritiated surfaces are significantly reduced through plasma-surface interactions within the workstation. Such a workstation in a tritium environment can routinely be used to decontaminate tritiated tools and components. The main advantage of such a station is the lack of low level tritiated liquid waste. Gaseous tritiated species are the waste products with can with present technology be separated and contained

  12. Tritium monitoring techniques

    International Nuclear Information System (INIS)

    DeVore, J.R.; Buckner, M.A.

    1996-05-01

    As part of their operations, the U.S. Navy is required to store or maintain operational nuclear weapons on ships and at shore facilities. Since these weapons contain tritium, there are safety implications relevant to the exposure of personnel to tritium. This is particularly important for shipboard operations since these types of environments can make low-level tritium detection difficult. Some of these ships have closed systems, which can result in exposure to tritium at levels that are below normally acceptable levels but could still cause radiation doses that are higher than necessary or could hamper ship operations. This report describes the state of the art in commercial tritium detection and monitoring and recommends approaches for low-level tritium monitoring in these environments

  13. Tritium removal by CO2 laser heating

    International Nuclear Information System (INIS)

    Skinner, C.H.; Kugel, H.; Mueller, D.

    1997-01-01

    Efficient techniques for rapid tritium removal will be necessary for ITER to meet its physics and engineering goals. One potential technique is transient surface heating by a scanning CO 2 or Nd:Yag laser that would release tritium without the severe engineering difficulties of bulk heating of the vessel. The authors have modeled the heat propagation into a surface layer and find that a multi-kW/cm 2 flux with an exposure time of order 10 ms is suitable to heat a 50 micron co-deposited layer to 1,000--2,000 degrees. Improved wall conditioning may be a significant side benefit. They identify remaining issues that need to be addressed experimentally

  14. Tritium removal by CO2 laser heating

    International Nuclear Information System (INIS)

    Skinner, C.H.; Kugel, H.; Mueller, D.

    1997-10-01

    Efficient techniques for rapid tritium removal will be necessary for ITER (International Thermonuclear Experimental Reactor) to meet its physics and engineering goals. One potential technique is transient surface heating by a scanning CO 2 or Nd:YAG laser that would release tritium without the severe engineering difficulties of bulk heating of the vessel. The authors have modeled the heat propagation into a surface layer and find that a multi-kW/cm 2 flux with an exposure time of order 10 msec is suitable to heat a 50 micron co-deposited layer to 1,000--2,000 degrees. Improved wall conditioning may be a significant side benefit. They identify remaining issues that need to be addressed experimentally

  15. Tritium release from neutron irradiated beryllium pebbles

    Energy Technology Data Exchange (ETDEWEB)

    Scaffidi-Argentina, F.; Werle, H. [Forschungszentrum Karlsruhe GmbH Technik und Umwelt (Germany). Inst. fuer Neutronenphysik und Reactortechnik

    1998-01-01

    One of the most important open issues related to beryllium for fusion applications refers to the kinetics of the tritium release as a function of neutron fluence and temperature. The EXOTIC-7 as well as the `Beryllium` experiments carried out in the HFR reactor in Petten are considered as the most detailed and significant tests for investigating the beryllium response under neutron irradiation. This paper reviews the present status of beryllium post-irradiation examinations performed at the Forschungszentrum Karlsruhe with samples from the above mentioned irradiation experiments, trying to elucidate the tritium release controlling processes. In agreement with previous studies it has been found that release starts at about 500-550degC and achieves a maximum at about 700-750degC. The observed release at about 500-550degC is probably due to tritium escaping from chemical traps, while the maximum release at about 700-750degC is due to tritium escaping from physical traps. The consequences of a direct contact between beryllium and ceramics during irradiation, causing tritium implanting in a surface layer of beryllium up to a depth of about 40 mm and leading to an additional inventory which is usually several times larger than the neutron-produced one, are also presented and the effects on the tritium release are discussed. (author)

  16. Tritium-helium 3 dating under complex conditions in hydraulically stressed areas of a buried-valley aquifer

    Science.gov (United States)

    Shapiro, Stephanie Dunkle; Rowe, Gary L.; Schlosser, Peter; Ludin, Andrea; Stute, Martin

    1998-01-01

    The 3H-3He dating method is applied in a buried-valley aquifer near Dayton, Ohio. The study area is large, not all sampling locations lie along well-defined flow paths, and existing wells with variable screen lengths and diameters are used. Reliable use of the method at this site requires addressing several complications: (1) The flow system is disturbed because of high pumping rates and induced infiltration; (2) tritium contamination is present in several areas of the aquifer; and (3) radiogenic helium concentrations are elevated in a significant number of the wells. The 3H-3He ages are examined for self-consistency by comparing the reconstructed tritium evolution to the annual weighted tritium measured in precipitation; deviations result from dispersion, tritium contamination, and mixing. 3H-3He ages are next examined for consistency with chlorofluorocarbon ages; the agreement is poor because of degradation of CFCs. Finally, the 3H-3He ages are examined for consistency with the current understanding of local hydrologic processes; the ages are generally supported by hydrogeologic data and the results of groundwater flow modeling coupled with particle-tracking analyses.

  17. Tritium dosimetry and standardization

    International Nuclear Information System (INIS)

    Balonov, M.I.

    1983-01-01

    Actual problem of radiation hygiene such as an evaluation of human irradiation hazard due to a contact with tritium compounds both in industrial and public spheres is under discussion. Sources of tritium release to environment are characterized. Methods of tritium radiation monitoring are discussed. Methods of dosimetry of internal human exposure resulted from tritium compounds are developed on the base of modern representations on metbolism and tritium radiobiological effect. A system of standardization of permissible intake of tritium compounds for personnel and persons of population is grounded. Some protection measures are proposed as applied to tritium overdosage

  18. Tritium permeation in fusion reactors: INTOR

    International Nuclear Information System (INIS)

    Baskes, M.I.; Bauer, W.; Kerst, R.A.; Swansiger, W.A.; Wilson, K.L.

    1981-12-01

    Tritium permeation through the first wall of advanced fusion reactors is examined. A fraction of the D-T which bombards the first wall as charge exchange neutral particles will permeate through the first wall and enter the coolant. Calculations of the steady state permeation rate for the US INTOR Tokamak design result in values of less than or equal to 0.002 grams of tritium per day under the most favorable conditions. For unfavorable surface conditions the rate is greater than or equal to 0.1 g/day. The magnitude of these permeation rates is critically dependent on the temperatures and surface conditions of the wall. The introduction of permeation barriers at the wall-coolant interface can significantly reduce permeation rates and hence may be desirable for reactor applications

  19. Tritium production distribution in the accelerator production of tritium device

    International Nuclear Information System (INIS)

    Kidman, R.B.

    1997-11-01

    Helium-3 ( 3 He) gas is circulated throughout the accelerator production of tritium target/blanket (T/B) assembly to capture neutrons and convert 3 He to tritium. Because 3 He is very expensive, it is important to know the tritium producing effectiveness of 3 He at all points throughout the T/B. The purpose of this paper is to present estimates of the spatial distributions of tritium production, 3 He inventory, and the 3 He FOM

  20. System for removing contaminated surface layers

    International Nuclear Information System (INIS)

    Yoshikawa, Kozo.

    1987-04-01

    The object of the present invention is to offer a new type of useful decontamination system, with which the contaminated surface layers can be removed effectively by injection of such solid microparticles. Liquid carbon dioxide is passed from a liquid carbon dioxide tank via the carbon dioxide supply line into the system for injecting solid carbon dioxide particles. Part of the liquid carbon dioxide introduced into the system is converted to solid carbon dioxide particles by the temperature drop resulting from adiabatic expansion in the carbon dioxide expansion space of the injection system. The solid carbon dioxide particles reach the injection nozzle, which is connected through the expansion space. The carbon dioxide microparticles are further cooled and accelerated by nitrogen gas injected from the nitrogen gas nozzle at the tip of the nitrogen gas supply line, which is connected to a liquid nitrogen tank. The cooled and accelerated solid carbon dioxide microparticles are injected from the injection nozzle for the solid carbon dioxide and directed against the contaminated surface to be cleaned, and, as a result, the surface contamination is removed

  1. Atmospheric tritium 1968-1984. Tritium Laboratory data report No. 14

    International Nuclear Information System (INIS)

    Oestlund, H.G.; Mason, A.S.

    1985-04-01

    Tritium in the form of water, HTO, from the atmospheric testing of nuclear devices in the 60s has now mainly disappeared from the atmosphere and entered the ocean. The additions of such tritium from Chinese and French tests in the 70s were observed but did not make a big impression on the diminishing inventory of atmospheric HTO. Tritium in elemental form, HT, went through a maximum in the mid 70s, apparently primarily as a results of some underground testing of large nuclear devices and releases from civilian and military nuclear industry. The mid 70s maximum was 1.3 kg of tritium in this form, and in 1984 0.5 kg remain. The disappearance is slower than the decay rate of tritium, so sources must still have been present during this time. The global distribution shows, not unexpectedly, smaller inventory in the Southern Hemisphere across the equator and thus southward transport of HT. The chemical lifetime of hydrogen gas in the atmosphere, assuming the elemental tritium being in the form of HT, not T 2 , has been estimated between 6 and 10 years. It is to be expected that increasing activity of nuclear fuel reprocessing would in the near future again increase the global tritium gas inventory. Tritium in the form of light hydrocarbons, primarily methane, has also been measured, and in this form a quantity of 200 g of tritium resided in the global atmosphere 1956 to 1976. By 1982 it had decreased to 50 g. 25 refs., 5 figs., 11 tabs

  2. Estimating dermal transfer from PCB-contaminated porous surfaces.

    Science.gov (United States)

    Slayton, T M; Valberg, P A; Wait, A D

    1998-06-01

    Health risks posed by dermal contact with PCB-contaminated porous surfaces have not been directly demonstrated and are difficult to estimate indirectly. Surface contamination by organic compounds is commonly assessed by collecting wipe samples with hexane as the solvent. However, for porous surfaces, hexane wipe characterization is of limited direct use when estimating potential human exposure. Particularly for porous surfaces, the relationship between the amount of organic material collected by hexane and the amount actually picked up by, for example, a person's hand touch is unknown. To better mimic PCB pickup by casual hand contact with contaminated concrete surfaces, we used alternate solvents and wipe application methods that more closely mimic casual dermal contact. Our sampling results were compared to PCB pickup using hexane-wetted wipes and the standard rubbing protocol. Dry and oil-wetted samples, applied without rubbing, picked up less than 1% of the PCBs picked up by the standard hexane procedure; with rubbing, they picked up about 2%. Without rubbing, saline-wetted wipes picked up 2.5%; with rubbing, they picked up about 12%. While the nature of dermal contact with a contaminated surface cannot be perfectly reproduced with a wipe sample, our results with alternate wiping solvents and rubbing methods more closely mimic hand contact than the standard hexane wipe protocol. The relative pickup estimates presented in this paper can be used in conjunction with site-specific PCB hexane wipe results to estimate dermal pickup rates at sites with PCB-contaminated concrete.

  3. Temporal variation of tritium in spring water of East Sikkim region

    International Nuclear Information System (INIS)

    Pant, Diksha; Ansari, Md. Arzoo; Mendhekar, G.N.; Kamble, S.N; Sinha, U.K; Dash, A.; Dhakal, Deepak

    2016-01-01

    Tritium is produced in the atmosphere by the interaction of cosmic rays with the nuclei of the atmospheric gases (mainly nitrogen, σ = 0.388 barn), principally by neutron induced reactions. It is estimated from the natural abundance of tritium that the rate of production is approximately 0.2 tritium atoms/sec.cm 2 area of the earth's surface. Additionally it is possible that tritium may enter the atmosphere from anthropogenic activities like nuclear bomb testing or nuclear reactor. Tritium (T 1/2 = 4540 days) is a particularly suitable tracer for water since hydrogen is part of the water molecule. Tritium can be used for assessing the recharge characteristics of aquifers, in studying artificial recharge characteristics and in determining the 'age' of water with an upper time limit of about 50 years. The objective is to study the temporal changes of tritium content in spring's water of East Sikkim region. Tritium helps in predicting whether the contribution to spring water in rainwater or some other source

  4. Basic study of influence of radiation defects on tritium release processes from lithium silicates

    Energy Technology Data Exchange (ETDEWEB)

    Abramenkovs, A.; Tiliks, J.; Kizane, G.; Supe, A. [Latvia Univ., Riga (Latvia). Dept. of Chem.; Grishmanovs, V. [Department of Quantum Engineering and System Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113 (Japan)

    1997-09-01

    The radiolysis of Li{sub 2}SiO{sub 3} and Li{sub 4}SiO{sub 4} was studied using the chemical scavengers method (CSM), thermoluminescence, lyoluminescence, electron spin resonance and spectrometric methods. The influence of the absorbed dose and many another parameters such as: irradiation conditions, sample preparation conditions and concentration of impurities on the accumulation rate of each type RD and RP were studied. Several possibilities for reducing the radiolysis of silicates were discussed. It has been found that tritium localization on the surface and in grains proceed by two different mechanisms. Tritium thermoextraction from the surface proceeds as chemidesorption of tritiated water, but from the bulk as diffusion. The tritium retention processes were studied. It has been found that tritium retention depends on irradiation conditions. Tritium retention is due to the formation of chemical bonds Li-T and thermal stable {identical_to}Si-T bonds. The accumulation of colloidal silicon and lithium can increase the tritium retention up to 25-35%. (orig.).

  5. Implementation of a secondary-ion tritium beam by means of the associated particle technique and its test on a gold target

    Energy Technology Data Exchange (ETDEWEB)

    Policroniades, R.; Fernández-Arnáiz, J.; Murillo, G.; Moreno, E.; Villaseñor, P.; Méndez, B. [Departamento de Aceleradores, Instituto Nacional de Investigaciones Nucleares, Carr. México-Toluca S/N, Ocoyoacac, Estado de México 52750 (Mexico); Chávez, E.; Ortíz-Salazar, M.E.; Huerta, A. [Instituto de Física, Universidad Nacional Autónoma de México, A.P. 20-364, México, D.F. 01000 (Mexico); Varela-González, A. [Centro de Ciencias de la Atmósfera, Universidad Nacional Autónoma de México, A.P. 20-364, México, D.F. 01000 (Mexico)

    2014-05-21

    In this work we present the implementation and characterization of a (secondary ion) tritium beam generated through the D(d,t)p reaction, at deuteron energies of 2.0 and 1.88 MeV, tagging the tritium ions with the associated particle technique. In order to prove its utility as a projectile for scientific applications, this beam was made to impinge on a thin gold target to observe expected elastic scattering events. - Highlights: • A new secondary ion tritium beam obtained through the D(d,t)3He reaction. • Tritium beam tagging by the associated particle technique. • A low energy Tritium beam without radiation contamination of equipment. • Tritium elastic scattering on gold.

  6. Implementation of a secondary-ion tritium beam by means of the associated particle technique and its test on a gold target

    International Nuclear Information System (INIS)

    Policroniades, R.; Fernández-Arnáiz, J.; Murillo, G.; Moreno, E.; Villaseñor, P.; Méndez, B.; Chávez, E.; Ortíz-Salazar, M.E.; Huerta, A.; Varela-González, A.

    2014-01-01

    In this work we present the implementation and characterization of a (secondary ion) tritium beam generated through the D(d,t)p reaction, at deuteron energies of 2.0 and 1.88 MeV, tagging the tritium ions with the associated particle technique. In order to prove its utility as a projectile for scientific applications, this beam was made to impinge on a thin gold target to observe expected elastic scattering events. - Highlights: • A new secondary ion tritium beam obtained through the D(d,t)3He reaction. • Tritium beam tagging by the associated particle technique. • A low energy Tritium beam without radiation contamination of equipment. • Tritium elastic scattering on gold

  7. Analysis on tritium permeation in tritium storage bed with gas flowing calorimetry

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, Hirofumi; Hayashi, Takumi; Suzuki, Takumi; Nishi, Masataka [Japan Atomic Energy Research Inst., Naka Fusion Research Establishment, Department of Fusion Engineering Research, Naka, Ibaraki (Japan); Yoshida, Hiroshi [Japan Atomic Energy Research Inst., Naka Fusion Research Establishment, ITER-Joint Centeral Team, Naka, Ibaraki (Japan)

    2000-10-01

    Tritium permeation amount in a tritium storage bed with gas flowing calorimetric was evaluated under a condition of new operation mode for International Thermonuclear Experimental Reactor (ITER). As a result, tritium permeation under the new operation mode was estimated to be about twice of that under the practical operation mode. This result show that it would be regardless in a view point of material control of tritium, however, it was suggested to be required additional tritium removal or evacuate system in a view points of safety control or performance of accountability or thermal insulating of the tritium storage bed. (author)

  8. Assessment of the dose to a representative Japanese due to stationary release of tritium to the environment

    International Nuclear Information System (INIS)

    Saito, Masahiro

    2005-01-01

    The computer program TriStat was applied to estimate the dose to a representative Japanese due to a stationary release of tritium as HTO and/or HT to the atmosphere from nuclear facilities. In TriStat, the air tritium concentration is estimated by a Gaussian dispersion model. The tritium deposition to the soil was assumed to occur both by dry and wet deposition processes of atmospheric tritium. The primary process of tritium transfer to human body is assumed to take place through a local food-chain in the contaminated area. Tritium concentrations in soil, vegetables and forage were estimated as the tritium concentration per water equivalent. The food chain was modeled by assuming a vegetable compartment and an animal-food compartment. By using TriStat the annual dose to the representative Japanese was evaluated for stationary release of tritium as a function of the distance from a release point. The dose contribution from drinking water was neglected, since the drinking water is generally supplied as tap water or as commercial bottled water. In the case of HT release, the committed dose due to tritium intake through breathing and skin absorption was found to be of minor importance. (author)

  9. Tritium storage

    International Nuclear Information System (INIS)

    Hircq, B.

    1989-01-01

    A general synthesis about tritium storage is achieved in this paper and a particular attention is given to practical application in the Fusion Technology Program. Tritium, storage under gaseous form and solid form are discussed (characteristics, advantages, disadvantages and equipments). The way of tritium storage is then discussed and a choice established as a function of a logic which takes into account the main working parameters

  10. Tritium emissions reduction facility (TERF)

    International Nuclear Information System (INIS)

    Lamberger, P.H.; Hedley, W.H.

    1993-01-01

    Tritium handling operations at Mound include production of tritium-containing devices, evaluation of the stability of tritium devices, tritium recovery and enrichment, tritium process development, and research. In doing this work, gaseous process effluents containing 400,000 to 1,000,000 curies per year of tritium are generated. These gases must be decontaminated before they can be discharged to the atmosphere. They contain tritium as elemental hydrogen, as tritium oxide, and as tritium-containing organic compounds at low concentrations (typically near one ppm). The rate at which these gases is generated is highly variable. Some tritium-containing gas is generated at all times. The systems used at Mound for capturing tritium from process effluents have always been based on the open-quotes oxidize and dryclose quotes concept. They have had the ability to remove tritium, regardless of the form it was in. The current system, with a capacity of 1.0 cubic meter of gas per minute, can effectively remove tritium down to part-per-billion levels

  11. Effect of electromagnetic radiation on the release of tritium from a fusion reactor

    International Nuclear Information System (INIS)

    Causey, R.A.

    1982-01-01

    Electromagnetic radiation may play an important role in determining the amount of tritium that passes through the first wall of a fusion reactor. Photons enhance the outgassing of hydrogen from metal surfaces and therefore lower the surface concentration. The diffusion coefficient for hydrogen in metals is also increased by photon interactions. The importance of these processes on the tritium release depends on the actual conditions that will exist in the fusion reactor. Because electromagnetic radiation stimulates the release of tritium from traps, it could also affect the tritium inventory in the first wall. The effects of electromagnetic radiation on hydrogen in metals have been reviewed. Because electrons are produced by high energy photons, the effect of electrons on hydrogen has also been included

  12. Tritium inventory in Li2ZrO3 blanket

    International Nuclear Information System (INIS)

    Nishikawa, M.; Baba, A.

    1998-01-01

    Recently, we have presented the way to estimate the tritium inventory in a solid breeder blanket considering effects of diffusion of tritium in the grain, absorption of water in the bulk of grain, and adsorption of water on the surface of grain, together with two types of isotope exchange reactions. It is reported in our previous paper that the estimated tritium inventory for a LiAlO 2 blanket agrees well with data observed in various in situ experiments when the effective diffusivity of tritium from the EXOTIC-6 experiment is used and that the better agreement is obtained when existence of some water vapor is assumed in the purge gas. The same way as used for a LiAlO 2 blanket is applied to a Li 2 ZrO 3 blanket in this study and the estimated tritium inventory shows a good agreement with data obtained in such in situ experiments as MOZART, EXOTIC-6 and TRINE experiments. (orig.)

