WorldWideScience

Sample records for trisphosphate orthovanadate mitogens

  1. GATA4-mediated cardiac hypertrophy induced by D-myo-inositol 1,4,5-tris-phosphate

    International Nuclear Information System (INIS)

    Zhu Zhiming; Zhu Shanjun; Liu Daoyan; Yu Zengping; Yang Yongjian; Giet, Markus van der; Tepel, Martin

    2005-01-01

    We evaluated the effects of D-myo-inositol 1,4,5-tris-phosphate on cardiac hypertrophy. D-myo-inositol 1,4,5-tris-phosphate augmented cardiac hypertrophy as evidenced by its effects on DNA synthesis, protein synthesis, and expression of immediate-early genes c-myc and c-fos, β-myosin heavy chain, and α-actin. The administration of D-myo-inositol 1,4,5-tris-phosphate increased the expression of nuclear factor of activated T-cells and cardiac-restricted zinc finger transcription factor (GATA4). Real-time quantitative RT-PCR showed that D-myo-inositol 1,4,5-tris-phosphate-induced GATA4 mRNA was significantly enhanced even in the presence of the calcineurin inhibitor, cyclosporine A. The effect of D-myo-inositol 1,4,5-tris-phosphate was blocked after inhibition of inositol-trisphosphate receptors but not after inhibition of c-Raf/mitogen-activated protein kinase kinase (MEK)/mitogen-activated protein kinase (ERK) or p38 mitogen-activated protein kinase pathways. The study shows that D-myo-inositol 1,4,5-tris-phosphate-induced cardiac hypertrophy is mediated by GATA4 but independent from the calcineurin pathway

  2. On the conditions of preparation of hydrated rare earth orthovanadates

    International Nuclear Information System (INIS)

    Nakhodnova, A.P.; Belousova, E.E.; Shuba, Yu.I.; Zaslavskij, L.V.

    1988-01-01

    The properties of Ln(NO 3 ) 3 -Na 3 VO 4 -H 2 O solution series, where Ln is Er, Ho, Eu are investigated by the methods of residual concentrations, conductometry and potentiometry. It is found that at equivalent ratios of the initial components LnVO 4 xmH 2 O hydrated orthovanadates are formed. Deviations towards excess of rare earths or vanadium result in contamination of the compounds by products of side reactions. According to the data on X-ray phase analysis, hydrated erbium, holmium, europium orthovanadates have the zirconium crystal structure typical for anhydrous compounds. It is shown that hydrate water, being a component of orthovanadates, can be referred to adsorbed and interlayer water

  3. On the conditions of preparation of hydrated rare earth orthovanadates

    Energy Technology Data Exchange (ETDEWEB)

    Nakhodnova, A P; Belousova, E E; Shuba, Yu I; Zaslavskij, L V

    1988-10-01

    The properties of Ln(NO/sub 3/)/sub 3/-Na/sub 3/VO/sub 4/-H/sub 2/O solution series, where Ln is Er, Ho, Eu are investigated by the methods of residual concentrations, conductometry and potentiometry. It is found that at equivalent ratios of the initial components LnVO/sub 4/xmH/sub 2/O hydrated orthovanadates are formed. Deviations towards excess of rare earths or vanadium result in contamination of the compounds by products of side reactions. According to the data on X-ray phase analysis, hydrated erbium, holmium, europium orthovanadates have the zirconium crystal structure typical for anhydrous compounds. It is shown that hydrate water, being a component of orthovanadates, can be referred to adsorbed and interlayer water.

  4. Growth and scintillation properties of gadolinium and yttrium orthovanadate crystals

    International Nuclear Information System (INIS)

    Voloshina, O.V.; Baumer, V.N.; Bondar, V.G.; Kurtsev, D.A.; Gorbacheva, T.E.; Zenya, I.M.; Zhukov, A.V.; Sidletskiy, O.Ts.

    2012-01-01

    Aiming to explore the possibility of using the undoped rare-earth orthovanadates as scintillation materials, we developed the procedure for growth of gadolinium (GdVO 4 ) and yttrium (YVO 4 ) orthovanadate single crystals by Czochralski method, and determined the optimal conditions of their after-growth annealing. Optical, luminescent, and scintillation properties of YVO 4 and GdVO 4 were discussed versus known literature data. Scintillation characteristics of GdVO 4 were determined for the first time.

  5. Effects of sodium-orthovanadate and Trigonella foenum-graecum ...

    Indian Academy of Sciences (India)

    Unknown

    81. Keywords. Alloxan diabetes; lipogenic enzymes; sodium-orthovanadate; total lipid; Trigonella seed powder ... such as nephropathy, retinopathy, neuropathy, and car- diac problem .... using urine glucose detection strips (Diastix, Bayer Dia-.

  6. Mitogenic stimuli and phosphatidylinositol (PI) turnover in cultured 3T3 fibroblasts

    International Nuclear Information System (INIS)

    Kohler, C.; Petersen, R.

    1986-01-01

    The hydrolysis of PI and polyphosphoinositides by phopholipase C is an early and rapid response to cell activation by a variety of neurotransmitters, hormones, growth factors and pharmacological agonists. The authors have examined the role of PI turnover and the generation of second messengers (diacylglycerol and inositol trisphosphate) in the mitogenic response of cultured Balb/c and Swiss 3T3 cells to polypeptide growth factors. Cells were prelabelled with 3 H inositol for 18-20 hours, washed and suspended in Herpes + Li + buffer, and stimulated with platelet-derived growth factor (PDGF), vasopressin, insulin, and other growth factors. PI turnover was measured as the increase in total inositol phosphate (IP) production. IP1, IP2, and IP3 were characterized by sequential elution from a Dowex column. Partially purified PDGF produced a 2-4 fold stimulation of total IP production. This was seen as early as 30 seconds after stimulation and increased for up to 1-2 hours. Balb/c cells were more sensitive than Swiss cells to the mitogenic and PI effects of PDGF. Other mitogenic stimuli had differential effects on PI turnover. Vasopressin (4-400 ng/ml) markedly stimulated PI turnover (3-6 fold) in Swiss, but not Balb/c cells. Insulin (100 ng/ml - 10 μg/ml) increased total IP to a greater degree in Balb/c cells. Epidermal growth factor (10 ng/ml - 10 μg/ml) had no effect on PI turnover and fibroblast growth factor (10 ng/ml - 10 μg/ml) only stimulated at the higher concentrations in Swiss cells. Thrombin (1U/ml - 10 U/ml) produced a 1.5 - 2 fold stimulation in Balb/c cells. Thus, various polypeptide growth factors have differential effects on PI turnover depending on their mitogenic potential and the effector cell type

  7. Redox?Reversible Iron Orthovanadate Cathode for Solid Oxide Steam Electrolyzer

    OpenAIRE

    Gan, Lizhen; Ye, Lingting; Ruan, Cong; Chen, Shigang; Xie, Kui

    2015-01-01

    A redox?reversible iron orthovanadate cathode is demonstrated for a solid oxide electrolyser with up to 100% current efficiency for steam electrolysis. The iron catalyst is grown on spinel?type electronic conductor FeV2O4 by in situ tailoring the reversible phase change of FeVO4 to Fe+FeV2O4 in a reducing atmosphere. Promising electrode performances have been obtained for a solid oxide steam electrolyser based on this composite cathode.

  8. Effects of inositol trisphosphate on calcium mobilization in high-voltage and saponin-permeabilized platelets

    International Nuclear Information System (INIS)

    Gear, A.R.L.; Hallam, T.J.

    1986-01-01

    Interest in phosphatidylinositol metabolism has been greatly stimulated by the findings that diglyceride and inositol phosphates may serve as second messengers in modulating cellular function. Formation of 1,4,5-inositol trisphosphate (IP 3 ), in particular, has been linked to mobilization of intracellular calcium in a number of cell types. The authors have examined the ability of IP 3 to mobilize calcium in human platelets permeabilized by either saponin or high-voltage discharge. Saponin at 15 μg/ml effectively permeabilized platelets to exogenous inositol 1,4,5-trisphosphate which released bound [ 45 Ca] within 1 min and with a Ka of 7.4 +/- 4.1 μM. A small (25%) azide-sensitive pool was also responsive to inositol trisphosphate. The calcium pools were completely discharged by A-23187 and the ATP-dependent uptake was prevented by dinitrophenol. In contrast to the result with saponin, platelets accessed by high-voltage discharge were insensitive to challenge by inositol 1,4,5-trisphosphate. The data suggest that while inositol 1,4,5-trisphosphate can rapidly mobilize platelet calcium, the ability to demonstrate this depends on the method of permeabilization

  9. Inositol trisphosphate receptor in higher plants: is it real?

    Czech Academy of Sciences Publication Activity Database

    Krinke, Ondřej; Novotná, Z.; Valentová, O.; Martinec, Jan

    2007-01-01

    Roč. 58, č. 3 (2007), s. 361-376 ISSN 0022-0957 R&D Projects: GA MŠk(CZ) LC06034 Institutional research plan: CEZ:AV0Z50380511 Source of funding: V - iné verejné zdroje Keywords : Ca2+ signalling * higher plants * inositol trisphosphate receptor Subject RIV: EF - Botanics Impact factor: 3.917, year: 2007

  10. Phosphatidylinositol 3,4,5-trisphosphate modulation in SHIP2-deficient mouse embryonic fibroblasts.

    Science.gov (United States)

    Blero, Daniel; Zhang, Jing; Pesesse, Xavier; Payrastre, Bernard; Dumont, Jacques E; Schurmans, Stéphane; Erneux, Christophe

    2005-05-01

    SHIP2, the ubiquitous SH2 domain containing inositol 5-phosphatase, includes a series of protein interacting domains and has the ability to dephosphorylate phosphatidylinositol 3,4,5-trisphosphate [PtdIns(3,4,5)P(3)]in vitro. The present study, which was undertaken to evaluate the impact of SHIP2 on PtdIns(3,4,5)P(3) levels, was performed in a mouse embryonic fibroblast (MEF) model using SHIP2 deficient (-/-) MEF cells derived from knockout mice. PtdIns(3,4,5)P(3) was upregulated in serum stimulated -/- MEF cells as compared to +/+ MEF cells. Although the absence of SHIP2 had no effect on basal PtdIns(3,4,5)P(3) levels, we show here that this lipid was significantly upregulated in SHIP2 -/- cells but only after short-term (i.e. 5-10 min) incubation with serum. The difference in PtdIns(3,4,5)P(3) levels in heterozygous fibroblast cells was intermediate between the +/+ and the -/- cells. In our model, insulin-like growth factor-1 stimulation did not show this upregulation. Serum stimulated phosphoinositide 3-kinase (PI 3-kinase) activity appeared to be comparable between +/+ and -/- cells. Moreover, protein kinase B, but not mitogen activated protein kinase activity, was also potentiated in SHIP2 deficient cells stimulated by serum. The upregulation of protein kinase B activity in serum stimulated cells was totally reversed in the presence of the PI 3-kinase inhibitor LY-294002, in both +/+ and -/- cells. Altogether, these data establish a link between SHIP2 and the acute control of PtdIns(3,4,5)P(3) levels in intact cells.

  11. Synthesis, photophysical analysis, and in vitro cytotoxicity assessment of the multifunctional (magnetic and luminescent) core@shell nanomaterial based on lanthanide-doped orthovanadates

    International Nuclear Information System (INIS)

    Szczeszak, Agata; Ekner-Grzyb, Anna; Runowski, Marcin; Mrówczyńska, Lucyna; Grzyb, Tomasz; Lis, Stefan

    2015-01-01

    Rare earths orthovanadates (REVO 4 ) doped with luminescent lanthanide ions (Ln 3+ ) play an important role as promising light-emitting materials. Gadolinium orthovanadate exhibits strong absorption of ultraviolet radiation and as a matrix doped with Eu 3+ ions is well known for its efficient and intense red emission, induced by energy transfer from the VO 4 3− groups to Eu 3+ ions. In the presented study, Fe 3 O 4 @SiO 2 @GdVO 4 :Eu 3+ 5 % nanomaterial was investigated. The core@shell structures demonstrate attractive properties, such as higher thermal stability, enhanced water solubility, increased optical response, higher luminescence, longer decay times, and magnetic properties. Silica coating may protect nanocrystals from the surrounding environment. Therefore, such silica-covered nanoparticles (NPs) are successfully utilized in biomedical research. Multifunctional magnetic nanophosphors are very interesting due to their potential biomedical applications such as magnetic resonance imaging, hyperthermic treatment, and drug delivery. Therefore, the aim of our study was to investigate photophysical, chemical, and biological properties of multifunctional REVO 4 doped with Ln 3+ . Moreover, the studied NPs did not affect erythrocyte sedimentation rate, cell membrane permeability, and morphology of human red blood cells

  12. Synthesis, photophysical analysis, and in vitro cytotoxicity assessment of the multifunctional (magnetic and luminescent) core@shell nanomaterial based on lanthanide-doped orthovanadates

    Science.gov (United States)

    Szczeszak, Agata; Ekner-Grzyb, Anna; Runowski, Marcin; Mrówczyńska, Lucyna; Grzyb, Tomasz; Lis, Stefan

    2015-03-01

    Rare earths orthovanadates (REVO4) doped with luminescent lanthanide ions (Ln3+) play an important role as promising light-emitting materials. Gadolinium orthovanadate exhibits strong absorption of ultraviolet radiation and as a matrix doped with Eu3+ ions is well known for its efficient and intense red emission, induced by energy transfer from the VO4 3- groups to Eu3+ ions. In the presented study, Fe3O4@SiO2@GdVO4:Eu3+ 5 % nanomaterial was investigated. The core@shell structures demonstrate attractive properties, such as higher thermal stability, enhanced water solubility, increased optical response, higher luminescence, longer decay times, and magnetic properties. Silica coating may protect nanocrystals from the surrounding environment. Therefore, such silica-covered nanoparticles (NPs) are successfully utilized in biomedical research. Multifunctional magnetic nanophosphors are very interesting due to their potential biomedical applications such as magnetic resonance imaging, hyperthermic treatment, and drug delivery. Therefore, the aim of our study was to investigate photophysical, chemical, and biological properties of multifunctional REVO4 doped with Ln3+. Moreover, the studied NPs did not affect erythrocyte sedimentation rate, cell membrane permeability, and morphology of human red blood cells.

  13. Electrochemical transformations of oxygen and the defect structure of solid solutions on the basis of alkaline earth metal ortho-vanadates

    International Nuclear Information System (INIS)

    Khodos, M.Ya.; Belysheva, G.M.; Brajnina, Kh.Z.

    1986-01-01

    Effect of iso- and heterovalent substitution in the structure of alkaline earth metal ortho-vanadates and synthesis conditions, simulating the definite type of their crystal lattice disordering, on the character of potentiodynamic anodic-cathodic curves has been investigated by the method of cyclic voltammetry. Correlation between signals observed and the defect structure of oxide compounds is refined. Oxygen chemisorption is shown to be determined by concentration of nonequilibrium oxygen vacancies, which formation is accompanied by appearance of quasi-free electrons

  14. Synthesis, photophysical analysis, and in vitro cytotoxicity assessment of the multifunctional (magnetic and luminescent) core@shell nanomaterial based on lanthanide-doped orthovanadates

    Energy Technology Data Exchange (ETDEWEB)

    Szczeszak, Agata [Adam Mickiewicz University, Department of Rare Earths, Faculty of Chemistry (Poland); Ekner-Grzyb, Anna [Adam Mickiewicz University, Department of Behavioural Ecology, Faculty of Biology (Poland); Runowski, Marcin [Adam Mickiewicz University, Department of Rare Earths, Faculty of Chemistry (Poland); Mrówczyńska, Lucyna [Adam Mickiewicz University, Department of Cell Biology, Faculty of Biology (Poland); Grzyb, Tomasz; Lis, Stefan, E-mail: blis@amu.edu.pl [Adam Mickiewicz University, Department of Rare Earths, Faculty of Chemistry (Poland)

    2015-03-15

    Rare earths orthovanadates (REVO{sub 4}) doped with luminescent lanthanide ions (Ln{sup 3+}) play an important role as promising light-emitting materials. Gadolinium orthovanadate exhibits strong absorption of ultraviolet radiation and as a matrix doped with Eu{sup 3+} ions is well known for its efficient and intense red emission, induced by energy transfer from the VO{sub 4}{sup 3−} groups to Eu{sup 3+} ions. In the presented study, Fe{sub 3}O{sub 4}@SiO{sub 2}@GdVO{sub 4}:Eu{sup 3+} 5 % nanomaterial was investigated. The core@shell structures demonstrate attractive properties, such as higher thermal stability, enhanced water solubility, increased optical response, higher luminescence, longer decay times, and magnetic properties. Silica coating may protect nanocrystals from the surrounding environment. Therefore, such silica-covered nanoparticles (NPs) are successfully utilized in biomedical research. Multifunctional magnetic nanophosphors are very interesting due to their potential biomedical applications such as magnetic resonance imaging, hyperthermic treatment, and drug delivery. Therefore, the aim of our study was to investigate photophysical, chemical, and biological properties of multifunctional REVO{sub 4} doped with Ln{sup 3+}. Moreover, the studied NPs did not affect erythrocyte sedimentation rate, cell membrane permeability, and morphology of human red blood cells.

  15. Inositol trisphosphate receptor mediated spatiotemporal calcium signalling.

    Science.gov (United States)

    Miyazaki, S

    1995-04-01

    Spatiotemporal Ca2+ signalling in the cytoplasm is currently understood as an excitation phenomenon by analogy with electrical excitation in the plasma membrane. In many cell types, Ca2+ waves and Ca2+ oscillations are mediated by inositol 1,4,5-trisphosphate (IP3) receptor/Ca2+ channels in the endoplasmic reticulum membrane, with positive feedback between cytosolic Ca2+ and IP3-induced Ca2+ release creating a regenerative process. Remarkable advances have been made in the past year in the analysis of subcellular Ca2+ microdomains using confocal microscopy and of Ca2+ influx pathways that are functionally coupled to IP3-induced Ca2+ release. Ca2+ signals can be conveyed into the nucleus and mitochondria. Ca2+ entry from outside the cell allows repetitive Ca2+ release by providing Ca2+ to refill the endoplasmic reticulum stores, thus giving rise to frequency-encoded Ca2+ signals.

  16. Pressure-induced phase transformation in zircon-type orthovanadate SmVO4 from experiment and theory

    International Nuclear Information System (INIS)

    Popescu, C; Garg, Alka B; Errandonea, D; Sans, J A; Rodriguez-Hernández, P; Radescu, S; Muñoz, A; Achary, S N; Tyagi, A K

    2016-01-01

    The compression behavior of zircon-type samarium orthovanadate, SmVO 4 , has been investigated using synchrotron-based powder x-ray diffraction and ab initio calculations of up to 21 GPa. The results indicate the instability of ambient zircon phase at around 6 GPa, which transforms to a high-density scheelite-type phase. The high-pressure phase remains stable up to 21 GPa, the highest pressure reached in the present investigations. On pressure release, the scheelite phase is recovered. The crystal structure of the high-pressure phase and the equations of state for the zircon- and scheelite-type phases have been determined. Various compressibilities, such as the bulk, axial and bond compressibilities, estimated from the experimental data are found to be in good agreement with the results obtained from theoretical calculations. The calculated elastic constants show that the zircon structure becomes mechanically unstable beyond the transition pressure. Overall there is good agreement between the experimental and theoretical findings. (paper)

  17. Dephosphorylation Pathway of D-myo-Inositol 1,4,5-trisphosphate in the Unicellular Green Alga Chlamydomonas eugametos

    NARCIS (Netherlands)

    Klerk, Hans; Himbergen, John A.J. van; Musgrave, Alan; Haastert, Peter J.M. van; Ende, Herman van den

    In vitro dephosphorylation of D-myo-inositol 1,4,5-trisphosphate [Ins(l,4,5)P-3] by vegetative cells, gametes and zygotes of the green alga Chlamydomonas eugametos was studied using a soluble cell fraction as enzyme source and labelled Ins(1,4,5)P-3 as substrate. This compound was dephosphorylated

  18. Phase transition and electrical properties of strontium orthovanadate

    International Nuclear Information System (INIS)

    Pati, Biswajit; Choudhary, R.N.P.; Das, Piyush R.

    2013-01-01

    Highlights: •Highly crystallized Sr 3 V 2 O 8 ceramic has a structural and micro-structural stability. •The low values of ε r and tan δ make this material useful for microwave applications. •The material exhibits good ferroelectric properties suitable for memory devices. •The dielectric relaxation is of non Debye-type and ac conductivity obeys Jonscher power law. •The small value of dc activation energy suggests the conduction initiates with a small energy. -- Abstract: The current research work reports the study of phase transition and transport mechanism in lead-free strontium orthovanadate (Sr 3 V 2 O 8 ), prepared using a high-temperature solid-state reaction technique. Preliminary X-rays diffraction studies exhibit the formation of a single-phase compound in the trigonal crystal system. Study of microstructure of gold-coated pellet by scanning electron microscopy (SEM) shows well-defined and homogeneous grains in the morphology. Detailed studies of dielectric parameters (ε r and tan δ) of the compound as a function of temperature at some selected frequencies reveal their independence for a wide range of temperatures. An anomaly in relative permittivity (ε r ) suggests the existence of a ferroelectric–paraelectric phase transition of diffuse-type in the material that confirms through the detailed studies of its electric polarization. Detailed studies of impedance and related parameters exhibit that the electrical properties of the material are strongly dependent on temperature, and bear a good correlation with its microstructure (i.e., bulk, grain boundary, etc.). The decrease in value of bulk resistance on increasing temperature suggests the negative temperature co-efficient of resistance (NTCR) behavior of the material. Studies of electric modulus indicate the presence of hopping conduction mechanism in the system with non-exponential type of conductivity relaxation. The nature of variation of dc conductivity with temperature confirms the

  19. The inositol trisphosphate receptor in the control of autophagy.

    Science.gov (United States)

    Criollo, Alfredo; Vicencio, José Miguel; Tasdemir, Ezgi; Maiuri, M Chiara; Lavandero, Sergio; Kroemer, Guido

    2007-01-01

    The second messenger myo-inositol-1,4,5-trisphosphate (IP(3)) acts on the IP(3) receptor (IP(3)R), an IP(3)-activated Ca(2+) channel of the endoplasmic reticulum (ER). The IP(3)R agonist IP(3) inhibits starvation-induced autophagy. The IP(3)R antagonist xestospongin B induces autophagy in human cells through a pathway that requires the obligate contribution of Beclin-1, Atg5, Atg10, Atg12 and hVps34, yet is inhibited by ER-targeted Bcl-2 or Bcl-XL, two proteins that physically interact with IP(3)R. Autophagy can also be induced by depletion of the IP(3)R by small interfering RNAs. Autophagy induction by IP(3)R blockade cannot be explained by changes in steady state levels of Ca(2+) in the endoplasmic reticulum (ER) and the cytosol. Autophagy induction by IP(3)R blockade is effective in cells lacking the obligate mediator of ER stress IRE1. In contrast, IRE1 is required for autophagy induced by ER stress-inducing agents such a tunicamycin or thapsigargin. These findings suggest that there are several distinct pathways through which autophagy can be initiated at the level of the ER.

  20. Bradykinin-activated transmembrane signals are coupled via N/sub o/ or N/sub i/ to production of inositol 1,4,5-trisphosphate, a second messenger in NG108-15 neuroblastoma-glioma hybrid cells

    International Nuclear Information System (INIS)

    Higashida, H.; Streaty, R.A.; Klee, W.; Nirenberg, M.

    1986-01-01

    The addition of bradykinin to NG108-15 cells results in a transient hyperpolarization followed by prolonged cell depolarization. Injection of inositol 1,4,5-trisphosphate or Ca 2+ into the cytoplasm of NG108-15 cells also elicits cell hyperpolarization followed by depolarization. Tetraethylammonium ions inhibit the hyperpolarizing response of cells to bradykinin or inositol 1,4,5-trisphosphate. Thus, the hyperpolarizing phase of the cell response may be due to inositol 1,4,5-trisphosphate-dependent release of stored 45 Ca-labelled Ca 2+ into the cytoplasm, which activates Ca 2+ -dependent K + channels. The depolarizing phase of the cell response to bradykinin is due largely to inhibition of M channels, thereby decreasing the rate of K + efflux from cells and, to a lesser extent, to activation of Ca 2+ -dependent ion channels and Ca 2+ channels. In contrast, injection of inositol 1,4,5-trisphosphate or Ca 2+ into the cytosol did not alter M channel activity. Incubation of NG108-15 cells with pertussis toxin inhibits bradykinin-dependent cell hyperpolarization and depolarization. Bradykinin stimulates low K/sub m/ GTPase activity and inhibits adenylate cyclase in NG108-15 membrane preparations but not in membranes prepared from cells treated with pertussis toxin. These results show that [bradykinin-receptor] complexes interact with N/sub o/ or N/sub i/ and suggest that N/sub o/ and/or N/sub i/ mediate the transduction of signals from bradykinin receptors to phospholipase C and adenylate cyclase

  1. Prior Activation of Inositol 1,4,5-Trisphosphate Receptors Suppresses the Subsequent Induction of Long-Term Potentiation in Hippocampal CA1 Neurons

    Science.gov (United States)

    Fujii, Satoshi; Yamazaki, Yoshihiko; Goto, Jun-Ichi; Fujiwara, Hiroki; Mikoshiba, Katsuhiko

    2016-01-01

    We investigated the role of inositol 1,4,5-trisphosphate receptors (IP3Rs) activated by preconditioning low-frequency afferent stimulation (LFS) in the subsequent induction of long-term potentiation (LTP) in CA1 neurons in hippocampal slices from mature guinea pigs. Induction of LTP in the field excitatory postsynaptic potential or the population…

  2. Mitogen-activated protein kinases mediate Mycobacterium ...

    Indian Academy of Sciences (India)

    2012-01-19

    Jan 19, 2012 ... CD44, an adhesion molecule, has been reported to be a binding site for ... receptors in mediating mitogen-activated protein kinase activation. ... surface expression and tumour necrosis factor-alpha levels, ... Abbreviations used: Abs, antibodies; ANOVA, analysis of variance; AP-1, activator protein -1; BCG, ...

  3. Cytotoxic effect of menadione and sodium orthovanadate in combination on human glioma cells.

    Science.gov (United States)

    Delwar, Zahid M; Avramidis, Dimitrios; Follin, Elna; Hua, Yan; Siden, Åke; Cruz, Mabel; Paulsson, Kajsa M; Yakisich, Juan Sebastian

    2012-08-01

    Gliomas are the most common primary brain tumor, and their treatment is still a challenge. Here, we evaluated the antiproliferative effect of a novel combination of two potent oxidative stress enhancers: menadione (M) and sodium orthovanadate (SO). We observed both short-term and prolonged growth inhibitory effects of M or SO alone as well as in combination (M:SO) on DBTRG.05MG human glioma cells. A stronger antiproliferative effect was observed in the short-term proliferation assay with the M:SO combination compared to either investigated agent alone. In the long-term proliferation assay, a 10-day exposure to M:SO at concentrations of 10 μM:17.5 μM or 17.5 μM:10 μM was enough to kill 100% of the cells; no cell regrowth was observed after re-incubation in drug-free media. When used in combination, the single concentration of M and SO could be decreased by 2.5- to 5-fold of those used for each experimental drug alone and still obtain a similar antiproliferative effect. The underlying molecular mechanism was investigated by co-incubating M:SO with dithiothreitol (DTT) and genistein. Both substances partially neutralized the effects of the M:SO combination, showing additive effects. This observation suggests a role of oxidative stress and tyrosine kinase stimulation in the M:SO cytotoxic effect. Our results indicate that M:SO combination is an attractive alternative for glioma treatment that encourages further study. The neutralizing effects of genistein and DTT reveal a possibility for their use in the minimization of potential M:SO systemic toxicity.

  4. Sodium orthovanadate associated with pharmacological doses of ascorbate causes an increased generation of ROS in tumor cells that inhibits proliferation and triggers apoptosis

    Energy Technology Data Exchange (ETDEWEB)

    Günther, T-hat nia Mara Fischer; Kviecinski, Maicon Roberto; Baron, Carla Cristine; Felipe, Karina Bettega; Farias, Mirelle Sifroni; Ourique da Silva, Fabiana; Bücker, Nádia Cristina Falcão [Departamento de Bioquímica, Universidade Federal de Santa Catarina, Florianópolis (Brazil); Pich, Claus Tröger [Campus de Araranguá, Universidade Federal de Santa Catarina, Araranguá (Brazil); Ferreira, Eduardo Antonio [Universidade de Brasília, Faculdade de Ceilândia, DF (Brazil); Filho, Danilo Wilhelm [Departamento de Ecologia e Zoologia, Universidade Federal de Santa Catarina, Florianópolis (Brazil); Verrax, Julien; Calderon, Pedro Buc [Toxicology and Cancer Biology Research Group, Louvain Drug Research Institute, Université Catholique de Louvain, Brussels (Belgium); Pedrosa, Rozangela Curi, E-mail: rozangelapedrosa@gmail.com [Departamento de Bioquímica, Universidade Federal de Santa Catarina, Florianópolis (Brazil)

    2013-01-18

    Graphical abstract: -- Abstract: Pharmacological doses of ascorbate were evaluated for its ability to potentiate the toxicity of sodium orthovanadate (Na{sub 3}VO{sub 4}) in tumor cells. Cytotoxicity, inhibition of cell proliferation, generation of ROS and DNA fragmentation were assessed in T24 cells. Na{sub 3}VO{sub 4} was cytotoxic against T24 cells (EC{sub 50} = 5.8 μM at 24 h), but in the presence of ascorbate (100 μM) the EC{sub 50} fell to 3.3 μM. Na{sub 3}VO{sub 4} plus ascorbate caused a strong inhibition of cell proliferation (up to 20%) and increased the generation of ROS (4-fold). Na{sub 3}VO{sub 4} did not directly cleave plasmid DNA, at this aspect no synergism was found occurring between Na{sub 3}VO{sub 4} and ascorbate once the resulting action of the combination was no greater than that of both substances administered separately. Cells from Ehrlich ascites carcinoma-bearing mice were used to determine the activity of antioxidant enzymes, the extent of the oxidative damage and the type of cell death. Na{sub 3}VO{sub 4} alone, or combined with ascorbate, increased catalase activity, but only Na{sub 3}VO{sub 4} plus ascorbate increased superoxide dismutase activity (up to 4-fold). Oxidative damage on proteins and lipids was higher due to the treatment done with Na{sub 3}VO{sub 4} plus ascorbate (2–3-fold). Ascorbate potentiated apoptosis in tumor cells from mice treated with Na{sub 3}VO{sub 4}. The results indicate that pharmacological doses of ascorbate enhance the generation of ROS induced by Na{sub 3}VO{sub 4} in tumor cells causing inhibition of proliferation and apoptosis. Apoptosis induced by orthovanadate and ascorbate is closer related to inhibition on Bcl-xL and activation of Bax. Our data apparently rule out a mechanism of cell demise p53-dependent or related to Cdk2 impairment.

  5. Stochastic simulation of a single inositol 1,4,5-trisphosphate-sensitive Ca2+ channel reveals repetitive openings during 'blip-like' Ca2+ transients.

    Science.gov (United States)

    Swillens, S; Champeil, P; Combettes, L; Dupont, G

    1998-05-01

    Confocal microscope studies with fluorescent dyes of inositol 1,4,5-trisphosphate (InsP3)-induced intracellular Ca2+ mobilization recently established the existence of 'elementary' events, dependent on the activity of individual InsP3-sensitive Ca2+ channels. In the present work, we try by theoretical stochastic simulation to explain the smallest signals observed in those studies, which were referred to as Ca2+ 'blips' [Parker I., Yao Y. Ca2+ transients associated with openings of inositol trisphosphate-gated channels in Xenopus oocytes. J Physiol Lond 1996; 491: 663-668]. For this purpose, we assumed a simple molecular model for the InsP3-sensitive Ca2+ channel and defined a set of parameter values accounting for the results obtained in electrophysiological bilayer experiments [Bezprozvanny I., Watras J., Ehrlich B.E. Bell-shaped calcium-response curves of Ins(1,4,5)P3- and calcium-gated channels from endoplasmic reticulum of cerebellum. Nature 1991; 351: 751-754; Bezprozvanny I., Ehrlich B.E. Inositol (1,4,5)-trisphosphate (InsP3)-gated Ca channels from cerebellum: conduction properties for divalent cations and regulation by intraluminal calcium. J Gen Physiol 1994; 104: 821-856]. With a stochastic procedure which considered cytosolic Ca2+ diffusion explicitly, we then simulated the behaviour of a single channel, placed in a realistic physiological environment. An attractive result was that the simulated channel exhibited bursts of activity, arising from repetitive channel openings, which were responsible for transient rises in Ca2+ concentration and were reminiscent of the relatively long-duration experimental Ca2+ blips. The influence of the values chosen for the various parameters (affinity and diffusion coefficient of the buffers, luminal Ca2+ concentration) on the kinetic characteristics of these theoretical blips is analyzed.

  6. Effects of polycationic compounds on mitogen stimulation

    DEFF Research Database (Denmark)

    Heron, I; Larsen, B; Hokland, M

    1981-01-01

    The effects of polycations added to phytomitogen stimulated human lymphocyte cultures have been studied. Within certain dose ranges all polycations tested gave rise to augmented thymidine uptake in mitogen stimulated cultures. The optimum enhancing concentrations of polycations was depending on t...

  7. In vitro induction of lymphocyte responsiveness by a Strongylus vulgaris-derived mitogen.

    Science.gov (United States)

    Bailey, M; Lloyd, S; Martin, S C; Soulsby, E J

    1984-01-01

    Proliferation in vitro of peripheral blood lymphocytes both from horses infected with Strongylus vulgaris and from helminth-free ponies was observed in the presence of extracts of the fourth and fifth stage larvae and adults of S. vulgaris. In addition, S. vulgaris extracts induced transformation in cultures of peripheral blood lymphocytes from sheep and dogs and in mouse spleen cell cultures. Nylon wool non-adherent, T cell enriched fractions of lymphocytes from both mice and horses were stimulated by the S. vulgaris larval mitogen while no proliferation was observed in cultures containing nylon wool adherent, B cell enriched fractions. Macrophage co-operation appeared not to be necessary for S. vulgaris mitogen-induced transformation of spleen cells. The S. vulgaris mitogen stimulated a subpopulation of mouse spleen cells different from those responsive to PHA, Con A and LPS. These cells might be T helper cells since B cells were stimulated to proliferate in the presence of both T cells and S. vulgaris larval mitogen. In addition, the supernatant of in vitro cultured larvae of S. vulgaris induced slight, but significant transformation of equine peripheral blood lymphocytes. Therefore, it is possible that the S. vulgaris mitogen released by both viable parasites and degenerating larvae might induce T cell dependent production of immunoglobulin in vivo and account for the beta-globulinaemia, of which IgG(T) is a major component, in S vulgaris infected horses.

  8. Effects of cyclophosphamide on in vitro human lymphocyte culture and mitogenic stimulation

    International Nuclear Information System (INIS)

    Sharma, B.S.

    1983-01-01

    Cyclophosphamide (CY) has been reported to be inactive in vitro under certain conditions. In the present study, CY was tested for its ability to inhibit human lymphocyte proliferation and to modulate lymphocyte response to mitogens in vitro. The inhibition of or the increase in 3 H-thymidine incorporation in mitogen-stimulated and unstimulated lymphocytes by CY was used as a measure of CY activity in vitro. The results demonstrate that lymphocytes from 10 different persons had a mean decrease of 74% in 3 H-thymidine incorporation in the presence of CY (P less than 0.005). The effect was maximal at a concentration of 160 micrograms/ml. A mean inhibition of 35 and 55% was caused by 10 and 40 micrograms/ml concentrations of CY, respectively. CY also was able to reduce the number of viable cells during 5 days in culture and had a profound effect on mitogen stimulation of lymphocytes. In all cases, CY modulated the stimulation of lymphocytes by phytohemagglutinin (PHA), concanavalin A (Con A), and pokeweed mitogen (PWM) either by augmenting or suppressing the responses. At low concentrations (10 micrograms/ml) it augmented mitogenic stimulation by 46 to 281%. At higher concentrations (20 to 160 micrograms/ml), CY had a suppressive effect with a maximum suppression of 99%. The CY-induced immunomodulation is perhaps caused by its action on the regulatory T cells. When tested in vitro, CY had inhibitory activity on T cells

  9. Activin and TGFβ use diverging mitogenic signaling in advanced colon cancer

    OpenAIRE

    Bauer, Jessica; Ozden, Ozkan; Akagi, Naomi; Carroll, Timothy; Principe, Daniel R.; Staudacher, Jonas J.; Spehlmann, Martina E.; Eckmann, Lars; Grippo, Paul J.; Jung, Barbara

    2015-01-01

    Background Understanding cell signaling pathways that contribute to metastatic colon cancer is critical to risk stratification in the era of personalized therapeutics. Here, we dissect the unique involvement of mitogenic pathways in a TGFβ or activin-induced metastatic phenotype of colon cancer. Method Mitogenic signaling/growth factor receptor status and p21 localization were correlated in primary colon cancers and intestinal tumors from either AOM/DSS treated ACVR2A (activin receptor 2) −/−...

  10. Manifestation of radiaton injury of human lymphocytes using PHA mitogenic stimulation in different culture systems

    International Nuclear Information System (INIS)

    Horky, J.

    1986-01-01

    The proliferative response of human lymphocytes to phytohemagglutinin in vitro is affected by X-irradiation. Dose-related changes in mitogenic stimulation of irradiated lymphocytes were compared for two culture systems - the cultivation of separated lymphocytes and the cultivation of whole blood. In the whole blood cultures, the proliferative activity of stimulated lyphocytes was markedly and reproducibly depressed by irradiation. An exponential curve could be fitted to the values of mitogenic response within a dose range from 0 to 2.5 Gy with high correlation. In a modified test where the mitogenic stimulus was given after a 24 h delay, depression in the response was even more pronounced. Radiosensitivity of human lymphocytes as determined by means of mitogenic stimulation in the whole blood cultures appears to be a characteristic individual feature. The mean D 37 value of the radiation-induced depression in mitogenic response in a group of 20 healthy donors was 2.5 Gy in the standard test and 2.0 Gy in the test with a delayed mitogenic stimulus. In contrast, the data obtained from separated lymphocyte cultures were characterized by a high degree of test-to-test variability and by much lower radiosensitivity. The possible mechanisms of these distinctive manifestations of the same primary radiation injury are discussed. (author) 3 tabs., 2 figs., 12 refs

  11. Parathyroid mitogenic activity in plasma from patients with familial multiple endocrine neoplasia type 1

    International Nuclear Information System (INIS)

    Brandi, M.L.; Aurbach, G.D.; Fitzpatrick, L.A.; Quarto, R.; Spiegel, A.M.; Bliziotes, M.M.; Norton, J.A.; Doppman, J.L.; Marx, S.J.

    1986-01-01

    Hyperplasia of the parathyroid glands is a central feature of familial multiple endocrine neoplasia type 1. We used cultured bovine parathyroid cells to test for mitogenic activity in plasma from patients with this disorder. Normal plasma stimulated [ 3 H]thymidine incorporation, on the average, to the same extent as it was stimulated in a plasma-free control culture. This contrasted with the results of the tests with plasma from patients with familial multiple endocrine neoplasia type 1, in which parathyroid mitogenic activity increased 2400 percent over the control value (P less than 0.001). Plasma from these patients also stimulated the proliferation of bovine parathyroid cells in culture, whereas plasma from normal subjects inhibited it. Parathyroid mitogenic activity in plasma from the patients with familial multiple endocrine neoplasia type 1 was greater than that in plasma from patients with various other disorders, including sporadic primary hyperparathyroidism (with adenoma, hyperplasia, or cancer of the parathyroid), sporadic primary hypergastrinemia, sporadic pituitary tumor, familial hypocalciuric hypercalcemia, and multiple endocrine neoplasia type 2 (P less than 0.05). Parathyroid mitogenic activity in the plasma of patients with familial multiple endocrine neoplasia type 1 persisted for up to four years after total parathyroidectomy. The plasma also had far more mitogenic activity in cultures of parathyroid cells than did optimal concentrations of known growth factors or of any parathyroid secretagogue. This mitogenic activity had an apparent molecular weight of 50,000 to 55,000. We conclude that primary hyperparathyroidism in familial multiple endocrine neoplasia type 1 may have a humoral cause

  12. Ortho-vanadates K3RE(VO4)2 (RE = La, Pr, Eu, Gd, Dy, Y) for near UV-converted phosphors

    International Nuclear Information System (INIS)

    Qin, Lin; Wei, Dong-Lei; Huang, Yanlin; Qin, Chuanxiang; Cai, Peiqing; Kim, Sun-Il; Seo, Hyo-Jin

    2014-01-01

    The orthovanadate poly-crystals K 3 RE(VO 4 ) 2 (RE = La, Pr, Eu, Gd, Dy, Y) were synthesized via the solid-state reaction route. The crystal phase formation was verified through X-ray diffraction (XRD) studies and was performed by structural refinements. The optical properties were also investigated in detail. K 3 RE(VO 4 ) 2 (RE = Eu, Dy, Gd, Pr, La, Y) phosphors present different luminescence behaviors: the profiles of excitation and emission spectra, the spectra shift, the luminescence decay lifetimes, the absolute quantum efficiency (QE), and the CIE color coordinates are very different. The luminescence of K 3 RE(VO 4 ) 2 (RE = La, Gd, Y, Pr) presents yellow or yellowish green color, while, K 3 Dy(VO 4 ) 2 and K 3 Eu(VO 4 ) 2 show white and red luminescence, respectively. This was discussed on the base of the different micro-structure, activator centers, and the charge transfer transitions from [VO 4 ] 3− groups in the lattices. K 3 Y(VO 4 ) 2 and K 3 Eu(VO 4 ) 2 show higher QE values of 47.0% and 45.0% at room temperature, respectively. All the phosphors have efficient absorption in the region of near-UV wavelengths or blue wavelength region. This can well match with the light from UV-LED (360–400 nm) or blue LED chips (450–480 nm) based on GaN semiconductor. K 3 RE(VO 4 ) 2 could be suggested to be a potential candidate to give further investigations for the application on near-UV excited white LEDs. - Graphical abstract: A series of orthovanadates K 3 RE(VO 4 ) 2 (RE = Eu, Dy, Gd, Pr, La, Y) have been developed to be new phosphors with rich luminescence colors; there are efficiency excitation in the near UV wavelength region. Compared with the reported vanadate phosphors K 3 R(VO 4 ) 2 has rich luminescence color, rich color, no concentration quenching, and comparable luminescence QE. - Highlights: • A new phosphor of non-doped of K 3 R(VO 4 ) 2 (R = Eu, Dy, Gd, Pr, La, Y) were developed by solid-state reaction route. • The phosphor

  13. Precipitin response of the mitogen produced by Strongylus vulgaris arterial larvae.

    Science.gov (United States)

    Adeyefa, C A

    1992-07-01

    The precipitin response of the mitogen produced by Strongylus vulgaris arterial larvae was investigated. IgG (T) from the sera of horses naturally infected with S. vulgaris adults and arterial larvae recognised the presence of two antigenic components of the mitogenic fractions. The results obtained seem to confirm that these antigens are immunogenic in stimulating the production of increased levels of IgG(T) in infected animals, and showed that the procedures could be used as immunological tools in the diagnosis of S. vulgaris infection.

  14. Stimulated mitogen-activated protein kinase is necessary but not sufficient for the mitogenic response to angiotensin II. A role for phospholipase D.

    Science.gov (United States)

    Wilkie, N; Morton, C; Ng, L L; Boarder, M R

    1996-12-13

    Activation of the mitogen-activated protein kinase (MAPK) cascade has been widely associated with cell proliferation; previous studies have shown that angiotensin II (AII), acting on 7-transmembrane G protein-coupled receptors, stimulates the MAPK pathway. In this report we investigate whether the MAPK pathway is required for the mitogenic response to AII stimulation of vascular smooth muscle cells derived from the hypertensive rat (SHR-VSM). AII stimulates the phosphorylation of MAPK, as determined by Western blot specific for the tyrosine 204 phosphorylated form of the protein. This MAPK phosphorylation was inhibited by the presence of the inhibitor of MAPK kinase activation, PD 098059. Using a peptide kinase assay shown to measure the p42 and p44 isoforms of MAPK, the stimulated response to AII was inhibited by PD 098059 with an IC50 of 15.6 +/- 1.6 microM. The AII stimulation of [3H]thymidine incorporation was inhibited by PD 098059 with an IC50 of 17.8 +/- 3.1 microM. PD 098059 had no effect on AII-stimulated phospholipase C or phospholipase D (PLD) activity. When the SHR-VSM cells were stimulated with phorbol ester, there was an activation of MAPK similar in size and duration to the response to AII, but there was no significant enhancement of [3H]thymidine incorporation. There was also no activation of PLD by phorbol ester, while AII produced a robust PLD response. Diversion of the product of the PLD reaction by 1-butanol caused a partial loss of the [3H]thymidine response; this did not occur with tertiary butanol, which did not interfere with the PLD reaction. These results show that in these cells the MAPK cascade is required but not sufficient for the mitogenic response to AII, and suggest that the full mitogenic response requires both MAPK in conjunction with other signaling components, one of which is PLD.

  15. Isolation and characterization of the inositol trisphosphate receptor from smooth muscle

    International Nuclear Information System (INIS)

    Chadwick, C.C.; Saito, A.; Fleischer, S.

    1990-01-01

    The release of Ca 2+ from internal stores is requisite to muscle contraction. In skeletal muscle and heart, the Ca 2+ release channels (ryanodine receptor) of sarcoplasmic reticulum, involved in excitation-contraction coupling, have recently been isolated and characterized. In smooth muscle, inositol 1,4,5-trisphosphate (IP 3 ) is believed to mobilize Ca 2+ from internal stores and thereby modulate contraction. The authors describe the isolation of an IP 3 receptor from smooth muscle. Bovine aorta smooth muscle microsomes were solubilized with 3-[(3-cholamidopropyl) dimethylammonio]-1-propanesulfonate, and the IP 3 receptor was purified by sucrose gradient centrifugation and column chromatography with heparin-agarose and wheat germ agglutinin-agarose. The receptor is an oligomer of a single polypeptide with a M r of 224,000 as determined by SDS/PAGE. Negative-staining electron microscopy reveals that the receptor is a large pinwheel-like structure having surface dimensions of ∼250 x 250 angstrom with fourfold symmetry. The IP 3 receptor from smooth muscle is similar to the ryanodine receptor with regard to its large size and fourfold symmetry, albeit distinct with regard to appearance, protomer size, and ligand binding

  16. Phosphorylation of inositol 1,4,5-trisphosphate analogues by 3-kinase and dephosphorylation of inositol 1,3,4,5-tetrakisphosphate analogues by 5-phosphatase

    NARCIS (Netherlands)

    Dijken, Peter van; Lammers, Aleida A.; Ozaki, Shoichiro; Potter, Barry V.L.; Erneux, Christophe; Haastert, Peter J.M. van

    1994-01-01

    A series of P-32-labeled D-myo-inositol 1,3,4,5-tetrakisphosphate [Ins(1,3,4,5)P-4] analogues was enzymically prepared from the corresponding D-myo-inositol 1,4,5-trisphosphate [Ins(1,4,5)P-3] analogues using recombinant rat brain Ins(1,4,5)P-3 3-kinase and [gamma-P-32]ATP. Ins(1,4,5)P-3 analogues

  17. Insulin resistance enhances the mitogen-activated protein kinase signaling pathway in ovarian granulosa cells.

    Directory of Open Access Journals (Sweden)

    Linghui Kong

    Full Text Available The ovary is the main regulator of female fertility. Granulosa cell dysfunction may be involved in various reproductive endocrine disorders. Here we investigated the effect of insulin resistance on the metabolism and function of ovarian granulosa cells, and dissected the functional status of the mitogen-activated protein kinase signaling pathway in these cells. Our data showed that dexamethasone-induced insulin resistance in mouse granulosa cells reduced insulin sensitivity, accompanied with an increase in phosphorylation of p44/42 mitogen-activated protein kinase. Furthermore, up-regulation of cytochrome P450 subfamily 17 and testosterone and down-regulation of progesterone were observed in insulin-resistant mouse granulosa cells. Inhibition of p44/42 mitogen-activated protein kinase after induction of insulin resistance in mouse granulosa cells decreased phosphorylation of p44/42 mitogen-activated protein kinase, downregulated cytochrome P450 subfamily 17 and lowered progesterone production. This insulin resistance cell model can successfully demonstrate certain mechanisms such as hyperandrogenism, which may inspire a new strategy for treating reproductive endocrine disorders by regulating cell signaling pathways.

  18. Heat- and radiation effects on the hemaglutinating- and mitogenic activity of phytohemaglutinins

    International Nuclear Information System (INIS)

    Mancini Filho, J.; Vizeu, D.M.; Lajolo, F.M.

    1975-01-01

    The effect of ionizing radiation on hemaglutinating and mitogenic activity of phytohemaglutinins (PHA) in solution is studied. 10 Krad (electron beam) are neede for the destruction of 50% of the aglutinating capacity. The mitogenic effect is more resistent to irradiation (70 Krad for 50% inactivation) may be because both effects are due to different molecules. Changes were also followed by electrophoresis in polyacrylamida. The resistence to irradiation showed to be exponential function of the concentration of PHA in solution. (author) [pt

  19. Cytokine production by porcine mononuclear leukocytes stimulated by mitogens

    Czech Academy of Sciences Publication Activity Database

    Rašková, G.; Kovářů, František; Bártová, J.

    2005-01-01

    Roč. 74, - (2005), s. 521-525 ISSN 0001-7213 R&D Projects: GA ČR GA524/05/0267 Institutional research plan: CEZ:AV0Z50450515 Keywords : cytokine * ELISpot * mitogen Subject RIV: ED - Physiology Impact factor: 0.353, year: 2005

  20. Lack of direct mitogenic activity of dichloroacetate and trichloroacetate in cultured rat hepatocytes

    International Nuclear Information System (INIS)

    Walgren, Jennie L.; Kurtz, David T.; McMillan, JoEllyn M.

    2005-01-01

    Dichloroacetate (DCA) and trichloroacetate (TCA) are hepatocarcinogenic metabolites of the common groundwater contaminant, 1,1,2-trichloroethylene. DCA and TCA have been shown to induce hepatocyte proliferation in vivo, but it is not known if this response is the result of direct mitogenic activity or whether cell replication occurs indirectly in response to tissue injury or inflammation. In this study we used primary cultures of rat hepatocytes, a species susceptible to DCA- but not TCA-induced hepatocarcinogenesis, to determine whether DCA and TCA are direct hepatocyte mitogens. Rat hepatocytes, cultured in growth factor-free medium, were treated with 0.01-1.0 mM DCA or TCA for 10-40 h; cell replication was then assessed by measuring incorporation of 3 H-thymidine into DNA and by cell counts. DCA or TCA treatment did not alter 3 H-thymidine incorporation in the cultured hepatocytes. Although an increase in cell number was not observed, DCA treatment significantly abrogated the normal background cell loss, suggesting an ability to inhibit apoptotic cell death in primary hepatocyte cultures. Furthermore, treatment with DCA synergistically enhanced the mitogenic response to epidermal growth factor. The data indicate that DCA and TCA are not direct mitogens in hepatocyte cultures, which is of interest in view of their ability to stimulate hepatocyte replication in vivo. Nevertheless, the synergistic enhancement of epidermal growth factor-induced hepatocyte replication by DCA is of particular interest and warrants further study

  1. Distribution of Inositol 1,4,5-Trisphosphate Receptors in Rat Osteoclasts

    International Nuclear Information System (INIS)

    Morikawa, Kazumasa; Goto, Tetsuya; Tanimura, Akihiko; Kobayashi, Shigeru; Maki, Kenshi

    2008-01-01

    Inositol 1,4,5-trisphosphate (IP 3 ) receptors (IP 3 Rs) are Ca 2+ channels that localize to intracellular Ca 2+ stores such as the endoplasmic reticulum (ER). Recently, IP 3 Rs were found to participate in the formation of the cytoskeleton and cellular adhesions. In this study, we examined the cellular localization of type I, II, and III IP 3 Rs to assess their role in cellular adhesion in rat osteoclasts. Rat bone marrow cells were cultured in α-MEM with 10% fetal bovine serum, M-CSF, RANKL, and 1,25(OH) 2 D 3 for 1 week to promote osteoclast formation. Type I, II, and III IP 3 R expression in the osteoclasts was then examined by RT-PCR. Double-staining was performed using antibodies against type I, II, and III IP 3 Rs and DiOC 6 , an ER marker, or TRITC-phalloidin, an actin filament marker. Expression of all three IP 3 Rs was detected in the newly formed osteoclasts; however, the localization of the type I and II IP 3 Rs was predominantly close to nuclear, and possibly colocalized with the ER, while the type III IP 3 Rs were localized to the ER and podosomes, actin-rich adhesion structures in osteoclasts. These findings suggest that type III IP 3 Rs are associated with osteoclast adhesion

  2. Mitogenic Properties Of Lectin From Mucuna Sloanei Seed Extracts ...

    African Journals Online (AJOL)

    (p<0.05) increases in the values of the immunological parameters relative to those seen in the controls. This study, suggest that the isolated lectin from mucona sloanei seeds possesses mitogenic properties, and may be useful in the diagnosis and treatment of certain diseases such as blood typing disorders and obesity.

  3. Transcriptional integration of mitogenic and mechanical signals by Myc and YAP.

    Science.gov (United States)

    Croci, Ottavio; De Fazio, Serena; Biagioni, Francesca; Donato, Elisa; Caganova, Marieta; Curti, Laura; Doni, Mirko; Sberna, Silvia; Aldeghi, Deborah; Biancotto, Chiara; Verrecchia, Alessandro; Olivero, Daniela; Amati, Bruno; Campaner, Stefano

    2017-10-15

    Mammalian cells must integrate environmental cues to determine coherent physiological responses. The transcription factors Myc and YAP-TEAD act downstream from mitogenic signals, with the latter responding also to mechanical cues. Here, we show that these factors coordinately regulate genes required for cell proliferation. Activation of Myc led to extensive association with its genomic targets, most of which were prebound by TEAD. At these loci, recruitment of YAP was Myc-dependent and led to full transcriptional activation. This cooperation was critical for cell cycle entry, organ growth, and tumorigenesis. Thus, Myc and YAP-TEAD integrate mitogenic and mechanical cues at the transcriptional level to provide multifactorial control of cell proliferation. © 2017 Croci et al.; Published by Cold Spring Harbor Laboratory Press.

  4. DMPD: Manipulation of mitogen-activated protein kinase/nuclear factor-kappaB-signalingcascades during intracellular Toxoplasma gondii infection. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 15361242 Manipulation of mitogen-activated protein kinase/nuclear factor-kappaB-sig...mmunol Rev. 2004 Oct;201:191-205. (.png) (.svg) (.html) (.csml) Show Manipulation of mitogen-activated prote... gondii infection. PubmedID 15361242 Title Manipulation of mitogen-activated protein kinase/nuclear factor-k

  5. Mitogen-activated protein kinases in the acute diabetic myocardium

    Czech Academy of Sciences Publication Activity Database

    Strnisková, M.; Barančík, M.; Neckář, Jan; Ravingerová, T.

    2003-01-01

    Roč. 249, 1-2 (2003), s. 59-65 ISSN 0300-8177 R&D Projects: GA MŠk LN00A069 Grant - others:VEGA(SK) 2/2063/22 Institutional research plan: CEZ:AV0Z5011922 Keywords : experimental diabetes * ischemia * mitogen-activated protein kinases (MAPK) Subject RIV: ED - Physiology Impact factor: 1.763, year: 2003

  6. Mitogen activated protein kinase signaling in the kidney: Target for intervention?

    NARCIS (Netherlands)

    de Borst, M.H.; Wassef, L.; Kelly, D.J.; van Goor, H.; Navis, Ger Jan

    2006-01-01

    Mitogen activated protein kinases (MAPKs) are intracellular signal transduction molecules, which connect cell-surface receptor signals to intracellular processes. MAPKs regulate a range of cellular activities including cell proliferation, gene expression, apoptosis, cell differentiation and cytokine

  7. MitoGen: A Framework for Generating 3D Synthetic Time-Lapse Sequences of Cell Populations in Fluorescence Microscopy.

    Science.gov (United States)

    Svoboda, David; Ulman, Vladimir

    2017-01-01

    The proper analysis of biological microscopy images is an important and complex task. Therefore, it requires verification of all steps involved in the process, including image segmentation and tracking algorithms. It is generally better to verify algorithms with computer-generated ground truth datasets, which, compared to manually annotated data, nowadays have reached high quality and can be produced in large quantities even for 3D time-lapse image sequences. Here, we propose a novel framework, called MitoGen, which is capable of generating ground truth datasets with fully 3D time-lapse sequences of synthetic fluorescence-stained cell populations. MitoGen shows biologically justified cell motility, shape and texture changes as well as cell divisions. Standard fluorescence microscopy phenomena such as photobleaching, blur with real point spread function (PSF), and several types of noise, are simulated to obtain realistic images. The MitoGen framework is scalable in both space and time. MitoGen generates visually plausible data that shows good agreement with real data in terms of image descriptors and mean square displacement (MSD) trajectory analysis. Additionally, it is also shown in this paper that four publicly available segmentation and tracking algorithms exhibit similar performance on both real and MitoGen-generated data. The implementation of MitoGen is freely available.

  8. Mice lacking inositol 1,4,5-trisphosphate receptors exhibit dry eye.

    Directory of Open Access Journals (Sweden)

    Takaaki Inaba

    Full Text Available Tear secretion is important as it supplies water to the ocular surface and keeps eyes moist. Both the parasympathetic and sympathetic pathways contribute to tear secretion. Although intracellular Ca2+ elevation in the acinar cells of lacrimal glands is a crucial event for tear secretion in both the pathways, the Ca2+ channel, which is responsible for the Ca2+ elevation in the sympathetic pathway, has not been sufficiently analyzed. In this study, we examined tear secretion in mice lacking the inositol 1,4,5-trisphosphate receptor (IP3R types 2 and 3 (Itpr2-/-;Itpr3-/-double-knockout mice. We found that tear secretion in both the parasympathetic and sympathetic pathways was abolished in Itpr2-/-;Itpr3-/- mice. Intracellular Ca2+ elevation in lacrimal acinar cells after acetylcholine and epinephrine stimulation was abolished in Itpr2-/-;Itpr3-/- mice. Consequently, Itpr2-/-;Itpr3-/- mice exhibited keratoconjunctival alteration and corneal epithelial barrier disruption. Inflammatory cell infiltration into the lacrimal glands and elevation of serum autoantibodies, a representative marker for Sjögren's syndrome (SS in humans, were also detected in older Itpr2-/-;Itpr3-/- mice. These results suggested that IP3Rs are essential for tear secretion in both parasympathetic and sympathetic pathways and that Itpr2-/-;Itpr3-/- mice could be a new dry eye mouse model with symptoms that mimic those of SS.

  9. Human prostatic cancer cells, PC3, elaborate mitogenic activity which selectively stimulates human bone cells

    International Nuclear Information System (INIS)

    Perkel, V.S.; Mohan, S.; Herring, S.J.; Baylink, D.J.; Linkhart, T.A.

    1990-01-01

    Prostatic cancer typically produces osteoblastic metastases which are not attended by marrow fibrosis. In the present study we sought to test the hypothesis that prostatic cancer cells produce factor(s) which act selectively on human osteoblasts. Such a paracrine mechanism would explain the observed increase in osteoblasts, unaccompanied by an increase in marrow fibroblasts. To test this hypothesis we investigated the mitogenic activity released by the human prostatic tumor cell line, PC3. PC3 cells have been reported previously to produce mitogenic activity for cells that was relatively specific for rat osteoblasts compared to rat fibroblasts. However, the effects of this activity on human cells has not been examined previously. PC3-conditioned medium (CM) (5-50 micrograms CM protein/ml) stimulated human osteoblast proliferation by 200-950% yet did not stimulate human fibroblast proliferation ([3H]thymidine incorporation). PC3 CM also increased cell numbers in human osteoblast but not fibroblast cell cultures. To determine whether the osteoblast-specific mitogenic activity could be attributed to known bone growth factors, specific assays for these growth factors were performed. PC3 CM contained 10 pg insulin-like growth factor (IGF) I, less than 2 pg IGF II, 54 pg basic fibroblast growth factor, and 16 pg transforming growth factor beta/microgram CM protein. None of these growth factors alone or in combination could account for the observed osteoblast-specific PC3 cell-derived mitogenic activity. Furthermore, when 5 micrograms/ml PC3 CM was tested in combination with maximally effective concentrations of either basic fibroblast growth factor, IGF I, IGF II, or transforming growth factor beta, it produced an additive effect suggesting that PC3 CM stimulates osteoblast proliferation by a mechanism independent of these bone mitogens

  10. Increased rate of repair of ultraviolet-induced DNA strand breaks in mitogen stimulated lymphocytes

    Energy Technology Data Exchange (ETDEWEB)

    Hamlet, S.M.; Lavin, M.F.; Jennings, P.A. (Queensland Univ., St. Lucia (Australia). Dept. of Biochemistry; Queensland Univ., St. Lucia (Australia). Dept. of Veterinary Pathology; Queensland Univ. St. Lucia (Australia). Dept. of Public Health)

    1982-05-01

    Previous results have shown that phytohaemagglutinin-stimulated bovine lymphocytes exhibit a peak of ultraviolet-induced DNA repair synthesis 3 to 4 days after addition of mitogen. The level of repair synthesis was approximately tenfold higher than that in unstimulated lymphocytes. These studies have been extended to examine the rate of repair of strand breaks in U.V.-irradiated bovine lymphocytes. The extent of breakage of DNA was shown to be the same in mitogen-stimulated and unstimulated lymphocytes from two breeds of cattle, when determined by sedimentation of nucleoids on sucrose gradients. However, in mitogen-stimulated cells the time taken to repair DNA strand breaks was 6 hours compared with 12 hours in stationary phase lymphocytes after a U.V. dose of 5 J/m/sup 2/. These results suggest that the increased rate of repair of strand breaks is due to the induction of enzymes involved at the post-incision stage of DNA repair. Thus the increased level of repair synthesis observed in earlier work correlates with an increased rate of repair of DNA strand breaks in phytohaemagglutinin-stimulated bovine lymphocytes.

  11. Increased rate of repair of ultraviolet-induced DNA strand breaks in mitogen stimulated lymphocytes

    International Nuclear Information System (INIS)

    Hamlet, S.M.; Lavin, M.F.; Jennings, P.A.; Queensland Univ., St. Lucia; Queensland Univ. St. Lucia

    1982-01-01

    Previous results have shown that phytohaemagglutinin-stimulated bovine lymphocytes exhibit a peak of ultraviolet-induced DNA repair synthesis 3 to 4 days after addition of mitogen. The level of repair synthesis was approximately tenfold higher than that in unstimulated lymphocytes. These studies have been extended to examine the rate of repair of strand breaks in U.V.-irradiated bovine lymphocytes. The extent of breakage of DNA was shown to be the same in mitogen-stimulated and unstimulated lymphocytes from two breeds of cattle, when determined by sedimentation of nucleoids on sucrose gradients. However, in mitogen-stimulated cells the time taken to repair DNA strand breaks was 6 hours compared with 12 hours in stationary phase lymphocytes after a U.V. dose of 5 J/m 2 . These results suggest that the increased rate of repair of strand breaks is due to the induction of enzymes involved at the post-incision stage of DNA repair. Thus the increased level of repair synthesis observed in earlier work correlates with an increased rate of repair of DNA strand breaks in phytohaemagglutinin-stimulated bovine lymphocytes. (author)

  12. Induction of inositol 1,4,5 trisphosphate receptor genes by ionizing radiation

    International Nuclear Information System (INIS)

    Yan, J.

    1996-01-01

    We used differential display, a method designed to amplify partial cDNA sequences from subsets of mRNAs, to identify mRNAs induced by ionizing radiation in human Epstein Barr Virus (EBV)-transformed lymphoblastoid cells. Increased expression of a cDNA corresponding to the inositol 1,4,5 trisphosphate receptor (InsP 3 R) type 1 was observed after exposure of cells to 3Gy γ-rays. This was confirmed by Northern blot analysis. The increase in mRNA for InsP 3 R type 1 was accompanied by a corresponding increase in the level of InsP 3 R type 1 protein as determined by Western blotting. Exposure of cells from patients with the human genetic disorder ataxia-telangiectasia (A-T), characterized by hypersensitivity to ionizing radiation, failed to change the levels of InsP 3 R type 1 mRNA and, as expected, there was no increase in InsP 3 R type 1 protein in A-T cells in response to radiation exposure. Protein levels for two other InsP 3 Rs, types 2 and 3, were observed to increase in control and A-T cells after exposure to ionizing radiation. The induction of the InsP 3 R type 1, which is primarily located in the endoplasmic reticulum, may play an important role in radiation signal transduction. (Author)

  13. Expression, purification and crystallization of Streptococcus dysgalactiae-derived mitogen

    International Nuclear Information System (INIS)

    Papageorgiou, Anastassios C.; Saarinen, Susanna; Ramirez-Bartutis, Rosa; Kato, Hidehito; Uchiyama, Takehiko; Kirikae, Teruo; Miyoshi-Akiyama, Toru

    2006-01-01

    S. dysgalactiae-derived mitogen, a superantigen, was crystallized. Crystals diffract to 2.4 Å at a synchrotron-radiation source and belong to space group P3/P3 1 /P3 2 , with unit-cell parameters a = b = 52.7, c = 62.4 Å, γ = 120° and one molecule in the crystallographic asymmetric unit. Superantigens are bacterial or viral toxins with potent immunostimulatory properties. Streptococcus dysgalactiae-derived mitogen, a 25 kDa protein, is a recently discovered superantigen isolated from S. dysgalactiae culture supernatant. Sequence considerations suggest that it belongs to a new superantigen family distinct from other superantigens. The protein was expressed in Escherichia coli cells and purified to homogeneity. Crystals were grown at pH 4.2–4.4 in the presence of 18–20%(w/v) PEG 3350 and 0.4 M lithium nitrate. A complete data set to 2.4 Å resolution was collected from a single crystal at liquid-nitrogen temperatures using synchrotron radiation. The crystals belong to space group P3/P3 1 /P3 2 , with unit-cell parameters a = b = 52.7, c = 62.4 Å, γ = 120° and one molecule in the crystallographic asymmetric unit

  14. Region-specific proteolysis differentially regulates type 1 inositol 1,4,5-trisphosphate receptor activity.

    Science.gov (United States)

    Wang, Liwei; Wagner, Larry E; Alzayady, Kamil J; Yule, David I

    2017-07-14

    The inositol 1,4,5 trisphosphate receptor (IP 3 R) is an intracellular Ca 2+ release channel expressed predominately on the membranes of the endoplasmic reticulum. IP 3 R1 can be cleaved by caspase or calpain into at least two receptor fragments. However, the functional consequences of receptor fragmentation are poorly understood. Our previous work has demonstrated that IP 3 R1 channels, formed following either enzymatic fragmentation or expression of the corresponding complementary polypeptide chains, retain tetrameric architecture and are still activated by IP 3 binding despite the loss of peptide continuity. In this study, we demonstrate that region-specific receptor fragmentation modifies channel regulation. Specifically, the agonist-evoked temporal Ca 2+ release profile and protein kinase A modulation of Ca 2+ release are markedly altered. Moreover, we also demonstrate that activation of fragmented IP 3 R1 can result in a distinct functional outcome. Our work suggests that proteolysis of IP 3 R1 may represent a novel form of modulation of IP 3 R1 channel function and increases the repertoire of Ca 2+ signals achievable through this channel. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  15. Sodium Orthovanadate and Trigonella Foenum Graecum Prevents Neuronal Parameters Decline and Impaired Glucose Homeostasis in Alloxan Diabetic Rats

    Directory of Open Access Journals (Sweden)

    Pardeep Kumar

    2015-01-01

    Full Text Available Hyperglycemia is the most important contributor in the onset and progress of diabetic complications mainly by producing oxidative stress. The present study was carried out to observe, the antihyperglycemic effect of sodium orthovanadate (SOV and Trigonella foenum graecum seed powder (TSP administration on blood glucose and insulin levels, membrane linked enzymes (monoamine oxidase, acetylcholinesterase, Ca2+ATPase, intracellular calcium (Ca2+ levels, lipid peroxidation, membrane fluidity and neurolipofuscin accumulation in brain of the alloxan induced diabetic rats and to see whether the treatment with SOV and TSP was capable of reversing the diabetic effects. Diabetes was induced by administration of alloxan monohydrate (15 mg/100 g body weight and rats were treated with 2 IU insulin, 0.6 mg/ml SOV, 5% TSP in the diet and a combination of 0.2 mg/ml SOV and 5% TSP separately for three weeks. Diabetic rats showed hyperglycemia with almost four fold high blood glucose levels. Activities of acetylcholinesterase and Ca2+ATPase decreased in diabetic rat brain. Diabetic rats exhibited an increased level of intracellular Ca2+ levels, lipid peroxidation, neurolipofuscin accumulations and monoamine oxidase activity. Treatment of diabetic rats with insulin, TSP, SOV and a combined therapy of lower dose of SOV with TSP revived normoglycemia and restored the altered level of membrane bound enzymes, lipid peroxidation and neurolipofuscin accumulation. Our results showed that lower doses of SOV (0.2 mg/ml could be used in combination with TSP in normalization of altered metabolic parameters and membrane linked enzymes without any harmful side effect.

  16. Sodium Orthovanadate and Trigonella Foenum Graecum Prevents Neuronal Parameters Decline and Impaired Glucose Homeostasis in Alloxan Diabetic Rats.

    Science.gov (United States)

    Kumar, Pardeep; Taha, Asia; Kumar, Nitin; Kumar, Vinod; Baquer, Najma Zaheer

    2015-01-01

    Hyperglycemia is the most important contributor in the onset and progress of diabetic complications mainly by producing oxidative stress. The present study was carried out to observe, the antihyperglycemic effect of sodium orthovanadate (SOV) and Trigonella foenum graecum seed powder (TSP) administration on blood glucose and insulin levels, membrane linked enzymes (monoamine oxidase, acetylcholinesterase, Ca2+ATPase), intracellular calcium (Ca2+) levels, lipid peroxidation, membrane fluidity and neurolipofuscin accumulation in brain of the alloxan induced diabetic rats and to see whether the treatment with SOV and TSP was capable of reversing the diabetic effects. Diabetes was induced by administration of alloxan monohydrate (15 mg/100 g body weight) and rats were treated with 2 IU insulin, 0.6 mg/ml SOV, 5% TSP in the diet and a combination of 0.2 mg/ml SOV and 5% TSP separately for three weeks. Diabetic rats showed hyperglycemia with almost four fold high blood glucose levels. Activities of acetylcholinesterase and Ca2+ATPase decreased in diabetic rat brain. Diabetic rats exhibited an increased level of intracellular Ca2+ levels, lipid peroxidation, neurolipofuscin accumulations and monoamine oxidase activity. Treatment of diabetic rats with insulin, TSP, SOV and a combined therapy of lower dose of SOV with TSP revived normoglycemia and restored the altered level of membrane bound enzymes, lipid peroxidation and neurolipofuscin accumulation. Our results showed that lower doses of SOV (0.2 mg/ml) could be used in combination with TSP in normalization of altered metabolic parameters and membrane linked enzymes without any harmful side effect.

  17. Autoradiographic research on cell proliferation of prenatal rat lung cells and their influence using the mitogen Kallikrein

    International Nuclear Information System (INIS)

    Bock-Lamberlin, P.R.

    1980-01-01

    In this work autoradiographic experiments were carried out on the kinetics of proliferation of four cell populations of the prenatal rat lung with the help of the determination of the 3 H-thymidine marker indices, with the following results: 1. The four studied cell populations exhibited variable proliferation rates on the twentieth or twenty-first day of development. 2. The strongest affect of the exogenously applied mitogen Kallikrein was demonstrated on the vessel wall cells, the next strongest on the bronchial epithelial cells, then the cartilage cells and finally the alveolar wall cells. 3. The mitogenic effect is dependent on dose. Higher doses significantly increased the 3 H-thymidine marker indices of the four cell populations tested in this work. 4. When the exposure time of the Kallikrein was extended by one hour this lead partially to stronger mitogenic effects than by the shorter exposure times at the same and higher dose levels of mitogen. 5. The 3 H-thymidine marker indices are dependent on the exposure time. 6. With increasing litter size, the 3 H indices as a rule decrease. (orig./MG) [de

  18. Mitogenic activity of new lectins from seeds of wild Artocarpus species from Vietnam.

    Science.gov (United States)

    Blasco, E; Ngoc, L D; Aucouturier, P; Preud'Homme, J L; Barra, A

    1996-05-01

    Proliferative response of human peripheral blood mononuclear cells (PBMC) stimulated by new lectins purified from seeds of differents Artocarpus species from Vietnam (A. asperulus, A. heterophyllus, A. masticata, A. melinoxylus, A. parva and A. petelotii) was studied and compared to those of the lectin jacalin purified from jackfruit (A. heterophyllus) seeds collected in the island La Réunion. All lectins stimulated human PBMC to proliferate, with a variable efficiency of the mitogenic activity. Phenotypic analysis of cells recovered after 7 day-cultures showed that these lectins mostly stimulated CD4+ T lymphocytes. These results suggest that these lectins from different Artocarpus species are similar in terms of their mitogenic activity although their structural features are not identical.

  19. Expression, purification and crystallization of Streptococcus dysgalactiae-derived mitogen

    Energy Technology Data Exchange (ETDEWEB)

    Papageorgiou, Anastassios C., E-mail: tassos.papageorgiou@btk.fi; Saarinen, Susanna; Ramirez-Bartutis, Rosa [Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku 20521 (Finland); Kato, Hidehito; Uchiyama, Takehiko [Department of Microbiology and Immunology, Tokyo Women’s Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo 162-8666 (Japan); Kirikae, Teruo; Miyoshi-Akiyama, Toru [Department of Infectious Diseases, International Medical Center of Japan, 1-21-1 Toyama, Shinjuku-ku, Tokyo 162-8655 (Japan); Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku 20521 (Finland)

    2006-03-01

    S. dysgalactiae-derived mitogen, a superantigen, was crystallized. Crystals diffract to 2.4 Å at a synchrotron-radiation source and belong to space group P3/P3{sub 1}/P3{sub 2}, with unit-cell parameters a = b = 52.7, c = 62.4 Å, γ = 120° and one molecule in the crystallographic asymmetric unit. Superantigens are bacterial or viral toxins with potent immunostimulatory properties. Streptococcus dysgalactiae-derived mitogen, a 25 kDa protein, is a recently discovered superantigen isolated from S. dysgalactiae culture supernatant. Sequence considerations suggest that it belongs to a new superantigen family distinct from other superantigens. The protein was expressed in Escherichia coli cells and purified to homogeneity. Crystals were grown at pH 4.2–4.4 in the presence of 18–20%(w/v) PEG 3350 and 0.4 M lithium nitrate. A complete data set to 2.4 Å resolution was collected from a single crystal at liquid-nitrogen temperatures using synchrotron radiation. The crystals belong to space group P3/P3{sub 1}/P3{sub 2}, with unit-cell parameters a = b = 52.7, c = 62.4 Å, γ = 120° and one molecule in the crystallographic asymmetric unit.

  20. Cellular reprogramming through mitogen-activated protein kinases

    Directory of Open Access Journals (Sweden)

    Justin eLee

    2015-10-01

    Full Text Available Mitogen-activated protein kinase (MAPK cascades are conserved eukaryote signaling modules where MAPKs, as the final kinases in the cascade, phosphorylate protein substrates to regulate cellular processes. While some progress in the identification of MAPK substrates has been made in plants, the knowledge on the spectrum of substrates and their mechanistic action is still fragmentary. In this focused review, we discuss the biological implications of the data in our original paper (Sustained mitogen-activated protein kinase activation reprograms defense metabolism and phosphoprotein profile in Arabidopsis thaliana; Frontiers in Plant Science 5: 554 in the context of related research. In our work, we mimicked in vivo activation of two stress-activated MAPKs, MPK3 and MPK6, through transgenic manipulation of Arabidopsis thaliana and used phosphoproteomics analysis to identify potential novel MAPK substrates. Here, we plotted the identified putative MAPK substrates (and downstream phosphoproteins as a global protein clustering network. Based on a highly stringent selection confidence level, the core networks highlighted a MAPK-induced cellular reprogramming at multiple levels of gene and protein expression – including transcriptional, post-transcriptional, translational, post-translational (such as protein modification, folding and degradation steps, and also protein re-compartmentalization. Additionally, the increase in putative substrates/phosphoproteins of energy metabolism and various secondary metabolite biosynthesis pathways coincides with the observed accumulation of defense antimicrobial substances as detected by metabolome analysis. Furthermore, detection of protein networks in phospholipid or redox elements suggests activation of downstream signaling events. Taken in context with other studies, MAPKs are key regulators that reprogram cellular events to orchestrate defense signaling in eukaryotes.

  1. Temperature and nucleotide dependence of calcium release by myo-inositol 1,4,5-trisphosphate in cultured vascular smooth muscle cells

    International Nuclear Information System (INIS)

    Smith, J.B.; Smith, L.; Higgins, B.L.

    1985-01-01

    Inositol 1,4,5-trisphosphate (IP3) rapidly increased 45 Ca 2+ efflux from a nonmitochondrial organelle in cultured vascular smooth muscle cells that were permeabilized with saponin. A nucleotide, preferably ATP, was essential for IP3-evoked 45 Ca 2+ release. Two nonhydrolyzable ATP analogues satisfied the nucleotide requirement for IP3-evoked 45 Ca 2+ release. IP3 strongly stimulated 45 Ca 2+ efflux at low temperatures (1 to 15 degrees C). Decreasing the temperature from 37 to 4 degrees C inhibited the rate of IP3-stimulated efflux by only about 33%. The failure of such low temperatures to strongly inhibit IP3-induced 45 Ca 2+ efflux suggests that IP3 activated a Ca 2+ channel, rather than a carrier, by a ligand-binding, rather than a metabolic, reaction

  2. Characteristics of inositol trisphosphate mediated Ca2+ release from permeabilized hepatocytes

    International Nuclear Information System (INIS)

    Joseph, S.K.; Williamson, J.R.

    1986-01-01

    Ca 2+ release triggered by inositol trisphosphate (IP 3 ) has been measured in saponin-permeabilized hepatocytes with 45 Ca 2+ or Quin 2. The initial rate of Ca 2+ release was not markedly affected by the incubation temperature (175 +/- 40 pmol/s/mg at 30 0 C versus 133 +/- 24 pmol/s/mg at 4 0 C). This result is consistent with the membrane translocation of Ca 2+ occurring through an ion-channel rather than an ion-carrier. The amount of Ca 2+ released by IP 3 was not affected by pH (6.5-8.0) or by compounds that inhibit voltage-gated Ca 2+ channels. La 3+ (100 μM) markedly inhibits the effect of 1 μM IP 3 . The possibility that La 3+ chelates IP 3 cannot be excluded since the effect of La 3+ can be overcome by increasing the IP 3 concentration. IP 3 -mediated Ca 2+ release displays a requirement for a permeant cation in the incubation medium. Optimal release is observed with K + gluconate. Other monovalent cations, with the exception of Li + , can substitute for K + . Permeant anions, at concentrations above 40 mM, inhibit Ca 2+ release produced by IP 3 . Cl - , Br - , I - , and SO 4 2- were equally effective. Ca 2+ release was not inhibited by DIDS or Furosemide. 85 Sr 2+ and 54 Mn 2+ fluxes were also stimulated by IP 3 . These results suggest that IP 3 acts to gate a divalent cation channel. The translocation of positive charge through this channel is balanced by ancillary movements of monovalent cations and anions across the reticular membrane

  3. Rachycentron canadum (cobia) lectin promoted mitogenic response in mice BALB/c splenocytes.

    Science.gov (United States)

    Coriolano, M C; de Melo, C M L; Santos, A J G; Pereira, V R A; Coelho, L C B B

    2012-12-01

    The mitogenic lectins are invaluable tools to study the biochemical changes associated with lymphocyte activation and proliferation of various immune cells. Rachycentron canadum lectin (RcaL) was detected and purified from serum of cobia fish. The aim of this study was to evaluate the proliferative response and cytokine production in splenocytes of mice in vitro stimulated with RcaL lectin; Canavalia ensiformis lectin (Con A) was used as positive control. A high proliferation index was induced by RcaL in relation to control cells. Furthermore, RcaL induced higher IL-2 and IL-6 production in relation to control. The cell viability was 90% in splenocytes treated with RcaL lectin, but RcaL promoted significant late apoptosis after 24 and 48 h in relation to control. RcaL induced proliferative responses suggesting that this lectin can be used as a mitogenic agent in immunostimulatory assays. © 2012 The Authors. Scandinavian Journal of Immunology © 2012 Blackwell Publishing Ltd.

  4. Specific receptor for inositol-1,4,5-trisphosphate in permeabilized rabbit neutrophils

    International Nuclear Information System (INIS)

    Bradford, P.G.; Spat, A.; Rubin, R.P.

    1986-01-01

    Neutrophil chemotaxis and degranulation are resultant, in part, from the mobilization of intracellular calcium by inositol-1,4,5-trisphosphate [(1,4,5)IP 3 ], one of the products of chemoattractant-stimulated phospholipase C activity. High specific activity (ca. 40 Ci/mmol) [ 32 P](1,4,5)IP 3 was prepared from [γ- 32 P]ATP-labeled human erythrocyte ghosts and was used in binding assays with saponin-permeabilized rabbit peritoneal neutrophils. At 4 0 C and in the presence of inhibitors of the IP 3 5-phosphomonoesterase, [ 32 P](1,4,5)IP 3 rapidly associated with a specific binding component which saturated within 60s. Nonspecific binding, taken as the residual binding in the presence of 10 μM (1,4,5)IP 3 , was 15% of the total. No specific binding was detected using intact cells. The specific binding to permeable cells was reversible (t/sup 1/2/ ∼ 60s) and could be inhibited in a dose-dependent manner by (1,4,5)IP 3 (EC 50 = 30 nM) and by other calcium mobilizing inositol phosphates [(2,4,5)IP 3 ] but not by inactive analogs [(1,4)IP 2 , (4,5)IP 2 , (1)IP]. The dose-responses of (1,4,5)IP 3 and (2,4,5)IP 3 in inhibiting [ 32 P](1,4,5)IP 3 specific binding correlated well with their abilities to release Ca 2+ from nonmitochondrial vesicular stores in the same preparation of cells, suggesting that the authors have identified the physiological receptor for (1,4,5)IP 3

  5. Ligand binding affinity at the insulin receptor isoform A (IR-A and subsequent IR-A tyrosine phosphorylation kinetics are important determinants of mitogenic biological outcomes.

    Directory of Open Access Journals (Sweden)

    Harinda eRajapaksha

    2015-07-01

    Full Text Available The insulin receptor (IR is a tyrosine kinase receptor that can mediate both metabolic and mitogenic biological actions. The IR isoform-A (IR-A arises from alternative splicing of exon 11 and has different ligand binding and signalling properties compared to the IR isoform-B. The IR-A not only binds insulin but also insulin-like growth factor-II (IGF-II with high affinity. IGF-II acting through the IR-A promotes cancer cell proliferation, survival and migration by activating some unique signalling molecules compared to those activated by insulin. This observation led us to investigate whether the different IR-A signalling outcomes in response to IGF-II and insulin could be attributed to phosphorylation of a different subset of IR-A tyrosine residues or to the phosphorylation kinetics. We correlated IR-A phosphorylation to activation of molecules involved in mitogenic and metabolic signalling (MAPK and Akt and receptor internalisation rates (related to mitogenic signalling. We also extended this study to incorporate two ligands that are known to promote predominantly mitogenic ([His4, Tyr15, Thr49, Ile51] IGF-I, qIGF-I or metabolic (S597 peptide biological actions, to see if common mechanisms can be used to define mitogenic or metabolic signalling through the IR-A. The 3-fold lower mitogenic action of IGF-II compared to insulin was associated with a decreased potency in activation of Y960, Y1146, Y1150, Y1151, Y1316 and Y1322, in MAPK phosphorylation and in IR-A internalization. With the poorly mitogenic S597 peptide it was a decreased rate of tyrosine phosphorylation rather than potency that was associated with a low mitogenic potential. We conclude that both decreased affinity of IR-A binding and the kinetics of IR-A phosphorylation can independently lead to a lower mitogenic activity. None of the studied parameters could account for the lower metabolic activity of qIGF-I.

  6. Hydrothermal synthesis of size-controllable Yttrium Orthovanadate (YVO4) nanoparticles and its application in photocatalytic degradation of direct blue dye

    International Nuclear Information System (INIS)

    Mohamed, R.M.; Harraz, F.A.; Mkhalid, I.A.

    2012-01-01

    Graphical abstract: XRD patterns of YVO 4 nanopowders prepared at different hydrothermal times; where Y 1 = 4 h, Y 2 = 8 h, Y 3 = 12 h and Y 4 = 24 h. Highlights: ► Size control of Yttrium Orthovanadate. ► Hydrothermal synthesis. ► Removal of direct blue dye. - Abstract: Sized-controlled YVO 4 nanoparticles have been synthesized by a simple hydrothermal method by changing hydrothermal time from 4 to 24 h. The products were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), specific surface area (Brunauer–Emmett–Teller (BET)), and ultraviolet–visible spectroscopy (UV–vis) measurements. The results showed that the size of as-synthesized YVO 4 nanoparticles was in the range of 11–40 nm and was extremely dependent on the hydrothermal time. Photocatalytic measurement showed that the YVO 4 nanoparticles with particle size of about 11 nm (prepared by 4 h hydrothermal time) possess superior photocatalytic properties in the decolorization of direct blue dye. Due to simple preparation, high photocatalytic oxidation of direct blue dye and low cost, the YVO 4 photocatalyst is a potential candidate for pollutants removal and will find wide application in the coming future in photocatalytic oxidation processes. The overall kinetics of photodegradation of direct blue dye using YVO 4 nanopowders photocatalyst was found to be of first order. The photocatalyst could be easily removed from the reaction mixture and its recyclability with no loss of activity was possible for six times. The catalytic performance was found to decrease by 5% after run number six.

  7. Regulation of brain capillary endothelial cells by P2Y receptors coupled to Ca2+, phospholipase C and mitogen-activated protein kinase.

    Science.gov (United States)

    Albert, J L; Boyle, J P; Roberts, J A; Challiss, R A; Gubby, S E; Boarder, M R

    1997-11-01

    1. The blood-brain barrier is formed by capillary endothelial cells and is regulated by cell-surface receptors, such as the G protein-coupled P2Y receptors for nucleotides. Here we investigated some of the characteristics of control of brain endothelial cells by these receptors, characterizing the phospholipase C and Ca2+ response and investigating the possible involvement of mitogen-activated protein kinases (MAPK). 2. Using an unpassaged primary culture of rat brain capillary endothelial cells we showed that ATP, UTP and 2-methylthio ATP (2MeSATP) give similar and substantial increases in cytosolic Ca2+, with a rapid rise to peak followed by a slower decline towards basal or to a sustained plateau. Removal of extracellular Ca2+ had little effect on the peak Ca2+-response, but resulted in a more rapid decline to basal. There was no response to alpha,beta-MethylATP (alpha,beta MeATP) in these unpassaged cells, but a response to this P2X agonist was seen after a single passage. 3. ATP (log EC50 -5.1+/-0.2) also caused an increase in the total [3H]-inositol (poly)phosphates ([3H]-InsPx) in the presence of lithium with a rank order of agonist potency of ATP=UTP=UDP>ADP, with 2MeSATP and alpha,beta MeATP giving no detectable response. 4. Stimulating the cells with ATP or UTP gave a rapid rise in the level of inositol 1,4,5-trisphosphate (Ins(1,4,5)P3), with a peak at 10 s followed by a decline to a sustained plateau phase. 2MeSATP gave no detectable increase in the level of Ins(1,4,5)P3. 5. None of the nucleotides tested affected basal cyclic AMP, while ATP and ATPgammaS, but not 2MeSATP, stimulated cyclic AMP levels in the presence of 5 microM forskolin. 6. Both UTP and ATP stimulated tyrosine phosphorylation of p42 and p44 mitogen-activated protein kinase (MAPK), while 2MeSATP gave a smaller increase in this index of MAPK activation. By use of a peptide kinase assay, UTP gave a substantial increase in MAPK activity with a concentration-dependency consistent with

  8. The effect of midazolam on neutrophil mitogen-activated protein kinase.

    LENUS (Irish Health Repository)

    Ghori, Kamran

    2010-06-01

    Neutrophil p38 mitogen-activated protein kinase (MAPK) is a key enzyme in the intracellular signalling pathway that is responsible for many neutrophil functions, which are important in neutrophil-endothelial interaction. The imidazole compounds are inhibitors of this enzyme system. The objectives of this in-vitro investigation were to examine the effect of midazolam on neutrophil p38 MAPK activation (phosphorylation) following in-vitro ischaemia-reperfusion injury, and the expression of adhesion molecule CD11b\\/CD18.

  9. The mitogenic activities of bean proteins determined by assay of the incorporation of sup(3)H - thymidine by human lymphocytes

    International Nuclear Information System (INIS)

    Derbyshire, E.; Carvalho, M.T.V.; Vitti, D.M.S.; Costa, C.P. da

    1988-01-01

    The proteins in a saline extract from cotyledons of the bean cultivar Goiano precoce included a protein with electrophoretic mobility equal to that of a commercial preparation of bean mitogen. The crude extract stimulated the incorporation of sup(3)H-tymidine by cultures of human lymphocytes at concentrations of extracted protein from 30 mu g - 300 mu g/culture, and the existence of an optimal concentration in the vicinity of 175 mu g/culture was indicated by the data. The range of active concentrations and the optimal concentration of the heterogeneous extract were 12-15 times greater than the corresponding values obtained when the commercial mitogen was employed. Microscopic examinations showed the presence of blast cells and mitotic figures only in cultures which included seed extract or commercial mitogen. (author)

  10. Normal mitogen-induced suppression of the interleukin-6 (IL-6) response and its deficiency in systemic lupus erythematosus

    International Nuclear Information System (INIS)

    Warrington, R.J.; Rutherford, W.J.

    1990-01-01

    A low-frequency suppressor-cell population in normal peripheral blood inhibits the B-cell CESS response to IL-6, following pokeweed mitogen stimulation. The suppression of IL-6 responsiveness is radiation sensitive, directed against CESS targets and not mediated by inhibition of IL-6 production, and associated with nonspecific cytotoxic activity against CESS targets. The generation of these cytolytic cells is also radiation sensitive. A correlation was found between PWM-induced cytotoxicity against CESS and the suppression of IL-6-dependent IgG production. But cytotoxicity toward CESS targets is not responsible for this suppression because IL-2 induces equivalent or greater nonspecific cytotoxicity against CESS in the total absence of suppression of CESS-derived IgG production and suppression is also induced by mitogen-activated PBL separated from CESS targets by a cell-impermeable membrane. This suppression was not mediated by TNF alpha/beta or IFN-gamma. In systemic lupus erythematosus, suppression of IL-6-dependent IgG production is impaired in patients with active disease (29.2 +/- 13.7%) compared to patients with inactive disease (70 +/- 19.5%) or normal controls (82.8 +/- 9.2%). There is also a defect in mitogen-induced nonspecific cytotoxicity in active SLE (specific lysis 15.1 +/- 3.5%, compared to 34 +/- 4% in normals). Pokeweed mitogen-activated PBL can therefore normally induce suppression of B-cell IL-6 responses and this response is deficient in lupus

  11. Aqueous exposure to Aroclor 1254 modulates the mitogenic response of Atlantic salmon anterior kidney T-cells: Indications of short- and long-term immunomodulation

    International Nuclear Information System (INIS)

    Iwanowicz, Luke R.; Lerner, Darren T.; Blazer, Vicki S.; McCormick, Stephen D.

    2005-01-01

    Polychlorinated biphenyls (PCBs) exist as persistent organic pollutants in numerous river systems in the United States. Unfortunately, some of these rivers are sites of active Atlantic salmon restoration programs, and polychlorinated biphenyls have been implicated as ancillary factors contributing to failed salmon restoration. Here, we investigate the immediate and chronic effects of intermediate duration aqueous PCB exposure (1 or 10 μg L -1 Aroclor 1254) on the mitogen-stimulated lymphoproliferative response of Atlantic salmon anterior kidney leukocytes (AKLs). A short-term study was designed to examine immunomodulation in Atlantic salmon smolts immediately following 21 days of aqueous exposure, while a long-term study evaluated chronic impacts in the mitogen response in parr 15 months post-exposure as larvae. The proliferative response of AKLs to the mitogens concanavalin A (CON A), phytohemaglutinnin-P (PHA-P), pokeweed mitogen (PWM), and lipopolysaccharide were used as an indice of immunomodulation. The proliferative response to the T-cell mitogens CON A and PHA-P was significantly increased in the 10 μg L -1 group (n = 10; P = 0.043 and 0.002, respectively) immediately following exposure of smolts. Additionally, The PHA-P response was significantly increased in the 1 μg L -1 exposure group (n = 10, P = 0.036). In fish treated as larvae and tested 15 months later, the PHA-P sensitive populations exhibited elevated proliferation in the 1 and 10 μg L -1 groups (n = 12, P -1 treated groups. These results demonstrate an immunomodulatory effect of PCBs on T-cell mitogen sensitive populations of lymphocytes in Atlantic salmon as well as long-term immunomodulation in PHA-P and PWM sensitive populations

  12. The down-regulation of the mitogenic fibrinogen receptor (MFR) in serum-containing medium does not occur in defined medium.

    Science.gov (United States)

    Levesque, J P; Hatzfeld, A; Domart, I; Hatzfeld, J

    1990-02-01

    Normal human hemopoietic cells such as early bone marrow progenitors, or lymphoma-derived cell lines such as Raji or JM cells, possess a low-affinity receptor specific for fibrinogen. This receptor triggers a mitogenic effect. It differs from the glycoprotein IIb-IIIa which is involved in fibrinogen-induced platelet aggregation. We demonstrate here that this mitogenic fibrinogen receptor (MFR) can be internalized or reexpressed, depending on culture conditions. Internalization was temperature-dependent. At 37 degrees C in the presence of cycloheximide or actinomycin D, the half-life of cell surface MFRs was 2 h, independent of receptor occupancy. Binding of fibrinogen to the MFR resulted in a down-regulation which was fibrinogen dose-dependent. This occurred in serum-supplemented medium but not in defined medium supplemented with fatty acids. Reexpression of MFRs could be induced in 28 to 42 h by serum removal. The down-regulation of mitogenic receptors in plasma or serum could explain why normal cells do not proliferate in the peripheral blood.

  13. Calcium carboorthovanadate - a new compound with the apa

    International Nuclear Information System (INIS)

    Slobodin, B.V.; Dmitrieva, O.I.; Fotiev, A.A.

    1977-01-01

    Data on calcium carboorthovanadate, Ca 10 (VO 4 ) 6 CO 3 , a new compound with an appatite structure based on calcium orthovanadate, are reported. The synthesis has been conducted in a stoichiometric mixture of finely ground calcium carbonate and calcium orthovanadate. It is found that calcium carboorthovanadate belongs to the hexagonal syngony and has an apatite structure. An analysis of the infrared spectra of initial compounds and calcium carboorthovanadate confirmed the presence of carbonate (CO 3 ) 2- and orthovanadate (VO 4 ) 3 groupings in the latter. On heating in air, beginning with 450 deg C calcium carboorthovanadate decomposes at a slow rate into calcium oxide, calcium orthovanadate, and carbon dioxide

  14. Aqueous exposure to Aroclor 1254 modulates the mitogenic response of Atlantic salmon anterior kidney T-cells: indications of short- and long-term immunomodulation.

    Science.gov (United States)

    Iwanowicz, Luke R; Lerner, Darren T; Blazer, Vicki S; McCormick, Stephen D

    2005-05-15

    Polychlorinated biphenyls (PCBs) exist as persistent organic pollutants in numerous river systems in the United States. Unfortunately, some of these rivers are sites of active Atlantic salmon restoration programs, and polychlorinated biphenyls have been implicated as ancillary factors contributing to failed salmon restoration. Here, we investigate the immediate and chronic effects of intermediate duration aqueous PCB exposure (1 or 10 microgL-1 Aroclor 1254) on the mitogen-stimulated lymphoproliferative response of Atlantic salmon anterior kidney leukocytes (AKLs). A short-term study was designed to examine immunomodulation in Atlantic salmon smolts immediately following 21 days of aqueous exposure, while a long-term study evaluated chronic impacts in the mitogen response in parr 15 months post-exposure as larvae. The proliferative response of AKLs to the mitogens concanavalin A (CON A), phytohemaglutinnin-P (PHA-P), pokeweed mitogen (PWM), and lipopolysaccharide were used as an indice of immunomodulation. The proliferative response to the T-cell mitogens CON A and PHA-P was significantly increased in the 10 microgL-1 group (n=10; P=0.043 and 0.002, respectively) immediately following exposure of smolts. Additionally, The PHA-P response was significantly increased in the 1 microgL-1 exposure group (n=10, P=0.036). In fish treated as larvae and tested 15 months later, the PHA-P sensitive populations exhibited elevated proliferation in the 1 and 10 microgL-1 groups (n=12, P<0.04) relative to the vehicle control while the PWM response was significantly increased (n=12, P=0.036) only in the 10 microgL-1 treated groups. These results demonstrate an immunomodulatory effect of PCBs on T-cell mitogen sensitive populations of lymphocytes in Atlantic salmon as well as long-term immunomodulation in PHA-P and PWM sensitive populations.

  15. Radiosensitivity of angiogenic and mitogenic factors in human amniotic membrane

    International Nuclear Information System (INIS)

    Deocaris, Custer C.; De Guzman, Zenaida M.; Deocaris, Chester C.; Jacinto, Sonia D.

    2003-01-01

    Amniotic membrane as a temporary biological dressing remains as a beneficial and cost-effective means of treating burns in developing countries. This medical application is attributed mainly to placental structural and biochemical features that are important for maintaining proper embryonic development. Since fresh amnions are nevertheless for straightforward clinical use and for preservation, radiation-sterilization is been performed to improve the safety of this placental material. However, like any other sterilization method, gamma-radiation may induce physical and chemical changes that may influence the biological property of the material. Thus, the aim of this study is to compare the effects of various levels of radiation-sterilization protocols for human amnions on angiogenic (neovascularization) and epithelial-mitogenic activities, both of which are physiological processes fundamental to wound healing. Water-soluble extract of non-irradiated amnions demonstrates a strong stimulatory effect on both cell proliferation and angiogenesis. No change in biological activity is seen in amnions irradiated at 25 kGy, the sterilization dose used by the Philippine Nuclear Research Institute (PNRI) for the production of radiation-sterilized human amniotic membranes (RSHAM). However, it appears that amniotic angiogenic factors are more radiosensitive than its mitogenic components, evident from the depressed vascularization of the chorioallantoic membrane (CAM) exposed to 35 kGy-irradiated amnions. The dose of 35 kGy is at present the medical sterilization dose used at the Central Tissue Bank in Warsaw (Poland) for the preparation of their amnion allografts. (Authors)

  16. Hydrothermal synthesis of size-controllable Yttrium Orthovanadate (YVO{sub 4}) nanoparticles and its application in photocatalytic degradation of direct blue dye

    Energy Technology Data Exchange (ETDEWEB)

    Mohamed, R.M., E-mail: redama123@yahoo.com [Chemistry Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589 (Saudi Arabia); Advanced Materials Department, Central Metallurgical R and D Institute, CMRDI, P.O. Box 87, Helwan, Cairo 11421 (Egypt); Harraz, F.A. [Advanced Materials Department, Central Metallurgical R and D Institute, CMRDI, P.O. Box 87, Helwan, Cairo 11421 (Egypt); Mkhalid, I.A. [Chemistry Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589 (Saudi Arabia)

    2012-08-15

    Graphical abstract: XRD patterns of YVO{sub 4} nanopowders prepared at different hydrothermal times; where Y{sub 1} = 4 h, Y{sub 2} = 8 h, Y{sub 3} = 12 h and Y{sub 4} = 24 h. Highlights: Black-Right-Pointing-Pointer Size control of Yttrium Orthovanadate. Black-Right-Pointing-Pointer Hydrothermal synthesis. Black-Right-Pointing-Pointer Removal of direct blue dye. - Abstract: Sized-controlled YVO{sub 4} nanoparticles have been synthesized by a simple hydrothermal method by changing hydrothermal time from 4 to 24 h. The products were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), specific surface area (Brunauer-Emmett-Teller (BET)), and ultraviolet-visible spectroscopy (UV-vis) measurements. The results showed that the size of as-synthesized YVO{sub 4} nanoparticles was in the range of 11-40 nm and was extremely dependent on the hydrothermal time. Photocatalytic measurement showed that the YVO{sub 4} nanoparticles with particle size of about 11 nm (prepared by 4 h hydrothermal time) possess superior photocatalytic properties in the decolorization of direct blue dye. Due to simple preparation, high photocatalytic oxidation of direct blue dye and low cost, the YVO{sub 4} photocatalyst is a potential candidate for pollutants removal and will find wide application in the coming future in photocatalytic oxidation processes. The overall kinetics of photodegradation of direct blue dye using YVO{sub 4} nanopowders photocatalyst was found to be of first order. The photocatalyst could be easily removed from the reaction mixture and its recyclability with no loss of activity was possible for six times. The catalytic performance was found to decrease by 5% after run number six.

  17. Regulation of mitogen-activated protein kinase 3/1 activity during meiosis resumption in mammals

    Czech Academy of Sciences Publication Activity Database

    Procházka, Radek; Blaha, Milan

    2015-01-01

    Roč. 61, č. 6 (2015), s. 495-502 ISSN 0916-8818 R&D Projects: GA MZe(CZ) QJ1510138 Institutional support: RVO:67985904 Keywords : cumulus oocyte complexes * meiosis resumption * mitogen-activated protein kinase 3/1 (MAPK3/1) Subject RIV: GI - Animal Husbandry ; Breeding Impact factor: 1.453, year: 2015

  18. Inositol bisphosphate and inositol trisphosphate inhibit cell-to-cell passage of carboxyfluorescein in staminal hairs ofSetcreasea purpurea.

    Science.gov (United States)

    Tucker, E B

    1988-06-01

    pH-buffered carboxyfluorescein (Buffered-CF) alone (control), or Buffered-CF solutions containing one of the following: (1)D-myo-inositol (I); (2)D-myo-inositol 2-monophosphate (IP1); (3)D-myo-inositol 1,4-bisphosphate (IP2); (4)D-myo-inositol 1,4,5-trisphosphate (IP3); (5)D-fructose 2,6-diphosphate (F-2,6P2) were microinjected into the terminal cells of staminal hairs ofSetcreasea purpurea Boom. Passage of the CF from this terminal cell along the chain of cells towards the filament was monitored for 5 min using fluorescence microscopy and quantified using computer-assisted fluorescence-intensity video analysis. Cell-to-cell transport of CF in hairs microinjected with Buffered-CF containing either I, IP1 or F-2,6P2 was similar to that in hairs microinjected with Buffered-CF only. On the other hand, cell-to-cell transport of CF in hairs microinjected with Buffered-CF containing either IP2 or IP3 was inhibited. These results indicate that polyphosphoinositols may be involved in the regulation of intercellular transport of low-molecular-weight, hydrophilic molecules in plants.

  19. PSM/SH2-B distributes selected mitogenic receptor signals to distinct components in the PI3-kinase and MAP kinase signaling pathways.

    Science.gov (United States)

    Deng, Youping; Xu, Hu; Riedel, Heimo

    2007-02-15

    The Pro-rich, PH, and SH2 domain containing mitogenic signaling adapter PSM/SH2-B has been implicated as a cellular partner of various mitogenic receptor tyrosine kinases and related signaling mechanisms. Here, we report in a direct comparison of three peptide hormones, that PSM participates in the assembly of distinct mitogenic signaling complexes in response to insulin or IGF-I when compared to PDGF in cultured normal fibroblasts. The complex formed in response to insulin or IGF-I involves the respective peptide hormone receptor and presumably the established components leading to MAP kinase activation. However, our data suggest an alternative link from the PDGF receptor via PSM directly to MEK1/2 and consequently also to p44/42 activation, possibly through a scaffold protein. At least two PSM domains participate, the SH2 domain anticipated to link PSM to the respective receptor and the Pro-rich region in an association with an unidentified downstream component resulting in direct MEK1/2 and p44/42 regulation. The PDGF receptor signaling complex formed in response to PDGF involves PI 3-kinase in addition to the same components and interactions as described for insulin or IGF-I. PSM associates with PI 3-kinase via p85 and in addition the PSM PH domain participates in the regulation of PI 3-kinase activity, presumably through membrane interaction. In contrast, the PSM Pro-rich region appears to participate only in the MAP kinase signal. Both pathways contribute to the mitogenic response as shown by cell proliferation, survival, and focus formation. PSM regulates p38 MAP kinase activity in a pathway unrelated to the mitogenic response.

  20. Synthesis and photoluminescence properties of Sm{sup 3+}substituted glaserite-type orthovanadates K{sub 3}Y[VO{sub 4}]{sub 2} with monoclinic structure

    Energy Technology Data Exchange (ETDEWEB)

    Duke John David, A., E-mail: dukejohndavid02@gmail.com [Voorhees College, Vellore, Tamil Nadu (India); Muhammad, G. Shakil [Islamiah College, Vaniyambadi, Tamil Nadu (India); Sivakumar, V. [National Institute of Technology (NIT), Rourkela (India)

    2016-09-15

    A novel phosphor of Glaserite type Orthovanadate K{sub 3}Y[VO{sub 4}]{sub 2} substituted with the trivalent rare-earth Sm{sup 3+} ions were synthesized by the conventional high temperature solid-state reaction method, their structural characterization and photoluminescent properties were investigated by X-ray diffraction and spectrofluorimetry. The phase-purity of glaserite structure in the synthesized compound was verified by XRD study. The morphology was measured by FESEM. Host lattice emits broad-band green color and it is originated from the [VO{sub 4}]{sup 3−}. Photoluminescence studies of Sm{sup 3+} activated samples show orange red emission. The charge transfer behaviours from [VO{sub 4}]{sup 3−} to Sm{sup 3+} ions (host to activator) in K{sub 3}Y{sub (1−x)}[VO{sub 4}]{sub 2}: {sub x}Sm{sup 3+} phosphors have been confirmed by photoluminescence and PL decay life time measurement. No concentration quenching was observed even for higher concentration of the dopant Sm{sup 3+} ions. The CIE chromaticity color coordinate values were calculated and it is very much closer to the NTSC standards. All the results clearly indicate that self-activated K{sub 3}Y{sub 1−x}[VO{sub 4}]{sub 2} with the rare earth {sub x}Sm{sup 3+} activated phosphors show great potential as a phosphor material for near-UV based white LEDs.

  1. Rearing-environment-dependent hippocampal local field potential differences in wild-type and inositol trisphosphate receptor type 2 knockout mice.

    Science.gov (United States)

    Tanaka, Mika; Wang, Xiaowen; Mikoshiba, Katsuhiko; Hirase, Hajime; Shinohara, Yoshiaki

    2017-10-15

    Mice reared in an enriched environment are demonstrated to have larger hippocampal gamma oscillations than those reared in isolation, thereby confirming previous observations in rats. To test whether astrocytic Ca 2+ surges are involved in this experience-dependent LFP pattern modulation, we used inositol trisphosphate receptor type 2 (IP 3 R2)-knockout (KO) mice, in which IP 3 /Ca 2+ signalling in astrocytes is largely diminished. We found that this experience-dependent gamma power alteration persists in the KO mice. Interestingly, hippocampal ripple events, the synchronized events critical for memory consolidation, are reduced in magnitude and frequency by both isolated rearing and IP 3 R2 deficiency. Rearing in an enriched environment (ENR) is known to enhance cognitive and memory abilities in rodents, whereas social isolation (ISO) induces depression-like behaviour. The hippocampus has been documented to undergo morphological and functional changes depending on these rearing environments. For example, rearing condition during juvenility alters CA1 stratum radiatum gamma oscillation power in rats. In the present study, hippocampal CA1 local field potentials (LFP) were recorded from bilateral CA1 in urethane-anaesthetized mice that were reared in either an ENR or ISO condition. Similar to previous findings in rats, gamma oscillation power during theta states was higher in the ENR group. Ripple events that occur during non-theta periods in the CA1 stratum pyramidale also had longer intervals in ISO mice. Because astrocytic Ca 2+ elevations play a key role in synaptic plasticity, we next tested whether these changes in LFP are also expressed in inositol trisphosphate receptor type 2 (IP 3 R2)-knockout (KO) mice, in which astrocytic Ca 2+ elevations are largely diminished. We found that the gamma power was also higher in IP 3 R2-KO-ENR mice compared to IP 3 R2-KO-ISO mice, suggesting that the rearing-environment-dependent gamma power alteration does not necessarily

  2. Differential expression of insulin like growth factor I and other fibroblast mitogens in porcine colostrum and milk

    International Nuclear Information System (INIS)

    Tan, T.J.; Simmen, R.C.M.; Simmen, F.A.

    1987-01-01

    Sow mammary secretions contain at least 3 distinct growth factor activities, distinguished by their size and relative abundance in colostrum or later milk. Gel filtration of colostrum in Sephadex G-200 columns, followed by acid-ethanol extraction and radioimmunoassay (RIA) for insulin like growth factor I (IGF-I) revealed high levels of this factor in the 150K and 50K MW regions, characteristic of IGF-I: binding protein complexes. Acid treatment of these fractions yielded free IGF-I peptide (7.5K). Parallel mitogen assays with a fibroblast cell line (AKR-2B) demonstrated a predominant peak of high MW activity (sow colostral growth factor-I, SCGF-I) eluting near the column void volume (MW > 150K). Treatment of SCGF-I with 1M acetic acid resulted in a size reduction of the mitogenic activity (MW < 10K), suggesting association of SCGF-I with a binding protein. The SCGF-I peptide was noncompetitive in IGF-I RIA, was distinct in MW from free IGF-I, and was not mitogenic for chick embryo fibroblasts. Sow milk contains less IGF-I and SCGF-I but does display a predominant peak of small MW (∼ 3K) AKR-2B activity. The changes in expression of these growth factors during lactation may reflect differing roles in lactogenesis and/or neonatal growth and development

  3. Enhancing effects of thymopoietin and T cell growth factor on mitogenic responsiveness and colony formation of lymphocytes from patients with preleukemia

    International Nuclear Information System (INIS)

    Knox, S.J.; Greenberg, B.R.; Anderson, R.W.; Shifrine, M.

    1983-01-01

    Cloning efficiencies and mitogenic responsiveness of lymphocytes from patients with preleukemic disorders are significantly depressed compared to normal values. TP-5 and IL-2 markedly increased the cloning efficiency and mitogenic responsiveness of lymphocytes from many of the preleukemic patients studied, while there was little or no effect in control cultures. Enhancement of lymphocyte responsiveness with TP-5 and IL-2 suggests the presence of maturational/-functional defects in these patients which may be compensated for in part by addition of TP-5 and IL-2

  4. Systems biology analysis of mitogen activated protein kinase inhibitor resistance in malignant melanoma.

    Science.gov (United States)

    Zecena, Helma; Tveit, Daniel; Wang, Zi; Farhat, Ahmed; Panchal, Parvita; Liu, Jing; Singh, Simar J; Sanghera, Amandeep; Bainiwal, Ajay; Teo, Shuan Y; Meyskens, Frank L; Liu-Smith, Feng; Filipp, Fabian V

    2018-04-04

    Kinase inhibition in the mitogen activated protein kinase (MAPK) pathway is a standard therapy for cancer patients with activating BRAF mutations. However, the anti-tumorigenic effect and clinical benefit are only transient, and tumors are prone to treatment resistance and relapse. To elucidate mechanistic insights into drug resistance, we have established an in vitro cellular model of MAPK inhibitor resistance in malignant melanoma. The cellular model evolved in response to clinical dosage of the BRAF inhibitor, vemurafenib, PLX4032. We conducted transcriptomic expression profiling using RNA-Seq and RT-qPCR arrays. Pathways of melanogenesis, MAPK signaling, cell cycle, and metabolism were significantly enriched among the set of differentially expressed genes of vemurafenib-resistant cells vs control. The underlying mechanism of treatment resistance and pathway rewiring was uncovered to be based on non-genomic adaptation and validated in two distinct melanoma models, SK-MEL-28 and A375. Both cell lines have activating BRAF mutations and display metastatic potential. Downregulation of dual specific phosphatases, tumor suppressors, and negative MAPK regulators reengages mitogenic signaling. Upregulation of growth factors, cytokines, and cognate receptors triggers signaling pathways circumventing BRAF blockage. Further, changes in amino acid and one-carbon metabolism support cellular proliferation despite MAPK inhibitor treatment. In addition, treatment-resistant cells upregulate pigmentation and melanogenesis, pathways which partially overlap with MAPK signaling. Upstream regulator analysis discovered significant perturbation in oncogenic forkhead box and hypoxia inducible factor family transcription factors. The established cellular models offer mechanistic insight into cellular changes and therapeutic targets under inhibitor resistance in malignant melanoma. At a systems biology level, the MAPK pathway undergoes major rewiring while acquiring inhibitor resistance

  5. Liquid scintillation vial for radiometric assay of lymphocyte carbohydrate metabolism in response to mitogens

    International Nuclear Information System (INIS)

    Tran, N.; Wagner, H.N. Jr.

    1978-01-01

    We have demonstrated that mitogens--i.e., PHA and Con.A--stimulate lymphocyte carbohydrate metabolism using a liquid-scintillation vial with conventional liquid-scintillation detectors. The results showed that this enclosed system can be useful for development of rapid in vitro tests of lymphocytes immune responsiveness, as well as for radiometric detection of bacterial growth in various gaseous atmospheres

  6. Transfer RNA species in human lymphocytes stimulated by mitogens and in leukemic cells. [/sup 3/H, /sup 14/C, /sup 32/P tracer techniques

    Energy Technology Data Exchange (ETDEWEB)

    Griffin, G.D.; Yang, W.K.; Novelli, G.D.

    1976-01-01

    Transfer ribonucleic acid (tRNA) profiles in human lymphocytes stimulated by various mitogens have been compared with profiles from nonstimulated cells and from leukemic cells using reversed-phase chromatography. Comparisons of (/sup 3/H)- or (/sup 11/C)uridine- or (/sup 32/P)phosphate-labeled tRNAs showed that the greatest changes in tRNA composition upon phytohemagglutinin (PHA) stimulation occurred in the first 8 h after mitogen addition. Stimulation of lymphocytes by pokeweed mitogen, anti-human immunoglobulin, or bacterial lipopolysaccharide resulted in tRNA species which showed distinct differences from each other and also from the tRNAs produced by phytohemagglutinin stimulation. Leukemic lymphocyte tRNAs showed the most extensive differences in profile when compared with chromatograms from non-neoplastic cells stimulated by a variety of mitogens. Specific isoaccepting species of tyrosyl-, aspartyl-, and phenylalanyl-tRNAs were also compared in PHA-stimulated and resting lymphocytes and no differences were found. When these same species were studied in leukemic cells, tyrosyl-tRNA profiles were shifted to elute at a lower salt concentration, while the aspartyl-tRNA profile showed a new peak not present in noncancerous cells.

  7. Nicotine as a mitogenic stimulus for pancreatic acinar cell proliferation

    Institute of Scientific and Technical Information of China (English)

    Parimal Chowdhury; Kodetthoor B Udupa

    2006-01-01

    Cell proliferation is an important process in life for growth of normal and cancer cells. The signal transduction pathways activated during this process are strictly regulated. This editorial focuses on the role of nicotine,a mitogen, in the induction of signaling pathways resulting in proliferation of pancreatic tumor cells and compares these events with those in normal acinar cells isolated from the rat pancreas. The data shows striking similarities between these two cellular systems.In addition, the editorial reviews very recent literature of the contribution of MAPK signaling in cell lines associated with human diseases. A prospective cellular model of nicotine induced activation of MAPK cascade is presented.

  8. Comparative Molecular Dynamics Simulations of Mitogen-Activated Protein Kinase-Activated Protein Kinase 5

    Directory of Open Access Journals (Sweden)

    Inger Lindin

    2014-03-01

    Full Text Available The mitogen-activated protein kinase-activated protein kinase MK5 is a substrate of the mitogen-activated protein kinases p38, ERK3 and ERK4. Cell culture and animal studies have demonstrated that MK5 is involved in tumour suppression and promotion, embryogenesis, anxiety, cell motility and cell cycle regulation. In the present study, homology models of MK5 were used for molecular dynamics (MD simulations of: (1 MK5 alone; (2 MK5 in complex with an inhibitor; and (3 MK5 in complex with the interaction partner p38α. The calculations showed that the inhibitor occupied the active site and disrupted the intramolecular network of amino acids. However, intramolecular interactions consistent with an inactive protein kinase fold were not formed. MD with p38α showed that not only the p38 docking region, but also amino acids in the activation segment, αH helix, P-loop, regulatory phosphorylation region and the C-terminal of MK5 may be involved in forming a very stable MK5-p38α complex, and that p38α binding decreases the residual fluctuation of the MK5 model. Electrostatic Potential Surface (EPS calculations of MK5 and p38α showed that electrostatic interactions are important for recognition and binding.

  9. In vitro, inhibition of mitogen-activated protein kinase pathways protects against bupivacaine- and ropivacaine-induced neurotoxicity

    NARCIS (Netherlands)

    Lirk, Philipp; Haller, Ingrid; Colvin, Hans Peter; Lang, Leopold; Tomaselli, Bettina; Klimaschewski, Lars; Gerner, Peter

    2008-01-01

    Animal models show us that specific activation of the p38 mitogen-activated protein kinase (MAPK) may be a pivotal step in lidocaine neurotoxicity, but this has not been investigated in the case of two very widely used local anesthetics, bupivacaine and ropivacaine. We investigated the hypotheses

  10. The N-terminal of a heparin-binding sperm membrane mitogen possess lectin-like sequence

    International Nuclear Information System (INIS)

    Mor, Visesato; Chatterjee, Tapati

    2007-01-01

    Glycosaminoglycans like heparin and heparin sulfate in follicular fluid induce changes in the intracellular environment during the spermatozoal functional maturation. We previously reported the isolation, purification and partial characterization of a heparin binding sperm membrane protein (HBSM). In the present study, the amino acids analysis provided evidence of a single sequence, which suggest the homogeneity of the purified HBSM. Fourteen amino acids- 1 A D T I V A V E L D T Y P N 14 -correspond to the amino terminal sequence of Concanavalin A (Con A) and contain 45.2% carbohydrate by weight. HBSM possess mitogenic property on lymphocytes with comparable magnitude to the well-known mitogen; Con A, inducing 83% radiolabel thymidine incorporation in growing lymphocytes. Unlike Con A, there was no agglutination of cell by HBSM upto 5 ng/ml concentration. Interestingly, we found that heparin and chondroitin sulfate-conjugated HBSM inhibit the proliferative activity. Similar effect was also found with an in-house isolate sulfated glycans; G-I (28% sulfate). In contrast, there was no inhibition by the desulfated form; G-ID. Altogether, our data suggest that the mechanism of cell proliferative pathway may be different for HBSM and Con A

  11. Purification and characterization of a mucin specific mycelial lectin from Aspergillus gorakhpurensis: application for mitogenic and antimicrobial activity.

    Directory of Open Access Journals (Sweden)

    Ram Sarup Singh

    Full Text Available Lectins are carbohydrate binding proteins or glycoproteins that bind reversibly to specific carbohydrates present on the apposing cells, which are responsible for their ability to agglutinate red blood cells, lymphocytes, fibroblasts, etc. Interest in lectins has been intensified due to their carbohydrate specificity as they can be valuable reagents for the investigation of cell surface sugars, purification and characterization of glycoproteins. The present study reports the purification, characterization and evaluation of mitogenic and antimicrobial potential of a mycelial lectin from Aspergillus gorakhpurensis.Affinity chromatography on mucin-sepharose column was carried out for purification of Aspergillus gorakhpurensis lectin. The lectin was characterized for physico-chemical parameters. Mitogenic potential of the lectin was evaluated against splenocytes of Swiss albino mice by MTT assay. Antimicrobial activity of the purified lectin has also been evaluated by disc diffusion assay.Single-step affinity purification resulted in 18.6-fold purification of the mycelial lectin. The molecular mass of the lectin was found to be 70 kDa and it was composed of two subunits of 34.8 kDa as determined by gel filtration chromatography, SDS-PAGE and MALDI-TOF analysis. pH optima of the lectin was found to be 6.5-9.5, while optimum temperature for lectin activity was 20-30 °C. Lectin was stable within a pH range of 7.0-10.5 and showed fair thermostability. EDTA did not affect lectin activity whereas it was found susceptible to the denaturants tested. MTT assay revealed strong mitogenic potential of A. gorakhpurensis lectin at a concentration upto 150 µg/mL. Antimicrobial activity assay showed its potent antibacterial activity against Bacillus cereus, Staphylococcous aureus and Escherichia coli and marginal antifungal activity against Saccharomyces cerevisiae.This is the first report on the mitogenic and antimicrobial potential of Aspergillus gorakhpurensis

  12. Purification and characterization of a mucin specific mycelial lectin from Aspergillus gorakhpurensis: application for mitogenic and antimicrobial activity.

    Science.gov (United States)

    Singh, Ram Sarup; Kaur, Hemant Preet; Singh, Jatinder

    2014-01-01

    Lectins are carbohydrate binding proteins or glycoproteins that bind reversibly to specific carbohydrates present on the apposing cells, which are responsible for their ability to agglutinate red blood cells, lymphocytes, fibroblasts, etc. Interest in lectins has been intensified due to their carbohydrate specificity as they can be valuable reagents for the investigation of cell surface sugars, purification and characterization of glycoproteins. The present study reports the purification, characterization and evaluation of mitogenic and antimicrobial potential of a mycelial lectin from Aspergillus gorakhpurensis. Affinity chromatography on mucin-sepharose column was carried out for purification of Aspergillus gorakhpurensis lectin. The lectin was characterized for physico-chemical parameters. Mitogenic potential of the lectin was evaluated against splenocytes of Swiss albino mice by MTT assay. Antimicrobial activity of the purified lectin has also been evaluated by disc diffusion assay. Single-step affinity purification resulted in 18.6-fold purification of the mycelial lectin. The molecular mass of the lectin was found to be 70 kDa and it was composed of two subunits of 34.8 kDa as determined by gel filtration chromatography, SDS-PAGE and MALDI-TOF analysis. pH optima of the lectin was found to be 6.5-9.5, while optimum temperature for lectin activity was 20-30 °C. Lectin was stable within a pH range of 7.0-10.5 and showed fair thermostability. EDTA did not affect lectin activity whereas it was found susceptible to the denaturants tested. MTT assay revealed strong mitogenic potential of A. gorakhpurensis lectin at a concentration upto 150 µg/mL. Antimicrobial activity assay showed its potent antibacterial activity against Bacillus cereus, Staphylococcous aureus and Escherichia coli and marginal antifungal activity against Saccharomyces cerevisiae. This is the first report on the mitogenic and antimicrobial potential of Aspergillus gorakhpurensis lectin. The

  13. Transient increase in phosphatidylinositol 3,4-bisphosphate and phosphatidylinositol trisphosphate during activation of human neutrophils

    International Nuclear Information System (INIS)

    Traynor-Kaplan, A.E.; Thompson, B.L.; Harris, A.L.; Taylor, P.; Omann, G.M.; Sklar, L.A.

    1989-01-01

    We recently showed that phosphatidylinositol trisphosphate (PIP3) was present in a unique lipid fraction generated in neutrophils during activation. Here, we demonstrate that the band containing this fraction isolated from thin layer chromatography consists primarily of PIP3 and that only small amounts of radiolabeled PIP3 exist prior to activation. In addition, high performance liquid chromatography of deacylated phospholipids from stimulated cells reveals an increase in a fraction eluting ahead of glycerophosphoinositol 4,5-P2. After removal of the glycerol we found that it coeluted with inositol 1,3,4-P3 when resubjected to high performance liquid chromatography. Thus, we have detected a second, novel form of phosphatidylinositol bisphosphate in activated neutrophils, PI-(3,4)P2. The elevation of PIP3 through the formyl peptide receptor is blocked by pretreatment with pertussis toxin, implicating mediation of the increase in PIP3 by a guanosine triphosphate-binding (G) protein. The rise in PIP3 is not secondary to calcium elevation. Buffering the rise in intracellular calcium did not diminish the increase in PIP3. The elevation of PIP3 appears to occur during activation with physiological agonists, its level varying with the degree of activation. Leukotriene B4, which elicits many of the same responses as stimulation of the formyl peptide receptor but with minimal oxidant production, stimulates a much attenuated rise in PIP3. Isoproterenol, which inhibits oxidant production also reduces the rise in PIP3. Hence formation of PI(3,4)P2 and PIP3 (presumed to be PI(3,4,5)P3) correlates closely with the early events of neutrophil activation

  14. Production of inositol trisphosphates upon α-adrenergic stimulation in BC3H-1 muscle cells

    International Nuclear Information System (INIS)

    Ambler, S.K.; Thompson, B.; Brown, J.H.; Taylor, P.

    1986-01-01

    Activation of α 1 -adrenergic receptors in BC3H-1 muscle cells rapidly mobilizes intracellular and results in a paradoxically slower accumulation of inositol trisphosphate. A possible explanation for this discrepancy may be provided by the recent findings of Irvine et al. of additional Ins P3 isomers besides the Ca ++ -mobilizing isomer, Ins 1,4,5-P3. They have eluted and separated the inositol phosphates of BC3H-1 cells with an NH 4 + x HCO 2 - /H 3 PO 4 gradient on a Whatman Partisil 10SAX column using Hewlett-Packard HPLC. Commercial [ 3 H]Ins 1,4,5-P3 and [ 3 H]inositol phosphates from carbachol-stimulated parotid glands were used as standards. Little or no Ins 1,3,4-P3 could be detected in control or phenylephrine-treated BC3H-1 cells. Ins 1,4,5-P3 followed the pattern of agonist stimulation observed previously. As a positive control, Ins P3 isomers were also measured in 1321N1 astrocytoma cells. Muscarinic stimulation of 1321N1 cells results in both the rapid accumulation of Ins P3 and Ca ++ mobilization. There is no detectable basal Ins 1,3,4-P3, but carbachol stimulates a rapid production of this compound in 1321N1 cells. Agonist activation also results in a rapid increase in Ins 1,4,5-P3 above basal values. These studies indicate that Ins 1,3,4-P3 does not contribute to the InsP3 signal in BC3H-1 cells and multiple mechanisms may exist for the coupling of receptors to PI turnover

  15. Inositol 1,4,5-trisphosphate binds to a specific receptor and releases microsomal calcium in the arterior pituitary gland

    International Nuclear Information System (INIS)

    Guillemette, G.; Balla, T.; Baukal, A.J.; Catt, K.J.

    1987-01-01

    The properties of inositol 1,4,5-trisphosphate (InsP 3 ) receptor sites in the anterior pituitary were evaluated by binding studies with InsP 3 labeled with 32 P to high specific radioactivity. Specific binding of Ins[ 32 P]P 3 was demonstrable in pituitary membrane preparations and was linearly proportional to the amount of membrane added over the range 0.5-2 mg of protein. Kinetic studies showed that specific InsP 3 binding was half-maximal in about 40 sec and reached a plateau after 15 min at 0 0 C. Scatchard analysis of the binding data was consistent with a single set of high affinity sites. The specificity of Ins[ 32 P]P 3 binding to these sites was illustrated by the much weaker affinity for structural analogs such as inositol 1-phosphate, phytic acid, 2,3-bisphosphoglycerate, and fructose 1,6-bisphosphate. To assess the functional relevance of the InsP 3 binding sites, the Ca 2+ -releasing activity of InsP 3 was measured in pituitary membrane preparations. Under physiological conditions within the cytosol, the high-affinity InsP 3 binding sites characterized in pituitary membranes could serve as the putative receptors through which InsP 3 triggers Ca 2+ mobilization in the anterior pituitary gland

  16. Odorant receptors directly activate phospholipase C/inositol-1,4,5-trisphosphate coupled to calcium influx in Odora cells.

    Science.gov (United States)

    Liu, Guang; Badeau, Robert M; Tanimura, Akihiko; Talamo, Barbara R

    2006-03-01

    Mechanisms by which odorants activate signaling pathways in addition to cAMP are hard to evaluate in heterogeneous mixtures of primary olfactory neurons. We used single cell calcium imaging to analyze the response to odorant through odorant receptor (OR) U131 in the olfactory epithelial cell line Odora (Murrell and Hunter 1999), a model system with endogenous olfactory signaling pathways. Because adenylyl cyclase levels are low, agents activating cAMP formation do not elevate calcium, thus unmasking independent signaling mediated by OR via phospholipase C (PLC), inositol-1,4,5-trisphosphate (IP(3)), and its receptor. Unexpectedly, we found that extracellular calcium is required for odor-induced calcium elevation without the release of intracellular calcium, even though the latter pathway is intact and can be stimulated by ATP. Relevant signaling components of the PLC pathway and G protein isoforms are identified by western blot in Odora cells as well as in olfactory sensory neurons (OSNs), where they are localized to the ciliary zone or cell bodies and axons of OSNs by immunohistochemistry. Biotinylation studies establish that IP(3) receptors type 2 and 3 are at the cell surface in Odora cells. Thus, individual ORs are capable of elevating calcium through pathways not directly mediated by cAMP and this may provide another avenue for odorant signaling in the olfactory system.

  17. Inositol 1,4,5-trisphosphate-sensitive Ca2+ release in rat fast- and slow-twitch skinned muscle fibres.

    Science.gov (United States)

    Talon, S; Huchet-Cadiou, C; Léoty, C

    1999-11-01

    Inositol 1,4,5-trisphosphate (InsP3), an intracellular messenger, induces Ca2+ release in various types of cells, particularly smooth muscle cells. Its role in skeletal muscle, however, is controversial. The present study shows that the application of InsP3 to rat slow- and fast-twitch saponin-skinned fibres induced contractile responses that were not related to an effect of InsP3 on the properties of the contractile proteins. The amplitude of the contractures was dependent upon the Ca(2+)-loading period, and was larger in slow- than in fast-twitch muscle. In both types of skeletal muscle, these responses, unlike caffeine contractures, were not inhibited by ryanodine (100 microM), but were abolished by heparin (20 micrograms.ml-1). In soleus muscle, the concentration of heparin required to inhibit the response by 50% (IC50) was 5.7 micrograms.ml-1, a similar value to that obtained previously in smooth muscle. Furthermore, the results show that in slow-twitch muscle, the InsP3 contractures have a "bell-shaped" dependency on the intracellular Ca2+ concentration. These results show that InsP3 receptors should be present in skeletal muscle. Thus, it is possible that InsP3 participates in the regulation of sarcoplasmic reticulum Ca2+ release in skeletal muscle, particularly in slow-twitch fibres.

  18. Procalcitonin NH2-terminal cleavage peptide has no mitogenic effect on normal human osteoblast-like cells

    International Nuclear Information System (INIS)

    Hassager, C.; Bonde, S.K.; Anderson, M.A.; Rink, H.; Spelsberg, T.C.; Riggs, B.L.

    1991-01-01

    The NH2-terminal cleavage peptide of procalcitonin (N-proCT) recently was reported to be a bone cell mitogen. The authors have investigated the effect of N-proCT on the proliferation of normal human cells that have the phenotype of mature osteoblasts (hOB cells). N-proCT treatment for 24, 48, or 96 h in concentrations from 1 nM to 1 microM did not significantly increase [3H]thymidine uptake (means ranged from -19% to 38% of control, no significant differences) in hOB cells (6-10 cell strains per experiment) plated at four different densities. However, the hOB cells responded significantly to treatment with transforming growth factor β (3 ng/ml), bovine insulin (300 micrograms/ml), or 30% fetal calf serum, which were included in all experiments as positive controls. The [3H]thymidine uptake data were confirmed in a direct cell count experiment tested at 96 h. Thus they data do not support the hypothesis that N-proCT is a potent mitogen for normal human osteoblasts

  19. Metabolism of inositol(1,4,5)trisphosphate by a soluble enzyme fraction from pea (Pisum sativum) roots

    International Nuclear Information System (INIS)

    Drobak, B.K.; Watkins, P.A.C.; Roberts, K.; Chattaway, J.A.; Dawson, A.P.

    1991-01-01

    Metabolism of the putative messenger molecule D-myo-inositol(1,4,5)trisphosphate [Ins(1,4,5)P 3 ] in plant cells has been studied using a soluble fraction from pea (pisum sativum) roots as enzyme source and [5- 32 P]Ins(1,4,5)P 3 and [2- 3 H]Ins(1,4,5)P 3 as tracers. Ins(1,4,5)P 3 was rapidly converted into both lower and higher inositol phosphates. The major dephosphorylation product was inositol (4,5) bisphosphate [Ins(4,5)P 2 ] whereas inositol(1,4)bisphosphate [Ins(1,4)P 2 ] was only present in very small quantities throughout a 15 minute incubation period. In addition to these compounds, small amounts of nine other metabolites were produced including inositol and inositol(1,4,5,X)P 4 . Dephosphorylation of Ins(1,4,5)P 3 to Ins(4,5)P 2 was dependent on Ins(1,4,5)P 3 concentration and was partially inhibited by the phosphohydrolase inhibitors 2,3-diphosphoglycerate, glucose 6-phosphate, and p-nitrophenylphosphate. Conversion of Ins(1,4,5)P 3 to Ins(4,5)P 2 and Ins(1,4,5,X)P 4 was inhibited by 55 micromolar Ca 2+ . This study demonstrates that enzymes are present in plant tissues which are capable of rapidly converting Ins(1,4,5)P 3 and that pathways of inositol phosphate metabolism exist which may prove to be unique to the plant kingdom

  20. Mitogen response of B cells, but not T cells, is impaired in adult vitamin A-deficient rats

    NARCIS (Netherlands)

    van Bennekum, A. M.; Wong Yen Kong, L. R.; Gijbels, M. J.; Tielen, F. J.; Roholl, P. J.; Brouwer, A.; Hendriks, H. F.

    1991-01-01

    The effect of vitamin A deficiency on the mitogen response of splenic B and T lymphocytes was determined in adult vitamin A-deficient rats. Female weanling Brown Norway/Billingham-Rijswijk (BN/BiRij) and Sprague-Dawley rats were fed a semipurified, essentially vitamin A-free diet, which resulted in

  1. Pre-ERCP infusion of semapimod, a mitogen-activated protein kinases inhibitor, lowers post-ERCP hyperamylasemia but not pancreatitis incidence

    NARCIS (Netherlands)

    van Westerloo, David J.; Rauws, Erik A.; Hommes, Daan; de Vos, Alex F.; van der Poll, Tom; Powers, Barbara L.; Fockens, Paul; Dijkgraaf, Marcel G. W.; Bruno, Marco J.

    2008-01-01

    BACKGROUND: Acute pancreatitis and hyperamylasemia are frequent complications of an ERCP. Semapimod is a synthetic guanylhydrazone that inhibits the mitogen-activated protein kinase (MAPK) pathway, macrophage activation, and the production of several inflammatory cytokines. OBJECTIVE: This study

  2. Journal of Biosciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Effects of sodium-orthovanadate and Trigonella foenum-graecum seeds on hepatic and renal lipogenic enzymes and lipid profile during alloxan diabetes · Umesh C S Yadav K Moorthy Najma Z Baquer · More Details Abstract Fulltext PDF. Sodium-orthovanadate (SOV) and seed powder of Trigonella foenum graecum Linn.

  3. Cardiac imaging in RASopathies/mitogen activated protein kinase syndromes

    Directory of Open Access Journals (Sweden)

    Rita Gravino

    2014-07-01

    Full Text Available RASopathies include a spectrum of disorders due to dysregulation of RAS/mitogen activated protein kinase pathway that plays an essential role in the control of the cell cycle and differentiation. As a consequence, its dysregulation has profound developmental consequences, in particular cardiac malformations. RASopathies with cardiac features are: Noonan syndrome, multiple lentigines syndrome, cardio-faciocutaneous syndrome, Costello syndrome, neurofibromatosis- 1, Legius syndrome, neurofibromatosis- Noonan syndrome. The former syndromes are associated with a high rate of cardiac involvement (60-85% and 12 genes: PTPN11, SOS1, RAF1, KRAS, HRAS, BRAF, MEK1/MAP2K1, MEK2/MAP2K2, NRAS, SHOC2, CBL and SPRED1. Although the majority of these diseases are readily distinguishable in clinical terms, an integrated imaging study of the cardiac condition associated to RASopathies helps to better define risk assessment, surveillance, and management of these patients.

  4. Proteolytic fragmentation of inositol 1,4,5-trisphosphate receptors: a novel mechanism regulating channel activity?

    Science.gov (United States)

    Wang, Liwei; Alzayady, Kamil J; Yule, David I

    2016-06-01

    Inositol 1,4,5-trisphosphate receptors (IP3 Rs) are a family of ubiquitously expressed intracellular Ca(2+) release channels. Regulation of channel activity by Ca(2+) , nucleotides, phosphorylation, protein binding partners and other cellular factors is thought to play a major role in defining the specific spatiotemporal characteristics of intracellular Ca(2+) signals. These properties are, in turn, believed pivotal for the selective and specific physiological activation of Ca(2+) -dependent effectors. IP3 Rs are also substrates for the intracellular cysteine proteases, calpain and caspase. Cleavage of the IP3 R has been proposed to play a role in apoptotic cell death by uncoupling regions important for IP3 binding from the channel domain, leaving an unregulated leaky Ca(2+) pore. Contrary to this hypothesis, we demonstrate following proteolysis that N- and C-termini of IP3 R1 remain associated, presumably through non-covalent interactions. Further, we show that complementary fragments of IP3 R1 assemble into tetrameric structures and retain their ability to be regulated robustly by IP3 . While peptide continuity is clearly not necessary for IP3 -gating of the channel, we propose that cleavage of the IP3 R peptide chain may alter other important regulatory events to modulate channel activity. In this scenario, stimulation of the cleaved IP3 R may support distinct spatiotemporal Ca(2+) signals and activation of specific effectors. Notably, in many adaptive physiological events, the non-apoptotic activities of caspase and calpain are demonstrated to be important, but the substrates of the proteases are poorly defined. We speculate that proteolytic fragmentation may represent a novel form of IP3 R regulation, which plays a role in varied adaptive physiological processes. © 2015 The Authors. The Journal of Physiology © 2015 The Physiological Society.

  5. Resveratrol inhibits PDGF receptor mitogenic signaling in mesangial cells: role of PTP1B

    Science.gov (United States)

    Venkatesan, Balachandar; Ghosh-Choudhury, Nandini; Das, Falguni; Mahimainathan, Lenin; Kamat, Amrita; Kasinath, Balakuntalam S.; Abboud, Hanna E.; Choudhury, Goutam Ghosh

    2008-01-01

    Mesangioproliferative glomerulonephritis is associated with overactive PDGF receptor signal transduction. We show that the phytoalexin resveratrol dose dependently inhibits PDGF-induced DNA synthesis in mesangial cells with an IC50 of 10 μM without inducing apoptosis. Remarkably, the increased SIRT1 deacetylase activity induced by resveratrol was not necessary for this inhibitory effect. Resveratrol significantly blocked PDGF-stimulated c-Src and Akt kinase activation, resulting in reduced cyclin D1 expression and attenuated pRb phosphorylation and cyclin-dependent kinase-2 (CDK2) activity. Furthermore, resveratrol inhibited PDGFR phosphorylation at the PI 3 kinase and Grb-2 binding sites tyrosine-751 and tyrosine-716, respectively. This deficiency in PDGFR phosphorylation resulted in significant inhibition of PI 3 kinase and Erk1/2 MAPK activity. Interestingly, resveratrol increased the activity of protein tyrosine phosphatase PTP1B, which dephosphorylates PDGF-stimulated phosphorylation at tyrosine-751 and tyrosine-716 on PDGFR with concomitant reduction in Akt and Erk1/2 kinase activity. PTP1B significantly inhibited PDGF-induced DNA synthesis without inducing apoptosis. These results for the first time provide evidence that the stilbene resveratrol targets PTP1B to inhibit PDGFR mitogenic signaling.—Venkatesan, B., Ghosh-Choudhury, N., Das, F., Mahimainathan, L., Kamat, A., Kasinath, B. S., Abboud, H. E., Choudhury, G. G. Resveratrol inhibits PDGF receptor mitogenic signaling in mesangial cells: role of PTP1B. PMID:18567737

  6. Effects of synthetic and naturally occurring flavonoids on mitogen-induced proliferation of human peripheral-blood lymphocytes

    International Nuclear Information System (INIS)

    Hirano, Toshihiko; Oka, Kitaro; Kawashima, Etsuko; Akiba, Mitsuo

    1989-01-01

    Examination was made of the effects of 17 synthetic and naturally occurring flavonoids on human lymphocyte proliferation in the presence of concanavalin A as a mitogen. Twelve of the flavonoids examined were mono-hydroxy of methoxy derivatives. The mitogen-induced response of lymphocytes was evaluated from the extent of the incorporation of [ 3 H]thymidine into cells in vitro. All the compounds showed inhibitory effects; 4.5-77.7% of [ 3 H] thymidine incorporation was blocked by an 1.0 μg/ml concentration. The viability of lymphocytes before and after treatment, as assessed by a dye exclusion test, indicated no change, and thus the flavonoids may inhibit DNA synthesis. The flavonoids possessing 5-hydroxyl, 5-methoxyl and 6-methoxyl groups, and those with cyclohexyl instead of phenyl substituent (i.e. 2-cyclohexyl-benzopyran-4-one), showed the greatest inhibition. The inhibitory effect of any one of them was less than one half that of prednisolone, but essentially the same or somewhat exceeding that of bredinine of azathioprine. It would thus appear that the well-known anti-inflammatory effects of flavonoids may possibly arise in part from the inhibition of the proliferative response of lymphocytes

  7. The Mitogen-Activated Protein Kinase p38 alpha Regulates Tubular Damage in Murine Anti-Glomerular Basement Membrane Nephritis

    NARCIS (Netherlands)

    Mueller, Ralf; Daniel, Christoph; Hugo, Christian; Amann, Kerstin; Mielenz, Dirk; Endlich, Karlhans; Braun, Tobias; van der Veen, Betty; Heeringa, Peter; Schett, Georg; Zwerina, Jochen

    2013-01-01

    p38 mitogen-activated protein kinase (MAPK) is thought to play a central role in acute and chronic inflammatory responses. Whether p38MAPK plays a pathogenic role in crescentic GN (GN) and which of its four isoforms is preferentially involved in kidney inflammation is not definitely known. We thus

  8. Activated platelet-derived growth factor β receptor and Ras-mitogen-activated protein kinase pathway in natural bovine urinary bladder carcinomas.

    Science.gov (United States)

    Corteggio, Annunziata; Di Geronimo, Ornella; Roperto, Sante; Roperto, Franco; Borzacchiello, Giuseppe

    2012-03-01

    Bovine papillomavirus types 1 or 2 (BPV-1/2) are involved in the aetiopathogenesis of bovine urinary bladder cancer. BPV-1/2 E5 activates the platelet-derived growth factor β receptor (PDGFβR). The aim of this study was to analyse the Ras/mitogen-activated protein kinase (MAPK) pathway in relation to activation of PDGFβR in natural bovine urinary bladder carcinomas. Co-immunoprecipitation and Western blot analysis demonstrated that recruitment of growth factor receptor bound protein 2 (GRB-2) and Sos-1 to the activated PDGFβR was increased in carcinomas compared to normal tissues. Higher grade bovine urinary bladder carcinomas were associated with activation of Ras, but not with activation of downstream mitogen-activated protein kinase/extracellular signal-regulated kinase (Mek 1/2) or extracellular signal-regulated kinase (Erk 1/2). Copyright © 2011 Elsevier Ltd. All rights reserved.

  9. Studies on binding and mitogenic effect of insulin and insulin-like growth factor I in glomerular mesangial cells

    International Nuclear Information System (INIS)

    Conti, F.G.; Striker, L.J.; Lesniak, M.A.; MacKay, K.; Roth, J.; Striker, G.E.

    1988-01-01

    The mesangial cells are actively involved in regulating glomerular hemodynamics. Their overlying endothelium is fenestrated; therefore, these cells are directly exposed to plasma substances, including hormones such as insulin and insulin-like growth factor I (IGF-I). These peptides may contribute to the mesangial sclerosis and cellular hyperplasia that characterize diabetic glomerulopathy. We report herein the characterization of the receptors and the mitogenic effects of IGF-I and insulin on mouse glomerular mesangial cells in culture. The IGF-I receptor was characterized on intact cells. The Kd of the IGF-I receptor was 1.47 X 10(-9) M, and the estimated number of sites was 64,000 receptors/cell. The binding was time, temperature, and pH dependent, and the receptor showed down-regulation after exposure to serum. The expression of the receptor did not change on cells at different densities. The specific binding for insulin was too low to allow characterization of the insulin receptor on intact cells. However, it was possible to identify the insulin receptor in a wheat germ agglutinin-purified preparation of solubilized mesangial cells. This receptor showed the characteristic features of the insulin receptor, including pH dependence of binding and a curvilinear Scatchard plot. The mitogenic effects of insulin and IGF-I on mesangial cells were measured by the incorporation of [3H]thymidine into DNA. IGF-I was more potent than insulin. The half-maximal response to IGF-I stimulation occurred at 1.3 X 10(-10) M, and a similar increase with insulin was observed at concentrations in the range of 10(-7) M, suggesting that this insulin action was mediated through the IGF-I receptor. These data show that the mouse microvascular smooth muscle cells of the glomerulus express a cell surface receptor for IGF-I in vitro and that this peptide is a potent mitogen for these mesangial cells

  10. PDGF activates K-Cl cotransport through phosphoinositide 3-kinase and protein phosphatase-1 in primary cultures of vascular smooth muscle cells.

    Science.gov (United States)

    Zhang, Jing; Lauf, Peter K; Adragna, Norma C

    2005-07-15

    K-Cl cotransport (K-Cl COT, KCC) is an electroneutrally coupled movement of K and Cl present in most cells. In this work, we studied the pathways of regulation of K-Cl COT by platelet-derived growth factor (PDGF) in primary cultures of vascular smooth muscle cells (VSMCs). Wortmannin and LY 294002 blocked the PDGF-induced K-Cl COT activation, indicating that the phosphoinositide 3-kinase (PI 3-K) pathway is involved. However, PD 98059 had no effect on K-Cl COT activation by PDGF, suggesting that the mitogen-activated protein kinase pathway is not involved under the experimental conditions tested. Involvement of phosphatases was also examined. Sodium orthovanadate, cyclosporin A and okadaic acid had no effect on PDGF-stimulated K-Cl COT. Calyculin A blocked the PDGF-stimulated K-Cl COT by 60%, suggesting that protein phosphatase-1 (PP-1) is a mediator in the PDGF signaling pathway/s. In conclusion, our results indicate that the PDGF-mediated pathways of K-Cl COT regulation involve the signaling molecules PI 3-K and PP-1.

  11. 2,3-Diphosphoglycerate is a nonselective inhibitor of inositol 1,4,5-trisphosphate action and metabolism.

    Science.gov (United States)

    Guillemette, G; Favreau, I; Lamontagne, S; Boulay, G

    1990-04-25

    Inositol 1,4,5-trisphosphate (InsP3) is an important second messenger generated from the hydrolysis of phosphatidylinositol 4,5-bisphosphate by phospholipase C in response to Ca2(+)-mobilizing stimuli. InsP3 interacts with specific intracellular receptors and triggers the release of sequestered Ca2+ from an intracellular store. We have looked at the influence of 2,3-diphosphoglycerate on the action and metabolism of InsP3 in the bovine adrenal cortex. 2,3-Diphosphoglycerate blocked InsP3 binding to adrenal cortex microsomes with a half-maximal efficiency of 0.5 mM. Scatchard analyses revealed that 2,3-diphosphoglycerate did not change the maximal capacity of the microsomes, but decreased their binding affinity for InsP3. The Ca2(+)-releasing activity of InsP3 on the same microsomal preparation was monitored with the fluorescent indicator, Fura-2. 2,3-Diphosphoglycerate blocked this activity with a half-maximal efficiency of 2 mM. The effect of 2,3-diphosphoglycerate could be overcome by supramaximal doses of InsP3, indicating a competitive inhibitory effect. The activity of InsP3 phosphatase from bovine adrenal cortex microsomes was also studied. 2,3-Diphosphoglycerate inhibited the activity of the phosphatase with a half-maximal efficiency of 0.3 mM. Lineweaver-Burke plots revealed that this effect was competitive. Finally, 2,3-diphosphoglycerate was also able to inhibit the activity of a partially purified preparation of InsP3 kinase from bovine adrenal cortex cytosol. The half-maximal dose was around 10 mM and the Lineweaver-Burke plot showed that the inhibition was competitive. These results show that 2,3-diphosphoglycerate can be considered as a structural analog of InsP3. Its inhibitory effects, however, are not selective enough to use it as an InsP3 protective agent in Ca2(+)-mobilization studies.

  12. Optimized choice of method for determining proliferation response of peripheral lymphocytes to mitogens in low dose irradiation with cyclotron fast neutrons

    International Nuclear Information System (INIS)

    Refka, Z.; Svec, M.; Aganov, P.; Svoboda, V.; Podzimek, F.

    1989-01-01

    Heparinized venous blood sampled from seven donors was irradiated with doses of 0.1; 0.25; 0.5; 1.0; 2.0 and 3.0 Gy of fast neutrons of a mean energy of 7.6 MeV using the U 120 M isochronous cyclotron. A non-irradiated control sample was also prepared. A lymphoblastic transformation test was conducted with both the intact and irradiated samples. The samples were cultivated in the RPMI-1640 medium with and without a mitogen addition, this in five time variants, viz., for 48, 72, 90, 96 and 120 hours. The proliferation was monitored of lymphocytes stimulated with mitogens PHA, CON-A and PWM in dependence on the time of cultivation and on the radiation dose. The dose dependent relative response was also studied of the irradiated lymphocytes. (E.J.). 8 figs., 1 tab., 18 refs

  13. A single point mutation changes the crystallization behavior of Mycoplasma arthritidis-derived mitogen

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Yi; Li, Zhong; Van Vranken, Sandra J. [Wadsworth Center, New York State Department of Health, Empire State Plaza, PO Box 509, Albany, New York 12201-0509 (United States); Li, Hongmin, E-mail: lih@wadsworth.org [Wadsworth Center, New York State Department of Health, Empire State Plaza, PO Box 509, Albany, New York 12201-0509 (United States); Department of Biomedical Sciences, School of Public Health, University at Albany, State University of New York, Empire State Plaza, PO Box 509, Albany, New York 12201-0509 (United States)

    2006-03-01

    The mutagenesis, crystallization and preliminary crystallographic analysis of M. arthritidis-derived mitogen is described. Mycoplasma arthritidis-derived mitogen (MAM) functions as a conventional superantigen (SAg). Although recombinant MAM has been crystallized by the hanging-drop vapour-diffusion method, the crystals diffracted poorly to only 5.0 Å resolution, with large unit-cell parameters a = 163.8, b = 93.0, c = 210.9 Å, β = 93.7° in the monoclinic space group P2{sub 1}. Unit-cell content analysis revealed that as many as 24 molecules could be present in the asymmetric unit. Systematic alanine mutagenesis was applied in order to search for mutants that give crystals of better quality. Two mutants, L50A and K201A, were crystallized under the same conditions as wild-type MAM (MAM{sub wt}). Crystals of the L50A mutant are isomorphous with those of MAM{sub wt}, while a new crystal form was obtained for the K201 mutant, belonging to the cubic space group P4{sub 1}32 with unit-cell parameters a = b = c = 181.9 Å. Diffraction data were collected to 3.6 and 2.8 Å resolution from crystals of the MAM L50A and K201A mutants, respectively. Molecular-replacement calculations suggest the presence of two molecules in the asymmetric unit for the MAM K201A mutant crystal, resulting in a V{sub M} of 5.0 Å Da{sup −1} and a solvent content of 75%. An interpretable electron-density map for the MAM K201A mutant crystal was produced using the molecular-replacement method.

  14. Inositol 1,4,5-trisphosphate receptor 1 mutation perturbs glucose homeostasis and enhances susceptibility to diet-induced diabetes.

    Science.gov (United States)

    Ye, Risheng; Ni, Min; Wang, Miao; Luo, Shengzhan; Zhu, Genyuan; Chow, Robert H; Lee, Amy S

    2011-08-01

    The inositol 1,4,5-trisphosphate receptors (IP3Rs) as ligand-gated Ca(2)(+) channels are key modulators of cellular processes. Despite advances in understanding their critical role in regulating neuronal function and cell death, how this family of proteins impact cell metabolism is just emerging. Unexpectedly, a transgenic mouse line (D2D) exhibited progressive glucose intolerance as a result of transgene insertion. Inverse PCR was used to identify the gene disruption in the D2D mice. This led to the discovery that Itpr1 is among the ten loci disrupted in chromosome 6. Itpr1 encodes for IP3R1, the most abundant IP3R isoform in mouse brain and also highly expressed in pancreatic β-cells. To study IP3R1 function in glucose metabolism, we used the Itpr1 heterozygous mutant mice, opt/+. Glucose homeostasis in male mice cohorts was examined by multiple approaches of metabolic phenotyping. Under regular diet, the opt/+ mice developed glucose intolerance but no insulin resistance. Decrease in second-phase glucose-stimulated blood insulin level was observed in opt/+ mice, accompanied by reduced β-cell mass and insulin content. Strikingly, when fed with high-fat diet, the opt/+ mice were more susceptible to the development of hyperglycemia, glucose intolerance, and insulin resistance. Collectively, our studies identify the gene Itpr1 being interrupted in the D2D mice and uncover a novel role of IP3R1 in regulation of in vivo glucose homeostasis and development of diet-induced diabetes.

  15. Enhanced tumor imaging with pokeweed mitogen

    International Nuclear Information System (INIS)

    Bitner, D.M.; Mann, P.L.; D'Souza, P.; Wenk, R.; Baughman, D.G.; Quesada, S.M.; Purvis, R.; Born, J.L.; Matwiyoff, N.A.; Eshima, D.

    1993-01-01

    Traditional tumor imaging with biotracer techniques relies solely on the target specificity of the biomolecule. We hypothesize that specific imaging is possible by altering the rate of tissue clearance of any given radiotracer. Pokeweed mitogen (PWM) as a biomodulator, represents a class of molecules which regulate cellular differentiation and cell-cell interactions and, as part of these mechanisms alter tissue clearance rates. Utilizing the B-16/C57BL/6 model, 7 days post-transplantation, 10 animals were imaged following an i.v. injection of 1-2 mCi 99m Tc-PWM in order to visualize the tumors and determine the optimal imaging kinetics. A specific tumor image is achieved between 120 and 240 min post-injection. In addition, tumor imaging studies using a non-tumor-specific biomolecule were conducted by injecting 19 animals i.v. with 1-2 mCi of 99m Tc-human serum albumin (HSA). Twelve of these animals were given 10 μg of PWM i.p. at various intervals prior to the 99m Tc-HAS administration. Imaging and biodistribution studies were performed at various intervals up to 2 h post- 99m Tc-HSA injection. A 32-59% increase in the tumor-to-muscle ratio was observed in the PWM-treated animals relative to the non-treated controls. To further investigate the PWM-induced tissue clearance alteration hypothesis, tissue clearance studies using 99m Tc-diethylenetriaminepentaacetic acid (DTPA) were conducted in non-tumor bearing ICR mice and the B-16/C57BL/6 tumor bearing animals. 99m Tc-DTPA normal tissue clearance rates were significantly increased in the PWM treated animals relative to the non-treated controls. (author)

  16. Detection of proliferating cell nuclear antigens and interleukin-2 beta receptor molecules on mitogen- and antigen-stimulated lymphocytes.

    Science.gov (United States)

    Hesketh, J; Dobbelaere, D; Griffin, J F; Buchan, G

    1993-01-01

    The expression of interleukin-2 receptors (IL-2R) and proliferating cell nuclear antigens (PCNA) were compared for their usefulness as markers of lymphocyte activation. Heterologous polyclonal (anti-bovine IL-2R) and monoclonal (anti-human PCNA) antibodies were used to detect the expression of these molecules on activated deer lymphocytes. Both molecules were co-expressed on blast cells which had been activated with mitogen [concanavalin A (Con A)]. There was detectable up-regulation of IL-2R expression in response to antigen [Mycobacterium bovis-derived purified protein derivative (PPD)] stimulation while PCNA expression mimicked lymphocyte transformation (LT) reactivity. PCNA expression was found to more accurately reflect both antigen- and mitogen-activated lymphocyte activation, as estimated by LT activity. The expression of PCNA was used to identify antigen reactive cells from animals exposed to M. bovis. A very low percentage (1.1 +/- 0.4%) of peripheral blood lymphocytes from non-infected animals could be stimulated to express PCNA by in vitro culture with antigen (PPD). Within the infected group both diseased and healthy, 'in-contact', animals expressed significantly higher levels of PCNA upon antigen stimulation. PMID:8104884

  17. Pentachlorophenol-Induced Cytotoxic, Mitogenic, and Endocrine-Disrupting Activities in Channel Catfish, Ictalurus punctatus

    Directory of Open Access Journals (Sweden)

    Paul B. Tchounwou

    2004-09-01

    Full Text Available Pentachlorophenol (PCP is an organochlorine compound that has been widely used as a biocide in several industrial, agricultural, and domestic applications. Although it has been shown to induce systemic toxicity and carcinogenesis in several experimental studies, the literature is scarce regarding its toxic mechanisms of action at the cellular and molecular levels. Recent investigations in our laboratory have shown that PCP induces cytotoxicity and transcriptionally activates stress genes in human liver carcinoma (HepG2 cells [1]. In this research, we hypothesize that environmental exposure to PCP may trigger cytotoxic, mitogenic, and endocrine-disrupting activities in aquatic organisms including fish. To test this hypothesis, we carried out in vitro cultures of male channel catfish hepatocytes, and performed the fluorescein diacetate assay (FDA to assess for cell viability, and the Western Blot analysis to assess for vitellogenin expression following exposure to PCP. Data obtained from FDA experiments indicated a strong dose-response relationship with respect to PCP cytotoxicity. Upon 48 hrs of exposure, the chemical dose required to cause 50% reduction in cell viability (LD50 was computed to be 1,987.0 + 9.6 μg PCP/mL. The NOAEL and LOAEL were 62.5 + 10.3 μg PCP/mL and 125.0+15.2 μg PCP/mL, respectively. At lower levels of exposure, PCP was found to be mitogenic, showing a strong dose- and time-dependent response with regard to cell proliferation. Western Blot analysis demonstrated the potential of PCP to cause endocrine-disrupting activity, as evidenced by the up regulation of the 125-kDa vitellogenin protein the hepatocytes of male channel catfish.

  18. Mitogen-Activated Protein Kinase Phosphatase-2 Deletion Impairs Synaptic Plasticity and Hippocampal-Dependent Memory.

    Science.gov (United States)

    Abdul Rahman, Nor Zaihana; Greenwood, Sam M; Brett, Ros R; Tossell, Kyoko; Ungless, Mark A; Plevin, Robin; Bushell, Trevor J

    2016-02-24

    Mitogen-activated protein kinases (MAPKs) regulate brain function and their dysfunction is implicated in a number of brain disorders, including Alzheimer's disease. Thus, there is great interest in understanding the signaling systems that control MAPK function. One family of proteins that contribute to this process, the mitogen-activated protein kinase phosphatases (MKPs), directly inactivate MAPKs through dephosphorylation. Recent studies have identified novel functions of MKPs in development, the immune system, and cancer. However, a significant gap in our knowledge remains in relation to their role in brain functioning. Here, using transgenic mice where the Dusp4 gene encoding MKP-2 has been knocked out (MKP-2(-/-) mice), we show that long-term potentiation is impaired in MKP-2(-/-) mice compared with MKP-2(+/+) controls whereas neuronal excitability, evoked synaptic transmission, and paired-pulse facilitation remain unaltered. Furthermore, spontaneous EPSC (sEPSC) frequency was increased in acute slices and primary hippocampal cultures prepared from MKP-2(-/-) mice with no effect on EPSC amplitude observed. An increase in synapse number was evident in primary hippocampal cultures, which may account for the increase in sEPSC frequency. In addition, no change in ERK activity was detected in both brain tissue and primary hippocampal cultures, suggesting that the effects of MKP-2 deletion were MAPK independent. Consistent with these alterations in hippocampal function, MKP-2(-/-) mice show deficits in spatial reference and working memory when investigated using the Morris water maze. These data show that MKP-2 plays a role in regulating hippocampal function and that this effect may be independent of MAPK signaling. Copyright © 2016 Abdul Rahman et al.

  19. Hypoxia-Induced Mitogenic Factor (HIMF/FIZZ1/RELM?) Recruits Bone Marrow-Derived Cells to the Murine Pulmonary Vasculature

    OpenAIRE

    Angelini, Daniel J.; Su, Qingning; Kolosova, Irina A.; Fan, Chunling; Skinner, John T.; Yamaji-Kegan, Kazuyo; Collector, Michael; Sharkis, Saul J.; Johns, Roger A.

    2010-01-01

    Background Pulmonary hypertension (PH) is a disease of multiple etiologies with several common pathological features, including inflammation and pulmonary vascular remodeling. Recent evidence has suggested a potential role for the recruitment of bone marrow-derived (BMD) progenitor cells to this remodeling process. We recently demonstrated that hypoxia-induced mitogenic factor (HIMF/FIZZ1/RELM?) is chemotactic to murine bone marrow cells in vitro and involved in pulmonary vascular remodeling ...

  20. Aspergillus nidulans Natural Product Biosynthesis Is Regulated by MpkB, a Putative Pheromone Response Mitogen-Activated Protein Kinase

    International Nuclear Information System (INIS)

    Atoui, A.; Bao, D.; Kaur, N.; Grayburn, W.S.; Calvo, A.M.

    2008-01-01

    The Aspergillus nidulans putative mitogen-activated protein kinase encoded by mpkB has a role in natural product biosynthesis. An mpkB mutant exhibited a decrease in sterigmatocystin gene expression and low mycotoxin levels. The mutation also affected the expression of genes involved in penicillin and terrequinone A synthesis. mpkB was necessary for normal expression of laeA, which has been found to regulate secondary metabolism gene clusters. (author)

  1. Time-dependent enhancement of lymphocyte activation by mitogens after exposure to isolation or water scheduling.

    Science.gov (United States)

    Jessop, J J; Gale, K; Bayer, B M

    1988-01-01

    The effects of isolation and water scheduling on mitogen induced lymphocyte proliferation were investigated. Isolated rats were animals which had been raised in group-housed conditions and then transferred to individual cages with ad lib access to water for a 1 or 2 week period. Water scheduled rats were maintained in group housing (5 rats per cage) with ad lib access to food but with access to water for a single 30 minute session each day. Responses of these groups were compared to those of animals which had been continuously group-housed with ad lib access to food and water. No differences in lymphocyte responses to phytohemagglutinin (PHA) were found 1 week after exposure to isolation. However, after 2 weeks, splenic and blood T lymphocytes from isolated animals demonstrated an increased proliferative response to suboptimum and maximum concentrations of PHA. Splenic B lymphocyte responses to lipopolysaccharide (LPS) from isolated animals were also increased by 2- to 3-fold compared to group-housed controls. Two weeks of exposure of animals to daily water scheduling similarly increased the splenic lymphocyte proliferation. This increased responsiveness to PHA was not accompanied by a significant change in the sensitivity of the lymphocytes to PHA, in the total number of white blood cells, or the proportion of splenic T or T helper lymphocytes. Our results show that the increase in lymphocyte proliferation is time-dependent, requires greater than 1 week of exposure to isolation and is due to factors other than changes in sensitivity to mitogen or T lymphocyte number.

  2. T-dependence of human B lymphocyte proliferative response to mitogens.

    Science.gov (United States)

    Brochier, J; Samarut, C; Gueho, J P; Revillard, J P

    1976-01-01

    Human peripheral blood and tonsil lymphocytes were fractionated on anti-Ig-coated Sephadex columns or by centrifugation after rosetting with native sheep erythrocytes. Both methods allowed the recovery of B and T-enriched populations the purity of which was checked by fluorescein-labelled anti-Ig serum, E and EAC rosette formation, and heterologous antisera specific for B or T lymphocytes. The proliferative response of T cells to PHA, Con A, PWM, and ALS was not found different from that of unfractionated cells, whereas no response of the B cells could be observed to these mitogens providing that no contaminating T cells were present. Addition of T lymphocytes to these unresponsive B cells allowed them to respond to phytomitogens, but not to ALS. X-irradiated T cells could, to some extent, replace the diving T lymphocytes; no T-replacing factor could be found in cell-free supernatants from T cells, whether or not they had been activated by mitrogens. This model of B-T cooperation appears useful for studying the differentiation and maturation of human B lymphocytes.

  3. Review: Mitogen-Activated Protein kinases in nutritional signaling in Arabidopsis

    KAUST Repository

    Chardin, Camille; Schenk, Sebastian T.; Hirt, Heribert; Colcombet, Jean; Krapp, Anne

    2017-01-01

    Mitogen-Activated Protein Kinase (MAPK) cascades are functional modules widespread among eukaryotic organisms. In plants, these modules are encoded by large multigenic families and are involved in many biological processes ranging from stress responses to cellular differentiation and organ development. Furthermore, MAPK pathways are involved in the perception of environmental and physiological modifications. Interestingly, some MAPKs play a role in several signaling networks and could have an integrative function for the response of plants to their environment. In this review, we describe the classification of MAPKs and highlight some of their biochemical actions. We performed an in silico analysis of MAPK gene expression in response to nutrients supporting their involvement in nutritional signaling. While several MAPKs have been identified as players in sugar, nitrogen, phosphate, iron and potassium-related signaling pathways, their biochemical functions are yet mainly unknown. The integration of these regulatory cascades in the current understanding of nutrient signaling is discussed and potential new avenues for approaches toward plants with higher nutrient use efficiencies are evoked.

  4. Review: Mitogen-Activated Protein kinases in nutritional signaling in Arabidopsis

    KAUST Repository

    Chardin, Camille

    2017-04-14

    Mitogen-Activated Protein Kinase (MAPK) cascades are functional modules widespread among eukaryotic organisms. In plants, these modules are encoded by large multigenic families and are involved in many biological processes ranging from stress responses to cellular differentiation and organ development. Furthermore, MAPK pathways are involved in the perception of environmental and physiological modifications. Interestingly, some MAPKs play a role in several signaling networks and could have an integrative function for the response of plants to their environment. In this review, we describe the classification of MAPKs and highlight some of their biochemical actions. We performed an in silico analysis of MAPK gene expression in response to nutrients supporting their involvement in nutritional signaling. While several MAPKs have been identified as players in sugar, nitrogen, phosphate, iron and potassium-related signaling pathways, their biochemical functions are yet mainly unknown. The integration of these regulatory cascades in the current understanding of nutrient signaling is discussed and potential new avenues for approaches toward plants with higher nutrient use efficiencies are evoked.

  5. Induced Mitogenic Activity in AML-12 Mouse Hepatocytes Exposed to Low-dose Ultra-Wideband Electromagnetic Radiation

    Directory of Open Access Journals (Sweden)

    P. B. Tchounwou

    2005-04-01

    Full Text Available Ultra–wideband (UWB technology has increased with the use of various civilian and military applications. In the present study, we hypothesized that low-dose UWB electromagnetic radiation (UWBR could elicit a mitogenic effect in AML-12 mouse hepatocytes, in vitro. To test this hypothesis, we exposed AML-12 mouse hepatocytes, to UWBR in a specially constructed gigahertz transverse electromagnetic mode (GTEM cell. Cells were exposed to UWBR for 2 h at a temperature of 23°C, a pulse width of 10 ns, a repetition rate of 1 kHz, and field strength of 5-20 kV/m. UWB pulses were triggered by an external pulse generator for UWBR exposure but were not triggered for the sham exposure. We performed an MTT Assay to assess cell viability for UWBR-treated and sham-exposed hepatocytes. Data from viability studies indicated a time-related increase in hepatocytes at time intervals from 8-24 h post exposure. UWBR exerted a statistically significant (p < 0.05 dose-dependent response in cell viability in both serum-treated and serum free medium (SFM -treated hepatocytes. Western blot analysis of hepatocyte lysates demonstrated that cyclin A protein was induced in hepatocytes, suggesting that increased MTT activity after UWBR exposure was due to cell proliferation. This study indicates that UWBR has a mitogenic effect on AML-12 mouse hepatocytes and implicates a possible role for UWBR in hepatocarcinoma.

  6. Mitigation of direct neurotoxic effects of lidocaine and amitriptyline by inhibition of p38 mitogen-activated protein kinase in vitro and in vivo

    NARCIS (Netherlands)

    Lirk, Philipp; Haller, Ingrid; Myers, Robert R.; Klimaschewski, Lars; Kau, Yi-Chuan; Hung, Yu-Chun; Gerner, Peter

    2006-01-01

    Local anesthetic-induced direct neurotoxicity (paresthesia, failure to regain normal sensory and motor function) is a potentially devastating complication of regional anesthesia. Local anesthetics activate the p38 mitogen-activated protein kinase (MAPK) system, which is involved in apoptotic cell

  7. The immunodeficiency of bone marrow-transplanted patients. The effect of patient lymphocytes on the response of donor lymphocytes to mitogens and allogeneic cells

    DEFF Research Database (Denmark)

    Ødum, Niels; Hofmann, B; Platz, P

    1985-01-01

    Lymphocytes from patients after bone marrow transplantation (BMT) are in most cases predominantly of the Leu-2+ (cytotoxic/suppressor) phenotypes and are almost unresponsive to mitogens. In contrast, normal Leu-3+-depleted, Leu-2+-enriched lymphocyte suspensions retain approximately 50...

  8. Effects of metal ions on cyprinid fish immune response: In vitro effects of Zn2+ and Mn2+ on the mitogenic response of carp pronephros lymphocytes

    International Nuclear Information System (INIS)

    Ghanmi, Z.; Rouabhia, M.; Othmane, O.; Deschaux, P.A.

    1989-01-01

    Lymphocytes from the pronephros of carp (Cyprinus carpio L) have been subjected to transformation by mitogens, concanavalin A (Con A), phytohemagglutinin (PHA), and lipopolysaccharides (LPS), with Zn or Mn at varying concentrations. Addition of Zn 2+ (10(-7) to 10(-3) M) to mitogen-stimulated T and B cells enhanced [ 3 H]thymidine incorporation. Addition of 10(-5) M Zn 2+ inhibited the response to Con A, PHA, and LPS. At this concentration, Zn was toxic. Addition of Mn2+ (10(-7) to 10(-3) M) to mitogen-stimulated lymphocytes enhanced [ 3 H]thymidine incorporation. This effect was observed with Con A- and PHA-stimulated lymphocytes, but not with LPS-stimulated lymphocytes. In contrast, addition of 10(-1) M Mn 2+ to lymphocyte cultures exerted an inhibitor on the response to Con A or to PHA, while the response to LPS was unaffected. Addition of 10(-1) M Mn 2+ to Con A- or PHA-stimulated cultures at different times after initiation of stimulation indicated that Mn 2+ was inhibitory only when it was added before the first 16 hr of cultures. The inhibition induced by 10(-1) M Mn2+ could be reversed by adding 2 mM CaCl 2 to the culture

  9. Periodic mechanical stress activates EGFR-dependent Rac1 mitogenic signals in rat nucleus pulpous cells via ERK1/2

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Gongming [Department of Orthopedics, The Affiliated Changzhou No. 2 Hospital of Nanjing Medical University, Changzhou 213003 (China); Shen, Nan [Department of Clinical Pharmacy, The Affiliated Jiangyin Hospital of Southeast University Medical School, Jiangyin 214400 (China); Jiang, Xuefeng; Sun, Huiqing [Department of Orthopedics, The Affiliated Jiangyin Hospital of Southeast University Medical School, Jiangyin 214400 (China); Xu, Nanwei; Zhou, Dong [Department of Orthopedics, The Affiliated Changzhou No. 2 Hospital of Nanjing Medical University, Changzhou 213003 (China); Nong, Luming, E-mail: lumingnong@hotmail.com [Department of Orthopedics, The Affiliated Changzhou No. 2 Hospital of Nanjing Medical University, Changzhou 213003 (China); Ren, Kewei, E-mail: keweiren@hotmail.com [Department of Orthopedics, The Affiliated Jiangyin Hospital of Southeast University Medical School, Jiangyin 214400 (China)

    2016-01-15

    The mitogenic effects of periodic mechanical stress on nucleus pulpous cells have been studied extensively but the mechanisms whereby nucleus pulpous cells sense and respond to mechanical stimulation remain a matter of debate. We explored this question by performing cell culture experiments in our self-developed periodic stress field and perfusion culture system. Under periodic mechanical stress, rat nucleus pulpous cell proliferation was significantly increased (p < 0.05 for each) and was associated with increases in the phosphorylation and activation of EGFR, Rac1, and ERK1/2 (p < 0.05 for each). Pretreatment with the ERK1/2 selective inhibitor PD98059 reduced periodic mechanical stress-induced nucleus pulpous cell proliferation (p < 0.05 for each), while the activation levels of EGFR and Rac1 were not inhibited. Proliferation and phosphorylation of ERK1/2 were inhibited after pretreatment with the Rac1 inhibitor NSC23766 in nucleus pulpous cells in response to periodic mechanical stress (p < 0.05 for each), while the phosphorylation site of EGFR was not affected. Inhibition of EGFR activity with AG1478 abrogated nucleus pulpous cell proliferation (p < 0.05 for each) and attenuated Rac1 and ERK1/2 activation in nucleus pulpous cells subjected to periodic mechanical stress (p < 0.05 for each). These findings suggest that periodic mechanical stress promotes nucleus pulpous cell proliferation in part through the EGFR-Rac1-ERK1/2 signaling pathway, which links these three important signaling molecules into a mitogenic cascade. - Highlights: • The mechanism involved in nucleus pulpous cells to respond to mechanical stimuli. • Periodic mechanical stress can stimulate the phosphorylation of EGFR. • EGFR activates Rac1 and leads to rat nucleus pulpous cell proliferation. • EGFR and Rac1 activate ERK1/2 mitogenic signals in nucleus pulpous cells. • EGFR-Rac1-ERK1/2 is constitutes at least one critical signal transduction pathway.

  10. Periodic mechanical stress activates EGFR-dependent Rac1 mitogenic signals in rat nucleus pulpous cells via ERK1/2

    International Nuclear Information System (INIS)

    Gao, Gongming; Shen, Nan; Jiang, Xuefeng; Sun, Huiqing; Xu, Nanwei; Zhou, Dong; Nong, Luming; Ren, Kewei

    2016-01-01

    The mitogenic effects of periodic mechanical stress on nucleus pulpous cells have been studied extensively but the mechanisms whereby nucleus pulpous cells sense and respond to mechanical stimulation remain a matter of debate. We explored this question by performing cell culture experiments in our self-developed periodic stress field and perfusion culture system. Under periodic mechanical stress, rat nucleus pulpous cell proliferation was significantly increased (p < 0.05 for each) and was associated with increases in the phosphorylation and activation of EGFR, Rac1, and ERK1/2 (p < 0.05 for each). Pretreatment with the ERK1/2 selective inhibitor PD98059 reduced periodic mechanical stress-induced nucleus pulpous cell proliferation (p < 0.05 for each), while the activation levels of EGFR and Rac1 were not inhibited. Proliferation and phosphorylation of ERK1/2 were inhibited after pretreatment with the Rac1 inhibitor NSC23766 in nucleus pulpous cells in response to periodic mechanical stress (p < 0.05 for each), while the phosphorylation site of EGFR was not affected. Inhibition of EGFR activity with AG1478 abrogated nucleus pulpous cell proliferation (p < 0.05 for each) and attenuated Rac1 and ERK1/2 activation in nucleus pulpous cells subjected to periodic mechanical stress (p < 0.05 for each). These findings suggest that periodic mechanical stress promotes nucleus pulpous cell proliferation in part through the EGFR-Rac1-ERK1/2 signaling pathway, which links these three important signaling molecules into a mitogenic cascade. - Highlights: • The mechanism involved in nucleus pulpous cells to respond to mechanical stimuli. • Periodic mechanical stress can stimulate the phosphorylation of EGFR. • EGFR activates Rac1 and leads to rat nucleus pulpous cell proliferation. • EGFR and Rac1 activate ERK1/2 mitogenic signals in nucleus pulpous cells. • EGFR-Rac1-ERK1/2 is constitutes at least one critical signal transduction pathway.

  11. Protein tyrosine kinase and mitogen-activated protein kinase signalling pathways contribute to differences in heterophil-mediated innate immune responsiveness between two lines of broilers

    Science.gov (United States)

    Protein tyrosine phosphorylation mediates signal transduction of cellular processes, with protein tyrosine kinases (PTKs) regulating virtually all signaling events. The mitogen-activated protein kinase (MAPK) super-family consists of three conserved pathways that convert receptor activation into ce...

  12. Functional Roles of p38 Mitogen-Activated Protein Kinase in Macrophage-Mediated Inflammatory Responses

    Directory of Open Access Journals (Sweden)

    Yanyan Yang

    2014-01-01

    Full Text Available Inflammation is a natural host defensive process that is largely regulated by macrophages during the innate immune response. Mitogen-activated protein kinases (MAPKs are proline-directed serine and threonine protein kinases that regulate many physiological and pathophysiological cell responses. p38 MAPKs are key MAPKs involved in the production of inflammatory mediators, including tumor necrosis factor-α (TNF-α and cyclooxygenase-2 (COX-2. p38 MAPK signaling plays an essential role in regulating cellular processes, especially inflammation. In this paper, we summarize the characteristics of p38 signaling in macrophage-mediated inflammation. In addition, we discuss the potential of using inhibitors targeting p38 expression in macrophages to treat inflammatory diseases.

  13. Toward a Comprehensive Phylogenetic Reconstruction of the Evolutionary History of Mitogen-Activated Protein Kinases in the Plant Kingdom

    OpenAIRE

    Janitza, Philipp; Ullrich, Kristian Karsten; Quint, Marcel

    2012-01-01

    The mitogen-activated protein kinase (MAPK) pathway is a three-tier signaling cascade that transmits cellular information from the plasma membrane to the cytoplasm where it triggers downstream responses. The MAPKs represent the last step in this cascade and are activated when both tyrosine and threonine residues in a conserved TxY motif are phosphorylated by MAPK kinases, which in turn are themselves activated by phosphorylation by MAPK kinase kinases. To understand the molecular evolution of...

  14. The mitogen-activated protein kinase (MAPK pathway: role in immune evasion by trypanosomatids

    Directory of Open Access Journals (Sweden)

    Mercedes Carolina Soares-Silva

    2016-02-01

    Full Text Available Leishmania spp and Trypanosoma cruzi are the causative agents of leishmaniasis and Chagas' disease, respectively, two neglected tropical diseases that affect about 25 million people worldwide. These parasites belong to the family Trypanosomatidae and are both obligate intracellular parasites that manipulate host signaling pathways to establish the infection, and also subvert the host innate immune system. Mitogen-activated protein kinases (MAPKs are serine and threonine protein kinases, highly conserved in eukaryotes, and are involved in signal transduction pathways that are related to modulation of physiological and pathophysiological cell responses. This mini-review highlights the current knowledge about the mechanisms that Leishmania spp and T. cruzi have evolved to target host MAPK signaling pathway, highjack immune response, and in this manner, promote parasite maintenance in the host.

  15. Reduced response of splenocytes after mitogen-stimulation in the prion protein (PrP) gene-deficient mouse: PrPLP/Doppel production and cerebral degeneration

    International Nuclear Information System (INIS)

    Kim, Chi-Kyeong; Hirose, Yuko; Sakudo, Akikazu; Takeyama, Natsumi; Kang, Chung-Boo; Taniuchi, Yojiro; Matsumoto, Yoshitsugu; Itohara, Shigeyoshi; Sakaguchi, Suehiro; Onodera, Takashi

    2007-01-01

    Splenocytes of wild-type (Prnp +/+ ) and prion protein gene-deficient (Prnp -/- ) mice were treated with various activation stimuli such as T cell mitogen concanavalin A (ConA), phorbol 12-myristate 13-acetate (PMA) + ionomycin (Io), or B cell mitogen lipopolysaccharide (LPS). Cellular prion protein (PrP C ) expression was enhanced following ConA stimulation, but not PMA + Io or LPS in Prnp +/+ splenocytes. Rikn Prnp -/- splenocytes elicited lower cell proliferations than Prnp +/+ or Zrch I Prnp -/- splenocytes after LPS stimulation and showed sporadic nerve cells in the cerebral cortex and deeper structure. Around the degenerated nerve cells, mild vacuolation in the neuropil was observed. This neural alteration correlated well to the suppressed response of B cells in the spleen. The finding that discrete lesions within the central nervous systems induced marked modulation of immune function probably indicates the existence of a delicately balanced neural-endocrine network by PrP C and PrPLP/Doppel

  16. Blockades of mitogen-activated protein kinase and calcineurin both change fibre-type markers in skeletal muscle culture

    DEFF Research Database (Denmark)

    Higginson, James; Wackerhage, Henning; Woods, Niall

    2002-01-01

    A and mitogen-activated protein kinase kinase (MEK1/2) blockade with U0126 upon myosin heavy chain (MHC) isoform mRNA levels and activities of metabolic enzymes after 1 day, 3 days and 7 days of treatment in primary cultures of spontaneously twitching rat skeletal muscle. U0126 treatment significantly decreased......Activation of either the calcineurin or the extracellular signal-regulated kinase (ERK1/2) pathway increases the percentage of slow fibres in vivo suggesting that both pathways can regulate fibre phenotypes in skeletal muscle. We investigated the effect of calcineurin blockade with cyclosporin...

  17. Hepatocyte Growth Factor Inhibits Apoptosis by the Profibrotic Factor Angiotensin II via Extracellular Signal-regulated Kinase 1/2 in Endothelial Cells and Tissue Explants

    Science.gov (United States)

    2010-12-01

    1 mM sodium fluoride, 0.1 mM sodium orthovanadate, 1 mM tetrasodium pyrophosphate, 2 mM phenylmethylsulfonyl fluoride, 10 g/ml leupeptin, and 10 g...buffer [50 mM Tris-HCl, 1 mM EGTA, 1% (wt/vol) CHAPS, 10% glycerol, 50 mM sodium fluoride, 1 mM sodium orthovanadate, 2 mM phenylmethylsulfonyl fluoride...nucleus, nucleolin can be phosphorylated on serine res- idues by the cell cycle-regulated kinases casein kinase II and cell division cycle 2 protein

  18. The mitogenic response of cryopreserved human lymphocytes in a microculture system.

    Science.gov (United States)

    Steel, C M; Ennis, M; Levin, A G; Wasunna, A

    1977-01-01

    Fresh blood lymphocytes from nine health donors have been compared with samples from the same donors, recovered after period of 2 to 21 months storage in liquid nitrogen, for the capacity to respond to a range of mitogens in vitro. A microculture assay was used, requireing aliquots of only 25,000 cells. The mean levels of 14C-thymidine uptake for fresh and frozen samples were closely comparable when the cells had been stimulated by PHA, Pokeweed or mitomycin-C-treated allogeneic lymphoblastoid cells. Lymphocytes from six East African donors, frozen by a very simple technique, were recovered after 3 or more years storage in liquid nitrogen. Five of the samples were in good condition as judged by cell viability and the capacity to form spontaneous 'E' rosettes with sheep erythrocytes. These five samples also responded extremely well to PHA, PWM and mitomycin-C-treated allogeneic lymphoblastoid cells using the microculture assay. This study extends the range of applications of cell banks in which small aliquots of blood lymphocytes are stored in liquid nitrogen for periods of several years.

  19. T-cell subset alterations and lymphocyte responsiveness to mitogens and antigen during severe primary infection with HIV: a case series of seven consecutive HIV seroconverters

    DEFF Research Database (Denmark)

    Pedersen, C; Dickmeiss, E; Gaub, J

    1990-01-01

    Seven consecutive patients who presented with a severe acute mononucleosis-like illness associated with HIV seroconversion were evaluated by T-cell subset enumerations and measurements of lymphocyte transformation responses to mitogens and antigen during both their primary illness and a 1-year...