  13. Tritium levels in milk in the vicinity of chronic tritium releases

    International Nuclear Information System (INIS)

    Le Goff, P.; Guétat, Ph.; Vichot, L.; Leconte, N.; Badot, P.M.; Gaucheron, F.; Fromm, M.

    2016-01-01

    Tritium is the radioactive isotope of hydrogen. It can be integrated into most biological molecules. Even though its radiotoxicity is weak, the effects of tritium can be increased following concentration in critical compartments of living organisms. For a better understanding of tritium circulation in the environment and to highlight transfer constants between compartments, we studied the tritiation of different agricultural matrices chronically exposed to tritium. Milk is one of the most frequently monitored foodstuffs in the vicinity of points known for chronic release of radionuclides firstly because dairy products find their way into most homes but also because it integrates deposition over large areas at a local scale. It is a food which contains all the main nutrients, especially proteins, carbohydrates and lipids. We thus studied the tritium levels of milk in chronic exposure conditions by comparing the tritiation of the main hydrogenated components of milk, first, component by component, then, sample by sample. Significant correlations were found between the specific activities of drinking water and free water of milk as well as between the tritium levels of cattle feed dry matter and of the main organic components of milk. Our findings stress the importance of the metabolism on the distribution of tritium in the different compartments. Overall, dilution of hydrogen in the environmental compartments was found to play an important role dimming possible isotopic effects even in a food chain chronically exposed to tritium. - Highlights: • Tritium can be incorporated in all the hydrogenated components of milk. • Components' isotopic ratios T/H of chronically exposed milk remain in the same range. • In environmental conditions, distribution of tritium in milk components varies. • Metabolism plays a role in the distribution of tritium in the components of milk. • In environmental conditions, dilution of hydrogen dims possible isotopic effects.

  14. In situ measurement of tritium permeation through stainless steel

    Science.gov (United States)

    Luscher, Walter G.; Senor, David J.; Clayton, Kevin K.; Longhurst, Glen R.

    2013-06-01

    The TMIST-2 irradiation experiment was conducted in the Advanced Test Reactor at Idaho National Laboratory to evaluate tritium permeation through Type 316 stainless steel (316 SS). The interior of a 316 SS seamless tube specimen was exposed to a 4He carrier gas mixed with a specified quantity of tritium (T2) to yield partial pressures of 0.1, 5, and 50 Pa at 292 °C and 330 °C. In situ tritium permeation measurements were made by passing a He-Ne sweep gas over the outer surface of the specimen to carry the permeated tritium to a bubbler column for liquid scintillation counting. Results from in situ permeation measurements were compared with predictions based on an ex-reactor permeation correlation in the literature. In situ permeation data were also used to derive an in-reactor permeation correlation as a function of temperature and pressure over the ranges considered in this study. In addition, the triton recoil contribution to tritium permeation, which results from the transmutation of 3He to T, was also evaluated by introducing a 4He carrier gas mixed with 3He at a partial pressure of 1013 Pa at 330 °C. Less than 3% of the tritium resulting from 3He transmutation contributed to tritium permeation.

  15. D ampersand D Characterization of the 232-F Old Tritium Facility at the Savannah River Site

    International Nuclear Information System (INIS)

    Scallon, K.L.; England, J.L.

    1995-01-01

    The 232-F ''Old Tritium Facility'' operated in the 1950s as the first tritium production facility at the Savannah River Site (SRS). In 1957, the 232-F operation ceased with tritium production turned over to a larger, technologically improved facility at SRS. The 232-F Facility was abandoned in 1958 and the process areas have remained contaminated with radiological, hazardous and mixed constituents. Decontamination and decommissioning (D ampersand D) of the 232-F Facility is scheduled to occur in the years 1995-1996. This paper presents the D ampersand D characterization efforts for the 232-F Facility

  16. Assessment of tritium in the Savannah River Site environment

    Energy Technology Data Exchange (ETDEWEB)

    Carlton, W.H.; Murphy, C.E. Jr.; Bauer, L.R. [and others

    1993-10-01

    This report is the first revision to a series of reports on radionuclides inn the SRS environment. Tritium was chosen as the first radionuclide in the series because the calculations used to assess the dose to the offsite population from SRS releases indicate that the dose due to tritium, through of small consequence, is one of the most important the radionuclides. This was recognized early in the site operation, and extensive measurements of tritium in the atmosphere, surface water, and ground water exist due to the effort of the Environmental Monitoring Section. In addition, research into the transport and fate of tritium in the environment has been supported at the SRS by both the local Department of Energy (DOE) Office and DOE`s Office of Health and Environmental Research.

  17. Assessment of tritium in the Savannah River Site environment

    International Nuclear Information System (INIS)

    Carlton, W.H.; Murphy, C.E. Jr.; Bauer, L.R.

    1993-10-01

    This report is the first revision to a series of reports on radionuclides inn the SRS environment. Tritium was chosen as the first radionuclide in the series because the calculations used to assess the dose to the offsite population from SRS releases indicate that the dose due to tritium, through of small consequence, is one of the most important the radionuclides. This was recognized early in the site operation, and extensive measurements of tritium in the atmosphere, surface water, and ground water exist due to the effort of the Environmental Monitoring Section. In addition, research into the transport and fate of tritium in the environment has been supported at the SRS by both the local Department of Energy (DOE) Office and DOE's Office of Health and Environmental Research

  18. TFTR tritium handling concepts

    International Nuclear Information System (INIS)

    Garber, H.J.

    1976-01-01

    The Tokamak Fusion Test Reactor, to be located on the Princeton Forrestal Campus, is expected to operate with 1 to 2.5 MA tritium--deuterium plasmas, with the pulses involving injection of 50 to 150 Ci (5 to 16 mg) of tritium. Attainment of fusion conditions is based on generation of an approximately 1 keV tritium plasma by ohmic heating and conversion to a moderately hot tritium--deuterium ion plasma by injection of a ''preheating'' deuterium neutral beam (40 to 80 keV), followed by injection of a ''reacting'' beam of high energy neutral deuterium (120 to 150 keV). Additionally, compressions accompany the beam injections. Environmental, safety and cost considerations led to the decision to limit the amount of tritium gas on-site to that required for an experiment, maintaining all other tritium in ''solidified'' form. The form of the tritium supply is as uranium tritide, while the spent tritium and other hydrogen isotopes are getter-trapped by zirconium--aluminum alloy. The issues treated include: (1) design concepts for the tritium generator and its purification, dispensing, replenishment, containment, and containment--cleanup systems; (2) features of the spent plasma trapping system, particularly the regenerable absorption cartridges, their integration into the vacuum system, and the handling of non-getterables; (3) tritium permeation through the equipment and the anticipated releases to the environment; (4) overview of the tritium related ventilation systems; and (5) design bases for the facility's tritium clean-up systems

  19. JET experiments with tritium and deuterium–tritium mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Horton, Lorne, E-mail: Lorne.Horton@jet.uk [JET Exploitation Unit, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); European Commission, B-1049 Brussels (Belgium); EUROfusion Consortium, JET, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); Batistoni, P. [Unità Tecnica Fusione - ENEA C. R. Frascati - via E. Fermi 45, Frascati (Roma), 00044, Frascati (Italy); EUROfusion Consortium, JET, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); Boyer, H.; Challis, C.; Ćirić, D. [CCFE, Culham Science Centre, Abingdon OX14 3DB, Oxon (United Kingdom); EUROfusion Consortium, JET, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); Donné, A.J.H. [EUROfusion Programme Management Unit, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); FOM Institute DIFFER, PO Box 1207, NL-3430 BE Nieuwegein (Netherlands); EUROfusion Consortium, JET, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); Eriksson, L.-G. [European Commission, B-1049 Brussels (Belgium); EUROfusion Consortium, JET, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); Garcia, J. [CEA, IRFM, F-13108 Saint Paul Lez Durance (France); EUROfusion Consortium, JET, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); Garzotti, L.; Gee, S. [CCFE, Culham Science Centre, Abingdon OX14 3DB, Oxon (United Kingdom); EUROfusion Consortium, JET, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); Hobirk, J. [Max-Planck-Institut für Plasmaphysik, D-85748 Garching (Germany); EUROfusion Consortium, JET, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); Joffrin, E. [CEA, IRFM, F-13108 Saint Paul Lez Durance (France); EUROfusion Consortium, JET, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); and others

    2016-11-01

    Highlights: • JET is preparing for a series of experiments with tritium and deuterium–tritium mixtures. • Physics objectives include integrated demonstration of ITER operating scenarios, isotope and alpha physics. • Technology objectives include neutronics code validation, material studies and safety investigations. • Strong emphasis on gaining experience in operation of a nuclear tokamak and training scientists and engineers for ITER. - Abstract: Extensive preparations are now underway for an experiment in the Joint European Torus (JET) using tritium and deuterium–tritium mixtures. The goals of this experiment are described as well as the progress that has been made in developing plasma operational scenarios and physics reference pulses for use in deuterium–tritium and full tritium plasmas. At present, the high performance plasmas to be tested with tritium are based on either a conventional ELMy H-mode at high plasma current and magnetic field (operation at up to 4 MA and 4 T is being prepared) or the so-called improved H-mode or hybrid regime of operation in which high normalised plasma pressure at somewhat reduced plasma current results in enhanced energy confinement. Both of these regimes are being re-developed in conjunction with JET's ITER-like Wall (ILW) of beryllium and tungsten. The influence of the ILW on plasma operation and performance has been substantial. Considerable progress has been made on optimising performance with the all-metal wall. Indeed, operation at the (normalised) ITER reference confinement and pressure has been re-established in JET albeit not yet at high current. In parallel with the physics development, extensive technical preparations are being made to operate JET with tritium. The state and scope of these preparations is reviewed, including the work being done on the safety case for DT operation and on upgrading machine infrastructure and diagnostics. A specific example of the latter is the planned calibration at

  20. Sources of tritium

    International Nuclear Information System (INIS)

    Phillips, J.E.; Easterly, C.E.

    1980-12-01

    A review of tritium sources is presented. The tritium production and release rates are discussed for light water reactors (LWRs), heavy water reactors (HWRs), high temperature gas cooled reactors (HTGRs), liquid metal fast breeder reactors (LMFBRs), and molten salt breeder reactors (MSBRs). In addition, release rates are discussed for tritium production facilities, fuel reprocessing plants, weapons detonations, and fusion reactors. A discussion of the chemical form of the release is included. The energy producing facilities are ranked in order of increasing tritium production and release. The ranking is: HTGRs, LWRs, LMFBRs, MSBRs, and HWRs. The majority of tritium has been released in the form of tritiated water

  1. Theoretical investigation of isotope exchange reaction in tritium-contaminated mineral oil in vacuum pump

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Liang; Xie, Yun [Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621900 (China); Du, Liang [Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621900 (China); School of Radiation Medicine and Protection (SRMP), School for Radiological and Interdisciplinary Sciences (RAD-X), Suzhou 215000 (China); Li, Weiyi [School of Physics and Chemistry, Xihua University, Chengdu 610065 (China); Tan, Zhaoyi, E-mail: zhyitan@126.com [Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621900 (China)

    2015-04-28

    Highlights: • This is the first theoretical investigation about T–H exchange in vacuum oil. • T–H isotope exchange is accomplished through two different change mechanisms. • Isotope exchange is selective, molecules with −OH and −COOH exchange more easily. • The methyl and methylene radicals in waste oil were observed by {sup 1}HNMR. - Abstract: The mechanism of the isotope exchange reaction between molecular tritium and several typical organic molecules in vacuum pump mineral oil has been investigated by density functional theory (DFT), and the reaction rates are determined by conventional transition state theory (TST). The tritium–hydrogen isotope exchange reaction can proceed with two different mechanisms, the direct T–H exchange mechanism and the hyrogenation–dehydrogenation exchange mechanism. In the direct exchange mechanism, the titrated product is obtained through one-step via a four-membered ring hydrogen migration transition state. In the hyrogenation–dehydrogenation exchange mechanism, the T–H exchange could be accomplished by the hydrogenation of the unsaturated bond with tritium followed by the dehydrogenation of HT. Isotope exchange between hydrogen and tritium is selective, and oil containing molecules with −OH and −COOH groups can more easily exchange hydrogen for tritium. For aldehydes and ketones, the ability of T–H isotope exchange can be determined by the hydrogenation of T{sub 2} or the dehydrogenation of HT. The molecules containing one type of hydrogen provide a single product, while the molecules containing different types of hydrogens provide competitive products. The rate constants are presented to quantitatively estimate the selectivity of the products.

  2. Using the Tritium Plasma Experiment to evaluate ITER PFC safety

    International Nuclear Information System (INIS)

    Longhurst, G.R.; Anderl, R.A.; Bartlit, J.R.; Causey, R.A.; Haines, J.R.

    1993-01-01

    The Tritium Plasma Experiment was assembled at Sandia National Laboratories, Livermore to investigate interactions between dense plasmas at low energies and plasma-facing component materials. This apparatus has the unique capability of replicating plasma conditions in a tokamak divertor with particle flux densities of 2 x 10 19 ions/cm 2 · s and a plasma temperature of about 15 eV using a plasma that includes tritium. With the closure of the Tritium Research Laboratory at Livermore, the experiment was moved to the Tritium Systems Test Assembly facility at Los Alamos National Laboratory. An experimental program has been initiated there using the Tritium Plasma Experiment to examine safety issues related to tritium in plasma-facing components, particularly the ITER divertor. Those issues include tritium retention and release characteristics, tritium permeation rates and transient times to coolant streams, surface modification and erosion by the plasma, the effects of thermal loads and cycling, and particulate production. A considerable lack of data exists in these areas for many of the materials, especially beryllium, being considered for use in ITER. Not only will basic material behavior with respect to safety issues in the divertor environment be examined, but innovative techniques for optimizing performance with respect to tritium safety by material modification and process control will be investigated. Supplementary experiments will be carried out at the Idaho National Engineering Laboratory and Sandia National Laboratory to expand and clarify results obtained on the Tritium Plasma Experiment

  3. Automatic Measurement of Low Level Contamination on Concrete Surfaces

    International Nuclear Information System (INIS)

    Tachibana, M.; Itoh, H.; Shimada, T.; Yanagihara, S.

    2002-01-01

    Automatic measurement of radioactivity is necessary for considering cost effectiveness in final radiological survey of building structures in decommissioning nuclear facilities. The RAPID (radiation measuring pilot device for surface contamination) was developed to be applied to automatic measurement of low level contamination on concrete surfaces. The RAPID has a capability to measure contamination with detection limit of 0.14 Bq/cm2 for 60Co in 30 seconds of measurement time and its efficiency is evaluated to be 5 m2/h in a normal measurement option. It was confirmed that low level contamination on concrete surfaces could be surveyed by the RAPID efficiently compared with direct measurement by workers through its actual application

  4. Overview of tritium processing development at the tritium systems test assembly

    International Nuclear Information System (INIS)

    Anderson, J.L.

    1986-01-01

    The Tritium Systems Test Assembly (TSTA) at the Los Alamos National Laboratory has been operating with tritium since June 1984. Presently there are some 50 g of tritium in the main processing loop. This 50 g has been sufficient to do a number of experiments involving the cryogenic distillation isotope separation system and to integrate the fuel cleanup system into the main fuel processing loop. In January 1986 two major experiments were conducted. During these experiments the fuel cleanup system was integrated, through the transfer pumping system, with the isotope separation system, thus permitting testing on the integrated fuel processing loop. This integration of these systems leaves only the main vacuum system to be integrated into the TSTA fuel processing loop. In September 1986 another major tritium experiment was performed in which the integrated loop was operated, the tritium inventory increased to 50 g and additional measurements on the performance of the distillation system were taken. In the period June 1984 through September 1986 the TSTA system has processed well over 10 8 Ci of tritium. Total tritium emissions to the environment over this period have been less than 15 Ci. Personnel exposures during this period have totaled less than 100 person-mRem. To date, the development of tritium technology at TSTA has proceeded in progressive and orderly steps. In two years of operation with tritium, no major design flows have been uncovered

  5. Tritium confinement in a new tritium processing facility at the Savannah River Site

    International Nuclear Information System (INIS)

    Heung, L.K.; Owen, J.H.; Hsu, R.H.; Hashinger, R.F.; Ward, D.E.; Bandola, P.E.

    1991-01-01

    A new tritium processing facility, named the Replacement Tritium Facility (RTF), has been completed and is being prepared for startup at the Savannah River Site (SRS). The RTF has the capability to recover, purify and separate hydrogen isotopes from recycled gas containers. A multilayered confinement system is designed to reduce tritium losses to the environment. This confinement system is expected to confine and recover any tritium that might escape the process equipment, and to maintain the tritium concentration in the nitrogen glovebox atmosphere to less than 10 -2 μCi/cc tritium

  6. Tritium labeling of amino acids and peptides with liquid and solid tritium

    International Nuclear Information System (INIS)

    Peng, C.T.; Hua, R.L.; Souers, P.C.; Coronado, P.R.

    1988-01-01

    Amino acids and peptides were labeled with liquid and solid tritium at 21 K and 9 K. At these low temperatures radiation degradation is minimal, and tritium incorporation increases with tritium concentration and exposure time. Ring saturation in L-phenyl-alanine does not occur. Peptide linkage in oligopeptides is stable toward tritium. Deiodination in 3-iodotyrosine and 3,5-diiodotyrosine occurs readily and proceeds in steps by losing one iodine atom at a time. Nickel and noble metal supported catalysts when used as supports for dispersion of the substrate promote tritium labeling at 21 K. Our study shows that both liquid and solid tritium are potentially useful agents for labeling peptides and proteins. 11 refs., 1 fig., 3 tabs

  7. Tritium labeling of amino acids and peptides with liquid and solid tritium

    International Nuclear Information System (INIS)

    Souers, P.C.; Coronado, P.R.; Peng, C.T.; Hua, R.L.

    1988-01-01

    Amino acids and peptides were labeled with liquid and solid tritium at 21/degree/K and 9/degree/K. At these low temperatures radiation degradation is minimal, and tritium incorporation increases with tritium concentration and exposure time. Ring saturation in L-phenylalanine does not occur. Peptide linkage in oligopeptides is stable toward tritium. Deiodination in 3-iodotyrosine and 3,5-diiodotyrosine occurs readily and proceeds in steps by losing one iodine atom at a time. Nickel and noble metal supported catalysts when used as supports for dispersion of the substrate promote tritium labeling at 21 K. Our study shows that both liquid and solid tritiums are potentially useful agents for labeling peptides and proteins

  8. Water in the March river radioactively contaminated

    International Nuclear Information System (INIS)

    Englander, A.G.

    1990-01-01

    A curve of the tritium contamination of the March river measured in Austria from 1976 to 1989 is shown. The conjecture is put forward that this contamination is caused by the Dukovani power plant in the neighbouring CSFR. Further measurements are called for

  9. Status of contamination monitoring in Bangladesh

    Energy Technology Data Exchange (ETDEWEB)

    Begum, Aleya [Institute of Nuclear Science and Technology, Savar, Dacca (Bangladesh)

    1997-06-01

    The applications of radioisotopes and radiation sources to the research and development in medicine, food agriculture, industries and others are rapidly increasing in Bangladesh. The existing major nuclear facilites and allied laboratories of the country include 3 MW TRIGA Mark-2 research reactor for training, research and radioisotope production, 14 MeV neutron generator for nuclear data measurement and elemental analysis via neutron activation, 3 MeV Van de Graaff accelerator for the research and application of nuclear physics, and 50,000 Ci and 5,000 Ci Co-60 irradiators. About 10 Co-60 and Cs-137 teletherapy units are in operation in hospitals. The radioactive contamination of working areas, equipment, protective clothing and skin may result from normal operation and accidents, and contamination monitoring and decontamination are the essential part of radiation protection program. Surface contamination is monitored with Berthold survey meters. Hand and foot monitors have been used. Routine systematic search, continuous air monitoring, the examination of silt movement in Chittagong harbor using Sc-46 tracer and the measurement of tritium contamination for the neutron generator are reported. (K.I.)

  10. In-vessel tritium

    International Nuclear Information System (INIS)

    Ueda, Yoshio; Ohya, Kaoru; Ashikawa, Naoko; Ito, Atsushi M.; Kato, Daiji; Kawamura, Gakushi; Takayama, Arimichi; Tomita, Yukihiro; Nakamura, Hiroaki; Ono, Tadayoshi; Kawashima, Hisato; Shimizu, Katsuhiro; Takizuka, Tomonori; Nakano, Tomohide; Nakamura, Makoto; Hoshino, Kazuo; Kenmotsu, Takahiro; Wada, Motoi; Saito, Seiki; Takagi, Ikuji; Tanaka, Yasunori; Tanabe, Tetsuo; Yoshida, Masafumi; Toma, Mitsunori; Hatayama, Akiyoshi; Homma, Yuki; Tolstikhina, Inga Yu.

    2012-01-01

    The in-vessel tritium research is closely related to the plasma-materials interaction. It deals with the edge-plasma-wall interaction, the wall erosion, transport and re-deposition of neutral particles and the effect of neutral particles on the fuel recycling. Since the in-vessel tritium shows a complex nonlinear behavior, there remain many unsolved problems. So far, behaviors of in-vessel tritium have been investigated by two groups A01 and A02. The A01 group performed experiments on accumulation and recovery of tritium in thermonuclear fusion reactors and the A02 group studied theory and simulation on the in-vessel tritium behavior. In the present article, outcomes of the research are reviewed. (author)

  11. Tritium sampling and measurement

    International Nuclear Information System (INIS)

    Wood, M.J.; McElroy, R.G.; Surette, R.A.; Brown, R.M.

    1993-01-01

    Current methods for sampling and measuring tritium are described. Although the basic techniques have not changed significantly over the last 10 y, there have been several notable improvements in tritium measurement instrumentation. The design and quality of commercial ion-chamber-based and gas-flow-proportional-counter-based tritium monitors for tritium-in-air have improved, an indirect result of fusion-related research in the 1980s. For tritium-in-water analysis, commercial low-level liquid scintillation spectrometers capable of detecting tritium-in-water concentrations as low as 0.65 Bq L-1 for counting times of 500 min are available. The most sensitive method for tritium-in-water analysis is still 3He mass spectrometry. Concentrations as low as 0.35 mBq L-1 can be detected with current equipment. Passive tritium-oxide-in-air samplers are now being used for workplace monitoring and even in some environmental sampling applications. The reliability, convenience, and low cost of passive tritium-oxide-in-air samplers make them attractive options for many monitoring applications. Airflow proportional counters currently under development look promising for measuring tritium-in-air in the presence of high gamma and/or noble gas backgrounds. However, these detectors are currently limited by their poor performance in humidities over 30%. 133 refs

  12. Cytogenetic effects of tritium incorporated into DNA of human lymphocytes

    Energy Technology Data Exchange (ETDEWEB)

    Beno, M [Inst. of Preventive and Clinical Medicine, 83301 Bratislava (Slovakia)

    1996-12-31

    In the reported in vitro experiments the numbers of chromosomal aberrations (CA) in correlation to the physical dose as assessed by determining the specific radioactivity of DNA have been followed in vitro human lymphocytes from adult donors. Lymphocytes from healthy adult donors of age from 20 to 59 of both sexes (24 males and 20 females) were isolated from blood by centrifugation. After washing the cells were irradiated from tritium incorporated during in vitro incubation in phytohemagglutinin containing medium with tritium labelled thymidine. Slides for standard CA counting have been done from every sample 48 hours after the begin cultivation. The CA were counted in at least 200 metaphases on each slide. Parallel samples of lymphocytes served for preparation smears for autoradiography to determine the labeling index. Other parallel samples were used for the determination of tritium concentration in DNA by the diphenylamine method, as well as determination of the specific radioactivity in lymphocyte DNA by scintillation counting. The dose absorbed in DNA was estimated using the conversion factor implicating that 37 kBq of tritium uniformly distributed per gram of tissue of unit density delivers a dose rate of 121.4 {sup m}i{sup G}y/hour. The contamination of cells by precursors of nucleic acids - like tritiated thymidine - causes an uneven distribution of doses in the cell population. A proportion of the population of cells remains unlabelled. The dose-response curve is flat showing signs of loss of heavily damaged cells and signs of repair of damage. Both these signs are based on the nature of biological processes which lead to internal contamination of cells and to expression of effects in terms of numbers of CA. (J.K.) 5 figs., 4 refs.

  13. Tritium monitoring at the Sandia Tritium Research Laboratory

    International Nuclear Information System (INIS)

    Devlin, T.K.

    1978-10-01

    Sandia Laboratories at Livermore, California, is presently beginning operation of a Tritium Research Laboratory (TRL). The laboratory incorporates containment and cleanup facilities such that any unscheduled tritium release is captured rather than vented to the atmosphere. A sophisticated tritium monitoring system is in use at the TRL to protect operating personnel and the environment, as well as ensure the safe and effective operation of the TRL decontamination systems. Each monitoring system has, in addition to a local display, a display in a centralized control room which, when coupled room which, when coupled with the TRL control computer, automatically provides an immediate assessment of the status of the entire facility. The computer controls a complex alarm array status of the entire facility. The computer controls a complex alarm array and integrates and records all operational and unscheduled tritium releases

  14. Tritium permeation characterization of Al{sub 2}O{sub 3}/FeAl coatings as tritium permeation barriers on 321 type stainless steel containers

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Feilong; Xiang, Xin; Lu, Guangda; Zhang, Guikai, E-mail: zhangguikai@caep.cn; Tang, Tao; Shi, Yan; Wang, Xiaolin

    2016-09-15

    Accurate tritium transport properties of prospective tritium permeation barriers (TPBs) are essential to tritium systems in fusion reactors. By passing a temperature and rate-controlled sweeping gas over specimen surfaces to carry the permeated tritium to an ion chamber, the gas-driven permeation of tritium has been performed on 321 type stainless steel containers with Al{sub 2}O{sub 3}/FeAl barriers, to determine the T-permeation resistant performance and mechanism of the barrier. The tritium permeability of the Al{sub 2}O{sub 3}/FeAl coated container was reduced by 3 orders of magnitude at 500–700 °C by contrast with that of the bare one, which meets the requirement of the tritium permeation reduction factor (PRF) of TPBs for tritium operating components in the CN-HCCB TBM. The Al{sub 2}O{sub 3}/FeAl barrier resists the tritium permeation by the diffusion in the bulk substrate at a limited number of defect sites with an effective area and thickness, suggesting that the TPB quality is a very important factor for efficient T-permeation resistance. - Highlights: • T-permeation has been measured on bare and coated type 321 SS containers. • Al{sub 2}O{sub 3}/FeAl coating give a reduction of T-permeability of 3 orders of magnitude. • Mechanism of Al{sub 2}O{sub 3}/FeAl barrier resisting T-permeation has obtained. • Quality of TPB is a very important factor for efficient T-permeating reduction.

  15. Tritium activities in Canada

    International Nuclear Information System (INIS)

    Gierszewski, P.

    1995-01-01

    Canadian tritium activites comprise three major interests: utilites, light manufacturers, and fusion. There are 21 operating CANDU reactors in Canada; 19 with Ontario Hydro and one each with Hydro Quebec and New Brunswick Power. There are two light manufacturers, two primary tritium research facilities (at AECL Chalk River and Ontario Hydro Technologies), and a number of industry and universities involved in design, construction, and general support of the other tritium activities. The largest tritum program is in support of the CANDU reactors, which generate tritium in the heavy water as a by-product of normal operation. Currently, there are about 12 kg of tritium locked up in the heavy water coolant and moderator of these reactors. The fusion work is complementary to the light manufacturing, and is concerned with tritium handling for the ITER program. This included design, development and application of technologies related to Isotope Separation, tritium handling, (tritiated) gas separation, tritium-materials interaction, and plasma fueling

  16. Reducing the tritium inventory in waste produced by fusion devices

    Energy Technology Data Exchange (ETDEWEB)

    Pamela, J., E-mail: jerome.pamela@cea.fr [CEA, Agence ITER-France, F-13108 Saint-Paul-lez-Durance (France); Decanis, C. [CEA, DEN, Centre de Cadarache, F-13108 Saint-Paul-lez-Durance (France); Canas, D. [CEA, DEN/DADN, Centre de Saclay, F-91191 Gif-sur-Yvette cedex (France); Liger, K.; Gaune, F. [CEA, DEN, Centre de Cadarache, F-13108 Saint-Paul-lez-Durance (France)

    2015-04-15

    Highlights: • Fusion devices including ITER will generate tritiated waste, some of which will need to be detritiated before disposal. • Interim storage is the reference solution offering an answer for all types of tritiated radwaste. • Incineration is very attractive for VLLW and possibly SL-LILW soft housekeeping waste, since it offers higher tritium and waste volume reduction than the alternative thermal treatment technique. • For metallic waste, further R&D efforts should be made to optimize tritium release management and minimize the need for interim storage. - Abstract: The specific issues raised by tritiated waste resulting from fusion machines are described. Of the several categories of tritium contaminated waste produced during the entire lifespan of a fusion facility, i.e. operating phase and dismantling phase, only two categories are considered here: metal components and solid combustible waste, especially soft housekeeping materials. Some of these are expected to contain a high level of tritium, and may therefore need to be processed using a detritiation technique before disposal or interim storage. The reference solution for tritiated waste management in France is a 50-year temporary storage for tritium decay, with options for reducing the tritium content as alternatives or complement. An overview of the strategic issues related to tritium reduction techniques is proposed for each radiological category of waste for both metallic and soft housekeeping waste. For this latter category, several options of detritiation techniques by thermal treatment like heating up or incineration are described. A comparison has been made between these various technical options based on several criteria: environment, safety, technical feasibility and costs. For soft housekeeping waste, incineration is very attractive for VLLW and possibly SL-LILW. For metallic waste, further R&D efforts should be conducted.

  17. Tritium autoradiography

    International Nuclear Information System (INIS)

    Caskey, G.R. Jr.

    1981-01-01

    Hydrogen distribution and diffusion within many materials may be investigated by autoradiography if the radioactive isotope tritium is used in the study. Tritium is unstable and decays to helium-3 by emission of a low energy (18 keV) beta particle which may be detected photographically. The basic principles of tritium autoradiography will be discussed. Limitations are imposed on the technique by: (1) the low energy of the beta particles; (2) the solubility and diffusivity of hydrogen in materials; and (3) the response of the photographic emulsion to beta particles. These factors control the possible range of application of tritium autoradiography. The technique has been applied successfully to studies of hydrogen solubility and distribution in materials and to studies of hydrogen damage

  18. Tritium activity concentration along the Western shore of the Black Sea

    International Nuclear Information System (INIS)

    Carmen Varlam; Faurescu, I.; Irina Vagner; Denisa Faurescu; Patrascu, V.; Margineanu, R.M.; Duliu, O.G.

    2013-01-01

    The Black Sea tritium level was investigated in 33 places southward the Danube Delta covering about 360 km of the Black Sea Western Shore. Both surface (10 cm depth) and bottom (up to 20 m depth) water samples were collected. In the close vicinity of Danube Delta, the tritium activity concentration in the surface water was around 28 TU, which is almost the same as that of the Danube River waters, but it decreased to about 5 TU in the bottom water. This discrepancy slowly diminished wherein at about 120 km southward, the tritium content in both surface and bottom water reached almost the same constant value of 6.5 ± 2.3 TU. This value, about two and a half times smaller than that reported 17 years ago, remained almost unchanged for the last 240 km of shore up to the Turkish border. (author)

  19. Kinetics of catalyzed tritium oxidation in air at ambient temperature

    International Nuclear Information System (INIS)

    Sherwood, A.E.

    1980-01-01

    Tritium/air oxidation kinetic data are derived from measurements carried out with three catalysts. All experiments were carried out at room temperature - a regime that provides a severe test for catalyst effectiveness. Each catalyst consists of a high-surface-area substrate in pelletized form, onto which precious metal has been dispersed. The metal/substrate combinations investigated are: platinum/alumina, palladium/kaolin, and paladium/zeolite. Each of the dispersed-metal catalysts is extremely effective in promoting tritium oxidation in comparison with self-catalyzed atmospheric conversion; equivalent first-order rate constants are higher by roughly nine orders of magnitude. Electron-microprobe scans reveal that the dispersed metal is deposited near the outer surface of the catalyst, with metal concentration decreasing exponentially from the pellet surface. The platinum-based catalyst is more effective than the palladium catalysts on a surface-area basis by about a factor of three. Rate coefficients are determined from concentration decay following a spike injection of tritium into an air-filled enclosure processed by recirculation through an oxidation/adsorption system. The catalytic reaction is first-order in tritium concentration in the range 10 to 10 5 μCi/m 3 (4 ppt-40 ppB). Addition of hydrogen carrier gas is unnecessary. Catalytic activity for all three catalysts declines with time of exposure to air after activation, following a power-law decay with an exponent of -1/2. Reactivation with hot hydrogen gas effectively restores initial catalytic activity

  20. Tritium technology. A Canadian overview

    Energy Technology Data Exchange (ETDEWEB)

    Hemmings, R.L. [Canatom NPM (Canada)

    2002-10-01

    An overview of the various tritium research and operational activities in Canada is presented. These activities encompass tritium processing and recovery, tritium interactions with materials, and tritium health and safety. Many of these on-going activities form a sound basis for the tritium use and handling aspects of the ITER project. Tritium management within the CANDU heavy water reactor, associated detritiation facilities, research and development facilities, and commercial industry and improving the understanding of tritium behaviour in humans and the environment remain the focus of a long-standing Canadian interest in tritium. While there have been changes in the application of this knowledge and experience over time, the operating experience and the supporting research and development continue to provide for improved plant and facility operations, an improved understanding of tritium safety issues, and improved products and tools that facilitate tritium management. (author)

  1. Tritium technology. A Canadian overview

    International Nuclear Information System (INIS)

    Hemmings, R.L.

    2002-01-01

    An overview of the various tritium research and operational activities in Canada is presented. These activities encompass tritium processing and recovery, tritium interactions with materials, and tritium health and safety. Many of these on-going activities form a sound basis for the tritium use and handling aspects of the ITER project. Tritium management within the CANDU heavy water reactor, associated detritiation facilities, research and development facilities, and commercial industry and improving the understanding of tritium behaviour in humans and the environment remain the focus of a long-standing Canadian interest in tritium. While there have been changes in the application of this knowledge and experience over time, the operating experience and the supporting research and development continue to provide for improved plant and facility operations, an improved understanding of tritium safety issues, and improved products and tools that facilitate tritium management. (author)

  2. Tritium permeation barriers for fusion technology

    International Nuclear Information System (INIS)

    Perujo, A.; Forcey, K.

    1994-01-01

    An important issue concerning the safety, feasibility and fueling (i.e., tritium breeding ratio and recovery from the breeding blanket) of a fusion reactor is the possible tritium leakages through the structural materials and in particular through those operating at high temperatures. The control of tritium permeation could be a critical factor in determining the viability of a future fusion power reactor. The formation of tritium permeation barriers to prevent the loss of tritium to the coolant by diffusion though the structural material seems to be the most practical method to minimize such losses. Many authors have discussed the formation of permeation barriers to reduce the leakage of hydrogen isotopes through proposed first wall and structural materials. In general, there are two routes for the formation of such a barrier, namely: the growth of oxide layers (e.g., Cr 2 O 3 , Al 2 O 3 , etc.) or the application of surface coatings. Non-metals are the most promising materials from the point of view of the formation of permeation barriers. Oxides such as Al 2 O 3 or Cr 2 O 3 or carbides such as SiC or TiC have been proposed. Amongst the metals only tungsten or gold are sufficiently less permeable than steel to warrant investigation as candidate materials for permeation barriers. It is of course possible to grow oxide layers on steel directly by heating in the atmosphere or under a variety of conditions (first route above). The direct oxidizing is normally done in an environment of open-quotes wet hydrogenclose quotes to promote the growth of chromia on, for example, nickel steels or ternary oxides on 316L to prevent corrosion. The application of surface layers (second route above), offers a greater range of materials for the formation of permeation barriers. In addition to reducing permeation, such layers should be adhesive, resistant to attack by corrosive breeder materials and should not crack during thermal cycling

  3. Modeling tritium processes in plasma-facing beryllium

    International Nuclear Information System (INIS)

    Longhurst, G.R.; Anderl, R.A.; Dolan, T.J.; Mulock, M.J.

    1995-01-01

    In this paper we present techniques and recommended parameters for modeling tritium implantation, trapping and release, and permeation, in beryllium-clad structures adjacent to the plasma. Among the features that should be considered are the effects of surface films, the mobility of beryllium through those films, damage caused by ion implantation, especially in regions where pitting may be expected, and bubble formation. Tritium transport parameters recommended are based on fits with experimental data and available theory. Estimates of inventories in ITER using these parameters are also given. 31 refs., 2 figs., 1 tab

  4. Tritium

    International Nuclear Information System (INIS)

    Fiege, A.

    1992-07-01

    This report contains information on chemical and physical properties, occurence, production, use, technology, release, radioecology, radiobiology, dose estimates, radioprotection and legal aspects of tritium. The objective of this report is to provide a reliable data base for the public discussion on tritium, especially with regard to its use in future nuclear fusion plants and its radiological assessment. (orig.) [de

  5. Vertical distribution of tritium in core sediment of Mumbai Harbour Bay

    International Nuclear Information System (INIS)

    Rupali, C.K.; Joshi, Vikram; Jha, S.K.; Tripathi, R.M.; Sonali, B.; Priyanka, R.

    2014-01-01

    In the past few years there has been an increasing interest in the study of behavior of tritium in the environment, worldwide many countries have initiated monitoring of organically bound tritium in the environmental samples as part of their radiological assessments. Tritium ( 3 H) is ubiquitous in the aquatic environment and has a various sources of origin. It is transported to the earth's surface via hydrological cycle. 3 H is produced in variety of processes in nuclear power plants. Discharges to aquatic environment from these establishment results in locally enhanced water concentrations. Levels of 3 H have been further elevated due to atmospheric weapons testing between 1952 and 1962. Recent studies have demonstrated significant accumulation of tritium in both organic-rich sediments and food chain. The present study describes the vertical profile of tritium distribution in core sediment collected from Mumbai Harbour Bay (MHB). This will help in better understanding of the biogeochemical behavior and ecological impacts of tritium in the sediment

  6. Diffusion of gases in solids: rare gas diffusion in solids; tritium diffusion in fission and fusion reactor metals. Final report

    International Nuclear Information System (INIS)

    Abraham, P.M.; Chandra, D.; Mintz, J.M.; Elleman, T.S.; Verghese, K.

    1976-01-01

    Major results of tritium and rare gas diffusion research conducted under the contract are summarized. The materials studied were austenitic stainless steels, Zircaloy, and niobium. In all three of the metal systems investigated, tritium release rates were found to be inhibited by surface oxide films. The effective diffusion coefficients that control tritium release from surface films on Zircaloy and niobium were determined to be eight to ten orders of magnitude lower than the bulk diffusion coefficients. A rapid component of diffusion due to grain boundaries was identified in stainless steels. The grain boundary diffusion coefficient was determined to be about six orders of magnitude greater than the bulk diffusion coefficient for tritium in stainless steel. In Zircaloy clad fuel pins, the permeation rate of tritium through the cladding is rate-limited by the extremely slow diffusion rate in the surface films. Tritium diffusion rates through surface oxide films on niobium appear to be controlled by cracks in the surface films at temperatures up to 600 0 C. Beyond 600 0 C, the cracks appear to heal, thereby increasing the activation energy for diffusion through the oxide film. The steady-state diffusion of tritium in a fusion reactor blanket has been evaluated in order to calculate the equilibrium tritium transport rate, approximate time to equilibrium, and tritium inventory in various regions of the reactor blanket as a function of selected blanket parameters. Values for these quantities have been tabulated

  7. Evaluation of thin CaF2 (Eu) scintillator for detecting tritium

    International Nuclear Information System (INIS)

    Chiles, M.M.

    1986-10-01

    The primary objective of this project was to investigate the feasibility of using a CaF 2 (Eu) scintillator for detecting low-energy beta particles from tritium. A proof-of-principle detector was designed for flowing tritium-spiked nitrogen gas across the surface of a thin scintillator, which was optically coupled between two low-noise photomultiplier tubes. Electronics for operating the two photomultiplier tubes in coincidence eliminated most of the tube noise pulses and allowed detection of the small pulses from the low-energy tritium beta particles

  8. Modeling of laser damage initiated by surface contamination

    International Nuclear Information System (INIS)

    Feit, M.D.; Rubenchik, A.M.; Faux, D.R.; Riddle, R.A.; Shapiro, A.; Eder, D.C.; Penetrante, B.M.; Milam, D.; Genin, F.Y.; Kozlowski, M.R.

    1996-11-01

    The authors are engaged in a comprehensive effort to understand and model the initiation and growth of laser damage initiated by surface contaminants. This includes, for example, the initial absorption by the contaminant, heating and plasma generation, pressure and thermal loading of the transparent substrate, and subsequent shockwave propagation, 'splashing' of molten material and possible spallation, optical propagation and scattering, and treatment of material fracture. The integration use of large radiation hydrodynamics codes, optical propagation codes and material strength codes enables a comprehensive view of the damage process The following picture of surface contaminant initiated laser damage is emerging from our simulations

  9. On release of radionuclides from a near-surface radioactive waste repository to the environment

    Directory of Open Access Journals (Sweden)

    Gudelis Arūnas

    2015-09-01

    Full Text Available A closed near-surface radioactive waste repository is the source of various radionuclides causing the human exposure. Recent investigations confirm an effectiveness of the engineering barriers installed in 2006 to prevent the penetration of radionuclides to the environment. The tritium activity concentration in groundwater decreased from tens of kBq/l to below hundreds of Bq/l. The monitoring and groundwater level data suggest the leaching of tritium from previously contaminated layers of unsaturated zone by rising groundwater while 210Pb may disperse as a decay product of 226Ra daughters.