  20. Suppression of pokeweed mitogen-stimulated immunoglobulin production in patients with rheumatoid arthritis after treatment with total lymphoid irradiation

    International Nuclear Information System (INIS)

    Kotzin, B.L.; Strober, S.; Kansas, G.S.; Terrell, C.P.; Engleman, E.G.

    1984-01-01

    Patients with intractable rheumatoid arthritis (RA) were treated with total lymphoid irradiation (TLI, 200 rad). The authors previously reported long-lasting clinical improvement in this group associated with a persistent decrease in circulating Leu-3 (helper subset) T cells and marked impairment of in vitro lymphocyte function. In the present experiments, they studied the mechanisms underlying the decrease in pokeweed mitogen stimulated immunoglobulin (Ig) secretion observed after TLI. Peripheral blood mononuclear cells (PBL) from TLI-treated patients produced 10-fold less Ig (both IgM and IgG) in response to pokeweed mitogen than before radiotherapy. This decrease in Ig production was associated with the presence of suppressor cells in co-culture studies. By using responder cells obtained from normal individuals (allogeneic system), PBL from eight of 12 patients after TLI suppressed Ig synthesis by more than 50%. In contrast, PBL from the same patients before TLI failed to suppress Ig synthesis. PBL with suppressive activity contained suppressor T cells, and the latter cells bore the Leu-2 surface antigen. In 50% of the patients studied suppressor cells were also found in the non-T fraction and were adherent to plastic. Interestingly, the Leu-2 + cells from TLI-treated patients were no more potent on a cell per cell basis than purified Leu-2 + cells obtained before TLI. Additional experiments suggested that the suppression mediated by T cells after TLI is related to the increased ratio of Leu-2 to Leu-3 cells observed after radiotherapy

  1. Mitogen-activated protein kinase phosphatase-1 expression in macrophages is controlled by lymphocytes during macrophage activation.

    Science.gov (United States)

    Luo, Chong; Yang, Xiqiang; Yao, Lan; Jiang, Liping; Liu, Wei; Li, Xin; Wang, Lijia

    2012-01-01

    The viewpoints on the control of innate immune cells by the adaptive immune system during sepsis remain controversial. Mitogen-activated protein kinase phosphatase-1 (MKP-1) is essential to the negative control of innate immunity and suppresses the activation of macrophages by inhibiting activated mitogen-activated protein kinase (MAPK). The purpose of the current study was to observe inflammatory response and macrophage activation in mice with severe combined immunodeficiency (SCID) with endotoxemia and to determine the role of MKP-1 in the control of macrophage activation by the adaptive immune system. Endotoxemia was induced in wild-type and SCID mice by an intraperitoneal injection of lipopolysaccharide (LPS), and all of the SCID mice died. SCID mice produced more inflammatory cytokines than BALB/c mice systemically and locally. TNF-α mRNA expression was higher and MKP-1 mRNA expression was lower in peritoneal macrophages (PMa) from SCID mice compared to PMa from wild-type mice after and even before LPS injection. Thioglycollate-stimulated PMa from wild-type mice were stimulated with LPS in vitro in the presence or absence of pan-T cells. The levels of TNF-α and IL-6 were higher in the supernatants from PMa cultured alone compared to PMa co-cultured with pan-T cells, and PMa MKP-1 mRNA and protein expression were higher when PMa were co-cultured with pan-T cells. Therefore, pan-T cells can up-regulate MKP-1 expression in macrophages and inhibit the secretion of inflammatory cytokines secretion by macrophages. In SCID mice, lymphocyte deficiency, especially T cell deficiency, causes insufficient MKP-1 expression in macrophages, which can be responsible for the severe inflammation and bad prognosis of septic SCID mice. MKP-1 plays an important role in the control of macrophage activation by the adaptive immune system.

  2. A dominant negative form of inositol 1,4,5-trisphosphate receptor induces metacyclogenesis and increases mitochondrial density in Trypanosoma cruzi

    International Nuclear Information System (INIS)

    Hashimoto, Muneaki; Nara, Takeshi; Enomoto, Masahiro; Kurebayashi, Nagomi; Yoshida, Mitsutaka; Sakurai, Takashi; Mita, Toshihiro; Mikoshiba, Katsuhiko

    2015-01-01

    Inositol 1,4,5-trisphosphate receptor (IP_3R) is a key regulator of intracellular Ca"2"+ concentration that release Ca"2"+ from Ca"2"+ stores in response to various external stimuli. IP_3R also works as a signal hub which form a platform for interacting with various proteins involved in diverse cell signaling. Previously, we have identified an IP_3R homolog in the parasitic protist, Trypanosoma cruzi (TcIP_3R). Parasites expressing reduced or increased levels of TcIP_3R displayed defects in growth, transformation, and infectivity. In the present study, we established parasitic strains expressing a dominant negative form of TcIP_3R, named DN-TcIP_3R, to further investigate the physiological role(s) of TcIP_3R. We found that the growth of epimastigotes expressing DN-TcIP_3R was significantly slower than that of parasites with TcIP_3R expression levels that were approximately 65% of wild-type levels. The expression of DN-TcIP_3R in epimastigotes induced metacyclogenesis even in the normal growth medium. Furthermore, these epimastigotes showed the presence of dense mitochondria under a transmission electron microscope. Our findings confirm that TcIP_3R is crucial for epimastigote growth, as previously reported. They also suggest that a strong inhibition of the IP_3R-mediated signaling induces metacyclogenesis and that mitochondrial integrity is closely associated with this signaling. - Highlights: • We established T. cruzi strains expressing a dominant negative form of the TcIP_3R. • DN-TcIP_3R expression inhibits epimastigote growth and induces metacyclogenesis. • Microscopic analysis indicated TcIP_3R role in maintaining mitochondrial integrity. • Growth, but not microbial density, was altered by mammalian IP_3R inhibitor (2-APB).

  3. Inhibition of the mitogenic response to platelet-derived growth factor by terbinafine

    International Nuclear Information System (INIS)

    St Denny, I.H.; Glinka, K.G.; Nemecek, G.M.; Stuetz, A.

    1987-01-01

    Terbinafine (T;(E)-N-(6,6-dimethyl-2-hepten-4-ynyl)-N-methyl-1-naphthalenemethanamine), an antimycotic which inhibits fungal squalene epoxidase activity, was examined for its effects on platelet-derived growth factor (PDGF)-stimulated mitogenesis. The inclusion of 1.5-5μM T in fibroblast incubation media was associated with increased [ 3 H]thymidine incorporation into DNA in the presence and absence of PDGF. However, T at concentrations above 6μM reduced DNA synthesis in control and PDGF-exposed cultures to nearly undetectable levels. Under a phase-contrast microscope, fibroblasts appeared morphologically normal at T concentrations as high as 25 μM. Neither the uptake of [ 3 H]thymidine nor the specific binding of 125 I-PDGF to fibroblast receptors was significantly affected by 10 μM T. Furthermore, concentrations of T which antagonized the mitogenic response to PDGF also interfered with fibroblast growth factor-induced mitogenesis. Together, these data suggest that T has the ability to inhibit the in vitro action of PDGF via a post-receptor mechanism

  4. Inhibition of the mitogenic response to platelet-derived growth factor by terbinafine

    Energy Technology Data Exchange (ETDEWEB)

    St. Denny, I.H.; Glinka, K.G.; Nemecek, G.M. (Sandoz Research Institute, East Hanover, NJ (USA)); Stuetz, A. (Sandoz Forschungsinstitut, Vienna (Austria))

    1987-05-01

    Terbinafine (T;(E)-N-(6,6-dimethyl-2-hepten-4-ynyl)-N-methyl-1-naphthalenemethanamine), an antimycotic which inhibits fungal squalene epoxidase activity, was examined for its effects on platelet-derived growth factor (PDGF)-stimulated mitogenesis. The inclusion of 1.5-5{mu}M T in fibroblast incubation media was associated with increased ({sup 3}H)thymidine incorporation into DNA in the presence and absence of PDGF. However, T at concentrations above 6{mu}M reduced DNA synthesis in control and PDGF-exposed cultures to nearly undetectable levels. Under a phase-contrast microscope, fibroblasts appeared morphologically normal at T concentrations as high as 25 {mu}M. Neither the uptake of ({sup 3}H)thymidine nor the specific binding of {sup 125}I-PDGF to fibroblast receptors was significantly affected by 10 {mu}M T. Furthermore, concentrations of T which antagonized the mitogenic response to PDGF also interfered with fibroblast growth factor-induced mitogenesis. Together, these data suggest that T has the ability to inhibit the in vitro action of PDGF via a post-receptor mechanism.

  5. The anti-proliferative effect of cation channel blockers in T lymphocytes depends on the strength of mitogenic stimulation.

    Science.gov (United States)

    Petho, Zoltan; Balajthy, Andras; Bartok, Adam; Bene, Krisztian; Somodi, Sandor; Szilagyi, Orsolya; Rajnavolgyi, Eva; Panyi, Gyorgy; Varga, Zoltan

    2016-03-01

    Ion channels are crucially important for the activation and proliferation of T lymphocytes, and thus, for the function of the immune system. Previous studies on the effects of channel blockers on T cell proliferation reported variable effectiveness due to differing experimental systems. Therefore our aim was to investigate how the strength of the mitogenic stimulation influences the efficiency of cation channel blockers in inhibiting activation, cytokine secretion and proliferation of T cells under standardized conditions. Human peripheral blood lymphocytes were activated via monoclonal antibodies targeting the TCR-CD3 complex and the co-stimulator CD28. We applied the blockers of Kv1.3 (Anuroctoxin), KCa3.1 (TRAM-34) and CRAC (2-Apb) channels of T cells either alone or in combination with rapamycin, the inhibitor of the mammalian target of rapamycin (mTOR). Five days after the stimulation ELISA and flow cytometric measurements were performed to determine IL-10 and IFN-γ secretion, cellular viability and proliferation. Our results showed that ion channel blockers and rapamycin inhibit IL-10 and IFN-γ secretion and cell division in a dose-dependent manner. Simultaneous application of the blockers for each channel along with rapamycin was the most effective, indicating synergy among the various activation pathways. Upon increasing the extent of mitogenic stimulation the anti-proliferative effect of the ion channel blockers diminished. This phenomenon may be important in understanding the fine-tuning of T cell activation. Copyright © 2016 European Federation of Immunological Societies. Published by Elsevier B.V. All rights reserved.

  6. Angiotensin II regulation of neuromodulation: downstream signaling mechanism from activation of mitogen-activated protein kinase.

    Science.gov (United States)

    Lu, D; Yang, H; Raizada, M K

    1996-12-01

    Angiotensin II (Ang II) stimulates expression of tyrosine hydroxylase and norepinephrine transporter genes in brain neurons; however, the signal-transduction mechanism is not clearly defined. This study was conducted to determine the involvement of the mitogen-activated protein (MAP) kinase signaling pathway in Ang II stimulation of these genes. MAP kinase was localized in the perinuclear region of the neuronal soma. Ang II caused activation of MAP kinase and its subsequent translocation from the cytoplasmic to nuclear compartment, both effects being mediated by AT1 receptor subtype. Ang II also stimulated SRE- and AP1-binding activities and fos gene expression and its translocation in a MAP kinase-dependent process. These observations are the first demonstration of a downstream signaling pathway involving MAP kinase in Ang II-mediated neuromodulation in noradrenergic neurons.

  7. Mitogenic activity of a water-soluble adjuvant (Bu-WSA) obtained from Bacterionema matruchotii. IV. Synergistic effects of Bu-WSA on Concanavalin A-induced proliferative response of human peripheral blood lymphocytes.

    Science.gov (United States)

    Nitta, T; Okumura, S; Tsushi, M; Nakano, M

    1982-01-01

    Butanol-extracted water-soluble adjuvant (Bu-WSA) obtained from Bacterionema matruchotii was cultured with peripheral blood mononuclear cells (PBM) in the presence of sub- and/or supra-optimal mitogenic concentrations of concanavalin A (Con A). The addition of Bu-WSA resulted in increased tritiated thymidine incorporation above that produced by Con A alone. Bu-WSA by itself is not mitogenic for PBM and in fact produced a decrease in thymidine uptake compared to the control. We investigated the response of subpopulation(s) of PBM to Bu-WSA, Con A and a mixture of Bu-WSA and Con A. Separation of PBM into purified T cells, B cells and macrophages showed that cell-cell cooperation of T cells with B cells or macrophages is necessary for the observed synergistic effect of Bu-WSA with Con A. A marked increase in thymidine incorporation by the mixture of T and B cell populations occurred, while only a small amount of thymidine was incorporated when the B cell population was absent. Mitomycin treatment revealed that the response could be ascribed to the T-cell response with a B-cell helper effect. Moreover, Con A and Bu-WSA appeared to act on the same T cell population. This model may provide unique information about the activation of human peripheral blood T cells compared with the activation of these cells by other mitogens.

  8. Induced overexpression of protein kinase D1 stimulates mitogenic signaling in human pancreatic carcinoma PANC-1 cells.

    Science.gov (United States)

    Kisfalvi, Krisztina; Hurd, Cliff; Guha, Sushovan; Rozengurt, Enrique

    2010-05-01

    Neurotensin (NT) stimulates protein kinase D1 (PKD1), extracellular signal regulated kinase (ERK), c-Jun N-terminal Kinase (JNK), and DNA synthesis in the human pancreatic adenocarcinoma cell line PANC-1. To determine the effect of PKD1 overexpression on these biological responses, we generated inducible stable PANC-1 clones that express wild-type (WT) or kinase-dead (K618N) forms of PKD1 in response to the ecdysone analog ponasterone-A (PonA). NT potently stimulated c-Jun Ser(63) phosphorylation in both wild type and clonal derivatives of PANC-1 cells. PonA-induced expression of WT, but not K618N PKD1, rapidly blocked NT-mediated c-Jun Ser(63) phosphorylation either at the level of or upstream of MKK4, a dual-specificity kinase that leads to JNK activation. This is the first demonstration that PKD1 suppresses NT-induced JNK/cJun activation in PANC-1 cells. In contrast, PKD1 overexpression markedly increased the duration of NT-induced ERK activation in these cells. The reciprocal influence of PKD1 signaling on pro-mitogenicERK and pro-apopotic JNK/c-Jun pathways prompted us to examine whether PKD1 overexpression promotes DNA synthesis and proliferation of PANC-1 cells. Our results show that PKD1 overexpression increased DNA synthesis and cell numbers of PANC-1 cells cultured in regular dishes or in polyhydroxyethylmethacrylate [Poly-(HEMA)]-coated dishes to eliminate cell adhesion (anchorage-independent growth). Furthermore, PKD1 overexpression markedly enhanced DNA synthesis induced by NT (1-10 nM). These results indicate that PKD1 mediates mitogenic signaling in PANC-1 and suggests that this enzyme could be a novel target for the development of therapeutic drugs that restrict the proliferation of these cells.

  9. Mitogenic Activity of a Water-Soluble Adjuvant (Bu-WSA) Obtained from Bacterionema matruchotii: IV. Synergistic Effects of Bu-WSA on Concanavalin A-Induced Proliferative Response of Human Peripheral Blood Lymphocytes.

    Science.gov (United States)

    Nitta, Toshimasa; Okumura, Seiichi; Tsushi, Masao; Nakano, Masayasu

    1982-07-01

    Butanol-extracted water-soluble adjuvant (Bu-WSA) obtained from Bacterionema matruchotii was cultured with peripheral blood mononuclear cells (PBM) in the presence of sub- and/or supra-optimal mitogenic concentrations of concanavalin A (Con A). The addition of Bu-WSA resulted in increased tritiated thymidine incorporation above that produced by Con A alone. Bu-WSA by itself is not mitogenic for PBM and in fact produced a decrease in thymidine uptake compared to the control. We investigated the response of subpopulation(s) of PBM to Bu-WSA, Con A and a mixture of Bu-WSA and Con A. Separation of PBM into purified T cells, B cells and macrophages showed that cell-cell cooperation of T cells with B cells or macrophages is necessary for the observed synergistic effect of Bu-WSA with Con A. A marked increase in thymidine incorporation by the mixture of T and B cell populations occurred, while only a small amount of thymidine was incorporated when the B cell population was absent. Mitomycin treatment revealed that the response could be ascribed to the T-cell response with a B-cell helper effect. Moreover, Con A and Bu-WSA appeared to act on the same T cell population. This model may provide unique information about the activation of human peripheral blood T cells compared with the activation of these cells by other mitogens. © owned by Center for Academic Publications Japan (Publisher).

  10. Cytotoxicity and mitogenicity assays with real-time and label-free monitoring of human granulosa cells with an impedance-based signal processing technology intergrating micro-electronics and cell biology.

    Science.gov (United States)

    Oktem, Ozgur; Bildik, Gamze; Senbabaoglu, Filiz; Lack, Nathan A; Akin, Nazli; Yakar, Feridun; Urman, Defne; Guzel, Yilmaz; Balaban, Basak; Iwase, Akira; Urman, Bulent

    2016-04-01

    A recently developed technology (xCelligence) integrating micro-electronics and cell biology allows real-time, uninterrupted and quantitative analysis of cell proliferation, viability and cytotoxicity by measuring the electrical impedance of the cell population in the wells without using any labeling agent. In this study we investigated if this system is a suitable model to analyze the effects of mitogenic (FSH) and cytotoxic (chemotherapy) agents with different toxicity profiles on human granulosa cells in comparison to conventional methods of assessing cell viability, DNA damage, apoptosis and steroidogenesis. The system generated the real-time growth curves of the cells, and determined their doubling times, mean cell indices and generated dose-response curves after exposure to cytotoxic and mitogenic stimuli. It accurately predicted the gonadotoxicity of the drugs and distinguished less toxic agents (5-FU and paclitaxel) from more toxic ones (cisplatin and cyclophosphamide). This platform can be a useful tool for specific end-point assays in reproductive toxicology. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. p38 mitogen-activated protein kinase plays a key role in regulating MAPKAPK2 expression

    International Nuclear Information System (INIS)

    Sudo, Tatsuhiko; Kawai, Kayoko; Matsuzaki, Hiroshi; Osada, Hiroyuki

    2005-01-01

    One of three major families of the mitogen-activated kinases (MAPK), p38 as well as JNK, has been shown to transduce extracellular stress stimuli into cellular responses by phospho-relay cascades. Among p38 families, p38α is a widely characterized isoform and the biological phenomena are explained by its kinase activity regulating functions of its downstream substrates. However, its specific contributions to each phenomenon are yet not fully elucidated. For better understanding of the role of MAPKs, especially p38α, we utilized newly established mouse fibroblast cell lines originated from a p38α null mouse, namely, a parental cell line without p38α gene locus, knockout of p38α (KOP), Zeosin-resistant (ZKOP), revertant of p38α (RKOP), and Exip revertant (EKOP). EKOP is smaller in size but grows faster than the others. Although comparable amounts of ERK and JNK are expressed in each cell line, ERK is highly phosphorylated in EKOP even in normal culture conditions. Serum stimulation after serum starvation led to ERK phosphorylation in RKOP and ZKOP, but not in EKOP as much. On the contrary, relative phosphorylation level of JNK to total JNK in response to UV was low in RKOP. And its phosphorylation as well as total JNK is slightly lower in EKOP. RKOP is less sensitive to UV irradiation as judged by the survival rate. Stress response upon UV or sorbitol stimuli, leading to mitogen activate protein kinase activated kinase 2 (MAPKAPK2) phosphorylation, was only observed in RKOP. Further experiments reveal that MAPKAPK2 expression is largely suppressed in ZKOP and EKOP. Its expression was recovered by re-introduction of p38α. The loss of MAPKAPK2 expression accompanied by the defect of p38α is confirmed in an embryonic extract prepared from p38α null mice. These data demonstrate that p38 signal pathway is regulated not only by phosphorylation but also by modulation of the expression of its component. Together, we have established cell lines that can be used in

  12. A dominant negative form of inositol 1,4,5-trisphosphate receptor induces metacyclogenesis and increases mitochondrial density in Trypanosoma cruzi

    Energy Technology Data Exchange (ETDEWEB)

    Hashimoto, Muneaki, E-mail: muneaki@juntendo.ac.jp [Department of Molecular and Cellular Parasitology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421 (Japan); Nara, Takeshi, E-mail: tnara@juntendo.ac.jp [Department of Molecular and Cellular Parasitology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421 (Japan); Enomoto, Masahiro, E-mail: menomoto@uhnres.utoronto.ca [Laboratory for Developmental Neurobiology, RIKEN Brain Science Institute, Saitama, 351-0198 (Japan); Princess Margaret Cancer Centre, Department of Medical Biophysics, University of Toronto, M5G1L7, Toronto, Ontario (Canada); Kurebayashi, Nagomi, E-mail: nagomik@juntendo.ac.jp [Department of Pharmacology, Juntendo University School of Medicine, Bunkyo-ku, Tokyo, 113-8421 (Japan); Yoshida, Mitsutaka, E-mail: myoshida@juntendo.ac.jp [Laboratoly of Morphology and Image Analysis, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421 (Japan); Sakurai, Takashi, E-mail: tsakurai@juntendo.ac.jp [Department of Pharmacology, Juntendo University School of Medicine, Bunkyo-ku, Tokyo, 113-8421 (Japan); Mita, Toshihiro, E-mail: tmita@juntendo.ac.jp [Department of Molecular and Cellular Parasitology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421 (Japan); Mikoshiba, Katsuhiko, E-mail: mikosiba@brain.riken.jp [Laboratory for Developmental Neurobiology, RIKEN Brain Science Institute, Saitama, 351-0198 (Japan); Calcium Oscillation Project, International Cooperative Research Project and Solution-Oriented Research for Science and Technology, Japan Science and Technology Agency, Kawaguchi, Saitama, 332-0012 (Japan)

    2015-10-23

    Inositol 1,4,5-trisphosphate receptor (IP{sub 3}R) is a key regulator of intracellular Ca{sup 2+} concentration that release Ca{sup 2+} from Ca{sup 2+} stores in response to various external stimuli. IP{sub 3}R also works as a signal hub which form a platform for interacting with various proteins involved in diverse cell signaling. Previously, we have identified an IP{sub 3}R homolog in the parasitic protist, Trypanosoma cruzi (TcIP{sub 3}R). Parasites expressing reduced or increased levels of TcIP{sub 3}R displayed defects in growth, transformation, and infectivity. In the present study, we established parasitic strains expressing a dominant negative form of TcIP{sub 3}R, named DN-TcIP{sub 3}R, to further investigate the physiological role(s) of TcIP{sub 3}R. We found that the growth of epimastigotes expressing DN-TcIP{sub 3}R was significantly slower than that of parasites with TcIP{sub 3}R expression levels that were approximately 65% of wild-type levels. The expression of DN-TcIP{sub 3}R in epimastigotes induced metacyclogenesis even in the normal growth medium. Furthermore, these epimastigotes showed the presence of dense mitochondria under a transmission electron microscope. Our findings confirm that TcIP{sub 3}R is crucial for epimastigote growth, as previously reported. They also suggest that a strong inhibition of the IP{sub 3}R-mediated signaling induces metacyclogenesis and that mitochondrial integrity is closely associated with this signaling. - Highlights: • We established T. cruzi strains expressing a dominant negative form of the TcIP{sub 3}R. • DN-TcIP{sub 3}R expression inhibits epimastigote growth and induces metacyclogenesis. • Microscopic analysis indicated TcIP{sub 3}R role in maintaining mitochondrial integrity. • Growth, but not microbial density, was altered by mammalian IP{sub 3}R inhibitor (2-APB).

  13. Detection of chromosomal changes in chronic lymphocytic leukemia using classical cytogenetic methods and FISH: application of rich mitogen mixtures for lymphocyte cultures.

    Science.gov (United States)

    Koczkodaj, Dorota; Popek, Sylwia; Zmorzyński, Szymon; Wąsik-Szczepanek, Ewa; Filip, Agata A

    2016-04-01

    One of the research methods of prognostic value in chronic lymphocytic leukemia (CLL) is cytogenetic analysis. This method requires the presence of appropriate B-cell mitogens in cultures in order to obtain a high mitotic index. The aim of our research was to determine the most effective methods of in vitro B-cell stimulation to maximize the number of metaphases from peripheral blood cells of patients with CLL for classical cytogenetic examination, and then to correlate the results with those obtained using fluorescence in situ hybridization (FISH). The study group involved 50 consecutive patients with CLL. Cell cultures were maintained with the basic composition of culture medium and addition of respective stimulators. We used the following stimulators: Pokeweed Mitogen (PWM), 12-O-tetradecanoylphorbol 13-acetate (TPA), ionophore, lipopolysaccharide (LPS), and CpG-oligonucleotide DSP30. We received the highest mitotic index when using the mixture of PWM+TPA+I+DSP30. With classical cytogenetic tests using banding techniques, numerical and structural aberrations of chromosomes were detected in 46 patients, and no change was found in only four patients. Test results clearly confirmed the legitimacy of using cell cultures enriched with the mixture of cell stimulators and combining classical cytogenetic techniques with the FISH technique in later patient diagnosing. Copyright © 2016 American Federation for Medical Research.

  14. Recruitment of focal adhesion kinase and paxillin to β1 integrin promotes cancer cell migration via mitogen activated protein kinase activation

    International Nuclear Information System (INIS)

    Crowe, David L; Ohannessian, Arthur

    2004-01-01

    Integrin-extracellular matrix interactions activate signaling cascades such as mitogen activated protein kinases (MAPK). Integrin binding to extracellular matrix increases tyrosine phosphorylation of focal adhesion kinase (FAK). Inhibition of FAK activity by expression of its carboxyl terminus decreases cell motility, and cells from FAK deficient mice also show reduced migration. Paxillin is a focal adhesion protein which is also phosphorylated on tyrosine. FAK recruitment of paxillin to the cell membrane correlates with Shc phosphorylation and activation of MAPK. Decreased FAK expression inhibits papilloma formation in a mouse skin carcinogenesis model. We previously demonstrated that MAPK activation was required for growth factor induced in vitro migration and invasion by human squamous cell carcinoma (SCC) lines. Adapter protein recruitment to integrin subunits was examined by co-immunoprecipitation in SCC cells attached to type IV collagen or plastic. Stable clones overexpressing FAK or paxillin were created using the lipofection technique. Modified Boyden chambers were used for invasion assays. In the present study, we showed that FAK and paxillin but not Shc are recruited to the β1 integrin cytoplasmic domain following attachment of SCC cells to type IV collagen. Overexpression of either FAK or paxillin stimulated cancer cell migration on type IV collagen and invasion through reconstituted basement membrane which was dependent on MAPK activity. We concluded that recruitment of focal adhesion kinase and paxillin to β1 integrin promoted cancer cell migration via the mitogen activated protein kinase pathway

  15. Recruitment of focal adhesion kinase and paxillin to β1 integrin promotes cancer cell migration via mitogen activated protein kinase activation

    Directory of Open Access Journals (Sweden)

    Ohannessian Arthur

    2004-05-01

    Full Text Available Abstract Background Integrin-extracellular matrix interactions activate signaling cascades such as mitogen activated protein kinases (MAPK. Integrin binding to extracellular matrix increases tyrosine phosphorylation of focal adhesion kinase (FAK. Inhibition of FAK activity by expression of its carboxyl terminus decreases cell motility, and cells from FAK deficient mice also show reduced migration. Paxillin is a focal adhesion protein which is also phosphorylated on tyrosine. FAK recruitment of paxillin to the cell membrane correlates with Shc phosphorylation and activation of MAPK. Decreased FAK expression inhibits papilloma formation in a mouse skin carcinogenesis model. We previously demonstrated that MAPK activation was required for growth factor induced in vitro migration and invasion by human squamous cell carcinoma (SCC lines. Methods Adapter protein recruitment to integrin subunits was examined by co-immunoprecipitation in SCC cells attached to type IV collagen or plastic. Stable clones overexpressing FAK or paxillin were created using the lipofection technique. Modified Boyden chambers were used for invasion assays. Results In the present study, we showed that FAK and paxillin but not Shc are recruited to the β1 integrin cytoplasmic domain following attachment of SCC cells to type IV collagen. Overexpression of either FAK or paxillin stimulated cancer cell migration on type IV collagen and invasion through reconstituted basement membrane which was dependent on MAPK activity. Conclusions We concluded that recruitment of focal adhesion kinase and paxillin to β1 integrin promoted cancer cell migration via the mitogen activated protein kinase pathway.

  16. Mitogen-activated protein kinase phosphatase (MKP)-1 as a neuroprotective agent: promotion of the morphological development of midbrain dopaminergic neurons.

    Science.gov (United States)

    Collins, Louise M; O'Keeffe, Gerard W; Long-Smith, Caitriona M; Wyatt, Sean L; Sullivan, Aideen M; Toulouse, André; Nolan, Yvonne M

    2013-06-01

    A greater understanding of the mechanisms that promote the survival and growth of dopaminergic neurons is essential for the advancement of cell replacement therapies for Parkinson's disease (PD). Evidence supports a role for the mitogen-activated protein kinase p38 in the demise of dopaminergic neurons, while mitogen-activated protein kinase phosphatase-1 (MKP-1), which negatively regulates p38 activity, has not yet been investigated in this context. Here, we show that MKP-1 is expressed in dopaminergic neurons cultured from E14 rat ventral mesencephalon (VM). When dopaminergic neurons were transfected to overexpress MKP-1, they displayed a more complex morphology than their control counterparts in vitro. Specifically, MKP-1-transfection induced significant increases in neurite length and branching with a maximum increase observed in primary branches. We demonstrate that inhibition of dopaminergic neurite growth induced by treatment of rat VM neurons with the dopaminergic neurotoxin 6-hydroxydopamine (6-OHDA) in vitro is mediated by p38 and is concomitant with a significant and selective decrease in MKP-1 expression in these neurons. We further show that overexpression of MKP-1 in dopaminergic neurons contributes to neuroprotection against the effects of 6-OHDA. Collectively, we report that MKP-1 can promote the growth and elaboration of dopaminergic neuronal processes and can help protect them from the neurotoxic effects of 6-OHDA. Thus, we propose that strategies aimed at augmenting MKP-1 expression or activity may be beneficial in protecting dopaminergic neurons and may provide potential therapeutic approaches for PD.

  17. Context Specificity of Stress-activated Mitogen-activated Protein (MAP) Kinase Signaling: The Story as Told by Caenorhabditis elegans*

    Science.gov (United States)

    Andrusiak, Matthew G.; Jin, Yishi

    2016-01-01

    Stress-associated p38 and JNK mitogen-activated protein (MAP) kinase signaling cascades trigger specific cellular responses and are involved in multiple disease states. At the root of MAP kinase signaling complexity is the differential use of common components on a context-specific basis. The roundworm Caenorhabditis elegans was developed as a system to study genes required for development and nervous system function. The powerful genetics of C. elegans in combination with molecular and cellular dissections has led to a greater understanding of how p38 and JNK signaling affects many biological processes under normal and stress conditions. This review focuses on the studies revealing context specificity of different stress-activated MAPK components in C. elegans. PMID:26907690

  18. Expression profiles of the immune genes CD4, CD8β, IFNγ, IL-4, IL-6 and IL-10 in mitogen-stimulated koala lymphocytes (Phascolarctos cinereus by qRT-PCR

    Directory of Open Access Journals (Sweden)

    Iona E. Maher

    2014-03-01

    Full Text Available Investigation of the immune response of the koala (Phascolarctos cinereus is needed urgently, but has been limited by scarcity of species-specific reagents and methods for this unique and divergent marsupial. Infectious disease is an important threat to wild populations of koalas; the most widespread and important of these is Chlamydial disease, caused by Chlamydia pecorum and Chlamydia pneumoniae. In addition, koala retrovirus (KoRV, which is of 100% prevalence in northern Australia, has been proposed as an important agent of immune suppression that could explain the koala’s susceptibility to disease. The correct balance of T regulatory, T helper 1 (Th1 and Th2 lymphocyte responses are important to an individual’s susceptibility or resistance to chlamydial infection. The ability to study chlamydial or KoRV pathogenesis, effects of environmental stressors on immunity, and the response of koalas to vaccines under development, by examining the koala’s adaptive response to natural infection or in-vitro stimulation, has been limited to date by a paucity of species- specific reagents. In this study we have used cytokine sequences from four marsupial genomes to identify mRNA sequences for key T regulatory, Th1 and Th2 cytokines interleukin 4 (IL-4, interleukin 6 (IL-6, interleukin 10 (IL-10 and interferon gamma (IFNγ along with CD4 and CD8β. The koala sequences used for primer design showed >58% homology with grey short-tailed opossum, >71% with tammar wallaby and 78% with Tasmanian devil amino acid sequences. We report the development of real-time RT-PCR assays to measure the expression of these genes in unstimulated cells and after three common mitogen stimulation protocols (phorbol myristate acetate/ionomycin, phorbol myristate acetate/phytohemagglutinin and concanavalin A. Phorbol myristate acetate/ionomycin was found to be the most effective mitogen to up-regulate the production of IL-4, IL-10 and IFNγ. IL-6 production was not

  19. Expression profiles of the immune genes CD4, CD8β, IFNγ, IL-4, IL-6 and IL-10 in mitogen-stimulated koala lymphocytes (Phascolarctos cinereus) by qRT-PCR.

    Science.gov (United States)

    Maher, Iona E; Griffith, Joanna E; Lau, Quintin; Reeves, Thomas; Higgins, Damien P

    2014-01-01

    Investigation of the immune response of the koala (Phascolarctos cinereus) is needed urgently, but has been limited by scarcity of species-specific reagents and methods for this unique and divergent marsupial. Infectious disease is an important threat to wild populations of koalas; the most widespread and important of these is Chlamydial disease, caused by Chlamydia pecorum and Chlamydia pneumoniae. In addition, koala retrovirus (KoRV), which is of 100% prevalence in northern Australia, has been proposed as an important agent of immune suppression that could explain the koala's susceptibility to disease. The correct balance of T regulatory, T helper 1 (Th1) and Th2 lymphocyte responses are important to an individual's susceptibility or resistance to chlamydial infection. The ability to study chlamydial or KoRV pathogenesis, effects of environmental stressors on immunity, and the response of koalas to vaccines under development, by examining the koala's adaptive response to natural infection or in-vitro stimulation, has been limited to date by a paucity of species- specific reagents. In this study we have used cytokine sequences from four marsupial genomes to identify mRNA sequences for key T regulatory, Th1 and Th2 cytokines interleukin 4 (IL-4), interleukin 6 (IL-6), interleukin 10 (IL-10) and interferon gamma (IFNγ) along with CD4 and CD8β. The koala sequences used for primer design showed >58% homology with grey short-tailed opossum, >71% with tammar wallaby and 78% with Tasmanian devil amino acid sequences. We report the development of real-time RT-PCR assays to measure the expression of these genes in unstimulated cells and after three common mitogen stimulation protocols (phorbol myristate acetate/ionomycin, phorbol myristate acetate/phytohemagglutinin and concanavalin A). Phorbol myristate acetate/ionomycin was found to be the most effective mitogen to up-regulate the production of IL-4, IL-10 and IFNγ. IL-6 production was not consistently up-regulated by

  20. Evidence of a New Role for the High-Osmolarity Glycerol Mitogen-Activated Protein Kinase Pathway in Yeast: Regulating Adaptation to Citric Acid Stress†

    OpenAIRE

    Lawrence, Clare L.; Botting, Catherine H.; Antrobus, Robin; Coote, Peter J.

    2004-01-01

    Screening the Saccharomyces cerevisiae disruptome, profiling transcripts, and determining changes in protein expression have identified an important new role for the high-osmolarity glycerol (HOG) mitogen-activated protein kinase (MAPK) pathway in the regulation of adaptation to citric acid stress. Deletion of HOG1, SSK1, PBS2, PTC2, PTP2, and PTP3 resulted in sensitivity to citric acid. Furthermore, citric acid resulted in the dual phosphorylation, and thus activation, of Hog1p. Despite mino...

  1. Subcellular distribution and mitogenic effect of basic fibroblast growth factor in mesenchymal uncommitted stem cells.

    Science.gov (United States)

    Benavente, Claudia A; Sierralta, Walter D; Conget, Paulette A; Minguell, José J

    2003-06-01

    Uncommitted mesenchymal stem cells (MSC), upon commitment and differentiation give rise to several mature mesenchymal lineages. Although the involvement of specific growth factors, including FGF2, in the development of committed MSC is known, the effect of FGF2 on uncommitted progenitors remains unclear. We have analyzed on a comparative basis, the subcellular distribution and mitogenic effect of FGF2 in committed and uncommitted MSC prepared from human bone marrow. Indirect immunofluorescence studies showed strong nuclear FGF2 staining in both progenitors; however, cytoplasmic staining was only detected in committed cells. Western blot analysis revealed the presence of 22.5 and 21-22 kDa forms of FGF2 in the nucleus of both progenitors; however, their relative content was higher in uncommitted than in committed cells. Exogenous FGF2 stimulated proliferation and sustained quiescence in committed and uncommitted cells, respectively. These results show that both type of progenitors, apart from morphological and proliferative differences, display specific patterns of response to FGF2.

  2. Mitogen-activated protein kinases interacting kinases are autoinhibited by a reprogrammed activation segment.

    Science.gov (United States)

    Jauch, Ralf; Cho, Min-Kyu; Jäkel, Stefan; Netter, Catharina; Schreiter, Kay; Aicher, Babette; Zweckstetter, Markus; Jäckle, Herbert; Wahl, Markus C

    2006-09-06

    Autoinhibition is a recurring mode of protein kinase regulation and can be based on diverse molecular mechanisms. Here, we show by crystal structure analysis, nuclear magnetic resonance (NMR)-based nucleotide affinity studies and rational mutagenesis that nonphosphorylated mitogen-activated protein (MAP) kinases interacting kinase (Mnk) 1 is autoinhibited by conversion of the activation segment into an autoinhibitory module. In a Mnk1 crystal structure, the activation segment is repositioned via a Mnk-specific sequence insertion at the N-terminal lobe with the following consequences: (i) the peptide substrate binding site is deconstructed, (ii) the interlobal cleft is narrowed, (iii) an essential Lys-Glu pair is disrupted and (iv) the magnesium-binding loop is locked into an ATP-competitive conformation. Consistently, deletion of the Mnk-specific insertion or removal of a conserved phenylalanine side chain, which induces a blockade of the ATP pocket, increase the ATP affinity of Mnk1. Structural rearrangements required for the activation of Mnks are apparent from the cocrystal structure of a Mnk2 D228G -staurosporine complex and can be modeled on the basis of crystal packing interactions. Our data suggest a novel regulatory mechanism specific for the Mnk subfamily.

  3. Context Specificity of Stress-activated Mitogen-activated Protein (MAP) Kinase Signaling: The Story as Told by Caenorhabditis elegans.

    Science.gov (United States)

    Andrusiak, Matthew G; Jin, Yishi

    2016-04-08

    Stress-associated p38 and JNK mitogen-activated protein (MAP) kinase signaling cascades trigger specific cellular responses and are involved in multiple disease states. At the root of MAP kinase signaling complexity is the differential use of common components on a context-specific basis. The roundwormCaenorhabditis eleganswas developed as a system to study genes required for development and nervous system function. The powerful genetics ofC. elegansin combination with molecular and cellular dissections has led to a greater understanding of how p38 and JNK signaling affects many biological processes under normal and stress conditions. This review focuses on the studies revealing context specificity of different stress-activated MAPK components inC. elegans. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  4. β-endorphin modulation of mitogen-stimulated calcium uptake by rat thymocytes

    International Nuclear Information System (INIS)

    Hemmick, L.M.; Bidlack, J.M.

    1987-01-01

    Lymphocytes stimulated by mitogens or antigens exhibit an enhanced calcium uptake early in the proliferation or activation response. Modulation of this calcium uptake results in alterations of proliferation and immunocompetence. β-endorphin and other opioids affect several parameters of lymphocyte competence. Limited data are available concerning the mechanism(s) of these effects. This study examines whether a possible opioid mechanism is the modification of the early calcium influx into stimulated lymphocytes. The time course of both concanavalin A (Con A) and phytohemagglutinin (PHA)-stimulated 45 Ca 2+ uptake into thymocytes was characterized to determine the optimal time for testing the effects of opioids. Β-Endorphin 1-31 significantly enhanced Con A-stimulated 45 Ca 2+ uptake into rat thymocytes. This peptide had no significant effect on PHA-simulated 45 Ca 2+ uptake or on basal thymocyte 45 Ca 2+ flux. The β/sub h/-endorphin stimulatory effect was titratable in the range of 0.1 nM to 10 μM. Naloxone did not reverse the enhancement. Met-enkephalinamide and other opioid agonists did not duplicate the stimulatory effect. Thus, the β/sub h/-endorphin 1-31 enhancement of Con A-stimulated 45 Ca 2+ uptake by rat thymocytes does not operate via classical opioid receptor mechanisms. β/sub h/-endorphin 1-31 appears to be acting on a subset of T cells that are responsive to Con A but not to PHA. 30 references, 4 figures, 1 table

  5. The Na+/H+ exchanger, NHE1, differentially regulates mitogen-activated protein kinase subfamilies after osmotic shrinkage in Ehrlich Lettre Ascites cells

    DEFF Research Database (Denmark)

    Petersen, Stine Helene Falsig; Rasmussen, Maria; Darborg, Barbara Vasek

    2007-01-01

    Osmotic stress modulates mitogen activated protein kinase (MAPK) activities, leading to altered gene transcription and cell death/survival balance, however, the mechanisms involved are incompletely elucidated. Here, we show, using a combination of biochemical and molecular biology approaches...... by human (h) NHE1 expression in cells lacking endogenous NHE1 activity. The effect of NHE1 on ERK1/2 was pH(i)-independent and upstream of MEK1/2. Shrinkage-activation of JNK1/2 was attenuated by EIPA, augmented by hNHE1 expression, and abolished in the presence of HCO(3)(-). Basal JNK activity...

  6. Contractions activate hormone-sensitive lipase in rat muscle by protein kinase C and mitogen-activated protein kinase

    DEFF Research Database (Denmark)

    Donsmark, Morten; Langfort, Jozef; Holm, Cecilia

    2003-01-01

    and contractions. Adrenaline acts via cAMP-dependent protein kinase (PKA). The signalling mediating the effect of contractions is unknown and was explored in this study. Incubated soleus muscles from 70 g male rats were electrically stimulated to perform repeated tetanic contractions for 5 min. The contraction......Intramuscular triacylglycerol is an important energy store and is also related to insulin resistance. The mobilization of fatty acids from this pool is probably regulated by hormone-sensitive lipase (HSL), which has recently been shown to exist in muscle and to be activated by both adrenaline......-induced activation of HSL was abolished by the protein kinase C (PKC) inhibitors bisindolylmaleimide I and calphostin C and reduced 50% by the mitogen-activated protein kinase kinase (MEK) inhibitor U0126, which also completely blocked extracellular signal-regulated kinase (ERK) 1 and 2 phosphorylation. None...

  7. Modulation of Cyclins, p53 and Mitogen-Activated Protein Kinases Signaling in Breast Cancer Cell Lines by 4-(3,4,5-Trimethoxyphenoxybenzoic Acid

    Directory of Open Access Journals (Sweden)

    Kuan-Han Lee

    2014-01-01

    Full Text Available Despite the advances in cancer therapy and early detection, breast cancer remains a leading cause of cancer-related deaths among females worldwide. The aim of the current study was to investigate the antitumor activity of a novel compound, 4-(3,4,5-trimethoxyphenoxybenzoic acid (TMPBA and its mechanism of action, in breast cancer. Results indicated the relatively high sensitivity of human breast cancer cell-7 and MDA-468 cells towards TMPBA with IC50 values of 5.9 and 7.9 µM, respectively compared to hepatocarcinoma cell line Huh-7, hepatocarcinoma cell line HepG2, and cervical cancer cell line Hela cells. Mechanistically, TMPBA induced apoptotic cell death in MCF-7 cells as indicated by 4',6-diamidino-2-phenylindole (DAPI nuclear staining, cell cycle analysis and the activation of caspase-3. Western blot analysis revealed the ability of TMPBA to target pathways mediated by mitogen-activated protein (MAP kinases, 5' adenosine monophosphate-activated protein kinase (AMPK, and p53, of which the concerted action underlined its antitumor efficacy. In addition, TMPBA induced alteration of cyclin proteins’ expression and consequently modulated the cell cycle. Taken together, the current study underscores evidence that TMPBA induces apoptosis in breast cancer cells via the modulation of cyclins and p53 expression as well as the modulation of AMPK and mitogen-activated protein kinases (MAPK signaling. These findings support TMPBA’s clinical promise as a potential candidate for breast cancer therapy.

  8. Synaptic neuron-astrocyte communication is supported by an order of magnitude analysis of inositol tris-phosphate diffusion at the nanoscale in a model of peri-synaptic astrocyte projection.

    Science.gov (United States)

    Montes de Oca Balderas, Pavel; Montes de Oca Balderas, Horacio

    2018-01-01

    Astrocytes were conceived for decades only as supporting cells of the brain. However, the observation of Ca2+ waves in astrocyte synctitia, their neurotransmitter receptor expression and gliotransmitter secretion suggested a role in information handling, conception that has some controversies. Synaptic Neuron-Astrocyte metabotropic communication mediated by Inositol tris-phosphate (SN-AmcIP3) is supported by different reports. However, some models contradict this idea and Ca2+ stores are 1000 ± 325 nm apart from the Postsynaptic Density in the Perisynaptic Astrocyte Projections (PAP's), suggesting that SN-AmcIP3 is extrasynaptic. However, this assumption does not consider IP3 Diffusion Coefficient ( Dab ), that activates IP3 Receptor (IP3R) releasing Ca2+ from intracellular stores. In this work we idealized a model of a PAP (PAPm) to perform an order of magnitude analysis of IP3 diffusion using a transient mass diffusion model. This model shows that IP3 forms a concentration gradient along the PAPm that reaches the steady state in milliseconds, three orders of magnitude before IP3 degradation. The model predicts that IP3 concentration near the Ca2+ stores may activate IP3R, depending upon Phospholipase C (PLC) number and activity. Moreover, the PAPm supports that IP3 and extracellular Ca2+ entry synergize to promote global Ca2+ transients. The model presented here indicates that Ca2+ stores position in PAP's does not limit SN-AmcIP3.

  9. Fulltext PDF

    Indian Academy of Sciences (India)

    Protective effects of sodium orthovanadate in diabetic reticu- locytes and ageing ... 235. Biomolecules. Physical aspect of microscopic behaviour of biomolecules ... Chironomus. Extracellular electrical activity from the photoreceptors of midge.

  10. Inability of newborns' or pregnant women's monocytes to suppress pokeweed mitogen-induced responses

    International Nuclear Information System (INIS)

    Durandy, A.; Fischer, A.; Griscelli, C.

    1982-01-01

    Although an excess of human adult blood adherent cells inhibits the pokeweed mitogen- (PWM) induced normal adult lymphocyte proliferation and B cell maturation into immunoglobulin-containing cells (ICC), adherent cells collected from newborn infants or pregnant women at time of delivery were unable to exert a similar suppressor activity. After activation by Concanavalin A (Con A), newborns' and pregnant women's adherent cells acquired a suppressor activity comparable to that of control adult adherent cells. The adherent suppressor cell was shown to be radioresistant (3000 rad), indicating its probable monocytic orgin. Both monocyte-suppressor activities (MSA) observed in adulthood (spontaneously) and in the neonatal period (after activation) were dependent on prostaglandin E 2 (PGE 2 ) secretion, because they were abolished by indomethacin or a specific anti-PGE 2 anti-serum. Expression of MSA appeared to be under a negative regulation exerted by naturally occurring T suppressor lymphocytes present in the blood of newborns or pregnant women, because incubation of adult monocytes or Con A-activated newborn monocytes with newborns' or pregnant women's T lymphocytes resulted in a dramatic decrease of their MSA. These results strongly suggest that the lack of MSA in the neonatal period and in late pregnancy is a consequence of activation of T suppressor lymphocytes

  11. Parameters of the labeling of mitogen-activated murine lymphocytes by [35S]methionine for two-dimensional gel electrophoresis. I

    International Nuclear Information System (INIS)

    Kettman, J.R.

    1986-01-01

    Labeling with [ 35 S]methionine at a high specific activity is essential to the facile preparation of 2-dimensional gel electrophoretograms with the analytical 2-dimensional charge-size separation procedure. Mitogen-activated T and B lymphocytes subjected to low methionine concentrations would not proceed through cell cycle. In the case of activated B lymphocytes, the use of fetal bovine serum, dialyzed to lower endogenous methionine concentrations, prevented B cell growth even in the presence of otherwise satisfactory levels of methionine. High concentrations of [ 35 S]methionine induced B cell death, apparently by radiation damage. Despite these problems, good radioautograms and radiofluorograms of 2D electrophoretograms could be prepared by labeling activated B or T cells in bulk with high specific activity [ 35 S]methionine. (Auth.)

  12. Expression of MMPs is dependent on the activity of mitogen-activated protein kinase in chondrosarcoma.

    Science.gov (United States)

    Yao, Min; Wang, Xiaomei; Zhao, Yufeng; Wang, Xiaomeng; Gao, Feng

    2017-02-01

    Matrix metalloproteinases (MMPs) and tissue inhibitors of matrix metalloproteinases (TIMPs) serve an important role in chondrosarcoma. The present study investigated whether the expression of MMPs was dependent on the activity of mitogen-activated protein kinase (MAPK) in chondrosarcoma. Surgical pathological specimens were collected to detect MMP-1, MMP-13, TIMP-1, type II collagen and phosphorylated MAPK levels in normal cartilage, enchondroma and chondrosarcoma tissues. The expression of MMP‑1, MMP‑13, TIMP‑1 and type II collagen was investigated utilizing MAPK inhibitors in chondrosarcoma cells. It was noted that the expression levels of MMP‑1, MMP‑13 and TIMP‑1 were increased in chondrosarcoma with the activity of MAPK. After chondrosarcoma cells were pretreated with MAPK inhibitors, the levels of MMP‑1, MMP‑13 and TIMP‑1 were inhibited. Furthermore, MMP‑1 and MMP‑13 are essential in regulating the degradation of type II collagen and decomposing cartilage matrix major. The high expression levels of MMP‑1 and MMP‑13 in chondrosarcoma expedite the invasion by chondrosarcoma cells and their expression can be depressed by MAPK inhibitors.

  13. The relationship between lymphocytes activated by pokeweed mitogen and by lipopolysaccharides and their radiosensitivity

    International Nuclear Information System (INIS)

    Su Liaoyuan; Liu Fenju; Liu Keliang; Xu Changshao; Xu Yingdong; Geng Yongzhi

    1992-07-01

    Human whole blood was incubated in vitro. Lymphocytes were activated by poke-weed mitogen (PWM) and by Lipopolysaccharides (LPS). The relationship between the two kinds of lymphocytes was investigated using radioactive compound incorporation. The study showed that PWM-activated lymphocytes were able to promote the stimulating effect of LPS on B lymphocytes. The stimulating effect of PWM-activated lymphocytes was obviously decreased after they were irradiated with 10 Gy gamma rays. When PWM-activated lymphocytes and LPS-activated lymphocytes were incubated together after one of the cell populations had been exposed 10 Gy 60 Co gamma rays, the incorporation of [ 3 H] TdR was much decreased and the synergistic function disappeared, especially when the PWM-activated lymphocytes were irradiated. In cells from patients treated with 60 Co gamma rays for carcinoma of nasopharynx, the incorporation in LPS-activated lymphocytes approached normal levels while that in PWM-activated lymphocytes was reduced significantly and the stimulating effect of PWM-activated lymphocytes on LPS-activated lymphocytes was also markedly reduced. These demonstrate that PWM-activated lymphocytes have a similar function to T-helper cells and seem to be more radiosensitive than LPS-activated lymphocytes

  14. beta. -endorphin modulation of mitogen-stimulated calcium uptake by rat thymocytes

    Energy Technology Data Exchange (ETDEWEB)

    Hemmick, L.M.; Bidlack, J.M.

    1987-10-19

    Lymphocytes stimulated by mitogens or antigens exhibit an enhanced calcium uptake early in the proliferation or activation response. Modulation of this calcium uptake results in alterations of proliferation and immunocompetence. ..beta..-endorphin and other opioids affect several parameters of lymphocyte competence. Limited data are available concerning the mechanism(s) of these effects. This study examines whether a possible opioid mechanism is the modification of the early calcium influx into stimulated lymphocytes. The time course of both concanavalin A (Con A) and phytohemagglutinin (PHA)-stimulated /sup 45/Ca/sup 2 +/ uptake into thymocytes was characterized to determine the optimal time for testing the effects of opioids. BETA-Endorphin 1-31 significantly enhanced Con A-stimulated /sup 45/Ca/sup 2 +/ uptake into rat thymocytes. This peptide had no significant effect on PHA-simulated /sup 45/Ca/sup 2 +/ uptake or on basal thymocyte /sup 45/Ca/sup 2 +/ flux. The ..beta../sub h/-endorphin stimulatory effect was titratable in the range of 0.1 nM to 10 ..mu..M. Naloxone did not reverse the enhancement. Met-enkephalinamide and other opioid agonists did not duplicate the stimulatory effect. Thus, the ..beta../sub h/-endorphin 1-31 enhancement of Con A-stimulated /sup 45/Ca/sup 2 +/ uptake by rat thymocytes does not operate via classical opioid receptor mechanisms. ..beta../sub h/-endorphin 1-31 appears to be acting on a subset of T cells that are responsive to Con A but not to PHA. 30 references, 4 figures, 1 table.

  15. Enhancement of cell-cell contact by a nonmitogenic lectin increases blastogenic response and IL-2 release by mitogen-stimulated mouse thymocytes.

    Science.gov (United States)

    Favero, J; Marti, J; Dornand, J; Bonnafous, J C; Mani, J C

    1986-03-01

    We have examined the influence of peanut agglutinin (PNA), a lectin which agglutinates but does not stimulate mouse thymocytes, on the responsiveness of these cells to concanavalin A (Con A) or galactose oxidase stimulation. Binding low amounts of PNA on unseparated mouse thymocytes pretreated with neuraminidase highly enhances the mitogenic response and the level of interleukin 2 release in the culture medium upon Con A stimulation. We have shown that PNA present on the cell surface acts as a crosslinking agent which favors intercellular binding between accessory cells (macrophages) and thymocytes, leading through this enhanced cooperation by cell-cell contact to an enhanced blastogenic response.

  16. Noise exposure immediately activates cochlear mitogen-activated protein kinase signaling

    Directory of Open Access Journals (Sweden)

    Kumar N Alagramam

    2014-01-01

    Full Text Available Noise-induced hearing loss (NIHL is a major public health issue worldwide. Uncovering the early molecular events associated with NIHL would reveal mechanisms leading to the hearing loss. Our aim is to investigate the immediate molecular responses after different levels of noise exposure and identify the common and distinct pathways that mediate NIHL. Previous work showed mice exposed to 116 decibels sound pressure level (dB SPL broadband noise for 1 h had greater threshold shifts than the mice exposed to 110 dB SPL broadband noise, hence we used these two noise levels in this study. Groups of 4-8-week-old CBA/CaJ mice were exposed to no noise (control or to broadband noise for 1 h, followed by transcriptome analysis of total cochlear RNA isolated immediately after noise exposure. Previously identified and novel genes were found in all data sets. Following exposure to noise at 116 dB SPL, the earliest responses included up-regulation of 243 genes and down-regulation of 61 genes, while a similar exposure at 110 dB SPL up-regulated 155 genes and down-regulated 221 genes. Bioinformatics analysis indicated that mitogen-activated protein kinase (MAPK signaling was the major pathway in both levels of noise exposure. Nevertheless, both qualitative and quantitative differences were noticed in some MAPK signaling genes, after exposure to different noise levels. Cacna1b , Cacna1g , and Pla2g6 , related to calcium signaling were down-regulated after 110 dB SPL exposure, while the fold increase in the expression of Fos was relatively lower than what was observed after 116 dB SPL exposure. These subtle variations provide insight on the factors that may contribute to the differences in NIHL despite the activation of a common pathway.

  17. Antiproliferative effect of UTP on human arterial and venous smooth muscle cells.

    Science.gov (United States)

    White, P J; Kumari, R; Porter, K E; London, N J; Ng, L L; Boarder, M R

    2000-12-01

    We have investigated the hypothesis that responses associated with proliferation are regulated by extracellular nucleotides such as ATP and UTP in cultured human vascular smooth muscle cells (VSMC) derived from internal mammary artery (IMA) and saphenous vein (SV). Platelet-derived growth factor (PDGF), ATP, and UTP each generated an increase in cytosolic free Ca(2+) concentration ([Ca(2+)](i)) in both IMA- and SV-derived cells in the absence of detectable inositol 1,4,5-trisphosphate production. ATP alone had no effect on [(3)H]thymidine incorporation into DNA, but with a submaximal concentration of PDGF it raised [(3)H]thymidine incorporation in SV- but not IMA-derived cells. UTP alone also was without effect on [(3)H]thymidine incorporation or cell number. However, in both SV- and IMA-derived cells, UTP reduced the PDGF-stimulated [(3)H]thymidine response and PDGF-stimulated cell proliferation. This cannot be explained by an inhibitory effect on the p42/p44 mitogen-activated protein kinase (MAPK) cascade, since this response to PDGF was not attenuated by UTP. We conclude that, in human VSMC of both arterial and venous origin, UTP acts as an anti-proliferative regulator.

  18. p38gamma and p38delta mitogen activated protein kinases (MAPKs, new stars in the MAPK galaxy

    Directory of Open Access Journals (Sweden)

    Alejandra eEscós

    2016-04-01

    Full Text Available The protein kinases p38γ and p38δ belong to the p38 mitogen-activated protein kinase (MAPK family. p38MAPK signalling controls many cellular processes and is one of the most conserved mechanisms in eukaryotes for the cellular response to environmental stress and inflammation. Although p38γ and p38δ are widely expressed, it is likely that they perform specific functions in different tissues. Their involvement in human pathologies such as inflammation-related diseases or cancer is starting to be uncovered. In this article we give a general overview and highlight recent advances made in defining the functions of p38γ and p38δ, focusing in innate immunity and inflammation. We consider the potential of the pharmacological targeting of MAPK pathways to treat autoimmune and inflammatory diseases and cancer

  19. Proliferation and mitogenic response to PDGF-BB of fibroblasts isolated from chronic venous leg ulcers is ulcer-age dependent

    DEFF Research Database (Denmark)

    Agren, M S; Steenfos, H H; Dabelsteen, S

    1999-01-01

    Several pathophysiologic mechanisms have been proposed to explain slow-healing leg ulcers, but little is known about the growth behavior of cells in these wounds. Platelet-derived growth factor-BB applied topically to chronic wounds has shown beneficial effects, although the effects have been less...... pronounced than would have been expected based on studies on acute wounds. The objective of this study was to compare fibroblasts in culture obtained from chronic wounds (non-healing chronic venous leg ulcers), acute wounds and normal dermis regarding growth, mitogenic response to platelet-derived growth...... chronic wounds have approached or even reached the end of their lifespan (phase III). This might provide one explanation for the non-healing state and therapy resistance to topical platelet-derived growth factor-BB of some venous leg ulcers....

  20. A Role for Mitogen- and Stress-Activated Kinase 1 in L-DOPA-Induced Dyskinesia and ∆FosB Expression

    DEFF Research Database (Denmark)

    Feyder, Michael; Södersten, Erik; Santini, Emanuela

    2014-01-01

    BACKGROUND: Abnormal regulation of extracellular signal-regulated kinases 1 and 2 has been implicated in 3,4-dihydroxy-l-phenylalanine (L-DOPA)-induced dyskinesia (LID), a motor complication affecting Parkinson's disease patients subjected to standard pharmacotherapy. We examined the involvement...... of mitogen- and stress-activated kinase 1 (MSK1), a downstream target of extracellular signal-regulated kinases 1 and 2, and an important regulator of transcription in LID. METHODS: 6-Hydroxydopamine was used to produce a model of Parkinson's disease in MSK1 knockout mice and in ∆FosB- or ∆c......Jun-overexpressing transgenic mice, which were assessed for LID following long-term L-DOPA administration. Biochemical processes were evaluated by Western blotting or immunofluorescence. Histone H3 phosphorylation was analyzed by chromatin immunoprecipitation followed by promotor-specific quantitative polymerase chain reaction...

  1. Stress and vascular responses: atheroprotective effect of laminar fluid shear stress in endothelial cells: possible role of mitogen-activated protein kinases.

    Science.gov (United States)

    Yoshizumi, Masanori; Abe, Jun-Ichi; Tsuchiya, Koichiro; Berk, Bradford C; Tamaki, Toshiaki

    2003-03-01

    Atherosclerosis preferentially occurs in areas of turbulent blood flow and low fluid shear stress, whereas laminar blood flow and high shear stress are atheroprotective. Inflammatory cytokines, such as tumor necrosis factor-alpha (TNF-alpha), stimulate expression of endothelial cell (EC) genes that may promote atherosclerosis. Recent findings suggest a steady laminar blood flow decreases EC apoptosis and inhibits TNF-mediated EC activation. EC apoptosis or activation is suggested to be involved in plaque erosion, which may lead to platelet aggregation. TNF-alpha regulates gene expression in ECs, in part, by stimulating mitogen-activated protein (MAP) kinases, which phosphorylate transcription factors. We hypothesized that steady laminar flow inhibits cytokine-mediated activation of MAP kinases in ECs. To test this hypothesis, we determined the effects of steady laminar flow (shear stress = 12 dynes/cm(2)) on TNF-alpha-stimulated activity of three MAP kinases in human umbilical vein ECs (HUVEC): extracellular signal-regulated kinase (ERK1/2), c-Jun N-terminal kinase (JNK), and p38. TNF-alpha activated ERK1/2, JNK, and p38 maximally at 15 min in HUVEC. Pre-exposing HUVEC for 10 min to flow inhibited TNF-alpha activation of JNK, but showed no significant effect on ERK1/2 or p38 activation. Incubation of HUVEC with PD98059, a specific ERK1/2 inhibitor, blocked the flow-mediated inhibition of TNF activation of JNK. Transfection studies with dominant-negative constructs of the protein kinase MEK5 suggested an important role for big mitogen-activated protein kinase 1 (BMK1) in flow-mediated regulation of EC activation by TNF-alpha. Understanding the mechanisms by which steady laminar flow regulates JNK activation by cytokines may provide insight into the atheroprotective mechanisms induced by laminar blood flow.

  2. Mesenchymal stem cells inhibit lymphocyte proliferation by mitogens and alloantigens by different mechanisms

    International Nuclear Information System (INIS)

    Rasmusson, Ida; Ringden, Olle; Sundberg, Berit; Le Blanc, Katarina

    2005-01-01

    Human mesenchymal stem cells (MSCs) have immuno-modulatory properties. They inhibit T-cell proliferation to mitogens and alloantigens in vitro and prolong skin graft survival in vivo. We found that MSCs inhibited the proliferation of peripheral blood lymphocytes (PBLs) to phorbol myristate acetate (PMA), suggesting that MSCs exert an inhibitory effect downstream of the receptor level. We analyzed cytokine profiles of PBLs co-cultured with MSCs. MSCs increased interleukin (IL)-2 and soluble IL-2 receptor in mixed lymphocyte cultures (MLCs), while IL-2 and IL-2R decreased in phytohemagglutinin (PHA)-stimulated PBL cultures. MSCs inhibited IL-2 induced proliferation, without absorbing IL-2. IL-10 levels increased in MLCs co-cultured with 10% MSCs, while the levels were not affected in PHA cultures. In MLCs inhibited by MSCs, antibodies against IL-10 further suppressed proliferation but had no effect in PHA cultures. Addition of indomethacin, an inhibitor of prostaglandin-synthesis, restored part of the inhibition by MSCs in PHA cultures. However, indomethacin did not affect MSC-induced inhibition in MLCs. To conclude, our data indicate that MSC-induced suppression is a complex mechanism affecting IL-2 and IL-10 signaling and may function differently, depending on T-cell stimuli. Prostaglandins are important in the inhibition by MSCs when the T cells were activated by PHA, but not alloantigens

  3. Mesothelioma Cells Escape Heat Stress by Upregulating Hsp40/Hsp70 Expression via Mitogen-Activated Protein Kinases

    Directory of Open Access Journals (Sweden)

    Michael Roth

    2009-01-01

    Full Text Available Therapy with hyperthermal chemotherapy in pleural diffuse malignant mesothelioma had limited benefits for patients. Here we investigated the effect of heat stress on heat shock proteins (HSP, which rescue tumour cells from apoptosis. In human mesothelioma and mesothelial cells heat stress (39–42°C induced the phosphorylation of two mitogen activated kinases (MAPK Erk1/2 and p38, and increased Hsp40, and Hsp70 expression. Mesothelioma cells expressed more Hsp40 and were less sensitive to heat stress compared to mesothelial cells. Inhibition of Erk1/2 MAPK by PD98059 or by Erk1 siRNA down-regulated heat stress-induced Hsp40 and Hsp70 expression and reduced mesothelioma cell survival. Inhibition of p38MAPK by SB203580 or siRNA reduced Hsp40, but not Hsp70, expression and also increased mesothelioma cell death. Thus hyperthermia combined with suppression of p38 MAPK or Hsp40 may represent a novel approach to improve mesothelioma therapy.

  4. Lectins of Erythrina poeppigiana and Erythrina steyermarkii (Leguminosae: characterization and mitogenic effect

    Directory of Open Access Journals (Sweden)

    Silvia Quesada

    1998-12-01

    Full Text Available Erythrina species are widely distributed in Costa Rica and known popularly as "poró". In this study, two species were selected, Erythrina poeppigiana and Erythrina steyermarkii. Seed extracts were prepared in phosphate-buffered saline. The presence of lectins in the extracts was verified by hemagglutinating effect over suspensions of human erythrocytes. A selective hemagglutinating effect on erythrocytes of several mammal species, goat, horse and rabbit red cells was tested; only the latter were agglutinated by E. steyermarkii. The hemagglutinating effect of both lectins was inhibited with the following carbohydrates: D-galactose, N-acetyl galactosamine, D-lactose and D-raffinose. The lectin from E. steyermarkii was also inhibited with L-rhamnose. Both lectins were isolated with gel filtration and affinity chromatography using lactose as ligand. Fractions that proved positive were tested with the sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE. Gel filtration and SDS-PAGE showed that these lectins have an apparent molecular mass of 50kDa, and are formed by two subunits of approximately 25 kDa. E. poeppigiana had no mitogenic effect, but the extract of E. steyermarkii had a mitogenic effect on human mononuclear cells isolated from peripheral blood. The stability of the lectins was tested at different temperature and pH ranges (4 to 100 °C and at pH 2 to 12. Both were stable at a pH range from 2 to 10, and at temperatures from 40 to 70 °C.Las diferentes especies de Erythrina se encuentran ampliamente distribuidas en Costa Rica y se las conoce popularmente con el nombre de "poró". En el presente estudio, se seleccionaron dos especies: Erythrina poeppigiana y Erythrina steyermarkii. Se prepararon extractos de las semillas en solución tampón salina de fosfatos y se verificó la presencia de lectinas en ellos mediante la técnica de hemaglutinación, utilizando eritrocitos humanos. Se trató de demostrar un efecto selectivo

  5. Ebselen impairs cellular oxidative state and induces endoplasmic reticulum stress and activation of crucial mitogen-activated protein kinases in pancreatic tumour AR42J cells.

    Science.gov (United States)

    Santofimia-Castaño, Patricia; Izquierdo-Alvarez, Alicia; Plaza-Davila, María; Martinez-Ruiz, Antonio; Fernandez-Bermejo, Miguel; Mateos-Rodriguez, Jose M; Salido, Gines M; Gonzalez, Antonio

    2018-01-01

    Ebselen (2-phenyl-1,2-benzisoselenazol-3(2H)-one) is an organoselenium radical scavenger compound, which has strong antioxidant and anti-inflammatory effects. However, evidence suggests that this compound could exert deleterious actions on cell physiology. In this study, we have analyzed the effect of ebselen on rat pancreatic AR42J cells. Cytosolic free-Ca 2+ concentration ([Ca 2+ ] c ), cellular oxidative status, setting of endoplasmic reticulum stress, and phosphorylation of major mitogen-activated protein kinases were analyzed. Our results show that ebselen evoked a concentration-dependent increase in [Ca 2+ ] c . The compound induced an increase in the generation of reactive oxygen species in the mitochondria. We also observed an increase in global cysteine oxidation in the presence of ebselen. In the presence of ebselen an impairment of cholecystokinin-evoked amylase release was noted. Moreover, involvement of the unfolded protein response markers, ER chaperone and signaling regulator GRP78/BiP, eukaryotic translation initiation factor 2α and X-box binding protein 1 was detected. Finally, increases in the phosphorylation of SAPK/JNK, p38 MAPK, and p44/42 MAPK in the presence of ebselen were also observed. Our results provide evidences for an impairment of cellular oxidative state and enzyme secretion, the induction of endoplasmic reticulum stress and the activation of crucial mitogen-activated protein kinases in the presence of ebselen. As a consequence ebselen exerts a potential toxic effect on AR42J cells. © 2017 Wiley Periodicals, Inc.

  6. Induction of glutathione synthesis in human hepatocytes by acute and chronic arsenic exposure: Differential roles of mitogen-activated protein kinases

    International Nuclear Information System (INIS)

    Hou, Yongyong; Wang, Yi; Wang, Huihui; Xu, Yuanyuan

    2014-01-01

    Highlights: • Arsenic exposure increased intracellular levels of glutathione. • Mitogen-activated protein kinases were involved in glutathione homeostasis. • ERK contributed to glutathione synthesis during acute arsenic exposure. • Glutathione synthesis was regulated by p38 at least in part independent of NRF2 during chronic arsenic exposure. - Abstract: Glutathione (GSH) is a vital component of antioxidant defense which protects cells from toxic insults. Previously we found intracellular GSH was involved in cell resistance against arsenic-induced cytotoxicity. However, molecular mechanisms of GSH homeostasis during arsenic exposure are largely undefined. Here, we investigated roles of mitogen-activated protein kinases (MAPKs) in GSH synthesis pathway with two arsenic exposure strategies by using Chang human hepatocytes. In one strategy, acute arsenic exposure (20 μM, 24 h) was applied, as MAPK signaling is generally considered to be transient. In the other one, chronic arsenic exposure (500 nM, 20 weeks) was applied, which mimicked the general human exposure to arsenic. We found that acute arsenic exposure activated extracellular signal-regulated 1/2 kinases (ERK1/2) and c-Jun N-terminal kinase (JNK) in parallel with increased transcription and nuclear translocation of factor-erythroid 2-related factor 2 (NRF2) and enhanced expression of γ-glutamyl cysteine ligase catalytic subunit (GCLC), resulting in elevated intracellular GSH levels. Specific ERK inhibitor abolished arsenic-induced NRF2 nuclear translocation and GSH synthesis. During chronic arsenic exposure which induced a malignant cellular phenotype, continuous p38 activation and NRF2 nuclear translocation were observed with enhanced GSH synthesis. Specific p38 inhibitor attenuated arsenic-enhanced GSH synthesis without changing NRF2 nuclear translocation. Taken together, our results indicate MAPK pathways play an important role in cellular GSH homeostasis in response to arsenic. However, the

  7. Regulator of differentiation 1 (ROD1) binds to the amphipathic C-terminal peptide of thrombospondin-4 and is involved in its mitogenic activity.

    Science.gov (United States)

    Sadvakassova, Gulzhakhan; Dobocan, Monica C; Difalco, Marcos R; Congote, Luis F

    2009-09-01

    The matrix protein thrombospondin-4 has an acidic amphipathic C-terminal peptide (C21) which stimulates erythroid cell proliferation. Here we show that C21 stimulates red cell formation in anemic mice in vivo. In vitro experiments indicated that the peptide-mediated increase of erythroid colony formation in cultures of human CD34+ hematopoietic progenitor cells was possible only under continuous presence of erythropoietin. In the absence of this cytokine, C21 stimulated exclusively myeloid colony formation. Therefore, the peptide is not a specific erythroid differentiation factor. In fact, it is mitogenic in non-erythroid cells, such as skin fibroblasts and kidney epithelial cells. In erythroleukemic TF-1 cells, it actually decreased the production of the erythroid differentiation marker glycophorin A. C21-affinity chromatography revealed regulator of differentiation 1 (ROD1) as a major C21-binding protein. ROD1 is the hematopoietic cell paralog of polypyrimidine tract binding proteins (PTBs), RNA splice regulators which regulate differentiation by repressing tissue-specific exons. ROD1 binding to C21 was strongly inhibited by synthetic RNAs in the order poly A > poly U > poly G = poly C and was weakly inhibited by a synthetic phosphorylated peptide mimicking the C-terminal domain of RNA polymerase II. Cellular overexpression or knockdown experiments of ROD1 suggest a role for this protein in the mitogenic activity of C21. Since the nuclear proteins ROD1 and PTBs regulate differentiation at a posttranscriptional level and there is a fast nuclear uptake of C21, we put forward the idea that the peptide is internalized, goes to the nucleus and maintains cells in a proliferative state by supporting ROD1-mediated inhibition of differentiation.

  8. Mitogen-activated protein kinase 1 from disk abalone (Haliotis discus discus): Roles in early development and immunity-related transcriptional responses.

    Science.gov (United States)

    Perera, N C N; Godahewa, G I; Lee, Jehee

    2016-12-01

    Mitogen-activated protein kinase (MAPK) is involved in the regulation of cellular events by mediating signal transduction pathways. MAPK1 is a member of the extracellular-signal regulated kinases (ERKs), playing roles in cell proliferation, differentiation, and development. This is mainly in response to growth factors, mitogens, and many environmental stresses. In the current study, we have characterized the structural features of a homolog of MAPK1 from disk abalone (AbMAPK1). Further, we have unraveled its expressional kinetics against different experimental pathogenic infections or related chemical stimulants. AbMAPK1 harbors a 5' untranslated region (UTR) of 23 bps, a coding sequence of 1104 bps, and a 3' UTR of 448 bp. The putative peptide comprises a predicted molecular mass of 42.2 kDa, with a theoretical pI of 6.28. Based on the in silico analysis, AbMAPK1 possesses two N-glycosylation sites, one S_TK catalytic domain, and a conserved His-Arg-Asp domain (HRD). In addition, a conservative glycine rich ATP-phosphate-binding loop and a threonine-x-tyrosine motif (TEY) important for the autophosphorylation were also identified in the protein. Homology assessment of AbMAPK1 showed several conserved regions, and ark clam (Aplysia californica) showed the highest sequence identity (87.9%). The phylogenetic analysis supported close evolutionary kinship with molluscan orthologs. Constitutive expression of AbMAPK1 was observed in six different tissues of disk abalone, with the highest expression in the digestive tract, followed by the gills and hemocytes. Highest AbMAPK1 mRNA expression level was detected at the trochophore developmental stage, suggesting its role in abalone cell differentiation and proliferation. Significant modulation of AbMAPK1 expression under pathogenic stress suggested its putative involvement in the immune defense mechanism. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Ménage à trois: the complex relationships between mitogen-activated protein kinases, WRKY transcription factors, and VQ-motif-containing proteins.

    Science.gov (United States)

    Weyhe, Martin; Eschen-Lippold, Lennart; Pecher, Pascal; Scheel, Dierk; Lee, Justin

    2014-01-01

    Out of the 34 members of the VQ-motif-containing protein (VQP) family, 10 are phosphorylated by the mitogen-activated protein kinases (MAPKs), MPK3 and MPK6. Most of these MPK3/6-targeted VQPs (MVQs) interacted with specific sub-groups of WRKY transcription factors in a VQ-motif-dependent manner. In some cases, the MAPK appears to phosphorylate either the MVQ or the WRKY, while in other cases, both proteins have been reported to act as MAPK substrates. We propose a network of dynamic interactions between members from the MAPK, MVQ and WRKY families - either as binary or as tripartite interactions. The compositions of the WRKY-MVQ transcriptional protein complexes may change - for instance, through MPK3/6-mediated modulation of protein stability - and therefore control defense gene transcription.

  10. Mitogen-Activated Protein Kinase Kinase 3 Regulates Seed Dormancy in Barley.

    Science.gov (United States)

    Nakamura, Shingo; Pourkheirandish, Mohammad; Morishige, Hiromi; Kubo, Yuta; Nakamura, Masako; Ichimura, Kazuya; Seo, Shigemi; Kanamori, Hiroyuki; Wu, Jianzhong; Ando, Tsuyu; Hensel, Goetz; Sameri, Mohammad; Stein, Nils; Sato, Kazuhiro; Matsumoto, Takashi; Yano, Masahiro; Komatsuda, Takao

    2016-03-21

    Seed dormancy has fundamental importance in plant survival and crop production; however, the mechanisms regulating dormancy remain unclear [1-3]. Seed dormancy levels generally decrease during domestication to ensure that crops successfully germinate in the field. However, reduction of seed dormancy can cause devastating losses in cereals like wheat (Triticum aestivum L.) and barley (Hordeum vulgare L.) due to pre-harvest sprouting, the germination of mature seed (grain) on the mother plant when rain occurs before harvest. Understanding the mechanisms of dormancy can facilitate breeding of crop varieties with the appropriate levels of seed dormancy [4-8]. Barley is a model crop [9, 10] and has two major seed dormancy quantitative trait loci (QTLs), SD1 and SD2, on chromosome 5H [11-19]. We detected a QTL designated Qsd2-AK at SD2 as the single major determinant explaining the difference in seed dormancy between the dormant cultivar "Azumamugi" (Az) and the non-dormant cultivar "Kanto Nakate Gold" (KNG). Using map-based cloning, we identified the causal gene for Qsd2-AK as Mitogen-activated Protein Kinase Kinase 3 (MKK3). The dormant Az allele of MKK3 is recessive; the N260T substitution in this allele decreases MKK3 kinase activity and appears to be causal for Qsd2-AK. The N260T substitution occurred in the immediate ancestor allele of the dormant allele, and the established dormant allele became prevalent in barley cultivars grown in East Asia, where the rainy season and harvest season often overlap. Our findings show fine-tuning of seed dormancy during domestication and provide key information for improving pre-harvest sprouting tolerance in barley and wheat. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Mercuric ions inhibit mitogen-activated protein kinase dephosphorylation by inducing reactive oxygen species

    International Nuclear Information System (INIS)

    Haase, Hajo; Engelhardt, Gabriela; Hebel, Silke; Rink, Lothar

    2011-01-01

    Mercury intoxication profoundly affects the immune system, in particular, signal transduction of immune cells. However, the mechanism of the interaction of mercury with cellular signaling pathways, such as mitogen activated protein kinases (MAPK), remains elusive. Therefore, the objective of this study is to investigate three potential ways in which Hg 2+ ions could inhibit MAPK dephosphorylation in the human T-cell line Jurkat: (1) by direct binding to phosphatases; (2) by releasing cellular zinc (Zn 2+ ); and (3) by inducing reactive oxygen species (ROS). Hg 2+ causes production of ROS, measured by dihydrorhodamine 123, and triggers ROS-mediated Zn 2+ release, detected with FluoZin-3. Yet, phosphatase-inhibition is not mediated by binding of Zn 2+ or Hg 2+ . Rather, phosphatases are inactivated by at least two forms of thiol oxidation; initial inhibition is reversible with reducing agents such as Tris(2-carboxyethyl)phosphine. Prolonged inhibition leads to non-reversible phosphatase oxidation, presumably oxidizing the cysteine thiol to sulfinic- or sulfonic acid. Notably, phosphatases are a particularly sensitive target for Hg 2+ -induced oxidation, because phosphatase activity is inhibited at concentrations of Hg 2+ that have only minor impact on over all thiol oxidation. This phosphatase inhibition results in augmented, ROS-dependent MAPK phosphorylation. MAPK are important regulators of T-cell function, and MAPK-activation by inhibition of phosphatases seems to be one of the molecular mechanisms by which mercury affects the immune system.

  12. Localization of phosphatidylinositol signaling components in rat taste cells: Role in bitter taste transduction

    International Nuclear Information System (INIS)

    Hwang, P.M.; Verma, A.; Bredt, D.S.; Snyder, S.H.

    1990-01-01

    To assess the role of phosphatidylinositol turnover in taste transduction we have visualized, in rat tongue, ATP-dependent endoplasmic reticular accumulation of 45 Ca 2+ , inositol 1,4,5-trisphosphate receptor binding sites, and phosphatidylinositol turnover monitored by autoradiography of [ 3 H]cytidine diphosphate diacylglycerol formed from [ 3 H]cytidine. Accumulated 45 Ca 2+ , inositol 1,4,5-trisphosphate receptors, and phosphatidylinositol turnover are selectively localized to apical areas of the taste buds of circumvallate papillae, which are associated with bitter taste. Further evidence for a role of phosphatidylinositol turnover in bitter taste is our observation of a rapid, selective increase in mass levels of inositol 1,4,5-trisphosphate elicited by low concentrations of denatonium, a potently bitter tastant

  13. Ability of multicellular salt glands in Tamarix species to secrete Na+ and K+ selectively.

    Science.gov (United States)

    Ma, Haiyan; Tian, Changyan; Feng, Gu; Yuan, Junfeng

    2011-03-01

    The present study aimed to determine the mechanism of cation-selective secretion by multicellular salt glands. Using a hydroponic culture system, the secretion and accumulation of Na(+) and K(+) in Tamarix ramosissima and T. laxa under different salt stresses (NaCl, KCl and NaCl+KCl) were studied. Additionally, the effects of salt gland inhibitors (orthovanadate, Ba(2+), ouabain, tetraethylammonium (TEA) and verapamil) on Na(+) and K(+) secretion and accumulation were examined. Treatment with NaCl (at 0-200 mmol L(-1) levels) significantly increased Na(+) secretion, whereas KCl treatment (at 0-200 mmol L(-1) levels) significantly increased K(+) secretion. The ratio of secretion to accumulation of Na(+) was higher than that of K(+). The changes in Na(+) and K(+) secretion differed after adding different ions into the single-salt solutions. Addition of NaCl to the KCl solution (at 100 mmol L(-1) level, respectively) led to a significant decrease in K(+) secretion rate, whereas addition of KCl to the NaCl solution (at 100 mmol L(-1) level, respectively) had little impact on the Na(+) secretion rate. These results indicated that Na+ secretion in Tamarix was highly selective. In addition, Na(+) secretion was significantly inhibited by orthovanadate, ouabain, TEA and verapamil, and K(+) secretion was significantly inhibited by ouabain, TEA and verapamil. The different impacts of orthovanadate on Na(+) and K(+) secretion might be the primary cause for the different Na(+) and K(+) secretion abilities of multicellular salt glands in Tamarix.

  14. Hypoxia-induced mitogenic factor enhances angiogenesis by promoting proliferation and migration of endothelial cells

    International Nuclear Information System (INIS)

    Tong Qiangsong; Zheng Liduan; Li Bo; Wang Danming; Huang Chuanshu; Matuschak, George M.; Li Dechun

    2006-01-01

    Our previous studies have indicated that hypoxia-induced mitogenic factor (HIMF) has angiogenic properties in an in vivo matrigel plug model and HIMF upregulates expression of vascular endothelial growth factor (VEGF) in mouse lungs and cultured lung epithelial cells. However, whether HIMF exerts angiogenic effects through modulating endothelial cell function remains unknown. In this study, mouse aortic rings cultured with recombinant HIMF protein resulted in enhanced vascular sprouting and increased endothelial cell spreading as confirmed by Dil-Ac-LDL uptake, von Willebrand factor and CD31 staining. In cultured mouse endothelial cell line SVEC 4-10, HIMF dose-dependently enhanced cell proliferation, in vitro migration and tubulogenesis, which was not attenuated by SU1498, a VEGFR2/Flk-1 receptor tyrosine kinase inhibitor. Moreover, HIMF stimulation resulted in phosphorylation of Akt, p38 and ERK1/2 kinases in SVEC 4-10 cells. Treatment of mouse aortic rings and SVEC 4-10 cells with LY294002, but not SB203580, PD098059 or U0126, abolished HIMF-induced vascular sprouting and angiogenic responses. In addition, transfection of a dominant-negative mutant of phosphatidylinositol 3-kinase (PI-3K), Δp85, blocked HIMF-induced phosphorylation of Akt, endothelial activation and tubulogenesis. These results indicate that HIMF enhances angiogenesis by promoting proliferation and migration of endothelial cells via activation of the PI-3K/Akt pathways

  15. Mitogen-stimulated phospholipid synthesis in normal and immune-deficient human B cells

    International Nuclear Information System (INIS)

    Chien, M.M.; Yokoyama, W.M.; Ashman, R.F.

    1986-01-01

    Eight patients with common variable panhypogammaglobulinemia were shown in the in vitro Ig biosynthesis assay to have defective B cell responses to pokeweed mitogen (PWM). Phospholipid synthesis was assessed in the B cell plus monocyte fraction (MB) and irradiated T cells (T*) of patients and paired normal controls. Cell populations were studied separately and in the four possible combinations (1:1), with and without PWM, to reveal the effect of cell interactions. At 16 to 20 hr the mean stimulation index (SI) +/- standard error for MB cells alone was 1.01 +/- 0.02 for eight patients and 0.99 +/- 0.02 for the paired normals; the T* cell SI was 1.25 +/- 0.04 for patients and 1.28 +/- 0.05 for normals. Combinations of normal MB cells with normal T* cells showed significantly higher SI when compared with the combinations of normal MB cells with patient T* cells (p less than 0.005). However, the combination of patient MB cells with patient T* cells and the combination of patient MB cells with normal T* cells were not significantly different in SI (0.05 less than p less than 0.1). Isolation of patient and normal B cells, T* cells, and monocytes after the choline pulse showed that patient B cells gave a higher SI with normal T* help than with patient T* help. Of greatest interest is the finding that patient B cells that were defective in PWM-stimulated Ig production nevertheless showed a phospholipid synthesis response to PWM in the normal range, suggesting that the maturation defect in these B cells occurs later than the phospholipid synthesis acceleration step, or on a different pathway

  16. Regulation of WRKY46 transcription factor function by mitogen-activated protein kinases in Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Arsheed Hussain Sheikh

    2016-02-01

    Full Text Available AbstractMitogen-activated protein kinase (MAPK cascades are central signalling pathways activated in plants after sensing internal developmental and external stress cues. Knowledge about the downstream substrate proteins of MAPKs is still limited in plants. We screened Arabidopsis WRKY transcription factors as potential targets downstream of MAPKs, and concentrated on characterizing WRKY46 as a substrate of the MAPK, MPK3. Mass spectrometry revealed in vitro phosphorylation of WRKY46 at amino acid position S168 by MPK3. However, mutagenesis studies showed that a second phosphosite, S250, can also be phosphorylated. Elicitation with pathogen-associated molecular patterns (PAMPs, such as the bacterial flagellin-derived flg22 peptide led to in vivo destabilization of WRKY46 in Arabidopsis protoplasts. Mutation of either phosphorylation site reduced the PAMP-induced degradation of WRKY46. Furthermore, the protein for the double phosphosite mutant is expressed at higher levels compared to wild-type proteins or single phosphosite mutants. In line with its nuclear localization and predicted function as a transcriptional activator, overexpression of WRKY46 in protoplasts raised basal plant defence as reflected by the increase in promoter activity of the PAMP-responsive gene, NHL10, in a MAPK-dependent manner. Thus, MAPK-mediated regulation of WRKY46 is a mechanism to control plant defence.

  17. The atypical mitogen-activated protein kinase ERK3 is essential for establishment of epithelial architecture.

    Science.gov (United States)

    Takahashi, Chika; Miyatake, Koichi; Kusakabe, Morioh; Nishida, Eisuke

    2018-06-01

    Epithelia contribute to physical barriers that protect internal tissues from the external environment and also support organ structure. Accordingly, establishment and maintenance of epithelial architecture are essential for both embryonic development and adult physiology. Here, using gene knockout and knockdown techniques along with gene profiling, we show that extracellular signal-regulated kinase 3 (ERK3), a poorly characterized atypical mitogen-activated protein kinase (MAPK), regulates the epithelial architecture in vertebrates. We found that in Xenopus embryonic epidermal epithelia, ERK3 knockdown impairs adherens and tight-junction protein distribution, as well as tight-junction barrier function, resulting in epidermal breakdown. Moreover, in human epithelial breast cancer cells, inhibition of ERK3 expression induced thickened epithelia with aberrant adherens and tight junctions. Results from microarray analyses suggested that transcription factor AP-2α (TFAP2A), a transcriptional regulator important for epithelial gene expression, is involved in ERK3-dependent changes in gene expression. Of note, TFAP2A knockdown phenocopied ERK3 knockdown in both Xenopus embryos and human cells, and ERK3 was required for full activation of TFAP2A-dependent transcription. Our findings reveal that ERK3 regulates epithelial architecture, possibly together with TFAP2A. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  18. Lymphocyte proliferative responses to mitogens in rats having an ancestry of a perinatal iodine-131 insult

    International Nuclear Information System (INIS)

    Stevens, R.H.; Cheng, H.F.

    1987-01-01

    The possible existence of a genealogical memory consisting of altered lymphocyte proliferative responses to a perinatal iodine-131 insult has been investigated in two generations of inbred Fischer F344 rat offspring. The studies which involved exposure to the radioiodine during late pregnancy with concentrations ranging from 1.85 MBq (50 μCi) to 7.4 MBq (200 μCi) revealed that only the peripheral blood T lymphocytes of the first generation male animals were significantly affected. These animals were found to possess T lymphocytes which exhibited increased proliferative responses expressed toward the mitogens concanavalin A and phytohemagglutin; however, no significant changes were noticeable in their B cell population following exposure to lipopolysaccharide. Neither the first generation females nor the male and female offspring of the second generation developed through sibling interbreeding seemed to be affected, this was unlike the cellular, humoral, and natural immunity which had previously been observed to be changed in both the second and third generation animals. These observations suggest that the effects of the radiation insult upon immunocompetency as measured by lymphocyte proliferation do not appear to be inherited

  19. Eotaxin induces degranulation and chemotaxis of eosinophils through the activation of ERK2 and p38 mitogen-activated protein kinases

    DEFF Research Database (Denmark)

    Kampen, G T; Stafford, S; Adachi, T

    2000-01-01

    Eotaxin and other CC chemokines acting via CC chemokine receptor-3 (CCR3) are believed to play an integral role in the development of eosinophilic inflammation in asthma and allergic inflammatory diseases. However, little is known about the intracellular events following agonist binding to CCR3...... and the relationship of these events to the functional response of the cell. The objectives of this study were to investigate CCR3-mediated activation of the mitogen-activated protein (MAP) kinases extracellular signal-regulated kinase-2 (ERK2), p38, and c-jun N-terminal kinase (JNK) in eosinophils and to assess...... the requirement for MAP kinases in eotaxin-induced eosinophil cationic protein (ECP) release and chemotaxis. MAP kinase activation was studied in eotaxin-stimulated eosinophils (more than 97% purity) by Western blotting and immune-complex kinase assays. ECP release was measured by radioimmunoassay. Chemotaxis...

  20. Differential regulation of inositol 1,4,5-trisphosphate by co-existing P2Y-purinoceptors and nucleotide receptors on bovine aortic endothelial cells.

    Science.gov (United States)

    Purkiss, J R; Wilkinson, G F; Boarder, M R

    1994-03-01

    1. We have examined the inositol 1,4,5-trisphosphate (Ins(1,4,5)P3) responses in bovine aortic endothelial (BAE) cells to purines (ATP, ADP and analogues) and the pyrimidine, uridine triphosphate (UTP). 2. Exchange of medium on BAE cells in the absence of agonist was found to be a stimulus for Ins(1,4,5)P3 generation. BAE cells stimulated with 100 microM ATP, 30 microM 2MeSATP (an agonist at P2Y-purinoceptors but not nucleotide receptors) or 100 microM UTP (an agonist at nucleotide receptors but not P2Y-purinoceptors) gave Ins(1,4,5)P3 responses above that caused by exchange of medium. The time course was rapid, with peak response within the first 5 s and levels returning close to basal after 30 s of stimulation. 3. Significant differences in Ins(1,4,5)P3 responses to 100 microM UTP and 30 microM 2MeSATP stimulation were observed. The response to UTP was reproducibly more sustained than that to 2MeSATP. 4. Stimulation of BAE cells with 100 microM UTP plus 30 microM 2MeSATP produced a response statistically indistinguishable from that predicted by addition of the responses to the two agonists in isolation. 5. The Ins(1,4,5)P3 response to UTP was attenuated to 25% of control by pretreatment of BAE cells with pertussis toxin. Responses to 2MeSATP and ADP were essentially unaffected. ATP stimulation was reduced to 65% of control. 6. Activation of protein kinase C with tetradecanoyl phorbol acetate (TPA) profoundly inhibited Ins(1,4,5)P3 responses to 2MeSATP and ADP but had no effect on UTP stimulation. The protein kinase C inhibitor, Ro 31-8220, enhanced responses to 2MeSATP, ADP and ATP but no effect was observed on UTP stimulation. 7. These observations show that nucleotide and P2Y-receptors mobilise the second messenger Ins(1,4,5)P3 by separate routes resulting in different patterns of generation and suggest that while ATP activates both receptors, ADP principally influences these cells by interacting with the P2Y-purinoceptors.