  10. Development of tritium plant system for fusion reactors. Achievements in the 14-year US-Japan collaboration

    International Nuclear Information System (INIS)

    Nishi, Masataka; Yamanishi, Toshihiko; Shu, Wataru

    2003-01-01

    Fuel processing technology and tritium safe-handling technology have been developed through US/DOE-JAERI collaboration from 1987 till 2001, and the technologies to construct the tritium plant system of ITER have been made currently available. This paper overviews the major achievements of this collaborative researches over fourteen years, which were performed mainly at the Tritium Systems Test Assembly (TSTA) of the Los Alamos National Laboratory (LANL). The tritium plant system consists mainly of a fuel processing system, which includes a fuel cycle system and a blanket tritium recovery system, and a tritium confinement/removal system. The fuel cycle system recovers fuel from plasma exhaust gas and recycles it. In the collaboration, major key components and subsystems were developed, and the performance of the integrated system was successfully demonstrated over its one-month operation in which plasma exhaust model gas was processed at a processing rate of up to 1/6 level of the ITER. The technological basis of the fuel cycle system was thus established. Blanket tritium recovery technology was also successfully demonstrated using the TSTA system. Through the successful safe-operation of the TSTA, reliability of tritium confinement/removal system was verified basically. In addition, much data to confirm or enhance safety were accumulated by experiments such as intentional tritium release in a large room. Furthermore, distribution of tritium contamination in the vacuum vessel of the TFTR, a large tokamak of the Princeton Plasma Physics Laboratory (PPPL), was investigated in this work. (author)

  11. Development of Tritium Plant System for Fusion Reactors - Achievements in the 14-year US-Japan Collaboration -

    Science.gov (United States)

    Nishi, Masataka; Yamanishi, Toshihiko; Shu, Wataru

    Fuel processing technology and tritium safe-handling technology have been developed through US/DOE-JAERI collaboration from 1987 till 2001, and the technologies to construct the tritium plant system of ITER have been made currently available. This paper overviews the major achievements of this collaborative researches over fourteen years, which were performed mainly at the Tritium Systems Test Assembly (TSTA) of the Los Alamos National Laboratory (LANL). The tritium plant system consists mainly of a fuel processing system, which includes a fuel cycle system and a blanket tritium recovery system, and a tritium confinement/removal system. The fuel cycle system recovers fuel from plasma exhaust gas and recycles it. In the collaboration, major key components and subsystems were developed, and the performance of the integrated system was successfully demonstrated over its one-month operation in which plasma exhaust model gas was processed at a processing rate of up to 1/6 level of the ITER. The technological basis of the fuel cycle system was thus established. Blanket tritium recovery technology was also successfully demonstrated using the TSTA system. Through the successful safeoperation of the TSTA, reliability of tritium confinement/removal system was verified basically. In addition, much data to confirm or enhance safety were accumulated by experiments such as intentional tritium release in a large room. Furthermore,distribution of tritium contamination in the vacuum vessel of the TFTR, a large tokamak of the Princeton Plasma Physics Laboratory (PPPL), was investigated in this work.

  12. In situ measurement of tritium permeation through stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Luscher, Walter G., E-mail: walter.luscher@pnnl.gov [Pacific Northwest National Laboratory, 902 Battelle Blvd, Richland, WA 99352 (United States); Senor, David J., E-mail: david.senor@pnnl.gov [Pacific Northwest National Laboratory, 902 Battelle Blvd, Richland, WA 99352 (United States); Clayton, Kevin K., E-mail: kevin.clayton@inl.gov [Idaho National Laboratory, 2525 Fremont Ave., Idaho Falls, ID 83415 (United States); Longhurst, Glen R., E-mail: glenlonghurst@suu.edu [Idaho National Laboratory, 2525 Fremont Ave., Idaho Falls, ID 83415 (United States)

    2013-06-15

    Highlights: ► In situ tritium permeation measurements collected over broad pressure range. ► Test conditions relevant to 316 SS in commercial light water reactors. ► Comparisons between in- and ex-reactor measurements provided. ► Correlation between tritium permeation, temperature, and pressure developed. -- Abstract: The TMIST-2 irradiation experiment was conducted in the Advanced Test Reactor at Idaho National Laboratory to evaluate tritium permeation through Type 316 stainless steel (316 SS). The interior of a 316 SS seamless tube specimen was exposed to a {sup 4}He carrier gas mixed with a specified quantity of tritium (T{sub 2}) to yield partial pressures of 0.1, 5, and 50 Pa at 292 °C and 330 °C. In situ tritium permeation measurements were made by passing a He–Ne sweep gas over the outer surface of the specimen to carry the permeated tritium to a bubbler column for liquid scintillation counting. Results from in situ permeation measurements were compared with predictions based on an ex-reactor permeation correlation in the literature. In situ permeation data were also used to derive an in-reactor permeation correlation as a function of temperature and pressure over the ranges considered in this study. In addition, the triton recoil contribution to tritium permeation, which results from the transmutation of {sup 3}He to T, was also evaluated by introducing a {sup 4}He carrier gas mixed with {sup 3}He at a partial pressure of 1013 Pa at 330 °C. Less than 3% of the tritium resulting from {sup 3}He transmutation contributed to tritium permeation.

  13. Investigation of tritium transport by the water courses from the territory of Krasnoyarsk MCC

    International Nuclear Information System (INIS)

    Nosov, A.V.; Martynova, A.M.; Shabanov, V.F.; Savitskij, Yu.V.; Shishlov, A.E.; Revenko, Yu.A.

    2001-01-01

    The problem of the Enisej river contamination as a result of tritium transport from the territory of the Krasnoyarsk Mining and Chemical Complex is discussed. The results of investigations realized for the Complex sewerage waters and streams running out from its territory and flowing into the Enisej river within the controlled area are analyzed. The investigations include hydrometric measurements of water flow rate, dosimetric measurements of of water stream profiles and sampling of water, bottom sediments, tidal soils, as well as hydrobionts for radioisotope and chemical analysis. Maximum tritium concentration revealed amounts to 125 Bq/l which is not dangerous from ecological viewpoint. The conclusion on necessity of the tritium monitoring in the zone affected by the Krasnoyarsk Mining and Chemical Complex is made [ru

  14. Influence of additives and impurities in sweep gas and solid tritium release behaviour from lithium ceramics (review)

    International Nuclear Information System (INIS)

    Tanaka, Satoru

    1991-01-01

    Tritium release from solid breeding material is affected by small amounts of additives or impurities in the sweep gas or solid itself. Addition of hydrogen or water vapor to the sweep gas is reported to enhance the surface reaction of tritium release. Doping to solid breeder with elements of different valence from lithium has a possibility to improve tritium diffusion in the solid. Surface reaction and migration behavior in bulk are believed to be also affected by impurities in the sweep gas and in the solid. In order to model tritium release behavior in the blanket of fusion reactor, the mechanism of interaction with these additives or impurities must be quantitatively formulated. However, the mechanism of these remains to be elucidated. In this paper effects of these additives and impurities on tritium migration are reviewed. The mechanism of surface reaction for He+H 2 sweep gas is also discussed. (orig.)

  15. Permeability of protective coatings to tritium

    International Nuclear Information System (INIS)

    Braun, J.M.

    1987-10-01

    The permeability of four protective coatings to tritium gas and tritiated water was investigated. The coatings, including two epoxies, one vinyl and one urethane, were selected for their suitability in CANDU plant service in Ontario Hydro. Sorption rates of tritium gas into the coatings were considerably larger than for tritiated water, by as much as three to four orders of magnitude. However, as a result of the very large solubility of tritiated water in the coatings, the overall permeability to tritium gas and tritiated water are comparable, being somewhat larger for HTO. Marked differences were also evident among the four coatings, the vinyl proving to be unique in behaviour and morphology. Because of a highly porous surface structure water condensation takes place at high relative humidities, leading to an abnormally high retention of free water. Desorption rates from the four coatings were otherwise quite similar. Of practical importance was the observation that more effective desorption of tritiated water could be carried out at relatively high humidities, in this case 60%. It was believed that isotopic exchange was responsible for this phenomenon. It appears that epoxy coatings having a high pigment-to-binder ratio are most suited for coating concrete in tritium handling facilities

  16. Contamination of optical surfaces in Earth orbit

    Science.gov (United States)

    Kinser, Donald L.; Weller, Robert A.; Mendenhall, M. H.; Wiedlocher, D. E.; Nichols, R.; Tucker, D.; Whitaker, A.

    1992-01-01

    Glass and glass ceramic samples exposed to the low earth orbit environment for approximately 5.5 years on the Long Duration Exposure Facility (LDEF) were found to display limited degradation in optical transmission. Commercial optical quality fused silica samples display decreases in transmission in the 200 to 400 nm wavelength region, and this degradation appears to be a consequence of surface contamination. The contamination, found only on internal surfaces of samples, was measured by medium energy backscattering spectrometry and found to be primarily carbon. Additional thin film contamination by a species with atomic mass near 64, which was present at the level of about 8 x 10 exp 14/sq. cm has not been identified. These observations are consistent with the interpretation that organic binders used in the black absorbing paint (Chem Glaze Z-306) inside the sample holding tray were concentrated in the vicinity of the samples and photolytically cracked by solar UV radiation. The resulting decomposition products were deposited on the interior sample surface and gave rise to the optical transmission loss. No detectable contamination was observed on the external or space exposed surface of the samples. No measurable damage was detected which could be attributed to the direct action of gamma or UV radiation on the glass samples. These results emphasize the need for special precautions in the preparation of spacecraft carrying precision optical components on long duration missions.

  17. Tritium levels in milk in the vicinity of chronic tritium releases.

    Science.gov (United States)

    Le Goff, P; Guétat, Ph; Vichot, L; Leconte, N; Badot, P M; Gaucheron, F; Fromm, M

    2016-01-01

    Tritium is the radioactive isotope of hydrogen. It can be integrated into most biological molecules. Even though its radiotoxicity is weak, the effects of tritium can be increased following concentration in critical compartments of living organisms. For a better understanding of tritium circulation in the environment and to highlight transfer constants between compartments, we studied the tritiation of different agricultural matrices chronically exposed to tritium. Milk is one of the most frequently monitored foodstuffs in the vicinity of points known for chronic release of radionuclides firstly because dairy products find their way into most homes but also because it integrates deposition over large areas at a local scale. It is a food which contains all the main nutrients, especially proteins, carbohydrates and lipids. We thus studied the tritium levels of milk in chronic exposure conditions by comparing the tritiation of the main hydrogenated components of milk, first, component by component, then, sample by sample. Significant correlations were found between the specific activities of drinking water and free water of milk as well as between the tritium levels of cattle feed dry matter and of the main organic components of milk. Our findings stress the importance of the metabolism on the distribution of tritium in the different compartments. Overall, dilution of hydrogen in the environmental compartments was found to play an important role dimming possible isotopic effects even in a food chain chronically exposed to tritium. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Tritium pellet injector results

    International Nuclear Information System (INIS)

    Fisher, P.W.; Bauer, M.L.; Baylor, L.R.; Deleanu, L.E.; Fehling, D.T.; Milora, S.L.; Whitson, J.C.

    1988-01-01

    Injection of solid tritium pellets is considered to be the most promising way of fueling fusion reactors. The Tritium Proof-of- Principle (TPOP) experiment has demonstrated the feasibility of forming and accelerating tritium pellets. This injector is based on the pneumatic pipe-gun concept, in which pellets are formed in situ in the barrel and accelerated with high-pressure gas. This injector is ideal for tritium service because there are no moving parts inside the gun and because no excess tritium is required in the pellet production process. Removal of 3 He from tritium to prevent blocking of the cryopumping action by the noncondensible gas has been demonstrated with a cryogenic separator. Pellet velocities of 1280 m/s have been achieved for 4-mm-diam by 4-mm-long cylindrical tritium pellets with hydrogen propellant at 6.96 MPa (1000 psi). 10 refs., 10 figs

  19. Results of preliminary experiments on tritium decontamination by UV irradiation

    International Nuclear Information System (INIS)

    Oya, Yasuhisa; Shu, Wataru; O'hira, Shigeru; Hayashi, Takumi; Nishi, Masataka

    2000-03-01

    In the point of view of protection of workers from the radiation exposure and the limitation of the contamination with radioactive materials, it is important to decontaminate mobile tritium from plasma facing components of a nuclear fusion reactor at the beginning of their maintenance work. It is considered that the heating is the most effective method for decontamination. However, it is important to develop new decontamination method of adsorbed hydro-carbon based substances from the materials that cannot be heated or the inner pipe of double pipes. This report presents results of preliminary experiments performed for the development of the effective tritium decontamination technique pursuing under US/Japan collaborative program on technology for fusion-fuel processing (Annex IV). In the experiments, the effects of Ultra Violet (UV) irradiation on tritium removal from some kinds of materials, such as poly vinyl chloride -(CH 2 CHCl) n - film, polyethylene film and graphite samples coated by C 2 H 2 plasma were examined. As the result of UV irradiation, it was confined that hydrogen and carbon based compounds could be released from the specimen during UV irradiation. It is concluded that UV irradiation is one of the hopeful candidates for effective tritium decontamination. (author)

  20. Removal mechanism of tritium by variously pretreated silica gel

    International Nuclear Information System (INIS)

    Nakashima, M.; Tachikawa, E.; Saeki, M.; Aratono, Y.

    1981-01-01

    Removal mechanisms of HTO from variously pretreated and non-pretreated silica gel columns were investigated with pulse-loading with tritiated water vapor. With non-pretreated silica gel, the HTO physisorbed on the upper part of the column comes into contact with surface hydroxyl groups while passing downward the column, so that in each equilibration a part of the tritium is incorporated into hydroxyl groups by H/T isotopic exchange reactions. With the silica gel pretreated at a temperature below 400 0 C, most of tritium in the applied HTO is easily incorporated into surface hydroxyl groups in the upper part of the column either by H/T isotopic exchange reactions or by rehydration of the dehydrated surface (siloxyl linkage). In the pretreatment above 400 0 C, essentially all the tritium is trapped by siloxyl groups of various stabilities. The ease of rehydration of siloxyl groups by applied HTO depends on their stabilities, which, in turn, depend on the pretreatment temperature. As a general trend, treatment at higher temperature promotes annealing of the constrained siloxyl groups and thus the rate of rehydration becomes slower. (author)

  1. JET experiments with tritium and deuterium–tritium mixtures

    NARCIS (Netherlands)

    Horton, L.; Batistoni, P.; Boyer, H.; Challis, C.; Ciric, D.; Donne, A. J. H.; Eriksson, L. G.; Garcia, J.; Garzotti, L.; Gee, S.; Hobirk, J.; Joffrin, E.; Jones, T.; King, D. B.; Knipe, S.; Litaudon, X.; Matthews, G. F.; Monakhov, I.; Murari, A.; Nunes, I.; Riccardo, V.; Sips, A. C. C.; Warren, R.; Weisen, H.; Zastrow, K. D.

    2016-01-01

    Extensive preparations are now underway for an experiment in the Joint European Torus (JET) using tritium and deuterium–tritium mixtures. The goals of this experiment are described as well as the progress that has been made in developing plasma operational scenarios and physics reference pulses for

  2. Model improvements for tritium transport in DEMO fuel cycle

    Energy Technology Data Exchange (ETDEWEB)

    Santucci, Alessia, E-mail: alessia.santucci@enea.it [Unità Tecnica Fusione – ENEA C. R. Frascati, Via E. Fermi 45, 00044 Frascati (Roma) (Italy); Tosti, Silvano [Unità Tecnica Fusione – ENEA C. R. Frascati, Via E. Fermi 45, 00044 Frascati (Roma) (Italy); Franza, Fabrizio [Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen (Germany)

    2015-10-15

    Highlights: • T inventory and permeation of DEMO blankets have been assessed under pulsed operation. • 1-D model for T transport has been developed for the HCLL DEMO blanket. • The 1-D model evaluated T partial pressure and T permeation rate radial profiles. - Abstract: DEMO operation requires a large amount of tritium, which is directly produced inside the reactor by means of Li-based breeders. During its production, recovering and purification, tritium comes in contact with large surfaces of hot metallic walls, therefore it can permeate through the blanket cooling structure, reach the steam generator and finally the environment. The development of dedicated simulation tools able to predict tritium losses and inventories is necessary to verify the accomplishment of the accepted tritium environmental releases as well as to guarantee a correct machine operation. In this work, the FUS-TPC code is improved by including the possibility to operate in pulsed regime: results in terms of tritium inventory and losses for three pulsed scenarios are shown. Moreover, the development of a 1-D model considering the radial profile of the tritium generation is described. By referring to the inboard segment on the equatorial axis of the helium-cooled lithium–lead (HCLL) blanket, preliminary results of the 1-D model are illustrated: tritium partial pressure in Li–Pb and tritium permeation in the cooling and stiffening plates by assuming several permeation reduction factor (PRF) values. Future improvements will consider the application of the model to all segments of different blanket concepts.

  3. Role of soil-to-leaf tritium transfer in controlling leaf tritium dynamics: Comparison of experimental garden and tritium-transfer model results.

    Science.gov (United States)

    Ota, Masakazu; Kwamena, Nana-Owusua A; Mihok, Steve; Korolevych, Volodymyr

    2017-11-01

    Environmental transfer models assume that organically-bound tritium (OBT) is formed directly from tissue-free water tritium (TFWT) in environmental compartments. Nevertheless, studies in the literature have shown that measured OBT/HTO ratios in environmental samples are variable and generally higher than expected. The importance of soil-to-leaf HTO transfer pathway in controlling the leaf tritium dynamics is not well understood. A model inter-comparison of two tritium transfer models (CTEM-CLASS-TT and SOLVEG-II) was carried out with measured environmental samples from an experimental garden plot set up next to a tritium-processing facility. The garden plot received one of three different irrigation treatments - no external irrigation, irrigation with low tritium water and irrigation with high tritium water. The contrast between the results obtained with the different irrigation treatments provided insights into the impact of soil-to-leaf HTO transfer on the leaf tritium dynamics. Concentrations of TFWT and OBT in the garden plots that were not irrigated or irrigated with low tritium water were variable, responding to the arrival of the HTO-plume from the tritium-processing facility. In contrast, for the plants irrigated with high tritium water, the TFWT concentration remained elevated during the entire experimental period due to a continuous source of high HTO in the soil. Calculated concentrations of OBT in the leaves showed an initial increase followed by quasi-equilibration with the TFWT concentration. In this quasi-equilibrium state, concentrations of OBT remained elevated and unchanged despite the arrivals of the plume. These results from the model inter-comparison demonstrate that soil-to-leaf HTO transfer significantly affects tritium dynamics in leaves and thereby OBT/HTO ratio in the leaf regardless of the atmospheric HTO concentration, only if there is elevated HTO concentrations in the soil. The results of this work indicate that assessment models

  4. Improvement of a device for monitoring the contamination of surfaces

    International Nuclear Information System (INIS)

    Barbier, Albert.

    1981-01-01

    The purpose of this invention is to make it possible to monitor the contamination of surfaces by a light weight portable device and enabling the alpha, beta and gamma radiation contamination to be detected. The detection probe which is connected by a single lead to the box is adapted, in each particular case, to the radiation mode emitted by the contaminated surfaces and the box is provided with a special leak-proof socket for connecting the probe and includes means for assessing the counting rate of the radiation given off, depending on the mode of the radiations emitted by the contaminated surfaces and the intensity of the count rate [fr

  5. Tritium system for a tokamak reactor with a self-pumped limiter

    International Nuclear Information System (INIS)

    Hassanein, A.M.; Sze, D.K.

    1986-01-01

    Benefits of the self-pumping system are the elimination of vacuum ducts, pumps, and penetration shielding (except for a very small startup system), and the reduction of tritium recycle and refueling. In addition, a self-pumped system may perform better and last longer than alternative systems such as a pumped limiter. The reference case here is a self-cooled lithium/vanadium blanket with a first wall/limiter. This concept combines the functions of first wall and limiter into a single first-wall structure. The wall is shaped in accordance with the outermost plasma flux surface. Trapping material is added to the plasma scrape-off or edge region where it is transported to the wall. The entire wall area is used for helium trapping. The tritium inventory, tritium permeation rate, and plasma protium concentration for the vanadium wall as a function of the number of years of operation are calculated. The tritium inventory is acceptable, the protium concentration in the plasma is acceptably small, and the tritium permeation rate is moderate. At the start of operation, it is equal to about five times the tritium burnup rate. This tritium will enter the coolant and the cost of the blanket tritium recovery system will be higher

  6. Tritium in nuclear power plants

    International Nuclear Information System (INIS)

    Badyaev, V.V.; Egorov, Yu.A.; Sklyarov, V.P.; Stegachev, G.V.

    1981-01-01

    The problem of tritium formation during NPP operation is considered on the basis of available published data. Tritium characteristics are given, sources of the origin of natural and artificial tritium are described. NPP contribution to the total tritium amount in the environment is determined, as well as contribution of each process in the reactor to the quantity of tritium, produced at the NPP. Thermal- and fast-neutron reactions with tritium production are shown, their contribution to the total amount of tritium in a coolant is estimated, taking into account the type of reactor. Data on tritium content in NPP wastes and in the air of working premises are presented. Methods for sampling and sample preparation to measurements as well as the appropriate equipment are considered. Design of the gas-discharge counter of internal filling, used for measuring tritium activity in samples is described [ru

  7. Analysis of in-situ tritium recovery from solid fusion-reactor blankets

    International Nuclear Information System (INIS)

    Smith, D.L.; Clemmer, R.G.; Jankus, V.Z.; Rest, J.

    1980-01-01

    The proposed concept for in-situ tritium recovery from the STARFIRE blanket involves circulation of a low pressure (approx. 0.05 MPa) helium through formed channels in the highly porous solid breeding material. Tritium generated within the grains must diffuse to the grain boundaries, migrate through the grain boundaries to the particle surface and then percolate through the packed bed to the helium purge channel. Highly porous α-LiAlO 2 with a bimodal pore distribution is proposed for the breeding material to facilitate the tritium release

  8. Environmental aspects of tritium

    International Nuclear Information System (INIS)

    Quisenberry, D.R.

    1979-01-01

    The potential radiological implications of environmental tritium releases must be determined in order to develop a programme for dealing with the tritium inventory predicted for the nuclear power industry which, though still in its infancy, produces tritium in megacurie quantities annually. Should the development of fusion power generation become a reality, it will create a potential source for large releases of tritium, much of it in the gaseous state. At present about 90% of the tritium produced enters the environment through gaseous and liquid effluents and is deposited in the hydrosphere as tritiated water. Tritium can be assimilated by plants and animals and organically bound, regardless of the exposure pathway. However, there appears to be no concentration factor relative to hydrogen at any level of food chains analysed to date. The body burden, for man, is dependent on the exposure pathway and tissue-bound fractions are primarily the result of organically bound tritium in food. (author)

  9. Gaining insight into Clipperton's lagoon hydrology using tritium

    International Nuclear Information System (INIS)

    Jean-Baptiste, P.; Fourre, E.; Charlou, J.L.; Donval, J.P.; Correge, T.

    2009-01-01

    Historical descriptions of the Clipperton lagoon appear to converge on the fact that it became isolated from the surrounding ocean around 1858. Since then, because of the high precipitation rate which largely exceeds evaporation in this region of the eastern tropical Pacific, a brackish lens has formed on top of the saline oceanic waters. In 1980, literature data show that the thickness of this water body was reaching 14 m. During the 2005 Etienne's Clipperton expedition, we collected lagoon water on two vertical profiles. Salinity, δ 18 O and tritium analyses were performed on these samples with the objective of gaining further insight into the lagoon hydrology and age of the deep waters. The upper 15 m were characterized by low salinities (5.4 ± 0.2), and δ 18 O and tritium values typical of local precipitation. At depth, waters had salinity and δ 18 O similar to oceanic surface waters but with low tritium concentrations, hence pointing to quite isolated waters representing a remnant of marine waters when the lagoon was still communicating with the ocean. At lagoon closure, the excess of precipitation over evaporation raised the lagoon level, thus creating a hydraulic pressure head which favored salt expulsion through the permeable walls of the atoll. A simple geohydrological modeling of this salt expulsion process based on Darcy's law describes reasonably well the time-evolution of the brackish lens. Tritium is used to discuss the main physical processes potentially involved in the slow ventilation of the halo-cline and deep saline layer, including vertical diffusion, sinking of salty Surface water intrusions and deep horizontal exchange through fissures in the limestone. These different mechanisms give reasonable results, which are all compatible with available salinity and isotopic data (δ 18 O and tritium), and therefore are all plausible candidates. Unfortunately, the lack of a detailed description of the vertical tritium profile in the halo

  10. Tritium-assisted fusion breeders

    International Nuclear Information System (INIS)

    Greenspan, E.; Miley, G.H.

    1983-08-01

    This report undertakes a preliminary assessment of the prospects of tritium-assisted D-D fuel cycle fusion breeders. Two well documented fusion power reactor designs - the STARFIRE (D-T fuel cycle) and the WILDCAT (Cat-D fuel cycle) tokamaks - are converted into fusion breeders by replacing the fusion electric blankets with 233 U producing fission suppressed blankets; changing the Cat-D fuel cycle mode of operation by one of the several tritium-assisted D-D-based modes of operation considered; adjusting the reactor power level; and modifying the resulting plant cost to account for the design changes. Three sources of tritium are considered for assisting the D-D fuel cycle: tritium produced in the blankets from lithium or from 3 He and tritium produced in the client fission reactors. The D-D-based fusion breeders using tritium assistance are found to be the most promising economically, especially the Tritium Catalyzed Deuterium mode of operation in which the 3 He exhausted from the plasma is converted, by neutron capture in the blanket, into tritium which is in turn fed back to the plasma. The number of fission reactors of equal thermal power supported by Tritium Catalyzed Deuterium fusion breeders is about 50% higher than that of D-T fusion breeders, and the profitability is found to be slightly lower than that of the D-T fusion breeders

  11. Applications developed for byproduct 85Kr and tritium

    International Nuclear Information System (INIS)

    Remini, W.C.; Case, F.N.; Haff, K.W.; Tiegs, S.M.

    1983-01-01

    The radionuclides, krypton-85 and tritium, both of which are gases under ordinary conditions, are used in many applications in industries and by the military forces. Krypton-85 is produced during the fissioning of uranium and is released during the dissolution of spent-fuel elements. It is a chemically inert gas that emits 0.695-MeV beta rays and a small yield of 0.54-MeV gammas over a half life of 10.3 years. Much of the 85 Kr currently produced is released to the atmosphere; however, large-scale reprocessing of fuel will require collection of the gas and storage as a waste product. An alternative to storage is utilization, and since the chemical and radiation characteristics of 85 Kr make this radionuclide a relatively low hazard from the standpoint of contamination and biological significance, a number of uses have been developed. Tritium is produced as a byproduct of the nuclear-weapons program, and it has a half life of 12.33 years. It has a 0.01861-MeV beta emission and no gamma emission. The absence of a gamma-ray energy eliminates the need for external shielding of the devices utilizing tritium, thus making them easily transportable. Many of the applications require only small quantities of 85 Kr or tritium; however, these uses are important to the technology base of the nation. A significant development that has the potential for beneficial utilization of large quantities of 85 Kr and of tritium involves their use in the production of low-level lighting devices. Since these lights are free from external fuel supplies, have a long half life (> 10 years), are maintenance-free, reliable, and easily deployed, both military and civilian airfield-lighting applications are being studied

  12. Safe handling and monitoring of tritium in research on nuclear fusion

    International Nuclear Information System (INIS)

    Yoshida, Yoshikazu; Naruse, Yuji

    1978-01-01

    An actual condition of technique of safety handling and monitoring of tritium in the laboratory which treated a great quantity of tritium in relation to nuclear fusion, was described. With respect to the technique of safety handling of tritium, an actual condition of the technique in the U.S.A. which had wide experience in treating a great quantity of 3 H was mainly introduced, and it was helpful to a safety measure and a reduction of tritium effluence. Glovebox, hood, and other component machinery and tools for treating 3 H were also introduced briefly. As a monitoring technique, monitoring of indoor air and air exhaust by ionization chamber-type monitor for continuous monitoring of a great quantity of gaseous tritium was mentioned. Next, monitoring of a room, the surfaces of equipments, and draining, internal exposure of the individual, and monitoring of the environment were introduced. (Kanao, N.)

  13. Phenomenological study and modeling of tritium trapping in tritiated waste drums

    International Nuclear Information System (INIS)

    Le-Floch, Anais

    2016-01-01

    ITER (International Tokamak Experimental Reactor) is a fusion machine which should demonstrate scientific and technological feasibility of fusion energy by means of D-T fusion reaction. Therefore, most of the solid radioactive waste produced during operation and dismantling phase (around 34000 tons) will result not only from activation by 14 MeV neutrons, but also from contamination by tritium. One of the main issues in tritiated waste management is the confinement of tritium which presents a good ability to diffusion. One of the solutions is to trap the tritium directly in waste drums. In containers tritium is under gaseous form (HT and T_2), tritiated water vapor (HTO and T_2O) and organic bounded tritium species (OBT). as an hydrogen isotope, HT and T_2 trapping and conversion is possible thanks to a reaction with a mix of metal oxides MnO_2 and Ag_2O, which can be used for hydrogen hazards mitigation. an experimental study was conducted at the CEA on the study of tritium trapping by a mixture of 90% of manganese oxide and 10% of silver oxide. The tests showed that the addition of Pt and Pd catalysts did not improve the trapping capacity of the powder mixture, such as impregnation of the powder mixture when preparing the mixture, with solutions of KOH or NaOH. Crystal-chemical analysis revealed the formation of a mixed oxide in the preparation of powders, questioning the mechanisms previously established. Two new mechanisms have been proposed and a model on the trapping kinetics was presented. The results of modeling the competition between the trapping phenomenon and the diffusion of tritium through the wall of the waste package showed that the trapper decreased the value of the quantity of tritiated hydrogen degassed from the package. (author) [fr

  14. Tritium permeation through helium-heated steam generators of ceramic breeder blankets for DEMO

    International Nuclear Information System (INIS)

    Fuetterer, M.A.; Raepsaet, X.; Proust, E.

    1994-01-01

    The specifications of permeation barriers, tritium recovery process maintaining a very low tritium activity in the coolant, and control of the coolant chemistry, required the evaluation of the tritium losses through the steam generators and include the definition of its operating conditions by thermodynamic cycle calculations and its thermal-hydraulic design. For both tasks specific computer tools were developed. The obtained geometry, surface area, and temperature profiles along the heat exchanger tubes were then used to estimate the daily tritium permeation into the steam cycle. Steam oxidized Incoloy 800 austenitic stainless steel was identified as the best suited existing material; in nominal steady-state operation, the tritium escape into the steam cycle could be restricted to less than 10 Ci/d. Tritium permeation during temperature and pressure transients in the steam generator (destruction and possible self-healing of the permeation barrier) is identified to bear a large tritium release potential. Solutions are proposed. (from authors). 4 figs., 1 tab

  15. Tritium permeation through helium-heated steam generators of ceramic breeder blankets for DEMO

    Energy Technology Data Exchange (ETDEWEB)

    Fuetterer, M A; Raepsaet, X; Proust, E

    1994-12-31

    The specifications of permeation barriers, tritium recovery process maintaining a very low tritium activity in the coolant, and control of the coolant chemistry, required the evaluation of the tritium losses through the steam generators and include the definition of its operating conditions by thermodynamic cycle calculations and its thermal-hydraulic design. For both tasks specific computer tools were developed. The obtained geometry, surface area, and temperature profiles along the heat exchanger tubes were then used to estimate the daily tritium permeation into the steam cycle. Steam oxidized Incoloy 800 austenitic stainless steel was identified as the best suited existing material; in nominal steady-state operation, the tritium escape into the steam cycle could be restricted to less than 10 Ci/d. Tritium permeation during temperature and pressure transients in the steam generator (destruction and possible self-healing of the permeation barrier) is identified to bear a large tritium release potential. Solutions are proposed. (from authors). 4 figs., 1 tab.

  16. Proceedings of 2nd Internaitonal workshop on tritium effects in plasma facing components

    Energy Technology Data Exchange (ETDEWEB)

    Morita, Kenji [Nagoya Univ. (Japan). School of Engineering; Noda, Nobuaki [eds.

    1994-08-01

    This workshop was held at Nagoya University on May 19 and 20, 1994. Approximately 1/3 of the lectures discussed the migration and retention of tritium in graphite and the other forms of carbon. As to this topic, most of the different aspects of the tritium reactions with carbon were generally agreed on. At the temperature lower than 800 K, tritium plasma interacts with graphite by forming a saturated layer on the surface, by forming a codeposited layer of sputtered carbon and tritium, and by allowing tritium diffusion through Pores. At the temperature higher than 800 K, the principal reaction of tritium with carbon is intergranular diffusion with high energy trapping. Because beryllium is the reference plasma-facing material for the ITER, several presentations on the reactions of tritium with beryllium were made. Also the tritium permeation through other metals was the topics. The results of TFTR D-T experiment were reported in the first talk. In this book, the gists of these lectures are collected. (K.I.).

  17. Proceedings of 2nd International workshop on tritium effects in plasma facing components

    International Nuclear Information System (INIS)

    Morita, Kenji; Noda, Nobuaki

    1994-08-01

    This workshop was held at Nagoya University on May 19 and 20, 1994. Approximately 1/3 of the lectures discussed the migration and retention of tritium in graphite and the other forms of carbon. As to this topic, most of the different aspects of the tritium reactions with carbon were generally agreed on. At the temperature lower than 800 K, tritium plasma interacts with graphite by forming a saturated layer on the surface, by forming a codeposited layer of sputtered carbon and tritium, and by allowing tritium diffusion through Pores. At the temperature higher than 800 K, the principal reaction of tritium with carbon is intergranular diffusion with high energy trapping. Because beryllium is the reference plasma-facing material for the ITER, several presentations on the reactions of tritium with beryllium were made. Also the tritium permeation through other metals was the topics. The results of TFTR D-T experiment were reported in the first talk. In this book, the gists of these lectures are collected. (K.I.)

  18. Measurement of tritium production in 6LiD irradiated with neutrons from a critical system

    International Nuclear Information System (INIS)

    Duan Shaojie

    1998-03-01

    The tritium production rate and its distribution, in a 6 LiD semisphere on a critical assembly neutron source are measured with a 6 Li sandwich gold-silicon surface barrier detector. Then tritium production rate and the average tritium production length of the neutrons in the whole 6 LiD sphere are derived from approximate sphere symmetry

  19. Properties of tritium and its compounds

    International Nuclear Information System (INIS)

    Belovodskij, L.F.; Gaevoj, V.K.; Grishmanovskij, V.I.

    1985-01-01

    Ways of tritium preparation and different aspects of its application are considered. Physicochemical properties of this isotope and some compounds of it - tritium oxides, lithium, titanium, zirconium, uranium tritides, tritium organic compounds - are discussed. In particular, diffusion of tritium and its oxide through different materials, tritium oxidation processes, decomposition of tritium-containing compounds under the action of self-radiation are considered. Main radiobiological tritium properties are described

  20. May 2011 Groundwater and Surface Water Sampling at the Rio Blanco, Colorado, Site (Data Validation Package)

    International Nuclear Information System (INIS)

    2011-01-01

    Annual sampling was conducted at the Rio Blanco, Colorado, site for the Long-Term Hydrologic Monitoring Program May 16-17, 2011, to monitor groundwater and surface water for potential radionuclide contamination. Sampling and analyses were conducted as specified in Sampling and Analysis Plan for the U.S. Department of Energy Office of Legacy Management Sites (LMS/PRO/S04351, continually updated). A duplicate sample was collected from location Johnson Artesian WL. Samples were analyzed by the U.S. Environmental Protection Agency (EPA) Radiation&Indoor Environments National Laboratory in Las Vegas, Nevada. Samples were analyzed for gamma-emitting radionuclides by high-resolution gamma spectrometry, and for tritium using the conventional method. Tritium was not measured using the enrichment method because the EPA laboratory no longer offers that service. Results of this monitoring at the Rio Blanco site demonstrate that groundwater and surface water outside the boundaries have not been affected by project-related contaminants.

  1. Modeling Groundwater-Surface Water Interaction and Contaminant Transport of Chlorinated Solvent Contaminated Site

    Science.gov (United States)

    Yimer Ebrahim, Girma; Jonoski, Andreja; van Griensven, Ann; Dujardin, Juliette; Baetelaan, Okke; Bronders, Jan

    2010-05-01

    Chlorinated-solvent form one of the largest groups of environmental chemicals. Their use and misuse in industry have lead to a large entry of these chemicals into the environment, resulting in widespread dissemination and oftentimes environmental contamination. Chlorinated solvent contamination of groundwater resources has been widely reported. For instance, there has been much interest in the assessment of these contaminant levels and their evolutions with time in the groundwater body below the Vilvoorde-Machelen industrial area (Belgium). The long industrial history of the area has lead to complex patterns of pollution from multiple sources and the site has been polluted to the extent that individual plumes are not definable any more. Understanding of groundwater/surface water interaction is a critical component for determining the fate of contaminant both in streams and ground water due to the fact that groundwater and surface water are in continuous dynamic interaction in the hydrologic cycle. The interaction has practical consequences in the quantity and quality of water in either system in the sense that depletion and/or contamination of one of the system will eventually affect the other one. The transition zone between a stream and its adjacent aquifer referred to as the hyporheic zone plays a critical role in governing contaminant exchange and transformation during water exchange between the two water bodies. The hyporheic zone of Zenne River ( the main receptor ) is further complicated due to the fact that the river banks are artificially trained with sheet piles along its reach extending some 12 m below the surface. This study demonstrates the use of MODFLOW, a widely used modular three-dimensional block-centred finite difference, saturated flow model for simulating the flow and direction of movement of groundwater through aquifer and stream-aquifer interaction and the use of transport model RT3D, a three-dimensional multi-species reactive transport model

  2. Comparison of tritium production facilities

    International Nuclear Information System (INIS)

    He Kaihui; Huang Jinhua

    2002-01-01

    Detailed investigation and research on the source of tritium, tritium production facilities and their comparison are presented based on the basic information about tritium. The characteristics of three types of proposed tritium production facilities, i.e., fissile type, accelerator production tritium (APT) and fusion type, are presented. APT shows many advantages except its rather high cost; fusion reactors appear to offer improved safety and environmental impacts, in particular, tritium production based on the fusion-based neutron source costs much lower and directly helps the development of fusion energy source

  3. Tritium concentrations of environmental waters in Aichi Prefecture

    International Nuclear Information System (INIS)

    Ohnuma, Shoko; Chaya, Kunio

    1992-01-01

    Tritium concentrations of environmental waters in Aichi Prefecture were determined from 1973 to 1989. They are rain water, river waters and sea waters. In 1970's, tritium concentrations of environmental waters were more than the natural levels under the influence of the atmospheric nuclear tests. However, atmospheric nuclear tests have not been carried out after Oct. 1980 and the tritium concentrations are going to return to the natural levels. Annual means of tritium concentration in 1989 were as follows: 0.67 Bq/l for rain water, 1.1 Bq/l for Kiso river and Shonai river, 0.85 Bq/l for Yahagi river, 0.70 Bq/l for Toyo river, and 0.41 Bq/l for surface sea water. Also tritium concentration of sea bottom water was 0.50±0.28 Bq/l and rather constant yearly. Among environmental waters, only rain water was previously having seasonal variation of tritium concentration and it was showing 'spring peak' when the troposphere and the stratosphere were mixed actively. At present, tritium concentration of rain water has a little seasonal variation, and is slightly lower in summer under the influence of the atmosphere coming over from the ocean. With regard to the direct influence of rain water to river waters, it was found by means of time series analysis that Kiso river was the least affected of river waters and Yahagi river was the most. The apparent residence time, in which rain water stayed in the underground before it flowed out as river water, was presumed to be 4.9 years for Kiso river, 3.6 years for Yahagi river, 2.0 years for Toyo river, respectively. (author)

  4. Tritium concentrations of environmental waters in Aichi Prefecture

    Energy Technology Data Exchange (ETDEWEB)

    Ohnuma, Shoko; Chaya, Kunio (Aichi Prefectural Inst. of Public Health, Nagoya (Japan))

    1992-09-01

    Tritium concentrations of environmental waters in Aichi Prefecture were determined from 1973 to 1989. They are rain water, river waters and sea waters. In 1970's, tritium concentrations of environmental waters were more than the natural levels under the influence of the atmospheric nuclear tests. However, atmospheric nuclear tests have not been carried out after Oct. 1980 and the tritium concentrations are going to return to the natural levels. Annual means of tritium concentration in 1989 were as follows: 0.67 Bq/l for rain water, 1.1 Bq/l for Kiso river and Shonai river, 0.85 Bq/l for Yahagi river, 0.70 Bq/l for Toyo river, and 0.41 Bq/l for surface sea water. Also tritium concentration of sea bottom water was 0.50[+-]0.28 Bq/l and rather constant yearly. Among environmental waters, only rain water was previously having seasonal variation of tritium concentration and it was showing 'spring peak' when the troposphere and the stratosphere were mixed actively. At present, tritium concentration of rain water has a little seasonal variation, and is slightly lower in summer under the influence of the atmosphere coming over from the ocean. With regard to the direct influence of rain water to river waters, it was found by means of time series analysis that Kiso river was the least affected of river waters and Yahagi river was the most. The apparent residence time, in which rain water stayed in the underground before it flowed out as river water, was presumed to be 4.9 years for Kiso river, 3.6 years for Yahagi river, 2.0 years for Toyo river, respectively. (author).