  1. The Phosphatidylinositol (3,4,5)-Trisphosphate-dependent Rac Exchanger 1·Ras-related C3 Botulinum Toxin Substrate 1 (P-Rex1·Rac1) Complex Reveals the Basis of Rac1 Activation in Breast Cancer Cells.

    Science.gov (United States)

    Lucato, Christina M; Halls, Michelle L; Ooms, Lisa M; Liu, Heng-Jia; Mitchell, Christina A; Whisstock, James C; Ellisdon, Andrew M

    2015-08-21

    The P-Rex (phosphatidylinositol (3,4,5)-trisphosphate (PIP3)-dependent Rac exchanger) family (P-Rex1 and P-Rex2) of the Rho guanine nucleotide exchange factors (Rho GEFs) activate Rac GTPases to regulate cell migration, invasion, and metastasis in several human cancers. The family is unique among Rho GEFs, as their activity is regulated by the synergistic binding of PIP3 and Gβγ at the plasma membrane. However, the molecular mechanism of this family of multi-domain proteins remains unclear. We report the 1.95 Å crystal structure of the catalytic P-Rex1 DH-PH tandem domain in complex with its cognate GTPase, Rac1 (Ras-related C3 botulinum toxin substrate-1). Mutations in the P-Rex1·Rac1 interface revealed a critical role for this complex in signaling downstream of receptor tyrosine kinases and G protein-coupled receptors. The structural data indicated that the PIP3/Gβγ binding sites are on the opposite surface and markedly removed from the Rac1 interface, supporting a model whereby P-Rex1 binding to PIP3 and/or Gβγ releases inhibitory C-terminal domains to expose the Rac1 binding site. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  2. The potent, indirect adenosine monophosphate-activated protein kinase activator R419 attenuates mitogen-activated protein kinase signaling, inhibits nociceptor excitability, and reduces pain hypersensitivity in mice

    Directory of Open Access Journals (Sweden)

    Galo L. Mejia

    2016-07-01

    Full Text Available Abstract. There is a great need for new therapeutics for the treatment of pain. A possible avenue to development of such therapeutics is to interfere with signaling pathways engaged in peripheral nociceptors that cause these neurons to become hyperexcitable. There is strong evidence that mitogen-activated protein kinases and phosphoinositide 3-kinase (PI3K/mechanistic target of rapamycin signaling pathways are key modulators of nociceptor excitability in vitro and in vivo. Activation of adenosine monophosphate-activated protein kinase (AMPK can inhibit signaling in both of these pathways, and AMPK activators have been shown to inhibit nociceptor excitability and pain hypersensitivity in rodents. R419 is one of, if not the most potent AMPK activator described to date. We tested whether R419 activates AMPK in dorsal root ganglion (DRG neurons and if this leads to decreased pain hypersensitivity in mice. We find that R419 activates AMPK in DRG neurons resulting in decreased mitogen-activated protein kinase signaling, decreased nascent protein synthesis, and enhanced P body formation. R419 attenuates nerve growth factor (NGF-induced changes in excitability in DRG neurons and blocks NGF-induced mechanical pain amplification in vivo. Moreover, locally applied R419 attenuates pain hypersensitivity in a model of postsurgical pain and blocks the development of hyperalgesic priming in response to both NGF and incision. We conclude that R419 is a promising lead candidate compound for the development of potent and specific AMPK activation to inhibit pain hypersensitivity as a result of injury.

  3. Defining the minimal structural requirements for partial agonism at the type I myo-inositol 1,4,5-trisphosphate receptor.

    Science.gov (United States)

    Wilcox, R A; Fauq, A; Kozikowski, A P; Nahorski, S R

    1997-02-03

    The novel synthetic analogues D-3-fluoro-myo-inositol 1,5-bisphosphate-4-phosphorothioate, [3F-Ins(1,5)P2-4PS], D-3-fluoro-myo-inositol 1,4-bisphosphate-5-phosphorothioate [3F-Ins(1,4)P2-5PS], and D-3-fluoro-myo-inositol 1-phosphate-4,5-bisphosphorothioate [3F-Ins(1)P-(4,5)PS2] were utilised to define the structure-activity relationships which could produce partial agonism at the Ca2+ mobilising myo-inositol 1,4,5-trisphosphate [Ins(1,4,5)P3] receptor. Based on prior structure-activity data we hypothesised that the minimal structural requirements for lns(1,4,5)P3 receptor partial agonism, were phosphorothioate substitution of the crucial vicinal 4,5-bisphosphate pair accompanied by another structural perturbation, such fluorination of 3-position of the myo-inositol ring. All the analogues fully displaced [3H]Ins(1,4,5)P3 from a single Ins(1,4,5)P3 binding site in pig cerebellar membranes [3F-Ins(1,5)P2-4PS (1C50 = 26 nM), 3F-Ins(1,4)P2-5PS (IC50 = 80 nM) and 3F-Ins(1)P-(4,5)PS2 (IC50 = 109 nM) cf. Ins(1,4,5)P3 (IC50 = 11 nM)]. In contrast, 3F-Ins(1,5)P2-4PS (IC50 = 424 nM) and 3F-Ins(1,4)P2-5PS (IC50 = 3579 nM) were weak full agonists at the Ca2+ mobilising Ins(1,4,5)P3 receptor of permeabilised SH-SY5Y neuroblastoma cells, being respectively 4- and 36-fold less potent than Ins(1,4,5)P3 (EC50 = 99 nM). While 3F-Ins(1)P-(4,5)PS2 (EC50 = 11345 nM) was a partial agonist releasing only 64.3 +/- 1.9% of the Ins(1,4,5)P3-sensitive intracellular Ca2+ pools. 3F-Ins(1)P-(4,5)PS2 was unique among the Ins(1,4,5)P3 receptor partial agonists so far identified in having a relatively high affinity for the Ins(1,4,5)P3 binding site, accompanied by a significant loss of intrinsic activity for Ca2+ mobilisation. This improved affinity was probably due to the retention of the 1-position phosphate, which enhances interaction with the Ins-(1,4,5)P3 receptor. 3F-Ins(1)P-(4,5)PS2 may be an important lead compound for the development of efficient Ins(1,4,5)P3 receptor antagonists.

  4. Cocoa Procyanidins Suppress Transformation by Inhibiting Mitogen-activated Protein Kinase Kinase*S⃞

    Science.gov (United States)

    Kang, Nam Joo; Lee, Ki Won; Lee, Dong Eun; Rogozin, Evgeny A.; Bode, Ann M.; Lee, Hyong Joo; Dong, Zigang

    2008-01-01

    Cocoa was shown to inhibit chemically induced carcinogenesis in animals and exert antioxidant activity in humans. However, the molecular mechanisms of the chemopreventive potential of cocoa and its active ingredient(s) remain unknown. Here we report that cocoa procyanidins inhibit neoplastic cell transformation by suppressing the kinase activity of mitogen-activated protein kinase kinase (MEK). A cocoa procyanidin fraction (CPF) and procyanidin B2 at 5 μg/ml and 40 μm, respectively, inhibited 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced neoplastic transformation of JB6 P+ mouse epidermal (JB6 P+) cells by 47 and 93%, respectively. The TPA-induced promoter activity and expression of cyclooxygenase-2, which is involved in tumor promotion and inflammation, were dose-dependently inhibited by CPF or procyanidin B2. The activation of activator protein-1 and nuclear factor-κB induced by TPA was also attenuated by CPF or procyanidin B2. The TPA-induced phosphorylation of MEK, extracellular signal-regulated kinase, and p90 ribosomal s6 kinase was suppressed by CPF or procyanidin B2. In vitro and ex vivo kinase assay data demonstrated that CPF or procyanidin B2 inhibited the kinase activity of MEK1 and directly bound with MEK1. CPF or procyanidin B2 suppressed JB6 P+ cell transformation induced by epidermal growth factor or H-Ras, both of which are known to be involved in MEK/ERK signal activation. In contrast, theobromine (up to 80 μm) had no effect on TPA-induced transformation, cyclooxygenase-2 expression, the transactivation of activator protein-1 or nuclear factor-κB, or MEK. Notably, procyanidin B2 exerted stronger inhibitory effects compared with PD098059 (a well known pharmacological inhibitor of MEK) on MEK1 activity and neoplastic cell transformation. PMID:18519570

  5. An inhibition of p38 mitogen activated protein kinase delays the platelet storage lesion.

    Directory of Open Access Journals (Sweden)

    Andrey Skripchenko

    Full Text Available BACKGROUND AND OBJECTIVES: Platelets during storage undergo diverse alterations collectively known as the platelet storage lesion, including metabolic, morphological, functional and structural changes. Some changes correlate with activation of p38 mitogen activated protein kinase (p38 MAPK. Another MAPK, extracellular signal-related kinase (ERK, is involved in PLT activation. The aim of this study was to compare the properties of platelets stored in plasma in the presence or absence of p38 and ERK MAPK inhibitors. MATERIALS AND METHODS: A single Trima apheresis platelet unit (n = 12 was aliquoted into five CLX storage bags. Two aliquots were continuously agitated with or without MAPK inhibitors. Two aliquots were subjected to 48 hours of interruption of agitation with or without MAPK inhibitors. One aliquot contained the same amount of solvent vehicle used to deliver the inhibitor. Platelets were stored at 20-24°C for 7 days and sampled on Days 1, 4, and 7 for 18 in vitro parameters. RESULTS: Inhibition of p38 MAPK by VX-702 leads to better maintenance of all platelet in vitro storage parameters including platelet mitochondrial function. Accelerated by interruption of agitation, the platelet storage lesion of units stored with VX-702 was diminished to that of platelets stored with continuous agitation. Inhibition of ERK MAPK did not ameliorate decrements in any in vitro platelet properties. CONCLUSION: Signaling through p38 MAPK, but not ERK, is associated with platelet deterioration during storage.

  6. Mitogen-activated protein kinase (MAPK) dynamics determine cell fate in the yeast mating response.

    Science.gov (United States)

    Li, Yang; Roberts, Julie; AkhavanAghdam, Zohreh; Hao, Nan

    2017-12-15

    In the yeast Saccharomyces cerevisiae , the exposure to mating pheromone activates a prototypic mitogen-activated protein kinase (MAPK) cascade and triggers a dose-dependent differentiation response. Whereas a high pheromone dose induces growth arrest and formation of a shmoo-like morphology in yeast cells, lower pheromone doses elicit elongated cell growth. Previous population-level analysis has revealed that the MAPK Fus3 plays an important role in mediating this differentiation switch. To further investigate how Fus3 controls the fate decision process at the single-cell level, we developed a specific translocation-based reporter for monitoring Fus3 activity in individual live cells. Using this reporter, we observed strikingly different dynamic patterns of Fus3 activation in single cells differentiated into distinct fates. Cells committed to growth arrest and shmoo formation exhibited sustained Fus3 activation. In contrast, most cells undergoing elongated growth showed either a delayed gradual increase or pulsatile dynamics of Fus3 activity. Furthermore, we found that chemically perturbing Fus3 dynamics with a specific inhibitor could effectively redirect the mating differentiation, confirming the causative role of Fus3 dynamics in driving cell fate decisions. MAPKs mediate proliferation and differentiation signals in mammals and are therapeutic targets in many cancers. Our results highlight the importance of MAPK dynamics in regulating single-cell responses and open up the possibility that MAPK signaling dynamics could be a pharmacological target in therapeutic interventions. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  7. Genome-wide identification of mitogen-activated protein kinase gene family in Gossypium raimondii and the function of their corresponding orthologs in tetraploid cultivated cotton.

    Science.gov (United States)

    Zhang, Xueying; Wang, Liman; Xu, Xiaoyang; Cai, Caiping; Guo, Wangzhen

    2014-12-10

    Mitogen-activated protein kinase (MAPK) cascades play a crucial role in plant growth and development as well as biotic and abiotic stress responses. Knowledge about the MAPK gene family in cotton is limited, and systematic investigation of MAPK family proteins has not been reported. By performing a bioinformatics homology search, we identified 28 putative MAPK genes in the Gossypium raimondii genome. These MAPK members were anchored onto 11 chromosomes in G. raimondii, with uneven distribution. Phylogenetic analysis showed that the MAPK candidates could be classified into the four known A, B, C and D groups, with more MAPKs containing the TEY phosphorylation site (18 members) than the TDY motif (10 members). Furthermore, 21 cDNA sequences of MAPKs with complete open reading frames (ORFs) were identified in G. hirsutum via PCR-based approaches, including 13 novel MAPKs and eight with homologs reported previously in tetraploid cotton. The expression patterns of 23 MAPK genes reveal their important roles in diverse functions in cotton, in both various developmental stages of vegetative and reproductive growth and in the stress response. Using a reverse genetics approach based on tobacco rattle virus-induced gene silencing (TRV-VIGS), we further verified that MPK9, MPK13 and MPK25 confer resistance to defoliating isolates of Verticillium dahliae in cotton. Silencing of MPK9, MPK13 and MPK25 can significantly enhance cotton susceptibility to this pathogen. This study presents a comprehensive identification of 28 mitogen-activated protein kinase genes in G. raimondii. Their phylogenetic relationships, transcript expression patterns and responses to various stressors were verified. This study provides the first systematic analysis of MAPKs in cotton, improving our understanding of defense responses in general and laying the foundation for future crop improvement using MAPKs.

  8. TRAF6 promotes myogenic differentiation via the TAK1/p38 mitogen-activated protein kinase and Akt pathways.

    Directory of Open Access Journals (Sweden)

    Fang Xiao

    Full Text Available p38 mitogen-activated protein kinase (MAPK is an essential kinase involved in myogenic differentiation. Although many substrates of p38 MAPK have been identified, little is known about its upstream activators during myogenic differentiation. TRAF6 is known to function in cytokine signaling during inflammatory responses. However, not much is known about its role in myogenic differentiation and muscle regeneration. We showed here that TRAF6 and its intrinsic ubiquitin E3 ligase activity are required for myogenic differentiation. In mouse myoblasts, knockdown of TRAF6 compromised the p38 MAPK and Akt pathways, while deliberate activation of either pathway rescued the differentiation defect caused by TRAF6 knockdown. TAK1 acted as a key signal transducer downstream of TRAF6 in myogenic differentiation. In vivo, knockdown of TRAF6 in mouse muscles compromised the injury-induced muscle regeneration without impairing macrophage infiltration and myoblast proliferation. Collectively, we demonstrated that TRAF6 promotes myogenic differentiation and muscle regeneration via the TAK1/p38 MAPK and Akt pathways.

  9. Glucose, other secretagogues, and nerve growth factor stimulate mitogen-activated protein kinase in the insulin-secreting beta-cell line, INS-1

    DEFF Research Database (Denmark)

    Frödin, M; Sekine, N; Roche, E

    1995-01-01

    The signaling pathways whereby glucose and hormonal secretagogues regulate insulin-secretory function, gene transcription, and proliferation of pancreatic beta-cells are not well defined. We show that in the glucose-responsive beta-cell line INS-1, major secretagogue-stimulated signaling pathways...... converge to activate 44-kDa mitogen-activated protein (MAP) kinase. Thus, glucose-induced insulin secretion was found to be associated with a small stimulatory effect on 44-kDa MAP kinase, which was synergistically enhanced by increased levels of intracellular cAMP and by the hormonal secretagogues......-1. Phorbol ester, an activator of protein kinase C, stimulated 44-kDa MAP kinase by both Ca(2+)-dependent and -independent pathways. Nerve growth factor, independently of changes in cytosolic Ca2+, efficiently stimulated 44-kDa MAP kinase without causing insulin release, indicating that activation...

  10. Adult-onset hyperthyroidism impairs spatial learning: possible involvement of mitogen-activated protein kinase signaling pathways.

    Science.gov (United States)

    Bitiktaş, Soner; Kandemir, Başak; Tan, Burak; Kavraal, Şehrazat; Liman, Narin; Dursun, Nurcan; Dönmez-Altuntaş, Hamiyet; Aksan-Kurnaz, Işil; Suer, Cem

    2016-08-03

    Given evidence that mitogen-activated protein kinase (MAPK) activation is part of the nongenomic actions of thyroid hormones, we investigated the possible consequences of hyperthyroidism for the cognitive functioning of adult rats. Young adult rats were treated with L-thyroxine or saline. Twenty rats in each group were exposed to Morris water maze testing, measuring their performance in a hidden-platform spatial task. In a separate set of rats not exposed to Morris water maze testing (untrained rats), the expression and phosphorylated levels of p38-MAPK and of its two downstream effectors, Elk-1 and cAMP response element-binding protein, were evaluated using quantitative reverse transcriptase-PCR and western blotting. Rats with hyperthyroidism showed delayed acquisition of learning compared with their wild-type counterparts, as shown by increased escape latencies and distance moved on the last two trials of daily training in the water maze. The hyperthyroid rats, however, showed no difference during probe trials. Western blot analyses of the hippocampus showed that hyperthyroidism increased phosphorylated p38-MAPK levels in untrained rats. Although our study is correlative in nature and does not exclude the contribution of other molecular targets, our findings suggest that the observed impairments in acquisition during actual learning in rats with hyperthyroidism may result from the increased phosphorylation of p38-MAPK.

  11. Sustained mitogen-activated protein kinase activation reprograms defense metabolism and phosphoprotein profile in Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Ines eLassowskat

    2014-10-01

    Full Text Available Mitogen-activated protein kinases (MAPKs target a variety of protein substrates to regulate cellular signaling processes in eukaryotes. In plants, the number of identified MAPK substrates that control plant defense responses is still limited. Here, we generated transgenic Arabidopsis thaliana plants with an inducible system to simulate in vivo activation of two stress-activated MAPKs, MPK3 and MPK6. Metabolome analysis revealed that this artificial MPK3/6 activation (without any exposure to pathogens or other stresses is sufficient to drive the production of major defense-related metabolites, including various camalexin, indole glucosinolate and agmatine derivatives. An accompanying (phosphoproteome analysis led to detection of hundreds of potential phosphoproteins downstream of MPK3/6 activation. Besides known MAPK substrates, many candidates on this list possess typical MAPK-targeted phosphosites and in many cases, the corresponding phosphopeptides were detected by mass spectrometry. Notably, several of these putative phosphoproteins have been reported to be associated with the biosynthesis of antimicrobial defense substances (e.g. WRKY transcription factors and proteins encoded by the genes from the PEN pathway required for penetration resistance to filamentous pathogens. Thus, this work provides an inventory of candidate phosphoproteins, including putative direct MAPK substrates, for future analysis of MAPK-mediated defense control. (Proteomics data are available with the identifier PXD001252 via ProteomeXchange, http://proteomecentral.proteomexchange.org.

  12. SMALL GRAIN 1, which encodes a mitogen-activated protein kinase kinase 4, influences grain size in rice.

    Science.gov (United States)

    Duan, Penggen; Rao, Yuchun; Zeng, Dali; Yang, Yaolong; Xu, Ran; Zhang, Baolan; Dong, Guojun; Qian, Qian; Li, Yunhai

    2014-02-01

    Although grain size is one of the most important components of grain yield, little information is known about the mechanisms that determine final grain size in crops. Here we characterize rice small grain1 (smg1) mutants, which exhibit small and light grains, dense and erect panicles and comparatively slightly shorter plants. The short grain and panicle phenotypes of smg1 mutants are caused by a defect in cell proliferation. The smg1 mutations were identified, using a map-based cloning approach, in mitogen-activated protein kinase kinase 4 (OsMKK4). Relatively higher expression of OsMKK4/SMG1 was detected in younger organs than in older ones, consistent with its role in cell proliferation. Green fluorescent protein (GFP)-OsMKK4/SMG1 fusion proteins appear to be distributed ubiquitously in plant cells. Further results revealed that OsMKK4 influenced brassinosteroid (BR) responses and the expression of BR-related genes. Thus, our findings have identified OsMKK4 as a factor for grain size, and suggest a possible link between the MAPK pathways and BRs in grain growth. © 2013 The Authors The Plant Journal © 2013 John Wiley & Sons Ltd.

  13. Phosphorylation of paxillin via the ERK mitogen-activated protein kinase cascade in EL4 thymoma cells.

    Science.gov (United States)

    Ku, H; Meier, K E

    2000-04-14

    Intracellular signals can regulate cell adhesion via several mechanisms in a process referred to as "inside-out" signaling. In phorbol ester-sensitive EL4 thymoma cells, phorbol-12-myristate 13-acetate (PMA) induces activation of extracellular signal-regulated kinase (ERK) mitogen-activated protein kinases and promotes cell adhesion. In this study, clonal EL4 cell lines with varying abilities to activate ERKs in response to PMA were used to examine signaling events occurring downstream of ERK activation. Paxillin, a multifunctional docking protein involved in cell adhesion, was phosphorylated on serine/threonine residues in response to PMA treatment. This response was correlated with the extent and time course of ERK activation. PMA-induced phosphorylation of paxillin was inhibited by compounds that block the ERK activation pathway in EL4 cells, primary murine thymocytes, and primary murine splenocytes. Paxillin was phosphorylated in vitro by purified active ERK2. Two-dimensional electrophoresis revealed that PMA treatment generated a complex pattern of phosphorylated paxillin species in intact cells, some of which were generated by ERK-mediated phosphorylation in vitro. An ERK pathway inhibitor interfered with PMA-induced adhesion of sensitive EL4 cells to substrate. These findings describe a novel inside-out signaling pathway by which the ERK cascade may regulate events involved in adhesion.

  14. Evidence That Speciation of Oxovanadium Complexes Does Not Solely Account for Inhibition of Leishmania Acid Phosphatases

    Science.gov (United States)

    Dorsey, Benjamin M.; McLauchlan, Craig C.; Jones, Marjorie A.

    2018-01-01

    Leishmaniasis is an endemic disease affecting a diverse spectra of populations, with 1.6 million new cases reported each year. Current treatment options are costly and have harsh side effects. New therapeutic options that have been previously identified, but still underappreciated as potential pharmaceutical targets, are Leishmania secreted acid phosphatases (SAP). These acid phosphatases, which are reported to play a role in the survival of the parasite in the sand fly vector, and in homing to the host macrophage, are inhibited by orthovanadate and decavanadate. Here, we use L. tarentolae to further evaluate these inhibitors. Using enzyme assays, and UV-visible spectroscopy, we investigate which oxovanadium starting material (orthovanadate or decavanadate) is a better inhibitor of L. tarentolae secreted acid phosphatase activity in vitro at the same total moles of vanadium. Considering speciation and total vanadium concentration, decavanadate is a consistently better inhibitor of SAP in our conditions, especially at low substrate:inhibitor ratios. PMID:29707535

  15. Evidence that Speciation of Oxovanadium Complexes does not Solely Account for Inhibition of Leishmania Acid Phosphatases

    Science.gov (United States)

    Dorsey, Benjamin M.; McLauchlan, Craig C.; Jones, Marjorie A.

    2018-04-01

    Leishmaniasis is an endemic disease affecting a diverse spectra of populations, with 1.6 million new cases reported each year. Current treatment options are costly and have harsh side effects. New therapeutic options that have been previously identified, but still underappreciated as potential pharmaceutical targets, are Leishmania secreted acid phosphatases (SAP). These acid phosphatases, which are reported to play a role in the survival of the parasite in the sand fly vector, and in homing to the host macrophage, are inhibited by orthovanadate and decavanadate. Here, we use L. tarentolae to further evaluate these inhibitors. Using enzyme assays, and UV-visible spectroscopy, we investigate which oxovanadium starting material (orthovanadate or decavanadate) is a better inhibitor of L. tarentolae secreted acid phosphatase activity in vitro at the same total moles of vanadium. Considering speciation and total vanadium concentration, decavanadate is a consistently better inhibitor of SAP in our conditions, especially at low substrate:inhibitor ratios.

  16. An Ime2-like mitogen-activated protein kinase is involved in cellulase expression in the filamentous fungus Trichoderma reesei.

    Science.gov (United States)

    Chen, Fei; Chen, Xiu-Zhen; Su, Xiao-Yun; Qin, Li-Na; Huang, Zhen-Bang; Tao, Yong; Dong, Zhi-Yang

    2015-10-01

    Eukaryotic mitogen-activated protein kinases (MAPKs) play crucial roles in transducing environmental and developmental signals inside the cell and regulating gene expression, however, the roles of MAPKs remain largely unknown in Trichoderma reesei. T. reesei ime2 (TrIme2) encodes an Ime2-like MAPK in T. reesei. The deletion of the TrIme2 gene led to 90% increase in cellulase activity against filter paper during earlier period time of cellulase induction as well as the extracellular protein production. Compared to the parent strain, the transcriptional levels of the three major cellulase genes cbh1,cbh2, egl1 were increased by about 9 times, 4 times, 2 times, respectively, at 8 h after cellulase induction in the ΔTrIme2 mutant. In addition, the disruption of TrIme2 caused over 50% reduction of the transcript levels of cellulase transcriptional regulators cre1 and xyr1. TrIme2 functions in regulation of the expression of cellulase gene in T.reesei, and is a good candidate for genetically engineering of T. reesei for higher cellulase production.

  17. Enhancement in irradiated mononuclear cells in culture of mitogen-induced incorporation of [3H]thymidine by homologous conditioned medium

    International Nuclear Information System (INIS)

    Sandru, G.; Greiner, R.

    1994-01-01

    Incorporation of [ 3 H]thymidine in irradiated peripheral blood mononuclear cell cultures irradiated in vitro was stimulated significantly by either concanavalin A or phytohemagglutinin only in the presence of homologous conditioned medium. Production of this activity by mononuclear cells was enhanced by irradiation and/or pulsed exposure to puromycin but was abolished by actinomycin D. Addition of anti-interleukin 1 or anti-interleukin 2 monoclonal antibodies to the conditioned medium before assay did not influence the stimulatory action. A similar significant stimulation of mononuclear cell cultures irradiated with 6 Gy by concanavalin A was obtained when purified preparations of homologous conditioned medium were used in the assay. Purification was done by ultrafiltration and concentration, heparin agarose chromatography, ammonium sulfate precipitation, concanavalin A agarose chromatography, DEAE-ion exchange chromatography and HPLC gel filtration chromatography. With SDS-PAGE and silver staining, the active HPLC fraction gave one band of 50 kDa, suggesting that this protein is responsible for the co-stimulatory effect of homologous conditioned medium for both mitogen-induced irradiated and nonirradiated mononuclear cell cultures. 42 refs., 9 figs., 3 tabs

  18. Regulation of Schistosoma mansoni development and reproduction by the mitogen-activated protein kinase signaling pathway.

    Science.gov (United States)

    Andrade, Luiza Freire de; Mourão, Marina de Moraes; Geraldo, Juliana Assis; Coelho, Fernanda Sales; Silva, Larissa Lopes; Neves, Renata Heisler; Volpini, Angela; Machado-Silva, José Roberto; Araujo, Neusa; Nacif-Pimenta, Rafael; Caffrey, Conor R; Oliveira, Guilherme

    2014-06-01

    Protein kinases are proven targets for drug development with an increasing number of eukaryotic Protein Kinase (ePK) inhibitors now approved as drugs. Mitogen-activated protein kinase (MAPK) family members connect cell-surface receptors to regulatory targets within cells and influence a number of tissue-specific biological activities such as cell proliferation, differentiation and survival. However, the contributions of members of the MAPK pathway to schistosome development and survival are unclear. We employed RNA interference (RNAi) to elucidate the functional roles of five S. mansoni genes (SmCaMK2, SmJNK, SmERK1, SmERK2 and SmRas) involved in MAPK signaling pathway. Mice were injected with post-infective larvae (schistosomula) subsequent to RNAi and the development of adult worms observed. The data demonstrate that SmJNK participates in parasite maturation and survival of the parasites, whereas SmERK are involved in egg production as infected mice had significantly lower egg burdens with female worms presenting underdeveloped ovaries. Furthermore, it was shown that the c-fos transcription factor was overexpressed in parasites submitted to RNAi of SmERK1, SmJNK and SmCaMK2 indicating its putative involvement in gene regulation in this parasite's MAPK signaling cascade. We conclude that MAPKs proteins play important roles in the parasite in vivo survival, being essential for normal development and successful survival and reproduction of the schistosome parasite. Moreover SmERK and SmJNK are potential targets for drug development.

  19. Mitogen activated protein kinases selectively regulate palytoxin-stimulated gene expression in mouse keratinocytes

    International Nuclear Information System (INIS)

    Zeliadt, Nicholette A.; Warmka, Janel K.; Wattenberg, Elizabeth V.

    2003-01-01

    We have been investigating how the novel skin tumor promoter palytoxin transmits signals through mitogen activated protein kinases (MAPKs). Palytoxin activates three major MAPKs, extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), and p38, in a keratinocyte cell line derived from initiated mouse skin (308). We previously showed that palytoxin requires ERK to increase matrix metalloproteinase-13 (MMP-13) gene expression, an enzyme implicated in carcinogenesis. Diverse stimuli require JNK and p38 to increase MMP-13 gene expression, however. We therefore used the JNK and p38 inhibitors SP 600125 and SB 202190, respectively, to investigate the role of these MAPKs in palytoxin-induced MMP-13 gene expression. Surprisingly, palytoxin does not require JNK and p38 to increase MMP-13 gene expression. Accordingly, ERK activation, independent of palytoxin and in the absence of JNK and p38 activation, is sufficient to induce MMP-13 gene expression in 308 keratinocytes. Dexamethasone, a synthetic glucocorticoid that inhibits activator protein-1 (AP-1), blocked palytoxin-stimulated MMP-13 gene expression. Therefore, the AP-1 site present in the promoter of the MMP-13 gene appears to be functional and to play a key role in palytoxin-stimulated gene expression. Previous studies showed that palytoxin simulates an ERK-dependent selective increase in the c-Fos content of AP-1 complexes that bind to the promoter of the MMP-13 gene. JNK and p38 can also modulate c-Fos. Palytoxin does not require JNK or p38 to increase c-Fos binding, however. Altogether, these studies indicate that ERK plays a distinctly essential role in transmitting palytoxin-stimulated signals to specific nuclear targets in keratinocytes derived from initiated mouse skin

  20. Cyclic nucleotides and mitogen-activated protein kinases: regulation of simvastatin in platelet activation

    Directory of Open Access Journals (Sweden)

    Hou Ssu-Yu

    2010-06-01

    Full Text Available Abstract Background 3-Hydroxy-3-methyl-glutaryl coenzyme A (HMG-CoA reductase inhibitors (statins have been widely used to reduce cardiovascular risk. These statins (i.e., simvastatin may exert other effects besides from their cholesterol-lowering actions, including inhibition of platelet activation. Platelet activation is relevant to a variety of coronary heart diseases. Although the inhibitory effect of simvastatin in platelet activation has been studied; the detailed signal transductions by which simvastatin inhibit platelet activation has not yet been completely resolved. Methods The aim of this study was to systematically examine the detailed mechanisms of simvastatin in preventing platelet activation. Platelet aggregation, flow cytometric analysis, immunoblotting, and electron spin resonance studies were used to assess the antiplatelet activity of simvastatin. Results Simvastatin (20-50 μM exhibited more-potent activity of inhibiting platelet aggregation stimulated by collagen than other agonists (i.e., thrombin. Simvastatin inhibited collagen-stimulated platelet activation accompanied by [Ca2+]i mobilization, thromboxane A2 (TxA2 formation, and phospholipase C (PLCγ2, protein kinase C (PKC, and mitogen-activated protein kinases (i.e., p38 MAPK, JNKs phosphorylation in washed platelets. Simvastatin obviously increased both cyclic AMP and cyclic GMP levels. Simvastatin markedly increased NO release, vasodilator-stimulated phosphoprotein (VASP phosphorylation, and endothelial nitric oxide synthase (eNOS expression. SQ22536, an inhibitor of adenylate cyclase, markedly reversed the simvastatin-mediated inhibitory effects on platelet aggregation, PLCγ2 and p38 MAPK phosphorylation, and simvastatin-mediated stimulatory effects on VASP and eNOS phosphorylation. Conclusion The most important findings of this study demonstrate for the first time that inhibitory effect of simvastatin in platelet activation may involve activation of the cyclic AMP

  1. Riboflavin-Induced Disease Resistance Requires the Mitogen-Activated Protein Kinases 3 and 6 in Arabidopsis thaliana.

    Science.gov (United States)

    Nie, Shengjun; Xu, Huilian

    2016-01-01

    As a resistance elicitor, riboflavin (vitamin B2) protects plants against a wide range of pathogens. At molecular biological levels, it is important to elucidate the signaling pathways underlying the disease resistance induced by riboflavin. Here, riboflavin was tested to induce resistance against virulent Pseudomonas syringae pv. Tomato DC3000 (Pst DC3000) in Arabidopsis. Results showed that riboflavin induced disease resistance based on MAPK-dependent priming for the expression of PR1 gene. Riboflavin induced transient expression of PR1 gene. However, following Pst DC3000 inoculation, riboflavin potentiated stronger PR1 gene transcription. Further was suggested that the transcript levels of mitogen-activated protein kinases, MPK3 and MPK6, were primed under riboflavin. Upon infection by Pst DC3000, these two enzymes were more strongly activated. The elevated activation of both MPK3 and MPK6 was responsible for enhanced defense gene expression and resistance after riboflavin treatment. Moreover, riboflavin significantly reduced the transcript levels of MPK3 and MPK6 by application of AsA and BAPTA, an H2O2 scavenger and a calcium (Ca2+) scavenger, respectively. In conclusion, MPK3 and MPK6 were responsible for riboflavin-induced resistance, and played an important role in H2O2- and Ca2+-related signaling pathways, and this study could provide a new insight into the mechanistic study of riboflavin-induced defense responses.

  2. Molecular Cloning and Characterization of a P38-Like Mitogen-Activated Protein Kinase from Echinococcus granulosus.

    Science.gov (United States)

    Lü, Guodong; Li, Jing; Zhang, Chuanshan; Li, Liang; Bi, Xiaojuan; Li, Chaowang; Fan, Jinliang; Lu, Xiaomei; Vuitton, Dominique A; Wen, Hao; Lin, Renyong

    2016-12-01

    Cystic echinococcosis (CE) treatment urgently requires a novel drug. The p38 mitogen-activated protein kinases (MAPKs) are a family of Ser/Thr protein kinases, but still have to be characterized in Echinococcus granulosus . We identified a 1,107 bp cDNA encoding a 368 amino acid MAPK protein (Egp38) in E. granulosus . Egp38 exhibits 2 distinguishing features of p38-like kinases: a highly conserved T-X-Y motif and an activation loop segment. Structural homology modeling indicated a conserved structure among Egp38, EmMPK2, and H. sapiens p38α, implying a common binding mechanism for the ligand domain and downstream signal transduction processing similar to that described for p38α. Egp38 and its phosphorylated form are expressed in the E. granulosus larval stages vesicle and protoscolices during intermediate host infection of an intermediate host. Treatment of in vitro cultivated protoscolices with the p38-MAPK inhibitor ML3403 effectively suppressed Egp38 activity and led to significant protoscolices death within 5 days. Treatment of in vitro-cultivated protoscolices with TGF-β1 effectively induced Egp38 phosphorylation. In summary, the MAPK, Egp38, was identified in E. granulosus , as an anti-CE drug target and participates in the interplay between the host and E. granulosus via human TGF-β1.

  3. Mitogen-activated protein kinase signaling in the heart: angels versus demons in a heart-breaking tale.

    Science.gov (United States)

    Rose, Beth A; Force, Thomas; Wang, Yibin

    2010-10-01

    Among the myriad of intracellular signaling networks that govern the cardiac development and pathogenesis, mitogen-activated protein kinases (MAPKs) are prominent players that have been the focus of extensive investigations in the past decades. The four best characterized MAPK subfamilies, ERK1/2, JNK, p38, and ERK5, are the targets of pharmacological and genetic manipulations to uncover their roles in cardiac development, function, and diseases. However, information reported in the literature from these efforts has not yet resulted in a clear view about the roles of specific MAPK pathways in heart. Rather, controversies from contradictive results have led to a perception that MAPKs are ambiguous characters in heart with both protective and detrimental effects. The primary object of this review is to provide a comprehensive overview of the current progress, in an effort to highlight the areas where consensus is established verses the ones where controversy remains. MAPKs in cardiac development, cardiac hypertrophy, ischemia/reperfusion injury, and pathological remodeling are the main focuses of this review as these represent the most critical issues for evaluating MAPKs as viable targets of therapeutic development. The studies presented in this review will help to reveal the major challenges in the field and the limitations of current approaches and point to a critical need in future studies to gain better understanding of the fundamental mechanisms of MAPK function and regulation in the heart.

  4. Heat Shock Proteins and Mitogen-activated Protein Kinases in Steatotic Livers Undergoing Ischemia-Reperfusion: Some Answers

    Science.gov (United States)

    Massip-Salcedo, Marta; Casillas-Ramirez, Araní; Franco-Gou, Rosah; Bartrons, Ramón; Ben Mosbah, Ismail; Serafin, Anna; Roselló-Catafau, Joan; Peralta, Carmen

    2006-01-01

    Ischemic preconditioning protects steatotic livers against ischemia-reperfusion (I/R) injury, but just how this is achieved is poorly understood. Here, I/R or preconditioning plus I/R was induced in steatotic and nonsteatotic livers followed by investigating the effect of pharmacological treatments that modulate heat shock proteins (HSPs) and mitogen-activated protein kinases (MAPKs). MAPKs, HSPs, protein kinase C, and transaminase levels were measured after reperfusion. We report that preconditioning increased HSP72 and heme-oxygenase-1 (HO-1) at 6 and 24 hours of reperfusion, respectively. Unlike nonsteatotic livers, steatotic livers benefited from HSP72 activators (geranylgeranylacetone) throughout reperfusion. This protection seemed attributable to HO-1 induction. In steatotic livers, preconditioning and geranylgeranylacetone treatment (which are responsible for HO-1 induction) increased protein kinase C activity. HO-1 activators (cobalt(III) protoporphyrin IX) protected both liver types. Preconditioning reduced p38 MAPK and c-Jun N-terminal kinase (JNK), resulting in HSP72 induction though HO-1 remained unmodified. Like HSP72, both p38 and JNK appeared not to be crucial in preconditioning, and inhibitors of p38 (SB203580) and JNK (SP600125) were less effective against hepatic injury than HO-1 activators. These results provide new data regarding the mechanisms of preconditioning and may pave the way to the development of new pharmacological strategies in liver surgery. PMID:16651615

  5. Genome-wide identification and expression analysis of the mitogen-activated protein kinase gene family in cassava

    Directory of Open Access Journals (Sweden)

    Yan Yan

    2016-08-01

    Full Text Available Mitogen-activated protein kinases (MAPKs play central roles in plant developmental processes, hormone signaling transduction, and responses to abiotic stress. However, no data are currently available about the MAPK family in cassava, an important tropical crop. Herein, 21 MeMAPK genes were identified from cassava. Phylogenetic analysis indicated that MeMAPKs could be classified into four subfamilies. Gene structure analysis demonstrated that the number of introns in MeMAPK genes ranged from 1 to 10, suggesting large variation among cassava MAPK genes. Conserved motif analysis indicated that all MeMAPKs had typical protein kinase domains. Transcriptomic analysis suggested that MeMAPK genes showed differential expression patterns in distinct tissues and in response to drought stress between wild subspecies and cultivated varieties. Interaction networks and co-expression analyses revealed that crucial pathways controlled by MeMAPK networks may be involved in the differential response to drought stress in different accessions of cassava. Expression of nine selected MAPK genes showed that these genes could comprehensively respond to osmotic, salt, cold, oxidative stressors, and abscisic acid (ABA signaling. These findings yield new insights into the transcriptional control of MAPK gene expression, provide an improved understanding of abiotic stress responses and signaling transduction in cassava, and lead to potential applications in the genetic improvement of cassava cultivars.

  6. Lattice effects in YVO3 single crystal

    NARCIS (Netherlands)

    Marquina, C; Sikora, M; Ibarra, MR; Nugroho, AA; Palstra, TTM

    In this paper we report on the lattice effects in the Mott insulator yttrium orthovanadate (YVO3). Linear thermal expansion and magnetostriction experiments have been performed on a single crystal, in the temperature range from 5 K to room temperature. The YVO3 orders antiferromagnetically at T-N =

  7. Identification of protein phosphatase involvement in the AT-receptor induced activation of endothelial nitric oxide synthase

    DEFF Research Database (Denmark)

    Peluso, A Augusto; Bertelsen, Jesper Bork; Andersen, Kenneth

    2018-01-01

    -antagonist), L-NAME (10µM; eNOS inhibitor), MK-2206 (100nM; Akt-inhibitor) sodium fluoride (1nM; serine/threonine-phosphatase inhibitor) or sodium orthovanadate (10nM; tyrosine-phosphatase inhibitor). NO release was estimated by quantifying DAF-FM fluorescence. The phosphorylation status of activating (e...

  8. Outer Membrane Protein 25 of Brucella Activates Mitogen-Activated Protein Kinase Signal Pathway in Human Trophoblast Cells

    Directory of Open Access Journals (Sweden)

    Jing Zhang

    2017-12-01

    Full Text Available Outer membrane protein 25 (OMP25, a virulence factor from Brucella, plays an important role in maintaining the structural stability of Brucella. Mitogen-activated protein kinase (MAPK signal pathway widely exists in eukaryotic cells. In this study, human trophoblast cell line HPT-8 and BALB/c mice were infected with Brucella abortus 2308 strain (S2308 and 2308ΔOmp25 mutant strain. The expression of cytokines and activation of MAPK signal pathway were detected. We found that the expressions of tumor necrosis factor-α, interleukin-1, and interleukin-10 (IL-10 were increased in HPT-8 cells infected with S2308 and 2308ΔOmp25 mutant. S2308 also activated p38 phosphorylation protein, extracellular-regulated protein kinases (ERK, and Jun-N-terminal kinase (JNK from MAPK signal pathway. 2308ΔOmp25 could not activate p38, ERK, and JNK branches. Immunohistochemistry experiments showed that S2308 was able to activate phosphorylation of p38 and ERK in BABL/c mice. However, 2308ΔOmp25 could weakly activate phosphorylation of p38 and ERK. These results suggest that Omp25 played an important role in the process of Brucella activation of the MAPK signal pathway.

  9. Effects of sodium-orthovanadate and Trigonella foenum-graecum ...

    Indian Academy of Sciences (India)

    Unknown

    mediated metabolic activity and can cause type-II diabetes resulting into metabolic syn- drome (Moller 2001). There is decrease in the lipogenic enzyme activity in liver and overall rates of hepatic lipo- genesis. The decrease in liver weight during ...

  10. Role of Akt/PKB and PFKFB isoenzymes in the control of glycolysis, cell proliferation and protein synthesis in mitogen-stimulated thymocytes.

    Science.gov (United States)

    Houddane, Amina; Bultot, Laurent; Novellasdemunt, Laura; Johanns, Manuel; Gueuning, Marie-Agnès; Vertommen, Didier; Coulie, Pierre G; Bartrons, Ramon; Hue, Louis; Rider, Mark H

    2017-06-01

    Proliferating cells depend on glycolysis mainly to supply precursors for macromolecular synthesis. Fructose 2,6-bisphosphate (Fru-2,6-P 2 ) is the most potent positive allosteric effector of 6-phosphofructo-1-kinase (PFK-1), and hence of glycolysis. Mitogen stimulation of rat thymocytes with concanavalin A (ConA) led to time-dependent increases in lactate accumulation (6-fold), Fru-2,6-P 2 content (4-fold), 6-phosphofructo-2-kinase (PFK-2)/fructose-2,6-bisphosphatase isoenzyme 3 and 4 (PFKFB3 and PFKFB4) protein levels (~2-fold and ~15-fold, respectively) and rates of cell proliferation (~40-fold) and protein synthesis (10-fold) after 68h of incubation compared with resting cells. After 54h of ConA stimulation, PFKFB3 mRNA levels were 45-fold higher than those of PFKFB4 mRNA. Although PFKFB3 could be phosphorylated at Ser461 by protein kinase B (PKB) in vitro leading to PFK-2 activation, PFKFB3 Ser461 phosphorylation was barely detectable in resting cells and only increased slightly in ConA-stimulated cells. On the other hand, PFKFB3 and PFKFB4 mRNA levels were decreased (90% and 70%, respectively) by exposure of ConA-stimulated cells to low doses of PKB inhibitor (MK-2206), suggesting control of expression of the two PFKFB isoenzymes by PKB. Incubation of thymocytes with ConA resulted in increased expression and phosphorylation of the translation factors eukaryotic initiation factor-4E-binding protein-1 (4E-BP1) and ribosomal protein S6 (rpS6). Treatment of ConA-stimulated thymocytes with PFK-2 inhibitor (3PO) or MK-2206 led to significant decreases in Fru-2,6-P 2 content, medium lactate accumulation and rates of cell proliferation and protein synthesis. These data were confirmed by using siRNA knockdown of PFKFB3, PFKFB4 and PKB α/β in the more easily transfectable Jurkat E6-1 cell line. The findings suggest that increased PFKFB3 and PFKFB4 expression, but not increased PFKFB3 Ser461 phosphorylation, plays a role in increasing glycolysis in mitogen

  11. Induction of viral, 7-methyl-guanosine cap-independent translation and oncolysis by mitogen-activated protein kinase-interacting kinase-mediated effects on the serine/arginine-rich protein kinase.

    Science.gov (United States)

    Brown, Michael C; Bryant, Jeffrey D; Dobrikova, Elena Y; Shveygert, Mayya; Bradrick, Shelton S; Chandramohan, Vidyalakshmi; Bigner, Darell D; Gromeier, Matthias

    2014-11-01

    Protein synthesis, the most energy-consuming process in cells, responds to changing physiologic priorities, e.g., upon mitogen- or stress-induced adaptations signaled through the mitogen-activated protein kinases (MAPKs). The prevailing status of protein synthesis machinery is a viral pathogenesis factor, particularly for plus-strand RNA viruses, where immediate translation of incoming viral RNAs shapes host-virus interactions. In this study, we unraveled signaling pathways centered on the ERK1/2 and p38α MAPK-interacting kinases MNK1/2 and their role in controlling 7-methyl-guanosine (m(7)G) "cap"-independent translation at enterovirus type 1 internal ribosomal entry sites (IRESs). Activation of Raf-MEK-ERK1/2 signals induced viral IRES-mediated translation in a manner dependent on MNK1/2. This effect was not due to MNK's known functions as eukaryotic initiation factor (eIF) 4G binding partner or eIF4E(S209) kinase. Rather, MNK catalytic activity enabled viral IRES-mediated translation/host cell cytotoxicity through negative regulation of the Ser/Arg (SR)-rich protein kinase (SRPK). Our investigations suggest that SRPK activity is a major determinant of type 1 IRES competency, host cell cytotoxicity, and viral proliferation in infected cells. We are targeting unfettered enterovirus IRES activity in cancer with PVSRIPO, the type 1 live-attenuated poliovirus (PV) (Sabin) vaccine containing a human rhinovirus type 2 (HRV2) IRES. A phase I clinical trial of PVSRIPO with intratumoral inoculation in patients with recurrent glioblastoma (GBM) is showing early promise. Viral translation proficiency in infected GBM cells is a core requirement for the antineoplastic efficacy of PVSRIPO. Therefore, it is critically important to understand the mechanisms controlling viral cap-independent translation in infected host cells. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  12. Detection of prosecretory mitogen lacritin in nonprimate tears primarily as a C-terminal-like fragment.

    Science.gov (United States)

    Laurie, Diane E; Splan, Rebecca K; Green, Kari; Still, Katherine M; McKown, Robert L; Laurie, Gordon W

    2012-09-12

    Lacritin is a human tear glycoprotein that promotes basal tear protein secretion in cultured rat lacrimal acinar cells and proliferation of subconfluent human corneal epithelial cells. When topically added to rabbit eyes, lacritin promotes basal tearing. Despite these activities on several species, lacritin's presence in nonprimate tears or other tissues has not been explored. Here we probed for lacritin in normal horse tears. Sequences were collected from the Ensembl genomic alignment of human LACRT gene with high-quality draft horse genome (EquCab2.0) and analyzed. Normal horse tears were collected and assayed by Western blotting, ELISA, and mass spectrometry. Newly generated rabbit antibodies, respectively, against N- and C-terminal regions of human lacritin were employed. Identity was 75% and 45%, respectively, at nucleotide and protein levels. Structural features were conserved, including a C-terminal amphipathic α-helix. Anti-C-terminal antibodies strongly detected a ∼13 kDa band in horse tears that was validated by mass spectrometry. In human tears, the same antibody detected uncleaved lacritin (∼24 kDa) strongly and C-terminal fragments of ∼13 and ∼11 kDa weakly. Anti-N-terminal antibodies were slightly reactive with a ∼24 kDa horse antigen and showed no reaction with the anti-C-terminal-reactive ∼13 kDa species. Similar respective levels of horse C-terminal versus N-terminal immunoreactivity were apparent by ELISA. Lacritin is present in horse tears, largely as a C-terminal fragment homologous to the mitogenic and bactericidal region in human lacritin, suggesting potential benefit in corneal wound repair.

  13. The wavy Mutation Maps to the Inositol 1,4,5-Trisphosphate 3-Kinase 2 (IP3K2) Gene of Drosophila and Interacts with IP3R to Affect Wing Development.

    Science.gov (United States)

    Dean, Derek M; Maroja, Luana S; Cottrill, Sarah; Bomkamp, Brent E; Westervelt, Kathleen A; Deitcher, David L

    2015-11-27

    Inositol 1,4,5-trisphosphate (IP3) regulates a host of biological processes from egg activation to cell death. When IP3-specific receptors (IP3Rs) bind to IP3, they release calcium from the ER into the cytoplasm, triggering a variety of cell type- and developmental stage-specific responses. Alternatively, inositol polyphosphate kinases can phosphorylate IP3; this limits IP3R activation by reducing IP3 levels, and also generates new signaling molecules altogether. These divergent pathways draw from the same IP3 pool yet cause very different cellular responses. Therefore, controlling the relative rates of IP3R activation vs. phosphorylation of IP3 is essential for proper cell functioning. Establishing a model system that sensitively reports the net output of IP3 signaling is crucial for identifying the controlling genes. Here we report that mutant alleles of wavy (wy), a classic locus of the fruit fly Drosophila melanogaster, map to IP3 3-kinase 2 (IP3K2), a member of the inositol polyphosphate kinase gene family. Mutations in wy disrupt wing structure in a highly specific pattern. RNAi experiments using GAL4 and GAL80(ts) indicated that IP3K2 function is required in the wing discs of early pupae for normal wing development. Gradations in the severity of the wy phenotype provide high-resolution readouts of IP3K2 function and of overall IP3 signaling, giving this system strong potential as a model for further study of the IP3 signaling network. In proof of concept, a dominant modifier screen revealed that mutations in IP3R strongly suppress the wy phenotype, suggesting that the wy phenotype results from reduced IP4 levels, and/or excessive IP3R signaling. Copyright © 2016 Dean et al.

  14. The wavy Mutation Maps to the Inositol 1,4,5-Trisphosphate 3-Kinase 2 (IP3K2 Gene of Drosophila and Interacts with IP3R to Affect Wing Development

    Directory of Open Access Journals (Sweden)

    Derek M. Dean

    2016-02-01

    Full Text Available Inositol 1,4,5-trisphosphate (IP3 regulates a host of biological processes from egg activation to cell death. When IP3-specific receptors (IP3Rs bind to IP3, they release calcium from the ER into the cytoplasm, triggering a variety of cell type- and developmental stage-specific responses. Alternatively, inositol polyphosphate kinases can phosphorylate IP3; this limits IP3R activation by reducing IP3 levels, and also generates new signaling molecules altogether. These divergent pathways draw from the same IP3 pool yet cause very different cellular responses. Therefore, controlling the relative rates of IP3R activation vs. phosphorylation of IP3 is essential for proper cell functioning. Establishing a model system that sensitively reports the net output of IP3 signaling is crucial for identifying the controlling genes. Here we report that mutant alleles of wavy (wy, a classic locus of the fruit fly Drosophila melanogaster, map to IP3 3-kinase 2 (IP3K2, a member of the inositol polyphosphate kinase gene family. Mutations in wy disrupt wing structure in a highly specific pattern. RNAi experiments using GAL4 and GAL80ts indicated that IP3K2 function is required in the wing discs of early pupae for normal wing development. Gradations in the severity of the wy phenotype provide high-resolution readouts of IP3K2 function and of overall IP3 signaling, giving this system strong potential as a model for further study of the IP3 signaling network. In proof of concept, a dominant modifier screen revealed that mutations in IP3R strongly suppress the wy phenotype, suggesting that the wy phenotype results from reduced IP4 levels, and/or excessive IP3R signaling.

  15. Loss of mitogen-activated protein kinase kinase kinase 4 (MAP3K4 reveals a requirement for MAPK signalling in mouse sex determination.

    Directory of Open Access Journals (Sweden)

    Debora Bogani

    2009-09-01

    Full Text Available Sex determination in mammals is controlled by the presence or absence of the Y-linked gene SRY. In the developing male (XY gonad, sex-determining region of the Y (SRY protein acts to up-regulate expression of the related gene, SOX9, a transcriptional regulator that in turn initiates a downstream pathway of testis development, whilst also suppressing ovary development. Despite the requirement for a number of transcription factors and secreted signalling molecules in sex determination, intracellular signalling components functioning in this process have not been defined. Here we report a role for the phylogenetically ancient mitogen-activated protein kinase (MAPK signalling pathway in mouse sex determination. Using a forward genetic screen, we identified the recessive boygirl (byg mutation. On the C57BL/6J background, embryos homozygous for byg exhibit consistent XY gonadal sex reversal. The byg mutation is an A to T transversion causing a premature stop codon in the gene encoding MAP3K4 (also known as MEKK4, a mitogen-activated protein kinase kinase kinase. Analysis of XY byg/byg gonads at 11.5 d post coitum reveals a growth deficit and a failure to support mesonephric cell migration, both early cellular processes normally associated with testis development. Expression analysis of mutant XY gonads at the same stage also reveals a dramatic reduction in Sox9 and, crucially, Sry at the transcript and protein levels. Moreover, we describe experiments showing the presence of activated MKK4, a direct target of MAP3K4, and activated p38 in the coelomic region of the XY gonad at 11.5 d post coitum, establishing a link between MAPK signalling in proliferating gonadal somatic cells and regulation of Sry expression. Finally, we provide evidence that haploinsufficiency for Map3k4 accounts for T-associated sex reversal (Tas. These data demonstrate that MAP3K4-dependent signalling events are required for normal expression of Sry during testis development, and

  16. Loss of Mitogen-Activated Protein Kinase Kinase Kinase 4 (MAP3K4) Reveals a Requirement for MAPK Signalling in Mouse Sex Determination

    Science.gov (United States)

    Bogani, Debora; Siggers, Pam; Brixey, Rachel; Warr, Nick; Beddow, Sarah; Edwards, Jessica; Williams, Debbie; Wilhelm, Dagmar; Koopman, Peter; Flavell, Richard A.; Chi, Hongbo; Ostrer, Harry; Wells, Sara; Cheeseman, Michael; Greenfield, Andy

    2009-01-01

    Sex determination in mammals is controlled by the presence or absence of the Y-linked gene SRY. In the developing male (XY) gonad, sex-determining region of the Y (SRY) protein acts to up-regulate expression of the related gene, SOX9, a transcriptional regulator that in turn initiates a downstream pathway of testis development, whilst also suppressing ovary development. Despite the requirement for a number of transcription factors and secreted signalling molecules in sex determination, intracellular signalling components functioning in this process have not been defined. Here we report a role for the phylogenetically ancient mitogen-activated protein kinase (MAPK) signalling pathway in mouse sex determination. Using a forward genetic screen, we identified the recessive boygirl (byg) mutation. On the C57BL/6J background, embryos homozygous for byg exhibit consistent XY gonadal sex reversal. The byg mutation is an A to T transversion causing a premature stop codon in the gene encoding MAP3K4 (also known as MEKK4), a mitogen-activated protein kinase kinase kinase. Analysis of XY byg/byg gonads at 11.5 d post coitum reveals a growth deficit and a failure to support mesonephric cell migration, both early cellular processes normally associated with testis development. Expression analysis of mutant XY gonads at the same stage also reveals a dramatic reduction in Sox9 and, crucially, Sry at the transcript and protein levels. Moreover, we describe experiments showing the presence of activated MKK4, a direct target of MAP3K4, and activated p38 in the coelomic region of the XY gonad at 11.5 d post coitum, establishing a link between MAPK signalling in proliferating gonadal somatic cells and regulation of Sry expression. Finally, we provide evidence that haploinsufficiency for Map3k4 accounts for T-associated sex reversal (Tas). These data demonstrate that MAP3K4-dependent signalling events are required for normal expression of Sry during testis development, and create a novel

  17. Thapsigargin defines the roles of cellular calcium in secretagogue-stimulated enzyme secretion from pancreatic acini.

    Science.gov (United States)

    Metz, D C; Patto, R J; Mrozinski, J E; Jensen, R T; Turner, R J; Gardner, J D

    1992-10-15

    In the present study we used thapsigargin (TG), an inhibitor of microsomal calcium ATPase, to evaluate the roles of free cytoplasmic calcium and intracellular stored calcium in secretagogue-stimulated enzyme secretion from rat pancreatic acini. Using microspectrofluorimetry of fura-2-loaded pancreatic acini, we found that TG caused a sustained increase in free cytoplasmic calcium by mobilizing calcium from inositol 1,4,5-trisphosphate-sensitive intracellular stores and by increasing influx of extracellular calcium. TG also caused a small increase in basal amylase secretion, inhibited the stimulation of amylase secretion caused by secretagogues that increase inositol 1,4,5-trisphosphate, and potentiated the stimulation of amylase secretion caused by 12-O-tetradecanoylphorbol-13-acetate or secretagogues that increase cyclic adenosine 3',5'-monophosphate. Bombesin, which like TG increased free cytoplasmic calcium, also potentiated the stimulation of amylase secretion caused by secretagogues that increase cyclic adenosine 3',5'-monophosphate, but did not inhibit the stimulation of amylase secretion caused by secretagogues that increase inositol 1,4,5-trisphosphate. Finally, TG inhibited the sustained phase of cholecystokinin-stimulated amylase secretion and potentiated the time course of vasoactive intestinal peptide-stimulated amylase secretion. The present findings indicate that stimulation of amylase secretion by secretagogues that increase inositol 1,4,5-trisphosphate does not depend on increased free cytoplasmic calcium per se. In contrast, TG-induced potentiation of the stimulation of secretagogues that increase cellular cyclic adenosine 3',5'-monophosphate appears to result from increased free cytoplasmic calcium per se.

  18. Mitogenic activation of B cells in vitro: the properties of adherent accessory cells as revealed by partition analysis

    Energy Technology Data Exchange (ETDEWEB)

    Kettman, J.R.; Soederberg, A.; Lefkovits, I.

    1986-08-15

    The requirement of B cells activated by mitogen (dextran sulfate plus lipopolysaccharide) for accessory cells was studied by partition analysis. Small numbers of splenic B cells were activated to clonal growth, as determined by visual inspection, and to immunoglobulin (Ig) synthesis, as determined by release of Ig into the culture fluid. By placing irradiated adherent cells in the periphery of the microculture wells and forcing responding cells to different areas of the well (slant experiments), it was observed that no cell contact was necessary for B cell activation, and that promoted contact (Rock and Roll experiments) does not increase the efficiency of activation. Sequential microcultures suggest that only some irradiated adherent cells act as accessory cells, but they can perform this function to more than one B cell. Attempts to perform limiting dilution analysis by varying irradiated adherent cell input showed non-single-hit behavior. When the data were rearranged, taking into account the distribution of irradiated adherent cells, then single-hit behavior with about 1 to 5% of irradiated adherent cells acting as an accessory cells for B cell clonal activation was observed. The evidence suggests that an uncommon irradiated adherent cell releases a soluble factor necessary for B cell activation and/or clonal proliferation.

  19. Mitogenic activation of B cells in vitro: the properties of adherent accessory cells as revealed by partition analysis

    International Nuclear Information System (INIS)

    Kettman, J.R.; Soederberg, A.; Lefkovits, I.

    1986-01-01

    The requirement of B cells activated by mitogen (dextran sulfate plus lipopolysaccharide) for accessory cells was studied by partition analysis. Small numbers of splenic B cells were activated to clonal growth, as determined by visual inspection, and to immunoglobulin (Ig) synthesis, as determined by release of Ig into the culture fluid. By placing irradiated adherent cells in the periphery of the microculture wells and forcing responding cells to different areas of the well (slant experiments), it was observed that no cell contact was necessary for B cell activation, and that promoted contact (Rock and Roll experiments) does not increase the efficiency of activation. Sequential microcultures suggest that only some irradiated adherent cells act as accessory cells, but they can perform this function to more than one B cell. Attempts to perform limiting dilution analysis by varying irradiated adherent cell input showed non-single-hit behavior. When the data were rearranged, taking into account the distribution of irradiated adherent cells, then single-hit behavior with about 1 to 5% of irradiated adherent cells acting as an accessory cells for B cell clonal activation was observed. The evidence suggests that an uncommon irradiated adherent cell releases a soluble factor necessary for B cell activation and/or clonal proliferation

  20. Involvement of protein kinase B and mitogen-activated protein kinases in experimental normothermic liver ischaemia-reperfusion injury.

    Science.gov (United States)

    Cursio, R; Filippa, N; Miele, C; Van Obberghen, E; Gugenheim, J

    2006-06-01

    This study evaluated the role of protein kinase B (PKB), phosphatidylinositol 3-kinase (PI3-K), Bcl-2-associated death protein (BAD) and mitogen-activated protein kinases (MAPKs) in normothermic ischaemia-reperfusion (IR)-induced apoptosis in rat liver. Rats were divided into two groups that received either phosphate-buffered saline (control) or the caspase inhibitor Z-Asp-2,6-dichorobenzoyloxymethylketone (Z-Asp-cmk), injected intravenously 2 min before the induction of 120 min of normothermic liver ischaemia. Liver apoptosis was assessed by the terminal deoxyribonucleotidyltransferase-mediated dUTP nick end labelling (TUNEL) method. PI3-K, PKB, BAD and MAPK activities were measured in ischaemic and non-ischaemic lobes at various times after reperfusion. The number of TUNEL-positive cells was significantly decreased after pretreatment with Z-Asp-cmk. In controls, PI3-K and PKB activities and BAD phosphorylation were inhibited in ischaemic liver lobes. The MAPKs (extracellular signal-regulated kinases, c-Jun N-terminal kinase and p38) showed different patterns of activation during IR. PKB activity was not modified by pretreatment with Z-Asp-cmk. Induction of apoptosis during IR liver injury might be triggered by inactivation of the antiapoptotic PI3-K-PKB pathway and activation of the proapoptotic MAPKs. Copyright (c) 2006 British Journal of Surgery Society Ltd. Published by John Wiley & Sons, Ltd.

  1. KFC, a Ste20-like kinase with mitogenic potential and capability to activate the SAPK/JNK pathway.

    Science.gov (United States)

    Yustein, J T; Li, D; Robinson, D; Kung, H J

    2000-02-03

    The Sterile-20 (Ste20) family of serine-threonine kinases has been implicated in the activation of the stress-activated protein kinase pathways. However, the physiological role has remained ambiguous for most of the investigated mammalian Ste20's. Here we report the cloning of a novel Ste20-like kinase, from chicken embryo fibroblast (CEF) cells, which we have named KFC, for Kinase From Chicken. The 898 amino acid full-length KFC protein contains an amino-terminal kinase domain, an adjacent downstream serine-rich region, and a C-terminal tail containing a coiled-coil domain. Here we show that the coiled-coil domain of KFC negatively regulates the intrinsic kinase activity. We have also identified a splice variant of KFC in which there is a 207 nucleotide in-frame deletion. This deletion of 69 amino acids encompasses the serine-rich region. These two isoforms, called KFCL, for full-length, and KFCS for spliced (or short) form, not only differ in structure, but also in biological properties. Stable CEF cells overexpressing KFCL, but not KFCS, have a significant increase in growth rate when compared to parental cells. This mitogenic effect is the first such reported for this family of kinases. Finally, we found that KFC, when activated by truncation of the regulatory C-terminus, has a specific activation of the stress-activated protein kinase (SAPK/JNK) pathway.

  2. Constitutive Activation of the Fission Yeast Pheromone-Responsive Pathway Induces Ectopic Meiosis and Reveals Ste11 as a Mitogen-Activated Protein Kinase Target

    DEFF Research Database (Denmark)

    Kjærulff, Søren; Lautrup-Larsen, I.; Truelsen, S.

    2005-01-01

    In the fission yeast Schizosaccharomyces pombe, meiosis normally takes place in diploid zygotes resulting from conjugation of haploid cells. In the present study, we report that the expression of a constitutively activated version of the pheromone-responsive mitogen-activated protein kinase kinase...... found that haploid meiosis was dramatically reduced when Ste11 was mutated to mimic phosphorylation by Pat1. The mutation of two putative MAPK sites in Ste11 also dramatically reduced the level of haploid meiosis, suggesting that Ste11 is a direct target of Spk1. Supporting this, we show that Spk1 can...... interact physically with Ste11 and also phosphorylate the transcription factor in vitro. Finally, we demonstrate that ste11 is required for pheromone-induced G1 arrest. Interestingly, when we mutated Ste11 in the sites for Pat1 and Spk1 phosphorylation simultaneously, the cells could still arrest in G1...

  3. Genistein and tyrphostin AG556 decrease ultra-rapidly activating delayed rectifier K+ current of human atria by inhibiting EGF receptor tyrosine kinase.

    Science.gov (United States)

    Xiao, Guo-Sheng; Zhang, Yan-Hui; Wu, Wei; Sun, Hai-Ying; Wang, Yan; Li, Gui-Rong

    2017-03-01

    The ultra-rapidly activating delayed rectifier K + current I Kur (encoded by K v 1.5 or KCNA5) plays an important role in human atrial repolarization. The present study investigates the regulation of this current by protein tyrosine kinases (PTKs). Whole-cell patch voltage clamp technique and immunoprecipitation and Western blotting analysis were used to investigate whether the PTK inhibitors genistein, tyrphostin AG556 (AG556) and PP2 regulate human atrial I Kur and hKv1.5 channels stably expressed in HEK 293 cells. Human atrial I Kur was decreased by genistein (a broad-spectrum PTK inhibitor) and AG556 (a highly selective EGFR TK inhibitor) in a concentration-dependent manner. Inhibition of I Kur induced by 30 μM genistein or 10 μM AG556 was significantly reversed by 1 mM orthovanadate (a protein tyrosine phosphatase inhibitor). Similar results were observed in HEK 293 cells stably expressing hK v 1.5 channels. On the other hand, the Src family kinase inhibitor PP2 (1 μM) slightly enhanced I Kur and hK v 1.5 current, and the current increase was also reversed by orthovanadate. Immunoprecipitation and Western blotting analysis showed that genistein, AG556, and PP2 decreased tyrosine phosphorylation of hK v 1.5 channels and that the decrease was countered by orthovanadate. The PTK inhibitors genistein and AG556 decrease human atrial I Kur and cloned hK v 1.5 channels by inhibiting EGFR TK, whereas the Src kinase inhibitor PP2 increases I Kur and hK v 1.5 current. These results imply that EGFR TK and the soluble Src kinases may have opposite effects on human atrial I Kur . © 2017 The British Pharmacological Society.

  4. Lattice effects in HoVo(3) single crystal

    NARCIS (Netherlands)

    Sikora, M.; Marquina, C.; Ibarra, M. R.; Nugroho, A. A.; Palstra, T. T. M.

    We report the study of lattice effects in the Mott insulator HoVO3 performed by means of linear thermal expansion on a single crystal in the temperature range 10-290 K. The holmium orthovanadate HoVO3 reveals gradual orbital ordering (OO) below T-OO = 200K and orders antiferromagnetically at T-N =

  5. Amitriptyline induces early growth response-1 gene expression via ERK and JNK mitogen-activated protein kinase pathways in rat C6 glial cells.

    Science.gov (United States)

    Chung, Eun Young; Shin, Soon Young; Lee, Young Han

    2007-07-05

    Astrocytes play important roles in guiding the construction of the nervous system, controlling extracellular ions and neurotransmitters, and regulating CNS synaptogenesis. Egr-1 is a transcription factor involved in neuronal differentiation and astrocyte cell proliferation. In this study, we investigated whether the tricyclic antidepressant (TCA) amitriptyline induces Egr-1 expression in astrocytes using rat C6 glioma cells as a model. We found that amitriptyline increased the expression of Egr-1 in a dose- and time-dependent manner. The amitriptyline-induced Egr-1 expression was mediated through serum response elements (SREs) in the Egr-1 promoter. SREs were activated by the Ets-domain transcription factor Elk-1 through the ERK and JNK mitogen-activated protein (MAP) kinase pathways. The inhibition of the ERK and JNK MAP kinase signals attenuated amitriptyline-induced transactivation of Gal4-Elk-1 and Egr-1 promoter activity. Our findings suggest that the induction of Egr-1 expression in astrocytes may be required to attain the therapeutic effects of antidepressant drugs.

  6. Comparison of gene expression of mitogenic kinin path in adherent and non-adherent CD 34-stem cells using oligonucleotide microarrays.

    Directory of Open Access Journals (Sweden)

    Krzysztof Machaj

    2008-02-01

    Full Text Available One of the more interesting cells present in the umbilical cord blood - as far as their potential clinical use is concerned - are stem cells not presenting the CD34 antigen. These are the pluripotential cells with their biological properties similar to mesenchymal stem cells, with the ability to differentiate into such tissue types as bone, cartilage, nervous (to some extent, glia and muscle. The authors compared the activity of genes coding the proteins in mitogenic signal paths activated by kinin receptors using oligonucleotide microarrays in adherent and non-adherent CD 34- cells derived from umbilical cord blood. In the linear regression model with a 95% prognosis area for differentiating genes outside this area, the following genes were selected: c-jun (present in 3 isoforms and c-fos. The fos and jun genes create the AP-1 transcriptive factor which regulates the expression of genes taking part in numerous cellular processes, including the cell cycle and mitosis. The obtained results shed some light on the molecular processes behind the MSC proliferation and are a starting point for further studies on the mesenchymal stem cell biology.

  7. Ibuprofen abates cypermethrin-induced expression of pro-inflammatory mediators and mitogen-activated protein kinases and averts the nigrostriatal dopaminergic neurodegeneration.

    Science.gov (United States)

    Singh, Ashish; Tripathi, Pratibha; Prakash, Om; Singh, Mahendra Pratap

    2016-12-01

    Cypermethrin induces oxidative stress, microglial activation, inflammation and apoptosis leading to Parkinsonism in rats. While ibuprofen, a non-steroidal anti-inflammatory drug, relieves from inflammation, its efficacy against cypermethrin-induced Parkinsonism has not yet been investigated. The study aimed to explore the protective role of ibuprofen in cypermethrin-induced Parkinsonism, an environmentally relevant model of Parkinson's disease (PD), along with its underlying mechanism. Animals were treated with/without cypermethrin in the presence/absence of ibuprofen. Behavioural, immunohistochemical and biochemical parameters of Parkinsonism and expression of pro-inflammatory and pro-apoptotic proteins along with mitogen-activated protein kinases (MAPKs) were determined. Ibuprofen resisted cypermethrin-induced behavioural impairments, striatal dopamine depletion, oxidative stress in the nigrostriatal tissues and loss of the nigral dopamine producing cells and increase in microglial activation along with atypical expression of pro-inflammatory and apoptotic proteins that include cyclooxygenase-2, tumour necrosis factor-α, MAPKs (c-Jun N-terminal kinase, p38 and extracellular signal-regulated kinase), B cell lymphoma 2-associated protein X, tumour suppressor protein p53, cytochrome c and caspase-3 in the nigrostriatal tissue. The results obtained thus demonstrate that ibuprofen lessens inflammation and regulates MAPKs expression thereby averts cypermethrin-induced Parkinsonism.

  8. Involvement of p38 mitogen-activated protein kinase in acquired gemcitabine-resistant human urothelial carcinoma sublines

    Directory of Open Access Journals (Sweden)

    Yu-Ting Kao

    2014-07-01

    Full Text Available Resistance to chemotherapeutic drugs is one of the major challenges in the treatment of cancer. A better understanding of how resistance arises and what molecular alterations correlate with resistance is the key to developing novel effective therapeutic strategies. To investigate the underlying mechanisms of gemcitabine (Gem resistance and provide possible therapeutic options, three Gem-resistant urothelial carcinoma sublines were established (NG0.6, NG0.8, and NG1.0. These cells were cross-resistant to arabinofuranosyl cytidine and cisplatin, but sensitive to 5-fluorouracil. The resistant cells expressed lower values of [hENT1 × dCK/RRM1 × RRM2] mRNA ratio. Two adenosine triphosphate-binding cassette proteins ABCD1 as well as multidrug resistance protein 1 were elevated. Moreover, cyclin D1, cyclin-dependent kinases 2 and 4 were upregulated, whereas extracellular signal-regulated kinase 1/2 and p38 mitogen-activated protein kinase (MAPK activity were repressed significantly. Administration of p38 MAPK inhibitor significantly reduced the Gem sensitivity in NTUB1 cells, whereas that of an extracellular signal-regulated kinase MAPK inhibitor did not. Furthermore, the Gem-resistant sublines also exhibited higher migration ability. Forced expression of p38 MAPK impaired the cell migration activity and augmented Gem sensitivity in NG1.0 cells. Taken together, these results demonstrate that complex mechanisms were merged in acquiring Gem resistance and provide information that can be important for developing therapeutic targets for treating Gem-resistant tumors.

  9. Repeated pulses of serotonin required for long-term facilitation activate mitogen-activated protein kinase in sensory neurons of Aplysia

    Science.gov (United States)

    Michael, Dan; Martin, Kelsey C.; Seger, Rony; Ning, Ming-Ming; Baston, Rene; Kandel, Eric R.

    1998-01-01

    Long-term facilitation of the connections between the sensory and motor neurons of the gill-withdrawal reflex in Aplysia requires five repeated pulses of serotonin (5-HT). The repeated pulses of 5-HT initiate a cascade of gene activation that leads ultimately to the growth of new synaptic connections. Several genes in this process have been identified, including the transcriptional regulators apCREB-1, apCREB-2, apC/EBP, and the cell adhesion molecule apCAM, which is thought to be involved in the formation of new synaptic connections. Here we report that the transcriptional regulators apCREB-2 and apC/EBP, as well as a peptide derived from the cytoplasmic domain of apCAM, are phosphorylated in vitro by Aplysia mitogen-activated protein kinase (apMAPK). We have cloned the cDNA encoding apMAPK and show that apMAPK activity is increased in sensory neurons treated with repeated pulses of 5-HT and by the cAMP pathway. These results suggest that apMAPK may participate with cAMP-dependent protein kinase during long-term facilitation in sensory cells by modifying some of the key elements involved in the consolidation of short- to long-lasting changes in synaptic strength. PMID:9465108

  10. p38 Mitogen Activated Protein Kinase (MAPK): A New Therapeutic Target for Reducing the Risk of Adverse Pregnancy Outcomes

    Science.gov (United States)

    Menon, Ramkumar; Papaconstantinou, John

    2016-01-01

    Introduction Spontaneous preterm birth (PTB) and preterm premature rupture of the membranes (pPROM) remain as a major clinical and therapeutic problem for intervention and management. Current strategies, based on our knowledge of pathways of preterm labor, have only been effective, in part, due to major gaps in our existing knowledge of risks and risk specific pathways. Areas covered Recent literature has identified physiologic aging of fetal tissues as a potential mechanistic feature of normal parturition. This process is affected by telomere dependent and p38 mitogen activated protein kinase (MAPK) induced senescence activation. Pregnancy associated risk factors can cause pathologic activation of this pathway that can cause oxidative stress induced p38 MAPK activation leading to senescence and premature aging of fetal tissues. Premature aging is associated with sterile inflammation capable of triggering preterm labor or preterm premature rupture of membranes. Preterm activation of p38MAPK can be considered as a key contributor to adverse pregnancies. Expert Opinion This review considers p38MAPK activation as a potential target for therapeutic interventions to prevent adverse pregnancy outcomes mediated by stress factors. In this review, we propose multiple strategies to prevent p38MAPK activation and its functional effects. PMID:27459026

  11. Novel mitogen-activated protein kinase MpkC of Aspergillus fumigatus is required for utilization of polyalcohol sugars.

    Science.gov (United States)

    Reyes, Guadalupe; Romans, Angela; Nguyen, C Kim; May, Gregory S

    2006-11-01

    The genome of Aspergillus fumigatus has four genes that encode mitogen-activated protein kinases (MAPKs), sakA/hogA, mpkA, mpkB, and mpkC. The functions of the MpkB and MpkC MAPKs are unknown for A. fumigatus and the closely related and genetically amenable species Aspergillus nidulans. mpkC deletion mutants of A. fumigatus were made and their phenotypes characterized. The mpkC deletion mutants were viable and had normal conidial germination and hyphal growth on minimal or complete media. This is in contrast to deletion mutants with deletions in the closely related MAPK gene sakA/hogA that we previously reported had a nitrogen source-dependent germination phenotype. Similarly, the growth of the mpkC deletion mutants was wild type on high-osmolarity medium. Consistent with these two MAP kinase genes regulating different cellular responses, we determined that the mpkC deletion mutants were unable to grow on minimal medium with sorbitol or mannitol as the sole carbon source. This result implicates MpkC signaling in carbon source utilization. Changes in mRNA levels for sakA and mpkC were measured in response to hypertonic stress, oxidative stress, and a shift from glucose to sorbitol to determine if there was overlap in the SakA and MpkC signaling pathways. These studies demonstrated that SakA- and MpkC-dependent patterns of change in mRNA levels are distinct and have minimal overlap in response to these environmental stresses.

  12. LmxMPK4, an essential mitogen-activated protein kinase of Leishmania mexicana is phosphorylated and activated by the STE7-like protein kinase LmxMKK5

    DEFF Research Database (Denmark)

    John von Freyend, Simona; Rosenqvist, Heidi; Fink, Annette

    2010-01-01

    The essential mitogen-activated protein kinase (MAP kinase), LmxMPK4, of Leishmania mexicana is minimally active when purified following recombinant expression in Escherichia coli and was therefore unsuitable for drug screening until now. Using an E. coli protein co-expression system we identified...... LmxMKK5, a STE7-like protein kinase from L. mexicana, which phosphorylates and activates recombinant LmxMPK4 in vitro. LmxMKK5 is comprised of 525 amino acids and has a calculated molecular mass of 55.9kDa. The co-expressed, purified LmxMPK4 showed strong phosphotransferase activity in radiometric...... kinase assays and was confirmed by immunoblot and tandem mass spectrometry analyses to be phosphorylated on threonine 190 and tyrosine 192 of the typical TXY MAP kinase activation motif. The universal protein kinase inhibitor staurosporine reduced the phosphotransferase activity of co...

  13. Association analysis between mitogen-activated protein/extracellular signal-regulated kinase (MEK) gene polymorphisms and depressive disorder in the Han Chinese population.

    Science.gov (United States)

    Hu, Yingyan; Hong, Wu; Smith, Alicia; Yu, Shunying; Li, Zezhi; Wang, Dongxiang; Yuan, Chengmei; Cao, Lan; Wu, Zhiguo; Huang, Jia; Fralick, Drew; Phillips, Michael Robert; Fang, Yiru

    2017-11-01

    Recent research findings suggest that BDNF and BDNF signaling pathways participate in the development of major depressive disorder. Mitogen-activated extracellular signal-regulated kinase (MEK) is the most important kinase in the extracellular signal-regulated kinase pathway, and the extracellular signal-regulated kinase pathway is the key signaling pathway of BDNF, so it may play a role in development of depressive disorder. The aim of this study is to investigate the association between polymorphisms of the MAP2K1 (also known as MEK) gene and depressive disorder. Three single nucleotide polymorphisms (SNPs), were significantly associated with depressive disorder: rs1549854 (p = 0.006), rs1432441 (p = 0.025), and rs7182853 (p = 0.039). When subdividing the sample by gender, two of the SNPs remained statistically associated with depressive disorder in females: rs1549854 (p = 0.013) and rs1432441 (p = 0.04). The rs1549854 and rs1432441 polymorphisms of the MAP2K1 gene may be associated with major depressive disorder, especially in females. This study is the first to report that the MAP2K1 gene may be a genetic marker for depressive disorder. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. A mannose-specific tetrameric lectin with mitogenic and antibacterial activities from the ovary of a teleost, the cobia (Rachycentron canadum).

    Science.gov (United States)

    Ngai, Patrick H K; Ng, T B

    2007-02-01

    A tetrameric lectin, with hemagglutinating activity toward rabbit erythrocytes and with specificity toward D-mannosamine and D(+)-mannose, was isolated from the ovaries of a teleost, the cobia Rachycentron canadum. The isolation protocol comprised ion exchange chromatography on CM-cellulose and Q-Sepharose, ion exchange chromatography by fast protein liquid chromatography (FPLC) on Mono Q, and finally gel filtration by FPLC on Superose 12. The lectin was adsorbed on all ion exchangers used. It exhibited a molecular mass of 180 kDa in gel filtration on Superose 12 and a single 45-kDa band in sodium dodecyl sulfate-polyacrylamide gel electrophoresis, indicating that it is a tetrameric protein. The hemagglutinating activity of the lectin was stable up to 40 degrees C and between pH 4 and pH 10. All hemagglutinating activity disappeared at 60 degrees C and at pH 1 and pH 13. The hemagglutinating activity was doubled in the presence of 0.1 microM FeCl3. The lectin exerted antibacterial activity against Escherichia coli with 50% inhibition at 250 microg. There was no antifungal activity toward Coprinus comatus, Fusarium oxysporum, Mycosphaerella arachidicola, and Rhizoctonia solani at a dose of 300 microg. The lectin exhibited maximal mitogenic response from mouse splenocytes at a concentration of 14 microM.

  15. Novel Mitogen-Activated Protein Kinase MpkC of Aspergillus fumigatus Is Required for Utilization of Polyalcohol Sugars▿

    Science.gov (United States)

    Reyes, Guadalupe; Romans, Angela; Nguyen, C. Kim; May, Gregory S.

    2006-01-01

    The genome of Aspergillus fumigatus has four genes that encode mitogen-activated protein kinases (MAPKs), sakA/hogA, mpkA, mpkB, and mpkC. The functions of the MpkB and MpkC MAPKs are unknown for A. fumigatus and the closely related and genetically amenable species Aspergillus nidulans. mpkC deletion mutants of A. fumigatus were made and their phenotypes characterized. The mpkC deletion mutants were viable and had normal conidial germination and hyphal growth on minimal or complete media. This is in contrast to deletion mutants with deletions in the closely related MAPK gene sakA/hogA that we previously reported had a nitrogen source-dependent germination phenotype. Similarly, the growth of the mpkC deletion mutants was wild type on high-osmolarity medium. Consistent with these two MAP kinase genes regulating different cellular responses, we determined that the mpkC deletion mutants were unable to grow on minimal medium with sorbitol or mannitol as the sole carbon source. This result implicates MpkC signaling in carbon source utilization. Changes in mRNA levels for sakA and mpkC were measured in response to hypertonic stress, oxidative stress, and a shift from glucose to sorbitol to determine if there was overlap in the SakA and MpkC signaling pathways. These studies demonstrated that SakA- and MpkC-dependent patterns of change in mRNA levels are distinct and have minimal overlap in response to these environmental stresses. PMID:16998074

  16. Involvement of mitogen-activated protein kinases and NFκB in LPS-induced CD40 expression on human monocytic cells

    International Nuclear Information System (INIS)

    Wu Weidong; Alexis, Neil E.; Chen Xian; Bromberg, Philip A.; Peden, David B.

    2008-01-01

    CD40 is a costimulatory molecule linking innate and adaptive immune responses to bacterial stimuli, as well as a critical regulator of functions of other costimulatory molecules. The mechanisms regulating lipopolysaccharide (LPS)-induced CD40 expression have not been adequately characterized in human monocytic cells. In this study we used a human monocytic cell line, THP-1, to investigate the possible mechanisms of CD40 expression following LPS exposure. Exposure to LPS resulted in a dose- and time-dependent increase in CD40 expression. Further studies using immunoblotting and pharmacological inhibitors revealed that mitogen-activated protein kinases (MAPKs) and NFκB were activated by LPS exposure and involved in LPS-induced CD40 expression. Activation of MAPKs was not responsible for LPS-induced NFκB activation. TLR4 was expressed on THP-1 cells and pretreatment of cells with a Toll-like receptor 4 (TLR4) neutralizing antibody (HTA125) significantly blunted LPS-induced MAPK and NFκB activation and ensuing CD40 expression. Additional studies with murine macrophages expressing wild type and mutated TLR4 showed that TLR4 was implicated in LPS-induced ERK and NFκB activation, and CD40 expression. Moreover, blockage of MAPK and NFκB activation inhibited LPS-induced TLR4 expression. In summary, LPS-induced CD40 expression in monocytic cells involves MAPKs and NFκB

  17. Expression of human choline kinase in NIH 3T3 fibroblasts increases the mitogenic potential of insulin and insulin-like growth factor I.

    Science.gov (United States)

    Chung, T; Huang, J S; Mukherjee, J J; Crilly, K S; Kiss, Z

    2000-05-01

    In mammalian cells, growth factors, oncogenes, and carcinogens stimulate phosphocholine (PCho) synthesis by choline kinase (CK), suggesting that PCho may regulate cell growth. To validate the role of PCho in mitogenesis, we determined the effects of insulin, insulin-like growth factor I (IGF-I), and other growth factors on DNA synthesis in NIH 3T3 fibroblast sublines highly expressing human choline kinase (CK) without increasing phosphatidylcholine synthesis. In serum-starved CK expressor cells, insulin and IGF-I stimulated DNA synthesis, p70 S6 kinase (p70 S6K) activity, phosphatidylinositol 3-kinase (PI3K) activity, and activating phosphorylation of p42/p44 mitogen-activated protein kinases (MAPK) to greater extents than in the corresponding vector control cells. Furthermore, the CK inhibitor hemicholinium-3 (HC-3) inhibited insulin- and IGF-I-induced DNA synthesis in the CK overexpressors, but not in the vector control cells. The results indicate that high cellular levels of PCho potentiate insulin- and IGF-I-induced DNA synthesis by MAPK- and p70 S6K-regulated mechanisms.

  18. The cis decoy against the estrogen response element suppresses breast cancer cells via target disrupting c-fos not mitogen-activated protein kinase activity.

    Science.gov (United States)

    Wang, Li Hua; Yang, Xiao Yi; Zhang, Xiaohu; Mihalic, Kelly; Xiao, Weihua; Farrar, William L

    2003-05-01

    Breast cancer, the most common malignancy in women, has been demonstrated to be associated with the steroid hormone estrogen and its receptor (ER), a ligand-activated transcription factor. Therefore, we developed a phosphorothiolate cis-element decoy against the estrogen response element (ERE decoy) to target disruption of ER DNA binding and transcriptional activity. Here, we showed that the ERE decoy potently ablated the 17beta-estrogen-inducible cell proliferation and induced apoptosis of human breast carcinoma cells by functionally affecting expression of c-fos gene and AP-1 luciferase gene reporter activity. Specificity of the decoy was demonstrated by its ability to directly block ER binding to a cis-element probe and transactivation. Moreover, the decoy failed to inhibit ER-mediated mitogen-activated protein kinase signaling pathways and cell growth of ER-negative breast cancer cells. Taken together, these data suggest that estrogen-mediated cell growth of breast cancer cells can be preferentially restricted via targeted disruption of ER at the level of DNA binding by a novel and specific decoy strategy applied to steroid nuclear receptors.

  19. The investigation of Mitogen-Activated Protein kinase Phosphatase-1 as a potential pharmacological target in non-small cell lung carcinomas, assisted by non-invasive molecular imaging

    International Nuclear Information System (INIS)

    Tai, Cheng-Jeng; Lee, Horng-Mo; Deng, Win-Ping; Wu, Alexander TH; Chiou, Jeng-Feng; Jan, Hsun-Jin; Wei, Hon-Jian; Hsu, Chung-Huei; Lin, Che-Tong; Chiu, Wen-Ta; Wu, Cheng-Wen

    2010-01-01

    Invasiveness and metastasis are the most common characteristics of non small cell lung cancer (NSCLC) and causes of tumour-related morbidity and mortality. Mitogen-activated protein kinases (MAPKs) signalling pathways have been shown to play critical roles in tumorigenesis. However, the precise pathological role(s) of mitogen-activated protein kinase phosphatase-1 (MKP-1) in different cancers has been controversial such that the up-regulation of MKP-1 in different cancers does not always correlate to a better prognosis. In this study, we showed that the induction of MKP-1 lead to a significant retardation of proliferation and metastasis in NSCLC cells. We also established that rosiglitazone (a PPARγ agonist) elevated MKP-1 expression level in NSCLC cells and inhibited tumour metastasis. Both wildtype and dominant negative forms of MKP-1 were constitutively expressed in NSCLC cell line H441GL. The migration and invasion abilities of these cells were examined in vitro. MKP-1 modulating agents such as rosiglitazone and triptolide were used to demonstrate MKP-1's role in tumorigenesis. Bioluminescent imaging was utilized to study tumorigenesis of MKP-1 over-expressing H441GL cells and anti-metastatic effect of rosiglitazone. Over-expression of MKP-1 reduced NSCLC cell proliferation rate as well as cell invasive and migratory abilities, evident by the reduced expression levels of MMP-2 and CXCR4. Mice inoculated with MKP-1 over-expressing H441 cells did not develop NSCLC while their control wildtype H441 inoculated littermates developed NSCLC and bone metastasis. Pharmacologically, rosiglitazone, a peroxisome proliferator activated receptor-γ (PPARγ) agonist appeared to induce MKP-1 expression while reduce MMP-2 and CXCR4 expression. H441GL-inoculated mice receiving daily oral rosiglitazone treatment demonstrated a significant inhibition of bone metastasis when compared to mice receiving sham treatment. We found that rosiglitazone treatment impeded the ability

  20. Chemiluminescent Diagnostics of Free-Radical Processes in an Abiotic System and in Liver Cells in the Presence of Nanoparticles Based on Rare-Earth Elements nReVO4:Eu3+ (Re = Gd, Y, La) and CeO2

    Science.gov (United States)

    Averchenko, E. A.; Kavok, N. S.; Klochkov, V. K.; Malyukin, Yu. V.

    2014-11-01

    We have used luminol-dependent chemiluminescence with Fenton's reagent to study the effect of nanoparticles based on rare-earth elements of different sizes and shapes on free-radical processes in abiotic and biotic cell-free systems, and also in isolated cells in vitro. We have estimated the effects of rare-earth orthovanadate nanoparticles of spherical (GdYVO4:Eu3+, 1-2 nm), spindle-shaped (GdVO4:Eu3+, 25 ×8 nm), and rod-shaped (LaVO4:Eu3+, 57 × (6-8) nm) nanoparticles and spherical CeO2 nanoparticles (sizes 1-2 nm and 8-10 nm). We have shown that in contrast to the abiotic system, in which all types of nanoparticles exhibit antiradical activity, in the presence of biological material, extra-small spherical (1-2 nm) nanoparticles of both types exhibit pro-oxidant activity, and also enhance pro-oxidant induced oxidative stress (for the pro-oxidants hydrogen peroxide and tert-butyl hydroperoxide). The effect of rare-earth orthovanadate spindle and rod shaped nanoparticles in this system was neutral; a moderate antioxidant effect was exhibited by 8-10 nm CeO2 nanoparticles.

  1. HIV-induced immunodeficiency. Relatively preserved phytohemagglutinin as opposed to decreased pokeweed mitogen responses may be due to possibly preserved responses via CD2/phytohemagglutinin pathway

    DEFF Research Database (Denmark)

    Hofmann, B; Jakobsen, K D; Odum, N

    1989-01-01

    and eight controls were chosen for the following studies. Expression of T3, Ti, delta receptors, and CD2 was investigated and showed an increased percentage of CD2 receptors positive cells in HIV seropositive subjects without AIDS. The proliferative responses of PBL to stimulation with PHA, PWM, antibodies....... In patients, these responses were less suppressed than the responses to PWM indicating that stimulation with mitogens is more complex than a simple stimulation of Ti/T3 and CD2 receptors. Further investigations were done on resting T cells, i.e., lymphocytes depleted of macrophages and pre-activated cells....... Addition of PHA to these cells resulted in preactivation with expression of IL-2R (CD25) but not in proliferation. In contrast, addition of PHA plus SRBC, which bind to the CD2 receptors caused IL-2R expression, IL-2 production, and proliferation. Addition of PWM + SRBC did not result in proliferation...

  2. Thermometric titration in investigation of the formation of polyanions of molybdenum(VI), tungsten(VI), vanadium(V), and chromium (VI)-I: comparison of thermometric and potentiometric titration curves.

    Science.gov (United States)

    Kiba, N; Takeuchi, T

    1973-09-01

    A new twin-cell thermometric titrator has been devised and used for thermometric titration of solutions of sodium molybdate, sodium tungstate, sodium orthovanadate, ammonium metavanadate, and potassium chromate with perchloric acid. The thermometric titration curves were compared with corresponding pH-titration curves for elucidation of the reactions occurring in the titrations. Thermometric titrimetric methods have been developed for the determination of tungsten, vanadium and chromium.

  3. Mitogen-activated protein kinase phosphatase-1 modulates regional effects of injurious mechanical ventilation in rodent lungs.

    Science.gov (United States)

    Park, Moo Suk; He, Qianbin; Edwards, Michael G; Sergew, Amen; Riches, David W H; Albert, Richard K; Douglas, Ivor S

    2012-07-01

    Mechanical ventilation induces heterogeneous lung injury by mitogen-activated protein kinase (MAPK) and nuclear factor-κB. Mechanisms regulating regional injury and protective effects of prone positioning are unclear. To determine the key regulators of the lung regional protective effects of prone positioning in rodent lungs exposed to injurious ventilation. Adult rats were ventilated with high (18 ml/kg, positive end-expiratory pressure [PEEP] 0) or low Vt (6 ml/kg; PEEP 3 cm H(2)O; 3 h) in supine or prone position. Dorsal-caudal lung mRNA was analyzed by microarray and MAPK phosphatases (MKP)-1 quantitative polymerase chain reaction. MKP-1(-/-) or wild-type mice were ventilated with very high (24 ml/kg; PEEP 0) or low Vt (6-7 ml/kg; PEEP 3 cm H(2)O). The MKP-1 regulator PG490-88 (MRx-108; 0.75 mg/kg) or phosphate-buffered saline was administered preventilation. Injury was assessed by lung mechanics, bronchioalveolar lavage cell counts, protein content, and lung injury scoring. Immunoblotting for MKP-1, and IκBα and cytokine ELISAs were performed on lung lysates. Prone positioning was protective against injurious ventilation in rats. Expression profiling demonstrated MKP-1 20-fold higher in rats ventilated prone rather than supine and regional reduction in p38 and c-jun N-terminal kinase activation. MKP-1(-/-) mice experienced amplified injury. PG490-88 improved static lung compliance and injury scores, reduced bronchioalveolar lavage cell counts and cytokine levels, and induced MKP-1 and IκBα. Injurious ventilation induces MAPK in an MKP-1-dependent fashion. Prone positioning is protective and induces MKP-1. PG490-88 induced MKP-1 and was protective against high Vt in a nuclear factor-κB-dependent manner. MKP-1 is a potential target for modulating regional effects of injurious ventilation.

  4. Runx expression is mitogenic and mutually linked to Wnt activity in blastula-stage sea urchin embryos.

    Directory of Open Access Journals (Sweden)

    Anthony J Robertson

    Full Text Available The Runt homology domain (Runx defines a metazoan family of sequence-specific transcriptional regulatory proteins that are critical for animal development and causally associated with a variety of mammalian cancers. The sea urchin Runx gene SpRunt-1 is expressed throughout the blastula stage embryo, and is required globally during embryogenesis for cell survival and differentiation.Depletion of SpRunt-1 by morpholino antisense-mediated knockdown causes a blastula stage deficit in cell proliferation, as shown by bromodeoxyuridine (BrdU incorporation and direct cell counts. Reverse transcription coupled polymerase chain reaction (RT-PCR studies show that the cell proliferation deficit is presaged by a deficit in the expression of several zygotic wnt genes, including wnt8, a key regulator of endomesoderm development. In addition, SpRunt-1-depleted blastulae underexpress cyclinD, an effector of mitogenic Wnt signaling. Blastula stage cell proliferation is also impeded by knockdown of either wnt8 or cyclinD. Chromatin immunoprecipitation (ChIP indicates that Runx target sites within 5' sequences flanking cyclinD, wnt6 and wnt8 are directly bound by SpRunt-1 protein at late blastula stage. Furthermore, experiments using a green fluorescent protein (GFP reporter transgene show that the blastula-stage operation of a cis-regulatory module previously shown to be required for wnt8 expression (Minokawa et al., Dev. Biol. 288: 545-558, 2005 is dependent on its direct sequence-specific interaction with SpRunt-1. Finally, inhibitor studies and immunoblot analysis show that SpRunt-1 protein levels are negatively regulated by glycogen synthase kinase (GSK-3.These results suggest that Runx expression and Wnt signaling are mutually linked in a feedback circuit that controls cell proliferation during development.

  5. p38 mitogen-activated protein kinase mediates IL-8 induction by the ribotoxin deoxynivalenol in human monocytes

    International Nuclear Information System (INIS)

    Islam, Zahidul; Gray, Jennifer S.; Pestka, James J.

    2006-01-01

    The effects of the ribotoxic trichothecene deoxynivalenol (DON) on mitogen-activated protein kinase (MAPK)-mediated IL-8 expression were investigated in cloned human monocytes and peripheral blood mononuclear cells (PBMC). DON (250 to 1000 ng/ml) induced both IL-8 mRNA and IL-8 heteronuclear RNA (hnRNA), an indicator of IL-8 transcription, in the human U937 monocytic cell line in a concentration-dependent manner. Expression of IL-8 hnRNA, mRNA and protein correlated with p38 phosphorylation and was completely abrogated by the p38 MAPK inhibitor SB203580. DON at 500 ng/ml similarly induced p38-dependent IL-8 protein and mRNA expression in PBMC cultures from healthy volunteers. Significantly increased IL-6 and IL-1β intracellular protein and mRNA expression was also observed in PBMC treated with DON (500 ng/ml) which were also partially p38-dependent. Flow cytometry of PBMC revealed that DON-induced p38 phosphorylation varied among individuals relative to both threshold toxin concentrations (25-100 ng/ml) and relative increases in percentages of phospho-p38 + cells. DON-induced p38 activation occurred exclusively in the CD14 + monocyte population. DON was devoid of agonist activity for human Toll-like receptors 2, 3, 4, 5, 7, 8 and 9. However, two other ribotoxins, emetine and anisomycin, induced p38 phosphorylation in PBMC similarly to DON. Taken together, these data suggest that (1) p38 activation was required for induction of IL-8 and proinflammatory gene expression in the monocyte and (2) DON induced p38 activation in human monocytes via the ribotoxic stress response

  6. The F-box protein Fbp1 functions in the invasive growth and cell wall integrity mitogen-activated protein kinase (MAPK) pathways in Fusarium oxysporum.

    Science.gov (United States)

    Miguel-Rojas, Cristina; Hera, Concepcion

    2016-01-01

    F-box proteins determine substrate specificity of the ubiquitin-proteasome system. Previous work has demonstrated that the F-box protein Fbp1, a component of the SCF(Fbp1) E3 ligase complex, is essential for invasive growth and virulence of the fungal plant pathogen Fusarium oxysporum. Here, we show that, in addition to invasive growth, Fbp1 also contributes to vegetative hyphal fusion and fungal adhesion to tomato roots. All of these functions have been shown previously to require the mitogen-activated protein kinase (MAPK) Fmk1. We found that Fbp1 is required for full phosphorylation of Fmk1, indicating that Fbp1 regulates virulence and invasive growth via the Fmk1 pathway. Moreover, the Δfbp1 mutant is hypersensitive to sodium dodecylsulfate (SDS) and calcofluor white (CFW) and shows reduced phosphorylation levels of the cell wall integrity MAPK Mpk1 after SDS treatment. Collectively, these results suggest that Fbp1 contributes to both the invasive growth and cell wall integrity MAPK pathways of F. oxysporum. © 2015 BSPP AND JOHN WILEY & SONS LTD.

  7. A regulator of G Protein signaling, RGS3, inhibits gonadotropin-releasing hormone (GnRH-stimulated luteinizing hormone (LH secretion

    Directory of Open Access Journals (Sweden)

    Musgrove Lois C

    2001-11-01

    Full Text Available Abstract Background Luteinizing hormone secreted by the anterior pituitary gland regulates gonadal function. Luteinizing hormone secretion is regulated both by alterations in gonadotrope responsiveness to hypothalamic gonadotropin releasing hormone and by alterations in gonadotropin releasing hormone secretion. The mechanisms that determine gonadotrope responsiveness are unknown but may involve regulators of G protein signaling (RGSs. These proteins act by antagonizing or abbreviating interaction of Gα proteins with effectors such as phospholipase Cβ. Previously, we reported that gonadotropin releasing hormone-stimulated second messenger inositol trisphosphate production was inhibited when RGS3 and gonadotropin releasing hormone receptor cDNAs were co-transfected into the COS cell line. Here, we present evidence for RGS3 inhibition of gonadotropin releasing hormone-induced luteinizing hormone secretion from cultured rat pituitary cells. Results A truncated version of RGS3 (RGS3T = RGS3 314–519 inhibited gonadotropin releasing hormone-stimulated inositol trisphosphate production more potently than did RSG3 in gonadotropin releasing hormone receptor-bearing COS cells. An RSG3/glutathione-S-transferase fusion protein bound more 35S-Gqα than any other member of the G protein family tested. Adenoviral-mediated RGS3 gene transfer in pituitary gonadotropes inhibited gonadotropin releasing hormone-stimulated luteinizing hormone secretion in a dose-related fashion. Adeno-RGS3 also inhibited gonadotropin releasing hormone stimulated 3H-inositol phosphate accumulation, consistent with a molecular site of action at the Gqα protein. Conclusions RGS3 inhibits gonadotropin releasing hormone-stimulated second messenger production (inositol trisphosphate as well as luteinizing hormone secretion from rat pituitary gonadotropes apparently by binding and suppressing the transduction properties of Gqα protein function. A version of RGS3 that is amino

  8. Three Fusarium oxysporum mitogen-activated protein kinases (MAPKs) have distinct and complementary roles in stress adaptation and cross-kingdom pathogenicity.

    Science.gov (United States)

    Segorbe, David; Di Pietro, Antonio; Pérez-Nadales, Elena; Turrà, David

    2017-09-01

    Mitogen-activated protein kinase (MAPK) cascades mediate cellular responses to environmental signals. Previous studies in the fungal pathogen Fusarium oxysporum have revealed a crucial role of Fmk1, the MAPK orthologous to Saccharomyces cerevisiae Fus3/Kss1, in vegetative hyphal fusion and plant infection. Here, we genetically dissected the individual and combined contributions of the three MAPKs Fmk1, Mpk1 and Hog1 in the regulation of development, stress response and virulence of F. oxysporum on plant and animal hosts. Mutants lacking Fmk1 or Mpk1 were affected in reactive oxygen species (ROS) homeostasis and impaired in hyphal fusion and aggregation. Loss of Mpk1 also led to increased sensitivity to cell wall and heat stress, which was exacerbated by simultaneous inactivation of Fmk1, suggesting that both MAPKs contribute to cellular adaptation to high temperature, a prerequisite for mammalian pathogens. Deletion of Hog1 caused increased sensitivity to hyperosmotic stress and resulted in partial rescue of the restricted colony growth phenotype of the mpk1Δ mutant. Infection assays on tomato plants and the invertebrate animal host Galleria mellonella revealed distinct and additive contributions of the different MAPKs to virulence. Our results indicate that positive and negative cross-talk between the three MAPK pathways regulates stress adaptation, development and virulence in the cross-kingdom pathogen F. oxysporum. © 2016 BSPP AND JOHN WILEY & SONS LTD.

  9. Protein Kinase Mitogen-activated Protein Kinase Kinase Kinase Kinase 4 (MAP4K4) Promotes Obesity-induced Hyperinsulinemia.

    Science.gov (United States)

    Roth Flach, Rachel J; Danai, Laura V; DiStefano, Marina T; Kelly, Mark; Menendez, Lorena Garcia; Jurczyk, Agata; Sharma, Rohit B; Jung, Dae Young; Kim, Jong Hun; Kim, Jason K; Bortell, Rita; Alonso, Laura C; Czech, Michael P

    2016-07-29

    Previous studies revealed a paradox whereby mitogen-activated protein kinase kinase kinase kinase 4 (Map4k4) acted as a negative regulator of insulin sensitivity in chronically obese mice, yet systemic deletion of Map4k4 did not improve glucose tolerance. Here, we report markedly reduced glucose-responsive plasma insulin and C-peptide levels in whole body Map4k4-depleted mice (M4K4 iKO) as well as an impaired first phase of insulin secretion from islets derived from M4K4 iKO mice ex vivo After long-term high fat diet (HFD), M4K4 iKO mice pancreata also displayed reduced β cell mass, fewer proliferating β cells and reduced islet-specific gene mRNA expression compared with controls, although insulin content was normal. Interestingly, the reduced plasma insulin in M4K4 iKO mice exposed to chronic (16 weeks) HFD was not observed in response to acute HFD challenge or short term treatment with the insulin receptor antagonist S961. Furthermore, the improved insulin sensitivity in obese M4K4 iKO mice was abrogated by high exogenous insulin over the course of a euglycemic clamp study, indicating that hypoinsulinemia promotes insulin sensitivity in chronically obese M4K4 iKO mice. These results demonstrate that protein kinase Map4k4 drives obesity-induced hyperinsulinemia and insulin resistance in part by promoting insulin secretion from β cells in mice. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  10. Fisetin Ameliorated Photodamage by Suppressing the Mitogen-Activated Protein Kinase/Matrix Metalloproteinase Pathway and Nuclear Factor-κB Pathways.

    Science.gov (United States)

    Chiang, Hsiu-Mei; Chan, Shih-Yun; Chu, Yin; Wen, Kuo-Ching

    2015-05-13

    Ultraviolet (UV) irradiation is one of the most important extrinsic factors contributing to skin photodamage. After UV irradiation, a series of signal transductions in the skin will be activated, leading to inflammatory response and photoaged skin. In this study, fisetin, a flavonol that exists in fruits and vegetables, was investigated for its photoprotective effects. The results revealed that 5-25 μM fisetin inhibits cyclooxygenase-2 (COX-2) and matrix metalloproteinase (MMP)-1, MMP-3, MMP-9 expression induced by ultraviolet B (UVB) irradiation in human skin fibroblasts. In addition, fisetin suppressed UVB-induced collagen degradation. With regard to its effect on upper-stream signal transduction, we found that fisetin reduced the expression of ultraviolet (UV)-induced ERK, JNK, and p38 phosphorylation in the mitogen-activated protein kinase (MAP kinase) pathway. Furthermore, fisetin reduced inhibitor κB (IκB) degradation and increased the amount of p65, which is a major subunit of nuclear factor-κB (NF-κB), in cytoplasm. It also suppressed NF-κB translocated to the nucleus and inhibited cAMP response element-binding protein (CREB) Ser-133 phosphorylation level in the phosphoinositide 3-kinase/protein kinase B/CREB (PI3K/AKT/CREB) pathway. Finally, fisetin inhibited UV-induced intracellular reactive oxygen species (ROS), prostaglandin E2 (PGE2), and nitric oxide (NO) generation. The mentioned effects and mechanisms suggest that fisetin can be used in the development of photoprotective agents.

  11. Extracellular signal regulated kinase 5 mediates signals triggered by the novel tumor promoter palytoxin

    International Nuclear Information System (INIS)

    Charlson, Aaron T.; Zeliadt, Nicholette A.; Wattenberg, Elizabeth V.

    2009-01-01

    Palytoxin is classified as a non-12-O-tetradecanoylphorbol-13-acetate (TPA)-type skin tumor because it does not bind to or activate protein kinase C. Palytoxin is thus a novel tool for investigating alternative signaling pathways that may affect carcinogenesis. We previously showed that palytoxin activates three major members of the mitogen activated protein kinase (MAPK) family, extracellular signal regulated kinase 1 and 2 (ERK1/2), c-Jun N-terminal kinase (JNK), and p38. Here we report that palytoxin also activates another MAPK family member, called ERK5, in HeLa cells and in keratinocytes derived from initiated mouse skin (308 cells). By contrast, TPA does not activate ERK5 in these cell lines. The major cell surface receptor for palytoxin is the Na+,K+-ATPase. Accordingly, ouabain blocked the ability of palytoxin to activate ERK5. Ouabain alone did not activate ERK5. ERK5 thus represents a divergence in the signaling pathways activated by these two agents that bind to the Na+,K+-ATPase. Cycloheximide, okadaic acid, and sodium orthovanadate did not mimic the effect of palytoxin on ERK5. These results indicate that the stimulation of ERK5 by palytoxin is not simply due to inhibition of protein synthesis or inhibition of serine/threonine or tyrosine phosphatases. Therefore, the mechanism by which palytoxin activates ERK5 differs from that by which it activates ERK1/2, JNK, and p38. Finally, studies that used pharmacological inhibitors and shRNA to block ERK5 action indicate that ERK5 contributes to palytoxin-stimulated c-Fos gene expression. These results suggest that ERK5 can act as an alternative mediator for transmitting diverse tumor promoter-stimulated signals.

  12. Tyr phosphatase-mediated P-ERK inhibition suppresses senescence in EIA + v-raf transformed cells, which, paradoxically, are apoptosis-protected in a MEK-dependent manner.

    Science.gov (United States)

    De Vitis, Stefania; Sonia Treglia, Antonella; Ulianich, Luca; Turco, Stefano; Terrazzano, Giuseppe; Lombardi, Angela; Miele, Claudia; Garbi, Corrado; Beguinot, Francesco; Di Jeso, Bruno

    2011-02-01

    Activation of the Ras-Raf-extracellular signal-regulated kinase (ERK) pathway causes not only proliferation and suppression of apoptosis but also the antioncogenic response of senescence. How these contrasting effects are reconciled to achieve cell transformation and cancer formation is poorly understood. In a system of two-step carcinogenesis (dedifferentiated PC EIA, transformed PC EIA-polyoma-middle T [PC EIA + Py] and PC EIA-v-raf [PC EIA + raf] cells], v-raf cooperated with EIA by virtue of a strong prosurvival effect, not elicited by Py-middle T, evident toward serum-deprivation-and H(2)O(2)-induced apoptosis. Apoptosis was detected by DNA fragmentation and annexin V staining. The prosurvival function of v-raf was, in part, mitogen-activated protein kinase/ERK kinase (MEK)-dependent, as shown by pharmacological MEK inhibition. The MEK-dependent antiapoptotic effect of v-raf was exerted despite a lower level of P-ERK1/2 in EIA + raf cells with respect to EIA + Py/EIA cells, which was dependent on a high tyrosine phosphatase activity, as shown by orthovanadate blockade. An ERK1/2 tyrosine phosphatase was likely involved. The high tyrosine phosphatase activity was instrumental to the complete suppression of senescence, detected by β-galactosidase activity, because tyrosine phosphatase blockade induced senescence in EIA + raf but not in EIA + Py cells. High tyrosine phosphatase activity and evasion from senescence were confirmed in an anaplastic thyroid cancer cell line. Therefore, besides EIA, EIA + raf cells suppress senescence through a new mechanism, namely, phosphatase-mediated P-ERK1/2 inhibition, but, paradoxically, retain the oncogenic effects of the Raf-ERK pathway. We propose that the survival effect of Raf is not a function of absolute P-ERK1/2 levels at a given time but is rather dynamically dependent on greater variations after an apoptotic stimulus.

  13. Tyr Phosphatase-Mediated P-ERK Inhibition Suppresses Senescence in EIA + v-raf Transformed Cells, Which, Paradoxically, Are Apoptosis-Protected in a MEK-Dependent Manner

    Directory of Open Access Journals (Sweden)

    Stefania De Vitis

    2011-02-01

    Full Text Available Activation of the Ras-Raf-extracellular signal-regulated kinase (ERK pathway causes not only proliferation and suppression of apoptosis but also the antioncogenic response of senescence. How these contrasting effects are reconciled to achieve cell transformation and cancer formation is poorly understood. In a system of two-step carcinogenesis (dedifferentiated PC EIA, transformed PC EIA-polyoma-middle T [PC EIA + Py] and PC EIA-v-raf [PC EIA + raf] cells], v-raf cooperated with EIA by virtue of a strong prosurvival effect, not elicited by Py-middle T, evident toward serum-deprivation-and H2O2-induced apoptosis. Apoptosis was detected by DNA fragmentation and annexin V staining. The prosurvival function of v-raf was, in part, mitogen-activated protein kinase/ERK kinase (MEK-dependent, as shown by pharmacological MEK inhibition. The MEK-dependent antiapoptotic effect of v-raf was exerted despite a lower level of P-ERK1/2 in EIA + raf cells with respect to EIA + Py/EIA cells, which was dependent on a high tyrosine phosphatase activity, as shown by orthovanadate blockade. An ERK1/2 tyrosine phosphatase was likely involved. The high tyrosine phosphatase activity was instrumental to the complete suppression of senescence, detected by β-galactosidase activity, because tyrosine phosphatase blockade induced senescence in EIA + raf but not in EIA + Py cells. High tyrosine phosphatase activity and evasion from senescence were confirmed in an anaplastic thyroid cancer cell line. Therefore, besides EIA, EIA + raf cells suppress senescence through a new mechanism, namely, phosphatase-mediated P-ERK1/2 inhibition, but, paradoxically, retain the oncogenic effects of the Raf-ERK pathway. We propose that the survival effect of Raf is not a function of absolute P-ERK1/2 levels at a given time but is rather dynamically dependent on greater variations after an apoptotic stimulus.

  14. An Additional Method for Analyzing the Reversible Inhibition of an ?Enzyme Using Acid Phosphatase as a Model

    OpenAIRE

    Baumhardt, Jordan M.; Dorsey, Benjamin M.; McLauchlan, Craig C.; Jones, Marjorie A.

    2015-01-01

    Using wheat germ acid phosphatase and sodium orthovanadate as a competitive inhibitor, a novel method for analyzing reversible inhibition was carried out. Our alternative approach involves plotting the initial velocity at which product is formed as a function of the ratio of substrate concentration to inhibitor concentration at a constant enzyme concentration and constant assay conditions. The concept of initial concentrations driving equilibrium leads to the chosen axes. Three apparent const...

  15. BARC: A Novel Apoptosis Regulator

    Science.gov (United States)

    2005-06-01

    References ...................................................................................... 11 A ppendices ...that acute inhibition of Bcl-2 by the functionally interacts with inositol 1,4,5-trisphosphate (IP 3) re- green tea compound epigallocatechin gallate

  16. Immunomodulatory Activity of Ganoderma atrum Polysaccharide on Purified T Lymphocytes through Ca2+/CaN and Mitogen-Activated Protein Kinase Pathway Based on RNA Sequencing.

    Science.gov (United States)

    Xiang, Quan-Dan; Yu, Qiang; Wang, Hui; Zhao, Ming-Ming; Liu, Shi-Yu; Nie, Shao-Ping; Xie, Ming-Yong

    2017-07-05

    Our previous study has demonstrated that Ganoderma atrum polysaccharide (PSG-1) has immunomodulatory activity on spleen lymphocytes. However, how PSG-1 exerts its effect on purified lymphocytes is still obscure. Thus, this study aimed to investigate the immunomodulatory activity of PSG-1 on purified T lymphocytes and further elucidate the underlying mechanism based on RNA sequencing (RNA-seq). Our results showed that PSG-1 promoted T lymphocytes proliferation and increased the production of IL-2, IFN-γ, and IL-12. Meanwhile, RNA-seq analysis found 394 differentially expressed genes. KEGG pathway analysis identified 20 significant canonical pathways and seven biological functions. Furthermore, PSG-1 elevated intracellular Ca 2+ concentration and calcineurin (CaN) activity and raised the p-ERK, p-JNK, and p-p38 expression levels. T lymphocytes proliferation and the production of IL-2, IFN-γ, and IL-12 were decreased by the inhibitors of calcium channel and mitogen-activated protein kinases (MAPKs). These results indicated that PSG-1 possesses immunomodulatory activity on purified T lymphocytes, in which Ca 2+ /CaN and MAPK pathways play essential roles.

  17. Moringa oleifera fruit induce apoptosis via reactive oxygen species-dependent activation of mitogen-activated protein kinases in human melanoma A2058 cells.

    Science.gov (United States)

    Guon, Tae Eun; Chung, Ha Sook

    2017-08-01

    The present study was performed to determine the effect of Moringa oleifera fruit extract on the apoptosis of human melanoma A2058 cells. A2058 cells were treated for 72 h with Moringa oleifera fruit extract at 50-100 µg/ml, and cell viability with apoptotic changes was examined. The involvement of reactive oxygen species (ROS) and mitogen-activated protein kinases (MAPKs) was examined. It was revealed that Moringa oleifera fruit extract significantly inhibited the cell viability and promoted apoptosis of A2058 cells in a concentration-dependent manner. Moringa oleifera fruit extract-treated A2058 cells exhibited increased activities of cleaved caspase-9 and caspase-3. It also caused an enhancement of MAPK phosphorylation and ROS production. The pro-apoptotic activity of Moringa oleifera fruit extract was significantly reversed by pretreatment with the c-Jun N-terminal kinase (JNK) inhibitor SP600125, extracellular-signal-regulated kinase (ERK) inhibitor PD98058 or ROS inhibitor N-acetyl-L-cysteine. Taken together, Moringa oleifera fruit extract is effective in inducing mitochondrial apoptosis of A2058 cells, which is mediated through induction of ROS formation, and JNK and ERK activation. Moringa oleifera fruit extract may thus have therapeutic benefits for human melanoma A2058 cells.

  18. Electrical stimulation with periodic alternating intervals stimulates neuronal cells to produce neurotrophins and cytokines through activation of mitogen-activated protein kinase pathways.

    Science.gov (United States)

    Yamamoto, Kenta; Yamamoto, Toshiro; Honjo, Kenichi; Ichioka, Hiroaki; Oseko, Fumishige; Kishida, Tsunao; Mazda, Osam; Kanamura, Narisato

    2015-12-01

    Peripheral neuropathy is a representative complication of dental surgery. Electrical therapy, based on electrical stimulation with periodic alternating intervals (ES-PAI), may promote nerve regeneration after peripheral nerve injury in a non-invasive manner, potentially providing an effective therapy for neuropathy. This study aimed to analyze the molecular mechanisms underlying the nerve recovery stimulated by ES-PAI. In brief, ES-PAI was applied to a neuronal cell line, Neuro2A, at various intensities using the pulse generator apparatus, FREUDE. Cell viability, neurotrophin mRNA expression, and cytokine production were examined using a tetrazolium-based assay, real-time RT-PCR, and ELISA, respectively. Mitogen-activated protein kinase (MAPK) signaling was assessed using flow cytometry. It was found that ES-PAI increased the viability of cells and elevated expression of nerve growth factor (NGF) and neurotrophin-3 (NT-3); ESPAI also augmented vascular endothelial growth factor (VEGF) and platelet-derived growth factor (PDGF) expression, which was restored by addition of p38 inhibitors. Phosphorylation of p38 and extracellular signal-regulated kinase 1/2 (ERK-1/2) was augmented by ES-PAI. Hence, ES-PAI may ameliorate peripheral neuropathy by promoting neuronal cell proliferation and production of neurogenic factors by activating p38 and ERK-1/2 pathways. © 2015 Eur J Oral Sci.

  19. Inhibition of gap-junctional intercellular communication and activation of mitogen-activated protein kinases by cyanobacterial extracts--indications of novel tumor-promoting cyanotoxins?

    Science.gov (United States)

    Bláha, Ludĕk; Babica, Pavel; Hilscherová, Klára; Upham, Brad L

    2010-01-01

    Toxicity and liver tumor promotion of cyanotoxins microcystins have been extensively studied. However, recent studies document that other metabolites present in the complex cyanobacterial water blooms may also have adverse health effects. In this study we used rat liver epithelial stem-like cells (WB-F344) to examine the effects of cyanobacterial extracts on two established markers of tumor promotion, inhibition of gap-junctional intercellular communication (GJIC) and activation of mitogen-activated protein kinases (MAPKs) - ERK1/2. Extracts of cyanobacteria (laboratory cultures of Microcystis aeruginosa and Aphanizomenon flos-aquae and water blooms dominated by these species) inhibited GJIC and activated MAPKs in a dose-dependent manner (effective concentrations ranging 0.5-5mgd.w./mL). Effects were independent of the microcystin content and the strongest responses were elicited by the extracts of Aphanizomenon sp. Neither pure microcystin-LR nor cylindrospermopsin inhibited GJIC or activated MAPKs. Modulations of GJIC and MAPKs appeared to be specific to cyanobacterial extracts since extracts from green alga Chlamydomonas reinhardtii, heterotrophic bacterium Klebsiella terrigena, and isolated bacterial lipopolysaccharides had no comparable effects. Our study provides the first evidence on the existence of unknown cyanobacterial toxic metabolites that affect in vitro biomarkers of tumor promotion, i.e. inhibition of GJIC and activation of MAPKs.

  20. Short communication: Camel milk ameliorates inflammatory responses and oxidative stress and downregulates mitogen-activated protein kinase signaling pathways in lipopolysaccharide-induced acute respiratory distress syndrome in rats.

    Science.gov (United States)

    Zhu, Wei-Wei; Kong, Gui-Qing; Ma, Ming-Ming; Li, Yan; Huang, Xiao; Wang, Li-Peng; Peng, Zhen-Yi; Zhang, Xiao-Hua; Liu, Xiang-Yong; Wang, Xiao-Zhi

    2016-01-01

    Acute respiratory distress syndrome (ARDS) is a complex syndrome disorder with high mortality rate. Camel milk (CM) contains antiinflammatory and antioxidant properties and protects against numerous diseases. This study aimed to demonstrate the function of CM in lipopolysaccharide (LPS)-induced ARDS in rats. Camel milk reduced the lung wet:dry weight ratio and significantly reduced LPS-induced increases in neutrophil infiltration, interstitial and intra-alveolar edema, thickness of the alveolar wall, and lung injury scores of lung tissues. It also had antiinflammatory and antioxidant effects on LPS-induced ARDS. After LPS stimulation, the levels of proinflammatory cytokines (tumor necrosis factor-α, IL-10, and IL-1β) in serum and oxidative stress markers (malondialdehyde, myeloperoxidase, and total antioxidant capacity) in lung tissue were notably attenuated by CM. Camel milk also downregulated mitogen-activated protein kinase signaling pathways. Given these results, CM is a potential complementary food for ARDS treatment. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  1. Uncaria rhynchophylla inhibits the production of nitric oxide and interleukin-1β through blocking nuclear factor κB, Akt, and mitogen-activated protein kinase activation in macrophages.

    Science.gov (United States)

    Kim, Ji-Hee; Bae, Chang Hwan; Park, Sun Young; Lee, Sang Joon; Kim, YoungHee

    2010-10-01

    The stems with hook of Uncaria rhynchophylla have been used in traditional medicine as an antipyretic, antihypertensive, and anticonvulsant in China and Korea. In this study, we investigated the mechanism responsible for anti-inflammatory effects of U. rhynchophylla in RAW 264.7 macrophages. The aqueous extract of U. rhynchophylla inhibited lipopolysaccharide (LPS)-induced nitric oxide (NO) and interleukin (IL)-1β secretion as well as inducible NO synthase (iNOS) expression, without affecting cell viability. Furthermore, U. rhynchophylla suppressed LPS-induced nuclear factor κB (NF-κB) activation, phosphorylation, and degradation of inhibitory protein IκB (IκB)-α, phosphorylation of Akt, extracellular signal-regulated kinase 1/2, p38 kinase, and c-Jun N-terminal kinase. These results suggest that U. rhynchophylla has the inhibitory effects on LPS-induced NO and IL-1β production in macrophages through blockade in the phosphorylation of Akt and mitogen-activated protein kinases, following IκB-α degradation and NF-κB activation.

  2. X-ray Diffraction and Density Functional Theory Provide Insight into Vanadate Binding to Homohexameric Bromoperoxidase II and the Mechanism of Bromide Oxidation.

    Science.gov (United States)

    Radlow, Madlen; Czjzek, Mirjam; Jeudy, Alexandra; Dabin, Jerome; Delage, Ludovic; Leblanc, Catherine; Hartung, Jens

    2018-05-18

    X-ray diffraction of native bromoperoxidase II (EC 1.11.1.18) from the brown alga Ascophyllum nodosum reveals at a resolution of 2.26 Å details of orthovanadate binding and homohexameric protein organization. Three dimers interwoven in contact regions and tightened by hydrogen-bond-clamped guanidinium stacks along with regularly aligned water molecules form the basic structure of the enyzme. Intra- and intermolecular disulfide bridges further stabilize the enzyme preventing altogether the protein from denaturing up to a temperature of 90 °C, as evident from dynamic light scattering and the on-gel ortho-dianisidine assay. Every monomer binds one equivalent of orthovanadate in a cavity formed from side chains of three histidines, two arginines, one lysine, serine, and tryptophan. Protein binding occurs primarily through hydrogen bridges and superimposed by Coulomb attraction according to thermochemical model on density functional level of theory (B3LYP/6-311++G**). The strongest attractor is the arginine side chain mimic N-methylguanidinium, enhancing in positive cooperative manner hydrogen bridges toward weaker acceptors, such as residues from lysine and serine. Activating hydrogen peroxide occurs in the thermochemical model by side-on binding in orthovanadium peroxoic acid, oxidizing bromide with virtually no activation energy to hydrogen bonded hypobromous acid.

  3. Brominated flame retardants, tetrabromobisphenol A and hexabromocyclododecane, activate mitogen-activated protein kinases (MAPKs) in human natural killer cells.

    Science.gov (United States)

    Cato, Anita; Celada, Lindsay; Kibakaya, Esther Caroline; Simmons, Nadia; Whalen, Margaret M

    2014-12-01

    Natural killer (NK) cells provide a vital surveillance against virally infected cells, tumor cells, and antibody-coated cells through the release of cytolytic mediators and gamma interferon (IFN-γ). Hexabromocyclododecane (HBCD) is a brominated flame retardant used primarily in expanded (EPS) and extruded (XPS) polystyrene foams for thermal insulation in the building and construction industry. Tetrabromobisphenol A (TBBPA) is used both as a reactive and an additive flame retardant in a variety of materials. HBCD and TBBPA contaminate the environment and are found in human blood samples. In previous studies, we have shown that other environmental contaminants, such as the dibutyltin (DBT) and tributyltin (TBT), decrease NK lytic function by activating mitogen-activated protein kinases (MAPKs) in the NK cells. HBCD and TBBPA also interfere with NK cell(s) lytic function. The current study evaluates whether HBCD and/or TBBPA have the capacity to activate MAPKs and MAPK kinases (MAP2Ks). The effects of concentrations of HBCD and TBBPA that inhibited lytic function on the phosphorylation state and total levels of the MAPKs (p44/42, p38, and JNK) and the phosphorylation and total levels of the MAP2Ks (MEK1/2 and MKK3/6) were examined. Results indicate that exposure of human NK cells to 10-0.5 μM HBCD or TBBPA activate MAPKs and MAP2Ks. This HBCD and TBBPA-induced activation of MAPKs may leave them unavailable for activation by virally infected or tumor target cells and thus contributes to the observed decreases in lytic function seen in NK cells exposed to HBCD and TBBPA.

  4. The transcriptional co-factor RIP140 regulates mammary gland development by promoting the generation of key mitogenic signals.

    Science.gov (United States)

    Nautiyal, Jaya; Steel, Jennifer H; Mane, Meritxell Rosell; Oduwole, Olayiwola; Poliandri, Ariel; Alexi, Xanthippi; Wood, Nicholas; Poutanen, Matti; Zwart, Wilbert; Stingl, John; Parker, Malcolm G

    2013-03-01

    Nuclear receptor interacting protein (Nrip1), also known as RIP140, is a co-regulator for nuclear receptors that plays an essential role in ovulation by regulating the expression of the epidermal growth factor-like family of growth factors. Although several studies indicate a role for RIP140 in breast cancer, its role in the development of the mammary gland is unclear. By using RIP140-null and RIP140 transgenic mice, we demonstrate that RIP140 is an essential factor for normal mammary gland development and that it functions by mediating oestrogen signalling. RIP140-null mice exhibit minimal ductal elongation with no side-branching, whereas RIP140-overexpressing mice show increased cell proliferation and ductal branching with age. Tissue recombination experiments demonstrate that RIP140 expression is required in both the mammary epithelial and stromal compartments for ductal elongation during puberty and that loss of RIP140 leads to a catastrophic loss of the mammary epithelium, whereas RIP140 overexpression augments the mammary basal cell population and shifts the progenitor/differentiated cell balance within the luminal cell compartment towards the progenitors. For the first time, we present a genome-wide global view of oestrogen receptor-α (ERα) binding events in the developing mammary gland, which unravels 881 ERα binding sites. Unbiased evaluation of several ERα binding sites for RIP140 co-occupancy reveals selectivity and demonstrates that RIP140 acts as a co-regulator with ERα to regulate directly the expression of amphiregulin (Areg), the progesterone receptor (Pgr) and signal transducer and activator of transcription 5a (Stat5a), factors that influence key mitogenic pathways that regulate normal mammary gland development.

  5. Phosphorylation of mitogen-activated protein kinase (MAPK) is required for cytokinesis and progression of cell cycle in tobacco BY-2 cells.

    Science.gov (United States)

    Ma, Zhaowu; Yu, Guanghui

    2010-02-15

    The role of mitogen-activated protein kinase (MAPK) in plant cytokinesis remains largely uncharacterized. To elucidate its role, tobacco Bright Yellow-2 (BY-2) cells have been synchronized using a two-step procedure, and the different phases of the cell cycle identified by Histone 4 gene expression and the mitotic index. MAPK expression was analyzed by semi-quantitative (SQ) RT-PCR and protein gel blot analysis for phosphorylated MAPK during cell cycle progression. The SQ RT-PCR analysis indicated that MAPK expression is lower in mitosis than in interphase (G1, G2 and S). However, the amount of phosphorylated MAPK remained stable throughout the cell cycle, indicating that MAPK activity is predominantly regulated at the post-translational level and that phosphorylation of MAPK plays an important role in mitosis. Application of the specific MAPK phosphorylation inhibitor U0126 revealed that while U0126 treatment decreases the phosphorylation of MAPK and the progression from telophase to early cytokinesis is significantly inhibited. The formation of the phragmoplast is also negatively affected at this stage. These results demonstrate that MAPK phosphorylation is involved in the formation of the cell plate within the phragmoplast during cytokinesis and that MAPK predominantly functions during the cytokinesis stage of the cell cycle in tobacco BY-2 cells. Copyright 2009 Elsevier GmbH. All rights reserved.

  6. The Role of Unfolded Protein Response and Mitogen-Activated Protein Kinase Signaling in Neurodegenerative Diseases with Special Focus on Prion Diseases

    Directory of Open Access Journals (Sweden)

    Lifeng Yang

    2017-05-01

    Full Text Available Prion diseases are neurodegenerative pathologies characterized by the accumulation of a protease-resistant form of the cellular prion protein named prion protein scrapie (PrPSc in the brain. PrPSc accumulation in the endoplasmic reticulum (ER result in a dysregulated calcium (Ca2+ homeostasis and subsequent initiation of unfolded protein response (UPR leading to neuronal dysfunction and apoptosis. The molecular mechanisms for the transition between adaptation to ER stress and ER stress-induced apoptosis are still unclear. Mitogen-activated protein kinases (MAPKs are serine/threonine protein kinases that rule the signaling of many extracellular stimuli from plasma membrane to the nucleus. However the identification of numerous points of cross talk between the UPR and MAPK signaling pathways may contribute to our understanding of the consequences of ER stress in prion diseases. Indeed the MAPK signaling network is known to regulate cell cycle progression and cell survival or death responses following a variety of stresses including misfolded protein response stress. In this article, we review the UPR signaling in prion diseases and discuss the triad of MAPK signaling pathways. We also describe the role played by MAPK signaling cascades in Alzheimer’s (AD and Parkinson’s disease (PD. We will also overview the mechanisms of cell death and the role of MAPK signaling in prion disease progression and highlight potential avenues for therapeutic intervention.

  7. Involvement of a novel p38 mitogen-activated protein kinase in larval metamorphosis of the polychaete Hydroides elegans (Haswell)

    KAUST Repository

    Wang, Hao

    2010-04-19

    Hydroides elegans is a common marine fouling organism in most tropical and subtropical waters. The life cycle of H. elegans includes a planktonic larval stage in which swimming larvae normally take 5 days to attain competency to settle. Larval metamorphosis marks the beginning of its benthic life; however, the endogenous molecular mechanisms that regulate metamorphosis remain largely unknown. In this study, a PCR-based suppressive subtractive hybridization (SSH) library was constructed to screen the genes expressed in competent larvae but not in precompetent larvae. Among the transcripts isolated from the library, 21 significantly matched sequences in the GenBank. Many of these isolated transcripts have putative roles in the reactive oxygen species (ROS) signal transduction pathway or in response to ROS stress. A putative novel p38 mitogen-activated protein kinase (MAPK), which was also isolated with SSH screen, was then cloned and characterized. The MAPK inhibitors assay showed that both p38 MAPK inhibitors SB202190 and SB203580 effectively inhibited the biofilm-induced metamorphosis of H. elegans. A cell stressors assay showed that H2O2 effectively induced larval metamorphosis of H. elegans, but the inductivity of H2O2 was also inhibited by both SB inhibitors. The catalase assay showed that the catalase could effetely inhibit H. elegans larvae from responding to inductive biofilm. These results showed that the p38 MAPK-dependent pathway plays critical role in controlling larval metamorphosis of the marine polychaete H. elegans, and the reactive oxygen radicals produced by biofilm could be the cue inducing larval metamorphosis. © 2010 Wiley-Liss, Inc.

  8. Cancer Cell-derived Exosomes Induce Mitogen-activated Protein Kinase-dependent Monocyte Survival by Transport of Functional Receptor Tyrosine Kinases*

    Science.gov (United States)

    Song, Xiao; Ding, Yanping; Liu, Gang; Yang, Xiao; Zhao, Ruifang; Zhang, Yinlong; Zhao, Xiao; Anderson, Gregory J.; Nie, Guangjun

    2016-01-01

    Tumor-associated macrophages (TAM) play pivotal roles in cancer initiation and progression. Monocytes, the precursors of TAMs, normally undergo spontaneous apoptosis within 2 days, but can subsist in the inflammatory tumor microenvironment for continuous survival and generation of sufficient TAMs. The mechanisms underlying tumor-driving monocyte survival remain obscure. Here we report that cancer cell-derived exosomes were crucial mediators for monocyte survival in the inflammatory niche. Analysis of the survival-promoting molecules in monocytes revealed that cancer cell-derived exosomes activated Ras and extracellular signal-regulated kinases in the mitogen-activated protein kinase (MAPK) pathway, resulting in the prevention of caspase cleavage. Phosphorylated receptor tyrosine kinases (RTKs), such as phosphorylated epidermal growth factor receptor (EGFR) and human epidermal growth factor receptor 2 (HER-2), were abundantly expressed in cancer cell-derived exosomes. Knock-out of EGFR or/and HER-2, or alternatively, inhibitors against their phosphorylation significantly disturbed the exosome-mediated activation of the MAPK pathway, inhibition of caspase cleavage, and increase in survival rate in monocytes. Moreover, the deprived survival-stimulating activity of exosomes due to null expression of EGFR and HER-2 could be restored by activation of another RTK, insulin receptor. Overall, our study uncovered a mechanism of tumor-associated monocyte survival and demonstrated that cancer cell-derived exosomes can stimulate the MAPK pathway in monocytes through transport of functional RTKs, leading to inactivation of apoptosis-related caspases. This work provides insights into the long sought question on monocyte survival prior to formation of plentiful TAMs in the tumor microenvironment. PMID:26895960

  9. Colletotrichum higginsianum Mitogen-Activated Protein Kinase ChMK1: Role in Growth, Cell Wall Integrity, Colony Melanization and Pathogenicity

    Directory of Open Access Journals (Sweden)

    Wei Wei

    2016-08-01

    Full Text Available Colletotrichum higginsianum is an economically important pathogen that causes anthracnose disease in a wide range of cruciferous crops. To facilitate the efficient control of anthracnose disease, it will be important to understand the mechanism by which the cruciferous crops and C. higginsianum interact. A key step in understanding this interaction is characterizing the mitogen-activated protein kinases (MAPK signaling pathway of C. higginsianum. MAPK plays important roles in diverse physiological processes of multiple pathogens. In this study, a Fus3/Kss1-related MAPK gene, ChMK1, from C. higginsianum was analyzed. The results showed that the Fus3/Kss1-related MAPK ChMK1 plays a significant role in cell wall integrity. Targeted deletion of ChMK1 resulted in a hypersensitivity to cell wall inhibitors, reduced conidiation and albinistic colonies. Further, the deletion mutant was also unable to form melanized appressorium, a specialized infection structure that is necessary for successful infection. Therefore, the deletion mutant loses pathogenicity on A. thaliana leaves, demonstrating that ChMK1 plays an essential role in the early infection step. In addition, the ChMK1 deletion mutant showed an attenuated growth rate that is different from that of its homologue in C. lagenarium, indicating the diverse roles that Fus3/Kss1-related MAPKs plays in phytopathogenic fungi. Furthermore, the expression level of three melanin synthesis associated genes were clearly decreased in the albinistic ChMK1 mutant compared to that of the wild type strain, suggesting that ChMK1 is also required for colony melanization in C. higginsianum.

  10. Buddleja officinalis suppresses high glucose-induced vascular smooth muscle cell proliferation: role of mitogen-activated protein kinases, nuclear factor-kappaB and matrix metalloproteinases.

    Science.gov (United States)

    Lee, Yun Jung; Kim, Jin Sook; Kang, Dae Gill; Lee, Ho Sub

    2010-02-01

    Diabetes mellitus is a well-established risk factor for vascular diseases caused by atherosclerosis. In the development of diabetic atherogenesis, vascular smooth muscle cell proliferation is recognized as a key event. Thus, we aimed to investigate whether an ethanol extract of Buddleja officinalis (EBO) suppresses high glucose-induced proliferation in primary cultured human aortic smooth muscle cells (HASMC). [(3)H]-thymidine incorporation revealed that incubation of HASMC with a high concentration of glucose (25 mmol/L) increased cell proliferation. The expression levels of cell cycle protein were also increased by treatment with high glucose concentration. Pretreatment of HASMC with EBO significantly attenuated the increase of high glucose-induced cell proliferation as well as p38 mitogen-activated protein kinases (MAPK) and JNK phosphorylation. EBO suppressed high glucose-induced matrix metalloproteinase (MMP)-9 activity in a dose-dependent manner. In addition, EBO suppressed nuclear factor-kappaB (NF-kappaB) nuclear translocation and transcriptional activity in high glucose conditions. Taken together, the present data suggest that EBO could suppress high glucose-induced atherosclerotic processes through inhibition of p38, JNK, NF-kappaB and MMP signal pathways in HASMC.

  11. Anti-Angiogenic Action of Neutral Endopeptidase

    Science.gov (United States)

    2007-11-01

    EDTA, 1 mM phenylmethylsulfonyl fluoride , 1 g/ml each of aprotinin, leupeptin, pepstatin, 2 mM sodium orthovanadate) following 2-h pretreatment with...constructs failed to signal through FGF-R (Fig. 4C) and coinci- dentally failed to bind to cultured vascular endothelial cells (Fig. 4D), implying that...nonspecific cyto- toxicity (data not shown). Therefore, we used lentivirus vector at MOI 50 for further studies. Cells were amplified and stored at 801C

  12. Toward a comprehensive phylogenetic reconstruction of the evolutionary history of mitogen-activated protein kinases in the plant kingdom.

    Science.gov (United States)

    Janitza, Philipp; Ullrich, Kristian Karsten; Quint, Marcel

    2012-01-01

    The mitogen-activated protein kinase (MAPK) pathway is a three-tier signaling cascade that transmits cellular information from the plasma membrane to the cytoplasm where it triggers downstream responses. The MAPKs represent the last step in this cascade and are activated when both tyrosine and threonine residues in a conserved TxY motif are phosphorylated by MAPK kinases, which in turn are themselves activated by phosphorylation by MAPK kinase kinases. To understand the molecular evolution of MAPKs in the plant kingdom, we systematically conducted a Hidden-Markov-Model based screen to identify MAPKs in 13 completely sequenced plant genomes. In this analysis, we included green algae, bryophytes, lycophytes, and several mono- and eudicotyledonous species covering >800 million years of evolution. The phylogenetic relationships of the 204 identified MAPKs based on Bayesian inference facilitated the retraction of the sequence of emergence of the four major clades that are characterized by the presence of a TDY or TEY-A/TEY-B/TEY-C type kinase activation loop. We present evidence that after the split of TDY- and TEY-type MAPKs, initially the TEY-C clade emerged. This was followed by the TEY-B clade in early land plants until the TEY-A clade finally emerged in flowering plants. In addition to these well characterized clades, we identified another highly conserved clade of 45 MAPK-likes, members of which were previously described as Mak-homologous kinases. In agreement with their essential functions, molecular population genetic analysis of MAPK genes in Arabidopsis thaliana accessions reveal that purifying selection drove the evolution of the MAPK family, implying strong functional constraints on MAPK genes. Closely related MAPKs most likely subfunctionalized, a process in which differential transcriptional regulation of duplicates may be involved.

  13. Towards a comprehensive phylogenetic reconstruction of the evolutionary history of mitogen-activated protein kinases in the plant kingdom

    Directory of Open Access Journals (Sweden)

    Philipp eJanitza

    2012-12-01

    Full Text Available The mitogen-activated protein kinase (MAPK pathway is a three-tier signaling cascade that transmits cellular information from the plasma membrane to the cytoplasm where it triggers downstream responses. The MAPKs represent the last step in this cascade and are activated when both tyrosine and threonine residues in a conserved TxY motif are phosphorylated by MAPK kinases, which in turn are themselves activated by phosphorylation by MAPK kinase kinases. To understand the molecular evolution of MAPKs in the plant kingdom, we systematically conducted a Hidden-Markov-Model based screen to identify MAPKs in 13 completely sequenced plant genomes. In this analysis, we included green algae, bryophytes, lycophytes, and several mono- and dicotyledonous species covering >800 million years of evolution. The phylogenetic relationships of the 204 identified MAPKs based on Bayesian inference facilitated the retraction of the sequence of emergence of the four major clades that are characterized by the presence of a TDY or TEY-A/TEY-B/TEY-C type kinase activation loop. We present evidence that after the split of TDY- and TEY-type MAPKs, initially the TEY-C clade emerged. This was followed by the TEY-B clade in early land plants until the TEY-A clade finally emerged in flowering plants. In addition to these well characterized clades, we identified another highly conserved clade of 45 MAPK-likes, members of which were previously described as MHKs. In agreement with their essential functions, molecular population genetic analysis of MAPK genes in Arabidopsis thaliana accessions reveal that purifying selection drove the evolution of the MAPK family, implying strong functional constraints on MAPK genes. Closely related MAPKs most likely subfunctionalized, a process in which differential transcriptional regulation of duplicates may be involved.

  14. Effect of Vibrio cholerae neuraminidase on the mitogen response of T lymphocytes. I. Enhancement of macrophage T-lymphocyte cooperation in concanavalin-A-induced lymphocyte activation.

    Science.gov (United States)

    Knop, J

    1980-12-01

    Vibrio cholerae neuraminidase (VCN) enhances the immune response of lymphocytes in various systems, such as antigen- and mitogen-induced blastogenesis, mixed lymphocyte culture (MLC) and tumor-cell response. We used macrophage-depleted and reconstituted murine lymph-node T-cells to investigate the effect of VCN on macrophage-T-lymphocyte co-operation in Con-A-induced lymphocyte activation. In unfractionated lymph-node cells VCN enhanced the Con-A-induced lymphocyte activation as measured by 3H-thymidine (3H-dThd) incorporation. Removing macrophages from the cells resulted in a significantly diminished response. In addition the enhancing effect of VCN was greatly reduced. Reconstitution of the lymphocyte cultures with macrophages in increasing numbers and from various sources rstored the lymphocyte response and the enhancing effect of VCN. VCN proved to be most efficient in cultures reconstituted with normal peritoneal macrophages. Some effect was also observed using bone-marrow-derived (BM) macrophages. However, higher numbers of normal PE macrophages in the presence of VCN inhibited lymphocyte activation, and inhibition by thioglycollate-broth-induced macrophages was considerably increased by VCN. These results suggest that VCN acts by increasing the efficiency of macrophage-T lymphocyte interaction.

  15. Cancer Cell-derived Exosomes Induce Mitogen-activated Protein Kinase-dependent Monocyte Survival by Transport of Functional Receptor Tyrosine Kinases.

    Science.gov (United States)

    Song, Xiao; Ding, Yanping; Liu, Gang; Yang, Xiao; Zhao, Ruifang; Zhang, Yinlong; Zhao, Xiao; Anderson, Gregory J; Nie, Guangjun

    2016-04-15

    Tumor-associated macrophages (TAM) play pivotal roles in cancer initiation and progression. Monocytes, the precursors of TAMs, normally undergo spontaneous apoptosis within 2 days, but can subsist in the inflammatory tumor microenvironment for continuous survival and generation of sufficient TAMs. The mechanisms underlying tumor-driving monocyte survival remain obscure. Here we report that cancer cell-derived exosomes were crucial mediators for monocyte survival in the inflammatory niche. Analysis of the survival-promoting molecules in monocytes revealed that cancer cell-derived exosomes activated Ras and extracellular signal-regulated kinases in the mitogen-activated protein kinase (MAPK) pathway, resulting in the prevention of caspase cleavage. Phosphorylated receptor tyrosine kinases (RTKs), such as phosphorylated epidermal growth factor receptor (EGFR) and human epidermal growth factor receptor 2 (HER-2), were abundantly expressed in cancer cell-derived exosomes. Knock-out of EGFR or/and HER-2, or alternatively, inhibitors against their phosphorylation significantly disturbed the exosome-mediated activation of the MAPK pathway, inhibition of caspase cleavage, and increase in survival rate in monocytes. Moreover, the deprived survival-stimulating activity of exosomes due to null expression of EGFR and HER-2 could be restored by activation of another RTK, insulin receptor. Overall, our study uncovered a mechanism of tumor-associated monocyte survival and demonstrated that cancer cell-derived exosomes can stimulate the MAPK pathway in monocytes through transport of functional RTKs, leading to inactivation of apoptosis-related caspases. This work provides insights into the long sought question on monocyte survival prior to formation of plentiful TAMs in the tumor microenvironment. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  16. Mitogen activated protein kinase 6 and MAP kinase phosphatase 1 are involved in the response of Arabidopsis roots to L-glutamate.

    Science.gov (United States)

    López-Bucio, Jesús Salvador; Raya-González, Javier; Ravelo-Ortega, Gustavo; Ruiz-Herrera, León Francisco; Ramos-Vega, Maricela; León, Patricia; López-Bucio, José; Guevara-García, Ángel Arturo

    2018-03-01

    The function and components of L-glutamate signaling pathways in plants have just begun to be elucidated. Here, using a combination of genetic and biochemical strategies, we demonstrated that a MAPK module is involved in the control of root developmental responses to this amino acid. Root system architecture plays an essential role in plant adaptation to biotic and abiotic factors via adjusting signal transduction and gene expression. L-Glutamate (L-Glu), an amino acid with neurotransmitter functions in animals, inhibits root growth, but the underlying genetic mechanisms are poorly understood. Through a combination of genetic analysis, in-gel kinase assays, detailed cell elongation and division measurements and confocal analysis of expression of auxin, quiescent center and stem cell niche related genes, the critical roles of L-Glu in primary root growth acting through the mitogen-activated protein kinase 6 (MPK6) and the dual specificity serine-threonine-tyrosine phosphatase MKP1 could be revealed. In-gel phosphorylation assays revealed a rapid and dose-dependent induction of MPK6 and MPK3 activities in wild-type Arabidopsis seedlings in response to L-Glu. Mutations in MPK6 or MKP1 reduced or increased root cell division and elongation in response to L-Glu, possibly modulating auxin transport and/or response, but in a PLETHORA1 and 2 independent manner. Our data highlight MPK6 and MKP1 as components of an L-Glu pathway linking the auxin response, and cell division for primary root growth.

  17. Crosstalk between Smad and Mitogen-Activated Protein Kinases for the Regulation of Apoptosis in Cyclosporine A- Induced Renal Tubular Injury

    Directory of Open Access Journals (Sweden)

    Hideyuki Iwayama

    2011-10-01

    Full Text Available Background/Aims: It remains elusive whether there is a crosstalk between Smad and mitogen-activated protein kinases (MAPKs and whether it regulates cyclosporine A (CyA-induced apoptosis in renal proximal tubular cells (RPTCs. Methods: The effect of CyA on nuclear translocation of Smad2/3 and MAPKs (measured by Western blotting or immunofluorescence and apoptosis (determined by Hoechst 33258 staining was examined in HK-2 cells. Results: CyA induced apoptosis at 24 h and nuclear translocation of phosphorylated (p-Smad2/3 at 3 h, which was continued till 24 h. CyA enhanced the expression of p-ERK at 1 h, which was continued till 24 h, and of p-p38MAPK at 1–6 h, which returned to control level at 12 h. CyA did not affect JNK. An inhibitor of ERK, PD98059, prevented CyA-induced nuclear translocation of Smad2/3 and apoptosis. An inhibitor of p38MAPK, SB202190, deteriorated CyA-induced nuclear translocation of p-Smad2/3. Epidermal growth factor (EGF activated ERK and p38MAPK but not JNK. EGF-induced activation of MAPKs ameliorated CyA-induced nuclear translocation of p-Smad2/3 and apoptosis. Inhibition of p38MAPK but not of ERK abolished the protective effect of EGF on CyA-induced nuclear translocation of p-Smad2/3 and apoptosis. Conclusion: Crosstalk between R-Smad and p38MAPK/ERK, but not JNK differentially regulates apoptosis in CyA-induced RPTC injury.

  18. Formation enthalpy of iron, chromium and aluminium vanadates

    International Nuclear Information System (INIS)

    Kesler, Ya.A.; Cheshnitskij, S.M.; Fotiev, A.A.; Tret'yakov, Yu.D.

    1985-01-01

    The enthalpies of formation of FeVO 4 , CrVO 4 and AlVO 4 orthovanadates are determined. The method for measuring reaction heats of direct synthesis of oxide compounds is used. All experiments have been conducted at 973 K. The measurements have been performed by the drop-calorimetry method using high temperature differential microcalorimeter. The specified enthalpy values of FeVO 4 , CrVO 4 , AlVO 4 and FeCr(VO 4 ) 2 formation are obtained

  19. Effect of rare-earth-based nanoparticles on the erythrocyte osmotic adaptation

    OpenAIRE

    О. К. Пакулова; В. К. Kлочков; Н. С. Кавок; И. А. Костина; А. С. Сопотова; В. А. Бондаренко

    2017-01-01

    Rare-earth-based nanoparticles (REB NPs) have been employed in molecular and cell biology due to their unique features. However, their interaction with biosystems and the influence on cell functioning are poorly understood. In this study effect of REB NPs (composed of dielectric nanocrystalls of cerium dioxide and orthovanadates of gadolinium and yttrium) with different form-factor as well as REB NPs-cholesterol complexes on the adaptation of human erythrocytes to hypertonic lysis (4 M NaCl) ...

  20. Low-Cost Direct Detect Spaceborne Lidar

    Science.gov (United States)

    2014-06-01

    Yttrium Aluminum Garnet Nd:YVO4 Neodymium-Doped Yttrium Orthovanadate NAS National Academy of Sciences NEAR/ELR Near Earth Asteroid ...it is on to the next challenge. For if there is anything that you all have taught me, it is to not stop learning, to not stop questioning, to not...enable the creation of more detailed 3-D maps of the world that can aid in planning and disaster response. This thesis will provide analysis of launch

  1. Detection of phosphorylated mitogen-activated protein kinase in the developing spinal cord of the mouse embryo

    International Nuclear Information System (INIS)

    Teraishi, Toshiya; Miura, Kenji

    2011-01-01

    Highlights: → We detected physiologically phosphorylated MAPKs in developing spinal cord. → We detected physiologically phosphorylated MAPKs by an improved method. → p-ERK1/2 and p-JNK1/2 were detected in the marginal layer and the dorsal horn. → p-ERK1/2 and p-JNK1/2 might play critical roles in the developing spinal cord. → Constructing phosphoprotein atlases will be possible if expanding this work. -- Abstract: Global understanding of the proteome is a major research topic. The comprehensive visualization of the distribution of proteins in vivo or the construction of in situ protein atlases may be a valuable strategy for proteomic researchers. Information about the distribution of various proteins under physiological and pathological conditions should be extremely valuable for the basic and clinical sciences. The mitogen-activated protein kinase (MAPK) cascade plays an essential role in intracellular signaling in organisms. This cascade also regulates biological processes involving development, differentiation, and proliferation. Phosphorylation and dephosphorylation are integral reactions in regulating the activity of MAPKs. Changes in the phosphorylation state of MAPKs are rapid and reversible; therefore, the localizations of physiologically phosphorylated MAPKs in vivo are difficult to accurately detect. Furthermore, phosphorylated MAPKs are likely to change phosphorylated states through commonly used experimental manipulations. In the present study, as a step toward the construction of in situ phosphoprotein atlases, we attempted to detect physiologically phosphorylated MAPKs in vivo in developing spinal cords of mice. We previously reported an improved immunohistochemical method for detecting unstable phosphorylated MAPKs. The distribution patterns of phosphorylated MAPKs in the spinal cords of embryonic mice from embryonic day 13 (E13) to E17 were observed with an improved immunohistochemical method. Phosphorylated extracellular signal

  2. Human tonsillar IgE biosynthesis in vitro. I. Enhancement of IgE and IgG synthesis in the presence of pokeweed mitogen by T-cell irradiation

    International Nuclear Information System (INIS)

    Ohta, K.; Manzara, T.; Harbeck, R.J.; Kirkpatrick, C.H.

    1982-01-01

    A study of the events regulating human IgE biosynthesis in vitro was undertaken with tonsillar lymphocytes. IgG synthesis was also studied to evaluate the specificity of our observations. T-cell irradiation significantly enhanced synthesis of IgE by pokeweed mitogen (PWM)-stimulated B cells from 12 of 18 donors and IgG in all 18 donors. This enhancement was the result of de novo immunoglobulin synthesis, since the amount of IgE and IgG spontaneously released from lysed and lysed-and-cultured mononuclear cells was significantly less than that detected in the cell cultures, and the augmentation was completely ablated by the treatment of the cells with cycloheximide or mitomycin C. Enhancement was also dependent on the presence of PWM; T-cell irradiation did not enhance IgE synthesis in unstimulated cultures. Moreover, this enhancement was also observed in the co-cultures of B cells and allogeneic irradiated T cells. These observations suggest that radiosensitive T cells exert a suppressive activity that contributes to regulation of human IgE and IgG synthesis and that the suppressor function as well as the helper function can overcome allogeneic disparities

  3. RNA interference-based (RNAi) suppression of AtMPK6, an Arabidopsis mitogen-activated protein kinase, results in hypersensitivity to ozone and misregulation of AtMPK3

    International Nuclear Information System (INIS)

    Miles, Godfrey P.; Samuel, Marcus A.; Zhang Yuelin; Ellis, Brian E.

    2005-01-01

    The recent increase in tropospheric ozone (O 3 ) concentrations promotes additional oxidative stress through the production of reactive oxygen species (ROS) in plant tissues, resulting in the activation of genes whose products enable the stressed cells to retain their integrity and function. This response is made possible by an integration of highly regulated signaling networks that mediate the perception of, and response to, this oxidative assault. In Arabidopsis thaliana, ROS-induced signaling has been shown to flow through a protein phosphorylation cascade involving the mitogen-activated protein kinases (MAPKs) AtMPK3 (MPK3) and AtMPK6 (MPK6). We found that RNAi-mediated silencing of MPK6 renders the plant more sensitive to ozone, as determined by visible leaf damage. The MPK6-RNAi genotype also displayed a more intense and prolonged activation of MPK3 compared to that of WT plants. An MPK3 loss-of-function genotype is similarly very sensitive to ozone, and displays an abnormally prolonged MPK6 activation profile, suggesting reciprocity in regulation between these two MAPKs. - MPK6 is pivotal in the overall response to oxidative stress and regulation of MPK3 in Arabidopsis thaliana

  4. Mitogen activated protein kinase phosphatase-1 prevents the development of tactile sensitivity in a rodent model of neuropathic pain

    Directory of Open Access Journals (Sweden)

    Ndong Christian

    2012-04-01

    Full Text Available Abstract Background Neuropathic pain due to nerve injury is one of the most difficult types of pain to treat. Following peripheral nerve injury, neuronal and glial plastic changes contribute to central sensitization and perpetuation of mechanical hypersensitivity in rodents. The mitogen activated protein kinase (MAPK family is pivotal in this spinal cord plasticity. MAPK phosphatases (MKPs limit inflammatory processes by dephosphorylating MAPKs. For example, MKP-1 preferentially dephosphorylates p-p38. Since spinal p-p38 is pivotal for the development of chronic hypersensitivity in rodent models of pain, and p-p38 inhibitors have shown clinical potential in acute and chronic pain patients, we hypothesize that induction of spinal MKP-1 will prevent the development of peripheral nerve-injury-induced hypersensitivity and p-p38 overexpression. Results We cloned rat spinal cord MKP-1 and optimize MKP-1 cDNA in vitro using transfections to BV-2 cells. We observed that in vitro overexpression of MKP-1 blocked lipopolysaccharide-induced phosphorylation of p38 (and other MAPKs as well as release of pro-algesic effectors (i.e., cytokines, chemokines, nitric oxide. Using this cDNA MKP-1 and a non-viral, in vivo nanoparticle transfection approach, we found that spinal cord overexpression of MKP-1 prevented development of peripheral nerve-injury-induced tactile hypersensitivity and reduced pro-inflammatory cytokines and chemokines and the phosphorylated form of p38. Conclusions Our results indicate that MKP-1, the natural regulator of p-p38, mediates resolution of the spinal cord pro-inflammatory milieu induced by peripheral nerve injury, resulting in prevention of chronic mechanical hypersensitivity. We propose that MKP-1 is a potential therapeutic target for pain treatment or prevention.

  5. T cell activation and proliferation following acute exercise in human subjects is altered by storage conditions and mitogen selection.

    Science.gov (United States)

    Siedlik, Jacob A; Deckert, Jake A; Benedict, Stephen H; Bhatta, Anuja; Dunbar, Amanda J; Vardiman, John P; Gallagher, Philip M

    2017-07-01

    Recent work investigating exercise induced changes in immunocompetence suggests that some of the ambiguity in the literature is resultant from different cell isolation protocols and mitogen selection. To understand this effect, we compared post-exercise measures of T cell activation and proliferation using two different stimulation methods (costimulation through CD28 or stimulation with phytohaemagglutinin [PHA]). Further, we investigated whether exercise induced changes are maintained when T cell isolation from whole blood is delayed overnight in either a room temperature or chilled (4°C) environment. As expected, an increased proliferation response was observed post-exercise in T cells isolated from whole blood of previously trained individuals immediately after blood collection. Also, cells stimulated with PHA after resting overnight in whole blood were not adversely impacted by the storage conditions. In contrast, allowing cells to rest overnight in whole blood prior to stimulation through CD28, lessened the proliferation observed by cells following exercise rendering both the room temperature and chilled samples closer to the results seen in the control condition. Changes in early markers of activation (CD25), followed a similar pattern, with activation in PHA stimulated cells remaining fairly robust after overnight storage; whereas cell activation following stimulation through CD3+CD28 was disproportionately decreased by the influence of overnight storage. These findings indicate that decisions regarding cell stimulation methods need to be paired with the timeline for T cell isolation from whole blood. These considerations will be especially important for field based studies of immunocompetence where there is a delay in getting whole blood samples to a lab for processing as well as clinical applications where a failure to isolate T cells in a timely manner may result in loss of the response of interest. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Three mitogen-activated protein kinases required for cell wall integrity contribute greatly to biocontrol potential of a fungal entomopathogen.

    Directory of Open Access Journals (Sweden)

    Ying Chen

    Full Text Available Bck1, Mkk1 and Slt2 are three mitogen-activated protein (MAP kinases constituting cell wall integrity (CWI pathway that may control multi-stress responses via crosstalk with high-osmolarity glycerol (HOG pathway in budding yeast. In this study, Bck1, Mkk1 and Slt2 orthologues in Beauveria bassiana were confirmed as the three-module cascade essential for CWI because cell wall impairment occurred in the hyphae and conidia of Δbck1, Δmkk1 and Δslt2 examined in multiple experiments. Strikingly, all the deletion mutants became more sensitive to hyperosmotic NaCl and sorbitol with the Western blot of Hog1 phosphorylation being weakened in Δbck1 and absent in Δmkk1 and Δslt2. Apart from crossing responses to cell wall perturbation and high osmolarity, three deletion mutants exhibited faster growth and conidiation on nutrition-rich medium, much less virulence to Galleria mellonella larvae, and higher sensitivity to nutritional, fungicidal, thermal and UV-B irradiative stresses, accompanied with less accumulation of intracellular mannitol and trehalose. Moreover, Δmkk1 and Δslt2 were equally more sensitive to all the stresses of different types except wet-heat stress than wild type and more or less different from Δbck1 in sensitivity to most of the stresses despite their null responses to two oxidants. All the changes in three deletion mutants were restored by each targeted gene complementation. Taken together, the CWI-required Bck1, Mkk1 and Slt2 are all positive, but differential, regulators of multi-stress tolerance and virulence perhaps due to interplay with the HOG pathway essential for osmoregulation, thereby contributing greatly to the biocontrol potential of the fungal entomopathogen.

  7. Effects of Butyltins (BTs) on Mitogen-Activated-Protein Kinase Kinase Kinase (MAP3K) and Ras Activity in Human Natural Killer Cells

    Science.gov (United States)

    Celada, Lindsay J.; Whalen, Margaret M.

    2013-01-01

    Butyltins (BTs) contaminate the environment and are found in human blood. BTs, tributyltin (TBT) and dibutyltin (DBT), diminish the cytotoxic function and levels of key proteins of human natural killer (NK) cells. NK cells are an initial immune defense against tumors, virally-infected cells and antibody-coated cells and thus critical to human health. The signaling pathways that regulate NK cell functions include mitogen-activated protein kinases (MAPKs). Studies have shown that exposure to BTs leads to the activation of specific MAPKs and MAPK kinases (MAP2Ks) in human NK cells. MAP2K kinases (MAP3Ks) are upstream activators of MAP2Ks, which then activate MAPKs. The current study examined if BT-induced activation of MAP3Ks was responsible for MAP2K and thus, MAPK activation. This study examines the effects of TBT and DBT on the total levels of two MAP3Ks, c-Raf and ASK1, as well as activating and inhibitory phosphorylation sites on these MAP3Ks. In addition, the immediate upstream activator of c-Raf, Ras, was examined for BT-induced alterations. Our results show significant activation of the MAP3K, c-Raf, in human NK cells within 10 minutes of TBT exposure and the MAP3K, ASK1, after one hour exposures to TBT. In addition, our results suggest that both TBT and DBT are impacting the regulation of c-Raf. PMID:24038145

  8. Calcium Hydroxide-induced Proliferation, Migration, Osteogenic Differentiation, and Mineralization via the Mitogen-activated Protein Kinase Pathway in Human Dental Pulp Stem Cells.

    Science.gov (United States)

    Chen, Luoping; Zheng, Lisha; Jiang, Jingyi; Gui, Jinpeng; Zhang, Lingyu; Huang, Yan; Chen, Xiaofang; Ji, Jing; Fan, Yubo

    2016-09-01

    Calcium hydroxide has been extensively used as the gold standard for direct pulp capping in clinical dentistry. It induces proliferation, migration, and mineralization in dental pulp stem cells (DPSCs), but the underlying mechanisms are still unclear. The aim of this study was to investigate the role of the mitogen-activated protein (MAP) kinase pathway in calcium hydroxide-induced proliferation, migration, osteogenic differentiation, and mineralization in human DPSCs. Human DPSCs between passages 3 and 6 were used. DPSCs were preincubated with inhibitors of MAP kinases and cultured with calcium hydroxide. The phosphorylated MAP kinases were detected by Western blot analysis. Cell viability was analyzed via the methylthiazol tetrazolium assay. Cell migration was estimated using the wound healing assay. Alkaline phosphatase (ALP) expression was analyzed using the ALP staining assay. Mineralization was studied by alizarin red staining analysis. Calcium hydroxide significantly promoted the phosphorylation of the c-Jun N-terminal kinase (JNK), p38, and extracellular signal-regulated kinase. The inhibition of JNK and p38 signaling abolished calcium hydroxide-induced proliferation of DPSCs. The inhibition of JNK, p38, and extracellular signal-regulated kinase signaling suppressed the migration, ALP expression, and mineralization of DPSCs. Our study showed that the MAP kinase pathway was involved in calcium hydroxide-induced proliferation, migration, osteogenic differentiation, and mineralization in human DPSCs. Copyright © 2016 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  9. 17beta-estradiol promotes the odonto/osteogenic differentiation of stem cells from apical papilla via mitogen-activated protein kinase pathway.

    Science.gov (United States)

    Li, Yao; Yan, Ming; Wang, Zilu; Zheng, Yangyu; Li, Junjun; Ma, Shu; Liu, Genxia; Yu, Jinhua

    2014-11-17

    Estrogen plays an important role in the osteogenic differentiation of mesenchymal stem cells, while stem cells from apical papilla (SCAP) can contribute to the formation of dentin/bone-like tissues. To date, the effects of estrogen on the differentiation of SCAP remain unclear. SCAP was isolated and treated with 10⁻⁷ M 17beta-estradiol (E2). The odonto/osteogenic potency and the involvement of mitogen-activated protein kinase (MAPK) signaling pathway were subsequently investigated by using methyl-thiazolyl-tetrazolium (MTT) assay, and other methods. MTT and flow cytometry results demonstrated that E2 treatment had no effect on the proliferation of SCAP in vitro, while alkaline phosphatase (ALP) assay and alizarin red staining showed that E2 can significantly promote ALP activity and mineralization ability in SCAP. Real-time reverse transcription polymerase chain reaction (RT-PCR) and western blot assay revealed that the odonto/osteogenic markers (ALP, DMP1/DMP1, DSPP/DSP, RUNX2/RUNX2, OSX/OSX and OCN/OCN) were significantly upregulated in E2-treated SCAP. In addition, the expression of phosphor-p38 and phosphor-JNK in these stem cells was enhanced by E2 treatment, as was the expression of the nuclear downstream transcription factors including phosphor-Sp1, phosphor-Elk-1, phosphor-c-Jun and phosphor-c-Fos, indicating the activation of MAPK signaling pathway during the odonto/osteogenic differentiation of E2-treated SCAP. Conversely, the differentiation of E2-treated SCAP was inhibited in the presence of MAPK specific inhibitors. The ondonto/osteogenic differentiation of SCAP is enhanced by 10⁻⁷ M 17beta-estradiol via the activation of MAPK signaling pathway.

  10. Selective Expansion of Memory CD4+ T cells By Mitogenic Human CD28 Generates Inflammatory Cytokines and Regulatory T cells

    Science.gov (United States)

    Singh, Manisha; Basu, Sreemanti; Camell, Christina; Couturier, Jacob; Nudelman, Rodolfo J.; Medina, Miguel A.; Rodgers, John R.; Lewis, Dorothy E.

    2009-01-01

    Co-stimulatory signals are important for development of effector and regulatory T cells. In this case, CD28 signaling is usually considered inert in the absence of signaling through the TCR. By contrast, mitogenic rat CD28 mAbs reportedly expand regulatory T cells without TCR stimulation. We found that a commercially available human CD28 mAb (ANC28) stimulated PBMCs without TCR co-ligation or cross-linking; ANC28 selectively expanded CD4+CD25+FoxP3−(T effector) and CD4+CD25+FoxP3+ (Treg) cells. ANC28 stimulated the CD45RO+ CD4+ (memory) population whereas CD45RA+CD4+ (naïve) cells did not respond. ANC28 also induced inflammatory cytokines. Treg induced by ANC28 retain the Treg phenotype longer than did co-stimulated Treg. Treg induced by ANC28 suppressed CD25− T cells through a contact-dependent mechanism. Purity influenced the response of CD4+CD25+ cells because bead-purified CD4+CD25+ cells (85–90% pure) responded strongly to ANC28, whereas 98% pure FACS-sorted CD4+CD25 bright (T-reg) did not respond. Purified CD4+CD25int cells responded similarly to the bead-purified CD4+CD25+ cells. Thus, pre-activated CD4+ T cells (CD25int) respond to ANC28 rather than Treg (CD25bright). The ability of ANC28 to expand both effectors producing inflammatory cytokines as well as suppressive regulatory T cells might be useful for ex vivo expansion of therapeutic T cells. PMID:18446791

  11. Monosodium iodoacetate-induced joint pain is associated with increased phosphorylation of mitogen activated protein kinases in the rat spinal cord

    Directory of Open Access Journals (Sweden)

    Jarvis Michael F

    2011-05-01

    Full Text Available Abstract Background Intra-articular injection of monosodium iodoacetate (MIA in the knee joint of rats disrupts chondrocyte metabolism resulting in cartilage degeneration and subsequent nociceptive behavior that has been described as a model of osteoarthritis (OA pain. Central sensitization through activation of mitogen activated protein kinases (MAPKs is recognized as a pathogenic mechanism in chronic pain. In the present studies, induction of central sensitization as indicated by spinal dorsal horn MAPK activation, specifically ERK and p38 phosphorylation, was assessed in the MIA-OA model. Results Behaviorally, MIA-injected rats displayed reduced hind limb grip force 1, 2, and 3 weeks post-MIA treatment. In the same animals, activation of phospho ERK1/2 was gradually increased, reaching a significant level at post injection week 3. Conversely, phosphorylation of p38 MAPK was enhanced maximally at post injection week 1 and decreased, but remained elevated, thereafter. Double labeling from 3-wk MIA rats demonstrated spinal pERK1/2 expression in neurons, but not glia. In contrast, p-p38 was expressed by microglia and a subpopulation of neurons, but not astrocytes. Additionally, there was increased ipsilateral expression of microglia, but not astrocytes, in 3-wk MIA-OA rats. Consistent with increased MAPK immunoreactivity in the contralateral dorsal horn, mechanical allodynia to the contralateral hind-limb was observed 3-wk following MIA. Finally, intrathecal injection of the MEK1 inhibitor PD98059 blocked both reduced hind-limb grip force and pERK1/2 induction in MIA-OA rats. Conclusion Results of these studies support the role of MAPK activation in the progression and maintenance of central sensitization in the MIA-OA experimental pain model.

  12. Specific and differential activation of mitogen-activated protein kinase cascades by unfamiliar taste in the insular cortex of the behaving rat.

    Science.gov (United States)

    Berman, D E; Hazvi, S; Rosenblum, K; Seger, R; Dudai, Y

    1998-12-01

    Rats were given to drink an unfamiliar taste solution under conditions that result in long-term memory of that taste. The insular cortex, which contains the taste cortex, was then removed and assayed for activation of mitogen-activated protein kinase (MAPK) cascades by using antibodies to the activated forms of various MAPKs. Extracellular responsive kinase 1-2 (ERK1-2) in the cortical homogenate was significantly activated within taste solution, without alteration in the total level of the ERK1-2 proteins. The activity subsided to basal levels within ERK1-2 was not activated when the taste was made familiar. The effect of the unfamiliar taste was specific to the insular cortex. Jun N-terminal kinase 1-2 (JNK1-2) was activated by drinking the taste but with a delayed time course, whereas the activity of Akt kinase and p38MAPK remained unchanged. Elk-1, a member of the ternary complex factor and an ERK/JNK downstream substrate, was activated with a time course similar to that of ERK1-2. Microinjection of a reversible inhibitor of MAPK/ERK kinase into the insular cortex shortly before exposure to the novel taste in a conditioned taste aversion training paradigm attenuated long-term taste aversion memory without significantly affecting short-term memory or the sensory, motor, and motivational faculties required to express long-term taste aversion memory. It was concluded that ERK and JNK are specifically and differentially activated in the insular cortex after exposure to a novel taste, and that this activation is required for consolidation of long-term taste memory.

  13. Expression Profiling of Mitogen-Activated Protein Kinase Genes Reveals Their Evolutionary and Functional Diversity in Different Rubber Tree (Hevea brasiliensis Cultivars

    Directory of Open Access Journals (Sweden)

    Xiang Jin

    2017-10-01

    Full Text Available Rubber tree (Hevea brasiliensis is the only commercially cultivated plant for producing natural rubber, one of the most essential industrial raw materials. Knowledge of the evolutionary and functional characteristics of kinases in H. brasiliensis is limited because of the long growth period and lack of well annotated genome information. Here, we reported mitogen-activated protein kinases in H. brasiliensis (HbMPKs by manually checking and correcting the rubber tree genome. Of the 20 identified HbMPKs, four members were validated by proteomic data. Protein motif and phylogenetic analyses classified these members into four known groups comprising Thr-Glu-Tyr (TEY and Thr-Asp-Tyr (TDY domains, respectively. Evolutionary and syntenic analyses suggested four duplication events: HbMPK3/HbMPK6, HbMPK8/HbMPK9/HbMPK15, HbMPK10/HbMPK12 and HbMPK11/HbMPK16/HbMPK19. Expression profiling of the identified HbMPKs in roots, stems, leaves and latex obtained from three cultivars with different latex yield ability revealed tissue- and variety-expression specificity of HbMPK paralogues. Gene expression patterns under osmotic, oxidative, salt and cold stresses, combined with cis-element distribution analyses, indicated different regulation patterns of HbMPK paralogues. Further, Ka/Ks and Tajima analyses suggested an accelerated evolutionary rate in paralogues HbMPK10/12. These results revealed HbMPKs have diverse functions in natural rubber biosynthesis, and highlighted the potential possibility of using MPKs to improve stress tolerance in future rubber tree breeding.

  14. The Air Liquid-interface, a Skin Microenvironment, Promotes Growth of Melanoma Cells, but not Their Apoptosis and Invasion, through Activation of Mitogen-activated Protein Kinase

    International Nuclear Information System (INIS)

    Hong Yee, Chong; Aoki, Shigehisa; Uchihashi, Kazuyoshi; Matsunobu, Aki; Yamasaki, Fumio; Misago, Noriyuki; Piao, Meihua; Tetsuji, Uemura; Yonemitsu, Nobuhisa; Sugihara, Hajime; Toda, Shuji

    2010-01-01

    The air-liquid interface (ALI) is a common microenvironment of the skin, but it is unknown whether the ALI affects melanoma cell behaviors. Using a collagen gel invasion assay, immunohistochemistry, and Western blots, here we show that melanoma cell proliferation in cultures with an ALI is higher than melanoma cell proliferation in submerged cultures. Bromodeoxyuridine (BrdU) uptake, an indicator of cell proliferation, of melanoma cells at the ALI was about 3 times that of submerged cells, while ALI and submerged melanoma cells had similar levels of single-stranded DNA (a marker of apoptosis). The ALI enhanced the expression of Raf-1, MEK-1 and pERK-1/2 components of the mitogen-activated protein kinase (MAPK) cascade, in cells more than the submerged condition did. The increases in BrdU uptake and pERK-1/2 expression promoted by ALI was abolished by the MEK inhibitor, PD-98059. ALI-treated and submerged melanoma cells did not infiltrate into the collagen gel, and they showed no significant difference in the expression of the invasion- and motility-related molecules, matrix metalloproteinase-1 and -9, laminin 5, and filamin A. Our data indicate that the ALI, a skin microenvironment, accelerates the growth, but not the apoptosis or invasion, of melanoma cells through MAPK activation

  15. Lead orthovanadate and some vanadium-lead compounds with the apatite structure

    Energy Technology Data Exchange (ETDEWEB)

    Baran, E J; Botto, I L; Aymonino, P J [La Plata Univ. Nacional (Argentina). Facultad de Ciencias Exactas

    1976-06-01

    The infrared and Raman spectra of Pb/sub 3/(VO/sub 4/)/sub 2/ are recorded and discussed with the aid of the 'site symmetry' rules. The i.r. spectra of the compounds Pb/sub 5/(VO/sub 4/)/sub 3/X (X=F, Cl, Br), Pb/sub 5/(VO/sub 4/)/sub 2/GeO/sub 4/, Pb/sub 5/(VO/sub 4/)/sub 2/SiO/sub 4/ (all with apatite structure) are also measured and briefly discussed. The X-ray, spectroscopic and analytical investigation of the lead vanadates precipitated from solutions, shows that in this cases mixed crystals of complicated nature, with the apatite structure, are obtained.

  16. Excessive L-cysteine induces vacuole-like cell death by activating endoplasmic reticulum stress and mitogen-activated protein kinase signaling in intestinal porcine epithelial cells.

    Science.gov (United States)

    Ji, Yun; Wu, Zhenlong; Dai, Zhaolai; Sun, Kaiji; Zhang, Qing; Wu, Guoyao

    2016-01-01

    High intake of dietary cysteine is extremely toxic to animals and the underlying mechanism remains largely unknown. This study was conducted to test the hypothesis that excessive L-cysteine induces cell death by activating endoplasmic reticulum (ER) stress and mitogen-activated protein kinase (MAPK) signaling in intestinal porcine epithelial cells. Jejunal enterocytes were cultured in the presence of 0-10 mmol/L L-cysteine. Cell viability, morphologic alterations, mRNA levels for genes involved in ER stress, protein abundances for glucose-regulated protein 78, C/EBP homologous protein (CHOP), alpha subunit of eukaryotic initiation factor-2 (eIF2α), extracellular signal-regulated kinase (ERK1/2), p38 MAPK, and c-Jun N-terminal protein kinase (JNK1/2) were determined. The results showed that L-cysteine (5-10 mmol/L) reduced cell viability (P L-cysteine were not affected by the autophagy inhibitor 3-methyladenine. The protein abundances for CHOP, phosphorylated (p)-eIF2α, p-JNK1/2, p-p38 MAPK, and the spliced form of XBP-1 mRNA were enhanced (P L-cysteine induces vacuole-like cell death via the activation of ER stress and MAPK signaling in small intestinal epithelial cells. These signaling pathways may be potential targets for developing effective strategies to prevent the toxicity of dietary cysteine.

  17. MaHog1, a Hog1-type mitogen-activated protein kinase gene, contributes to stress tolerance and virulence of the entomopathogenic fungus Metarhizium acridum.

    Science.gov (United States)

    Jin, Kai; Ming, Yue; Xia, Yu Xian

    2012-12-01

    Fungal biocontrol agents have great potential in integrated pest management. However, poor efficacy and sensitivity to various adverse factors have hampered their wide application. In eukaryotic cells, Hog1 kinase plays a critical role in stress responses. In this study, MaHog1 (GenBank accession no. EFY85878), encoding a member of the Hog1/Sty1/p38 mitogen-activated protein kinase family in Metarhizium (Me.) acridum, was identified. Targeted gene disruption was used to analyse the role of MaHog1 in virulence and tolerance of adverse factors. Mutants with MaHog1 depletion showed increased sensitivity to high osmotic stress, high temperature and oxidative stress, and exhibited remarkable resistance to cell wall-disturbing agents. These results suggest that Hog1 kinase has a conserved function in regulating multistress responses among fungi, and that MaHog1 might influence cell wall biogenesis in Me. acridum. Bioassays conducted with topical inoculation and intrahaemocoel injection revealed that MaHog1 is required for both penetration and postpenetration development of Me. acridum. MaHog1 disruption resulted in a significant reduction in virulence, likely due to the combination of a decrease in conidial germination, a reduction in appressorium formation and a decline in growth rate in insect haemolymph, which might be caused by impairing fungal tolerance of various stresses during infection.

  18. Effect of irradiation on human T-cell proliferation: low dose irradiation stimulates mitogen-induced proliferation and function of the suppressor/cytotoxic T-cell subset

    International Nuclear Information System (INIS)

    Gualde, N.; Goodwin, J.S.

    1984-01-01

    Unfractionated human T cells exposed to 10-50 rad of X irradiation incorporated less [ 3 H]thymidine than nonirradiated T cells when subsequently cultured with PHA or Con A. The cytotoxic/suppressor T-cell subset, isolated as either OKT8(+) or OKT4(-) cells, demonstrated significantly enhanced [ 3 H]thymidine incorporation in PHA- or Con A-stimulated cultures after exposure to 10-50 rad, compared to unirradiated cells, while the proliferation of the OKT4(+) helper/inducer subset was inhibited by low dose irradiation. It has been previously reported that approximately 30% of the cytotoxic/suppressor subset also stains with OKM1. When the cytotoxic/suppressor subset was further subdivided into OKT4(-), OKM1(+), and OKT4(-), OKM1(-) cells, proliferation of the OKT4(-), OKM1(+) population was inhibited by exposure to 25 rad while proliferation of the OKT4(-), OKM1(-) population was stimulated. The increase in proliferation of the cytotoxic/suppressor T-cell subset after low dose irradiation is paralleled by an increase in suppressor activity of these cells. T cells exposed to 25 rad and then cultured with Con A for 48 hr caused greater inhibition of IgG production when added to fresh autologous lymphocytes stimulated by pokeweed mitogen than did unirradiated cells. Thus, low dose irradiation enhances both the proliferation and function of the human suppressor T-cell subset

  19. Formation enthalpy of iron, chromium and aluminium vanadates

    Energy Technology Data Exchange (ETDEWEB)

    Kesler, Ya.A.; Cheshnitskij, S.M.; Fotiev, A.A.; Tret' yakov, Yu.D.

    1985-04-01

    The enthalpies of formation of FeVO/sub 4/, CrVO/sub 4/ and AlVO/sub 4/ orthovanadates are determined. The method for measuring reaction heats of direct synthesis of oxide compounds is used. All experiments have been conducted at 973 K. The measurements have been performed by the drop-calorimetry method using high temperature differential microcalorimeter. The specified enthalpy values of FeVO/sub 4/, CrVO/sub 4/, AlVO/sub 4/ and FeCr(VO/sub 4/)/sub 2/ formation are obtained.