  5. Evaluation of the dose to man in relation to the behavior of tritium from irrigation water in agricultural crops

    International Nuclear Information System (INIS)

    Kirchmann, R.; Bruwaene, R. van; Koch, G.; Grauby, A.; Delmas, J.; Athalye, V.

    1977-01-01

    A research program on the transfer of tritium from the irrigation water in the soil-plant environment provides valuable ecological information on the effects of tritium releases from nuclear installations under temperate humide and mediterranean climatic conditions. Field studies are carried out on experimental plots by spraying the crops with irrigation water contaminated with tritium on a single dose, the reference level chosen is 1 nCi/litre. The following crops are investigated: prairie, rye-grass, potato, pea, barley, carrot and sugarbeet as temperate region cultures, and vineyard, olive-tree and orange-tree as mediterranean cultures. Soil and plants samples are collected for radioassay to determine the tritium incorporation in tissue water and organic matter fractions. The tritium activity in these crops after harvest is correlated to the level of radiation dose received through human diet [fr

  6. Management of tritium exposures for professionally exposed workers at Cernavoda 1 NPP

    Energy Technology Data Exchange (ETDEWEB)

    Chitu, Catalina; Simionov, Vasile [CNE-PROD Cernavoda NPP, No. 1, Medgidiei Str. Cernavoda 905200 (Romania)

    2004-07-01

    Operating experience to date of CANDU reactors has indicated that the major contributor to the internal dose of professionally exposed workers is the tritiated heavy water (DTO). CANDU reactors are both moderated and cooled by heavy water (D{sub 2}O). Tritium is produced in CANDU reactors by neutron reactions with deuterium, boron, and lithium and by ternary fission. Even small leaks from these systems can produce important contaminations with tritiated water vapours of the air in the reactor building and thus increased individual and collective internal doses. Professionally exposed workers are subject to a combination of acute and chronic tritium exposure and HTO dosimetry program at Cernavoda NPP is based on multiple sample results. The routine urine bioassay program performs the monitoring and dosimetry functions for DTO. A specialized laboratory using Liquid Scintillation Spectrometry methods currently determines tritium activities in urine samples. The frequency of biological samples submission depends on the tritium concentration in the last sample. Dose assignments resulting from routinely measured weekly and monthly urinary levels of tritium oxide are based on the method of linear interpolation unless it is known that there has been no exposure between samples (vacation). All information about these doses is stored into a dedicated electronic database and used to make periodical reports and to ensure that the legal and administrative individual and annual limits are not exceeded. A chronic unprotected exposure to small tritium dose rate (< 50{mu}Sv/h) may lead to internal doses that exceed the intervention level. In case of acute exposure an increased daily water intake combined with a proper medical intervention could reduce the effective half time of tritium 2-3 times. (authors)

  7. Tritium and radiocarbon in the western North Pacific waters: post-Fukushima situation.

    Science.gov (United States)

    Kaizer, Jakub; Aoyama, Michio; Kumamoto, Yuichiro; Molnár, Mihály; Palcsu, László; Povinec, Pavel P

    2018-04-01

    Impact of the Fukushima Dai-ichi Nuclear Power Plant (FNPP1) accident on tritium ( 3 H) and radiocarbon ( 14 C) levels in the water column of the western North Pacific Ocean in winter 2012 is evaluated and compared with radiocesium ( 134,137 Cs) data collected for the same region. Tritium concentrations in surface seawater, varying between 0.4 and 2.0 TU (47.2-236 Bq m -3 ), follow the Fukushima radiocesium trend, however, some differences in the vertical profiles were observed, namely in depths of 50-400 m. No correlation was visible in the case of 14 C, whose surface Δ 14 C levels raised from negative values (about -40‰) in the northern part of transect, to positive values (∼68‰) near the equator. Homogenously mixed 14 C levels in the subsurface layers were observed at all stations. Sixteen surface (from 30 in total) and 6 water profile (from 7) stations were affected by the Fukushima tritium. Surface and vertical profile data together with the calculated water column inventories indicate that the total amount of the FNPP1-derived tritium deposited to the western North Pacific Ocean was 0.7 ± 0.3 PBq. No clear impact of the Fukushima accident on 14 C levels in the western North Pacific was observed. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Evaluation of storage conditions for tritiated thymidine as reference organically-bound tritium in urine

    International Nuclear Information System (INIS)

    Duong, T.; Trivedi, A.

    1997-01-01

    Interlaboratory intercomparison exercises have used tritiated thymidine as a reference material for organically-bound tritium (OBT) measurements in urine. We have examined the effects of storage conditions on the degradation behavior of tritium from OBT to tritiated water (HTO) in artificial and natural human urine samples. Tritiated thymidine decomposed less readily in artificial urine than natural urine samples. The degradation rate of tritiated thymidine in artificial urine, at -20 deg C, is about 10% for the first month. The rate of tritium conversion from OBT to HTO is the same at 4 deg C, but this storage temperature is less preferable, because of the danger of microbial contamination in the reference samples. The storage of the reference urine samples beyond three months after the preparation date is not recommended for quality control measurement data. (author)

  9. ARIES-I tritium system

    International Nuclear Information System (INIS)

    Sze, D.K.; Tam, S.W.; Billone, M.C.; Hassanein, A.M.; Martin, R.

    1990-09-01

    A key safety concern in a D-T fusion reactor is the tritium inventory. There are three components in a fusion reactor with potentially large inventories, i.e., the blanket, the fuel processing system and the plasma facing components. The ARIES team selected the material combinations, decided the operating conditions and refined the processing systems, with the aiming of minimizing the tritium inventories and leakage. The total tritium inventory for the ARIES-I reactor is only 700 g. This paper discussed the calculations and assumptions we made for the low tritium inventory. We also addressed the uncertainties about the tritium inventory. 13 refs., 2 figs., 3 tabs

  10. Tritium retention in S-65 beryllium after 100 eV plasma exposure

    Energy Technology Data Exchange (ETDEWEB)

    Causey, R.A. [Sandia National Labs., Livermore, CA (United States); Longhurst, G.R. [Idaho National Engineering Laboratories, Idaho Falls, 83415 (United States); Harbin, W. [Los Alamos National Laboratories, Los Alamos, NM 87545 (United States)

    1997-02-01

    The tritium plasma experiment (TPE) has been used to measure the retention of tritium in S-65 beryllium under conditions similar to that expected for the international thermonuclear experimental reactor (ITER). Beryllium samples 2 mm thick and 50 mm in diameter were exposed to a plasma of tritium and deuterium. The particle flux striking the samples was varied from approximately 1 x 10{sup 17} (D+T)/cm{sup 2} s up to about 3 x 10{sup 18} (D+T)/cm{sup 2} s. The beryllium samples were negatively biased to elevate the energy of the impinging ions to 100 eV. The temperature of the samples was varied from 373 K to 973 K. Exposure times of 1 h were used. Subsequent to the plasma exposure, the samples were outgassed in a separate system where 99% He and 1% H{sub 2} gas was swept over the samples during heating. The sweep gas along with the released tritium was sent through an ionization chamber, through a copper oxide catalyst bed, and into a series of glycol bubblers. The amount of released tritium was determined both by the ionization chamber and by liquid scintillation counting of the glycol. Tritium retention in the beryllium disks varied from a high of 2.4 x 10{sup 17} (D+T)/cm{sup 2} at 373 K to a low of 1 x 10{sup 16} (D+T)/cm{sup 2} at 573 K. For almost every case, the tritium retention in the beryllium was less than that calculated using the C=0 boundary condition at the plasma facing surface. It is believed that this lower than expected retention is due to rapid release of tritium from the large specific surface area created in the implant zone due to the production of voids, bubbles, and blisters. (orig.).

  11. Tritium retention in S-65 beryllium after 100 eV plasma exposure

    Science.gov (United States)

    Causey, Rion A.; Longhurst, Glen R.; Harbin, Wally

    1997-02-01

    The tritium plasma experiment (TPE) has been used to measure the retention of tritium in S-65 beryllium under conditions similar to that expected for the international thermonuclear experimental reactor (ITER). Beryllium samples 2 mm thick and 50 mm in diameter were exposed to a plasma of tritium and deuterium. The particle flux striking the samples was varied from approximately 1 × 10 17 ( D + T)/ cm2s up to about 3 × 10 18 ( D + T)/ cm2s. The beryllium samples were negatively biased to elevate the energy of the impinging ions to 100 eV. The temperature of the samples was varied from 373 K to 973 K. Exposure times of 1 h were used. Subsequent to the plasma exposure, the samples were outgassed in a separate system where 99% He and 1% H 2 gas was swept over the samples during heating. The sweep gas along with the released tritium was sent through an ionization chamber, through a copper oxide catalyst bed, and into a series of glycol bubblers. The amount of released tritium was determined both by the ionization chamber and by liquid scintillation counting of the glycol. Tritium retention in the beryllium disks varied from a high of 2.4 × 10 17 ( D + T)/ cm2 at 373 K to a low of 1 × 10 16 ( D + T)/ cm2 at 573 K. For almost every case, the tritium retention in the beryllium was less than that calculated using the C = 0 boundary condition at the plasma facing surface. It is believed that this lower than expected retention is due to rapid release of tritium from the large specific surface area created in the implant zone due to the production of voids, bubbles, and blisters.

  12. The Tritium White Paper

    International Nuclear Information System (INIS)

    2009-01-01

    This publication proposes a synthesis of the activities of two work-groups between May 2008 and April 2010. It reports the ASN's (the French Agency for Nuclear Safety) point of view, describes its activities and actions, and gives some recommendations. It gives a large and detailed overview of the knowledge status on tritium: tritium source inventory, tritium origin, management processes, capture techniques, reduction, tritium metrology, impact on the environment, impacts on human beings

  13. In-situ Tritium Measurements of the Tokamak Fusion Test Reactor Bumper Limiter Tiles Post D-T Operations

    International Nuclear Information System (INIS)

    C.A. Gentile; C.H. Skinner; K.M. Young; M. Nishi; S. Langish; et al

    1999-01-01

    The Princeton Plasma Physics Laboratory (PPPL) Engineering and Research Staff in collaboration with members of the Japan Atomic Energy Research Institute (JAERI), Tritium Engineering Laboratory have commenced in-situ tritium measurements of the TFTR bumper limiter. The Tokamak Fusion Test Reactor (TFTR) operated with tritium from 1993 to 1997. During this time ∼ 53,000 Ci of tritium was injected into the TFTR vacuum vessel. After the cessation of TFTR plasma operations in April 1997 an aggressive tritium cleanup campaign lasting ∼ 3 months was initiated. The TFTR vacuum vessel was subjected to a regimen of glow discharge cleaning (GDC) and dry nitrogen and ''moist air'' purges. Currently ∼ 7,500 Ci of tritium remains in the vacuum vessel largely contained in the limiter tiles. The TFTR limiter is composed of 1,920 carbon tiles with an average weight of ∼ 600 grams each. The location and distribution of tritium on the TFTR carbon tiles are of considerable interest. Future magnetically confined fusion devices employing carbon as a limiter material may be considerably constrained due to potentially large tritium inventories being tenaciously held on the surface of the tiles. In-situ tritium measurements were conducted in TFTR bay L during August and November 1998. During the bay L measurement campaign open wall ion chambers and ultra thin thermoluminscent dosimeters (TLD) affixed to a boom and end effector were deployed into the vacuum vessel. The detectors were designed to make contact with the surface of the bumper limiter tile and to provide either real time (ion chamber) or passive (TLD) indication of the surface tritium concentration. The open wall ion chambers were positioned onto the surface of the tile in a manner which employed the surface of the tile as one of the walls of the chamber. The ion chambers, which are (electrically) gamma insensitive, were landed at four positions per tile. The geometry for landing the TLD's provided measurement at 24

  14. Experience in handling concentrated tritium

    International Nuclear Information System (INIS)

    Holtslander, W.J.

    1985-12-01

    The notes describe the experience in handling concentrated tritium in the hydrogen form accumulated in the Chalk River Nuclear Laboratories Tritium Laboratory. The techniques of box operation, pumping systems, hydriding and dehydriding operations, and analysis of tritium are discussed. Information on the Chalk River Tritium Extraction Plant is included as a collection of reprints of papers presented at the Dayton Meeting on Tritium Technology, 1985 April 30 - May 2

  15. Optimization in the nuclear fuel cycle II: Surface contamination

    International Nuclear Information System (INIS)

    Pereira, W.S.; Silva, A.X.; Lopes, J.M.; Carmo, A.S.; Fernandes, T.S.; Mello, C.R.; Kelecom, A.

    2017-01-01

    Optimization is one of the bases of radioprotection and aims to move doses away from the dose limit that is the borderline of acceptable radiological risk. This work aims to use the monitoring of surface contamination as a tool of the optimization process. 53 surface contamination points were analyzed at a nuclear fuel cycle facility. Three sampling points were identified with monthly mean values of contamination higher than 1 Bq ∙ cm -2 , points 28, 42 and 47. These points were indicated for the beginning of the optimization process

  16. Tritium in precipitation of Vostok (Antarctica): conclusions on the tritium latitude effect.

    Science.gov (United States)

    Hebert, Detlef

    2011-09-01

    During the Antarctic summer of 1985 near the Soviet Antarctic station Vostok, firn samples for tritium measurements were obtained down to a depth of 2.40 m. The results of the tritium measurements are presented and discussed. Based on this and other data, conclusions regarding the tritium latitude effect are derived.

  17. Tritium inventory tracking and management

    International Nuclear Information System (INIS)

    Eichenberg, T.W.; Klein, A.C.

    1990-01-01

    This investigation has identified a number of useful applications of the analysis of the tracking and management of the tritium inventory in the various subsystems and components in a DT fusion reactor system. Due to the large amounts of tritium that will need to be circulated within such a plant, and the hazards of dealing with the tritium an electricity generating utility may not wish to also be in the tritium production and supply business on a full time basis. Possible scenarios for system operation have been presented, including options with zero net increase in tritium inventory, annual maintenance and blanket replacement, rapid increases in tritium creation for the production of additional tritium supplies for new plant startup, and failures in certain system components. It has been found that the value of the tritium breeding ratio required to stabilize the storage inventory depends strongly on the value and nature of other system characteristics. The real operation of a DT fusion reactor power plant will include maintenance and blanket replacement shutdowns which will affect the operation of the tritium handling system. It was also found that only modest increases in the tritium breeding ratio are needed in order to produce sufficient extra tritium for the startup of new reactors in less than two years. Thus, the continuous operation of a reactor system with a high tritium breeding ratio in order to have sufficient supplies for other plants is not necessary. Lastly, the overall operation and reliability of the power plant is greatly affected by failures in the fuel cleanup and plasma exhaust systems

  18. Development of a dynamic compartment model for the prediction of tritium behavior around NPPs

    International Nuclear Information System (INIS)

    Choi, Heui-Joo; Lee, Hansoo; Kang, Hee Suk; Choi, Yong Ho

    2003-01-01

    KAERI has developed a new model to find the relationship between the tritium release rate and tritium concentration in the environment. The model was based upon a dynamic compartment model. In this paper three kinds of global tritium cycling model were compared to estimate the natural background concentration of tritium in Korea. The dry and wet deposition rates were calculated using a computer program called DEPOS to derive a source term. The mechanisms considered for the transfer of tritium between the compartments were evaporation, groundwater flow, infiltration, runoff, and hydrodynamic dispersion. Also, transfer coefficients between the compartments were obtained using realistic geographical data. In order to illustrate the model various release scenarios were developed, and the change of tritium concentration in groundwater and surface water around the nuclear power plants was estimated. (author)

  19. Tritium release kinetics in lithium orthosilicate ceramic pebbles irradiated with low thermal-neutron fluence

    International Nuclear Information System (INIS)

    Xiao, Chengjian; Gao, Xiaoling; Kobayashi, Makoto; Kawasaki, Kiyotaka; Uchimura, Hiromichi; Toda, Kensuke; Kang, Chunmei; Chen, Xiaojun; Wang, Heyi; Peng, Shuming; Wang, Xiaolin; Oya, Yasuhisa; Okuno, Kenji

    2013-01-01

    Tritium release kinetics in lithium orthosilicate (Li 4 SiO 4 ) ceramic pebbles irradiated with low thermal-neutron fluence was studied by out-of-pile annealing experiments. It was found that the tritium produced in Li 4 SiO 4 pebbles was mainly released as tritiated water vapor (HTO). The apparent desorption activation energy of tritium on the pebble surface was consistent with the diffusion activation energy of tritium in the crystal grains, indicating that tritium release was mainly controlled by diffusion process. The diffusion coefficients of tritium in the crystal grains at temperatures ranging from 450 K to 600 K were obtained by isothermal annealing tests, and the Arrhenius relation was determined to be D = 1 × 10 −7.0 exp (−40.3 × 10 3 /RT) cm 2 s −1

  20. High-pressure tritium

    International Nuclear Information System (INIS)

    Coffin, D.O.

    1976-01-01

    Some solutions to problems of compressing and containing tritium gas to 200 MPa at 700 0 K are discussed. The principal emphasis is on commercial compressors and high-pressure equipment that can be easily modified by the researcher for safe use with tritium. Experience with metal bellows and diaphragm compressors has been favorable. Selection of materials, fittings, and gauges for high-pressure tritium work is also reviewed briefly

  1. Surface desorption and bulk diffusion models of tritium release from Li{sub 2}TiO{sub 3} and Li{sub 2}ZrO{sub 3} pebbles

    Energy Technology Data Exchange (ETDEWEB)

    Avila, R.E., E-mail: ravila@cchen.c [Departamento de Materiales Nucleares, Comision Chilena de Energia Nuclear, Cas. 188-D, Santiago (Chile); Pena, L.A.; Jimenez, J.C. [Departamento de Produccion y Servicios, Comision Chilena de Energia Nuclear, Cas. 188-D, Santiago (Chile)

    2010-10-30

    The release of tritium from Li{sub 2}TiO{sub 3} and Li{sub 2}ZrO{sub 3} pebbles, in batch experiments, is studied by means of temperature programmed desorption. Data reduction focuses on the analysis of the non-oxidized and oxidized tritium components in terms of release limited by diffusion from the bulk of ceramic grains, or by first or second order surface desorption. By analytical and numerical methods the in-furnace tritium release is deconvoluted from the ionization chamber transfer functions, for which a semi-empirical form is established. The release from Li{sub 2}TiO{sub 3} follows second order desorption kinetics, requiring a temperature for a residence time of 1 day (T{sub 1dRes}) of 620 K, and 603 K, of the non-oxidized, and the oxidized components, respectively. The release from Li{sub 2}ZrO{sub 3} appears as limited by either diffusion from the bulk of the ceramic grains, or by first order surface desorption, the first possibility being the more probable. The respective values of T{sub 1dRes} for the non-oxidized component are 661 K, according to the first order surface desorption model, and 735 K within the bulk diffusion limited model.

  2. Tritium uptake in cultivated plants after short-term exposure to atmospheric tritium

    International Nuclear Information System (INIS)

    Diabate, S.; Strack, S.; Paunescu, N.

    1998-01-01

    The tritium behavior in crop plants is of particular interest for the prediction of doses to humans due to ingestion. Tritium is present in plants in two forms: tritium free water tissue (TWT) and organically bound tritium (OBT). The both forms are to be considered in models calculating the ingestion dose. Potato plants belong to the major food crops in many countries and were chosen as representatives of crops whose edible parts grow under ground. Green bean were chosen as representatives of vegetables relevant in human diet. This vegetable may be consumed as green pod and it may be conserved over a long period of time. Green bean and potato plants were exposed to tritiated water vapor in the atmosphere during their generative phase of development. The uptake of tritium and the conversion into organic matter was studied under laboratory conditions at two different light intensities. The tritium concentrations in plants were followed until harvest. In leaves, the tritium uptake into tissue water under night conditions was 5-6 times lower than under day-time conditions. The initial incorporation into organic matter under night conditions was 0.7% of the tissue water concentration in leaves of both plant species. However, under light irradiation, this value increased to only 1.8% in bean leaves and 0.9% in potato leaves, which indicates a participation of processes other than photosynthesis in tritium incorporation into organic material. Organically bound tritium (OBT) was translocated into pods and tubers which represented a high percentage of the total organically bound tritium at harvest. The behavior of total OBT in all plants under study showed that OBT, once generated, is lost very slowly until harvest, in particular when storage organs of plants were in their phase of development at the time of exposure. OBT is translocated into the storage organs which may be used in the human diet and thus may contribute to the ingestion dose for a long time after the

  3. Removing gaseous contaminants in 3He by cryogenic stripping

    International Nuclear Information System (INIS)

    Benapfl, M.; Biltoft, P.; Coombs, A.