  20. The yeast mitogen-activated protein kinase Slt2 is involved in the cellular response to genotoxic stress

    Directory of Open Access Journals (Sweden)

    Soriano-Carot María

    2012-02-01

    Full Text Available Abstract Background The maintenance of genomic integrity is essential for cell viability. Complex signalling pathways (DNA integrity checkpoints mediate the response to genotoxic stresses. Identifying new functions involved in the cellular response to DNA-damage is crucial. The Saccharomyces cerevisiae SLT2 gene encodes a member of the mitogen-activated protein kinase (MAPK cascade whose main function is the maintenance of the cell wall integrity. However, different observations suggest that SLT2 may also have a role related to DNA metabolism. Results This work consisted in a comprehensive study to connect the Slt2 protein to genome integrity maintenance in response to genotoxic stresses. The slt2 mutant strain was hypersensitive to a variety of genotoxic treatments, including incubation with hydroxyurea (HU, methylmetanosulfonate (MMS, phleomycin or UV irradiation. Furthermore, Slt2 was activated by all these treatments, which suggests that Slt2 plays a central role in the cellular response to genotoxic stresses. Activation of Slt2 was not dependent on the DNA integrity checkpoint. For MMS and UV, Slt2 activation required progression through the cell cycle. In contrast, HU also activated Slt2 in nocodazol-arrested cells, which suggests that Slt2 may respond to dNTP pools alterations. However, neither the protein level of the distinct ribonucleotide reductase subunits nor the dNTP pools were affected in a slt2 mutant strain. An analysis of the checkpoint function revealed that Slt2 was not required for either cell cycle arrest or the activation of the Rad53 checkpoint kinase in response to DNA damage. However, slt2 mutant cells showed an elongated bud and partially impaired Swe1 degradation after replicative stress, indicating that Slt2 could contribute, in parallel with Rad53, to bud morphogenesis control after genotoxic stresses. Conclusions Slt2 is activated by several genotoxic treatments and is required to properly cope with DNA damage. Slt

  1. Protection of Human Podocytes from Shiga Toxin 2-Induced Phosphorylation of Mitogen-Activated Protein Kinases and Apoptosis by Human Serum Amyloid P Component

    Science.gov (United States)

    Dettmar, Anne K.; Binder, Elisabeth; Greiner, Friederike R.; Liebau, Max C.; Kurschat, Christine E.; Jungraithmayr, Therese C.; Saleem, Moin A.; Schmitt, Claus-Peter; Feifel, Elisabeth; Orth-Höller, Dorothea; Kemper, Markus J.; Pepys, Mark; Würzner, Reinhard

    2014-01-01

    Hemolytic uremic syndrome (HUS) is mainly induced by Shiga toxin 2 (Stx2)-producing Escherichia coli. Proteinuria can occur in the early phase of the disease, and its persistence determines the renal prognosis. Stx2 may injure podocytes and induce proteinuria. Human serum amyloid P component (SAP), a member of the pentraxin family, has been shown to protect against Stx2-induced lethality in mice in vivo, presumably by specific binding to the toxin. We therefore tested the hypothesis that SAP can protect against Stx2-induced injury of human podocytes. To elucidate the mechanisms underlying podocyte injury in HUS-associated proteinuria, we assessed Stx2-induced activation of mitogen-activated protein kinases (MAPKs) and apoptosis in immortalized human podocytes and evaluated the impact of SAP on Stx2-induced damage. Human podocytes express Stx2-binding globotriaosylceramide 3. Stx2 applied to cultured podocytes was internalized and then activated p38α MAPK and c-Jun N-terminal kinase (JNK), important signaling steps in cell differentiation and apoptosis. Stx2 also activated caspase 3, resulting in an increased level of apoptosis. Coincubation of podocytes with SAP and Stx2 mitigated the effects of Stx2 and induced upregulation of antiapoptotic Bcl2. These data suggest that podocytes are a target of Stx2 and that SAP protects podocytes against Stx2-induced injury. SAP may therefore be a useful therapeutic option. PMID:24566618

  2. Activation of Extracellular Signal-Regulated Kinase but Not of p38 Mitogen-Activated Protein Kinase Pathways in Lymphocytes Requires Allosteric Activation of SOS

    Science.gov (United States)

    Jun, Jesse E.; Yang, Ming; Chen, Hang; Chakraborty, Arup K.

    2013-01-01

    Thymocytes convert graded T cell receptor (TCR) signals into positive selection or deletion, and activation of extracellular signal-related kinase (ERK), p38, and Jun N-terminal protein kinase (JNK) mitogen-activated protein kinases (MAPKs) has been postulated to play a discriminatory role. Two families of Ras guanine nucleotide exchange factors (RasGEFs), SOS and RasGRP, activate Ras and the downstream RAF-MEK-ERK pathway. The pathways leading to lymphocyte p38 and JNK activation are less well defined. We previously described how RasGRP alone induces analog Ras-ERK activation while SOS and RasGRP cooperate to establish bimodal ERK activation. Here we employed computational modeling and biochemical experiments with model cell lines and thymocytes to show that TCR-induced ERK activation grows exponentially in thymocytes and that a W729E allosteric pocket mutant, SOS1, can only reconstitute analog ERK signaling. In agreement with RasGRP allosterically priming SOS, exponential ERK activation is severely decreased by pharmacological or genetic perturbation of the phospholipase Cγ (PLCγ)-diacylglycerol-RasGRP1 pathway. In contrast, p38 activation is not sharply thresholded and requires high-level TCR signal input. Rac and p38 activation depends on SOS1 expression but not allosteric activation. Based on computational predictions and experiments exploring whether SOS functions as a RacGEF or adaptor in Rac-p38 activation, we established that the presence of SOS1, but not its enzymatic activity, is critical for p38 activation. PMID:23589333

  3. Arabidopsis Raf-Like Mitogen-Activated Protein Kinase Kinase Kinase Gene Raf43 Is Required for Tolerance to Multiple Abiotic Stresses.

    Directory of Open Access Journals (Sweden)

    Nasar Virk

    Full Text Available Mitogen-activated protein kinase (MAPK cascades are critical signaling modules that mediate the transduction of extracellular stimuli into intracellular response. A relatively large number of MAPKKKs have been identified in a variety of plant genomes but only a few of them have been studied for their biological function. In the present study, we identified an Arabidopsis Raf-like MAPKKK gene Raf43 and studied its function in biotic and abiotic stress response using a T-DNA insertion mutant raf43-1 and two Raf43-overexpressing lines Raf43-OE#1 and Raf43-OE#13. Expression of Raf43 was induced by multiple abiotic and biotic stresses including treatments with drought, mannitol and oxidative stress or defense signaling molecule salicylic acid and infection with necrotrophic fungal pathogen Botrytis cinerea. Seed germination and seedling root growth of raf43-1 were significantly inhibited on MS medium containing mannitol, NaCl, H2O2 or methyl viologen (MV while seed germination and seedling root growth of the Raf43-OE#1 and Raf43-OE#13 lines was similar to wild type Col-0 under the above stress conditions. Soil-grown raf43-1 plants exhibited reduced tolerance to MV, drought and salt stress. Abscisic acid inhibited significantly seed germination and seedling root growth of the raf43-1 line but had no effect on the two Raf43-overexpressing lines. Expression of stress-responsive RD17 and DREB2A genes was significantly down-regulated in raf43-1 plants. However, the raf43-1 and Raf43-overexpressing plants showed similar disease phenotype to the wild type plants after infection with B. cinerea or Pseudomonas syringae pv. tomato DC3000. Our results demonstrate that Raf43, encoding for a Raf-like MAPKKK, is required for tolerance to multiple abiotic stresses in Arabidopsis.

  4. Duration of streptozotocin-induced diabetes differentially affects p38-mitogen-activated protein kinase (MAPK phosphorylation in renal and vascular dysfunction

    Directory of Open Access Journals (Sweden)

    Gupta Akanksha

    2005-03-01

    Full Text Available Abstract Background In the present study we tested the hypothesis that progression of streptozotocin (STZ-induced diabetes (14-days to 28-days would produce renal and vascular dysfunction that correlate with altered p38- mitogen-activated protein kinase (p38-MAPK phosphorylation in kidneys and thoracic aorta. Methods Male Sprague Dawley rats (350–400 g were randomized into three groups: sham (N = 6, 14-days diabetic (N = 6 and 28-days diabetic rats (N = 6. Diabetes was induced using a single tail vein injection of STZ (60 mg/kg, I.V. on the first day. Rats were monitored for 28 days and food, water intake and plasma glucose levels were noted. At both 14-days and 28-days post diabetes blood samples were collected and kidney cortex, medulla and aorta were harvested from each rat. Results The diabetic rats lost body weight at both 14-days (-10% and 28-days (-13% more significantly as compared to sham (+10% group. Glucose levels were significantly elevated in the diabetic rats at both 14-days and 28-days post-STZ administration. Renal dysfunction as evidenced by renal hypertrophy, increased plasma creatinine concentration and reduced renal blood flow was observed in 14-days and 28-days diabetes. Vascular dysfunction as evidenced by decreased carotid blood flow was observed in 14-days and 28-days diabetes. We observed an up-regulation of inducible nitric oxide synthase (iNOS, prepro endothelin-1 (preproET-1 and phosphorylated p38-MAPK in thoracic aorta and kidney cortex but not in kidney medulla in 28-days diabetes group. Conclusion The study provides evidence that diabetes produces vascular and renal dysfunction with a profound effect on signaling mechanisms at later stage of diabetes.

  5. Nodularin induces tumor necrosis factor-alpha and mitogen-activated protein kinases (MAPK) and leads to induction of endoplasmic reticulum stress

    Energy Technology Data Exchange (ETDEWEB)

    Meili, Nicole; Christen, Verena [University of Applied Sciences and Arts Northwestern Switzerland (FHNW), Gründenstrasse 40, CH-4132 Muttenz (Switzerland); Fent, Karl, E-mail: karl.fent@fhnw.ch [University of Applied Sciences and Arts Northwestern Switzerland (FHNW), Gründenstrasse 40, CH-4132 Muttenz (Switzerland); Swiss Federal Institute of Technology Zürich (ETH Zürich), Department of Environmental Systems Science, CH-8092 Zürich (Switzerland)

    2016-06-01

    Nodularin is produced by the cyanobacterium Nodularia spumigena. It is of concern due to hepatotoxicity in humans and animals. Here we investigated unexplored molecular mechanisms by transcription analysis in human liver cells, focusing on induction of pro-inflammatory cytokines, the tumor necrosis factor α (TNF-α), endoplasmic reticulum (ER) stress and components of the activator protein-1 complex in human hepatoma cells (Huh7) exposed to non-cytotoxic (0.1 and 1 μM) and toxic concentrations (5 μM) for 24, 48, and 72 h. Transcripts of TNF-α and ER stress marker genes were strongly induced at 1 and 5 μM at all time-points. TNF-α led to induction of mitogen-activated protein kinases (MAPK), as demonstrated by induction of CJUN and CFOS, which form the AP-1 complex. Human primary liver cells reacted more sensitive than Huh7 cells. They showed higher cytotoxicity and induction of TNF-α and ER stress at 2.5 nM, while HepG2 cells were insensitive up to 10 μM due to low expression of organic anion transporting polypeptides. Furthermore, nodularin led to induction of TNF-α protein, and CCAAT/enhancer-binding protein-homologous (CHOP) protein. Our data indicate that nodularin induces inflammation and ER stress and leads to activation of MAPK in liver cells. All of these activated pathways, which were analysed here for the first time in detail, may contribute to the hepatotoxic, and tumorigenic action of nodularin. - Highlights: • Toxicity of nodularin and its mechanisms of action are poorly understood. • We investigated mechanisms of nodularin toxicity in human liver cell lines and human hepatocytes. • We identified several pathways involved in nodularin toxicity. • Nodularin induces TNF-α, MAPK pathway and ER stress • These activated pathways may contribute to the hepatotoxic and tumorigenic action of nodularin.

  6. Nodularin induces tumor necrosis factor-alpha and mitogen-activated protein kinases (MAPK) and leads to induction of endoplasmic reticulum stress

    International Nuclear Information System (INIS)

    Meili, Nicole; Christen, Verena; Fent, Karl

    2016-01-01

    Nodularin is produced by the cyanobacterium Nodularia spumigena. It is of concern due to hepatotoxicity in humans and animals. Here we investigated unexplored molecular mechanisms by transcription analysis in human liver cells, focusing on induction of pro-inflammatory cytokines, the tumor necrosis factor α (TNF-α), endoplasmic reticulum (ER) stress and components of the activator protein-1 complex in human hepatoma cells (Huh7) exposed to non-cytotoxic (0.1 and 1 μM) and toxic concentrations (5 μM) for 24, 48, and 72 h. Transcripts of TNF-α and ER stress marker genes were strongly induced at 1 and 5 μM at all time-points. TNF-α led to induction of mitogen-activated protein kinases (MAPK), as demonstrated by induction of CJUN and CFOS, which form the AP-1 complex. Human primary liver cells reacted more sensitive than Huh7 cells. They showed higher cytotoxicity and induction of TNF-α and ER stress at 2.5 nM, while HepG2 cells were insensitive up to 10 μM due to low expression of organic anion transporting polypeptides. Furthermore, nodularin led to induction of TNF-α protein, and CCAAT/enhancer-binding protein-homologous (CHOP) protein. Our data indicate that nodularin induces inflammation and ER stress and leads to activation of MAPK in liver cells. All of these activated pathways, which were analysed here for the first time in detail, may contribute to the hepatotoxic, and tumorigenic action of nodularin. - Highlights: • Toxicity of nodularin and its mechanisms of action are poorly understood. • We investigated mechanisms of nodularin toxicity in human liver cell lines and human hepatocytes. • We identified several pathways involved in nodularin toxicity. • Nodularin induces TNF-α, MAPK pathway and ER stress • These activated pathways may contribute to the hepatotoxic and tumorigenic action of nodularin.

  7. Silibinin and its 2,3-dehydro-derivative inhibit basal cell carcinoma growth via suppression of mitogenic signaling and transcription factors activation.

    Science.gov (United States)

    Tilley, Cynthia; Deep, Gagan; Agarwal, Chapla; Wempe, Michael F; Biedermann, David; Valentová, Kateřina; Kren, Vladimir; Agarwal, Rajesh

    2016-01-01

    Basal cell carcinoma (BCC) is the most common cancer worldwide, and its current treatment options are insufficient and toxic. Surprisingly, unlike several other malignancies, chemopreventive efforts against BCC are almost lacking. Silibinin, a natural agent from milk thistle seeds, has shown strong efficacy against several cancers including ultraviolet radiation-induced skin (squamous) cancer; however, its potential activity against BCC is not yet examined. Herein, for the first time, we report the efficacy of silibinin and its oxidation product 2,3-dehydrosilibinin (DHS) against BCC both in vitro and in vivo using ASZ (p53 mutated) and BSZ (p53 deleted) cell lines derived from murine BCC tumors. Both silibinin and DHS significantly inhibited cell growth and clonogenicity while inducing apoptosis in a dose- and time-dependent manner, with DHS showing higher activity at lower concentrations. Both agents also inhibited the mitogenic signaling by reducing EGFR, ERK1/2, Akt, and STAT3 phosphorylation and suppressed the activation of transcription factors NF-κB and AP-1. More importantly, in an ectopic allograft model, oral administration of silibinin and DHS (200 mg/kg body weight) strongly inhibited the ASZ tumor growth by 44% and 71% (P < 0.05), respectively, and decreased the expression of proliferation biomarkers (PCNA and cyclin D1) as well as NF-κB p50 and c-Fos in the tumor tissues. Taken together, these results provide the first evidence for the efficacy and usefulness of silibinin and its derivative DHS against BCC, and suggest the need for additional studies with these agents in pre-clinical and clinical BCC chemoprevention and therapy models. © 2014 Wiley Periodicals, Inc.

  8. Tributyltin-induced apoptosis requires glycolytic adenosine trisphosphate production.

    Science.gov (United States)

    Stridh, H; Fava, E; Single, B; Nicotera, P; Orrenius, S; Leist, M

    1999-10-01

    The toxicity of tributyltin chloride (TBT) involves Ca(2+) overload, cytoskeletal damage, and mitochondrial failure leading to cell death by apoptosis or necrosis. Here, we examined whether the intracellular ATP level modulates the mode of cell death after exposure to TBT. When Jurkat cells were energized by the mitochondrial substrate, pyruvate, low concentrations of TBT (1-2 microM) triggered an immediate depletion of intracellular ATP followed by necrotic death. When ATP levels were maintained by the addition of glucose, the mode of cell death was typically apoptotic. Glycolytic ATP production was required for apoptosis at two distinct steps. First, maintenance of adequate ATP levels accelerated the decrease of mitochondrial membrane potential, and the release of the intermembrane proteins adenylate kinase and cytochrome c from mitochondria. A possible role of the adenine nucleotide exchanger in this first ATP-dependent step is suggested by experiments performed with the specific inhibitor, bongkrekic acid. This substance delayed cytochrome c release in a manner similar to that caused by ATP depletion. Second, caspase activation following cytochrome c release was only observed in ATP-containing cells. Bcl-2 had only a minor effect on TBT-triggered caspase activation or cell death. We conclude that intracellular ATP concentrations control the mode of cell death in TBT-treated Jurkat cells at both the mitochondrial and caspase activation levels.

  9. Characterization and molecular modeling of Inositol 1,3,4 tris phosphate 5/6 kinase-2 from Glycine max (L) Merr.: comprehending its evolutionary conservancy at functional level.

    Science.gov (United States)

    Marathe, Ashish; Krishnan, Veda; Mahajan, Mahesh M; Thimmegowda, Vinutha; Dahuja, Anil; Jolly, Monica; Praveen, Shelly; Sachdev, Archana

    2018-01-01

    Soybean genome encodes a family of four inositol 1,3,4 trisphosphate 5/6 kinases which belong to the ATP-GRASP group of proteins. Inositol 1,3,4 trisphosphate kinase-2 ( GmItpk2 ), catalyzing the ATP-dependent phosphorylation of Inositol 1,3,4 trisphosphate (IP3) to Inositol 1,3,4,5 tetra phosphate or Inositol 1,3,4,6 tetra phosphate, is a key enzyme diverting the flux of inositol phosphate pool towards phytate biosynthesis. Although considerable research on characterizing genes involved in phytate biosynthesis is accomplished at genomic and transcript level, characterization of the proteins is yet to be explored. In the present study, we report the isolation and expression of single copy Itpk 2 (948 bp) from Glycine max cv Pusa-16 predicted to encode 315 amino acid protein with an isoelectric point of 5.9. Sequence analysis revealed that Gm ITPK2 shared highest similarity (80%) with Phaseolus vulgaris. The predicted 3D model confirmed 12 α helices and 14 β barrel sheets with ATP-binding site close to β sheet present towards the C-terminus of the protein molecule. Spatio-temporal transcript profiling signified GmItpk2 to be seed specific, with higher transcript levels in the early stage of seed development. The present study using various molecular and bio-computational tools could, therefore, help in improving our understanding of this key enzyme and prove to be a potential target towards generating low phytate trait in nutritionally rich crop like soybean.

  10. Effect of rare-earth-based nanoparticles on the erythrocyte osmotic adaptation

    Directory of Open Access Journals (Sweden)

    О. К. Пакулова

    2017-09-01

    Full Text Available Rare-earth-based nanoparticles (REB NPs have been employed in molecular and cell biology due to their unique features. However, their interaction with biosystems and the influence on cell functioning are poorly understood. In this study effect of REB NPs (composed of dielectric nanocrystalls of cerium dioxide and orthovanadates of gadolinium and yttrium with different form-factor as well as REB NPs-cholesterol complexes on the adaptation of human erythrocytes to hypertonic lysis (4 M NaCl has been evaluated spectrophotometrically. It appeared that the degree of cell damage in the presence of REP NPs under hyperosmotic conditions varied with geometric parameters of REB NPs. Specifically: i ultra-small (2 nm spherical CeO2 or GdYVO4:Eu3+ NPs, penetrating through the plasma membrane, ii grain-like (8´30 nm GdVO4:Eu3+ NPs, adsorbed on the membrane surface, iii and spherical GdYVO4:Eu3+ NPs-cholesterol complexes promoted cell adaptation to hypertonic lysis. Furthermore, the composition of nanoparticles affected their stabilizing effect on the cells. E.g., orthovanadate NPs at 0.1 g/l had the highest antihemolytic activity after short preincubation, while cerium dioxide NPs showed the same effect after prolonged preincubation. In conclusion, REB NPs promoted hyperosmotic cell adaptation by the two different mechanisms, viz. membrane stabilization by the adsorption on the cell surface and/or penetration into the cell.

  11. Fluorometrická metoda pro in vitro měření ligandem otevíraných iontových kanálů pro Ca2+ v rostlinnách

    Czech Academy of Sciences Publication Activity Database

    Krinke, Ondřej; Novotná, Z.; Valentová, O.; Martinec, Jan

    2003-01-01

    Roč. 68, č. 3 (2003), s. 195-199 ISSN 0366-0486 R&D Projects: GA MŠk LN00A081 Institutional research plan: CEZ:AV0Z5038910 Keywords : Calcium ion channels * D-myo-inositol-1,4,-trisphosphate Subject RIV: CE - Biochemistry

  12. Hypoxia-induced mitogenic factor (HIMF/FIZZ1/RELM alpha recruits bone marrow-derived cells to the murine pulmonary vasculature.

    Directory of Open Access Journals (Sweden)

    Daniel J Angelini

    2010-06-01

    Full Text Available Pulmonary hypertension (PH is a disease of multiple etiologies with several common pathological features, including inflammation and pulmonary vascular remodeling. Recent evidence has suggested a potential role for the recruitment of bone marrow-derived (BMD progenitor cells to this remodeling process. We recently demonstrated that hypoxia-induced mitogenic factor (HIMF/FIZZ1/RELM alpha is chemotactic to murine bone marrow cells in vitro and involved in pulmonary vascular remodeling in vivo.We used a mouse bone marrow transplant model in which lethally irradiated mice were rescued with bone marrow transplanted from green fluorescent protein (GFP(+ transgenic mice to determine the role of HIMF in recruiting BMD cells to the lung vasculature during PH development. Exposure to chronic hypoxia and pulmonary gene transfer of HIMF were used to induce PH. Both models resulted in markedly increased numbers of BMD cells in and around the pulmonary vasculature; in several neomuscularized small (approximately 20 microm capillary-like vessels, an entirely new medial wall was made up of these cells. We found these GFP(+ BMD cells to be positive for stem cell antigen-1 and c-kit, but negative for CD31 and CD34. Several of the GFP(+ cells that localized to the pulmonary vasculature were alpha-smooth muscle actin(+ and localized to the media layer of the vessels. This finding suggests that these cells are of mesenchymal origin and differentiate toward myofibroblast and vascular smooth muscle. Structural location in the media of small vessels suggests a functional role in the lung vasculature. To examine a potential mechanism for HIMF-dependent recruitment of mesenchymal stem cells to the pulmonary vasculature, we performed a cell migration assay using cultured human mesenchymal stem cells (HMSCs. The addition of recombinant HIMF induced migration of HMSCs in a phosphoinosotide-3-kinase-dependent manner.These results demonstrate HIMF-dependent recruitment of BMD

  13. EphA2 modulates radiosensitive of hepatocellular carcinoma cells via p38/mitogen-activated protein kinase-mediated signal pathways

    Directory of Open Access Journals (Sweden)

    Qiao Jin

    2015-10-01

    Full Text Available This experiment was conducted to investigate the role of EPH receptor A2 (EphA2 in the modulation of radiosensitivity of hepatic cellular cancer (HCC cells and to determine whether p38/mitogen-activated protein kinase (p38MAPK signaling mediated EphA2 function in this respect. The protein expressions of EphA2 and phosphorylated p38MAPK were tested in HCC and normal hepatic tissues. In HCC 97H cells, EphA2 was overexpressed and knocked out by transfection with EphA2 expression vector and EphA2-ShRNA, respectively, prior to cell exposure to low-dose irradiation. Significantly upregulated EphA2 and phosphorylated p38MAPK were observed in HCC tissues, compared with those in normal hepatic tissues. Low-dose irradiation (1 Gy only caused minor damage to HCC 97H cells, as assessed by alterations in cell viability, apoptosis rate, and cell healing capacity (p = 0.072, p = 0.078, and p = 0.069 respectively. However, EphA2 knock-out in HCC 97H cells induced significant reduction in cell viability and cell healing capacity after these cells were subjected to low-dose irradiation. Apoptosis rate underwent dramatic increase (p < 0.01. By contrast, EphA2 overexpression in HCC 97H cells reversed these effects and enhanced cell colony formation rate, thus displaying remarkable attenuation of radiosensitivity of HCC 97H cells. Further, SB203580, a specific inhibitor of p38MAPK, was added to HCC 97H cells over-expressing EphA2. The effect of EphA2 overexpression on the radiosensitivity of HCC 97H cells was abrogated. Thus, the present study indicates that EphA2 have the ability to negatively regulate the radiosensitivity of HCC 97H cells, which mainly depends on 38MAPK-mediated signal pathways.

  14. Lattice effects in HoVo3 single crystal

    International Nuclear Information System (INIS)

    Sikora, M.; Marquina, C.; Ibarra, M.R.; Nugroho, A.A.; Palstra, T.T.M.

    2007-01-01

    We report the study of lattice effects in the Mott insulator HoVO 3 performed by means of linear thermal expansion on a single crystal in the temperature range 10-290 K. The holmium orthovanadate HoVO 3 reveals gradual orbital ordering (OO) below T OO =200 K and orders antiferromagnetically at T N =113 K. A first-order structural phase transition takes place at T S ∼38 K, which is probably accompanied by change of the OO type and hence the type of antiferromagnetic spin ordering

  15. Nonspecific activation of murine lymphocytes. IV. Proliferation of a distinct, late maturing lymphocyte subpopulation induced by 2-mercaptoethanol

    International Nuclear Information System (INIS)

    Goodman, M.G.; Fidler, J.M.; Weigle, W.O.

    1978-01-01

    The lymphocyte subpopulations that are activated by 2-ME, LPS, poly IC, and PPD were studied in terms of their maturational characteristics. Attempts to stimulate hepatic and splenic lymphoid cells from mice of different ages with these mitogens demonstrated a well ordered sequence for the emergency of mitogen responsiveness in C3H mice: reactivity to LPS and Poly IC was observed early in maturation and was followed by that to PPD, and finally by the development of responsiveness to 2-ME. The same sequence appeared when the mitogen responsiveness of lethally irradiated, fetal liver-reconstituted syngeneic adult recipients was examined. The mitogenic action of 2-ME was dissociated from its ability to enhance lymphocyte reactivity to other mitogens in mice too young to respond to 2-ME as a mitogen. Experiments in which additivity of responses was assayed by adding mitogens to culture singly or conjointly indicated that LPS and Poly IC activate nearly identical B lymphocyte subpopulations, whereas PPD stimulates a subset of cells distinct from that which is responsive to the former two mitogens. The mitogen responsiveness of CBA/N mice, relative to normal CBA/WEHI mice, was shown to decrease as a function of the maturity of the subpopulation of lymphocytes activated. The CBA/N mouse was shown to be unresponsive to stimulation by 2-ME

  16. Expression of the Grb2-related protein of the lymphoid system in B cell subsets enhances B cell antigen receptor signaling through mitogen-activated protein kinase pathways.

    Science.gov (United States)

    Yankee, Thomas M; Solow, Sasha A; Draves, Kevin D; Clark, Edward A

    2003-01-01

    Adapter proteins play a critical role in regulating signals triggered by Ag receptor cross-linking. These small molecules link receptor proximal events with downstream signaling pathways. In this study, we explore the expression and function of the Grb2-related protein of the lymphoid system (GrpL)/Grb2-related adaptor downstream of Shc adapter protein in human B cells. GrpL is expressed in naive B cells and is down-regulated following B cell Ag receptor ligation. By contrast, germinal center and memory B cells express little or no GrpL. Using human B cell lines, we detected constitutive interactions between GrpL and B cell linker protein, Src homology (SH)2 domain-containing leukocyte protein of 76 kDa, hemopoietic progenitor kinase 1, and c-Cbl. The N-terminal SH3 domain of GrpL binds c-Cbl while the C-terminal SH3 domain binds B cell linker protein and SH2 domain-containing leukocyte protein of 76 kDa. Exogenous expression of GrpL in a GrpL-negative B cell line leads to enhanced Ag receptor-induced extracellular signal-related kinase and p38 mitogen-activated protein kinase phosphorylation. Thus, GrpL expression in human B cell subsets appears to regulate Ag receptor-mediated signaling events.

  17. Polyclonal activation of rat B cells. I. A single mitogenic signal can stimulate proliferation, but three signals are required for differentiation

    International Nuclear Information System (INIS)

    Stunz, L.L.; Feldbush, T.L.

    1986-01-01

    A water-soluble, proteinaceous preparation derived from the cell walls of Salmonella typhimurium Re mutants has recently been tested in this laboratory for its ability to act as a mitogen for rat lymphocytes. This preparation (STM) has been found to be a potent simulator of B lymphocyte proliferation, as measured both by 3 H-TdR incorporation and by cell cycle analysis performed with flow cytofluorometry. STM stimulates approximately 50% of rat B cells to enter cycle. Previous investigations by others have shown that at least two sets of signals are required for B cell differentiation; (a) proliferation signals that may consist of both a stimulator of B cell conversion from G 0 to G 1 and growth factors, and (b) differentiation signals that probably include at least two B cell differentiation factors (BCDF). When STM was tested in a differentiation system it did not drive purified B cells to differentiate to PFC, either alone or when supplemented with a supernatant from concanavalin A-stimulated spleen cells (CAS). However, when both CAS and dextran sulfate (DXS) were supplied to the STM-stimulated cells, a large number of PFC resulted. DXT does not act by stimulating an additional, CAS-responsive B cell subset, since it has only a marginal effect upon 3 H-TdR uptake and does not increase the number of B cells in cycle when used together with STM. The authors that the two agents may be acting sequentially: STM stimulates the B cells to proliferate, and DXS drives the proliferating cells to become responsive to CAS. This suggests that the signals for B cell differentiation must consist of at least three activities: a trigger to stimulate the cells to proliferate, a factor to drive the cells to a BCDF-responsive state, and a BCDF that can drive the cells to secrete antibody

  18. Carprofen induction of p75NTR-dependent apoptosis via the p38 mitogen-activated protein kinase pathway in prostate cancer cells.

    Science.gov (United States)

    Khwaja, Fatima S; Quann, Emily J; Pattabiraman, Nagarajan; Wynne, Shehla; Djakiew, Daniel

    2008-11-01

    The p75 neurotrophin receptor (p75(NTR)) functions as a tumor suppressor in prostate epithelial cells, where its expression declines with progression to malignant cancer. Previously, we showed that treatment with R-flurbiprofen or ibuprofen induced p75(NTR) expression in several prostate cancer cell lines leading to p75(NTR)-mediated decreased survival. Using the 2-phenyl propionic acid moiety of these profens as a pharmacophore, we screened an in silico database of 30 million compounds and identified carprofen as having an order of magnitude greater activity for induction of p75(NTR) levels and inhibition of cell survival. Prostate (PC-3 and DU-145) and bladder (T24) cancer cells were more sensitive to carprofen induction of p75(NTR)-associated loss of survival than breast (MCF-7) and fibroblast (3T3) cells. Transfection of prostate cell lines with a dominant-negative form of p75(NTR) before carprofen treatment partially rescued cell survival, showing a cause-and-effect relationship between carprofen induction of p75(NTR) levels and inhibition of survival. Carprofen induced apoptotic nuclear fragmentation in prostate but not in MCF-7 and 3T3 cells. Furthermore, small interfering RNA knockdown of the p38 mitogen-activated protein kinase (MAPK) protein prevented induction of p75(NTR) by carprofen in both prostate cell lines. Carprofen treatment induced phosphorylation of p38 MAPK as early as within 1 min. Expression of a dominant-negative form of MK2, the kinase downstream of p38 MAPK frequently associated with signaling cascades leading to apoptosis, prevented carprofen induction of the p75(NTR) protein. Collectively, we identify carprofen as a highly potent profen capable of inducing p75(NTR)-dependent apoptosis via the p38 MAPK pathway in prostate cancer cells.

  19. The p38 mitogen activated protein kinase regulates β-amyloid protein internalization through the α7 nicotinic acetylcholine receptor in mouse brain.

    Science.gov (United States)

    Ma, Kai-Ge; Lv, Jia; Yang, Wei-Na; Chang, Ke-Wei; Hu, Xiao-Dan; Shi, Li-Li; Zhai, Wan-Ying; Zong, Hang-Fan; Qian, Yi-Hua

    2018-03-01

    Alzheimer's disease (AD) is one of the most devastating neurodegenerative disorders. Intracellular β-amyloid protein (Aβ) is an early event in AD. It induces the formation of amyloid plaques and neuron damage. The α7 nicotinic acetylcholine receptor (α7nAChR) has been suggested to play an important role in Aβ caused cognition. It has high affinity with Aβ and could mediate Aβ internalization in vitro. However, whether in mouse brain the p38 MAPK signaling pathway is involved in the regulation of the α7nAChR mediated Aβ internalization and their role in mitochondria remains little known. Therefore, in this study, we revealed that Aβ is internalized by cholinergic and GABAergic neurons. The internalized Aβ were found deposits in lysosomes/endosomes and mitochondria. Aβ could form Aβ-α7nAChR complex with α7nAChR, activates the p38 mitogen activated protein kinase (MAPK). And the increasing of α7nAChR could in return mediate Aβ internalization in the cortex and hippocampus. In addition, by using the α7nAChR agonist PNU282987, the p38 phosphorylation level decreases, rescues the biochemical changes which are tightly associated with Aβ-induced apoptosis, such as Bcl2/Bax level, cytochrome c (Cyt c) release. Collectively, the p38 MAPK signaling pathway could regulate the α7nAChR-mediated internalization of Aβ. The activation of α7nAChR or the inhibition of p38 MAPK signaling pathway may be a beneficial therapy to AD. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Effects of phorbol ester on mitogen-activated protein kinase kinase activity in wild-type and phorbol ester-resistant EL4 thymoma cells.

    Science.gov (United States)

    Gause, K C; Homma, M K; Licciardi, K A; Seger, R; Ahn, N G; Peterson, M J; Krebs, E G; Meier, K E

    1993-08-05

    Phorbol ester-sensitive and -resistant EL4 thymoma cell lines differ in their ability to activate mitogen-activated protein kinase (MAPK) in response to phorbol ester. Treatment of wild-type EL4 cells with phorbol ester results in the rapid activations of MAPK and pp90rsk kinase, a substrate for MAPK, while neither kinase is activated in response to phorbol ester in variant EL4 cells. This study examines the activation of MAPK kinase (MAPKK), an activator of MAPK, in wild-type and variant EL4 cells. Phosphorylation of a 40-kDa substrate, identified as MAPK, was observed following in vitro phosphorylation reactions using cytosolic extracts or Mono Q column fractions prepared from phorbol ester-treated wild-type EL4 cells. MAPKK activity coeluted with a portion of the inactive MAPK upon Mono Q anion-exchange chromatography, permitting detection of the MAPKK activity in fractions containing both kinases. This MAPKK activity was present in phorbol ester-treated wild-type cells, but not in phorbol ester-treated variant cells or in untreated wild-type or variant cells. The MAPKK from wild-type cells was able to activate MAPK prepared from either wild-type or variant cells. MAPKK activity could be stimulated in both wildtype and variant EL4 cells in response to treatment of cells with okadaic acid. These results indicate that the failure of variant EL4 cells to activate MAP kinase in response to phorbol ester is due to a failure to activate MAPKK. Therefore, the step that confers phorbol ester resistance to variant EL4 cells lies between the activation of protein kinase C and the activation of MAPKK.

  1. ASH1L Suppresses Matrix Metalloproteinase through Mitogen-activated Protein Kinase Signaling Pathway in Pulpitis.

    Science.gov (United States)

    Bei, Yin; Tianqian, Hui; Fanyuan, Yu; Haiyun, Luo; Xueyang, Liao; Jing, Yang; Chenglin, Wang; Ling, Ye

    2017-02-01

    Pulpitis is an inflammation of dental pulp produced by a response to external stimuli. The response entails substantial cellular and molecular activities. Both genetic and epigenetic regulators contribute to the occurrence of pulpitis. However, the epigenetic mechanisms are still poorly understood. In this research, we studied the role of the absent, small, or homeotic-like (ASH1L) gene in the process of pulpitis. Human dental pulp cells (HDPCs) were stimulated with proinflammatory cytokine tumor necrosis factor alpha (TNF-α). Gene expression profiling was performed to assess the occurrence of epigenetic regulators. Pulp tissue from rat experimental pulpitis was subjected to immunofluorescence to detect the occurrence of ASH1L and trimethylation of lysine 4 histone 3 (H3K4me3). The presence of ASH1L in HDPCs that had been generated by TNF-α stimulation was analyzed by Western blot procedures and cellular immunofluorescence. Once detected, ASH1L was silenced through the use of specific small interfering RNA. The effects of ASH1L on the occurrence and operation of matrix metalloproteinases (MMPs) were then tested by analysis of quantitative polymerase chain reactions, Western blotting, and zymography. Chromatin immunoprecipitation was performed to detect whether ASH1L and H3K4me3 were present in the promoter regions of MMPs. We then used Western blot procedures to examine the nuclear factor kappa B and the mitogen-activated protein kinase (MAPK) responses to the silencing of ASH1L. We also examined the specific pathway involved in ASH1L regulation of the MMPs. After stimulating HDPCs with TNF-α, ASH1L emerged as 1 of the most strongly induced epigenetic mediators. We found that TNF-α treatment induced the expression of ASH1L through the nuclear factor kappa B and MAPK signal pathways. ASH1L was found in both the nucleus and the cytoplasm. TNF-α treatment was particularly active in inducing the accumulation of ASH1L in cellular cytoplasm. As is also consistent

  2. The Histone Deacetylase Inhibitors MS-275 and SAHA Suppress the p38 Mitogen-Activated Protein Kinase Signaling Pathway and Chemotaxis in Rheumatoid Arthritic Synovial Fibroblastic E11 Cells

    Directory of Open Access Journals (Sweden)

    Hai-Shu Lin

    2013-11-01

    Full Text Available MS-275 (entinostat and SAHA (vorinostat, two histone deacetylase (HDAC inhibitors currently in oncological trials, have displayed potent anti-rheumatic activities in rodent models of rheumatoid arthritis (RA. To further elucidate their anti-inflammatory mechanisms, the impact of MS-275 and SAHA on the p38 mitogen-activated protein kinase (MAPK signaling pathway and chemotaxis was assessed in human rheumatoid arthritic synovial fibroblastic E11 cells. MS-275 and SAHA significantly suppressed the expression of p38α  MAPK, but induced the expression of MAPK phosphatase-1 (MKP-1, an endogenous suppressor of p38α  in E11 cells. At the same time, the association between p38α and MKP-1 was up-regulated and consequently, the activation (phosphorylation of p38α  was inhibited. Moreover, MS-275 and SAHA suppressed granulocyte chemotactic protein-2 (GCP-2, monocyte chemotactic protein-2 (MCP-2 and macrophage migration inhibitory factor (MIF in E11 cells in a concentration-dependent manner. Subsequently, E11-driven migration of THP-1 and U937 monocytes was inhibited. In summary, suppression of the p38 MAPK signaling pathway and chemotaxis appear to be important anti-rheumatic mechanisms of action of these HDAC inhibitors.

  3. Effects of sustained sleep restriction on mitogen-stimulated cytokines, chemokines and T helper 1/ T helper 2 balance in humans.

    Directory of Open Access Journals (Sweden)

    John Axelsson

    Full Text Available BACKGROUND: Recent studies suggest that acute sleep deprivation disrupts cellular immune responses by shifting T helper (Th cell activity towards a Th2 cytokine profile. Since little is known about more long-term effects, we investigated how five days of sleep restriction would affect pro-inflammatory, chemotactic, Th1- and Th2 cytokine secretion. METHODS: Nine healthy males participated in an experimental sleep protocol with two baseline sleep-wake cycles (sleep 23.00-07.00 h followed by 5 days with restricted sleep (03.00-07.00 h. On the second baseline day and on the fifth day with restricted sleep, samples were drawn every third hour for determination of cytokines/chemokines (tumor necrosis factor alpha (TNF-α, interleukin (IL -1β, IL-2, IL-4 and monocyte chemoattractant protein-1 (MCP-1 after in vitro stimulation of whole blood samples with the mitogen phytohemagglutinin (PHA. Also leukocyte numbers, mononuclear cells and cortisol were analysed. RESULTS: 5-days of sleep restriction affected PHA-induced immune responses in several ways. There was a general decrease of IL-2 production (p<.05. A shift in Th1/Th2 cytokine balance was also evident, as determined by a decrease in IL2/IL4 ratio. No other main effects of restricted sleep were shown. Two significant interactions showed that restricted sleep resulted in increased TNF-α and MCP-1 in the late evening and early night hours (p's<.05. In addition, all variables varied across the 24 h day. CONCLUSIONS: 5-days of sleep restriction is characterized by a shift towards Th2 activity (i.e. lower 1L-2/IL-4 ratio which is similar to the effects of acute sleep deprivation and psychological stress. This may have implications for people suffering from conditions characterized by excessive Th2 activity like in allergic disease, such as asthma, for whom restricted sleep could have negative consequences.

  4. Inhibition of mitogen-activated protein kinase kinase, DNA methyltransferase, and transforming growth factor-β promotes differentiation of human induced pluripotent stem cells into enterocytes.

    Science.gov (United States)

    Kodama, Nao; Iwao, Takahiro; Kabeya, Tomoki; Horikawa, Takashi; Niwa, Takuro; Kondo, Yuki; Nakamura, Katsunori; Matsunaga, Tamihide

    2016-06-01

    We previously reported that small-molecule compounds were effective in generating pharmacokinetically functional enterocytes from human induced pluripotent stem (iPS) cells. In this study, to determine whether the compounds promote the differentiation of human iPS cells into enterocytes, we investigated the effects of a combination of mitogen-activated protein kinase kinase (MEK), DNA methyltransferase (DNMT), and transforming growth factor (TGF)-β inhibitors on intestinal differentiation. Human iPS cells cultured on feeder cells were differentiated into endodermal cells by activin A. These endodermal-like cells were then differentiated into intestinal stem cells by fibroblast growth factor 2. Finally, the cells were differentiated into enterocyte cells by epidermal growth factor and small-molecule compounds. After differentiation, mRNA expression levels and drug-metabolizing enzyme activities were measured. The mRNA expression levels of the enterocyte marker sucrase-isomaltase and the major drug-metabolizing enzyme cytochrome P450 (CYP) 3A4 were increased by a combination of MEK, DNMT, and TGF-β inhibitors. The mRNA expression of CYP3A4 was markedly induced by 1α,25-dihydroxyvitamin D3. Metabolic activities of CYP1A1/2, CYP2B6, CYP2C9, CYP2C19, CYP3A4/5, UDP-glucuronosyltransferase, and sulfotransferase were also observed in the differentiated cells. In conclusion, MEK, DNMT, and TGF-β inhibitors can be used to promote the differentiation of human iPS cells into pharmacokinetically functional enterocytes. Copyright © 2016 The Japanese Society for the Study of Xenobiotics. Published by Elsevier Ltd. All rights reserved.

  5. MCF-7 human mammary adenocarcinoma cells exhibit augmented responses to human insulin on a collagen IV surface

    DEFF Research Database (Denmark)

    Listov-Saabye, Nicolai; Jensen, Marianne Blirup; Kiehr, Benedicte

    2009-01-01

    Human mammary cell lines are extensively used for preclinical safety assessment of insulin analogs. However, it is essentially unknown how mitogenic responses can be optimized in mammary cell-based systems. We developed an insulin mitogenicity assay in MCF-7 human mammary adenocarcinoma cells......, under low serum (0.1% FCS) and phenol red-free conditions, with 3H thymidine incorporation as endpoint. Based on EC50 values determined from 10-fold dilution series, beta-estradiol was the most potent mitogen, followed by human IGF-1, human AspB10 insulin and native human insulin. AspB10 insulin...... was significantly more mitogenic than native insulin, validating the ability of the assay to identify hypermitogenic human insulin analogs. With MCF-7 cells on a collagen IV surface, the ranking of mitogens was maintained, but fold mitogenic responses and dynamic range and steepness of dose-response curves were...

  6. A unified nomenclature and amino acid numbering for human PTEN

    NARCIS (Netherlands)

    Pulido, Rafael; Baker, Suzanne J; Barata, Joao T; Carracedo, Arkaitz; Cid, Victor J; Chin-Sang, Ian D; Davé, Vrushank; den Hertog, Jeroen; Devreotes, Peter; Eickholt, Britta J; Eng, Charis; Furnari, Frank B; Georgescu, Maria-Magdalena; Gericke, Arne; Hopkins, Benjamin; Jiang, Xeujun; Lee, Seung-Rock; Lösche, Mathias; Malaney, Prerna; Matias-Guiu, Xavier; Molina, María; Pandolfi, Pier Paolo; Parsons, Ramon; Pinton, Paolo; Rivas, Carmen; Rocha, Rafael M; Rodríguez, Manuel S; Ross, Alonzo H; Serrano, Manuel; Stambolic, Vuk; Stiles, Bangyan; Suzuki, Akira; Tan, Seong-Seng; Tonks, Nicholas K; Trotman, Lloyd C; Wolff, Nicolas; Woscholski, Rudiger; Wu, Hong; Leslie, Nicholas R

    2014-01-01

    The tumor suppressor PTEN is a major brake for cell transformation, mainly due to its phosphatidylinositol 3,4,5-trisphosphate [PI(3,4,5)P3] phosphatase activity that directly counteracts the oncogenicity of phosphoinositide 3-kinase (PI3K). PTEN mutations are frequent in tumors and in the germ line

  7. Xingshentongqiao Decoction Mediates Proliferation, Apoptosis, Orexin-A Receptor and Orexin-B Receptor Messenger Ribonucleic Acid Expression and Represses Mitogen-activated Protein Kinase Signaling

    Directory of Open Access Journals (Sweden)

    Yuanli Dong

    2015-01-01

    Full Text Available Background: Hypocretin (HCRT signaling plays an important role in the pathogenesis of narcolepsy and can be significantly influenced by Chinese herbal therapy. Our previous study showed that xingshentongqiao decoction (XSTQ is clinically effective for the treatment of narcolepsy. To determine whether XSTQ improves narcolepsy by modulating HCRT signaling, we investigated its effects on SH-SY5Y cell proliferation, apoptosis, and HCRT receptor 1/2 (orexin receptor 1 [OX1R] and orexin receptor 2 [OX2R] expression. The signaling pathways involved in these processes were also assessed. Methods: The effects of XSTQ on proliferation and apoptosis in SH-SY5Y cells were assessed using cell counting kit-8 and annexin V-fluorescein isothiocyanate assays. OX1R and OX2R expression was assessed by quantitative real-time polymerase chain reaction analysis. Western blotting for mitogen-activated protein kinase (MAPK pathway activation was performed to further assess the signaling mechanism of XSTQ. Results: XSTQ reduced the proliferation and induced apoptosis of SH-SY5Y cells. This effect was accompanied by the upregulation of OX1R and OX2R expression and the reduced phosphorylation of extracellular signal-regulated kinase (Erk 1/2, p38 MAPK and c-Jun N-terminal kinase (JNK. Conclusions: XSTQ inhibits proliferation and induces apoptosis in SH-SY5Y cells. XSTQ also promotes OX1R and OX2R expression. These effects are associated with the repression of the Erk1/2, p38 MAPK, and JNK signaling pathways. These results define a molecular mechanism for XSTQ in regulating HCRT and MAPK activation, which may explain its ability to treat narcolepsy.

  8. Targeting p38 Mitogen-Activated Protein Kinase Signaling Restores Subventricular Zone Neural Stem Cells and Corrects Neuromotor Deficits in Atm Knockout Mouse

    Science.gov (United States)

    Kim, Jeesun

    2012-01-01

    Ataxia-telangiectasia (A-T) is a progressive degenerative disorder that results in major neurological disability. In A-T patients, necropsy has revealed atrophy of cerebellar cortical layers along with Purkinje and granular cell loss. We have previously identified an oxidative stress-mediated increase in phospho-p38 mitogen-activated protein kinase (MAPK) and the resultant downregulation of Bmi-1 and upregulation of p21 as key components of the mechanism causing defective proliferation of neural stem cells (NSCs) isolated from the subventricular zone (SVZ) of Atm−/− mice. However, the in vivo aspect of alteration in SVZ tissue and the functional significance of p38MAPK activation in NSCs for neuropathogenesis of ATM deficiency remain unknown. Here we show that the NSC population was abnormally decreased in the SVZ of 3-month-old Atm−/− mice; this decrease was accompanied by p38MAPK activation. However, after a 2-month treatment with the p38MAPK inhibitor SB203580, starting at 1 month old, Atm−/− mice showed restoration of normal levels of Bmi-1 and p21 with the rescue of NSC population in the SVZ. In addition, treated Atm−/− mice exhibited more Purkinje cells in the cerebellum. Most importantly, motor coordination of Atm−/− mice was significantly improved in the treatment group. Our results show for the first time in vivo evidence of depleted NSCs in the SVZ of Atm−/− mice and also demonstrate that pharmacologic inhibition of p38MAPK signaling has the potential to treat neurological defects of A-T. This study provides a promising approach targeting the oxidative stress-dependent p38 signaling pathway not only for A-T but also for other neurodegenerative disorders. PMID:23197859

  9. Upstream and Downstream Co-inhibition of Mitogen-Activated Protein Kinase and PI3K/Akt/mTOR Pathways in Pancreatic Ductal Adenocarcinoma

    Directory of Open Access Journals (Sweden)

    Matthew H. Wong

    2016-07-01

    Full Text Available BACKGROUND: Extensive cross talk exists between PI3K/Akt/mTOR and mitogen-activated protein kinase (MAPK pathways, and both are upregulated in pancreatic ductal adenocarcinoma (PDAC. Our previous study suggested that epidermal growth factor receptor inhibitor erlotinib which acts upstream of these pathways acts synergistically with PI3K inhibitors in PDAC. Horizontal combined blockade upstream and downstream of these two pathways is therefore explored. METHODS: Erlotinib paired with PI3K inhibitor (BYL719 was tested against erlotinib plus dual PI3K/mTOR inhibitor BEZ-235, and MEK inhibitor (PD98059 plus BEZ235, on five primary PDAC cell lines and on two pairs of parent and erlotinib-resistant (ER cell lines. A range of in vitro assays including cell proliferation, Western blotting, migration, clonogenic, cell cycle, and apopotic assays was used to test for the efficacy of combined blockade. RESULTS: Dual downstream blockade of the MAPK and PAM pathways was more effective in attenuating downstream molecular signals. Synergy was demonstrated for erlotinib and BEZ235 and for PD-98059 and BEZ-235. This resulted in a trend of increased growth cell cycle arrest, apoptosis, cell proliferation, and colony and migration suppression. This combination showed more efficacy in cell lines with acquired resistance to erlotinib. CONCLUSIONS: The additional mTOR blockade provided by BEZ235 in combined blockade resulted in increased anticancer effect. The hypersensitivity of ER cell lines to additional mTOR blockade suggested PAM pathway oncogenic dependence via mTOR. Dual downstream combined blockade of MAPK and PAM pathways with MEK and PI3K/mTOR inhibitor appeared most effective and represents an attractive therapeutic strategy against pancreatic cancer and its associated drug resistance.

  10. Neuroprotective effects of ebselen in traumatic brain injury model: involvement of nitric oxide and p38 mitogen-activated protein kinase signalling pathway.

    Science.gov (United States)

    Wei, Liang; Zhang, Yanfei; Yang, Cheng; Wang, Qi; Zhuang, Zhongwei; Sun, Zhiyang

    2014-02-01

    Previous investigations have found that ebselen is able to treat neurodegenerative diseases caused by radical and acute total cerebral ischaemia. The aim of the present study was to investigate the neuroprotective effects of ebselen in a traumatic brain injury (TBI) model. Ninety Sprague-Dawley rats were randomly divided into five groups (n = 18 in each): (i) sham operation; (ii) an injury model group; (iii) low-dose (3 mg/kg) ebselen-treated group; (iv) a moderate-dose (10 mg/kg) ebselen-treated group; and (v) a high-dose (30 mg/kg) ebselen-treated group. The TBI model was created according using a modified weight-drop model. Neurological severity score (NSS), brain water content and histopathological deficits were assessed as parameters of injury severity. Expression of nitric oxide (NO), inducible NO synthase (iNOS) mRNA, Toll-like receptor (TLR) and phosphorylated (p-) p38 mitogen-activated protein kinase (MAPK) were examined by chemical colorimetry, quantitative polymerase chain reaction and western blotting 24 h after intragastric ebselen administration. Rats in the TBI model group exhibited markedly more severe neurological injury (higher NSS, more brain water content and more histopathological deficits) than those in the sham-operated group. Ebselen treatment significantly ameliorated the neurological injury of TBI rats in a dose-dependent manner. Moreover, ebselen significantly reduced the NO and iNOS mRNA levels and inhibited TLR4 and p-p38 MAPK expression, indicating the involvement of NO and p38 MAPK signalling pathways in the neuroprotection afforded by ebselen. In conclusion, ebselen ameliorated neurological injury, possibly by reducing NO levels and modulating the TLR4-mediated p38 MAPK signalling pathway. Therefore, ebselen may have potential to treat secondary injuries of TBI. © 2013 Wiley Publishing Asia Pty Ltd.

  11. Effects of tyrosine kinase and phosphatase inhibitors on mitosis progression in synchronized tobacco BY-2 cells.

    Science.gov (United States)

    Sheremet, Ya A; Yemets, A I; Azmi, A; Vissenberg, K; Verbelen, J P; Blume, Ya B

    2012-01-01

    To test whether reversible tubulin phosphorylation plays any role in the process of plant mitosis the effects of inhibitors of tyrosine kinases, herbimycin A, genistein and tyrphostin AG 18, and of an inhibitor of tyrosine phosphatases, sodium orthovanadate, on microtubule organization and mitosis progression in a synchronized BY-2 culture has been investigated. It was found that treatment with inhibitors of tyrosine kinases of BY-2 cells at the G2/M transition did not lead to visible disturbances of mitotic microtubule structures, while it did reduce the frequency of their appearance. We assume that a decreased tyrosine phosphorylation level could alter the microtubule dynamic instability parameters during interphase/prophase transition. All types of tyrosine kinase inhibitors used caused a prophase delay: herbimycin A and genistein for 2 h, and tyrphostin AG18 for 1 h. Thereafter the peak of mitosis was displaced for 1 h by herbimycin A or genistein exposure, but after tyrphostin AG18 treatment the timing of the mitosis-peak was comparable to that in control cells. Enhancement of tyrosine phosphorylation induced by the tyrosine phosphatase inhibitor resulted in the opposite effect on BY-2 mitosis transition. Culture treatment with sodium orthovanadate during 1 h resulted in an accelerated start of the prophase and did not lead to the alteration in time of the mitotic index peak formation, as compared to control cells. We suppose that the reversible tyrosine phosphorylation can be involved in the regulation of interphase to M phase transition possibly through regulation of microtubule dynamics in plant cells.

  12. Luminescent rare earth vanadate nanoparticles doped with Eu3+ and Bi3 for sensing and imaging applications

    Science.gov (United States)

    Escudero, Alberto; Carrillo-Carrión, Carolina; Zyuzin, Mikhail; Hartmann, Raimo; Ashraf, Sumaira; Parak, Wolfgang J.

    2016-03-01

    Nanoparticles (NPs) are attracting interest in nanomedicine due to their potential medical applications, ranging from optical biolabels and contrast agents for magnetic resonance imaging to carriers for drug and gene delivery for disease therapy.[1] Rare earth (RE) based nanophosphors exhibit important advantages compared with other available luminescent materials, such as quantum dots and nanostructures functionalized with organic dyes, due to their lower toxicities, photostabilities, high thermal and chemical stabilities, high luminescence quantum yields, and sharp emission bands.[2] Yttrium orthovanadate NPs doped with Eu3+ and Bi3+, functionalized with poly acryl acid (PAA), and excitable by near-ultraviolet light have been synthesized by homogeneous precipitation at 120 °C from solutions of rare earth precursors (yttrium acetylacetonate and europium nitrate), bismuth nitrate, sodium orthovanadate, and PAA, in an ethylene glycol/water mixture. Quasispheres with sizes from 93 to 51 nm were obtained. The as synthesized NPs were already functionalized with PAA. The NPs showed the typical red luminescence of Eu3+, which can be excited with near-UV light through an energy transfer from the vanadate anion. The presence of Bi3+ shifts the maximum of the broad excitation band from 280 nm to 342 nm. This excitation path is much more efficient than the direct excitation of the Eu3+ electronic levels, and results in a much higher luminescence. The NPs can be uptaken by HeLa cells, and are eventually located in the lysosomes after being internalized. Finally, the functionalization with PAA provides -COOH anchors for adding functional ligands of biomedical interest that can be used for sensing applications.

  13. Aqueous fraction from Cuscuta japonica seed suppresses melanin synthesis through inhibition of the p38 mitogen-activated protein kinase signaling pathway in B16F10 cells.

    Science.gov (United States)

    Jang, Ji Yeon; Kim, Ha Neui; Kim, Yu Ri; Choi, Yung Hyun; Kim, Byung Woo; Shin, Hwa Kyoung; Choi, Byung Tae

    2012-05-07

    Semen cuscutae has been used traditionally to treat pimples and alleviate freckles and melasma in Korea. The present study aimed to investigate the inhibitory effect of Cuscuta japonica Choisy seeds on alpha-melanocyte-stimulating hormone (α-MSH)-induced melanogenesis. The aqueous fraction from Semen cuscutae (AFSC) was used to determine anti-melanogenic effects by examination of cellular melanin contents, tyrosinase activity assay, cAMP assay and Western blot analysis for melanin synthesis-related signaling proteins in B16F10 mouse melanoma cells. AFSC markedly inhibited α-MSH-induced melanin synthesis and tyrosinase activity, and also decreased α-MSH-induced expression of microphthalmia-associated transcription factor (MITF) and tyrosinase-related proteins (TRPs). Moreover, AFSC significantly decreased the level of phosphorylated p38 mitogen-activated protein kinase (MAPK) signaling through the down-regulation of α-MSH-induced cAMP. Furthermore, we confirmed that the specific inhibitor of p38 MAPK (SB203580)-mediated suppressed melanin synthesis and tyrosinase activity was further attenuated by AFSC. AFSC also further decreased SB203580-mediated suppression of MITF and TRP expression. These results indicate that AFSC inhibits p38 MAPK phosphorylation with suppressed cAMP levels and subsequently down-regulate MITF and TRP expression, which results in a marked reduction of melanin synthesis and tyrosinase activity in α-MSH-stimulated B16F10 cells. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  14. Receptor trafficking via the perinuclear recycling compartment accompanied by cell division is necessary for permanent neurotensin cell sensitization and leads to chronic mitogen-activated protein kinase activation.

    Science.gov (United States)

    Toy-Miou-Leong, Mireille; Cortes, Catherine Llorens; Beaudet, Alain; Rostène, William; Forgez, Patricia

    2004-03-26

    Most G protein-coupled receptors are internalized after interaction with their respective ligand, a process that subsequently contributes to cell desensitization, receptor endocytosis, trafficking, and finally cell resensitization. Although cellular mechanisms leading to cell desensitization have been widely studied, those responsible for cell resensitization are still poorly understood. We examined here the traffic of the high affinity neurotensin receptor (NT1 receptor) following prolonged exposure to high agonist concentration. Fluorescence and confocal microscopy of Chinese hamster ovary, human neuroblastoma (CHP 212), and murine neuroblastoma (N1E-115) cells expressing green fluorescent protein-tagged NT1 receptor revealed that under prolonged treatment with saturating concentrations of neurotensin (NT) agonist, NT1 receptor and NT transiently accumulated in the perinuclear recycling compartment (PNRC). During this cellular event, cell surface receptors remained markedly depleted as detected by both confocal microscopy and (125)I-NT binding assays. In dividing cells, we observed that following prolonged NT agonist stimulation, NT1 receptors were removed from the PNRC, accumulated in dispersed vesicles inside the cytoplasm, and subsequently reappeared at the cell surface. This NT binding recovery allowed for constant cell sensitization and led to a chronic activation of mitogen-activated protein kinases p42 and p44. Under these conditions, the constant activation of NT1 receptor generates an oncogenic regulation. These observations support the potent role for neuropeptides, such as NT, in cancer progression.

  15. Lipoxin A4 regulates expression of the estrogen receptor and inhibits 17β-estradiol induced p38 mitogen-activated protein kinase phosphorylation in human endometriotic stromal cells.

    Science.gov (United States)

    Chen, Shuo; Wu, Rong-Feng; Su, Lin; Zhou, Wei-Dong; Zhu, Mao-Bi; Chen, Qiong-Hua

    2014-07-01

    To study the role of lipoxin A4 (LXA4) in endometriosis. Molecular analysis in human samples and primary human endometriotic stromal cells (ESCs). University hospital. Forty-nine premenopausal women (30 patients with endometriosis and 19 controls). Normal and ectopic endometrial biopsies obtained during surgery performed during the proliferative phase of the menstrual cycle; ESCs used for in vitro studies. Levels of LXA4 measured by enzyme-linked immunosorbent assay (ELISA); mRNA levels of the estrogen receptor (ER), progestogen receptor (PR), tumor necrosis factor α (TNF-α), and interleukin 6 (IL-6) quantified by quantitative reverse-transcription polymerase chain reaction (qRT-PCR); and p38 mitogen-activated protein kinase (p38 MAPK) phosphorylation evaluated by Western blotting. The LXA4 expression level decreased in ectopic tissue as well as ERα and PR, although the expression of ERβ increased in ectopic endometrium compared with the controls. Investigations with correlation analysis revealed the expression of LXA4 was positively correlated with ERα and negatively correlated with ERβ in vivo. Moreover, administering LXA4 could augment ERβ expression in ESCs and inhibit the 17β-estradiol-induced phosphorylation of p38 MAPK very likely through ERβ. Our findings indicate that LXA4 regulates ERβ expression and inhibits 17β-estradiol-induced phosphorylation of p38 MAPK, very likely through ERβ in ESCs. Copyright © 2014. Published by Elsevier Inc.

  16. The pearl millet mitogen-activated protein kinase PgMPK4 is involved in responses to downy mildew infection and in jasmonic- and salicylic acid-mediated defense.

    Science.gov (United States)

    Melvin, Prasad; Prabhu, S Ashok; Veena, Mariswamy; Shailasree, Sekhar; Petersen, Morten; Mundy, John; Shetty, Shekar H; Kini, K Ramachandra

    2015-02-01

    Plant mitogen-activated protein kinases (MPKs) transduce signals required for the induction of immunity triggered by host recognition of pathogen-associated molecular patterns. We isolated a full-length cDNA of a group B MPK (PgMPK4) from pearl millet. Autophosphorylation assay of recombinant PgMPK4 produced in Escherichia coli confirmed it as a kinase. Differential accumulation of PgMPK4 mRNA and kinase activity was observed between pearl millet cultivars 852B and IP18292 in response to inoculation with the downy mildew oomycete pathogen Sclerospora graminicola. This increased accumulation of PgMPK4 mRNA, kinase activity as well as nuclear-localization of PgMPK protein(s) was only detected in the S. graminicola resistant cultivar IP18292 with a ~tenfold peak at 9 h post inoculation. In the susceptible cultivar 852B, PgMPK4 mRNA and immuno-detectable nuclear PgMPK could be induced by application of the chemical elicitor β-amino butyric acid, the non-pathogenic bacteria Pseudomonas fluorescens, or by the phytohormones jasmonic acid (JA) or salicylic acid (SA). Furthermore, kinase inhibitor treatments indicated that PgMPK4 is involved in the JA- and SA-mediated expression of three defense genes, lipoxygenase, catalase 3 and polygalacturonase-inhibitor protein. These findings indicate that PgMPK/s contribute to pearl millet defense against the downy mildew pathogen by activating the expression of defense proteins.

  17. Ethanol extract of the seed of Zizyphus jujuba var. spinosa potentiates hippocampal synaptic transmission through mitogen-activated protein kinase, adenylyl cyclase, and protein kinase A pathways.

    Science.gov (United States)

    Jo, So Yeon; Jung, In Ho; Yi, Jee Hyun; Choi, Tae Joon; Lee, Seungheon; Jung, Ji Wook; Yun, Jeanho; Lee, Young Choon; Ryu, Jong Hoon; Kim, Dong Hyun

    2017-03-22

    As the seed of Zizyphus jujuba var. spinosa (Bunge) Hu ex H.F. Chow (Rhamnaceae) has been used to sleep disturbances in traditional Chinese and Korean medicine, many previous studies have focused on its sedative effect. Recently, we reported the neuroprotective effect of the effect of Z. jujuba var. spinosa. However, its effects on synaptic function have not yet been studied. In this project, we examined the action of ethanol extract of the seed of Z. jujuba var. spinosa (DHP1401) on synaptic transmission in the hippocampus. To investigate the effects of DHP1401, field recordings were conducted using hippocampal slices (400µm). Object recognition test was introduced to examine whether DHP1401 affect normal recognition memory. DHP1401 (50μg/ml) induced a significant increase in synaptic activity in Shaffer collateral pathway in a concentration-dependent manner. This increase of synaptic responses was blocked by NBQX, a broad spectrum α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor antagonist, but not IEM-1460, a Ca 2+ -permeable AMPAR blocker. Moreover, U0126, a mitogen-activated protein kinase inhibitor, SQ22536, an adenylyl cyclase inhibitor, and PKI, a protein kinase A inhibitor, blocked DHP1401-induced increase in synaptic transmission. Finally, DHP1401 facilitated object recognition memory. These results suggest that DHP1401 increase synaptic transmission through increase of synaptic AMPAR transmission via MAPK, AC and PAK. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.

  18. p38 mitogen-activated protein kinase is involved in arginase-II-mediated eNOS-uncoupling in obesity.

    Science.gov (United States)

    Yu, Yi; Rajapakse, Angana G; Montani, Jean-Pierre; Yang, Zhihong; Ming, Xiu-Fen

    2014-07-18

    Endothelial nitric oxide synthase (eNOS)-uncoupling links obesity-associated insulin resistance and type-II diabetes to the increased incidence of cardiovascular disease. Studies have indicated that increased arginase is involved in eNOS-uncoupling through competing with the substrate L-arginine. Given that arginase-II (Arg-II) exerts some of its biological functions through crosstalk with signal transduction pathways, and that p38 mitogen-activated protein kinase (p38mapk) is involved in eNOS-uncoupling, we investigated here whether p38mapk is involved in Arg-II-mediated eNOS-uncoupling in a high fat diet (HFD)-induced obesity mouse model. Obesity was induced in wild type (WT) and Arg-II-deficient (Arg-II(-/-)) mice on C57BL/6 J background by high-fat diet (HFD, 55% fat) for 14 weeks starting from age of 7 weeks. The entire aortas were isolated and subjected to 1) immunoblotting analysis of the protein level of eNOS, Arg-II and p38mapk activation; 2) arginase activity assay; 3) endothelium-dependent and independent vasomotor responses; 4) en face staining of superoxide anion and NO production with Dihydroethidium and 4,5-Diaminofluorescein Diacetate, respectively, to assess eNOS-uncoupling. To evaluate the role of p38mapk, isolated aortas were treated with p38mapk inhibitor SB203580 (10 μmol/L, 1 h) prior to the analysis. In addition, the role of p38mapk in Arg-II-induced eNOS-uncoupling was investigated in cultured human endothelial cells overexpressing Arg-II in the absence or presence of shRNA against p38mapk. HFD enhanced Arg-II expression/activity and p38mapk activity, which was associated with eNOS-uncoupling as revealed by decreased NO and enhanced L-NAME-inhibitable superoxide in aortas of WT obese mice. In accordance, WT obese mice revealed decreased endothelium-dependent relaxations to acetylcholine despite of higher eNOS protein level, whereas Arg-II(-/-) obese mice were protected from HFD-induced eNOS-uncoupling and endothelial dysfunction, which

  19. Salidroside pretreatment attenuates apoptosis and autophagy during hepatic ischemia–reperfusion injury by inhibiting the mitogen-activated protein kinase pathway in mice

    Directory of Open Access Journals (Sweden)

    Feng J

    2017-07-01

    Full Text Available Jiao Feng,1,* Qinghui Zhang,2,* Wenhui Mo,3,* Liwei Wu,1 Sainan Li,1 Jingjing Li,1 Tong Liu,1 Shizan Xu,4 Xiaoming Fan,5 Chuanyong Guo1 1Department of Gastroenterology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, 2Department of Clinical Laboratory, Kunshan First People’s Hospital Affiliated to Jiangsu University, Kunshan, JiangSu, 3Department of Gastroenterology, Minhang Hospital, Fudan University, Shanghai, 4Department of Gastroenterology, Shanghai Tenth People’s Hospital, School of Clinical Medicine of Nanjing Medical University, Shanghai, 5Department of Gastroenterology, Jinshan Hospital of Fudan University, Jinshan, Shanghai, China *These authors contributed equally to this work Abstract: Ischemia–reperfusion injury (IRI contributes to liver damage in many clinical situations, such as liver resection and liver transplantation. In the present study, we investigated the effects of the antioxidant, anti-inflammatory, and anticancer agent salidroside (Sal on hepatic IRI in mice. The mice were randomly divided into six groups: normal control, Sham, Sal (20 mg/kg, IRI, IRI + Sal (10 mg/kg, and IRI + Sal (20 mg/kg. We measured liver enzymes, proinflammatory cytokines, TNF-α and interleukin-6, and apoptosis- and autophagy-related marker proteins at 2, 8, and 24 hours after reperfusion. Components of mitogen-activated protein kinase (MAPK signaling, including P-38, jun N-terminal kinase (JNK, and extracellular signal-regulated kinase (ERK, were also measured using an MAPK activator anisomycin to deduce their roles in hepatic IRI. Our results show that Sal safely protects hepatocytes from IRI by reducing levels of liver enzymes in the serum. These findings were confirmed by histopathology. We concluded that Sal protects hepatocytes from IRI partly by inhibiting the activation of MAPK signaling, including the phosphorylation of P38, JNK, and ERK. This ameliorates inflammatory reactions, apoptosis, and

  20. Bioactive glass induced osteogenic differentiation of human adipose stem cells is dependent on cell attachment mechanism and mitogen-activated protein kinases

    Directory of Open Access Journals (Sweden)

    M Ojansivu

    2018-02-01

    Full Text Available Bioactive glasses (BaGs are widely utilised in bone tissue engineering (TE but the molecular response of cells to BaGs is poorly understood. To elucidate the mechanisms of cell attachment to BaGs and BaG-induced early osteogenic differentiation, we cultured human adipose stem cells (hASCs on discs of two silica-based BaGs S53P4 (23.0 Na2O - 20.0 CaO - 4.0 P2O5 - 53.0 SiO2 (wt-% and 1-06 (5.9 Na2O - 12.0 K2O - 5.3 MgO - 22.6 CaO - 4.0 P2O5 - 0.2 B2O3 - 50.0 SiO2 in the absence of osteogenic supplements. Both BaGs induced early osteogenic differentiation by increasing alkaline phosphatase activity (ALP and the expression of osteogenic marker genes RUNX2a and OSTERIX. Based on ALP activity, the slower reacting 1-06 glass was a stronger osteoinducer. Regarding the cell attachment, cells cultured on BaGs had enhanced integrinβ1 and vinculin production, and mature focal adhesions were smaller but more dispersed than on cell culture plastic (polystyrene. Focal adhesion kinase (FAK, extracellular signal-regulated kinase (ERK1/2 and c-Jun N-terminal kinase (JNK-induced c-Jun phosphorylations were upregulated by glass contact. Moreover, the BaG-stimulated osteoinduction was significantly reduced by FAK and mitogen-activated protein kinase (MAPK inhibitors, indicating an important role for FAK and MAPKs in the BaG-induced early osteogenic commitment of hASCs. Upon indirect insert culture, the ions released from the BaG discs could not reproduce the observed cellular changes, which highlighted the role of direct cell-BaG interactions in the osteopotential of BaGs. These findings gave valuable insight into the mechanism of BaG-induced osteogenic differentiation and therefore provided knowledge to aid the future design of new functional biomaterials to meet the increasing demand for clinical bone TE treatments.

  1. p38 mitogen-activated protein kinase (p38MAPK) upregulates catalase levels in response to low dose H2O2 treatment through enhancement of mRNA stability.

    Science.gov (United States)

    Sen, Prosenjit; Chakraborty, Prabir Kumar; Raha, Sanghamitra

    2005-08-15

    V79 fibroblasts were repetitively stressed through multiple exposures to a low dose (30 microM) H2O2 in culture for 4 weeks. Catalase activity, protein levels and mRNA levels increased markedly (5-6-fold) during this time and these augmentations were inhibited by the simultaneous presence of SB203580, an inhibitor of p38 mitogen-activated protein kinase (p38MAPK). p38MAPK became dually phosphorylated and ATF-2, a p38MAPK substrate also became increasingly phosphorylated over the repetitive stress period. Short interfering RNA that induced effective silencing of p38MAPK, was used to silence p38MAPK in V79 fibroblasts. Silencing of p38MAPK drastically hindered the elevation in catalase (protein and mRNA) levels observed after a single low dose (50 microM) of H2O. The rise in catalase mRNA levels induced by low concentration (single and multiple dose) H2O2 treatment was established to be unconnected with transcriptional upregulation but was brought forth primarily by an enhancement in catalase mRNA stability through the action of p38MAPK. Therefore, our data strongly indicate that activation of p38MAPK is a key controlling step in the upregulation of catalase levels by low dose H2O2 treatment.

  2. Regulation of p53, nuclear factor κB and cyclooxygenase-2 expression by bromelain through targeting mitogen-activated protein kinase pathway in mouse skin

    International Nuclear Information System (INIS)

    Kalra, Neetu; Bhui, Kulpreet; Roy, Preeti; Srivastava, Smita; George, Jasmine; Prasad, Sahdeo; Shukla, Yogeshwer

    2008-01-01

    Bromelain is a pharmacologically active compound, present in stems and immature fruits of pineapples (Ananas cosmosus), which has been shown to have anti-edematous, anti-inflammatory, anti-thrombotic and anti-metastatic properties. In the present study, antitumorigenic activity of bromelain was recorded in 7,12-dimethylbenz(a)anthracene (DMBA)-initiated and 12-O-tetradecanoylphorbol-13-acetate (TPA)-promoted 2-stage mouse skin model. Results showed that bromelain application delayed the onset of tumorigenesis and reduced the cumulative number of tumors, tumor volume and the average number of tumors/mouse. To establish a cause and effect relationship, we targeted the proteins involved in the cell death pathway. Bromelain treatment resulted in upregulation of p53 and Bax and subsequent activation of caspase 3 and caspase 9 with concomitant decrease in antiapoptotic protein Bcl-2 in mouse skin. Since persistent induction of cyclooxygenase-2 (Cox-2) is frequently implicated in tumorigenesis and is regulated by nuclear factor-kappa B (NF-κB), we also investigated the effect of bromelain on Cox-2 and NF-κB expression. Results showed that bromelain application significantly inhibited Cox-2 and inactivated NF-κB by blocking phosphorylation and subsequent degradation of IκBα. In addition, bromelain treatment attenuated DMBA-TPA-induced phosphorylation of extracellular signal-regulated protein kinase (ERK1/2), mitogen-activated protein kinase (MAPK) and Akt. Taken together, we conclude that bromelain induces apoptosis-related proteins along with inhibition of NF-κB-driven Cox-2 expression by blocking the MAPK and Akt/protein kinase B signaling in DMBA-TPA-induced mouse skin tumors, which may account for its anti-tumorigenic effects

  3. Lithium ions induce prestalk-associated gene expression and inhibit prespore gene expression in Dictyostelium discoideum

    NARCIS (Netherlands)

    Peters, Dorien J.M.; Lookeren Campagne, Michiel M. van; Haastert, Peter J.M. van; Spek, Wouter; Schaap, Pauline

    1989-01-01

    We investigated the effect of Li+ on two types of cyclic AMP-regulated gene expression and on basal and cyclic AMP-stimulated inositol 1,4,5-trisphosphate (Ins(1,4,5)P3) levels. Li+ effectively inhibits cyclic AMP-induced prespore gene expression, half-maximal inhibition occurring at about 2mM-LiCl.

  4. Ethanol and Other Short-Chain Alcohols Inhibit NLRP3 Inflammasome Activation through Protein Tyrosine Phosphatase Stimulation

    Science.gov (United States)

    Hoyt, Laura R.; Ather, Jennifer L.; Randall, Matthew J.; DePuccio, Daniel P.; Landry, Christopher C.; Wewers, Mark D.; Gavrilin, Mikhail A.; Poynter, Matthew E.

    2016-01-01

    Immunosuppression is a major complication of alcoholism that contributes to increased rates of opportunistic infections and sepsis in alcoholics. The NLRP3 inflammasome, a multi-protein intracellular pattern recognition receptor complex that facilitates the cleavage and secretion of the pro-inflammatory cytokines IL-1β and IL-18, can be inhibited by ethanol and we sought to better understand the mechanism through which this occurs and whether chemically similar molecules exert comparable effects. We show that ethanol can specifically inhibit activation of the NLRP3 inflammasome, resulting in attenuated IL-1β and caspase-1 cleavage and secretion, as well as diminished ASC speck formation, without affecting potassium efflux, in a mouse macrophage cell line (J774), mouse bone marrow derived dendritic cells, mouse neutrophils, and human PBMCs. The inhibitory effects on the Nlrp3 inflammasome were independent of GABAA receptor activation or NMDA receptor inhibition, but was associated with decreased oxidant production. Ethanol treatment markedly decreased cellular tyrosine phosphorylation, while administration of the tyrosine phosphatase inhibitor sodium orthovanadate prior to ethanol restored tyrosine phosphorylation and IL-1β secretion subsequent to ATP stimulation. Furthermore, sodium orthovanadate-induced phosphorylation of ASC Y144, necessary and sufficient for Nlrp3 inflammasome activation, and secretion of phosphorylated ASC, were inhibited by ethanol. Finally, multiple alcohol-containing organic compounds exerted inhibitory effects on the Nlrp3 inflammasome, whereas 2-methylbutane (isopentane), the analogous alkane of the potent inhibitor isoamyl alcohol (isopentanol), did not. Our results demonstrate that ethanol antagonizes the NLRP3 inflammasome at an apical event in its activation through the stimulation of protein tyrosine phosphatases, an effect shared by other short-chain alcohols. PMID:27421477

  5. AMP N1-Oxide, a Unique Compound of Royal Jelly, Induces Neurite Outgrowth from PC12 Vells via Signaling by Protein Kinase A Independent of that by Mitogen-Activated Protein Kinase

    Directory of Open Access Journals (Sweden)

    Noriko Hattori

    2010-01-01

    Full Text Available Earlier we identified adenosine monophosphate (AMP N1-oxide as a unique compound of royal jelly (RJ that induces neurite outgrowth (neuritegenesis from cultured rat pheochromocytoma PC12 cells via the adenosine A2A receptor. Now, we found that AMP N1-oxide stimulated the phosphorylation of not only mitogen-activated protein kinase (MAPK but also that of cAMP/calcium-response element-binding protein (CREB in a dose-dependent manner. Inhibition of MAPK activation by a MEK inhibitor, PD98059, did not influence the AMP N1-oxide-induced neuritegenesis, whereas that of protein kinase A (PKA by a selective inhibitor, KT5720, significantly reduced neurite outgrowth. AMP N1-oxide also had the activity of suppressing the growth of PC12 cells, which correlated well with the neurite outgrowth-promoting activity. KT5720 restored the growth of AMP N1-oxide-treated PC12 cells. It is well known that nerve growth factor suppresses proliferation of PC12 cells before causing stimulation of neuronal differentiation. Thus, AMP N1-oxide elicited neuronal differentiation of PC12 cells, as evidenced by generation of neurites, and inhibited cell growth through adenosine A2A receptor-mediated PKA signaling, which may be responsible for characteristic actions of RJ.

  6. A Member of the p38 Mitogen-Activated Protein Kinase Family Is Responsible for Transcriptional Induction of Dopa decarboxylase in the Epidermis of Drosophila melanogaster during the Innate Immune Response▿ †

    Science.gov (United States)

    Davis, Monica M.; Primrose, David A.; Hodgetts, Ross B.

    2008-01-01

    Drosophila innate immunity is controlled primarily by the activation of IMD (immune deficiency) or Toll signaling leading to the production of antimicrobial peptides (AMPs). IMD signaling also activates the JUN N-terminal kinase (JNK) cascade, which is responsible for immune induction of non-antimicrobial peptide immune gene transcription though the transcription factor AP-1. Transcription of the Dopa decarboxylase (Ddc) gene is induced in response to gram-negative and gram-positive septic injury, but not aseptic wounding. Transcription is induced throughout the epidermis and not specifically at the site of infection. Ddc transcripts are detectible within 2 h and remain high for several hours following infection with either gram-negative or gram-positive bacteria. Using Ddc-green fluorescent protein (GFP) reporter gene constructs, we show that a conserved consensus AP-1 binding site upstream of the Ddc transcription start site is required for induction. However, neither the Toll, IMD, nor JNK pathway is involved. Rather, Ddc transcription depends on a previously uncharacterized member of the p38 mitogen-activated protein kinase family, p38c. We propose that the involvement of DDC in a new pathway involved in Drosophila immunity increases the levels of dopamine, which is metabolized to produce reactive quinones that exert an antimicrobial effect on invading bacteria. PMID:18519585

  7. p38 mitogen-activated protein kinase up-regulates LPS-induced NF-κB activation in the development of lung injury and RAW 264.7 macrophages

    International Nuclear Information System (INIS)

    Kim, Hee J.; Lee, Hui S.; Chong, Young H.; Kang, Jihee Lee

    2006-01-01

    Clarification of the key regulatory steps that lead to nuclear factor-kappa B (NF-κB) under cellular and pathological conditions is very important. The action of p38 mitogen-activated protein kinase (MAPK) on the upstream of NF-κB activation remains controversial. To examine this issue using an in vivo lung injury model, SB203580, a p38 MAPK inhibitor was given intraorally 1 h prior to lipopolysaccharide (LPS) treatment (intratracheally). The mice were sacrificed 4 h after LPS treatment. SB203580 substantially suppressed LPS-induced rises in p38 MAPK phosphorylation, neutrophil recruitment, total protein content in bronchoalveolar lavage fluid, and apoptosis of bronchoalveolar cells. Furthermore, SB203580 blocked LPS-induced NF-κB activation in lung tissue through down-regulation of serine phosphorylation, degradation of IκB-α, and consequent translocation of the p65 subunit of NF-κB to the nucleus. It is likely that, in cultured RAW 264.7 macrophages, SB203580 also blocked LPS-induced NF-κB activation in a dose-dependent manner. SB203580 inhibited LPS-induced serine phosphorylation, degradation of IκB-α, and tyrosine phosphorylation of p65 NF-κB. These data indicate that p38 MAPK acts upstream of LPS-induced NF-κB activation by modulating the phosphorylation of IκB-α and p65 NF-κB during acute lung injury. Because LPS-stimulated macrophages may contribute to inflammatory lung injury, the inhibition of the p38 MAPK-mediated intracellular signaling pathway leading to NF-κB activation represents a target for the attenuation of lung inflammation and parenchymal damage

  8. Phosphorylation of Icariin Can Alleviate the Oxidative Stress Caused by the Duck Hepatitis Virus A through Mitogen-Activated Protein Kinases Signaling Pathways

    Directory of Open Access Journals (Sweden)

    Wen Xiong

    2017-09-01

    Full Text Available The duck virus hepatitis (DVH caused by the duck hepatitis virus A (DHAV has produced extensive economic losses to the duck industry. The currently licensed commercial vaccine has shown some defects and does not completely prevent the DVH. Accordingly, a new alternative treatment for this disease is urgently needed. Previous studies have shown that icariin (ICA and its phosphorylated derivative (pICA possessed good anti-DHAV effects through direct and indirect antiviral pathways, such as antioxidative stress. But the antioxidant activity showed some differences between ICA and pICA. The aim of this study is to prove that ICA and pICA attenuate oxidative stress caused by DHAV in vitro and in vivo, and to investigate their mechanism of action to explain their differences in antioxidant activities. In vivo, the dynamic deaths, oxidative evaluation indexes and hepatic pathological change scores were detected. When was added the hinokitiol which showed the pro-oxidative effect as an intervention method, pICA still possessed more treatment effect than ICA. The strong correlation between mortality and oxidative stress proves that ICA and pICA alleviate oxidative stress caused by DHAV. This was also demonstrated by the addition of hydrogen peroxide (H2O2 as an intervention method in vitro. pICA can be more effective than ICA to improve duck embryonic hepatocytes (DEHs viability and reduce the virulence of DHAV. The strong correlation between TCID50 and oxidative stress demonstrates that ICA and pICA can achieve anti-DHAV effects by inhibiting oxidative stress. In addition, the superoxide dismutase (SOD and glutathione peroxidase (GSH-Px of ICA and pICA showed significant difference. pICA could significantly inhibit the phosphorylation of p38, extra cellular signal regulated Kinase (ERK 1/2 and c-Jun N-terminal kinase (JNK, which were related to mitogen-activated protein kinases (MAPKs signaling pathways. Ultimately, compared to ICA, pICA exhibited more

  9. CHARACTERIZATION OF P2-PURINOCEPTOR MEDIATED CYCLIC-AMP FORMATION IN MOUSE C2C12 MYOTUBES

    NARCIS (Netherlands)

    HENNING, RH; DUIN, M; DENHERTOG, A; NELEMANS, A

    1 The formation of adenosine 3':5'-cyclic monophosphate (cyclic AMP) and inositol(1,4,5)trisphosphate (Ins(1,4,5)P3), induced by ATP and other nucleotides was investigated in mouse C2Cl2 myotubes. 2 ATP (100 muM) and ATPgammaS (100 muM) caused a sustained increase in cyclic AMP content of the cells,

  10. Sodium-calcium exchanger and R-type Ca2+ channels mediate spontaneous [Ca2+](i) oscillations in magnocellular neurones of the rat supraoptic nucleus

    Czech Academy of Sciences Publication Activity Database

    Kortus, Štěpán; Srinivasan, Chinnapaiyan; Forostyak, Oksana; Zápotocký, M.; Ueta, Y.; Syková, Eva; Chvátal, Alexandr; Verkhratsky, A.; Dayanithi, Govindan

    2016-01-01

    Roč. 59, č. 6 (2016), s. 289-298 ISSN 0143-4160 R&D Projects: GA ČR(CZ) GA14-34077S; GA ČR(CZ) GBP304/12/G069 Institutional support: RVO:68378041 Keywords : 1,4,5-Trisphosphate * Ca(2+) channel toxins * Ca(2+) clearance * Ca(2+) homeostasis Subject RIV: FH - Neurology Impact factor: 3.707, year: 2016

  11. Nitric oxide mediates the indole acetic acid induction activation of a mitogen-activated protein kinase cascade involved in adventitious root development.

    Science.gov (United States)

    Pagnussat, Gabriela Carolina; Lanteri, María Luciana; Lombardo, María Cristina; Lamattina, Lorenzo

    2004-05-01

    Recently, it was demonstrated that nitric oxide (NO) and cGMP are involved in the auxin response during the adventitious rooting process in cucumber (Cucumis sativus; Pagnussat et al., 2002, 2003). However, not much is known about the complex molecular network operating during the cell proliferation and morphogenesis triggered by auxins and NO in that process. Anatomical studies showed that formation of adventitious root primordia was clearly detected in indole acetic acid (IAA)- and NO-treated cucumber explants, while neither cell proliferation nor differentiation into root primordia could be observed in control explants 3 d after primary root was removed. In order to go further with signal transduction mechanisms that operate during IAA- and NO-induced adventitious root formation, experiments were designed to test the involvement of a mitogen-activated protein kinase (MAPK) cascade in that process. Cucumber explants were treated with the NO-donor sodium nitroprusside (SNP) or with SNP plus the specific NO-scavenger cPTIO. Protein extracts from those explants were assayed for protein kinase (PK) activity by using myelin basic protein (MBP) as substrate in both in vitro and in-gel assays. The activation of a PK of approximately 48 kD could be detected 1 d after NO treatment with a maximal activation after 3 d of treatment. In control explants, a PK activity was detected only after 4 d of treatment. The MBP-kinase activity was also detected in extracts from IAA-treated explants, while no signal was observed in IAA + cPTIO treatments. The PK activity could be inhibited by the cell-permeable MAPK kinase inhibitor PD098059, suggesting that the NO-dependent MBP-kinase activity is a MAPK. Furthermore, when PD098059 was administered to explants treated with SNP or IAA, it produced a delay in root emergence and a dose-dependent reduction in root number. Altogether, our results suggest that a MAPK signaling cascade is activated during the adventitious rooting process

  12. Evidence that shock-induced immune suppression is mediated by adrenal hormones and peripheral beta-adrenergic receptors.

    Science.gov (United States)

    Cunnick, J E; Lysle, D T; Kucinski, B J; Rabin, B S

    1990-07-01

    Our previous work has demonstrated that presentations of mild foot-shock to Lewis rats induces a suppression of splenic and peripheral blood lymphocyte responses to nonspecific T-cell mitogens. The present study demonstrated that adrenalectomy prevented the shock-induced suppression of the mitogenic response of peripheral blood T-cells but did not attenuate the suppression of splenic T-cells. Conversely, the beta-adrenergic receptor antagonists, propranolol and nadolol, attenuated the shock-induced suppression of splenic T-cells in a dose-dependent manner but did not attenuate suppression of the blood mitogen response. These data indicate that distinct mechanisms mediate the shock-induced suppression of T-cell responsiveness to mitogens in the spleen and the peripheral blood. The results indicate that the peripheral release of catecholamines is responsible for splenic immune suppression and that adrenal hormones, which do not interact with beta-adrenergic receptors, are responsible for shock-induced suppression of blood mitogenic responses.

  13. Changes in some pro-and anti-inflammatory cytokines produced by bovine peripheral blood mononuclear cells following foot and mouth disease vaccination

    Directory of Open Access Journals (Sweden)

    N. Delirezh

    2016-09-01

    Full Text Available Interleukin (IL-17 is exclusively produced by CD4 helper T-cells upon activation. It most often acts as a pro-inflammatory cytokine, which stimulates the release of pro-inflammatory cytokines IL-6, IL-8, TNF-α, and granulocyte-macrophage colony-stimulating factor (GM-CSF. In this study, we studied the in-vitro IL-17 response to specific antigens and a variety of mitogens and compared the IL-17 response to IL-2, IL-4, IL-5, IL-6, IL-10, and IFN-γ responses. We used a foot and mouth disease (FMD vaccine as specific antigens and mitogens (phytohemagglutinin [PHA], pokeweed mitogen [PWM], and concanavalin A [Con A] to stimulate peripheral blood mononuclear cells (PBMCs of vaccinated calves. Cell culture supernatant was harvested and analyzed for cytokines, using commercially available bovine ELISA kits. The mitogens induced a significant increase in IL-17 production. IL-17 was produced at high levels in response to the T cell-stimulated mitogens, PHA, and Con A, and at low levels in response to PWM mitogens. In contrast, level of the produced IL-17 cytokines in response to the FMDV antigens was lower as compared to those produced by mitogens. The FMDV antigens and mitogens significantly increased IL-17 production. There was not a correlation between IL-17 production and type-1 cytokine, IFN-γ, and IL-2, while there was a correlation between type-2 cytokine, IL-4, and IL-5 at either cytokine level produced by PBMCs stimulated by FMDV antigens. Moreover, there was an interaction between IL-17 and IL-6, that is, as IL-6 cytokine level elevated or diminished, IL-17 cytokine level increased or decreased, as well.

  14. A Mitogen-Activated Protein Kinase Tmk3 Participates in High Osmolarity Resistance, Cell Wall Integrity Maintenance and Cellulase Production Regulation in Trichoderma reesei

    Science.gov (United States)

    Wang, Mingyu; Zhao, Qiushuang; Yang, Jinghua; Jiang, Baojie; Wang, Fangzhong; Liu, Kuimei; Fang, Xu

    2013-01-01

    The mitogen-activated protein kinase (MAPK) pathways are important signal transduction pathways conserved in essentially all eukaryotes, but haven't been subjected to functional studies in the most important cellulase-producing filamentous fungus Trichoderma reesei. Previous reports suggested the presence of three MAPKs in T. reesei: Tmk1, Tmk2, and Tmk3. By exploring the phenotypic features of T. reesei Δtmk3, we first showed elevated NaCl sensitivity and repressed transcription of genes involved in glycerol/trehalose biosynthesis under higher osmolarity, suggesting Tmk3 participates in high osmolarity resistance via derepression of genes involved in osmotic stabilizer biosynthesis. We also showed significant downregulation of genes encoding chitin synthases and a β-1,3-glucan synthase, decreased chitin content, ‘budded’ hyphal appearance typical to cell wall defective strains, and increased sensitivity to calcofluor white/Congo red in the tmk3 deficient strain, suggesting Tmk3 is involved in cell wall integrity maintenance in T. reesei. We further observed the decrease of cellulase transcription and production in T. reesei Δtmk3 during submerged cultivation, as well as the presence of MAPK phosphorylation sites on known transcription factors involved in cellulase regulation, suggesting Tmk3 is also involved in the regulation of cellulase production. Finally, the expression of cell wall integrity related genes, the expression of cellulase coding genes, cellulase production and biomass accumulation were compared between T. reesei Δtmk3 grown in solid state media and submerged media, showing a strong restoration effect in solid state media from defects resulted from tmk3 deletion. These results showed novel physiological processes that fungal Hog1-type MAPKs are involved in, and present the first experimental investigation of MAPK signaling pathways in T. reesei. Our observations on the restoration effect during solid state cultivation suggest that T. reesei

  15. A mitogen-activated protein kinase Tmk3 participates in high osmolarity resistance, cell wall integrity maintenance and cellulase production regulation in Trichoderma reesei.

    Directory of Open Access Journals (Sweden)

    Mingyu Wang

    Full Text Available The mitogen-activated protein kinase (MAPK pathways are important signal transduction pathways conserved in essentially all eukaryotes, but haven't been subjected to functional studies in the most important cellulase-producing filamentous fungus Trichoderma reesei. Previous reports suggested the presence of three MAPKs in T. reesei: Tmk1, Tmk2, and Tmk3. By exploring the phenotypic features of T. reesei Δtmk3, we first showed elevated NaCl sensitivity and repressed transcription of genes involved in glycerol/trehalose biosynthesis under higher osmolarity, suggesting Tmk3 participates in high osmolarity resistance via derepression of genes involved in osmotic stabilizer biosynthesis. We also showed significant downregulation of genes encoding chitin synthases and a β-1,3-glucan synthase, decreased chitin content, 'budded' hyphal appearance typical to cell wall defective strains, and increased sensitivity to calcofluor white/Congo red in the tmk3 deficient strain, suggesting Tmk3 is involved in cell wall integrity maintenance in T. reesei. We further observed the decrease of cellulase transcription and production in T. reesei Δtmk3 during submerged cultivation, as well as the presence of MAPK phosphorylation sites on known transcription factors involved in cellulase regulation, suggesting Tmk3 is also involved in the regulation of cellulase production. Finally, the expression of cell wall integrity related genes, the expression of cellulase coding genes, cellulase production and biomass accumulation were compared between T. reesei Δtmk3 grown in solid state media and submerged media, showing a strong restoration effect in solid state media from defects resulted from tmk3 deletion. These results showed novel physiological processes that fungal Hog1-type MAPKs are involved in, and present the first experimental investigation of MAPK signaling pathways in T. reesei. Our observations on the restoration effect during solid state cultivation suggest

  16. p75 Neurotrophin Receptor Signaling Activates Sterol Regulatory Element-binding Protein-2 in Hepatocyte Cells via p38 Mitogen-activated Protein Kinase and Caspase-3.

    Science.gov (United States)

    Pham, Dan Duc; Do, Hai Thi; Bruelle, Céline; Kukkonen, Jyrki P; Eriksson, Ove; Mogollón, Isabel; Korhonen, Laura T; Arumäe, Urmas; Lindholm, Dan

    2016-05-13

    Nerve growth factor (NGF) influences the survival and differentiation of a specific population of neurons during development, but its role in non-neuronal cells has been less studied. We observed here that NGF and its pro-form, pro-NGF, are elevated in fatty livers from leptin-deficient mice compared with controls, concomitant with an increase in low density lipoprotein receptors (LDLRs). Stimulation of mouse primary hepatocytes with NGF or pro-NGF increased LDLR expression through the p75 neurotrophin receptor (p75NTR). Studies using Huh7 human hepatocyte cells showed that the neurotrophins activate the sterol regulatory element-binding protein-2 (SREBP2) that regulates genes involved in lipid metabolism. The mechanisms for this were related to stimulation of p38 mitogen-activated protein kinase (p38 MAPK) and activation of caspase-3 and SREBP2 cleavage following NGF and pro-NGF stimulations. Cell fractionation experiments showed that caspase-3 activity was increased particularly in the membrane fraction that harbors SREBP2 and caspase-2. Experiments showed further that caspase-2 interacts with pro-caspase-3 and that p38 MAPK reduced this interaction and caused caspase-3 activation. Because of the increased caspase-3 activity, the cells did not undergo cell death following p75NTR stimulation, possibly due to concomitant activation of nuclear factor-κB (NF-κB) pathway by the neurotrophins. These results identify a novel signaling pathway triggered by ligand-activated p75NTR that via p38 MAPK and caspase-3 mediate the activation of SREBP2. This pathway may regulate LDLRs and lipid uptake particularly after injury or during tissue inflammation accompanied by an increased production of growth factors, including NGF and pro-NGF. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  17. Activation of ERK signalling by Src family kinases (SFKs) in DRG neurons contributes to hydrogen peroxide (H2O2)-induced thermal hyperalgesia.

    Science.gov (United States)

    Singh, Ajeet Kumar; Vinayak, Manjula

    2017-10-01

    Concomitant generation of reactive oxygen species during tissue inflammation has been recognised as a major factor for the development and the maintenance of hyperalgesia, out of which H 2 O 2 is the major player. However, molecular mechanism of H 2 O 2 induced hyperalgesia is still obscure. The aim of present study is to analyse the mechanism of H 2 O 2 -induced hyperalgesia in rats. Intraplantar injection of H 2 O 2 (5, 10 and 20 µmoles/paw) induced a significant thermal hyperalgesia in the hind paw, confirmed by increased c-Fos activity in dorsal horn of spinal cord. Onset of hyperalgesia was prior to development of oxidative stress and inflammation. Rapid increase in phosphorylation of extracellular signal regulated kinase (ERK) was observed in neurons of dorsal root ganglia after 20 min of H 2 O 2 (10 µmoles/paw) administration, which gradually returned towards normal level within 24 h, following the pattern of thermal hyperalgesia. The expression of TNFR1 followed the same pattern and colocalised with pERK. ERK phosphorylation was observed in NF-200-positive and -negative neurons, indicating the involvement of ERK in C-fibres as well as in A-fibres. Intrathecal preadministration of Src family kinases (SFKs) inhibitor (PP1) and MEK inhibitor (PD98059) prevented H 2 O 2 induced augmentation of ERK phosphorylation and thermal hyperalgesia. Pretreatment of protein tyrosine phosphatases (PTPs) inhibitor (sodium orthovanadate) also diminished hyperalgesia, although it further increased ERK phosphorylation. Combination of orthovanadate with PP1 or PD98059 did not exhibit synergistic antihyperalgesic effect. The results demonstrate SFKs-mediated ERK activation and increased TNFR1 expression in nociceptive neurons during H 2 O 2 induced hyperalgesia. However, the role of PTPs in hyperalgesic behaviour needs further molecular analysis.

  18. Proliferation of Schwann cells induced by axolemmal and myelin membranes

    International Nuclear Information System (INIS)

    Dinneen, M.

    1985-01-01

    Purified Schwann Cells were cultured from neonatal rat sciatic nerve using a modification of the method of Brockes. Schwann cells and contaminating fibroblasts were unambiguously identified using fluorescent antibodies of 2'3' cyclic nucleotide 3'-phosphodiesterase and the thy 1.1 antigen respectively. The Schwann cells were quiescent unless challenged with mitogens. They proliferated rapidly in response to the soluble mitogen, cholera toxin, or to membrane fractions from rat CNS or PNS, prepared by the method of DeVries. Mitogenic activity was present in both axolemmal and myelin enriched fractions and promoted a 10-15 fold increase in the rate of 3 H-thymidine uptake. The axolemmal mitogen was sensitive to heat (80 0 C for 10 minutes), trypsin digestion (0.05% x 30 mins) or to treatment with endoglycosidase D, suggesting that it could be a glycoprotein. Fifty percent of the axolemmal mitogenic activity was solubilized in 1% octyl-glucoside. The solubilized material, however, was very unstable and further purification was not possible. The myelin associated mitogenic activity was markedly different. It was resistant to freeze thaw cycles, trypsin digestion of endoglycosidase treatment and the activity was actually enhanced by heating at 100 0 C for two hours. It is proposed that the axolemmal activity is responsible for Schwann cell proliferation during development and that the myelin associated activity promotes Schwann cell proliferation during Wallerian degeneration

  19. Mitogen activated protein kinase kinase kinase 3 (MAP3K3/MEKK3) overexpression is an early event in esophageal tumorigenesis and is a predictor of poor disease prognosis

    International Nuclear Information System (INIS)

    Hasan, Raghibul; Sharma, Rinu; Saraya, Anoop; Chattopadhyay, Tushar K; DattaGupta, Siddartha; Walfish, Paul G; Chauhan, Shyam S; Ralhan, Ranju

    2014-01-01

    Mitogen-activated protein kinase kinase kinase3 (MAP3K3/MEKK3) was identified to be differentially expressed in esophageal squamous cell carcinoma (ESCC) using cDNA microarrays by our laboratory. Here in we determined the clinical significance of MEKK3 in ESCC. Immunohistochemical analysis of MEKK3 expression was carried out in archived tissue sections from 93 ESCCs, 47 histologically normal and 61 dysplastic esophageal tissues and correlated with clinicopathological parameters and disease prognosis over up to 7.5 years for ESCC patients. MEKK3 expression was significantly increased in esophageal dysplasia and ESCC in comparison with normal mucosa (p trend < 0.001). Kaplan Meier survival analysis showed significantly reduced median disease free survival median DFS = 10 months in patients with MEKK3 positive ESCCs compared to patients with no immunopositivity (median DFS = 19 months, p = 0.04). ESCC patients with MEKK3 positive and lymph node positive tumors had median DFS = 9 months, as compared to median DFS = 21 months in patients who did not show the alterations (p = 0.01). In multivariate Cox regression analysis, combination of MEKK3 overexpression and node positivity [p = 0.015, hazard ratio (HR) = 2.082, 95% CI = 1.154 - 3.756] emerged as important predictor of reduced disease free survival and poor prognosticator for ESCC patients. Alterations in MEKK3 expression occur in early stages of development of ESCC and are sustained during disease progression; MEKK3 in combination with lymph node positivity has the potential to serve as adverse prognosticator in ESCC

  20. Endothelin Regulates Porphyromonas gingivalis-Induced Production of Inflammatory Cytokines.

    Directory of Open Access Journals (Sweden)

    Ga-Yeon Son

    Full Text Available Periodontitis is a very common oral inflammatory disease that results in the destruction of supporting connective and osseous tissues of the teeth. Although the exact etiology is still unclear, Gram-negative bacteria, especially Porphyromonas gingivalis in subgingival pockets are thought to be one of the major etiologic agents of periodontitis. Endothelin (ET is a family of three 21-amino acid peptides, ET-1, -2, and -3, that activate G protein-coupled receptors, ETA and ETB. Endothelin is involved in the occurrence and progression of various inflammatory diseases. Previous reports have shown that ET-1 and its receptors, ETA and ETB are expressed in the periodontal tissues and, that ET-1 levels in gingival crevicular fluid are increased in periodontitis patients. Moreover, P. gingivalis infection has been shown to induce the production of ET-1 along with other inflammatory cytokines. Despite these studies, however, the functional significance of endothelin in periodontitis is still largely unknown. In this study, we explored the cellular and molecular mechanisms of ET-1 action in periodontitis using human gingival epithelial cells (HGECs. ET-1 and ETA, but not ETB, were abundantly expressed in HGECs. Stimulation of HGECs with P. gingivalis or P. gingivalis lipopolysaccharide increased the expression of ET-1 and ETA suggesting the activation of the endothelin signaling pathway. Production of inflammatory cytokines, IL-1β, TNFα, and IL-6, was significantly enhanced by exogenous ET-1 treatment, and this effect depended on the mitogen-activated protein kinases via intracellular Ca2+ increase, which resulted from the activation of the phospholipase C/inositol 1,4,5-trisphosphate pathway. The inhibition of the endothelin receptor-mediated signaling pathway with the dual receptor inhibitor, bosentan, partially ameliorated alveolar bone loss and immune cell infiltration. These results suggest that endothelin plays an important role in P. gingivalis

  1. Calcium Contributes to the Cytotoxic Interaction Between Diclofenac and Cytokines.

    Science.gov (United States)

    Maiuri, Ashley R; Breier, Anna B; Turkus, Jonathan D; Ganey, Patricia E; Roth, Robert A

    2016-02-01

    Diclofenac (DCLF) is a widely used non-steroidal anti-inflammatory drug that is associated with idiosyncratic, drug-induced liver injury (IDILI) in humans. The mechanisms of DCLF-induced liver injury are unknown; however, patients with certain inflammatory diseases have an increased risk of developing IDILI, which raises the possibility that immune mediators play a role in the pathogenesis. DCLF synergizes with the cytokines tumor necrosis factor-alpha (TNF) and interferon-gamma (IFN) to cause hepatocellular apoptosis in vitro by a mechanism that involves activation of the endoplasmic reticulum (ER) stress response pathway and of the mitogen-activated protein kinases, c-Jun N-terminal kinase (JNK), and extracellular signal-regulated kinase (ERK). DCLF also causes an increase in intracellular calcium (Ca(++)) in hepatocytes, but the role of this in the cytotoxic synergy between DCLF and cytokines is unknown. We tested the hypothesis that Ca(++) contributes to DCLF/cytokine-induced cytotoxic synergy. Treatment of HepG2 cells with DCLF led to an increase in intracellular Ca(++) at 6 and 12 h, and this response was augmented in the presence of TNF and IFN at 12 h. The intracellular Ca(++) chelator BAPTA/AM reduced cytotoxicity and caspase-3 activation caused by DCLF/cytokine cotreatment. BAPTA/AM also significantly reduced DCLF-induced activation of the ER stress sensor, protein kinase RNA-like ER kinase (PERK), as well as activation of JNK and ERK. Treatment of cells with an inositol trisphosphate receptor antagonist almost completely eliminated DCLF/cytokine-induced cytotoxicity and decreased DCLF-induced activation of PERK, JNK, and ERK. These findings indicate that Ca(++) contributes to DCLF/cytokine-induced cytotoxic synergy by promoting activation of the ER stress-response pathway and JNK and ERK. © The Author 2015. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  2. PKD1 mediates negative feedback of PI3K/Akt activation in response to G protein-coupled receptors.

    Directory of Open Access Journals (Sweden)

    Yang Ni

    Full Text Available We examined whether protein kinase D1 (PKD1 mediates negative feeback of PI3K/Akt signaling in intestinal epithelial cells stimulated with G protein-coupled receptor (GPCR agonists. Exposure of intestinal epithelial IEC-18 cells to increasing concentrations of the PKD family inhibitor kb NB 142-70, at concentrations that inhibited PKD1 activation, strikingly potentiated Akt phosphorylation at Thr(308 and Ser(473 in response to the mitogenic GPCR agonist angiotensin II (ANG II. Enhancement of Akt activation by kb NB 142-70 was also evident in cells with other GPCR agonists, including vasopressin and lysophosphatidic acid. Cell treatment with the structurally unrelated PKD family inhibitor CRT0066101 increased Akt phosphorylation as potently as kb NB 142-70 [corrected]. Knockdown of PKD1 with two different siRNAs strikingly enhanced Akt phosphorylation in response to ANG II stimulation in IEC-18 cells. To determine whether treatment with kb NB 142-70 enhances accumulation of phosphatidylinositol (3,4,5-trisphosphate (PIP3 in the plasma membrane, we monitored the redistribution of Akt-pleckstrin homology domain-green fluorescent protein (Akt-PH-GFP in single IEC-18 cells. Exposure to kb NB 142-70 strikingly increased membrane accumulation of Akt-PH-GFP in response to ANG II. The translocation of the PIP3 sensor to the plasma membrane and the phosphorylation of Akt was completed prevented by prior exposure to the class I p110α specific inhibitor A66. ANG II markedly increased the phosphorylation of p85α detected by a PKD motif-specific antibody and enhanced the association of p85α with PTEN. Transgenic mice overexpressing PKD1 showed a reduced phosphorylation of Akt at Ser(473 in intestinal epithelial cells compared to wild type littermates. Collectively these results indicate that PKD1 activation mediates feedback inhibition of PI3K/Akt signaling in intestinal epithelial cells in vitro and in vivo.

  3. Fungus Causing Mycotic Keratitis

    Directory of Open Access Journals (Sweden)

    Nagaraja N. Nagre

    2010-01-01

    human peripheral blood mononuclear cells (PBMCs to elicit mitogenic activity. The sugar specificity of the lectin and its interaction with PBMCs to exhibit mitogenic effect indicate its possible role in adhesion and infection process of Cephalosporium.

  4. Dielectric properties of lead orthovanadate and orthophosphate and some solid solutions on theirs basis

    International Nuclear Information System (INIS)

    Dudnik, E.F.; Sinyakov, E.V.; Gene, V.V.

    1977-01-01

    The dielectric properties of the monocrystals of the ferroelastics Pb 3 (PO 4 ) 2 and Pb 3 (VO 4 ) 2 were investigated. The dependencies of dielectric permeability and double refraction upon temperature were measured. The domain structure and the effect of pressure upon it were studied. The influence of BaO, CaO and Cr 2 O 3 additions upon the properties of Pb 3 (V 4 ) 2 monocrystals and upon the system of monocrystalline solid solutions of Pb 3 (VO 4 ) 2 - Pb 3 (PO 4 ) 2 was also examined. Similar to the case of usual segnetoelectrics, introduction of additions into segnetoelastic crystals was found to lead to spreading of the phase transition

  5. Progesterone increases brain-derived neuroptrophic factor expression and protects against glutamate toxicity in a mitogen-activated protein kinase- and phosphoinositide-3 kinase-dependent manner in cerebral cortical explants.

    Science.gov (United States)

    Kaur, Paramjit; Jodhka, Parmeet K; Underwood, Wendy A; Bowles, Courtney A; de Fiebre, Nancyellen C; de Fiebre, Christopher M; Singh, Meharvan

    2007-08-15

    The higher prevalence and risk for Alzheimer's disease in women relative to men has been partially attributed to the precipitous decline in gonadal hormone levels that occurs in women following the menopause. Although considerable attention has been focused on the consequence of estrogen loss, and thus estrogen's neuroprotective potential, it is important to recognize that the menopause results in a precipitous decline in progesterone levels as well. In fact, progesterone is neuroprotective, although the precise mechanisms involved remain unclear. Based on our previous observation that progesterone elicits the phosphorylation of ERK and Akt, key effectors of the neuroprotective mitogen-activated protein kinase (MAPK) and phosphoinositide-3 kinase (PI3-K) pathways, respectively, we determined whether activation of either of these pathways was necessary for progesterone-induced protection. With organotypic explants (slice culture) of the cerebral cortex, we found that progesterone protected against glutamate-induced toxicity. Furthermore, these protective effects were inhibited by either the MEK1/2 inhibitor UO126 or the PI3-K inhibitor LY294002, supporting the requirement for both the MAPK and PI3-K pathways in progesterone-induced protection. In addition, at a concentration and duration of treatment consistent with our neuroprotection data, progesterone also increased the expression of brain-derived neurotrophic factor (BDNF), at the level of both protein and mRNA. This induction of BDNF may be relevant to the protective effects of progesterone, in that inhibition of Trk signaling, with K252a, inhibited the protective effects of progesterone. Collectively, these data suggest that progesterone is protective via multiple and potentially related mechanisms. (c) 2007 Wiley-Liss, Inc. Copyright 2007 Wiley-Liss, Inc.

  6. The p38 mitogen-activated protein kinase signaling pathway is involved in regulating low-density lipoprotein receptor-related protein 1-mediated β-amyloid protein internalization in mouse brain.

    Science.gov (United States)

    Ma, Kai-Ge; Lv, Jia; Hu, Xiao-Dan; Shi, Li-Li; Chang, Ke-Wei; Chen, Xin-Lin; Qian, Yi-Hua; Yang, Wei-Na; Qu, Qiu-Min

    2016-07-01

    Alzheimer's disease (AD) is one of the most common neurodegenerative diseases. Recently, increasing evidence suggests that intracellular β-amyloid protein (Aβ) alone plays a pivotal role in the progression of AD. Therefore, understanding the signaling pathway and proteins that control Aβ internalization may provide new insight for regulating Aβ levels. In the present study, the regulation of Aβ internalization by p38 mitogen-activated protein kinases (MAPK) through low-density lipoprotein receptor-related protein 1 (LRP1) was analyzed in vivo. The data derived from this investigation revealed that Aβ1-42 were internalized by neurons and astrocytes in mouse brain, and were largely deposited in mitochondria and lysosomes, with some also being found in the endoplasmic reticulum. Aβ1-42-LRP1 complex was formed during Aβ1-42 internalization, and the p38 MAPK signaling pathway was activated by Aβ1-42 via LRP1. Aβ1-42 and LRP1 were co- localized in the cells of parietal cortex and hippocampus. Furthermore, the level of LRP1-mRNA and LRP1 protein involved in Aβ1-42 internalization in mouse brain. The results of this investigation demonstrated that Aβ1-42 induced an LRP1-dependent pathway that related to the activation of p38 MAPK resulting in internalization of Aβ1-42. These results provide evidence supporting a key role for the p38 MAPK signaling pathway which is involved in the regulation of Aβ1-42 internalization in the parietal cortex and hippocampus of mouse through LRP1 in vivo. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Type I and Type III Interferons Display Different Dependency on Mitogen-Activated Protein Kinases to Mount an Antiviral State in the Human Gut.

    Science.gov (United States)

    Pervolaraki, Kalliopi; Stanifer, Megan L; Münchau, Stephanie; Renn, Lynnsey A; Albrecht, Dorothee; Kurzhals, Stefan; Senís, Elena; Grimm, Dirk; Schröder-Braunstein, Jutta; Rabin, Ronald L; Boulant, Steeve

    2017-01-01

    Intestinal epithelial cells (IECs) are constantly exposed to commensal flora and pathogen challenges. How IECs regulate their innate immune response to maintain gut homeostasis remains unclear. Interferons (IFNs) are cytokines produced during infections. While type I IFN receptors are ubiquitously expressed, type III IFN receptors are expressed only on epithelial cells. This epithelium specificity strongly suggests exclusive functions at epithelial surfaces, but the relative roles of type I and III IFNs in the establishment of an antiviral innate immune response in human IECs are not clearly defined. Here, we used mini-gut organoids to define the functions of types I and III IFNs to protect the human gut against viral infection. We show that primary non-transformed human IECs, upon viral challenge, upregulate the expression of both type I and type III IFNs at the transcriptional level but only secrete type III IFN in the supernatant. However, human IECs respond to both type I and type III IFNs by producing IFN-stimulated genes that in turn induce an antiviral state. Using genetic ablation of either type I or type III IFN receptors, we show that either IFN can independently restrict virus infection in human IECs. Importantly, we report, for the first time, differences in the mechanisms by which each IFN establishes the antiviral state. Contrary to type I IFN, the antiviral activity induced by type III IFN is strongly dependent on the mitogen-activated protein kinases signaling pathway, suggesting a pathway used by type III IFNs that non-redundantly contributes to the antiviral state. In conclusion, we demonstrate that human intestinal epithelial cells specifically regulate their innate immune response favoring type III IFN-mediated signaling, which allows for efficient protection against pathogens without producing excessive inflammation. Our results strongly suggest that type III IFN constitutes the frontline of antiviral response in the human gut. We propose that

  8. [The mRNA expression of mitogen-activated protein kinase signal pathway related genes in the blood of arseniasis patients caused by burning coal].

    Science.gov (United States)

    Luo, Peng; Zhang, Ai-hua; Xiao, Yun; Pan, Xue-li; Dong, Xue-xin; Huang, Xiao-xin

    2013-09-01

    To detect the mRNA expression of ERK1, ERK2, JNK1 and P38 gene in mitogen-activated protein kinase(MAPK) path way in the arseniasis patients caused by burning coal. 70 arseniasis patients caused by burning coal at Jiaole village XingRen county in December 2006 were selected as case group, and another 30 villagers with similar living habits, matched gender and age, healthy physical condition without history of burning high arsenic coal were selected as control group from 12 km nearby the same village.Silver diethyl dithiocarbamate method (Ag-DDC) was taken to detect the arsenic contents in the environmental media, food, and arsenic level in the urine and hair of arseniasis patients.On the principle of informed consent, the peripheral blood was collected from the patients. The total RNA was extracted with Trizol method and cDNA was reversed from it. The mRNA expression of ERK1, ERK2, JNK1 and P38 gene in MAPK path way were tested by real-time fluorescent quantitative PCR (QT-PCR). A total of 70 cases of arseniasis patients (31 cases of mild, 25 cases of moderate and 14 cases of severe) and 30 cases of control were chosen. The median (quartile) of arsenic contents in the indoor air, outdoor air, coal, chili and corn were 0.079 (0.053-0.117) mg/m(3) ,0.007 (0.002-0.015) mg/m(3) , 93.010 (39.460-211.740) mg/kg, 3.460(0.550-16.760) mg/kg and 1.500(0.300-4.140) mg/kg respectively. They were above the national health standards. The median (quartile) of arsenic contents in the soil, rice and drinking water were separately 12.130(4.230-24.820) mg/kg, 0.650(0.300-0.980) mg/kg and 0.043(0.012-0.089)mg/kg, which were within the national health standards. Compared with the control group ((26.97 ± 9.71)µg/g Cr), arsenic level in the patients' urine ((71.48 ± 22.74)µg/g Cr) increased significantly, the differences were significant (F = 90.38, P coal.

  9. Proteomics reveal energy metabolism and mitogen-activated protein kinase signal transduction perturbation in human Borna disease virus Hu-H1-infected oligodendroglial cells.

    Science.gov (United States)

    Liu, X; Yang, Y; Zhao, M; Bode, L; Zhang, L; Pan, J; Lv, L; Zhan, Y; Liu, S; Zhang, L; Wang, X; Huang, R; Zhou, J; Xie, P

    2014-05-30

    Borna disease virus (BDV) is a neurotropic, non-cytolytic RNA virus which replicates in the cell nucleus targeting mainly hippocampal neurons, but also astroglial and oligodendroglial cells in the brain. BDV is associated with a large spectrum of neuropsychiatric pathologies in animals. Its relationship to human neuropsychiatric illness still remains controversial. We could recently demonstrate that human BDV strain Hu-H1 promoted apoptosis and inhibited cell proliferation in a human oligodendroglial cell line (OL cells) whereas laboratory BDV strain V acted contrariwise. Here, differential protein expression between BDV Hu-H1-infected OL cells and non-infected OL cells was assessed through a proteomics approach, using two-dimensional electrophoresis followed by matrix-assisted laser desorption ionization-time of flight tandem mass spectrometry. A total of 63 differential host proteins were identified in BDV Hu-H1-infected OL cells compared to non-infected OL cells. We found that most changes referred to alterations related to the pentose phosphate pathway, glyoxylate and dicarboxylate metabolism, the tricarboxylic acid (TCA) cycle, and glycolysis /gluconeogenesis. By manual querying, two differential proteins were found to be associated with mitogen-activated protein kinase (MAPK) signal transduction. Five key signaling proteins of this pathway (i.e., p-Raf, p-MEK, p-ERK1/2, p-RSK, and p-MSK) were selected for Western blotting validation. p-ERK1/2 and p-RSK were found to be significantly up-regulated, and p-MSK was found to be significantly down-regulated in BDV Hu-H1-infected OL cells compared to non-infected OL cell. Although BDV Hu-H1 constitutively activated the ERK-RSK pathway, host cell proliferation and nuclear translocation of activated pERK in BDV Hu-H1-infected OL cells were impaired. These findings indicate that BDV Hu-H1 infection of human oligodendroglial cells significantly perturbs host energy metabolism, activates the downstream ERK-RSK complex of

  10. Syndecan-1/CD147 association is essential for cyclophilin B-induced activation of p44/42 mitogen-activated protein kinases and promotion of cell adhesion and chemotaxis.

    Science.gov (United States)

    Pakula, Rachel; Melchior, Aurélie; Denys, Agnès; Vanpouille, Christophe; Mazurier, Joël; Allain, Fabrice

    2007-05-01

    Many of the biological functions attributed to cell surface proteoglycans are dependent on the interaction with extracellular mediators through their heparan sulphate (HS) moieties and the participation of their core proteins in signaling events. A class of recently identified inflammatory mediators is secreted cyclophilins, which are mostly known as cyclosporin A-binding proteins. We previously demonstrated that cyclophilin B (CyPB) triggers chemotaxis and integrin-mediated adhesion of T lymphocytes mainly of the CD4+/CD45RO+ phenotype. These activities are related to interactions with two types of binding sites, CD147 and cell surface HS. Here, we demonstrate that CyPB-mediated adhesion of CD4+/CD45RO+ T cells is related to p44/42 mitogen-activated protein kinase (MAPK) activation by a mechanism involving CD147 and HS proteoglycans (HSPG). Although HSPG core proteins are represented by syndecan-1, -2, -4, CD44v3 and betaglycan in CD4+/CD45RO+ T cells, we found that only syndecan-1 is physically associated with CD147. The intensity of the heterocomplex increased in response to CyPB, suggesting a transient enhancement and/or stabilization in the association of CD147 to syndecan-1. Pretreatment with anti-syndecan-1 antibodies or knockdown of syndecan-1 expression by RNA interference dramatically reduced CyPB-induced p44/p42 MAPK activation and consequent migration and adhesion, supporting the model in which syndecan-1 serves as a binding subunit to form the fully active receptor of CyPB. Altogether, our findings provide a novel example of a soluble mediator in which a member of the syndecan family plays a critical role in efficient interaction with signaling receptors and initiation of cellular responses.

  11. Extract of Polygala tenuifolia Alleviates Stress-Exacerbated Atopy-Like Skin Dermatitis through the Modulation of Protein Kinase A and p38 Mitogen-Activated Protein Kinase Signaling Pathway

    Directory of Open Access Journals (Sweden)

    Bongjun Sur

    2017-01-01

    Full Text Available Atopic dermatitis (AD and stress create a vicious cycle: stress exacerbates atopic symptoms, and atopic disease elicits stress and anxiety. Targeting multiple pathways including stress and allergic inflammation is, therefore, important for treating AD. In this study, we investigated the remedial value of Polygala tenuifolia Willd. (PTW for treating immobilization (IMO stress-exacerbated atopy-like skin dermatitis and its underlying mechanism. Trimellitic anhydride (TMA was applied to dorsal skin for sensitization and subsequently both ears for eliciting T-cell-dependent contact hypersensitivity in mice, which underwent 2 h-IMO stress and PTW administration for the latter 6 and 9 days in the ear exposure period of TMA, respectively. To elicit in vitro degranulation of human mast cell line-1 (HMC-1, 10 µM substance P (SP and 200 nM corticotrophin-releasing factor (CRF were sequentially added with 48 h-interval. PTW extract (500 µg/mL was added 30 min before CRF treatment. IMO stress exacerbated TMA-induced scratching behavior by 252%, and increased their blood corticosterone levels by two-fold. Treatment with 250 mg/kg PTW significantly restored IMO stress-exacerbated scratching behavior and other indicators such as skin inflammation and water content, lymph node weights, and serum histamine and immunoglobulin E (lgE levels. Furthermore, it also reversed TMA-stimulated expression of tumor necrosis factor (TNF-α and interleukin (IL-4 mRNAs in ear tissues. PTW significantly inhibited SP/CRF-stimulated degranulation of HMC-1 cells, subsequent tryptase secretion, and protein kinase A (PKA activity. PTW also selectively inhibited p38 mitogen-activated protein kinase (MAPK phosphorylation in SP/CRF-treated HMC-1 cells. PTW significantly inhibited HMC-1 cell degranulation and alleviated IMO stress-exacerbated atopic dermatitis symptoms by modulating the PKA/p38 MAPK signaling pathway.

  12. Immunological studies in the acquired immunodeficiency syndrome. II. Active suppression or intrinsic defect--investigated by mixing AIDS cells with HLA-DR identical normal cells

    DEFF Research Database (Denmark)

    Hofmann, B; Ødum, Niels; Jakobsen, B K

    1986-01-01

    The lymphocyte transformation responses to mitogens (phytohaemagglutinin (PHA), concanavalin A (Con A), and pokeweed mitogen (PWM)), allogeneic cells, and the antigen-purified protein derivative (PPD) were studied in six acquired immunodeficiency syndrome (AIDS) patients and in six healthy controls...... with the strong mitogens PHA and Con A or with allogeneic cells, but suppression may be involved in the decreased responses in cultures stimulated with PWM or PPD. Addition of supernatants from macrocultures of AIDS cells did not suppress responses of control PBMC. Thus, suppression by any lymphocyte subset...

  13. Effects of ketotifen on human lymphocytes in vitro and in vivo

    NARCIS (Netherlands)

    Petrasch, S.; van Tits, L. J.; Motulsky, H. J.; Brodde, O. E.; Michel, M. C.

    1993-01-01

    The effects of the antiasthmatic drug ketotifen (CAS 34580-13-7) on human mononuclear leukocytes were studied in vitro and in vivo. In vitro ketotifen concentration-dependently inhibited mitogen-stimulated lymphocyte proliferation. High ketotifen concentrations also inhibited T-lymphocyte mitogen-

  14. Evaluation of the potential immunotoxicity of 3-monochloro-1,2-propanediol in Balb/c mice I. Effect on antibody forming cell, mitogen-stimulated lymphocyte proliferation, splenic subset, and natural killer cell activity

    International Nuclear Information System (INIS)

    Lee, Jong Kwon; Byun, Jung A.; Park, Seung Hee; Kim, Hyung Soo; Park, Jae Hyun; Eom, Juno H.; Oh, Hye Young

    2004-01-01

    3-Monochloro-1,2-propanediol (MCPD) is a well-known by-product of acid-hydrolyzed soy sauce during its manufacturing process. MCPD has been reported genotoxic in vitro, and reproductive toxicity and carcinogenicity in rats. However, no previous studies have investigated MCPD-induced alterations in the immune system. In the present study, MCPD was administered by gavage for 14 days at 0, 25, 50, and 100 mg/kg per day to female Balb/c mice. The antibody-mediated immune response to sheep red blood cells (SRBC) was assessed using the antibody-forming cell (AFC) assay, and splenic cell phenotypes were quantified by flow cytometry. Hematological and histopathological changes were assessed. Mitogen-stimulated spleen lymphocyte proliferation and natural killer (NK) cell activity were evaluated. The T-lymphocyte blastogenesis by concanavalin A (Con A) or anti-CD3 and B-lymphocyte blastogenesis by lipopolysaccharide (LPS) were not significantly changed. There were no significant changes in the hematological and histopathological findings of MCPD-treated mice. However, the significant decrease in thymus weight was observed in 100 mg dose group, even though that did not change body weight gain. The cellularities of spleen and thymus were significantly reduced in high-dose group. Exposure to high dose of MCPD decreased the AFC response to SRBC in mice. There was a significant decrease in NK cell activity of mice treated with high dose of MCPD. These results indicate that MCPD could modulate the immune function in Balb/c mice

  15. Fc gamma receptor activation induces the tyrosine phosphorylation of both phospholipase C (PLC)-gamma 1 and PLC-gamma 2 in natural killer cells

    OpenAIRE

    1992-01-01

    Crosslinking of the low affinity immunoglobulin G (IgG) Fc receptor (Fc gamma R type III) on natural killer (NK) cells initiates antibody- dependent cellular cytotoxicity. During this process, Fc gamma R stimulation results in the rapid activation of phospholipase C (PLC), which hydrolyzes membrane phosphoinositides, generating inositol-1,4,5- trisphosphate and sn-1,2-diacylglycerol as second messengers. We have recently reported that PLC activation after Fc gamma R stimulation can be inhibit...

  16. Hypergravity signal transduction in HeLa cells with concomitant phosphorylation of proteins immunoprecipitated with anti-microtubule-associated protein antibodies

    Science.gov (United States)

    Kumei, Yasuhiro; Whitson, Peggy A.; Sato, Atsushige; Cintron, Nitza M.

    1991-01-01

    It is shown that hypergravity (35g) stimulates the production of inositol 1,4,5-trisphosphate (IP3) and decreases adenosine 3-prime,5-prime-cyclic monophosphate (cAMP) levels in HeLa cells. It is proposed that IP3 and cAMP may act as second messengers in hypergravity signal transduction. Phosphorylation of microtubule-associated proteins in both the detergent-soluble and -insoluble fractions suggests that cytoskeletal structures may be influenced by gravity.

  17. B and T lymphocytes in man. I. Effect of infant thymic irradiation on the circulating B and T lymphocytes

    International Nuclear Information System (INIS)

    Reddy, M.M.; Goh, K.; Hempelmann, L.H.

    1976-01-01

    B and T lymphocytes were studied in a group of adults whose thymic glands were irradiated in infancy for alleged thymic enlargement. Two independent methods were used to determine the B and T lymphocytes from each peripheral blood specimen: (1) the relative proportion of cells with surface immunoglobulins (B lymphocytes) and cells forming rosettes with sheep erythrocytes (T lymphocytes); and (2) the relative mitogenic response to phytohemagglutinin (T lymphocytes) and to pokeweed mitogen (B lymphocytes). All specimens were coded. The results obtained indicate: (1) a reduction of B and T lymphocytes; and (2) a decreased mitogenic response of lymphocytes to phytohemagglutinin and pokeweed mitogen in this group of patients as compared with the controls. These observations suggest that (1) the effect of irradiation to the thymus gland on lymphocytes is long lasting and (2) both B and T lymphocytes are affected by irradiation to the thymus gland

  18. Heterokaryon analysis of muscle differentiation: regulation of the postmitotic state.

    Science.gov (United States)

    Clegg, C H; Hauschka, S D

    1987-08-01

    MM14 mouse myoblasts withdraw irreversibly from the cell cycle and become postmitotic within a few hours of being deprived of fibroblast growth factor (Clegg, C. H., T. A. Linkhart, B. B. Olwin, and S. D. Hauschka, 1987, J. Cell Biol., 105:949-956). To examine the mechanisms that may regulate this developmental state of skeletal muscle, we tested the mitogen responsiveness of various cell types after their polyethylene glycol-mediated fusion with post-mitotic myocytes. Heterokaryons containing myocytes and quiescent nonmyogenic cells such as 3T3, L cell, and a differentiation-defective myoblast line (DD-1) responded to mitogen-rich medium by initiating DNA synthesis. Myonuclei replicated DNA and reexpressed thymidine kinase. In contrast, (myocyte x G1 myoblast) heterokaryons failed to replicate DNA in mitogen-rich medium and became postmitotic. This included cells with a nuclear ratio of three myoblasts to one myocyte. Proliferation dominance in (myocyte x 3T3 cell) and (myocyte x DD-1) heterokaryons was conditionally regulated by the timing of mitogen treatment; such cells became postmitotic when mitogen exposure was delayed for as little as 6 h after cell fusion. In addition, (myocyte x DD-1) heterokaryons expressed a muscle-specific trait and lost epidermal growth factor receptors when they became postmitotic. These results demonstrate that DNA synthesis is not irreversibly blocked in skeletal muscle; myonuclei readily express proliferation-related functions when provided with a mitogenic signal. Rather, myocyte-specific repression of DNA synthesis in heterokaryons argues that the postmitotic state of skeletal muscle is regulated by diffusible factors that inhibit processes of cellular mitogenesis.

  19. Reactive oxygen species generation in aqueous solutions containing GdVO4:Eu3+ nanoparticles and their complexes with methylene blue

    Science.gov (United States)

    Hubenko, Kateryna; Yefimova, Svetlana; Tkacheva, Tatyana; Maksimchuk, Pavel; Borovoy, Igor; Klochkov, Vladimir; Kavok, Nataliya; Opolonin, Oleksander; Malyukin, Yuri

    2018-04-01

    It this letter, we report the study of free radicals and reactive oxygen species (ROS) generation in water solutions containing gadolinium orthovanadate GdVO4:Eu3+ nanoparticles (VNPs) and their complexes with methylene blue (MB) photosensitizer. The catalytic activity was studied under UV-Vis and X-ray irradiation by three methods (conjugated dienes test, OH· radical, and singlet oxygen detection). It has been shown that the VNPs-MB complexes reveal high efficiency of ROS generation under UV-Vis irradiation associated with both high efficiency of OH· radicals generation by VNPs and singlet oxygen generation by MB due to nonradiative excitation energy transfer from VNPs to MB molecules. Contrary to that under X-ray irradiation, the strong OH . radicals scavenging by VNPs has been observed.

  20. PsMPK7, a stress-associated mitogen-activated protein kinase (MAPK) in Phytophthora sojae, is required for stress tolerance, reactive oxygenated species detoxification, cyst germination, sexual reproduction and infection of soybean.

    Science.gov (United States)

    Gao, Jian; Cao, Mingna; Ye, Wenwu; Li, Haiyang; Kong, Liang; Zheng, Xiaobo; Wang, Yuanchao

    2015-01-01

    The sensing of stress signals and their transduction into appropriate responses are crucial for the adaptation, survival and infection of phytopathogenic fungi and oomycetes. Amongst evolutionarily conserved pathways, mitogen-activated protein kinase (MAPK) cascades function as key signal transducers that use phosphorylation to convey information. In this study, we identified a gene, designated PsMPK7, one of 14 predicted genes encoding MAPKs in Phytophthora sojae. PsMPK7 was highly transcribed in each tested stage, but was up-regulated in the zoospore, cyst and cyst germination stages. Silencing of PsMPK7 affected the growth of germinated cysts, oospore production and the pathogenicity of soybean. PsMPK7 transcription was induced by stresses from sorbitol, NaCl and hydrogen peroxide. Transformants in which PsMPK7 expression was silenced (PsMPK7-silenced) were significantly more sensitive to osmotic and oxidative stress. Aniline blue and diaminobenzidine staining revealed that the silenced lines did not suppress the host reactive oxygen species (ROS) burst, indicating that either the inoculated plants activated stronger defence responses to the transformants and/or the PsMPK7-silenced transformants failed to overcome plant defences. In addition, extracellular secretion of laccase decreased in the silenced lines. Overall, our results indicate that the PsMPK7 gene encodes a stress-associated MAPK in P. sojae that is important not only for responses to various stresses, but also for ROS detoxification, cyst germination, sexual oospore production and infection of soybean. © 2014 BSPP AND JOHN WILEY & SONS LTD.

  1. A Role for Protein Phosphatase 2A in Regulating p38 Mitogen Activated Protein Kinase Activation and Tumor Necrosis Factor-Alpha Expression during Influenza Virus Infection

    Directory of Open Access Journals (Sweden)

    Anna H. Y. Law

    2013-04-01

    Full Text Available Influenza viruses of avian origin continue to pose pandemic threats to human health. Some of the H5N1 and H9N2 virus subtypes induce markedly elevated cytokine levels when compared with the seasonal H1N1 virus. We previously showed that H5N1/97 hyperinduces tumor necrosis factor (TNF-alpha through p38 mitogen activated protein kinase (MAPK. However, the detailed mechanisms of p38MAPK activation and TNF-alpha hyperinduction following influenza virus infections are not known. Negative feedback regulations of cytokine expression play important roles in avoiding overwhelming production of proinflammatory cytokines. Here we hypothesize that protein phosphatases are involved in the regulation of cytokine expressions during influenza virus infection. We investigated the roles of protein phosphatases including MAPK phosphatase-1 (MKP-1 and protein phosphatase type 2A (PP2A in modulating p38MAPK activation and downstream TNF-alpha expressions in primary human monocyte-derived macrophages (PBMac infected with H9N2/G1 or H1N1 influenza virus. We demonstrate that H9N2/G1 virus activated p38MAPK and hyperinduced TNF-alpha production in PBMac when compared with H1N1 virus. H9N2/G1 induced PP2A activity in PBMac and, with the treatment of a PP2A inhibitor, p38MAPK phosphorylation and TNF-alpha production were further increased in the virus-infected macrophages. However, H9N2/G1 did not induce the expression of PP2A indicating that the activation of PP2A is not mediated by p38MAPK in virus-infected PBMac. On the other hand, PP2A may not be the targets of H9N2/G1 in the upstream of p38MAPK signaling pathways since H1N1 also induced PP2A activation in primary macrophages. Our results may provide new insights into the control of cytokine dysregulation.

  2. Ghrelin protects against depleted uranium-induced apoptosis of MC3T3-E1 cells through oxidative stress-mediated p38-mitogen-activated protein kinase pathway

    Energy Technology Data Exchange (ETDEWEB)

    Hao, Yuhui; Liu, Cong; Huang, Jiawei; Gu, Ying; Li, Hong; Yang, Zhangyou; Liu, Jing [State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, No. 30 Gaotanyan Street, Shapingba District, Chongqing 400038 (China); Wang, Weidong, E-mail: wwdwyl@sina.com [Department of Radiation Oncology, Shanghai Jiao Tong University Affiliated Sixth People Hospital, Shanghai 200233 (China); Li, Rong, E-mail: yuhui_hao@126.com [State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, No. 30 Gaotanyan Street, Shapingba District, Chongqing 400038 (China)

    2016-01-01

    Depleted uranium (DU) mainly accumulates in the bone over the long term. Osteoblast cells are responsible for the formation of bone, and they are sensitive to DU damage. However, studies investigating methods of reducing DU damage in osteoblasts are rarely reported. Ghrelin is a stomach hormone that stimulates growth hormones released from the hypothalamic–pituitary axis, and it is believed to play an important physiological role in bone metabolism. This study evaluates the impact of ghrelin on DU-induced apoptosis of the osteoblast MC3T3-E1 and investigates its underlying mechanisms. The results show that ghrelin relieved the intracellular oxidative stress induced by DU, eliminated reactive oxygen species (ROS) and reduced lipid peroxidation by increasing intracellular GSH levels; in addition, ghrelin effectively suppressed apoptosis, enhanced mitochondrial membrane potential, and inhibited cytochrome c release and caspase-3 activation after DU exposure. Moreover, ghrelin significantly reduced the expression of DU-induced phosphorylated p38-mitogen-activated protein kinase (MAPK). A specific inhibitor (SB203580) or specific siRNA of p38-MAPK could significantly suppress DU-induced apoptosis and related signals, whereas ROS production was not affected. In addition, ghrelin receptor inhibition could reduce the anti-apoptosis effect of ghrelin on DU and reverse the effect of ghrelin on intracellular ROS and p38-MAPK after DU exposure. These results suggest that ghrelin can suppress DU-induced apoptosis of MC3T3-E1 cells, reduce DU-induced oxidative stress by interacting with its receptor, and inhibit downstream p38-MAPK activation, thereby suppressing the mitochondrial-dependent apoptosis pathway. - Highlights: • Ghrelin suppressed DU-induced apoptosis of MC3T3-E1 cells. • Ghrelin inhibited DU-induced oxidative stress and further p38-MAPK activation. • Ghrelin further suppressed mitochondrial-dependent apoptosis pathway. • The anti-oxidation effect of

  3. Scaffold Protein Ahk1, Which Associates with Hkr1, Sho1, Ste11, and Pbs2, Inhibits Cross Talk Signaling from the Hkr1 Osmosensor to the Kss1 Mitogen-Activated Protein Kinase

    Science.gov (United States)

    Nishimura, Akiko; Yamamoto, Katsuyoshi; Oyama, Masaaki; Kozuka-Hata, Hiroko

    2016-01-01

    In the budding yeast Saccharomyces cerevisiae, osmostress activates the Hog1 mitogen-activated protein kinase (MAPK), which regulates diverse osmoadaptive responses. Hkr1 is a large, highly glycosylated, single-path transmembrane protein that is a putative osmosensor in one of the Hog1 upstream pathways termed the HKR1 subbranch. The extracellular region of Hkr1 contains both a positive and a negative regulatory domain. However, the function of the cytoplasmic domain of Hkr1 (Hkr1-cyto) is unknown. Here, using a mass spectrometric method, we identified a protein, termed Ahk1 (Associated with Hkr1), that binds to Hkr1-cyto. Deletion of the AHK1 gene (in the absence of other Hog1 upstream branches) only partially inhibited osmostress-induced Hog1 activation. In contrast, Hog1 could not be activated by constitutively active mutants of the Hog1 pathway signaling molecules Opy2 or Ste50 in ahk1Δ cells, whereas robust Hog1 activation occurred in AHK1+ cells. In addition to Hkr1-cyto binding, Ahk1 also bound to other signaling molecules in the HKR1 subbranch, including Sho1, Ste11, and Pbs2. Although osmotic stimulation of Hkr1 does not activate the Kss1 MAPK, deletion of AHK1 allowed Hkr1 to activate Kss1 by cross talk. Thus, Ahk1 is a scaffold protein in the HKR1 subbranch and prevents incorrect signal flow from Hkr1 to Kss1. PMID:26787842

  4. A microRNA signature associated with chondrogenic lineage ...

    Indian Academy of Sciences (India)

    peroxisome proliferator-activated receptor gamma. PPAR signalling hsa-mir-143. MAP3K7 mitogen-activated protein kinase kinase kinase 7. MAPK signalling. CHST10 carbohydrate sulfotransferase 10. Sulfation of chondroitin. MAPK7 mitogen-activated protein kinase 7. MAPK signalling. COL1A1 collagen, type I, alpha 1.

  5. Dynamics of Phosphoinositide-Dependent Signaling in Sympathetic Neurons

    OpenAIRE

    Kruse, Martin; Vivas, Oscar; Traynor-Kaplan, Alexis; Hille, Bertil

    2016-01-01

    In neurons, loss of plasma membrane phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2] leads to a decrease in exocytosis and changes in electrical excitability. Restoration of PI(4,5)P2 levels after phospholipase C activation is therefore essential for a return to basal neuronal activity. However, the dynamics of phosphoinositide metabolism have not been analyzed in neurons. We measured dynamic changes of PI(4,5)P2, phosphatidylinositol 4-phosphate, diacylglycerol, inositol 1,4,5-trisphosphate...

  6. 2,2',4,4'-Tetrachlorobiphenyl upregulates cyclooxygenase-2 in HL-60 cells via p38 mitogen-activated protein kinase and NF-κB

    International Nuclear Information System (INIS)

    Bezdecny, Steven A.; Karmaus, Peer; Roth, Robert A.; Ganey, Patricia E.

    2007-01-01

    Polychlorinated biphenyls (PCBs) are ubiquitous, persistent environmental contaminants that affect a number of cellular systems, including neutrophils. Among the effects caused by the noncoplanar PCB 2,2',4,4'-tetrachlorobiphenyl (2244-TCB) in granulocytic HL-60 cells are increases in superoxide anion production, activation of phospholipase A 2 with subsequent release of arachidonic acid (AA) and upregulation of the inflammatory gene cyclooxygenase-2 (COX-2). The objective of this study was to determine the signal transduction pathways involved in the upregulation of COX-2 by 2244-TCB. Treatment of HL-60 cells with 2244-TCB led to increased expression of COX-2 mRNA. This increase was prevented by the transcriptional inhibitor actinomycin D in cells pretreated with 2244-TCB for 10 min. The increase in COX-2 mRNA was associated with release of 3 H-AA, phosphorylation of p38 and extracellular signal-regulated kinase (ERK) mitogen-activated protein (MAP) kinases, increased levels of nuclear NF-κB and increased superoxide anion production. Bromoenol lactone, an inhibitor of the calcium-independent phospholipase A 2 , reduced 3 H-AA release but had no effect on COX-2 mRNA, protein or activity. Pretreatment with SB-202190 or SB-203580, inhibitors of the p38 MAP kinase pathway, prevented the 2244-TCB-mediated induction of COX-2 and phosphorylation of p38 and ERK MAP kinases. These inhibitors did not alter 3 H-AA release. Treatment with PD 98059 or U 0126, inhibitors of the MAP/ERK (MEK) pathway, prevented the 2244-TCB-mediated activation of ERK but had no effect on COX-2 induction or p38 phosphorylation. 2244-TCB treatment did not affect c-Jun N-terminal kinase (JNK) phosphorylation. 2244-TCB exposure increased the amount of nuclear NF-κB. This increase was prevented by pretreatment with p38 MAP kinase inhibitors, but not by pretreatment with MEK inhibitors. Pretreatment with inhibitors of NF-κB prevented the 2244-TCB-mediated induction of COX-2 mRNA. 2244-TCB

  7. Precision medicine driven by cancer systems biology.

    Science.gov (United States)

    Filipp, Fabian V

    2017-03-01

    Molecular insights from genome and systems biology are influencing how cancer is diagnosed and treated. We critically evaluate big data challenges in precision medicine. The melanoma research community has identified distinct subtypes involving chronic sun-induced damage and the mitogen-activated protein kinase driver pathway. In addition, despite low mutation burden, non-genomic mitogen-activated protein kinase melanoma drivers are found in membrane receptors, metabolism, or epigenetic signaling with the ability to bypass central mitogen-activated protein kinase molecules and activating a similar program of mitogenic effectors. Mutation hotspots, structural modeling, UV signature, and genomic as well as non-genomic mechanisms of disease initiation and progression are taken into consideration to identify resistance mutations and novel drug targets. A comprehensive precision medicine profile of a malignant melanoma patient illustrates future rational drug targeting strategies. Network analysis emphasizes an important role of epigenetic and metabolic master regulators in oncogenesis. Co-occurrence of driver mutations in signaling, metabolic, and epigenetic factors highlights how cumulative alterations of our genomes and epigenomes progressively lead to uncontrolled cell proliferation. Precision insights have the ability to identify independent molecular pathways suitable for drug targeting. Synergistic treatment combinations of orthogonal modalities including immunotherapy, mitogen-activated protein kinase inhibitors, epigenetic inhibitors, and metabolic inhibitors have the potential to overcome immune evasion, side effects, and drug resistance.

  8. Immunotoxicity of environmentally relevant mixtures of polychlorinated aromatic hydrocarbons with methyl mercury on rat lymphocytes in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Omara, F.O.; Brochu, C.; Flipo, D.; Denizeau, F.; Fournier, M. [Univ. of Quebec, Montreal, Quebec (Canada)

    1997-03-01

    The immunosuppressive effects of methyl mercury (MHg), polychlorinated biphenyls (PCBs), polychlorinated dibenzo-p-dioxins (PCDDs), and dibenzofurans (PCDFs) are well established at higher exposure levels but unclear at low exposure levels. The authors exposed Fischer 344 rat splenocytes, thymocytes, and peripheral blood lymphocytes in vitro for 72 h to MHg of three PCDDs and two PCDFs PCB mixtures, or combinations of MHg/PCB/PCDD/PCDF mixtures Mitogenic responses of lymphocytes to concanavalin A, phytohemagglutinin, or lipopolysaccharide/dextran sulfate were determined by {sup 3}H-thymidine uptake; cytotoxicity and intracellular Ca{sup 2+} were determined by flow cytometry. Methylmercury mixtures with 2 {micro}g/ml MHg decreased the viability of splenocytes to 57 and 40% at 4 and 24 h, respectively. Basal intracellular calcium ion levels were unaffected by the treatments. Methylmercury suppressed the responses of lymphocytes to T and B cell mitogens. All combinations of MHg/PCB/PCDD/PCDF mixtures decreased mitogenic responses to levels similar to those to MHg alone. In contrast, PCB and PCDD/PCDF mixtures did not suppress but augmented responses of splenocytes and peripheral blood lymphocytes to T cell mitogens. Overall, no interactive toxicity was observed with MHg/PCB/PCDD/PCDF mixtures on cytotoxicity and lymphocyte mitogenic responses. Therefore, MHg may pose a greater threat than organochlorines to the mammalian immune system.

  9. Sodium appetite elicited by low-sodium diet is dependent on p44/42 mitogen-activated protein kinase (extracellular signal-regulated kinase 1/2) activation in the brain.

    Science.gov (United States)

    Monteiro, L R N; Marangon, P B; Elias, L L K; Reis, L C; Antunes-Rodrigues, J; Mecawi, A S

    2017-09-01

    Sodium appetite is regulated by several signalling molecules, among which angiotensin II (Ang II) serves as a key driver of robust salt intake by binding to Ang II type 1 receptors (AT1R) in several regions in the brain. The activation of these receptors recruits the mitogen-activated protein kinase (MAPK) pathway, which has previously been linked to Ang II-induced increases in sodium appetite. Thus, we addressed the involvement of MAPK signalling in the induction of sodium appetite after 4 days of low-sodium diet consumption. An increase in extracellular signal-regulated kinase (ERK) phosphorylation in the laminae terminalis and mediobasal hypothalamus was observed after low-sodium diet consumption. This response was reduced by i.c.v. microinjection of an AT1R antagonist into the laminae terminalis but not the hypothalamus. This result indicates that low-sodium diet consumption activates the MAPK pathway via Ang II/AT1R signalling on the laminae terminalis. On the other hand, activation of the MAPK pathway in the mediobasal hypothalamus after low-sodium diet consumption appears to involve another extracellular mediator. We also evaluated whether a low-sodium diet could increase the sensitivity for Ang II in the brain and activate the MAPK pathway. However, i.c.v. injection of Ang II increased ERK phosphorylation on the laminae terminalis and mediobasal hypothalamus; this increase achieved a response magnitude similar to those observed in both the normal and low-sodium diet groups. These data indicate that low-sodium diet consumption for 4 days is insufficient to change the ERK phosphorylation response to Ang II in the brain. To investigate whether the MAPK pathway is involved in sodium appetite after low-sodium diet consumption, we performed i.c.v. microinjections of a MAPK pathway inhibitor (PD98059). PD98059 inhibited both saline and water intake after low-sodium diet consumption. Thus, the MAPK pathway is involved in promoting the sodium appetite after low

  10. Presence of ecto-protein tyrosine phosphatase activity is vital for survival of Setaria cervi, a bovine filarial parasite.

    Science.gov (United States)

    Singh, Neetu; Heneberg, Petr; Rathaur, Sushma

    2014-10-01

    The ecto protein tyrosine phosphatases (PTP) are known to play a crucial role in the pathogenesis and survival of the intracellular parasites. However, their presence and role in filarial parasites is still unknown. We found a significant amount of tyrosine phosphatase activity in the surface antigen fraction extracted from Setaria cervi (S. cervi), a bovine filarial parasite. An antibody designed against the conserved catalytic core of human protein tyrosine phosphatases, PTP1B cross reacted with a 63 kDa band in the surface antigen. We detected a significant amount of PTP activity in the intact S. cervi adult parasites as well as microfilariae in this study for the first time. This PTP may be localized on the surface of the parasite with an exposed active site available for the external substrates. The PTP activity was also inhibited by sodium orthovanadate and phenyl arsine oxide, specific inhibitors of PTP in both the life stages. The Km and Vmax for PTP in the adult parasites and microfilariae were determined to be 2.574 ± 0.14 mM; 206.3 ± 2.75 μM Pi/h/two parasites and 5.510 ± 0.59 mM; 62.27 ± 2.27 μM Pi/h/10(6) parasites respectively using O-P-L-Tyrosine as substrate. Interestingly, a positive correlation was observed between the inhibition in PTP activity and reduction in the motility/ viability of the parasites when they were subjected to the specific PTP inhibitors (Orthovanadate and Phenyl arsine oxide) for 4 h in the KRB maintenance medium. The activity was also significantly inhibited in the parasites exposed to antifilarial drug/compounds for e.g. Diethylcarbamazine, Acetylsalicylic Acid and SK7, a methyl chalcone. Therefore suggesting a possible role played by PTP in the survival of the parasite, its interaction with the host as well as in the screening of newly synthesized antifilarials/drugs.

  11. Intravenous administration of stabilized antisense lipid particles (SALP) leads to activation and expansion of liver natural killer cells.

    Science.gov (United States)

    Bramson, J L; Bodner, C A; Johnson, J; Semple, S; Hope, M J

    2000-06-01

    Stabilized antisense lipid particles (SALP) have been developed for the systemic delivery of oligonucleotides. The impact of intravenous SALP administration was measured with respect to activation of natural killer (NK) and NK1.1+ T (NKT) cells in the livers of immunocompetent mice. Treatment with a SALP containing a highly mitogenic oligonucleotide (INX-6295) generated an increase in NK cytolytic activity and cell number within the liver but did not appear to affect the number of hepatic NKT cells or their cytolytic activity. The same results were observed after intravenous administration of the mitogenic oligonucleotide alone. Interestingly, treatment with a SALP containing a weakly mitogenic oligonucleotide (INX-6300) also activated the liver NK cells, whereas the oligonucleotide alone was unable to elicit these effects. The NK stimulatory activity of a SALP containing INX-6300 required both lipid and oligonucleotide components. These results demonstrate that in addition to modifying the pharmacokinetics and biodistribution of intravenously administered oligonucleotides, SALP possess immunostimulatory activity independent of oligonucleotide mitogenicity, which can serve as an adjuvant to antisense therapies for cancer.

  12. Mitogen-activated protein kinases mediate Mycobacterium

    Indian Academy of Sciences (India)

    CD44, an adhesion molecule, has been reported to be a binding site for Mycobacterium tuberculosis (M. tuberculosis) in macrophages and it also mediates mycobacterial phagocytosis, macrophage recruitment and protective immunity against pulmonary tuberculosis in vivo. However, the signalling pathways that are ...

  13. Mitogen-activated protein kinases mediate Mycobacterium ...

    Indian Academy of Sciences (India)

    2012-01-19

    Jan 19, 2012 ... effector molecules and also in the control of intracellular bacterial replication ..... H37Ra in THP-1 cells. The fall and rise in the activation of .... use this distinct role of p38 MAPK to balance the expression of CD44 during ...

  14. Effect of interleukin-2 and methylprednisolone on in vitro transformation of uremic lymphocytes

    DEFF Research Database (Denmark)

    Langhoff, E; Ladefoged, J; Ødum, Niels

    1986-01-01

    The functional relationship in vitro between mitogen-induced lymphocyte transformation, lymphocyte response to interleukin-2 (IL-2) and steroid, and production of IL-2 was examined in patients with chronic renal failure on hemodialysis (HD) or on continuous ambulatory peritoneal dialysis (CAPD......). The lymphocyte responses to optimal stimulation with phytohemagglutinin, concanavalin A, and pokeweed mitogen were depressed in lymphocyte cultures from HD patients, while CAPD lymphocyte cultures responded normally. However, at suboptimal phytohemagglutinin stimulation both CAPD lymphocyte and HD lymphocyte...... responses were subnormal. Uremic lymphocyte cultures were more sensitive to the immunosuppressive effect of methylprednisolone. Addition of IL-2 normalized the phytohemagglutinin responses of suboptimally stimulated CAPD lymphocyte cultures and clearly improved the mitogen responses of the HD lymphocyte...

  15. Bacteroides fragilis Enterotoxin Induces Formation of Autophagosomes in Endothelial Cells but Interferes with Fusion with Lysosomes for Complete Autophagic Flux through a Mitogen-Activated Protein Kinase-, AP-1-, and C/EBP Homologous Protein-Dependent Pathway.

    Science.gov (United States)

    Ko, Su Hyuk; Jeon, Jong Ik; Myung, Hyun Soo; Kim, Young-Jeon; Kim, Jung Mogg

    2017-10-01

    Bacteroides fragilis enterotoxin (BFT), a virulence factor of enterotoxigenic B. fragilis (ETBF), plays an essential role in mucosal inflammation. Although autophagy contributes to the pathogenesis of diverse infectious diseases, little is known about autophagy in ETBF infection. This study was conducted to investigate the role of BFT in the autophagic process in endothelial cells (ECs). Stimulation of human umbilical vein ECs (HUVECs) with BFT increased light chain 3 protein II (LC3-II) conversion from LC3-I and protein expression of p62, Atg5, and Atg12. In addition, BFT-exposed ECs showed increased indices of autophagosomal fusion with lysosomes such as LC3-lysosome-associated protein 2 (LAMP2) colocalization and the percentage of red vesicles monitored by the expression of dual-tagged LC3B. BFT also upregulated expression of C/EBP homologous protein (CHOP), and inhibition of CHOP significantly increased indices of autophagosomal fusion with lysosomes. BFT activated an AP-1 transcription factor, in which suppression of AP-1 activity significantly downregulated CHOP and augmented autophagosomal fusion with lysosomes. Furthermore, suppression of Jun N-terminal protein kinase (JNK) mitogen-activated protein kinase (MAPK) significantly inhibited the AP-1 and CHOP signals, leading to an increase in autophagosomal fusion with lysosomes in BFT-stimulated ECs. These results suggest that BFT induced accumulation of autophagosomes in ECs, but activation of a signaling pathway involving JNK, AP-1, and CHOP may interfere with complete autophagy. Copyright © 2017 American Society for Microbiology.

  16. Mitogen-activated protein kinase kinase 1/2 inhibition and angiotensin II converting inhibition in mice with cardiomyopathy caused by lamin A/C gene mutation

    Energy Technology Data Exchange (ETDEWEB)

    Muchir, Antoine, E-mail: a.muchir@institut-myologie.org [Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, NY (United States); Department of Pathology and Cell Biology, College of Physicians and Surgeons, Columbia University, New York, NY (United States); Wu, Wei [Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, NY (United States); Department of Pathology and Cell Biology, College of Physicians and Surgeons, Columbia University, New York, NY (United States); Sera, Fusako; Homma, Shunichi [Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, NY (United States); Worman, Howard J., E-mail: hjw14@columbia.edu [Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, NY (United States); Department of Pathology and Cell Biology, College of Physicians and Surgeons, Columbia University, New York, NY (United States)

    2014-10-03

    Highlights: • Both ACE and MEK1/2 inhibition are beneficial on cardiac function in Lmna cardiomyopathy. • MEK1/2 inhibitor has beneficial effects beyond ACE inhibition for Lmna cardiomyopathy. • These results provide further preclinical rationale for a clinical trial of a MEK1/2 inhibitor. - Abstract: Background: Mutations in the LMNA gene encoding A-type nuclear lamins can cause dilated cardiomyopathy with or without skeletal muscular dystrophy. Previous studies have shown abnormally increased extracellular signal-regulated kinase 1/2 activity in hearts of Lmna{sup H222P/H222P} mice, a small animal model. Inhibition of this abnormal signaling activity with a mitogen-activated protein kinase kinase 1/2 (MEK1/2) inhibitor has beneficial effects on heart function and survival in these mice. However, such treatment has not been examined relative to any standard of care intervention for dilated cardiomyopathy or heart failure. We therefore examined the effects of an angiotensin II converting enzyme (ACE) inhibitor on left ventricular function in Lmna{sup H222P/H222P} mice and assessed if adding a MEK1/2 inhibitor would provide added benefit. Methods: Male Lmna{sup H222P/H222P} mice were treated with the ACE inhibitor benazepril, the MEK1/2 inhibitor selumetinib or both. Transthoracic echocardiography was used to measure left ventricular diameters and fractional shortening was calculated. Results: Treatment of Lmna{sup H222P/H222P} mice with either benazepril or selumetinib started at 8 weeks of age, before the onset of detectable left ventricular dysfunction, lead to statistically significantly increased fractional shortening compared to placebo at 16 weeks of age. There was a trend towards a great value for fractional shortening in the selumetinib-treated mice. When treatment was started at 16 weeks of age, after the onset of left ventricular dysfunction, the addition of selumetinib treatment to benazepril lead to a statistically significant increase in left

  17. Mitogen-activated protein kinase kinase 1/2 inhibition and angiotensin II converting inhibition in mice with cardiomyopathy caused by lamin A/C gene mutation

    International Nuclear Information System (INIS)

    Muchir, Antoine; Wu, Wei; Sera, Fusako; Homma, Shunichi; Worman, Howard J.

    2014-01-01

    Highlights: • Both ACE and MEK1/2 inhibition are beneficial on cardiac function in Lmna cardiomyopathy. • MEK1/2 inhibitor has beneficial effects beyond ACE inhibition for Lmna cardiomyopathy. • These results provide further preclinical rationale for a clinical trial of a MEK1/2 inhibitor. - Abstract: Background: Mutations in the LMNA gene encoding A-type nuclear lamins can cause dilated cardiomyopathy with or without skeletal muscular dystrophy. Previous studies have shown abnormally increased extracellular signal-regulated kinase 1/2 activity in hearts of Lmna H222P/H222P mice, a small animal model. Inhibition of this abnormal signaling activity with a mitogen-activated protein kinase kinase 1/2 (MEK1/2) inhibitor has beneficial effects on heart function and survival in these mice. However, such treatment has not been examined relative to any standard of care intervention for dilated cardiomyopathy or heart failure. We therefore examined the effects of an angiotensin II converting enzyme (ACE) inhibitor on left ventricular function in Lmna H222P/H222P mice and assessed if adding a MEK1/2 inhibitor would provide added benefit. Methods: Male Lmna H222P/H222P mice were treated with the ACE inhibitor benazepril, the MEK1/2 inhibitor selumetinib or both. Transthoracic echocardiography was used to measure left ventricular diameters and fractional shortening was calculated. Results: Treatment of Lmna H222P/H222P mice with either benazepril or selumetinib started at 8 weeks of age, before the onset of detectable left ventricular dysfunction, lead to statistically significantly increased fractional shortening compared to placebo at 16 weeks of age. There was a trend towards a great value for fractional shortening in the selumetinib-treated mice. When treatment was started at 16 weeks of age, after the onset of left ventricular dysfunction, the addition of selumetinib treatment to benazepril lead to a statistically significant increase in left ventricular fractional

  18. A microculture technique for rat lymphocyte transformation.

    Science.gov (United States)

    Lindsay, V J; Allardyce, R A

    1979-01-01

    We report the development of an economical microculture technique suitable for measuring rat lymphocyte response to mitogens and in mixed lymphocyte reactions. The effects of varying culture conditions, i.e. source of serum, addition and concentration of 2-mercaptoethanol, mitogen concentrations, culture incubation times, absorption of serum, lymphocyte numbers and microtitre plate well shape are described.

  19. Staphylococcus enterotoxin A modulates interleukin 15-induced signaling and mitogenesis in human T cells

    DEFF Research Database (Denmark)

    Gerwien, J; Kaltoft, K; Nielsen, M

    1998-01-01

    the anti-mitogenic effect of SEA on cytokine-induced proliferation and the pro-mitogenic effect of PMA. In contrast, inhibitors of PP1, PP2A, protein kinase C (PKC), phosphatidyl-inositol-3-kinase (PI-3K) and mammalian target of rapamycin (mTOR) are unable to inhibit the effects of SEA. In a SEA "non...

  20. Nicotine stimulates urokinase-type plasminogen activator receptor expression and cell invasiveness through mitogen-activated protein kinase and reactive oxygen species signaling in ECV304 endothelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Khoi, Pham Ngoc; Park, Jung Sun; Kim, Nam Ho; Jung, Young Do, E-mail: ydjung@chonnam.ac.kr

    2012-03-01

    Urokinase-type plasminogen activator receptor (uPAR) expression is elevated during inflammation, tissue remodeling and in many human cancers. This study investigated the effect of nicotine, a major alkaloid in tobacco, on uPAR expression and cell invasiveness in ECV304 endothelial cells. Nicotine stimulated uPAR expression in a dose-dependent manner and activated extracellular signal-regulated kinases-1/2 (Erk-1/2), c-Jun amino-terminal kinase (JNK) and p38 mitogen activated protein kinase (MAPK). Specific inhibitors of MEK-1 (PD98059) and JNK (SP600125) inhibited the nicotine-induced uPAR expression, while the p38 MAPK inhibitor SB203580 did not. Expression vectors encoding dominant negative MEK-1 (pMCL-K97M) and JNK (TAM67) also prevented nicotine-induced uPAR promoter activity. The intracellular hydrogen peroxide (H{sub 2}O{sub 2}) content was increased by nicotine treatment. The antioxidant N-acetylcysteine prevented nicotine-activated production of reactive oxygen species (ROS) and uPAR expression. Furthermore, exogenous H{sub 2}O{sub 2} increased uPAR mRNA expression. Deleted and site-directed mutagenesis demonstrated the involvement of the binding sites of transcription factor nuclear factor-kappaB (NF-κB) and activator protein (AP)-1 in the nicotine-induced uPAR expression. Studies with expression vectors encoding mutated NF-κB signaling molecules and AP-1 decoy confirmed that NF-κB and AP-1 were essential for the nicotine-stimulated uPAR expression. MAPK (Erk-1/2 and JNK) and ROS functioned as upstream signaling molecules in the activation of AP-1 and NF-κB, respectively. In addition, ECV304 endothelial cells treated with nicotine displayed markedly enhanced invasiveness, which was partially abrogated by uPAR neutralizing antibodies. The data indicate that nicotine induces uPAR expression via the MAPK/AP-1 and ROS/NF-κB signaling pathways and, in turn, stimulates invasiveness in human ECV304 endothelial cells. -- Highlights: ► Endothelial cells

  1. Nicotine stimulates urokinase-type plasminogen activator receptor expression and cell invasiveness through mitogen-activated protein kinase and reactive oxygen species signaling in ECV304 endothelial cells

    International Nuclear Information System (INIS)

    Khoi, Pham Ngoc; Park, Jung Sun; Kim, Nam Ho; Jung, Young Do

    2012-01-01

    Urokinase-type plasminogen activator receptor (uPAR) expression is elevated during inflammation, tissue remodeling and in many human cancers. This study investigated the effect of nicotine, a major alkaloid in tobacco, on uPAR expression and cell invasiveness in ECV304 endothelial cells. Nicotine stimulated uPAR expression in a dose-dependent manner and activated extracellular signal-regulated kinases-1/2 (Erk-1/2), c-Jun amino-terminal kinase (JNK) and p38 mitogen activated protein kinase (MAPK). Specific inhibitors of MEK-1 (PD98059) and JNK (SP600125) inhibited the nicotine-induced uPAR expression, while the p38 MAPK inhibitor SB203580 did not. Expression vectors encoding dominant negative MEK-1 (pMCL-K97M) and JNK (TAM67) also prevented nicotine-induced uPAR promoter activity. The intracellular hydrogen peroxide (H 2 O 2 ) content was increased by nicotine treatment. The antioxidant N-acetylcysteine prevented nicotine-activated production of reactive oxygen species (ROS) and uPAR expression. Furthermore, exogenous H 2 O 2 increased uPAR mRNA expression. Deleted and site-directed mutagenesis demonstrated the involvement of the binding sites of transcription factor nuclear factor-kappaB (NF-κB) and activator protein (AP)-1 in the nicotine-induced uPAR expression. Studies with expression vectors encoding mutated NF-κB signaling molecules and AP-1 decoy confirmed that NF-κB and AP-1 were essential for the nicotine-stimulated uPAR expression. MAPK (Erk-1/2 and JNK) and ROS functioned as upstream signaling molecules in the activation of AP-1 and NF-κB, respectively. In addition, ECV304 endothelial cells treated with nicotine displayed markedly enhanced invasiveness, which was partially abrogated by uPAR neutralizing antibodies. The data indicate that nicotine induces uPAR expression via the MAPK/AP-1 and ROS/NF-κB signaling pathways and, in turn, stimulates invasiveness in human ECV304 endothelial cells. -- Highlights: ► Endothelial cells treated with nicotine

  2. The quiescent and mitogen stimulated peripheral blood mononuclear cells after gamma irradiation and their P53, P21 and H2AX expression

    International Nuclear Information System (INIS)

    Vilasova, Z.; Vavrova, J.; Sinkorova, Z.; Tichy, A.; Oesterreicher, J.; Rezacova, M.; Zoelzer, F.

    2008-01-01

    The aim of this study was to compare reaction of quiescent and proliferating PHA (mitogenic lectin phytohemagglutinin)-stimulated human peripheral blood mononuclear cells (PBMCs) to γ-irradiation and analyze changes of proteins related to repair if DNA damage and apoptosis, such as γH2A.X, p53 and its phosphorylations on serine 15 and 392, and p21. Protein changes induced by radiation are different in quiescent and stimulated PBMCs. W e analyzed changes in proteins related to DNA damage repair and apoptosis using the western blot method in quiescent and stimulated PBMCs. Western blot technique can detect γH2A.X increase only at later times, when the phosphorylation of H2A.X is related to the onset of apoptosis (24-72 h after irradiation by the dose of 4 Gy). The level of H2A.X phosphorylation increased after stimulation of PBMC by PHA (72 h, 10 μg/ml) and as shown here it was detectable by western blot analysis. The increase in γH2A.X that we detected by western blot 4 h after irradiation of stimulated lymphocytes was dose dependent. It can be concluded that measurement of γH2A.X during the first hours after the irradiation is a good marker of the received dose of radiation. We compared the dynamics of p53 induction after irradiation by IR in both quiescent and stimulated lymphocytes. p53 increase was observed only in stimulated lymphocytes, as was p53 phosphorylation at serines-392 and -15. The increase in the amount of p53 was not dose-dependent 4 h after the irradiation. On the other hand, phosphorylation of p53 at serine-15 analyzed 4 h after the irradiation is dose-dependent over the studied dose range. Despite the fact that p53 was not detected in quiescent lymphocytes and a reaction to irradiation was not observed either, p21 levels increased after irradiation in both quiescent and stimulated lymphocytes in a dose-dependent manner. IR induces phosphorylation of p53 at both serines-15 and -392 in PHA stimulated human lymphocytes. However

  3. Abnormalities of lymphocyte function and phenotypic pattern in a case of toxic epidermal necrolysis

    DEFF Research Database (Denmark)

    Hagdrup, H; Tønnesen, E; Clemmensen, O

    1992-01-01

    We examined the blood lymphocyte function and phenotypic pattern in a patient with toxic epidermal necrolysis after taking salazopyrin. We studied cell surface markers, natural killer cell activity and mitogen-induced lymphocyte transformation. Our results point to temporary immunosuppression...... as evidenced by lymphopenia with a large "null cell" population, reduced natural killer cell activity, and impaired lymphocyte response to mitogens....

  4. Mitogen-activated protein kinase phosphatase-3 (MKP-3 in the surgical wound is necessary for the resolution of postoperative pain in mice

    Directory of Open Access Journals (Sweden)

    Skopelja-Gardner S

    2017-03-01

    Full Text Available Sladjana Skopelja-Gardner,1,* Madhurima Saha,1,* Perla Abigail Alvarado-Vazquez,2 Brenna S Liponis,1 Elena Martinez,1 E Alfonso Romero-Sandoval2 1Department of Anesthesiology, Geisel School of Medicine at Dartmouth, Lebanon, NH, 2Department of Pharmaceutical and Administrative Sciences, Presbyterian College School of Pharmacy, Clinton, SC, USA *These authors contributed equally to this work. Abstract: Mitogen-activated protein kinase (MAPK phosphatase-3 (MKP-3 and its substrates (extracellular signal-regulated kinase [ERK] and p38 play an important role in pathophysiological mechanisms of acute postoperative and chronic neuropathic pain in the spinal cord. This study aimed to understand the role of MKP-3 and its target MAPKs at the site of surgical incision in nociceptive behavior. Wild-type (WT and MKP-3 knockout (KO mice underwent unilateral plantar hind paw incision. Mechanical allodynia was assessed by using von Frey filaments. Peripheral ERK-1/2 and p38 phosphorylation were measured by Western blot. Cell infiltration was determined using hematoxylin and eosin histological staining. Peripheral phosphorylated ERK-1/2 (p-ERK-1/2 inhibition was performed in MKP-3 KO mice. In WT mice, mechanical hypersensitivity was observed on postoperative day 1 (0.69±0.17 g baseline vs 0.13±0.08 g day 1, which resolved normally by postoperative day 12 (0.46±0.08 g, N=6. In MKP-3 KO mice, this hypersensitivity persisted at least 12 days after surgery (0.19±0.06 g; N=6. KO mice displayed higher numbers of infiltrating cells (51.4±6 cells/0.1 mm2 than WT mice (8.7±1.2 cells/0.1 mm2 on postoperative day 1 (vs 5–6 cells/0.1 mm2 at baseline that returned to baseline 12 days after surgery (10–12 cells/0.1 mm2. In WT mice, peripheral p-p38 and p-ERK-1/2 expression increased (5- and 3-fold, respectively on postoperative days 1 and 5, and returned to basal levels 7–12 days after surgery (N=3 per group. Peripheral p-p38 levels in MKP-3 KO mice followed

  5. Enhanced expression of WD repeat-containing protein 35 (WDR35 stimulated by domoic acid in rat hippocampus: involvement of reactive oxygen species generation and p38 mitogen-activated protein kinase activation

    Directory of Open Access Journals (Sweden)

    Tsunekawa Koji

    2013-01-01

    Full Text Available Abstract Background Domoic acid (DA is an excitatory amino acid analogue of kainic acid (KA that acts via activation of glutamate receptors to elicit a rapid and potent excitotoxic response, resulting in neuronal cell death. Recently, DA was shown to elicit reactive oxygen species (ROS production and induce apoptosis accompanied by activation of p38 mitogen-activated protein kinase (MAPK in vitro. We have reported that WDR35, a WD-repeat protein, may mediate apoptosis in several animal models. In the present study, we administered DA to rats intraperitoneally, then used liquid chromatography/ion trap tandem mass spectrometry (LC-MS/MS to identify and quantify DA in the brains of the rats and performed histological examinations of the hippocampus. We further investigated the potential involvement of glutamate receptors, ROS, p38 MAPK, and WDR35 in DA-induced toxicity in vivo. Results Our results showed that intraperitoneally administered DA was present in the brain and induced neurodegenerative changes including apoptosis in the CA1 region of the hippocampus. DA also increased the expression of WDR35 mRNA and protein in a dose- and time-dependent manner in the hippocampus. In experiments using glutamate receptor antagonists, the AMPA/KA receptor antagonist NBQX significantly attenuated the DA-induced increase in WDR35 protein expression, but the NMDA receptor antagonist MK-801 did not. In addition, the radical scavenger edaravone significantly attenuated the DA-induced increase in WDR35 protein expression. Furthermore, NBQX and edaravone significantly attenuated the DA-induced increase in p38 MAPK phosphorylation. Conclusion In summary, our results indicated that DA activated AMPA/KA receptors and induced ROS production and p38 MAPK phosphorylation, resulting in an increase in the expression of WDR35 in vivo.

  6. Cell Calcium and the Control of Membrane Transport. Annual Symposium of the Society of General Physiologists (40th) Held in Woods Hole, Massachusetts on September 3-7, 1986.

    Science.gov (United States)

    1986-01-01

    plasma membranes. Purification. reconstitution, and properties. BB. I Revie.s in Biocnergetics. 683:279-301. Enedi. A.. B. Sarkadi, 1. Szasz , G. Bot...Journal. 237:675- 683. Connolly, T. M.. W. J1. Lawing . Jr., and P. W. Majerus. 1986. Protein kinaseC phosphorylates human platelet inositol trisphosphate 5...in kinetics. selecti% it , and pharmacology. .Journal of (ism’ra/ I’lili vs/o~ 86:1-30. Bross n. A. L. 1 970. [The African C" law ~ed load .\\’nopuA

  7. Catalytic properties of inositol trisphosphate kinase: activation by Ca2+ and calmodulin

    International Nuclear Information System (INIS)

    Ryu, S.H.; Lee, S.Y.; Lee, K.Y.; Rhee, S.G.

    1987-01-01

    Inositol 1,4,5-triphosphate (Ins-1,4,5-P 3 ) is an important second-messenger molecule that mobilizes Ca 2+ from intracellular stores in response to the occupancy of receptor by various Ca 2+ -mobilizing agonists. The fate of Ins-1,4,5-P 3 is determined by two enzymes, a 3-kinase and a 5-phosphomonoesterase. The first enzyme converts Ins-1,4,5-P 3 to Ins-1,3,4,5-P 4 , whereas the latter forms Ins-1,4-P 2 . Recent studies suggest that Ins-1,3,4,5-P 4 might modulate the entry of Ca 2+ from an extracellular source. In the current report, the authors describe the partial purification of the 3-kinase from the cytosolic fraction of bovine brain and studies of its catalytic properties. They found that the 3-kinase activity is significantly activated by the Ca 2+ /calmodulin complex. Therefore, they propose that Ca 2+ mobilized from endoplasmic reticulum by the action of Ins-1,4,5-P 3 forms a complex with calmodulin, and that the Ca 2+ /calmodulin complex stimulates the conversion of Ins-1,4,5-P 3 , and intracellular Ca 2+ mobilizer, to Ins-1,3,4,5-P 4 , an extracellular Ca 2+ mobilizer. A rapid assay method for the 3-kinase was developed that is based on the separation of [3- 32 P]Ins-1,3,4,5-P 4 and [γ- 32 P]ATP by thin-layer chromatography. Using this new assay method, they evaluated kinetic parameters (K/sub m/ for ATP = 40 μM, K/sub m/ for Ins-1,4,5-P 3 = 0.7 μM, K/sub i/ for ADP = 12 μM) and divalent cation specificity (Mg 2+ > > Mn 2+ > Ca 2+ ) for the 3-kinase

  8. Stimulation of aortic smooth muscle cell mitogenesis by serotonin

    International Nuclear Information System (INIS)

    Nemecek, G.M.; Coughlin, S.R.; Handley, D.A.; Moskowitz, M.A.

    1986-01-01

    Bovine aortic smooth muscle cells in vitro responded to 1 nM to 10 μM serotonin with increased incorporation of [ 3 H]thymidine into DNA. The mitogenic effect of serotonin was half-maximal at 80 nM and maximal above 1 μM. At a concentration of 1 μM, serotonin stimulated smooth muscle cell mitogenesis to the same extent as human platelet-derived growth factor (PDGF) at 12 ng/ml. Tryptamine was ≅ 1/10th as potent as serotonin as a mitogen for smooth muscle cells. Other indoles that are structurally related to serotonin (D- and L-tryptophan, 5-hydroxy-L-tryptophan, N-acetyl-5-hydroxytryptamine, melatonin, 5-hydroxyindoleacetic acid, and 5-hydroxytryptophol) and quipazine were inactive. The stimulatory effect of serotonin on smooth muscle cell DNA synthesis required prolonged (20-24 hr) exposure to the agonist and was attenuated in the presence of serotonin D receptor antagonists. When smooth muscle cells were incubated with submaximal concentrations of serotonin and PDGF, synergistic rather than additive mitogenic responses were observed. These data indicate that serotonin has a significant mitogenic effect on smooth muscle cells in vitro, which appears to be mediated by specific plasma membrane receptors

  9. Phosphorylation and activation of p42 and p44 mitogen-activated protein kinase are required for the P2 purinoceptor stimulation of endothelial prostacyclin production.

    Science.gov (United States)

    Patel, V; Brown, C; Goodwin, A; Wilkie, N; Boarder, M R

    1996-11-15

    Extracellular ATP and ADP, released from platelets and other sites stimulate the endothelial production of prostacyclin (PGI2) by acting on G-protein-coupled P2Y2 and P2Y2 purinoceptors, contributing to the maintenance of a non-thrombogenic surface. The mechanism, widely described as being dependent on elevated cytosolic [Ca2+], also requires protein tyrosine phosphorylation. Here we show that activation of both these P2 receptor types leads to the tyrosine phosphorylation and activation of both the p42 and p44 forms of mitogen-activated protein kinase (MAPK). 2-Methylthio-ATP and UTP, selectively activating P2Y1 and P2Y2 purinoceptors respectively, and ATP, a non-selective agonist at these two receptors, stimulate the tyrosine phosphorylation of both p42mapk and p44mapk, as revealed by Western blots with an antiserum specific for the tyrosine-phosphorylated forms of the enzymes. By using separation on Resource Q columns, peptide kinase activity associated with the phosphorylated MAPK enzymes distributes into two peaks, one mainly p42mapk and one mainly p44mapk, both of which are stimulated by ATP with respect to kinase activity and phospho-MAPK immunoreactivity. Stimulation of P2Y1 or P2Y2 purinoceptors leads to a severalfold increase in PGI2 efflux; this was blocked in a dose-dependent manner by the selective MAPK kinase inhibitor PD98059. This drug also blocked the agonist-stimulated increase in phospho-MAPK immunoreactivity for both p42mapk and p44mapk but left the phospholipase C response to P2 agonists essentially unchanged. Olomoucine has been reported to inhibit p44mapk activity. Here we show that in the same concentration range olomoucine inhibits activity in both peaks from the Resource Q column and also the agonist stimulation of 6-keto-PGF1, but has no effect on agonist-stimulated phospho-MAPK immunoreactivity. These results provide direct evidence for the involvement of p42 and p44 MAPK in the PGI2 response of intact endothelial cells: we have shown

  10. Lysophosphatidylcholine Promotes Phagosome Maturation and Regulates Inflammatory Mediator Production Through the Protein Kinase A–Phosphatidylinositol 3 Kinase–p38 Mitogen-Activated Protein Kinase Signaling Pathway During Mycobacterium tuberculosis Infection in Mouse Macrophages

    Directory of Open Access Journals (Sweden)

    Hyo-Ji Lee

    2018-04-01

    Full Text Available Tuberculosis is caused by the infectious agent Mycobacterium tuberculosis (Mtb. Mtb has various survival strategies, including blockade of phagosome maturation and inhibition of antigen presentation. Lysophosphatidylcholine (LPC is a major phospholipid component of oxidized low-density lipoprotein and is involved in various cellular responses, such as activation of second messengers and bactericidal activity in neutrophils. In this study, macrophages were infected with a low infectious dose of Mtb and treated with LPC to investigate the bactericidal activity of LPC against Mtb. In macrophages infected with Mtb strain, H37Ra or H37Rv, LPC suppressed bacterial growth; however, this effect was suppressed in bone marrow-derived macrophages (BMDMs isolated from G2A (a G protein-coupled receptor involved in some LPC actions knockout mice. LPC also promoted phagosome maturation via phosphatidylinositol 3 kinase (PI3K–p38 mitogen-activated protein kinase (MAPK-mediated reactive oxygen species production and intracellular Ca2+ release during Mtb infection. In addition, LPC induced increased levels of intracellular cyclic adenosine monophosphate (cAMP and phosphorylated glycogen synthase kinase 3 beta (GSK3β in Mtb-infected macrophages. Protein kinase A (PKA-induced phosphorylation of GSK3β suppressed activation of NF-κB in LPC-treated macrophages during Mtb infection, leading to decreased secretion of pro-inflammatory cytokines and increased secretion of anti-inflammatory cytokines. These results suggest that LPC can effectively control Mtb growth by promoting phagosome maturation via cAMP-induced activation of the PKA–PI3K–p38 MAPK pathway. Moreover, LPC can regulate excessive production of pro-inflammatory cytokines associated with bacterial infection of macrophages.

  11. Puerarin reduces apoptosis in rat hippocampal neurons culturea in high glucose medium by modulating the p38 mitogen activated protein kinase and c-Jun N-terminal kinase signaling pathways.

    Science.gov (United States)

    Xu, Xiaohan; Wang, Jingbo; Zhang, Hong; Tian, Guoqing; Liu, Yuqin

    2016-02-01

    To investigate the neuroprotective etfect of puerarin on rat hippocampal neurons cultured in high glucose medium, and to examine the role of the p38 mitogen activated protein kinase (p38 MAPK) and c-Jun N-terminal kinase (JNK) signaling pathways in this effect. Primary cultures of hippocampal neurons were prepared from newborn Sprague Dawley rats. Neuron-specific enolase immunocytochemistry was used to identify neurons. The neurons were cultured with normal medium (control group) or with high-glucose medium (high-glucose group), and puerarin (puerarin group), a p38 MAPK inhibitor (SB239063; p38 MAPK inhibitor group) or a JNK inhibitor (SP600125; JNK inhibitor group) were added. After 72 h of treatment, terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling assay was performed to detect apoptosis, and western blotting was used to assess protein levels of p-p38, p38, p-JNK and JNK. In the high-glucose group, the neuronal apoptosis rate and the p-p38/p38 and p-JNK/JNK ratios were higher than in the control group. The p38 MAPK and JNK inhibitors prevented this increase in the apoptosis rate. The apoptosis rates in the puerarin group, the p38 MAPK inhibitor group and the JNK inhibitor group were significantly decreased compared with the high-glucose group. Moreover, protein levels of p-p38 and p-JNK were significantly reduced, and the p-p38/p38 and p-JNK/JNK ratios were decreased in the puerarin group compared with the high-glucose group. In addition, compared with the high-glucose group, p-p38 levels and the p-p38/p38 ratio were reduced in the p38 MAPK inhibitor group, and p-JNK levels and the p-JNK/JNK ratio were decreased in the JNK inhibitor group. Puerarin attenuates neuronal apoptosis induced by high glucose by reducing the phosphorylation of p38 and JNK.

  12. In vitro cell-mediated immunity studies of plutonium-exposed beagle dogs

    International Nuclear Information System (INIS)

    Morris, J.E.; Graham, T.; Park, J.F.