    1995-01-01

    The Tritium Operations Group at LLNL, Tritium Facility has recently developed a 3 He recovery system to remove argon, xenon, neon, hydrogen, and all other contaminants from the 3 He stream in an Accelerator Production of Tritium (APT) experimental apparatus. In this paper the authors will describe in detail the background information, technical requirements, the design approach, and the results of their experimental tests. The authors believe this gas purification system may have other applications as it provides at a reasonable cost an efficient method for purification of gaseous helium

  4. Tritium in air and environmental water in Jiuquan district and its dose to population

    International Nuclear Information System (INIS)

    Yang Ziwen; Zhang Yonghong; Guo Guizhi; Bai Guodong

    1993-01-01

    From July 1987 to November 1989, the monitoring of the tritium in air and environmental water in Jiuquan District was made for the first time. The results show that the average tritium concentrations of surface water in this region remained 4.6-9.6 Bq/1 in recent years. However, these values are still an order of magnitude higher than those before thermonuclear tests era in 1952. The tritium concentration in air was approximately twice as much as that of surface water. HTO values in air exhibit a higher peak in summer. The total tritium ingested by residents of Jiuquan was 1.12 x 10 4 Bq. The collective dose equivalent was equal to 0.25 man · Sv per year. Because of taking environmental tritium in the area, the annual committed effective dose equivalent was 0.19 μSv which is only one five thousandth of annual limited dose to the public proposed by ICRP and one ten thousandth of the natural background estimated by UNSCEAR in 1982

  5. Procedures for the retention of gaseous tritium released from a tritium enrichment plant

    International Nuclear Information System (INIS)

    Gutowski, H.; Bracha, M.

    1987-01-01

    General aim of the study is the comparison of two alternative processes for the retention of gaseous tritium which is released during normal operation and emergency operation in a tritium-enrichment-plant. Two processes for the retention of tritium were compared: 1. Oxidation-process. The hydrogen-gas containing HT will be burnt on an oxidation catalyst to H 2 O and HTO. In a subsequent step the water will be removed from the process by condensation, freezing and adsorption. 2. TROC-process (Tritium Removal by Organic Compounds). The tritium is added to an organic compound (acid) via catalyst. This reaction is irreversible and leads to solid products. (orig./RB) [de

  6. Tritium Removal from JET and TFTR Tiles by a Scanning Laser

    International Nuclear Information System (INIS)

    Skinner, C.H.; Bekris, N.; Coad, J.P.; Gentile, C.A.; Glugla, M.

    2002-01-01

    Fast and efficient tritium removal is needed for future D-T machines with carbon plasma-facing components. A novel method for tritium release has been demonstrated on co-deposited layers on tiles retrieved from the Tokamak Fusion Test Reactor (TFTR) and from the Joint European Torus (JET). A scanning continuous wave neodymium laser beam was focused to =100 W/mm2 and scanned at high speed over the co-deposits, heating them to temperatures =2000 C for about 10 ms in either air or argon atmospheres. Fiber optic coupling between the laser and scanner was implemented. Up to 87% of the co-deposited tritium was thermally desorbed from the JET and TFTR samples. This technique appears to be a promising in-situ method for tritium removal in a next-step D-T device as it avoids oxidation, the associated de-conditioning of the plasma-facing surfaces, and the expense of processing large quantities of tritium oxide

  7. Tritium in plants

    International Nuclear Information System (INIS)

    Vichot, L.; Losset, Y.

    2009-01-01

    The presence of tritium in the environment stems from its natural production by cosmic rays, from the fallout of the nuclear weapon tests between 1953 and 1964, and locally from nuclear industry activities. A part of the tritiated water contained in the foliage of plants is turned into organically bound tritium (OBT) by photosynthesis. The tritium of OBT, that is not exchangeable and then piles up in the plant, can be used as a marker of the past. It has been shown that the quantity of OBT contained in the age-rings of an oak that grew near the CEA center of Valduc was directly correlated with the tritium releases of the center. (A.C.)

  8. Environmental tritium in trees

    International Nuclear Information System (INIS)

    Brown, R.M.

    1979-01-01

    The distribution of environmental tritium in the free water and organically bound hydrogen of trees growing in the vicinity of the Chalk River Nuclear Laboratories (CRNL) has been studied. The regional dispersal of HTO in the atmosphere has been observed by surveying the tritium content of leaf moisture. Measurement of the distribution of organically bound tritium in the wood of tree ring sequences has given information on past concentrations of HTO taken up by trees growing in the CRNL Liquid Waste Disposal Area. For samples at background environmental levels, cellulose separation and analysis was done. The pattern of bomb tritium in precipitation of 1955-68 was observed to be preserved in the organically bound tritium of a tree ring sequence. Reactor tritium was discernible in a tree growing at a distance of 10 km from CRNL. These techniques provide convenient means of monitoring dispersal of HTO from nuclear facilities. (author)

  9. Calibration of alpha surface contamination monitor

    International Nuclear Information System (INIS)

    Freitas, I.S.M. de; Goncalez, O.L.

    1990-01-01

    In this work, the results, as well as the methodology, of the calibration of an alpha surface contamination monitor are presented. The calibration factors are obtained by least-squares fitting with effective variance. (author)

  10. Tritium concentrations in tree ring cellulose

    International Nuclear Information System (INIS)

    Kaji, Toshio; Momoshima, Noriyuki; Takashima, Yoshimasa.

    1989-01-01

    Measurements of tritium (tissue bound tritium; TBT) concentration in tree rings are presented and discussed. Such measurement is expected to provide a useful means of estimating the tritium level in the environment in the past. The concentration of tritium bound in the tissue (TBT) in a tree ring considered to reflect the environmental tritium level in the area at the time of the formation of the ring, while the concentration of tritium in the free water in the tissue represents the current environmental tritium level. First, tritium concentration in tree ring cellulose sampled from a cedar tree grown in a typical environment in Fukuoka Prefecture is compared with the tritium concentration in precipitation in Tokyo. Results show that the year-to-year variations in the tritium concentration in the tree rings agree well with those in precipitation. The maximum concentration, which occurred in 1963, is attibuted to atmospheric nuclear testing which was performed frequently during the 1961 - 1963 period. Measurement is also made of the tritium concentration in tree ring cellulose sampled from a pine tree grown near the Isotope Center of Kyushu University (Fukuoka). Results indicate that the background level is higher probably due to the release of tritium from the facilities around the pine tree. Thus, measurement of tritium in tree ring cellulose clearly shows the year-to-year variation in the tritium concentration in the atmosphere. (N.K.)

  11. HYLIFE-II tritium management system

    International Nuclear Information System (INIS)

    Longhurst, G.R.; Dolan, T.J.

    1993-06-01

    The tritium management system performs seven functions: (1) tritium gas removal from the blast chamber, (2) tritium removal from the Flibe, (3) tritium removal from helium sweep gas, (4) tritium removal from room air, (5) hydrogen isotope separation, (6) release of non-hazardous gases through the stack, (7) fixation and disposal of hazardous effluents. About 2 TBq/s (5 MCi/day) of tritium is bred in the Flibe (Li 2 BeF 4 ) molten salt coolant by neutron absorption. Tritium removal is accomplished by a two-stage vacuum disengager in each of three steam generator loops. Each stage consists of a spray of 0.4 mm diameter, hot Flibe droplets into a vacuum chamber 4 m in diameter and 7 m tall. As droplets fall downward into the vacuum, most of the tritium diffuses out and is pumped away. A fraction Φ∼10 -5 of the tritium remains in the Flibe as it leaves the second stage of the vacuum disengager, and about 24% of the remaining tritium penetrates through the steam generator tubes, per pass, so the net leakage into the steam system is about 4.7 MBq/s (11 Ci/day). The required Flibe pumping power for the vacuum disengager system is 6.6 MW. With Flibe primary coolant and a vacuum disengager, an intermediate coolant loop is not needed to prevent tritium from leaking into the steam system. An experiment is needed to demonstrate vacuum disengager operation with Flibe. A secondary containment shell with helium sweep gas captures the tritium permeating out of the Flibe ducts, limiting leaks there to about 1 Ci/day. The tritium inventory in the reactor is about 190 g, residing mostly in the large Flibe recirculation duct walls. The total cost of the tritium management system is 92 M$, of which the vacuum disengagers cost = 56%, the blast chamber vacuum system = 15%, the cryogenic plant = 9%, the emergency air cleanup and waste treatment systems each = 6%, the protium removal system = 3%, and the fuel storage system and inert gas system each = 2%

  12. Tritium release of titan-tritium layers in air, aqueous solutions and living organisms of animals

    International Nuclear Information System (INIS)

    Biro, J.; Feher, I.; Mate, L.; Varga, L.

    1978-01-01

    Samples containing 400-1100 MBq (10-30 mCi) tritium were prepared and the effect of storage time on tritium release was followed. In 250 days one thousandth of the tritium was released in aqueous solution; in air the ratio of release per hour fell in the range of 10 -6 -10 -7 . Ti-T plates with different storage times were surgically placed in the abdomen of rats. Their tritium release dropped with time and the activity appearing in the circulation was lower than that of plates with 5-6 orders of magnitude. Checking the tritium incorporation of neutron generator operators it must be held in mind that only a minor part of tritium can be detected by the measurement of the tritium content of urine. (author)

  13. Cleaning, disinfection and sterilization of surface prion contamination.

    Science.gov (United States)

    McDonnell, G; Dehen, C; Perrin, A; Thomas, V; Igel-Egalon, A; Burke, P A; Deslys, J P; Comoy, E

    2013-12-01

    Prion contamination is a risk during device reprocessing, being difficult to remove and inactivate. Little is known of the combined effects of cleaning, disinfection and sterilization during a typical reprocessing cycle in clinical practice. To investigate the combination of cleaning, disinfection and/or sterilization on reducing the risk of surface prion contamination. In vivo test methods were used to study the impact of cleaning alone and cleaning combined with thermal disinfection and high- or low-temperature sterilization processes. A standardized test method, based on contamination of stainless steel wires with high titres of scrapie-infected brain homogenates, was used to determine infectivity reduction. Traditional chemical methods of surface decontamination against prions were confirmed to be effective, but extended steam sterilization was more variable. Steam sterilization alone reduced the risk of prion contamination under normal or extended exposure conditions, but did show significant variation. Thermal disinfection had no impact in these studies. Cleaning with certain defined formulations in combination with steam sterilization can be an effective prion decontamination process, in particular with alkaline formulations. Low-temperature, gaseous hydrogen peroxide sterilization was also confirmed to reduce infectivity in the presence and absence of cleaning. Prion decontamination is affected by the full reprocessing cycle used on contaminated surfaces. The correct use of defined cleaning, disinfection and sterilization methods as tested in this report in the scrapie infectivity assay can provide a standard precaution against prion contamination. Copyright © 2013 The Healthcare Infection Society. Published by Elsevier Ltd. All rights reserved.

  14. Is there a channel in the ribosome for nascent peptide. Labellimg of translating ribosomes with atomar tritium

    Energy Technology Data Exchange (ETDEWEB)

    Kolb, V A; Kammer, A A; Spirin, A S

    1987-01-01

    The method of tritium bombardment was applied to investigate exposure of growing peptide on the surface of ribsome E.coli. Distribution of radioactivity by fractions is presented. Tritium inclusion in all the aminoacid residues of heteropeptide testifies to its exposure on the surface of the ribosome.

  15. Development of a tritium monitor combined with an electrochemical tritium pump using a proton conducting oxide

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, M. [National Institute for Fusion Science, Toki, Gifu (Japan); Sugiyama, T. [Nagoya University, Fro-cho, Chikusa-ku, Nagoya (Japan)

    2015-03-15

    The detection of low level tritium is one of the key issues for tritium management in tritium handling facilities. Such a detection can be performed by tritium monitors based on proton conducting oxide technique. We tested a tritium monitoring system composed of a commercial proportional counter combined with an electrochemical hydrogen pump equipped with CaZr{sub 0.9}In{sub 0.1}O{sub 3-α} as proton conducting oxide. The hydrogen pump operated at 973 K under electrolysis conditions using tritiated water vapor (HTO). The proton conducting oxide extracts tritium molecules (HT) from HTO and tritium concentration is measured by the proportional counter. The advantage of the proposed tritium monitoring system is that it is able to convert HTO into molecular hydrogen.

  16. Tritium extraction mechanisms from lithium aluminates during in pile irradiation experiments

    International Nuclear Information System (INIS)

    Briec, M.; Roth, E.

    1987-04-01

    The principal aim was to determine ranges of parameters governing tritium release from γ lithium aluminates within which acceptable rates for their contemplated usage as tritium breeder material in a fusion reactor blanket could be obtained. in the first place values of every quantity involved should be known as well as possible. Reproducible results should be a criterium of validity of the selected parameters. It is shown from a description of a series of experiments that processes limiting tritium release rates are not the same in different temperature ranges. By varying the composition of purge gases used for tritium extraction, the level of irradiation fluxes, and by studying simultaneously samples of different textures, results were obtained and an assignment of the respective role of defect formation, texture, surface effect is attempted to interpret them

  17. Tritium accounting for PHWR plants

    International Nuclear Information System (INIS)

    Nair, P.S.; Duraisamy, S.

    2012-01-01

    Tritium, the radioactive isotope of hydrogen, is produced as a byproduct of the nuclear reactions in the nuclear power plants. In a Pressurized Heavy Water Reactor (PHWR) tritium activity is produced in the Heat Transport and Moderator systems due to neutron activation of deuterium in heavy water used in these systems. Tritium activity build up occurs in some of the water systems in the PHWR plants through pick up from the plant atmosphere, inadvertent D 2 O ingress from other systems or transfer during processes. The tritium, produced by the neutron induced reactions in different systems in the reactor undergoes multiple processes such as escape through leaks, storage, transfer to external locations, decay, evaporation and diffusion and discharge though waste streams. Change of location of tritium inventory takes place during intentional transfer of heavy water, both reactor grade and downgraded, from one system to another. Tritium accounting is the application of accounting techniques to maintain knowledge of the tritium inventory present in different systems of a facility and to construct activity balances to detect any discrepancy in the physical inventories. It involves identification of all the tritium hold ups, transfers and storages as well as measurement of tritium inventories in various compartments, decay corrections, environmental release estimations and evaluation of activity generation during the accounting period. This paper describes a methodology for creating tritium inventory balance based on periodic physical inventory taking, tritium build up, decay and release estimations. Tritium accounting in the PHWR plants can prove to be an effective regulatory tool to monitor its loss as well as unaccounted release to the environment. (author)

  18. Tritium permeation through iron

    International Nuclear Information System (INIS)

    Hagi, Hideki; Hayashi, Yasunori

    1989-01-01

    An experimental method for measuring diffusion coefficients and permeation rates of tritium in metals around room temperature has been established, and their values in iron have been obtained by using the method. Permeation rates of tritium and hydrogen through iron were measured by the electrochemical method in which a tritiated aqueous solution was used as a cathodic electrolyte. Tritium and hydrogen were introduced from one side of a membrane specimen by cathodic polarization, while at the other side of the specimen the permeating tritium and hydrogen were extracted by potentiostatical ionization. The amount of permeated hydrogen was obtained by integrating the anodic current, and that of tritium was determined by measuring the radioactivity of the electrolyte sampled from the extraction side. Diffusion coefficients of tritium (D T ) and hydrogen (D H ) were determined from the time lag of tritium and hydrogen permeation. D T =9x10 -10 m 2 /s and D H =4x10 -9 m 2 /s at 286 K for annealed iron specimens. These values of D T and D H were compared with the previous data of the diffusion coefficients of hydrogen and deuterium, and the isotope effect in diffusion was discussed. (orig.)

  19. Regional groundwater flow and tritium transport modeling and risk assessment of the underground test area, Nevada Test Site, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    None

    1997-10-01

    The groundwater flow system of the Nevada Test Site and surrounding region was evaluated to estimate the highest potential current and near-term risk to the public and the environment from groundwater contamination downgradient of the underground nuclear testing areas. The highest, or greatest, potential risk is estimated by assuming that several unusually rapid transport pathways as well as public and environmental exposures all occur simultaneously. These conservative assumptions may cause risks to be significantly overestimated. However, such a deliberate, conservative approach ensures that public health and environmental risks are not underestimated and allows prioritization of future work to minimize potential risks. Historical underground nuclear testing activities, particularly detonations near or below the water table, have contaminated groundwater near testing locations with radioactive and nonradioactive constituents. Tritium was selected as the contaminant of primary concern for this phase of the project because it is abundant, highly mobile, and represents the most significant contributor to the potential radiation dose to humans for the short term. It was also assumed that the predicted risk to human health and the environment from tritium exposure would reasonably represent the risk from other, less mobile radionuclides within the same time frame. Other contaminants will be investigated at a later date. Existing and newly collected hydrogeologic data were compiled for a large area of southern Nevada and California, encompassing the Nevada Test Site regional groundwater flow system. These data were used to develop numerical groundwater flow and tritium transport models for use in the prediction of tritium concentrations at hypothetical human and ecological receptor locations for a 200-year time frame. A numerical, steady-state regional groundwater flow model was developed to serve as the basis for the prediction of the movement of tritium from the

  20. Tritium oxidation and exchange: preliminary studies

    International Nuclear Information System (INIS)

    Phillips, J.E.; Easterly, C.E.

    1978-05-01

    The radiological hazard resulting from an exposure to either tritium oxide or tritium gas is discussed and the factors contributing to the hazard are presented. From the discussion it appears that an exposure to tritium oxide vapor is 10 4 to 10 5 times more hazardous than exposure to tritium gas. Present and future sources of tritium are briefly considered and indicate that most of the tritium has been and is being released as tritium oxide. The likelihood of gaseous releases, however, is expected to increase in the future, calling to task the present general release assumption that 100% of all tritium released is as oxide. Accurate evaluation of the hazards from a gaseous release will require a knowledge of the conversion rate of tritium gas to tritium oxide. An experiment for determining the conversion rate of tritium gas to tritium oxide is presented along with some preliminary data. The conversion rates obtained for low initial concentrations (10 -4 to 10 -1 mCi/ml) indicate the conversion may proceed more rapidly than would be expected from an extrapolation of previous data taken at higher concentrations

  1. Problems of anthropogenic tritium limitation

    Directory of Open Access Journals (Sweden)

    Kochetkov О.A.

    2013-12-01

    Full Text Available This article contains the current situation in respect to the environmental concentrations of anthropogenic and natural tritium. There are presented and analyzed domestic standards for НТО of all Radiation Safety Standards (NRB, as well as the regulations analyzed for tritium in drinking water taken in other countries today. This article deals with the experience of limitation of tritium and focuses on the main problem of rationing of tritium — rationing of organically bound tritium.

  2. Contribution to the dosimetry of tritium in the presence of inactive or active gases

    International Nuclear Information System (INIS)

    Soudain, G.

    1966-01-01

    Tritium is a dangerous gas for man and the maximum admissible doses in the atmosphere are sufficiently low for the dosage to be fairly difficult. We have developed an apparatus for measuring selectively the contamination of air by this gas when it is alone or when it is associated with other gaseous contaminants. The differential apparatus using two ionization chambers makes it possible to eliminate a parasitic γ radiation field. In a few particular cases, the presence of the radio-active gas has been studied. From the practical point of view, the use of these chambers made of stainless steel makes for easier use since the problems connected with wall adsorption have been satisfactorily resolved. The method can be applied without restriction and very easily to the dosage of traces tritium in air or in the form of tritiated water or tritiated steam in the atmosphere. (author) [fr

  3. The Use of Subsurface Barriers to Support Treatment of Metals and Reduce the Flux of Tritium to Fourmile Branch at the Savannah River Site in South Carolina - 13358

    Energy Technology Data Exchange (ETDEWEB)

    Blount, Gerald; Thibault, Jeffrey; Wells, Leslie [Savannah River Nuclear Solutions LLC, 730-4B, Aiken, SC 29808 (United States); Prater, Phillip [Department of Energy, Savannah River Site, Aiken, SC 29808 (United States)

    2013-07-01

    The Savannah River Site (SRS) produced tritium, plutonium, and special nuclear materials for national defense, medicine, and the space programs. Acidic groundwater plumes containing metals, metallic radionuclides, non-metallic radionuclides and tritium sourced from the F and H Area Seepage Basins have impacted the surface water of Fourmile Branch on SRS. Tritium releases from Fourmile Branch have impacted the water quality within areas of the Savannah River adjacent to the SRS, and this circumstance has been an ongoing regulatory concern. The F and H Area Seepage Basins operated until 1988 for the disposition of deionized acidic waste water from the F and H Separations Facilities. The waste water contained dilute nitric acid and low concentrations of non-radioactive metals, and radionuclides, with the major isotopes being Cs-137, Sr-90, U-235, U-238, Pu-239, Tc-99, I-129, and tritium. The tritium concentration in the waste water was relatively elevated because there is not a practicable removal method in water. The acid content of the waste water during the operational period of the basins was equal to 12 billion liters of nitric acid. The seepage basins were closed in 1988 and backfilled and capped by 1991. The plumes associated with the F and H basins cover an area of nearly 2.4 square kilometers (600 acres) and discharge along ∼2,600 meters of Fourmile Branch. The acidic nature of the plumes and their overall discharge extent along the branch represent a large challenge with respect to reducing contaminant flux to Fourmile Branch. The introduction of nitric acid into the groundwater over a long time effectively reduced the retardation of metal migration from the basins to the groundwater and in the groundwater to Fourmile Branch, because most negatively charged surfaces on the aquifer materials were filled with hydrogen ion. Two large pump and treat systems were constructed in 1997 and operated until 2003 in an attempt to capture and control the releases to

  4. Tritium in plants; Le tritium dans la matiere organique des vegetaux

    Energy Technology Data Exchange (ETDEWEB)

    Vichot, L.; Losset, Y. [CEA Valduc, 21 - Is-sur-Tille (France)

    2009-07-01

    The presence of tritium in the environment stems from its natural production by cosmic rays, from the fallout of the nuclear weapon tests between 1953 and 1964, and locally from nuclear industry activities. A part of the tritiated water contained in the foliage of plants is turned into organically bound tritium (OBT) by photosynthesis. The tritium of OBT, that is not exchangeable and then piles up in the plant, can be used as a marker of the past. It has been shown that the quantity of OBT contained in the age-rings of an oak that grew near the CEA center of Valduc was directly correlated with the tritium releases of the center. (A.C.)