    1980-01-01

    Mitogen-induced activation was measured in spleen and mesenteric lymph node cell preparations from dogs exposed to a single inhalation exposure of plutonium oxide ( 238 Pu or 239 Pu). Reduced stimulation indices of splenic lymphocytes from exposed animals suggest that a reduction in lymphocyte function has occurred in this tissue. No apparent reduction in mitogen stimulation indices was observed in mesenteric lymph node cultures

  13. Extracellular acidification induces connective tissue growth factor production through proton-sensing receptor OGR1 in human airway smooth muscle cells

    Energy Technology Data Exchange (ETDEWEB)

    Matsuzaki, Shinichi [Department of Medicine and Molecular Science, Gunma University Graduate School of Medicine, Maebashi 371-8511 (Japan); Ishizuka, Tamotsu, E-mail: tamotsui@showa.gunma-u.ac.jp [Department of Medicine and Molecular Science, Gunma University Graduate School of Medicine, Maebashi 371-8511 (Japan); Yamada, Hidenori; Kamide, Yosuke; Hisada, Takeshi; Ichimonji, Isao; Aoki, Haruka; Yatomi, Masakiyo [Department of Medicine and Molecular Science, Gunma University Graduate School of Medicine, Maebashi 371-8511 (Japan); Komachi, Mayumi [Laboratory of Signal Transduction, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi 371-8512 (Japan); Tsurumaki, Hiroaki; Ono, Akihiro; Koga, Yasuhiko [Department of Medicine and Molecular Science, Gunma University Graduate School of Medicine, Maebashi 371-8511 (Japan); Dobashi, Kunio [Gunma University Graduate School of Health Sciences, Maebashi 371-8511 (Japan); Mogi, Chihiro; Sato, Koichi; Tomura, Hideaki [Laboratory of Signal Transduction, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi 371-8512 (Japan); Mori, Masatomo [Department of Medicine and Molecular Science, Gunma University Graduate School of Medicine, Maebashi 371-8511 (Japan); Okajima, Fumikazu [Laboratory of Signal Transduction, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi 371-8512 (Japan)

    2011-10-07

    Highlights: {yields} The involvement of extracellular acidification in airway remodeling was investigated. {yields} Extracellular acidification alone induced CTGF production in human ASMCs. {yields} Extracellular acidification enhanced TGF-{beta}-induced CTGF production in human ASMCs. {yields} Proton-sensing receptor OGR1 was involved in acidic pH-stimulated CTGF production. {yields} OGR1 may play an important role in airway remodeling in asthma. -- Abstract: Asthma is characterized by airway inflammation, hyper-responsiveness and remodeling. Extracellular acidification is known to be associated with severe asthma; however, the role of extracellular acidification in airway remodeling remains elusive. In the present study, the effects of acidification on the expression of connective tissue growth factor (CTGF), a critical factor involved in the formation of extracellular matrix proteins and hence airway remodeling, were examined in human airway smooth muscle cells (ASMCs). Acidic pH alone induced a substantial production of CTGF, and enhanced transforming growth factor (TGF)-{beta}-induced CTGF mRNA and protein expression. The extracellular acidic pH-induced effects were inhibited by knockdown of a proton-sensing ovarian cancer G-protein-coupled receptor (OGR1) with its specific small interfering RNA and by addition of the G{sub q/11} protein-specific inhibitor, YM-254890, or the inositol-1,4,5-trisphosphate (IP{sub 3}) receptor antagonist, 2-APB. In conclusion, extracellular acidification induces CTGF production through the OGR1/G{sub q/11} protein and inositol-1,4,5-trisphosphate-induced Ca{sup 2+} mobilization in human ASMCs.

  14. Extracellular acidification induces connective tissue growth factor production through proton-sensing receptor OGR1 in human airway smooth muscle cells

    International Nuclear Information System (INIS)

    Matsuzaki, Shinichi; Ishizuka, Tamotsu; Yamada, Hidenori; Kamide, Yosuke; Hisada, Takeshi; Ichimonji, Isao; Aoki, Haruka; Yatomi, Masakiyo; Komachi, Mayumi; Tsurumaki, Hiroaki; Ono, Akihiro; Koga, Yasuhiko; Dobashi, Kunio; Mogi, Chihiro; Sato, Koichi; Tomura, Hideaki; Mori, Masatomo; Okajima, Fumikazu

    2011-01-01

    Highlights: → The involvement of extracellular acidification in airway remodeling was investigated. → Extracellular acidification alone induced CTGF production in human ASMCs. → Extracellular acidification enhanced TGF-β-induced CTGF production in human ASMCs. → Proton-sensing receptor OGR1 was involved in acidic pH-stimulated CTGF production. → OGR1 may play an important role in airway remodeling in asthma. -- Abstract: Asthma is characterized by airway inflammation, hyper-responsiveness and remodeling. Extracellular acidification is known to be associated with severe asthma; however, the role of extracellular acidification in airway remodeling remains elusive. In the present study, the effects of acidification on the expression of connective tissue growth factor (CTGF), a critical factor involved in the formation of extracellular matrix proteins and hence airway remodeling, were examined in human airway smooth muscle cells (ASMCs). Acidic pH alone induced a substantial production of CTGF, and enhanced transforming growth factor (TGF)-β-induced CTGF mRNA and protein expression. The extracellular acidic pH-induced effects were inhibited by knockdown of a proton-sensing ovarian cancer G-protein-coupled receptor (OGR1) with its specific small interfering RNA and by addition of the G q/11 protein-specific inhibitor, YM-254890, or the inositol-1,4,5-trisphosphate (IP 3 ) receptor antagonist, 2-APB. In conclusion, extracellular acidification induces CTGF production through the OGR1/G q/11 protein and inositol-1,4,5-trisphosphate-induced Ca 2+ mobilization in human ASMCs.

  15. Developments of integrated laser crystals by a direct bonding method

    International Nuclear Information System (INIS)

    Sugiyama, Akira; Fukuyama, Hiroyasu; Katsumata, Masaki; Tanaka, Mitsuhiro; Okada, Yukikatu

    2003-01-01

    Laser crystal integration using a neodymium-doped yttrium vanadate (or orthovanadate) laser crystal, and non-doped yttrium vanadate crystals that function as cold fingers has been demonstrated. A newly developed dry etching process was adopted in the preparation for contact of mechanically polished surfaces. In the heat treatment process, temperature optimization was essential to get rid of precipitation of vanadic acid caused by the thermo-chemical reaction in a vacuum furnace. The bonded crystal was studied via optical characteristics, magnified inspections, laser output performances pumped by a CW laser diode. From these experiments, it was clear that the integrated Nd:YVO 4 laser crystal, securing the well-improved thermal conductivity, can increase laser output power nearly twice that of the conventional single crystal which was cracked in high power laser pumping of 10 W due to its intrinsic poor thermal conductivity. (author)

  16. Investigation of thermal expansion and compressibility of rare-earth orthovanadates using a dielectric chemical bond method.

    Science.gov (United States)

    Zhang, Siyuan; Zhou, Shihong; Li, Huaiyong; Li, Ling

    2008-09-01

    The chemical bond properties, lattice energies, linear expansion coefficients, and mechanical properties of ReVO 4 (Re = La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Sc, Y) are investigated systematically by the dielectric chemical bond theory. The calculated results show that the covalencies of Re-O bonds are increasing slightly from La to Lu and that the covalencies of V-O bonds in crystals are decreasing slightly from La to Lu. The linear expansion coefficients decrease progressively from LaVO 4 to LuVO 4; on the contrary, the bulk moduli increase progressively. Our calculated results are in good agreement with some experimental values for linear expansion coefficients and bulk moduli.

  17. Andrographolide stimulates p38 mitogen-activated protein kinase-nuclear factor erythroid-2-related factor 2-heme oxygenase 1 signaling in primary cerebral endothelial cells for definite protection against ischemic stroke in rats.

    Science.gov (United States)

    Yen, Ting-Lin; Chen, Ray-Jade; Jayakumar, Thanasekaran; Lu, Wan-Jung; Hsieh, Cheng-Ying; Hsu, Ming-Jen; Yang, Chih-Hao; Chang, Chao-Chien; Lin, Yen-Kuang; Lin, Kuan-Hung; Sheu, Joen-Rong

    2016-04-01

    Stroke pathogenesis involves complex oxidative stress-related pathways. The nuclear factor erythroid-2-related factor 2 (Nrf2) and heme oxygenase 1 (HO-1) pathways have been considered molecular targets in pharmacologic intervention for ischemic diseases. Andrographolide, a labdane diterpene, has received increasing attention in recent years because of its various pharmacologic activities. We determined that andrographolide modulates the mitogen-activated protein kinase (MAPK)-Nrf2-HO-1 signaling cascade in primary cerebral endothelial cells (CECs) to provide positive protection against middle cerebral artery occlusion (MCAO)-induced ischemic stroke in rats. In the present study, andrographolide (10 μM) increased HO-1 protein and messenger RNA expressions, Nrf2 phosphorylation, and nuclear translocation in CECs, and these activities were disrupted by a p38 MAPK inhibitor, SB203580, but not by the extracellular signal-regulated kinase inhibitor PD98059 or c-Jun amino-terminal kinase inhibitor SP600125. Similar results were observed in confocal microscopy analysis. Moreover, andrographolide-induced Nrf2 and HO-1 protein expressions were significantly inhibited by Nrf2 small interfering RNA. Moreover, HO-1 knockdown attenuated the protective effect of andrographolide against oxygen-glucose deprivation-induced CEC death. Andrographolide (0.1 mg/kg) significantly suppressed free radical formation, blood-brain barrier disruption, and brain infarction in MCAO-insulted rats, and these effects were reversed by the HO-1 inhibitor zinc protoporphyrin IX. The mechanism is attributable to HO-1 activation, as directly evidenced by andrographolide-induced pronounced HO-1 expression in brain tissues, which was highly localized in the cerebral capillary. In conclusion, andrographolide increased Nrf2-HO-1 expression through p38 MAPK regulation, confirming that it provides protection against MCAO-induced brain injury. These findings provide strong evidence that andrographolide could

  18. Regulation of the Type III InsP3 Receptor by InsP3 and ATP

    OpenAIRE

    Hagar, Robert E.; Ehrlich, Barbara E.

    2000-01-01

    Many hormones and neurotransmitters raise intracellular calcium (Ca(2+)) by generating InsP(3) and activating the inositol 1,4, 5-trisphosphate receptor (InsP(3)R). Multiple isoforms with distinct InsP(3) binding properties () have been identified (). The type III InsP(3)R lacks Ca(2+)-dependent inhibition, a property that makes it ideal for signal initiation (). Regulation of the type III InsP(3)R by InsP(3) and ATP was explored in detail using planar lipid bilayers. In comparison to the typ...

  19. Studies of variability in the PTEN gene among Danish caucasian patients with Type II diabetes mellitus

    DEFF Research Database (Denmark)

    Hansen, L; Jensen, J N; Ekstrøm, C T

    2001-01-01

    Phosphatase and tensin homologue deleted from chromosome ten (PTEN) has recently been characterized as a novel member in the expanding network of proteins regulating the intracellular effects of insulin. By dephosphorylation of phosphatidyl-inositol-(3, 4, 5)-trisphosphate (PIP3) the PTEN protein...... regulates the insulin-dependent phosphoinositide 3-kinase (PI3K) signalling cassette and accordingly might function as a regulator of insulin sensitivity in skeletal muscle and adipose tissue. In this study we tested PTEN as a candidate gene for insulin resistance and late-onset Type II (non...

  20. A balanced chromosomal translocation disrupting ARHGEF9 is associated with epilepsy, anxiety, aggression, and mental retardation

    DEFF Research Database (Denmark)

    Kalscheuer, Vera M; Musante, Luciana; Fang, Cheng

    2009-01-01

    show binds phosphatidylinositol-3-phosphate (PI3P/PtdIns-3-P), a phosphoinositide with an emerging role in membrane trafficking and signal transduction, rather than phosphatidylinositol 3,4,5-trisphosphate (PIP3/PtdIns-3,4,5-P) as previously suggested in the "membrane activation model" of gephyrin...... clustering. Consistent with this finding, expression of truncated collybistin proteins in cultured neurons interferes with synaptic localization of endogenous gephyrin and GABA(A) receptors. These results suggest that collybistin has a key role in membrane trafficking of gephyrin and selected GABA...

  1. The influence of γ-radiation on the immunological effectiveness of a brucellar protective antigen

    International Nuclear Information System (INIS)

    Pronin, A.V.; Dranovskaya, E.A.; Malikov, V.E.

    1988-01-01

    It is shown that the splenocytic response to mitogens in guinea pigs was activated 7 days following immunization thereof with with a gamma-irradiated brucellar protective agent (gamma-BPA) while nonirradiated BPA inhibited lymphocyte proliferatiuon under the effect of mitogens. Gamma-BPA as compared with BPA circulated in blood for a longer time, induced a more rapid and prolonged synthesis of antibodies and provided the development of a more intensive immunity

  2. Observations on human smooth muscle cell cultures from hyperplastic lesions of prosthetic bypass grafts: Production of a platelet-derived growth factor-like mitogen and expression of a gene for a platelet-derived growth factor receptor--a preliminary study

    International Nuclear Information System (INIS)

    Birinyi, L.K.; Warner, S.J.; Salomon, R.N.; Callow, A.D.; Libby, P.

    1989-01-01

    Prosthetic bypass grafts placed to the distal lower extremity often fail because of an occlusive tissue response in the perianastomotic region. The origin of the cells that comprise this occlusive lesion and the causes of the cellular proliferation are not known. To increase our understanding of this process we cultured cells from hyperplastic lesions obtained from patients at the time of reexploration for lower extremity graft failure, and we studied their identity and growth factor production in tissue culture. These cultures contain cells that express muscle-specific actin isoforms, shown by immunohistochemical staining, consistent with vascular smooth muscle origin. These cultures also released material that stimulated smooth muscle cell growth. A portion of this activity was similar to platelet-derived growth factor, since preincubation with antibody-to-human platelet-derived growth factor partially blocked the mitogenic effect of medium conditioned by human anastomotic hyperplastic cells. These conditioned media also contained material that competed with platelet-derived growth factor for its receptor, as measured in a radioreceptor assay. Northern blot analysis showed that these cells contain messenger RNA that encodes the A chain but not the B chain of platelet-derived growth factor. In addition, these cells contain messenger RNA that encodes a platelet-derived growth factor receptor. We conclude that cultured smooth muscle cells from human anastomotic hyperplastic lesions express genes for platelet-derived growth factor A chain and a platelet-derived growth factor receptor and secrete biologically active molecules similar to platelet-derived growth factor

  3. Proliferative signaling initiated in ACTH receptors

    Directory of Open Access Journals (Sweden)

    C.F.P. Lotfi

    2000-10-01

    Full Text Available This article reviews recent results of studies aiming to elucidate modes of integrating signals initiated in ACTH receptors and FGF2 receptors, within the network system of signal transduction found in Y1 adrenocortical cells. These modes of signal integration should be central to the mechanisms underlying the regulation of the G0->G1->S transition in the adrenal cell cycle. FGF2 elicits a strong mitogenic response in G0/G1-arrested Y1 adrenocortical cells, that includes a rapid and transient activation of extracellular signal-regulated kinases-mitogen-activated protein kinases (ERK-MAPK (2 to 10 min, b transcription activation of c-fos, c-jun and c-myc genes (10 to 30 min, c induction of c-Fos and c-Myc proteins by 1 h and cyclin D1 protein by 5 h, and d onset of DNA synthesis stimulation within 8 h. ACTH, itself a weak mitogen, interacts with FGF2 in a complex manner, blocking the FGF2 mitogenic response during the early and middle G1 phase, keeping ERK-MAPK activation and c-Fos and cyclin D1 induction at maximal levels, but post-transcriptionally inhibiting c-Myc expression. c-Fos and c-Jun proteins are mediators in both the strong and the weak mitogenic responses respectively triggered by FGF2 and ACTH. Induction of c-Fos and stimulation of DNA synthesis by ACTH are independent of PKA and are inhibited by the PKC inhibitor GF109203X. In addition, ACTH is a poor activator of ERK-MAPK, but c-Fos induction and DNA synthesis stimulation by ACTH are strongly inhibited by the inhibitor of MEK1 PD98059.

  4. Effects of vitamin K3 and K5 on proliferation, cytokine production, and regulatory T cell-frequency in human peripheral-blood mononuclear cells.

    Science.gov (United States)

    Hatanaka, Hiroshige; Ishizawa, Hitomi; Nakamura, Yurie; Tadokoro, Hiroko; Tanaka, Sachiko; Onda, Kenji; Sugiyama, Kentaro; Hirano, Toshihiko

    2014-03-18

    The effects of vitamin K (VK) derivatives VK3 and VK5 on human immune cells have not been extensively investigated. We examined the effects of VK3 and VK5 on proliferation, apoptosis, cytokine production, and CD4+CD25+Foxp3+ regulatory T (Treg) cell-frequency in human peripheral blood mononuclear cells (PBMCs) activated by T cell mitogen in vitro. Anti-proliferative effects of VK3 and VK5 on T-cell mitogen activated PBMCs were assessed by WST assay procedures. Apoptotic cells were determined as Annexin V positive/propidium iodide (PI) negative cells. Cytokine concentrations in the supernatant of the culture medium were measured with bead-array procedures followed by analysis with flow cytometry. The CD4+CD25+Foxp3+Treg cells in mitogen-activated PBMCs were stained with fluorescence-labeled specific antibodies followed by flow cytometry. VK3 and VK5 suppressed the mitogen-activated proliferation of PBMCs significantly at 10-100μM (p<0.05). The data also suggest that VK3 and VK5 promote apoptosis in the mitogen-activated T cells. VK3 and VK5 significantly inhibited the production of tumor necrosis factor (TNF) α, interleukin (IL)-4, -6, and -10 from the activated PBMCs at 10-100μM (p<0.05). In contrast, VK3 and VK5 significantly increased Treg cell-frequency in the activated PBMCs at concentrations more than 10μM (p<0.001). Our data suggest that VK3 and VK5 attenuate T cell mediated immunity by inhibiting the proliferative response and inducing apoptosis in activated T cells. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. Antioxidant and anti-inflammatory effects in RAW264.7 macrophages of malvidin, a major red wine polyphenol.

    Directory of Open Access Journals (Sweden)

    Eszter Bognar

    Full Text Available Red wine polyphenols can prevent cardiovascular and inflammatory diseases. Resveratrol, the most extensively studied constituent, is unlikely to solely account for these beneficial effects because of its rather low abundance and bioavailability. Malvidin is far the most abundant polyphenol in red wine; however, very limited data are available about its effect on inflammatory processes and kinase signaling pathways. METHODS FINDINGS: The present study was carried out by using RAW 264.7 macrophages stimulated by bacterial lipopolysaccharide in the presence and absence of malvidin. From the cells, activation of nuclear factor-kappaB, mitogen-activated protein kinase, protein kinase B/Akt and poly ADP-ribose polymerase, reactive oxygen species production, mitogen-activated protein kinase phosphatase-1 expression and mitochondrial depolarization were determined. We found that malvidin attenuated lipopolysaccharide-induced nuclear factor-kappaB, poly ADP-ribose polymerase and mitogen-activated protein kinase activation, reactive oxygen species production and mitochondrial depolarization, while upregulated the compensatory processes; mitogen-activated protein kinase phosphatase-1 expression and Akt activation.These effects of malvidin may explain the previous findings and at least partially account for the positive effects of moderate red wine consumption on inflammation-mediated chronic maladies such as obesity, diabetes, hypertension and cardiovascular disease.

  6. Ouabain exacerbates activation-induced cell death in human peripheral blood lymphocytes

    OpenAIRE

    Esteves Mabel B.; Marques-Santos Luis F.; Affonso-Mitidieri Ottília R.; Rumjanek Vivian M.

    2005-01-01

    Lymphocytes activated by mitogenic lectins display changes in transmembrane potential, an elevation in the cytoplasmic Ca2+ concentrations, proliferation and/or activation induced cell death. Low concentrations of ouabain (an inhibitor of Na+,K+-ATPase) suppress mitogen-induced proliferation and increases cell death. To understand the mechanisms involved, a number of parameters were analyzed using fluorescent probes and flow cytometry. The addition of 100nM ouabain to cultures of peripheral b...

  7. Mitogen-activated protein kinase signaling in plants

    DEFF Research Database (Denmark)

    Rodriguez, Maria Cristina Suarez; Petersen, Morten; Mundy, John

    2010-01-01

    crossinhibition, feedback control, and scaffolding. Plant MAPK cascades regulate numerous processes, including stress and hormonal responses, innate immunity, and developmental programs. Genetic analyses have uncovered several predominant MAPK components shared by several of these processes including...... of substrate proteins, whose altered activities mediate a wide array of responses, including changes in gene expression. Cascades may share kinase components, but their signaling specificity is maintained by spaciotemporal constraints and dynamic protein-protein interactions and by mechanisms that include...

  8. High pressure Raman scattering study on the phase stability of LuVO4

    International Nuclear Information System (INIS)

    Rao, Rekha; Garg, Alka B.; Sakuntala, T.; Achary, S.N.; Tyagi, A.K.

    2009-01-01

    High pressure Raman spectroscopic investigations have been carried out on rare earth orthovanadate LuVO 4 upto 26 GPa. Changes in the Raman spectrum around 8 GPa across the reported zircon to scheelite transition are investigated in detail and compared with those observed in other vanadates. Co-existence of the zircon and scheelite phases is observed over a pressure range of about 8-13 GPa. The zircon to scheelite transition is irreversible upon pressure release. Subtle changes are observed in the Raman spectrum above 16 GPa which could be related to scheelite ↔ fergusonite transition. Pressure dependencies of the Raman active modes in the zircon and the scheelite phases are reported. - Graphical abstract: Study of scheelite-fergusonite transition in RVO 4 by Raman spectroscopy is rare. Here we report Raman spectroscopic investigations of LuVO 4 at high pressure to obtain insight into nature of post-scheelite phases.

  9. A transient increase in total head phosphotyrosine levels is observed upon the emergence of Aedes aegypti from the pupal stage

    Directory of Open Access Journals (Sweden)

    Willy Jablonka

    2011-08-01

    Full Text Available Phosphorylation and dephosphorylation of protein tyrosine residues constitutes a major biochemical regulatory mechanism for the cell. We report a transient increase in the total tyrosine phosphorylation of the Aedes aegypti head during the first days after emergence from the pupal stage. This correlates with an initial reduction in total head protein tyrosine phosphatase (PTP activity. Similarly, phosphotyrosine (pTyr-containing bands are seen in extracts prepared from both male and female heads and are spread among a variety of structures including the antennae, proboscis and the maxillary palps combined with the proboscis. Also, mosquitoes treated with sodium orthovanadate, a classical PTP inhibitor, show reduced blood-feeding activity and higher head tyrosine phosphorylation levels. These results suggest that pTyr-mediated signalling pathways may play a role in the initial days following the emergence of the adult mosquito from the pupal stage.

  10. Partial purification of the ATP-driven calcium pump of Streptococcus sanguis

    International Nuclear Information System (INIS)

    Lynn, A.R.; Rosen, B.P.

    1986-01-01

    ATP-dependent transport of calcium has been observed in several species of streptococci as uptake of 45 Ca 2+ into everted membrane vesicles. Membranes from Streptococcus sanguis and Streptococcus faecalis were solubilized with octyl-β-D-glucoside or Triton X-100, and the extracts reconstituted into proteoliposomes containing Escherichia coli or soybean phospholipid. Calcium transport in reconstituted proteoliposomes was insensitive to the ionophores nigericin and valinomycin and was unaffected by the F 0 F 1 inhibitor N,N'-dicyclohexylcarbodiimide. Uptake was inhibited by ortho-vanadate with a K/sub i/ in the micromolar range. These results demonstrate that the reconstituted transport activities are not the result of ATP-driven proton pumping via the F 0 F 1 coupled to a calcium/proton antiporter and suggest that existence of a calcium translocating ATPase. Partial purification of the transport activity from Streptococcus sanguis has been achieved using density gradient centrifugation and FPLC

  11. Both neurons and astrocytes exhibited tetrodotoxin-resistant metabotropic glutamate receptor-dependent spontaneous slow Ca2+ oscillations in striatum.

    Directory of Open Access Journals (Sweden)

    Atsushi Tamura

    Full Text Available The striatum plays an important role in linking cortical activity to basal ganglia outputs. Group I metabotropic glutamate receptors (mGluRs are densely expressed in the medium spiny projection neurons and may be a therapeutic target for Parkinson's disease. The group I mGluRs are known to modulate the intracellular Ca(2+ signaling. To characterize Ca(2+ signaling in striatal cells, spontaneous cytoplasmic Ca(2+ transients were examined in acute slice preparations from transgenic mice expressing green fluorescent protein (GFP in the astrocytes. In both the GFP-negative cells (putative-neurons and astrocytes of the striatum, spontaneous slow and long-lasting intracellular Ca(2+ transients (referred to as slow Ca(2+ oscillations, which lasted up to approximately 200 s, were found. Neither the inhibition of action potentials nor ionotropic glutamate receptors blocked the slow Ca(2+ oscillation. Depletion of the intracellular Ca(2+ store and the blockade of inositol 1,4,5-trisphosphate receptors greatly reduced the transient rate of the slow Ca(2+ oscillation, and the application of an antagonist against mGluR5 also blocked the slow Ca(2+ oscillation in both putative-neurons and astrocytes. Thus, the mGluR5-inositol 1,4,5-trisphosphate signal cascade is the primary contributor to the slow Ca(2+ oscillation in both putative-neurons and astrocytes. The slow Ca(2+ oscillation features multicellular synchrony, and both putative-neurons and astrocytes participate in the synchronous activity. Therefore, the mGluR5-dependent slow Ca(2+ oscillation may involve in the neuron-glia interaction in the striatum.

  12. Stimulation of phospholipase C in cultured microvascular endothelial cells from human frontal lobe by histamine, endothelin and purinoceptor agonists.

    Science.gov (United States)

    Purkiss, J. R.; West, D.; Wilkes, L. C.; Scott, C.; Yarrow, P.; Wilkinson, G. F.; Boarder, M. R.

    1994-01-01

    1. Cultures of endothelial cells derived from the microvasculature of human frontal lobe have been investigated for phospholipase C (PLC) responses to histamine, endothelins and purinoceptor agonists. 2. Using cells prelabelled with [3H]-inositol and measuring total [3H]-inositol (poly)phosphates, histamine acting at H1 receptors stimulated a substantial response with an EC50 of about 10 microM. 3. Endothelin-1 also gave a clear stimulation of phosphoinositide-specific phospholipase C. Both concentration-response curves and binding curves showed effective responses and binding in the rank order of endothelin-1 > sarafotoxin S6b > endothelin-3, suggesting an ETA receptor. 4. Assay of total [3H]-inositol (poly)phosphates showed no response to the purinoceptor agonists, 2-methylthioadenosine 5'-trisphosphate (2MeSATP), adenosine 5'-O-(3-thiotrisphosphate) (ATP gamma S) or beta,gamma-methylene ATP. Both ATP and UTP gave a small PLC response. 5. Similarly, when formation of [32P]-phosphatidic acid from cells prelabelled with 32Pi was used as an index of both PLC and phospholipase D, a small response to ATP and UTP was seen but there was no response to the other purinoceptor agonists tested. 6. Study by mass assay of stimulation by ATP of inositol (1,4,5) trisphosphate accumulation revealed a transient response in the first few seconds, a decline to basal, followed by a small sustained response. 7. These results show that human brain endothelial cells in culture are responsive to histamine and endothelins in a manner which may regulate brain capillary permeability. Purines exert a lesser influence. PMID:8032588

  13. Immunological studies in acquired immunodeficiency syndrome. Functional studies of lymphocyte subpopulations

    DEFF Research Database (Denmark)

    Hofmann, B; Ødum, Niels; Platz, P

    1985-01-01

    The lymphocyte transformation response in vitro to mitogens (phytohaemagglutinin, concanavalin A, and pokeweed mitogen) and antigens (purified protein derivative and tetanus) was studied in three patients with acquired immunodeficiency syndrome (AIDS), three patients with pre-AIDS, and six healthy...... controls before and after depletion of T4- or T8-positive cells. In controls, T8-depleted lymphocytes responded as well as peripheral blood mononuclear cells (PBMC) when monocytes were added, whereas T4-depleted cells gave about 50% of this response to mitogens and no response at all to antigens....... No evidence of suppression was seen when various mixtures of T4- and T8-depleted cells were made. In particular, there was a virtually linear relationship between the percentage of T8-depleted cells and the response to antigens. The PBMC of all AIDS and pre-AIDS patients had very low or absent responses...

  14. Opposite effects of Ha-Ras and Ki-Ras on radiation-induced apoptosis via differential activation of PI3K/Akt and Rac/p38 mitogen-activated protein kinase signaling

    International Nuclear Information System (INIS)

    Choi, J.-A.; Kang, C.-M.; Lee, Y.-S.; Lee, S.-J.; Bae, S.-W.; Cho, C.-K.

    2003-01-01

    It has been well known that Ras signaling is involved in various cellular processes, including proliferation, differentiation, and apoptosis. However, distinct cellular functions of Ras isozymes are not fully understood. Here we show the opposing roles of Ha-Ras and Ki-Ras genes in the modulation of cell sensitivity to ionizing radiation. Overexpression of active isoform of Ha-Ras (12V-Ha- Ras) in Rat2 cells increases resistance to the ionizing radiation. Constitutive activation of phosphoinositide-3-kinase (PI3K) and Akt is detected specifically in 12V-Ha-Ras-overexpressing cells. The specific PI3K inhibitor LY294002 inhibits PI3K/Akt signaling and potentiates the radiation-induced apoptosis, suggesting that activation of PI3K/Akt signaling pathway is involved in the increased radio-resistance in cells overexpressing 12V-Ha-Ras. Overexpression of activated Ki-Ras (12V-Ki-Ras), on the other hand, markedly increases radiation sensitivity. The p38 mitogen-activated protein (MAP) kinase activity is selectively enhanced by ionizing radiation in cells overexpressing 12V-Ki-Ras. The specific p38 MAP kinase inhibitor, PD169316, or dominant-negative p38 MAP kinase decreases radiation-induced cell death. We further show that the mechanism that underlies potentiation of cell death in cells overexpressing 12V-Ki-Ras involves Bax translocation to the mitochondrial membrane. Elevated Bax translocation following ionizing irradiation in 12V-Ki-Ras-overexpressing cells is completely inhibited by PD169316 or dominant-negative p38 MAP kinase. In addition, introduction of cells with RacN17, a dominant negative mutant of Rac, resulted in a marked inhibition of radiation-induced Bax translocation and apoptotic cell death as well as p38 MAP kinase activation. Taken together, these findings explain the opposite effects of Ha-Ras and Ki-Ras on modulation of radio-sensitivity, and suggest that differential activation of PI3K/Akt and Rac/p38 MAP kinase signaling by Ha-Ras and Ki-Ras may

  15. Inositol trisphosphate and thapsigargin discriminate endoplasmic reticulum stores of calcium in rat brain

    DEFF Research Database (Denmark)

    Verma, A; Hirsch, D J; Hanley, M R

    1990-01-01

    ATP dependent Ca2+ accumulation into oxalate-loaded rat brain microsomes is potently inhibited by thapsigargin with an IC50 of 2 nM and maximal inhibition at 10 nM. Approximately 15% of the total A23187-releasable microsomal calcium store is insensitive to thapsigargin concentrations up to 100 mi...

  16. Agonistic effects of a monoclonal antibody specific for the interleukin-2 receptor

    International Nuclear Information System (INIS)

    Eardley, D.D.; Makrides, V.

    1986-01-01

    Interleukin-2 (IL-2) mediated immune responses can be blocked by monoclonal antibodies to the IL-2 receptor. The monoclonal antibody, M720, is defined as specific for the IL-2 receptor because it blocks 35 S-IL-2 binding to Con A blasts, reacts with lymphoblasts but not resting splenocytes, and inhibits IL-2 induced proliferation to mitogen, antigen, or allogeneic stimuli. Under appropriate culture conditions, the IL-2 receptor-specific antibody can act like IL-2 in that it will induce proliferation in T cells in the absence of additional antigen or mitogen. This agonistic effect is dependent on time, dose of antibody, and requires fetal calf serum (FCS) in the media. Because the FCS is not mitogenic by itself, the authors propose that the FCS components act as incomplete mitogen to induce appearance of IL-2 receptors but lack a factor which would push the majority of the cells into the S phase of the cell cycle. This factor is usually IL-2, but in the authors experiments, the IL-2 receptor-specific antibody can provide the same stimulus. These data indicate that factors like FCS can induce IL-2 receptors, but without additional IL-2 or receptor triggering, the cells will not proceed through the synthetic and proliferative phases of cell growth

  17. Hydrothermal synthesis of Yttrium Orthovanadate (YVO4) and its application in photo catalytic degradation of sewage water

    International Nuclear Information System (INIS)

    Komal, J. K.; Karimi, P.; Hui, K. S.

    2010-01-01

    In this paper; YVO 4 powder was successfully synthesized from Vanadium Pentaoxide (V 2 O 5 ), Yttrium Oxide (Y 2 O 3 ) and ethyl acetate as a mineralizer by hydrothermal method at a low temperature (T=.230 d egree C , and P=100 bars). The as-prepared powders were characterized by X-ray Diffraction, Fourier Transform Infrared Spectroscopy, Scanning Electron Microscopy, UV-V Spectroscopy and Chemical Oxygen Demand of the sewage water, respectively. The results show that hydrothermal method can greatly promote the crystallization and growth of YVO 4 phase. X-ray Diffraction pattern clearly indicates the tetragonal structure and crystallinity. An fourier transform infrared spectrum of the YVO 4 shows the presence of Y-O and V-O bond, respectively. The presence of these two peaks indicates that yttrium vanadate has been formed. UV-V is absorption spectra suggesting that YVO 4 particles have stronger UV absorption than natural sunlight and subsequent photo catalytic degradation data also confirmed their higher photo catalytic activity.

  18. Postoperative radiation therapy and adjuvant chemoimmunotherapy in breast cancer. Aspects of timing and immune competence

    Energy Technology Data Exchange (ETDEWEB)

    Klefstroem, P.; Nuortio, L.; Taskinen, E.

    The effects of radiation therapy and adjuvant chemoimmunotherapy on the immune competence of patients with breast cancer were investigated. The tests performed included intradermal tuberculin tests, T- and B-lymphocyte counts, and lymphocyte blast transformation tests; phytohemagglutinin (PHA), concanavalin A (ConA) and pokeweed mitogen (PMW) were used as mitogens. Enhancement in lymphocyte proliferative response to mitogenic stimulation by PHA and PMW was seen in patients after 3 courses of chemotherapy + levamisole, whereas irradiation given after chemotherapy caused long-lasting depression in response to PHA and PWM (not significant). T-lymphocyte counts were also lower after irradiation than after chemoimmunotherapy. Clinically, the 16 patients treated with radiation therapy after chemotherapy exhibited a higher recurrence rate than the 24 patients treated first by irradiation. Enhanced reactivity to tuberculin tests occurred generally in patients receiving a planned treatment including irradiation, chemotherapy (5-fluorouracil, doxorubicin, cyclophosphamide) and levamisole. Enhancement of reactivity was seen more often in patients who had not relapsed.

  19. Effect of chloroquine on human lymphocyte proliferation

    DEFF Research Database (Denmark)

    Bygbjerg, Ib Christian; Flachs, H

    1986-01-01

    The effect of chloroquine on human blood mononuclear cells was studied. High concentrations of chloroquine in vitro profoundly suppressed the proliferation of mitogen- and antigen-stimulated cells, as indicated by decreased 14C-thymidine incorporation. Lower concentrations of chloroquine increase...... to large particulate antigens; the response to small antigens was not affected. The mode of action of chloroquine and the possible consequences of the findings for dosage of chloroquine when used for malaria prophylaxis is discussed.......The effect of chloroquine on human blood mononuclear cells was studied. High concentrations of chloroquine in vitro profoundly suppressed the proliferation of mitogen- and antigen-stimulated cells, as indicated by decreased 14C-thymidine incorporation. Lower concentrations of chloroquine increased...... the response to pokeweed mitogen. The response to concanavalin A and to various antigens was suppressed, especially the response to large particulate antigens. Oral intake of 300 mg of chloroquine base/week did not affect the lymphocyte proliferative responses. 600 mg of base/week decreased the response...

  20. Rapid lymphocyte immunoreactivity test utilizing [3H]uridine in vitro

    International Nuclear Information System (INIS)

    Pienkowski, M.M.; Lyerly, M.M.; Miller, H.C.

    1978-01-01

    A microculture assay utilizing [ 3 H]uridine incorporation was developed to test murine spleen lymphocyte immunoreactivity in vitro. Parameters of the culture technique which included cell density, doses of LPS, Con A, PHA, [ 3 H]uridine levels, and length of culture time were investigated. Responses were detectable at 4 h for all 3 mitogens, with labelling ranging up to 180% of the control value. By 8 h there was a 200-350% increase in mitogen-induced incorporation of radioactivity. Similar increases were observed in a serum-free system. The responses were the result of increased incorporation of label by stimulated cultures rather than decreased labeling of non-mitogen treated cultures over time. The [ 3 H]uridine incorporation was demonstrated to be the selective response of T or B cell populations when stimulated with appropriate lectins. This assay detects early RNA synthesis, as supported by experimental observations in which accumulation of radioactivity in stimulated lymphocytes was TCA precipitable, resistant to SDS treatment, and inhibited by actinomycin D. (Auth.)

  1. Complementation of Myelodysplastic Syndrome Clones with Lentivirus Expression Libraries

    Science.gov (United States)

    2013-01-01

    Description HRAS Homo sapiens v-Ha-ras Harvey rat sarcoma viral oncogene homolog (HRAS), transcript 1 CDC25C Homo sapiens cell division cycle 25...homolog C (CDC25C), transcript variant 1 MYC Homo sapiens v-myc myeloctomatosis viral oncogene homolog (avian) (MYC) MAP3K7 Homo sapiens mitogen...activated protein kinase kinase kinase 7 (MAP3K7) MAP3K8 Homo sapiens mitogen-activated protein kinase kinase kinase 8 (MAP3K8) SF3B1 Homo sapiens

  2. Recombinant heparan sulfate for use in tissue engineering applications

    DEFF Research Database (Denmark)

    Whitelock, J.; Ma, J.L.; Davies, N.

    2008-01-01

    Background: Heparan sulfate (HS) is an important component of many extracellular matrices that interacts with mitogens and morphogens to guide and control tissue and organ development. These interactions are controlled by its structure, which varies when produced by different cell types and diffe......Background: Heparan sulfate (HS) is an important component of many extracellular matrices that interacts with mitogens and morphogens to guide and control tissue and organ development. These interactions are controlled by its structure, which varies when produced by different cell types...

  3. Electrometric studies on the isopolyanions of Vanadium (V)

    Energy Technology Data Exchange (ETDEWEB)

    Prasad, S [Paraiba Univ., Joao Pessoa (Brazil). Dept. de Engenharia Quimica

    1981-09-01

    The stoichiometry of various polyanions formed during the reaction between acids (H/sub 2/SO/sub 4/, HClO/sub 4/) and alkali ortho-vanadate (3Na/sub 2/O.V/sub 2/O/sub 5/) has been investigated by means of electrometric techniques involving pH, E.M.F. and conductometric titrations as well as by job's method of continuous variation. The well defined breaks and inflections in titration curves and maxima from continuous variation study provide cogent evidence for the existence of aggregated polyanions, pyro-V/sub 2/O/sub 7//sup 4 -/, meta-VO/sub 3//sup 1 -/ and poly-V/sub 10/O/sub 27//sup 4 -/ vanadates corresponding to the ratios of VO/sub 4//sup 3 -/:H/sup +/ as 1:1, 1:2 and 1:2.6 in the pH ranges (9.3-9.9), (6.6-7.2) and (3.6-4.2), respectively.

  4. Vibrational spectroscopy and analytical electron microscopy studies of Fe-V-O and In-V-O thin films

    CERN Document Server

    Vuk, A S; Drazic, G; Colomban, P

    2002-01-01

    Orthovanadate (M sup 3 sup + VO sub 4; M= Fe, In) and vanadate (Fe sub 2 V sub 4 O sub 1 sub 3) thin films were prepared using sol-gel synthesis and dip coating deposition. Using analytical electron microscopy (AEM), the chemical composition and the degree of crystallization of the phases present in the thin Fe-V-O films were investigated. TEM samples were prepared in both orientations: parallel (plan view) and perpendicular (cross section) to the substrate. In the first stages of crystallization, when the particle sizes were in the nanometer range, the classical identification of phases using electron diffraction was not possible. Instead of measuring d values, experimentally selected area electron diffraction (SAED) patterns were compared to calculated (simulated) patterns in order to determine the phase composition. The problems of evaluating the ratio of amorphous and crystalline phases in thin films are reported. Results of TEM and XRD as well as IR and Raman spectroscopy showed that the films made at lo...

  5. Investigations on the Formation of Copper Polyvanadates as a Function of pH

    Directory of Open Access Journals (Sweden)

    Prasad Shiva

    2002-01-01

    Full Text Available The formation and composition of copper vanadates obtained by the interaction of copper sulfate with different sodium vanadates (ortho, pyro, meta and poly have been studied by means of electrometric techniques involving glass electrode and conductometric titrations between the reactants at several concentrations in aqueous and aqueous-ethanolic media. The well defined inflections and breaks in the titration curves provide cogent evidence for the formation and precipitation of copper ortho-3CuO.V2O5, pyro-2CuO.V2O5 and meta-CuO.V2O5 vanadates in the vicinity of pH 8.1, 7.4 and 6.2, respectively. The studies on formation of copper poly-vanadate failed to give any dependable results. Analytical investigations of the compounds formed confirm the results of the electrometric study. The precipitation of copper ortho-vanadate is almost quantitative and the glass electrode titrations ofers a simple and rapid method for determination of vanadium(V in solutions.

  6. Investigation on the fates of vanadium and nickel during co-gasification of petroleum coke with biomass.

    Science.gov (United States)

    Li, Jiazhou; Wang, Xiaoyu; Wang, Bing; Zhao, Jiantao; Fang, Yitian

    2018-06-01

    This study investigates the volatilization behaviors and mineral transformation of vanadium and nickel during co-gasification of petroleum coke with biomass. Moreover, the evolution of occurrence modes of vanadium and nickel was also determined by the method of sequential chemical extraction. The results show that the volatilities of vanadium and nickel in petroleum coke have a certain level of growth with an increase in the temperature. With the addition of biomass, their volatilities both show an obvious decrease. Organic matter and stable forms are the dominant chemical forms of vanadium and nickel. After gasification, organic-bound vanadium and nickel decompose completely and convert into other chemical forms. The crystalline phases of vanadium trioxide, coulsonite, nickel sulfide, and elemental nickel are clearly present in petroleum coke and biomass gasification ashes. When the addition of biomass reaches 60 wt%, the diffraction peaks of orthovanadate are found while that of vanadium trioxide disappear. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Failure of attenuated canine distemper virus (Rockborn strain) to suppress lymphocyte blastogenesis in dogs.

    Science.gov (United States)

    Schultz, R D

    1976-01-01

    The attenuated Rockborn strain of canine distemper virus is commonly used in commercial vaccines. Since immunosuppression is a common feature of virulent (Snyder Hill) distemper virus infection of the dog, an evaluation of the cellular immune functions of dogs given inoculums of the less virulent Rockborn strain was done using lymphocyte blastogenesis responses to various mitogens. Unlike the viruslent Snyder Hill strain, the attenuated distemper virus did not alter lymphocyte blastogenesis responses to phytohemaglutinin (PHA) and pokeweed mitogen (PWM) which are considered in vitro correlates of T and B cell immunity.

  8. Pollution gets personal! A first population-based human biomonitoring study in Austria.

    Science.gov (United States)

    Hohenblum, Philipp; Steinbichl, Philipp; Raffesberg, Wolfgang; Weiss, Stefan; Moche, Wolfgang; Vallant, Birgit; Scharf, Sigrid; Haluza, Daniela; Moshammer, Hanns; Kundi, Michael; Piegler, Brigitte; Wallner, Peter; Hutter, Hans-Peter

    2012-02-01

    Humans are exposed to a broad variety of man-made chemicals. Human biomonitoring (HBM) data reveal the individual body burden irrespective of sources and routes of uptake. A first population-based study was started in Austria in 2008 and was finished at the end of May 2011. This cross sectional study aims at documenting the extent, the distribution and the determinants of human exposure to industrial chemicals as well as proving the feasibility of a representative HBM study. Overall, 150 volunteers (50 families) were selected by stratified random sampling. Exposure to phthalates, trisphosphates, polybrominated diphenyl ethers (PBDE), bisphenol A (along with nonyl- and octyl phenol) and methyl mercury was assessed. Sixteen of 18 PBDE determined were detected above the limit of quantification (LOQ) in blood samples with #153 and #197 the most abundant species. Bisphenol A in urine was measured in a subsample of 25 with only 4 samples found above the LOQ. In 3 of 100 urine samples at least one of 8 trisphosphate compounds assessed was above the LOQ. These first analytical results of the human biomonitoring data show that the body burden of the Austrian population with respect to the assessed compounds is comparable to or even lower than in other European countries. Overall, the study revealed that in order to develop a feasible protocol for representative human biomonitoring studies procedures have to be optimized to allow for non-invasive sampling of body tissues in accordance with the main metabolic pathways. Procedures of participants' recruitment were, however, labor intensive and have to be improved. Copyright © 2011 Elsevier GmbH. All rights reserved.

  9. Transition in complex calcium bursting induced by IP3 degradation

    International Nuclear Information System (INIS)

    Zhang Feng; Lu Qishao; Su Jianzhong

    2009-01-01

    Complex intracellular Ca 2+ oscillations are systematically investigated in a mathematical model based on the mechanism of Ca 2+ -induced Ca 2+ release (CICR), taking account of the Ca 2+ -stimulated degradation of inositol 1,4,5-trisphosphate (IP 3 ) by a 3-kinase. Periodic, quasi-periodic and chaotic bursting oscillations exist in a wide range of parameter values and occur alternatively as the parameters change slightly. The transition among them can be observed by the evidence in their interspike interval and the Lyapunov exponent. These results reveal the role of agonist-stimulated of IP 3 degradation as a possible source for complex patterns in Ca 2+ signaling.

  10. The dephosphorylation pathway of D-myo-inositol 1,3,4,5-tetrakisphosphate in rat brain.

    OpenAIRE

    Erneux, C; Delvaux, A; Moreau, C; Dumont, J E

    1987-01-01

    Dephosphorylation of inositol 1,3,4,5-tetrakisphosphate [Ins(1,3,4,5)P4] was measured in both the soluble and the particulate fractions of rat brain homogenates. Analysis of the hydrolysis of [4,5-32P]Ins(1,3,4,5)P4 showed that for both fractions the 5-phosphate of Ins(1,3,4,5)P4 was removed and inositol 1,3,4-trisphosphate [Ins(1,3,4)P3] was specifically produced. In the soluble fraction, Ins(1,3,4)P3 was further hydrolysed at the 1-phosphate position to inositol 3,4-bisphosphate[Ins(3,4)P2]...

  11. Overexpression of the mitogen-activated protein kinase gene ...

    Indian Academy of Sciences (India)

    1Department of Agricultural Biotechnology, National Academy of Agricultural Science, ... 4Department of Biological Sciences, Seoul National University, Seoul ... Supplementary figures pertaining to this article are available on the Journal of Biosciences Website at .... International Rice Research Institute (Los Baños, Philip-.

  12. Fertilization stimulates an increase in inositol trisphosphate and inositol lipid levels in Xenopus eggs.

    Science.gov (United States)

    Snow, P; Yim, D L; Leibow, J D; Saini, S; Nuccitelli, R

    1996-11-25

    Previous experiments from our lab have suggested that the hydrolysis of phosphatidylinositol 4,5-bisphosphate (PIP2) is required for sperm-induced egg activation in Xenopus laevis. Here we measure the endogenous production of both Ins(1,4,5)P3 and PIP2 during the sperm-induced and ionomycin-induced calcium wave in the egg and find that both increase following fertilization. Ins(1,4,5)P3 increases 3.2-fold from an unfertilized egg level of 0.13 pmole per egg (0.29 microM) to a peak of 0.42 pmole per egg (0.93 microM) as the calcium wave reaches the antipode in the fertilized egg. This continuous production of Ins(1,4,5)P3 during the time that the Ca2+ wave is propagating across the egg suggests the involvement of Ins(1,4,5)P3 in wave propagation. This increase in Ins(1,4,5)P3 is smaller in ionomycin-activated eggs than in sperm-activated eggs, suggesting that the sperm-induced production of Ins(1,4,5)P3 involves a PIP2 hydrolysis pathway that is not simply raising intracellular Ca2+. While one might expect PIP2 levels to fall as a result of hydrolysis, we find that PIP2 actually increases 2-fold. The total lipid fraction in unfertilized egg exhibits 0.8 pmole PIP2 per egg and this increases to 1.5 pmole as the calcium wave reaches the antipode. The PIP2 concentration peaks 2 min after the completion of the calcium wave at 1.8 pmole per egg. The amount of PIP2 in the animal and vegetal hemispheres of the egg was also measured by cutting frozen eggs in half. The vegetal hemisphere contained twice the amount of PIP2 as the animal hemisphere but it also contained twice the amount of lipid. Thus, there was an equivalent amount of PIP2 normalized to lipid in each hemisphere. Isolated animal and vegetal hemisphere cortices exhibit similar PIP2 concentrations, suggesting that the 2-fold higher total PIP2 in the vegetal half is not due to a gradient of PIP2 in the plasma membrane, but rather implies that cytoplasmic organelle membranes also contain PIP2.

  13. Determination of inositol 1,4,5-trisphosphate levels in Dictyostelium by isotope dilution assay

    International Nuclear Information System (INIS)

    Van Haastert, P.J.

    1989-01-01

    A commercial isotope dilution assay was used for the determination of Ins(1,4,5)P3 levels in the microorganism Dictyostelium discoideum. Cross-reactivity in the assay was detected with extracts from cells and the medium. The compound which induced this cross-reactivity was tentatively identified as Ins(1,4,5)P3 by (i) codegradation with authentic [ 32 P]Ins(1,4,5)P3 by three specific Ins(1,4,5)P3 phosphatases, and (ii) co-chromatography with authentic [ 32 P]Ins(1,4,5)P3 on HPLC columns. The cellular concentration was estimated as 165 +/- 42 pmol/10(8) cells, yielding a mean intracellular Ins(1,4,5)P3 concentration of 3.3 microM. Dictyostelium cells secrete large amounts of Ins(1,4,5)P3 at a rate of about 10% of the cellular content per minute, yielding about 0.13 microM extracellular Ins(1,4,5)P3 after 15 min in a suspension of 10(8) cells/ml. The chemoattractant cAMP induced a transient increase of the Ins(1,4,5)P3 concentration; the data suggest an intracacellular rise from 3.3 to 5.5 microM with a maximum at 6 s after stimulation

  14. Immunosuppression in irradiated breast cancer patients: In vitro effect of cyclooxygenase inhibitors

    International Nuclear Information System (INIS)

    Wasserman, J.; Blomgren, H.; Rotstein, S.; Petrini, B.; Hammarstroem, S.

    1989-01-01

    We have documented in previous studies that local irradiation therapy for breast cancer caused severe lymphopenia with reduction of both T and non-T lymphocytes. Non-T cells were relatively more depressed but recovered within six months. The recovery of T cells, on the other hand, remained incomplete 10-11 years after irradiation. Several lymphocyte functions were also severely impaired. An association was found between prognosis and postirradiation mitogen reactivity of lymphocytes from these patients. Mortality up to eight years after irradiation was significantly higher in patients with low postirradiation phytohemagglutinin and PPD reactivity. The radiation induced decrease in mitogenic response seemed mainly to be caused by immunosuppressive monocytes, which suggests that the underlying mechanism might be mediated by increased production of prostaglandins by monocytes. For this reason we examined the effect of some cyclooxygenase products on different lymphocyte functions and found that prostaglandins A2, D2, and E2 inhibited phytohemagglutinin response in vitro. Natural killer cell activity was also reduced by prostaglandins D2 and E2. The next step was to examine various inhibitors of cyclooxygenase in respect to their capacity to revert irradiation-induced suppression of in vitro mitogen response in lymphocytes from breast cancer patients. It was demonstrated that Diclofenac Na (Voltaren), Meclofenamic acid, Indomethacin, and lysin-mono-acetylsalicylate (Aspisol) could enhance mitogen responses both before and after radiation therapy. This effect was most pronounced at completion of irradiation. On a molar basis, Diclofenac Na was most effective followed by Indomethacin, Meclofenamic acid, and lysin-monoacetylsalicylate

  15. Immunosuppression in irradiated breast cancer patients: In vitro effect of cyclooxygenase inhibitors

    Energy Technology Data Exchange (ETDEWEB)

    Wasserman, J.; Blomgren, H.; Rotstein, S.; Petrini, B.; Hammarstroem, S.

    1989-01-01

    We have documented in previous studies that local irradiation therapy for breast cancer caused severe lymphopenia with reduction of both T and non-T lymphocytes. Non-T cells were relatively more depressed but recovered within six months. The recovery of T cells, on the other hand, remained incomplete 10-11 years after irradiation. Several lymphocyte functions were also severely impaired. An association was found between prognosis and postirradiation mitogen reactivity of lymphocytes from these patients. Mortality up to eight years after irradiation was significantly higher in patients with low postirradiation phytohemagglutinin and PPD reactivity. The radiation induced decrease in mitogenic response seemed mainly to be caused by immunosuppressive monocytes, which suggests that the underlying mechanism might be mediated by increased production of prostaglandins by monocytes. For this reason we examined the effect of some cyclooxygenase products on different lymphocyte functions and found that prostaglandins A2, D2, and E2 inhibited phytohemagglutinin response in vitro. Natural killer cell activity was also reduced by prostaglandins D2 and E2. The next step was to examine various inhibitors of cyclooxygenase in respect to their capacity to revert irradiation-induced suppression of in vitro mitogen response in lymphocytes from breast cancer patients. It was demonstrated that Diclofenac Na (Voltaren), Meclofenamic acid, Indomethacin, and lysin-mono-acetylsalicylate (Aspisol) could enhance mitogen responses both before and after radiation therapy. This effect was most pronounced at completion of irradiation. On a molar basis, Diclofenac Na was most effective followed by Indomethacin, Meclofenamic acid, and lysin-monoacetylsalicylate.

  16. Superantigenic activity of emm3 Streptococcus pyogenes is abrogated by a conserved, naturally occurring smeZ mutation.

    Directory of Open Access Journals (Sweden)

    Claire E Turner

    Full Text Available Streptococcus pyogenes M/emm3 strains have been epidemiologically linked with enhanced infection severity and risk of streptococcal toxic shock syndrome (STSS, a syndrome triggered by superantigenic stimulation of T cells. Comparison of S. pyogenes strains causing STSS demonstrated that emm3 strains were surprisingly less mitogenic than other emm-types (emm1, emm12, emm18, emm28, emm87, emm89 both in vitro and in vivo, indicating poor superantigenic activity. We identified a 13 bp deletion in the superantigen smeZ gene of all emm3 strains tested. The deletion led to a premature stop codon in smeZ, and was not present in other major emm-types tested. Expression of a functional non-M3-smeZ gene successfully enhanced mitogenic activity in emm3 S. pyogenes and also restored mitogenic activity to emm1 and emm89 S. pyogenes strains where the smeZ gene had been disrupted. In contrast, the M3-smeZ gene with the 13 bp deletion could not enhance or restore mitogenicity in any of these S. pyogenes strains, confirming that M3-smeZ is non-functional regardless of strain background. The mutation in M3-smeZ reduced the potential for M3 S. pyogenes to induce cytokines in human tonsil, but not during invasive infection of superantigen-sensitive mice. Notwithstanding epidemiological associations with STSS and disease severity, emm3 strains have inherently poor superantigenicity that is explained by a conserved mutation in smeZ.

  17. Eph receptor interclass cooperation is required for the regulation of cell proliferation

    Energy Technology Data Exchange (ETDEWEB)

    Jurek, Aleksandra; Genander, Maria [Department of Cell and Molecular Biology, Karolinska Institute, SE-171 77 Stockholm (Sweden); Kundu, Parag [Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, SE-171 77 Stockholm (Sweden); Singapore Centre on Environmental Life Sciences Engineering, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551 (Singapore); Lee Kong Chian School of Medicine, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551 (Singapore); Catchpole, Timothy [Department of Developmental Biology, University of Texas Southwestern Medical Center, Dallas TX 75390 (United States); He, Xiao; Strååt, Klas; Sabelström, Hanna [Department of Cell and Molecular Biology, Karolinska Institute, SE-171 77 Stockholm (Sweden); Xu, Nan-Jie [Department of Developmental Biology, University of Texas Southwestern Medical Center, Dallas TX 75390 (United States); Pettersson, Sven [Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, SE-171 77 Stockholm (Sweden); Singapore Centre on Environmental Life Sciences Engineering, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551 (Singapore); Lee Kong Chian School of Medicine, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551 (Singapore); The National Cancer Centre, Singapore General Hospital (Singapore); Henkemeyer, Mark [Department of Developmental Biology, University of Texas Southwestern Medical Center, Dallas TX 75390 (United States); Frisén, Jonas, E-mail: jonas.frisen@ki.se [Department of Cell and Molecular Biology, Karolinska Institute, SE-171 77 Stockholm (Sweden)

    2016-10-15

    Cancer often arises by the constitutive activation of mitogenic pathways by mutations in stem cells. Eph receptors are unusual in that although they regulate the proliferation of stem/progenitor cells in many adult organs, they typically fail to transform cells. Multiple ephrins and Eph receptors are often co-expressed and are thought to be redundant, but we here describe an unexpected dichotomy with two homologous ligands, ephrin-B1 and ephrin-B2, regulating specifically migration or proliferation in the intestinal stem cell niche. We demonstrate that the combined activity of two different coexpressed Eph receptors of the A and B class assembled into common signaling clusters in response to ephrin-B2 is required for mitogenic signaling. The requirement of two different Eph receptors to convey mitogenic signals identifies a new type of cooperation within this receptor family and helps explain why constitutive activation of a single receptor fails to transform cells. - Highlights: • We demonstrate that ephrin-B1 and ephrin-B2 have largely non-overlapping functions in the intestinal stem cell niche. • Ephrin-B1 regulates cell positioning and ephrin-B2 regulates cell proliferation in the intestinal stem cell niche. • EphA4/B2 receptor cooperation in response to ephrin-B2 binding is obligatory to convey mitogenic signals in the intestine. • EphA4 facilitates EphB2 phosphorylation in response to ephrin-B2 in SW480 adenocarcinoma cells. • Ephrin-B1 and ephrin-B2 induce phosphorylation and degradation of the EphB2 receptor with different kinetics.

  18. Eph receptor interclass cooperation is required for the regulation of cell proliferation

    International Nuclear Information System (INIS)

    Jurek, Aleksandra; Genander, Maria; Kundu, Parag; Catchpole, Timothy; He, Xiao; Strååt, Klas; Sabelström, Hanna; Xu, Nan-Jie; Pettersson, Sven; Henkemeyer, Mark; Frisén, Jonas

    2016-01-01

    Cancer often arises by the constitutive activation of mitogenic pathways by mutations in stem cells. Eph receptors are unusual in that although they regulate the proliferation of stem/progenitor cells in many adult organs, they typically fail to transform cells. Multiple ephrins and Eph receptors are often co-expressed and are thought to be redundant, but we here describe an unexpected dichotomy with two homologous ligands, ephrin-B1 and ephrin-B2, regulating specifically migration or proliferation in the intestinal stem cell niche. We demonstrate that the combined activity of two different coexpressed Eph receptors of the A and B class assembled into common signaling clusters in response to ephrin-B2 is required for mitogenic signaling. The requirement of two different Eph receptors to convey mitogenic signals identifies a new type of cooperation within this receptor family and helps explain why constitutive activation of a single receptor fails to transform cells. - Highlights: • We demonstrate that ephrin-B1 and ephrin-B2 have largely non-overlapping functions in the intestinal stem cell niche. • Ephrin-B1 regulates cell positioning and ephrin-B2 regulates cell proliferation in the intestinal stem cell niche. • EphA4/B2 receptor cooperation in response to ephrin-B2 binding is obligatory to convey mitogenic signals in the intestine. • EphA4 facilitates EphB2 phosphorylation in response to ephrin-B2 in SW480 adenocarcinoma cells. • Ephrin-B1 and ephrin-B2 induce phosphorylation and degradation of the EphB2 receptor with different kinetics.

  19. Acidic pH stimulates the production of the angiogenic CXC chemokine, CXCL8 (interleukin-8), in human adult mesenchymal stem cells via the extracellular signal-regulated kinase, p38 mitogen-activated protein kinase, and NF-kappaB pathways.

    Science.gov (United States)

    Bischoff, David S; Zhu, Jian-Hua; Makhijani, Nalini S; Yamaguchi, Dean T

    2008-07-01

    Blood vessel injury results in limited oxygen tension and diffusion leading to hypoxia, increased anaerobic metabolism, and elevated production of acidic metabolites that cannot be easily removed due to the reduced blood flow. Therefore, an acidic extracellular pH occurs in the local microenvironment of disrupted bone. The potential role of acidic pH and glu-leu-arg (ELR(+)) CXC chemokines in early events in bone repair was studied in human mesenchymal stem cells (hMSCs) treated with medium of decreasing pH (7.4, 7.0, 6.7, and 6.4). The cells showed a reciprocal increase in CXCL8 (interleukin-8, IL-8) mRNA levels as extracellular pH decreased. At pH 6.4, CXCL8 mRNA was induced >60x in comparison to levels at pH 7.4. hMSCs treated with osteogenic medium (OGM) also showed an increase in CXCL8 mRNA with decreasing pH; although, at a lower level than that seen in cells grown in non-OGM. CXCL8 protein was secreted into the medium at all pHs with maximal induction at pH 6.7. Inhibition of the G-protein-coupled receptor alpha, G(alphai), suppressed CXCL8 levels in response to acidic pH; whereas phospholipase C inhibition had no effect on CXCL8. The use of specific mitogen-activated protein kinase (MAPK) signal transduction inhibitors indicated that the pH-dependent increase in CXCL8 mRNA is due to activation of ERK and p38 pathways. The JNK pathway was not involved. NF-kappaB inhibition resulted in a decrease in CXCL8 levels in hMSCs grown in non-OGM. However, OGM-differentiated hMSCs showed an increase in CXCL8 levels when treated with the NF-kappaB inhibitor PDTC, a pyrrolidine derivative of dithiocarbamate. 2008 Wiley-Liss, Inc.

  20. Role of the ERC motif in the proximal part of the second intracellular loop and the C-terminal domain of the human prostaglandin F2alpha receptor (hFP-R) in G-protein coupling control.

    Science.gov (United States)

    Pathe-Neuschäfer-Rube, Andrea; Neuschäfer-Rube, Frank; Püschel, Gerhard P

    2005-05-15

    The human FP-R (F2alpha prostaglandin receptor) is a Gq-coupled heptahelical ectoreceptor, which is of significant medical interest, since it is a potential target for the treatment of glaucoma and preterm labour. On agonist exposure, it mediates an increase in intracellular inositol phosphate formation. Little is known about the structures that govern the agonist-dependent receptor activation. In other prostanoid receptors, the C-terminal domain has been inferred in the control of agonist-dependent receptor activation. A DRY motif at the beginning of the second intracellular loop is highly conserved throughout the G-protein-coupled receptor family and appears to be crucial for controlling agonist-dependent receptor activation. It is replaced by an ERC motif in the FP-R and no evidence for the relevance of this motif in ligand-dependent activation of prostanoid receptors has been provided so far. The aim of the present study was to elucidate the potential role of the C-terminal domain and the ERC motif in agonist-controlled intracellular signalling in FP-R mutants generated by site-directed mutagenesis. It was found that substitution of the acidic Glu(132) in the ERC motif by a threonine residue led to full constitutive activation, whereas truncation of the receptor's C-terminal domain led to partial constitutive activation of all three intracellular signal pathways that had previously been shown to be activated by the FP-R, i.e. inositol trisphosphate formation, focal adhesion kinase activation and T-cell factor signalling. Inositol trisphosphate formation and focal adhesion kinase phosphorylation were further enhanced by ligand binding in cells expressing the truncation mutant but not the E132T (Glu132-->Thr) mutant. Thus C-terminal truncation appeared to result in a receptor with partial constitutive activation, whereas substitution of Glu132 by threonine apparently resulted in a receptor with full constitutive activity.

  1. The Hippo pathway mediates inhibition of vascular smooth muscle cell proliferation by cAMP.

    Science.gov (United States)

    Kimura, Tomomi E; Duggirala, Aparna; Smith, Madeleine C; White, Stephen; Sala-Newby, Graciela B; Newby, Andrew C; Bond, Mark

    2016-01-01

    Inhibition of vascular smooth muscle cell (VSMC) proliferation by intracellular cAMP prevents excessive neointima formation and hence angioplasty restenosis and vein-graft failure. These protective effects are mediated via actin-cytoskeleton remodelling and subsequent regulation of gene expression by mechanisms that are incompletely understood. Here we investigated the role of components of the growth-regulatory Hippo pathway, specifically the transcription factor TEAD and its co-factors YAP and TAZ in VSMC. Elevation of cAMP using forskolin, dibutyryl-cAMP or the physiological agonists, Cicaprost or adenosine, significantly increased phosphorylation and nuclear export YAP and TAZ and inhibited TEAD-luciferase report gene activity. Similar effects were obtained by inhibiting RhoA activity with C3-transferase, its downstream kinase, ROCK, with Y27632, or actin-polymerisation with Latrunculin-B. Conversely, expression of constitutively-active RhoA reversed the inhibitory effects of forskolin on TEAD-luciferase. Forskolin significantly inhibited the mRNA expression of the pro-mitogenic genes, CCN1, CTGF, c-MYC and TGFB2 and this was reversed by expression of constitutively-active YAP or TAZ phospho-mutants. Inhibition of YAP and TAZ function with RNAi or Verteporfin significantly reduced VSMC proliferation. Furthermore, the anti-mitogenic effects of forskolin were reversed by overexpression of constitutively-active YAP or TAZ. Taken together, these data demonstrate that cAMP-induced actin-cytoskeleton remodelling inhibits YAP/TAZ-TEAD dependent expression of pro-mitogenic genes in VSMC. This mechanism contributes novel insight into the anti-mitogenic effects of cAMP in VSMC and suggests a new target for intervention. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  2. The double bromodomain protein Brd2 promotes B cell expansion and mitogenesis.

    Science.gov (United States)

    Belkina, Anna C; Blanton, Wanda P; Nikolajczyk, Barbara S; Denis, Gerald V

    2014-03-01

    Bromodomain-containing transcriptional regulators represent new epigenetic targets in different hematologic malignancies. However, bromodomain-mediated mechanisms that couple histone acetylation to transcription in lymphopoiesis and govern mature lymphocyte mitogenesis are poorly understood. Brd2, a transcriptional coregulator that contains dual bromodomains and an extraterminal domain (the BET family), couples chromatin to cell-cycle progression. We reported previously the first functional characterization of a BET protein as an effector of mammalian mitogenic signal transduction: Eμ-Brd2 Tg mice develop "activated B cell" diffuse large B cell lymphoma. No other animal models exist for genetic or lentiviral expression of BET proteins, hampering testing of novel anti-BET anticancer drugs, such as JQ1. We transduced HSCs with Brd2 lentivirus and reconstituted recipient mice to test the hypothesis that Brd2 regulates hematopoiesis in BM and mitogenesis in the periphery. Forced expression of Brd2 provides an expansion advantage to the donor-derived B cell compartment in BM and increases mature B cell mitogenic responsiveness in vitro. Brd2 binds the cyclin A promoter in B cells, shown by ChIP, and increases cyclin A mRNA and protein levels, and S-phase progression in vitro in mitogen-stimulated primary B cells, but not T cells, reinforcing results from Eμ-Brd2 mice. The small molecule BET inhibitor JQ1 reduces B cell mitogenesis, consistent with the interpretation that BET inhibitors are antiproliferative. Brd2-specific knockdown experiments show that Brd2 is also required for hematopoiesis. We conclude that Brd2 plays a critical, independent role in regulation of mitogenic response genes, particularly cyclin A, in B cells.

  3. DSP30 and interleukin-2 as a mitotic stimulant in B-cell disorders including those with a low disease burden.

    Science.gov (United States)

    Dun, Karen A; Riley, Louise A; Diano, Giuseppe; Adams, Leanne B; Chiu, Eleanor; Sharma, Archna

    2018-05-01

    Chromosome abnormalities detected during cytogenetic investigations for B-cell malignancy offer prognostic information that can have wide ranging clinical impacts on patients. These impacts may include monitoring frequency, treatment type, and disease staging level. The use of the synthetic oligonucleotide DSP30 combined with interleukin 2 (IL2) has been described as an effective mitotic stimulant in B-cell disorders, not only in chronic lymphocytic leukemia (CLL) but also in a range of other B-cell malignancies. Here, we describe the comparison of two B-cell mitogens, lipopolysaccharide (LPS), and DSP30 combined with IL2 as mitogens in a range of common B-cell disorders excluding CLL. The results showed that DSP30/IL2 was an effective mitogen in mature B-cell disorders, revealing abnormal cytogenetic results in a range of B-cell malignancies. The abnormality rate increased when compared to the use of LPS to 64% (DSP30/IL2) from 14% (LPS). In a number of cases the disease burden was proportionally very low, less than 10% of white cells. In 37% of these cases, the DSP30 culture revealed abnormal results. Importantly, we also obtained abnormal conventional cytogenetics results in 3 bone marrow cases in which immunophenotyping showed an absence of an abnormal B-cell clone. In these cases, the cytogenetics results correlated with the provisional diagnosis and altered their staging level. The use of DSP30 and IL2 is recommended for use in many B-cell malignancies as an effective mitogen and their use has been shown to enable successful culture of the malignant clone, even at very low levels of disease. © 2018 Wiley Periodicals, Inc.

  4. Transcriptional Regulation of S Phase Kinase-associated Protein 2 by NR4A Orphan Nuclear Receptor NOR1 in Vascular Smooth Muscle Cells*

    Science.gov (United States)

    Gizard, Florence; Zhao, Yue; Findeisen, Hannes M.; Qing, Hua; Cohn, Dianne; Heywood, Elizabeth B.; Jones, Karrie L.; Nomiyama, Takashi; Bruemmer, Dennis

    2011-01-01

    Members of the NR4A subgroup of the nuclear hormone receptor superfamily have emerged as key transcriptional regulators of proliferation and inflammation. NOR1 constitutes a ligand-independent transcription factor of this subgroup and induces cell proliferation; however, the transcriptional mechanisms underlying this mitogenic role remain to be defined. Here, we demonstrate that the F-box protein SKP2 (S phase kinase-associated protein 2), the substrate-specific receptor of the ubiquitin ligase responsible for the degradation of p27KIP1 through the proteasome pathway, constitutes a direct transcriptional target for NOR1. Mitogen-induced Skp2 expression is silenced in vascular smooth muscle cells (VSMC) isolated from Nor1-deficient mice or transfected with Nor1 siRNA. Conversely, adenovirus-mediated overexpression of NOR1 induces Skp2 expression in VSMC and decreases protein abundance of its target p27. Transient transfection experiments establish that NOR1 transactivates the Skp2 promoter through a nerve growth factor-induced clone B response element (NBRE). Electrophoretic mobility shift and chromatin immunoprecipitation assays further revealed that NOR1 is recruited to this NBRE site in the Skp2 promoter in response to mitogenic stimulation. In vivo Skp2 expression is increased during the proliferative response underlying neointima formation, and this transcriptional induction depends on the expression of NOR1. Finally, we demonstrate that overexpression of Skp2 rescues the proliferative arrest of Nor1-deficient VSMC. Collectively, these results characterize Skp2 as a novel NOR1-regulated target gene and detail a previously unrecognized transcriptional cascade regulating mitogen-induced VSMC proliferation. PMID:21868379

  5. Site preferences of actinide cations in [NZP] compounds

    Science.gov (United States)

    Hawkins, H. T.; Spearing, D. R.; Smith, D. M.; Hampel, F. G.; Veirs, D. K.; Scheetz, B. E.

    2000-07-01

    Compounds adopting the sodium dizirconium tris(phosphate) (NaZr2(PO4)3) structure type belong to the [NZP] structural family of compounds. [NZP] compounds possess desirable properties that would permit their application as hosts for the actinides. These properties include compositional flexibility (i.e., three structural sites that can accommodate a variety of different cations), high thermal stability, negligible thermal expansion, and resistance to radiation damage. Experimental data indicate that [NZP] compounds resist dissolution and release of constituents over a wide range of experimental conditions. Moreover, [NZP] compounds may be synthesized by both conventional and novel methods and may be heat treated or sintered at modest temperatures (800 °C-1350 °C) in open or restricted systems.

  6. Wave failure at strong coupling in intracellular C a2 + signaling system with clustered channels

    Science.gov (United States)

    Li, Xiang; Wu, Yuning; Gao, Xuejuan; Cai, Meichun; Shuai, Jianwei

    2018-01-01

    As an important intracellular signal, C a2 + ions control diverse cellular functions. In this paper, we discuss the C a2 + signaling with a two-dimensional model in which the inositol 1,4,5-trisphosphate (I P3 ) receptor channels are distributed in clusters on the endoplasmic reticulum membrane. The wave failure at large C a2 + diffusion coupling is discussed in detail in the model. We show that with varying model parameters the wave failure is a robust behavior with either deterministic or stochastic channel dynamics. We suggest that the wave failure should be a general behavior in inhomogeneous diffusing systems with clustered excitable regions and may occur in biological C a2 + signaling systems.

  7. PtdIns(3,4,5)P3 is a regulator of myosin-X localization and filopodia formation

    DEFF Research Database (Denmark)

    Plantard, Laure; Arjonen, Antti; Lock, John G

    2010-01-01

    Phosphatidylinositol (3,4,5)-trisphosphate [PtdIns(3,4,5)P3] is a key regulator of cell signaling that acts by recruiting proteins to the cell membrane, such as at the leading edge during cell migration. Here, we show that PtdIns (3,4,5)P3 plays a central role in filopodia formation via the bindi...... endosomal vesicles. Given that the localization of Myo10 was dynamically restored to filopodia upon reinstatement of PtdIns(3,4,5)P3-binding, our results indicate that PtdIns(3,4,5)P3 binding to the Myo10-PH2 domain is involved in Myo10 trafficking and regulation of filopodia dynamics....

  8. Suppression of lymphocyte proliferation by marijuana components is related to cell number and cell source

    International Nuclear Information System (INIS)

    Klein, T.; Pross, S.; Newton, C.; Friedman, H.

    1986-01-01

    Conflicting reports have appeared concerning the effect of marijuana components on immune responsiveness. The authors have observed that the effect of cannabinoids on lymphocyte proliferation varied with both the concentration of the drug and the mitogen used. They now report that at a constant concentration of drug, the cannabinoid effect varied from no effect to suppression depending upon the number of cells in culture and the organ source of the cells. Dispersed cell suspensions of mouse lymph node, spleen, and thymus were prepared and cultured at varying cell numbers with either delta-9-tetrahydrocannabinol or 11-hydroxy-delta-9-tetrahydrocannabinol and various mitogens. Lymphocyte proliferation was analyzed by 3 H-thymidine incorporation. T-lymphocyte mitogen responses in cultures containing high cell numbers were unaffected by the cannabinoids but as cell numbers were reduced a suppression of the response was observed. Furthermore, thymus cells were considerably more susceptible to cannabinoid suppression than cells from either lymph node or spleen. These results suggest that certain lymphocyte subpopulations are more sensitive to cannabinoid suppression and that in addition to drug concentration other variables such as cell number and cell source must be considered when analyzing cannabinoid effects

  9. The forced swimming-induced behavioural immobility response involves histone H3 phospho-acetylation and c-Fos induction in dentate gyrus granule neurons via activation of the N-methyl-D-aspartate/extracellular signal-regulated kinase/mitogen- and stress-activated kinase signalling pathway.

    Science.gov (United States)

    Chandramohan, Yalini; Droste, Susanne K; Arthur, J Simon C; Reul, Johannes M H M

    2008-05-01

    The hippocampus is involved in learning and memory. Previously, we have shown that the acquisition of the behavioural immobility response after a forced swim experience is associated with chromatin modifications and transcriptional induction in dentate gyrus granule neurons. Given that both N-methyl-D-aspartate (NMDA) receptors and the extracellular signal-regulated kinases (ERK) 1/2 signalling pathway are involved in neuroplasticity processes underlying learning and memory, we investigated in rats and mice whether these signalling pathways regulate chromatin modifications and transcriptional events participating in the acquisition of the immobility response. We found that: (i) forced swimming evoked a transient increase in the number of phospho-acetylated histone H3-positive [P(Ser10)-Ac(Lys14)-H3(+)] neurons specifically in the middle and superficial aspects of the dentate gyrus granule cell layer; (ii) antagonism of NMDA receptors and inhibition of ERK1/2 signalling blocked forced swimming-induced histone H3 phospho-acetylation and the acquisition of the behavioural immobility response; (iii) double knockout (DKO) of the histone H3 kinase mitogen- and stress-activated kinases (MSK) 1/2 in mice completely abolished the forced swimming-induced increases in histone H3 phospho-acetylation and c-Fos induction in dentate granule neurons and the behavioural immobility response; (iv) blocking mineralocorticoid receptors, known not to be involved in behavioural immobility in the forced swim test, did not affect forced swimming-evoked histone H3 phospho-acetylation in dentate neurons; and (v) the pharmacological manipulations and gene deletions did not affect behaviour in the initial forced swim test. We conclude that the forced swimming-induced behavioural immobility response requires histone H3 phospho-acetylation and c-Fos induction in distinct dentate granule neurons through recruitment of the NMDA/ERK/MSK 1/2 pathway.

  10. A fraction enriched in rat hippocampal mossy fibre synaptosomes contains trophic activities.

    Science.gov (United States)

    Taupin, P; Roisin, M P; Ben-Ari, Y; Barbin, G

    1994-06-27

    Subcellular fractions prepared from the rat hippocampus, were assessed for the presence of trophic activities. The cytosol of synaptosomal fractions induced mitotic reinitiation of confluent 3T3 fibroblasts. The synaptosomal fraction, enriched in mossy fibre terminals, contained the highest mitotic activity. The mitogenic activity was heat and trypsin sensitive, suggesting that polypeptides are involved. The cytosol of the mossy fibre synaptosomal fraction promoted neuritic outgrowth of PC 12 cells and embryonic hippocampal neurones in primary cultures. These results suggest that mossy fibres contain both mitogenic and neurotrophic activities. These factors could participate in mossy fibre sprouting that occur following brief seizures or experimental lesions.

  11. Dielectric response and pyroelectric properties of lead-free ferroelectric Ba3(VO42

    Directory of Open Access Journals (Sweden)

    Biswajit Pati

    2015-03-01

    Full Text Available The current paper presents results of dielectric response, pyroelectric behavior and conductivity study of lead-free ferroelectric barium orthovanadate (Ba3(VO42 or Ba3V2O8 ceramic, for a wide range of temperature and frequency. An X-ray diffraction study suggests the formation of a single-phase compound in trigonal crystal system. The SEM micrograph of gold-coated pellet sample shows well-defined and homogeneous morphology. Detailed studies of dielectric parameters (εr and tan δ of the compound as a function of temperature and frequency reveal their independence over a wide range of temperature and frequency. The nature of Polarization versus electric field (P–E hysteresis loop of Ba3V2O8 at room temperature suggests its ferroelectric nature. The temperature dependence of pyroelectric coefficient and figure of merits of the sample support its dielectric response. The nature of variation of dc conductivity with temperature confirms the Arrhenius and negative temperature coefficient of resistance (NTCR behavior of the material.

  12. Influence of sodium dodecyl sulfonate (SDS) on the hydrothermal synthesis of YVO4:Eu3+ crystals in a wide pH range

    International Nuclear Information System (INIS)

    Wang Juan; Xu Yunhua; Hojamberdiev, Mirabbos; Zhu Gangqiang

    2009-01-01

    In this work, a facile hydrothermal route has been proposed for the morphology-controllable preparation of Eu-doped yttrium orthovanadate (YVO 4 :Eu 3+ ) powders in the presence of sodium dodecyl sulfonate (SDS) as a template in a wide pH range. The structure, composition, morphology, and optical properties of the final products were characterized by X-ray powder diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and photoluminescence spectroscopy (PL), respectively. It was found that single phase YVO 4 :Eu 3+ micro- and nanocrystals with different shapes can be fabricated at 180 deg. C for 24 h with suitable amount of SDS in a wide pH range. The formation mechanism and the influence of SDS on the morphology of YVO 4 :Eu 3+ micro- and nanocrystals were investigated as a function of pH value. The PL measurement revealed that the samples with different morphologies exhibited different values for optical properties, especially soybean-like nanopowders showed a higher intensity compared to other samples with different morphologies due mainly to their high packing densities and low scattering of light.

  13. Residual activation events functional after irradiation of mouse splenic lymphocytes

    International Nuclear Information System (INIS)

    Duncan, D.D.; Lawrence, D.A.

    1991-01-01

    We have sought to identify the radiosensitivity of lymphocytes by determining the extent of activation of mitogen-stimulated lymphocytes previously exposed to growth-inhibiting doses of radiation. Mouse splenic lymphocytes were exposed to 0-15 Gy 137Cs radiation, and structural and functional damage were assayed. Although damage to cellular thiols and nonprotein thiols was modest, there was a significant loss of viability by 6 h as determined by uptake of propidium iodide (PI). Since cells did not die immediately after irradiation, the activation events which remained were evaluated. Growth-inhibiting doses of radiation left cells partially responsive to mitogen, in that cells were able to exit G0 phase, but they could progress no further into the cell cycle than G1a phase. It is important to note that assessment of viability by uptake of PI indicated substantial cell death after 15 Gy (45%, 6 h; 90%, 24 h); however, cell cycle analysis at 24 h indicated no significant decrease in progression from G0 to G1a phase. The LPS-stimulated response of B cells was more radiosensitive than the Con A-stimulated response of T cells. Further analysis of the Con A response indicated that production of interleukin-2 (IL-2) was unaffected, but expression of the IL-2 receptor was inhibited. Inhibition of poly-ADP-ribosylation and damage to lipids did not prevent the lack of mitogen responsiveness, since neither the ADP-ribose transferase inhibitor 3-aminobenzamide nor lipid radical scavengers had restorative effects on the mitogenic response. Nor was Con A-stimulated incorporation of [3H]thymidine restored with inhibitors of prostaglandin or leukotriene synthesis, suggesting that inhibition was due to direct effects on the Con A responders, and not indirect effects mediated by arachidonate metabolites

  14. SV40-transformed human fibroblasts: evidence for cellular aging in pre-crisis cells.

    Science.gov (United States)

    Stein, G H

    1985-10-01

    Pre-crisis SV40-transformed human diploid fibroblast (HDF) cultures have a finite proliferative lifespan, but they do not enter a viable senescent state at end of lifespan. Little is known about either the mechanism for this finite lifespan in SV40-transformed HDF or its relationship to finite lifespan in normal HDF. Recently we proposed that in normal HDF the phenomena of finite lifespan and arrest in a viable senescent state depend on two separate processes: 1) an age-related decrease in the ability of the cells to recognize or respond to serum and/or other mitogens such that the cells become functionally mitogen-deprived at the end of lifespan; and 2) the ability of the cells to enter a viable, G1-arrested state whenever they experience mitogen deprivation. In this paper, data are presented that suggest that pre-crisis SV40-transformed HDF retain the first process described above, but lack the second process. It is shown that SV40-transformed HDF have a progressively decreasing ability to respond to serum as they age, but they continue to traverse the cell cycle at the end of lifespan. Concomitantly, the rate of cell death increases steadily toward the end of lifespan, thereby causing the total population to cease growing and ultimately to decline. Previous studies have shown that when SV40-transformed HDF are environmentally serum deprived, they likewise exhibit continued cell cycle traverse coupled with increased cell death. Thus, these results support the hypothesis that pre-crisis SV40-transformed HDF still undergo the same aging process as do normal HDF, but they end their lifespan in crisis rather than in the normal G1-arrested senescent state because they have lost their ability to enter a viable, G1-arrested state in response to mitogen deprivation.

  15. Insulin analogues and cancer: a note of caution

    Directory of Open Access Journals (Sweden)

    Joseph A.M.J.L. eJanssen

    2014-05-01

    Full Text Available Abstract In view of the lifelong exposure and large patient populations involved, insulin analogues with an increased mitogenic effect in comparison to human insulin may potentially constitute a major health problem, since these analogues may possibly induce the growth of pre-existing neoplasms. At present, the available data suggest that insulin analogues are safe. In line with these findings, we observed that serum of diabetic patients treated with insulin analogues, compared to that of diabetic patients treated with human insulin, did not induce an increased phosphorylation of tyrosine residues of the insulin-like growth factor-I receptor (IGF-IR. However, the classical model of the IGF-IR signaling may be insufficient to explain (all mitogenic effects of insulin analogues since also non-canonical signaling pathways of the IGF-IR may play a major role in this respect. Although phosphorylation of tyrosine residues of the IGF-IR is generally considered to be the initial activation step within the intracellular IGF-IR signaling pathway, it has been found that cells undergo a signaling switch under hyperglycemic conditions. After this switch, a completely different mechanism is utilized to activate the mitogenic (mitogen-activated protein kinase (MAPK pathways of the IGF-IR that is independent from tyrosine phosphorylation of the IGF-IR. At present it is unknown whether activation of this alternative intracellular pathway of the IGF-IR occurs during hyperglycemia in vivo and whether it is stronger in patients treated with (some insulin analogues than in patients treated with human insulin. In addition, it is unknown whether the insulin receptors (IRs also undergo a signaling switch during hyperglycemia. This should be investigated in future studies. Finally, relative overexpression of IR isoform A (IR-A in (pre cancer tissues may play a key role in the development and progression of human cancers during treatment with insulin (analogues. Further

  16. Role of nongenomic activation of phosphatidylinositol 3-kinase/Akt and mitogen-activated protein kinase/extracellular signal-regulated kinase kinase/extracellular signal-regulated kinase 1/2 pathways in 1,25D3-mediated apoptosis in squamous cell carcinoma cells.

    Science.gov (United States)

    Ma, Yingyu; Yu, Wei-Dong; Kong, Rui-Xian; Trump, Donald L; Johnson, Candace S

    2006-08-15

    Vitamin D is a steroid hormone that regulates calcium homeostasis and bone metabolism. The active form of vitamin D [1 alpha,25-dihydroxyvitamin D(3) (1,25D3)] acts through both genomic and nongenomic pathways. 1,25D3 has antitumor effects in a variety of cancers, including colorectal, prostate, breast, ovarian, and skin cancers. 1,25D3 exerts growth-inhibitory effects in cancer cells through the induction of apoptosis, cell cycle arrest, and differentiation. The mechanisms regulating 1,25D3-induced apoptosis remain unclear. We investigated the role of nongenomic signaling in 1,25D3-mediated apoptosis in squamous cell carcinoma (SCC) cells. 1,25D3 induced rapid and sustained activation of phosphatidylinositol 3-kinase/Akt and mitogen-activated protein kinase/extracellular signal-regulated kinase (ERK) 1/2 pathways in SCC cells. These effects were nongenomic: they occurred rapidly and were not inhibited by cycloheximide or actinomycin D. To examine whether the nongenomic activation of Akt and ERK1/2 plays a role in 1,25D3-mediated apoptosis, the expression of Akt or ERK1/2 was reduced by small interfering RNA (siRNA). siRNA-Akt significantly enhanced 1,25D3-induced apoptosis as indicated by increased levels of Annexin V-positive cells and increased sub-G(1) population and DNA fragmentation. In contrast, siRNA-ERK1/2 had no effects on 1,25D3-induced apoptosis. In addition, siRNA-Akt transfection followed by 1,25D3 treatment induced apoptosis much sooner than 1,25D3 alone. siRNA-Akt and 1,25D3 induced caspase-10 activation, suppressed the expression of c-IAP1 and XIAP, and promoted 1,25D3-induced caspase-3 activation. These results support a link between 1,25D3-induced nongenomic signaling and apoptosis. 1,25D3 induces the activation of phosphatidylinositol 3-kinase/Akt, which suppresses 1,25D3-mediated apoptosis and prolongs the survival of SCC cells.

  17. Analysis of interleukin 1 mediated radioprotection

    International Nuclear Information System (INIS)

    Manori, I.; Kushilevsky, A.; Weinstein, Y.

    1986-01-01

    The potential value of interleukin 1(IL-1) containing supernatants as a radioprotective agent was evaluated. It was found that the response of irradiated thymocytes to mitogens was partially restored if IL-1 containing supernatants was included in the culture medium immediately after irradiation. A delay of 24 h in the addition of IL-1 and mitogen abrogated the radioprotection effect. Under the same conditions IL-2 containing supernatants were effective, suggesting that the dose modifying effect of IL-1 acts through induction of IL-2 elaboration. The results of the present study may be important in cases where it is necessary to restore depressed immune response resulting from irradiation accidents or radiotherapy. (author)

  18. Mitogen-activated protein kinase and abscisic acid signal transduction

    NARCIS (Netherlands)

    Heimovaara-Dijkstra, S.; Testerink, C.; Wang, M.

    1998-01-01

    The phytohormone abscisic acid (ABA) is a classical plant hormone, responsible for regulation of abscission, diverse aspects of plant and seed development, stress responses and germination. It was found that ABA signal transduction in plants can involve the activity of type 2C-phosphatases (PP2C),

  19. Engineering of blood vessel patterns by angio-morphogens [angiotropins]: non-mitogenic copper-ribonucleoprotein cytokins [CuRNP ribokines] with their metalloregulated constituents of RAGE-binding S100-EF-hand proteins and extracellular RNA bioaptamers in vascular remodeling of tissue and angiogenesis in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Wissler, J.H. [ARCONS Applied Research, Bad Nauheim (Germany)

    2001-12-01

    Tissue vascularization is requisite to successful cell-based therapies, biomaterial design and implant integration. Thus, known problems in ossointegration of avascular implants in connection with the generation of bone tissue reflect arrays of general problems of socio-economic relevance existing in reparative medicine still waiting for to be solved. For this purpose, morphogenesis and remodeling of endothelial angio-architectures in tissue and in vitro by isolated non-mitogenic angio-morphogens [angiotropins] are considered in terms of their structure, function and action mechanisms. Extracellular angiotropins are secreted by activated leukocytes/monocytes/macrophages. They are a family of cytokines with morphogen bioactivity selectively directed to endothelial cells. Their structure was deciphered as metalloregulated copper-ribonucleoproteins [CuRNP ribokines]. They are built up of angiotropin-related S100-EF-hand protein [ARP] and highly modified and edited 5'end-phosphorylated RNA [ARNA], complexed together by copper ions. Oxidant-sensitive ARNA and their precursors represent novel types in a RNA world: They are the first isolated and sequenced forms of extracellular RNA [eRNA], may act as cytokine and bioaptamer, contain isoguanosine [crotonoside] as modified nucleoside and show up copper as RNA-structuring transition metal ion. By metalloregulated bioaptamer functions, ARNA impart novel biofunctions to RAGE-binding S100-EF-hand proteins. Angiotropin morphogens were shown suitable for neointiation and remodeling of blood vessel patterns in different, adult, embryonal and artificial tissues. These neovascular patterns manifest regulated hemodynamics for preventing tissue necrosis, supporting tissue functions and promoting wound healing. As evaluated in skin and muscle vascularization, the neovascular patterns are integrated into homeostatic control mechanisms of tissue. Thus, the morphogens show up beneficial perspectives and are suggested useful tools

  20. Comparison of the suppressor cells found in the spleens of 89Sr-treated mice and in normal murine bone marrow

    International Nuclear Information System (INIS)

    Levy, E.M.; Corvese, J.S.; Bennett, M.

    1981-01-01

    Normal murine bone marrow cells and spleen cells of mice treated with 89 Sr both have suppressive activity. These nonspecific suppressor cells inhibit the ability of normal spleen cells to undergo antibody responses in vitro. After being precultured for 24 hr, these cells will also suppress antibody responses in vivo and the responses of normal spleen cells to T and B cell mitogens in vitro. These cells have previously been shown not to be mature T or B lymphocytes or macrophages. Velocity sedimentation and cell-size analysis indicated that both suppressor cells are large (approx. =206 μ 3 ). Mitomycin C treatment eliminated the ability of both suppressor cells to inhibit an in vitro antibody response. In contrast, this treatment did not reduce the ability of the cells to inhibit an in vitro antibody response. In contrast, this treatment did not reduce the ability of the cells to suppress a mitogenic response. Irradiation (1000 R) was also ineffective in eliminating the ability of either cell to suppress a mitogenic response. We conclude that the 2 suppressor cells are closely related if not identical, and we speculate that these cells may function in vivo to suppress immune reactivity in areas of intense hematopoiesis