  5. Exploration for tritium-free water

    International Nuclear Information System (INIS)

    Hussain, S.D.

    1982-10-01

    Tritium-free water is generally required in large quantities for the preparation of laboratory tritium standards as well as blanks which are used to determine background count rate in the measurement of low level tritium concentrations in water samples by liquid scintillation counting method. In order to meet the requirements of tritium-free water and save the recurring expenditure on its import from abroad, exploration for locating its source in the country was undertaken. Water samples collected from a few possible sources were analysed precisely for their tritium content at the International Atomic Energy Agency, Vienna, Austria and a source of tritium-free water was determined. (authors)

  6. SUDOQU, a new dose-assessment methodology for radiological surface contamination.

    Science.gov (United States)

    van Dillen, Teun; van Dijk, Arjan

    2018-06-12

    A new methodology has been developed for the assessment of the annual effective dose resulting from removable and fixed radiological surface contamination. It is entitled SUDOQU (SUrface DOse QUantification) and it can for instance be used to derive criteria for surface contamination related to the import of non-food consumer goods, containers and conveyances, e.g., limiting values and operational screening levels. SUDOQU imposes mass (activity)-balance equations based on radioactive decay, removal and deposition processes in indoor and outdoor environments. This leads to time-dependent contamination levels that may be of particular importance in exposure scenarios dealing with one or a few contaminated items only (usually public exposure scenarios, therefore referred to as the 'consumer' model). Exposure scenarios with a continuous flow of freshly contaminated goods also fall within the scope of the methodology (typically occupational exposure scenarios, thus referred to as the 'worker model'). In this paper we describe SUDOQU, its applications, and its current limitations. First, we delineate the contamination issue, present the assumptions and explain the concepts. We describe the relevant removal, transfer, and deposition processes, and derive equations for the time evolution of the radiological surface-, air- and skin-contamination levels. These are then input for the subsequent evaluation of the annual effective dose with possible contributions from external gamma radiation, inhalation, secondary ingestion (indirect, from hand to mouth), skin contamination, direct ingestion and skin-contact exposure. The limiting effective surface dose is introduced for issues involving the conservatism of dose calculations. SUDOQU can be used by radiation-protection scientists/experts and policy makers in the field of e.g. emergency preparedness, trade and transport, exemption and clearance, waste management, and nuclear facilities. Several practical examples are worked

  7. Investigation of the tritium level in the environment of the Karlsruhe Nuclear Research Center

    International Nuclear Information System (INIS)

    Koenig, L.A.; Winter, M.; Schueler, H.; Tachlinski, W.

    1976-06-01

    Under an IAEA sponsored measurement program the tritium level is investigated in the immediate and more distant environment of the Karlsruhe Nuclear Research Center. The tritium concentration in precipitations, surface, ground and drinking water is measured within a long-term program. In addition, relationships existing between the tritium concentration of plants and the concentrations of ground water, precipitation, soil and air humidities are investigated at three points in special series of measurement. A summary report is presented on recent measured results. According to these results, the annual mean values for precipitations and surface water tend to rise. In 1975 the annual mean values amounted to 0.89 nCi/l of tritium concentration in precipitations in the more distant environment of the Nuclear Research Center and to 0.68 nCi/l in the Rhine river. In plants tritium concentrations were observed which correspond to that measured in the humidity of the air. The radiation exposure of people living in large towns is calculated to be about 50 μrem/a in the region monitored, due to the presence of tritium in the drinking water. A little group of the population takes up as much as 110 μrem/a. (orig.) [de

  8. Predicting tritium movement and inventory in fusion reactor subsystems using the TMAP code

    International Nuclear Information System (INIS)

    Jones, J.L.; Merrill, B.J.; Holland, D.F.

    1985-01-01

    The Fusion Safety Program of EG and G Idaho, Inc. at the Idaho National Engineering Laboratory (INEL) is developing a safety analysis code called TMAP (Tritium Migration Analysis Program) to analyze tritium loss from fusion systems during normal and off-normal conditions. TMAP is a one-dimensional code that calculated tritium movement and inventories in a system of interconnected enclosures and wall structures. These wall structures can include composite materials with bulk trapping of the permeating tritium on impurities or radiation induced dislocations within the material. The thermal response of a structure can be modeled to provide temperature information required for tritium movement calculations. Chemical reactions and hydrogen isotope movement can also be included in the calculations. TWAP was used to analyze the movement of tritium implanted into a proposed limiter/first wall structure design. This structure was composed of composite layers of vanadium and stainless steel. Included in these calculations was the effect of contrasting material tritium solubility at the composite interface. In addition, TMAP was used to investigate the rate of tritium cleanup after an accidental release into the atmosphere of a reactor building. Tritium retention and release from surfaces and conversion to the oxide form was predicted

  9. Tritium as tracer of flow in constructed wetlands

    International Nuclear Information System (INIS)

    Wachniew, P.; Czuprynski, P.; Maloszewski, P.

    2005-01-01

    Constructed wetlands technology is a cost-effective and environmentally friendly method used world-wide to treat waste waters of different origins. The soluble pollutants are transformed and removed mainly through the processes that occur at surfaces of plants, plant debris or filtering media. The efficiency of soluble pollutants removal is thus primarily related to the extent of contact between waste waters and the reactive surfaces. Residence time distributions function (RTD)is basic characteristic of wetland hydraulic properties and can be obtained by combined use of tracer technique and mathematical modelling. Tritium was used as to obtain RTD's of three parallel cells of a sub-surface flow constructed wetland overgrown with Pharagmites australis in Nowa Slupia. Tritium as a part of water molecule, is an ideal tracer of flow in the highly reactive environment of constructed wetlands. Results of the tracer test interpreted by the assumed model (Multi Flow Dispersion Model) of conservative solute transport revealed a complex structure of flow through the wetland. (author)

  10. Tritium protective clothing

    International Nuclear Information System (INIS)

    Fuller, T.P.; Easterly, C.E.

    1979-06-01

    Occupational exposures to radiation from tritium received at present nuclear facilities and potential exposures at future fusion reactor facilities demonstrate the need for improved protective clothing. Important areas relating to increased protection factors of tritium protective ventilation suits are discussed. These areas include permeation processes of tritium through materials, various tests of film permeability, selection and availability of suit materials, suit designs, and administrative procedures. The phenomenological nature of film permeability calls for more standardized and universal test methods, which would increase the amount of directly useful information on impermeable materials. Improvements in suit designs could be expedited and better communicated to the health physics community by centralizing devlopmental equipment, manpower, and expertise in the field of tritium protection to one or two authoritative institutions

  11. Tritium protective clothing

    Energy Technology Data Exchange (ETDEWEB)

    Fuller, T. P.; Easterly, C. E.

    1979-06-01

    Occupational exposures to radiation from tritium received at present nuclear facilities and potential exposures at future fusion reactor facilities demonstrate the need for improved protective clothing. Important areas relating to increased protection factors of tritium protective ventilation suits are discussed. These areas include permeation processes of tritium through materials, various tests of film permeability, selection and availability of suit materials, suit designs, and administrative procedures. The phenomenological nature of film permeability calls for more standardized and universal test methods, which would increase the amount of directly useful information on impermeable materials. Improvements in suit designs could be expedited and better communicated to the health physics community by centralizing devlopmental equipment, manpower, and expertise in the field of tritium protection to one or two authoritative institutions.

  12. Estimation of the tritium retention in ITER tungsten divertor target using macroscopic rate equations simulations

    Science.gov (United States)

    Hodille, E. A.; Bernard, E.; Markelj, S.; Mougenot, J.; Becquart, C. S.; Bisson, R.; Grisolia, C.

    2017-12-01

    Based on macroscopic rate equation simulations of tritium migration in an actively cooled tungsten (W) plasma facing component (PFC) using the code MHIMS (migration of hydrogen isotopes in metals), an estimation has been made of the tritium retention in ITER W divertor target during a non-uniform exponential distribution of particle fluxes. Two grades of materials are considered to be exposed to tritium ions: an undamaged W and a damaged W exposed to fast fusion neutrons. Due to strong temperature gradient in the PFC, Soret effect’s impacts on tritium retention is also evaluated for both cases. Thanks to the simulation, the evolutions of the tritium retention and the tritium migration depth are obtained as a function of the implanted flux and the number of cycles. From these evolutions, extrapolation laws are built to estimate the number of cycles needed for tritium to permeate from the implantation zone to the cooled surface and to quantify the corresponding retention of tritium throughout the W PFC.

  13. Technology developments for improved tritium management

    International Nuclear Information System (INIS)

    Miller, J.M.; Spagnolo, D.A.

    1994-06-01

    Tritium technology developments have been an integral part of the advancement of CANDU reactor technology. An understanding of tritium behaviour within the heavy-water systems has led to improvements in tritium recovery processes, tritium measurement techniques and overall tritium control. Detritiation technology has been put in place as part of heavy water and tritium management practices. The advances made in these technologies are summarized. (author). 20 refs., 5 figs

  14. IN-SITU TRITIUM BETA DETECTOR

    International Nuclear Information System (INIS)

    Berthold, J.W.; Jeffers, L.A.

    1998-01-01

    The objectives of this three-phase project were to design, develop, and demonstrate a monitoring system capable of detecting and quantifying tritium in situ in ground and surface waters, and in water from effluent lines prior to discharge into public waterways. The tritium detection system design is based on measurement of the low energy beta radiation from the radioactive decay of tritium using a special form of scintillating optical fiber directly in contact with the water to be measured. The system consists of the immersible sensor module containing the optical fiber, and an electronics package, connected by an umbilical cable. The system can be permanently installed for routine water monitoring in wells or process or effluent lines, or can be moved from one location to another for survey use. The electronics will read out tritium activity directly in units of pico Curies per liter, with straightforward calibration. In Phase 1 of the project, we characterized the sensitivity of fluor-doped plastic optical fiber to tritium beta radiation. In addition, we characterized the performance of photomultiplier tubes needed for the system. In parallel with this work, we defined the functional requirements, target specifications, and system configuration for an in situ tritium beta detector that would use the fluor-doped fibers as primary sensors of tritium concentration in water. The major conclusions from the characterization work are: A polystyrene optical fiber with fluor dopant concentration of 2% gave best performance. This fiber had the highest dopant concentration of any fibers tested. Stability may be a problem. The fibers exposed to a 22-day soak in 120 F water experienced a 10x reduction in sensitivity. It is not known whether this was due to the build up of a deposit (a potentially reversible effect) or an irreversible process such as leaching of the scintillating dye. Based on the results achieved, it is premature to initiate Phase 2 and commit to a prototype

  15. IN-SITU TRITIUM BETA DETECTOR

    Energy Technology Data Exchange (ETDEWEB)

    J.W. Berthold; L.A. Jeffers

    1998-04-15

    The objectives of this three-phase project were to design, develop, and demonstrate a monitoring system capable of detecting and quantifying tritium in situ in ground and surface waters, and in water from effluent lines prior to discharge into public waterways. The tritium detection system design is based on measurement of the low energy beta radiation from the radioactive decay of tritium using a special form of scintillating optical fiber directly in contact with the water to be measured. The system consists of the immersible sensor module containing the optical fiber, and an electronics package, connected by an umbilical cable. The system can be permanently installed for routine water monitoring in wells or process or effluent lines, or can be moved from one location to another for survey use. The electronics will read out tritium activity directly in units of pico Curies per liter, with straightforward calibration. In Phase 1 of the project, we characterized the sensitivity of fluor-doped plastic optical fiber to tritium beta radiation. In addition, we characterized the performance of photomultiplier tubes needed for the system. In parallel with this work, we defined the functional requirements, target specifications, and system configuration for an in situ tritium beta detector that would use the fluor-doped fibers as primary sensors of tritium concentration in water. The major conclusions from the characterization work are: A polystyrene optical fiber with fluor dopant concentration of 2% gave best performance. This fiber had the highest dopant concentration of any fibers tested. Stability may be a problem. The fibers exposed to a 22-day soak in 120 F water experienced a 10x reduction in sensitivity. It is not known whether this was due to the build up of a deposit (a potentially reversible effect) or an irreversible process such as leaching of the scintillating dye. Based on the results achieved, it is premature to initiate Phase 2 and commit to a prototype

  16. Tritium release kinetics in lithium orthosilicate ceramic pebbles irradiated with low thermal-neutron fluence

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Chengjian; Gao, Xiaoling [Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Box 919-214, Mian Yang 621900 (China); Kobayashi, Makoto; Kawasaki, Kiyotaka; Uchimura, Hiromichi; Toda, Kensuke [China Academy of Engineering Physics, Box 919-1, Mian Yang 621900 (China); Kang, Chunmei; Chen, Xiaojun; Wang, Heyi; Peng, Shuming [Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Box 919-214, Mian Yang 621900 (China); Wang, Xiaolin, E-mail: xlwang@caep.ac.cn [China Academy of Engineering Physics, Box 919-1, Mian Yang 621900 (China); Oya, Yasuhisa; Okuno, Kenji [Radiochemistry Research Laboratory, Faculty of Science, Shizuoka University, 836 Ohya, Shizuoka 422-8529 (Japan)

    2013-07-15

    Tritium release kinetics in lithium orthosilicate (Li{sub 4}SiO{sub 4}) ceramic pebbles irradiated with low thermal-neutron fluence was studied by out-of-pile annealing experiments. It was found that the tritium produced in Li{sub 4}SiO{sub 4} pebbles was mainly released as tritiated water vapor (HTO). The apparent desorption activation energy of tritium on the pebble surface was consistent with the diffusion activation energy of tritium in the crystal grains, indicating that tritium release was mainly controlled by diffusion process. The diffusion coefficients of tritium in the crystal grains at temperatures ranging from 450 K to 600 K were obtained by isothermal annealing tests, and the Arrhenius relation was determined to be D = 1 × 10{sup −7.0} exp (−40.3 × 10{sup 3}/RT) cm{sup 2} s{sup −1}.

  17. Technical/ administrative options for managing tritium MCL exceedances in P-area groundwater and Steel Creek

    Energy Technology Data Exchange (ETDEWEB)

    Ross, J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-04-01

    This white paper was requested by the Core Team (United States Department of Energy [USDOE], United States Environmental Protection Agency [USEPA], and South Carolina Department of Health and Environmental Control [SCDHEC]) at the P-Area Groundwater (PAGW) Operable Unit (OU) Scoping Meeting held in January 2017 to discuss recent data and potential alternatives in support of a focused Corrective Measures Study/Feasibility Study (CMS/FS). This white paper presents an overview of the problem, and a range of technical and administrative options for addressing the tritium contamination in groundwater and Steel Creek. As tritium cannot be treated practicably, alternatives are limited to media transfer, containment and natural attenuation principally relying on radioactive decay. Using other groundwater OU decisions involving tritium as precedent, Savannah River Nuclear Solutions (SRNS) recommends that final tritium alternatives be evaluated in a CMS/FS, understanding that the likely preferred remedy will include natural attenuation with land use controls (LUCs). This is based on the inability to significantly reduce tritium impact to Steel Creek using an engineered solution as compared to natural attenuation. The timing of this evaluation could be conducted concurrently with the final remedy evaluation for volatile organic compounds (VOCs).

  18. Strippable gel for decontamination of contaminated metallic surfaces

    International Nuclear Information System (INIS)

    Banerjee, D.; Sandhya, U.; Khot, S.A.; Srinivas, C.; Wattal, P.K.

    2013-01-01

    Periodic decontamination of radioactive laboratories including fume hoods, glove boxes and all surfaces used for handling, processing and transporting radioactive materials is mandatory in all nuclear installations as this reduces spread of contamination and decreases total man rem exposure. Conventionally, chemical decontaminating agents or surfactant solutions are used for this purpose. However, this approach leads to generation of large volume of secondary radioactive waste. The use of strippable gel is an attractive alternative with low secondary waste generation particularly where removal of loose or weakly fixed contamination is necessary and also when the decontaminated material are to be reused, for e.g. decontamination of fume hoods, glove boxes, transport casks, spent fuel storage racks, control rod drive transport containers etc. Literature on gel formulations is scarce and mostly in the patent form. The sustained effort on gel formulation development has resulted in a basic gel formulation. The gel is a highly viscous water-based organic polymer, particularly suitable for application on vertical surfaces including difficult to reach metallic surfaces of complex geometry and not just limited to horizontal surfaces. The gel can be easily applied on contaminated surfaces by brushing or spraying. Curing of the gel is complete within 16-24 hours under ambient conditions and can then be removed by peeling as a dry sheet. While curing, the contaminants are trapped in gel either physically or chemically depending upon the nature of the contaminant. Salient features of cured gel include that it is water soluble and can be disposed off after immobilization in cement. Decontamination performance of the gel was initially evaluated by applying it on SS planchettes contaminated with known amount of radionuclides such as Cs(I), Co(II) and Ce(III). The measured decontamination factor was found to be in the range of 50-500, lowest for Ce(III) and highest for Co

  19. The effect of oxygen on the release of tritium during baking of TFTR D-T tiles

    International Nuclear Information System (INIS)

    Shu, W.M.; Gentile, C.A.; Skinner, C.H.; Langish, S.; Nishi, M.F.

    2002-01-01

    A series of tests involving 10 h baking under the current ITER design conditions (240 deg. C with 933 Pa O 2 ) was performed using a cube of a carbon fiber composite tile that had been used in Tokamak Fusion Test Reactor (TFTR) during its deuterium-tritium burning operation. The removal rate of the codeposits was about 3 μm/h near the surface and 0.9 μm/h in the deeper region. Total amount of tritium released from the cube during 10 h baking was 202 MBq, while remaining tritium in the cube after baking was 403 MBq. Thus 10 h baking at 240 deg. C with 933 Pa O 2 removed 1/3 of tritium from the cube. After 10 h baking, the tritium concentration on the cube surface also dropped by about 1/3. In addition, some tritium was released from another cube of the tile during baking at 240 deg. C in pure Ar, and a rapid increase of tritium release was observed when the purging gas was shifted from pure Ar to Ar-1%O 2 . When a whole TFTR tile was baked in air at 350 deg. C for 1 h and then at 500 deg. C for 1 h, the ratios of tritium released were 53 and 47%, respectively. Oxygen reacted with carbon to produce carbon monoxide during baking in air

  20. Tritium emissions from a detritiation facility

    International Nuclear Information System (INIS)

    Rodrigo, L.; El-Behairy, O.; Boniface, H.; Hotrum, C.; McCrimmon, K.

    2010-01-01

    Tritium is produced in heavy-water reactors through neutron capture by the deuterium atom. Annual production of tritium in a CANDU reactor is typically 52-74 TBq/MW(e). Some CANDU reactor operators have implemented detritiation technology to reduce both tritium emissions and dose to workers and the public from reactor operations. However, tritium removal facilities also have the potential to emit both elemental tritium and tritiated water vapor during operation. Authorized releases to the environment, in Canada, are governed by Derived Release Limits (DRLs). DRLs represent an estimate of a release that could result in a dose of 1 mSv to an exposed member of the public. For the Darlington Nuclear Generating Station, the DRLs for airborne elemental tritium and tritiated water emissions are ~15.6 PBq/week and ~825 TBq/week respectively. The actual tritium emissions from Darlington Tritium Removal Facility (DTRF) are below 0.1% of the DRL for elemental tritium and below 0.2% of the DRL for tritiated water vapor. As part of an ongoing effort to further reduce tritium emissions from the DTRF, we have undertaken a review and assessment of the systems design, operating performance, and tritium control methods in effect at the DTRF on tritium emissions. This paper discusses the results of this study. (author)